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MOTIVIC MEASURES AND F1-GEOMETRIES

LIEVEN LE BRUYN

Abstract. Right adjoints for the forgetful functors on λ-rings and bi-rings
are applied to motivic measures and their zeta functions on the Grothendieck
ring of F1-varieties in the sense of Lorscheid and Lopez-Pena (torified schemes).
This leads us to a specific subring of W(Z), properly containing Almkvist’s ring
W0(Z), which might be a natural receptacle for all local factors of completed
zeta functions.

1. Introduction

In [2] Jim Borger proposes to consider integral λ-rings as F1-algebras, with the
λ-structure viewed as the descent data from Z to F1. Crucial is the fact that the
functor of forgetting the λ-structure has the Witt-ring functor W(−) as its right
adjoint.

Recall that the λ-ring W(Z) = 1 + tZ[[t]] has addition ordinary multiplication
of power series, and a new multiplication induced functorially by demanding that
(1 − mt)−1 ∗ (1 − nt)−1 = (1 − mnt)−1. We will view W(Z) as a receptacle for
motivic data, such as zeta-functions.

A counting measure is a ringmorphism µ : K0(VarZ) ✲ Z, with K0(VarZ)
the Grothendieck ring of schemes of finite type over Z. A classic example being
µFp

([X ]) = #Xp(Fp) where Xp is the reduction of X modulo p. The Fp-counting
measure µFp

is exponentiable meaning that it defines a ringmorphism

ζFp
: K0(VarZ) ✲ W(Z) [X ] 7→ ζFp

(Xp, t) = exp(
∑

r≥1

#Xp(Fpr )
tr

r
)

and is rational, meaning that ζFq
factors through the Almkvist subring W0(Z) of

W(Z), consisting of all rational functions.

For a scheme X of finite type over Z, let N(x) for every closed point x ∈ |X | be
the cardinality of the finite residue field at x, then the Hasse-Weil zeta function of
X decomposes as a product

ζX(s) =
∏

x∈|X|

1

(1−N(x)−s)
=

∏

p

ζFp
(Xp, p

−s)

over the non-archimedean local factors. If we take the product with the archimedean

factors (Γ-factors) we obtain the completed zeta function ζ̂X(s).

One of the original motivations for constructing F1-geometries was to understand
these Γ-factors, see the lecture notes [20] by Yuri I. Manin. For example, Manin

conjectured that Deninger’s Γ-factor
∏

n≥0
s−n
2π of Spec(Z) at complex infinity
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should be the zeta function of (the dual of) infinite dimensional projective space
P∞
F1
, see [19, 4.3] and [21, Intro].

As a step towards this conjecture, we proposed in [14] to consider integral bi-
rings as F1-algebras, this time with the co-ring structure as the descent data from Z

to F1. Here again, the forgetful functor has a right adjoint with assigns to Z the bi-
ring L(Z) of all integral recursive sequences equipped with the Hadamard product.
These two approaches to F1-geometry are related, that is, we have a commuting
diagram of (solid) ringmorphisms (dashed morphisms are explained below)

W0(Z)

$$❍
❍

❍

❍

❍

❍

❍

❍

❍

M(Z) //

��

W(Z)

��
Z[L]

ζFp

DD

ζF1

55

L(Z)
i

// Z∞

with the ghost-map = t d
dt log(−) and M(Z) the pull-back of and the nat-

ural inclusion map i. One might speculate that the relevant counting mea-
sures µ : K0(VarZ) ✲ Z are those which determine a ring-morphism ζµ :
K0(VarZ) ✲ M(Z), with those factoring over W0(Z) corresponding to the non-
archimedean factors, and the remaining ones related to the Γ-factors.

This is motivated by our description of the F1-zeta function of Lieber, Manin
and Marcolli in [15]. Here, one considers integral schemes with a decomposition
into tori Gn

m as F1-varieties and with morphisms respecting the decomposition and
with all restrictions to tori being morphisms of group schemes. The correspond-
ing Grothendieck ring K0(VartorF1

) can then be identified with the subring Z[L] of
K0(VarC). Kapranov’s motivic zeta function induces a natural λ-ring structure
on Z[L] and we can also define a bi-ring structure on it by taking D = L − 2 to
be a primitive generator. By right adjointness we then have natural one-to-one
correspondences

comm+
bi(Z[L],L(Z)) ↔ comm(Z[L],Z) ↔ comm+

λ (Z[L],W(Z))

To a counting measure L 7→ m corresponds a λ-ring morphism ζm : Z[L] ✲ W(Z)
which factors through W0(Z) and coincides with ζFp

when m = p. If X is an
integral scheme with toric decomposition, its F1-zeta function is defined to be the
ringmorphism

ζF1
: Z[L] ✲ W(Z) ζF1

(X, t) = exp(
∑

r≥1

#X(F1m)
tr

r
)

with #X(F1m) being the total number of m-th roots of unity in the tori making
up X , see [15]. This ζF1

is not a λ-ring morphism and does not factor through
W0(Z). However, the counting measure L 7→ 3 corresponds to a bi-ring morphism
c3 : Z[L] ✲ L(Z) which factors through M(Z) and such that the composition
with M(Z) ✲ W(Z) is the zeta-morphism ζF1

.
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1.1. Structure of this paper. In section 2 we use right adjointness of the functor
W(−) to give quick proofs of the facts that the pre λ-structure on K0(VarC) given
by Kapranov’s motivic zeta function does not define a λ-ring structure, and that
its universal motivic measure is not exponentiable.

In section 3 we relate the versions of F1-geometry determined by λ-rings resp. bi-
rings to the concrete resp. abstract Bost-Connes systems associated to cyclotomic
Bost-Connes data as in [24]. This allows to have relative versions ofW0(Z) and L(Z)
by imposing conditions on the eigenvalues of actions of Frobenii on (co)homology
or on the roots and poles of zeta-polynomials.

In section 4 we study counting measures on the Grothendieck ring of torified
integral schemes, proving the results mentioned above. It turns out that the pull-
backM(Z) ofW(Z) and L(Z) might be the appropriate receptacle for local factors of
zeta functions of integral schemes. These results can be extended to other subrings
of K0(VarZ) which are λ-rings and admit a bi-ring structure.

In section 5 we introduce the category of all linear dynamical systems which
plays the same role for L(Z) as does the endomorphism category for W0(Z). To
completely reachable systems we associate their transfer functions which are strictly
proper rational functions. As such, these systems may be relevant in the study of
zeta-polynomials, as introduced by Manin in [21].

Acknowledgements This paper owes much to recent work of Yuri I. Manin,
Matilde Marcolli and co-authors, [23],[15] and [24]. Unconventional symbols are
taken from the LATEX-package halloweenmath [25], befitting the current topic.

2. Motivic measures on K0(Vark)

Let Vark be the category of varieties over a field k. The Grothendieck ring
K0(Vark) is the quotient of the free abelian group on isomorphism classes [X ] of
varieties by the relations [X ] = [Y ] + [X − Y ] whenever Y is a closed subvariety of
X , and multiplication is induced by products of varieties, that is, [X ].[Y ] = [X×Y ].
As the structure of K0(Vark) is fairly mysterious, we try to probe its properties
via motivic measures.

Definition 1. A motivic measure on K0(Vark) with values in a commutative ring
R is a ringmorphism

µ : K0(Vark) ✲ R

The archetypical example of a motivic measure on the Grothendieck ring of
varieties over a finite field Fq is the counting measure with values in Z

µFq
: K0(VarFq

) ✲ Z [X ] 7→ #X(Fq)

An example of a motivic measure on the Grothendieck ring of complex varieties
K0(VarC) with values in Z is the Euler characteristic measure

χc : K0(VarC) ✲ Z [X ] 7→ χc(X) =
∑

i

(−1)idimQ Hi
c(X

an,Q)

There are plenty of motivic measures with values in other rings such as the Hodge
characteristic measure µH with values in Z[u, v], see [16, §4.1], the Poincaré char-
acteristic measure PX with values in Z[u], see [16, §4.1], the Gillet-Soulé measure
µGS with values in the Grothendieck ring if Chow motives, see [6].
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Of particular importance to us are the ’exotic’ Larsen-Luntz measure µLL

on K0(VarC) with values in the quotient field of the monoid ring Z[C] with
C the multiplicative monoid of polynomials in Z[t] with positive leading coeffi-
cient, see [12], and the universal motivic measure, which is the identity morphism
id : K0(Vark) ✲ K0(Vark).

For a commutative ring R let W(R) be the set 1 + tR[[t]] of all formal power
series over R with constant term equal to one, and let multiplication of formal
power series be the addition on W(R). We say that R admits a pre λ-structure if
there exists a morphism of additive groups

λt : R ✲ W(R) = 1 + tR[[t]] a 7→ λt(a) = 1 + at+ . . . =
∑

m≥0

λm(a)tm

that is, it satisfies λ0(a) = 1, λ1(a) = a, and

λt(a+ b) = λt(a).λt(b) that is λm(a+ b) =
∑

i+j=m

λi(a)λj(b)

Given a pre λ-structure λt on R we can define the Adams operations Ψm on R via

t
d

dt
log(λt(a)) = t

1

λt(a)

dλt(a)

dt
=

∑

m≥1

Ψm(a)tm

and note that for all m ∈ N and all a, b ∈ R we have Ψm(a+ b) = Ψm(a) +Ψm(b).
We say that a pre λ-ring R is a λ-ring if for all m,n ∈ N we have these conditions
on the Adams operations

Ψm(a.b) = Ψm(a).Ψm(b) and Ψm ◦Ψn = Ψn ◦Ψm

Equivalently, if we define a multiplication ∗ on W(R) induced by the functorial
requirement that (1−at)−1 ∗ (1− bt)−1 = (1−abt)−1 for all a, b ∈ R, then the map
λt is a morphism of rings. For more on λ-rings, see [9], [11] and [33].

A morphism φ : (R, λt) ✲ (R′, λ′
t) between two λ-rings is a ringmorphism

such that for all a ∈ R we have that λ′
t(φ(a)) = W(φ)(λt(a)) where W(φ) is the

map on W(R) = 1+tR[[t]] induced by φ. With comm+
λ we will denote the category

of all (commutative) λ-rings. If comm is the category of all commutative rings,
then

W : comm ✲ comm+
λ A 7→ W(A)

is a functor, which is right adjoint to the forgetful functor F : comm+
λ

✲ comm.
That is, for every λ-ring (R, λt) and every commutative ring A we have a natural
one-to-one corespondence

comm+
λ (R,W(A)) ↔ comm(R,A) φ ↔ 1 ◦ φ

with the ghost components m : W(A) ✲ A defined by

t
1

P

dP

dt
=

∞
∑

m=1

m(P )tm for all P ∈ W(A) = 1 + tA[[t]]

Kapranov’s motivic zeta function ζ defines a natural pre λ-structure onK0(Vark)

ζ : K0(Vark) ✲ W(K0(Vark)) [X ] 7→ ζX(t) = 1+[X ]t+[S2X ]t2+[S3X ]t3+. . .

where SnX = Xn/Sn is the n-th symmetric product of X .
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Definition 2. A motivic measure µ : K0(Vark) ✲ R with values in R is said
to be exponentiable if the uniquely determined map ζµ : K0(Vark) ✲ W(R) by

ζµ([X ]) = 1 + µ([X ])t+ µ([S2X ])t2 + µ([S3X ])t3 + . . .

is a ringmorphism.

Again, the archetypical example being the counting measure µFq
on K0(VarFq

)
which is exponentiable, with corresponding zeta-function

ζµFq
: K0(VarFq

) ✲ W(Z) ζµFq
([X ]) =

∞
∑

m=1

#X(Fqm)tm = ZFq
(X, t)

the classical Hasse-Weil zeta function, see [26, Prop. 8] or [29, Thm. 2.1]. Also
the Euler characteristic measure on K0(VarC) is exponentiable with corresponding
zeta function

ζµc
: K0(VarC) ✲ W(Z) ζµc

([X ]) =
1

(1− t)χc(X)

However, as shown in [30, §4] the Larsen-Luntz motivic measure µLL on K0(VarC)
is not exponentiable. For this would imply that

ζµLL
(C1 × C2) = ζµLL

(C1) ∗ ζµLL
(C2)

for any pair of projective curves C1 and C2. Kapranov proved that ζµ(C) is a
rational function for every curve and every motivic measure, which would imply
that µLL(C1 ×C2) would be rational too, by [30, Prop. 4.3], which contradicts [12,
Thm 7.6] in case C1 and C2 have genus ≥ 1.

It is a natural to ask whether the pre λ-structure on K0(Vark) defined by Kapra-
nov’s motivic zeta function defines a λ-ring structure on K0(Vark), see [29, §3
Questions] or [7, §2.2]. The following is well-known to the experts, but we cannot
resist including the short proof.

Proposition 1. If Kapranov’s motivic zeta function makes K0(Vark) into a λ-
ring, then every motivic measure

µ : K0(Vark) ✲ R

is exponentiable.
As a consequence, Kapranov’s zeta function does not define a λ-ring structure

on K0(VarC).

Proof. If K0(Vark) is a λ-ring, then by right adjunction of W(−) with respect to
the forgetful functor, we have a natural one-to-one correspondence

comm(K0(Vark), R) ↔ comm+
λ (K0(Vark),W(R))

and under this correspondence the motivic measure µ maps to a unique λ-ring
morphism ζµ : K0(Vark) ✲ W(R).

Because the Larsen-Luntz motivic measure µLL on K0(VarC) is not exponen-
tiable, it follows that K0(VarC) cannot be a λ-ring. �

Another immediate consequence is this negative answer to [29, §3 Questions].

Proposition 2. The universal motivic measure on K0(VarC) is not exponentiable.
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Proof. By functoriality, any motivic measure µ : K0(VarC) ✲ R gives rise to a
morphism of λ-rings W(µ) : W(K0(VarC)) ✲ W(R).

If the universal measure would be exponentiable, this would give a ringmorphism
ζ : K0(VarC) ✲ W(K0(VarC)) and composition

W(µ) ◦ ζ : K0(VarC) ✲ W(R)

would then imply that µ is exponentiable, which cannot happen for µLL. �

An important condition on a motivic measure µ : K0(Vark) ✲ R is its ratio-
nality. In order to define this, we need to recall the endomorphism category and its
Grothendieck ring, see [1] and [8].

For a commutative ring R consider the category ER consisting of pairs (E, f)
where E is a projective R-module of finite rank and f is an endomorphism of
E. Morphisms in ER are module morphisms compatible with the endomorphisms.
There is a duality (E, f) ↔ (E∗, f∗) on ER and we have ⊕ and ⊗ operations

(E1, f1)⊕ (E2, f2) = (E1 ⊕ E2, f1 ⊕ f2) (E1, f1)⊗ (E2, f2) = (E1 ⊗ E2, f1 ⊗ f2)

with a zero object 0 = (0, 0) and a unit object 1 = (R, 1). These operations turn
the Grothendieck ring K0(ER) into a commutative ring, having an ideal consisting
of the pairs (E, 0), with quotient ring W0(R).

The ring W0(R) comes equipped with Frobenius ring endomorphisms
Frn(E, f) = (E, fn), Verschiebung additive maps

Vn(E, f) = (E⊕n,





















0 0 0 . . . 0 f
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

. . .
...

...
. . .

...
0 0 0 . . . 1 0





















)

and ghost ringmorphisms n(E, f) = Tr(fn) : W0(R) ✲ R. For various rela-
tions among the maps Frn, Vn and n see for example [4, Prop. 2.2].

The connection between Almkvist’s functor W0(−) and W(−) is given by the
ringmorphisms

LR : W0(R) ✲ W(R) LR(E, f) =
1

det(1− tMf)

where Mf is the matrix associated to f (that is, if f =
∑

i x
∗
i ⊗ xi ∈ EndR(E) =

E∗ ⊗ E, then Mf = (aij)i,j with aij = x∗
i (xj). By [1, Thm 6.4] we know that LR

is injective with image all rational formal power series of the form

1 + a1t+ . . .+ ant
n

1 + b1t+ . . .+ bmtm
ai, bi ∈ R,m, n ∈ N+

Definition 3. We say that a motivic measure µ : K0(Vark) ✲ R is rational if it
is exponentiable and if the corresponding zeta-function ζµ factors through W0(RT ).
That is, there is a unique ringmorphism

rµ : K0(Vark) ✲ W0(R)

such that ζµ = LR ◦ rµ.
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By a classic result of Dwork we know that the counting measure µFq
is rational,

as is the Euler characteristic measure µc.

3. Cyclotomic Bost-Connes data

Let R be an integral domain with field of fractions K of characteristic zero

and with algebraic closure K. Let K
∗
× be the multiplicative group of all non-zero

elements and µµµ∞ the subgroup consisting of all roots of unity. The power maps

σn : x 7→ xn for n ∈ N+ form a commuting family of endomorphisms of K
∗
× and its

subgroups. Following M. Marcolli en G. Tabuada in [24] we define:

Definition 4. A cyclotomic Bost-Connes datum is a divisible subgroup Σ

µµµ∞ ⊆ Σ ⊆ K
∗
×

stable under the action of the Galois group G = Gal(K/K).

The subgroup Σ should be considered as ’generalised’ Weil numbers (recall that
for each prime power q = pr the Weil q-numbers are an instance, see [24, Example
4]).

Observe that cyclotomic Bost-Connes data are special cases of concrete Bost-
Connes data as in [24, Def. 2.3] with the endomorphisms σn the n-th power maps
σn(x) = xn and ρn(x) = µµµn

n
√
x ⊂ Σ. In [24, §4] Marcolli and Tabuada associate

to a cyclotomic Bost-Connes system with K = Q a quantum statistical mechanical
system. Further, in [24, §2] both concrete and abstract Bost-Connes systems are
associated to a cyclotomic Bost-Connes datum Σ. We will relate these to F1-
geometries.

A powerful idea, due to Jim Borger [2] and [3], to construct ’geometries’ under
Spec(Z) is to consider a subcategory comm+

X of commutative rings comm which

allows a right adjoint R to the forgetful functor F : comm+
X

✲ comm.
The additional structure X should be thought of as descent data from Z to

F1, the elusive field with one element. As a consequence, the commutative ring
F (R(Z)) can then be considered to be the coordinate ring of the arithmetic square
Spec(Z)×Spec(F1) Spec(Z).

We propose to view the object R(Z) ∈ comm+
X as a receptacle for motivic data.

That is, (co)homology groups with actions of Frobenii and zeta-functions determine
elements in R(Z) and the subobject in comm+

X they generate can then be seen as
its representative in the corresponding version of F1-geometry.

3.1. Concrete Bost-Connes systems and comm+
λ . Following [24, Def. 2.6]

one associates to Σ the concrete Bost-Connes system which consists of the integral
group ring Z[Σ] equipped with

(1) the induced G = Gal(K/K)-action,
(2) G-equivariant ring endomorphisms σ̃n induced by σ̃n(x) = xn for all x ∈ Σ,
(3) G-equivariant Z-module maps ρ̃n induced by ρ̃n(x) =

∑

x′∈ρn(x)
x′ for all

x ∈ Σ.

Proposition 3. For a cyclotomic Bost-Connes datum Σ, the concrete Bost-Connes
system (Z[Σ], σ̃n, ρ̃n) is a sub-system of (W0(K), F rn, Vn).
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Proof. From [4, Prop. 2.3] we recall that W0(K) is isomorphic to the integral group

ring Z[K
∗
×] via the map which assigns to (E, f) the divisor of non-zero eigenvalues

of f (with multiplicities).
Under this isomorphism the Frobenius maps Frn becomes σ̃n and the Ver-

schiebung Vn the map ρ̃n for the cyclotomic Bost-Connes datum K
∗
×. �

Definition 5. For a cyclotomic Bost-Connes datum Σ, let EΣ,R be the full sub-
category of ER consisting of pairs (E, f) with E a projective R-module and Mf a

K-diagonalisable matrix having all its eigenvalues in Σ. With W0(Σ, R) we denote
the subring of W0(R) generated by EΣ,R.

Example 1. Consider Yuri I. Manin’s idea to replace the action of the Frobenius
map on étale cohomology of an Fq-variety at q = 1 by pairs (Hk(M,Z), f∗k) where
f∗k is the action of a Morse-Smale diffeomorphism f on a compact manifold M upon
its homology Hk(M,Z), [18, §0.2]. This implies that each f∗k is quasi-unipotent,
that is all its eigenvalues are roots of unity. This fits in with Manin’s view that
1-Frobenius morphisms acting upon their (co)homology have eigenvalues which are
roots of unity.

In [23, §2], Manin and Matilde Marcolli assign an object in comm+
λ to the

Morse-Smale setting (M, f) as follows. Each Hk(M,Z) is viewed as a Z[t, t−1]-
module by letting t act as f∗k. Next, they consider the minimal category CM of
Z[t, t−1]-modules, containing all Hk(M,Z), and closed with respect to direct sums,
tensor products and exterior products. Then, its Grothendieck ring K0(CM ) comes
equipped with a λ-ring structure coming from the exterior products, which is then
said to be the representative of {(Hk(M,Z), f∗k); k} in F1-geometry, see [23, Def.
2.4.2].

Alternatively, one can assign to each (Hk(M,Z), f∗k) the element

det(1− t(f∗k|Hk(M,Z)))−1 ∈ 1 + tZ[[t]] = W(Z)

and consider the λ-subring of W(Z) generated by these elements. Clearly, all
(Hk(M,Z), f∗k) lie in Eµµµ∞,Z.

3.2. Abstract Bost-Connes systems and comm+
bi. Following [24, Def. 2.5]

one can associate to a cyclotomic Bost-Connes datum Σ the abstract Bost-Connes
system which consists of the Galois-invariants of the group ring of Σ over K, that
is,

(1) the K-algebra K[Σ]Gal(K/K), equipped with
(2) K-algebra morphisms σ̃n induced by x 7→ xn for all x ∈ Σ, and
(3) K-linear maps ρ̃n induced by x 7→x′∈ρn(x) x

′ for all x ∈ Σ.

Clearly, K[Σ]G is a Hopf-algebra and from [24, Thm. 1.5.(iv)] we recall that the
affine group K-scheme Spec(K[Σ]G) agrees with the Galois group of the neutral

Tannakian categoryAutKΣ (Q) consisting of pairs (V,Φ) with V a finite dimensional
K-vectorspace and

Φ : V ⊗K ✲ V ⊗K

a G-equivariant diagonalisable automorpism all of whose eigenvalues belong to Σ,
that is, the category EΣ,K introduced above.

In [14] we proposed to consider the category comm+
bi of all (torsion free)

commutative and co-commutative Z-birings. This time, the forgetful functor
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F : comm+
bi

✲ comm has as right adjoint C(−) where C(A) is the free co-
commutative co-ring on A. In particular, C(Z) = L(Z), the coring of all integral
linear recursive sequences, equipped with the Hadamard product, see [14, Thm. 2].

For a commutative domain R, consider the polynomial ring R[t] with coring
structure defined by letting t be a group-like element, that is, ∆(t) = t ⊗ t and
ǫ(t) = 1.

The full linear dual R[t]∗ can be identified with the module of all infinite se-
quences f = (fn)

∞
n=0 ∈ R∞ with f(tn) = fn. L(R) will be R[t]o, that is, the

submodule of all sequences f such that Ker(f) = (m(t)) with m(t) = tr−a1t
r−1−

. . .− ar is a monic polynomial. As f(tnm(t)) = 0 it follows that f is a linear recur-
sive sequence, that is, for all n ≥ r we have fn = a1fn−1 + a2fn−2 + . . .+ arfn−r.
Therefore,

L(R) = R[t]o = lim
→

(
R[t]

(m(t))
)∗

where the limit is taken over the multiplicative system of monic polynomials with
coefficients in R.

We define a coring structure on L(R) dual to the ring structure on R[t]/(m(t)).
With this coring structure, L(R) becomes an integral biring if we equip L(R) with
the Hadamard product of sequences, that is, componentwise multiplication (f.g)n =
fn.gn and unit 1 = (1, 1, 1, . . .).

If K is a field of characteric zero, one can describe the co-algebra structure on
L(K) explicitly, see [28] for more details.

On the linear recursive sequence f = (fi)
∞
i=0 ∈ K∞ the counit acts as ǫ(f) = f0,

projection on the first component. To define the co-multiplication recall that the
Hankel matrix M(f) of the sequence f is the symmetric k × k matrix

H(f) =















f0 f1 f2 . . . fk−1

f1 f2 f3 . . . fk
f2 f3 f4 . . . fk+1

...
...

...
...

fk−1 fk fk+1 . . . f2k−2















with k maximal such that H(f) is invertible. If H(f)−1 = (sij)i,j ∈ Mn(K) then
we have in L(K)

∆(f) =

k−1
∑

i,j=0

sij(D
if)⊗ (Djf)

where D is the shift operator D(f0, f1, f2, . . .) = (f1, f2, . . .). Clearly, if K is the
fraction field of R, and if a sequence f ∈ L(R) has Hankel matrix H(f) with
determinant a unit in R, the same formula applies for ∆(f) as L(R) is a sub-biring of
L(K). In general however, ∆(f) cannot be diagonalized in terms of f,Df,D2f, . . .
with R-coefficients and we have no other option to describe the comultiplication
than as the direct limit of linear duals of the ringstructures on R[t]/(m(t)).

Proposition 4. For a cyclotomic Bost-Connes datum Σ, the Hopf-algebra K[Σ]G

describing the abstract Bost-Connes system is a sub-bialgebra of L(K).
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Proof. We can describe the bialgebra L(K) of linear recursive sequences over K
using the structural results for commutative and co-commutative Hopf algebras
over an algebraically closed field of characteristic zero, see [13].

Let T be the set of all sequences over K which are zero almost everywhere, then
T is a bialgebra ideal in L(K) and we have a decomposition

L(K) = K[t]o ≃ K[t, t−1]o ⊕ T

One verifies that in the Hopf-dual K[t, t−1]o the group of group-like elements is

isomorphic to the multiplicative group K
∗
×, with s ∈ K

∗
× corresponding to the

geometric sequence (1, s, s2, s3, . . .). Further, there is a unique primitive element
corresponding to the sequence d = (0, 1, 2, 3, . . .). Then, the structural result implies
that, as bialgebras, we have an isomorphism

L(K) ≃ (K[K
∗
×]⊗K[d])⊕ T

As the Galois group G = Gal(K/K) acts on this bialgebra and as L(K) = L(K)G,
the claim follows. �

Example 2. Continuing Example 1 on Morse-Smale diffeomorphism, as antici-
pated in [23, remark 2.4.3], in the comm+

bi-proposal, one can associate to each
(Hk(M,Z), f∗k) the element

(Tr(f∗k|Hk(M,Z)), T r(f2
∗k|Hk(M,Z)), T r(f3

∗k|Hk(M,Z)), . . .) ∈ L(Z)

and considers the sub-biring of L(Z) generated by these elements.

3.3. Motivic measures and L(R). By taking the trace of the Cayley-Hamilton
polynomial we have a ghost ringmorphism : W0(R) ✲ L(R)

(E, f) 7→ ( 1(E, f), 2(E, f), . . .) = (Tr(Mf ), T r(M
2
f ), . . .)

Further, we have a traditional ghost morphism : W(R) ✲ R∞ determined by
t d
dt log(−) on W(R) = 1 + tR[[t]]

(f(t)) = (a1, a2, . . .) where t
d

dt
log(f(t)) =

∞
∑

m=1

amtm

Proposition 5. Let R be a commutative ring and µ : K0(Vark) ✲ R a motivic
measure. The measure µ is exponentiable if there exists a ringmorphism ζµ, and is
rational if there is a ringmorphism rµ, making the diagram below commute

K0(Vark)
µ //

ζµ

%%
rµ

��

R

ER // W0(R)
LR //

��

W(R)

��
Scr
R

// // L(R)
i // R∞

The left-most maps are additive and multiplicative from the endomorphism category,
resp. the category of completely reachable systems, to be defined in § 5.

Proof. This follows from the definitions above and the fact that log(LR(E, f)) =
∑

m≥1 Tr(M
m
f ) t

m

m . �
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Example 3. As a consequence, an exponentiable motivic measure µ assigns to a
k-variety X the element ζµ([X ]) ∈ W(R), and a rational motivic measure µ assigns
to X elements (rµ([X ])) ∈ L(R) and LR(rµ([X ])) ∈ W(R).

4. Motivic measures on K0(VartorF1
)

In this section we consider yet another approach to F1-geometry based on the
notion of torifications as introduced by Lorscheid and Lopez Pena in [17] and gen-
eralized by Manin and Marcolli in [22].

A torification of a complex algebraic variety, defined over Z, is a decomposition
into algebraic tori

X = ⊔i∈ITi with Ti ≃ Gdi
m

We consider here strong morphisms between torified varieties (see [15, §5.1] for
weaker notions), that is a morphism of varieties, defined over Z,

f : X = ⊔i∈ITi
✲ Y = ⊔j∈JT

′
j

together with a map h : I ✲ J of the indexing sets such that the restriction of
f to any torus

fi = f |Ti
: Ti

✲ T ′
h(i)

is a morphism of algebraic groups. With K0(VartorF1
) we denote the Grothendieck

ring generated by the strong isomorphism classes [X = ⊔iTi] of torified varieties,
modulo the scissor relations

[X = ⊔iTi] = [Y = ⊔jT
′
j] + [X\Y = ⊔kT ”k]

whenever the decomposition in tori in the torifications of Y and X\Y is a union
of tori of the torification of X . This condition is very strong and implies that the
class of any torified variety in Ko(VartorF1

) is of the form

[X = ⊔iTi] =
∑

n≥0

anT
n with an ∈ N+ and T = [Gm] = L− 1 ∈ K0(VarC)

That is,

K0(VartorFq
) = Z[T] = Z[L] ⊂ K0(VarC)

with L = [A1] the Lefschetz motive. Whereas Kapranov’s motivic zeta function
does not make K0(VarC) into a λ-ring, it does define a λ-structure on certain
subrings, including Z[L], see [7, §2.2 Example], with Sn(L) = Ln

Proposition 6. Any motivic measure µ : K0(VartorF1
) ✲ R with values in a

commutative ring R is exponentiable and rational.

Proof. Because K0(VartorF1
) = Z[L] is a λ-ring, we have by right adjointness of

W(−) a natural one-to-one correspondence

comm(K0(VartorF1
), R) ↔ comm+

λ (K0(VartorF1
),W(R))

with µ corresponding to a unique λ-ring morphism

ζµ : K0(VartorF1
) ✲ W(R) = 1 + tR[[t]] L 7→ 1 + rt + r2t2 + . . . =

1

1− rt

with r = µ(L). That is, µ is exponentiable and rational as it factors through the
ringmorphism rµ : K0(VartorF1

) ✲ W0(R) defined by L 7→ [R, r]. �
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If we equip K0(VartorF1
) = Z[L] with the bi-ring structure induced by letting L

be a group-like generator, that is ∆(L) = L ⊗ L and ǫ(L) = 1, we have a bi-ring
morphism cµ : K0(VartorF1

) ✲ L(R) defined by L 7→ (1, r, r2, . . .) making the
diagram below commutative.

K0(VartorF1
) ζµ

$$

cµ

((

rµ
▲

▲

▲

▲

&&▲▲
▲

▲

W0(R)
LZ //

��

W(R)

��
L(R) // R∞

For example, any motivic measure with values in Z is of the form

µm : K0(VartorF1
) = Z[L] ✲ Z L 7→ m+ 1

and if m+1 = p with p a prime number, the corresponding zeta function ζµm
(X, t)

coincides with the Hasse-Weil zeta function of the reduction mod p of the torified
variety X . The reason for choosing m + 1 rather than m will be explained in 4.1
below.

Similarly, we can define F1m-varieties to be torified varieties X = ⊔Ti with the
natural action of the group of m-th roots of unity µµµm on each torus Ti. As a
consequence we have

K0(VartorF1m
) = Z[T] = Z[L]

and the previous result holds also for K0(VartorF1m
).

4.1. Counting F1m-points. The motivic measure µ2m can be interpreted as a
’counting measure’ associated to the F1-extension F1m .

Indeed, in [15, Lemma 5.6] Joshua Lieber, Yuri I. Manin and Matilde Marcolli de-

fine for a torified variety X with Grothendieck class [X ] =
∑N

i=0 aiT
i ∈ K0(VartorF1

)
that

#X(F1m) =

N
∑

i=0

aim
i

That is, #X(F1) counts the number of tori in the torified variety X , and #X(F1m)
counts the number ofm-th roots of unity in the tori-decomposition of X . Therefore,
µm = µF1m

.

In analogy with this Hasse-Weil zeta function of varieties over Fq, Lieber, Manin
and Marcolli then define the F1- zeta function to be the ring morphism, by [15,
Prop. 6.2]

ζF1
: K0(VartorF1

) ✲ W(Z) [X ] =

N
∑

k=0

akT
k 7→ exp(

N
∑

k=0

akLi1−k(t))

where Lis(t) is the polylogarithm function, that is, Li1−k(t) =
∑

l≥1 l
k−1tl. This

gives us a motivic measure on K0(VartorF1
) with values in W(Z), but it does not

correspond to any of the zeta-functions ζµk
corresponding to the motivic measure

µk. In particular, ζF1
is not a morphism of λ-rings.
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Mutatis mutandis we can define similarly the F1m-zeta function, for the field
extension F1m of F1, to be the ring morphism

ζF1m
: K0(VartorF1m

) ✲ W(Z) [X ] =

N
∑

k=0

akT
k 7→ exp(

N
∑

k=0

akm
kLi1−k(t))

and again, this zeta function does not come from any of the motivic measures µk

on K0(VarF1m
).

However, we can define another bi-ring (actually, Hopf-ring) structure on
K0(VartorF1m

) = Z[T] induced by taking D = T−m (observe that #D(F1m) = 0) to
be the primitive generator, that is,

∆(D) = D⊗ 1 + 1⊗ D and ǫ(D) = 0

We will call this the Lie algebra structure on K0(VartorF1m
).

Proposition 7. If we equip K0(VartorF1m
) = Z[T] with the Lie-algebra structure,

then under the natural one-to-one correspondence

comm(K0(VartorF1m
),Z) ↔ comm+

bi(K0(VartorF1m
),L(Z))

the motivic measure µ2m : K0(VartorF1m
) ✲ Z corresponds to a unique bi-ring

morphism cµ2m
: K0(VartorF1m

) ✲ L(Z), making the diagram below commutative

K0(VartorF1m
) ζF

1m

$$

cµ2m

((

6∃
&&
W0(Z)

LZ //

��

W(Z)

��
L(Z) // Z∞

Proof. By definition we have that ζF1m
(Ti) = exp(

∑

k≥1 m
iki−1tk), and therefore,

because corresponds to t d
dt log(−), we have that

(ζF1m
(Ti)) = (mi,mi2i,mi3i, . . .) = (ζF1m

(T))i

To enforce commutativity with a ringmorphism cµ we must have that

cµ(T) = (m, 2m, 3m, . . .) = m.d+m.1

for the primitive element d = (0, 1, 2, . . .) ∈ L(Z), that is, ∆(d) = d⊗ 1+ 1⊗ d and
ǫ(d) = 0 and with 1 = (1, 1, 1, . . .) ∈ L(Z).

But then, for the Lie algebra structure on K0(VartorF1m
) we have that cµ(D)

is the primitive element m.d ∈ L(Z), and therefore cµ is the unique bi-ring

morphism K0(VartorF1m
) ✲ L(Z) corresponding to the motivic measure µ2m :

K0(VartorF1m
) ✲ Z because the second component of cµ(T) = 2m.

Suppose there would be a ringmorphism r : K0(VartorF1m
) ✲ W0(Z), then we

must have that (r(T−m)) = m.d ∈ L(Z). By functoriality we have a commuting
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square

W0(Z) //

��

W0(Q) = Z[Q
∗
×]

��
L(Z) // L(Q) = (Q[Q

∗
×]⊗Q[d])⊕K

and d does not lie in the image of the rightmost map. �

Because K0(VartorF1
) is both a λ-ring (with Ψk(L

i) = Lki) and a bi-ring (with the
Lie algebra structure with primitive element D = T−1) we have natural one-to-one
correspondences

comm+
bi(K0(VartorF1

),L(Z)) ↔ comm(K0(VartorF1
),Z) ↔ comm+

λ (K0(VartorF1
),W(Z))

Under the left correspondence, the motivic measure µm defined by µm(T) = m
corresponds to the bi-ring morphism

bm : K0(VartorF1
) = Z[D] ✲ L(Z) D 7→ (m− 1).d = (0,m− 1, 2(m− 1), . . .)

as bm(T) = (1,m, 2m− 1, . . .) and the coresponding ring-morphism to Z is compos-
ing with projection on the second factor.

Under the right correspondence, the motivic measure µm corresponds to the
λ-ring morphism lm : K0(VartorF1

) = Z[L] ✲ W(Z)

L 7→ 1

1− (m+ 1)t
= 1 + (m+ 1)t+ (m+ 1)2t2 + . . .

as lm(T) = (1 − t).bl(L) = 1 +mt +m(m + 1)t2 + . . . and the corresponding ring
morphism to Z is 1(lm(T)) = m.

It follows from propositions 6 and 7 that these morphisms factor through the
pull-back M(Z).

W0(Z) LZ

""

''

$$❍
❍

❍

❍

❍

❍

❍

❍

❍

M(Z) //

��

W(Z)

��
L(Z) // Z∞

Motivated by this, one might viewM(Z) as the correct receptacle for ringmorphisms
K0(VarZ) ✲ W(Z) determined by a counting measure K0(VarZ) ✲ Z. Here,
local factors corresponding to non-archimedean places can be distinguished from
the Γ-factors by the fact that they factor through W0(Z).

5. Linear systems and zeta-polynomials

The original motivation for proposing bi-rings as F1-algebras was to give a po-
tential explanation of Manin’s interpretation of Deninger’s Γ-factor

∏

n≥0
s−n
2π at

complex infinity as the zeta function of (the dual of) infinite dimensional projective
space P∞

F1
, see [19, 4.3] and [21, Intro]. In [14] a noncommutative moduli space

was constructed using linear dynamical systems having the required motive. This
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suggests the introduction of the category SR of discrete R-linear dynamical sys-
tems, which plays a similar role for L(R) as does the endomorphism category ER
for W0(R) and W(R).

For R a commutative ring consider the category SR with objects quadruples
(E, f, v, c) with E a projective R-module of finite rank, f ∈ EndR(E), v ∈ E
and c ∈ E∗ and with morphisms R-module morphisms φ : E ✲ E′ such that
φ ◦ f = f ′ ◦ φ, φ(v) = v′ and c = c′ ◦ φ. A quadruple (E, f, v, c) can be seen as an
R-representation of the quiver

'&%$ !"#R

v

(( '&%$ !"#E

c

hh fdd

and morphisms correspond to quiver-morphisms.

Again, there is a duality S = (E, f, v, c) ↔ S∗ = (E∗, f∗, c∗, v∗) on SR and we
have ⊕ and ⊗ operations

{

(E1, f1, v1, c1)⊕ (E2, f2, v2, c2) = (E1 ⊕ E2, f1 ⊕ f2, v1 ⊕ v2, c1 ⊕ c2)

(E1, f1, v1, c1)⊗ (E2, f2, v2, c2) = (E1 ⊗ E2, f1 ⊗ f2, v1 ⊗ v2, c1 ⊗ c2)

with a zero object 0 = (0, 0, 0, 0) and a unit object 1 = (R, 1, 1, 1).

We will call a quadruple S = (E, f, v, c) a discrete R-linear dynamical system.
Borrowing terminology from system theory, see for example [32, [VI.§5], we define:

Definition 6. For S = (E, f, v, c) ∈ SR with E of rank n, we say that

(1) S is completely reachable if E is generated as R-module by the elements
{v, f(v), f2(v), . . .}.

(2) S is completely observable if the R-module morphism φ : E ✲ Rn given
by φ(x) = (c(x), c(f(x)), . . . , c(fn−1(x))) is injective.

(3) S is a canonical system if S is both completely reachable and completely
observable.

(4) S is a split system if both S and S∗ are completely reachable.

Definition 7. There is an additive and multiplicative bat-map

R : SR
✲ L(R) (E, f, v, c) 7→ (c(v), c(f(v)), c(f2(v)), c(f3(v)), . . .)

sending a linear dynamical system to its input-output or transfer sequence. We
say that a linear recursive sequence s = (s0, s1, s2, . . .) ∈ L(R) is realisable by the
system (E, f, v, c) ∈ SR if R(E, f, v, c) = s.

Remark 1. In system theory, see for example [32, VI.§5], one relaxes the condition
on the state-space E which is merely an R-module and replaces the rk(E) = n
condition by the requirement that E is generated by n elements.

We will now prove that every element s ∈ L(R) is realisable by a completely
reachable system and verify when this system is in addition canonical, respectively
split.

For s = (s0, s1, s2, . . .) ∈ L(R) satisfying the recurrence relation sn = a1sn−1 +
a2sn−2 + . . .+ arsn−r of depth r, valid for all n ∈ N with the ai ∈ R. Consider the



16 LIEVEN LE BRUYN

system Ss = (Es, fs, vs, cs) ∈ SR with

Es =
R[x]

(xr − a1xr−1 − . . .− ar)
, fs = x.|Es, vs = 1 ∈ Es, cs(x

i) = si

and consider the r × r matrix, with r the depth of the recurrence relation

Hr(s) =















s0 s1 s2 . . . sr−1

s1 s2 s3 . . . sr
s2 s3 s4 . . . sr+1

...
...

...
...

sr−1 sr sr+1 . . . s2r−2















Proposition 8. With notations as above, s ∈ L(R) is realisable by the system
Ss = (Es, fs, vs, cs) ∈ SR, and

(1) Ss is completely reachable,
(2) Ss is canonical if and only if det(Hr(s)) 6= 0,
(3) Ss is split if and only if det(Hr(s)) ∈ R∗.

Proof. Clearly, Es is a free R-module of rank r and one verifies that R(Ss) = s.
Further, {vs, fs(vs), f2

s (vs), . . . , f
r−1
s (vs)} = {1, x, x2, . . . , xr−1} and these elements

generate Es whence Ss is completely reachable. The R-module morphism φ :
Es

✲ Rr defined by φ(e) = (cs(e), cs(fs(e)), . . . , c(f
r−1(e))) is determined by

the images

φ(xi) = (si, si+1, . . . , si+r−1)

for 0 ≤ i < r and as these xi form an R-basis for Es, the map φ is injective, or
equivalently that Ss is completely observable if and only if det(Hr(s)) 6= 0.

The dual module, E∗
s = Rǫ0 ⊕ . . . ⊕ Rǫr−1 where ǫi(x

j) = δij . With respect to
this basis we have f∗

s (ǫi) = ǫi−1 + ar−iǫr−1 for i ≥ 1 and f∗
s (ǫ0) = arǫr−1, that is

Mf∗

s
=











0 1 0
...

. . .

0 0 1
ar ar−1 . . . a1











c∗s =











s0
s1
...

sr−1











and v∗s = (1, 0, . . . , 0). It follows that {c∗s, f∗
s (c

∗
s), f

∗2
s (c∗s), . . . , f

∗n
s (c∗s)} generate E∗

s

if and only if Hr(s) ∈ GLr(R). �

Example 4. Consider the sequence s = (1, 2, 3, . . .) which we encountered in our
study of the F1-zeta function. We have

[

1 2
2 3

]

∈ GL2(Z) and det





1 2 3
2 3 4
3 4 5



 = 0

leading to the (minimal) recurrence relation x2 − 2x + 1 = (x − 1)2. The corre-
sponding system Ss = (Es, fs, vs, cs) is split and determined by

Es =
Z[x]

(x− 1)2
, fs =

[

0 −1
1 2

]

, vs =

[

1
0

]

, and cs =
[

1 2
]
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Clearly, if S = (E, f, v, c) is split, it is a canonical system. Over a field K the
converse is also true. Note that the difference between canonical and split systems
over R is also important for the co-multiplication on L(R).

Over a field K every recursive sequence s = (s0, s1, . . .) ∈ L(K) has a minimal
canonical realisation, that is, one with the dimension of the state-space E minimal.
To find it, start with a recursive relation sn = a1sn−1+a2sn−2+. . .+arsn−r of depth
r and form as above the matrix Hr(s) with columns H0, H1, . . . , Hr−1. Let t be the
largest integer such that the columns H0, H1, . . . , Ht−1 are linearly independent. If
t = r then the previous lemma gives a minimal canonical realisation. If t < r then
we have unique coefficients αi ∈ K such that Ht = α1Ht−1 +α2Ht−2 + . . .+αtH0.
But then, it follows that

sn = α1sn−1 + α2sn−2 + . . .+ αtsn−t

is a recursive relation for s of minimal depth t. Using this recursive relation we can
then construct a canonical realisation as in the previous lemma, with. this time a
state-space of minimal dimension. Over a Noetherian domain R one always has a
canonical realisation (in the weak sense that the state module E does not have to
be projective) see [32, Theorem IV.5.5] and if R is a principal ideal every linear
recursive sequence has a minimal canonical realisation, with free state module, see
[32, VI.5.8.iii].

Over a field K we know that canonical systems SK = (EK , fK , vK , cK), with
dim(EK) = n are also classified up to isomorphism by their transfer function

TSK
(z) = cK(zI −MfK )−1vK =

Y (z)

X(z)
=

cn−1z
n−1 + . . .+ c1z + c0

zn + dn−1zn−1 + . . .+ d1z + d0

which are strictly proper rational functions of McMillan degree n, that is,
deg(Y (z)) < deg(X(z)) = n (this is immediate from Cramer’s rule) and
(Y (z), X(z)) = 1, see for example [32, II.§5].

Proposition 9. Let T (z) = Y (z)
X(z) be a strictly proper rational K-function with

Y (z), X(z) ∈ R[z], then there is a completely reachable R-linear system S =
(E, f, v, c) such that T (z) = c(zI − Mf )

−1v. If R is a principal ideal domain,
this can be achieved by a minimal canonical system.

Proof. We can always find an R-system S′ = (E′, f ′, v′, c′) with transfer function
T (z) = c′.(zI −Mf ′)−1.v′, with E′ = Rn

f ′ =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 0 0 . . . 1
−d0 −d1 −d2 . . . −dn−1















v′ =















0
0
...
0
1















c′ =
[

c0 c1 . . . cn−1

]

and this system is completely reachable as {v′, f ′(v′), f
′2(v′), . . .} generate Rn.

However, it need not be canonical in general. Still, we can consider its input-output
sequence

R(S
′) = (c′.v′, c′.Mf ′ .v′, c′.M2

f ′ .v′, . . .) ∈ L(R)
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By surjectivity on canonical systems in case R is a principal ideal domain, there is
a canonical R-system S = (E, f, v, c) with R(S) = R(S

′), that is,

c′.v′ = c.v, c′.Mf ′ .v′ = c.Mf .v, c′.M2
f ′ .v′ = c.M2

f .v, . . .

But, as T (z) = c′.(zI −Mf ′)−1.v′ = c′.v′z−1 + c′.Mf ′ .v′z−2 + c′.M2
f ′ .v′.z−3 + . . .

we see that T (z) is also the transfer function of the canonical R-system S, proving
the claim. �

Definition 8. For a cyclotomic Bost-Connes datum Σ, let Scr
Σ,R be the full subcat-

egory of SR consisting of all completely reachable systems S = (E, f, v, c) such that
all zeroes and poles of the transfer function

TS(z) = c.(zI −Mf )
−1.v

are in Σ.

Example 5. Continuing example 4, we have for TSs

[

1 2
]

[

z 1
−1 z − 2

]−1 [
1
0

]

=
z

(z − 1)2
= Li−1

5.1. Zeta polynomials. An interesting class of strictly proper rational functions
is associated to Manin’s ’zeta polynomials’ introduced in [21, §1] and generalized
in [10] and [27], see also [23, §2.5]. The terminology comes from a result of F.
Rodriguez-Villegas [31]. Let U(z) be a polynomial of degree e with U(1) 6= 0 and
consider the strictly proper rational function

P (z) =
U(z)

(1 − z)e+1

There is a polynomial H(z) of degree e such that the power series expansion of
P (z) is

P (z) =

∞
∑

n=0

H(n)zn

If all roots of U(z) lie on the unit circle, Rodriguez-Villegas proved that the polyno-
mial Z(z) = H(−z) has zeta-like properties: all roots of Z(z) lie on the vertical line
Re(z) = 1

2 and if all coefficients of U(z) are real then Z(z) satisfies the functional
equation

Z(1− z) = (−1)eZ(s)

In [21, §1] Yuri I. Manin associates such a zeta-polynomial to each cusp f form of
Γ = PSL2(Z) which is an eigenform for all Hecke operators, and views this polyno-
mial as ’the local zeta factor in characteristic one’. The corresponding numerator
Uf(z) of the strictly proper rational function comes from the period polynomial
divided by the real zeroes and by [5] the remaining zeros all lie on the unit circle.

In [10] this construction was generalised to the case of cusp newforms of even
weight for the congruence subgroups Γ0(N), where this time the zeroes of period
polynomials all lie on the circle with radius 1√

N
.

Let Zi(z) be a suitable collection of zeta-polynomials determined by strictly

proper rational functions Pi(z) =
Ui(z)

(1−z)di
with Ui(z) ∈ R[z] then we can view the

sub bi-ring of L(Z) generated by the elements R(Si) ∈ L(R), where Si is a
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completely reachable or minimal canonical system realizing Pi(z), as a representa-
tive for the collection of zeta-polynomials in the comm+

bi-version of F1- geometry.
Again, we can define similarly versions relative to a cyclotomic Bost-Connes datum
Σ by imposing that the zeroes of the zeta-polynomials must lie in Σ.
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