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THE MONSTROUS MOONSHINE PICTURE

LIEVEN LE BRUYN

ABSTRACT. We describe the finite subgraph 9 of Conway’s Big Picture [8]
required to describe all 171 genus zero groups appearing in monstrous moon-
shine. We determine the local structure of 9t and give a purely group-theoretic
description of this picture, based on powers of the conjugacy classes 24J and
8C. We expect similar results to hold for umbral moonshine groups and give
the details for the largest Mathieu group Maq.

1. INTRODUCTION

Conway’s big picture, see [8] or section 2, is the Hasse diagram of a wonderful
poset structure on the cosets PSLa(Z)\PG Ly (Q), classifying projective classes of
commensurable integral lattices of rank two. It was introduced to understand
discrete groups like the congruence subgroups I'o(IV) and their normalizers in
PSLs(R), in particular the genus zero groups appearing in monstrous moonshine
[7]. Later, it turned out to be important in Connes’ approach to the Riemann
hypothesis, see [3] or [6], as its vertices form a basis for the regular representation
of the Bost-Connes algebra, see also [14] or [13]. This algebra encodes the action
of the absolute Galois group on the roots of unity.

After choice of an ordered basis of Q2 one can identify PSLy(Z)\PG L3 (Q) (non-
canonically) with Q4+ x Q/Z and one can define a hyper-distance function on the
cosets taking values in Ny. The edges in the big picture are then drawn between
any two cosets at prime hyper-distance from each other, see section 2. It then turns
out that the big picture *B is the rooted product *,T}, over all prime numbers p and
where T}, is the free p 4 1-valent tree. One purpose of this paper is to clarify what
we mean by this product as there is an amount of non-commutativity involved,
reminiscent of the meta-commutation relations in the Hurwitz quaternions, see [10]
and lemma 3. Another is to make the connection between certain cosets, the so-
called number-like classes M { corresponding to couples (M, ) € Q4 x Q/Z with
M € Ny, and sets of roots of unity. Here, we will view the class M { as a primitive
h-th root of unity centered at the number-class h.M.

To illustrate these two ideas we will describe the monstrous moonshine picture
M which is the finite full subgraph of the big picture on the number-like classes
needed to describe all 171 moonshine groups of [7]. As a warm-up, take John
McKay’s Eg-observation on the monster conjugacy classes:

3C

|
1A—24—3A— 44— 5A—6A— 4B — 2B
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2 LIEVEN LE BRUYN

In [11] John Duncan constructed an extended Eg-diagram on the nine moonshine
groups corresponding to these conjugacy classes

33

1— 2+ — 3+ — 4+ — 5t — 6+ — 4[24 — 2

To understand these nine moonshine groups we just need a tiny fraction of the big
picture. More precisely , the subgraph on these twelve number-like classes, where
black (resp. red and green) edges correspond to the primes 2 (resp. 3 and 5).

;\)|,_.
l\.’)l»—‘

Each number-like class M% is the projective class of the lattice Z(Mé; + %é’g) DZées.
The stabilizer subgroup of a number-class M is then the conjugate of I' = PSLy(Z)

by aps :[1‘04 ﬂ Conway’s insight was to view I'o(NN) as the joint-stabilizer of

the number-classes 1 and N as it is equal to I' N OéNFOé;/l. Therefore, T'g(IV)
also stabilizes the (N|1)-thread point-wise, that is, all number classes M such that
1|M|N. More generally, the group stabilizing the (n|h)-thread (with h|n) pointwise
is the conjugate ahfo(%)a,:l. The group N+ is obtained by adding to I'o(IV) the
Atkin-Lehner involutions, which correspond to the symmetries of the(N|1)-thread,
see subsection 2.3. For example, the (6|1)-thread has four symmetries

—_—w
N ——

generated by the horizontal and vertical flips, which correspond to multiplying the
classes of lattices with the matrices L [é :21,] and % E ;], so with 6+ we denote
the subgroup of PSLy(R) generated by I'g(6) and these two matrices. That is, the
threads and their symmetries describe the groups 1,2, 24, 3+, 4+, 54 and 6+.

To describe groups like n|h and n|h+ for h dividing n we consider the (n|h)-
serpent which consists of all classes at hyper-distance a divisor of h from the (n|h)-
thread. These classes are fixed pointwise by I'o(IN) where N = h.n. The matrices
x :[(1) ﬂ and y = [}L ﬂ normalize T'o(N) and we denote with T'g(n|h) the group

generated by T'o(N) and x and y. The moonshine group n|h is then a specific
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subgroup of index h in Tg(n|h), that is, we have the situation

h

Do(N) ——= nl — To(nlh)

To describe the finite group G and its index h subgroup it is best to view the action
of z and y on the (n|h)-serpent as power maps on different sets of roots of unity.
For example, the (3]3)-serpent consists of the four classes at hyper-distance 3 from
3 which are best viewed as the vertices of a tetrahedron with center the class 3.

2
15

The sets {1, 1 %, 1%} and {9, 1%, 1 %} give us two copies of 3-rd roots of unity, centered
at 3, see subsection 2.4. The element z acts as a power map on the first set fixing 9
(so corresponds to a rotation with pole 9 of the tetrahedron) and y fixes 1 and acts
as a rotation on the second set. Thus, the finite group G in this case is the rotation
group of the tetrahedron, A4, which has a unique subgroup of index 3, giving us
the moonshine group 3|3, see example 2. A similar story holds for the (4]2)-serpent

w

—_
D=
[\]
[

Here, x interchanges the two square roots of one centered at 2 and fixes those
centered at 4 and y fixes the roots at 2 and interchanges the roots at 4, whence
G = O3y x (5 and in this case the index 2 subgroup is generated by x.y which gives us
a description of 4]2. To describe 4|2+ we have to add the Atkin-Lehner involution
w determined by the symmetry of the (4|2)-thread with action as indicated on the
other classes in the (4]|2)-serpent.

We see that the subgraph of the big picture on the twelve number-classes given
above contains all information needed to describe the nine moonshine groups of
McKay’s Eg-observation. The main purpose of this paper is to describe the mon-
strous moonshine picture 9t which is the minimal subgraph of the big picture needed
to describe all 171 moonshine groups.

It will turn out, see section 3, that 91 is the subgraph on exactly 207 number-like
classes, among which there are 97 number classes. For each of the number classes
C we determine the sets of primitive roots M { centered at C, that is, C' = h.M.
This will allow us to describe the local structure of 9t at C. For example, if C' is
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the center of 2-nd, 3-rd and 6-th roots of unity, then C' = 6 M and the number-like
classes in 2N at hyper-distance dividing 6 from C' are depicted below

1 2 2
M MZ  AM3
~N S
4M  3M3 2M: 12M M3

NN ST S

1 2 5
ML —2M —6M —2M2 — M3

v ~

M 3M  18M 4M %

Here we use the meta-commutation property, see lemma 2, to start the path to a
class at hyper-distance 6 from 6 M with an edge of length 3. The meta-commutation
relations then gives a procedure to add he remaining edges in 9. In this case we
should add the edges

1 2 2
ML MZ o oaM2

4M M3
1 5
M — 3M 4M 5

oM  9MLI 36M

The monstrous moonshine picture 9t is the union of the (n|k)-serpents if n|k +
e, f,... is a moonshine group. Conversely, one might ask whether it is possible to
construct 9 using only group-theoretic information of M.

We give such a procedure starting from the conjugacy classes 24.J, responsible
for the largest serpent in 9 (see subsection 3.1), and 8C, corresponding to the
(8]4)-serpent of example 1. The powers of these classes give the conjugacy classes

24.J

12 o 8F 8|C

6|F T~ 4|D 4|B

3|C\\/2|B 2|A
1A 14

The procedure to construct 9t goes as follows: let X be a conjugacy class of order
n and let [ be minimal such that the class X' is one of the conjugacy classes above
of order k. Then, if k is even we construct the (n, %)—serpent, if & = 3 the (n|3)-

serpent and if £ = 1 the (n|1)-serpent. The union of the serpents thus obtained is
equal to 9.
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TA | 1 0B | 10+5 8B | 18+ 264 | 26+ 394 | 39+

24 | 2+ 10C | 1042 18C | 1849 26B | 26+ 26 39B | 39|13+
2B | 2— 10D | 10 + 10 18D | 18— 274 | 274+ 39CD | 39+ 39
3A | 3+ 10E | 10— 18E | 18+ 18 27B | 27+ 40A | 40|14+
3B | 3— 11A | 11+ 194 | 19+ 284 | 28|2+ 40B | 40|24+
3¢ | 313 124 | 12+ 204 | 204 28B | 28+ 40CD | 402 + 20
4A | 4+ 12B | 1244 20B | 20]2+ 28C | 2847 414 | 41+

4B | 42+ || 12C | 122+ 20C | 2044 28D | 28|2 + 14 424 | 42+

ac | a— 12D | 12[3+ 20D | 20[2+5 204 | 20+ 42B | 42 +6,14, 21
4D | 4)2— || 12E | 12+3 20E | 20]2 + 10 304 | 30+6,10,15 42C | 421347
54 | 5+ 12F | 1212+ 6 20F | 20+ 20 30B | 30+ 42D | 42+ 3, 14,42
5B | 5— 12G | 122 + 2 214 | 214 30C | 30+ 3,5.15 44AB | 44+

6A | 6+ 12H | 12+ 12 21B | 21+3 30D | 30+5,6,30 454 | 45+

6B | 646 || 121 | 12— 21C | 21|3+ 30E | 30|3 + 10 46AB | 46 4 23
6C | 643 || 120 | 12]6 21D | 21+ 21 30F | 30+2,15,30 || 46CD | 46+

6D | 6+2 || 134 | 13+ 224 | 224 30G | 30+ 15 4TAB | A7+

6E | 6— 13B | 13— 22B | 22+ 11 31AB | 31+ 48A | 482+
6F | 6|3 14A | 14+ 23AB | 23+ 324 | 324 504 | 50+

TA | T+ 4B | 1447 244 | 24|2+ 32B | 32|2+ 514 | 51+

7B | 7— 14C | 14 4 14 24B | 24+ 334 | 33411 524 | 52|24
8A | 8+ 154 | 15+ 24C | 24+ 8 33B | 334+ 52B | 52|24 26
8B | 8|2+ || 15B | 15+5 24D | 24|12+ 3 344 | 344 54A | 54+

8C | 8la+ || 15¢ | 15+ 15 24E | 24|64 354 | 35+ 554 | 554

8D | 8|2— || 15D | 15/3 24F | 24|14+ 6 35B | 35+ 35 56A | 56+

8E | 8— 16A | 16[24+ 24G | 244 +2 364 | 364 56B | 56|14 + 14
8F | 8la— || 16B | 16— 24H | 24[2 4 12 36B | 36 +4 57A | 57|3+

9A | 9+ 16C | 16+ 247 | 24424 36C | 36|12+ 59AB | 59+

9B | 9— 17A | 17+ 24 | 24|12 36D | 36+ 36 604 | 60|2+
104 | 104+ 184 | 18 42 254 | 254 384 | 384 60B | 60+

60C
60D
60E
60F
62AB
66 A
66B
68A
69AB
70A
70B
71AB
78A
78BC
84A
84B
84C
87TAB
88AB
92AB
93AB
94AB
95AB
104AB
105A
110A
119AB

60 + 4, 15, 60
60 + 12, 15, 20
602 + 5, 6, 30
606 + 10

62+

66+

66 + 6,11, 66
682+

69+

70+

70 + 10, 14, 35
714

78+

78 + 6, 26, 39
842+

842 4 6, 14,21
843+

87+

882+

92+

93|34+

94+

95+

1044+

105+

110+

119+

FiGURE 1. The Moonshine Groups

The underlying process at work here are the observations on harmonics from [7,
§6] giving a precise connection between the moonshine group associated to a conju-
gacy class and those associated to its powers. The conjugacy classes determined by
24.J and 8C' are exactly the harmonics of the three lowest order conjugacy classes
1A,2A and 2B.

We expect similar results to hold for all umbral groups and give the details for
the largest Mathieu group May.

2. CoONWAY’S BI1G PICTURE

In [8] John H. Conway introduced a picture that makes it easier to describe
groups commensurable with the modular group I' = PSLy(Z), in particular the
discrete groups appearing in monstrous moonshine [7]. In this section we will recall
the construction of this big picture and use it to define the 171 moonshine groups,
with a focus on examples and explicit calculations.

2.1. The moonshine groups. Monstrous moonshine [7] assigns to every conju-
gacy class of an element g of the monster sporadic simple group M a specific genus
zero subgroup I'y of PSLy(R) which is commensurable with the modular group I'
(that is, Ty NI has finite index in I'y and I"). There are exactly 171 such moonshine
groups, usually given in Conway-Norton notation

I'y=nlh+e,f,...

see Figure 2.1 which is taken from [7, Table 2]. Here, we have that

is the order of g € M,
s a divisor of 24 and of n,
e, f,... are exact divisors of m = 7, that is (z,2) = 1.

on
o h
o

—_
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If h =1 we drop |h from the notation and we abbreviate with + the set of all
exact divisors of 7 and we write a minus sign if there are no exact divisors involved
in the description of I'.

The congruence subgroup I'g(/V) consists of the images in I' of all matrices of

the form [cﬁv Z} with a,b,c,d € Z and determinant ad — Nbc = 1.

From now on we will assume that N = n.h with A a divisor of 24 and of n.
Then the set of all matrices in SLy(Q) of the form [c‘; i], with a,b,¢,d € Z and

determinant ad — +bc = 1, form a group and its image in PSLy(Q) will be denoted
by T'o(nlh). This group is the conjugate of T'g(%) by {g (1)] Further note that
['o(N) is a normal subgroup of T'g(n|h).

If e is an exact divisor of m = 7, then the set we of all matrices of the form

[ae %}7 with a,b,c,d € Z and determinant e’ad — %bc = e, form a single coset of

cn de

[o(n|h). As these cosets satisty the relations
w? =1 mod To(n|h), wews=wys.we =w, mod To(n|h)

with g = (e—ef)ﬁ, they generate a subgroup of involutions in the normalizer
of Ty(n|h) in PSLy(R). They are called Atkin-Lehner involutions of Tg(n|h) and
traditionally one calls w,, ;, the Fricke involution.

For exact divisors e, f,... of m = % one denotes To(n|h) + e, f,... for the
group obtained from T'g(n|h) by adjoining its particular Atkin-Lehner involutions
We, Wy, . ... Further note that I'¢(IV) is a normal subgroup of T'g(n|h) + e, f, .. ..

The moonshine group n|h + e, f,... is then a specific subgroup of index h in
To(n|h) +e, f, ..., the kernel of the group-morphism

A:To(nlh) +e f,... — C*

which is trivial on the normal subgroup I'o(N) as well as on the Atkin-Lehner
involutions we, wy, ... and such that

l 27 27i
)\([(1) flb])—e_h, and )\(le ﬂ)—eih

the last value with a + sign if [1% *01] € To(nlh) + e, f,..., and with a — sign

otherwise. In [9, §3] it is shown that A is indeed well-defined.

2.2. The big picture. The discrete groups introduced before are best understood
via their action on projective classes of 2-dimensional integral lattices.

Let Ly = (€1, €a) = Z&, ® Zé> be a fixed 2-dimensional integral lattice. A lattice
L is said to be commensurable with L; if their intersection has finite index in both
of them. Two such lattices L and L’ are in the same projective class if there is a
non-zero rational number A\ such that L' = \.L.

Any lattice L commensurable with L; is in the same projective class as a unique
lattice in standard form

Ly

)

s = (Mé& + %@,@) = Z(Mé, + %52) @ Z&,

with M a strictly positive rational number and { is a proper fraction in its least
terms, that is 0 < g < h with (g, h) = 1. That is, the set of projective classes of 2-
dimensional lattices commensurable with L; can be identified with T\ PGLJ (Q) =
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Q4 x Q/Z. Here, PGLF (Q) is the group of all elements in PGLo(Q) with strictly
positive determinant, and the bijection is given by the assignment

9 9
Q. x Q/Z —» T\PGLZ (Q) {1‘04 ﬂ T {1‘04 ﬂ — Los

see [11, Prop. 2.6].

If M € Ny we omit the comma and write Lysg and call the lattice number-
like. If in addition g = 0 we write Lj; and call the lattice a number-lattice. With
X =M, % we denote the projective class of LM7%. It will be convenient to associate
to this class the matrix

M 2
ax = |:0 iL:| S GL;(Q)
For two classes X, Y € Q4 x Q/Z let axy be the smallest positive rational number
such that axy.axay' € GLo(Z). The hyper-distance between the two classes is
then
§(X,Y) = det(axy.axay') € Ny

Conway showed in [8, p. 329] (see also [11, §2.5] and [14, §2.2] for a slightly different
treatment) that this definition is symmetric and that the log of the hyper-distance
is a proper distance function on the projective classes of all lattices commensurable
with Ll.

Further, if g € PGL$ (Q) such that ax.g € I'axs and ay.g € I'.ay/ (here, and
elsewhere, we write az for its image in PG L2(Q)), then it follows immediately from
the definition of hyper-distance that

§(X,Y) =6(X.9,Y.9) =6(X",Y")

that is, the maps induced by by left multiplication by elements of PSLo(Q)™" are
isometries, where defined.

Definition 1. Conway’s big picture B is the graph having as vertices the projective
classes of lattices commensurable with Ly, that is all elements of Q+ x Q/Z, and
there is an edge between classes X and 'Y if and only if

S(X)Y)=p

with p a prime number. Alternatively, P is the Hasse diagram of the poset structure
on Q4 x Q/Z with unique minimal element 1 defined by

X<Y ff 8(1,X)<6(1,Y) and 6(1,Y) = 8(1, X).6(X,Y)

The subgraph € on all classes of number-lattices is called the big cell. It is the
Hasse diagram of the poset-structure on Ny given by division, that is, M < N iff
M|N.

For a number-like class X = M { we have that the hyper-distance from 1 is equal
to h?M. In fact we have
1<hM < M%

and the number class hM is the unique class in the big cell € at minimal hyper-
distance from M 4.
Conway showed that each class X = M, { has exactly p + 1 neighbors at hyper-
distance p for a prime number p. These are the classes
M g

k
Xp=—,—4+—-—modl for0<k<p and X :pM,@modl
p hp p h
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It is convenient to consider these p-neighbors as the classes corresponding to the
matrices obtained by multiplying ax on the left with the matrices

1k p 0
=|r » < =
P [0 1] for 0 <k <p,and P, {O 1}
The classes at hyper-distance a p-power from 1 form a p + 1-valent tree, and the
big picture P itself 'factorizes’ as a product of these p-adic trees, see [8, p. 332].
We will now clarify the relevance of the big picture B for the groups appearing
in monstrous moonshine.

Definition 2. Let X = {X,; | i € I} be a set of classes in the big picture . We
define the following subgroups of PGLJ (Q)

[o(X)={ge PGLI(Q) |Viel : ax,.g€cTlax,}
and
N(X)={ge PGL;(Q) |Viel,3jel : ax,gclax,}

as, respectively, the point-wise and set-wise stabilizer subgroups of X.

Lemma 1. With these notations, we have (for n,h, N € Ny )
(1) To({1}) =T and To({X}) = ax' T.ax.
(2) To({1,N}) =To(N) =To({e : e[N}).
(3) To({n,h}) =To(n|h) =To({e : hleln})

Proof. (1) follows from the definition. (2) follows as I' N an.T.ay' = To(N). The
second part then follows from the isometric property and the fact that there is a
unique number lattice in {e : 1|e|N} at hyper-distance k from 1 and % from N.
(3) is proved in a similar manner. O

2.3. Snakes and serpents. Because of lemma 1 we call for h|n the subgraph of
B consisting of the number-lattices {e : hle|n} the (n|h)-thread. More generally,
if X >Y then we call the (X|Y')-thread the subgraph on the lattices {Z | X > Z >
Y}

It follows from the factorization of the big picture 8 that for 6(X,Y) = N
and any divisor k|NN there is a unique lattice Z in the (X,Y)-thread such that
§(X,Z) =k and §(Y, Z) = &L, If we denote I'o(X|Y) for To({X,Y}), then this
group is also the point-wise stabilizer of the (X|Y')-thread.

The (N|1)-thread has a symmetry group of order 2¥ where k is the number of
distinct prime divisors of N. These symmetries correspond to the Atkin-Lehner
involutions w, introduced before for exact divisors e of N. If N = e.f, then a
number-lattice k = z.y with z|e and y|f in the (N|1)-thread is send under this
involution to the number-lattice we (k) = <.y.

Indeed, for w, :L“]f, ;’e] with determinant e we have that the image of

ak.we.a;cl(k) in PGL2(Q) is equal to

1 |zy O] |ae b = 0] [za yb
E'{O 1]'{6]”0 de]'[é/ 1}{% @]GP

x

A similar story applies to the (n|h)-thread. There are 2! symmetries for the (n|h)-
thread where [ is the number of distinct primes in m = 7. These symmetries again
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correspond to the Atkin-Lehner involutions, which are in turn the conjugates by
[h 0] of the corresponding involutions of the (%|1)-thread as

0 1
h=t 0] [ae b h 0] Jae %
0 1| |c} del |0 1] [en de
Observe that these involutions also act as symmetries on the full (N|1)-thread where
N = h.n. This is the picture for the groups I'g(n|h) + e, f, ... for all h|n.
We have seen that T'g(N) fixes all classes in the (/N|1)-thread, but it may fix
more lattices. In fact, by [8, Theorem p.336] all classes stabilized by T'o(N|1) are
number-like and consists exactly of the classes M { where & is a divisor of 24 such

that h%|N and 1|M|h—]\£ The subgraph of 8 on this set of lattices Conway calls the
(N|1)-snake.

Definition 3. Let h be a divisor of 24 and of n, and let N = h.n. We call the
(n]h)-serpent the subgraph of the big picture B on the number-like classes

N
M% with k| and 1|M|—

In particular, the (n|h)-serpent contains the full (N|1)-thread and is a part of the
(N|1)-snake. Further, note that the (N|1)-serpent coincides with the (N|1)-thread
which is all we need of the (N|1)-snake to construct the moonshine groups N +

e fy....

In the next subsection we will see that the (n|h)-serpent determines the moon-
shine group n|h +e, f,.... As all moonshine groups contain a congruence subgroup
['o(N) as a normal subgroup, it is important to recall the description of the nor-
malizer of I'g(N) in PSLy(R).

If h is the largest divisor of 24 such that h%|N, then Conway calls the spine of
the (N|1)-snake the subgraph on all classes whose hyper-distance to the periphery
is equal to h. For n = Z. the spine of the (N|1)-snake is equal to the (n|h)-
thread. The upshot of this terminology is that the normalizer of T'o(N) fixes the
(N|1)-snake setwise and must then also fix the spine setwise, so must be equal to
Io(n|h)+, which is the Atkin-Lehner theorem.

Example 1. The (8|4)-serpent, relevant for the moonshine group 8|4+ associated
to conjugacy class 8C. Here, N = 32, so for k = 1 we have the (32|1)-thread,
indicated in red. For k = 2 we have the lattices M% for M|‘1—2 =8 and for k =4
the lattices M% and M% for M =1,2.

1—2 —4=x=8—16—32
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The spine of the (32|1)-snake is the (8|4)-thread (indicated with a double red edge).
The unique Atkin-Lehner involution involved is point-wise reflection over the middle
of the (8]4)-thread (indicated with a x ). Note that in this case the (8]|4)-serpent
coincides with the (32|1)-snake.

2.4. Roots of unity. In noncommutative geometry, the big picture 8 shows up as
the basis of the regular representation of the Bost-Connes algebra BC, see [14, §4.3]
and [13, §2.4]. This algebra is at the heart of Connes’ approach to the Riemann
hypothesis and encodes the action of the abelianised Galois group Gal(Q/Q)% on
the group of all roots of unity, which is compatible with the A-ring structure on the
representation rings of finite groups.

For this connection, it is useful to view a number-like class M { € B as a primitive
h-th root of unity centered at the number-lattice h.M. Note that we have a full copy
of the group pp, of h-th roots of unity centered at h.M consisting of the number-like
classes M § with d|h, which are all at hyper-distance h from h.M.

Recall that the number of classes at hyper-distance h from a fixed class is equal

(k) = h][,(1 + %) where 9 is Dedekind’s psi function. Among the (k)
classes at hyper-distance h from h.M there are several copies of pj, depending
on the chosen standard from of projective classes, all containing the same set of
o¢(h) classes corresponding to the canonical primitive h-th roots of unity centered
at h.M, where ¢(h) is the Euler function. What singles these classes out is the fact
that on the path to them from h.M we never used the operator P, for a prime p
dividing h.

For the construction of the moonshine groups n|lh+e, f, ... it is useful to consider
also the reverse canonical form for a class Ly, 2 which occurs by swapping the roles
of the standard basis vectors €; and €. Then the lattice Ly, 2 lies in the same
class as the lattice

1 ! 1
(7o + $-61,8) = Ll5ré
with ¢’ the inverse of ¢ modulo h, and we write (5357, 7) for the corresponding
projective class. That is we will use these two notations for the same class in B3
g 1 g
X =M, "h (hQM h W)
and use the matrix Sx = [gi/ L} instead of the matrix ax.

R M.h2

As the character A, used in defining n|h + e, f,... from To(nlh) + e, f,..., is
trivial on T'o(NN) and on the relevant Atkin-Lehner involutions it suffices in order
to describe n|h + e, f, ... to know the structure of the finite group

Lo(nlh)* =To(n|h)/To(N)
This group is generated by the action of z :[(1) ﬂ and y = [}1 O] on the classes

€2 + —61) @ Zé,

1
in the (n|h)-snake. The relevance of the introduction of the two sets of roots of
unity centered at a number-class is that x will act as a power-map on the first set,
whereas y acts as a power-map on the second set.

Example 2. For h = 3 the neighbors in the 3-tree of 3M are the 4-classes (with
representations in the two standard forms)

1 1 1 1 2 1 2
M70)7 M- <_>(9_M7§)7 By <_)( _) 9M<—>(

M -
o 3 37 o3

onr )
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It is convenient to view these classes as the vertices of a tetrahedron with center of
gravity 3M < (57,0).

The two sets of 3-rd roots of unity, centered at 3M consist of the classes
1
3
Power maps in the first copy of ps correspond to rotations with pole verter 9M and
power maps in the second copy are rotations with pole vertexr M .

The (3|3)-serpent corresponds to the situation where M = 1.In order to describe
the moonshine group 3|3 corresponding to conjugacy class 3C, we need to describe
the action of x :Ll) ﬂ on a class M is given by right-multiplication of g - As

{M,M%,M%} and  {9M, M ,M%}

o =g, Q1. =02, 02.C=aq1, and a9.x =g
3 3 3 3

That is, x can be viewed as rotation with a pole through the class 9. To study the

action of y =|} (IJ] it is best to use the second standard form and then the action

of y is given b right-multiplication of 8 Mg
Bo.y = 51%7 51%-9 = 51§7 ﬂ1§-y =B, and pr.y=/p

That is, y is a rotation with pole the class 1. Clearly, both rotations generate the
full rotation symmetry group of the tetrahedron Ay. That is

I'(3]3)* = To(3]3)/To(9) ~ Ay

and as this group has a unique subgroup of index 3 generated by x.y and y.x it
follows that the moonshine group 3|3 is

2 i 1 &
_ 3 3
(see also [11, example 2.9.1]).

A description of the groups I'g(n|h)* where h is a divisor of 24 and of n was
given in C. Ferenbaugh’s thesis [12], see also [9, §3].

3. THE MOONSHINE PICTURE

We have seen that, in order to understand the moonshine group n|h+e, f, ..., we
need the (n|h)-serpent. For this reason we define the monstrous moonshine picture
M to be the subgraph of the big picture P on all vertices of all (n|h)-serpents
corresponding to the 171 moonshine groups n|h +e, f, .. ..

We will also describe the extended monstrous moonshine picture ¢ to be the
subgraph of the big picture 3 on all vertices of all (N|1)-snakes corresponding to
the 171 moonshine groups n|h + e, f,... with N = h.n.
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3.1. The anaconda. The largest serpent, the anaconda, hiding in 901 is the (24]12)-
serpent determining the moonshine group 24|12 which is associated to conjugacy
class 24J of the monster M. We will see that it consists of 70 lattices, about one
third of the total number of lattices in 9. Note that the (24|12)-serpent is equal
to the (288|1)-snake.

The anaconda’s backbone is the (288|1) thread below (edges in the 2-tree are
black, those in the 3-tree red and the colored numbers are symmetric with respect
to the (24]12)-spine. We give two number classes the same color if and only if they
are the centers of similar sets of roots of unity, as we will show now.

9 18 36 72 144 288
—6—— 12 =—=24—-48
1 2 4 8 16 32

Apart from the number classes, which are the divisors of 288, we have to de-
termine the number-like classes of the (288|1)-snake. These are the classes M,
with A a divisor of 24 such that h? divides 288, and such that (g, h) = 1. Because
288 = 25.32 we have h =1,2,4,6 or 12.

h=1gives M = 1,2,3,4,6,8,9,12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288.

h = 2 gives the classes M% for M a divisor of 72 :1,2,3,4,6,8,9,12, 18,24, 36, 72.

h = 3 gives the classes M% and M% for M a divisor of 32 : 1,2,4,8,16, 32.

h = 4 gives the classes M% and M% for M a divisor of 18 : 1,2,3,6,9, 18.

h = 6 gives the classes M% and M% for M a divisor of 8 : 1,2,4, 8.

h = 12 gives the classes M%,M%,M% and M% for M =1,2.

This gives a total of 70 classes. Next, we will focus on the center C' = M.h of
each class M ¢ which we view as a primitive h-th root of unity centered at M.h.

C | h C | h

1|1 18 | 1,2

2 | 1,2 24 | 1,2,3,4,6,12
3 11,3 32 |1

411,24 36 | 1,2,4

6 |1,2,3,6 48 | 1,2,3,6

8 |1,2,4 72 | 1,2,4

9 |1 9 | 1,3

12 | 1,2,3,4,6,12 || 144 | 1,2

16 | 1,2 288 | 1

Number classes C' having the same classes of primitive roots of unity centered
there will have the same local structure in the anaconda. We will now describe the
different types of local structures.

3.2. The local structures. Our strategy to determine the structure of the moon-
shine picture(s) will be similar: for each (n|k)-serpent (or (N|1)-snake) we will first
determine all number-like classes appearing in it. Next we will partition the num-
ber classes with respect to the set of primitive roots of unity centered at them. It
then remains to determine, for a given set of n-roots of unity where n|24, the local
structure of the picture at the number-class.
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To draw these local structures we will not draw all edges, but just one choice
of path from the number class to the number-like class. We will now explain how
to add the remaining edges. Whereas the big cell € is commutative (being the
Hasse diagram of the monoid N partially ordered under division), the big picture
P is non-commutative, that is, if we add labels P; to the edges determined by the
operator used to draw the edge (in the partial order direction) it is not always true
that PlQ] = Q]Pz

We have seen that the subgraph of 8 consisting of all classes at hyper-distance a
p-power from 1 is a free p + 1-valent tree T,,. Hence, the class X at hyper-distance
p* from 1 corresponds to a unique product P, .. ... P;,.P;, Py of the matrices P;
with 0 < ip and P, introduced before with a + b = k. Here, p® is the maximal
number-class on the unique path from X to 1.

That is, the matrices P; with 0 < ¢ < p generated a free monoid and for all
0 <i < p we have P,.P; = id. In factoring B = x,, T}, we have to take into account
that the matrices P; and @; corresponding to different prime numbers p and ¢ do
not necessarily commute. Still, they satisfy a meta-commutation relation similar to
that of factorization in the Hurwitz quaternions, see [10, §5.2].

Lemma 2. For distinct primes p and q and for all 0 < i < p and 0 < j < q there
ezist unique 0 < k < p and 0 <1 < q such that

P.Q; =Q1.P. and P,.Q; = Qq.FP, with a = pi mod q

Proof.
4 igtj
P,.Q;=|ra pa
and as 0 < ig+ 7 < pg we have unique 0 < k < p and 0 < [ < ¢ such that
iq+j=Ilp+k. O

Lemma 3. Any class M, £ € M at hyper-distance N = p*.q'....7* from 1 can be
identified uniquely with a product

PyPy...P,QjQjy...Qj, ... R\ R, ... R, P2QS ... R

zodp
for unique 0 < i, < p, 0 < jp < q,...,0 < 2y <7 and witha+b=k,c+d =
l,...,u+v=s. Here K = P;Qg ... R is the unique number-class in € of minimal

hyper-distance from M, %. For a number-like class M¥ we have K = Mh and
N = Mh2.

Proof. A path from 1 to M, # of minimal length can be viewed as a product (left
multiplication) X;X;_1 ... XoX; with each X; one of the matrices P,, Qp,. .., Ru.
The claim follows from using the meta-commutation relations of the previous
lemma. (I

For applications in moonshine, we only need the meta-commutation relations for
the operators 2, 21 with respect to 3¢, 31, 32 (note that these two sets each generate
a free monoid). These are:

20.30 = 30-20, 20.31 = 30.21, 20.32 = 31.2,
21.30 = 31.21, 21.31 = 32.20, 21.32 = 32.21
These relations make it easy to add the forgotten edges in the pictures below.

Further, for convenience, we start a path of hyper-length divisible by 3 with the
edges labeled 3;.
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Here are the local structures appearing in the (extended) monstrous moonshine
picture. For each type we have colored the central number class with a different
color. Note further that if the set of roots is {h1, ..., hr}, then the central number
class must be a multiple of the least common multiple of the h;.

e Type {1,2}:
M—2M— M3
e Type {1,3}:
M}
M — | — M2
or

e Type {1,2,3}:

3M3  2M3  12M

7

2M — 6M — 2M 2

]

3M 18M

e Type {1,2,4}:

My My
| |
M —2M — AM —2M 31 — M3

|
8M
N

AM 3 16M
e Type {1,2,3,6}:

1 2 2
ML M2 AMZ
~N | S
4M  3M3 2MLi 12M  Mji

NN

ML —2M — 6M —2M2 — M3

] ~

M 3M  18M 4M %

LN

oM 9ML  36M
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e Type {1,2,4,8}:

Mg Mg Mg Mg
N e
3 1 3 1
M3 2M L 2M3 4M 1
AN ~N 7 ~
2M 3 AM 3 8M3
RN | SN
M3 4M — 8M — 16M AM3
7 N
2M 32M
A N
M; M 64M  16M3

e Type {1,2,3,4,6,12}:
1 1 5 1
ML MI M:  4Mi
~ N S 7
1 1 2 2 5 1
ML —2ML  2M2 8M2Z—4M2 M1
~N S ~
3M3 —6ML  4Mi 240 2ML— M2
N P

1 2 5 5

3MY aM —12M —4aME —2ME — M
A NN

6M  36M 8sM: ML

N
2 1
aM2 4M)

Here we simplified the picture by indicating the local type of the intersection
of the the number-classes 4M,6M,24M and 36M with the neighborhood
of 12M.

3.3. The (extended) monstrous moonshine picture. As mentioned before,
in order to describe the (extended) monstrous moonshine picture 9t (resp. 9M¢)
we work through the list of 171 moonshine groups n|h + e, f,... as given in [7,
p. 327-329] (that is, Figure 2.1 above) and determine for each of them all classes
appearing in the (n|h)-serpent (resp. in the (N|1)-snake where N = h.n). The
number classes of 9 and 9°¢ are the same and are all divisors of the occurring N.
For each of these number classes we next determine the set of divisors of 24 for
which primitive roots of unity appear with center the given number class. These
sets will then determine the local structure in that number class of I (resp. 9°).

Theorem 1. The (extended) monstrous moonshine picture 9 (resp. IMM€) is the
subgraph of B on exactly 207 (resp. 218) classes.

Among these there are exactly 97 number classes C'. The remaining number-like
classes M { are interpreted as primitive h-th roots of unity centered at the number-
class C'= M.h.

Figure 1 lists for each C the sets of primitive roots centered at C. Here, a
bracketed entry means these roots only appear in M€ and not in M.
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Ch C | h C | h C | h
1|1 25 | 1 52 | 1,2,4 94 | 1
2 | 1,2 26 | 1,2 54 | 1 95 | 1
3 11,3 27 | 1 55 | 1 9 | 1,3
4 ]1,2,4 28 | 1,2,4 56 | 1,2,4 104 | 1,2,4
5 |1 29 | 1 57 | 1,3 105 | 1
6 |1,2,3,6 30 | 1,2,3,6 59 | 1 110 | 1
711 311 60 | 1,2,3,6 || 112 | 1,(2)
8 | 1,2,4,(8) 32 (1,2 62 | 1 117 | 1
9 |1 33 |1 63 | 1 119 | 1
10 | 1,2 34 (1,2 64 | 1 120 | 1,3
111 35 | 1 66 | 1 126 | 1,2
12 | 1,2,3,4,6,12 || 36 | 1,2,4 68 | 1,2 136 | 1
131 38 | 1 69 | 1 144 | 1,2
14| 1,2 39 1,3 70 | 1 160 | 1
15| 1,3 40 | 1,2 71| 1 168 | 1
16 | 1,2,(4) 41 | 1 72 | 1,2,4 171 | 1
17 |1 42 (1,2,3,(6) || 78 | 1 176 | 1
18| 1,2 44 | 1,2, (4) 80 | 1,2 180 | 1,2
191 45 | 1 84 |1,2,3 208 | 1,2
20 | 1,2,4 46 | 1 87 | 1 224 | 1
21 | 1,3 47 | 1 88 | 1,2 252 | 1
22 | 1,2 48 | 1,2,3,6 90 | 1,2 279 | 1
23 | 1 50 | 1 92 | 1 288 | 1
24 | 1,2,3,4,6,12 || 51 | 1 93 | 1,3 360 | 1
416 | 1

FIGURE 2. Roots centered at C

3.4. The harmonies of the moonshine picture. We will now see that group-
theoretic information of the monster group M determines the shape of 9T and ¢,
as well as the threads of all moonshine groups. The underlying reason is the theory
of harmonics, see [7, §6 and Table 3].

The ’anaconda’ conjugacy class 24.J appears to play a special role in moonshine,
as does the conjugacy class 8C'. Powers of these elements belong to the conjugacy
classes

24
PN

12 8F 8|C
| |

GF § 4D 4|B
| |

30 B 24

R
\ 14 / 1A
Theorem 2. Let X be a conjugacy class of the monster M of order n and let Y be
a conjugacy class of powers of 24J or 8C' of mazximal order k such that X belongs
to the power-up classes of Y, see [1]. Then, for all but 12 counter-examples the
thread of the moonshine group corresponding to X is

(n\g) if k is even, (n|3) if Y =3C, and (n|l) if Y = 1A.
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1A |1 10B | 1 8B |1 264 | 1 394 |1 60C | 1
24 |1 10C | 1 18C |1 268 | 1 398 |3 60D | 1
2B |1 10D | 1 18D |1 274 | 1 39DC | 1 60E |1
34 |1 10E | 1 18E |1 278 | 1 40A | 4 60F |6
3B |1 11A | 1 194 |1 284 | 2 40B | 1(12) || 624B |1
3C |3 124 | 1 204 |1 288 | 1 40CD | 1(12) || 664 |1
44 |1 12B | 1 20B | 2 28C | 1 414 |1 668 | 1
4B | 2 12C | 2 20C | 1 28D | 2 424 |1 684 |2
4C |1 12D | 3 20D |2 204 |1 42B |1 69AB | 1
4D | 2 12E | 1 20E |2 304 |1 42C |3 704 |1
54 |1 12F | 2 20F |1 30B | 1 42D |1 70B |1
5B | 1 12G | 2 214 |1 30C | 1 44AB | 1 TIAB | 1
6A |1 12H | 1 21B |1 30D |1 454 | 1 784 |1
6B | 1 121 |1 21C | 3 30E | 3 46AB | 1 78BC | 1
6C | 1 127 | 6 21D |1 30F |1 46CD | 1 844 |2
6D |1 134 | 1 24 |1 30G | 1 47TAB | 1 84B | 2
6E | 1 13B | 1 2B |1 314B | 1 484 | 1('2) || s4c |3
6F |3 14A |1 23AB | 1 324 |1 504 |1 87TAB | 1
7TA |1 14B | 1 24A | 1(12) || 32B | 1(12) || 514 |1 88AB | 1(12)
7B |1 14C | 1 24B |1 334 |1 524 |2 924B | 1
8A |1 154 | 1 24C | 1 33B | 1 52B | 2 93AB | 3
8B | 1(12) || 15B | 1 24D | 1(12) || 344 |1 544 | 1 94AB | 1
8C | 4 15C | 1 24E | 3(16) || 354 |1 554 | 1 9548 | 1
8D | 1(12) || 15D | 3 24F |4 358 | 1 564 | 1 104AB | 4
8E | 1 164 | 1(12) || 24G |4 364 | 1 568 | 4 1054 | 1
8F | 4 16B | 1 24H | 1('2) || 36B |1 574 |3 1104 |1
94 |1 16C | 1 241 |1 36C | 2 59AB | 1 1194B | 1
9B | 1 17A | 1 247 | 12 36D | 1 604 |2

104 | 1 184 | 1 254 |1 384 |1 60B | 1

F1GURE 3. Threads of Moonshine groups

The counter-examples are exactly the power-up classes, see [1], of

RB | 244, 24F, 40D, 884, 838
8D | 24D,24H,40C

164 | 484

16C | 32B

Therefore, the thread of the moonshine group corresponding to conjugacy class X
of order n is (n|t) where t is the value obtained from the above procedure, unless X
is in the power-up classes of 8B,8D,16A or 16C' in which case we have the thread
(n|2t) except when X = 16C.

Proof. This follows from comparing the list of all 171 moonshine groups, given in
[7, p. 327-329] (or Figure 2.1) with the values obtained by this procedure, given in
figure 3.4. Here, we write !t for the correct value when it differs from the number
obtained from the procedure. (I

We do not need the exact threads of all conjugacy classes in order to determine
the (extended) monstrous moonshine picture. In fact, the values obtained from
the procedure in the previous theorem suffice to get all classes in 2t by taking the
union of all (n|k)-serpents for the obtained (n|k) from the procedure.

For the extended moonshine picture 91 we proceed similarly by taking the union
of all (N|1)-snakes from the computed (n|k) with N = h.k from the procedure. This
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gives all classes except for the primitive 8-th roots centered at 8, which come from
the (64]1)-snake determined by moonshine group 32|24+ associated to conjugacy
class 32B and the primitive 4-th roots of unity, centered at 44. These classes are
contained in the (176|1)-snake, determined by the moonshine group 88|24+ associ-
ated to conjugacy classes 88AB.

Theorem 3. The monstrous moonshine picture MM is the subgraph of the big picture
B on exactly the classes M$ contained in the (n|k)-serpents where n is the order of
an element in M and k is a divisor of 24 obtained as follows: among the conjugacy
classes of order n let X be the class with a power-class Y of maximal order | among
the powers of 24J or 8C. Then, k=3 if Y =3C, k=1ifY =1A and k = % if
is even.

Conjugacy class 24.J is responsible for the (24]4)-serpent of subsection 3.1 and
8C for the (8|4)-serpent of example 1.

The relevance of these two conjugacy classes and the effectiveness of the proce-
dure of theorem 2 is explained by the observations on harmonics [7, §6] which give
the relationship between moonshine groups associated to a conjugacy class g and
those associated to the power map classes g°.

If the conjugacy class g corresponds to moonshine group n|h + e, f, ... then the
conjugacy class of ¢g¢ has associated moonshine group

h
Wl f ith n'= " h' =
T L O
and €', f’,... are the divisors on—: among the numbers e, f,. ...

In the special case when the power d divides h, one call g the d-th harmonic of
g%, and elements g with corresponding h = 1 are called fundamental elements.

The conjugacy classes appearing as powers of the classes 24.J and 8C' are exactly
the conjugacy classes which appear as harmonics of the first three conjugacy classes
1A,2A and 2B, see [7, Table 3]. We have for these classes the harmonics

1A [ 14,3C
24 | 24,4B,8C
2B | 2B,4D,6F,8F,12.J,24.]

and the procedure follows using the fact that the threads corresponding to 24.J, 8C'
and 3C are resp. (24[12), (8/4) and (33).

4. THE MATHIEU MOONSHINE PICTURE

One expects a similar story to hold for umbral moonshine, see [4]. In this section
we work out the details for the largest sporadic Mathieu group May, see [2].

The richest moonshine for My, is Mathieu moonshine, which associates a mock
modular form of weight % to each element g of Msy. Given g € Moy we can
ask for the invariance group of the corresponding mock modular form. There are
characters involved, but allowing for these the largest group that preserves the form
corresponding to g is I'g(n) where n is the order of g.

In general, these groups are not of genus zero. Nonetheless, Mathieu moonshine
does entail a natural association of genus zero groups to the conjugacy classes of
Moy. This is explained in full detail in [5] for all cases of umbral moonshine, but
only for the identity trace/graded dimension function in each case. But, it turns
out that all the trace functions reappear amongst the various graded dimension
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functions (these are the 'multiplicative relations’) so this paper can in principle be
used to figure out which genus zero groups are attached to which conjugacy classes.
I thank John Duncan for explaining this to me.

In the table below we give for each conjugacy class of May its cycle length, the
associated genus zero subgroup, and when possible the Niemeier root system of
which the corresponding genus zero group is conjugated to that of the conjugacy
class, see [5, Table 1] and [4, Table 3].

A1 2— AP TAB | 1’73 14+7 D3
2A | 1828 4— AS 8A | 12.2.4.8% | 16— Ai5Dy
2B | 212 42— | A% 104 | 22102 201245 D}
3A | 1636 6+3 | DS 114 | 12112 22+11 D3,
3B | 38 6/3 A3 124 | 24.6.12 | 24]2+3 .
4A | 2444 82— | A§ 12B | 122 24|12~ A
4B | 14224% | 8— AID2 || 14AB | 1.2.7.14 | 28+ 7

4C | 48 84— | A% 15AB | 1.3.5.15 | 30+ 3,5,15 | .
5A | 1454 1045 | D§ 21AB | 3.21 421347 D}
6A | 12223262 | 12+ 3 | . 23AB | 1.23 46 + 23 Doy
6B | 6* 12]6— | A3*

As in the case of the monster group, we define the Mathieu moonshine picture
Moy to be the subgraph of the big picture 9P on all classes belonging to the (n|k)-
serpents, when n|k + e, f,... is a genus 0 group appearing in Mathieu moonshine.
The subgraph on all classes belonging to (N|1)-snakes for N = h.n will then be the
extended Mathieu moonshine picture 9MS5,. Applying the same strategy as above,
we obtain

Theorem 4. The (extended) Mathieu moonshine picture Moy (resp. MS, ) is the
subgraph of B on exactly 93 (resp. 94) classes.

Among these there are exactly 35 number classes C. The remaining number-like
classes M i are interpreted as primitive h-th roots of unity centered at the number-
class C = M.h.

The table below lists for each C the sets of primitive roots centered at C'. Here,
a bracketed entry means these roots only appear in IS, and not in Moy

Clh Clh Clh C | h
11 10 1,2 221 16 |1

2 (1,2 111 23 |1 48 1,2,3,6
31,3 12 1,2,3,4,6,12 || 24| 1,2,3,4,6,12 || 63 | 1
411,24 ||14]1,(2 28| 1 72 | 1,2,4
501 15| 1 30 | 1 96 | 1,3
6(1,2,3,616]1,2 3211 126 | 1
711 18| 1,2 36| 1,2,4 144 | 1,2
81,24 ||20]1,2 40 |1 288 | 1
9|1 21 [ 1,3 421 1,3

Here again, the largest serpent in the picture is the ’anaconda’ (24|12)-serpent
(or the (288|1)-snake) corresponding to conjugacy class 12B. Also here it turns out
that the powers of 12B allow us to compute the threads of most groups, and that
this procedure gives a group-theoretic description of the pictures Moy and IMS,.

The powers of 12B are the following conjugacy classes, see [2].
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128
PN
63 4c

3|B\2|B
\1A/

Theorem 5. Let X be a conjugacy class of the Mathieu group May of order n and

let
to

Y be a conjugacy class of powers of 12B of maximal order k such that X belongs
the power-up classes of Y, see [2]. Then, for all but two counter-ezamples the

thread of the genus zero group corresponding to X is

In

(2n[k)

the table below we give the computed values of k and indicate with (It) the correct

value of the thread.

A1 TAB | 1
24 | 1 8A |1
2B | 2 104 |2
341 114 |1
3B |3 124 | 1(12)
44 | 1(12) || 12B |12
4B | 1 14AB | 1
4C | 4 15AB | 1
5A | 1 21AB | 3
6A | 1 23AB | 1
6B | 6

The two counter-ezamples are exactly the power-up classes of 44, see [1].

An immediate consequence of this result is that the (extended) Mathieu moon-

shine picture Moy (and MS,) can be described group-theoretically starting from
the powers of conjugacy class 12B by the procedure outline above.

1
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3
4
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[9
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