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BRAUER-SEVERI MOTIVES AND DONALDSON-THOMAS

INVARIANTS OF QUANTIZED THREEFOLDS

LIEVEN LE BRUYN

Abstract. Motives of Brauer-Severi schemes of Cayley-smooth algebras as-
sociated to homogeneous superpotentials are used to compute inductively the
motivic Donaldson-Thomas invariants of the corresponding Jacobian algebras.
We use this approach to test some conjectural exponential expressions for these
invariants, proposed in [3].

1. Introduction

We fix a homogeneous degree d superpotential W in m non-commuting variables
X1, . . . , Xm. For every dimension n ≥ 1, W defines a regular functions, sometimes
called the Chern-Simons functional

Tr(W ) : Mm,n = Mn(C)⊕ . . .⊕Mn(C)
︸ ︷︷ ︸

m

✲ C

obtained by replacing in W each occurrence of Xi by the n× n matrix n the i-th
component, and taking traces.

We are interested in the (naive, equivariant) motives of the fibers of this func-
tional which we denote by

M
W
m,n(λ) = Tr(W )−1(λ).

Recall that to each isomorphism class of a complex variety X (equipped with a
good action of a finite group of roots of unity) we associate its naive equivariant
motive [X ] which is an element in the ring K µ̂

0 (VarC)[L
−1/2] (see [4] or [3]) and is

subject to the scissor- and product-relations

[X ]− [Z] = [X − Z] and [X ].[Y ] = [X × Y ]

whenever Z is a Zariski closed subvariety of X . A special element is the Lefschetz
motive L = [A1

C
, id] and we recall from [12, Lemma 4.1] that [GLn] =

∏n−1
k=0 (L

n−Lk)
and from [3, 2.2] that [An, µk] = Ln for a linear action of µk on An. This ring is
equipped with a plethystic exponential Exp, see for example [2] and [4].

The representation theoretic interest of the degeneracy locus Z = {dT r(W ) = 0}
of the Chern-Simons functional is that it coincides with the scheme of n-dimensional
representations

Z = repn(RW ) where RW =
C⟨X1, . . . , Xm⟩

(∂Xi
(W ) : 1 ≤ i ≤ m)

of the corresponding Jacobi algebra RW where ∂Xi
is the cyclic derivative with

respect to Xi. As W is homogeneous it follows from [4, Thm. 1.3] (or [1] if the
1
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superpotential allows ’a cut’) that its virtual motive is equal to

[repn(RW )]virt = L
−mn2

2 ([MW
m,n(0)]− [MW

m,n(1)])

where µ̂ acts via µd on MW
m,n(1) and trivially on MW

m,n(0). These virtual motives
can be packaged together into the motivic Donaldson-Thomas series

UW (t) =
∞
∑

n=0

L
−

(m−1)n2

2
[MW

m,n(0)]− [MW
m,n(1)]

[GLn]
tn

In [3] A. Cazzaniga, A. Morrison, B. Pym and B. Szendröi conjecture that this
generating series has an exponential expression involving simple rational functions
of virtual motives determined by representation theoretic information of the Jacobi
algebra RW

UW (t)
?
= Exp(−

k
∑

i=1

Mi

L1/2 − L−1/2

tmi

1− tmi
)

wherem1 = 1, . . . ,mk are the dimensions of simple representations ofRW andMi ∈
MC are motivic expressions without denominators, with M1 the virtual motive of
the scheme parametrizing (simple) 1-dimensional representations. Evidence for this
conjecture comes from cases where the superpotential admits a cut and hence one
can use dimensional reduction, introduced by A. Morrison in [12], as in the case of
quantum affine three-space [3].

The purpose of this paper is to introduce an inductive procedure to test the
conjectural exponential expressions given in [3] in other interesting cases such as the
homogenized Weyl algebra and elliptic Sklyanin algebras. To this end we introduce
the following quotient of the free necklace algebra on m variables

T
W
m (λ) =

C⟨X1, . . . , Xm⟩ ⊗ Sym(Vm)

(W − λ)
, where Vm =

C⟨X1, . . . , Xm⟩

[C⟨X1, . . . , Xm⟩,C⟨X1, . . . , Xm⟩]vect

is the vectorspace space having as a basis all cyclic words in X1, . . . , Xm. Note that
any superpotential is an element of Sym(Vm). Substituting each Xk by a generic
n×n matrix and each cyclic word by the corresponding trace we obtain a quotient
of the trace ring of m generic n× n matrices

T
W
m,n(λ) =

Tm,n

(Tr(W )− λ)
with M

W
m,n(λ) = trepn(T

W
m,n)

such that its scheme of trace preserving n-dimensional representations is isomor-
phic to the fiber MW

m,n(λ). We will see that if λ ≠ 0 the algebra TW
m,n(λ) shares

many ringtheoretic properties of trace rings of generic matrices, in particular it is
a Cayley-smooth algebra, see [10]. As such one might hope to describe MW

m,n(λ)
using the Luna stratification of the quotient and its fibers in terms of marked quiver
settings given in [10]. However, all this is with respect to the étale topology and
hence useless in computing motives.

For this reason we consider the Brauer-Severi scheme of TW
m,n(λ), as introduced

by M. Van den Bergh in [17] and further investigated by M. Reineke in [16], which
are quotients of a principal GLn-bundles and hence behave well with respect to
motives. More precisely, the Brauer-Severi scheme of TW

m,n(λ) is defined as

BSWm,n(λ) = {(v,φ) ∈ C
n × trepn(T

W
m,n(λ) | φ(T

W
m,n(λ))v = C

n}/GLn
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and their motives determine inductively the motives of the fibers MW
m,n(1) and

MW
m,n(0) via

(Ln − 1)[MW
m,n(1)] = [GLn][BS

W
m,n(1)] +

n−1
∑

k=1

L
(m−1)k(n−k) [GLn]

[GLn−k]
×

((L− 2)[BSWm,k(1)][M
W
m,n−k(1)] + [BSWm,k(0)][M

W
m,n−k(1)] + [BSWm,k(1)][M

W
m,n−k(0)])

and

(Ln − 1)[MW
m,n(0)] = [GLn][BS

W
m,n(0)] +

n−1
∑

k=1

L
(m−1)k(n−k) [GLn]

[GLn−k]
×

((L− 1)[BSWm,k(1)][M
W
m,n−k(1)] + [BSWm,k(0)][M

W
m,n−k(0)]

which we will prove in Proposition 5. That is, if we can compute [BSWm,i(1)] and

[BSWm,k(0)] for all i ≤ n, we can compute the first n terms of the generating series
UW (t) of the motivic Donaldson-Thomas invariants.

In section 4 we will compute the first two terms of UW (t) in the case of the quan-
tized 3-space in a variety of ways. In the final section we repeat the computation
for the homogenized Weyl algebra and compare it to the conjectured expression of
[3]. In [11] we will compute the case of the elliptic Sklyanin algebras.

Acknowledgement : I would like to thank Brent Pym for stimulating conversa-
tions concerning the results of [3] and Balazs Szendröi for explaining the importance
of the monodromy action (which was lacking in a previous version) and for sharing
his calculations on the Exp-expressions of [3].

2. Brauer-Severi motives

With Tm,n we will denote the trace ring of m generic n× n matrices. That is,
Tm,n is the C-subalgebra of the full matrix-algebra Mn(C[xij(k) | 1 ≤ i, j ≤ n, 1 ≤
k ≤ m]) generated by the m generic matrices

Xk =

⎡

⎢
⎣

x11(k) . . . x1n(k)
...

...
xn1(k) . . . xnn(k)

⎤

⎥
⎦

together with all elements of the form Tr(M)1n where M runs over all monomials
in the Xi. These algebras have been studied extensively by ringtheorists in the
80ties and some of the results are summarized in the following result

Proposition 1. Let Tm,n be the trace ring of m generic n× n matrices, then

(1) Tm,n is an affine Noetherian domain with center Z(Tm,n) of dimension
(m−1)n2+1 and generated as C-algebra by the Tr(M) where M runs over
all monomials in the generic matrices Xk.

(2) Tm,n is a maximal order and a noncommutative UFD, that is all twosided
prime ideals of height one are generated by a central element and Z(Tm,n)
is a commutative UFD which is a complete intersection if and only if n = 1
or (m,n) = (2, 2), (2, 3) or (3, 2).

(3) Tm,n is a reflexive Azumaya algebra unless (m,n) = (2, 2), that is, every
localization at a central height one prime ideal is an Azumaya algebra.
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Proof. For (1) see for example [13] or [15]. For (2) see for example [8], for (3) for
example [7]. !

A Cayley-Hamilton algebra of degree n is a C-algebra A , equipped with a linear
trace map tr : A ✲ A satisfying the following properties:

(1) tr(a).b = b.tr(a)
(2) tr(a.b) = tr(b.a)
(3) tr(tr(a).b) = tr(a).tr(b)
(4) tr(a) = n

(5) χ(n)
a (a) = 0 where χ(n)

a (t) is the formal Cayley-Hamilton polynomial of
degree n, see [14]

For a Cayley-Hamilton algebra A of degree n it is natural to look at the scheme
trepn(A) of all trace preserving n-dimensional representations ofA, that is, all trace
preserving algebra maps A ✲ Mn(C). A Cayley-Hamilton algebra A of degree
n is said to be a smooth Cayley-Hamilton algebra if trepn(A) is a smooth variety.
Procesi has shown that these are precisely the algebras having the smoothness
property of allowing lifts modulo nilpotent ideals in the category of all Cayley-
Hamilton algebras of degree n, see [14]. The étale local structure of smooth Cayley-
Hamilton algebras and their centers have been extensively studied in [10].

Proposition 2. Let W be a homogeneous superpotential in m variables and define
the algebra

T
W
m,n(λ) =

Tm,n

(Tr(W )− λ)
then M

W
m,n(λ) = trepn(T

W
m,n(λ))

If Tr(W )− λ is irreducible in the UFD Z(Tm,n), then for λ ≠ 0

(1) TW
m,n(λ) is a reflexive Azumaya algebra.

(2) TW
m,n(λ) is a smooth Cayley-Hamilton algebra of degree n and of Krull di-

mension (m− 1)n2.
(3) TW

m,n(λ) is a domain.
(4) The central singular locus is the the non-Azumaya locus of TW

m,n(λ) unless
(m,n) = (2, 2).

Proof. (1) : As MW
m,n(λ) = trepn(T

W
m,n(λ)) is a smooth affine variety for λ ≠ 0

(due to homogeneity of W ) on which GLn acts by automorphisms, we know that
the ring of invariants,

C[trepn(T
W
m,n(λ))]

GLn = Z(TW
m,n(λ))

which coincides with the center of TW
m,n(λ) by e.g. [10, Prop. 2.12], is a normal

domain. Because the non-Azumaya locus of Tm,n has codimension at least 3 (if
(m,n) ≠ (2, 2)) by [7], it follows that all localizations of TW

m,n(λ) at height one
prime ideals are Azumaya algebras. Alternatively, using (2) one can use the theory
of local quivers as in [10].

(2) : That the Cayley-Hamilton degree of the quotient TW
m,n(λ) remains n follows

from the fact that Tm,n is a reflexive Azumaya algebra and irreducibility of Tr(W )−
λ. Because MW

m,n(λ) = trepn(T
W
m,n(λ)) is a smooth affine variety, TW

m,n(λ) is a
smooth Cayley-Hamilton algebra. The statement on Krull dimension follows from
the fact that the Krull dimension of Tm,n is known to be (m− 1)n2 + 1.

(3) : After taking determinants, this follows from factoriality of Z(Tm,n) and
irreducibility of Tr(W )− λ.
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(4) : This follows from the theory of local quivers as in [10]. The most general
non-simple representations are of representation type (1, a; 1, b) with the dimensions
of the two simple representations a, b adding up to n. The corresponding local quiver
is

!"#$%&'(1

(m−1)ab

!!
(m−1)a2+1

""
!"#$%&'(1

(m−1)ab

## (m−1)b2$$

and as (m − 1)ab ≥ 2 under the assumptions, it follows that the corresponding
singular point is singular. !

Let us define for all k ≤ n and all λ ∈ C the locally closed subscheme of Cn ×
trepn(T

W
m,n(λ))

Xk,n,λ = {(v,φ) ∈ C
n × trepn(T

W
m,n(λ)) | dimC(φ(T

W
m,n(λ)).v) = k}

Sending a point (v,φ) to the point in the Grassmannian Gr(k, n) determined by the
k-dimensional subspace V = φ(TW

m,n(λ)).v ⊂ Cn we get a Zariskian fibration as in
[12]

Xk,n,λ ✲✲ Gr(k, n)

To compute the fiber over V we choose a basis of Cn such that the first k base
vectors span V = φ(TW

m,n(λ)).v. With respect to this basis, the images of the
generic matrices Xi all are of the following block-form

φ(Xi) =

[

φk(Xi) σ(Xi)
0 φn−k(Xi)

]

with

⎧

⎪
⎨

⎪
⎩

φk(Xi) ∈ Mk(C)

φn−k(Xi) ∈ Mn−k(C)

σ(Xi) ∈ Mn−k×k(C)

Using these matrix-form it is easy to see that

Tr(φ(W (X1, . . . , Xm))) = Tr(φk(W (X1, . . . , Xm))) + Tr(φn−k(W (X1, . . . , Xm)))

That is, if φk ∈ trepk(T
W
m,k(µ)) then φn−k ∈ trep(TW

m,n−k(λ − µ)) and moreover
we have that (v,φk) ∈ Xk,k,µ. Further, the m matrices σ(Xi) ∈ Mn−k×k(C) can be
taken arbitrary. Rephrasing this in motives we get

[Xk,n,λ] = L
mk(n−k)[Gr(k, n)]

∑

µ∈C

[Xk,k,µ][trepn−k(Tm,n−k(λ− µ))]

Further, we have

[Gr(k, n)] =
[GLn]

[GLk][GLn−k]Lk(n−k)
and [Xk,k,µ] = [GLk][BS

W
m,k(µ)]

and substituting this in the above, and recalling that MW
m,l(α) = trepl(T

W
m,l(α)),

we get

Proposition 3. With notations as before we have for all 0 < k < n and all λ ∈ C

that

[Xk,n,λ] = [GLn]L
(m−1)k(n−k)

∑

µ∈C

[BSWm,k(µ)]
[MW

m,n−k(λ− µ)]

[GLn−k]

Further, we have

[X0,n,λ] = [MW
m,n(λ)] and [Xn,n,λ] = [GLn][BS

W
m,n(λ)]
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We can also express this in terms of generating series. Equip the commutative
ring MC[[t]] with the modified product

ta ∗ tb = L
(m−1)abta+b

and consider the following two generating series for all 1
2 ≠ λ ∈ C

Bλ(t) =
∞
∑

n=1

[BSWm,n(λ)]t
n and Rλ(t) =

∞
∑

n=1

[MW
m,n(λ)]

[GLn]
tn

B 1
2
(t) =

∞
∑

n=0

[BSWm,n(
1

2
)]tn and R 1

2
(t) =

∞
∑

n=0

[MW
m,n(

1
2 )]

[GLn]
tn

Proposition 4. With notations as before we have the functional equation

1 + R1(Lt) =
∑

µ

Bµ(t) ∗ R1−µ(t)

Proof. The disjoint union of the strata of the dimension function on Cn ×
trepn(T

W
m,n(λ)) gives

C
n ×M

W
m,n(λ) = X0,n,λ - X1,n,λ - . . . - Xn,n,λ

Rephrasing this in terms of motives gives

L
n[MW

m,n(λ)] = [MW
m,n(λ)] +

n−1∑

k=1

[Xk,n,λ] + [GLn][BS
W
m,n(λ)]

and substituting the formula of proposition 3 into this we get

[MW
m,n(λ)]

[GLn]
L
ntn =

[MW
m,n(λ)]

[GLn]
tn+

n−1∑

k=1

∑

µ∈C

([BSWm,k(µ)]t
k) ∗ (

[MW
m,n−k(λ− µ)]

[GLn−k]
tn−k) + [BSWm,n(λ)]t

n

Now, take λ = 1 then on the left hand side we have the n-th term of the series
1+R1(Lt) and on the right hand side we have the n-th factor of the series

∑

µ Bµ(t)∗
R1−µ(t). The outer two terms arise from the product B 1

2
(t) ∗ R 1

2
(t), using that W

is homogeneous whence for all λ ≠ 0

BSWm,n(λ) ≃ BSWm,n(1) and M
W
m,n(λ) ≃ M

W
m,n(1)

This finishes the proof. !

These formulas allow us to determine the motive [MW
m,n(λ)] inductively from

lower dimensional contributions and from the knowledge of the motive of the
Brauer-Severi scheme [BSWm,n(λ)].

Proposition 5. For all n we have the following inductive description of [MW
m,n(1)]

(Ln − 1)[MW
m,n(1)] = [GLn][BS

W
m,n(1)] +

n−1
∑

k=1

L
(m−1)k(n−k) [GLn]

[GLn−k]
×

((L− 2)[BSWm,k(1)][M
W
m,n−k(1)] + [BSWm,k(0)][M

W
m,n−k(1)] + [BSWm,k(1)][M

W
m,n−k(0)])
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and for [MW
m,n(0)] we have

(Ln − 1)[MW
m,n(0)] = [GLn][BS

W
m,n(0)] +

n−1
∑

k=1

L
(m−1)k(n−k) [GLn]

[GLn−k]
×

((L− 1)[BSWm,k(1)][M
W
m,n−k(1)] + [BSWm,k(0)][M

W
m,n−k(0)]

Proof. Follows from Proposition 3 and the fact that for all µ ≠ 0 we have that
[MW

m,k(µ)] = [MW
m,k(1)] and [BSWm,k(µ)] = [BSWm,k(1)]. !

3. Deformations of affine 3-space

The commutative polynomial ring C[x, y, z] is the Jacobi algebra associated with
the superpotential W = XY Z − XZY . For this reason we restrict in the rest of
this paper to cases where the superpotential W is a cubic necklace in three non-
commuting variables X,Y and Z, that is m = 3 from now on. As even in this case
the calculations become quickly unmanageable we restrict to n ≤ 2, that is we only
will compute the coefficients of t and t2 in UW (t). We will have to compute the
motives of fibers of the Chern-Simons functional

M2(C)⊕M2(C)⊕M2(C)
Tr(W )

✲ C

so we want to express Tr(W ) as a function in the variables of the three generic
2× 2 matrices

X =

[

n p
q r

]

, Y =

[

s t
u v

]

, Z =

[

w x
y z

]

.

We will call {n, r, s, v, w, x} (resp. {p, t, x} and {q, u, y}) the diagonal- (resp. upper-
and lower-) variables. We claim that

Tr(W ) = C +Qq.q +Qu.u+Qy.y

where C is a cubic in the diagonal variables and Qq, Qu and Qy are bilinear in the
diagonal and upper variables, that is, there are linear terms Lab in the diagonal
variables such that

⎧

⎪
⎨

⎪
⎩

Qq = Lqp.p+ Lqt.t+ Lqx.x

Qu = Lup.p+ Lut.t+ Lux.x

Qy = Lyp.p+ Lyt.t+ Lyx.x

This follows from considering the two diagonal entries of a 2 × 2 matrix as the
vertices of a quiver and the variables as arrows connecting these vertices as follows

)*+,-./0

n

%%
s &&

w

''

q

((

u

))
y

*")*+,-./0

p

+*
t

,+ x
-$

r

.,
v/-

z

0.

and observing that only an oriented path of length 3 starting and ending in the
same vertex can contribute something non-zero to Tr(W ). Clearly these linear and
cubic terms are fully determined by W . If we take

W = αX3 + βY 3 + γZ3 + δXY Z + ϵXZY
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then we have C = W (n, s, w) +W (r, v, z) and
⎧

⎪
⎨

⎪⎩

Lqp = 3α(n+ r)

Lqt = ϵw + δz

Lqx = δs+ ϵv

⎧

⎪
⎨

⎪⎩

Lup = δw + ϵz

Lut = 3β(s+ v)

Lux = ϵn+ δr

⎧

⎪
⎨

⎪⎩

Lyp = ϵs+ δv

Lyt = δn+ ϵr

Lyx = 3γ(w + z)

By using the cellular decomposition of the Brauer-Severi scheme of T3,2 one can
simplify the computations further by specializing certain variables. From [16] we
deduce that BS2(T3,2) has a cellular decomposition as A10-A8-A8 where the three
cells have representatives

⎧

⎪
⎪
⎪
⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

cell1 : v =

[

1

0

]

, X =

[

0 p

1 r

]

, Y =

[

s t

u v

]

, Z =

[

w x

y z

]

cell2 : v =

[

1

0

]

, X =

[

n p

0 r

]

, Y =

[

0 t

1 v

]

, Z =

[

w x

y z

]

cell3 : v =

[

1

0

]

, X =

[

n p

0 r

]

, Y =

[

s t

0 v

]

, Z =

[

0 x

1 z

]

It follows that BSW3,2(1) decomposes as S1 - S2 - S3 where the subschemes Si of
A11−i have defining equations

⎧

⎪
⎨

⎪
⎩

S1 : (C +Qu.u+Qy.y +Qq)|n=0 = 1

S2 : (C +Qy.y +Qu)|s=0 = 1

S3 : (C +Qy)|w=0 = 1

Note that in using the cellular decomposition, we set a variable equal to 1. So, in
order to retain a homogeneous form we let Gm act on n, s, w, r, v, z with weight
one, on q, u, y with weight two and on x, t, p with weight zero. Thus, we need a
slight extension of [4, Thm. 1.3] as to allow Gm to act with weight two on certain
variables.

From now on we will assume that W is as above with δ = 1 and ϵ ≠ 0. In this
generality we can prove:

Proposition 6. With assumptions as above

[S3] =

{

L7 − L4 + L3[W (n, s, 0) +W (−ϵ−1n,−ϵs, 0) = 1]A2 if γ ≠ 0

L7 − L5 + L3[W (n, s, 0) +W (−ϵ−1n,−ϵs, z) = 1]A3 if γ = 0

Proof. S3 : The defining equation in A8 is equal to

W (n, s, 0) +W (r, v, z) + (ϵs+ v)p+ (n+ ϵr)t+ 3γ(z)x = 1

If ϵs+ v ≠ 0 we can eliminate p and get a contribution L5(L2 −L). If v = −ϵs but
n + ϵr ≠ 0 we can eliminate t and get a term L4(L2 − L). From now on we may
assume that v = −ϵs and r = −ϵ−1n.
γ ≠ 0 : Assume first that z ≠ 0 then we can eliminate x and get a contribution
L4(L− 1). If z = 0 then we get a term

L
3[W (n, s, 0) +W (−ϵ−1n,−ϵs, 0) = 1]A2



BRAUER-SEVERI MOTIVES AND DT-INVARIANTS OF QUANTIZED 3-FOLDS 9

γ = 0 : Then we have a remaining contribution

L
3[W (n, s, 0) +W (−ϵ−1n,−ϵs, z) = 1]A3

Summing up all contributions gives the result. !

Calculating the motives of S2 and S1 in this generality quickly leads to a myriad
of subcases to consider. For this reason we will defer the calculations in the cases
of interest to the next sections. Specializing Proposition 5 to the case of n = 2 we
get

Proposition 7. For n = 2 we have the following relation

[MW
3,2(1)] = L(L− 1)[BSW

3,2(1)] + L
3((L− 2)[MW

3,1(1)]
2 + 2[MW

3,1(0)][M
W
3,1(1)])

Proof. From Proposition 5 we have that [MW
3,2(1)] is equal to

L(L − 1)[BSW
3,2(1)] + L

3((L− 2)[BSW
3,1(1)][M

W
3,1(1)]+

[BSW
3,1(0)][M

W
3,1(1)] + [BSW

3,1(1)][M
W
3,1(0)])

The result follows from this from the fact that BSW
3,1(1) = MW

3,1(1) and BSW
3,1(0) =

MW
3,1(0). !

4. Quantum affine three-space

For q ∈ C∗ consider the superpotential Wq = XY Z−qXZY , then the associated
algebra RWq

is the quantum affine 3-space

RWq
=

C⟨X,Y, Z⟩

(XY − qY X,ZX − qXZ, Y Z − qZY )

It is well-known thatRWq
has finite dimensional simple representations of dimension

n if and only if q is a primitive n-th root of unity. For other values of q the only
finite dimensional simples are 1-dimensional and parametrized by XYZ = 0 in A3.
In this case we have

{

[M
Wq

3,1 (1)] = [(q − 1)XYZ = 1]A3 = (L− 1)2

[M
Wq

3,1 (0)] = [(1− q)XY Z = 0]A3 = 3L2 − 3L+ 1

That is, the coefficient of t in UWq
(t) is equal to

L
−1

[M
Wq

3,1 (0)− [M
Wq

3,1 (1)]

[GL1]
= L

−1 2L
2 − L

L− 1
=

2L− 1

L− 1

In [3, Thm. 3.1] it is shown that in case q is not a root of unity, then

UWq
(t) = Exp(

2L− 1

L− 1

t

1− t
)

and if q is a primitive n-th root of unity then

UWq
(t) = Exp(

2L− 1

L− 1

t

1− t
+ (L− 1)

tn

1− tn
)

In [3, 3.4.1] a rather complicated attempt is made to explain the term L − 1 in
case q is an n-th root of unity in terms of certain simple n-dimensional representa-
tions of RWq

. Note that the geometry of finite dimensional representations of the
algebra RWq

is studied extensively in [5] and note that there are additional simple
n-dimensional representations not taken into account in [3, 3.4.1].
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Perhaps a more conceptual explanation of the two terms in the exponential
expression of UWq

(t) in case q is an n-th root of unity is as follows. As Wq admits
a cut Wq = X(Y Z − qZY ) it follows from [12] that for all dimensions m we have

[M
Wq

3,m(0)]− [M
Wq

3,m(1)] = L
m2

[repm(Cq[Y, Z])]

where Cq[Y, Z] = C⟨Y, Z⟩/(Y Z − qZY ) is the quantum plane. If q is an n-th
root of unity the only finite dimensional simple representations of Cq[Y, Z] are of
dimension 1 or n. The 1-dimensional simples are parametrized by Y Z = 0 in A2

having as motive 2L − 1 and as all have GL1 as stabilizer group, this explains
the term (2L − 1)/(L − 1). The center of Cq[Y, Z] is equal to C[Y n, Zn] and
the corresponding variety A2 = Max(C[Y n, Zn]) parametrizes n-dimensional semi-
simple representations.The n-dimensional simples correspond to the Zariski open
set A2 − (Y nZn = 0) which has as motive (L − 1)2. Again, as all these have as
GL2-stabilizer subgroup GL1, this explains the term

L− 1 =
(L − 1)2

[GL1]

As the superpotential allows a cut in this case we can use the full strength of [1]and
can obtain [MW

3,2(0)] from [MW
3,2(1)] from the equality

L
12 = [MW

3,2(0)] + (L − 1)[MW
3,2(1)]

To illustrate the inductive procedure using Brauer-Severi motives we will consider
the case n = 2, that is q = −1 with superpotential W = XY Z + XZY . In this
case we have from [3, Thm. 3.1] that

UW (t) = Exp(
2L− 1

L− 1

t

1− t
+ (L− 1)

t2

1− t2

The basic rules of the plethystic exponential on MC[[t]] are

Exp(
∑

n≥1

[An]t
n) =

∏

n≥1

(1− tn)−[An] where (1− t)−L
m

= (1− L
mt)−1

and one has to extend all infinite products in t and L−1. One starts by rewriting
UW (t) as a product

UW (t) = Exp(
t

1− t
)Exp(

L

L− 1

t

1− t
)Exp(

Lt2

1− t2
)Exp(

t2

1− t2
)−1

where each of the four terms is an infinite product

Exp(
t

1− t
) =

∏

m≥1

(1− tm)−1, Exp(
L

L− 1

t

1− t
) =

∏

m≥1

∏

j≥0

(1− L
−jtm)−1

Exp(
Lt2

1− t2
) =

∏

m≥1

(1− Lt2m)−1, Exp(
t2

1− t2
)−1 =

∏

m≥1

(1 − t2m

That is, we have to work out the infinite product
∏

m≥1

((1 − t2m−1)−1(1− Lt2m)−1)
∏

m≥1

∏

j≥0

(1− L
−jtm)−1

as a power series in t, at least up to quadratic terms. One obtains

UW (t) = 1 +
2L− 1

L− 1
t+

L4 + 3L3 − 2L2 − 2L+ 1

(L2 − 1)(L− 1)
t2 + . . .
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That is, if W = XY Z +XZY one must have the relation:

[MW
3,2(0)]− [MW

3,2(1)] = L
5(L4 + 3L3 − 2L2 − 2L+ 1)

4.1. Dimensional reduction. It follows from the dimensional reduction argument
of [12] that

[MW
3,2(0)]− [MW

3,2(1)] = L
4[rep2 C−1[X,Y ]]

where C−1[X,Y ] is the quantum plane at q = −1, that is, C⟨X,Y ⟩/(XY + Y X).
The matrix equation

[

a b
c d

] [

e f
g h

]

+

[

e f
g h

] [

a b
c d

]

=

[

0 0
0 0

]

gives us the following system of equations
⎧

⎪⎪
⎪
⎨

⎪
⎪
⎪⎩

2ae+ bg + fc = 0

2hd+ bg + fc = 0

f(a+ d) + b(e+ h) = 0

c(h+ e) + g(a+ d) = 0

where the two first are equivalent to ae = hd and 2ae + bg + fc = 0. Changing
variables

x =
1

2
(a+ d), y =

1

2
(a− d), u =

1

2
(e + h), v =

1

2
(e − h)

the equivalent system then becomes (in the variables b, c, f, g, u, v, x, y)
⎧

⎪
⎪
⎪
⎨

⎪⎪
⎪
⎩

xv + yu = 0

xu + yv + bg + fc = 0

fx+ bu = 0

cu+ gx = 0

Proposition 8. The motive of R2 = rep2 C−1[x, y] is equal to

[R2] = L
5 + 3L4 − 2L3 − 2L2 + L

Proof. If x ≠ 0 we obtain

v = −
yu

x
, f = −

bu

x
, g = −

cu

x
and substituting these in the remaining second equation we get the equation(s)

u(y2 − x2 + 2bc) = 0 and x ≠ 0

If u ≠ 0 then y2 − x2 + 2bc = 0. If in addition b ≠ 0 then c = x2−y2

2b and y is free.
As x, u and b are non-zero this gives a contribution (L−1)3L. If b = 0 then c is free
and x2 − y2 = 0, so y = ±x. This together with x ≠ 0 ≠ u leads to a contribution
of 2L(L − 1)2. If u = 0 then y, b and c are free variables, and together with x ≠ 0
this gives (L− 1)L3.

Remains the case that x = 0. Then the system reduces to
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

yu = 0

yv + bg + fc = 0

bu = 0

cu = 0
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If u ≠ 0 then y = 0, b = 0 and c = 0 leaving c, g, v free. This gives (L − 1)L3. If
u = 0 then the only remaining equation is yv + bg + fc = 0. That is, we get the
cone in A6 of the Grassmannian Gr(2, 4) in P5. As the motive of Gr(2, 4) is

[Gr(2, 4)] = (L2 + 1)(L2 + L+ 1)

we get a contribution of

(L− 1)(L2 + 1)(L2 + L+ 1) + 1

Summing up all contributions gives the desired result. !

4.2. Brauer-Severi motives. In the three cells of the Brauer-Severi scheme of
T3,2 of dimensions resp. 10, 9 and 8 the superpotential Tr(XY Z +XZY ) induces
the equations:
⎧

⎪
⎨

⎪
⎩

S1 : 2rvz + puz + pvy + rty + psy + rux+ puw + tz + vx + sx+ tw = 1

S2 : 2rvz + pvy + rty + nty + pz + rx+ nx+ pw = 1

S3 : 2rvz + pv + rt+ nt+ ps = 1

Proposition 9. With notations as above, the Brauer-Severi scheme of TW
3,2(1) has

a decomposition

BSW
3,2(1) = S1 - S2 - S3

where the schemes Si have motives
⎧

⎪
⎨

⎪⎩

[S1] = L9 − L6 − 2L5 + 3L4 − L3

[S2] = L8 − 2L5 + L4

[S3] = L7 − 2L4 + L3

Therefore, the Brauer-Severi scheme has motive

[BSW
3,2(1)] = L

9 + L
8 + L

7 − L
6 − 4L5 + 2L4

Proof. S1 : From Proposition 6 we obtain

[S3] = L
7 − L

5 + L
3[W (n, s, 0) +W (−n,−s, z) = 1]A3

and as W (n, s, 0) +W (−n,−s, z) = 2nsz we get L7 − L5 + L3(L− 1)2.

S2 : The defining equation is

2rvz + y(pv + (r + n)t) + p(z + w) + x(r + n) = 1

If r + n ≠ 0 we can eliminate x and have a contribution L6(L2 − L). If r + n = 0
we get the equation

2rvz + p(yv + z + w) = 1

If yv+ z +w ≠ 0 we can eliminate p and get a term L3(L4 −L3). If r+ n = 0 and
yv + z + w = 0 we have 2rvz = 1 so a term L4(L− 1)2. Summing up gives us

[S2] = L
4(L − 1)(L3 + L

2 + L− 1) = L
8 − 2L5 + L

4

S1 : The defining equation is

2rvz + p(u(z + w) + y(v + s)) + t(z + w + ry) + x(v + s+ ru) = 1
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If v + s + ru ≠ 0 we can eliminate x and get L5(L4 − L3). If v + s + ru = 0 and
z + w + ry ≠ 0 we can eliminate t and have a term L4(L4 − L3). If v + s+ ru = 0
and z + w + ry = 0, the equation becomes (in A8, with t, x free variables)

2r(vz − puy) = 1

giving a term L2(L5 − [vz = puy]). To compute [vz = puy]A5 assume first that
v ≠ 0, then this gives L3(L − 1) and if v = 0 we get L(3L2 − 3L + 1). That is,
[vz = puy]A5 = L4 + 2L3 − 3L2 + L. In total this gives us

[S1] = L
3(L− 1)(L5 + L

4 + L
3 − 2L+ 1) = L

9 − L
6 − 2L5 + 3L4 − L

3

finishing the proof. !

Proposition 10. From the Brauer-Severi motive we obtain
{

[MW
3,2(1)] = L11 − L8 − 3L7 + 2L6 + 2L5 − L4

[MW
3,2(0)] = L11 + L9 + 2L8 − 5L7 + 3L5 − L4

As a consequence we have,

[MW
3,2(0)]− [MW

3,2(1)] = L
4(L5 + 3L4 − 2L3 − 2L2 + L)

Proof. We have already seen that MW
3,1(1) = {(x, y, z) | 2xyz = 1} and MW

3,1(0) =
{(x, y, z) | xyz = 0} whence

[MW
3,1(1)] = (L− 1)2 and [MW

3,1(0)] = 3L2 − 3L+ 1

Plugging this and the obtained Brauer-Severi motive into Proposition 5 gives
[MW

3,2(1)]. From this [MW
3,2(0)] follows from the equation L12 = (L − 1)[MW

3,2(1)] +
[MW

3,2(0)]. !

5. The homogenized Weyl algebra

If we consider the superpotential W = XY Z−XZY − 1
3X

3 then the associated
algebra RW is the homogenized Weyl algebra

RW =
C⟨X,Y, Z⟩

(XZ − ZX,XY − Y X, Y Z − ZY −X2)

In this case we have MW
3,1(1) = {x3 = −3} and MW

3,1(0) = {x3 = 0}, whence

[MW
3,1(1)] = L

2[µ3], and [MW
3,1(0)] = L

2

where, as in [3, 3.1.3] we denote by [µ3] the equivariant motivic class of {x3 = 1} ⊂
A1 carrying the canonical action of µ3. Therefore, the coefficient of t in UW (t) is
equal to

L
−1 [M

W
3,1(0)]− [MW

3,1(0)]

[GL1]
=

L(1− [µ3])

L− 1
As all finite dimensional simple representations of RW are of dimension one, this
leads to the conjectural expression [3, Conjecture 3.3]

UW (t)
?
= Exp(

L(1 − [µ3])

L− 1

t

1− t
)

Balazs Szendröi kindly provided the calculation of the first two terms of this series.
Denote with M̃ = 1− [µ3], then

UW (t)
?
= 1 +

LM̃

L− 1
t+

L2M̃2 + L(L2 − 1)M̃+ L2(L− 1)σ2(M̃)

(L2 − 1)(L− 1)
t2 + . . .
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We will now compute the left-hand side using Brauer-Severi motives.

Recall that BSW3,2(i), for i = 0, 1, decomposes as S1-S2-S3 where the subschemes
Si of A11−i have defining equations
⎧

⎪
⎨

⎪
⎩

S1 : − 1
3r

3 + ((w − z)p+ rx)u + ((v − s)p− rt)y − rp+ (z − w)t+ (s− v)x = δi1
S2 : − 1

3n
3 − 1

3r
3 + (vp+ (n− r)t)y + (w − z)p+ (r − n)x = δi1

S3 : − 1
3n

3 − 1
3r

3 + (v − s)p+ (n− r)t = δi1

If we let the generator of µ3 act with weight one on the variables n, s, w, r, v, z, with
weight two on x, t, p and with weight zero on q, u, y we see that the schemes Sj for
i = 1 are indeed µ3-varieties. We will now compute their equivariant motives:

Proposition 11. With notations as above, the Brauer-Severi scheme of TW
3,2(1)

has a decomposition
BSW

3,2(1) = S1 - S2 - S3

where the schemes Si have equivariant motives
⎧

⎪
⎨

⎪
⎩

[S1] = L9 − L6

[S2] = L8 + ([µ3]− 1)L6

[S3] = L7 + ([µ3]− 1)L5

Therefore, the Brauer-Severi scheme has equivariant motive

[BSW
3,2(1)] = L

9 + L
8 + L

7 + ([µ3]− 2)L6 + ([µ3]− 1)L5

Proof. S3 : If v − s ≠ 0 we can eliminate p and obtain a contribution L5(L2 − L).
If v = s and n− r ≠ 0 we can eliminate t and obtain a term L4(L2 − L). Finally,
if v = s and n = r we have the identity − 2

3n
3 = 1 and a contribution L5[µ3].

S2 : If r − n ≠ 0 we can eliminate x and get a term L6(L2 − L). If r − n = 0 we
get the equation in A8

−
2

3
n3 + p(vy + w − z) = 1

If vy + w − z ≠ 0 we can eliminate p and get a contribution L3(L4 − L3). Finally,
if vy + w − z = 0 we get the equation − 2

3n
3 = 1 and hence a term L3.L3[µ3].

S1 : If (w − z)p+ rx ≠ 0 then we can eliminate u and get a contribution

L
4(L5 − [(w − z)p+ rx = 0]A5) = L

6(L− 1)(L2 − 1)

If (w − z)p+ rx = 0 but (v − s)p− rt ≠ 0 we can eliminate y and get a term

L.[(w − z)p+ rx = 0, (v − s)p− rt ≠ 0]A8

To compute the equivariant motive in A8 assume first that r ≠ 0 then we can
eliminate x from the equation and obtain

L
2[r ≠ 0, (v−s)p−rt ≠ 0]A5 = L

2(L4(L−1)−[r ≠ 0, (v−s)p−rt = 0]A5) = L
5(L−1)2

If r = 0 we have to compute [(w− z)p = 0, (v− s)p ≠ 0]A7 = L2(L− 1)(L2 −L)L =
L4(L− 1)2. So, in total this case gives a contribution

L.[(w − z)p+ rx = 0, (v − s)p− rt ≠ 0]A8 = L
5(L− 1)(L2 − 1)

If (w − z)p + rx = 0, (v − s)p − rt = 0 and r ≠ 0 we can eliminate x and t from
the two equations and p from the defining equation of S1 and obtain a contribution
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L6(L − 1). Finally, if (w − z)p + rx = 0, (v − s)p − rt = 0 and r = 0 we get the
system of equations

⎧

⎪
⎨

⎪
⎩

(w − z)p = 0

(v − s)p = 0

(z − w)t+ (s− v)x = 1

If z − w ≠ 0 we have p = 0 and can eliminate t to get a term L5(L2 − L). If
z −w = 0 then we must have s− v ≠ 0 and hence p = 0 and x = 1/(s− v) whence
a contribution L4(L2 − L). So, this case gives a total contribution of L5(L2 − 1).
Summing up the contributions of all subcases gives us the claimed motive. !

Proposition 12. With notations as above, the Brauer-Severi scheme of TW
3,2(0)

has a decomposition

BSW
3,2(0) = S1 - S2 - S3

where the schemes Si have (equivariant) motives
⎧

⎪
⎨

⎪
⎩

[S1] = L9 + L7 − L6

[S2] = L8

[S3] = L7

Therefore, the Brauer-Severi scheme has (equivariant) motive

[BSW
3,2(0)] = L

9 + L
8 + 2L7 − L

6

Proof. S3 : If v − s ≠ 0 we can eliminate p and obtain a contribution L5(L2 − L).
If v = s and n− r ≠ 0 we can eliminate t and obtain a term L4(L2 − L). Finally,
if v = s and n = r we have the identity n3 = 0 and a contribution L5.

S2 : If r − n ≠ 0 we can eliminate x and get a term L6(L2 − L). If r − n = 0 we
get the equation in A8

−
2

3
n3 + p(vy + w − z) = 1

If vy + w − z ≠ 0 we can eliminate p and get a contribution L3(L4 − L3). Finally,
if vy + w − z = 0 we get the equation n3 = 0 and hence a term L6.

S1 : If (w − z)p+ rx ≠ 0 we can eliminate u and obtain a term

L
4(L5 − [(w − z)p+ rx = 0]A5) = L

6(L− 1)(L2 − 1)

If (w − z)p + rx = 0 but (v − s)p − rt ≠ 0 then we can eliminate y and obtain a
contribution

L[(w − z)p+ rx = 0, (v − s)p− rt ≠ 0]A8 = L
5(L− 1)(L2 − 1)

Now, assume that (w − z)p+ rx = 0 and (v − s)p − rt = 0. If r ≠ 0 then we can
eliminate p, t and x and get a term L6(L − 1). Finally, if (w − z)p + rx = 0 and
(v − s)p− rt = 0 and r = 0 we have the system of equations

⎧

⎪
⎨

⎪
⎩

(w − z)p = 0

(v − s)p = 0

(z − w)t+ (s− v)x = 0
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If z − w ≠ 0 we have p = 0 and can eliminate t to get a term L5(L2 − L). If
z − w = 0 then we get a contribution

L
4[(v − s)p = 0, (v − s)x = 0]A4 = L

4(L3 + L
2 − L)

So, this case gives a total contribution of 2L7 − L5. !

Now, we have all the information to compute the equivariant motives of the 0-
and 1-fibre of the superpotential map as
{

[MW
3,2(1)] = L(L− 1)[BSW

3,2(1)] + L3(L− 2)[MW
3,1(1)]

2 + 2L3[MW
3,1(1)][M

W
3,1(0)]

[MW
3,2(0)] = L(L− 1)[BSW

3,2(0)] + L3(L− 1)[MW
3,1(1)]

2 + L3[MW
3,1(0)]

2

Theorem 1. If we denote with M̃ = 1− [µ3], then we obtain

[MW
3,2(0)]− [MW

3,2(1)] = L
7M̃2 + L

6(L2 − 1)M̃+ 2L8 − 3L7 + L
6

As a consequence, the second term of the Donaldson-Thomas series is equal to

L2M̃2 + L(L2 − 1)M̃+ 2L3 − 3L2 + L

(L − 1)(L2 − 1)
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