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AZUMAYA REPRESENTATION SCHEMES

JENS HEMELAER AND LIEVEN LE BRUYN

Abstract. We extend Grothendieck topologies on commutative algebras to
the category of all Azumaya algebras and we show that the functor assigning
to an Azumaya algebra A the set of all algebra maps R ✲ A from a fixed
C-algebra R, is a sheaf for all such Grothendieck topologies coarser than the
maximal flat topology. We construct Azumaya representation schemes repre-
senting algebra maps from R to a fixed Azumaya algebra A, which is relevant
in the study of the representation stack [rep

n
(R)/PGLn]. Finally, we describe

the related quotient stack [rep
α
(R)/PGL(α)] in terms of twisted representa-

tions of quivers.

1. Introduction

Throughout, all algebras R will be associative, unital, finitely generated C-
algebras, not necessarily commutative. With repn(R) we denote the affine scheme
of all n-dimensional representations of R, that is, all C-algebra maps R ✲ Mn(C).
Conjugation in Mn(C) defines a PGLn-action on repn(R), its orbits corresponding
to isomorphism classes of n-dimensional representations. By results of M. Artin [2]
and C. Procesi [15] it is known that the geometric points of the quotient scheme
repn(R)/PGLn classify isomorphism classes of n-dimensional semi-simple represen-
tations of R.

In order to classify the isomorphism classes of all n-dimensional representa-
tions, one has to consider the representation stack of n-dimensional representations
[repn(R)/PGLn], which by the results of [9] is the functor from the category Comm

of all commutative C-algebras to Groupoids the category of all groupoids

[repn(R)/PGLn] : Comm ✲ Groupoids C 7→ AzuCn (R)

where the objects of the groupoid AzuCn (R) are the C-algebra maps φ : R ✲ A
where A is a constant degree n Azumaya algebra with center C, and morphisms
α : φ ✲ φ′ are given by C-algebra morphisms α : A ✲ A′ making the diagram
below commute.

A

α

��

R

φ

88♣♣♣♣♣♣♣♣♣♣♣♣♣

φ′

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

A′

The information contained in these representation stacks, for varying n, can also be
expressed in the following way. Consider the category Azu with objects all Azumaya
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2 JENS HEMELAER AND LIEVEN LE BRUYN

algebras and with morphisms all C-algebra maps preserving centers. Given an affine
C-algebra R we can then consider the covariant functor

Alg(R,−) : Azu ✲ Sets A 7→ AlgC(R,A)

and hence a contravariant functor on the (geometric) opposite category Azuop. A
first aim of the present paper is to investigate Grothendieck topologies on Azuop

for which the functor Alg(R,−) is a (set-valued) sheaf. For this reason we study
in section 2 the problem of extending Grothendieck topologies on Commop = Aff to
the category Azuop. It will transpire that often a Grothendieck topology on Commop

can be extended in uncountable many ways to a Grothendieck topology on Azuop,
depending on the chosen Grothendieck topology on the category N

×
+ with objects

the strictly positive integers and morphisms given by division. This gives a perhaps
surprising connection between the extension problem for Grothendieck topologies
and the so called ‘arithmetic site’ introduced and studied by A. Connes and C.
Consani [5].

In section 3 we will show that the functor Alg(R,−) on Azu is a sheaf for every
Grothendieck topology on Azuop coarser than the maximal flat topology, that is
the extension of the flat topology on Commop to Azuop corresponding to the discrete
topology on N

×
+. If we fix an Azumaya algebra A with center C it follows that the

covariant set-valued functor from the category CommC of all commutative C-algebras
to Sets

CommC ✲ Sets D 7→ AlgC(R,A⊗C D)

is a sheaf with respect to any Grothendieck topology coarser than the flat topology.
The main result of this section shows that this sheaf is in fact representable by
a scheme over Spec(C), which we call the Azumaya representation scheme of R
associated to the Azumaya algebra A.

If R is a basic finite dimensional C-algebra it is isomorphic to CQ/I where Q
is a quiver on k vertices and I is an ideal of the path algebra CQ. In this case
the geometric points of the quotient scheme repn(R)/PGLn correspond to the

dimension vectors α = (d1, . . . , dk) such that |α| = ∑k
i=1 di = n. Moreover, the

representation scheme itself decomposes as

repn(R) =
⊔

|α|=n

GLn ×GL(α) repα(R)

where GL(α) =
∏

iGLai and repα(R) is the scheme of all α-dimensional represen-
tations of Q satisfying the equations given by elements of the ideal I. Therefore,
it is natural to consider for an affine Ck-algebra the α-dimensional representation
stack [repα(R)/PGL(α)] where PGL(α) = GL(α)/C∗(1a1 , . . . , 1ak).

It is well-known, see for example [11], that principal PGL(α)-bundles over Spec(C)
correspond to Azumaya algebras A with center C having a distinguished embedding
Ck ⊂ ✲ A. In section 4 we will give a structural result for such Azumaya algebras
and determine their automorphisms. This then allows us to interpret the C-points
of the stack [repα(R)/PGL(α)] for R = CQ/I as twisted quiver representations.

2. Grothendieck topologies on Azumaya algebras

Let C be a commutative algebra. Recall from [6] that an algebra A is said to be
an Azumaya algebra over C if and only if

(1) The center Z(A) of A equals C.
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(2) There is a separability idempotent e =
∑

ai ⊗ bi ∈ A ⊗C Aop, that is,
µ(e) =

∑

i aibi = 1 and e2 = e.

If only the second condition is satisfied we say that A is separable over C. Equiva-
lently, A is an Azumaya algebra over C if and only if there is an étale cover

{C → Ci}ki=1

such that for each i ∈ {1, . . . , k} there is an ni ∈ N+ for which A⊗C Ci ∼= Mni
(Ci),

the algebra of ni × ni-matrices with coefficients in Ci. So A is projective over C
and we can often assume that A is of constant rank n2, in which case n will be
called the degree of A.

Definition 2.1. With Azu we will denote the category having as its objects all
Azumaya algebras A over commutative algebras, and an algebra morphism f :
A ✲ A′ is a morphism in Azu if it preserves centers, that is if f(Z(A)) ⊂ Z(B).
Note that when A and A′ are Azumaya algebras of the same constant degree n this
condition is always satisfied.

We will often invoke the (double) centralizer theorem (see [6, Thm. II.4.3]): let
A be an Azumaya algebra with center C and let C ⊆ B ⊆ A be any subalgebra of
A separable over C. Then the centralizer

AB = {a ∈ A | ∀b ∈ B : a.b = b.a}

is also separable over C and A(AB) = B. If B is in addition an Azumaya algebra
over C, then so is AB and we have

A ≃ B ⊗C AB

It is well known that the category AzuC of all Azumaya algebras with the same
center C is a symmetric monoidal category under ⊗C . More generally, if A and
B are separable over the commutative ring C, then so is A ⊗C B. An immediate
consequence of the double centralizer theorem is:

Proposition 2.2. If fi : A ✲ Ai (for i = 1, 2) are morphisms in Azu then the
tensor product

A1 ⊗A A2

is again an Azumaya algebra, with center Z(A1)⊗Z(A) Z(A2).

Proof. Let Ci be the center of Ai, then as A⊗C Ci is a Ci-Azumaya subalgebra of
Ai it follows from the centralizer theorem that

Ai ∼= (A⊗C Ci)⊗Ci
AAi

∼= A⊗C AAi
But then we have the following isomorphisms.

A1 ⊗A A2
∼= AA1 ⊗C A⊗A A⊗C AA2
∼= AA1 ⊗C A⊗C AA2
∼= A1 ⊗C AA2 ∼= AA1 ⊗C A2

As all Ai and AAi are separable over C (by transitivity of separability) it follows
that A1⊗CAA2 and AA1 ⊗CA2 are separable over C and hence are Azumaya algebras
over their center. �
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If a category Cop has pullbacks (or, equivalently, the category C has pushouts)
then one can restrict to a basis to define a Grothendieck topology on Cop. As
we want to describe Grothendieck topologies on the (geometric) opposite category
Azuop, the previous result would be useful if the tensor product would be a pushout
in Azu. However, this is not the case. Indeed, let A be an Azumaya algebra with
center C and degree n > 1, then A⊗C A is Azumaya of degree n2 so cannot satisfy
the condition for the diagram

C A

A A⊗C A

A

id

id

∄h

.

In fact, some diagrams in Azu cannot have any pushout.

Example 2.3. Consider the diagram

C Mn(C)

Mn(C)

.

If the pushout of above diagram exists, then it is unique. Call it An and write
C = Z(An). We will derive a contradiction from the existence of An, for n > 1.
Consider the commutative diagram

C Mn(C)

Mn(C) An

Mn(C)

id

id

h

.

By definition of the pushout, the dashed arrow h exists. It induces a morphism
C → C on centers, namely the unique morphism C → C for which

An ⊗C C ∼= Mn(C).

This implies however that the dashed arrow h′ in

C Mn(C)

Mn(C) An

Mn(C)

α

id

h′
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still induces the same morphism on centers C → C, for some nontrivial automor-
phism α. So h′ = β ◦ h for some automorphism β of Mn(C). Commutativity of the
diagram shows both β = α and β = id, a contradiction.

So we will have to define Grothendieck topologies on Azuop via sieves, see for
example [13, III.2]. As we like to retain an algebraic description we will work in
Azu. Therefore, a sieve S on an Azumaya algebra A is a collection of morphisms in
Azu

S = {A f
✲ Bf} such that if f ∈ S then g ◦ f : A ✲ Bf ✲ D ∈ S

for every morphism g : Bf ✲ D in Azu. A Grothendieck topology on Azu is a
function J which assigns to each Azumaya algebra A a collection J(A) of sieves on
A satisfying the following properties

(1) The maximal sieve TA = {f : A ✲ B ∈ Azu} of all morphisms from A is
an element of J(A)

(2) Stability: If S ∈ J(A), then for any morphism h : A ✲ B in Azu,
h−1(S) = {g : B ✲ D : g ◦ h ∈ S} ∈ J(B)

(3) Transitivity: If S ∈ J(A) and R is a sieve on A such that h−1(R) ∈ J(B)
for all morphisms h : A ✲ B in S, then R ∈ J(A).

We say that a collection of morphisms {A ✲ Ai}i∈I is a cover of A with respect
to the Grothendieck topology J if these morphisms generate (by post-composition)
a sieve in J(A). Thus as an alternative to specifying a Grothendieck topology by
an assignment of sieves we can specify it by an assignment of collections of covers.
This approach is similar to using bases for a topology, but the lack of pushouts in
Azu means that we have to be a bit careful.

We will first give a combinatorial description of sieves and Grothendieck topolo-
gies on the full subcategory Mat of Azu on the matrix algebrasMn(C) for all n ∈ N+.
Let N

×
+ be the poset category with objects n ∈ N+ and morphisms n ✲ m

iff n|m. Clearly, we have a projection π : Mat ✲ N
×
+ sending a morphism

Mn(C) ✲ Mnk(C) to n ✲ nk.

Lemma 2.4. Sieves on Mn(C) in Mat are in bijection with sieves on n in N
×
+ via

S 7→ π(S). As a consequence, Grothendieck topologies on Mat are in bijection with
Grothendieck topologies on N

×
+.

Proof. The result follows if we can show that a sieve S onMn(C) is fully determined
by the multiples of n such that there is a morphism α : Mn(C) ✲ Mnk(C) ∈ S
and not on the actual morphism α. So, let β : Mn(C) ✲ Mnk(C) be another
morphism, then it follows from the double centralizer theorem that there is an
automorphism γ of Mnk(C) such that γ ◦ α = β. But then we have

α ∈ S ⇔ β ∈ S

from which the claims follow. �

Grothendieck topologies on N
×
+ have been studied in [10] in connection with the

arithmetic site of Connes and Consani [5]. Sieves S on n correspond one-to-one
with submonoids M = ∪iniN+ of the multiplicative monoid N

×
+ via n ✲ nk ∈ S

iff k ∈M . Further, if h : n ✲ n′ is a morphism in N
×
+ and a sieve S corresponds

to M = ∪iniN+, then h
−1(S) corresponds to ∪i lcm(n′, ni)N+. These observations

allow to construct uncountable many different Grothendieck topologies on N
×
+:
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Example 2.5. Consider a set Σ of prime numbers. To this set we can associate
a Grothendieck topology KΣ on N

×
+ by taking for the collection KΣ(n) of the sieves

on n all sieves corresponding to submonoids M = ∪iniN+ such that at least one ni
has all its prime divisors in Σ. It is easy to check that KΣ defines a Grothendieck
topology on N

×
+. Moreover KΣ = KΣ′ implies that Σ = Σ′, for two sets of primes

Σ and Σ′.
As the collection of submonoids describing the sieves on elements is equal for all

n ∈ N+, these Grothendieck topologies are stable under multiplication, that is they
have the property that if {n ✲ nr}r∈R is in KΣ(n) and if k is any positive integer,
then {nk ✲ nrk}r∈R ∈ KΣ(nk). If, in particular Σ = P is the set of all prime
numbers, then the corresponding Grothendieck topology K+ = KP will be called the
maximal topology on N

×
+. In contrast, the topology K− = K∅ corresponding to the

empty set will be called the minimal topology on N
×
+.

Definition 2.6. Let J be a Grothendieck topology on Commop and K a Grothendieck
topology on N

×
+. Let A be an Azumaya algebra with center C. We say that a family

of morphisms {A → Air}i∈I,r∈Ri
in Azu covers A if the following two conditions

are satisfied.

• For a fixed i ∈ I all maps A → Air induces the same map C → Ci on the
centers, and the family {C → Ci}i∈I is a covering for J .

• For all i ∈ I, A ⊗C Ci is of constant degree ni, Air is of constant degree
nir for all r ∈ Ri, and {ni → nir}r∈Ri

is a covering for K for all r ∈ Ri.

Now we define JK by

S ∈ JK(A) ⇔ S contains a family {A→ Air}i∈I,r∈Ri
covering A

for each sieve S on A in the category Azu.

We want to prove that under certain conditions the above collection of sieves
JK is a Grothendieck topology on Azu. We can reformulate the axioms of a
Grothendieck topology using Definition 2.6. Take an Azumaya algebra A and a
sieve S in JK(A). Consider a family {A → Air}i∈I,r∈Ri

⊆ S as in the definition,
with corresponding coverings {C → Ci}i∈I and {ni → nir}r∈Ri

for all i ∈ I.

(1) There exists a covering {C → C′
i}i∈I for J such that A⊗C C′

i is of constant
degree for each i ∈ I.

(2) For each h : A → B, there is a covering {B → Bpl}p∈P,l∈Lp
as in the defi-

nition, such that each composition A → Bpl factors along some morphism
A→ Air.

(3) Suppose that we have a covering {Bh → Bhpl}p∈P,l∈Lp
for each h : A→ Bh

in S, such that each A→ Bhpl is contained in some sieve R. Then R contains
a covering.

Theorem 2.7. Let J be a Grothendieck topology on Commop and K a Grothendieck
topology on N

×
+. Suppose that

(1) J is finer than the étale topology, or
(2) J is finer than the Zariski topology and K is stable under multiplication.

Then the collection of sieves JK of Definition 2.6 defines a topology on Azuop. More-
over, two such topologies JK and J ′

K′ agree only if J = J ′ and K = K ′.

Proof. We prove the three axioms for a Grothendieck topology, in the second form
mentioned above.
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(1). Take a Zariski covering {C → C′
i}i∈I such that A⊗CC′

i is of constant degree
n′
i, and consider the covering {A→ A⊗C C′

i}i∈I . This corresponds to the covering
{C → C′

i}i∈I for J and the trivial covering {n′
i → n′

i} for K, for each i ∈ I.
(2). Case (1). By possibly refining the family {C → Ci}i∈I , we can assume

that Air = Mnir(Ci). Take a covering {D → Dil}i∈I,l∈Li
refining {D → D ⊗C

Ci}i∈I . We can then assume that B ⊗D Dil = Mnik(Dil) for some natural number
k depending on i ∈ I and l ∈ Li. Now it suffices to consider the covering

{B → Mni lcm(k,r)(Dil)}i∈I,l∈Li
.

Case (2). Take a covering {D → Dil}i∈I,l∈Li
refining {D → D ⊗C Ci}i∈I . We can

then assume that Bil = B ⊗D Dil is of constant degree nikil. In this case consider
the covering

{B → Bil ⊗Ai
Air}i∈I,r∈Ri,l∈Li

,

where we write Ai = A ⊗C Ci. Note that Bil ⊗Ai
Air is of constant degree nirkil

over its center Dil.
(3). Consider specifically the morphisms h : A→ Air for each i ∈ I and r ∈ Ri.

Then by the assumption there is a covering {Air → Airl}l∈Lr
of Air and moreover

the compositions A → Airl are in R for all i ∈ I, r ∈ Ri, l ∈ Lr. So R ∈ JK(A)
because it contains the covering

{A→ Airl}i∈I,r∈Ri,l∈Lr
.

The last statement is immediate if we can recover both J and K from JK . This
is precisely the content of the following proposition. �

Proposition 2.8. We can recover J as the collection of sieves {C → Z(Ai)}i∈I
for each sieve {C → Ai}i∈I in JK . Similarly, we can recover K as the collection
of sieves {n → ni}i∈I for each sieve {Mn(C) → Ai}i∈I in JK with Ai of constant
degree ni.

Proof. Let S0 be a sieve in J(C). The elements of S0 generate a sieve S ∈ JK(C).
It is easy to see that taking centers gives back S0. Conversely, for any sieve
{C → Ai}i∈I in JK(C) we have that {C → Z(Ai)}i∈I is a sieve in J(C), be-
cause it contains a family {C → Ci}i∈I generating a sieve in J(C). Recovering K
is analogous. �

3. The sheaf property and representability

Now, consider an affine C-algebra R and the corresponding set-valued functor

Azu Sets

A Alg(R,A)
,

which we will denote by Alg(R,−). In this section, we will show that this functor
is in fact a sheaf with respect to the maximal flat topology as defined above. This
will imply that it is also a sheaf for any coarser Grothendieck topology, e.g. the
Grothendieck topologies JK as in the previous section where J is the Zariski or
étale topology, and where K is an arbitrary Grothendieck topology on N

×
+. It
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immediately follows that for each Azumaya algebra A the set-valued functor

CommC Sets

D Alg(R,A⊗C D)

on the category of commutative C-algebras is also a sheaf for the flat topology. This
sheaf turns out to be representable by a scheme, which we will call the Azumaya rep-
resentation scheme of R associated to A. We will give a ring-theoretic description
of the coordinate ring of this scheme and discuss its geometric structure.

Recall that, by definition, a sieve is a covering sieve for the flat topology if it
contains a family {C → Ci}i∈I with

C →
∏

i∈I

Ci

faithfully flat.

Lemma 3.1. Let A→ B be a morphism in Azu. Then the following are equivalent:

(1) A→ B is left faithfully flat;
(2) A→ B is right faithfully flat;
(3) Z(A) → Z(B) is faithfully flat;

Moreover, if any of the above is satisfied, then the sequence

0 // A // B //
// B ⊗A B

is exact.

Proof. (1) ⇔ (3): by the double centralizer theorem, the functor −⊗AB is equiva-
lent to −⊗Z(A)Z(B)⊗Z(B)B

A. Because BA is always faithfully flat over its center
Z(B), we get that A → B is left faithfully flat if and only if Z(A) → Z(B) is
faithfully flat.

(2) ⇔ (3): analogously.
The sequence in the lemma appeared in [2] and is a noncommutative version of

the Amitsur complex. By faithfully flatness, it is enough to check that

(1) 0 // B
b7→b⊗1

// B ⊗A B
b⊗b′ 7→b⊗b′⊗1

//

b⊗b′ 7→b⊗1⊗b′
// B ⊗A B ⊗A B

is exact. The morphism B → B ⊗A B has a retraction given by the multiplication
morphism. In particular it is injective. Further, suppose

∑

i bi⊗b′i⊗1 =
∑

i bi⊗1⊗b′i.
Applying multiplication to the first two tensor factors, we get that

∑

bib
′
i ⊗ 1 =

∑

i bi ⊗ b′i. But this means that
∑

i bi ⊗ b′i lies in the image of B → B ⊗A B. �

Proposition 3.2. The functor Alg(R,−) on Azu is a sheaf for the maximal flat
topology on Azuop (and hence for any coarser Grothendieck topology).

Proof. We need to prove that we can glue sections in a unique way whenever they
agree locally. It is enough to show that

(2) 0 // Alg(R,A) //
∏

i∈I Alg(R,Ai)
//
//
∏

i,j∈I Alg(R,Ai ⊗A Aj)

is exact for every family of morphisms {A→ Ai}i∈I in Azu such that A→
∏

i∈I Ai
is faithfully flat (note that

∏

i∈I Ai is not necessarily Azumaya). We know that
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Alg(R,−) commutes with limits of rings (in particular with categorical kernels,
products and inverse limits), so it is enough to show that

(3) 0 // A //
∏

i∈J Ai
//
//
∏

i,j∈J Ai ⊗A Aj

is exact, for every finite subset J ⊆ I such that A→∏

i∈J Ai is still faithfully flat.
But this follows from Lemma 3.1. �

If we fix the Azumaya algebra A we can consider the category AzuA of Azumaya
algebras B equipped with center-preserving algebra morphism A→ B. Morphisms
in this category are algebra morphisms B → B′ making the triangle

B

A

B′

commute. It is well known that any Grothendieck topology on Azuop restricts to a
Grothendieck topology on the “comma category” Azu

op
A . But now we can consider

the composition of geometric morphisms

(4) Sh(Azuop) Sh(AzuopA ) Sh(AzuopC ) Sh(CommopC ) ,

where the middle arrow is given by F 7→ F (A ⊗C −) and the others are given by
restriction. Here we work in the (maximal) flat topology. The image of Alg(R,−)
along this composition is the functor

CommC Sets

D Alg(R,A⊗C D)

which is therefore also a sheaf for the flat topology. In the rest of the section, we
will show that this sheaf is even representable by an affine scheme and describe its
coordinate ring and basic properties.

For a C-algebra S, Artin S-bimodules (see [2] or [14]) are vector spaces M
equipped with compatible left and right S-action, and generated by invariants MS

as a two-sided S-module. Artin S-algebras are algebrasR equipped with a structure
morphism φR : S → R making R into an Artin bimodule. Equivalently, φR is a
Procesi extension [14]. We will denote by BimodS the category of Artin S-bimodules
with morphisms that are S-linear on both sides. Similarly, AlgS will denote the
category of Artin S-algebras with S-linear algebra morphisms.

Now let C be a commutative algebra and A an Azumaya algebra over C. Note
that this makes A into an Artin C-algebra. In [2] it is shown that there are equiv-
alences of categories

(5) BimodC BimodA

A ⊗C −

(−)A

,
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(6) AlgC AlgA

A ⊗C −

(−)A

.

Observe that in the case of an Azumaya algebra A we can reformulate Artin’s defi-
nition, by invoking the double centralizer theorem. For an Azumaya A with center
C, Artin A-bimodules are the ones such that the induced C-action is symmetric.
Similarly, Artin A-algebras are the algebras with structure morphism sending C
into the center.

In order to describe the functor Alg(R,A ⊗C −), we have to introduce a gener-

alization of the root algebra n
√
R, used in studying n-dimensional representations

of R, see [3] or [17]. Note that morphisms R → A with A Azumaya over C are the
same as C-algebra morphisms R⊗C → A, so we may assume that R is a C-algebra.

Definition 3.3. Let A be an Azumaya algebra with center C and let R be a C-
algebra. Then the A-th root algebra of R, denoted A

√
R, is defined to be

(7)
A
√
R = (R ∗C A)A.

Here ∗C denotes the coproduct of C-algebras, i.e. the pushout of the diagram

C R

A

in the category of rings.

Proposition 3.4. The functor A
√
− : AlgC → AlgC is left adjoint to tensoring

−⊗C A : AlgC → AlgC .

Proof. Note that we can write the functor A⊗C− : AlgC → AlgC as a composition

(8) AlgC AlgA AlgC ,
A⊗C −

where the first functor is the equivalence (6) and the second functor is the forgetful
one. Being an equivalence, the first one has its quasi-inverse (−)A as left adjoint.
Further, one can check that the second one has left adjoint A∗C−. The proposition
follows from composition of adjunctions. �

Theorem 3.5. If A is a constant degree n Azumaya algebra with center C, then for
every algebra R there is an affine C-scheme repA(R), which we call the Azumaya
representation scheme of R with respect to A, representing the functor

CommC ✲ Sets D 7→ AlgC(R,A⊗C D).

Proof. Define the Azumaya representation scheme as

repA(R) = Spec( A
√
R⊗ C)ab.

To check that this represents the given functor, use Proposition 3.4 and the fact
that − ⊗ C and ab are both adjoint to the appropriate forgetful functors. �

Proposition 3.6. Let A and B be Azumaya algebras with center C. Let R be a
C-algebra and S a C-algebra.
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(1) There are natural isomorphisms
A
√

B
√
R ≃ A⊗CB

√
R ≃ B

√

A
√
R of C-algebras.

(2) For any morphism of commutative algebras C → D, we get natural isomor-

phisms A⊗CD
√
R⊗C D ≃ A

√
R⊗C D.

(3) Suppose that A is of constant degree n. Then A
√
S ⊗ C is, étale locally on

C, isomorphic to n
√
S ⊗ C.

(4) A C-linear morphism A → B induces a C-linear morphism B
√
R → A

√
R,

functorial in R.

Proof. All statements follow by invoking the Yoneda Lemma and some computa-
tions. We prove (1) as an example. For any C-algebra S, we have

AlgC(
A

√

B
√
R,S) ≃ AlgC(

B
√
R,A⊗C S)

≃ AlgC(R,B ⊗C A⊗C S)
≃ AlgC(

A⊗CB
√
R,S),

so by the Yoneda Lemma we have
A
√

B
√
R ≃ A⊗CB

√
R. Similarly for

B
√

A
√
R. �

Note that, by part (3), repA(R) is étale locally on C isomorphic to repn(R) ×
Spec(C). So Azumaya representation schemes are twisted versions of representation
schemes, similarly to Azumaya algebras being twisted versions of matrix algebras.

Example 3.7. Let A be an Azumaya algebra with center C. Then the C-linear
automorphisms of A form a sheaf on Spec(C), which is represented by repA(A).

Example 3.8 (Free algebras). Consider the diagram of adjunctions

Alg AlgC AlgA AlgC

Vect BimodC BimodA BimodC

− ⊗ C − ∗C A (−)A

− ⊗C A

− ⊗ C

TC

− ⊗C Ae

TC

(−)A

TA

− ⊗C A

TC ,

where the dashed arrows are right adjoint to the solid ones. The unlabeled functors
are forgetful functors. It is obvious that the diagram of dashed arrows is commu-
tative and by uniqueness of adjoint functors this implies that the diagram of solid
arrows is commutative too. In particular we have

(9) A
√

(TCV )⊗ C ≃ TC(V ⊗Ae)A ≃ TC(V ⊗A∨)

for any vector space V . Here A∨ is the C-linear dual of A. More generally, for any
C-module M we have

(10) A
√

TCM ≃ TC(M ⊗C A∨)

4. Twisted quiver representations

In this section we will describe the α-dimensional representation stack

[repα(R)/PGL(α)]

where R is an affine Ck-algebra and α = (d1, . . . , dk) is a dimension vector of total
dimension n =

∑

i di. We will always assume that di 6= 0 for all i ∈ {1, . . . , k}. In
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[11] it was shown that the pointed set H1
et(Spec(C),PGL(α)) classifies isomorphism

classes of Azumaya algebras B with center C, together with a distinguished embed-
ding Ck ⊂ ✲ B having the property that for an étale extension C ✲ D splitting
A this embedding is conjugated to the diagonal embedding of Ck in Mn(D) with
the i-th idempotent having rank di. We will then call B an Azumaya algebra of
dimension vector α = (d1, . . . , dk). The images of the standard idempotents of Ck

in A will be called e1, . . . , ek. By computing traces étale locally, we find that then
tr(ei) = di for each i ∈ {1, . . . , k}. Conversely, any idempotent in A has locally
constant trace and a complete orthogonal set of idempotents e1, . . . , ek makes A
into an Azumaya algebra of dimension vector α if tr(ei) = di for all i ∈ {1, . . . , k}.

One way to construct Azumaya algebras of dimension vector α = (d1, . . . , dk) is
as follows. Take an Azumaya algebra A of degree m and take P1, . . . , Pn projective
C-modules of rank mdi, equipped with a C-linear right A-action. Then it is clear
that

B = EndAop

(

k
⊕

i=1

Pi

)

is again an Azumaya algebra. It has a standard complete orthogonal set of idempo-
tents corresponding to the projections onto P1, . . . , Pk, making it into an Azumaya
algebra of dimension vector α = (d1, . . . , dk). Moreover, this construction does not
change the Brauer class: B is the endomorphism ring associated to the progenera-
tor P1 ⊕ · · · ⊕Pk and consequently B is Morita equivalent to A. Similarly, for each
i ∈ {1, . . . , k}, there is a Morita equivalence from A to EndAop(Pi).

It is not difficult to see that every Azumaya algebra B of dimension vector
α = (d1, . . . , dk) is of the above form. Denote the idempotents in B by e1, . . . , ek.
Then

(11) B ≃ EndBop

(

k
⊕

i=1

eiB

)

and the idempotents e1, . . . , ek on the left correspond to the standard idempotents
on the right. Moreover, for each i ∈ {1, . . . , k}, the rank of eiB as a C-module is
ndi (this can be checked étale locally). This proves the following result. Recall that
the period of an Azumaya algebra is its order in the Brauer group.

Proposition 4.1. Let B be an Azumaya algebra of dimension vector α = (d1, . . . , dk)
over a commutative algebra C. Then the period of B divides d = gcd(d1, . . . , dk).

Proof. For each i ∈ {1, . . . , k}, there is a Morita equivalence from B to eiBei (given
by eiB). The period always divides the degree of any Azumaya in the Brauer class,
so in this case it divides gcd(d1, . . . , dk). �

In particular, B has trivial Brauer class whenever d = 1. This reproves the fact
that PGL(α)-torsors are Zariski locally trivial in this case [11].

For d > 1, the above discussion relates the study of idempotents to some natural
questions regarding existence of Azumaya algebras with given degree and given
Brauer class:

• In a given class of Br(C), does there exist an Azumaya algebra with degree
equal to the index? Here the index is the greatest common divisor of the
degrees of Azumaya algebras in the Brauer class. Antieau and Williams
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constructed a counterexample with C regular, finitely generated and of
Krull dimension 6 [1, Corollary 1.2].

• In a given class of Br(C), is the period equal to the index? This even fails
for fields. However, de Jong proved in [8] that for fields of transcendence
degree 2, the equality still holds. If the transcendence degree is 1, then
there is nothing to prove by Tsen’s Theorem.

There are other useful ways to write B as an endomorphism algebra. Take for
example A = e1Be1 and Pi = eiBe1 for i ∈ {1, . . . , k}. Each Pi is projective as
right A-module and of rank d1di (this can again be checked étale locally). Moreover,
we have an isomorphism

B ∼= EndAop

(

k
⊕

i=1

Pi

)

.

Of course, the choice of the first idempotent is here irrelevant. The realization
here is that any Ck-linear automorphism of B is inner with respect to the induced
automorphism on A, in a sense that we will make precise now.

Proposition 4.2. Let B be an Azumaya algebra of dimension vector α = (d1, . . . , dk)
over a commutative algebra C. Take A = e1Be1 and Pi = eiBe1 for all i ∈
{1, . . . , k}, equipped with a right A-action given by multiplication in B. Then the
Ck-linear automorphisms of B correspond bijectively to tuples (σ, {σi}ki=2) with

• σ an algebra automorphism of A;
• σi a right σ-linear isomorphism Pi → Pi, for all i ∈ {2, . . . , k}, i.e. a
C-linear isomorphism such that

(12) σi(x · a) = σi(x) · σ(a) for all x ∈ Pi and a ∈ A.

Proof. Let ψ be a Ck-linear automorphism of B. It restricts to an algebra au-
tomorphism σ of A = e1Be1, because the idempotents e1, . . . , ek are preserved.
Similarly, ψ restricts to C-linear isomorphism σi : Pi → Pi for i ∈ {2, . . . , k}. By
the multiplicativity of ψ, formula (12) holds.

The inverse construction is given as follows. For a tuple (σ, {σki=2}), set P1 = A
and σ1 = σ. Then we can construct a Ck-linear isomorphism

⊕k
i=1 Pi

⊕k
i=1 Pi

φ

by applying σi component-wisely. This φ determines an automorphism ψ of

B ≃ EndAop

(

k
⊕

i=1

Pi

)

by conjugation, i.e. ψ(b) = φbφ−1 for all b ∈ B. Here both φ and b are interpreted

as endomorphisms of
⊕k

i=1 Pi, and it is easy to see that φbφ−1 is indeed right
A-linear. �

Recall from [6, II.6] that to a C-linear automorphism σ : A→ A of an Azumaya
algebra, we can associate a rank 1 projective C-module

(Aσ)
A,

where Aσ is equal to A as left A-module, but with new right action

x · a := xσ(a) for x, a ∈ A.
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Using this construction, one can identify the C-linear outer automorphisms of A
with an n-torsion subgroup of the Picard group of C. Moreover, for Dedekind
domains, the inclusion

OutC(A) ⊆ Picn(C)

is an equality by the Steinitz Isomorphism Theorem (see [16, Lemma 2]). With this
interpretation of the outer automorphisms, we can prove the following corollary of
Proposition 4.2.

Proposition 4.3. Let B be an Azumaya algebra of dimension vector α = (d1, . . . , dk)
over a commutative algebra C. Let ψ be a Ck-linear automorphism of B. Then the
order of ψ in OutC(B) divides d = gcd(d1, . . . , dk).

Proof. Take A = e1Be1 and Pi = eiBe1 for each i ∈ {1, . . . , k}, as in Proposition
4.2. Moreover, for each i ∈ {1, . . . , k}, set Bi = eiBei = EndAop(Pi), in particular
B1 = A. We then have subgroups

OutC(B1), . . . , OutC(Bk), OutC(B) ⊆ Pic(C).

Here OutC(Bi) is di-torsion for each i ∈ {1, . . . , k}. It suffices to prove that

ψ ∈
k
⋂

i=1

OutC(Bi).

Consider the tuple (σ, {σi}ki=2) as in Proposition 4.2 and take σ1 = σ. Each σi is a σ-
linear automorphism of Pi. The restriction of ψ to Bi is an algebra automorphism
σ̃i, which is given by conjugation with σi. We will show that the class of σ̃i in
Pic(C) coincides with the class of σ. In other words, we want that

(Aσ)
A ∼= (Bi,σ̃i

)Bi

as C-modules. Note that Aop ⊗C Bi ≃ EndC(Pi). An element f ∈ (Bi,σ̃i
)Bi is a

C-linear morphism such that fσ̃i(b) = bf for every b ∈ Bi. So fσibσ
−1
i = bf , but

this means that fσi commutes with every element of Bi. By the Double Centralizer
Theorem, fσi is an element of Aop, and now it is easy to see that

fσi ∈ (Aop
σ−1 )

Aop ∼= (Aσ)
A.

This gives an isomorphism between (Bi,σ̃i
)Bi and (Aσ)

A. An analogous computa-
tion shows that (Bψ)

B ∼= (Aσ)
A, so the class of ψ also agrees with the class of σ.

This implies that ψ ∈ ⋂ki=1 OutC(Bi). �

In particular, if d = 1, then all Ck-linear automorphisms of B are inner.
Let B be an Azumaya algebra of dimension vector α = (d1, . . . , dk) over a com-

mutative algebra C. As before, we associate to B the Azumaya algebra A = e1Be1
and the projective right A-modules Pi = eiBe1, for i ∈ {2, . . . , k}. For the sake of
simplifying notation, we set P1 = A. The isomorphism

B ∼= EndAop

(

k
⊕

i=1

Pi

)

shows that B is completely determined by the tuple (A, {Pi}ki=2), but it is possible
that different tuples give rise to isomorphic Azumaya algebras. Such tuples are,
however, strongly related, as we will show now.
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Outer automorphisms will again play an important role. For an Azumaya algebra
A and an automorphism σ, we already defined Aσ. For any right A-module M , we
can similarly define Mσ as being equal to M but with new right action

m · a := mσ(a) for m ∈M,a ∈ A.

Clearly, Mσ
∼=M ⊗A Aσ.

Proposition 4.4. Let α = (d1, . . . , dk) be a dimension vector. Take A and A′

Azumaya algebras of degree d1, and let Pi (resp. P
′
i ) be projective C-modules of rank

d1di equipped with C-linear right A-action (resp. right A′-action), for i ∈ {2, . . . , k}.
We set P1 = A and P ′

1 = A′. Suppose that there is a C
k-linear algebra isomorphism

EndAop

(

⊕k
i=1 Pi

)

EndA′op

(

⊕k
i=1 P

′
i

)

ψ .

Then ψ restricts to an algebra isomorphism σ : A → A′, so we can assume that
A = A′ and that σ is an automorphism. But then P ′

i
∼= Pi,σ−1 for all i ∈ {2, . . . , k}.

Proof. The algebra automorphism ψ restricts to an algebra automorphism σ : A→
A′ and to right σ-linear isomorphisms σi : Pi → P ′

i as in Proposition 4.2. Now as-
sume that A = A′ and that σ is an automorphism. Then each σi can be interpreted
as a right A-linear isomorphism from Pi,σ−1 to P ′

i , so P
′
i
∼= Pi,σ−1 . �

For the remaining part of this section, fix a quiver Q with k vertices and let
R = CQ/I be the its path algebra modulo an ideal I. Every affine Ck-algebra R
can be written in this form. Consider a dimension vector α = (d1, . . . , dk). Then
we would like to study the points of the quotient stack

[repα(R)/PGL(α)].

We use the correspondence between PGL(α)-torsors and Azumaya algebras of
dimension vector α, as discussed above. It is now a straightforward extension of
the results in [9] to give an algebraic description of this quotient stack. The C-
points for a commutative algebra C are given by the Ck-linear algebra morphisms
φ : R ✲ A, where A varies over the Azumaya algebras with dimension vector α
and center C. Isomorphisms between C-points φ and φ′ are given by a Ck-linear
isomorphism ψ : A ✲ A′ making the triangle

A

R

A′

ψ

φ

φ′

commute.
The previous results in this section will allow us to give a more representation-

theoretic description of the C-points in terms of what we will call twisted repre-
sentations. Recall that an Azumaya algebra B with dimension vector (d1, . . . , dk)
is determined by the tuple (A, {Pi}ki=2), with A = e1Be1 an Azumaya algebra of
degree d1 and Pi = eiBe1 a projective C-module of rank d1di, equipped with a
right A-action. This motivates the following definition. We denote by Q1 the set
of arrows of the quiver Q.
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Definition 4.5. Let C be a commutative algebra and let α = (d1, . . . , dk) be a
dimension vector. We define a twisted representation of CQ/I over C with dimen-
sion vector α to be a triple (A, {Pi}ki=2, {ρa}a∈Q1

), with

(1) A an Azumaya algebra over C of degree d1;
(2) Pi a projective C-module of rank d1di equipped with a right A-action, for

all i ∈ {2, . . . , k} (we write P1 = A);
(3) ρa : Pi → Pj a right A-linear morphism for every arrow a : i → j in Q,

satisfying

f(ρa1 , . . . , ρal) = 0

for every polynomial f(a1, . . . , al) ∈ I in l arrows a1, . . . , al ∈ Q1.

An isomorphism between two twisted representations (A, {Pi}ki=2, {ρa}a∈Q1) and

(A′, {P ′
i}ki=2, {ρ′a}a∈Q1) is a tuple (σ, {σi}ki=2), with

(1) σ : A→ A′ an isomorphism of C-algebras;
(2) σi : Pi → P ′

i a σ-linear isomorphism for each i ∈ {2, . . . , k}, i.e. such that

σi(ma) = σi(m)σ(a) for all m ∈ Pi and a ∈ A,

and σ1 = σ, making the diagram

Pi P ′
i

Pj P ′
j

σi

ρa ρ′a

σj

commute, for each a : i→ j in Q.

So a twisted representation can be seen as a certain representation of the quiver
in the category of projective right A-modules, or equivalently in the category of
|A|-twisted sheaves, where |A| is the Brauer class of A (see [7], [4], [12]).

Twisted representations behave in a functorial way: if (A, {Pi}ki=1, {ρa}a∈Q1) is
a twisted representation over C and φ : C → D is a morphism of commutative
algebras, then the base change (A⊗CD, {Pi⊗CD}ki=1, {ρa⊗CD}a∈Q1) is a twisted
representation over D. Further, isomorphisms between twisted representations are
still isomorphisms after extension of scalars. Therefore we can define a functor

FR : Comm ✲ Groupoids

by setting

(13) FR(C) =











twisted R-representations over C

of dimension vector α

and isomorphisms between them











.

From a twisted representation (A, {Pi}ki=2, {ρa}a∈Q1), we can construct an alge-
bra morphism

φ : R → EndAop

(

k
⊕

i=1

Pi

)

given by

φ(a) = ρa for all a ∈ Q1.

Further, by the results of the previous section, any Azumaya algebra of dimension
vector (d1, . . . , dk) can be written as such an endomorphism algebra for some tuple
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(A, {Pi}ki=2). It was moreover shown that any isomorphism of these corresponding
endomorphism algebras is given by a tuple (σ, {σi}ki=2). From this all we deduce
the following theorem.

Theorem 4.6. Let R = CQ/I be the path algebra of a quiver Q modulo an ideal
I. Let α = (d1, . . . , dk) be a dimension vector, with k the number of vertices of Q.
The functor FR of twisted representations (13) is equivalent to the functor of points
of the quotient stack

[repα(R)/PGL(α)].

If (σ, {σi}ki=2) is an isomorphism of twisted representations between

(A, {Pi}ki=2, {ρa}a∈Q1) and (A′, {P ′
i}ki=2, {ρ′a}a∈Q1),

then by Proposition 4.4 we can assume that A′ = A and P ′
i = Pi,σ−1 for each

i ∈ {2, . . . , k}. We then get
ρ′a = σjρaσ

−1
i

for each arrow a ∈ Q1 going from vertex i to vertex j. This gives a group ac-
tion on twisted representations by conjugation, similarly to the case of ordinary
representations of quivers.

Example 4.7. If R is a basic finite dimensional algebra, then we can write R
as a path algebra of a quiver Q modulo an admissible ideal I, so R ∼= CQ/I. An
important family of representations of R is now given by the θ-stable representations
for a stability vector θ and dimension vector α.

Let Spec(D) ⊆ repα(R) be a PGL(α)-stable nonempty affine open subset of
θ-stable representations, for some stability vector θ. Then Spec(D) is a PGL(α)-
torsor over the quotient scheme Spec(DPGL(α)). This corresponds to an Azumaya
algebra Mn(D)PGL(α) of dimension vector α with center DPGL(α) and a Ck-linear
algebra morphism

R Mn(D)PGL(α).

The diagonal idempotents e1, . . . , ek of Mn(D) are invariant under the action of
PGL(α), so these give the desired idempotents in Mn(D)PGL(α). By Proposition
4.1, the period of this Azumaya algebra divides gcd(d1, . . . , dk). In particular, if
gcd(d1, . . . , dk) = 1, then this Azumaya algebra is Zariski locally trivial, see [11].
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