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BRAUER-SEVERI MOTIVES AND DONALDSON-THOMAS
INVARIANTS OF QUANTIZED THREEFOLDS

LIEVEN LE BRUYN

ABSTRACT. Motives of Brauer-Severi schemes of Cayley-smooth algebras as-
sociated to homogeneous superpotentials are used to compute inductively the
motivic Donaldson-Thomas invariants of the corresponding Jacobian algebras.
We use this approach to test some conjectural exponential expressions for these
invariants, proposed in [3].

1. INTRODUCTION

We fix a homogeneous degree d superpotential W in m non-commuting variables
Xiq,...,X,,. For every dimension n > 1, W defines a regular functions, sometimes
called the Chern-Simons functional

Tr(W) : My = Mp(C)@ ... My(C) — C

m

obtained by replacing in W each occurrence of X; by the n x n matrix n the i-th
component, and taking traces.

We are interested in the (naive, equivariant) motives of the fibers of this func-
tional which we denote by

My (A) =Tr(W)~H(N).

Recall that to each isomorphism class of a complex variety X (equipped with a
good action of a finite group of roots of unity) we associate its naive equivariant
motive [X] which is an element in the ring K (Varc)[L™/2] (see [] or [3]) and is
subject to the scissor- and product-relations

X]-[Z]=[X - 2] and [X].[Y]=[X xY]

whenever Z is a Zariski closed subvariety of X. A special element is the Lefschetz
motive L = [AL, id] and we recall from [12, Lemma 4.1] that [GL,,] = []Z; (L"~1L¥)
and from [3 2.2] that [A™, ui] = L™ for a linear action of ux on A™. This ring is
equipped with a plethystic exponential Exp, see for example [2] and [4].

The representation theoretic interest of the degeneracy locus Z = {dTr(W) = 0}
of the Chern-Simons functional is that it coincides with the scheme of n-dimensional
representations

C(X1,..., Xm)

Z =rep,(Rw) where Ry =

of the corresponding Jacobi algebra Ry where Jx, is the cyclic derivative with
respect to X;. As W is homogeneous it follows from [4, Thm. 1.3] (or [I] if the
1
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superpotential allows ’a cut’) that its virtual motive is equal to

frep, (R )]virs = L5 (MY (0)] — MY (1))

where /i acts via pq on M)}, (1) and trivially on M}, (0). These virtual motives
can be packaged together into the motivic Donaldson-Thomas series

S e MY, (0)] = MY, (1)
U 1) = 3L L]

n=0

tn

In [3] A. Cazzaniga, A. Morrison, B. Pym and B. Szendrdi conjecture that this
generating series has an exponential expression involving simple rational functions
of virtual motives determined by representation theoretic information of the Jacobi
algebra Ry

k
? M; e
UW(t) = EXP(_ Zl Ll/z — ]Lfl/Q 1— tml)
i=
where m; = 1,..., my are the dimensions of simple representations of Ry and M; €

M are motivic expressions without denominators, with M; the virtual motive of
the scheme parametrizing (simple) 1-dimensional representations. Evidence for this
conjecture comes from cases where the superpotential admits a cut and hence one
can use dimensional reduction, introduced by A. Morrison in [I2], as in the case of
quantum affine three-space [3].

The purpose of this paper is to introduce an inductive procedure to test the
conjectural exponential expressions given in [3] in other interesting cases such as the
homogenized Weyl algebra and elliptic Sklyanin algebras. To this end we introduce
the following quotient of the free necklace algebra on m variables

C(Xq,..., Xm) @Syn(V,,) C(X1,...,Xm)
TV (\) = - , where V,,, = -
m (V) (W =) [C{X1,..., Xm), C(X1,..., Xn)]vect
is the vectorspace space having as a basis all cyclic words in X7, ..., X,,. Note that

any superpotential is an element of Sym(V},). Substituting each X by a generic
n X n matrix and each cyclic word by the corresponding trace we obtain a quotient
of the trace ring of m generic n x n matrices

Tm,n
(Tr(W) —A)

such that its scheme of trace preserving n-dimensional representations is isomor-
phic to the fiber M}, (). We will see that if A # 0 the algebra T}, ,(\) shares
many ringtheoretic properties of trace rings of generic matrices, in particular it is
a Cayley-smooth algebra, see [I0]. As such one might hope to describe MY ())
using the Luna stratification of the quotient and its fibers in terms of marked quiver
settings given in [I0]. However, all this is with respect to the étale topology and
hence useless in computing motives.

For this reason we consider the Brauer-Severi scheme of ']T,V,Zyn(/\), as introduced
by M. Van den Bergh in [I7] and further investigated by M. Reineke in [I6], which
are quotients of a principal GL,-bundles and hence behave well with respect to
motives. More precisely, the Brauer-Severi scheme of T}, | ()) is defined as

TN = with My, (A) = trep, (T, )

BS;(A) = {(v, ) € C" x trep, (T, ,(\) | (T, ,(N)v = C"}/GLy,
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and their motives determine inductively the motives of the fibers MY (1) and
MY, (0) via

(L™ — 1)[MY  (1)] = [GL,)[BSY ,(1)] + nilL(m—l)k(n—k)M "
o B ' o k=1 [GLnfk]
and

(L™ —1)[MY , (0)] = [GL,][BSY ,,(0)] + SL(W—I)k(n—k)M "
o R ' o k=1 [GLnfk]
(L = DIBS} o (DM, (1)] + [BSIY 4(0)][MY . (0)

which we will prove in Proposition Bl That is, if we can compute [BS}) ;(1)] and
BS) (0)] for all i < n, we can compute the first n terms of the generating series
Uw (t) of the motivic Donaldson-Thomas invariants.

In section 4 we will compute the first two terms of Uy (t) in the case of the quan-
tized 3-space in a variety of ways. In the final section we repeat the computation
for the homogenized Weyl algebra and compare it to the conjectured expression of
[B]. In [11] we will compute the case of the elliptic Sklyanin algebras.

Acknowledgement : 1 would like to thank Brent Pym for stimulating conversa-
tions concerning the results of [3] and Balazs Szendrdi for explaining the importance
of the monodromy action (which was lacking in a previous version) and for sharing
his calculations on the Exp-expressions of [3].

2. BRAUER-SEVERI MOTIVES

With T,, , we will denote the trace ring of m generic n x n matrices. That is,
Tn.,n is the C-subalgebra of the full matrix-algebra M,, (Clz;;(k) |1 <4,j <n,1<
k < m]) generated by the m generic matrices

Ill(k) . .Iln(k)
Xp=| z

together with all elements of the form Tr(M)1,, where M runs over all monomials
in the X;. These algebras have been studied extensively by ringtheorists in the
80ties and some of the results are summarized in the following result

Proposition 1. Let T,, , be the trace ring of m generic n x n matrices, then

(1) Ty is an affine Noetherian domain with center Z(Tp,.,) of dimension
(m—1)n?+1 and generated as C-algebra by the Tr(M) where M runs over
all monomials in the generic matrices Xy,.

(2) Tynn is a mazimal order and a noncommutative UFD, that is all twosided
prime ideals of height one are generated by a central element and Z(T,y, )
is a commutative UFD which is a complete intersection if and only if n = 1
or (m,n) = (2,2),(2,3) or (3,2).

(3) To.n is a reflevive Azumaya algebra unless (m,n) = (2,2), that is, every
localization at a central height one prime ideal is an Azumaya algebra.
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Proof. For (1) see for example [I3] or [15]. For (2) see for example [§], for (3) for
example [7]. O

A Cayley-Hamilton algebra of degree n is a C-algebra A , equipped with a linear
trace map tr : A —— A satisfying the following properties:

(1) tr(a).b =b.tr(a)

(2) tr(a.b) = tr(b.a)

(3) tr(tr(a).b) = tr(a).tr(b)

(4) tr(a) =n

(5) xg") (a) = 0 where xg") (t) is the formal Cayley-Hamilton polynomial of

degree n, see [14]

For a Cayley-Hamilton algebra A of degree n it is natural to look at the scheme
trep,, (A) of all trace preserving n-dimensional representations of A, that is, all trace
preserving algebra maps A —— M,,(C). A Cayley-Hamilton algebra A of degree
n is said to be a smooth Cayley-Hamilton algebra if trep, (A) is a smooth variety.
Procesi has shown that these are precisely the algebras having the smoothness
property of allowing lifts modulo nilpotent ideals in the category of all Cayley-
Hamilton algebras of degree n, see [14]. The étale local structure of smooth Cayley-
Hamilton algebras and their centers have been extensively studied in [10].

Proposition 2. Let W be a homogeneous superpotential in m variables and define
the algebra
Tm,n
(Tr(W) =A)
If Tr(W) — X is irreducible in the UFD Z(Ty,.n), then for X # 0
(1) T) .(\) is a reflezive Azumaya algebra.
(2) T} ,.(\) is a smooth Cayley-Hamilton algebra of degree n and of Krull di-
mension (m — 1)n?.
(3) T) .(\) is a domain.
(4) The central singular locus is the the non-Azumaya locus of T)) . (X) unless
(m,n) =(2,2).
Proof. (1) : As M} (X\) = trep, (T}, (X)) is a smooth affine variety for A # 0
(due to homogeneity of W) on which GL,, acts by automorphisms, we know that
the ring of invariants,

Ton(A) = then My, ,,(A) = trep, (T}, ,(\))

Cltrep, (T, ,(\)] " = Z(T} (V)

which coincides with the center of 'H‘,V,‘L/)n()\) by e.g. [10, Prop. 2.12], is a normal
domain. Because the non-Azumaya locus of T,, , has codimension at least 3 (if
(m,n) # (2,2)) by [1, it follows that all localizations of T, ()) at height one
prime ideals are Azumaya algebras. Alternatively, using (2) one can use the theory
of local quivers as in [10].

(2) : That the Cayley-Hamilton degree of the quotient T}, (X) remains n follows
from the fact that T, , is a reflexive Azumaya algebra and irreducibility of T'r(W)—
A. Because M) (\) = trep, (T, ())) is a smooth affine variety, T}, (A) is a
smooth Cayley-Hamilton algebra. The statement on Krull dimension follows from
the fact that the Krull dimension of T, ,, is known to be (m — 1)n? + 1.

(3) : After taking determinants, this follows from factoriality of Z(T,,,,) and
irreducibility of Tr(W) — .
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(4) : This follows from the theory of local quivers as in [I0]. The most general
non-simple representations are of representation type (1, a; 1, b) with the dimensions
of the two simple representations a, b adding up to n. The corresponding local quiver
is

(m—1)ab

(m—1)a +1©@v@©(m 1)b2

(m—1)ab
and as (m — 1)ab > 2 under the assumptions, it follows that the corresponding
singular point is singular. 0

Let us define for all £ < n and all A € C the locally closed subscheme of C™ x
trep, (T}, (V)

Xima = {(v,0) € C" x trep, (T, ,(N)) | dime($(Ty, ,(V)-v) = k}

Sending a point (v, @) to the point in the Grassmannian Gr(k,n) determined by the
k-dimensional subspace V = (T}, ,(X)).v C C" we get a Zariskian fibration as in

2]

Xk —> Gr(k, n)

To compute the fiber over V' we choose a basis of C" such that the first k& base
vectors span V. = ¢(T}) ,(X)).v. With respect to this basis, the images of the
generic matrices X; all are of the following block-form

gf)k(XZ) S Mk((C)
Qb(Xz) — ¢k(Xz) U(Xz) with ¢n—k(Xi) c Mn—k((c)
0 (bn—k(Xz)
U(Xi) (S Mn—kxk((c)

Using these matrix-form it is easy to see that

TT((b(W(Xla s 7X’m))) = TT((bk(W(le R Xm))) + TT(¢n7k(W(X17 s 7Xm)))
That is, if ¢x € trep, (T, (1)) then ¢, € trep(T,), (A — ) and moreover
we have that (v, ¢r) € X k. Further, the m matrices o(X;) € My,—xx(C) can be

taken arbitrary. Rephrasing this in motives we get
Kl = L™ 00 [er(k,n)] Y Rkl brep, 4 (Tma-c(A — )]
necC
Further, we have
(GLy]
[GL;C] [GLn k]Lk(" k)

and substituting this in the above, and recalling that M) (o) = trep,(T), ;(a)),
we get

(Gr (K, n)] = and  [Xe ] = [GLi][BS, 1 (1))

Proposition 3. With notations as before we have for all 0 < k <n and all A € C
that

A
Xkn,a] = [GL, JLOMDFC=R) %[Bsmk(m] [Mm[g;:k] =

Further, we have

Kol = My (M) and  [Xnna] = [GL][BSy, (V)]
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We can also express this in terms of generating series. Equip the commutative
ring Mc[[t]] with the modified product

1 tb _ L(mfl)abtaer

and consider the following two generating series for all l 75 recC

Ba(t) = Y [BSW ,(M]t" and Ry(t Z ]
n=1 ot

B%(t) = i[BSnM,:n(%)]t" and R,1 i ]%
n=0 —

Proposition 4. With notations as before we have the functional equation

1—|—R1 Lt ZB *Rl o )

Proof. The disjoint union of the strata of the dimension function on C™ x
trep, (T)) (X)) gives

C" x MY (A) = Xona UXppa U UXp

Rephrasing this in terms of motives gives
LMy, (N)] = M, (V)] + D Rina] + [GL]BSY (V)]

and substituting the formula of proposition B into this we get

M (N, MDY (V)]
Gl “ T T eny LT

n—1
55 (s )ty + (MmO iy g (e

k=1 peC [GLn k]

Now, take A\ = 1 then on the left hand side we have the n-th term of the series
1+Rq(ILt) and on the right hand side we have the n-th factor of the series ) , By, (t)*
Ri—,(t). The outer two terms arise from the product B; (t) * Ry (t), using that W
is homogeneous whence for all A # 0

BS,) ,(\) ~BS) (1) and M}, (A\)~M) (1)

This finishes the proof. 1

These formulas allow us to determine the motive [M)}  (A)] inductively from
lower dimensional contributions and from the knowledge of the motive of the
Brauer-Severi scheme [BS)Y | (A)].

Proposition 5. For all n we have the following inductive description of [M)), , (1)]

) - n—1 e 1)k [GLn]
(L = DR (1) = (LIS (1) + 3 LM gty

(L = 2)[BS k(DM o (D] + [BSyy 1 (0)][My 4 (1)] + [BSy, s (DM, (0)])
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and for [M}) . (0)] we have

) - n—1 . e [GLn]
(L~ B 0] = LS (0] + 3L

(L = 1)[BS (V]I (D] + [BS,3 1 (0)] (M, 4 (0)]

Proof. Follows from Proposition B] and the fact that for all  # 0 we have that
M ()] = MG (1)] and [BS,) . ()] = [BS} 1 (1)]. O

3. DEFORMATIONS OF AFFINE 3-SPACE

The commutative polynomial ring C[z, y, z] is the Jacobi algebra associated with
the superpotential W = XY Z — XZY. For this reason we restrict in the rest of
this paper to cases where the superpotential W is a cubic necklace in three non-
commuting variables X,Y and Z, that is m = 3 from now on. As even in this case
the calculations become quickly unmanageable we restrict to n < 2, that is we only
will compute the coefficients of ¢ and t? in Uy (t). We will have to compute the
motives of fibers of the Chern-Simons functional

M,(C) & My(C) & My(C) -

C

so we want to express Tr(WW) as a function in the variables of the three generic

2 X 2 matrices
X:{n p]7§,:{s t},zz[w x]
q T u v Yy oz

We will call {n,r, s, v, w,z} (resp. {p,t,x} and {q,u,y}) the diagonal- (resp. upper-
and lower-) variables. We claim that

Tr(W)=C+Qq.q+ Quu+ Qyy

where C'is a cubic in the diagonal variables and @, @, and @, are bilinear in the
diagonal and upper variables, that is, there are linear terms L., in the diagonal
variables such that

Qq=1Lgpp+ Lyt+ Loz.x

Qu=~Lypp+ Lyt + Lyy.x

Qy=Lypp+ Lys.t+ Ly,
This follows from considering the two diagonal entries of a 2 x 2 matrix as the
vertices of a quiver and the variables as arrows connecting these vertices as follows

and observing that only an oriented path of length 3 starting and ending in the
same vertex can contribute something non-zero to Tr(W). Clearly these linear and
cubic terms are fully determined by W. If we take

W =aX3+BY>+ 423 +5XYZ +eXZY
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then we have C' = W (n, s,w) + W (r,v, z) and

Ly =3a(n+r) L,, =dw+ez L,, =es+dv
Ly =ew+dz Ly =38(s+v) Ly =dn+er
Ly =ds+ev Ly, =en-+or Ly, =3y(w+2)

By using the cellular decomposition of the Brauer-Severi scheme of T3 2 one can
simplify the computations further by specializing certain variables. From [I6] we
deduce that BS(T52) has a cellular decomposition as A9 LJA®1JA® where the three
cells have representatives

A ) - - -
cell; : v= X = p Yy = . 7= wo T
1 r v Y
a _ : h _ :
celly, : v= X = nop Y = ., Z=
0 0 r v Yy oz
1] I | t] 0
celly : v= X = Y = , 7= v
0 0 r 0 v 1

It follows that BS‘B/E/Q(l) decomposes as Sy LI So U S3 where the subschemes S; of
A'~% have defining equations

S1 : (C+Qu-u+Qy-y+Qq)|n:0 =1
Sa (C+Qy-y+Qu)|s:0 =1
Sz 1 (C+ Qy)lw=o =1

Note that in using the cellular decomposition, we set a variable equal to 1. So, in
order to retain a homogeneous form we let G,, act on n,s,w,r, v,z with weight
one, on ¢, u,y with weight two and on x,t,p with weight zero. Thus, we need a
slight extension of [4, Thm. 1.3] as to allow G, to act with weight two on certain
variables.

From now on we will assume that W is as above with 6 = 1 and € # 0. In this
generality we can prove:

Proposition 6. With assumptions as above

if v#0

L7 —L* 4+ L3[W(n,s,0) + W(—e n,—es,0) = 1]2
[Ss] = :
if y=0

L7 — L% + L3[W(n,s,0) + W(—e1n, —es, z) = 1]s
Proof. Sz : The defining equation in A% is equal to
W(n,s,0) +W(r,v,z) + (es +v)p+ (n+ er)t + 3y(z)x =1

If es +v # 0 we can eliminate p and get a contribution L5(L? — L). If v = —es but
n+ er # 0 we can eliminate ¢ and get a term L*(L? — L). From now on we may
assume that v = —es and r = —e~!n.

v # 0 : Assume first that z # 0 then we can eliminate z and get a contribution

LYL —1). If z =0 then we get a term
L3[W(n,s,0) + W(—¢ 'n, —es,0) = 1]42



BRAUER-SEVERI MOTIVES AND DT-INVARIANTS OF QUANTIZED 3-FOLDS 9

v =0 : Then we have a remaining contribution
L3[W (n,s,0) + W(—e 'n, —es, 2) = 1]s
Summing up all contributions gives the result. 0

Calculating the motives of S2 and Sy in this generality quickly leads to a myriad
of subcases to consider. For this reason we will defer the calculations in the cases
of interest to the next sections. Specializing Proposition ] to the case of n = 2 we
get

Proposition 7. For n =2 we have the following relation
[Mg5(1)] = L(L — 1)[BS55(1)] + L (L — 2)[My") (1)]* + 2[M3) (0)][M3!; (1)])
Proof. From Proposition B we have that [MY5(1)] is equal to
L(L — 1)[BS35(1)] + L*((L — 2)[BS3; (1)] My (1)]+

[BS3/1 (0)][M3) (1)] + [BS3) (1)][M3!,(0)])
The result follows from this from the fact that BSg‘fl (1) = MY, (1) and BSgE/l (0) =
M, (0). O

4. QUANTUM AFFINE THREE-SPACE

For ¢ € C* consider the superpotential W, = XY Z —¢XZY, then the associated
algebra Ry, is the quantum affine 3-space
e C(X, Y. 7)
Wo T (XY —qYX,ZX —qXZ,YZ — qZY)
It is well-known that Ry, has finite dimensional simple representations of dimension
n if and only if ¢ is a primitive n-th root of unity. For other values of g the only

finite dimensional simples are 1-dimensional and parametrized by XY Z = 0 in A%.
In this case we have

My 7 ()] = [(q - DXYZ = 1]us = (L — 1)?
My 7(0)] = [(1 — ¢)XYZ = 0]ps = 3L — 3L + 1

That is, the coefficient of ¢ in Uy, () is equal to
W, W,
(M {(0) — [M {(1)] _1! 2L2 -L 2L -1

L™t =
[GL1] L-1 L-1
In [3, Thm. 3.1] it is shown that in case ¢ is not a root of unity, then
2L—-1 ¢t
Uw,(t) =E —
w (1) = Exp( S )
and if ¢ is a primitive n-th root of unity then
2L -1 ¢t t"
Uw. (t) =E — L-1
W () = Exp( =+ (L 1))

In [3l 3.4.1] a rather complicated attempt is made to explain the term L — 1 in
case ¢ is an n-th root of unity in terms of certain simple n-dimensional representa-
tions of Ry,. Note that the geometry of finite dimensional representations of the
algebra Ry, is studied extensively in [5] and note that there are additional simple
n-dimensional representations not taken into account in [3} 3.4.1].
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Perhaps a more conceptual explanation of the two terms in the exponential
expression of Uy, (t) in case ¢ is an n-th root of unity is as follows. As W, admits
acut W, = X(YZ —qZY) it follows from [12] that for all dimensions m we have

M7, (0)] — M7, (1)] = L™ [rep,, (C,[Y, Z])]

where C,[Y,Z] = C(Y,Z)/(YZ — ¢ZY) is the quantum plane. If ¢ is an n-th
root of unity the only finite dimensional simple representations of C,[Y, Z] are of
dimension 1 or n. The 1-dimensional simples are parametrized by YZ = 0 in A2
having as motive 2L — 1 and as all have GL; as stabilizer group, this explains
the term (2L — 1)/(L — 1). The center of C,[Y,Z] is equal to C[Y™, Z"] and
the corresponding variety A? = Max(C[Y", Z"]) parametrizes n-dimensional semi-
simple representations.The n-dimensional simples correspond to the Zariski open
set A2 — (Y"Z" = 0) which has as motive (L — 1)2. Again, as all these have as
G Lo-stabilizer subgroup G L1, this explains the term
2
Lo1=L-1°
[GL,]
As the superpotential allows a cut in this case we can use the full strength of [T]and
can obtain [MY(0)] from [M(1)] from the equality

L™ = [M35(0)] + (I — 1)[My'5(1)]

To illustrate the inductive procedure using Brauer-Severi motives we will consider
the case n = 2, that is ¢ = —1 with superpotential W = XY Z + XZY. In this
case we have from [3] Thm. 3.1] that

2L—1 ¢ t2
A (L-1)—
]L—ll—t+( )1—t2
The basic rules of the plethystic exponential on Mc¢[[t]] are
Exp(Z[An]t") = H (1—t")~Mel where (1-8)72" =1 —Lm)™!

n>1 n>1

Uw (t) = Exp(

and one has to extend all infinite products in ¢ and L™!'. One starts by rewriting
Uw (t) as a product

L2 2
. _
T Exp(T—3)

t
= t)Exp(]L 1o t)EXp(

where each of the four terms is an infinite product

Exp(%) =J[a-, Exp(%%) =II [Ta-r-7em)~

Uw (1) = Exp(

m>1 m>15>0
L2 o 2 m
EXP(m) = H (1 —Lem)~, EXP(W) t= H (11—
m>1 m>1

That is, we have to work out the infinite product
H ((1 _ t2m_l)_1(1 _ Lt2m)_1) H H(l _ L_jtm)_l
m>1 m>1;5>0

as a power series in ¢, at least up to quadratic terms. One obtains

2L—1, L*43L3—2L%—-2L+1 ,

Uw(t) =1+ —t+ DT D 2+
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That is, if W = XY Z + XZY one must have the relation:
[MY5(0)] — My'5(1)] = L°(L* + 3L% — 2> — 2L + 1)

4.1. Dimensional reduction. It follows from the dimensional reduction argument
of [12] that

[M35(0)] — [My'5(1)] = L*[rep, C1[X, Y]]
where C_;[X, Y] is the quantum plane at ¢ = —1, that is, C(X,Y) /(XY + Y X).
The matrix equation

gl -l -

c d||g h g hllc d 0 0

gives us the following system of equations

2ae +bg+ fc=0

2hd +bg+ fc=0

fla+d)+ble+h)=0

c(h+e)+gla+d) =0

where the two first are equivalent to ae = hd and 2ae 4+ bg + fc = 0. Changing
variables

r=tatd), y=i(a—d), u=(th) v=_ife—h

the equivalent system then becomes (in the variables b, ¢, f, g, u, v, z,y)

zv+yu =20
xu+yv+bg+ fe=0
fr+bu=0
cu+gr =20

Proposition 8. The motive of Ry = rep, C_1[z,y] is equal to
[Ro] = L% 4 3L* — 213 — 21.% 4+ LL
Proof. If x # 0 we obtain

bu cu
v=-L pa o g

x x x
and substituting these in the remaining second equation we get the equation(s)

u(y? — 2% +2bc) =0 and z #0

If u # 0 then y? — 22 4 2bc = 0. If in addition b # 0 then ¢ = m227by2 and y is free.
As z,u and b are non-zero this gives a contribution (L —1)3L. If b = 0 then c is free
and 2° — y? = 0, so y = +x. This together with z # 0 # u leads to a contribution
of 2L(L — 1)2. If u = 0 then y, b and c are free variables, and together with z # 0

this gives (L — 1)L3.

Remains the case that x = 0. Then the system reduces to

yu =20
yo+bg+ fe=0
bu =0

cu=20
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If u # 0 then y = 0,b = 0 and ¢ = 0 leaving c, g,v free. This gives (L — 1)L3. If
u = 0 then the only remaining equation is yv + bg + fc = 0. That is, we get the
cone in AS of the Grassmannian Gr(2,4) in P°. As the motive of Gr(2,4) is

[Gr(2,4)] = (L> + 1)(L* + L +1)
we get a contribution of
L-1D@L2+1)(L2+L+1)+1
Summing up all contributions gives the desired result. O

4.2. Brauer-Severi motives. In the three cells of the Brauer-Severi scheme of
T3 2 of dimensions resp. 10,9 and 8 the superpotential Tr(XY Z + X ZY") induces
the equations:

S1 : 2rvz + puz + puy + rty + psy + rux + puw + tz + vr + sx + tw = 1
So : 2rvz+pvy+rty+nty+pz+re+nr+pw=1
Sg : 2rvz+pv+rt+nt+ps=1

Proposition 9. With notations as above, the Brauer-Severi scheme of 'I['g‘_é(l) has
a decomposition

BS:,(1) =S1 LSz LUSs

where the schemes S; have motives

[S1] =L — LS — 2% + 34 — L3

[S2] = L8 — 2IL5 + IL*

[S3] = L7 —2L* + L3
Therefore, the Brauer-Severi scheme has motive

[BSY,(1)] =L° + L8 + L7 — LS — 4L5 + 2L*
Proof. Sy : From Proposition [f] we obtain
[S3] = L7 —L® + L3[W(n, s,0) + W(—n, —s,2) = 1]ss
and as W (n, s,0) + W(—n, —s, z) = 2nsz we get L7 — L? + L3(L — 1)2.
Sz : The defining equation is
2rvz +y(pv+ (r+n)t) + p(z +w) + z(r+n) =1

If r +n # 0 we can eliminate z and have a contribution L6(L? —L). If r +n =0
we get the equation

2rvz +plyv+ z +w) =1

If yv + 2 +w # 0 we can eliminate p and get a term L3(L* —L3). If » +n = 0 and
yv + 2z +w = 0 we have 2rvz = 1 so a term L*(LL — 1)2. Summing up gives us

[So] =LYL-1)(L*+L?*+L-1)=1L%-2L% +L*

S1 : The defining equation is
2rvz +plu(z +w) +ylv+ ) +tz+w+ry) +z(v+s+ru) =1



BRAUER-SEVERI MOTIVES AND DT-INVARIANTS OF QUANTIZED 3-FOLDS 13

If v+ s+ ru # 0 we can eliminate z and get L°(L* — L3). If v + s + ru = 0 and
z 4w+ ry # 0 we can eliminate ¢ and have a term L*(L* — L3). If v + s +ru =0
and z +w + ry = 0, the equation becomes (in A%, with ¢,z free variables)

2r(vz — puy) =1

giving a term L2(L° — [vz = puy]). To compute [vz = puy]ys assume first that
v # 0, then this gives L3(L — 1) and if v = 0 we get L(3L? — 3L + 1). That is,
[vz = puy|ps = L* 4 213 — 312 + L. In total this gives us

[S1] =L3(L — 1)(L° +L* + L® —2L + 1) = L% — LS — 2% 4 3L* — L.®
finishing the proof. O
Proposition 10. From the Brauer-Severi motive we obtain

{[Mggu)] = L — L8 — 3L7 + 26 + 215 — !
[MY5(0)] =L+ L9+ 2L8% — 5L7 4 3L5 — L*
As a consequence we have,
[M55(0)] — M5 (1)] = LY(L° + 3L* — 213 — 2> + L)
Proof. We have already seen that MY, (1) = {(z,y,2) | 2zyz = 1} and MY (0) =
{(z,y,2) | zyz = 0} whence
M5 (1)] = (L —1)*> and [My;(0)] =3L°>—3L+1

Plugging this and the obtained Brauer-Severi motive into Proposition Bl gives
[M'5(1)]. From this [M3,(0)] follows from the equation L'? = (L — 1)[MY5(1)] +
M55 (0)]- O

5. THE HOMOGENIZED WEYL ALGEBRA

If we consider the superpotential W = XY Z - XZY — %X3 then the associated
algebra Ry is the homogenized Weyl algebra
C(X,Y, Z)
(XZ-ZX, XY -YX,YZ-27Y —X?)
In this case we have MY, (1) = {z* = =3} and MY (0) = {2® = 0}, whence

M3 (1)] = L2[ps], and M (0)] = L2

Rw =

where, as in [3 3.1.3] we denote by [u3] the equivariant motivic class of {2% =1} C
Al carrying the canonical action of u3. Therefore, the coefficient of ¢ in Uy (t) is
equal to

Lot M, (0)] — M3, (0)] _ (1 — [ua))
[GL4] L-1
As all finite dimensional simple representations of Ry, are of dimension one, this

leads to the conjectural expression [3| Conjecture 3.3]
L1 —[us]) ¢ )
L-1 1-—t
Balazs Szendroi kindly provided the calculation of the first two terms of this series.
Denote with M = 1 — [u3], then
LM L2M? + L(L? — 1)M 4 L*(L — 1)02(M)

Uw(t) =1+ —t+ DL 1)

U (t) = Exp(

24 ...
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We will now compute the left-hand side using Brauer-Severi motives.

Recall that Bsg‘)/g (i), for i = 0,1, decomposes as S111S2LIS5 where the subschemes
S; of A''~% have defining equations
S; —%r?’—i—((w—z)p—i—r:v)u—i—((v—s)p—rt)y—rp—i—(z—w)t—i—(s—v)x:&il
Sz ¢ —3n® — 2+ (vp+ (n—1r)t)y + (w — 2)p+ (r — n)z = da
Ss —%ng — %Tg +w=s)p+(n—r)t=0oa
If we let the generator of 3 act with weight one on the variables n, s, w,r, v, z, with

weight two on z,t,p and with weight zero on ¢, u,y we see that the schemes S; for
i =1 are indeed pus-varieties. We will now compute their equivariant motives:

Proposition 11. With notations as above, the Brauer-Severi scheme of 'H‘gf/g(l)
has a decomposition
BSy,(1) =S; US2 LUS;3
where the schemes S; have equivariant motives
[S1] =L% — LS
[S2] = L° + ([us] — 1)L°
[Sa] =L7 + ([us] — DL?
Therefore, the Brauer-Severi scheme has equivariant motive

[BS52(1)] = L% +L* + L7 + ([us] = 2)L° + ([us] — 1)L°

Proof. Sz : If v — s # 0 we can eliminate p and obtain a contribution L5(L? — LL).
If v = s and n — r # 0 we can eliminate ¢ and obtain a term L*(L? — L). Finally,
if v = s and n = r we have the identity —2n® =1 and a contribution L°[y3].

Sz : If r —n # 0 we can eliminate z and get a term L6(L? —L). If r —n = 0 we
get the equation in A8
2 3

—3" +plvy+w—2)=1
If vy + w — 2z # 0 we can eliminate p and get a contribution L3(L* — L3). Finally,
if vy +w — z = 0 we get the equation —%n?’ =1 and hence a term L3.L3[u3].
S1: If (w— 2)p + rz # 0 then we can eliminate u and get a contribution

LY(L5 — [(w — 2)p + 72 = 0]45) = LO(L — 1)(L* — 1)
If (w—z)p+rz=0Dbut (v—s)p—rt+#0 we can eliminate y and get a term
L.f(w—2)p+rz=0,(v—3s)p—rt#0]s
To compute the equivariant motive in A® assume first that » # 0 then we can
eliminate x from the equation and obtain
L2[r # 0, (v—s)p—rt # 0]p5 = L2(LY(L—1)=[r # 0, (v—8)p—rt = 0]45) = L°(L—1)?
If » = 0 we have to compute [(w— 2)p = 0, (v —8)p # 047 = L2(L—1)(L?> - L)L =
L4(IL — 1)2. So, in total this case gives a contribution
L.[(w—2)p+rz=0,(v—8)p—rt #0)us = L3(L - 1)(L* - 1)

If (w—2z2)p+rx=0, (v—s)p—rt=0andr # 0 we can eliminate z and ¢ from
the two equations and p from the defining equation of S; and obtain a contribution
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LS(L —1). Finally, if (w —2z)p+7rz =0, (v—s)p—1rt = 0 and r = 0 we get the
system of equations

(w—2z)p=0

(v—s)p=0

(z—wit+(s—v)x=1
If z—w # 0 we have p = 0 and can eliminate ¢ to get a term L5(L? — L). If
z —w = 0 then we must have s — v # 0 and hence p =0 and 2 = 1/(s — v) whence

a contribution L*(L? — L). So, this case gives a total contribution of L°(L? — 1).
Summing up the contributions of all subcases gives us the claimed motive. O

Proposition 12. With notations as above, the Brauer-Severi scheme of T%(O)
has a decomposition

BSY,(0) =S; US2 LUS;3

where the schemes S; have (equivariant) motives

[S1] =L%+L" LS

Therefore, the Brauer-Severi scheme has (equivariant) motive
[BSY,(0)] = L + L8 + 2L7 — LS

Proof. S3 : If v — s # 0 we can eliminate p and obtain a contribution L5(L? — LL).
If v = s and n — r # 0 we can eliminate ¢ and obtain a term L*(L? — L). Finally,
if v = s and n = r we have the identity n? = 0 and a contribution L°.

Sz : If 7 —n # 0 we can eliminate z and get a term LS(L? — L). If r —n = 0 we
get the equation in A®

2
—gng—i—p(vy—i—w—z):l

If vy + w — z # 0 we can eliminate p and get a contribution L3(L* — IL3). Finally,
if vy +w — z = 0 we get the equation n® = 0 and hence a term LS.

Sy : If (w— 2)p+ rz # 0 we can eliminate u and obtain a term
LYLS — [(w — 2)p + 72 = 0]45) = LO(L — 1)(L2 — 1)

If (w—2z)p+rx=0Dbut (v—s)p—rt+#0 then we can eliminate y and obtain a
contribution

Li(w—2)p+7rz=0,(v—s)p—rt #0]s = L3(L —1)(L? — 1)

Now, assume that (w — z)p+rz = 0 and (v — s)p —rt = 0. If r # 0 then we can
eliminate p,t and x and get a term LS(IL — 1). Finally, if (w — 2)p + rz = 0 and
(v—s)p—rt=0and r =0 we have the system of equations

(w—2)p=0
(v—s)p=0
(z—w)t+(s—v)x=0
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If z—w # 0 we have p = 0 and can eliminate ¢ to get a term L°(L* — L). If
z —w = 0 then we get a contribution
L*(v —s)p =0, (v —8)z = 0]ps = LY(L? + L% - L)
So, this case gives a total contribution of 2IL7 — L.°. O

Now, we have all the information to compute the equivariant motives of the 0-
and 1-fibre of the superpotential map as

M5 (1)] = L(L — 1)[BSg5(1)] + L*(L — 2)[M; (1)]* + 217 M3, (1)] M) (0))

P

MY, (0)] = L(L — 1)[BSY,(0)] + L3(L — 1)[MY, (1)} + L3 MY, (0))2

Theorem 1. If we denote with M = 1 — [us3], then we obtain
[MY5(0)] — [MY5(1)] = L'M? + LS(L? — 1)M + 2L% — 3L7 + LS
As a consequence, the second term of the Donaldson-Thomas series is equal to

L2M? 4+ L(L? — 1)M + 203 — 312 + L
(L—1)L2-1)
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