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COVERS OF THE ARITHMETIC SITE

LIEVEN LE BRUYN

Abstract. We give an explicit description of the Barr- and Diaconescu covers
of the arithmetic site, which are relevant to cohomology. Further, we construct
the arithmetic site as the commutative shadow of a noncommutative topolog-
ical space.

1. The arithmetic site

The arithmetic site, introduced and studied by A. Connes and C. Consani in
[3] and [4], is an algebraic geometric object deeply related to the non-commutative
geometric approach to the Riemann hypothesis. It involves two elaborate math-
ematical concepts: the notion of topos in geometry and that of characteristic 1
structures in algebra.

It is defined as a topos Ĉ endowed with a structure sheaf O. Here, Ĉ is the
topos of sheaves on the small category C consisting of one object • with monoid
of endomorphisms isomorphic to the multiplicative semigroup N×

+ of strictly posi-

tive integers and equipped with the chaotic Grothendieck topology. Thus, Ĉ is the
category of contravariant functors from C to Sets, the category of sets. Any such
functor Cop ✲ Sets is fully determined by a set X = X(•), equipped with a
commuting family of endomorphisms Ψn : X ✲ X for all n ∈ N×

+, with Ψ1 the
identity morphism.

That is, Ĉ is equivalent to the category Sets − N×
+ of all sets equipped with a

right action by the monoid N×
+ and action preserving maps as morphisms. The

connection with characteristic one structures comes from the fact that this action
is fully determined by the commuting endomorphisms Ψp for p ∈ P (the set of all
prime numbers), which can be viewed as Frobenius morphisms.

However, there is a large group of automorphisms of the topos Ĉ arising from
automorphisms of the monoid C (such as arbitrary permutations of the prime num-

bers). For this reason, Connes and Consani equip Ĉ with a structure sheaf, turning

the presheaf topos Ĉ in the arithmetic site (Ĉ,Zmax). Here, Zmax is the fundamental
semiring in characteristic 1. That is, Zmax = (Z ∪ {−∞},max,+), which means
that ordinary addition is replaced by x⊕y = max(x, y) and ordinary multiplication
by x⊗ y = x+ y, see [3] and [4].

Two topos-theoretic objects associated to Ĉ carry a lot of arithmetic information.
The points of the topos can be identified with the finite adèle classes [4] and the
subobject-classifier is a complete Heyting algebra on the set of all (right) ideals of
N×

+.

1.1. The points of Ĉ : Recall that a point p of the topos Ĉ is a geometric morphism
from Sets to Ĉ, see [10, VII.5]. Using Grothendieck’s description via filtering
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2 LIEVEN LE BRUYN

functors, see [10, VII.6], a point p corresponds to a set P having a free left- N×
+-

action such that P is of rank one meaning that for all x, y ∈ P there exists an
element z ∈ P and numbers n,m ∈ N×

+ such that x = n.z and y = m.z. As such,

points correspond to additive subgroups of Q. If Af is the ring of finite adèles of Q,

that is Af = Q⊗
∏

p∈P Ẑp, then it is proved in [4, Prop. 2.5] that any such additive
subgroup is of the form

Pa = {q ∈ Q | a.q ∈ Ẑ} for some a ∈ Af/Ẑ∗

where Ẑ∗ is the multiplicative group of invertible elements in the ring of profinite

integers Ẑ =
∏

p∈P Ẑp acting by (right) multiplication on Af . Moreover, the map
a 7→ Pa induces a canonical bijection

pts(Ĉ) = Q×
+\A

f/Ẑ∗ = [Af ]

between the isomorphism classes of points of the arithmetic site and finite adèle
classes [Af ]. see [4, Prop. 2.5]. Alternatively one can describe additive subgroups
of Q by supernatural numbers as in [2]. Recall that a supernatural number (also
called a is a formal product s =

∏
p∈P p

sp where p runs over all prime numbers P and

each sp ∈ N ∪ {∞}. The set S of all supernatural numbers forms a multiplicative
semigroup with multiplication defined by exponent addition and the multiplicative
semigroup N×

+ embeds in S via unique factorization. If s ∈ S, the corresponding
additive subgroup is

Ps = {q ∈ Q | s.q ∈ S}

In [2] it is shown that isomorphism classes of additive subgroups of Q correspond
to equivalence classes on S defined by

s ∼ s′ iff

{
sp = ∞ ⇔ s′p = ∞

sp = s′p for all but at most finitely many p

That is, we have natural identifications between points of Ĉ and equivalence classes
[S] of supernatural numbers. The connection between the two descriptions

[Af ] = pts(Ĉ) = [S]

is induced via the identifications S = Ẑ/Ẑ∗. In this note we will always use the
description via supernatural numbers and will denote the isomorphism class of the
point Hs by the corresponding equivalence class [s]. Note also from [9, 2.2] or

[4, §8] that we can view pts(Ĉ) as the moduli space of noncommutative spaces
corresponding to UHF-algebras.

1.2. The subobject classifier Ω : The subobject-classifier Ω of the topos Ĉ co-
incides by with the set of all sieves, that is with all right ideals in the monoid N×

+,
see [10, I.4]. Any sieve S ∈ Ω is of the form

S =
⋃

i∈I

niN
×
+

for some (finite or infinite) set of positive integers ni which are incomparable with
respect to the ordering by division. As a subobject-classifier in a topos, Ω is a
(complete) Heyting algebra.

Recall from [10, I.8] that a Heyting algebra H is a partially ordered set under
≤, with unique minimal element 0 and unique maximal element 1 and equipped
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with 2-ary operations ∧ and ∨ and an additional 2-ary operation → satisfying the
following conditions for all x, y, z ∈ H:

(1) x ∧ (y ∧ z) = (x ∧ y) ∧ z = x ∧ y ∧ z
(2) x ∨ (y ∨ z) = (x ∨ y) ∨ z = x ∨ y ∨ z
(3) x ∧ y = y ∧ x and x ∨ y = y ∨ x
(4) x ∧ x = x and x ∨ x = x
(5) 1 ∧ x = x and 0 ∨ x = x
(6) x ∧ (y ∨ x) = x = (x ∧ y) ∨ x
(7) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
(8) x ≤ y iff x = x ∧ y iff y = x ∨ y
(9) (x ∧ y) ≤ z iff x ≤ (y → z)

In an Heyting algebra one can also define the 1-ary ’negation’ operation ¬ by
¬x = (x → 0) and one always has x ≤ ¬¬x. A Heyting algebra is called Boolean if
for all x ∈ H we have ¬¬x = x, or equivalently that x ∨ ¬x = 1.

We will now make these operations explicit for the subobject-classifier Ω of the
presheaf topos Ĉ using [10, Prop. I.8.5]. Assume S, T ∈ Ω with

S =
⋃

i∈I

niN
×
+ and T =

⋃

j∈J

mjN
×
+

then

S ∨ T = S ∪ T =
⋃

i∈I

niN
×
+ ∪

⋃

j∈J

mjN
×
+

S ∧ T = S ∩ T =
⋃

(i,j)∈I×J

lcm(ni,mj)N
×
+

1 = N×
+ and 0 = ∅

S → T =
⋃

∀i:lcm(e,ni)∈T

eN×
+

¬S =

{
0 if S 6= 0

1 if S = 0

1.3. The Grothendieck topologies on C. In addition to the Heyting algebra
structure on Ω there is also a right N×

+-action ⊙ on Ω.

S⊙ n = n−1.S ∩ N×
+ =

⋃

i∈I

ni

gcd(ni, n)
N×

+

Recall from [10, III.2] that a Grothendieck category on C is a subset G ⊂ Ω satisfying
the following properties

(1) 1 ∈ G
(2) (stability) if S ∈ G, then S⊙ N×

+ = {S⊙ n | n ∈ N×
+} ⊂ G

(3) (transitivity) if S ∈ G and if R ∈ Ω such that R ⊙ S = {R ⊙ s | s ∈ S} ⊂ G,
then R ∈ G.

Observe that it follows that if S ∈ G and S ⊂ S’ in Ω, then also S’ ∈ G. The
coarsest Grothendieck topology on C, with Gch = {1}, is called the chaotic topology
on the category C. There are uncountable many different Grothendieck topologies
on C.
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Proposition 1. Let P ⊂ P be a subset of prime numbers, then

GP = {S ∈ Ω | ∃m : mN×
+ ⊂ S and all prime divisors of m belong to P}

is the smallest Grothendieck topology on C containing the sieves S(p) = pN×
+ for all

p ∈ P .

Proof. One uses the third property of Grothendieck topologies to deduce that
S(m) = mN×

+ must belong to GP if all prime divisors of m belong to P using

S(m)⊙ S(p) =

{
S(m) if p ∤ m

S(m
p
) if p | m

But then all sieves S of the required form belong to GP and one verifies easily that
these sieves indeed form a Grothendieck topology. �

But there are plenty of other Grothendieck topologies. If G is a Grothendieck
topology on C and if ∪i∈IniN

×
+ ∈ G, then also all ∪i∈IpiN

×
+ ∈ G for all possible prime

divisors pi of ni. Hence, to G one can associate a set of subsets of prime numbers
{Pj : j ∈ J} with the Pj minimal with respect to the property that ∪p∈Pj

pN×
+ ∈ P .

2. Topos theoretic covers of the arithmetic site

We have seen that the subobject classifier of Ĉ is Ω with its natural right N×
+-

action. The terminal object of the topos Ĉ is given by the functor

1 : C ✲ Sets • 7→ {∗}

where {∗} is the singleton with trivial right N×
+-action. Open objects in Ĉ corre-

spond to subobjects of 1, that is to right N×
+-maps {∗} ✲ Ω so its image must

be a sieve fixed under the N×
+-action. There are only two such sieves: ∅ = 0 and

N×
+ = 1. That is Opens(Ĉ) = {0, 1}, or equivalently, the topos Ĉ is two-valued.

2.1. The Diaconescu cover. For every Grothendieck topos E there exists a locale
X and an open surjective geometric morphism Sh(X) ✲ E , [10, IX.9 Thm 1]. The
locale X is then called a Diaconescu cover of E . In this section we will determine the
Diaconescu covers of Sh(C,G) of the arithmetic site equipped with a Grothendieck
topology.

As the topos of sheaves of sets on a site with underlying small category a partially
ordered set is a locale by [10, IX.5 Thm 1], we first introduce the poset corresponding
to the monoid category C, and call it the big cell.

Definition 1. The big cell D is the category with one object [k] for every strictly
positive integer k ∈ N+ and with morphisms induced by the partial ordering by
reverse division

[k] ≤ [l] if and only if l|k

That is, there is exactly one arrow [k] ✲ if and only if [k] ≤ [l]. There is a

natural covariant functor D
π
✲ C sending each object [k] to • and every morphism

[k] // [l] to the endomorphism corresponding to k
l
.

The terminology ’big cell’ s due to John Conway in [6]. In order to under-
stand groups commensurable with the modular group Γ occurring in moonshine,
he looked at (projective classes of) lattices commensurable with the standard lat-
tice < ~e1, ~e2 > and showed that they have a canonical form L =< M~e1+

g
h
~e2, ~e2 >
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with M ∈ Q+ and g

h
∈ Q/Z. For any other such lattice L′ =< N~e1 +

i
j
~e2, ~e2 > he

introduced a hyper-distance

δ(L,L′) = det(αDLL′) ∈ Z

where α is the minimal strictly positive rational number such that αDLL′ ∈ M2(Z)
with

DLL′ =

[
M g

h

0 1

]
.

[
N i

j

0 1

]−1

The hyperdistance is symmetric and depends only on the projective classes of lat-
tices. We can turn the set of all classes of lattices into a graph by connecting lattices
having prime hyperdistance. Conway calls the resulting graph the big picture and
proved that is the product, over all prime numbers p, of the subgraphs of lattices
with hyperdistance p, which is itself an infinite p + 1-valent tree, [6]. The big cell
is the subgraph consisting of the lattices LM with M ∈ N+, and is therefore the
product of an infinite number of graphs of type A∞.

A Grothendieck topology G on C can be extended, in a canonical way, to a
Grothendieck topology Gc on D by taking for each object [k] in D the set of sieves
Gc([k]) = G where we mean for each sieve S ∈ Ω that

S([k]) = { [l] // [k] :
l

k
∈ S}.

With respect to these Grothendieck topologies on D and C the functor π satisfies
the covering lifting property (clp) as well as the property of preserving covers of
[10, p. 507]. It follows that the conditions of [10, Prop. IX.8.1] are satisfied and we
obtain the following result.

Proposition 2. For any Grothendieck topology G on C, the induced map from π
on the corresponding sheaf toposes

f : Sh(D,Gc) ✲ Sh(C,G)

is an open, surjective geometric morphism.
As D is a poset, the topos Sh(D,Gc) is localic, that is, Sh(D,Gc) is a Diaconescu

cover of Sh(C,G).

Recall that a point of a topos is a geometric morphisms from Sets to the topos.
As composition of geometric morphisms remain geometric, the above functor f
defines a map on the level of points

pts(D,Gc) ✲ pts(C,G)

We will now investigate this map in case G is the chaotic topology, that is, Sh(C,G) =
PSh(C) = Ĉ in which case Sh(D,Gc) = PSh(D) which topos we will denote by D̂.

Proposition 3. The points of D̂ correspond to subsets S ⊂ N×
+ closed under taking

divisors and least common multiples. As such they correspond naturally to super-
natural numbers: pts(D̂) = S.

Proof. Recall from [10, VII,§5-6] that a point in the presheaf topos correspond to
covariant functors

P : D ✲ Sets

satisfying the following conditions

• There is some [k] such that P ([k]) 6= ∅
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• Given elements a ∈ P ([k]) and b ∈ P ([l]), there is an [m] with maps

[k] [m]
uoo v // [l] and an element c ∈ P ([m]) such that u(c) = a

and v(c) = b.

As D does not have parallel arrows, the third condition of [10, p. 386] is vacuous.
Note that for all [k] we have that either P ([k]) is the empty set or a singleton. For,
suppose a 6= b in P ([k]), apply the second condition to k = l. As there is a unique
map from [m] to [k] it must follow that a = u(c) = b.

By the first condition we have some [k] such that P ([k]) = {∗k}. If l|k there is

a unique map [k]
u // [l] and therefore u(∗k) ∈ P ([l]) 6= ∅. Hence the set

SP = {k ∈ N×
+ | P ([k]) 6= ∅}

is closed under division. It is also closed under taking least common multiples, for
if k, l ∈ SP then by the second condition there is an m such that k|m and l|m such
that for the unique maps u and v from [m] to resp. [k] and [l] we have

u(∗m) = ∗l and v(∗m) = ∗l

as lcm(k, l)|m it follows that also lcm(k, l) ∈ SP .
To a subset S ⊂ N×

+ satisfying these conditions one can associate a supernatural
number s ∈ S with

s =
∏

p∈P

psp

where sp is the maximal exponent d such that pd ∈ S. Conversely, if s ∈ S then
the subset

S = {n ∈ N×
+ | n|s}

is closed under division and least common multiples. �

2.2. The locale S. The terminal object in D̂ is given by the contravariant functor

1 : D ✲ Sets

{
[k] 7→ {∗}

[k] // [l] 7→ id{∗}

By definition, the set of opens in the topos D̂ correspond to subfunctors of 1, which
are described in the following result.

Proposition 4. Opens(D̂) correspond to subsets of N×
+ closed under taking multi-

ples, that is, there is a natural one-to-one correspondence

Opens(D̂) ↔ Ω

between the opens in D̂ and sieves in C.

Proof. A subfunctor S ∈ Sub(1) assigns to each [k] a set Sk which is either {∗} or
the emptyset. If k|l we must have the commuting diagram

1 : {∗}
id // {∗}

S : Sk

OO

id|Sk

// Sl

OO

so the set of k ∈ N×
+ such that Sk = {∗} is closed under taking multiples, so is a

right ideal of the monoid N×
+, that is, a sieve in C. �



COVERS OF THE ARITHMETIC SITE 7

With operations as before, Ω is a frame, that is, a lattice with finite meets, finite
and infinite joins, satisfying the infinite distributive law. More precisely, we have
for all S, T, Ti ∈ Ω:

(1) S ≤ T iff S ⊂ T.
(2) S ∧ T = S ∩ T.
(3) S ∨ T = S ∪ T.
(4) S ∧ (∨iTi) = ∨i(S ∩ Ti).
(5) 0 = ∅ and 1 = N×

+.

If cat is a poset category, then ĉat is generated by the subobjects of the terminal
object, and is called a localic topos as ĉat ≃ Sh(X), the category of sheaves on a
locale X, where the category of locales is defined to be the opposite of the category
of frames, see for example [10, Chp. IX]. The locale X has a frame isomorphic to
the frame of open sets of a topological space X if and only if X has enough points,
that is, if elements of the corresponding frame can be distinguished by points of X,
[10, Prop. IX.3.3]. Here, a point of X is a frame morphism

p−1 : O(X) = Open(ĉat) ✲ {0, 1}

Theorem 1. The localic topos D̂ is equivalent to the category of sheaves of sets on
the topological space S

D̂ = Sh(S)

of all supernatural numbers, with open sets corresponding to S = ∪iniN
×
+ ∈ Ω where

Xl(S) = Xl(∪iniN
×
+) = {s ∈ S | ∃i : ni|s}

Proof. As D is a poset category, D̂ ≃ Sh(X) for some locale X. A point of X is a frame
morphism

p−1 : O(X) = Open(D̂) = Ω ✲ {0, 1}

or equivalent, a map satisfying the following conditions:

(1) p−1(N×
+) = 1

(2) p−1(S ∧ S’) = 0 iff p−1(S) = 0 or p−1(S’) = 0
(3) p−1(∨Si) = 0 iff p−1(Si) = 0 for all i

If Ps is the point of D̂ corresponding to the supernatural number s ∈ S, that is,
Ps = {[k] : k|s}, then there is a corresponding point ps of the locale X determined
by the map

p−1
s = Ω ✲ {0, 1} p−1(∪iniN

×
+) =

{
0 iff ∀i : ni ∤ s

1 iff ∃i : ni|s

as one easily verifies that this map satisfies the required properties.
But then, the locale X has enough points. For any two distinct elements S, S′ ∈

Ω = O(X), there is some point p such that p−1(S) 6= p−1(S′). Indeed, let k ∈ S− S′

then p−1
k (S) = 1 whereas p−1

k (S′) = 0. To finish the proof we have to show that
pts(X) = S.

Let p−1 : Ω ✲ {0, 1} be a point of X and consider the set Dp = {n ∈
N+ | p−1(nN×

+) = 1}. As nN×
+ ∧mN×

+ = lcm(m,n)N×
+ it follows from the second

condition on p−1 that Dp is closed under divisors and least common multiples,
whence corresponds to a supernatural number s ∈ S. �
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This localic topology on S has a countable basis of open sets of the form

Xl(n) = {s ∈ S : n|s}

Observe that these opens are clopen in the compact Hausdorff topology on S via
the identification with

∏
p∈P(N ∪ {∞}) (see also the next section).

2.3. The projection map. We have already seen that the functor π : D ✲ C

induces an open surjective geometric morphism D̂
f
✲✲ Ĉ. We now want to verify

that the corresponding map between the points

pts(D̂) = S ✲ pts(Ĉ) = [S]

is the natural map, that is sending a supernatural number to its equivalence class.
This requires a chase through the defining functors.

We have identified points of D̂ with the set of supernatural numbers S. The point
corresponding to s ∈ S is defined by the covariant flat functor

Ps : D ✲ Sets [k] 7→

{
{∗k} if k|s

∅ if k ∤ s

[k] // [l] 7→





{∗k} ✲ {∗l} if l|k|s

∅ ✲ {∗k} if l|s but k ∤ s

∅ ✲ ∅ if k, l ∤ s

This functor induces a geometric morphism p(s) : Sets ✲ D̂ determined by the
adjoint functors

Sets

p(s)∗

))
D̂

p(s)∗

jj p(s)∗ = HomD(Ps,−) p(s)∗ = −⊗D Ps

see [10, VII.5 Thm 2, VII.2 Thm 1]. Here, HomD(Ps, S) is the contravariant functor
(presheaf)

D ✲ Sets [k] 7→

{
HomSets({∗k}, S) = S if k|s

HomSets(∅, S) = {ik} if k ∤ s

and with [k] // [l] mapping to the composition if l|k|s

{∗k} //

��

S

{∗l}

>>
⑥
⑥
⑥
⑥
⑥
⑥
⑥
⑥

∅
ik //

��

S

{∗l}

>>
⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

∅ //

��

S

∅

il

@@
✁
✁
✁
✁
✁
✁
✁
✁

and to the canonical maps S 7→ {ik} if l|s but k ∤ s and {il} ✲ {ik} if k, l ∤ s.

In general, a presheaf G ∈ D̂ is a contravariant functor G : D ✲ Sets and
is defined by assigning a set Gk to all [k], and a morphism gk,l : Gl

✲ Gk

whenever l|k. Working through the definition of [10, p. 356] we find that G⊗D Ps

is the set of equivalence classes of the set
⊔

k|s

Gk with gk ∼ gl iff gk,l(gl) = gk
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The functor π : D ✲ C induces by [10, VII.2 Thm 2] a geometric morphism

D̂

π∗

((
Ĉ

π∗

hh

where π∗ assigns to a N×
+-set M , that is a functor M : Cop ✲ Sets, the compo-

sition

π∗(M) : Dop
πop

✲ Cop
M
✲ Sets

Concretely, π∗(M) is the presheaf in D̂ with all Gk = M and the maps gk,l are given

by the right action of k
l
on M whenever l|k.

Theorem 2. The functor π : D ✲ C induces a map

π : S = pts(D̂) ✲ pts(Ĉ) = S/ ∼

sending a supernatural number s to its equivalence class [s].

Proof. In view of the foregoing, we have to prove that the composition p(s)∗ ◦ π∗

Sets

p(s)∗

))
D̂

π∗

((

p(s)∗

jj Ĉ

π∗

hh

−⊗CQ+(s)

aa

is naturally isomorphic to the functor −⊗CQ+(s) where Q+(s) = {n
k
| n ∈ N+, k|s}

is the set with left N×
+-action by multiplication corresponding to the flat functor

C ✲ Sets determining the point [s] ∈ pts(Ĉ). Let M be a set with a right
N×

+-action, then p(s)∗(π∗(M)) is the set of equivalence classes of
⊔

k|s

M with [m′]k ∼ [m]1 iff m′ = m.k

that is, we should view m ∈ M in component k as m. 1
k
and hence we recover indeed

the set M ⊗C Q+(s). �

2.4. The Barr cover. Barr’s theorem [10, Thm. IX.9.2] asserts that for every
Grothendieck topos E there exists a complete Boolean algebra B and a surjective
geometric morphism Sh(B) ✲✲ E . The purpose of this theorem is to generalize the
Godement resolution by flabby sheaves to the context of cohomology of arbitrary
toposes. We will now describe the Barr cover of the arithmetic site.

Theorem 3. Consider the complete Boolean algebra

B = 2Ω =
∏

S∈Ω

{0, 1}

then there are surjective geometric morphisms

Sh(B) ✲✲ Sh(S) ✲✲ Ĉ

That is, B is the Barr cover of the arithmetic site.
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Proof. We have already seen that the locale S is a topological space with the frame
of opens Open(S) ↔ Ω. This allows us to determine the Heyting algebra structure
on Open(S) as in [10, I.8] and verify that it coincides with the Heyting algebra
structure on Ω given before. In particular we have for each non-empty S that its
negation ¬S = 0 = ∅.

Following the construction of the proof of [10, Lemma IX.9.3], we have to deter-
mine the frame of ¬¬-fixed points of the frame Open(S− S) of the closed sublocale
S− S of S. Now, by definition

Open(S− S) = {T ∈ Ω | S ≤ T} ∪ {0}

and by the above remark on the negation in Open(S) we have that the double-
negation frame

Open(S− S)¬¬ ≃ {0, 1}

The claims now follow from the proof of [10, Lemma IX.9.3]. �

3. Noncommutative covers of the arithmetic site

Rather than studying Grothendieck topologies on C and their associated toposes
of sheaves, we will consider in this section a number of ordinary topologies on the
set of points pts(Ĉ) = [Af ] = [S]. We then construct a noncommutative topolog-
ical space, in the sense of [1], with commutative shadow [S] and a corresponding
noncommutative Heyting algebra Θ, in the sense of [7], with commutative quotient
the subobject classifier Ω.

These results are inspired by a remark of A. Connes in [5, §5] where he asserts
that the arithmetic site is but a semiclassical shadow of a still mysterious structure
dealing with compactifications of Spec(Z). For this reason we first consider three
topologies on the points [S] of the arithmetic site and the corresponding continuous
maps from Spec(Z). We then construct a noncommutative frame Θ, elements of
which can be viewed as constructible truth fluctuations on open sets in the sieve
topology on the finite adèle classes.

3.1. The arithmetic topology: The locally compact topology on the finite adèles
Af induces a weak remnant on the set of points of the arithmetic site, which we
call the arithmetic topology. If we identify S =

∏
p∈P(N ∪ {∞}, view each of the

factors as a point point compactification of the discrete topology on N then the
arithmetic topology is the product topology turning S into a compact Hausdorff.
The arithmetic topology is the induced topology on the equivalence classes [S] and
was described in [9, Thm. 1]. It has a countable basis of open sets, corresponding
to finite subsets P = {p1, . . . , pk} of prime numbers, defined by

Xa(P ) = {[s] ∈ [S] | ∀p ∈ P : sp 6= ∞}

(note that this does not depend on the choice of representative in [s]). There is an
obvious connection with the Zariski topology on the prime spectrum Spec(Z) which
is P∪ {0} with open sets of the form XZ(n) = {p ∈ P | p ∤ n} ∪ {0}. We can map a

prime number p to the class determined by the element (1, . . . , 1, 0, 1, . . .) ∈ Ẑ with

a zero in the factor Ẑp and ones in the other factors. A direct calculation proves
the following result.

Proposition 5. The inclusion map

Spec(Z) ⊂
i
✲ pts(Ĉ) = [S] given by p 7→ [p∞]
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is continuous with respect to the Zariski topology on Spec(Z) and the arithmetic
topology on [S] as i−1(Xa(P )) = XZ(

∏
p∈P p). As a consequence, the direct image

sheaf i∗OZ has as sections over the arithmetic topology on [S]

Γ(i∗OZ,Xa(P )) = Z[
1∏

p∈P p
]

The stalk of i∗OZ in a point [s] of the arithmetic site is then

(i∗OZ)[s] = {
a

b
| (b, p) = 1 ∀p ∈ P : sp = ∞}

so, in particular, the stalk in [p∞] is the local ring Zp.

3.2. The sieve topology: In [9] we introduced another topology on the set of
points of the arithmetic site, called the sieve topology as the basic open sets corre-
spond to the sieves S ∈ Ω and are defined as

Xs(S) = {[s] ∈ [S] | ∃n1, n2, . . . ∈ S :

∞∏

i=1

ni|s}

(this definition does not depend on the choice of representative in [s]). The ’morale’
behind this definition is that Xs(S) are precisely the points of the arithmetic site
which are also points in the monoid category of S∪{id}. In [9, Thm. 6] it was shown
that this sieve topology has some properties one might expect of the mythical space

Spec(Z): it is compact, does not admit a countable basis of opens, every non-empty
open set is dense and it satisfies the T1-separation property on incomparable points.
Further note that the frame op open sets in the sieve topology is isomorphic to the
lattice structure of the Heyting algebra Ω.

For the connection with the arithmetic topology, note that if P = {p1, . . . , pk}
we have

Xa(P ) = [S]− Xs(p1N
×
+ ∪ . . . ∪ pkN

×
+)

That is, basic opens of the arithmetic topology are closed in the sieve topology.
Still, we have a nice connection with Spec(Z). This time we map the prime ideal

(p) to the class of the element (0, . . . , 0, 1, 0, . . .) ∈ Ẑ with a one in the factor

corresponding to Ẑp and zeroes elsewhere. In this case we calculate:

Proposition 6. The inclusion map

Spec(Z) ⊂
j
✲ pts(Ĉ) = [S] given by p 7→ [

∏

q 6=p

q∞]

is continuous with respect to the Zariski topology on Spec(Z) and the sieve topology
on [S] as for each sieve S = ∪i∈IniN

×
+ we have with gcd(S) = gcd(ni, i ∈ I)

j−1(Xs(S)) = Xa(gcd(S))

As a consequence the direct image sheaf j∗OZ has as sections with respect to the
sieve topology

Γ(j∗OZ,Xs(S)) = Z[
1

gcd(S)
]

Therefore, the stalk of j∗OZ in a point [s] is equal to

(j∗OZ)[s] = Z[
1

p
: p∞|s]
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or, in terms of the additive subgroups of Q

(j∗OZ)[s] =
⋂

[t]=[s]

Pt

In particular, the stalk of j∗OZ at the image j(p) is the localization Zp.

This result shows that the sieve topology and its induced structure sheaf from
the connection with Spec(Z) is close to the intended structure sheaf of the arith-
metic site as defined by Connes and Consani in [3] and [4]. The stalk of the

structure sheaf O at a point [s] ∈ pts(Ĉ), which as we have seen corresponds
to the (isomorphism class) of the additive subgroup Ps of Q, will be the semiring
Ps,max = (Ps ∪ {−∞},max,+) as sub-semiring of Qmax.

Clearly, if one ever wants to have a concrete realization of this ”stalk” as a
genuine stalk over some topology on the set of all points of the arithmetic site one
has to dispose of the ambiguity that different semirings Ps,max defining the same
point [s] are only isomorphic as semirings, and not equal. Replacing Ps.max by the
intersection ∩[t]=[s]Pt,max is an obvious choice, which gives us the exact stalk of the
sheaf j∗OZ in the sieve topology.

3.3. The patch topology: At this moment we have two topologies on pts(Ĉ) = [S]
and two natural continuous maps from Spec(Z) to [S] such that in both cases at
least the stalks of the direct image structure sheaf give the expected ring Zp. The
arithmetic topology might be better to transport arithmetic (adèlic) information
to the arithmetic site whereas the sieve topology, by its very nature, is better at
encoding topos-theoretic information.

In order to have the best of both worlds, we consider a common refinement of
the two topologies, the patch topology (or constructible topology) with respect to
the sieve topology. That is, open sets in the patch topology are unions of locally
closed subsets in the sieve topology on pts(Ĉ). That is, a basic open set in the
patch topology is of the form

Xp(S, T) = Xs(S) ∩ Vs(T)

where S, T ∈ Ω and Vs(T) = [S]− Xs(T). As we have seen that the basic open sets
in the arithmetic topology are closed in the sieve topology we have:

Proposition 7. The patch topology on the points of the arithmetic site is a com-
mon refinement of both the arithmetical and the sieve topology. It is the topology
generated by both the open and closed sets of the sieve topology.

3.4. A noncommutative topology with shadow Ω. Our aim is to equip the
set of points E = [S]×{0, 1} with a noncommutative topology such that its classical
commutative shadow gives us the sieve topology on [S]. Here, a noncommutative
topology has a corresponding ’frame’ of open sets Θ which will be a skew-lattice on
which the operations ∧ and ∨ are no longer commutative. By the shadow property
we will mean that any skew-lattice map to a (commutative) lattice must factor
through the lattice Ω of all opens of the sieve topology on [S].

It turns out, see for example [1] or [7], that in passing to the noncommutative
setting we need to sacrifice either the top element 1 or the bottom element 0

in the definition of a skew-lattice. In this section we choose to sacrifice 1 as our
construction will involve taking local sections of sheaves and whereas there is always
a unique such section over 0 = ∅ there are usually lots of global sections.
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Definition 2. A noncommutative frame is a set Θ with 2-ary operations ∧ and ∨
(intersection resp. union of open sets) and a minimal element 0 such that for all
x, y, z ∈ Θ the following conditions are satisfied:

(1) x ∧ (y ∧ z) = (x ∧ y) ∧ z = x ∧ y ∧ z
(2) x ∨ (y ∨ z) = (x ∨ y) ∨ z = x ∨ y ∨ z
(3) x ∧ x = x
(4) x ∨ x = x
(5) x ∧ (x ∨ y) = x = x ∨ (x ∧ y)
(6) (y ∨ x) ∧ x = x = (y ∧ x) ∨ x
(7) x ∧ 0 = 0 = 0 ∧ x
(8) x ∨ 0 = x = 0 ∨ x
(9) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

(10) (y ∨ z) ∧ x = (y ∧ x) ∨ (z ∧ x)
(11) x ∧ y ∧ x = x ∧ y
(12) x ∨ y ∨ x = y ∨ x
(13) x ∧ y ∧ z = x ∧ z ∧ y

Here, (1)-(4) state that the operations are associative and idempotent, (5)-(6) are
called the absorption properties, (9)-(10) are the strongly distributive properties
and (11)-(12) are the left-handed properties, see [1] for more details. Θ becomes a
partially ordered set via

x ≤ y ⇔ x ∧ y = x = y ∧ x ⇔ x ∨ y = y = y ∨ x

and (7)-(8) state that 0 is a minimal element with respect to this partial order.
Condition (13) follows from the others and states that (Θ,∧) is a left-normal semi-
group.

One defines an equivalence relation on the elements of a noncommutative frame
Θ by

x ∼ y ⇔ x ∧ y ∧ x = x and y ∧ x ∧ x = y

A result of Jonathan Leech, see for example [1, Thm. 2.1] asserts that the induced
operations turn the equivalence classes [Θ] into a (commutative) lattice without top
element, and moreover, any noncommutative frame morphism Θ ✲ Λ where Λ

is a lattice factors through [Θ].
The main result of Bauer et al. [1] on noncommutative Priestly duality tells

us that any noncommutative topology Θ with commutative semiclassical shadow
[Θ] ≃ Ω comes from the local sections of a sheaf with respect to the patch topology
for Ω.

We will now construct the simplest such sheaf in the case of interest to us, that
is, when Ω is the commutative frame of opens of the sieve topology on the points
of the arithmetic site.

Definition 3. The sheaf Oc of constructible truth fluctuations has as sections over
the open set Xs(S) for S ∈ Ω

Γ(Oc,Xs(S)) = {x : Xs(S) ✲ B = {0, 1} continuous}

Here, continuous is with respect to the discrete topology on the Boolean semifield
B = {0, 1} and the induced patch topology on Xs(S). Alternatively, one can think
of x as the characteristic function of an open subset of Xs(X) in the patch topology.
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Using the sheaf of constructible truth fluctuations Oc we will now construct the
noncommutative frame Θ which is the set of ’opens’ of a noncommutative topology
on E = [S]× B.

Theorem 4. Let Θ be the set of all pairs (S, x) where S ∈ Ω and x ∈ Γ(Xs(S),Oc).
On Θ we define 2-ary operations ∧ and ∨ as follows:

(S, x) ∧ (T, y) = (S ∧ T, x|Xs(S)∩Xs(T))

(S, x) ∨ (T, y) = (S ∨ T, y|Xs(T) ∪ x|Xs(S)−Xs(T))

With respect to these operations, Θ is a noncommutative frame with semiclassical
shadow [Θ] ≃ Ω. there is an embedding of noncommutative frames Ω ⊂ ✲ Θ given
by sending S to (S, 1|Xs(S)). Further, (S, x) commutes with (T, y) for ∧ or ∨ if and
only if x|Xs(S)∩Xs(T) = y|Xs(S)∩Xs(T).

To each (S, x) ∈ Θ we associate the ’open’ set in E = [S]× B

Xnc(S, x) = {([s], x([s])) : [s] ∈ Xs(S)}

The natural projection om the first factor makes E into an étale space over [S] with
respect to the patch topology on [S].

Proof. All claims follow from computations, or by invoking [1]. Here, we will merely
make the partial ordering explicit as well as the equivalence relation. Let (S, x) and
(T, y) be elements of Θ. Then, if

(S, x) ∧ (T, y) = (S ∧ T, x|Xs(S)∩Xs(T)) = (S, x)

this implies that S ≤ T. The reverse condition

(T, y) ∧ (S, x) = (T ∧ S, y|Xs(T)∩Xs(S)) = (S, x)

asserts that S ≤ T and that y|Xs(S) = x. That is, the partial ordering on Θ

(S, x) ≤ (T, y) ⇔ S ≤ T and y|Xs(S) = x

is given by extension of local sections. Using this, we also have that if

(S, x) ∧ (T, y) ∧ (S, x) = (S ∧ T, x|Xs(S)∩Xs(T)) = (S, x)

is equivalent to S ≤ T whereas the other condition

(T, y) ∧ (S, x) ∧ (T, y) = (S ∧ T, y|Xs(T)∩Xs(S)) = (T, y)

is equivalent to T ≤ S. That is, (S, x) ∼ (T, y) iff S = T. As a consequence, [Θ] is
just projection on the first factor so is isomorphic to the lattice Ω. �

We can, of course, repeat this construction starting from more involved sheaves
with respect to the sieve topology on [S]. A natural choice would be to consider F
to be the disjoint union of all the stalks of the structure sheaf j∗OZ. That is, F is
equal to the following subset of [S]×Qmax:⊔

[s]∈S

(j∗OZ)[s] = {([s], q) ∈ [S]×Qmax | ∀[t] = [s] : q.t ∈ S} ∪ {([s],−∞) | [s] ∈ S}

One can then consider the sheaf of constructible functions O having as its sections
over Xs(S)

{x : Xs(S) ✲ Qmax : Graf(x) ⊂ F and locally constant wrt. patch topology}

Using the same operations as above we can then define a noncommutative frame
structure on the collection of all (S, x) with S ∈ Ω and x ∈ Γ(O,Xs(S)) having as
its semiclassical shadow Ω.
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3.5. A noncommutative Heyting algebra with shadow Ω. In [7] K. Cvetko-
Vah introduced the notion of a skew-Heyting algebra. The starting point is again a
skew-lattice but, in view of the crucial role of the top 1 as truth in logic, this time
with a top element but without bottom element, to ensure noncommutativity of ∧
and ∨. The additional requirements for a skew-lattice with 1 to a a skew-Heyting
algebra are by [7, Thm. 3.2] that for all x, y, z and u we have

(1) (x → y) = (y ∨ x ∨ y → y)
(2) (x → x) = 1

(3) (x ∧ (x → y) ∧ x) = x ∧ y ∧ x
(4) (y ∧ (x → y)) = y and ((x → y) ∧ y) = y
(5) (x → u ∨ (y ∧ z) ∨ u) = (x → (u ∨ y ∨ u)) ∧ (x → (u ∨ z ∨ u))

If we exchange the definition of ∨ with that of ∧ in theorem 4, reverse the partial
ordering and define 1 = ∅ one can extend the resulting skew-lattice with top to a
skew-Heyting algebra as this is an instance of the partial maps with poset domain
example of [7, 4.4]. However, this is rather artificial and we want to keep the
definitions of ∨ and ∧ of theorem 4 on Θ. For this reason we proceed differently and
immediately define the 2-ary operation → on Θ (using the corresponding operation
on Ω) as follows

(S, x) → (T, y) = (S → T, y ∪ 1Xs(S→T)−Xs(T))

Observe that in the Heyting algebra Ω we always have that T ≤ (S → T) so the
extension of the function y to Xs(S → T) makes sense.

Of course, as we do not have a top element in Θ we cannot hope to satisfy
condition (2) of a skew-Heyting algebra. That is, in the noncommutative world we
have to sacrifice absolute truth. For this reason we define a noncommutative Heyting
algebra to be a noncommutative frame (with bottom 0) with a 2-ary operation →
satisfying the conditions (1), (3), (4) and (5) of skew-Heyting algebras.

Theorem 5. With the above definition of (S, x) → (T, y), the noncommutative
frame Θ becomes a noncommutative Heyting algebra. Moreover, any morphism of
noncommutative Heyting algebras Θ ✲ Λ where Λ is a Heyting algebra, factors
through the Heyting algebra Ω. Moreover, the replacement for rule (2) is in this
case

(S, x) → (S, x) = (1, x ∪ 1[S]−Xs(S))

that is, we extend the truth fluctuation on Xs(S) with truth outside.

Proof. Let x = (S, x), y = (T, y), z = (V, z) and u = (U, u).
(1) : x → y and of y ∨ x ∨ y → y are equal to

(S → T, y ∪ 1Tc) resp. (S ∨ T ∨ S → T, y ∪ 1Tc)

In the Heyting algebra Ω we have, using [10, (7) p. 52]

S ∨ T ∨ S → T = S ∨ T → T = (S → T) ∧ (T → T) = (S → T) ∧ 1 = S → T

so we are done.
(3) : In the Heyting algebra Ω we have by [10, Prop. I.8.3]

S ∧ (S → T) ∧ S = S ∧ (S → T) = S ∧ T = S ∧ T ∧ S

so both truth fluctuations have the same domain. By definition of ∧ on Θ the
fluctuations on both sides are the restriction of x to that common domain.
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(4) : In the Heyting algebra Ω we have by [10, Prop. I.8.3]

T ∧ (S → T) = T = (S → T) ∧ T

so all fluctuations involved have domain Xs(T). For the condition y ∧ (x → y) = y
the functions on both sides are y by definition of ∧ on Θ. For the condition
(x → y) ∧ y = y the function on the left-hand side is by the definition of → and
of ∧ on Θ, the function y, first extended with 1 outside of Xs(T), but then again
restricted to Xs(T), so is indeed just y.

(5) : In the Heyting algebra Ω we have

S → (U ∨ (T ∧ Z) ∨ U) = S → (U ∨ T) ∧ (U ∨ Z) = (S → (U ∨ T)) ∧ (S → (U ∨ Z))

which is clearly equal to

(S → (U ∨ T ∨ U)) ∧ (S → (U ∨ Z ∨ U))

That is, the domains on both sides are equal. On Xs((U∪ T)∧ (U∨ Z)) the function
on the left-hand side is u on Xs(U) and the restriction of y to Xs(T∧Z)−Xs(U). One
verifies that this coincides with the defined function on the right-hand side. �
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