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“One can postulate, of course, that Spec(F1) is the absolute point, but the real
problem is to develop non-trivial consequences of this point of view.”

(Mikhail Kapranov and Alexander Smirnov in [20])

“Analogies, it is true, decide nothing, but they can make one feel more at home.”

(Sigmund Freud, The Essentials of Psycho-Analysis)
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1. Manin’s plane

1.1. Prologue. Ever since the work of Richard Dedekind and Leopold Kronecker
the striking similarities between number fields and function fields of smooth projec-
tive curves over finite fields have served as a powerful analogy to transport results
and conjectures from number theory to these function fields. Using the powerful
machinery of geometry one could prove results on the function field side for which
the corresponding number theoretic result still remains conjectural. Most note-
worthy are André Weil’s proof of the Riemann hypothesis for function fields in the
1940’s and, more recently, the proof of the ABC conjecture for function fields.

Since the mid 1980’s, attempts have been made to mimic Weil’s approach to the
Riemann hypothesis by trying to imagine the integral prime spectrum Spec(Z) to
be a “curve” over the absolute point , that is, Spec(F1), where F1 is the elusive field
with one element, and subsequently to study intersection theory on the “surface”
Spec(Z) ⇥F1 Spec(Z), which is part of Weil’s approach to the Riemann hypothe-
sis. Since he could not invent what this “surface” might be, Alexander Smirnov
decided to study intersection theory on the easier “surface” P1

F1
⇥F1 Spec(Z), and

in particular to investigate the graphs of “maps”

q : Spec(Z) �! P1
F1

where q 2 Q,

which should exist by analogy with the function field case, as Q should be thought
of as the function field for the “curve” Spec(Z). Smirnov dreamed up the following
definitions for both geometric objects and for the maps between them (see [38]):

• The absolute projective line P1
F1

should have as its schematic points the set

{[0], [1]} [ {[n]
�

� n 2 N0}

where the degree of the point [n] should be the Euler function �(n) (formally
defined later on) for n 2 N0 = N \ {0} and equal to 1 for [0] and [1]. The
schematic points [n] should be thought of as corresponding to the set of
geometric points being the primitive nth roots of unity.

• The completed prime spectrum Spec(Z) should have as its schematic points
the set

{(p)
�

� p a prime number } [ {1},

where the degree of1 is equal to one and the degree of (p) should be log(p).

• If q = a

b

2 Q with (a, b) = 1, the map

q : Spec(Z) �! P1
F1

should send the point (p) to [0] if p is a prime factor of a, to [1] if p is a
prime factor of b and, in the remaining cases, to [n] if n is the order of the
image of a

b

in the finite group F⇤
p

. Finally, 1 should be sent to [0] if a < b
and to [1] if a > b.
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Figure 1. The graph of q = 2.

In Figure 1 there is part of the graph of the map q = 2 (for primes p < 1000) in
the “surface” P1

F1
⇥ Spec(Z). It is easy to verify that these maps are finite, but

showing that they are actually covers for most values of q relies upon a result of
Zsigmondy [45]. In [38] Alexander Smirnov was able to deduce the ABC conjecture
for Z provided one would be able to develop an absolute geometry, admitting
suitable versions of Spec(Z) and P1

F1
and such that one can prove an analogue of

the Riemann–Hurwitz formula for maps such as q. Since then, numerous proposals
for a geometry over F1 have been made, all of them allowing objects such as P1

F1

and similar combinatorially defined varieties such as a�ne and projective spaces,
Grassmannians etc., but almost none of them containing objects having the desired
properties of Spec(Z). For an overview of these attempts and the connections
between them we refer to [28]. Perhaps the most promising approach was put
forward by Jim Borger, based on the notion of �-rings, see [3] and Borger’s chapter
in this monograph. For our purposes, a �-ring is a Z-algebra R without additive
torsion and admitting a commuting family of endomorphisms { n

�

� n 2 N0}

such that for prime numbers p the map  p is a lift of the Frobenius morphism
on R⌦ZFp

. Borger interprets this family of endomorphisms as descent data from Z
to F1, and conversely views the forgetful functor, stripping o↵ the �-structure, as
base extension � ⌦F1 Z. In this approach, P1

F1
would then be the usual integral
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scheme P1
Z equipped with the toric �-ring structure induced by the endomorphisms

 n(x) = xn on Z[x], giving us the fanciful identity

P1
F1
⇥Spec(F1) Spec(Z) = P1

Z,

where on the right-hand side we forget the �-structure on the integral projective
line P1

Z, giving us a concrete candidate for Smirnov’s proposal. Unlike other ap-
proaches, Borger’s proposal allows us to define how an integral scheme XZ should
be viewed over F1. Indeed, the forgetful functor (that is, base extension �⌦F1 Z)
has a right-adjoint functor

w : rings �! rings

�

assigning to a Z-algebra A a close relative of the ring w(A) = 1 + tA[[t]] of big
Witt vectors, equipped with a new addition � being the ordinary multiplication
of power series, and a new multiplication ⌦ induced functorially by the condition
that

✓

1

1� a · t

◆

⌦

✓

1

1� b · t

◆

=
1

1� ab · t

for all a, b 2 A. This functor can then be viewed as Weil-restriction from integral
schemes to F1-schemes. Hence, in particular, this proposal allows us to define
Spec(Z)/F1 as the F1-geometric object corresponding to the ring w(Z) which is
isomorphic to the completed Burnside ring bB(C) of the infinite cyclic group C,
by [14]. In these notes we will explore how Smirnov’s maps q : Spec(Z) ⇣ P1

F1
fit

into Borger’s proposal.
A second theme of these notes is to explore the origins of a new topology on the

roots of unity µ1 introduced and studied by Kazuo Habiro in [17] in order to unify
invariants of 3-dimensional homology spheres, introduced first by Edward Witten
by means of path integrals and rigorously constructed by Reshitikhin and Turaev.
Habiro calls two roots of unity adjacent to each other whenever their quotient is of
pure prime-power order. For example, we depict in Figure 2 the adjacency relation
on 60th roots of unity where we used di↵erent colors for di↵erent prime-powers (2-
powers are colored yellow, 3- and 5-powers, respectively, blue and red). The Habiro
topology on µ1 is then defined by taking as open sets those subsets U ⇢ µ1 having
the property that for every ↵ 2 U all but finitely many � 2 µ1 that are adjacent
to ↵ also belong to U . The Galois action is continuous in this topology, which is
in sharp contrast to the induced analytic topology. The Habiro topology is best
understood by applying techniques from noncommutative algebraic geometry to
objects like P1

F1
. Recall that the schematic point [n] of P1

F1
corresponds to the set

of primitive nth roots of unity and hence corresponds to the closed subscheme of
P1
Z defined by the nth cyclotomic polynomial �

n

(x). For n 6= m the corresponding
ideals do not have to be co-maximal (that is, the closed subschemes can intersect
over some prime numbers p) and, in fact, whenever m

n

= pk for some prime number
p there are non-split extensions of Z[x, x�1]-modules

0 �! Z[⇣
n

] �! E �! Z[⇣
m

] �! 0.
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Figure 2. Adjacency relation on 60th roots of unity.

In noncommutative algebraic geometry such situations are interpreted as saying
that the corresponding points [m] and [n] lie infinitely close to each other, as they
share some common tangent information. This then is the origin of the Habiro
topology on µ1. So in Figure 2 one should view two roots of unity to be infinitely
close whenever they are connected by a colored line, giving us a horrible topological
space. The tools of noncommutative geometry allow us to study such bad spaces
by associating noncommutative algebras to them; in this case, the Bost–Connes
algebra ⇤ naturally arises from it. More generally, one assigns to a �-ring A
a noncommutative algebra, namely the skew-monoid algebra A ⇤ N⇥

0 where the
skew-action is determined by the family of endomorphisms  n. Therefore, one
might argue that F1-geometry is essentially of a noncommutative nature. In these
notes we will explore this line of thoughts and show, in particular, that the Habiro
topology on P1

Z is a proper refinement of the Zariski-topology (that is, the cofinite
one) and is no longer compact. We can then also define an exotic new topology
on Spec(Z) by demanding that all the Smirnov-maps q : Spec(Z)! P1

F1
should be

continuous with respect to the Habiro topology on P1
F1
.

Acknowledgements. I thank Jim Borger and Jack Morava for several illumi-
nating emails. These notes are based on a rather chaotic master course given in
Antwerp in 2011–12. I thank the students for their patience and inspiring enthu-
siasm and, in particular, Pieter Belmans for pointing me to Mumford’s picture of
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P1
Z, as well as for generous help with Sage/TikZ in order to produce some of the

pictures.

1.2. Mumford’s drawings of A1
Z and P1

Z. Let us start with the iconic drawing
in Figure 3 of the “arithmetic surface,” that is, of the prime spectrum A1

Z =
Spec(Z[x]), by David Mumford in the original version of his Red Book [34, p. 141].
Subsequent more polished versions of the drawing can be found in the reprinted
Red Book [35, p. 75] and [36, p. 24] and [15, p. 85].

Figure 3. Mumford’s drawing of A1
Z.

It was believed to be the first depiction of one of Grothendieck’s prime spectra
having a real mixing of arithmetic and geometric properties, and as such was
influential for generations of arithmetic geometers. Clearly, A1

Z = Spec(Z[x]), that
is, the set of all prime ideals of Z[x], contains the following elements:

• (0) depicted as the generic point [(0)],

• principal prime ideals (f), where f is either a prime number p (giving the
vertical lines V

�

(p)
�

= Spec(F
p

[x])) or a Q-irreducible polynomial written so
that its coe�cients have greatest common divisor 1 (the horizontal “curves”
in the picture such as [(x2 + 1)]),

• maximal ideals (p, f) where p is a prime number and f is a monic polynomial
which remains irreducible modulo p, the “points” in the picture.

Mumford’s drawing focuses on the vertical direction as the vertical lines V
�

(p)
�

are
the fibers of the projection Spec(Z[x]) ⇣ Spec(Z) associated to the structural map
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Z ,! Z[x]. This is consistent with Mumford’s drawing of Spec(Z) in [34, p. 137]
where he writes “Z is a principal ideal domain like k[x], and Spec(Z) is usually
visualized as a line:

There is one closed point for each prime number, plus a generic point [(0)].” I’ve
emphasized the word “usually,” as Mumford knew at the time he was writing the
Red Book perfectly well that there were other, and potentially better, descriptions
of Spec(Z) than this archaic prime number line.

In July 1964 David Mumford attended the Woods Hole conference, which be-
came famous for producing the Atiyah–Bott fixed point theorem. On July 10th
there were three talks on the hot topic of that time, emerging from Grothendieck’s
Parisian seminar: Étale cohomology. Mike Artin spoke on “Étale cohomology of
schemes” (see [1]), Jean-Louis Verdier on “A duality theorem in the étale coho-
mology of schemes” (see [42]) and John Tate on “Étale cohomology over number
fields” (see [41]). Later in the conference, Mike Artin and Jean-Louis Verdier ran
a “Seminar on étale cohomology of number fields” [2] in which they proved their
famous duality result

Hr

et(Spec(Z),F )⇥ Ext3�r

Spec(Z)(F ,G
m

) �! H3
et(Spec(Z),F ) ⇠= Q/Z

for abelian constructible sheaves F , suggesting a 3-dimensional picture of Spec(Z).
Combining this with the fact that the étale fundamental group of Spec(Z) is

trivial (and that the étale fundamental group of Spec(F
p

) is the profinite comple-
tion of ⇡1(S1) = Z), Mumford dreamed up the analogy between prime number and
knots in S3, see for example the opening paragraph of the unpublished preprint [31]
by Barry Mazur: “Guided by the results of Artin and Tate applied to the calcula-
tion of the Grothendieck Cohomology Groups of the schemes

Spec(Z/pZ) ,�! Spec(Z),

Mumford has suggested a most elegant model as a geometric interpretation of the
above situation: Spec(Z/pZ) is like a one-dimensional knot in Spec(Z) which is
like a simply connected three-manifold.” This analogy between prime numbers and
knots has led in the past decades to the field of “Arithmetic Topology,” a good
introduction to which can be found in the lecture notes by Masanori Miyashita [32].

However, the arithmetic plane wasn’t the first attempt by Mumford to draw
an arithmetic scheme. In his lectures [33] there is, on page 28, the drawing of
P1
Z = Proj(Z[X,Y ]) reproduced in Figure 4. This drawing has at the same time

a more classical touch to it, separating the di↵erent elements of Proj(Z[X,Y ])
(that is, the graded prime ideals of Z[X,Y ] not containing (X,Y )) according to
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Figure 4. Mumford’s drawing of P1
Z.

codimension, as well as being more modern in that there is a 3-dimensional feel to it
(the closed subschemes V(X2+Y 2) and V(5X�Y ) have over- and undercrossings).
The points of Proj(Z[X,Y ]) are

• the graded ideal 0 corresponding to the unique codimension-zero point—the
generic point;

• the codimension-one points, which correspond to the graded prime ideals of
height one which are either the vertical fibers V

�

(p)
�

= P1
F
p

= Proj(F
p

[X,Y ])
or the horizontal subschemes corresponding to the homogenization (with re-
spect to Y ) of a Q-irreducible polynomial in Z[X] written such that the
greatest common divisor of its coe�cients equals 1; and

• the codimension-two points, which correspond to the graded ideals (p, F )
where F is a homogeneous element of Z[X,Y ] such that its reduction modulo
p remains irreducible.

For example, the point marked ⇤ in Figure 4 is the point (13, X � 8Y ). This
picture resembles that of A1

Z and is in fact the gluing of two such drawings over
their intersection; the first is obtained by removing the 1-section (that is, V(Y ))
and is Spec(Z[x]) with x = X

Y

, whereas the second is obtained by removing the
0-section V(X) and is Spec(Z[x�1]). They are glued together over their intersection
Spec(Z[x, x�1]).

Influential as these drawings have been, there are a couple of obvious problems
with them which will lead us unavoidably to the concept of the absolute point
Spec(F1), that is, the geometric object associated to the elusive field with one
element F1.
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(1) What is the vertical axis? These drawings of A1
Z and P1

Z as arithmetic
“planes” suggest that, apart from the “horizontal axis” Spec(Z), coming from
the structural morphisms Z ,! Z[x±], there should also be a “vertical axis”
and corresponding projection, so what is it?

(2) What is the correct topology? The drawing of the horizontal curves
suggests a natural identification between vertical fibers P1

F
p

$ P1
F
q

for primes
p 6= q, so is there one? And what is the correct topology on these fibers, and
on Spec(Z)?

1.3. The vertical axis P1
F1
. We have seen that the “points” correspond to max-

imal ideals of Z[x] which are all of the form m = (p, F ), where p is a prime number
and F is a monic irreducible polynomial such that its reduction F 2 F

p

[x] re-
mains irreducible. Clearly m lies on a unique vertical ruling V

�

(p)
�

and we wonder
whether there exists an appropriate set of horizontal rulings containing all points
m. We know that the quotient

Z[x]/m ⇠= F
p

[x]/(F ) ⇠= F
p

d

is the finite field F
p

d , where d is the degree of F , and that its multiplicative group
of units is the cyclic group C

p

d�1, and hence F
p

d consists of roots of unity together
with zero.

This observation led Yuri I. Manin in [30] to consider the ring Z[x]
S

, which is
the localization of Z[x] at the multiplicative system S generated by the polynomial
�0(x) = x together with the cyclotomic polynomials

�
n

(x) =

µ(n)
Y

i=1

(x� ✏
i

),

where ✏
i

runs over all primitive roots of unity of order n, of which there are exactly
�(n), where � is the Euler function �(n) = #{1  j < n

�

� (j, n) = 1}. It follows
that the above point m lies on the “curve”

⇥�

�
p

d�1(x)
�⇤

in the arithmetic plane
Spec(Z[x]). Hence, localizing at S removes all these curves

⇥�

�
n

(x)
�⇤

together
with all the points lying on them. That is, Spec(Z[x]

S

) has no height-two prime
ideals and so consists of (0) and the remaining height-one prime ideals, all of which
are principal. We conclude that the localized ring Z[x]

S

is a principal ideal domain.
This is completely analogous to the more classical setting in which we localize

Z[x] at the multiplicative system S0 generated by all prime numbers p, thus getting
the principal ideal domain Q[x]. Here the localization removes all the vertical
rulings V

�

(p)
�

from the arithmetic plane together with all the points m lying on
them. Hence, this suggests to take the “curves”

⇥�

�
n

(x)
�⇤

= V
�

�
n

(x)
�

as a set
of horizontal rulings, and then indeed the point m lies on the intersection of the
vertical ruling V

�

(p)
�

and of the horizontal ruling V
�

�
p

d�1(x)
�

.
Manin writes: “This suggests that the union of cyclotomic arithmetic curves

�
n

(x) = 0 can be imagined as the union of closed fibers of the projection

Spec(Z[x])�⇣ Spec(F1[x]),
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and the arithmetic plane itself as the product of two coordinate axes, an arith-
metic one, Spec(Z), and a geometric one, Spec(F1[x]), over the “absolute point”
Spec(F1).” Clearly we can repeat the same argument for Spec(Z[x�1]) and we ob-
tain as Manin’s proposal for a set of horizontal rulings on P1

Z the set of codimension-
one closed subschemes determined by the irreducible homogeneous polynomials

{�0 = X,�1 = Y } [

n

�
n

=

µ(n)
Y

i=0

(X � ✏
i

Y )
�

� n 2 N0

o

.

That is, we can extend in Figure 5 Mumford’s drawing of P1
Z with a horizontal

projection such that every codimension-two point of P1
Z lies on the intersection of

a vertical and a horizontal ruling. But, you may wonder, what is this elusive “field

(2) (3) (5) (7) (p)
Spec(F1)

P1
F
p

P1
Z

✏✏✏✏
Spec(Z)

ARITHMETIC AXIS

G
E
O
M
E
T
R
IC

A
X
IS

0
1

2
3

n
1

�
n

P
1Z✏✏✏✏

P
1F
1

Figure 5. The extended Mumford drawing

with one element” F1, and what do we mean by “geometric objects” defined over
it?

Two papers mark the beginning of this subject—one is [38] by Alexander L.
Smirnov and the other is [29] by Yuri I. Manin, both originating from the fall of
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1991, containing the first constructions over a “field with one element.” Manin in-
troduces the “absolute motive” and Smirnov “an object that partially replaces the
projective line over the constant field” in the number field case. Information about
the historical origins and motivation behind these two papers can be gleaned from
the two letters [39] from A. L. Smirnov to Y. I. Manin and from the unpublished
preprint [20] by Smirnov and Mikhail Kapranov. Also, more on Manin’s paper and
absolute motives can be found in Thas’s second chapter of the present mongraph.

It is an old idea to interpret the combinatorics of finite sets as the limit case of
linear algebra over finite fields F

q

, when q goes to 1. This led to a folklore object,
the “field with one element,” F1, vector spaces over which are just sets V or pointed
sets V• = V [ {0}—if we want to add a zero vector. The dimension of the vector
space V is its cardinality #V and an F1-linear map between vector spaces V !W
is just a map of sets (or a map of pointed sets V• !W• mapping the distinguished
element of V—the zero vector—to that of W ). Consequently, one should inter-
pret the general linear group GL

n

(F1) as the group of all permutations on a set
with n elements, that is GL

n

(F1) = S
n

. The analog of the usual determinant
det : GL

n

(F1)! F⇤
1 is then the sign group morphism sgn: S

n

! {±1} and hence
one should view the alternating group A

n

as the special linear group SL
n

(F1). As
an example of the slogan that linear algebra over F1 is the same as the combina-
torics of finite sets, consider an n-dimensional vector space V/F1 (that is, #V = n);
then the k-elements subsets of V should be viewed as points in the Grassmannian
Grass(k, n)(F1), whose cardinality is the limit of the cardinalities of the actual
Grassmannians Grass(n, k)(F

q

) over actual finite fields:
✓

n

k

◆

= lim
q!1

# Grass(k, n)(F
q

).

(The combinatorial side of the story is described in detail in the first chapter of this
monograph.) One can play for some time exploring similar analogies, but quickly
one feels that the setting lacks flexibility. In order to resolve this, Alexander L.
Smirnov introduced finite field extensions of F1. By analogy with the genuine finite
field case, for every n one should have just one field extension F1n of degree n up
to isomorphism, and Smirnov proposed to define it as the monoid

F1n = {0} [ µ
n

,

where µ
n

is the group of all roots of unity of order n. Vector spaces over F1n can
then be taken to be pointed sets V• = {0} [ V , where V is a set having a free
action of µ

n

, the dimension being the number of µ
n

-orbits. Linear maps are then
maps of pointed sets which are also maps of µ

n

-sets. Therefore, the Galois group
Gal(F1n/F1) should be the multiplicative group (Z/nZ)⇤ consisting of the power
maps µ 7! µd for all (d, n) = 1. Taking limits, the algebraic closure of the field with
one element should be considered as the pointed set, or monoid, F1 = {0} [ µ1
consisting of zero together with all roots of unity.

Smirnov and Kapranov remark in [20] that the idea of adjoining roots of unity
as analog to extension of the base field goes back at least to a letter of André Weil
to Emil Artin [43] in which Weil writes: “Our proof of the Riemann hypothesis
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[Author’s note: in the function field case] depended upon the extension of the
function fields by roots of unity, i.e. by constants; the way in which the Galois
group of such extensions operates on the classes of divisors in the original field and
its extensions gives a linear operator, the characteristic roots (i.e. the eigenvalues)
of which are the roots of the zeta function. On a number field, the nearest we can
get to this is by adjunction of lth roots of unity, l being fixed; the Galois group
of this infinite extension is cyclic, and defines a linear operator on the projective
limit of the (absolute) class groups of those successive finite extensions; this should
have something to do with the roots of the zeta function of the field. However,
our extensions are ramified (but only at a finite number of places, viz. the prime
divisors of l). Thus a preliminary study of similar problems in function fields might
enable one to guess what will happen in number fields.” Smirnov’s proposal was
then to take as the schematic points of P1

F1
the set

{[0], [1]} [ {[1], [2], [3], [4], [5], . . .}

of all positive integers N together with a point at infinity. He also declares the
degree of the point n 2 N0 to be the Euler function �(n), whereas the points [0]
and [1] have degree one. Here is why. The geometric points of P1

F
p

are of course

P1
F
p

(F
p

) =
�

[0] = [0 : 1], [1] = [1 : 0]
 

[

�

[↵] = [↵ : 1]
�

� ↵ 2 F
p

⇤ 
.

The Galois group Gal(F
p

/F
p

) = bZ+ acts on this set by fixing the points [0] and [1]
and by �([↵]) = [�(↵)]. The schematic points of P1

F
p

are then the Galois orbits
for this action and the degree of a schematic point is the size of the corresponding
orbit. If we assign to an orbit O the polynomial

Y

[↵]2O

(x� ↵),

we see that the schematic points of P1
F
p

consist of [1] together with the set of
all monic irreducible polynomials in F

p

[x] and that the notion of degree of the
schematic point coincides with the usual degree of the corresponding polynomial.

Here is an alternative description. We claim that we can identify the multi-
plicative group of the non-zero elements of the algebraic closure

F
p

⇤
⇠= µ(p)

with the group µ(p) of all roots of unity having order prime to p. Clearly, if
↵ 2 F⇤

p

n

, then the order of ↵ is a divisor of pn� 1 and hence a number prime to p.
Conversely, if (m, p) = 1 then the residue class p 2 Z/mZ is a unit and therefore
for some integer n we must have pn ⌘ 1 (mod m). But then, m | pn � 1 and the
primitive mth roots of unity can be identified with a subgroup of the multiplicative
group F⇤

p

n

. However, describing the correspondence F
p

⇤
$ µ(p) explicitly from a

given construction of F
p

is very challenging and we will address it later.
By analogy we can therefore define the geometric points of P1

F1
as being the set

P1
F1
(F1) = {[0], [1]} [ µ(1),
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with µ(1) the set of all roots of unity with order “prime to 1,” that is, the group
µ1 of all roots of unity, leading to the proposal that

F1 = {0} [ µ1.

The schematic points of P1
F1

are then the orbits of this set under the action of the

Galois group Gal(Q(µ1)/Q) = bZ⇤. Clearly, these orbits are classified by

{[0], [1]} [ {[1], [2], [3], [4], [5], . . .}

where [n] is the orbit consisting of all primitive nth roots of unity, and hence the
degree of the schematic point [n] must be equal to the number of primitive nth
roots of unity, that is, to �(n).

2. Habiro topology

2.1. The Habiro topology on P1
F1
. The additive structure of the profinite

integers bZ as well as its multiplicative group of units bZ⇤ have already made their
appearance as (absolute) Galois groups. As we will encounter them often, let us
formally define these profinite integers following Hendrik Lenstra’s account in [27].

Recall that any positive integer n has a unique representation of the form

n = c
k

· k! + c
k�1 · (k � 1)! + · · ·+ c2 · 2! + c1 · 1!

where the “digits” c
i

are integers such that 0  c
i

 i for all 1  i  k and c
k

6= 0.
We then write n in the factorial number system as n = (c

k

c
k�1 . . . c2c1)!, so for

example 25 = (1001)!. Profinite integers arise if we allow the sequences of digits
to extend indefinitely to the left to get expressions such as (. . . c4c3c2c1)!. One can
then identify the positive integers N to be those profinite integers with c

i

= 0 for
i� 0. Also the negative integers �N0 can be characterized as those profinite inte-
gers such that c

i

= i for all but finitely many i. For example, �1 = (. . . 654321)!,
that is c

i

= i for all i.
To add two profinite integers, one adds them digitwise, proceeding from the

right, and if the sum of the two ith digits is larger than i, one substracts i + 1
from it and adds a carry of 1 to the sum of the (i + 1)th digits. With this rule
we have indeed that �1 (as above) +1 = 0. To multiply two profinite integers we
use the rule that the first k digits of the product s ⇥ t depend only on the first k
digits of s and t, thereby reducing the problem of computing products to the case
of ordinary positive integers. These operations make the profinite integers bZ into a
commutative ring with unit element 1. Those in the know will have observed that
all we did was to work out the ring rules for the projective limit bZ = lim

 �

Z/n!Z.
But let us return to P1

F1
. We have defined, following Smirnov, that the schematic

points of P1
F1

are the orbits of µ1 under the action of the multiplicative group of

profinite integers bZ⇤, which is the abelian Galois group Gal(Q(µ1)/Q). We would
now like to define a topology on µ1 compatible with this action, and clearly the
induced analytic topology does not satisfy this condition.
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In [18] Kazuo Habiro introduced a new topology on µ1 in order to unify invari-
ants of 3-dimensional homology spheres, introduced first by Ed Witten by means
of path integrals and rigorously constructed by Reshitikhin and Turaev. Two roots
of unity ↵,� 2 µ1 are said to be adjacent if their quotient ↵��1 is of pure prime-
power order pm for m 2 Z and p a prime number, or equivalently, if the di↵erence
↵�� is not a unit in the integral closure of Z in Q(↵,�). Clearly, the action of the

absolute Galois group Gal(Q/Q) and of bZ⇤ = Gal(Q(µ1)/Q) preserves adjacency.
In Figure 6 we indicated adjacency of 32nd roots of unity under increasing powers

Figure 6. The relation of 2k adjacency among 32nd roots of unity, for k = 2, 3 and 4.

2k, for k  2 , 3 and 4; finally, in Figure 7 we indicated adjacency under 5th powers
of 2.

The Habiro topology on µ1 is then defined by taking as open sets those subsets
U ⇢ µ1 having the property that for every ↵ 2 U all except finitely many � 2 µ1
adjacent to ↵ also belong to U . The Galois action is continuous in this topology, in
sharp contrast to the case of the induced analytic topology. Further, any cofinite
subset is clearly open in the Habiro topology, but we will soon see that there are
plenty of other open subsets. In fact we will show that the Habiro topology is not
locally compact on µ1.

But let us first explain the F1-origins of the Habiro topology. Our depiction
of P1

Z in Figure 5 as the product of the arithmetic and the geometric axis was
an over-simplification. Whereas the vertical fibers V(p) (the red lines) are clearly
disjoint, this is not necessarily the case for the blue lines V(�

n

), because the
height-one prime ideals

�

�
n

(x)
�

and
�

�
m

(x)
�

do not have to be comaximal, and
whenever

�

�
n

(x),�
m

(x)
�

6= Z[x], there will be a point lying on both curves, so
the “lines” will intersect over certain prime numbers. This must happen, as we
know that the prime spectrum of the integral group ring Spec(ZC

n

) is connected,
see for example [37]. Hence, its minimal prime ideals, which are all of the form
V
�

�
d

(x)
�

for d | n, will intersect. For cyclotomic polynomials we have complete
information about potential comaximality:

• If m

n

6= pk for some prime number p, then
�

�
m

(x),�
n

(x)
�

= Z[x], so these
cyclotomic prime ideals are comaximal and the corresponding blue lines will
not intersect; however

• if m

n

= pk for some prime number p, then �
m

(x) ⌘ �
n

(x)d (mod p) for some
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Figure 7. The relation of 25 adjacency among 32nd roots of unity.

integer d and hence these cyclotomic prime ideals are not comaximal and the
corresponding blue lines will intersect over p.

In the second case we have non-split extensions as Z[x, x�1]-modules

0 �! Z[⇣
n

] �! E �! Z[⇣
m

] �! 0

0 �! Z[⇣
m

] �! F �! Z[⇣
n

] �! 0

In fact, Fritz-Erdmann Diederichsen, a student of Zassenhaus, calculated already

in 1940 that there are exactly pµ(min(m,n)) such extensions, in either direction,
see [11] (see also [10, Theorem 25.26]).

In noncommutative algebraic geometry we are very familiar with such situa-
tions. If S and T are two finite-dimensional simple representations of a C-algebra A
such that Ext1

A

(S, T ) 6= 0, we say that their annihilating maximal ideals belong to
the same “clique” and know that we should think of S and T as two noncommuta-
tive points lying infinitely close together, or equivalently, that S and T share some
tangent information. Using this noncommutative intuition we therefore define a
clique relation—or an adjacency relation—on pairs of natural numbers, via

m ⇠ n if and only if
m

n
= p±a

for some prime number p. It is this clique relation which lies behind the definition
of the Habiro topology on µ1. In Figure 8, we depict the inter-weaving patters of
the horizontal lines �1,�p

,�
q

,�
p

2 and �
pq

for prime numbers p < q. The Habiro
topology on P1

F1
= {[n]

�

� n 2 N⇥
0 } [ {[0], [1]} is therefore defined as follows. An

open set is a subset of P1
F1

of the form

U or U0 = U [ {[0]} or U1 = U [ {[1]} or U01 = U [ {[0], [1]},
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p

q

p2

pq

1
(p) (q)

Figure 8.

where U has the property that if [m] 2 U , then all but finitely [n] such that m ⇠ n
also belong to U . Clearly, all cofinite subsets of P1

F1
are open, but there are more.

For a prime number p define the set

U
p

= {[n] such that if p | n then p2 | n};

then U
p

is open, for if [n] 2 U
p

and p - n, then [m] 2 U
p

when m ⇠ n except for
the one point [pn], and if n = pkn0, then again [m] 2 U

p

when m ⇠ n, except for
the one point [pn00]. But still, the complement of U

p

is infinite, as

P1
F1
� U

p

= {[pa]
�

� (p, a) = 1} [ {[0], [1]}.

More generally, if m = pk1
1 · · · pkl

l

, then the set

U
m

= {[n] such that, for all 1  i  l , if p
i

| n then pki

+1
i

| n}

is open in the Habiro topology and we have relations such as U
m

\U
n

= Ulcm(m,n).
A striking feature is that P1

F1
is not compact in the Habiro topology. Indeed,

as [n] 2 U
q

for all primes q such that q - n, we have that

P1
F1

=
[

p prime

U01
p

,

but no finite sub-cover exists as [p1 · · · pk] /2 U01
p1

[ · · · [ U01
p

k

.
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2.2. The étale site of F1. Until now our exposition has been pretty intuitive
and we would like to have a solid framework to give formal definitions for these
elusive objects as well as to perform actual calculations. Such a proposal was put
forward by Jim Borger in 2009 in [3] and it streamlined a plethora of previous
attempts, all giving more or less the same class of examples. For a map of F1-land
before Borger we refer to [28].

Borger’s approach is based upon the notion of �-rings in the sense of Grothen-
dieck’s Riemann–Roch theory [16]. For us, a �-ring will be a commutative ring R
with identity without additive torsion, equipped with maps �n : R! R for n 2 N
satisfying an unwieldy list of axioms, see for example [21, Chapter 1]. By [44],
under our no-torsion assumption, R is a �-ring if and only if there is a collection of
commuting ring endomorphisms  p : R! R for all prime numbers p such that  p

is a lift of the Frobenius automorphism on R⌦Z Fp

, that is, we have a commuting
diagram for all prime numbers p

R
 

p

//

✏✏

R

✏✏
R/pR

Frob // R/pR

Borger’s proposal is to define F1-algebras as Z-algebras with a �-ring structure, the
idea being that one can interpret the collection of commuting endomorphisms { p

}

as descent data from Z-algebras to F1-algebras. Maps of F1-algebras are then mor-
phisms of �-rings, that is, ring morphisms commuting with the Frobenius lifts { p

}.
Accepting this proposal, it then follows that base ring extension � ⌦F1 Z can be
viewed formally as the operation of forgetting the �-ring structure, that is, of
stripping o↵ the F1-structure.

In this way we can define F1 to be Z with its unique �-ring structure in which
all  p = idZ. Similarly, the polynomial ring F1[x] can be defined to be the integral
polynomial ring Z[x] equipped with the �-ring structure defined by  p(x) = xp,
which is indeed a Z-endomorphism lift of the Frobenius automorphism on F

p

[x] by
little Fermat and the binomial theorem. The field F1n should then be taken to be
the integral group ring Z[µ

n

] with �-ring structure induced by  p(µ) = µp. This
gives the fanciful identities

F1n ⌦F1 Z = Z[µ
n

], F1[x]⌦F1 Z = Z[x] and P1
F1
⌦F1 Z = P1

Z,

where on the right-hand sides we forget about the �-structures.
If G is a finite group and �1, . . . ,�h

are its irreducible characters, then the
Grothendieck ring of finite-dimensional C[G]-representations

R(G) = Z�1 � . . .� Z�
h

has a �-ring structure defined by  p(�) = �0, where �0 is the class function
�0(g) = �(gp) for all g 2 G, see for example [37, §9.1]. If p does not divide the order
of G, then  p is an automorphism permuting the irreducible characters. As the  p
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commute, we can define operations  n = ( p1)�a1
� · · ·� ( p

k)�ak if n = pa1
1 · · · pnk

k

.
The  n are the Adams operations and they give an action of the multiplicative
monoid N⇥

0 on R(G). On the other hand, we have that

Q(µ1)⌦Z R(G) ⇠= Q(µ1)⇥ · · ·⇥Q(µ1)
| {z }

h copies

and hence there is a Galois action of bZ⇤ = Gal(Q(µ1)/Q) on Q(µ1) ⌦Z R(G).
This Galois action is compatible with the action of Adams operations on R(G) via

the embedding N⇥
0 ,! bZ⇤, see for example [37, §12.4].

James Borger and Bart de Smit vastly generalized this example in [4] to include
all reduced �-rings R that are finite projective Z-modules, allowing us to describe
the Galois (or étale) site of F1.

Let us first consider the case when K = R ⌦Z Q is a �-ring and a finite étale
Q-algebra. By Grothendieck’s version of Galois theory, we have an anti-equivalence
of categories between the category of finite étale Q-algebras and the category of
finite discrete sets equipped with a continuous action of the absolute Galois group
G = Gal(Q/Q), assigning to K the set

S = algQ(K,Q)

on which � 2 G acts by left composition, that is, � · s = � � s. If we have in
addition a �-ring structure, that is, a commuting family of Q-endomorphisms  n

on K, then we have also an action of the monoid N⇥
0 on S by composition on the

right, that is, n · s = s �  n. Consequently, the category of rational �-algebras
which are finite étale over Q is the category of finite discrete sets equipped with a
continuous action of the monoid Gal(Q/Q) ⇥ N⇥

0 , where N⇥
0 is given the discrete

topology.
The Galois action on S gives us a group morphism

Gal(Q/Q) �! perm(S) ⇢ maps(S),

where perm(S) are all permutations on S and maps(S) are all set-maps from S to

itself. The kernel N gives us a finite Galois extension L = QN

of Q with Galois
group G = Gal(Q/Q)

�

N , and as R⌦ZQ = K = L1⇥· · ·⇥L
k

, all L
i

are subfields of

L and hence every � 2 G induces an automorphism on L
i

. Let O
L

be the integral
closure of Z in L; then by Galois theory we have

S = algQ(K,Q) = algQ(K,L) = algZ(R,O
L

)

and we have an action by (�, n) 2 G⇥ N⇥
0 on S via

R
s //

&&

O
L

�

✏✏
R

 

n

OO 88

O
L
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By Chebotarev’s theorem, there are infinitely many prime numbers p such that
there exists a prime ideal P / O

L

lying over p with � a lift of the Frobenius
automorphism on O

L

/P , so we can choose a prime p not dividing the discrimi-
nant �(R). Note that if p - �(R) there is a unique lift of the Frobenius map which
is automatically an automorphism by the category equivalence between étale F

p

-

and étale bZ
p

-algebras, where bZ
p

is the p-adic completion. But then, the restriction

of � on R⌦bZ
p

to R via the embedding s is equal to  p and we have ��s = s� p on
R. As this holds for any � 2 G we have that the image of G! perm(S) ⇢ maps(S)
is contained in the image of N⇥

0 ! maps(S). But, as N⇥
0 is an abelian monoid,

it follows that the image in perm(S) is abelian and hence that L/Q is an abelian
Galois extension!

But now we can invoke the Kronecker–Weber theorem asserting that L ⇢ Q(µ
c

)
where c is only divisible by primes p which ramify in L, and as L is the common
Galois extension of the components of R⌦ZQ, those pmust also divide�(R). That
is, there exists a c 2 N with all its prime factors dividing the discriminant �(R)
such that the Galois action on S = algZ(R,O

L

) factors through the cyclotomic
character

Gal(Q/Q)�⇣ (Z/cZ)⇤ = Gal(Q(µ
c

)/Q)

and for all p - �(R) the action of p 2 N⇥
0 on S is equal to that of p (mod c) 2

Gal(Q(µ
c

)/Q).

So far, we have factored the Gal(Q/Q)⇥N⇥
0 -action on S via bZ⇤

⇥N⇥
0 and now

we want to factor it further through the map bZ⇤
⇥ N⇥

0 �!

bZ⇥ via the natural

embeddings of both factors and where bZ⇥ is the multiplicative monoid of the
profinite integers bZ.

We can apply the foregoing for every d 2 N⇥
0 on the sub �-ring  d(R) ⇢ R with

corresponding finite set d · S. That is, there exists c
d

2 N0 such that the Galois
action on d · S factors through (Z/c

d

Z)⇤ and such that the action of any n with
nd · S = d · S is the same as the action of n (mod c

d

). For every prime number p
let a

p

be the smallest power such that pap

+1
· S = aap

· S; as a
p

> 0 only for those
p | �(R), we have a finite number

r0 =
Y

p|�(R)

pap

which satisfies the property that for all n 2 N0 we have that n · S = gcd(n, r0) · S.
Now let r be the least common multiple of all d ·c

d

where d | r0; then we claim that
the above action factors through the multiplicative monoid (Z/c

d

Z)⇥, that is, we
have to show that if d1 ⌘ d2 (mod r), then the actions of d1 and d2 on S coincide.
As r0 | r, we have gcd(d1, r0) = gcd(d2, r0) = d, whence d1 · S = d · S = d2 · S. If
we write d

i

= dd0
i

this entails that gcd(d0
i

, c
d

) = 1, but then d1 = dd01 ⌘ dd02 = d2
(mod dc

d

). But then, d01 ⌘ d02 (mod c
d

) and so they act in the same way on d · S
whence d1 and d2 act in the same way on S!

This then is the main result of Borger and de Smit [4]: that a necessary and
su�cient condition for the existence of an integral �-ring R which is finite and
projective over Z contained in the �-ring R ⌦Z Q = K is that the action of the
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monoid Gal(Q/Q)⇥N⇥
0 on the finite set S describing K, factors through an action

of the monoid bZ⇥. It follows that the category of all such �-rings is anti-equivalent
to the category of finite discrete sets with a continuous action of the monoid bZ⇥

and that every such �-ring is contained as �-ring in a product of cyclotomic fields,
generalizing the case of the Grothendieck ring R(G) of a finite group G.

Motivated by Grothendieck’s interpretation of Galois theory, we have the fan-
ciful picture of the absolute Galois monoid of the field with one element F1:

Gal(F1/F1) ⇠= bZ⇥.

Because the subset 0·S ⇢ S is Galois invariant, it corresponds to a factor Q inK, so
K can never be a field unless K = Q. In particular, whereas Z[µ

n

] = Z[x]/(xn

�1)
is an integral �-ring, the subring Z[⇣

n

] of the cyclotomic field Q(⇣
n

) where ⇣
n

is a
primitive nth root of unity is not.

For example, let us work out the �-ring structure on R(S3), the representation

ring of the symmetric group S3 and its associated finite bZ-set. For any finite group
G let X = X(G) be the set of conjugacy classes in G; then we can identify this set
with

S = algZ(R(G),C) = {x : R(G) �! C
�

� x(V
i

) = �
V

i

(x) 8V
i

2 irreps(G)}.

Moreover, one knows in general that the discriminant verifies

�
�

R(G)
�

=
(#G)#X

Q

x2X

#x
.

Specializing to the case when G = S3 we have that �
�

R(S3)
�

= 36, and we recall
that the character table of S3 is

x [1] [2] [3]
() (1, 2) (1, 2, 3)

V1 1 1 1
V2 1 �1 1
V3 2 0 �1

The Frobenius lifts (a.k.a. Adams operators) send a class function � to the class
function  n(�) : g 7! �(gn). Moreover, ()n = () for all n, (1, 2)n = () for even n
and = (1, 2) for odd n, and (1, 2, 3)n = () for n a multiple of 3, and is conjugated
to (1, 2, 3) otherwise. Therefore, if �

i

is the character function of V
i

, one computes
from the character table that for prime numbers p we have

•  p(�1) = �1, 8 p

•  2(�2) = �1 and  p(�) = �2, 8 p 6= 2

•  2(�3) = �1 + �3 � �2,  3(�3) = �1 + �2 and  p(�3) = �3, 8 p 6= 2, 3
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which determines the �-ring structure on R(S3). The action of n 2 N⇥
0 on the

algebra map [i] 2 algZ(R(S3),C) is given by n · [i] = [i] � n, and hence it follows
from the above that p · [i] = [i] for all primes p 6= 2, 3 and one verifies that the
action of 2 and 3 is given by the following maps on S = {[1], [2], [3]};

[1]
3zz2 $$

[2]

3

WW

2

??

[3]

2

WW

3

__

From this it follows that 2 · S = 22 · S = {[1], [3]} and 3 · S = 32 · S = {[1], [2]},
whereas 6 · S = 12 · S = 18 · S = {[1]}. Further, the Galois action on R(G) and
any of its sub �-rings is trivial. With the notations used before we therefore get
that r0 = 6 and all c

d

= 1, showing that the bZ⇥-action on S factorizes through the
multiplicative monoid action of (Z/6Z)⇥ as indicated in the above colored graph.

2.3. What is P1
F1
? Now that we have a formal definition of F1-algebras, namely

those Z-rings without additive torsion which are �-rings, it makes sense to define
for any such �-ring R its �-spectrum, which is the collection of all kernels of �-ring
morphisms from R to reduced �-rings

Spec

�

(R) = {ker(R
�

�! A)
�

� A is a reduced �-ring and � 2 alg

�

(R,A)},

which “is” clearly functorial.
The geometric or F1-points in the �-spectrum then correspond to kernels of

�-ring morphisms R ! A, where A is one of the integral �-rings described in
the previous section, that is, a finite projective Z-ring with �-structure such that
A⌦ZQ is an étale Q-algebra. We have seen that such rings are of the form A = A

S

,
where S is a finite set with a continuous monoid action by bZ⇥. As these sets are
ordered by inclusions S ⇢ T compatible with the bZ⇥-action and knowing that via
the anti-equivalence this corresponds to �-ring epimorphisms A

T

⇣ A
S

, it makes
sense to define the maximal �-spectrum of R to be

max

�

(R) = {ker(R
�

�⇣ A)
�

� A⌦Q is étale over Q and � 2 alg

�

(R,A)}.

As this space may still be too hard to compute in specific examples, we often reduce
to the subset of all cyclotomic points (or in Manin parlance of [30], the cyclotomic
coordinates), which is the set

maxcycl(R) = {ker

�

R
�

�⇣ Z[µ
n

]
�

�

� n 2 N,� 2 alg

�

�

R,Z[µ
n

]
�

}.

For the �-ring Z[x] we have that

Spec

�

(Z[x]) = {0} [ max

�

�

Z[x]
�

and maxcycl

�

Z[x]
�

=
��

�
n

(x)
�

�

� n 2 N
 

,
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since any �-ring epimorphism Z[x] ⇣ Z[µ
n

] must map x to xi with (i, n) = 1, that
is, to a primitive nth root of unity. Hence, we finally have a formal definition of
P1
F1
: it is the set of cyclotomic points of P1

Z, equipped with the Habiro topology.
One can again use methods from noncommutative algebraic geometry to obtain

“geometric objects” and their associated “rings of functions” and apply this to the
setting of F1-geometry to arrive at a similar description.

In [22] Maxim Kontsevich and Yan Soibelman introduce a noncommutative thin
scheme (over the complex numbers) as a covariant functor X : fd-algC ! sets

from finite-dimensional (not necessarily commutative) C-algebras to sets, com-
muting with finite projective limits. They show that every such thin scheme is
represented by a coalgebra CX which they call the coalgebra of distributions on X,
and its dual algebra C⇤

X (note that we use the superscript ⇤ in this discussion to
denote the full linear dual, and not the group of units) is then called the algebra
of functions O(X) on X. We will be interested in a�ne thin schemes obtained by
associating to a C-algebra A its representation functor

rep

A

: fd-algC �! sets, B 7�! algC(A,C).

By Kostant duality (see for example [40, Chapter VI]), this thin scheme is repre-
sented by the dual coalgebra Ao which consists of all linear functionals on A which
factor through a finite-dimensional algebra quotient of A:

Ao = {f 2 A⇤ �
�

ker(f) � I /A such that dimC(A/I) <1},

and hence its corresponding ring of functions is (Ao)⇤. One can use the A1-struc-
ture on Yoneda-Ext algebras to describe the structure of the dual coalgebra Ao for
general A, see [24].

The motivating example being X a commutative (complex) a�ne variety, when
the dual coalgebra C[X]o decomposes over the points of X, we obtain—since dis-
tinct maximal ideals m

x

are comaximal—that

C
X

= C[X]o =
M

x2X

C
X,x

,

where C
X,x

is a subcoalgebra of the enveloping coalgebra U(T
X,x

) of the abelian
Lie algebra on the Zariski tangent space T

X,x

= (m
x

/m2
x

)⇤. Consequently, the ring
of functions also decomposes over the points

(C[X]o)⇤ =
Y

x2X

bOm,

where bOm
x

is the m
x

-adic completion of the local ring Om
x

. Hence, the dual
coalgebra contains a lot of geometric information: the points of X can be recovered
from it as the simple factors of the coradical corad(C[X]o) and its dual algebra
gives us the basics of the étale topology on X.

Let us illustrate this in the case of interest, that is, when X = A1
C with

coordinate ring C[x]. Every cofinite-dimensional ideal of C[x] is of the form
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I =
�

(x � ↵1)e1 · · · (x � ↵
k

)ek
�

, and since the di↵erent factors are comaximal,
linear functionals on C[x]/I split over the distinct factors

✓

C[x]
I

◆⇤
=

✓

C[x]
(x� ↵1)e1

◆⇤
� · · ·�

✓

C[x]
(x� ↵

k

)ek

◆⇤
.

Each of these factors is the dual coalgebra of a truncated polynomial ring and if
we take zi to be the basis dual to the yi we have
✓

C[y]
yn

◆⇤
= C · 1 + Cz + · · ·+ Czn�1 with

(

�(zk) =
P

i+j=k

zi ⌦ zj ,

✏(zi) = �0i,

which is the structure of the truncated enveloping algebra. Hence we have proved
that

C[x]o =
M

↵2A1
C

U(TA1
C,↵

), and hence (C[x]o)⇤ =
Y

↵2A1
C

C[[x� ↵]],

the natural inclusion C[x] ,! (C[x]o)⇤ sending a polynomial to its Taylor series
expansion in every point ↵ 2 A1

C.
An intermediate step in arriving at F1-geometry would be to extend this com-

plex coalgebra approach to integral schemes Spec(R), where R is a finitely gen-
erated Z-algebra, without additive torsion. In [23] it was shown that in this
case we still have Kostant duality, which asserts that for all Z-algebras R and
all Z-coalgebras C there is a natural one-to-one correspondence

algZ(R,C⇤) ! coalgZ(C,R
o)

if we take as the modified dual coalgebra Ro the set of all g 2 R⇤ = HomZ(R,Z)
with the property that ker(g) contains a two-sided ideal I /R such that R/I is a
finitely generated projective Z-module.

The crucial di↵erence with the complex case is that now the relevant ideals I
no longer need to be comaximal and that there is no longer a decomposition of
the dual coalgebra. In our example when R = Z[x] the relevant ideals are those
generated by a monic polynomial f which can be decomposed in irreducible monic
polynomials f = ge11 · · · gek

k

. But, as it may happen that (g
i

, g
j

) 6= Z[x], we have

Z[x]
f

6=
Z[x]
ge11

� · · ·�

Z[x]
gek
k

,

and we can no longer decompose the dual coalgebra Z[x]o over the codimension-one
points V(g

i

). Hence, we must recourse to describe the dual coalgebra as a direct
limit

Z[x]o = lim
�!

✓

Z[x]
f

◆⇤
,

where the limit is considered with respect to divisibility of monic polynomials, as
there are canonical inclusions of Z-coalgebras,

✓

Z[x]
f

◆⇤
,�!

✓

Z[x]
g

◆⇤
whenever f | g.
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But then, also the Z-algebra of distribution must be described as an inverse limit
and we have a canonical ring morphism

Z[x] ,�! (Z[x]o)⇤ = lim
 �

Z[x]
f

.

Finally, to get at F1-geometry via this coalgebra approach we start with a �-ring
R and define the �-dual coalgebra

Ro

�

= {g 2 R⇤ �
�

9 I ⇢ ker(g) such that R/I is a �-ring finite over Z },

which is indeed a coalgebra since the tensor product of �-rings is again a �-
ring. Or specialize even further to the cyclotomic dual coalgebra Ro

cycl on the
sub-coalgebra of Ro

�

spanned by the maps g having in their kernel an ideal I
such that R/I ⇠= Z[x]/�1 � · · ·� Z[x]/�

k

, where the �
i

are products of cyclotomic
polynomials �

n

(x).
For example, the (cyclotomic) coalgebra representing P1

F1
would then be

CP1
F1

= Z[t
x

]� lim
�!

✓

Z[x]
�

◆⇤
� Z[t

x

�1 ],

where the � run in the multiplicative system generated by the cyclotomic poly-
nomials �

n

(x) with n 2 N0, and the other two factors, which are the enveloping
coalgebras of the one-dimensional Lie algebra, correspond to the points [0] and
[1]. Its corresponding algebra of distributions is then

Z[[x]]� dZ[x]Hab � Z[[x�1]],

where dZ[x]Hab is the Habiro ring or the cyclotomic completion of Z[x] introduced
and studied by Kazuo Habiro in [17].

The Habiro ring is the straightforward generalization along the geometric axis
of the profinite integers bZ along the arithmetic axis. For we can write it as

dZ[x]Hab = lim
 �

Z[x, x�1]

[n!]
x

with [n!]
x

= (xn

� 1)(xn�1
� 1) · · · (x� 1).

Its elements have a unique description as formal Laurent polynomials over Z of
the form

1
X

n=0

a
n

(x)[n!]
x

2 Z[[x]][x�1] with deg

�

a
n

(x)
�

< n,

and hence can be evaluated at every root of unity (but possibly nowhere else).
Some of its elements had been discovered before. For example, during his inves-

tigations on Feynman integrals, Maxim Kontsevich observed that the formal power
series

P1
n=0(�1)

n[n!]
x

is defined in all roots of unity, and Don Zagier subsequently
proved the hilarious identity

1
X

n=0

(�1)n[n!]
x

= �
1

2

1
X

n=1

n�(n)x
(n2�1)

24 ,
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where � is the quadratic character of conductor 12, whereas the functions on both
sides never makes sense simultaneously. The right-hand side converges only within
the unit disc, but still if one approaches a root of unity radially, the limit of the
function values on the right coincide with the values on the left. Such functions
are said to “leak through” roots of unity.

The Habiro topology was introduced to describe the properties of the Habiro

ring dZ[x]Hab. For example, if U is an infinite set of roots of unity having ↵ 2 µ1
as a limit point, meaning that U contains infinitely many elements adjacent to ↵,

then if f 2 dZ[x]Hab evaluates to zero in all roots � 2 U , one has f = 0. For any
subset S ⇢ N0 define the completion

Z[x, x�1]S = lim
 �

�2�⇤
S

Z[x, x�1]

�

where �⇤
S

is the multiplicative set of all monic polynomials generated by all cy-
clotomic polynomials �

n

(x) for n 2 S. Among the many precise results proved
in [17] we mention the foolowing two.

• If S0
⇢ S has the property that every component of S with respect to the

nearness relation contains an element of S0, then the natural map between
the completions is an inclusion

⇢S
S

0 : Z[x, x�1]S ,�! Z[x, x�1]S
0
.

• If S is a saturated subset of N0, which means that for all n 2 S also its divisor
set hni = {m | n} is contained in S, then we have

Z[x, x�1]S =
\

n2S

Z[x, x�1]hni =
\

n2S

\Z[x, x�1](xn�1),

where the right-hand side terms are the I-adic completions of Z[x, x�1] with
respect to the ideals I = (xn

� 1).

2.4. Conway’s big picture. In [9], John H. Conway investigates Q-projectivity
classes of lattices commensurable with the standard 2-dimensional lattice L1 =
heee1, eee2i = Zeee1 + Zeee2 and he shows that any such lattice has a unique form

L
M,

g

h

= hMeee1 +
g

h
eee2, eee2i

with rational numbers M > 0 and 0  g

h

< 1. Lattices L
M,0 = L

M

are called
number-like and if, in addition, M 2 N0, we just call them number lattices.

We now define a metric on the set of (equivalence classes) of lattices. For two
lattices L = L

M,

g

h

and L0 = L
N,

i

j

consider the matrix

D
LL

0 =



M g

h

0 1

�

·



N i

j

0 1

��1

,
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and let ↵ be the smallest positive rational number such that all entries of the
matrix ↵D

LL

0 are integers. The hyperdistance between the lattices L and L0 is
then defined to be the integer

�(L,L0) = det(↵ ·D
LL

0) 2 Z

One can show that the hyperdistance is symmetric and that log
�

�(L,L0)
�

is an
ordinary metric on the projectivity classes of commensurable lattices.

Conway’s big picture B is the graph with vertices the (classes of) lattices com-
mensurable with L1, and there is an edge between the lattices L and L0 if and only
if �(L,L0) = p, for a prime number p. Conway shows that the sub-graph consisting
of all lattices whose hyperdistance to L1 is a power of p is the infinite p-adic tree
T
p

, that is a (p + 1)-valent tree, since for example the p-neighbors of L1 are the
lattices L

p

and L 1
p

,

k

p

for 0  k < p. It must be a tree, as the first step of the

shortest path to L1 from L
p

j must be to L
p

j�1 since the other possibilities L
p

j+1

and L
p

j

,

k

p

all have hyperdistance pj+1 from L1. Further, he shows that the big

picture is the product B = ⇤
p

T
p

. Here’s part of the 2-tree

1
8 ,

5
8

1
8 ,

1
8

1
4 ,

1
8

1
4 ,

3
8

1
4 ,

1
4

1
2 ,

1
4

1
8 ,

3
8

1
4 ,

3
8

1
4 ,

3
4

1
2 ,

1
2 1, 1

2
1
2 ,

3
4

1
8 ,

7
8

1
4 ,

5
8

1 2

1
8 ,

1
4 1, 3

4

1
4 ,

1
2

1
2 4 2, 1

2

1
8 ,

3
4 1, 1

4

1
4 8

1
8 ,

1
2

1
8 16 4, 1

2

Sometimes it is helpful to choose another normalization for the lattice L by swap-
ping the vectors eee1 and eee2. Let vvv1 = Meee1 + g

h

eee2 and vvv2 = eee2 be the standard
generators of L = L

M,

g

h

; then L is also generated by the vectors

hvvv1 � gvvv2 = hMeee1 and g0vvv1 � h0vvv2 = g0Me1e1e1 +
1

h
eee2,
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where g0, h0
2 Z are such that gg0 � hh0 = 1. Dividing by hM we get the reversed

normalized form for L
M,

g

h

L =
⌦ 1

h2M
eee2 +

g0

h
eee1, eee

↵

.

So we get an involution on the vertices of the big picture

(M,
g

h
) ! (

1

h2M
,
g0

h
),

where g0 is the inverse of g modulo h.
The vertices of the big picture correspond to couples (M, g

h

), so are elements
of Q0 ⇥ Q/Z, and we can identify each of the factors Q/Z (written additively)
with µ1 (written multiplicatively). One quickly verifies that for the hyperdistance
we have

�(L
M

, L
M,

g

h

) = h2.

So the cyclic subgroup µ
n

corresponding to M is contained in a ball B(L
M

, n2)
around the lattice L

M

with hyperdistance n2. In particular, the non-trivial ele-
ments of the cyclic group µ

p

for p a prime number have hyperdistance p2 from L
M

and are the p� 1 vertices in the p-tree that are connected to L
pM

.
The lattices L

n

with n 2 N0 form the big cell in this picture, which is the
product of graphs of type A+

1, one for each prime number p

A+
1 : 1 �! p �! p2 �! · · · �! pk �! · · ·

and can be identified with N⇥
0 = P1

F1
\ {[0], [1]}. But then, we can extend the

Habiro topology to Conway’s big picture by calling two lattices related if their
hyperdistance is a pure prime-power:

L ⇠ L0
() �(L,L0) = pa.

An open set is then a subset U of vertices of the big picture having the property
that for each L 2 U , the set {L0

⇠ L
�

� L0 /2 U} is finite. Clearly, the restriction of
the extended Habiro topology yields the usual Habiro topology on the big cell N⇥

0 .
The free Z-module on the vertices of B, written ZB, is the playground of several

operations on B. Some well-known classical ones are the Hecke operators T
n

which
take the vertex representing the lattice L to the sum of all vertices corresponding
to lattices L0 with �(L,L0) = n. That is, T

n

replaces the center of each ball of
hyperradius n by its periphery. For a > 1, these Hecke operators clearly satisfy
the relation

T
p

� T
p

a = pT
p

a�1 + T
p

a+1 ,

as the left-hand side takes a vertex to the sum of all neighbors of vertices at
hyperdistance pa from it, but in this sum each vertex of hyperdistance pa�1 occurs
p times and each point of hyperdistance pa+1 just once, giving the right-hand side.
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More operators come from the action of a certain noncommutative algebra
on ZB, the Bost–Connes algebra ⇤, see for example [7]. If ⇤ hadn’t been con-
structed years before (in [5]), it would have arisen naturally from F1-geometry by
a construction which is well-known in noncommutative algebraic geometry.

If X is an a�ne C-variety with a linear action by a finite group G, then the
coordinate ring of its quotient variety C[X/G] = C[X]G is Morita equivalent to
the skew group algebra C[X]⇤G (that is, they have equivalent module categories),
which as a C-vector space is the group algebra C[X]G, but with multiplication
induced by f ·e

g

= e
g

·�
g

(f) where �
g

denotes the action by g on C[X]. That is, one
way to handle the descended algebra C[X]G is by considering the noncommutative
skew group algebra C[X] ⇤G.

In Borger’s proposal for F1-geometry this approach may be very helpful, as
an F1-algebra is a Z-algebra R together with descent data given by the action of
the monoid N⇥

0 by the endomorphisms { n

}. Now we cannot directly construct

the invariant algebra RN⇥
0 (which would be our elusive F1-algebra), but we can

still construct the skew-monoid algebra R ⇤ N⇥
0 which, as before, coincides as

a Z-module with RG =
L

n2N⇥
0
Re

n

and has a noncommutative multiplication

induced by r · e
n

= e
n

· 
n

(r).
For example, let us try to understand the algebraic closure F1 by considering the

associated skew-monoid algebra. The �-algebra corresponding to F1 is the group
algebra Z[µ1] with Frobenius lifts  n induced by sending a root of unity ! to !n.
If we write the group law additively instead of multiplicatively we get the group
algebra Z[Q/Z] with  n(e

g/h

) = e(g/h mod 1). The corresponding skew-monoid
algebra is then

Z[Q/Z] ⇤ N⇥
0 =

M

n2N⇥
0

Z[Q/Z]e
n

with e
g/h

· e
n

= e
n

· n(e
g/h

).

Noncommutative algebraic geometers would then study properties of this ring to
get insight into F1. Noncommutative di↵erential geometers however work with
⇤-algebras, therefore they need to construct the minimal ⇤-algebra generated by
Z[Q/Z] ⇤ N⇥

0 and therefore consider the algebra

Z[Q/Z] ./ N⇥
0 =

M

m,n2N⇥
0 ,(m,n)=1

e⇤
m

Z[Q/Z]e
n

,

in which the generators e⇤
m

, e
n

, and e
g/h

satisfy the following multiplication rules:

e
n

· e
g/h

· e⇤
n

= ⇢
n

(e
g/h

) where ⇢
n

(e
g/h

) =
X

n· i
j

= g

h

e
i/j

e⇤
n

· e
g/h

=  n(e
g/h

)e⇤
n

e
g/h

· e
n

= e
n

· n(e
g/h

)

e
n

· e
m

= e
nm

e⇤
n

· e⇤
m

= e⇤
nm

e⇤
n

· e
n

= n

e
n

· e⇤
m

= e⇤
m

· e
n

if (m,n) = 1.
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This algebra Z[Q/Z] ./ N⇥
0 is then the (integral version of the) Bost–Connes alge-

bra ⇤ constructed in [7], where it is also shown that there is an action of ⇤ and
of ZB given by the rules

e
n

· L c

d

,

g

h

= Lnc

d

,⇢

m

( g

h

) where m = (n, d)

e⇤
n

· L c

d

,

g

h

= (n, c)L
c

nd

, 
n

m ( g

h

)
where m = (n, c)

e
a/b

· L c

d

,

g

h

= L c

d

, c( a

b

) g

h

with ⇢
n

and  n defined on g

h

as they were defined before on e
g/h

. So far, we
have identified P1

F1
(equipped with the adjacency relation among its schematic

points) with the big cell in the Conway picture. It is believed that this bigger
picture will play an ever increasing role of importance in future developments in
F1-geometry and will illuminate surprise appearances of the Bost–Connes algebra
⇤ as a generalized symmetry on geometric F1-objects, see for example [6].

3. Smirnov’s proposal

3.1. Exotic topology on Spec(Z). Now that we have a formal definition of
P1
F1

let’s try to make sense of the ultimate question in F1-geometry: what (if any)

geometric object is Spec(Z) over F1? Again, we will start with an intuitive proposal
due to A. L. Smirnov [38] and later try to formalize it using �-rings.

Smirnov proposes to take as the set of schematic points of Spec(Z) the set

{[2], [3], [5], [7], [11], [13], [17], . . .} [ {[1]}

of all prime numbers together with a point at infinity. The degrees of these
schematic points are then taken to be

deg([p]) = log(p) and deg([1]) = 1.

To understand this proposal, recall that if C is a smooth projective curve over F
p

,
then a schematic point P 2 C corresponds to a discrete valuation ring O

P

in the
function field F

p

(C) with maximal ideal m
P

= (t
P

), where t
P

is a uniformizing
parameter. The degree deg(P ) of the schematic point P 2 C, is defined to be n if
O

P

/m
P

= F
p

n . A rational function f 2 F1(C) is said to be regular in P if f 2 O
P

and the order of f in P is the valuation of f , that is, ord
P

(f) = k if f 2 mk

P

\mk+1
P

for a unique k 2 Z. The divisor of the rational function f 2 F
p

(C),

div(f) =
X

P2C

ord

P

(f)P

then has degree zero, that is

0 = deg

�

div(f)
�

=
X

P2C

ord

P

(f)deg(P ).
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By analogy, we may take the schematic points of Spec(Z) to be the di↵erent discrete
valuation rings in the corresponding “function field” Q. By Ostrovski’s theorem,
these are the p-adic valuations

v
p

(q) = n if q = pn
r

s
and p - r · s

for every prime number p, together with the real valuation

v1(q) = � log(|q|);

the minus sign arises because of the convention that v1(0) = 1. But then, if

q = ±

pe11 · · · per
r

qf11 · · · qfs
s

, its corresponding divisor must be

div(q) =
r

X

i=1

e
i

[p
i

]�
s

X

j=1

f
j

[q
j

]� log(|q|)[1].

The proposal for the degrees of the schematic points of Spec(Z) is then the only
possible one (up to a common multiple) such that the degrees of all these principal
divisors are equal to zero. Any non-constant rational function f 2 F

p

(C) deter-
mines a cover map f : C ⇣ P1

F
p

. Smirnov defines as the constant rational numbers

the intersection Q \ F1 = {0} [ {1,�1} = F12 . Therefore, we would expect by
analogy rational numbers q = a

b

2 Q with (a, b) = 1 to determine a cover

q : Spec(Z)�⇣ P1
F1
.

Smirnov’s proposal in [38] is to define a map by

[p] 7�!

8

>

<

>

:

[0] if p | a,

[1] if p | b,

[n] if p - ab and a(b)
�1

has order n in F⇤
p

,

and by

[1] 7�!

(

[0] if a < b,

[1] if a > b.

To motivate this definition let us again look at the function field case. Any
rational function f 2 F

p

(C) defines a map between the geometric points

C(F
p

) �! P1
F
p

(F
p

) P 7�!

(

[f(P ) : 1] if f 2 O
P

,

[1] if f /2 O
P

,

with f(P ) = f 2 O
P

/m
P

⇢ F
p

. Because f 2 F
p

(C), we have for all P 2 C(F
p

)
and all � 2 Gal(F

p

/F
p

) that �
�

f(P )
�

= f
�

�(P )
�

, and hence this map induces a
map between the schematic points C ! P1

F
p

sending a schematic point (a Galois
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orbit of a geometric point P ) to the Frobenius orbit of the root of unity f(P ) (or
its corresponding monic irreducible polynomial in F

p

[x]). Returning to the above
map given by a rational number q = a

b

, it is clear that q([p]) = [0] for all prime
factors p of a and that q([p]) = [1] for all factors of b. To understand the other

images, note that if a(b)
�1

has order n in F⇤
p

, there exists a prime ideal P in the
ring of cyclotomic integers Z[✏] (for ✏ a primitive nth root of unity) lying over (p),
that is P \ Z = (p), with corresponding discrete valuation ring O

P

such that

a

b
� ✏ 2 PO

P

= m
P

,

and therefore a

b

(P ) = ✏(P ), explaining why the schematic point [p] is sent to the
Galois orbit of ✏ which is precisely the schematic point [n] of P1

F1
.

In the function field case we have for every non-constant rational function
f 2 F

p

(C) \ F
p

that the map C ⇣ P1
F
p

is surjective with finite fibers. Let us first
verify finiteness for the map q = a

b

, that is, for every [n] we must show that there
are only finitely many primes p for which

✓

a

b

◆

n

= 1 in F⇤
p

.

This is clearly equivalent to p | an � bn and p - am � bm for all m < n, so q�1([n])
is a subset of the finite number of prime factors of an � bn. Surjectivity of the
map q is less clear, as there seems to be no reason why there should always be a
prime factor of an � bn not dividing the number am � bm for all m < n. In fact,
surjectivity is not always true. For example, the map q = 2

1 has no prime mapping
to [6]. Figure 9 gives a portion of the graph of the map 2 in the Smirnov plane
P1
F1
⇥ Spec(Z), where we have used a logarithmic scale on the prime number axis

and determined the full fibers of all [n] 2 P1
F1

for n < 330. The points on the
“diagonal” are the first few Mersenne prime numbers, that is, primes p such that
M

p

= 2p � 1 is again a prime number.
Perhaps surprisingly we can determine all rational numbers q for which the

map Spec(Z) ! P1
F1

fails to be surjective, as well as the schematic points [n] of
P1
F1

for which q�1([n]) = ;. The crucial result needed is Zsigmondy’s Theorem [45].
Consider positive integers 1  b < a with (a, b) = 1. Then, for every n > 1 there
exist prime numbers p | an � bn such that p - am � bm for all m < n unless we are
in one of the following two cases:

i) a = 2, b = 1 and n = 6; or

ii) a+ b = 2k and n = 2.

Smirnov’s interest in these maps is that the ABC conjecture would follow pro-
vided one can prove a suitable analogue of the Riemann–Hurwitz formula for the
maps q. Recall that if f : C ⇣ P1

k

is a non-constant cover from a smooth projective
curve C over a field k, then the Riemann–Hurwitz formula asserts that

2g
C

� 2 � �2 deg(f) +
X

points P

(e
f

(P )� 1) deg(P ),
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Figure 9. A portion of the graph of [2] inside the Smirnov plane.

where g
C

is the genus of C and e
f

(P ) is the ramification of a schematic point
P 2 C of degree deg(P ). If we define the defect �

P

of a schematic point P 2 C to

be the number �
P

= (e
f

(P )�1)deg(P )
deg(f) � 0, then the Riemann-Hurwitz formula can

be rewritten as
X

points P

�
P

 2�
2� 2g

C

deg(f)
,

and we note that this inequality still holds if we sum over a sub-selection of the
schematic points P 2 C. Again, we want to define via analogy the ramification
index e

q

(p) and the arithmetic defect �(p) for any prime number p with respect to

a cover q : Spec(Z) ⇣ P1
F1
. If q = a

b

, then Smirnov proposes to take for e
q

(p) the
largest power of p dividing a (provided p 2 q�1([0])), the largest power dividing b
(provided p 2 q�1([1])), and if p 2 q�1([n]) to take e

q

(p) = k if pk is the largest
power dividing an � bn. With this definition of the ramification index, he then
proposes to define the arithmetic defect by

�(p) =
(e

q

(p)� 1) log(p)

log(a)
,

which coincides with the classical definition (given our proposal for the degree of p)
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provided we define the degree of the map q to be log(a). Let us try to motivate this
proposal in the case when a � b. Take [p] 2 P1

F1
for p a prime number: then the

divisor of q�1([p]) =
P

i

n
i

[q
i

] if
Q

i

qni

i

= ap�bp, whence
P

i

n
i

log(q
i

) ⇡ p · log(a),
and as we took deg([p]) = �(p) = p� 1 it follows that indeed

P

i

n
i

deg([q
i

])

deg([p])
⇡ log(a).

For any schematic point [d] 2 P1
F1

let us define the defect of [d] to be

�([d]) =
X

p2q

�1([d])

�(p).

Now, if a = pe11 · · · pek
k

and b = qf11 · · · qfs
s

we define a0 = p1 · · · pk and b0 = q1 · · · qs
and a1 = a/a0, b1 = b/b0. Then, with the above proposals it is easy to work out
that

�([0]) =
log(a1)

log(a)
, �([1]) =

log(b1) + log(q)� 1

log(a)
, �([1]) =

log((a� b)1)

log(a)
,

as q�1([1]) = {p
�

� a�b}, and where in the middle term log(q)�1 is the contribution
of1 to the defect. If we could prove a variant of the Riemann–Hurwitz formula in
F1-geometry for all covering maps q : Spec(Z) ⇣ P1

F1
and if we assume the constant

� = 2g
Spec(Z) � 2 � 0, then it would follow that (limiting to points lying in the

fibers of [0], [1] and [1]) that

�([0]) + �([1]) + �([1]) =

=
1

log(a)

�

log(a1) + log
�

(a� b)1
�

+ log(b1) + log(a)� log(b)� 1
�

 2 +
�

log(a)
.

Now, let’s turn to the ABC conjecture . Suppose A + B = C with (A,B,C) = 1
and take a = C and b = min(A,B), and consider the cover q = a

b

: Spec(Z) ⇣ P1
F1
;

clearly we have a� b � a

2 . Then, we can rewrite the above inequality as

1 
log
�

a0 · b0 · (a� b)0
�

log(a)
+

log(C 0)

log(a)

where log(C 0) = �+log(2)+1; but then a  C 0�a0 ·b0 · (a�b)0
�

or, in other words,

C  C 0�rad(A ·B · C)
�

which is (too strong) a formulation of the ABC conjecture.
Now that we have a family of non-constant covering maps for all q 2 Q

q : Spec(Z) �! P1
F1
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we can define the exotic topology on Spec(Z) to be the coarsest topology with
the property that all maps q are continuous with respect to the Habiro topology
on P1

F1
. As the covers are finite and the Habiro topology is finer than the cofi-

nite topology, the exotic topology refines the usual—that is, cofinite—topology on
Spec(Z). Again, this topology is no longer compact.

3.2. Witt and Burnside rings. Surprisingly, the forgetful functor f : rings
�

!

rings has a right adjoint (a left adjoint is the common situation), that is, there is
a functor

w : rings �! rings

�

such that alg

�

�

A,w(B)
�

= alg

�

f(A), B
�

for every �-ring A and all rings B. We will recall the construction of this “witty
functor’ (it is closely related to the functor of big Witt vectors).

For any ring A let w(A) = 1 + tA[[t]] be the set of all formal power series with
coe�cients in A and with constant term equal to 1. We will turn this set into a
ring with an addition � and a multiplication ⌦ (to distinguish these operations
from the usual ones on the formal power series ring A[[t]]). The addition � on w(A)
will be the usual multiplication of formal power series, that is

u(t)� v(t) = u(t) · v(t), and hence 0 = 1 and  u(t) = u(t)�1.

Multiplication is enforced by functoriality and the rule that for all a, b 2 A we
demand that

1

1� at
⌦

1

1� bt
=

1

1� abt
, and hence 1 =

1

1� t
= 1 + t+ t2 + · · · .

What we mean by this, at least if A is a domain in characteristic zero, is that for
any u(t) 2 w(A) there exists unique a

i

2 A such that

u(t) =
1
Y

i=1

1

1� a
i

ti
.

For each n, denote ↵
n

= n

p

a
n

and let ⇣
n

be a primitive nth root of unity, so
that for all n we have that 1 � a

n

tn =
Q

n

i=0(1 � ⇣i
n

↵
n

). But then, over the ring
A[µ1][↵1,↵2, . . .] we can write u(t) as

u(t) = A1�A2�A3�· · · with A
n

=
1

1� ↵
n

t
�

1

1� ⇣
n

↵
n

t
�· · ·�

1

1� ⇣n�1
n

↵
n

t
.

If we similarly write the power series v(t) = B1 �B2 �B3 � · · · , then the product
must be

u(t)⌦ v(t) = C1 � C2 � · · · with C
i+1 =

M

j+k=i+1

A
j

⌦B
k

,

and by construction and symmetric function theory one verifies that the formal
power series u(t)⌦v(t) has all its coe�cients in A. In this way we see that w(A) is
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a commutative ring whose zero element is the constant power series 1 and whose
multiplicative unit is the power series 1 + t+ t2 + · · · . In addition, w(A) becomes
a �-ring with the Frobenius lifts induced by the rule that

 p

✓

1

1� at

◆

=
1

1� apt

and extended additively so that if an element can be written u(t) = A1�A2� · · · ,
then  p

�

u(t)
�

=  p(A1)�  p(A2)� · · · . The Frobenius lifts are also multiplica-
tive by functoriality and the calculation that

 p

✓

1

1� at
⌦

1

1� bt

◆

=
1

1� apbpt
=  p

✓

1

1� at

◆

⌦  p

✓

1

1� bt

◆

.

Clearly, the endomorphisms  n, n 2 N, commute with each other and  p is a
Frobenius lift because

✓

1

1� a1t
� · · ·�

1

1� a
k

t

◆⌦p

�

✓

1

1� ap1t
� · · ·�

1

1� ap
k

t

◆

is divisible by p by the binomial formula. There is an additional family of additive
group endomorphisms V

n

on w(A), the Verschiebung operators which are defined
by V

n

�

s(t)
�

= s(tn), and finally there is the [n] operator which maps s(t) to
s(t)n = s(t)� · · ·� s(t) (n times). These maps satisfy the relations

V
n

� V
m

= V
m

� V
n

,  m

� n =  n

� m and  n

� V
n

= [n]

and  n

�V
m

= V
m

� n if (m,n) = 1. This witty construction is functorial because
for any ring morphism � : A ! B we have a ring morphism � : w(A) ! w(B)
compatible with the Frobenius lifts, induced by the rule that

�

✓

1

1� at

◆

=
1

1� �(a)t
,

which gives us that �(1 + a1t+ a2t
2 + · · · ) = 1 + �(a1)t+ �(a2)t2 + · · · . We now

define maps �
n

: w(A)! A via the formula

tu0

u
=

1
X

n=1

�
n

(u)tn,

where we have used the logarithmic derivative u

0

u

which transforms multiplication
into addition. If we work this out for u = 1

1�at

, then u0 = a

(1�at)2 and hence

tu0

u
= at+ a2t2 + a3t3 + · · · ,

whence �
n

( 1
1�at

) = an and therefore all �
n

are multiplicative. Using functoriality it
is also easy to conclude that all the maps �

n

: w(A)! A are in fact ring morphisms.
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If A is in addition a �-ring with commuting family of endomorphisms  n gener-
ated by the Frobenius lifts, then there is a �-ring morphism �

t

making the diagram
below commute

w(A) = 1 + tA[[t]]

(�1,�2,�3,...)

✏✏
A

�

t

22

 =( 1
, 2

, 3
,...)

// A! = (A,A,A, . . .)

where �
t

is defined via the formula

�
t

(a) = exp

 

Z

1

t

1
X

n=1

 n(a)tn
!

.

Again, it is easy to verify that �
t

(a+b) = �
t

(a)��
t

(b) and slightly more di�cult to
prove that �

t

(a ·b) = �
t

(a)⌦�
t

(b), whence �
t

is a ring morphism and is compatible
with the  n-endomorphisms, so it is a �-ring morphism.

From these facts the right-adjointness of the witty functor with respect to the
forgetful functor follows. If A is a �-ring and � is a ring morphism f(A) = A! B,
then we get a �-ring morphism

A
�

t

�! w(A)
�
�! w(B).

Conversely, a �-ring morphism A ! w(B) composed with the ring morphism
�1 : w(B) ! B gives a ring morphism A ! B and one verifies that the two
constructions are inverse of each other.

If one accepts Borger’s proposal that F1-algebras are just �-rings without
additive torsion, where we interpret the commuting family of endomorphisms
{ n

�

� n 2 N0} as descent data from Z to F1, then the forgetful functor

f = �⌦F1 Z : algF1
= rings

�

�! rings

that is stripping o↵ the descent data, can be interpreted as the base extension
functor from F1 to Z. But then, as a right adjoint to base extension, the witty
functor w can be interpreted as the Weil descent from Z-rings to F1-algebras.
Hence, we finally know what Spec(Z) should be over the elusive field F1: it must
be the geometric object associated to the �-algebra w(Z)!

We will now make the connection between the construction of w(A) and the
more classical notion of the ring of big Witt vectors W (A). For much more details
we refer to the lecture notes of Michiel Hazewinkel [19]. Let us take W (A) = A! =
(A,A,A, . . .) and consider the diagram

W (A)
� // w(A)

u

0

u✏✏
A!

=

OO

=
// tA[[t]]
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where � is the map sending (a1, a2, a3, . . .) to
Q

i

1
1�a

i

t

i

and which can be used to
define a ring structure on the big Witt vectors W (A) by transport of structure.

Before we describe the geometry, let us give a combinatorial interpretation of
w(Z) due to Andreas Dress and Christian Siebeneicher [14].

Let C = C1 = hci be the infinite cyclic group, written multiplicatively. A
C-set X is called almost finite if X has no infinite orbits and if the number of orbits
of size n is finite for every n 2 N0. A motivating example is the set of geometric
points X(F

p

) of an F
p

-variety X on which c acts as the Frobenius morphism.
If X and Y are almost finite C-sets, then so are their disjoint union X t Y

and Cartesian product X ⇥ Y . These operations define an addition + = t and
multiplication · = ⇥ on the isomorphism classes bB(C) of all almost finite C-sets,
as such obtaining the Burnside ring . For any almost finite C-set X and n 2 N,
define

�
C

n(X) = #{x 2 X
�

� cn · x = x}

that is, the number of elements lying in a C-orbit of size a divisor of n: this
number is finite. Moreover, the �

C

n take disjoint unions (respectively products)
to sums (respectively products) of the corresponding numbers, and so all maps
�
C

n : bB(C)! Z are ring morphisms. This gives us a collective ring morphism

b� =
Y

n

�
C

n : bB(C) �! Z! = gh(C),

where gh(C) is the ghost ring , that is, all maps N ! Z with componentwise

addition and multiplication. One verifies that b� is injective, but not surjective.
We can extend the diagram of the previous section to

Nr(Z)

itp
✏✏

W (Z) ⌧ //

�

✏✏

bB(C)
s

t //

b
�

✏✏

w(Z)

L

z

✏✏
Q

n

Z obv //
gh(C)

idn // tZ[[t]]

where Nr(Z) is called the necklace algebra, that is, the set Z! with compo-
nentwise addition but multiplication defined as follows: if b = (b1, b2, . . .) and
b0 = (b01, b

0
2, . . .) then

(b · b0)
n

=
X

lcm(i,j)=n

(i, j)b
i

b0
j

.

The interpretation map itp, which is a ring morphism, sends b = (b1, b2, . . .) to
the element of bB(C) given by

P1
n=1 bn[Cn

] (where C
n

is the C-orbit of length
n) and can thus be written as the di↵erence [X+] � [X�] of two almost finite C-
sets, X+ corresponding to the positive b

n

and X� to minus the negative b
n

. The
composition of the interpretation map with b� is the ghost map gh: b 7! d, where
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d
n

= �
C

n

�

X(b)
�

= �
C

n

�

X+(b)
�

� �
C

n

�

X�(b)
�

and the sequence of integers d is
related to that of b via the formula

1
Y

n=1

✓

1

1� tn

◆

b

n

= exp

 

Z 1
X

n=1

d
n

tn�1dt

!

,

that is, gh(b) = bb, where bb
n

=
P

i|n ibi. If X is an almost finite C-set then so is its
nth symmetric power

SnX = {g : X �! N
�

� g has finite support and
X

x2X

g(x) = n},

on which C acts via (c · g)(x) = g(c�1
· x). Dress and Siebeneicher prove in [14]

that the map s
t

: bB(C) �! w(Z) induced by

[X] 7�! s
t

(X) = 1 + fix

�

S1(X)
�

t+ fix

�

S2(X)
�

t2 + · · ·

is an isomorphism of rings, and if s
t

�

X(b)
�

= 1 +
P1

n=1 ant
n = s

a

a

a

(t) then,

1
Y

n=1

✓

1

1� tn

◆

b

n

= 1 +
1
X

n=1

a
n

tn.

This allows us in the case of w(Z) to compute the product combinatorially. If
s
t

�

X(b)
�

= s
a

a

a

(t) and s
t

�

X(d)
�

= s
c

c

c

(t), then we have in w(Z) that

s
a

a

a

(t)⌦ s
c

c

c

(t) = s
t

�

X(b)⇥X(d)
�

.

If m 2 N define the congruence maps

m(C) = {g : C �! {1, 2, . . . ,m} such that

there exists n 2 N
�

� z1z
�1
2 2 Cn = hcni ) g(z1) = g(z2)}.

Observe thatm(C) is again an almost finite C-set under the action c·g(z) = g(c�1
·z)

and one verifies that �
C

n(m(C)) = mn. The map m 7! m(C) from N0 to bB(C)

extends to a map Z! bB(C) and b�(m(C)) = (m,m2,m3, . . .). We will now extend
this map to a mapW (Z)! bB(C). IfX is an almost finite C-set and n 2 N, then we
define its induction ind

n

(X) with respect to the nth power map �
n

: C ! C given
by c 7! cn, as the set of C-orbits in C⇥X under the action c ·(c0, x) = (c0c�n, c ·x).
Again, ind

n

(X) becomes an almost finite C-set via the action c·O(c0, x) = O(c·c0, x)
and one verifies that

ind
n

(X1 tX2) = ind
n

(X1) t ind
n

(X2) and ind
n

(C
i

) = C
ni

;

we also have that �
C

m

�

ind
n

(X)
�

= n · �
C

m/n

(X) if n | m, and zero otherwise.
This then gives a ring isomorphism

⌧ : W (Z) �! bB(C), q = (q1, q2, . . .) 7�!
1
X

n=1

ind
n

(q(C)
n

).
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If ⌧(q) = X(b), then the sequences of integers q and b are related via the formula

1
Y

n=1

1

1� q
n

tn
=

1
Y

n=1

✓

1

1� tn

◆

b

n

.

If X is an almost finite C-set, then res
n

(X) is the restriction to the subgroup
hcni, that is, X = res

n

(X) but with a new action � defined by c � x = cn · x.
Clearly, res

n

is compatible with disjoint union and direct product and hence defines
endomorphisms

res
n

: bB(C) �! bB(C)

which are the Adams operations on bB(C), and this family of commuting endomor-
phisms of bB(C) corresponds to the family of commuting endomorphisms  n on
w(Z). Similarly, the Verschiebung additive maps on w(Z) are given by induction
from the subgroup hcni. Induction and restriction satisfy the following properties

• res
n

(C
m

) = (n,m)C[n,m]/n, where [n,m] = lcm(n,m)

• ind
n

(C
m

) = C
nm

• ker(res
n

) = {x 2 bB(C)
�

� �
C

m(x) = 0 8n | m}

• im(ind
n

) = {x 2 bB(C)
�

� �
C

m(x) = 08n - m}

Similarly, one can make Frobenius and Verschiebung operators explicit on the neck-
lace algebra Nr(Z). Define the Frobenius ring morphisms f

n

: Nr(Z) ! Nr(Z)
by

f
n

(b1, b2, . . .) =

0

@

X

[n,i]=n

(n, i)b
i

,
X

[n,i]=2n

(n, i)b
i

, . . .

1

A

and the Verschiebung additive morphisms v
n

: Nr(Z)! Nr(Z) via

v
n

(b1, b2, . . .) = (0, . . . , 0
| {z }

n�1

, b1, 0, . . . , 0
| {z }

n�1

, b2, . . .);

these Frobenius and Verschiebung operations f
n

and v
n

commute with the induc-
tion and restriction maps ind

n

and res
n

on bB(C).
In retrospect, the appearance of Burnside rings in F1-geometry is not surprising.

Recall from the Smirnov–Kapranov paper [20] (and the first chapter in this book)
that GL

n

(F1) ⇠= S
n

, so for any group G an n-dimensional representation of G over
F1 would be a group morphism G! S

n

, that is, a permutation representation of G,
or equivalently, a finite G-set (see also the first chapter). If G is an infinite discrete
group, this says that any finite-dimensional F1-representation of G factors as a
permutation representation through a finite group quotient, and hence determines
an element in the Burnside ring B( bG) of the profinite completion of G. In the
special case when G = C we can write C additively (that is, C = Z) and its
C-representations are of course all 1-dimensional and parametrized by C⇤. The
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F1-representations are then the representations of the profinite completion bZ+ and
its C-points are precisely the roots of unity! Further, for completed Burnside rings
we have bB(G) = bB( bG), so in our case w(Z) = bB(C) = bB(Z) = bB(bZ).

In [13] Andreas Dress and Christian Siebeneicher have extended the Witt con-
struction to the profinite completion bG of an arbitrary discrete group G (and in
fact even to arbitrary profinite groups). Let cosg( bG) be the set of conjugacy classes
of open subgroups of bG (that is, the conjugacy classes of subgroups of G of finite
index); then one can consider the covariant functor

W
G

: rings �! rings, A 7�! Acosg( bG)

and they show that with respect to this functor we have an isomorphism between
W

G

(Z) and the Burnside ring bB( bG) of almost finite G-sets. Moreover, the rings
W

G

(R) all have Frobenius-like and Verschiebung-like morphisms to (and from)
W

U

(R), for any subgroup U of G of finite index. The Frobenius and Verschiebung
maps

W
G

(R)
 U

�!W
U

(R) and W
U

(R)
V

U

�!W
G

(R)

are defined by restriction, respectively induction. Clearly, in the case when G = Z
all cofinite subgroups are isomorphic to Z, giving rise to the Frobenius lift endo-
morphisms and corresponding Verschiebung operations on w(R).

This raises the exciting prospect of extending or modifying Borger’s �-rings
approach to F1-geometry to other categories rings

G

of commutative rings with
suitable morphisms to/from a collection of rings (for any conjugacy class of a
cofinite subgroup of G) such that the Dress–Siebeneicher-Witt functor W

G

is a
right adjoint functor to the forgetful functor rings

G

! rings. We expect such
an approach to be fruitful when one starts with the braid group B3 or its quotient
PSL2(Z), which may also clarify the role of Conway’s big picture, which after
all was intended to provide a better understanding of cofinite subgroups of the
modular group PSL2(Z).

3.3. What is Spec(Z) over F1? So we can compute explicitly with w(Z) and
know that Spec(Z)/F1 is the geometric object associated to w(Z), but what is this
object and can we make sense of Smirnov’s covering maps Spec(Z) ⇣ P1

F1
?

We have a candidate for the geometric object, namely the �-spectrum of w(Z)

Spec(Z)F1 = Spec

�

�

w(Z)
�

= {ker(w(Z) �! A)
�

� A is a reduced �-ring }.

If Spec(Z) would behave as a “curve” over F1, one would expect the �-spectrum
to contain many geometric points over F1. However, we will soon see that

max

�

�

w(Z)
�

= ; = maxcycl

�

w(Z)
�

.

In fact a similar result holds for any w(R).
The fact we will use is that the Verschiebung operators survive the action of

taking �-ring quotients A = w(R)/I which have no additive torsion. I thank Jim
Borger for communicating this to me. Clearly, there are additive maps

v
n

: w(R)
V

n

�! w(R)�⇣ A
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and we have to show that ker(v
n

) ⇢ I. Because the  p are lifts of the Frobenius,
there is a unique map d on w(R) such that for all s(t) 2 w(R) we have the identity

�

s(t)
�⌦p

+ [p]d
�

s(t)
�

=  p

�

s(t)
�

,

and hence any �-ideal I must be preserved by d. Assume s(t) 2 ker(v
np

), that is,
V
np

�

s(t)
�

2 I; then from the identities

V
np

�

s(t)
�⌦p

+[p]d
⇣

V
np

�

s(t)
�

⌘

=  p

⇣

V
np

�

s(t)
�

⌘

=  p

�V
p

�V
n

�

s(t)
�

= [p]V
n

�

s(t)
�

it follows that the left-hand side is contained in I, and so must be the right-hand
side. Since A = w(R)/I has no additive torsion, it follows that V

n

�

s(t)
�

2 I,
so v

n

�

s(t)
�

2 ker(v
n

). As we can repeat this process for any prime factor p of
m = np it follows that if s(p) 2 ker(v

m

), then s(t) 2 ker(v1) = I. Thus, if A is
a �-ring quotient of w(R) without additive torsion, A is equipped not only with
ring endomorphisms  n, but also with additive morphisms v

n

satisfying all the
properties the Frobenius and Verschiebung operators satisfy on w(R), indicating
that A must itself be close to a witty ring.

Now assume that A is étale over F1 and hence of finite rank over Z. Recall
from [26] that we can also define the ring structure of w(R) as the inverse limit

w(R) = lim
 �

w
n

(R) with w
n

(R) = ker

⇣

R[t]/(tn+1)⇤ �! R⇤
⌘

.

As A is finite over Z, the ring morphism w(R) ⇣ A factors through a w
n

(R)
for some n 2 N. But this means that V

n

�

w(R)
�

is contained in the ideal I, in
particular v

n

(1) 2 I, and then from the argument given before we conclude that
1 2 I and hence that A = 0. That is, witty rings w(R) do not have torsion-free
�-ring quotients, finite over Z.

That is, �-spectra of witty rings do not have geometric points and hence behave
very unlike F1-geometric objects of finite dimension. Still, the �-spectrum has
many other points—in fact we can identify the usual prime spectrum Spec(R)
with a subset of witty points in Spec

�

�

w(R)
�

:

Spec(R) ⇠= Spec

w

�

w(R)
�

=
n

ker

⇣

w(R) �! w
�

Q(R/p)
�

⌘

�

� p 2 Spec(R)
o

where Q(R/p) denotes the field of fractions of the domain R/p.
Let us work out what the witty ring w(F ) of a field F is. If F is alge-

braically closed, then by construction we have an inclusion of multiplicative groups
F

⇤
,! w(F ) determined by a 7! 1

1�at

which extends to a ring morphism on the

group algebra of F , Z[F ⇤
]

L

,! w(F ) with image the set of all rational formal power
series

Q

i

(1� ↵
i

t)ei
Q

j

(1� �
j

t)fj
= L

⇣

X

j

f
j

�
j

�

X

i

e
i

↵
i

⌘

.

In other words, we have a suitably dense subring of w(F ) isomorphic to the integral
group algebra Z[F ⇤

]. The absolute Galois group G = Gal(F/F ) acts on both rings,
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giving an inclusion of rings

Z[F ⇤
]G = Div(P1

F

\ {0,1}) ,�! w(F )

where Div(P1
F

\ {0,1}) is the abelian group of divisors on P1
F

\ {0,1}, that is, of
all formal finite combinations

P

n
i

[f
i

] with n
i

2 Z and the f
i

irreducible monic
polynomials in F [x, x�1], which gets an induced multiplication (and even a �-ring
structure) from the ring structure of Z[F ⇤

]. The Frobenius lifts on Z[F ⇤
] are the

linearizations of the multiplicative group endomorphisms a 7! an for a 2 F
⇤
.

In the special case of F
p

we have seen before that we can identify the multi-
plicative group F

p

⇤ with the group of all roots of unity µ(p) of order prime to p,
and hence we get a dense subring

Z[µ(p)]
bZ+ = Div(P1

F
p

\ {0,1}) ,�! w(F
p

).

Thus we see a surprise guest re-appearance of the fiber P1
F
p

of the structural map

P1
Z ⇣ Spec(Z) in the description of the witty point in Spec

�

�

w(Z)
�

determined by
the �-ring morphism w(Z) ⇣ w(F

p

), somewhat closing the circle of thoughts we
began by looking at Mumford’s drawings!

Still, there’s the eternal problem of finding a natural identification between
F
p

⇤
and µ(p). We will briefly sketch how this can be done “in principle” using

ordinal numbers. In [8] John H. Conway identified the algebraic closure of F2

with the set of all ordinal numbers smaller than !!
!

equipped with nim-addition
and multiplication. Later Joseph DiMuro extended this to identify the algebraic
closure of F

p

with !!
!

in [12]. We will recall the case of characteristic 2 and refer
to [12] for the general case.

To distinguish the nim-rules from addition and multiplication of ordinal num-
bers, we will denote the latter ones enclosed in brackets. So, for example, [!2] will
be the ordinal number, whereas !2 will be the square of the ordinal number [!] in
nim-arithmetic. These nim-rules can be defined on all ordinals as follows

↵+ � = mex(↵0 + �,↵+ �0) and ↵ · � = mex(↵0
· � + ↵ · �0

� ↵0
· �0),

where ↵0 (respectively �0) ranges over all ordinals less than ↵ (respectively, than �)
and mex stands for the “minimal excludent” of the given set, that is, the smallest
ordinal not contained in the set. Observe that these definitions allow us to compute
with ordinals inductively. Computing the sum of two ordinals is easy: write each
one uniquely as a sum of ordinal numbers ↵ = [2↵0 + 2↵1 + · · · + 2↵k ], then to
compute ↵ + � we delete powers appearing in each factor and take the Cantor
ordinal sum of the remaining sum (for finite ordinals this is the common nim-
addition “adding binary expressions without carry’). To compute multiplication
of ordinals, introduce the following special element

2n = [22
n�1

]

and, for primes p > 2, the elements


p

n = [2!
k·pn�1

],
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where k is the number of primes strictly smaller than p. Because [2↵0 + · · ·+2↵k ] =
[2↵0 ] + · · ·+ [2↵k ] we can multiply two ordinals smaller than [!!

!

] if we know how
to compute products [2↵] · [2� ] with ↵,� < [!!]. Each such ↵ or � can be expressed
uniquely as

[!t

· n
t

+ !t�1
· n

t�1 + · · ·+ ! · n1 + n0]

with t and all n
k

natural numbers. If we write n
k

in base p where p is the (k+1)th
prime number, that is, n

k

= [
P

j

pj · m(j, k)] for 0  m(j, k) < p, then we can

write any 2-power smaller than [!!
!

] as a decreasing finite product [
Q

q


m(q)
q

] with

0  m(q) < p and q a power of p. Conway has shown that we have [
Q

q


m(q)
q

] =
Q

q


m(q)
q

, which allows us to compute all products except when [m(q)+m0(q)] � p
for some q. Thus it remains to specify the ordinals (

q

)p and here Conway proved
the following rules, depending on the still to be determined elements ↵

p

,

(2n)
2 = 2n +

Y

1in

2i , (
p

)p = ↵
p

, and (
p

n)p = 
p

n�1

for p an odd prime and n � 2. Conway calculated the first few ↵
p

, for example
↵3 = 2,↵5 = 4,↵7 = [2!] + 1 etc. and then Hendrik Lenstra [25] gave an explicit
algorithm to compute the ↵

p

and managed to determine them for all p  43. Today
we know all ↵

p

for p  293 with only a few exceptions. In principle this allows us
to determine the ordinal number corresponding to any realistic occurring element
in F2. Similarly, DiMuro proved that F

p

can be identified with [!!
!

] and listed
the values for the ↵

q

in those cases for primes q  43 and p  11.
Using this correspondence we can now construct a one-to-one correspondence

F
p

⇤
$ µ(p), which we will illustrate in the case p = 2. Conway showed that

the ordinals [22
n

] form a subfield isomorphic to F22n and so there is a consistent
embedding of the quadratic closure of F2 into roots of unity by starting with [2]
being the smallest ordinal generating the multiplicative group of the subfield [22]
(of order 3) and taking it to be e2⇡i/3; for the next subfield [216] we have to look
for the smallest ordinal [k] such that [k]5 = 2, which turns out to be [4] which then
corresponds to e2⇡i/15, and the correspondence between F24 and µ15 is depicted
in Figure 10 (together with the addition and multiplication tables of [16] to verify
the claims). We have indicated the di↵erent orbits under the Frobenius x 7! x2

with di↵erent colors. There are two orbits of size one: {0} corresponding to x,
and {1} corresponding to x + 1. One orbit {2, 3} of size two corresponding to
the irreducible polynomial (x � 2)(x � 3) = x2 + x + 1, and three orbits of size
four corresponding to the three irreducible monic polynomials in F2[x] of degree 4,
for example {4, 6, 5, 7} $ x4 + x + 1. Iterating this procedure we get an explicit
embedding of the quadratic closure of F2 into roots of unity (the relevant generators
for the next stages are 32, then 1051, then 1361923 and 1127700028470). Having
obtained an explicit identification of the quadratic closure of F2 inside the roots
of unity, we can then proceed by associating to [!] the root e2⇡i/9 as [!]3 = [2],
mapping [!!] to e2⇡i/75 as [!!]5 = [4], and so on until we have identified F2

⇤

with µ(2). This then allows us to associate to a schematic point of A1
F2
, that is,

to an irreducible monic polynomial in F2[x], the root of unity corresponding to
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Figure 10. The multiplication tables of [16] and the correspondence F24 $ µ15

the smallest ordinal in the Frobenius orbit associated to the polynomial. So, for
example, to x4+x3+x2+x+1 one assigns e12⇡i/15, as the roots of the polynomial
are the ordinals {[8], [10], [13], [14]}. Once again, one can repeat these arguments
for the algebraic closures F

p

using the results from [12].

3.4. What is the map from Spec(Z) to P1
F1
? In the foregoing sections we

have recalled some of the successes of Borger’s approach to absolute geometry via
�-rings. For example, the identification of the étale site of F1 with the category of
finite sets equipped with an action of the monoid bZ⇥ is one of the most convincing
theories around vindicating Smirnov’s proposal that one should interpret µ1 as
the algebraic closure of F1. Further, with this �-ring approach we obtain roughly
the same class of examples provided by all other approaches to F1-geometry, such
as a�ne and projective spaces, Grassmannians, toric varieties, among others. In
addition, we can associate a space of geometric points as well as a new topology to
such an F1-geometric object X. For, assume that X is locally controlled by a �-
ring R; then locally its geometric points correspond to kernels of �-ring morphisms
R ⇣ S where S is étale over F1, among which are the cyclotomic coordinates which
are the special points obtained by taking S = Z[x]/(xn

� 1) = Z[µ
n

]. But, as S
is finite projective over Z, these kernels are not maximal ideals of the �-ring R,
but rather sub-maximal ones, entailing that two such kernels no longer have to be
co-maximal. This then leads to an adjacency (or clique) relation among the cor-
responding geometric points which gives us the Habiro topology on max

�

(R). This
new topological feature encodes the fact that the closed subschemes of the usual
integral a�ne scheme Spec(R) corresponding to the kernels of the two geometric
points intersect over certain prime numbers p. As an example, we have seen that
the cyclotomic points of P1

Z (for the toric �-structure) give us indeed the proposal
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that

P1
F1

= {[0],1]} [ {[n]
�

� n 2 N0},

where two cyclotomic points [n] and [m] are adjacent if and only if their quotient
is a pure prime-power, leading to the Habiro topology on the roots of unity µ1.
Further, the �-ring structure, that is, the commuting family of endomorphisms
{ n

�

� n 2 N0}, can be viewed as descent data from Spec(Z) to Spec(F1), and
hence conversely we can view the process of forgetting the �-ring structure as the
base extension functor � ⇥Spec(F1) Spec(Z). In particular we can now make sense
of the identity

P1
F1
⇥spec(F1) Spec(Z) = P1

Z,

where the right-hand side is the usual integral scheme P1
Z, without emphasis on

the toric �-structure.
But Borger’s proposal really shines in that it allows us to make sense of what

the Weil restriction to Spec(F1) is of any integral scheme. Indeed, the witty functor
w : rings! rings

�

is the right adjoint of the forgetful functor (which we have seen
is base extension), and hence if the integral schemeX is locally of the form Spec(R),
then X/F1 is locally the geometric object corresponding to the �-ring w(R). How-
ever, such rings do not have geometric points as before, so we have a dichotomy
among the geometric F1-objects which resembles the dichotomy in noncommutative
algebraic geometry between algebras having plenty of finite-dimensional represen-
tations, and algebras that have no such representations. Geometric F1-objects
are either the restricted class of combinatorial controlled integral schemes allowing
a �-structure, or the class of infinite-dimensional objects corresponding to Witt
schemes of integral schemes. Still, the ordinary integral scheme structure survives
this witty-fication, as Spec(R) can be embedded in the �-spectrum Spec

�

�

w(R)
�

via the kernels of the �-ring maps w(R)! w(R/P )! w
�

Q(R/P )
�

for any prime
ideal P of R. As an example, Spec(Z) is the F1-geometric object corresponding to
the Burnside ring w(Z) = bB(C) which does indeed contain the proposal that

Spec(Z)/F1 = {(p)
�

� p a prime number },

where we view the prime number p as corresponding to the �-ring morphism

w(Z) �! w(F
p

) ⇡ Div(P1
F
p

\ {[0], [1]}).

Although these two classes of geometric F1-objects are quite di↵erent, we can still
make sense of morphisms between them, as they have to be locally given by �-
ring morphisms. In particular, let us investigate whether we can make sense of
Smirnov’s maps

q =
a

b
: Spec(Z) �! P1

F1

in Borger’s �-rings approach to F1-geometry, that is, whether this map is locally
determined by a �-ring morphism. With P1

F1
we mean the cyclotomic points of the

integral scheme P1
Z equipped with the toric �-ring structure. Because (a, b) = 1,
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we can cover P1
Z with the prime spectra of two �-rings, namely P1

Z = Spec(Z
b

[x])[
Spec(Z

a

[x�1]), and therefore

P1
F1

= Speccycl(Zb

[x]) [ Speccycl(Za

[x�1]).

Further, we have seen that Spec(Z)/F1 should be viewed as Spec
�

�

w(Z)
�

which we
can cover as Spec

�

�

w(Z
b

)
�

[ Spec

�

�

w(Z
a

)
�

. Now, consider the �-ring morphisms

Z
b

[x] �! w(Z
b

), x 7�!
1

1� a

b

t
,

and

Z
a

[x�1] �! w(Z
a

), x�1
7�!

1

1� b

a

t
,

which coincide on the intersection with the �-morphism Z
ab

[x, x�1] ! w(Z
ab

)
determined by x 7! 1

1� a

b

t

. So, in order to investigate the associated geometric map

Spec(Z
b

) ⇠= Spec

w

�

w(Z
b

)
�

�! Speccycl(Zb

[x])

we have to look, for any prime p not dividing b, at the composition Z
b

[x] �! w(F
p

)
which sends x to 1

1� a

b

t

and hence is the map

xn

7�!

1

1� (a
b

)nt
for n 2 N0.

If a/b has order n in F
p

this says that xn maps to 1/(1� t) = 1 2 w(F
p

), and if
p | a, then x is mapped to 1

1�0t = 1 = 0 2 w(F
p

). Further, if p | b we get in the

composition Z
a

[x�1]! w(F
p

) that x�1 is mapped to 1
1�0t = 1 = 0 2 w(F

p

). So,
if we write [p] for the witty-point corresponding to the kernel of w(Z) ⇣ w(F

p

) we
get indeed that

[p] 7�!

8

>

<

>

:

[0] if p | a

[1] if p | b

[n] if n is minimal such that an � bn ⌘ 1 (mod p)

which coincides with Smirnov’s proposal.
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