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Abstract

In a recent paper [3] it is shown that irreducible representations
of the three string braid group Bj3 of dimension < 5 extend to rep-
resentations of the three component loop braid group LBs. Further,
an explicit 6-dimensional irreducible Bs-representation is given not
allowing such an extension.

In this note we give a necessary and sufficient condition, in all
dimensions, on the components of irreducible representations of the
modular group I' such that sufficiently general representations extend
to I' ¢y S3. As a consequence, the corresponding irreducible Bs-
representations do extend to LBj3.

1 The strategy

The 3-component loop braid group L B3 encodes motions of 3 oriented circles
in R3. The generator o; (i = 1,2) is interpreted as passing the i-th circle
under and through the 7 4+ 1-th circle ending with the two circles’ positions
interchanged. The generator s; (i = 1,2) simply interchanges the circles i
and 7 + 1. For physical motivation and graphics we refer to the paper by
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John Baez, Derek Wise and Alissa Crans [2]. The defining relations of LB;
are:

1. 010201 — 020102
2. 5159251 = S251S2

3. 87=s53=1

4. S$15201 = 025152
5. 0109281 =— S$90109

Note that (1) is the defining relation for the 3-string braid group Bj, (2) and
(3) define the symmetric group Ss, therefore the first three relations describe
the free group product Bjs * Ss.

Recall that the modular group I' = Cy x C3 = (s,t|s?> = 1 = t3) is a
quotient of Bz by dividing out the central element ¢ = (0,03)3, so that we
can take t = G109 and s = 7,020;. Hence, any irreducible n-dimensional
representation ¢ : By — G L, will be isomorphic to one of the form

¢(01) = )\’lz}(ﬁl), and ¢(02) = )\w(ﬁg)

for some A € C* and v : ' — GL,, an n-dimensional irreducible representa-
tion of I = (s,t) = (71,0%). With S3 = (51, S2|515251 = 528152, 57 = 1 = s3),
we consider the amalgamated free product

G:F*0353

in which the generator of (5 is equal to t = 165 in I' and to sys5 in S3.

We will impose conditions on 1t such that it extends to a (necessarily
irreducible) representations of G. Then, if this is possible, as ¥(7,02) =
1 (s152) and as the defining equations (1),(4) and (5) of LBs are homogeneous
in the o; it will follow that

P(0:) = A\p(03), and  é(s;) = P(s;)

is a representation of LBj extending the irreducible representation ¢ of Bj.
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2 The result

Bruce Westbury has shown in [7] that the variety iss, I' classifying isomor-
phism classes of n-dimensional semi-simple I'-representations decomposes as
a disjoint union of irreducible components

iss, I'= |_| iss, I
«

where a = (a, b;z,y, z) € N satisfying a +b=n = z +y + 2. Moreover, if
xyz # 0 then the component iss, [' contains a Zariski open and dense subset
of irreducible I'-representations if and only if maz(z,y,z) < min(a,b). In
this case, the dimension of iss, I is equal to 1+n? — (a® +b* + 2% +y? + 2?2).
In going from irreducible I'-representations to irreducible Bs-representations
we multiply by A € C*. As a result, it is shown in [7] that there is a
pe-action on the components iss, [' leading to the same component of Bs-
representations. That is, the variety irr, Bj classifying isomorphism classes
of irreducible n-dimensional Bs-representations decomposes into irreducible
components

irr, By = U irr, Bs

«

where o = (a,b;x,y,z) satisfies a +b =n =x+y+2,a >b>x =
max(z,y, ).

Theorem 2.1. A Zariski open and dense subset of irreducible I'-representations
in iss, I' extends to the group G = 1" *¢, Ss if and only if there are natural
numbers u, v, w with w > max(u,v) such that

a=(v+w,u+w;u+v,w w)

As a consequence, a Zariski open and dense subset of irreducible Bs-representations
in irr, Bs extends to the three-component loop braid group LBs if there are
natural numbers u < v < w such that a« = (a,b; x,y, z) with x = maz(x,y, 2)

and

a=v+w, b=u+w, {z,y,2} ={u+v,w,w}

Observe that the first dimension n allowing an admissible 5-tuple not
satisfying this condition is n = 6 with oo = (3, 3;3,2,1).
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3 The proof

If V is an n-dimensional G = I' ¢, S3 >~ (5 * Ss-representation, then by
restricting it to the subgroups Cs and S3 we get decomposition of V' into

S50 5% =V Y= V = V Lsy= T & 5 @ P

where {S,,S_} are the 1-dimensional irreducibles of Cy, T" is the trivial Ss-
representation, S the sign representation and P the 2-dimensional irreducible
Ss-representation. Clearly we must have a +b =n = x4y + 2z and once we
choose bases in each of these irreducibles we have that V' itself determines a
representation of the following quiver setting

where the arrows give the block-decomposition of the base-change matrix B
from the chosen basis of V' |, to the chosen basis of V' |g,. Isomorphism
classes of irreducible G-representations correspond to isomorphism classes of
O-stable quiver representation of dimension vector 8 = (a, b;z,y, z) for the
stability structure § = (—1,—1;1,1,2). The minimal dimension vectors of
f-stable representations are

ay = (1,0;1,0,0)
as = (1,0;0,1,0)
az =(0,1;1,0,0)
ay =(0,1;0,1,0)
as = (1,1;0,0,1)
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which give us unique 1-dimensional G-representations Si,.S,, 53,54 and a 2-
parameter family of 2-dimensional irreducible G-representations from which
we choose S5. By the results of [1], the local structure of the component
issg G for f=(p+q+t,r+s+t;p+r g+ s,t)in a neighborhood of the
semi-simple G-representation

M =SSP S¢ @ SP* @ S

is étale equivalent to the local structure of the quiver-quotient variety of the
setting below at the zero-representation

Hence, issg G will contain a Zariski open and dense subset of irreducible
representations if and only if v = (p,q,r, s,t) is a simple dimension vector
for this quiver, which by [5] is equivalent to ~ being either (1,0,0,1,0) or
(0,1,1,0,0) or satisfying the inequalities

p<s+t, qg<r+t, r<qg+t, s<p+t

Having determined the components containing irreducible G-representations,
we have to determine those containing a Zariski open subset which remain
irreducible when restricted to I'.

As ' = (9% C5 any ['-representation V' corresponds to a semi-stable quiver
represenation for the setting
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when
Vie,=57"®S5% and Vie=T" 0T 0Ty

with {T1,7,,T,2} the irreducible Cj-representations. Because T' |¢,= 11 =
Slc, and P lo,=T,® T,» we have that M |r has dimension vector
a=(abzyz)=@pPtegt+tr+st+btptqtr+sti)

which satisfies the condition that max(x,y,z) < min(a,b) if and only if
t>r+sandt > p+gq. Settingu =r+s, v = p+q and w = t, the statement
of Theorem 1 follows.
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