
THE SINGULARITIES OF NONCOMMUTATIVE MANIFOLDS

LIEVEN LE BRUYN

Abstract. We present a faster method to determine all singularities of quiver
moduli spaces up to smooth equivalence. We show that every quiver controls

a large family of noncommutative compact manifolds.

1. The problem

Let Q be a quiver on a finite set of vertices Qv = {1, 2, . . . , k} having a finite set
of arrows Qa. The quiver may contain loops and oriented cycles. The structure of
Q is fully encoded in the Ringel bilinear form χQ on Z⊕k determined by

χQ(εi, εj) = δij −#{a ∈ Qa | ◦i
a // ◦j }

The path algebra CQ has as C-basis the set of all oriented paths in Q including
those of length zero which correspond to the vertices. Multiplication in CQ is in-
duced by concatenation of paths. The path algebras CQ are very special cases of
quasi-free, or formally smooth, algebras as in [6] or [9] and can be seen as corre-
sponding to all possible noncommutative affine spaces among all noncommutative
manifolds, see for example [13]. The study of the additive category of finite di-
mensional representations of CQ reduces to that of quiver-representations of Q.
Each such representation has a dimension vector α = (a1, . . . , ak) ∈ N⊕k (giv-
ing the dimensions of the vertex-spaces) of total dimension d(α) =

∑
i ai. The

set of all Q-representations of dimension vector α is an affine space repα(Q) on
which the group GL(α) =

∏
iGLai acts via base-change in the vertex-spaces. It

is well known that the corresponding GIT-quotient repα(Q)/GL(α) classifies iso-
morphism classes of semi-simple Q-representation of dimension vector α and that
its coordinate ring, the ring of polynomial quiver invariants, is generated by traces
along loops and oriented cycles in Q, see [10].

Consider a stability structure θ = (θ1, . . . , θk) ∈ Z⊕k, then we call a Q-
representation V of dimension vector α a θ-semistable representation if θ.α =∑
i θiai = 0 and if for every proper subrepresentation W of V we have θ.βW ≥ 0

where βW is the dimension vector of W , and, if all θ.βW > 0 we say that V is a θ-
stable representation. The corresponding moduli space modssα (Q, θ) of θ-semistable
representations of dimension α was introduced and studied in [8]. Its points corre-
spond to isomorphism classes of α-dimensional representations of the form

M = N⊕e11 ⊕ . . .⊕N⊕euu

such that all factors Ni are θ-stable of dimension vector βi and occur in M with
multiplicity ei ≥ 0, so that α =

∑
i eiβi. It is well known that most of these quiver

moduli spaces modssα (Q, θ) are singular. In fact, in [7] it is shown that the only
quivers Q having all their quiver moduli spaces smooth are the Dynkin or extended
Dynkin quivers.
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2 LIEVEN LE BRUYN

Hence, we would like to determine the types of singularities that occur in
modssα (Q, θ) up to smooth equivalence. Recall that points x ∈ X and y ∈ Y in

two varieties X and Y are called smoothly equivalent, if there are natural numbers
k and l and an isomorphism of complete local rings

ÔX,x[[x1, . . . , xk]] ' ÔY,y[[y1, . . . , yl]]

In principle, we can determine these finite number of types by combining the method
of local quivers from [1] with Bocklandt’s reduction steps [3] and [4]. In [1] the étale
local structure of modssα (Q, θ) near M was described as the quiver quotient variety
of a local quiver setting (QM , αM ). Here, QM is a quiver on k vertices corresponding
to the distinct stable factors of M . The number of directed arrows (or loops) from
vertex ◦i to vertex ◦j is equal to δij − χQ(βi, βj). The main result of [1] asserts
that there is an étale isomorphism between a neighborhood of M in modssα (Q, θ)
and a neighborhood of 0 in the quiver quotient variety repα(QM )/GL(αM ). In [4]
Bocklandt’s eduction steps from [3] were used to to classify such quiver quotient
singularities up to smooth equivalence.

However, in all but the more trivial situations, this is a very time consuming
method. Whereas Bocklandt’s reduction steps are fairly efficient, the determina-
tion of all possible representation types of M and the calculation of all local quiver
settings is not. In this paper we introduce two concepts to speed up this process.
First, we introduce an auxiliary quiver Qθ, depending only on the stability struc-
ture θ and not on the particular dimension vector α, controlling all possible local
quivers (QM , αM ). The quiver Qθ will allow us to quickly determine the ’worst’ sin-
gularity types in modssα (Q, θ). Next, we introduce a partial ordering on the possible
types of quiver quotients, which can in any concrete situation be efficiently con-
structed inductively, and, which we use to characterize all other singularity types
in modssα (Q, θ), starting from the ’worst’ ones.

2. The controlling quiver Qθ

We fix a quiver Q with vertices Qv = {1, . . . , k} and fix a stability structure
θ ∈ N⊕k. Let Σθ be the additive sub-monoid of N⊕k consisting of all dimension
vectors α such that θ.α = 0. As the direct sum of two θ-semistable representations
is again θ-semistable, we can consider in Σθ the additive sub-monoid Vθ consisting
of those α ∈ Σθ such that there exist θ-semistable representations of Q of dimension
vector α. In [16] an inductive procedure is given to determine Vθ. Let {γ1, . . . , γl}
be a minimal set of additive monoid generators of Vθ. Such generating dimension
vectors γ have special properties:

Lemma 1. With notations as above we have:

(1) γ is in a minimal generator set of Vθ if and only if every θ-semistable
Q-representation is actually θ-stable.

(2) γ is in a minimal generator set of Vθ if and only if the GIT-quotient

repssα (Q) -- modssα (Q, θ)

is a principal PGLn-fibration in the étale topology, where repssα (Q) is the
Zariski open subset of repα(Q) consisting of θ-semistable representations.

(3) If γ is in a minimal generator set of Vθ then the moduli space modssα (Q, θ)
is smooth of dimension 1− χQ(γ, γ).
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Proof. Every θ-semistable representation M has a filtration by θ-semistable sub-
representations such that all filtration quotients Ni = Fi+ 1/Fi are θ-stable. It
follows that the θ-semistable representation N = ⊕iNi lies in the closure of the
GL(α)-orbit of M and if the dimension vector of the θ-stable factor Ni is βi then
clearly α =

∑
i βi. (1) follows from this, as does (2) using the fact that the stabilizer

subgroup of a θ-stable representation is C∗. (3) follows from (2) and the fact
that repssα (Q) is a non-empty Zariski open subset of the affine space repα(Q) is
smooth. �

Qθ will then be the quiver with vertices {1, . . . , l} where vertex ◦i corresponds
to the generator γi. In Qθ the number of directed arrows (or loops) from vertex
◦i to vertex ◦j will be equal to δij − χQ(γi, γj). A first use of Qθ lies in the
characterization of θ-stable dimension vectors:

Lemma 2. The following are equivalent

(1) There exists a θ-stable representation of dimension vector α

(2) We can write α =
∑l
i=1 ciγi where γ = (c1, . . . , cl) is the dimension vector

of a simple representation of Qθ.

Moreover, in this case we have χQ(α, α) = χQθ (γ, γ).

Proof. This is a direct consequence of [1, Thm. 5.1] and the fact that {γ1, . . . , γl}
generate Vθ. The conclusion follows because the dimension of modssα (Q, θ) is in this
case equal to 1−χQ(α, α) and, on the other hand, the quiver setting (Qθ, γ) is the
local quiver encoding the étale local structure of modssα (Q, θ) near a point

N = N⊕c11 ⊕ . . .⊕N⊕ll
where Ni is a θ-stable representation of dimension vector γi. As γ is a simple dimen-
sion vector for Qθ the dimension of the quiver quotient variety repγ(Qθ)/GL(γ)

is equal to 1− χQθ (γ, γ). �

The main purpose of the auxiliary quiver Qθ is that it controls all local quiver set-
tings (QM , αM ) describing the étale local structure of all moduli spaces modssα (Q, θ):

Theorem 1. The quiver Qθ contains enough information to construct the local
quiver setting (QM , αM ) describing the étale local structure of the quiver moduli
space modssα (Q, θ) near the point corresponding to

M = S⊕e11 ⊕ . . .⊕ S⊕euu

where the Si are non-isomorphic θ-stable representations of dimension vector βi.
More precisely, if N and N ′ are θ-stable representations of dimension vectors β
and β′ and if we can write β =

∑
i ciγi and β′ =

∑
i c
′
iγi with γ = (c1, . . . , cl) and

γ′ = (c′1, . . . , c
′
l) simple dimension vectors of Qθ then we have

χQ(β, β′) = χQθ (γ, γ
′)

Proof. If N ' N ′ (and hence β = β′ and γ = γ′) the claim follows from the previous
lemma. So, assume that N 6' N ′, then the local quiver setting describing the étale
local neighborhood of modssβ+β′(Q, θ) near N ⊕N ′ is

11−χQ(β,β) 7?

−χQ(β,β′)

$,
1 1−χQ(β′,β′)_g

−χQ(β′,β)

dl
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On the other hand, (Qθ, γ+γ′) is the local quiver describing the étale local structure
of modssβ+β′(Q, θ) near P ⊕Q where

P = N⊕c11 ⊕ . . .⊕N⊕cll and Q = N
⊕c′1
1 ⊕ . . .⊕N⊕c

′
l

l

By the previous lemma there are simple Qθ-representations S and T of dimension
vector γ and γ′ such that the semi-simple Qθ-representation S ⊕ T lies in a Zariski
neighborhood of 0 in repγ+γ′(Qθ)/GL(γ + γ′) and hence corresponds to a point

in modssβ+β′(Q, θ) corresponding to a representation N1⊕N ′1 with N1 and N ′1 both

θ-stable and of dimension vectors β and β′. By the theory of local quivers of
semi-simple quiver representations as in [10] the étale local structure of the quiver
quotient variety near S ⊕ T is determined by the local quiver setting

11−χQθ (γ,γ) 7?

−χQθ (γ,γ
′)

$,
1 1−χQθ (γ

′,γ′)_g
−χQθ (γ

′,γ)

dl

As local quivers-settings only depend on the representation type, this quiver must
be the same as the one of N ⊕N ′ finishing the proof. �

From now on we will restrict attention to the study of moduli spaces modssθ (Q, θ)
for dimension vectors α allowing θ-stable representations. The general case reduces
to this by the theory of general representations developed in [16].

3. Bocklandt’s reduction steps

With simps we denote the set of all simple quiver settings, that is, all couples
(Q,α) consisting of a quiver Q and dimension vector α = (a1, . . . , ak) with all
ai 6= 0 (that is, the support supp(α) of α contains all vertices of Q), which satisfy
(see [10]):

• Q must be strongly connected, meaning that there exist directed paths
connecting any two of its vertices, and,

χQ(α, εi) ≤ 0 and χQ(εi, α) ≤ 0

for all vertex dimension vectors εi. That is, in every vertex ◦i the total
number of incoming (and outgoing) dimensions is greater than or equal to
the vertex-dimension.
• If however Q = Ãk with cyclic orientation, then only α = (1, . . . , 1) is

allowed.

In verifying the numerical conditions it is practical to label each vertex with two
numbers ≤ 0, giving the differences of the total incoming (resp outgoing) dimen-
sions with the vertex-dimension. This allows us to spot quickly whether one of the
reductions steps (Q,α) -- (Q′, α′), discovered by Raf Bocklandt in his charac-
terization of smooth quiver quotient varieties, can be applied [3]:

• If there is a vertex ◦i with vertex-dimension ai = 1 having loops, remove
the loops to get Q′ and keep α′ = α.
• If one of the two numbers for ◦i is zero, remove the vertex ◦i and cable all

arrows through, that is, any situation

◦k
a +3 ◦i

b +3 ◦l becomes ◦k
a×b +3 ◦l

to obtain Q′ and let α′ be α with the i-th component removed.



THE SINGULARITIES OF NONCOMMUTATIVE MANIFOLDS 5

• If there is a vertex ◦i having a unique loop and such that one of the two
numbers is −1, then we are in one of the following local situations in ◦i

1 // k
��

??

��

// ��// k
�� // 1??

we replace the loop in ◦i by a bunch of k arrows to or from 1 , that is,
locally Q′ looks like

1
k +3 k

??

��

// ��// k k +3 1??

and keep α′ = α.

In every reduction step we either decrease the number of vertices or the number
of loops. So, after a finite number of moves we arrive at a simple quiver setting
(Qt, αt) which cannot be reduced further. As there is an element of choice in the
reduction steps we can perform, there is a priori no reason that any two reduction
procedures should result in the same final setting. Still, surprisingly, this is the case
as was proved in [4, §4]. We will call this unique irreducible simple quiver setting
(Qt, αt) the type of (Q,α).

The upshot of this reduction process is the following result which follows from
Bocklandt’s work [3]:

Theorem 2. For any (Q,α) ∈ simps with (unique) type (Qt, αt) there is an
isomorphism of varieties

repα(Q)/GL(α) ' repαt(Q
t)/GL(αt)× Cd

where d = χQt(α
t, αt)− χQ(α, α). In particular, the corresponding quiver-quotient

singularities are smoothly equivalent.

In [3] Bocklandt proves that the quiver quotient variety repα(Q)/GL(α) is
smooth if and only if its type (Qt, αt) is either

1 or 2
## {{

4. The partially ordered set of types

We will put a partial order on the set types of all types of simple quiver settings.
Take an irreducible simple quiver setting (Q,α) and look for loops I = {i} or
minimal oriented cycles I = {i1, . . . , iv} in it. Consider the dimension vector βI =
(δ1I , δ2I , . . . , δkI) then there exists a simple Q-representation SI of dimension vector
βI . Now, consider the semi-simple Q-representation M of dimension vector α =
(a1, . . . , ak)

M = SI ⊕ S⊕a1−δ1I1 ⊕ S⊕a2−δ2I2 ⊕ . . .⊕ S⊕an−δnIn
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where Si is the 1-dimensional simple vertex-representation in ◦i. Let (QM , αM )
be the local quiver setting associated to M as defined in [11]. In this case, QM
is a quiver on k + 1 vertices {0, 1, 2, . . . , k}, with ◦0 corresponding to the simple
component SI , such that QM |{1, . . . , k} ' Q and the number of loops in ◦0 is given
by 1− χQ(βI , βI) and the number of arrows from ◦0 to ◦i (resp. from ◦i to ◦0) is
equal to −χQ(βI , εi) (resp. to χQ(εi, βI). The dimension vector αM ∈ N⊕k+1 is
determined by the multiplicities of the distinct simple factors in M , that is,

αM = (1, a1 − δ1I , . . . , ak − δkI)

Next, let (Q′M , α
′
M ) be the (necessarily simple) quiver setting obtained by restricting

(QM , αM ) to the support of αM . Finally, let (QI , αI) be the type of (Q′M , α
′
M ),

then we say that (QI , αI) is a direct successor of (Q,α) in types determined by
the oriented cycle I and we denote this by an arrow

(Q,α) - (QI , αI)

Composing such arrows then defines a partial order on types.

Example 1. There is just one type of cycle (loop) I = {1} for the type

2
## {{

and the corresponding semi-simple representation M is the direct sum SI ⊕ S1 of
two distinct simple 1-dimensional representations, SI has one of the loops non-zero,
S1 not. The corresponding local quiver setting is then

1NN
�� ((

1
��
\\hh

which has corresponding type 1 , that is, in types we have an arrow

2
## {{ - 1

In fact, soon it will become apparent that 1 is the unique minimal object in types.

The upshot of this ordering is that it simplifies the singularity type as we move
away from the worst singularity 0 in repα(Q)/GL(α) to singularities at points in
the first deformed strata.

Recall that points of the quiver quotient variety correspond to semi-simple rep-
resentations of total dimension α, that is, representations of the form

N = T⊕f11 ⊕ . . .⊕ T⊕fll

where all Ti are simple Q-representations of dimension vector βi and such
that

∑
i fiβi = α. We then say that N is of representation type σ(N) =

(f1, β1; . . . ; fl, βl). The Luna stratification of repα(Q)/GL(α) consists of strata
strata(σ), consisting of points of the same representation type σ, which are

all locally closed subvarieties. In fact, one can show that strata(σ) is con-
tained in the Zariski closure of strata(σ′) if and only if the stabilizer subgroup
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Stab(Nσ′) is conjugated to a subgroup of Stab(Nσ)in GL(α) for Nσ ∈ strata(σ)
and Nσ′ ∈ strata(σ′).

The point 0 is contained in the most degenerate stratum of representation type
σ0 = (a1, ε1; . . . ; an, εn) if α = (a1, . . . , an). In the Hasse diagram of Luna strata,
the strata of minimal dimension strata(σ) containing strata(σ0) in their Zariski
closure are exactly those with representation type of the form

σI = (1, βU ; a1 − δ1I , ε1; . . . ; an − δnI , εn)

corresponding to a loop or a minimal proper oriented cycle I in Q. The theory
of local quivers, see for example [11], then asserts that the étale local structure of
repα(Q)/GL(α) in a neighborhood of M ∈ strata(σ) is isomorphic to an étale

local neighborhood of 0 in the quiver quotient variety repαM (QM )/GL(αM ).
Combining this with theorem 2 we get the first assertion of the following result:

Theorem 3. For (Q,α) ∈ types we have:

(1) If (Q,α) - (Q′, α′) then any Zariski neighborhood of 0 in the quo-
tient variety repα(Q)/GL(α) contains points smoothly equivalent with type
(Q′, α′).

(2) Every singularity of repα(Q)/GL(α) not of type (Q,α) is smoothly equiva-
lent to a singularity contained in repα′(Q

′)/GL(α′) for some type (Q′, α′)
such that (Q,α) ≥ (Q′, α′).

Proof. As for the second assertion, recall that étale singularity types of quiver quo-
tient varieties on it depend on their representation type and as 0 lies in the Zariski
closure of any representation stratum, we have that any Zariski neighborhood of 0
contains points of all occurring étale singularity types. Now, take such a singularity
type τ with associated representation type σ and consider a representation type σ′

having a stratum of minimal dimension such that

strata(σ0) ( strata(σ′) ⊂ strata(σ)

then σ′ = σI for some loop or minimal oriented cycle I in Q. Any point
in strata(σ) is of type τ and as strata(σI) is contained in its Zariski clo-
sure, the theory of local quivers entails that any Zariski neighborhood of 0 in
repαM (QM )/GL(αM ), for M of type σI , contains points étale of type τ . As
repαM (QM )/GL(αM ) and repα′(Q

′)/GL(α′) are smoothly isomorphic there are
singularities in repα′(Q

′) étale smoothly equivalent to τ , finishing the proof. �

This then gives an algorithm to determine all singularity types of quiver quotient
varieties up to smooth equivalence.

Theorem 4. Let (Q,α) ∈ simps and apply reduction steps to determine is type
(Qt, αt) ∈ types. Then, the singularity types of points in the quiver quotient
variety repα(Q)/GL(α) are, up to smooth equivalence, exactly those (Q′, α′) ∈
types such that (Qt, αt)≥(Q′, α′).

Note that different types may still be smoothly equivalent. For example, in [4]
we showed that types 53a and type 54c have isomorphic rings of invariants. Further,
the locus of all points in repssα (Q)/GL(α) consisting of points of a specific type
may consist of several strata strata(σ), even of varying dimensions.
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5. Hitchhiker’s guide to types

In principle one can build a map of the partial ordered set types, inductively
by dimension of the quotient variety, and by number of the vertices in the quiver.
If the dimension is D and the number of vertices is n we will enumerate all possible
types (Q,α) as Dna, Dnb, . . .. The quiver Q is determined by the integral matrix
MQ describing its Ringel bilinear form χQ, and the condition that (Q,α) ∈ types

of dimension D can then be expressed as a system of equations and inequalities
involving the entries of MQ and α, starting with

1− χQ(α, α) = D χQ(α, εi) ≤ 0 χQ(εi, α) ≤ 0

followed by relations expressing that none of the Bocklandt’s reduction steps are
possible for (Q,α). This then produces a list of all types of dimension D and we
have to relate them to the already constructed poset of types of dimension < D.

This involves computing local quiver settings for representation types σI corre-
sponding to loops or minimal oriented cycles I in the quiver Q. As there will be at
least one loop in this local quiver in the vertex ◦0, having vertex-dimension 1, we
see that by going to its associated type we drop he dimension of the quotient-variety
by at least one. That is, we will only have to draw red arrows connecting the new
types of dimension D to types already constructed before.

We can also describe easily, for all dimensions D, the types having only an
arrow to the unique minimal element 1 . However, we will not draw this arrow so
that these types become sinks in the map. This happens when the corresponding
quotient variety is an isolated singularity and those quiver-quotients have been
classified in [5] to be of the form

1

$$

1
k4

ks

1
k3

[c

1

k2
KS

1
kl +3 1

k1
;C

where Q has l vertices and all ki ≥ 2. The resulting dimension is then D =∑
i ki + l − 1. In [4] all types of dimension D ≤ 6 have been classified. The first

dimension allowing a quiver-quotient singularity is D = 3 and there is just one such
type, corresponding to the conifold singularity 3c

1
$,
1dl

In dimension D = 4 there are exactly three types

42 : 1
$,
1`m 43a : 1

**

��

1jj

vv
1

66VV 43b : 1
&.
1

rz
1

RZ

Dimension D = 5 adds 11 types and in dimension D = 6 we get an additional
54 types, see [4] for all details. In [4] these types where then classified up to
isomorphism by a method called ’fingerprinting’ singularities of which our partial
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Figure 1. Hitchhiker’s guide to types
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order on types is a scaled down version. Using the enumeration of types as given
in [4] we can then draw the poset types up to dimension D = 6 as in Figure 1.
The isolated quiver-singularities in dimension 6 are not included.

6. Singularities of quiver moduli spaces

We are now in a position to describe more efficiently the types of singularities
that occur in modssα (Q, θ) up to smooth equivalence:

• For fixed dimension vector α there is a limited number of possible simple
dimension vectors {γ1, . . . , γv} of the controlling quiver Qθ as in lemma 2.
• For 1 ≤ i ≤ v apply Bocklandt’s reduction steps to obtain the type (Qtθ, γ

t
i )

of (Qθ|supp(γi), γi).
• Up to smooth equivalence, the types of singularities that occur in

modssα (Q, θ) are precisely those (Q′, α′) such that

(Qtθ, γ
t
i ) ≥ (Q′, α′)

for at least one 1 ≤ i ≤ v.

In particular, this allows us to characterize for a given quiver Q and stability
structure θ all the moduli spaces modssα (Q, θ) which are smooth, as those for which
all types (Qtθ, γ

t
i ) are either

1 or 2
## {{

We will illustrate the above by some examples. First, we will determine the con-
trolling quiver Qθ relevant in the study of representations of the modular group.
Then we will illustrate how one can inductively extend on Figure 1, and, finally we
will give a short proof of the classification of all smooth quiver moduli spaces in
this case.

Example 2. Consider the quiver Q below and stability structure θ =
(−1,−1; 1, 1, 1) that appears naturally in the study of character varieties of the
modular group Γ = PSL2(Z), see [14].

x

a

33

++

!!

y

b

44

==

** z

then simple Γ-representations of dimension n = a + b = x + y + z determine
θ-stable representations of dimension vector α = (a, b;x, y, z), which then must
satisfy min(a, b) ≥ max(x, y, z). In this case, the monoid Vθ is generated by the six
dimension vectors{

γ1 = (1, 0; 1, 0, 0) γ2 = (0, 1; 0, 1, 0) γ3 = (1, 0; 0, 0, 1)

γ4 = (0, 1; 1, 0, 0) γ5 = (1, 0; 0, 1, 0) γ6 = (0, 1; 0, 0, 1)
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which correspond to the six one-dimensional representations of Γ = C2 ∗C3. In this
case the quiver Qθ is

a1

tt ��
a6

44

��

a2

VV

��
a5

EE

��

a3

EE

tta4

VV 44

and a dimension vector αθ = (a1, . . . , a6) corresponds to α if and only if{
a = a1 + a3 + a5 b = a2 + a4 + a6

x = a1 + a4 y = a2 + a5 z = a3 + a6

Example 3. We will determine the singularity types occurring in the (unique)
singular moduli space of smallest possible dimension, which is 7, corresponding
to dimension vector α = (3, 3; 2, 2, 2). Up to hexagonal symmetry there are two

corresponding simple dimension vectors α
(1)
θ , α

(2)
θ

1

tt ��
1

44

��

1

TT

��
1

EE

��

1

EE

tt
1

TT 44

2

tt ��
1

44

��

2

TT

��
0

EE

��

1

EE

tt
0

TT 44

Neither of these quiver settings can be further reduced so they determine two new
types, let us call them resp. 76a and 74a (recall that the first subindex gives the
number of vertices of the quiver). Next, we have to connect them to the map of
Figure 1.

We have to determine the local quivers associated to minimal oriented cycles in
these two quivers. For type 76a there is up to symmetry just one such cycle, namely
between two consecutive vertices. For type 74a we have up to symmetry two possible
cycles, either containing an ending vertex or between the two middle vertices.

The corresponding local quiver for type 76a and the second possibility for type 74a
are both of the form

1
��

uu ��
1

55

��

1

VV

��
1

GG

**
1jj

GG

and after reducing the loop we obtain type 65k of the classification from [4]. The
first possibility for type 74a gives as local quiver

1
��

		
1

))
2ii ))

II

1ii
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and, after reducing the loop, we obtain type 6A from [4].
Both type 65k and 6A are already on our map (upper right hand), so we obtain

that up to smooth equivalence the singularities of modssα (Q, θ) are exactly of the
types

76a, 74a, 65k, 6A, 54a, 43a, 3con

with degeneration diagram

76a // 65k // 54a

!!
74a //

==

6A // 43a // 3con

This calculation illustrates the iterative process involved to extend on Figure 1 in a
specific problem.

Example 4. Next, let us see how to apply the foregoing in order to classify the
smooth quiver moduli spaces. Before, we have seen that for α = (3, 3; 2, 2, 2) in
the moduli space there should be singularities smoothly equivalent to the conifold
singularity. Indeed, if we take representations of the form M = N ⊕ N ′ where N
(resp. N ′) is θ-stable of dimension vector (2, 1; 1, 1, 1) (resp. (1, 2; 1, 1, 1)) then the
corresponding local quiver is

1
��
BB

$,
1
��
\\dl

Now, if β is a strictly larger dimension-vector (meaning that all its vertex dimen-
sions are greater or equal than those of α) we can write

β = α+

6∑
i=1

niγi

and calculating the local quiver of this representation type shows that we can never
reduce to a smooth setting. Hence, all moduli spaces for dimension vectors larger
than α will be singular. The remaining dimension vectors are either Dynkin or
extended Dynkin (and hence have smooth moduli spaces) or of the form

(b+ 1, b; b, b, 1), (b, b; b, b− 1, 1) or (4, 2; 2, 2, 2)

In the first case, there are (up to symmetry) two possible families of simple dimen-
sion vectors for Qθ, namely

x

rr ��
0

22

��

x

VV

��
b−x

EE

��

1

DD

vv
b−x

XX 33

b−x

rr ��
1

44

��

b−1−x

ZZ

��
1+x

EE

��

0

FF

qqx

XX 11

The first one we can reduce to

x;;
##
1cc

&&
b−x eedd
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and subsequently to

x
##
1

x

_g

b−x
"*
b−xdd

and finally to

1x ;; b−xcc

which is of type 1 whence smooth. The second one first reduces to

x;;
##
1
��
[[cc

''
b−1−xeeee

which after reducing the two loops in the middle vertex is of the same type as the
first reduction of the first case, so is again smooth. For the dimension vectors
(b, b; b, b − 1, 1) the argument is similar. As for the special dimension vector α =
(4, 2; 2, 2, 2) here the corresponding quiver-setting (Qθ, αθ) is

1
##
1cc

##
2cc

##
1cc

##
1cc

which is easily seen to reduce to 1 , whence is smooth.

Concluding, we have the following characterization of all smooth moduli spaces
for the above quiver Q and stability structure θ = (−1,−1; 1, 1, 1), see also [2]:

Theorem 5. modssα (Q, θ) is smooth unless all vertex-dimensions of β are greater
or equal than those of β = (3, 3; 2, 2, 2).

Observe from [15] that these are exactly the components on which transposition
induces the identity.

7. Compact noncommutative manifolds

If the quiverQ has no oriented cycles all moduli spaces modssθ (Q, θ) are projective
varieties and in [12] it is argued that one can view the family of projective varieties

(
⊔

d(α)=n

modssα (Q, θ) )n

as a noncommutative compact manifold. That is, the additive category repss(Q, θ)
of all finite dimensional θ-stable representations of Q can be covered by repre-
sentation categories rep(A) consisting of all finite dimensional representations of
formally smooth algebras A. We have seen that the singularities of the noncom-
mutative compact manifold, as well as all local quiver settings describing its étale
local quiver, are controlled by the quiver Qθ. Conversely, we have
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Theorem 6. For every quiver Q† there exist noncommutative compact manifolds
of the form

(
⊔

d(α)=n

modssα (Q, θ) )n

with Q having no oriented cycles such that all local quiver settings are controlled by
Q†.

Proof. We start with Q0 = Q† and stability structure θ0 = (0, . . . , 0). We use the
trick of iterating the procedure of doubling vertices, see [7, §2], to remove all loops
and oriented cycles in and to modify the stability structure accordingly. That is,
if after k steps we have arrived at a situation (Qk, θk) such that all local quiver
settings for moduli spaces of θk-semistable representations are controlled by Q† and
if we still have a vertex ◦i in Qk having loops or oriented cycles passing through
it, and if the i-th θk-component is ti, then we modify the situation by splitting
the vertex in two vertices ◦i− and ◦i+ and adjusting loops and arrows starting or
ending in ◦i as indicated below

  // ◦i

>>

//

  

��
>>

  // ◦i+ ◦i−

>>

//

  

ooww

>>

to get a new quiver Qk+1 and new stability structure θk+1 which coincides with θk
in all non-modified vertices and is equal to −n in ◦i− and equal to ti + n in ◦i+ ,
where n is chosen large enough to ensure that all local quiver settings for moduli
spaces of θk+1-semistable representations of Qk+1 are controlled by Q†. Note that
if we have a dimension vector αk allowing θk-semistable representation, then the
dimension vector αk+1, which coincides with αk in all non-modified vertices and
with the αk-component in ◦i in the new vertices ◦i− and ◦i+ , will allow θk+1-
semistable representations. By [7, Thm. 2.2] this is always possible. In fact, we
can even choose n such that the local quiver settings for modssαk(Qk, θk) are exactly
local quiver settings for modssαk+1

(Qk+1, θk+1). After a finite number of steps we
obtain a quiver Q having no loops nor oriented cycles and a stability structure θ
such that the corresponding noncommutative compact manifold is controlled by
Q†. �

As is clear from the foregoing proof, the same quiver Q† can control a large array
of compact noncommutative manifolds, which can be quite different.
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Example 5. Take as quiver Q† = Qθ of example 2 controlling the noncommutative
compactification of the modular group. This quiver also controls the noncommuta-
tive compact manifold defined by the quiver Q′ below

�� ��//

77

��

gg

��

oo@@

//

^^

oogg 77OO

and stability structure (with cyclic ordering op vertices of Q† and split vertices as
consecutive entries)

θ′ = (0;−p, p; 0;−q, q; 0;−r, r)
where p, q and r are sufficiently large primes. To a simple dimension vector α† =
(a1, a2, a3, a4, a5, a6) of Q† there is a unique dimension vector

α′ = (a1; a2, a2; a3; a4, a4; a5; a6, a6)

of Q′ allowing θ′-stable representations. By [7, Thm. 2.2] the local quiver set-
tings for the moduli space modssα′(Q

′, θ′) are exactly the same as those of the quiver
quotient-variety repα†(Q

†)/GL(α†).

On the other hand, for the quiver Q of example 2 and stability structure θ =
(−1,−1; 1, 1, 1) the local quivers for the moduli space modssα (Q, θ) for a dimension
vector α allowing θ-stable representations are, in general, determined by those of
several simple dimension vectors α† of Q† as example 3 illustrates.
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