MATRIX TRANSPOSITION AND BRAID REVERSION

LIEVEN LE BRUYN

ABSTRACT. Matrix transposition induces an involution 7 on the equivalence
classes of semi-simple n-dimensional complex representations of the three
string braid group B3. We show that a connected component of this vari-
ety can detect braid-reversion or that 7 acts as the identity on it. We classify
the fixed-point components.

1. INTRODUCTION

If ¢ = (X7, X2) is an n-dimensional complex representation of the three string
braid group Bs = (01,092 | 010201 = 020103), then so is the pair of transposed
matrices 7(¢) = (X{", Xi"). In this paper we investigate when ¢ is equivalent to
().

This problem is relevant to detect braid- and knot-reversion. Recall that a knot
is said to be invertible if it can be deformed continuously to itself, but with the
orientation reversed. There do exist non-invertible knots, the unique one with
a minimal number of crossings is knot 817, see the Knot Atlas [4], which is the
closure of the three string braid b = Ufzagoflagoflag. Proving that 8;7 is not
invertible comes down to separating the conjugacy class of the braid b from that of
its reversed braid ¥ = 0307 o207 *oa0;7 2. Now, observe that a Bz-representation
¢ can separate b from V', via T'ry(b) # Tr4(b'), only if ¢ is not equivalent to the
transposed representation 7(¢).

The involution 7 on the affine variety rep, Bs of all n-dimensional representa-
tions passes to an involution 7 on the quotient variety rep,, Bs/PGL, = iss,Bs,
classifying equivalence classes of semi-simple n-dimensional representations. Re-
call from [7] and [9] that iss, Bs decomposes as a disjoint union of its irreducible
components

iss, B3 = U, iss, B3

and the components containing a Zariski open subset of simple Bs-representations
are classified by o = (a, b;x,y,2) € N° satisfyingn =a+b=x+y+ 2, a > b and
x = mazx(z,y,z) <b.

Theorem 1. If the component iss, Bs contains simple representations, then T acts
as the identity on it if and only if o is equal to

e (1,0;1,0,0), or (4,2;2,2,2), or

o (k.kik,k—1,1), or (k,k;k,1,k—1), or

o (k+1,k;k k1), or (K+1,k;k,1,k)
for some k > 1. In all these cases, dim iss,Bs = n. In all other cases, iss,Bs3

contains simple representations ¢ such that Try(b) # Try(V'), that is, iss,Bs can
detect braid-reversion.
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Note that this result generalizes [7] where it was proved that there is a unique
component of issgBs, namely iss, Bz for o = (3,3;2,2,2), containing representa-
tions ¢ such that Ty (b) # Try ().

2. THE INVOLUTION T AND STABLE QUIVER REPRESENTATIONS

In this section we follow Bruce Westbury [9] reducing the study of simple Bs-
representations to specific stable quiver representations, and, we will describe the
involution 7 in terms of these representations.

If ¢ = (X;1,X5) is a simple n-dimensional Bs-representation, then the central
element ¢ = (0102)% = (010201)? acts via a scalar matrix \I,, for some \ # 0.
Hence, ¢/ = A~1/%¢ = (X!, X}) is a simple representation of the quotient group

Bs/lc)=(s,t | > =t =€) ~CyxC3 ~T

which is the free product of cyclic groups of order two and three (and thus isomor-
phic the modular group T' = PSLy(Z)) where s and ¢ are the images of 010207 and
o102. Decompose the underlying n-dimensional space V' = Cf, into eigenspaces for
the actions of s and ¢

VieV.=V=ViaV,oV,:

with p a primitive 3rd root of unity. For a = dim(V}),b = dim(V_), v =
dim(V1),y = dim(V,) and z = dim(V,2), clearly a + b = n = x 4+ y + z. Choose a
vector-space basis for V' compatible with the decomposition Vi @ V_ and another
basis of V' compatible with the decomposition V; ®V,@® V2, then the corresponding
base change block matrix

Bi1 Bio
B = [Bs1 Bj| € GL,(C)
B3, Bz

determines the quiver representation Vp with dimension vector a = (a,b; x,y, 2)

The quiver representation Vp is semi-stable in the sense of [3], meaning that for
every proper sub-representations W, with dimension vector 8 = (a’,b';2',y’, 2’) we
have ' +y'+2' > o/ +¥'. If this inequality is strict for all proper subrepresentations
W, we call Vp a stable representation, which is equivalent to the I'-representation
V = C%, being simple. Westbury [9] showed that two I'-representations are equiva-
lent if and only if the corresponding quiver representations are isomorphic Vg ~ V},,
that is, there exist base changes in the eigenspaces

(Ml,Mg,Nl,NQ,Ng) € GL(CM) =GL, x GLy x GL, x GLy x GL,
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such that

N, 0 0] [B), B,
0 Ny, 0] |B) Bj {

Mfl 0 :| Bll B12
0 0 Ns||Bj B

B B
-1 21 Bag
0 M, B3;  Bsp

Working backwards, we recover the Bs-representation ¢ = (X1, X5) from the in-
vertible matrix B via

I, 0 0 T
X, =A/B=t10 p’1, 0 |B 6‘ . 1
—4ib
0 0 pl,
*
(*) - I, 0 0
Xy = \/6 l; ) B~t|0 p’, 0 |B
b 0 0 pl,

Proposition 1. If the n-dimensional simple Bs-representation ¢ = (X1, Xs) is de-
termined by A € C* and the stable quiver representation Vi, then 7(¢) = (X", X&)
is isomorphic to the representation determined by \ and the stable quiver represen-
tation Vig-1yr.

Proof. Taking transposes of the formulas (x) for the X; we get

1., 0 0
Xir = \Vs [1”’ "o 21, 0| By
0 b 0 0 pl,
1, 0 0
X%T _ )\1/6Btr 0 p21y 0 (B—l)tr [1a 0 ]
0 0 pl. 0 L
Conjugating these with the matrix [161 —Olb (which is also a base change action
in GL(«)) we obtain again a matrix-pair in standard-form (x), this time replacing
the matrix B by the matrix (B~1)'. O

That is, we have reduced the original problem of verifying whether or not ¢ ~
7(¢) as Bs-representations to the problem of verifying whether or not the two stable
representations Vg and V(g-1ye- lie in the same G'L(a)-orbit.

Example 1. The two components iss,Bs containing simple 2-dimensional Bs-
representations for a = (1,1;1,1,0) or (1,1;1,0,1) are fixed-point components for
the involution 7. A general stable o = (1,1;1,1,0) dimensional representation Vi
is isomorphic to one of the form
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with a # 1. Hence, we can take B = th ﬂ . But then, Vg and V g1y lie in the

same GL(a) = C* x C* x C* x C*-orbit because
1 [1 —a] [1 0 = 0
—1\tr _ _ 1—a
s 7)-f oo 4

3. THE STRATIFICATION AND POTENTIAL FIXED-POINT COMPONENTS

In this section we will show that a component iss, B3 containing n-dimensional
simple Bs-representations is a fixed-point component for the involution 7 only if «
is among the list of theorem [T}

Because the group algebra CI' = CC5 * CCj3 is a formally smooth algebra, we
have a Luna stratification of iss,I’ by representation types, see [6, §5.1]. A point
p in iss,I'" determines the isomorphism class of a semi-simple I'-representation

V=S¥ ... 87"

with all .S; distinct simple I'-representations with corresponding dimension vectors
Bi = (a;, bi; x4, yi, 2:). We say that p (or V) is of representation type

T =(e1,P1;...;er,Bx) and clearly a:Zei/ﬁi

With iss,I'(7) we denote the subset of all points of representation type 7. Recall
that 3; is the dimension vector of a simple I'-representation if and only if a; + b; =
x; +y; + 2z and max(z;, y;, zi) < min(ag, b;) if 2;5;2; # 0 (the remaining cases being
the 1- and 2-dimensional components). It follows from Luna’s results [8] that every
iss,I'(7) is a locally closed smooth irreducible subvariety of iss,I'" of dimension
> (1 +2a:b; — (22 + y? + 22) and that

iss, ' = |_| iss I'(7)

is a finite smooth stratification of iss,I'. Degeneration of representation types, see
[0, p. 247], defines an ordering < on representation types and by [6, Prop. 5.3] we
have that iss,I'(7') lies in the Zariski closure of iss,I'(7) if and only if 7/ < 7.

Observe that the involution 7 on iss,I" induced by 7(Vp) = V(p-1)e- preserves
the strata and its restriction to iss,I'(7) is induced by the involutions 7 on the
components issg,I". As the fixed-point set of 7 is a closed subvariety of iss,I" we
deduce immediately :

Lemma 1. If 7 is the identity on a Zariski open subset of iss (1), then T = id
on all strata iss I (7") with 7 < 7. Conversely, if T = (e1,b1;...; €k, fr) and
T # id on one of the components issg,I', then T # id on all strata iss I'(7") with
T<7.

In [7] we have shown that for 5 = (3, 3;2, 2, 2) there are simple Bs-representations
able to separate the braid b from the introduction from its reversed braid &’. In
particular, 7 does not act as the identity on issgl’. We proved this by parametrizing
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the matrices B for a dense open subset of issgl’ by

100 a0 f
01 1.0 1 0
1101 0 0
B= 0 01 0 d e
01 0 b ¢ O
g 00100 1
for free parameters a, . .., g. We then computed the matrix-pair ¢ = (X1, Xs) from

(%) with generic values of the parameters in Z[p] and checked that T'r4(b) # Try ().

Proposition 2. If « is the dimension vector of a simple I'-representation such that
a > f=(3,3;2,2,2), then 7 # id on iss,I'" and there are simple representations
¢ € issaI' such that Try(b) # Tre ().

Proof. The unique open stratum of iss,I" corresponds to the unique maximal rep-
resentation type Tgen = (1, ), that is, issaI'(7gen) is the open set of simple T'-
representations.

If o — (8 is the dimension vector of a simple I'-representation, then we have a
representation type 7 = (1,8;1,a — ) such that 7 # id and Tr(b) # Tr(d’) on
iss,I'(7). But then, by the previous lemma, these facts also hold for issaI'(7gen).

If a— 3 is not the dimension vector of a simple I'-representation, we consider the
generic (maximal) representation type 7 = (e1,f1;...; €k, Ok) in iss,—gl'. But
then, 7 = (1,8;e1, B1;...; ek, Br) is a representation type for iss,I' and we can
repeat the argument above. O

Proposition 3. If a = (a,b;z,y,2) is a simple dimension vector such that T acts
trivially on iss, Bs, then

dim issqaBs=n=a+b=x+y+=z2

Proof. By the previous result we must have § £ a and hence either n < 5 or
min(z,y,z) = 1. For a simple Bs-dimension vector we may assume that a > b and
x = max(zx,y,z), which leaves us with the following list of potential fixed-point
components

n « dim iss,Bs
1 (1,0;1,0,0) 1
2 (1,1;1,1,0) 2
(1,1;1,0,1) 2
30 (2,1;1,1,1) 3
4 (2,2;2,1,1) 4
5 (3,2;2,2,1) 5
(3,2;2,1,2) 5
6 (3,3;3,2,1) 6
(3,3;3,1,2) 6
(4,2;2,2,2) 6
2k (k,k;k,kE—1,1) 2k
(k,k;k,1,k—1) 2k
2k+1 | (k+ 1,k kK, 1) 2k +1
(k+1,kk,1,k) 2k +1
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By example [1| we know that the 1- and 2-dimensional components are fixed-
point components. All other potential fixed-point components belong to the infinite
families, with one exception: (4,2;2,2,2). In the following sections we will prove
that all of these are indeed fixed-point components.

4. THE INFINITE FAMILIES

In this section we will prove that for o = (k, k;k,k — 1,1) (the even case) and
a=(k+ 1,k k,k, 1) (the odd case), iss,Bs is a fixed-point component. We will
prove the even case by direct matrix calculations and deduce the odd case from it
by a degeneration argument.

Proposition 4. For all k € Ny and o = (k,k; k,k —1,1), iss,Bs is a fized-point
component.

Proof. A general representation in iss,I' corresponds to an invertible 2m x 2m
matrix B and quiver representation

After a base change in the lower-left hand vertex, we may assume that the modified
matrix blocks are such that

The block Bjs is modified to an invertible k& X k matrix Bj, which becomes the
identity matrix I after performing a base change in the top-right hand vertex.
This changes the block Bj; to an invertible matrix Bj; which becomes the identity
matrix I} after a base change in the top-left hand vertex. Hence, we may assume
that, up to isomorphism, the matrix B has the following block form

By1 By
I, 1
B = |Byy DByl = L’; I”j

B31 Bs
with A an invertible matrix such that B is invertible. One verifies that
_ -C Ii+C

I\tr __ k

(B7)" = [ c  -c ]

and performing the base change
(AC™Y, —C,—A Y I 1, 1) € GLy, x GLy x GLy x GLp_1 x GLy

we obtain

B— I, Iy _ —A"t 0 —-C Ipy+C c14 0
A I 0 Iyl | C -C 0 —C!

Therefore, the I-representations determined by the matrices B and (B~ are
equivalent and hence the involution 7 is the identity map on the component iss, Bs.
O

with C= (A—Ik)_l

1)tr
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Proposition 5. For allk € Ny and a = (k+ 1,k; k, k, 1), iss,Bs is a fized-point
component.

Proof. Let ay = (k+1,k+1;k+1,k, 1), then the stratum 7 = (1, «; 1, (0, 1; 1,0, 0))
lies in the closure of the generic stratum 7ge, = (1,a4) in iss, I'. The result
follows from the proposition above and lemma (I

5. THE EXCEPTIONAL COMPONENT AND VECTOR BUNDLES ON Py

To finish the proof of theorem [1} it suffices to show that issgBs3 is a fixed-point
component for f = (4,2;2,2,2). In [7] we have given a parametrization of the
matrices B for a dense open subset of issgl’

10 0 0 a O
01 e 1 01
1 ¢ d 0 1 0
BiOOOlOb
010 010
0 01 0 01

One can attempt to show that B and (B~!)'" belong to the same GL(f)-orbit by
explicit computation. We follow a different approach, allowing us to connect this
component to the study of stable vector bundles on Ps.

Proposition 6. For a = (2n,n;n,n,n), the component iss,I' is birational to
Mpz2(n;0,n), the moduli space of semi-stable rank n bundles on Py with Chern
classes ¢c1 = 0 and co = n.

Proof. A representation in rep,I' in general position

) B11®B1 ®B o .
is such that 7 : C2" In@Padls cng " @ C in injective, whence its cokernel

C12,C22,C, .
defines maps Cok(¢)) : C"aC"@C™ (12:€22:09) ©n and therefore a representation
for the quiver setting

By the general theory of reflection functors, isomorphism classes of representa-
tions are preserved under this construction. By the fundamental theorem of GL,,-
invariants [, Thm. II.4.1] we can eliminate the base change action in the middle
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vertices and obtain a representation of the quiver setting

C12Bi12

By results of Klaus Hulek [2], the corresponding moduli space of semi-stable
quiver representations (as in [3] for the stability structure (—1,1)) is birational
to Mp,(n;0,n). O

Proposition 7. issgBs is a fized point component.

Proof. By results of Wolf Barth [I], we know that a stable rank 2 bundle £ on
the projective plane with Chern-classes ¢; = 0 and ¢o = 2 is determined up to
isomorphism by its curve of jumping lines, that is the collection of those lines
L C P5 such that E|L # (9%2. If € is determined by the quiver representation as in
the previous proposition and if x,y, z are projective coordinates of the dual plane
IP5, then the equation of this curve of jumping lines is given by

det(C12Biax + CaaBagy + C32B302) =0

In terms of the matrix B and its inverse B~! these 2 x 2 matrices are given as

* * * x % Bio I, 0 0

* * * * % Bog| =0 I 0

012 022 ng * % B32 0 0 _[2
B-1 B

But then, the bundle F corresponding to the matrix (B~1)!" is determined by the
2 x 2 matrices B;; and C}; such that

* * * * o« O Im, 0 0

* * * x x Cl =10 I, 0

B, B B |x o+ CL 0 0 I
Btr (B—l)f,r

and hence its curve of jumping lines
det(Bl5Ce + O+ BECl
is the same as that for £ and hence by Barth’s result £ ~ F. O

Remark 1. One can repeat the above argument verbatim for o = (2n,n;n,n,n).

Howewver, if n > 2, the bundle € corresponding to the matrix B is determined by its

curve of jumping lines (defined as above by the n x n matrices B;; and C;;) together

with a half-canonical divisor on it, see [2]. Whereas the curve of jumping lines Y

of the bundle F corresponding to the matriz (B~1)!" coincides with that of £, the

involution T acts non-trivially on the Jacobian Pic{. where d = %n(n —1).
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