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(NON)COMMUTATIVE F-UN GEOMETRY
LIEVEN LE BRUYN

ABSTRACT. Stressing the role of dual coalgebras, we modify the dafmaf affine
schemes over the 'field with one element’. This clarifies thpemrance of Habiro-
type rings in the commutative case, and, allows a naturatermmutative general-
ization, the study of representations of discrete grouggfagir profinite completions
being our main motivation.

1. COMMUTATIVE F-UN GEOMETRY

In this section we will recall the definition of affine schenwme®r the mythical field
IF; with one element, originally due to Christophe Sollé [17] eefined later by Alain
Connes and Katia Consahl [4]. This approach is based ondtgiitbom abelian groups
to sets satisfying a universal property with respect to segiral- and a complex affine
scheme. We will modify this definition slightly by replacitigese affine schemes by
integral- resp. complex dual coalgebras. This amountsdtricéng to étale local
data of the affine schemes and has the additional advantagéhth definition can
be extended verbatim to the noncommutative world as we williee in the next
section. Another advantage of the coalgebra approach tgtthreevitably leads to
the introduction of the Habiro rin@ [7] in the easiest examphat of the multiplicative
group. This might be compared to recent work by Yuri I. Mari2][and Matilde
Marcolli [13].

1.1. For a commutative ring we will denote withk-calg, resp. k-alg, the cat-
egory of all commutativé&-algebras, resp. the category of kialgebras. and with
morphisms alk-algebra morphisms. For two objects B in k-alg we will denote
the set of alkk-algebra morphisms from to B by (A, B)y.

1.2. Grothendieck introduced the categrrgaff of all affine schemes living over a
commutative ringk to be the category dual to the categ@realg of all commutative
k-algebras, thatik-caff = (k-calg)®. One way to realize this duality is to associate
to a commutativé-algebraA a covariant functorthe functor of pointa 4,

hy : k-calg — sets B (A, B)y

Alternatively, one can associate # a more classical geometric objethe affine
schemespec(A). This consists of a topological spaggec(A), the set of all prime
ideals ofA equipped with the Zariski topology, together with a sheafregs O 4 on it,

called the structure sheaf df. The ringA is recovered as the ring of global sections.
1
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Whereas both approaches are equivalent, it should be tlatthie functorial point of
view lends itself more easily to generalizations.

1.3. F-un oiffy, the field with one element, is a virtual object which mightibeught
of as a ring’ living underZ. F,-believers base their f-unny intuition on the following
two mantras :

¢ [, forgets about additive data and retains only multiplicatiata.
e [;-objects only acquire flesh when extended.it(or C).

As an example, aii;-vectorspace is merely a Sétas there is no addition of vectors
and just one element to use for scalar multiplication. Hetieedimension oV equals
the cardinality ofl” as a set. Next one should specify the classical objects aa@sb
after ’extending’V’ to the integers or to the complex numbers. The correct iategr
version of a vectorspace is a lattice, so one defines:, Z to be the freeZ-latticeZV
onV. Analogously, one defines the extensiorl/ofo the complex number$; @r, C
to be the complex vectorspaCd” with basis the set’.

But then, linear maps betwe@h-vectorspaces will be just set-maps and invertible
maps are bijections, whence the grotg.,(IF,) is the symmetric grougy,. For a
group G, ann-dimensional representation ovér will then be a groupmorphism :

G —— S, that is, a permutation representation(af IrreducibleG-representations
overlF, are then transitive permutation representations, and so on

1.4. In analogy with the finite field case, one expects therddoa uniquen-
dimensional field extension d; which we will denote byF,.. This has to be a
set withn elements allowing a multiplication, whence the proposdai®F,. = C,
the cyclic group of ordern. ExtendingF;. to the integers or complex numbers we
should obtain a commutative algebra of rank resp. dimensiofhristophe Soulé
[14] proposed to take the integral- and complex group-atyeb

Fin ®p, Z ~7C,, and F» ®@p, C~CGE

More generally, he proposed to take as the category of alhuatativelF;-algebras
the category of all finite (!) abelian groups, thatl§,— calg = abelian. For any
abelian grouz we then have to make sense of the extended algebras whicltkave ta
again to be the group-algebras

G®p, Z~7G and G®r C~CG

Having a notion for commutativé,-algebras, Soulé takes Grothendieck functor of
points approach to defirafinelF;-schemesThis should be a covariant functor

X : abelian —— sets
connecting nicely to the functor of points of an affine inedgand complex-scheme.
More precisely, Soulé[14] and later Connes and Consamepjire the following data

e a complex affine commutative algebflac C — calg
e an integral algebr® € Z — calg such thatB @z C —— A
e a natural transformatiorv : X —— h,, called the ’evaluation’ map
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e an inclusion of functors : X —— hp

satisfying the following universal property : given anydgtal algebraC' € Z —
calg, any natural transformatiofi : X he and any natural transformation
g : ha — heg,c making the upper square commute

ev

X ha
R
_&C
i he = hesc
3 7 7
hy ——— ~ hpece

there ought to be a natural transformation he making the entire diagram
commute. This means thapec(B) is the best affine integral scheme approximating
the functorX. Note that by Yoneda’s lemma this means that one can recmh$tom

the C-algebra morphism) : ¢' ® C —— A determining the natural transformation
g = — o v a Z-algebra morphisnp : C B compatible with the inclusion
B ® C —— A. This means that for every abelian groGpwe have a commuting
diagram

X(G) = (A,CG)c
\ —o)
i (C,2G) - (C®C,CO)c
—o¢ /
(B,ZG)y, —eC (B® C,CG)c

1.5. The archetypical example being the multiplicativeugroConsider the forgetful
functor

G,, : abelian —— sets G— G

Take A = C[¢*] and B = Z[q™], then their functors of points are exactly the multi-
plicative group scheme, that is give the groups of units

ha(D) =D* and hp(C)=C"

forall D € C — calgandC € Z — calg. We can then take bothandev the natural
transformation taking”(G)) = G to the subgroup of unit§' C (ZG)* C (CG)*.
Remains only to prove the universal property. Let the natwaasformationg :
hcgt] — heec be determined by th€-algebra morphism : ¢ @ C —— Clg™]
and letN be a natural number larger than the degree of &) wherec is one of the
Z-algebra generators 6f. Consider the finite cyclic groupy = (g), then tracing the
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elementy around the above diagram gives the commutative diagram
0

Cc— .+ C®C Clg*]
¢ T
_ ClgF]

where¢ = f(g). Repeating this argument;(¢(c)) = ¥(c) = ¢(c) for all Z-
generators of”, whence we have that(C) C Z[g*| giving the required natural
transformatiorhy,+) — he.

1.6. Observe that Soulé uses only finite abelian groups endehwe do not require
the full functor of points, but rather the restricted furrsto

h'y : k-fd.calg —— sets B+ (A, B)x

wherek-fd.calg is the category of alfinite dimensionatommutativek-algebras.
On the 'geometric’ level we might still use the affine schespec(A) as this object
contains more information thati,, but we'd rather use a slimmer geometric object
having the same amount of information as the restrictedtéuraf points. It will turn
out that the object we propose can be extended verbatim teothemmutative world,
whereas trying to extend affine schemes is known to lead tomdéficulties.

1.7. Letus consider the complex case first. RBor C — calg, we define the (finite)
dual coalgebral® to be the collection of alC-linear maps\ : A —— C whose kernel
contains a cofinite idedl < A. The dual maps to the multiplication and unit map4f
then define a coalgebra structure 4t see for example Sweedler's monograph [15].
For B a finite dimensionaC-algebra, anyC-algebra morphismt —— B dualizes to
aC-coalgebra ma@* —— A° and as a coalgebra is the limit of its finite dimensional
sub-coalgebras we see that the dual coalgeSraontains the same information as
the restricted functor of points,. We will now turn A° into our desired 'geometric’
object.

As A is commutative, any finite dimensional quotieft/ ~ L, ©...® Ly, splits
into a direct sum of locals and hence the dual subcoalgebfa)* is the direct sum
of pointed coalgebrad..,)* which are subcoalgebras of the enveloping algebra of the
abelian Lie-algebra of tangent-vectgrs/m?)*. Taking limits we have that

A° = @ P,

memax(A)

with P, C U((m/m?)*). In particular, we obtain the maximal ideatsx(A) as
the group-like elements ofl°, or equivalently, as the direct factors of the coradical
corad(A°). Elements ofA naturally evaluate onl® (and hence on the coradical) and
induce the usual Zariski topology a@ax(A).
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We thus recover from the dual coalgebtathe maximal ideal spectrum of. But,
A° contains a lot more local information. This is best seen liyntathe full dual
algebraA®* of A° giving rise to a Taylor-embedding (sending a function toTaglor
series expansions in all points)

A A = H @A,m

memax(A)

Where(’A)A,m is them-adic completion ofA (that is the stalk of the structure sheaf in
the étale topology).

Concluding, the restricted functor of poirt§, or equivalently the dual coalgebra
A°, contains enough information to recover the analytic {aled local information in
all the closed points adpec(A).

1.8. An affine F-un schem¥ : abelian —— sets connects to the complex picture
via the evaluation natural transformatiem: X —— h',. The discussion above leads
to the introduction of an analytic ring of functiofi§ [ X |*" of which we now have a
complex interpretation

Fi[X]" @5, C= (] Oam

melm(ev)

With I'm(ev) we denote the images of all mapsx(CG) —— max(A) coming from
the algebra mapd —— CG contained irev(F(G)) C 1/, (CG).

For the examplé_1l5 of the forgetful functor, we hade = C[¢*] and hence
max(A) = C*and

Clg*) = [] Clla - a]]
aeC*
For any finite abelian groufy, max(CG) is the set of characters 6f and under the
evaluation map an elementc F(G) = G maps a charactey to its valuex(g), which
are of course all roots of unity. Hence, if we vary over allténabelian groups we
obtain
Fi[¢*]" @r, C= () Cllg—A]
A€ oo

Observe that.,., the set of all roots of unity, is a Zariski dense setim (C[¢*]) = C*.

1.9. Whereas the new complex picture based on the dual dwalge still pretty
close to the usual affine scheme, this changes drasticalheimtegral picture. For a
Z-algebraB we have to consider the restricted functor of points

h'y : Z —fp.calg — sets Cw— (B,C)y

whereZ — fp.calg is the category of all commutativé-algebras which are finite
projectiveZ-modules. Again, this restricted functor contains the sarftgmation as
the dualZ-coalgebra

B® =lim Homgz(B/I,7Z)
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where the limit is taken over all ideals« B such thatB/I is a projectiveZ-module
of finite rank. If we try to mimic the complex description oktkdual coalgebra we are
led to consider a certain subset of all coheight one primalsdef B

submax(B) = {P € spec(B) | B/P is a freeZ-module of finite rank

Note that closed points ispec(B) arenotcontained irsubmax(B). Therefore we face
the problem that different elemen®s P’ € submax(B) are usually not comaximal and
hence that we no longer have a direct sum decompositids? afver this set (as was
the case for the complex dual coalgebra).

As we will recall in the next section, we are familiar with sugituations in noncom-
mutative algebra, where even maximal ideals can belongetgdime ’clique’, that is,
that the corresponding simple representations have ma@itextensions. Using this
noncommutative intuition, we therefore impose a cliguatren on the elements of
submax(B)

P—P iff P+P+B
This relation should be thought of as a 'nearness’ conditiObserve that any’ <
submax(B) determines a finite collection of pointsiiax(B ®; C) and hence we can
extend this nearness relation on the pointa@f(B). Observe that this relation is
clearly invariant under the action of the absolute Galo@igiGal(Q/Q).

The different cliques determine the direct sum decompwsdaf theZ-coalgebraB®
and hence also of the Taylor-like ring of functio®s*. Fully describing the dudZ-
coalgebraB® usually is a very difficult task and therefore, as in the carglse, when
we are studying F-un geometry we restrict to that part detexdhby the elements in
Im(i) wherei : FF —— h’; is the inclusion of functors determined by the affine F-un
schemef’ : abelian sets.

1.10. Letus consider again the example of the multiplieadiroup and indicate how
theZ-coalgebra approach leads to the introduction of the Habig

Theideald <B = Z[q*] such that3 /I is a freeZ-module of finite rank are precisely
the principal ideald = (f(q)) wheref(q) is a monic polynomial. Hence,

submax(Z[¢*]) = {(p(q)) : p(q) is monic and irreducible

BecauséZ[q¢*] is a unique factorization domain we can decompose any matyop-
mial uniquely into irreducible factors

f(@) =pi(@)™ .. pr(g)™

and we would like to use this fact, as in the complex case, tom@ose the (linear
duals) finite rankZ-algebra quotients ovetubmax(Z[¢*]). However,

Zlg*] , Zlg*] _ZlgT]
@) 7 @)™ 2% )™

as the different prime&;(¢)) and(p;(¢)) do not have to be comaximal. This problem
makes it impossible to split the description of the dual gebhra over the 'points’ as
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in the complex case. Hence, we have no other option but taidestas a direct limit
. Zlg"]
Z[qF)° = lim *
=t Gy
where the limit is considered with respect to divisibility molynomials as there are
natural inclusions o¥.-coalgebras
(Z[qi] T (Z[qi]
(f(a)) (9(q))

As in the complex case we are then interested in the dual @g#l¥.[¢*]° and the
natural algebra map

) whenever  f(q)|g(q)

o ZlgT]
tlo Eloyx
Zlq™] (Zlg™]°)" = lim F0)
and it is clear that in the description of the algebra on tgbtrhand side completions
at principal ideals will constitute a main ingredient.

While we can do all these calculations to some extend, we rareagly interested
in that part ofsubmax(Z[g*]) in the image of the inclusion functor, that is

Im(i) = N = {(21(q)), (®2(q)), - - -, (Pu(q)), ...} C submax(Z[g"])

We will confuse the natural numberwith the corresponding cyclotomic polynomial
®,,(¢) or with the height one prime generated by it. With this idiécdtion N is the
integral analog of the set of all roots of unijiy, in the complex case.
In the case of cyclotomic polynomials we have complete mition about possible
co-maximality
o If 2 4 pF for some prime numbep, then (®,,(¢), ®,(¢)) = 1 that is the
cyclotomic prime ideals are comaximal.
e If 2 — p* for some prime number, then®,,(¢q) = @,,(¢)* mod (p) for some
integerd, hence the cyclotomic primes are not comaximal.

Therefore, the relevant clique-relation is

nem ifandonlyif = ptk

n
inducing on the complex level th&al(Q/Q)-invariant nearness condition on roots of
unity A\, it € fiso

N dff % is of orderp”

for some prime numbey.

Yuri I. Manin argues in[[12] that we should take the analogymeen the integral
affine schemespec(Z[q*]) and the (complex) affine plane more seriously and that,
besides the arithmetic axis, one should also consider &giron to the 'geometric
axis’ (which should then be viewed as the affilescheme corresponding B [¢*].

He proposed that the zero sets of the cyclotomic polynondiglg) for all integersn
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should be considered as the union of the fibers in this secandgbion. That is, we
should have the following picture :

=
ST
N N
spec(Z[(,)) o 9
o
(Pn(q))
- (]
5 <
ISH ~~ <(
E C— 2 |
= )
2, i
@ s
T
— |
=
<
—~ [
spec(Zq™] ~
)
QY
' @ L = =
spec(F1[q™]) n 3921

| GEOMETRIC AXIS]

Note that this is an over-simplification. Whereas the défgrgreen fibers for the
projection to the arithmetic axis are clearly comaximaé biue fibers are not. For
example, the zero set§ ®,(¢)) andV (P, (¢)) share the maximal ide&?, ¢ — 1). The
clique-relation encodes how the blue fibers intersect ettatr.o

The clique-relation is important to relate different coetgins occurring in the F-un
determined part of the algeb(Z[¢*]°)* as was proved by Kazuo Habirg [7]. Let us
define for any subset C N the completion

£15 = lim

*
PE@S

where®? is the set of monic polynomials generated byd|l¢) for n € S. Among
the many precise results proved|in [7] we mention these two

(1) If ' C S and if every cligue-component ¢f contains an element frorf’,
then the natural map is an inclusion

pe + ZlgH)® — Z[g*]”
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(2) If S'is a saturated subset dfmeaning that for every € S also its divisor-set
(n) = {m|n} is contained inS, then

= Zla* 1™ = () Zlg*] (o s
nes nes
where the terms on the right-hand side are ftraglic completions wheré =
(¢" = 1).
Using these properties it is then natural to define the iateggrsion of the ring of
analytic functions on the multiplicative group scheme dveto be

Filq*]™" @p, Z =~ ﬂ ZIq*) gn_1y = Z[g "
neN

This ring has a description very similar to that of the praénintegers replacing facto-
rials by g-factorials

=N __ m Z[qj:]
e e e

and as such its elements have a unique description as foaunatht polynomials over
Z of the form

Zan (=D =1)...(¢g—1) ez]g"]] with  deg(a,(q)) <n

We observe that any such formal power series can be evalatdadot of unity. Some
elements ofZ[¢*]"¥ have been discovered before. For example, Maxim Kontsevich
observed in his investigations on Feynman integrals theatdimal power series

[ee)

d(l-q)l=¢*...(1—q")

n=0
has a properly defined value in every root of unity. Subsetydbon Zagier [17]
proved the strange equality

o0

SU-q)1—¢)...(1—¢" :__an e

n=0

wherey is the quadratic character of conducta@r The strange fact about this equality
is that the two sides never make sense simultaneously. TiHealed side diverges for
all points within the unit circle and outside the unit cirdad can be evaluated at
roots of unity whereas the right hand side converges onligiwithe unit circle and
diverges everywhere else. What Zagier meant by this egualthat for alla € p
the evaluation of the left hand side coincides with the dddiat of the function on
the right hand side. Don Zagier says that the function onitte eak through roots
of unity’.
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2. NONCOMMUTATIVE F-UN GEOMETRY

In this section we will extend Soulé’s definition of an affiigscheme to the non-
commutative case. Our main motivation is the study of finiteehsional representa-
tions of discrete groups, such as the braid groups or the laogroup. We have seen
that irreducible finite dimension&l -representations of a grodipare exactly the finite
transitive permutation representatidns\ whereA is of finite index inI". That s, all
finite dimensionalF;-representation theory @f comes from its profinite completion

A

I' = lim T'/A, the limit taken over all finite index normal subgroups.

In the previous section we have worked out the special casaih- Z. Here, the
simple representations @fare the roots of unity... and they are Zariski closed in all
simplesC* = simp(Z). The clique-relation o, was compatible with the action of
the absolute Galois group and the Habiro ring 'feels’ théusion .., C C*, that is it
contains the tangent information in a Galois-compatiblg.wa

Here we extend some of these results to the case of a nonafbdicrete group
I" satisfying the property : for every finite collection of elementsy;, ..., g} C T
there is a finite index subgroup C I" such that the natural projection map gives an em-
bedding{gi, ..., g} = ['/A. We will prove that such groups determine a noncom-
mutative affindf;-scheme, the F-un information being given by the finite disiemal
permutation representations, or equivalently, the regmtagion theory of the profinite
completionI’. We will show thatsimp(I) is Zariski dense irsimp(I") and compute
the tangent information of this embedding. That is, to adigitmensional permuta-
tion representatio®® = I'/A we will associate a noncommutative gadget (a quiver,
relations and a dimension vector) encoding all possiblerdaditions ofP which are
still I'-representations. In relevant situations, including theecwher” is the modu-
lar groupPSL,(Z) (in which case the permutation representations are Grdibekis
'dessins d’enfants’) some subsidiary noncommutative geigan be derived from this
tangent information, such as the necklace Lie algebra [@]tha singularity type [3].

It is to be expected that most of these noncommutative gadgsiociated to dessins
are in fact Galois invariants.

2.1. If we take commutativié,-algebras to be abelian groups, it make sense to iden-
tify the category of allF;-algebras witlgroups the category of all finite groups. Like-
wise, we have to extend Grothendieck’s functor of pointslitdtzat is including also
noncommutative, algebras. With these modifications we gtand Soulé’s definition
to the noncommutative world.

Define an affine noncommutatifg-scheme to be a covariant functor

X : groups — sets

from the categorgroups of all finite groups tesets. We require that there is an affine
C-algebraAd and an evaluation natural transformatien: X —— h, = (4, —)c,
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giving for every finite groupGG an evaluation mapX (G) (A,CG)c. More-
over, there should be a 'best’ integral affine algeBravith an inclusion of functors
X ——hp = (B, —)z.

That is, for every finite group’ we have an inclusioX (G) —— (B, ZG)z. Here,
'best’ means that for evefg-algebraC and every natural transformatioh —— ho =
(C, —)z and everyC-algebra morphisnp : C ® C' —— A making the upper square
in the diagram below commute for every finite gradp

X(G) -~ (A,CG)c
\ W
; (C,ZG)z e (C®C,Cq)c
F—o¢ .7 T
(B, ZG)s " (B®C,CO)c

there exists &-algebra morphism : C —— B making the entire diagram commute.

2.2. Our first example of a noncommutative F-un scheme isi@ratieck’s theory of
'dessins d’enfants’. LeK ¢ be a Riemann surface (projective algebraic curve) defined
overQ, then Belyi proved that there is a degiemapr : C —~ PL ramified only in

the points{0, 1, oo}. The open intervdD, 1] lifts to d intervals onC'. The endpoints of
different lifts can be identified o indicating how the different sheets should be glued
together in a neighborhood of the ramification point. Thelltesy graph withd edges

on C is then called thelessinof C' and as the absolute Galois groGp!/(Q/Q) acts

on the collection of all such curves, it also acts on the aas3ariting out this action
allows one to gain insight in the absolute Galois group. leahcs a very important
problem to find new Galois invariants of dessins.

We will be particularly interested imodulardessins, that is such that the preimages
of 0 all have valency 1 or 2 and the preimages of 1 all have valerry3lin the graph.
Alternatively, this means that the curve can be viewed asctimepactification of a
quotientC' = H/A of the upper-halfplane under the action of a subgraugf finite
index in the modular group = PSLy(Z). That is, modular dessins are equivalent to
finite dimensional permutation representations of the rfeodyroup. Therefore, one
is interested in the functor

X : groups — sets G — G x G

sending a group to the set of all permutation represengtidh’ determined by el-
ements ofG. AsT' ~ C; x (5 is the free product of a cyclic group of order 2 with
a cyclic group of order 3, this functor sends a finite graupo the set product of its
elements of order 2 with the elements of order G x G(3). This functor deter-
mines a noncommutative affifig-scheme as we can take as the complex- and integral
group-algebras

A=CI' and B=7ZI
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of the modular group. As an§-algebra morphismi = CI' —— CG is determined
by the images of the order two (resp. three) generataasady we can take as the
evaluation and inclusion maps

L= g2

ev G(Q) X G(g) — (CTI',CG)¢ (G2, 93) — {
Yyr—=gs

T go
Yyr—gs
We can repeat the argument[of]1.5 verbatim to prove that thi@seindeed define a

noncommutativé;-scheme using the fact that the modular growgatisfies condition
o,

i @ Goy x G — (ZI',ZG)y, (92,93) — {

2.3. The second example is motivated by 2-dimensional TQ& & Riemann surface
C of genusy and any finite groug- one associates as topological invaridg{ C') the
number of fields orC’ with gauge groug=, or equivalently, the number @f-covers
on C'. By Frobenius-Schur this number is equal to

|G|
Za(C) = —
=3 G,
where the sum runs over all irreducible representatipid the finite groupG. As
the number of7-covers is equal to the number of group-morphism&) —— G
from the fundamental group, (C) = (v1,...,74,v1,- -, ye)/([1 vsvsz; 'y; ), this
motivates the functor

X : groups — sets G+ {(ay,...,a,,b1,...,b,) € G : l_Iotibz-ai_lbi_1 =1}

This functor is again an affine noncommutatisescheme as we can take the integral-
and complex group-algebras= Cr, (C') andB = Zm (C') and the natural evaluation
and inclusion maps. Once again, the defining "bestness’gotps verified using the
fact thatr, (C') satisfies condition.

Also in this example, th&}-info is given by all finite permutation representations
of the fundamental group, (C). That is, the F-un information is contained in the

profinite completionr, (C').

)29—2

2.4. These two examples illustrate that any discrete giosptisfying conditiors
determines a noncommutative affifig-scheme. The corresponding functor assigns
to a groupG the set of all groupmorphisnis—— G and takes as the complex- and
integral algebras the complex and integral group-algebfa o

As in the commutative case we do not require the full stremjtthe functor of
pointsh, : k-alg sets for a given (not necessarily commutativieplgebra
A, but it suffices, for applications to F-un geometry, to liestio finite dimensional
k-algebras

h'y : k-fd.alg — sets C— (A O
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If k is a field, the information contained in this restricted fiam®f points is equiva-
lent to that contained in the dual coalgebta For this reason we want to associate
noncommutative geometric data (say, a topological spadefiarction) to the dual
C-coalgebraA® where A is the complex algebra determining the evaluation natural
transformatiorev : X —— h/,.

Observe that in [11] we initiated the description of the du@dlgebra of any affine
C-algebraA in terms of theA . -structure on the Yoneda space of all finite dimensional
simple A-representations. For the applications we have in mind, biea¢is, virtually
free groups (such as the modular grodp= PSLs(Z)), for which the group alge-
brasCG is formally smooth by([10], or 2-Calabi-Yau algebras sucltasg(C'), we do
not require the full power ofi.-theory and can give, at least in principle, an explicit
description of the dual coalgebra.

The geometric space associated to an affiredgebraA will be the set of isomor-
phism classes of finite dimensionatrepresentations, which as in the commutative
case, is the set of direct summands of the coradical of thiecdaégebra

simp(A) = corad(A?)

In [11] we introduced a Zariski topology asimp(A) in terms of the measuring® ®
A —— C. Here we will follow a slightly different approach based amneommutative
functions.

For aC-algebraA we define thenoncommutative functiorie be theC-vectorspace
guotients

functions(A) A
unctions ga [A, A]Uect

where[A, Al,..; is the subvectorspace (andtthe ideal) spanned by all commutators
in A. Note that in the classical case whete= C[X] is the commutative coordinate
ring of an affine varietyX, there is nothing to divide out and hence in this case we
recover the coordinate ring, = C[X]. If A = CG the group-algebra of a finite group
G, theng, is the space dual to the space of character-functiors. dience, in both
cases the linear functionags suffice to separate thmintsof A, that issimp(A). We
will show that for a general affin€-algebraA we do indeed have an embedding

simp(A) —— g"

Consider the (commutative) affine schemsp, A of all n-dimensional representa-
tions. A quick and dirty way to describe its coordinate riéifrep, 4] is to take a
finite set of algebra generatofs,, ..., a,,} of A, consider a set ofun? commuting
variables{z;;(k) : 1 <i,j < n,1 < k < m} and consider the ided],(A) of the
polynomial algebreC[z;;(k) : 1,7, k| generated by all entries of all x n matrices
f(Xy,...,X,,) wheref(aq,...,a,) runs over all relations holding i and where
X is the generia: x n matrix (x;;(k)); ;. Then,

Clzij(k) = 4,7, K]

Clrep,A] = I.(A)
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On the affine schemeep, A there is a natural action a¥L,,, the orbits of which

correspond exactly to the isomorphism classes-dimensionalA-representations.
Basic GIT-stuff tells us that one can classify ttlesedorbits by points of the quotient-
schemeiss, A = rep, A/GL, corresponding to the affine ring of invariants

ClissnA] = C[rep, A]“tn

and Artin proved that the closed orbits are precisely thele&sses ofemi-simpleep-
resentations.

Let us bring in our quotieng, = m. We can evaluate its elements on all points
of rep, A by taking traces That is, eacly € g defines a function

rep,A —— C M — tr(g)(M)

That is, lift g to an element € A, writea = f(a4, ..., a,,) in terms of its generators,
then if (mg, ..., my) are the matrices describing thedimensional representatia,
then we define

tr(g)(M) =Tr(f(ma, ... my))
whereT'r is the standard trace map di,(C). Observe that this does not depend
on the chosen lift: as all traces of elements frofA, Al,... vanish. Observe that via
this trace-trick we can view elements @f indeed agyeneralized characteras each
representation defines a linear functional

xu o g—C g tr(g)(M)

It is a classical result that the ring of invariariférep,, A|“%~ is generated by the
invariant functionsr(g) wheng runs overg. So, indeed, linear functionals gndo
separate:-dimensional semi-simple representations (whence afodlso simples).
Actually, we only showed separation of simples for a fixedbut clearly one recovers
the dimension fromr(1). That is, we have proved that for any affiiealgebraA, the
generalized character values give an embedding

simp(A4) — g
We will make the sesimp(A) into a topological space by taking as the basic opens
X(g,A) = {5 € simpA | xs(g) # A}
forall g € g4 and all\ € C. For example, all simples of dimensianform a closed
subset. The obtained topology we will call tAariski topologyon simp(A).
Our use of this topology is to prove a denseness result sitoithe fact that roots of
unity u are Zariski dense i€”. LetG be a discrete group, as every finite dimensional

G representation factors over a finite group quotientzafand hence is semi-simple)
we deduce that the dual coalgelyta7)° is co-semi-simple and hence

simp(CG) = (CG)° = corad((CG)°)
We claim that whert~ is a discrete group satisfying conditienthen

simp(CG) = simp(CG)
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Thatis, the subset of simple representations of the prefaainpletion is Zariski dense
in the noncommutative spaeemp(CG). Observe that in the two examples given be-
fore, simp(@@) is the image of the evaluation map determined by the F-un gagm
hence this result is a direct generalization of the comnugaituation for the multi-
plicative group.

To prove this claim observe that the space of noncommutiiivetionsg = gcg
has asC-basis the conjugacy classes of element&ofHence, any linear functional
X € g*is alinear combination

X =AiX1+ -+ Xk

where they; are character functions corresponding to distinct corgugéasses of-.
Vanishing ofy on the whole ofsimp(CC?) would imply that the characters, ..., A
are linearly dependent on every finite quoti€éhtH, which is impossible by the as-
sumption orc.

2.5. Letusrecall briefly the main result 6f [11] describihg tlual coalgebrd® of a
general affineC-algebraAd and indicate the geometric information contained in it. Let
(@ be a possibly infinite quiver an@(@ the vectorspace spanned on all pathg)iof
positive length. Ther©Q) is given a coalgebra structure (thath coalgebra

A(Z)) = Z 1 & P2 E(p) = 5p,verte:v
pP=Pp1-pP2

wherep;.p; is the concatenation of paths and the counit maps non-vestttis to zero.

Starting fromA we will construct a huge quivep 4 having as its vertices the iso-
classes of finite dimensional simple representations atidl tve number of arrows
between them

#(S —— §') = dimc Ext}(S,5)
We will now describe a certain subcoalgebra of the path emagCQ 4 and as any
coalgebra is the direct limit of its finite dimensional sublgebras we may restrict
attention to a finite collection of simples and consider thmissimple representa-
tion M = S; @ ... @& Sy with restricted path-coalgebfa® 4|M. There is a natural
A..-algebra structure on the Yoneda Ext-algebra®, (M, M), in particular there are
higher multiplication maps
m; © BExty(M,M)®...® Ext\(M,M) — Ext’(M, M)

~~
7

defining a linear map, called the homotopy Maurer-Cartan map
HMCy = ®m; : CQaA|M — Ext’ (M, M)

The main result of [11] asserts that the dual coalgebtas Morita-Takeuchi equiv-
alent to the largest subcoalgebra@f), contained in the kernel off M (), for all
semi-simple representations.

We will now describe the geometric content of the dual cdalgeRecall that in the
commutative case we had that the full linear dual of the doalgebra(C[X]°)* =
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IL @X@ gave us back all the completed local rings at pointXofn the general case,
assume as above th&df = S; @ ... @ Si is a semi-simple representation with all
simple factors distinct.The action df on M gives rise to an epimorphism

A By = My, (C) & ... & My, (C)

and let us denotes = Ker(my,). If Cy, is the maximal subcoalgebra®f) 4| M con-
tained in the kernel of thé M C),, then we can generalize the commutative situation
as follows. Tham-adic completion ofd is Morita equivalent to the full linear dual of
Cum

Am ~M (C(M)>k
This means that ath-adic completion ofdA can be computed from the dual coalgebra

A° and that each of them is a ring Morita equivalent to (the cetigh of) a path al-
gebra of the quivef@ 4| M )* modulo certain relations coming from thk,-structure.

2.6. Recall that &-algebraA is said to besmoothif and only if the kernel of the
multiplication map

QL = Ker(A® A -2+ A)

is a projectiveA-bimodule. Becaus&zt (M, N) = 0 for all finite dimensional4-
representations wheA is smooth, we have from the above general result that the
m-adic completionA,, is Morita-equivalent to the completion of the path algebra
C(Qa|M)* where we recall that this quiver depends only on the dimerssal the
ext-groupsEzt! (S;, S;).

In fact, in this case we do not have to use the full strengtihefteneral result and
deduce this fact from the formal neighborhood theorem fooim algebras due to
Cuntz and Quillen[6§6]. Note thatKer(r,,) = m has a naturaB = B),;-bimodule
structure. In analogy with the Zariski tangent space in temutative case, we define

m *
T = ()
BecauseB is a semi-simple algebra the simplebimodules are either of the form
M, (C) (with trivial action of the other components &) or M,, .,,(C) with the
componentM,, (C) (resp. M,,(C)) acting by left (resp. right) multiplication and

all other actions being trivial. That is, there is a natuna¢4o-one correspondence
between

bimod B < quiver,

isoclasses oB-bimodules and quivers vertices (the number of simple components).
Under this correspondencé;-bimodule duals corresponds to taking the opposite
quiver. Hence, the tangent spafg can be identified with a quiver on the vertices
{S1,...,S,} which we will now show is the opposite quiver ©fs | M .

By the formal tubular neighborhood theorem of Cuntz and I&ui[6, §6] (using
the fact that semi-simple algebras are formally smooth) axetan isomorphism of
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completed algebras between theadic completion ofA

~

Ap = lim A/m"

wherem = Ker(m) as above, and, the completion (with respect to the natusalagr
tion) of the tensor-algebraz(m/m?). That is, when we viewl; as a quiver, then
there is a Morita-equivalence

A N /\\/
An ~ CTy;

between the completioA,, and the completion (with respect to the gradation giving
all arrows degree one) of the path-algetifgy; of the opposite quivery;.

Under this Morita-equivalence the semi-simplg-representatio/ = S, @ ... ®
S, corresponds to the sum of the vertex-similes & . . . & Ce,,, with the simpleS;
corresponding to the vertex-simplg; (thee; are the vertex-idempotents in the path
algebra). Hence, also by Morita-equivalence we have anasginism

Extkm (S;, 8;) ~ Ext(lc/TE((Cei, Ce;)
Finally, because all ext-information is preserved undengletions, and, because we
know from representation-theory that the dimension of tkiespace between two
vertex-simples for any quive®), dimc Ext(lcQ((Cei, Ce;) is equal to the number of
arrows starting in vertey; and ending in vertex;, we are done!

Clearly, computing allEFzt! (S, S") can still be a laborious task. However, it was
proved in [10] that all these dimensions follow often fromrité set of calculations
when A is a smooth algebra. The component semigreuopp(A) is the set of all
connected components of the schemes, A, for all » € N, with addition induced
by the direct sum of finite dimensional representations.

Theone quiverf A, one(A) is a full subquiver ofy) 4, with one simple representant
for every component which is a generatoroofnp(A) (note that such generators are
determined by the fact that the component consists entifedimples). Now, ifS' and
T are two finite dimensional-representations belonging to the connected components
a andg in comp(A) then we can write for certaim;, b; € N

Oé:zaigi and 52252‘9@'

with the g; the generator components. Then= (a;); andn = (b;); are dimension
vectors for the one quiver. The main result/of|[10] asserts that

dim(c EI‘tZ(S, T) = ~Xone(A) (67 77)

so that all ext-dimensions, and hencenadddic completions ofi can be deduced from
knowledge of the one quiver.

2.7. We will now make all these calculations explicit in theese of prime interest
to us, which is the modular group = PSL,(Z), that is, we will describe the dual
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coalgebraCI")?, at least in principle. Becaudé~ C, « C; we have that the group-
algebra is the free algebra product of two semi-simple gedgpbras

CI' ~ CCy % CC4

and as such is a smooth algebra. In fact, a far more gened hedds : wheneve€;
is avirtually free group(that isG contains a free subgroup of finite index), then the
group algebr&G is smooth by[[10].

If V' is ann-dimensionall’ representation, we can decompose it into eigenspaces
for the action ofC;, = (u) andC3 = (v) (let p denote a primitive third root of unity) :

VieV.=WieWh=V]a=V=V]g=WaWeWs=W,aW,eW,

If the dimension of/; is a; and that ofi¥; is b,;, we say thal” is al'-representation of
dimension vectoty = (ay, as; by, by, b3). Choosing a basis; of I wrt. the decompo-
sitionV; @ V5 and a basi®, wrt. W, & W, @ W3, we can view the basechange matrix
B, —— B, as am-dimensional representatior, of the quiverQ = Qr

Qr =

For a general quivef) on k vertices, a weight € Z* acts on the dimension vectors
via the usual (Euclidian) scalar inproduct. (&representation of dimension vector
a € N¥ is said to bef-stableif and only if 0. = 0 and for every proper non-zero
subrepresentatio’ C V' of dimension vectop < « we have tha#.;5 > 0.

Bruce Westbury[[16] has shown th&t is an irreduciblel’-representation if and
only if V, is a#-stableQ)-representation whee= (-1, —1;1, 1, 1) and that the two
notions of isomorphism coincide. Theuler-formy of the quiver( is the bilinear
form onZ®> determined by the matrix

10 -1 —1 —1]
01 —1 -1 —1
Xo=100 1 0 0
00 0 1 0
00 0 0 1

Westbury also showed that if there existg-atablea-dimensional)-representation,
then there is anl — yg(a, ) dimensional family of isomorphism classes of such
representations (and a Zariski open subset of them willespond to isomorphism
classes of irreduciblE-representations).
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We will describe the one quiveme(CI"). By the above it follows that both the
component semigrougomp CI" and the semigroup &t® generated by ali-stableQ)-
representations are generated by the following six coedembmponents, belonging
to the dimension vectors

gij = (512‘,522‘,5&'; 51j,52j)
and if we order and relabel these generators as

a=gi1,b=go,c=g31,d = gz, = g1, f = g3
we can compute from the Euler-form ¢f that the one-quiver of the modular group

algebra is the following hexagonal graph
one(CI') = /‘
@ (b)

ee

which is the origin of a lot ohexagonal moonshiria the representation theory of the
modular group. In particular it follows from symmetry of tbee quiver that the quiver
Qcr is also symmetric!

2.8. Recall that an affin€-algebraA is said to be 2-Calabi-Yau ifldim(A) = 2
and for any pairS, T of finite dimensionalA-representations, there exists a natural
duality

Exty(S,T) ~ (Exty (T, 9))*
satisfying an additional sign condition. Raf Bocklaridt §licceeded in extending the
results on smooth algebras recalled before to the settiRy@labi-Yau algebras.
From the duality condition it is immediate that the quivgg is symmetric, that is,

for every arrowS —~— T there is a paired arrow in the other directioh——— S.
Bocklandt's result asserts that tleadic completiord,,, with m = Ker(m,,) is Morita
equivalent to the completion of the path algebra of the (dwyaiver 4|/ modulo the

preprojective relation
Z[a, a’]=0

Further, he extends the idea of the one quiver to the 2-Catabisetting, allowing to
compute the quivef) 4 often from a finite set of calculations, using earlier resdlie
to Crawley-Boevey [5].

The group algebr&m, (C) of the fundamental group of a gengRiemann surface
is 2-Calabi-Yau by a result of Maxim Kontsevich. [97.1] it is shown that the
one-quiver ofCr; (C') consists of one vertex, corresponding to any one-dimeakion
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simple representation, aryg loops. From this and the results by Crawley-Boevey it
follows that whenM = S @ ... @ S is a semi-simpleC, (C)-representation
wit the simple factorS; having dimensiom;, thenCQc-, ()| M consists of vertices
(corresponding to the distinct simple componefifs such that the-th vertex has
exactly2(g — 1)n? + 2 loops and there are exactly,;n;(g — 1) directed arrows from
vertexi to vertexj.

This information allows us then to compute altadic completions o7, (C') as
Morita equivalent to the completion of the path algebra @$ djuiver modulo the
preprojective relation.

2.9. In[2.T we described the structure of the path-coalg€rar which is Morita-
Takeuchi equivalent to the dual complex coalgelit)°. Describing the integral dual
coalgebrgZI")? is a lot more complicated and will involve a good deal of knedge
of the integral (and modular) representation theory of tlelatar group.

Observe that the calculations[in 2.7 are valid for everylaigieally closed field, so
we might as well describe the coalgelff@l’)° and study the action of the absolute
Galois groupGal(Q/Q) on it, giving us an handle on the rational dual coalgebra

(Qr)° = ((@r)°)¢ @

which brings us closer t¢ZI')°. But, as in the case of the multiplicative group in
the previous section, we do not require the full structuréhed dual coalgebra but
rather the image of the F-un data in it. As observed before Fthrepresentation
theory of" is equivalent to the study of all finite dimensional trangtpermutation
representations df and hence to conjugacy classes of finite index subgroups of

We will recall the combinatorial description of those, doeR. Kulkarni in [9] in
terms of generalized Farey symbols. Starting from this syimie then describe how
to associate a dessin, its monodromy group an finally to edrovm it the modular
content, that is the noncommutative gadget describing-e#ipresentations deforming
to the given permutation representation. In the next sulmewe will give some
interesting examples.

A generalized Farey sequenisean expression of the form

{oo=2_1,20, %1, .., Ty, Tpy1 = 00O}

wherer, andz, are integers and some = 0. Moreover, allz; = 3 are rational
numbers in reduced form and ordered such that

|aibz-+1 — biai+1| =1 foralll1 <i<n

The terminology is motivated by the fact that the classkzaky sequencé’(n), that
is the ordered sequence of all rational numlers ¢ < 1 in reduced form with < n,
has this remarkable property.
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A Farey symbols a generalized Farey sequeree = x_1, 2o, T1, . . ., Tn, Tpi1 =
oo} such that for al-1 < i < n we add one of the following symbols to two consec-
utive terms

£y

. LTit1 or S Lit1 or ; .

Li+1
where each of the occurring integérsccur in pairs.

To connect Farey symbols with cofinite subgroups of the maxdgidoupl” we need
to recall theDedekind tessellatioaf the upper-half plan&l. Recall that theextended
modular groupl™ = PGLy(Z) acts onH via the natural action of on it together
with the extra symmetry — —Z. The Dedekind tessellation is the tessellation by
fundamental domains for the action 6f on H. It splits every fundamental domain
for I' in two hyperbolic triangles, usually depicted as a black amchite one. Here is
a depiction of the upper part of the Dedekind tessellation

Here, every red edge islatranslate of the edge, o], a blue edge &-translate of
[p, o] wherep is a primitive sixth root of unity and every black edge i§-#ranslate
of the circular ardi, p|. Observe that every hyperbolic triangle of this tessallatias
one edge of all three colors. Moving counterclockwise althregborder of a triangle
we either have the ordering red-blue-black (in which casealiehis triangle avhite
triangle) or blue-red-black (and then we call ibkacktriangle). Any pair of a white
and black triangle make a fundamental domain for the actidnh o

Observe that any hyperbolic geodesic connecting two camisecerms of a gen-
eralized Farey sequence consists of two red edges (codnaicés intersection with
black edges. We call these intersection poavisn pointglater in the theory of dessins
they will be denoted by a). A point where three blue edges come together with three
black edges will be called ardd point(later denoted by).

A generalized Farey sequence therefore determines a totmeplolygonal region
of H bounded by the (red) full geodesics connecting consecteénras. The extra
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information contained in a Farey symbol tell us how to idigrgides of this polygon
(as well as how to extend it slightly in casestonnections) as follows :

e For 7; —— 741 the two red edges making up the geodesic conneatjng

with z;; are identified.
e For z; Ziy1 (with paired ;

Zj+1 ) these two full geodesics (each
consisting of two red edges) are identified.
e For z; —— Zi+1 we extend the boundary of the polygon by adding the two

triangles just outside the full geodesic and identify the blue edges forming
the adjusted boundary.

In this way, we associate to a Farey symbol a compact suriéee, we will construct
a cuboid tree diagranout of it, that is, a tree embedded Iih such that all internal
vertices are3-valent. Take as the vertices all odd-points lying in thesiimr of the
polygonal region together with together with all even (radyl odd (blue) points on
the boundary. We connect these vertices with the black limeke interior of the
polygonal region and add an involution on the red leaf-zedidetermined by the
side-pairing information contained in the Farey-symbol.

Finally, we will also associate to it #ipartite cuboid graph(aka a 'dessin
d’enfants’). Start with the cuboid tree diagram and divitleedges in two (that is,
add also the even internal points connecting the two blaglkegdnaking up an edge
in the tree diagram) and connect two red leaf-vertices wheg torrespond to each
other under the involution.

For example, consider the Farey symbol

_.
[ ]
Wl =
[ ]
DN | —
[ ]
—

The boundary of the polygonal region determined by the synsbimdicated by the
slightly thicker red and blue edges. The vertices of the @ibee are the red, blue
and black points and the edges are the slightly thicker #ades.



(NON)COMMUTATIVE F-UN GEOMETRY 23

(@)
Wl
|
Wit

[—

Because the two red leaf-vertices correspond to each otiaar ehe involution, the
corresponding bipartite cuboid diagram (or modular dgssin

Such a dessin encodes the data of a Belyi covefing—- P{. ramified only in the
points{0, 1, co}. The inverse images ofwill be represented by a-vertex, those of
by ae-vertex. Of relevance for us are dessins whichraoglular quiltsmeaning that
everye-vertex is2-valent and every-vertex isl1- or 3-valent.

Given a modular dessin, denote each of the edges by a diffeuenber between
1 andd (the degree ofr), then themonodromy groug-, of « is the subgroup of,
generated by the order three elemeptobtained by cycling round every -vertex
counterclockwise and the order two elementobtained by recording the two edges
ending at everg-vertex. This defines an exact sequence of groups

1 G r Gr 1

and the projective curv€' corresponding to the modular dessin can be identified with
a compactification oH/G whereH is the upper half-plane on whidk C I' acts via
Mobius transformations.
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The d-dimensional permutation representatibh = I'/G decomposes into irre-
ducible representations for the monodromy gréup say

M=Xq. @XP

with every X; an irreducibleG,, and hence also irreduciblé-representation. The
modular contenof the dessin, or of the permutation representation, is theeqon
k verticesQ, = Qcr|M together with the dimension vectar, = (ey, ..., e;) deter-
mined by the multiplicities of the simples in the permutatiepresentation.

Roughly speaking, the modular contefd,, o) encodes how much the curve
C, the dessin or the permutation representation 'sees’ ofrtbdular group. That
is, the quotient varietyss,, Q. = rep, Q-/GL(a,) classifies all semi-simplé-
dimensionall’-representations deforming to the permutation repregsentd/. As
such, it is a new noncommutative gadget associated to dadaebject, the curve.

It would be interesting to know whether the modular contsrd iGalois invariant of
the dessin, or more generally, what subsidiary informadienved from it is a Galois
invariant.

We now give an algorithm to compute the modular content,gugie group-theory
program GAP, starting from the modular quibt

(1) Determine the permutations, o; € S; described above, that is obtained by
walking around the-vertices (foro;) and theo-vertices (foroy) in D and feed
them to GAP as0, s1.

(2) Calculate the monodromy group. viaG =G oup(sO, s1) and determine
its character table viahar s: =Char act er Tabl e( Q) ;)

(3) Determine theG,-character of the permutation representation by calling
Conj ugacyC asses( Q) . This returns a list of5;-permutations represent-
ing the conjugacy classes 6f,. To determine the character-value we only
need to count the numbers missing in the cycle decomposifitire permuta-
tion. Lety be the obtained character which is the @&t .

(4) Determine the irreducible components @f and their multiplicities via
Mat Scal ar Product s(chars, I rr(chars),[chi]);. The non-zero
entries form the dimension vectar, and they determine the simple factors
X17 ‘e ,Xk.

(5) Determine the conjugacy classes of and o,. For example, the
number of the conjugacy class in the character table is fobgd
Fusi onConj ugacyC asses( G oup(s0), G ;. Alternatively, one can
usel sConj ugat e( G s0, s); for s a suitable element representant ob-
tained viaConj ugacyCl asses( G ;. Assumeo, (resp. ;) belongs to
thea-th (resp.b-th) conjugacy class.

(6) From the character values oK; in the a-th and b-th column of
Di spl ay(chars); one deduces the dimension vectay; =
(aq(7), a2(i); b1(7), bo(i), b3(i)) of the Qr-representation corresponding to
X;.
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(7) Finally, the number of arrows (and loops) in the quierbetween the vertices
corresponding td; and.X; is given byd;; — xo. (a;, ;).

2.10. As the modular content encodes all posdibtepresentation deformations of
the permutation representation, it is often a huge objedthvimakes it difficult to
extract interesting deformations from it. Sometimes thgugtrue gem reveals itself.
In the previous subsection we used the generalized Farapay

,_.
[ ]
W =
[ ]
N | —
[ ]
—

Note that it consists of half of the Farey-sequehi8) (those< %). Generalizing this
construction for all classical Farey sequences leads toteguing class of examples.
Then-th Iguanodon Farey-symbad the Farey symbol

1
o0 1 0 ° E e T e 5 ° 1

where the rational numbers occurring are precisely thoseyFaumbers inf'(n)

smaller or equal tg.

The terminology is explained by depicting the first few btgarcuboid diagrams
associated to Farey sequences

e

(O50-0-49()42-0-41()30-0-29()26-0-25()18-0-17()16-0-15()12-0-11()-8——7-

=
Oor—e—r-(O-h—e—to-

5+2 i4 3+2 2+8 2+0 1+4
s & 8 55 ¢
5/2 /;Z 1 {'m
O o) O o)
[0 a7
07 07 &) s Ao
o) O ,
v

SN
@)

o

o
O&—==5

Here, the diagram corresponding to Farey sequétieg is the full subfigure on the
firstm(n) (half)edges

n |2 3 4 5 6 7 8 9
m(n) |8 12 16 24 28 40 48 60
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The monodromy groups corresponding to thth Iguanodon symbol are

n 2 3 4 5 6 7 8 9
Lo(7) Mys Ae Moy Ass Ay Ass  Aso

n| 10 11 12 13 14 15 16 17
Ass  Ass Ags Ao Az Aus Ates Aigs

This can be verified by hand (and GAP) using the above picture £ 9 and by using
the SAGE-packagkf ar ey. sage for highern. It is plausible that the monodromy
groups of the Iguanodon symbols are all simple groups arsdjitiite remarkable that
the Mathieu groupd/;, and My, appear in this sequence of alternating groups.

Now, let us compute the modular content of these permutagpnesentations.
The action of the monodromy group is clearly 2-transitivelying that as aCG,,-
representation, the permutation representation splits two irreducibles, one of
which being clearly the trivial representation. Note alsattthe character of the gen-
erator of order2 is equal to zero as there are ma&nd points. Further-endpoints
appear in pairs and add another 4 half-edges, that is 4 diarexy$o the permutation
space. By induction we see that the dimension of the perioatag¢presentation is
always of the formin with x(o;) = 0 andx(op) = n.

By the argument recalled [n 2.7 it follows that the dimensieator of theQr--quiver
representation corresponding to the permutation repratsem is

But then, by the algorithm we have that the modular contént «.,.) of the permuta-
tion representation can be depicted as
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The n? loops in the vertex corresponding to the simple factandicate that the
moduli space of semi-stabig--representations/;*(Qr, as) isn*-dimensional and as
S is a smooth pointin it, there is art-dimensional family of simpl&'-representations
in the neighborhood of. More interesting is the fact that there is just one arrow in
each direction between the two vertices.

This implies that the permutation representation is a smpoint in the moduli
space of semi-simpl&€-representations, a rare fact for higher dimensional decom
posable representations (see the pdper [3] for more detaingularities of quiver-
representations). Further, this implies that there is guai!) curve of simpleln-
dimensional'-representations degenerating to the given permutatipresentation!
Certainly in the case of the sporadic Mathieu groups it wdnddnteresting to study
these curves (and their closures in the moduli spdgg Qr, a,,)) in more detail.
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