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NONCOMMUTATIVE GEOMETRY AND DUAL COALGEBRAS

LIEVEN LE BRUYN

ABSTRACT. In arXiv:math/0606241v2 M. Kontsevich and Y. Soibelman argue that the
category of noncommutative (thin) schemes is equivalent to the category of coalgebras.
We propose that under this correspondence the affine scheme rep(A) of a k-algebra A is
the dual coalgebra Ao and draw some consequences. In particular, we describe the dual
coalgebra Ao of A in terms of the A∞-structure on the Yoneda-space of all the simple
finite dimensional A-representations.
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1. rep(A) = Ao

Throughout, k will be a (commutative) field with separable closure k. In [3, §I.2] Maxim
Kontsevich and Yan Soibelman define a noncommutative thin scheme to be a covariant
functor commuting with finite projective limits

X : alg
fd
k

! sets

from the category alg
fd
k of all finite dimensional k-algebras (associative with unit) to the

category sets of all sets. They prove [3, Thm. 2.1.1] that every noncommutative thin
scheme is represented by a k-coalgebra.

Recall that a k-coalgebra is a k-vectorspace C equipped with linear structural mor-
phisms : a comultiplication ∆ : C ! C ⊗C and a counit ε : C ! k satisfying the
coassociativity (id⊗∆)∆ = (∆⊗id)∆ and counitary property (id⊗ε)∆ = (ε⊗id)∆ = id.

By being representable they mean that every noncommutative thin scheme X has asso-
ciated to it a k-coalgebra CX with the property that for any finite dimensional k-algebra B
there is a natural one-to-one correspondence

X(B) = algk(B, C∗
X )

Here, for a k-coalgebra C we denote by C∗ the space of linear functionals Homk(C, k)
which acquires a k-algebra structure by dualizing the structural coalgebra morphisms.

They call CX the coalgebra of distributions on X and define the noncommutative algebra
of functions on X to be the dual k-algebra k[X] = C∗

X .
Whereas the dual C∗ of a k-coalgebra is always a k-algebra, for a k-algebra A it is not

true in general that the dual vectorspace A∗ is a coalgebra, because (A ⊗ A)∗ "# A∗ ⊗ A∗.
Still, one can define the subspace

Ao = {f ∈ A∗ = Homk(A, k) | ker(f) contains a twosided ideal of finite codimension }

and show that the duals of the structural morphisms on A determine a k-coalgebra structure
on this dual coalgebra Ao, see for example [5, Prop. 6.0.2].
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With these definitions, Kostant duality asserts that the functors

algk

o
!!
coalgk

∗

""

are adjoint, [5, Thm. 6.0.5]. That is, for any k-algebra A and any k-coalgebra C, there is a
natural one-to-one correspondence between the homomorphisms

algk(A, C∗) = coalgk(C, Ao)

Moreover, we have [5, Lemma 6.0.1] that for f ∈ algk(A, B), the dual map f∗ determines
a k-coalgebra morphism f∗ ∈ coalgk(Bo, Ao).

For a k-algebra A one can define the contravariant functor rep(A) describing its finite
dimensional representations [3, Example 2.1.9]

rep(A) : coalg
fd
k

! sets C %→ algk(A, C∗)

from finite dimensional k-coalgebras coalgfd
k to sets, which commutes with finite direct

limits. As on finite dimensional k-(co)algebras Kostant duality is an anti-equivalence of
categories

alg
fd
k

∗
##

coalg
fd
k

∗

""

we might as well describe rep(A) as the noncommutative thin scheme represented by Ao

rep(A) : alg
fd
k

! sets B = C∗ %→ algk(A, B = C∗) = coalgk(C = B∗, Ao)

the latter equality follows again from Kostant duality. Therefore, we propose

Definition 1. The noncommutative affine scheme rep(A) is the noncommutative (thin)
scheme corresponding to the dual k-coalgebraAo of A.

2. simp(A) = corad(Ao)

The dual k-coalgebra Ao is usually a huge object and hence contains a lot of information
about the k-algebra A. Let us begin by recalling how the geometry of a commutative affine
k-scheme X is contained in the dual coalgebra Ao of its coordinate ring A = k[X ].

Recall that a coalgebra D is said to be simple if it has no proper nontrivial subcoalgebras.
In particular, a simple coalgebra D is finite dimensional over k and by duality is such that
D∗ is a simple k-algebra, that is, D∗ is a central simple L-algebra where L is a finite
separable extension of k.

Hence, in case A = k[X ] (and k is separably closed) we have that all simple subcoalge-
bras of Ao are one-dimensional (and hence are spanned by a group-like element), because
they correspond to simple representations of A.

That is, Ao is pointed and by [5, Prop. 8.0.7] we know that any cocommutative pointed
coalgebra is the direct sum of its pointed irreducible components (at the algebra level, this
says that a semi-local commutative algebra is the direct sum of locals). Therefore,

Ao = ⊕x∈XCx

where each Cx is pointed irreducible and cocommutative. As such, each Cx is a subcoal-
gebra of the enveloping coalgebra of the abelian Lie algebra on the tangent space Tx(X).
That is, we recover the points of X as well as tangent information from the dual coalgebra
Ao.

But then, the dual algebra of Ao, that is the ’noncommutative’ algebra of functions Ao∗

decomposes as
Ao∗ = ⊕x∈XÔx,X

the direct sum of the completions of the local algebras at points. The diagonal embedding
A = k[X ] ⊂ ! Ao∗ inevitably leads to the structure scheaf OX .

We will now associate a topological space associated to any k-algebra A, generalizing
the space of points equipped with the Zariski topology when A is a commutative affine
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k-algebra. In the next section we will describe the dual coalgebra Ao when A is a noncom-
mutative affine k-algebra.

The coradical corad(C) of a k-coalgebra C is the (direct) sum of all simple subcoalge-
bras of C. It is also the direct sum of all simple subcomodules of C, when C is viewed as
a left (or right) C-comodule.

In the example above, when A = k[X ], we have that corad(Ao) = ⊕x∈Xk evx where
the group-like element evx is evaluation in the point x. This motivates :

Definition 2. For a k-algebra A we define the space of points simp(A) to be the set of
direct summands of corad(rep(A)) = corad(Ao). That is, simp(A) is the set of simple
subcoalgebras of rep(A).

By Kostant duality it follows that simp(A) is the set of all finite dimensional simple
algebra quotients of the k-algebra A, or equivalently, the set of all isomorphism classes of
finite dimensional simple A-representations, explaining the notation.

We can equip this set with a Zariski topology in the usual way, using the evaluation map

Ao × A
ev
! k (f, a) %→ f(a)

when restricted to the subcoalgebra corad(Ao). Note that the evaluation map actually
defines a measuring of A to k [5, Prop. 7.0.3], that is, Ao ⊗ A

ev
! k satisfies

ev(f ⊗ aa′) =
∑

(f)

f(1)(a)f(2)(a
′) and ev(f ⊗ 1) = ε(f)1k

Definition 3. The Zariski topology of a k-algebra A is the set simp(A) equipped with the
topology generated by the basic closed sets

V(a) = {S ∈ simp(A) | ev(S ⊗ a) = 0, that is f(a) = 0, ∀f ∈ S }

Having associated a topological space to a k-algebra, one might ask when this is a func-
tor. Functoriality has always been a problem in noncommutative geometry. Indeed, a sim-
ple B-representation does not have to remain a simple A-representation under restriction
of scalars via φ : A ! B.

Still, if we define rep(A) = Ao, we get functionality for free. If A
φ
! B is an algebra

morphism, we have seen that the dual map maps Bo to Ao, so we have a morphism

Bo = rep(B)
φ∗

! rep(A) = Ao

A coalgebra is the direct limit of its finite dimensional coalgebras, and they correspond
under duality to finite dimensional algebras. Hence, φ∗ is the natural map on finite dimen-
sional representations by restriction of scalars.

The observed failure of functoriality on the level of points translates on the coalgebra-
level to the fact that for a coalgebra map Bo ! Ao the coradical corad(Bo) does not
have to be mapped to corad(Ao), in general.

However, when corad(Bo) is cocommutative, we do have that φ∗(corad(Bo)) ⊂
corad(Ao) by [5, Thm. 9.1.4]. In particular, we recover the functor of points in com-
mutative algebraic geometry.

Clearly, we still have corad(Bo) ! Ao in general. This corresponds to the fact that
there is always a map simp(B) ! rep(A).

Next, let us turn to the algebra of functions on rep(A). By definition we have
k[rep(A)] = Ao∗

and we can ask how this algebra relates to the algebra A.
In general, it is not true that A ⊂ ! Ao∗. This only holds when Ao is dense in A∗ in

which case the k-algebra is said to be proper, see [5, §6.1].
In the commutative case, when A is a finitely generated k-algebra, then A is indeed

proper and this is a consequence of the Hilbert Nullstellensatz and the Krull intersection
theorem.
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When A is noncommutative, this is no longer the case. For example, if A = An(k) the
Weyl algebra over a field of characteristic zero k, then A is simple whence has no twosided
ideals of finite codimension. As a result Ao = 0! As our proposal for the noncommutative
affine scheme rep(A) is based on finite dimensional representations of A, it will not be
suitable for k-algebras having few such representations.

3. THE DUAL COALGEBRA Ao

In general though, Ao is a huge object, so it is very difficult to describe explicitly. In
this section, we will begin to tame Ao even when A is noncommutative.

In order not to add extra problems, we will assume that k is separably closed in this sec-
tion. The general case can be recovered by taking Gal(k/k)-invariants (replacing quivers
by species in the sequel).

Over a separably closed field k all simple subcoalgebras are full matrix coalgebras
Mn(k)∗, that is, Mn(k)∗ = ⊕i,jkeij with ∆(eij) =

∑n
k=1 eik ⊗ ekj and ε(eij) = δij .

Hence, corad(Ao) = ⊕SMnS
(k)∗ where the sum is taken over all finite dimensional

simple A-representations S, each having dimension nS .
In algebra, one can resize idempotents by Morita-theory and hence replace full matrices

by the basefield. In coalgebra-theory there is an analogous duality known as Takeuchi
equivalence, see [6].

The isotypical decomposition of corad(Ao) as an Ao-comodule is of the form⊕SC⊕nS

S ,
the sum again taken over all simple A-representations. Take the Ao-comodule E = ⊕SCS

and its coendomorphism coalgebra

A† = coendAo

(E)

then Takeuchi-equivalence (see for example [1, §4, §5] and the references contained in this
paper for more details) asserts that Ao is Takeuchi-equivalent to the coalgebra A† which is
pointed, that is, corad(A†) = k simp(A) = ⊕SkgS with one group-like element gS for
every simple A-representation. Remains to describe the structure of the full basic coalgebra
A†.

For a (possibly infinite) quiver $Q we define the path coalgebra k $Q to be the vectorspace
⊕pkp with basis all oriented paths p in the quiver $Q (including those of length zero, corre-
sponding to the vertices) and with structural maps induced by

∆(p) =
∑

p=p′p”

p′ ⊗ p” and ε(p) = δ0,l(p)

where p′p” denotes the concatenation of the oriented paths p′ and p” and where l(p) denotes
the length of the path p. Hence, every vertex v is a group-like element and for an arrow
!"#$%&'(v

a
$$ !"#$%&'(w we have ∆(a) = v⊗a+a⊗w and ε(a) = 0, that is, arrows are skew-primitive

elements.
For every natural number i, we define the exti-quiver −−→exti

A to have one vertex vS for
every S ∈ simp(A) and such that the number of arrows from vS to vT is equal to the
dimension of the space ExtiA(S, T ). With exti

A we denote the k-vectorspace on the arrows
of −−→exti

A.
The Yoneda-spaceext•A = ⊕exti

A is endowed with a natural A∞-structure [2], defining
a linear map (the homotopy Maurer-Cartan map, [4])

µ = ⊕imi : k
−−→
ext1

A
! ext2

A

from the path coalgebra k
−−→
ext1

A of the ext1-quiver to the vectorspace ext2
A, see [2, §2.2]

and [4].

Theorem 1. The dual coalgebra Ao is Takeuchi-equivalent to the pointed coalgebra A†

which is the sum of all subcoalgebras contained in the kernel of the linear map
µ = ⊕imi : k

−−→
ext1

A
! ext2

A

determined by the A∞-structure on the Yoneda-space ext•A.
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We can reduce to finite subquivers as any subcoalgebra is the limit of finite dimensional
subcoalgebras and because any finite dimensional A-representation involves only finitely
many simples. Hence, the statement is a global version of the result on finite dimensional
algebras due to B. Keller [2, §2.2].

Alternatively, we can use the results of E. Segal [4]. Let S1, . . . , Sr be distinct simple
finite dimensional A-representations and consider the semi-simple module M = S1⊕. . .⊕
Sr which determines an algebra epimorphism

πM : A !! Mn1
(k) ⊕ . . . ⊕ Mnr

(k) = B

If m = Ker(πM ), then the m-adic completion Âm = lim
←

A/m
n is an augmented B-

algebra and we are done if we can describe its finite dimensional (nilpotent) representations.
Again, consider the A∞-structure on the Yoneda-algebra Ext•A(M, M) and the quiver on
r-vertices −−→ext1

A(M, M) and the homotopy Mauer-Cartan map

µM = ⊕imi : k
−−→
ext1

A(M, M) ! Ext2A(M, M)

Dualizing we get a subspace Im(µ∗
M ) in the path-algebra k

−−→
ext1

A(M, M)∗ of the dual
quiver. Ed Segal’s main result [4, Thm 2.12] now asserts that Âm is Morita-equivalent to

Âm ∼
M

(k
−−→
ext1

A(M, M)∗)̂

(Im(µ∗
M ))

where (k
−−→
ext1

A(M, M)∗)̂ is the completion of the path-algebra at the ideals generated by
the paths of positive length. The statement above is the dual coalgebra version of this.
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