NONCOMMUTATIVE GEOMETRY AND DUAL COALGEBRAS

LIEVEN LE BRUYN

ABSTRACT. In arXiv:math/0606241v2 M. Kontsevich and Y. Soibelman argue that the category of noncommutative (thin) schemes is equivalent to the category of coalgebras. We propose that under this correspondence the affine scheme $\mathtt{rep}(A)$ of a k-algebra A is the dual coalgebra A^o and draw some consequences. In particular, we describe the dual coalgebra A^o of A in terms of the A_∞ -structure on the Yoneda-space of all the simple finite dimensional A-representations.

CONTENTS

1.	$rep(A) = A^o$	1
2.	$simp(A) = corad(A^o)$	2
3.	the dual coalgebra A^o	4
References		5

1.
$$rep(A) = A^{o}$$

Throughout, k will be a (commutative) field with separable closure k. In [3, §I.2] Maxim Kontsevich and Yan Soibelman define a *noncommutative thin scheme* to be a covariant functor commuting with finite projective limits

$${\tt X} \,:\, {\tt alg}_k^{fd} \longrightarrow {\tt sets}$$

from the category \mathtt{alg}_k^{fd} of all *finite dimensional* k-algebras (associative with unit) to the category sets of all sets. They prove [3, Thm. 2.1.1] that every noncommutative thin scheme is represented by a k-coalgebra.

Recall that a k-coalgebra is a k-vectorspace C equipped with linear structural morphisms: a comultiplication $\Delta: C \longrightarrow C \otimes C$ and a counit $\epsilon: C \longrightarrow k$ satisfying the coassociativity $(id \otimes \Delta)\Delta = (\Delta \otimes id)\Delta$ and counitary property $(id \otimes \epsilon)\Delta = (\epsilon \otimes id)\Delta = id$.

By being representable they mean that every noncommutative thin scheme X has associated to it a k-coalgebra C_X with the property that for any finite dimensional k-algebra B there is a natural one-to-one correspondence

$$\mathtt{X}(B) = \mathtt{alg}_k(B, C^*_{\mathtt{X}})$$

Here, for a k-coalgebra C we denote by C^* the space of linear functionals $Hom_k(C,k)$ which acquires a k-algebra structure by dualizing the structural coalgebra morphisms.

They call $C_{\mathtt{X}}$ the *coalgebra of distributions* on X and define the *noncommutative algebra of functions* on X to be the dual k-algebra $k[\mathtt{X}] = C_{\mathtt{X}}^*$.

Whereas the dual C^* of a k-coalgebra is always a k-algebra, for a k-algebra A it is not true in general that the dual vectorspace A^* is a coalgebra, because $(A \otimes A)^* \not\simeq A^* \otimes A^*$. Still, one can define the subspace

 $A^o = \{ f \in A^* = Hom_k(A, k) \mid ker(f) \text{ contains a two sided ideal of finite codimension } \}$

and show that the duals of the structural morphisms on A determine a k-coalgebra structure on this dual coalgebra A^o , see for example [5, Prop. 6.0.2].

1

With these definitions, Kostant duality asserts that the functors

$$\operatorname{alg}_k \xrightarrow{\hspace*{1cm} o \hspace*{1cm}} \operatorname{coalg}_k$$

are adjoint, [5, Thm. 6.0.5]. That is, for any k-algebra A and any k-coalgebra C, there is a natural one-to-one correspondence between the homomorphisms

$$alg_k(A, C^*) = coalg_k(C, A^o)$$

Moreover, we have [5, Lemma 6.0.1] that for $f \in \mathtt{alg}_k(A,B)$, the dual map f^* determines a k-coalgebra morphism $f^* \in \mathtt{coalg}_k(B^o,A^o)$.

For a k-algebra A one can define the contravariant functor rep(A) describing its finite dimensional representations [3, Example 2.1.9]

$$\operatorname{rep}(A) \,:\, \operatorname{coalg}^{fd}_k \longrightarrow \operatorname{sets} \qquad C \mapsto \operatorname{alg}_k(A,C^*)$$

from finite dimensional k-coalgebras $\operatorname{coalg}_k^{fd}$ to sets , which commutes with finite direct limits. As on finite dimensional k-(co)algebras Kostant duality is an anti-equivalence of categories

$$\operatorname{alg}_k^{fd} \xrightarrow{*} \operatorname{coalg}_k^{fd}$$

we might as well describe $\operatorname{rep}(A)$ as the noncommutative thin scheme represented by A^o

$$\operatorname{rep}(A) \,:\, \operatorname{alg}_k^{fd} \longrightarrow \operatorname{sets} \qquad B = C^* \mapsto \operatorname{alg}_k(A, B = C^*) = \operatorname{coalg}_k(C = B^*, A^o)$$

the latter equality follows again from Kostant duality. Therefore, we propose

Definition 1. The noncommutative affine scheme rep(A) is the noncommutative (thin) scheme corresponding to the dual k-coalgebra A^o of A.

2.
$$simp(A) = corad(A^o)$$

The dual k-coalgebra A^o is usually a huge object and hence contains a lot of information about the k-algebra A. Let us begin by recalling how the geometry of a commutative affine k-scheme X is contained in the dual coalgebra A^o of its coordinate ring $A = \mathbb{k}[X]$.

Recall that a coalgebra D is said to be *simple* if it has no proper nontrivial subcoalgebras. In particular, a simple coalgebra D is finite dimensional over k and by duality is such that D^* is a simple k-algebra, that is, D^* is a central simple k-algebra where k is a finite separable extension of k.

Hence, in case $A = \mathbb{k}[X]$ (and \mathbb{k} is separably closed) we have that all simple subcoalgebras of A^o are one-dimensional (and hence are spanned by a group-like element), because they correspond to simple representations of A.

That is, A^o is *pointed* and by [5, Prop. 8.0.7] we know that any cocommutative pointed coalgebra is the direct sum of its *pointed irreducible components* (at the algebra level, this says that a semi-local commutative algebra is the direct sum of locals). Therefore,

$$A^o = \oplus_{x \in X} C_x$$

where each C_x is pointed irreducible and cocommutative. As such, each C_x is a subcoalgebra of the enveloping coalgebra of the abelian Lie algebra on the tangent space $T_x(X)$. That is, we recover the points of X as well as tangent information from the dual coalgebra A^o .

But then, the dual algebra of A^o , that is the 'noncommutative' algebra of functions $A^{o\ast}$ decomposes as

$$A^{o*} = \bigoplus_{x \in X} \hat{\mathcal{O}}_{x,X}$$

the direct sum of the completions of the local algebras at points. The diagonal embedding $A = \mathbb{k}[X] \hookrightarrow A^{o*}$ inevitably leads to the structure scheaf \mathcal{O}_X .

We will now associate a topological space associated to any k-algebra A, generalizing the space of points equipped with the Zariski topology when A is a commutative affine

k-algebra. In the next section we will describe the dual coalgebra A^o when A is a noncommutative affine k-algebra.

The $coradical\ corad(C)$ of a k-coalgebra C is the (direct) sum of all simple subcoalgebras of C. It is also the direct sum of all simple subcomodules of C, when C is viewed as a left (or right) C-comodule.

In the example above, when $A = \mathbb{k}[X]$, we have that $corad(A^o) = \bigoplus_{x \in X} \mathbb{k} \ ev_x$ where the group-like element ev_x is evaluation in the point x. This motivates :

Definition 2. For a k-algebra A we define the space of points simp(A) to be the set of direct summands of $corad(rep(A)) = corad(A^o)$. That is, simp(A) is the set of simple subcoalgebras of rep(A).

By Kostant duality it follows that simp(A) is the set of all finite dimensional simple algebra quotients of the k-algebra A, or equivalently, the set of all isomorphism classes of finite dimensional simple A-representations, explaining the notation.

We can equip this set with a Zariski topology in the usual way, using the evaluation map

$$A^o \times A \xrightarrow{ev} k \qquad (f, a) \mapsto f(a)$$

when restricted to the subcoalgebra $corad(A^o)$. Note that the evaluation map actually defines a *measuring* of A to k [5, Prop. 7.0.3], that is, $A^o \otimes A \xrightarrow{ev} k$ satisfies

$$ev(f \otimes aa') = \sum_{(f)} f_{(1)}(a) f_{(2)}(a')$$
 and $ev(f \otimes 1) = \epsilon(f) 1_k$

Definition 3. The Zariski topology of a k-algebra A is the set simp(A) equipped with the topology generated by the basic closed sets

$$\mathbb{V}(a) = \{ S \in \text{simp}(A) \mid ev(S \otimes a) = 0, \text{ that is } f(a) = 0, \forall f \in S \}$$

Having associated a topological space to a k-algebra, one might ask when this is a functor. Functoriality has always been a problem in noncommutative geometry. Indeed, a simple B-representation does not have to remain a simple A-representation under restriction of scalars via $\phi: A \longrightarrow B$.

Still, if we define $rep(A) = A^o$, we get functionality for free. If $A \xrightarrow{\phi} B$ is an algebra morphism, we have seen that the dual map maps B^o to A^o , so we have a morphism

$$B^o = \operatorname{rep}(B) \xrightarrow{\phi^*} \operatorname{rep}(A) = A^o$$

A coalgebra is the direct limit of its finite dimensional coalgebras, and they correspond under duality to finite dimensional algebras. Hence, ϕ^* is the natural map on finite dimensional representations by restriction of scalars.

The observed failure of functoriality on the level of points translates on the coalgebralevel to the fact that for a coalgebra map $B^o \longrightarrow A^o$ the coradical $corad(B^o)$ does not have to be mapped to $corad(A^o)$, in general.

However, when $corad(B^o)$ is cocommutative, we do have that $\phi^*(corad(B^o)) \subset corad(A^o)$ by [5, Thm. 9.1.4]. In particular, we recover the functor of points in commutative algebraic geometry.

Clearly, we still have $corad(B^o) \longrightarrow A^o$ in general. This corresponds to the fact that there is always a map $simp(B) \longrightarrow rep(A)$.

Next, let us turn to the algebra of functions on rep(A). By definition we have

$$k[\operatorname{rep}(A)] = A^{o*}$$

and we can ask how this algebra relates to the algebra A.

In general, it is *not* true that $A \hookrightarrow A^{o*}$. This only holds when A^{o} is dense in A^{*} in which case the k-algebra is said to be *proper*, see [5, §6.1].

In the commutative case, when A is a finitely generated k-algebra, then A is indeed proper and this is a consequence of the Hilbert Nullstellensatz and the Krull intersection theorem.

When A is noncommutative, this is no longer the case. For example, if $A = A_n(k)$ the Weyl algebra over a field of characteristic zero k, then A is simple whence has no twosided ideals of finite codimension. As a result $A^o = 0$! As our proposal for the noncommutative affine scheme $\mathtt{rep}(A)$ is based on finite dimensional representations of A, it will not be suitable for k-algebras having few such representations.

3. The dual coalgebra
$$A^o$$

In general though, A^o is a huge object, so it is very difficult to describe explicitly. In this section, we will begin to tame A^o even when A is noncommutative.

In order not to add extra problems, we will assume that k is separably closed in this section. The general case can be recovered by taking Gal(k/k)-invariants (replacing quivers by *species* in the sequel).

Over a separably closed field \mathbbm{k} all simple subcoalgebras are full matrix coalgebras $M_n(\mathbbm{k})^*$, that is, $M_n(\mathbbm{k})^* = \bigoplus_{i,j} \mathbbm{k} e_{ij}$ with $\Delta(e_{ij}) = \sum_{k=1}^n e_{ik} \otimes e_{kj}$ and $\epsilon(e_{ij}) = \delta_{ij}$.

Hence, $corad(A^o) = \bigoplus_S M_{n_S}(\Bbbk)^*$ where the sum is taken over all finite dimensional simple A-representations S, each having dimension n_S .

In algebra, one can resize idempotents by Morita-theory and hence replace full matrices by the basefield. In coalgebra-theory there is an analogous duality known as *Takeuchi* equivalence, see [6].

The isotypical decomposition of $corad(A^o)$ as an A^o -comodule is of the form $\bigoplus_S C_S^{\bigoplus n_S}$, the sum again taken over all simple A-representations. Take the A^o -comodule $E=\bigoplus_S C_S$ and its coendomorphism coalgebra

$$A^{\dagger} = coend^{A^{\circ}}(E)$$

then Takeuchi-equivalence (see for example $[1,\S 4,\S 5]$ and the references contained in this paper for more details) asserts that A^o is Takeuchi-equivalent to the coalgebra A^\dagger which is pointed, that is, $corad(A^\dagger) = \mathbb{k} \ \text{simp}(A) = \bigoplus_S \mathbb{k} g_S$ with one group-like element g_S for every simple A-representation. Remains to describe the structure of the full basic coalgebra A^\dagger .

For a (possibly infinite) quiver \vec{Q} we define the *path coalgebra* $\mathbb{k}\vec{Q}$ to be the vectorspace $\bigoplus_p \mathbb{k}p$ with basis all oriented paths p in the quiver \vec{Q} (including those of length zero, corresponding to the vertices) and with structural maps induced by

$$\Delta(p) = \sum_{p = p'p"} p' \otimes p" \qquad \text{ and } \qquad \epsilon(p) = \delta_{0,l(p)}$$

where p'p" denotes the concatenation of the oriented paths p' and p" and where l(p) denotes the length of the path p. Hence, every vertex v is a group-like element and for an arrow v - v - v we have v - v - v we have v - v - v and v - v - v and v - v and v - v are skew-primitive elements.

For every natural number i, we define the ext^i -quiver \overrightarrow{ext}^i_A to have one vertex v_S for every $S \in \text{simp}(A)$ and such that the number of arrows from v_S to v_T is equal to the dimension of the space $Ext^i_A(S,T)$. With ext^i_A we denote the k-vectorspace on the arrows of $\overrightarrow{\text{ext}}^i_A$.

The Yoneda-space $\operatorname{ext}_A^{\bullet} = \bigoplus \operatorname{ext}_A^i$ is endowed with a natural A_{∞} -structure [2], defining a linear map (the homotopy Maurer-Cartan map, [4])

$$\mu = \bigoplus_i m_i : \ker^1_A \longrightarrow \operatorname{ext}^2_A$$

from the path coalgebra \ker^1_A of the ext^1 -quiver to the vectorspace ext_A^2 , see [2, §2.2] and [4].

Theorem 1. The dual coalgebra A^o is Takeuchi-equivalent to the pointed coalgebra A^{\dagger} which is the sum of all subcoalgebras contained in the kernel of the linear map

$$\mu = \bigoplus_i m_i : \ker^1_A \longrightarrow \operatorname{ext}^2_A$$

determined by the A_{∞} -structure on the Yoneda-space $\operatorname{ext}_A^{\bullet}$.

We can reduce to finite subquivers as any subcoalgebra is the limit of finite dimensional subcoalgebras and because any finite dimensional A-representation involves only finitely many simples. Hence, the statement is a global version of the result on finite dimensional algebras due to B. Keller [2, §2.2].

Alternatively, we can use the results of E. Segal [4]. Let S_1, \ldots, S_r be distinct simple finite dimensional A-representations and consider the semi-simple module $M = S_1 \oplus \ldots \oplus S_r$ which determines an algebra epimorphism

$$\pi_M: A \longrightarrow M_{n_1}(\mathbb{k}) \oplus \ldots \oplus M_{n_r}(\mathbb{k}) = B$$

If $\mathfrak{m}=Ker(\pi_M)$, then the \mathfrak{m} -adic completion $\hat{A}_{\mathfrak{m}}=\varinjlim A/\mathfrak{m}^n$ is an augmented B-algebra and we are done if we can describe its finite dimensional (nilpotent) representations. Again, consider the A_{∞} -structure on the Yoneda-algebra $Ext_A^{\bullet}(M,M)$ and the quiver on r-vertices $\overrightarrow{ext}_A^1(M,M)$ and the homotopy Mauer-Cartan map

$$\mu_M = \bigoplus_i m_i : \ker^1_A(M, M) \longrightarrow Ext^2_A(M, M)$$

Dualizing we get a subspace $Im(\mu_M^*)$ in the path-algebra $\ker^1_A(M,M)^*$ of the dual quiver. Ed Segal's main result [4, Thm 2.12] now asserts that \hat{A}_m is Morita-equivalent to

$$\hat{A}_{\mathfrak{m}} \underset{M}{\sim} \frac{(\overline{\ker t}_{A}^{1}(M, M)^{*})^{\hat{}}}{(Im(\mu_{M}^{*}))}$$

where $(\ker A(M, M)^*)$ is the completion of the path-algebra at the ideals generated by the paths of positive length. The statement above is the dual coalgebra version of this.

REFERENCES

- [1] William Chin, A brief introduction to coalgebra representation theory, in "Hopf Algebras" M. Dekker Lect. Notes in Pure and Appl. Math. (2004) 109-132. Online at http://condor.depaul.edu~wchin/crt.pdf
- [2] Bernhard Keller, A-infinity algebras in representation theory, Contribution to the Proceedings of ICRA IX, Beijing (2000). Online at http://www.math.jussieu.fr~keller/publ/art.dvi
- [3] Maxim Kontsevich and Yan Soibelman, Notes on A_∞-algebras, A_∞-categories and non-commutative geometry I, arXiv:math.RA/0606241 (2006)
- [4] Ed Segal, The A_{∞} deformation theory of a point and the derived category of local Calabi-Yaus, math.AG/0702539 (2007)
- [5] Moss E. Sweedler, Hopf Algebras, monograph, W.A. Benjamin (New York) (1969)
- [6] M. Takeuchi, Morita theorems for categories of comodules, J. Fac. Sci. Univ. Tokyo 24 (1977) 629-644

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ANTWERP, MIDDELHEIMLAAN 1, B-2020 ANTWERP (BELGIUM), lieven.lebruyn@ua.ac.be