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Preface

This book explains the theory of Cayley-smooth orders in central simple al-
gebras over functionfields of varieties. In particular, we will describe the
étale local structure of such orders as well as their central singularities and
finite dimensional representations. There are two major motivations to study
Cayley-smooth orders.

A first application is the construction of partial desingularizations of (com-
mutative) singularities from noncommutative algebras. This approach is sum-
marized in the introductory chapter 0 can be read independently, modulo
technical details and proofs, which are deferred to the main body of the
book. A second motivation stems from noncommutative algebraic geometry
as developed by Joachim Cuntz, Daniel Quillen, Maxim Kontsevich, Michael
Kapranov and others. One studies formally smooth algebras or quasi-free alge-
bras (in this book we will call them Quillen-smooth algebras) which are huge,
non-Noetherian algebras, the free associative algebras being the archetypical
examples. One attempts to study these algebras via their finite dimensional
representations which, in turn, are controlled by associated Cayley-smooth
algebras. In the final two chapters, we will give an introduction to this fast
developing theory.

Chapters 5 and 6 contain the main results on Cayley-smooth orders. In
chapter 5, we describe the étale local structure of a Cayley-smooth order in a
semi-simple representation and classify the associated central singularity up
to smooth equivalence. This is done by associating to a semi-simple repre-
sentation a combinatorial gadget, a marked quiver setting, which encodes the
tangent-space information to the noncommutative manifold in the cluster of
points determined by the simple factors of the representation. In chapter 6 we
will describe the nullcone of these marked quiver representations and relate
them to the study of all isomorphism classes of n-dimensional representations
of a Cayley-smooth order.

This book is based on a series of courses given since 1999 in the ’advanced
master programme on noncommutative geometry’ organized by the NOncom-
mutative Geometry (NOG) project, sponsored by the European Science Foun-
dation (ESF). As the participating students came from different countries
there was a need to include background information on a variety of topics in-
cluding invariant theory, algebraic geometry, central simple algebras and the
representation theory of quivers. In this book, these prerequisites are covered
in chapters 1 to 4.

Chapters 1 and 2 contain the invariant theoretic description of orders and

xiii
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their centers, due to Michael Artin and Claudio Procesi. Chapter 3 contains
an introduction to étale topology and its use in noncommutative algebra,
in particular to the study of Azumaya algebras and to the local description
of algebras via Luna slices. Chapter 4 collects the necessary material on
representations of quivers, including the description of their indecomposable
roots, due to Victor Kac, the determination of dimension vectors of simple
representations, and results on general quiver representations, due to Aidan
Schofield. The results in these chapters are due to many people and the
presentation is influenced by a variety of sources. For this reason, references
are added at the end of each chapter, giving (hopefully) adequate credit.



Introduction

Ever since the dawn of noncommutative algebraic geometry in the mid-
seventies, see for example the work of P. Cohn [21], J. Golan [38], C. Pro-
cesi [86], F. Van Oystaeyen and A. Verschoren [103],[105], it has been ring
theorists’ hope that this theory might one day be relevant to commutative
geometry, in particular to the study of singularities and their resolutions.

Over the last decade, noncommutative algebras have been used to construct
canonical (partial) resolutions of quotient singularities. That is, take a finite
group G acting on C¢ freely away from the origin then its orbit-space C?/G
is an isolated singularity. Resolutions Y —» C¢/G have been constructed
using the skew group algebra

Clzy, ..., xq]#G

which is an order with center C[C?/G] = C[zy, . ..,24]¢ or deformations of it.

In dimension d = 2 (the case of Kleinian singularities) this gives us minimal
resolutions via the connection with the preprojective algebra, see for example
[27]. In dimension d = 3, the skew group algebra appears via the superpo-
tential and commuting matrices setting (in the physics literature) or via the
McKay quiver, see for example [23]. If G is Abelian one obtains from this
study crepant resolutions but for general G one obtains at best partial resolu-
tions with conifold singularities remaining. In dimension d > 3 the situation
is unclear at this moment.

Usually, skew group algebras and their deformations are studied via homo-
logical methods as they are Serre-smooth orders, see for example [102]. In
this book, we will follow a different approach.

We want to find a noncommutative explanation for the omnipresence of
conifold singularities in partial resolutions of three-dimensional quotient sin-
gularities. One may argue that they have to appear because they are somehow
the nicest singularities. But then, what is the corresponding list of "nice” sin-
gularities in dimension four? or five, six...7

The results contained in this book suggest that the nicest partial resolutions
of C*/G should only contain singularities that are either polynomials over the
conifold or one of the following three types

Clla, b, c,d, e, f]] Clla, b, c,d, e]] Clla,b,c,d,e, f, g,h]]
(ae — bd,af — cd,bf — ce) (abc — de) I

where I is the ideal of all 2 x 2 minors of the matrix

abced
[efgh]
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FIGURE I.1: Local structure of Cayley-smooth orders

In dimension d = 5 there is another list of ten new specific singularities that
will appear; in dimension d = 6 another 63 new ones appear and so on.

How do we arrive at these specific lists? The hope is that any quotient
singularity X = C?/G has associated to it a “nice” order A with center
R = C[X] such that there is a stability structure  such that the scheme of
all f-semistable representations of A is a smooth variety (all these terms will
be explained in the main body of the book). If this is the case, the associated
moduli space will be a partial resolution

moduli’ A — X =C%/G

and has a sheaf of Cayley-smooth orders A over it, allowing us to control its
singularities in a combinatorial way as depicted in figure .

If A is a Cayley-smooth order over R = C[X] then its noncommutative
variety max A of maximal twosided ideals is birational to X away from the
ramification locus. If P is a point of the ramification locus ram A then there is
a finite cluster of infinitesimally nearby noncommutative points lying over it.
The local structure of the noncommutative variety max A near this cluster can
be summarized by a (marked) quiver setting (Q, ), which in turn allows us to
compute the étale local structure of A and R in P. The central singularities
that appear in this way have been classified in [14] (see also section 5.8) up to
smooth equivalence giving us the small lists of singularities mentioned before.
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In this introduction we explain this noncommutative approach to the desin-
gularization project of commutative singularities. Proofs and more details will
be given in the following chapters.

1. Noncommutative algebra

Let me begin by trying to motivate why one might be interested in non-
commutative algebra if you want to understand quotient singularities and
their resolutions. Suppose we have a finite group G acting on d-dimensional
affine space C? such that this action is free away from the origin. Then the
orbit-space, the so called quotient singularity C?/G, is an isolated singularity

(Cd

res

ct/G < Y

and we want to construct "minimal” or ”canonical” resolutions (so called
crepant resolutions) of this singularity. In his Bourbaki talk [89] Miles Reid
asserts that McKay correspondence follows from a much more general princi-

ple

Miles Reid’s Principle: Let M be an algebraic manifold, G a group of
automorphisms of M, and Y —= X aresolution of singularities of X = M/G.
Then the answer to any well-posed question about the geometry of Y is the
G-equivariant geometry of M.

Applied to the case of quotient singularities, the content of his slogan is that
the G-equivariant geometry of C? already knows about the crepant resolution
Y —» C?/G. Let us change this principle slightly: assume we have an affine
variety M on which a reductive group (we will take PGL,,) acts with algebraic
quotient variety M/PGL, ~ C?/G

(Cd

Tes

M —— M/PGL, ~C%/G « Y

then, in favorable situations, we can argue that the PG L, -equivariant geome-
try of M knows about good resolutions Y. One of the key lessons to be learned
from this book is that PG L,,-equivariant geometry of M is roughly equivalent
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to the study of a certain noncommutative algebra over C?/G. In fact, an
order in a central simple algebra of dimension n? over the function field of the
quotient singularity. Hence, if we know of good orders over C¢/G, we might
get our hands on ”good” resolutions Y by noncommutative methods.

We will work in the following, quite general, setting:

e X will be a normal affine variety, possibly having singularities.
e R will be the coordinate ring C[X] of X.
e K will be the function field C(X) of X.

If you are only interested in quotient singularities, you should replace X by
C?/G, R by the invariant ring C[zy,...,74“ and K by the invariant field
C(z1,...,74)% in all statements below.

Our goal will be to construct lots of R-orders A in a central simple K-
algebra .

A ‘T - M, (K)
R© S K< - K

A central simple algebra is a noncommutative K-algebra ¥ with center Z(¥) =
K such that over the algebraic closure K of K we obtain full n X n matrices

(more details will be given in section 3.2). There are plenty such central
simple K-algebras:

EXAMPLE 1 For any nonzero functions f,g € K*, the cyclic algebra

K(x,y)
(z™ — foy" — g,y — qxy)

Y= (f,9)n  defined by (fs9)n =

with q is a primitive n-th root of unity, is a central simple K-algebra of di-
mension n?. Often, (f,g)n will even be a division algebra, that is a noncom-
mutative algebra such that every nonzero element has an inverse.

For example, this is always the case when E = K|x] is a (commutative) field
extension of dimension n and if g has order n in the quotient K*/Ng,x (E*)
where Ng g is the norm map of E/K.

Fix a central simple K-algebra ¥, then an R-order A in 3 is a subalgebras
A C ¥ with center Z(A) = R such that A is finitely generated as an R-module
and contains a K-basis of X, that is

ARQrK ~ X
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The classic reference for orders is Irving Reiner’s book [90] but it is somewhat
outdated and focuses mainly on the one-dimensional case. With this book we
hope to remedy this situation somewhat.

EXAMPLE 2 In the case of quotient singularities X = C%/G a natural
choice of R-order might be the skew group ring : Clzy,...,xq|#G, which

consists of all formal sums deG ToFg with multiplication defined by

(r#9)(r'#4") = roy(r')#g9’

where ¢4 is the action of g on Clzy,...,x4]. The center of the skew group
algebra is easily verified to be the ring of G-invariants

R=C[C%/G] = Clzy,...,24°

Further, one can show that Clzy,...,xq)#G is an R-order in M, (K) with
n the order of G. Later we will give another description of the skew group
algebra in terms of the McKay-quiver setting and the variety of commuting
matrices.

However, there are plenty of other R-orders in M, (K), which may or may
not be relevant in the study of the quotient singularity C?/G.

EXAMPLE 3 If f,g € R—{0}, then the free R-submodule of rank n? of the
cyclic K-algebra ¥ = (f, g)n of example 1

n—1
A= Z Raly?

4,7=0

is an R-order. But there is really no need to go for this ”canonical” example.
Someone more twisted may take I and J any two nonzero ideals of R, and

consider
n—1

A[J = Z Iijjl‘iyj
1,§=0
which is also an R-order in X, far from being a projective R-module unless T
and J are invertible R-ideals.

For example, in M, (K) we can take the "obvious” R-order M, (R) but one
might also take the subring
R1I
7

which is an R-order if I and J are nonzero ideals of R.
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From a geometric viewpoint, our goal is to construct lots of affine PGL,,-
varieties M such that the algebraic quotient M/PGL,, is isomorphic to X
and, moreover, such that there is a Zariski open subset U C X

M 5o YU

™ principal PGL,, -fibration

X ~M/PGL, ~———U

for which the quotient map is a principal PGL,-fibration, that is, all fibers
7 Yu) ~ PGL, for u € U. For the connection between such varieties M
and orders A in central simple algebras think of M as the affine variety of
n-dimensional representations rep,, A and of U as the Zariski open subset of
all simple n-dimensional representations.

Naturally, one can only expect the R-order A (or the corresponding PGL,,-
variety M) to be useful in the study of resolutions of X if A is smooth in
some appropriate noncommutative sense. There are many characterizations
of commutative smooth domains R:

e R is regular, that is, has finite global dimension
e R is smooth, that is, X is a smooth variety

and generalizing either of them to the noncommutative world leads to quite
different concepts. We will call an R-order A a central simple K-algebra 3:

e Serre-smooth if A has finite global dimension together with some extra
features such as Auslander regularity or Cohen-Macaulay property, see
for example [80].

e Cayley-smooth if the corresponding PGL,-affine variety M is a
smooth variety as we will clarify later.

For applications of Serre-smooth orders to desingularizations we refer to the
paper [102]. We will concentrate on the properties of Cayley-smooth orders
instead. Still, it is worth pointing out the strengths and weaknesses of both
definitions.

Serre-smooth orders are excellent if you want to control homological proper-
ties, for example, if you want to study the derived categories of their modules.
At this moment there is no local characterization of Serre-smooth orders if
dimX > 3. Cayley-smooth orders are excellent if you want to have smooth
moduli spaces of semistable representations. As we will see later, in each di-
mension there are only a finite number of local types of Cayley-smooth orders
and these will be classified in this book. The downside of this is that Cayley-
smooth orders are less versatile than Serre-smooth orders. In general though,
both theories are quite different.



Introduction xxi

EXAMPLE 4 The skew group algebra Clzy,...,xq|#G is always a Serre-
smooth order but it is virtually never a Cayley-smooth order.

EXAMPLE 5 Let X be the variety of matriz-invariants, that is
X =M,(C)® M,(C)/PGL,

where PG L, acts on pairs of n X n matrices by simultaneous conjugation. The
trace ring of two generic n X n matrices A is the subalgebra of M, (C[M,(C)&
M, (C)]) generated over C[X] by the two generic matrices

T11 --- Tin Y11 --- Yin
X=1": and Y = :

Tnl -« Tnn Ynl - -+ Ynn
Then, A is an R-order in a division algebra of dimension n? over K, called
the generic division algebra. Moreover, A is a Cayley-smooth order but is
Serre-smooth only when n = 2, see [78].

Descent theory allows construction of elaborate examples out of trivial ones
by bringing in topology and enables one to classify objects that are only locally
(but not necessarily globally) trivial. For applications to orders there are two
topologies to consider : the well-known Zariski topology and the perhaps
lesser-known étale topology. Let us try to give a formal definition of Zariski
and étale covers aimed at ring theorists. Much more detail on étale topology
will be given in section 3.1.

A Zariski cover of X is a finite product of localizations at elements of R

k
SZ:HRfi such that (fi,--.,fr) =R
=1

and is therefore a faithfully flat extension of R. Geometrically, the ring-
morphism R —— S, defines a cover of X = spec R by k disjoint sheets
spec S, = U;spec Ry,, each corresponding to a Zariski open subset of X, the
complement of V(f;), and the condition is that these closed subsets V(f;) do
not have a point in common. That is, we have the picture of figure 1.2.

Zariski covers form a Grothendieck topology, that is, two Zariski covers
Sl = Hle Ry, and S? = Hé.:l Ry, have a common refinement

ko1
S. =St or S =[I1] Rro

i=1j=1
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spec Ry,

spec Ry,

spec Ry,

7
/L// /speczz

FIGURE 1.2: A Zariski cover of X = spec R.

For a given Zariski cover S, = Hle Ry, a corresponding étale cover is a
product
gggfgl ;g((g)l
k . . z(1)1 (1)1,
Ry, ; .
se=1] fl[(x,)(’)l’ (”?)( );“] with : :
i=1 (901 90, Ag (i), dg(i)k,
Oz(i)1 " Ox(i)k,

a unit in the i-th component of S.. In fact, for applications to orders it is
usually enough to consider special etale extensions

R:
Se = H —(x kf{xil) where a; is a unit in Ry,

i=1

Geometrically, an étale cover determines for every Zariski sheet spec Ry, a
locally isomorphic (for the analytic topology) multicovering and the number
of sheets may vary with ¢ (depending on the degrees of the polynomials g(i); €
Ry [x(i)1,...,2(i)k,]. That is, the mental picture corresponding to an étale
cover is given in figure 1.3.

Again, étale covers form a Zariski topology as the common refinement S!®x
S? of two étale covers is again étale because its components are of the form

Rfigj [.’E(Z)l, e ,m(i)kiay(j)la e ’y(j)lj]
(g(l)l, s 7g(i)ki3 h(])la . 7h(])l])

and the Jacobian-matrix condition for each of these components is again sat-
isfied. Because of the local isomorphism property many ring theoretical local
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spec Rplz@)1,z(Dw]

(9M1,9(Dk;)

spec Balz@uz@]

(9(2)1,-,9(2)k,)

R [0(k)1 oo (k)]
/ SPEC ~(4(R) 1,9 (B)ry)
/Z// /specR

FIGURE 1.3: An étale cover of X = spec R.

properties (such as smoothness, normality, etc.) are preserved under étale
covers.

For a fixed R-order B in some central simple K-algebra X, then a Zariski
twisted form A of B is an R-algebra such that

ARr S, ~B®grS,

for some Zariski cover S, of R. If P € X is a point with corresponding
maximal ideal m, then P € spec Ry, for some of the components of S, and
as Ay, ~ By, we have for the local rings at P

An ~ Bn

that is, the Zariski local information of any Zariski-twisted form of B is that
of B itself.
Likewise, an étale twisted form A of B is an R-algebra such that

A®rS.~BQ®RrS.

for some étale cover S, of R. This time the Zariski local information of A
and B may be different at a point P € X but we do have that the m-adic
completions of A and B

Am:Bm
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are isomorphic as Ry-algebras. Thus, the Zariski local structure of A deter-
mines the localization Ay, the étale local structure determines the completion
Ap.

Descent theory allows us to classify Zariski- or étale twisted forms of an
R-order B by means of the corresponding cohomology groups of the automor-
phism schemes. For more details on this please read [57], [82] or section 3.1. If
one applies descent to the most trivial of all R-orders, the full matrix algebra
M., (R), one arrives at Azumaya algebras. A Zariski twisted form of M, (R) is
an R-algebra A such that

k
A®p 8. = My(S.) = [ [ Ma(Ry,)

i=1

Conversely, you can construct such twisted forms by gluing together the matrix
rings M,(Ry,). The easiest way to do this is to glue M, (Ry,) with M, (Ry,)
over Ry, r. via the natural embeddings

Ry, = Ry, ~— Ry,

Not surprisingly, we obtain in this way M, (R) back. However there are more
clever ways to perform the gluing by bringing in the noncommutativity of
matrix-rings. We can glue

-1
9ij-9i4

Mn(Ry,) — Mn(Ryg,) —— Mn(Ry.5,) ~— Mn(Ry,)

over their intersection via conjugation with an invertible matrix g;; in
GLn(Ry,5;). If the elements g;; for 1 < i,5 < k satisfy the cocycle condi-
tion (meaning that the different possible gluings are compatible over their
common localization Ry, r,), we obtain a sheaf of noncommutative algebras
A over X = spec R such that its global sections are not necessarily M, (R).

PROPOSITION 1 Any Zariski twisted form of My(R) is isomorphic to
Endgr(P) where P is a projective R-module of rank n. Two such twisted
forms are isomorphic as R-algebras

Endr(P) ~ Endr(Q) iff P~Q&I

for some invertible R-ideal I.

PROOF We have an exact sequence of group schemes
1 —— G,, — GL,, — PGL, — 1

(here, Gy, is the sheaf of units) and taking Zariski cohomology groups over X
we have a sequence

1— Héar(X7 Gm) - Hé("(X, GLn) - Héar(X7 PGLn)
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where the first term is isomorphic to the Picard group Pic(R) and the second
term classifies projective R-modules of rank n upto isomorphism. The final
term classifies the Zariski twisted forms of M, (R) as the automorphism group
of M,,(R) is PGL,,.

EXAMPLE 6 Let I and J be two invertible ideals of R, then

R I7YJ

Endp(I®J) ~ L'Jl "

] C My (K)

and if IJ71 = (r) then I ® J ~ (Rr ® R) ® J and indeed we have an isomor-

phism
10 R I7'J|[10] [RR
0r~t |IJ' R 0r| |RR
The situation becomes a lot more interesting when we replace the Zariski
topology by the étale topology.

DEFINITION 1 An n-Azumaya algebra over R is an étale twisted form A
of Mp(R). If A is also a Zariski twisted form we call A o trivial Azumaya
algebra.

LEMMA 1 If A is an n-Azumaya algebra over R, then:
1. The center Z(A) = R and A is a projective R-module of rank n?.

2. All simple A-representations have dimension n and for every mazimal
ideal m of R we have
A/mA ~ M, (C)

PROOF  For (2) take M N R = m where M is the kernel of a simple
representation A —s» M (C), then as Ay ~ M, (Ry,) it follows that
A/mA ~ M, (C)
and hence that kK = n and M = Am. I

It is clear from the definition that when A is an n-Azumaya algebra and A’
is an m-Azumaya algebra over R, A ®r A’ is an mn-Azumaya and also that

ARpr AP ~ EndR(A)

where A°P is the opposite algebra (that is, equipped with the reverse multi-
plication rule). These facts allow us to define the Brauer group BrR to be the
set of equivalence classes [A] of Azumaya algebras over R where

[A] = [A] if A®grA ~ Endg(P)
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for some projective R-module P and where multiplication is induced from the
rule

[A].[A'] = [A@Rr A]

One can extend the definition of the Brauer group from affine varieties to
arbitrary schemes and A. Grothendieck has shown that the Brauer group of
a projective smooth variety is a birational invariant, see [40]. Moreover, he
conjectured a cohomological description of the Brauer group BrR, which was
subsequently proved by O. Gabber in [34].

THEOREM 1 The Brauer group s an étale cohomology group
BrR ~ Hc?t (X7 Gm)torsion

where G, is the unit sheaf and where the subscript denotes that we take only
torsion elements. If R is reqular, then H%(X,G,,) is torsion so we can forget
the subscript.

This result should be viewed as the ring theory analogon of the crossed prod-
uct theorem for central simple algebras over fields. Observe that in Gabber’s
result there is no sign of singularities in the description of the Brauer group.
In fact, with respect to the desingularization project, Azumaya algebras are
only as good as their centers.

PROPOSITION 2 If A is an n-Azumaya algebra over R, then
1. A is Serre-smooth iff R is commutative regular.

2. A is Cayley-smooth iff R is commutative reqular.

PROOF (1) follows from faithfully flat descent and (2) from lemma 1,
which asserts that the PGL,-affine variety corresponding to A is a principal
PGL,-fibration in the étale topology, which shows that both n-Azumaya al-
gebras and principal PG L, -fibrations are classified by the étale cohomology
group H},(X,PGL,). More details are given in chapter 3.

In the correspondence between R-orders and PGL,-varieties, Azumaya al-
gebras correspond to principal PGL,-fibrations over X and with respect to
desingularizations, Azumaya algebras are of little use. So let us bring in ram-
ification in order to construct orders that may be more useful.

EXAMPLE 7 Consider the R-order in Ms(K)

[
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where I is some ideal of R and let P € X be a point with corresponding
mazximal ideal m. For I not contained in m we have Ay ~ Ms(Ry) whence A
is an Azumaya algebra in P. For I C m we have

R R,
A =~ [Im Rm] # My (Ry,)

whence A is not Azumaya in P.

DEFINITION 2 The ramification locus of an R-order A is the Zariski
closed subset of X consisting of those points P such that for the corresponding
mazimal ideal m

A/mA % My(C)

That is, ram A is the locus of X where A is not an Azumaya algebra. Its
complement azu A is called the Azumaya locus of A, which is always a Zariski
open subset of X.

DEFINITION 3 An R-order A is said to be a reflexive n-Azumaya algebra
if

1. ram A has codimension at least two in X, and
2. A is a reflerive R-module
that is, A~ Homg(Hompg(A, R), R) = A**.

The origin of the terminology is that when A is a reflexive n-Azumaya
algebra we have that A, is n-Azumaya for every height one prime ideal p of R
and that A = Ny A, where the intersection is taken over all height one primes.

For example, in example 7 if [ is a divisorial ideal of R, then A is not
reflexive Azumaya as A, is not Azumaya for p a height one prime containing
I and if I has at least height two, then A is often not a reflexive Azumaya
algebra because A is not reflexive as an R-module. For example take

[

then the reflexive closure of A is A** = My (C[z,y]).

Sometimes though, we get reflexivity of A for free, for example when A is
a Cohen-Macaulay R-module. An other important fact to remember is that
for A a reflexive Azumaya, A is Azumaya if and only if A is projective as an
R-module.

EXAMPLE 8 Let A = Clxy,...,xq]#G, then A is a reflexive Azumaya
algebra whenever G acts freely away from the origin and d > 2. Moreover, A is
never an Azumaya algebra as its ramification locus is the isolated singularity.
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In analogy with the Brauer group one can define the reflexive Brauer group
B(R) whose elements are the equivalence classes [A] for A a reflexive Azumaya
algebra over R with equivalence relation

(4] = [A] iff (Aor A')*™* ~ Endr(M)
where M is a reflexive R-module and with multiplication induced by the rule
[AL[A] = [(A®Rr A)™]

In [66] it was shown that the reflexive Brauer group does have a cohomological
description similar to Gabber’s result above.

PROPOSITION 3 The reflexive Brauer group is an étale cohomology group
/B(R) = Hth(XsTnn G77L)
where Xgp, is the smooth locus of X.

This time we see that the singularities of X do appear in the description so
perhaps reflexive Azumaya algebras are a class of orders more suitable for our
project. This is even more evident if we impose noncommutative smoothness
conditions on A.

PROPOSITION 4 Let A be a reflexive Azumaya algebra over R, then:
1. if A is Serre-smooth, then ram A = Xin4, and

2. if A is Cayley-smooth, then Xging is contained in ram A.

PROOF (1) was proved in [68] the essential point being that if A is Serre-
smooth then A is a Cohen-Macaulay R-module whence it must be projective
over a Cayley-smooth point of X but then it is not just an reflexive Azumaya
but actually an Azumaya algebra in that point. The second statement can be
further refined as we will see later. I

Many classes of well-studied algebras are reflexive Azumaya algebras.

e Trace rings Ty, , of m generic n x n matrices (unless (m,n) = (2,2)),
see [65].

e Quantum enveloping algebras U,(g) of semisimple Lie algebras at roots
of unity, see for example [16].

e Quantum function algebras O4(G) for semisimple Lie groups at roots of
unity, see for example [17].

e Symplectic reflection algebras Ay ., see [18].



Introduction xxix

Now that we have a large supply of orders, it is time to clarify the connection
with PGL,-equivariant geometry. We will introduce a class of noncommu-
tative algebras, the so-called Cayley-Hamilton algebras, which are the level n
generalization of the category of commutative algebras and which contain all
R-orders.

A trace map tr is a C-linear function A —— A satisfying for all a,b € A

tr(tr(a)b) = tr(a)tr(b) tr(ab) = tr(ba) and tr(a)b = btr(a)

so in particular, the image ¢r(A) is contained in the center of A. If M € M,,(R)
where R is a commutative C-algebra, then its characteristic polynomial

Xar = det(tl, — M) =t" + ait" ' +apt"* + ... +a,

has coefficients a; which are polynomials with rational coefficients in traces of
powers of M
a; = fi(tr(M), tr(M?), ... tr(M"")

Hence, if we have an algebra A with a trace map tr we can define a formal
characteristic polynomial of degree n for every a € A by taking

Xa ="+ fitr(a), ..., tr(a" N+ .+ fu(tr(a),. .. tr(a™ )

which allows us to define the category alg@n of Cayley-Hamilton algebras of
degree n.

DEFINITION 4 An object A in alg@n is a Cayley-Hamilton algebra of de-
gree m, that is, a C-algebra with trace map tr : A —— A satisfying

tr(l) =n and  VYa€A: xu(a)=0
Morphisms A —— B in alg@n are trace preserving C-algebra morphisms.

EXAMPLE 9 Azumaya algebras, reflevive Azumaya algebras and more gen-
erally every R-order A in a central simple K-algebra of dimension n? is a
Cayley-Hamilton algebra of degree n. For, consider the inclusions

Ac NS -~ M, (K)
tr% tr; tr
' ' M
R - K < - K

Here, tr : M, (K) — K is the usual trace map. By Galois descent this
induces a trace map, the so-called reduced trace, tr : ¥ —— K. Finally,
because R is integrally closed in K and A is a finitely generated R-module it
follows that tr(a) € R for every element a € A.
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If A is a finitely generated object in alg@n, we can define an affine PGL,,-
scheme, trep, A, classifying all trace preserving n-dimensional representa-

tions A — "~ M, (C) of A. The action of PGL,, on trep, A is induced by
conjugation in the target space, that is, g.¢ is the trace preserving algebra
map

A4 M (C) £=90 M, (C)

Orbits under this action correspond precisely to isomorphism classes of rep-
resentations. The scheme trep, A is a closed subscheme of rep,, A the more
familiar PG L, -affine scheme of all n-dimensional representations of A. In
general, both schemes may be different.

EXAMPLE 10 Let A be the quantum plane at —1, that is

_ C@y)

(zy + yz)
then A is an order with center R = Cla? y?| in the quaternion algebra
(r,y)2 = K1 ® Ku® Kv ® Kuv over K = C(z,y) where u? = x.2? =
y and ww = —vu. Observe that tr(z) = tr(y) = 0 as the embedding

A — (z,y)2 — M(Clu,y]) is given by

v | 0 and . 01
0 —u Y y 0
Therefore, a trace preserving algebra map A —— My (C) is fully determined
by the images of x and y, which are trace zero 2 X 2 matrices

a b
c —a

o(x) = [ } and ¢(y) = [? _ed] satisfying bf +ce =10

That is, trep, A is the hypersurface V(bf + ce) C A®, which has a unique
isolated singularity at the origin. However, rep, A contains more points, for
example

o) =[go] ot o= |00

is a point in rep, A —trep, A whenever b # —a.

A functorial description of trep, A is given by the following universal
property due to C. Procesi [87], which will be proved in chapter 2.

THEOREM 2 Let A be a C-algebra with trace map tr 4, then there is a trace
preserving algebra morphism

ja + A —— M,(C[trep,, A])



Introduction xxxi

satisfying the following universal property. If C' is a commutative C-algebra
and there is a trace preserving algebra map A _¥. M, (C) (with the usual

trace on M, (C)), then there is a unique algebra morphism Cltrep,, A 2.
such that the diagram

ja We

My (Cltrep, A])

is commutative. Moreover, A is an object in alg@n if and only if ja is a
monomorphism.

The PGL,-action on trep, A induces an action of PGL, by automor-
phisms on Cltrep, A]. On the other hand, PGL, acts by conjugation
on M,(C) so we have a combined action on M, (C[trep, A]) = M,(C) ®
C[trep,, 4] and it follows from the universal property that the image of j4 is
contained in the ring of PG L, -invariants

A 2%+ M, (Cltrep, A])PCLr

which is an inclusion if A is a Cayley-Hamilton algebra. In fact, C. Procesi
proved in [87] the following important result that allows reconstruction of
orders and their centers from PGL,-equivariant geometry. This result will be
proved in chapter 2.

THEOREM 3 The functor
trep, : algOn — PGL(n)-affine
has a left inverse
A_: PGL(n)-affine — algln
defined by Ay = M, (C[Y])PEEn . In particular, we have for any A in alg@n
A = M,(C[trep, A])FFEn and  tr(A) = Cltrep, AJF%En

That is the central subalgebra tr(A) is the coordinate ring of the algebraic
quotient variety
trep, A/PGL, = triss, A

classifying isomorphism classes of trace preserving semisimple n-dimensional
representations of A.



xxxii Noncommutative Geometry and Cayley-Smooth Orders

The category alg@n is to noncommutative geometry@n what comm, the
category of all commutative algebras is to commutative algebraic geometry. In
fact, alg@1 ~ comm by taking as trace maps the identity on every commutative
algebra. Further we have a natural commutative diagram of functors

trep,,

algln > PGL(n)-aff
A_

tr quot

comm > aff
spec

where the bottom map is the antiequivalence between affine algebras and affine
schemes and the top map is the correspondence between Cayley-Hamilton
algebras and affine PGL,,-schemes, which is not an equivalence of categories.

EXAMPLE 11 Conjugacy classes of nilpotent matrices in M,(C) corre-
spond bijective to partitions A = (A1 > Ao > ...) of n (the \; determine
the sizes of the Jordan blocks). It follows from the Gerstenhaber-Hesselink
theorem that the closures of such orbits

07)\ = UHSAOH

where < is the dominance order relation. Each Oy is an affine PG L,,-variety
and the corresponding algebra is
A
Ag; = Clz]/(2™)

whence many orbit closures (all of which are affine PGLy,-varieties) corre-
spond to the same algebra. More details are given in section 2.7.

Among the many characterizations of commutative smooth (that is, regular)
algebras is the following, due to A. Grothendieck.

THEOREM 4 A commutative C-algebra A is smooth if and only if it sat-
isfies the following lifting property: if (B,I) is a test-object such that B is a
commutative algebra and I is a nilpotent ideal of B, then for any algebra map
¢, there exists a lifted algebra morphism ¢
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As the category comm of all commutative C-algebras is just alg@1 it makes
sense to define Cayley-smooth Cayley-Hamilton algebras by the same lifting
property. This was done first by W. Schelter [91] in the category of algebras
satisfying all polynomial identities of n x n matrices and later by C. Procesi
[87] in alg@n. Cayley-smooth algebras and their representation theory will be
the main topic of this book.

DEFINITION 5 A Cayley-smooth algebra A is an object in alg@n satisfy-
ing the following lifting property. If (B,I) is a test-object in alg@n, that is,
B is an object in alg@n, I is a nilpotent ideal in B such that B/I is an object
in alg@n and such that the natural map B I B/I is trace preserving, then
every trace preserving algebra map ¢ has a lift ¢

B/I

making the diagram commutative. If A is in addition an order, we say that A
is a Cayley-smooth order.

In the next section we will give a large class of Cayley-smooth orders, but
it should be stressed that there is no connection between this notion of non-
commutative smoothness and the more homological notion of Serre-smooth
orders (except in dimension one when all notions coincide). Under the corre-
spondence between alg@n and PGL(n)-aff, Cayley-smooth Cayley-Hamilton
algebras correspond to smooth PGL,, -varieties.

THEOREM 5 An object A in algen is Cayley-smooth if and only if the cor-
responding affine PGL,-scheme trep, A is smooth (and hence, in particular,
reduced).

PROOF  (One implication) Assume A is Cayley-smooth, then to prove
that trep, A is smooth we have to prove that Cltrep, A| satisfies
Grothendieck’s lifting property. So let (B,I) be a test-object in comm and
take an algebra morphism ¢ : C[trep,, A] — B/I. Consider the following
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diagram

M, (B/I)

the morphism (1) follows from Cayley-smoothness of A applied to the mor-
phism M, (¢) o ja. From the universal property of the map ja it follows
that there is a morphism (2), which is of the form M,,(¢)) for some algebra
morphism ¢ : C[trep,, A] — B. This ¢ is the required lift. The inverse
implication will be proved in section 4.1. I

EXAMPLE 12 Trace rings Ty, , are the free algebras generated by m ele-
ments in alg@n and as such trivially satisfy the lifting property whence are
Cayley-smooth orders. Alternatively, because

trep, Tmn ~ M,(C)& ...& M,(C)=Cm™"
is a smooth PG Ly, -variety, T, , is Cayley-smooth by the previous result.
EXAMPLE 13 Consider again the quantum plane at —1

C(z,y)
(zy + yx)

then we have seen that trep, A = V(bf + ce) C AS has a unique isolated
singularity at the origin. Hence, A is not a Cayley-smooth order.

2. Noncommutative geometry

We will associate to A € alg@n a noncommutative variety max A and ar-
gue that this gives a noncommutative manifold when A is a Cayley-smooth
order. In particular, we will show that for fixed n and central dimension d
there are a finite number of étale types of such orders. This fact is the non-
commutative analogon of the classical result that a commutative manifold is
locally diffeomorphic to affine space or, in ring theory terms, that the m-adic
completion of a smooth algebra C' of dimension d has just one étale type :
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Cw =~ C[[z1,...,24]]. There is one new feature which noncommutative ge-
ometry has to offer compared to commutative geometry : distinct points can
lie infinitesimally close to each other. As desingularization is the process of
separating bad tangents, this fact should be useful somehow in our project.
Recall that if X is an affine commutative variety with coordinate ring R,
then to each point P € X corresponds a maximal ideal mp < R and a one-
dimensional simple representation
Sp= -
mp
A basic tool in the study of Hilbert schemes is that finite closed subschemes
of X can be decomposed according to their support. In algebraic terms this
means that there are no extensions between different points, that if P # @
then
Ext}%(Sp, SQ) =0 whereas Ext}%(Sp, Sp) = Tp X

That is, all infinitesimal information of X near P is contained in the self-
extensions of Sp and separate points do not contribute. This is no longer the
case for noncommutative algebras.

EXAMPLE 14 Take the path algebra A of the quiver O——=0O, that is
C (C]

A:[OC

Then A has two mazximal ideals and two corresponding one-dimensional simple
representations

s=[i]-fdfd e s[5/ [53]

Then, there is a nonsplit exact sequence with middle term the second column
of A

o= [] =[] s [

Whence Ext(Ss,S1) # 0 whereas ExtY(Sy,S2) = 0. It is no accident that
these two facts are encoded into the quiver.

DEFINITION 6 For A an algebra in alg@n, define its maximal ideal spec-
trum max A to be the set of all maximal two-sided ideals M of A equipped with
the noncommutative Zariski topology, that is, a typical open set of max A is
of the form

X(I)={M €max A | I ¢ M}

Recall that for every M € max A the quotient

% ~ M (C) for some k <n
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that is, M determines a unique k-dimensional simple representation Sy; of

A.

Every maximal ideal M of A intersects the center R in a maximal ideal
mp = M N R so, in the case of an R-order A a continuous map

max A — X defined by M +— P where M N R=mp

Ring theorists have studied the fibers ¢=!(P) of this map in the seventies and
eighties in connection with localization theory. The oldest description is the
Bergman-Small theorem, see for example [§]

THEOREM 6 (Bergman-Small) If ¢ 1(P) = {Mj,..., My} then there
are natural numbers e; € N1 such that

k
n = Z eid; where d; = dim¢ Sy,
i=1

In particular, c=*(P) is finite for all P.

Here is a modern proof of this result based on the results of this book.
Because X is the algebraic quotient trep, A/GL,,, points of X correspond to
closed GLy-orbits in rep,, A. By aresult of M. Artin [2] (see section 2.4) closed
orbits are precisely the isomorphism classes of semisimple n-dimensional rep-
resentations, and therefore we denote the quotient variety

X = trep, A/GL,, = triss, A
A point P determines a semisimple n-dimensional A-representation
Mp =S¥ @...0 87

with the .S; the distinct simple components, say of dimension d; = dimg¢ 5;
and occurring in Mp with multiplicity e; > 1. This gives n = > e;d; and
clearly the annihilator of S; is a maximal ideal M; of A lying over mp.

Another interpretation of ¢! (P) follows from the work of A. V. Jategaonkar
and B. Miiller. Define a link diagram on the points of max A by the rule

M ~ M’ & Exty (Sar, Sarr) # 0

In fancier language, M ~» M’ if and only if M and M’ lie infinitesimally close
in max A. In fact, the definition of the link diagram in [47, Ch.5] or [39, Ch.11]
is slightly different but amounts to the same thing.

THEOREM 7 (Jategaonkar-Miiller) The connected components of the
link diagram on max A are all finite and are in one-to-one correspondence
with P € X. That is, if

{My,...,My} =c '(P) Cmax A

then this set is a connected component of the link diagram.
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In max A there is a Zariski open set of Azumaya points, that is those M €
max A such that A/M ~ M, (C). It follows that each of these maximal ideals
is a singleton connected component of the link diagram. So on this open
set there is a one-to-one correspondence between points of X and maximal
ideals of A so we can say that max A and X are birational. However, over the
ramification locus there may be several maximal ideals of A lying over the
same central maximal ideal and these points should be thought of as lying
infinitesimally close to each other.

max A ——
/s 7
:
I

X /i Mramfl

One might hope that the cluster of infinitesimally nearby points of max A lying
over a central singularity P € X can be used to separate tangent information
in P rather than having to resort to a blowing-up process to achieve this.

Because an R-order A in a central simple K-algebra ¥ of dimension n? is
a finite R-module, we can associate with A the sheaf O4 of noncommutative
O x-algebras using central localization. That is, the section over a basic affine
open piece X(f) C X are

F(X(f),OA) = Af =AQ®g Rf

which is readily checked to be a sheaf with global sections I'(X, 04) = A. As
we will investigate Cayley-smooth orders via their (central) étale structure,
(that is, information about Ay, ), we will only need the structure sheaf 04
over X in this book. However, in the 1970s F. Van Oystaeyen [103] and
A. Verschoren [105] introduced genuine noncommutative structure sheaves
associated to an R-order A. It is not my intention to promote nostalgia here
but perhaps these noncommutative structure sheaves O’} on max A deserve
renewed investigation.

DEFINITION 7 O%¢ is defined by taking as the sections over the typical
open set X(I) (for I a two-sided ideal of A) in max A

L(X(I),0%)={6ex|NeN: I'scA}

By [103] this defines a sheaf of noncommutative algebras over max A with
global sections I'(max A, O%°) = A. The stalk of this sheaf at a point M €
max A is the symmetric localization

O%nm =Qa-m(A)={0€X | 15 C A for some ideal I ¢ P }
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EXAMPLE 15 Let X = A!, that is, R = C[x] and consider the order

RR

A=[ui

where m = (x) < R. A is an hereditary order so is both a Serre-smooth order
and a Cayley-smooth order. The ramification locus of A is Py = V(x) so over
any Py # P € A' there is a unique mazimal ideal of A lying over mp and
the corresponding quotient is Mo (C). However, over m there are two maximal

ideals of A
mR

M, = {m R} and My = [mm
Both My and M, determine a one-dimensional simple representation of A, so
the Bergman-Small number are e; = e; = 1 and dy = do = 1. That is, we
have the following picture

max A ’AMI
‘;’VIQ
Al o
m

There is one monsingleton connected component in the link diagram of A,
namely

A~

~
7 S

< v

e~~~

with the vertices corresponding to {My, Ms}. The stalk of O at the central

point Py s clearly
R Rm}

OAJ)U - [mm Ry

On the other hand the stalks of the noncommutative structure sheaf O%° in
My resp. My can be computed to be

ne _ |:Rm Rm:| nc Ry x_lRm

and M, = [me R ]

and hence both stalks are Azumaya algebras. Observe that we recover the
central stalk Oa,p, as the intersection of these two rings in My (K). Hence,

AM, — Rm Rm
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somewhat surprisingly, the noncommutative structure sheaf of the hereditary
non-Azumaya algebra A is a sheaf of Azumaya algebras over max A.

Consider the continuous map for the Zariski topology

max A —» X

and let for a central point P € X the fiber be {Mj, ..., My} where the M; are
maximal ideals of A with corresponding simple d;-dimensional representation
S;. We have introduced the Bergman-Small data, that is

k
a=(er,...,ex) and B = (dy,...,d;) € N’j_ satisfying «.0 = Zeidi =n

=1

(recall that e; is the multiplicity of S; in the semisimple n-dimensional rep-
resentation corresponding to P). Moreover, we have the Jategaonkar-Miiller
data, which is a directed connected graph on the vertices {v1,..., v} (corre-
sponding to the M;) with an arrow

Vi ~> Vj iff Ezth(Si, SJ) 7é 0

We will associate a combinatorial object to this local data. To begin, introduce
a quiver setting (@, «) where @ is a quiver (that is, a directed graph) on the
vertices {v1,...,vr} with the number of arrows from v; to v; equal to the
dimension of Ext}(S;,S;)

# (v; — v; ) = dimc Ext4(S;,S;)

and where oo = (eq, ..., ex) is the dimension vector of the multiplicities e;.

Recall that the representation space rep,( of a quiver-setting is
@aMe, xe; (C) where the sum is taken over all arrows a : v; — v; of Q. On
this space there is a natural action by the group

GL(a) =GLe, X ... x GL,,

by base-change in the vertex-spaces V; = C®. The ring theoretic relevance of
the quiver-setting (Q, «) is that

rep, Q ~ Exty(Mp, Mp) as GL(«)-modules
where Mp is the semisimple n-dimensional A-module corresponding to P
Mp=SP @...@ 57

and because GL(«) is the automorphism group of Mp there is an induced
action on Exty (Mp, Mp).
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Because Mp is n-dimensional, an element 1) € Emt}‘l(M p, Mp) defines an
algebra morphism

A "~ M, (C[e)
where C[e] = C[x]/(2?) is the ring of dual numbers. As we are working in the

category alg@n we need the stronger assumption that p is trace preserving.
For this reason we have to consider the GL(«)-subspace

Eﬂitf{(Mp,Mp) C Extk(Mp, Mp)

of trace preserving extensions. As traces only use blocks on the diagonal (cor-
responding to loops in Q) and as any subspace M, (C) of rep,, @ decomposes
as a GL(a)-module in simple representations

M,,(€) = MO,(C) & C
where MY (C) is the subspace of trace zero matrices, we see that
rep, Q° ~ Exty(Mp,Mp)  as GL(a)-modules

where @Q° is a marked quiver that has the same number of arrows between dis-
tinct vertices as () has, but may have fewer loops and some of these loops may
acquire a marking meaning that their corresponding component in rep, Q°
is MY (C) instead of M, (C).

Summarizing, if the local structure of the noncommutative variety max A
near the fiber ¢=1(P) of a central point P € X is determined by the Bergman-
Small data

a=(er,...,eL) and 0= 1(dq,...,dg)

and by the Jategoankar-Miiller data, which is encoded in the marked quiver
QQ°® on k-vertices, then we associate to P the combinatorial data

type(P) = (Q°, o, 3)

We call (Q°,«) the marked quiver setting associated to A in P € X. The
dimension vector 8 = (dy, ..., d) will be called the Morita setting associated
to Ain P.

EXAMPLE 16 If A is an Azumaya algebra over R. Then for every mazimal
ideal m corresponding to a point P € X we have that

A/mA = M, (C)

so there is a unique mazimal ideal M = mA lying over m whence the
Jategaonkar-Miller data are o = (1) and f = (n). If Sp = R/m is the
simple representation of R we have

Exty(Mp, Mp) ~ Exth(Sp,Sp) =Tp X
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and as all the extensions come from the center, the corresponding algebra
representations A — M, (Cle]) are automatically trace preserving. That is,
the marked quiver-setting associated to A in P is

o0

where the number of loops is equal to the dimension of the tangent space Tp X
in P at X and the Morita-setting associated to A in P is (n).

EXAMPLE 17 Consider the order of example 15, which is generated as a
C-algebra by the elements

|10 b— 01 |00 d— 00
““loo] "Tlool “T|zo] “T |01
and the 2-dimensional semisimple representation Mp, determined by m is

given by the algebra morphism A —— My(C) sending a and d to themselves
and b and ¢ to the zero matriz. A calculation shows that

u

Exty(Mp,,Mp,) =tep, @  for  (Qa)=0___O

and as the correspondence with algebra maps to Ma(Cle]) is given by

'_)10 b 0 ev . 00 dr 00
“loo 00| 7 leuo 01
each of these maps is trace preserving so the marked quiver setting is (Q, «)
and the Morita-setting is (1,1).

Because the combinatorial data type(P) = (Q°®, , 3) encodes the infinites-
imal information of the cluster of maximal ideals of A lying over the central
point P € X, (rep, Q°,0) should be viewed as analogous to the usual tan-
gent space Tp X. If P € X is a singular point, then the tangent space is
too large so we have to impose additional relations to describe the variety X
in a neighborhood of P, but if P is a smooth point we can recover the local
structure of X from Tp X. In the noncommutative case we might expect
a similar phenomenon: in general the data (rep, Q°,3) will be too big to
describe Ap, » unless A is a Cayley-smooth order in P in which case we can
recover Amp.

We begin by defining some algebras that can be described combinatorially
from (Q°®, «, 3). For every arrow a : v; — v; define a generic rectangular
matriz of size e; X e;
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In the case when a is a marked loop, make this a generic trace zero matrix,
that is, let

Tesei(a) = —z11(a) — w22(a) — ... — Te,—1¢,-1(a)

Then, the coordinate ring C[rep, @°] is the polynomial ring in the entries of
all X,. For an oriented path p in the marked quiver Q°® with starting vertex
v; and terminating vertex v;

p a az ap—1 ap
Ve > ’Uj = V; —> 'Uil —_— ... U’iz vj

we can form the square e; X e; matrix
Xp=Xo, Xy, - XayXa,

which has all its entries polynomials in C[rep, Q°]. In particular, if the path
is an oriented cycle c in QQ°® starting and ending in v; then X, is a square e; X e;
matrix and we can take its trace tr(X.) € Clrep, Q°] which is a polynomial
invariant under the action of GL(«) on rep, Q°. In fact, we will prove in
section 4.3 that these traces along oriented cycles generate the invariant ring

R&e = Clrep, Q°19H@ < Clrep, Q°]

Next we bring in the Morita-setting 6 = (di, ..., d;) and define a block-matrix
ring

Mg, xa,(P11) ... Ma, xa, (Pix)
A%F = C M, (C[rep, Q°])
My, xd, (Pr1) -+« My, xa, (Pxr)

where P;; is the R@.-submodule of M., (C[rep, Q°]) generated by all X,
where p is an oriented path in Q°® starting in v; and ending in vg. Observe
that for triples (Q°*, «, 81) and (Q°®, o, 32) we have that

Ag.ﬁ ! is Morita-equivalent to A%’,ﬁ2

whence the name Morita-setting for §.Recall that the Fuler-form of the un-
derlying quiver @ of @Q* (that is, forgetting the markings of some loops) is the
bilinear form yq on Z* such that xq(e;, e;) is equal to §;; minus the number
of arrows from v; to v;. The next result will be proved in section 5.2.

THEOREM 8 For a triple (Q°®, o, 8) with .3 = n we have

1. Ag.ﬁ is an R¢-order in algn if and only if o 1s the dimension vector
of a simple representation of Q°, that is, for all vertex-dimensions 6; we
have

xo(a,d;) <0 and xq (0, ) <0

unless Q° is an oriented cycle of type Aj_1 then o must be (1,...,1).
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2. If this condition is satisfied, the dimension of the center R, is equal to

dim Ry. =1 — xq(a, a) — #{marked loops in Q°}

These combinatorial algebras determine the étale local structure of Cayley-
smooth orders as was proved in [74] (or see section 5.2). The principal tech-

nical ingredient in the proof is the Luna slice theorem, see, for example, [99]
[81] or section 3.8.

THEOREM 9 Let A be a Cayley-smooth order over R in alg@n and let
P € X with corresponding mazimal ideal m. If the marked quiver setting and
the Morita-setting associated to A in P is given by the triple (Q°®, «, 3), then
there is a Zariski open subset X(f;) containing P and an étale extension S of
both Ry, and the algebra R, such that we have the following diagram

Afi ®Rfi S ~ A%’.ﬁ ®R%. S

Ay, S
/ \
Ry,

In particular, we have

a,f
Ayl

(o3
Qo

Em ~ R%. and Am ~ A%.ﬂ

where the completions at the right-hand sides are with respect to the maximal
(graded) ideal of R%. corresponding to the zero representation.

EXAMPLE 18 From example 16 we recall that the triple (Q°®,«, 3) associ-
ated to an Azumaya algebra in a point P € X is given by

©®© and (= (n)

where the number of arrows is equal to dimc TpX. In case P is a Cayley-
smooth point of X this number is equal to d = dim X. Observe that GL(«) =
C* acts trivially on rep, Q® = C? in this case. Therefore we have that

R@3e ~Clxy,...,2q] and A%’.B:Mn((C[xl,...wd])
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Because A is a Cayley-smooth order in such points we get that

Amgp = Mn((c[[xla st 7'1:dH)
consistent with our étale local knowledge of Azumaya algebras.

Because a.f = n, the number of vertices of QQ°® is bounded by n and as
d=1- xg(o,a) — #{marked loops}

the number of arrows and (marked) loops is also bounded. This means that
for a particular dimension d of the central variety X there are only a finite
number of étale local types of Cayley-smooth orders in alg@n. This might be
seen as a noncommutative version of the fact that there is just one étale type
of a Cayley-smooth variety in dimension d namely, C[[z1,...,24]]. At this
moment a similar result for Serre-smooth orders seems to be far out of reach.

The reduction steps below were discovered by R. Bocklandt in his Ph.D.
thesis (see also [10] or section 5.7) in which he classified quiver settings having
a Serre-smooth ring of invariants. These steps were slightly extended in [14]
(or section 5.8) in order to classify central singularities of Cayley-smooth
orders. All reductions are made locally around a vertex in the marked quiver.
There are three types of allowed moves.

Vertex removal: Assume we have a marked quiver setting (Q*®,a) and
a vertex v such that the local structure of (Q°, &) near v is indicated by the
picture on the left below, that is, inside the vertices we have written the
components of the dimension vector and the subscripts of an arrow indicate
how many such arrows there are in Q® between the indicated vertices. Define
the new marked quiver setting (Q%, ar) obtained by the operation RY{,, which
removes the vertex v and composes all arrows through v, the dimensions of
the other vertices are unchanged

v
RV
—_

where ¢;; = a;b; (observe that some of the incoming and outgoing vertices
may be the same so that one obtains loops in the corresponding vertex). This
reduction can be made provided

oy > Zajij or Oy > ijuj

(observe that if we started off from a marked quiver setting (Q°®,a) coming
from an order, then these inequalities must actually be equalities).
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Small loop removal: If v is a vertex with vertex-dimension «, = 1 and
having k& > 1 loops. Let (Q%,ar) be the marked quiver setting obtained by
the loop removal operation R}

k Ry k—1
Q@ Q@

removing one loop in v and keeping the same dimension vector.

Loop removal: If the local situation in v is such that there is exactly one
(marked) loop in v, the dimension vector in v is k > 2 and there is exactly
one arrow leaving v and this to a vertex with dimension vector 1, then one is
allowed to make the reduction RY indicated below

) . @
@/i\ o @/g\@

[ \(@) i ®).

Similarly, if there is one (marked) loop in v and o, = k > 2 and there is only
one arrow arriving at v coming from a vertex of dimension vector 1, then one
is allowed to make the reduction RY

) ) @
@/E;\@ = T

- - .
_@/g\@_& /éa\@

The relevance of these reducation steps on marked quiver settings is that if

(QI? al) ~ (Q;a 042)

is a sequence of legal moves then

Rglg = R%z [yla s 7yz]
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where 2z is the sum of all loops removed in R} reductions plus the sum of a,
for each reduction step R} involving a genuine loop and the sum of o, — 1
for each reduction step R} involving a marked loop. In section 5.3 we will
prove that every marked quiver setting (Q°®, ) can be reduced uniquely to a
reduced or zero-setting Z(Q®,a) = (Q, «) that is a setting from which no
further reductions can be made. Therefore it is sufficient to classify these
zero-settings if we want to classify all central singularities of a Cayley-smooth
order for a given central dimension d.

To start, can we decide when P is a smooth point of X? If A is an Azumaya
algebra in P, we know that A can only be Cayley-smooth if X is smooth in
P. For Cayley-smooth orders the situation is more delicate but we have
a complete solution in terms of the reduction steps, as will be proved in
section 5.7.

THEOREM 10 If A is a Cayley-smooth R-order and (Q°, «, 3) is the com-
binatorial data associated to A in P € X. Then, P is a smooth point of X if
and only if the unique zero-setting
SR
. N

zZ@eefo © w Ce) Ce e )
The Azumaya points are such that Z(Q®,«) = @ hence the singular locus of
X is contained in the ramification locus ram A but may be strictly smaller.

To classify the central singularities of Cayley-smooth orders we may reduce
to zero-settings (Q°, a) = Z(Q*®, «). For such a setting we have for all vertices
v; the inequalities

xo(a,d;) <0 and xq(di,a) <0

and the dimension of the central variety can be computed from the Euler-form
Xq- This gives us an estimate of d = dim X, which is very efficient to classify
the singularities in low dimensions.

THEOREM 11 Let (Q*,a) = Z(Q®, ) be a zero-setting on k > 2 vertices.
Then

a>1 a>1 a>1 a>1

dim X >1+) a+ » (a—1)+)» o)+ Y (@®+a-2)+
© Ce s
a>1 a>1 a>1

(@+a—1)+> (@+a)+...+ > ((k+l-1)a’+a—k) +...

T/ % kQ@Ql
In this sum the contribution of a vertex v with o, = a is determined by the

number of (marked) loops in v. By the reduction steps (marked) loops only
occur at vertices where c, > 1.
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EXAMPLE 19 (dimension 2) When dim X = 2 no zero-settings on at
least two wertices satisfy the inequality of theorem 5.14, so the only zero-
position possible to be obtained from a marked quiver-setting (Q°,«) in di-
mension two is

Z(Q%a)=0®

and therefore the central two-dimensional variety X of a Cayley-smooth order
s smooth.

EXAMPLE 20 (dimension 3) If (Q°, «) is a zero-setting for dimension
< 3 then Q° can have at most two vertices. If there is just one vertex it must
have dimension 1 (reducing again to @ whence smooth) or must be

Z(Q.7 Oé) = C@Q

which is again a smooth setting. If there are two vertices both must have
dimension 1 and both must have at least two incoming and two outgoing arrows
(for otherwise we could perform an additional vertex-removal reduction). As
there are no loops possible in these vertices for zero-settings, it follows from
the formula d =1 — xq(a, ) that the only possibility is

The ring of polynomial invariants R¢). is generated by traces along oriented
cycles in Q° so in this case it is generated by the invariants

r=ac, y=ad, u=bc and v=bd
and there is one relation between these generators, so

Clz,y, u, v]
(zy —ww)

(o3

Q=

Therefore, the only étale type of central singularity in dimension three is the
conifold singularity.

EXAMPLE 21 (dimension 4) If (Q°®, «) is a zero-setting for dimension 4
then Q° can have at most three vertices. If there is just one, its dimension
must be 1 (smooth setting) or 2 in which case the only new type is

Z(Q.7 Oé) = Q@Q

which is again a smooth setting.
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If there are two vertices, both must have dimension 1 and have at least two
imcoming and outgoing arrows as in the previous example. The only new type

that occurs is
2(Q% o) = G}% 7@

for which one calculates as before the ring of invariants to be

a C[aab’cv dveaf]
Q"7 (ae —bd,af —cd,bf — ce)

If there are three vertices all must have dimension 1 and each vertex must
have at least two incoming and two outgoing vertices. There are just two such
possibilities in dimension 4

2Q* ) e{ @ 0 o7 S )}
W \@/

The corresponding rings of polynomial invariants are

(C[:Ela m27*/533:1747y17y27y3’y4]
Ry

(C[CC17562,$C37$4>!E5]

($41‘5 - 171$2$3)

(o3

Q=

resp. O =

where Ry is the ideal generated by all 2 x 2 minors of the matriz

X1 X2 T3 T4
Y1 Y2 Y3 Ya

Hence, in low dimensions (and we will extend the above calculation to di-
mension 5 in section 5.8) there is a full classification of the central singularities
R of a Cayley-smooth order in alg@n. There is even a classification of all
isolated simgularities that can arise in arbitrary dimension.

THEOREM 12 Let A be a Cayley-smooth order over R and let (Q°®,«, 3)
be the combinatorial data associated to a A in a point P € X. Then, P is an
isolated singularity if and only if Z(Q®,«) = T(kq,...,k;) where
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with d = dim X = )", k; —14+1. Moreover, two such singularities, correspond-
ing to T(ky,..., ki) and T(kY,..., k), are isomorphic if and only if

l= ll and k‘: = ka(i)

for some permutation o € Sj.

3. Noncommutative desingularizations

In view of the last theorem, the coordinate ring R = C[C?/G] of a quotient
singularity can never be the center of a Cayley-smooth order A. However,
there are nice orders A € alg@n that are quotients A ~ AP /I of the Cayley-
smooth order A%,ﬁ modulo an ideal I of relations and having C[C?/G] as their
center.

EXAMPLE 22 (Kleinian singularities) For a Kleinian singularity, that
is, a quotient singularity C*/G with G C SL2(C) there is an extended Dynkin
diagram D associated.

Let QQ be the double quiver of D, that is to each arrow O——s0O in D we
adjoin an arrow O<LO in Q in the opposite direction and let a be the unique

minimal dimension vector such that xp(co,«) = 0. Further, consider the
moment element

in the order Agy then
]
(m)
is an order with center R = C[C?/G] which is isomorphic to the skew-group
algebra Clz,y|#G. Moreover, A is Morita equivalent to the preprojective

algebra which is the quotient of the path algebra of Q by the ideal generated
by the moment element

1, = CQ/(Y o, a*))

For more details we refer to the lecture notes by W. Crawley-Boevey [27] and
section 5.6.

EXAMPLE 23 Consider a quotient singularity X = C¢/G with G C
SL4(C) and Q be the McKay quiver of G acting on V- = C%. That is, the ver-
tices {v1,...,vx} of Q are in one-to-one correspondence with the irreducible
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representations {Ry,..., Ry} of G such that Ry = Cypyy is the trivial repre-
sentation. Decompose the tensorproduct in irreducibles

VecRj =R ao...0RM
then the number of arrows in @ from v; to v;
# (vi —> v5) = Ji
is the multiplicity of R; in V @ R;. Let o = (e1,...,ex) be the dimension
vector where e; = dimg R;. The relevance of this quiver-setting is that

rep, @ = Homg(R,R® V)

where R is the regular representation, see, for example, [23]. Consider Y C
rep, Q the affine subvariety of all o-dimensional representations of @ for
which the corresponding G-equivariant map B € Homg(R,V ® R) satisfies

BAB=0¢ Homg(R,\*V @ R)

Y s called the variety of commuting matrices and its defining relations can
be expressed as linear equations between paths in Q) evaluated in rep, Q, say
(l1,...,1.). Then

A

(I, ..., 1)

is an order with center R = C[C?/G]. In fact, A is the skew group algebra

A=Clzy,...,xq|#G

A:

EXAMPLE 24 Consider the natural action of Zz on C? via its embedding
in SLy(C) sending the generator to the matriz

[g ﬂgl}

where p is a primitive 3rd root of unity. Zs has three one-dimensional simples
Ry =Ciip, R =C, and Ry =C2. AsV = C? = Ry @ R3 it follows that the
McKay quiver setting (Q, a) is

©)
T3 1
Y3 y2 Y1
®
Y2

W

Consider the matrices

0 0 x3 0y O
X=1|z1 00 and Y=10 0 ys
0 xT9 0 Ys 00
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then the variety of commuting matrices is determined by the matriz-entries of
[X,Y] that is
I = (x3y3 — Y171, T1Y1 — Y22, T2Y2 — Y3T3)

so the skew-group algebra is the quotient of the Cayley-smooth order Ag (which
incidentally is one of our zero-settings for dimension 4)

43

(msys — Y1T1,T1Y1 — Y22, T2Y2 — yga?s)

C[l’,y}#Z?) =

Taking y; = x} this coincides with the description via preprojective algebras
as the moment element is

3

m= Z[%‘axf] = (z3y3 — taz1)er + (T1y1 — y2w2)es + (w292 — ysz3)es
=1

where the e; are the vertex-idempotents.

From now on we will restrict to quotient algebras A = A%, /I satisfying the
following conditions :

e o= (ey,...,ex) is the dimension vector of a simple representation of A,
and

o the center R = Z(A) is an integrally closed domain.

These requirements imply that A is an order over R in alg@n where n is the
total dimension of the simple representation, that is |a| =), e;.
For such an A = Ag. /I define the affine variety of a-dimensional represen-
tations
rep, A={V erep, Q°|r(V)=0Vrel}

The action of GL(a) = [[; GL., by base change on rep, @°® induces an action
on rep, A. Usually, rep, A will have singularities but it may be smooth on
the Zariski open subset of #-semistable representations, which we will now
define.
A character of GL(a) is determined by an integral k-tuple § = (¢1,...,1;) €
7k
xo : GL(a) — C*  (g1,..., %) = det(gr)" ... det(gi)™

Characters define stability structures on A-representations but as the acting
group on rep,, Aisreally PGL(a) = GL(a)/C*(1e,, ..., 1, ) we only consider
characters 6 satisfying 0.cc = >, tje; = 0. If V € rep, Aand V' C V is an
A-subrepresentation we denote the dimension vector of V' by dimV"’.

DEFINITION 8 For 0 satisfying 6. = 0, a representation V € rep, A is
said to be
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e O-semistable if and only if for every proper A-subrepresentation 0 #*
V' c V we have 0.dimV’ > 0.

e f-stable if and only if for every proper A-subrepresentation 0 £V’ CV
we have 0.dimV’ > 0.

For any setting 6.« = 0 we have the following inclusions of Zariski open
GL(«)-stable subsets of rep, A

repfjmple AC repf{smble AcC repgfsem“t A Crep, A

but one should note that some of these open subsets may actually be empty'

Recall that a point of the algebraic quotient variety iss, A =
rep,A/GL(a) represents the orbit of an a-dimensional semisimple represen-
tation V' and such representations can be separated by the values f(V') where
f is a polynomial invariant on rep, A. For #-stable and f-semistable repre-
sentations there are similar results and morally one should view #-stable rep-
resentations as corresponding to simple representations whereas 6-semistables
are arbitrary representations. For this reason we will only be able to classify
direct sums of #-stable representations by certain algebraic varieties, which
are called moduli spaces of semistables representations. More details will be
given in section 4.8.

The notion corresponding to a polynomial invariant in this more general
setting is that of a polynomial semi-invariant. A polynomial function f €
Clrep,, 4] is said to be a f-semi-invariant of weight [ if for all g € GL(«) we
have

9-f =xe(9)'f
where xp is the character of GL(«) corresponding to 6. A representation
V € rep, Ais 0-semistable if and only if there is a f-semi-invariant f of some
weight [ such that f(V') # 0. Clearly, f-semi-invariants of weight zero are just
polynomial invariants and the multiplication of 8-semi-invariants of weight [
resp. I’ has weight [ + I’. Hence, the ring of all #-semi-invariants

Clrep, A]9M@? = @2y {f € Clrep, 4] Vg € GL(a) : g.f = xo(9)'f }

is a graded algebra with part of degree zero C[iss, A]. But then we have a
projective morphism

proj Clrep,, A)GE@0 T, 55, A
such that all fibers of 7w are projective varieties. The main properties of 7 can
be deduced from [54] or section 4.8.

THEOREM 13 Points in proj Clrep, AJSH®:Y are in one-to-one corre-
spondence with isomorphism classes of direct sums of 0-stable representations
of total dimension «. If o is such that there are a-dimensional simple A-
representations, then w is a birational map.
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DEFINITION 9 We call proj Clrep, A]““(®):¢ the moduli space of 6-
semistable representations of A and denote it with moduli? A.

EXAMPLE 25 In the case of Kleinian singularities, example 22, if we take
0 to be a generic character such that 6.ac = 0, then the projective map

moduli’ A — X =C?/G

is a minimal resolution of singularities. Note that the map is birational as «
is the dimension vector of a simple representation of A =1, see [27].

EXAMPLE 26 For general quotient singularities, see example 23, assume
that the first vertex in the McKay quiver corresponds to the trivial represen-
tation. Take a character € ZF such that t; < 0 and all t; > 0 for i > 2, for

example take
k
=Y dimR;,1,...,1)
i=2

Then, the corresponding moduli space is isomorphic to
modu11 A~ G —Hilb C?

the G-equivariant Hilbert scheme, which classifies all #G-codimensional ideals
I<Clzy,...,zq] where
C[l’l,

...,xd] N
i ~CG

as G-modules, hence, in particular I must be stable under the action of G. It
s well known that the natural map

G —Hilb C* — X =C%/G

s a minimal resolution if d = 2 and if d = 3 it is often a crepant resolution, for
example whenever G is Abelian. In non-Abelian cases it may have remaining
singularities though which often are of conifold type. See [23] for more details.

EXAMPLE 27 In the C%/Zs-ezample one can take § = (—2,1,1). The
following representations

AN AN AN
A "

are all nilpotent and are 0-stable. In fact if bc = 0 they are representants of
the exceptional fiber of the desingularization

modulig A —» iss, A=C?/Zs
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THEOREM 14 Let A = Ag./(R) be an R-order in algln. Assume that

there exists a stability structure 6 € ZF such that the Zariski open subset
repgfsem“t A of all 0-semistable a-dimensional representations of A is a
smooth variety. Then there exists a sheaf A of Cayley-smooth orders over
moduli® A such that the diagram below is commutative

spec A

moduli’ A =~ X = spec R

Here, spec A is a noncommutative variety obtained by gluing affine noncom-
mutative varieties spec A; together and c is the map that intersects locally
a mazimal ideal with the center. As A is a sheaf of Cayley-smooth orders,
¢ can be viewed as a moncommutative desingularization of X. The map m
itself is a partial resolution of X and we have full control over the remaining
singularities in moduli’ A, that is, all remaining singularities are of the form
described in the previous section. Moreover, if 6 is such that all 8-semistable
A-representations are actually 0-stable, then A is a sheaf of Azumaya algebras
over moduli? A and in this case T is a commutative desingularization of X.
If, in addition, also ged(a) = 1, then A ~ End P for some vectorbundle of
rank n over moduli? A.

EXAMPLE 28 In the case of Kleinian singularities, example 22, there ex-
ists a suitable stability structure § such that rep®*¢™st Iy is smooth. Con-
stder the moment map

rep, Q —+ lie GL(a) = M,(C) = M,,(C) & ... ® M,,(C)
defined by sending V = (V,, Vax) to

(Y VaVar— > VeV, Y VaVae = Y Vaua)

o—0 ®——0 Oo——® ®——0

The differential du can be verified to be surjective in any representation
V € rep, Q that has a stabilizer subgroup C*(1.,,..., 1) (a so-called Schur
representation) see, for example, [26, lemma 6.5]. Further, any 0-stable rep-
resentation is Schurian. Moreover, for a generic stability structure 6 € Z*
we have that every 0-semistable a-dimensional representation is 0-stable as
the ged(a) = 1. Combining these facts it follows that p=1(0) = rep,, o is
smooth in all 8-stable representations.

EXAMPLE 29 Another case where smoothness of rep’ 6™t A is evident
is when A = Ag. is a Cayley-smooth order as then rep, A itself is smooth.
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This observation can be used to resolve the remaining singularities in the par-
tial resolution. If ged(a) = 1 then for a sufficiently general 6 all 6-semistable
representations are actually 6-stable whence the quotient map

rep? s¢mist A s modulif A

is a principal PGL(«a)-fibration and as the total space is smooth, so is
moduliz A. Therefore, the projective map

. ™ .
modulli A — iss, A

is a resolution of singularities in this case. However, if | = ged(a), then
moduli® A will usually contain singularities that are as bad as the quotient
variety singularity of tuples of | X | matrices under simultaneous conjugation.

The bulk of the proof of the theorem follows from the results of the last
section. Because A has C* as the subalgebra generated by the vertex idempo-
tents, the trace map on A determines the trace on C* and hence, the dimension
vector a.. Moreover, we will see that

trep, A= GL, x“® rep A

and hence is a principal fiber bundle. As is the case for any principal fiber
bundle, this gives a natural one-to-one correspondence between

e GL,-orbits in trep, A, and
e GL(«a)-orbits in rep, A.

Moreover the corresponding quotient varieties triss, A = trep,, A/GL,, and
issy, A =rep, A/GL(«) are isomorphic so we can apply all our GL,,-results
of the previous section to this setting. Further, we claim that we can cover
the moduli space
moduli’ A = UXD
D

where X p is an affine open subset such that under the canonical quotient map
repifsem“t AT modulii A

we have that
71'_1(XD) =rep, Ap

for some C[Xp|-order Ap in alg@n. If in addition rep?—*¢™¥t A is a smooth
variety, each of the rep, Ap are smooth affine GL(«)-varieties whence the
orders Ap are all Cayley-smooth and the result will follow from the foregoing
sections.

Because moduli® A = proj C[rep, A we need control on the gen-
erators of all f-semi-invariants. Such a generating set was found by Aidan

]GL(a),@
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Schofield and Michel Van den Bergh in [95] and will be proved in section 7.2.
Reorder the vertices in @°® such that the entries of 6 are separated in three
strings
0= (t17--~7ti7ti+1,-~-,tj7tj+17--~7tk:)
——

>0 =0 <0

and let 6 be such that §.ao = 0. Fix a weight [ € N and take arbitrary natural
numbers {lj;1,...,1;}. Consider a rectangular matrix L = (L, .) where each
entry of the block L, . is a linear combination of oriented paths in the marked
quiver @® with starting vertex v, and ending vertex v, and the sizes of the
blocks L, . are such that L is a square matrix on Ity +...+lt; + i1 +...+1;
rows and liy1 + ...+ 1; — ltj41 — ... — It columns. So we can evaluate all
entries of L at all representations V' € rep_ A, consider D(V) = detL(V) and
verify that D is a GL(«)-semi-invariant polynomial on rep, A of weight xJ.
The result of [95] asserts that these determinantal semi-invariants are algebra
generators of the graded algebra

Clrep,, A]GL(O‘)’G

Because a representation V' € rep,, A is f-semistable if and only if some semi-
invariant of weight x} for some [ is nonzero on it. This proves the following.

THEOREM 15 The Zariski open subset of 0-semistable a-dimensional A-
representations can be covered by affine GL(«)-stable open subsets

rep), "t A=| |{V | D(V) = detL(V) # 0}
D

and hence the moduli space can also be covered by affine open subsets

moduli’ A = U Xp
D

where Xp = {[V] € moduli? A | D(V) = detL(V) # 0}.
EXAMPLE 30 In the C?/Z3 example, the 0-semistable representations
®
ANt
N
O >0

with = (—2,1,1) all lie in the affine open subset Xp where L is a matriz of

the form
I {xl O]
* Y3

where * is any path in Q starting in x1 and ending in 3.
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Analogous to the rectangular matrix L we define a rectangular matrix N
with It +. ..+t + 141+ .+lj columns and l;4 —l——f—lj _lthrl — .=ty
rows filled with new variables and define an extended marked quiver Qf, where
we adjoin for each entry in N, . an additional arrow from v, to v, and denote
it with the corresponding variable from N. Let I (resp. I) be the set of
relations in CQ9, determined from the matrix-equations that L.N and N.L
are made up of identity matrix vertex-blocks. Define a new noncommutative
order 4

QD

Ap = —=2
b (I,11,15)

then Ap is a C[Xpl-order in alg@n.

EXAMPLE 31 In the setting of example 30 with = = ys, the extended

quiver-setting (Qp, ) is
(¥ gg—N

((//i gg

_ |:J?1 O] N = [nl 77,3:|
Y3 Y3 N2 Ny

the defining equations of the order Ap become

Hence, with

I= (I3y3 —Y1%1,T1Y1 — Y22, T2Y2 — y35€3)
I = (n1x1 + n3ys — v1,n3y3, n2x1 + N4y3, Nays — V1)

Iy = (z1ny — va, 113, Y31 + yana, Ysns + ysng — v3)

This construction may seem a bit mysterious at first but what we are really
doing is to construct the universal localization as in, for example [92], (or see
section 7.3) associated to the map between projective A-modules determined
by L, but this time not in the category alg of all algebras but in alg@a. We
have the situation

rep? #mist A «o 17 (Xp) >~ rep, Ap

modulig A~ > Xp
and theorem 14 follows from the next result.

THEOREM 16 The following statements are equivalent:

1. V € rep?=semist A lies in n=1(Xp), and
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2. There is a unique extension V of V such that V € rep, Ap.

PROOF 1 = 2: Because L(V) is invertible we can take N (V') to be its
inverse and decompose it into blocks corresponding to the new arrows in Q3.
This then defines the unique extension V € rep, Q%, of V. As V satisfies
R (because V does) and I; and Iy (because N(V) = L(V)~1) we have that
V €rep, Ap.

2 = 1: Restrict V to the arrows of Q to get a V & rep, Q. As V (and
hence V) satisfies R, V € rep, A. Moreover, V is such that L(V) is invertible
(this follows because V satisfies I; and I5). Hence, D(V) # 0 and because
D is a f-semi-invariant it follows that V is an a-dimensional #-semistable
representation of A.

EXAMPLE 32 In the setting of example 30 with * = ys we have that the
uniquely determined extension of the A-representation

18

éﬁ@\ /,&g
~— o —

Observe that this extension is a simple Ap-representation for every b,c € C.

There remains one more thing to clarify: how are the different Ap’s glued
together to form a sheaf A of noncommutative algebras over moduli? A and
how can we construct the noncommutative variety spec .A? The solution to
both problems follows from the universal property of Ap. Let Ap, (resp.
Ap,) be the algebra constructed from a rectangular matrix L; (resp. L),
then we can construct the direct sum map L = Li & Lo for which the cor-
responding semi-invariant D = D1Dy. As A —— Ap makes the projective
module morphisms associated to L and Lo an isomorphism we have uniquely
determined maps in alg@a

rep, Ap

NN

Do rep, ADl rep, AD2

As rep, Ap = n~!(Xp) (and similarly for D;) we have that i} are embed-
dings as are the 7,;. This way we can glue the sections I'(Xp,, A) = Ap, with
I'(Xp,,A) = Ap, over their intersection Xp = Xp, N Xp, via the inclu-
sions i;. Hence we get a coherent sheaf of noncommutative algebras A over
moduli’ A. Observe that many of the orders Ap are isomorphic. In exam-
ple 30 all matrices L with fixed diagonal entries 1 and y3 but with varying
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x-entry have isomorphic orders Ap (use the universal property). In a simi-
lar way we would like to glue max Ap, with max Ap, over max Ap using the
algebra maps i; to form a noncommutative variety spec A. However, the con-
struction of max A and the noncommutative structure sheaf is not functorial
in general.

EXAMPLE 33 Consider the inclusion map map in alg@?2
_|RR RR|
A= |77 — |[fal=4

then all two-sided mazimal ideals of A’ are of the form May(m) where m is a
mazximal ideal of R. If I C m then the intersection

mm| RREl |mm
mm ITR| |Im
which is not a maximal ideal of A as
mR||RR| |mm
IR||Im| |Im
and so there is no natural map maxA’ —— max A, let alone a continuous one.
In [86] it was proved that if A L+ Bis an extension (that is, an algebra
map such that B = f(A)Zp(A) where Zg(A) ={b€ B | bf(a) = f(a)b Va €
A}) then the map
spec B —— spec R P— 4P

is well-defined and continuous for the Zariski topology. In our situation, the
maps ; : ADJ. —— Ap are even central extensions, that is

Ap = Ap,Z(Ap)

which follows again from the universal property by localizing Ap, at the
central element D. Hence, we can define a genuine noncommutative variety
spec A with central scheme moduli? A, finishing the proof of the noncom-
mutative desingularization approach.
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Chapter 1

Cayley-Hamilton Algebras

In this chapter we will define the category alg@n of Cayley-Hamilton algebras
of degree n. These are affine C-algebras A equipped with a trace map tr4 such
that all trace identities holding in nxn matrices also hold in A. Hence, we have
to study trace identities and, closely related to them, necklace relations.This
requires the description of the generic algebras

/(C(:cl,...,xm):w and fC<x17...,xm>=NZ‘

called the trace algebra of m generic n X n matrices, respectively the neck-
lace algebra of m generic n x n matrices. For every A € alg@n there are
epimorphisms T — A and N — ¢r4(A) for some m.

In chapter 2 we will reconstruct the Cayley-Hamilton algebra A (and its
central subalgebra tr4(A)) as the ring of GL,-equivariant polynomial func-
tions (resp. invariant polynomials) on the representation scheme rep, A.
Using the Reynolds operator in geometric invariant theory, it suffices to prove
these results for the generic algebras mentioned above. An n-dimensional rep-
resentation of the free algebra C(xy,...,x,,) is determined by the images of
the generators z; in M, (C), whence

rep, Clx1,...,2m) =~ M,(C)®...® M,(C)

and the G'L,-action on it is simultaneous conjugation. For this reason we have
to understand the fundamental results on the invariant theory of m-tuples on
n x n matrices, due to Claudio Procesi [85].

1.1 Conjugacy classes of matrices

In this section we recall the standard results in the case when m = 1, that
is, the study of conjugacy classes of n x n matrices. Clearly, the conjugacy
classes are determined by matrices in Jordan normal form. Though this gives
a complete set-theoretic solution to the orbit problem in this case, there can-
not be an orbit variety due to the existence of nonclosed orbits. Hence, the
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geometric study of the conjugacy classes splits up into a quotient problem (the
polynomial invariants determine an affine variety whose points correspond to
the closed orbits) and a nullcone problem (the study of the orbits having a
given closed orbit in their closures). In this section we will solve the first part
in full detail, the second part will be solved in section 2.7. A recurrent theme
of this book will be to generalize this two-part approach to the orbit-space
problem to other representation varieties.

We denote by M, the space of all n x n matrices M, (C) and by GL,
the general linear group GL,(C). A matrix A € M, determines by left
multiplication a linear operator on the n-dimensional vector space V,, = C"
of column vectors . If g € GL,, is the matrix describing the base change from
the canonical basis of V,, to a new basis, then the linear operator expressed
in this new basis is represented by the matrix gAg~!. For a given matrix A
we want to find a suitable basis such that the conjugated matriz gAg~" has a
simple form.

Consider the linear action of GL,, on the n?-dimensional vector space M,

GL, x M, — M, (9,A) — g A= gAg~!

The orbit O(A) = {gAg™' | g € GL, } of A under this action is called the
conjugacy class of A. We look for a particularly nice representative in a given
conjugacy class. The answer to this problem is, of course, given by the Jordan
normal form of the matrix.

With e;; we denote the matrix whose unique nonzero entry is 1 at entry
(7,7). Recall that the group GL,, is generated by the following three classes
of matrices :

e the permutation matrices p;; =T, + e;; + €j; — e;; — ej; for all i # j,
e the addition matrices a;;(A) =T, + Ae;; for all 4 # j and 0 # A, and
o the multiplication matrices m;(\) =T, + (A — 1)e;; for all 4 and 0 # A.

Conjugation by these matrices determine the three types of Jordan moves on
n X n matrices, as depicted below, where the altered rows and columns are
indicated

AL

i J i J i
type p type a type m
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Therefore, it suffices to consider sequences of these moves on a given n X n
matrix A € M,,. The characteristic polynomial of A is defined to be the
polynomial of degree n in the variable ¢

xa(t) =det(t, — A) € CJt]
As C is algebraically closed, x 4(t) decomposes as a product of linear terms

e

[Tt =)

i=1

Here, the {\1,..., e} are called the eigenvalues of the matrix A. Observe
that \; is an eigenvalue of A if and only if there is a nonzero eigenvector
v € V, = C" with eigenvalue );, that is, A.v = \;v. In particular, the rank
r; of the matrix A; = A1, — A satisfies n — d; < r; < n. A nice inductive
procedure using only Jordan moves is given in [35] and proves the Jordan-
Weierstrass theorem .

THEOREM 1.1 Jordan-Weierstrass

Let A € M,, with characteristic polynomial x 4(t) = [[;—,(t — Xi)%. Then,
A determines unique partitions

pi = (ail,aig,...,aimi) Of dl

associated to the eigenvalues \; of A such that A is conjugated to a unique
(up to permutation of the blocks) block-diagonal matriz

Bi|0|...] O

0 |B> 0
Jipy,pe) =

0(0]|...|Bm

with m =my + ...+ me and ezactly one block By of the form J,,;(\;) for all
1<i<eandl <j<m; where

Jaij ()‘1) = h € Maij (C)
Ai

Let us prove uniqueness of the partitions p; of d; corresponding to the
eigenvalue \; of A. Assume A is conjugated to another Jordan block matrix
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J(qr,....q.)> necessarily with partitions ¢; = (bil,...,bim/i) of d;. To begin,
observe that for a Jordan block of size k we have that

rk Je(0) =k —1 foralll <k andif g # 0 then rk Jy(u)' =k

for all I. As Jip, ... p.) 18 conjugated to Ji,, .. 4.) We have for all A € C and all
l

rk (X1, — J(pl,m?pe))l =rk (X, — J(qu...,qe))l

Take A = A; then only the Jordan blocks with eigenvalue \; are important in
the calculation and one obtains for the ranks

! !
n-— Z #{j | aij > h} respectively n — Z #{j | by > h}
h=1 Pt

For any partition p = (cy,...,¢,) and any natural number h we see that the
number z = #{j | ¢; > h}

o : ]

< 3|
Cat1 :

is the number of blocks in the h-th row of the dual partition p* which is defined
to be the partition obtained by interchanging rows and columns in the Young
diagram of p (see section 1.5 for the definition). Therefore, the above rank
equality implies that pj = ¢/ and hence that p; = ¢;. As we can repeat this
argument for the other eigenvalues we have the required uniqueness.

Hence, the Jordan normal form shows that the classification of G L,,-orbits
in M,, consists of two parts: a discrete part choosing

e a partition p = (d1,da, ..., d.) of n, and for each d;
e a partition p; = (a1, a2, . . ., Qim, ) of d;

determining the sizes of the Jordan blocks and a continuous part choosing
e an e-tuple of distinct complex numbers (A1, Ag, ..., Ae)

fixing the eigenvalues. Moreover, this e-tuple (A1, ..., ) is determined only
up to permutations of the subgroup of all permutations 7 in the symmetric
group Se such that p; = pr(;) forall 1 <i <e.
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FIGURE 1.1: Orbit closure for 2 x 2 matrices.

Whereas this gives a satisfactory set-theoretical description of the orbits we
cannot put an Hausdorff topology on this set due to the existence of non-closed
orbits in M,,. For example, if n = 2, consider the matrices

Al A0
A:{O)\] and B:{O)\]

which are in different normal form so correspond to distinct orbits. For any

€ # 0 we have that
e0] [A1] [e10] [Ae
01| {OX["] O 1] [0OX
belongs to the orbit of A. Hence if ¢ — 0, we see that B lies in the closure

of O(A). As any matrix in O(A) has trace 2\, the orbit is contained in the
3-dimensional subspace

{/\4—3: Y

z )\x} M,

In this space, the orbit-closure O(A) is the set of points satisfying 22 +yz = 0
(the determinant has to be A?), which is a cone having the origin as its top:
The orbit O(B) is the top of the cone and the orbit O(A) is the complement,
see figure 1.1.

Still, for general n we can try to find the best separated topological quotient
space for the action of GL, on M,. We will prove that this space coincide
with the quotient variety determined by the invariant polynomial functions.

If two matrices are conjugated A ~ B, then A and B have the same un-
ordered n-tuple of eigenvalues {\1,...,A,} (occurring with multiplicities).
Hence any symmetric function in the A\; will have the same values in A as
in B. In particular this is the case for the elementary symmetric functions o,

gL = ) A

11 <i2<...<7]
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Observe that for every A € M,, with eigenvalues {A1,...,\,} we have
n n ) ]
T =X) = xa(t) = det(th, — A) =" + > " (—1) o3 (A)t"
j=1 i=1

Developing the determinant det(t7, — A) we see that each of the coefficients
0;(A) is in fact a polynomial function in the entries of A. Therefore, 0;(A) is
a complex valued continous function on M,,. The above equality also implies
that the functions o; : M,, — C are constant along orbits. We now construct
the continuous map

M, —— C"
sending a matrix A € M, to the point (01(A),...,0,(A)) in C". Clearly, if

A ~ B then they map to the same point in C"™. We claim that 7 is surjective.
Take any point (a1, ...,a,) € C" and consider the matrix A € M,

0 an
-1 0 Anp—1

A: '.. '.. E (11)
-1 0 as
-1 ay

then we will show that 7(A) = (aq,...,a,), that is
det(tl, — A) =t" —at" ' +agt" % — ...+ (=1)"ay,

Indeed, developing the determinant of ¢, — A along the first column we obtain

@ (3  REEERIE ¢ et 38 t 0 0 0—a,
1 t 0 0—a,_, @t O Emagy
01t 0 =G, |0 1 ¢t 0-a,,
00 1 t-a 00 1 t-a
00 1t—a 00 1t—ay

Here, the second determinant is equal to (—1)""'a,, and by induction on n

the first determinant is equal to ¢.(t" "t —a;t"2+...4+(=1)""'a,_1), proving
the claim.

Next, we will determine which n X n matrices can be conjugated to a ma-
trix in the canonical form A as above. We call a matrix B € M,, cyclic if
there is a (column) vector v € C™ such that C™ is spanned by the vectors
{v,Bw,B%v,...,B" t}. Let g € GL, be the basechange transforming the
standard basis to the ordered basis

(v,~B.w, B*v,~B3.v,...,(=1)""'B" .v)
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In this new basis, the linear map determined by B (or equivalently, g.B.g™1)
is equal to the matrix in canonical form

0 b
-10 bn—1
-1 0 b
-1 b
where B™.v has coordinates (by,, ..., ba,b1) in the new basis. Conversely, any

matrix in this form is a cyclic matrix.

We claim that the set of all cyclic matrices in M,, is a dense open subset.
To see this take v = (x1,...,2,)" € C" and compute the determinant of the
n X n matrix

n-1

This gives a polynomial of total degree n in the x; with all its coefficients
polynomial functions c¢; in the entries by; of B. Now, B is a cyclic matrix if
and only if at least one of these coefficients is nonzero. That is, the set of non-
cyclic matrices is exactly the intersection of the finitely many hypersurfaces

Vi ={B = (bs)k,; € M, | ¢j(b11,b12,...,bpn) =0}

in the vector space M,.

THEOREM 1.2
The best continuous approximation to the orbit space is given by the surjection

s

> C’n

M,
mapping a matrix A € M, (C) to the n-tuple (01(A),...,0n(A))

Let f : M,, —— C be a continuous function which is constant along con-
jugacy classes. We will show that f factors through 7, that is, f is really a
continuous function in the o;(A). Consider the diagram

M,

R4
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where s is the section of 7w (that is, m o s = idcn) determined by sending a
point (aq,...,a,) to the cyclic matrix in canonical form A as in equation (1.1).
Clearly, s is continuous, hence so is f/ = f o s. The approximation property
follows if we prove that f = f/ ow. By continuity, it suffices to check equality
on the dense open set of cyclic matrices in M,,.

There it is a consequence of the following three facts we have proved before
(1) : any cyclic matrix lies in the same orbit as one in standard form, (2) : s
is a section of m and (3): f is constant along orbits.

Example 1.1 Orbits in My

A 2 x 2 matrix A can be conjugated to an upper triangular matrix with
diagonal entries the eigenvalues A1, Ay of A. As the trace and determinant of
both matrices are equal we have

o1(A) =tr(A) and o9(A) = det(A)

The best approximation to the orbitspace is therefore given by the surjective
map

M, O 2 |:Ccl Z:| — (a+d,ad — be)

The matrix A has two equal eigenvalues if and only if the discriminant of the

characteristic polynomial t? — o1 (A)t + 02(A) is zero, that is when oy (4)? —

403(A) = 0. This condition determines a closed curve C' in C? where
C={(z,y) €C?*| 2? — 4y = 0}.

C

Observe that C is a smooth 1-dimensional submanifold of C2. We will describe
the fibers (that is, the inverse images of points) of the surjective map .

If p= (z,y) € C? — C, then 7 !(p) consists of precisely one orbit (which is
then necessarily closed in M) namely, that of the diagonal matrix

x4+ r2 -4
|:)\1 O:| where )\172:W

0 A2

If p= (x,y) € C then 7 !(p) consists of two orbits

(9/\1 and 0)\0
0\ 0\
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e “--..
=
o2 g 2
7
0

FIGURE 1.2: Orbit closures of 2 x 2 matrices.

where A = %x We have seen that the second orbit lies in the closure of the
first. Observe that the second orbit reduces to one point in M> and hence is

closed. Hence, also m~1(p) contains a unique closed orbit.
To describe the fibers of 7 as closed subsets of Ms it is convenient to write
any matrix A as a linear combination
1o 10

A =u(A) {(2) 1} +v(A) [(2) B

01 00}
2

} + w(A) [0 0} + z(A) [1 0

Expressed in the coordinate functions u, v, w and z the fibers 7~1(p) of a point
p = (z,y) € C? are the common zeroes of

1
2

u =
V2 44wz =22 — 4y

The first equation determines a three-dimensional affine subspace of My in
which the second equation determines a quadric. If p ¢ C' this quadric is non-
degenerate and thus 7—1(p) is a smooth 2-dimensional submanifold of Mp.
If p € C, the quadric is a cone with top lying in the point §T,. Under the
G Ly-action, the unique singular point of the cone must be clearly fixed giving
us the closed orbit of dimension 0 corresponding to the diagonal matrix. The
other orbit is the complement of the top and hence is a smooth 2-dimensional
(nonclosed) submanifold of Ms. The graphs in figure 1.2 represent the orbit-
closures and the dimensions of the orbits.

Example 1.2 Orbits in M3

We will describe the fibers of the surjective map Mjs — S C3. Ifa3x3
matrix has multiple eigenvalues then the discriminant d = (A1 — X2)?(A\2 —
A3)2(A3 — A1)? is zero. Clearly, d is a symmetric polynomial and hence can
be expressed in terms of 01,09 and o3. More precisely

d= 40?03 + 40% + 270% — 0%03 — 18010203
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FIGURE 1.3: Representation strata for 3 x 3 matrices.

The set of points in C® where d vanishes is a surface S with singularities.
These singularities are the common zeroes of the % for 1 <4 < 3. One

computes that these singularities form a twisted cubic curve C in C3, that is
C =1{(3¢,3¢*,¢%) | c€ C}

The description of the fibers 7= (p) for p = (x,y,2) € C? is as follows. When
p ¢ S, then 7~1(p) consists of a unique orbit (which is therefore closed in M3),
the conjugacy class of a matrix with paired distinct eigenvalues. If p € S —C,
then 7~1(p) consists of the orbits of

A10 A00
A1 =10X0| and A2 =|0A0
00 p 00 p

Finally, if p € C, then the matrices in the fiber 7~!(p) have a single eigenvalue
X\ = 1z and the fiber consists of the orbits of the matrices

3
210 A10 200
Bi=|0A1| Ba=|0X0| Bs=[0X0
00\ 00\ 00\

We observe that the strata with distinct fiber behavior (that is, C*— S, S —C
and C) are all submanifolds of C3, see figure 1.3.

The dimension of an orbit O(A) in M,, is computed as follows. Let C4 be
the subspace of all matrices in M,, commuting with A. Then, the stabilizer
subgroup of A is a dense open subset of C'4 whence the dimension of O(A) is
equal to n? —dim Cjy4.

Performing these calculations for the matrices given above, we obtain the
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following graphs representing orbit-closures and the dimensions of orbits

L% 04,96 Op,6

04,94 Op,#4
. Opgeo

c3-9 S—C C

Returning to M,,, the set of cyclic matrices is a Zariski open subset of M,,.
For, consider the generic matrix of coordinate functions and generic column
vector

11 ... T1n U1

X = : : and V=
Tnl -+ Tpn Un

and form the square matrix
[v Xv X20 ... X" Lo] € My(Clar1, 212, - - -, Tns V1, - - - 5 Un))

Then its determinant can be written as >, pi(4j)q(vy) where the ¢ are
polynomials in the v;, and the p; polynomials in the z;;. Let A € M,, be such
that at least one of the p;(A) # 0, then the polynomial d = =, pi(A)q(vy) €
Clv1, ..., vg] is nonzero. But then there is a ¢ = (¢1,...,¢,) € C™ such that
d(c) # 0 and hence ¢” is a cyclic vector for A. The converse implication is
obvious.

THEOREM 1.3
Let f : M,, — C is a regular (that is, polynomial) function on M, which
s constant along conjugacy classes, then

feCloi(X),...,0n(X)]

PROOF Consider again the diagram

M,

R4
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The function f’ = f o s is a regular function on C™ whence is a polynomial in
the coordinate functions of C™ (which are the o;(X)), so

F e Cloy(X), ..., 0n(X)] — C[M,].

Moreover, f and f’ are equal on a Zariski open (dense) subset of M,, whence
they are equal as polynomials in C[M,].

The ring of polynomial functions on M,, which are constant along conjugacy
classes can also be viewed as a ring of invariants. The group GL,, acts as
algebra automorphisms on the polynomial ring C[M,]. The automorphism
¢g determined by g € GL,, sends the variable x;; to the (4, j)-entry of the
matrix g~!.X.g, which is a linear form in C[M,]. This action is determined
by the property that for all g € GL,,, A € A and f € C[M,] we have that

¢g(£)(A) = flg-Ag™")

The ring of polynomial invariants is the algebra of polynomials left invariant
under this action

C[M,)%E = {f € C[M,,] | ¢4(f) = f for all g€ GL,}

and hence is the ring of polynomial functions on M,, that are constant along
orbits. The foregoing theorem determines the ring of polynomials invariants

C[M, ]G = Clov(X), ..., on(X)]

We will give an equivalent description of this ring below.
Consider the variables A1, ..., A, and consider the polynomial

n n

o) =TT =2 = %4 31

i=1 i=1

then o; is the i-th elementary symmetric polynomial in the ;. We know
that these polynomials are algebraically independent and generate the ring of
symmetric polynomials in the A;, that is,

Clo1,...,0n] = C[A1, ..., \]5"

where S, is the symmetric group on n letters acting by automorphisms on the
polynomial ring C[Ay, ..., A\,] via m(\;) = Ar¢;) and the algebra of polynomi-
als, which are fixed under these automorphisms are precisely the symmetric
polynomials in the A;.

Consider the symmetric Newton functions s; = A{ +...+ A%, then we claim
that this is another generating set of symmetric polynomials, that is

Clo1,...,0n] =Cl[s1,...,84]
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To prove this it suffices to express each o; as a polynomial in the s;. More
precisely, we claim that the following identities hold for all 1 < j <n

8j —018j—1+ 0282 — ...+ (—1)j_1(7j,181 + (—1)j0'j.j =0 (12)

For j = n this identity holds because we have
0=> fuXi) =sn+ Y (~1)'0isn_;
i=1 i=1

if we take sp = n. Assume now j < n then the left hand side of equation 1.2
is a symmetric function in the \; of degree < j and is therefore a polynomial
p(01,...,0;) in the first j elementary symmetric polynomials. Let ¢ be the
algebra epimorphism

ClA,- - An] =2 C[Ar, -0 A

defined by mapping Aj11,...,A; to zero. Clearly, ¢(0;) is the i-th elementary
symmetric polynomial in {\1,...,\;} and @(s;) = A{ +... + )\; Repeating
the above j = n argument (replacing n by j) we have

J J
0=2 fi(\) =06(s;) + D _(=1)'é(0:)d(sn1)
i=1 i=1
(this time with so = j). But then, p(¢(c1),...,¢(0;)) = 0 and as the ¢(o%)
for 1 < k < j are algebraically independent we must have that p is the zero
polynomial finishing the proof of the claimed identity.

If A1,..., A\, are the eigenvalues of an n X n matrix A, then A can be
conjugated to an upper triangular matrix B with diagonal entries (A1, ..., A1).
Hence, the trace tr(A) = tr(B) = A\ + ...+ A, = s1. In general, A* can be
conjugated to B which is an upper triangular matrix with diagonal entries
(Af,...,AL) and hence the traces of A and B? are equal to \j +...+ X, = s;.
Concluding, we have

THEOREM 1.4
Consider the action of conjugation by GL, on M,. Let X be the generic
matriz of coordinate functions on M,

11 -+ Tpn
X =
Tnl -+ Tpn
Then, the ring of polynomial invariants is generated by the traces of powers

of X, that is
C[M,)%L = C[tr(X), tr(X?),..., tr(X™)]
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PROOF The result follows from theorem 1.3 and the fact that
Clo1(X),...,0n(X)] = C[tr(X),...,tr(X™)]

1.2 Simultaneous conjugacy classes

As mentioned in the introduction, we need to extend what we have done for
conjugacy classes of matrices to simultaneous conjugacy classes of m-tuples
of matrices . Consider the mn2-dimensional complex vector space

M"=M,®...®&M,
—_— ———

of m-tuples (Ay,...,An) of n x n-matrices A; € M,,. On this space we let
the group GL,, act by simultaneous conjugation, that is

g.(A1,...,Ap) = (g.Al.gfl, .. ,g.Am.gfl)

for all ¢ € GL,, and all m-tuples (A4y,...,A,,). Unfortunately, there is no
substitute for the Jordan normalform result in this more general setting.

Still, for small m and n one can work out the GL,-orbits by brute force
methods. In this section we will give the details for the first nontrivial case,
that of couples of 2 x 2 matrices. These explicit calculations will already ex-
hibit some of the general features we will prove later. For example, that all
subvarieties of the quotient variety determined by points of the same repre-
sentation type are smooth and that the fiber structure depends only on the
representation type.

Example 1.3 Orbits in M2 = My @ M,

We can try to mimic the geometric approach to the conjugacy class prob-
lem, that is, we will try to approximate the orbitspace via polynomial func-
tions on M3 that are constant along orbits. For (A, B) € M3 = My & Mo
clearly the polynomial functions we have encountered before tr(A), det(A) and
tr(B), det(B) are constant along orbits. However, there are more: for example
tr(AB). In the next section, we will show that these five functions generate
all polynomials functions that are constant along orbits. Here, we will show

that the map M2 = My @ M, —"+ C® defined by
(A, B) — (tr(A),det(A),tr(B),det(B),tr(AB))

is surjective such that each fiber contains precisely one closed orbit. In the
next chapter, we will see that this property characterizes the best polynomial
approximation to the (nonexistent) orbit space.
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First, we will show surjectivity of 7, that is, for every (x1,...,z5) € C®
we will construct a couple of 2 x 2 matrices (A, B) (or rather its orbit) such
that m(A, B) = (21,...,75). Consider the open set where 27 # 4x5. We have
seen that this property characterizes those A € My such that A has distinct
eigenvalues and hence diagonalizable. Hence, we can take a representative of
the orbit O(A, B) to be a couple

C1 C2
e

( A0
0p
with A # p. We need a solution to the set of equations

r3 = C “+ ¢y
T4 = C1C4 — C2C3
T5 = Aci+ pcy

Because A # p the first and last equation uniquely determine ¢y, ¢y and sub-
stitution in the second gives us cycs. Analogously, points of C® lying in the
open set ¥3 # x4 lie in the image of 7. Finally, for a point in the complement

of these open sets, that is, when 3 = x5 and 2% = 4x4 we can consider a

couple (A, B) N ;
cla

where A = 51 and p = %$3. Observe that the remaining equation x5 =
tr(AB) = 2A\u + ¢ has a solution in c.

Now, we will describe the fibers of 7. Assume (A, B) is such that A and B
have a common eigenvector v. Simultaneous conjugation with a ¢ € GL,, ex-
pressing a basechange from the standard basis to {v, w} for some w shows that
the orbit O(A, B) contains a couple of upper-triangular matrices. We want
to describe the image of these matrices under w. Take an upper triangular
representative in O(A, B)

b1 be
v

( a1 ag

0 as

with 7-image (x1,...,25). The coordinates x1,xs determine the eigenvalues
ay,as of A only as an unordered set (similarly, x3,24 only determine the
set of eigenvalues {b1,b3} of B). Hence, tr(AB) is one of the following two

expressions
aiby +asbs or aibs + asby

and therefore satisfies the equation
(tT(AB) — a1b1 - agbg)(tT(AB) - a1b3 - agbl) =0.

Recall that 1 = a1 + a3, x2 = ajas, v3 = by + b3, x4 = b1bs and x5 = tr(AB)
we can express this equation as

x% — T1T3%5 + m%m + x%xg —4xoxy =0
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This determines an hypersurface H —— C°. If we view the left-hand side
as a polynomial f in the coordinate functions of C® we see that H is a four
dimensional subset of C° with singularities the common zeroes of the partial
derivatives

of

8.1%

These singularities for the 2-dimensional submanifold S of points of the form
(2a,a?,2b,b,2ab). We now claim that the smooth submanifolds C® — H,
H — S and S of C° describe the different types of fiber behavior. In chapter
6 we will see that the subsets of points with different fiber behavior (actually,
of different representation type) are manifolds for m-tuples of n x n matrices.
If p ¢ H we claim that 7~!(p) is a unique orbit, which is therefore closed

in M3. Let (A,B) € 7! and assume first that 23 # 4z then there is a
representative in O(A, B) of the form

C1 Co

e

( A0

0p

with A # pu. Moreover, cacs # 0 (for otherwise A and B would have a common
eigenvector whence p € H) hence we may assume that co = 1 (eventually after
simultaneous conjugation with a suitable diagonal matrix diag(t,t=')). The

value of A, i is determined by x1,x2. Moreover, c1,c3, cq4 are also completely
determined by the system of equations

for 1<:<5

r3 =C “+ ¢y
Tr4y —C1C4 —C3
T5 = Act+ pcy

and hence the point p = (x1, ..., x5) completely determines the orbit O(A, B).
Remains to consider the case when x? = 4z, (that is, when A has a single
eigenvalue). Consider the couple (uA + vB,B) for u,v € C*. To begin,
uA + vB and B do not have a common eigenvalue. Moreover, p = w(A, B)
determines 7(uA + vB, B) as

tr(uA + vB) = utr(A) + vtr(B)
det(uA +vB) = u?det(A) + v?det(B) + uwv(tr(A)tr(B) — tr(AB))
tr((uA+vB)B) = utr(AB) + v(tr(B)? — 2det(B))

Assume that for all u,v € C* we have the equality tr(ud +vB)? = 4det(uA+
vB) then comparing coefficients of this equation expressed as a polynomial in
u and v we obtain the conditions 2?2 = 4z, 23 = 424 and 2x5 = 123 whence
p € S —— H, a contradiction. So, fix u,v such that uA + vB has distinct
eigenvalues. By the above argument O(uA + vB, B) is the unique orbit lying
over m(uA +vB, B), but then O(A, B) must be the unique orbit lying over p.
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Let p € H— S and (A, B) € 7~ 1(p), then A and B are simultaneous upper
triangularizable, with eigenvalues a, as respectively by, bo. Either a1 # ay or
b1 # by for otherwise p € S. Assume a; # a9, then there is a representative
in the orbit O(A4, B) of the form

bp b
{0 bl})

a; 0
( [0 %}
for {i,5} = {1,2} = {k,1}. If b # 0 we can conjugate with a suitable diagonal
matrix to get b = 1 hence we get at most 9 possible orbits. Checking all

possibilities we see that only three of them are distinct, those corresponding
to the couples

(110 b11 (110 b10 CLQO bll
(|:0 a2:|,|:0 b2:|) (|:O a2:|7|:0 b2:|) (|:0 aJ’[O bg:|)
Clearly, the first and last orbit have the middle one lying in its closure. Ob-
serve that the case assuming that b; # by is handled similarly. Hence, if
p € H— S then m~!(p) consists of three orbits, two of dimension three whose
closures intersect in a (closed) orbit of dimension two.

Finally, consider the case when p € S and (A, B) € 7~1(p). Then, both A
and B have a single eigenvalue and the orbit O(A, B) has a representative of

the form
(2] o)

for certain z,y € C. If either x or y are nonzero, then the subgroup of GLo
fixing this matrix consists of the matrices of the form

cl u v "
Stab |:06:|:{|:0’u,:| |ueC*,veC}

but these matrices also fix the second component. Therefore, if either x or
y is nonzero, the orbit is fully determined by [z : y] € P!. That is, for
p € S, the fiber 771(p) consists of an infinite family of orbits of dimension 2
parameterized by the points of the projective line P! together with the orbit

of
Cloa - o

which consists of one point (hence is closed in M2) and lies in the closure of
each of the 2-dimensional orbits.

Concluding, we see that each fiber 771(p) contains a unique closed orbit
(that of minimal dimension). The orbit closure and dimension diagrams have



18 Noncommutative Geometry and Cayley-Smooth Orders

the following shapes

I

The reader is invited to try to extend this to the case of three 2 x 2 matrices
(relatively easy) or to two 3 x 3 matrices (substantially harder). By the end of
this book you will have learned enough techniques to solve the general case,
at least in principle. As this problem is the archetypical example of a wild
representation problem it is customary to view it as "hopeless”. Hence, sooner
or later we will hit the wall, but what this book will show you is that you can
push the wall a bit further than was generally expected.

1.3 Matrix invariants and necklaces
In this section we will determine the ring of all polynomial maps
M™=M,®...0M, L+ C
—_— —
m

which are constant along orbits under the action of GL,, on M]" by simulta-
neous conjugation. The strategy we will use is classical in invariant theory.

e First, we will determine the multilinear maps which are constant along
orbits, equivalently, the linear maps

ME" =M, ®...@ M, — C
N————

m

which are constant along G L,-orbits where GL,, acts by the diagonal
action, that is

g.( A1 ®...®A,) =gAig ' ®...®@gAng "

e Afterward, we will be able to obtain from them all polynomial invariant
maps by using polarization and restitution operations.
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First, we will translate our problem into one studied in classical invariant
theory of GL,.

Let V,, ~ C™ be the n-dimensional vector space of column vectors on which
GL, acts naturally by left multiplication

C 41

C 2]
Vo =1. with action  g.

C Uy,

In order to define an action on the dual space V. = Hom(V,,,C) ~ C™ of
covectors (or, row vectors) we have to use the contragradient action

Vi=[CC...C] with action (61 ¢2 ... dn) g7 "

Observe that we have an evaluation map V,* x V,, —— C which is given by
the scalar product f(v) for all f € V¥ and v € V,

1
V2

(1 ¢ ... dn]. R L R )
Z/'ﬂ

which is invariant under the diagonal action of GL,, on V. x V,,. Further, we
have the natural identification

C

C

C
Under this identification, a pure tensor v ® f corresponds to the rank one
matrix (or rank one endomorphism of V;,) defined by

v f:V, —V, with w— f(w)v

and we observe that the rank one matrices span M,,. The diagonal action of
GL,, on V, ® V,y is then determined by its action on the pure tensors where
it is equal to
131
Vg -1
g | “| @ [p1¢2.. Pl g

Un

and therefore coincides with the action of conjugation on M,. Now, let us
consider the identification

(Vo™ @ VE™)* = End(VE™)
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obtained from the nondegenerate pairing
End(V,2™) x (Ve @ V.E™) — C
given by the formula
MNA®...OfmBU®..0Un)=/®...0 fu(AMv1®...0vnm))

GL,, acts diagonally on V,¥™ and hence again by conjugation on End(V,2™)
after embedding GL,, —— GL(V,2™) = GLy,. Thus, the above identifica-
tions are isomorphism as vector spaces with GGL,,-action. But then, the space
of GL,-invariant linear maps

VyEmoVEm — C

can be identified with the space Endgr, (V,¥™) of GL,-linear endomorphisms
of V™. We will now give a different presentation of this vector space relating
it to the symmetric group.

Apart from the diagonal action of GL,, on V,¥™ given by

g1 ®...QUy) =91 ®...R g.Un
we have an action of the symmetric group S, on m letters on V,2" given by
0(V1® ... QUn) = Vs1) ® ... ® Vg(m)

These two actions commute with each other and give embeddings of GL,, and
Sy in End(V,2™). The subspace of V,®™ spanned by the image of GL,, will
be denoted by (GL,). Similarly, with (S,,) we denote the subspace spanned
by the image of S,,.

THEOREM 1.5

With notations as above we have
1. (GL,) = Endsg,, (V,2™)
2. <Sm> = EndGLn(Vn‘@m).

PROOF (1): Under the identification End(V,®™) = End(V,,)®™ an ele-
ment g € GL,, is mapped to the symmetric tensor ¢ ® ... ® g. On the other
hand, the image of Endg,, (V,¥™) in End(V,,)®™ is the subspace of all sym-
metric tensors in End(V)®™. We can give a basis of this subspace as follows.
Let {e1,...,e,2} be a basis of End(V,,), then the vectors e;, ®...®¢;, form a
basis of End(V,,)®™ that is stable under the S,,-action. Further, any S,,-orbit
contains a unique representative of the form

®h, 2
n2

M. ®e
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with h1+...4+h,2z = m. If we denote by 7(hy, ..., h,2) the sum of all elements
in the corresponding .S,,-orbit then these vectors are a basis of the symmetric
tensors in End(V,,)®™.

The claim follows if we can show that every linear map A on the symmetric
tensors, which is zeroon all g ® ... ® g with g € GL,, is the zero map. Write
e =Y x;e;, then

Me@...we)=Y alt .2l Ar(hy, ... hy2))

is a polynomial function on End(V,,). As GL,, is a Zariski open subset of
End(V') on which by assumption this polynomial vanishes, it must be the zero
polynomial. Therefore, A(r(hy,...,h,2)) = 0 for all (hq,...,h,2) finishing the
proof.

(2) : Recall that the groupalgebra CS,, of Sy, is a semisimple algebra . Any
epimorphic image of a semisimple algebra is semisimple. Therefore, (S,,) is
a semisimple subalgebra of the matrix algebra End(V,*™) ~ M,,,. By the
double centralizer theorem (see, for example [84]), it is therefore equal to the
centralizer of Endg,, (V™). By the first part, it is the centralizer of <GLnE|
in End(V,2™) and therefore equal to Endgr, (V,2™).

Because Endgr, (V,¥™) = (Sp), every GL,-endomorphism of V,®" can be
written as a linear combination of the morphisms A, describing the action of
o € 8, on VE™, Our next job is to trace back these morphisms A, through
the canonical identifications until we can express them in terms of matrices.

To start let us compute the linear invariant

fo : VIETQVE™ o+ C

corresponding to A\, under the identification (V™ @ V,&™)* ~ End(V,2™).
By the identification we know that u, (f1 ® ... frn ®v1 ® ... vy,) is equal to

Ao, 1@ frn®@V1® ... QUR) = [1®...® fr(Vo(1) ® - . Vo(m))
= L fi(voe)

That is, we have proved the following.

PROPOSITION 1.1
Any multilinear G L, -invariant map

y VI QVE™ s C
is a linear combination of the invariants

to(fi®. . . fm@u1®...0v,) = Hfi(va(i))

foro e S,,.
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Using the identification M, (C) = V,, ® V,* a multilinear G L,,-invariant map
(ViR V)P =V gVyem —» C
corresponds to a multilinear G L,,-invariant map
M,(C)®...® M,(C) — C

We will now give a description of the generating maps p, in terms of matrices.
Under the identification, matrix multiplication is induced by composition on
rank one endomorphisms and here the rule is given by

v fuef =f e f

v 7 v

@ [pr-dn]. || @0k b= || FO) @ [0 ... 4]

Un v, Vp,

Moreover, the trace map on M, is induced by that on rank one endomorphisms
where it is given by the rule

tr(ve f) = f(v)
141 V1¢1 Z/l(én
tr(| 2| ®[o1 ... ¢n)) =tr(] : )ZZVi@:f(U)
Vp, Un®1 - .. Un®n i

With these rules we can now give a matrix-interpretation of the G L,,-invariant
maps fig.

PROPOSITION 1.2

Let 0 = (i142 .. .%0)(J1J2 .- - 48) - .- (2122 ... 2¢) be a decomposition of ¢ € Sy,
into cycles (including those of length one). Then, under the above identifica-
tion we have

,uJ(A1®. . ®Am) = tr(AilAiz N Aia)tT(AlejQ N AjB) N t’l"(Azl AZQ LA )

s Az

PROOF Both sides are multilinear, hence it suffices to verify the equality
for rank one matrices. Write 4; = v; ® f;, then we have that

pPo(A1® ... QAR) = e ® ... 0 @ f1®...Q fn)
H,- fi(%(z‘))

Consider the subproduct

fil (Uiz)fiz(viz) s fia—l(viu) =5
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Now, look at the matrixproduct
Vi; ® fi1'vi2 Y fiz' cee 0, ® fia

which is by the product rule equal to
fil (Uiz)fiz (Uia) s fiq—l (via )Uil ® fia

Hence, by the trace rule we have that

tr(Ai Ay i) = ] £i,(ve;) = S
j=1

Having found a description of the multilinear invariant polynomial maps

M=M,&...&eM, — C
—_— ——
m
we will now describe all polynomial maps that are constant along orbits by
polarization. The coordinate algebra C[M/"] is the polynomial ring in mn?

variables x”(k) where 1 < k < m and 1 <4,j < n. Consider the m generic
n X n matrices

CL‘11(]<J) xln(k’)

=Xp=| L | e Ma(CM)

The action of GL,, on polynomial maps f € C[M"] is fully determined by the
action on the coordinate functions z;;(k). As in the case of one n x n matrix
we see that this action is given by

g.xij(k) = (97" Xk.9)ij

We see that this action preserves the subspaces spanned by the entries of
any of the generic matrices. Hence, we can define a gradation on C[M"] by
deg(z;;(k)) = (0,...,0,1,0,...,0) (with 1 at place k) and decompose

where C[M]"](4,,....a,,) is the subspace of all multihomogeneous forms f in the
x;j(k) of degree (di,...,dy), that is, in each monomial term of f there are
exactly dj factors coming from the entries of the generic matrix X for all
1 < k < m. The action of GL,, stabilizes each of these subspaces, that is

if feC[M] ..., then g.feC[M"|aq,,. a, forallgeGL,
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In particular, if f determines a polynomial map on M, which is constant
along orbits, that is, if f belongs to the ring of invariants C[M™]%%» then
each of its multihomogeneous components is also an invariant and therefore
it suffices to determine all multihomogeneous invariants.

Let f € C[M]"](a,.,....d,) and take for each 1 < k < m d new variables
ti(k), ..., tq, (k). Expand

f(tl(l)Al(l) + ...+ tdlAdl (1), . 7t1(m)A1 (m) + ...+ tdm (m)Adm (m))

as a polynomial in the variables ¢;(k), then we get an expression

St 5 () g, (m) (™),
f(sl(l),...,sdl (1),...,51(m),...,8d,, (m))(Al(l)a ey Ad1 (1)a v 7A1 (m)7 e 7Adm (m))

such that for all 1 < k < m we have E?il s;(k) = di. Moreover, each of the
f(31(1)7---75d1(1)7---,31(m),-«~7sdm (m)) 18 a multihomogeneous polynomial function
on
M,®..0M, oM, ®..OM,®.. oM, d...0M,
—_——

dq do dm

of multidegree (si(1),...,8q,(1),...,81(m),...,84,,(m)). Observe that if
f is an invariant polynomial function on M), then each of these multi-
homogeneous functions is an invariant polynomial function on M where
D=di+...+dn.

In particular, we consider the multilinear function
fi.a:MP=M"o.. oM —C

which we call the polarization of the polynomial f and denote with Pol(f).
Observe that Pol(f) in symmetric in each of the entries belonging to a block
Mgk for every 1 < k < m. If f is invariant under GL,, then so is the
multilinear function Pol(f) and we know the form of all such functions by the
results given before (replacing M™ by MD).

Finally, we want to recover f back from its polarization. We claim to have
the equality

Pol(f) (A1, A1y Ao A) = di) e d f(Ar, . A)

di dm

and hence we recover f. This process is called restitution . The claim follows
from the observation that

f(t]_(l)Al + ...+ tdl(l)Ah e ,tl(m)Am + ...+ tdm (m)Am) =

F(EQ) + o+ ta, (D) A, (E () + o g, (M) Ay) =
(1 (1) + . A tg, ()Pt (m) 4 ..+ taq, (M) f(AL,. .., Ap)
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and the definition of Pol(f). Hence we have proved that any multi-
homogeneous invariant polynomial function f on M]" of multidegree
(di,...,dm) can be obtained by restitution of a multilinear invariant func-
tion

Pol(f): MP =MI ®...0 M — C

If we combine this fact with our description of all multilinear invariant func-
tions on M, & ... & M,, we finally obtain the following.

THEOREM 1.6 First fundamental theorem of matrix invariants
Any polynomial function M]" —— C that is constant along orbits under the
action of GL,, by simultaneous conjugation is a polynomial in the invariants

where X;, ... X;, run over all possible noncommutative polynomials in the
generic matrices {X1,..., Xm}.

We will call the algebra C[M"] generated by these invariants the necklace
algebra N = C[M"]%L». The terminology is justified by the observation
that the generators

tT(XhXig . X”)

are only determined up to cyclic permutation of the factors X;. They corre-
spond to a necklace word w

0-0
7 N
0 0
/ \
o 5o O
\ /
O O
N Ve
0O-0

where each i-colored bead corresponds to a generic matrix X;. To ob-
tain an invariant, these bead-matrices are cyclically multiplied to obtain an
n x n matrix with coefficients in M, (C[M]). The trace of this matrix is
called tr(w) and theorem 1.6 asserts that these elements generate the ring of
polynomial invariants.

1.4 The trace algebra

In this section we will prove that there is a bound on the length of the
necklace words w necessary for the tr(w) to generate N'. Later, after we
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have determined the relations between these necklaces tr(w), we will be able
to improve this bound.
First, we will characterize all G L,,-equivariant maps from M]" to M,,, that

is all polynomial maps M, N M, such that for all g € GL,, the diagram
below is commutative

Mmooy,

Mmooy,
With pointwise addition and multiplication in the target algebra M, these
polynomial maps form a noncommutative algebra T called the trace algebra.
Obviously, the trace algebra is a subalgebra of the algebra of all polynomial
maps from M," to M,, that is
Ty — M, (C[M;])
Clearly, using the diagonal embedding of C in M,, any invariant polynomial

on M determines a G'L,-equivariant map. Equivalently, using the diagonal
embedding of C[M"] in M, (C[M"]) we can embed the necklace algebra

N = C[M|Ghn s Ty
Another source of GL,-equivariant maps are the coordinate maps

Observe that the coordinate map X; is represented by the generic matrix
[i]= X, in M, (C[M7Y)).

PROPOSITION 1.3
As an algebra over the necklace algebra N, the trace algebra T} is generated
by the elements {X1,..., X }.

PROOF Consider a GL,-equivariant map M," N M, and associate
to it the polynomial map

t’l‘(me+1)

M™ =M™ o M, ~ C

defined by sending (Ai1,...,Am, Amt1) to tr(f(A1,..., An).Ams1). For
all ¢ € GL, we have that f(g.A1.97%,...,9.Am.g"") is equal to
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g.f(Ay, ..., Ay).g7 1 and hence

tr(f(g.Al.g*l7 .. ,g.Am.gfl).g.Am_,_l.gfl)
tr(g.f(Ax,... ,Am).g_l.g.AmH.g_l)
tT(g.f(Al, e ,Am).Aerl.gil) = tT(f(Al, ey Am)Aerl)

0 tr(fX,,+1) is an invariant polynomial function on M™ " which is linear
in X,,+1. By theorem 1.6 we can therefore write

tr(f Xms1) = D Gorooi tr( Xy - Xiy Xing)
~——
ENm
Here, we used the necklace property allowing to permute cyclically the trace

terms in which X,,,; occurs such that X,,,1 occurs as the last factor. But
then, tr(fXm+t1) = tr(gXms1) where

9= Zgilu-iLXil .. X”

Finally, using the nondegeneracy of the trace map on M, (that is, if A, B € M,
|?luch that tr(AC) = tr(BC) for all C € M, then A = B) it follows that f = g.

If we give each of the generic matrices X; degree one, we see that the trace
algebra T7' is a connected positively graded algebra

Our aim is to bound the length of the monomials in the X; necessary to
generate T} as a module over the necklace algebra N}'. Before we can do
this we need to make a small detour in one of the more exotic realms of
noncommutative algebra: the Nagata-Higman problem .

THEOREM 1.7 Nagata-Higman

Let R be an associative algebra without a unit element. Assume there is a
fized natural number n such that x™ = 0 for all z € R. Then, R*"~' =0, that
18

T1.L2....L9n_1 =0

forall z; € R.

PROOF  We use induction on n, the case n = 1 being obvious. Consider
for all z,y € R

flz,y) =y P+ aya™ 2+ 2Pyx™ 3 2" Py 2"y
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Because for all ¢ € C we must have that
0= (y+cx)" =a"c" + flx,y)c" L+ ... +y"

it follows that all the coefficients of the ¢! with 1 < i < m must be zero, in
particular f(x,y) = 0. But then we have for all z,y,z € R that

0= fla,2)y" "+ fla,z29)y" 2+ fla, 20”7 + .+ fla, 2™
— nxn—lzyn—l + zf(y,x"_l) + l‘Zf(y,.’L‘n_Q)—i-
acQZf(y7 x”*B) +...+ 1’”722]0(% x)

and therefore " 1zy"~! = 0. Let I <R be the two-sided ideal of R generated
by all elements 2"~ !, then we have that I.R.J] = 0. In the quotient algebra
R = R/I every element 7 satisfies 7"~ = 0.

[ L |
By induction we may assume that R = 0, or equivalently that

R?" =1 is contained in I. But then
RY 1= RN S g R R e L LRI=0

finishing the proof. I

PROPOSITION 1.4
The trace algebra T is spanned as a module over the necklace algebra N* by
all monomials in the generic matrices

X, X, .. X,

1

of degree | < 2™ — 1.

PROOF By the diagonal embedding of N in M,, (C[M™]) it is clear that
N commutes with any of the X;. Let T, and Nj be the strict positive
degrees of T and N and form the graded associative algebra (without unit

element) )
R = T+ N+.T+

Observe that any element ¢t € T satisfies an equation of the form
et et" 2+ 4, =0

with all of the ¢; € N;. Indeed we have seen that all the coefficients of the
characteristic polynomial of a matrix can be expressed as polynomials in the
traces of powers of the matrix. But then, for any = € R we have that ™ = 0.

By the Nagata-Higman theorem we know that R?"~' = (R;)?"~! = 0. Let
T’ be the graded N"-submodule of T} spanned by all monomials in the generic
matrices X; of degree at most 2" — 1, then the above can be reformulated as

T7 =T + N, TP
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We claim that T?, = T’. Otherwise there is a homogeneous ¢ € T of minimal
degree d not contained in T’ but still we have a description

t=t +citi+ ...+ cs.ts

with ¢ and all ¢;,¢; homogeneous elements. As deg(t;) < d, t; € T’ for all i
but then is t € T" a contradiction. I

Finally we are in a position to bound the length of the necklaces generating
N as an algebra.

THEOREM 1.8
The necklace algebra NI is generated by all necklaces tr(w) where w is a
necklace word in the bead-matrices {X1,..., X} of length I < 2™.

PROOF Let T’ be the C-subalgebra of T generated by the generic
matrices X;. Then, tr(T’,) generates the ideal Ni. Let S be the set of all
monomials in the X; of degree at most 2 — 1. By the foregoing proposition
we know that T/ —— N.S. The trace map

tr:T)' — N
is Nj'-linear and therefore, because T, C T".(CX; + ...+ CX,,) we have
tr(T’,) C tr(N'.S.(CX1 + ...+ CX,,,)) C N".tr(S)

where S’ is the set of monomials in the X; of degree at most 2. If N’ is the
C-subalgebra of NJ"* generated by all tr(S”), then we have tr(T’, ) C Nj*.N/.
But then, we have

Ny =Np'tr(T4) C N'N, and thus N’ = N’ + N'N/,
from which it follows that NI = N’ by a similar argument as in the foregoing

proof.

Example 1.4 The algebras N3 and T3
When working with 2 x 2 matrices, the following identities are often helpful

0= A% —tr(A)A + det(A)
A.B+ B.A=tr(AB) —tr(A)tr(B) + tr(A)B + tr(B)A
for all A, B € M,. Let N’ be the subalgebra of N3 generated by tr(X1), tr(X»),

det(X1),det(Xz2) and tr(X;Xs). Using the two formulas above and N3-
linearity of the trace on T3 we see that the trace of any monomial in X
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and X, of degree d > 3 can be expressed in elements of N and traces of
monomials of degree < d — 1. Hence, we have

N% == C[tT(Xl),tT’(XQ), det(Xl),det(Xg),tr(Xng)].

Observe that there can be no algebraic relations between these generators as
we have seen that the induced map m : M7 — C® is surjective. Another
consequence of the above identities is that over N3 any monomial in the X7, X5
of degree d > 3 can be expressed as a linear combination of 1, X7, Xy and
X1X, and so these elements generate T3 as a N3-module. In fact, they are a
basis of T3 over N3. Assume otherwise, there would be a relation, say

X1X2 = OZIQ +ﬁX1 +’}/X2

with a, 8,7 € C(tr(X1),tr(Xz), det(X1), det(Xs), tr(X1X2)). Then this rela-
tion has to hold for all matrix couples (A4, B) € M3 and we obtain a contra-
diction if we take the couple

01 00 10
A= {OO} B = [1 O} whence AB = {OO}

Concluding, we have the following description of N2 and T% as a subalgebra
of C[M3Z] respectively, Mo(C[M3])

N2 = Cltr(Xy),tr(Xs),det(X1), det(Xa), tr(X1 X2)]
T2 = N3L ®NLX: ®N2.Xo® N2.X, Xo

Observe that we might have taken the generators tr(X?) rather than det(X;)
because det(X;) = 3(tr(X;)? — tr(X;)?) as follows from taking the trace of

characteristic polynomial of X;. I

1.5 The symmetric group

Let Sy be the symmetric group of all permutations on d letters. The
group algebra C S; is a semisimple algebra. In particular, any simple Sg-
representation is isomorphic to a minimal left ideal of C S;, which is generated
by an idempotent . We will now determine these idempotents.

To start, conjugacy classes in Sy correspond naturally to partitions A =
(A1,...,Ak) of d, that is, decompositions in natural numbers

d=M~+...+ X with M >X>...>2 A >1

The correspondence associates to a partition A = (A1,..., \x) the conjugacy
class of a permutation consisting of disjoint cycles of lengths A1,..., Ag. It is
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traditional to assign to a partition A = (\1,...,Ax) a Young diagram with \;
boxes in the i-th row, the rows of boxes lined up to the left. The dual partition
A* = (A},..., ) to A is defined by interchanging rows and columns in the
Young diagram of A .
For example, to the partition A\ = (3,2,1,1) of 7 we assign the Young
diagram
|

A= A =1

with dual partition A* = (4,2,1). A Young tableau is a numbering of the boxes
of a Young diagram by the integers {1,2,...,d}. For example, two distinct
Young tableaux of type \ are

2[3]
5

3]5]

~[o]s]=
BN

Now, fix a Young tableau T of type A and define subgroups of S; by
Py, = {0 € S4 | o preserves each row }

Qx = {0 € S4| o preserves each column }

For example, for the second Young tableaux given above we have that

Py = Su135) XS24y x {(6)} x {(7)}
Qr = 5{1,2,6,7} X 5{3,4} x {(5)}

Observe that different Young tableaux for the same A\ define different sub-
groups and different elements to be defined below. Still, the simple represen-
tations we will construct from them turn out to be isomorphic.
Using these subgroups, we define the following elements in the groupalgebra
CSq
ay = Z es , by= Z sgn(o)e, and ¢y = ay.by

oePy cEQN

The element cy is called a Young symmetrizer . The next result gives an
explicit one-to-one correspondence between the simple representations of CSy
and the conjugacy classes in Sy (or, equivalently, Young diagrams).

THEOREM 1.9

For every partition A of d the left ideal CS4.chx = V) is a simple Sg-
representations and, conversely, any simple Sg-representation is isomorphic
to Vi for a unique partition .
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PROOF  (sketch) Observe that PA\NQx = {e} (any permutation preserving
rows as well as columns preserves all boxes) and so any element of Sy can be
written in at most one way as a product p.g with p € P\ and ¢ € @». In
particular, the Young symmetrizer can be written as ¢y = > +e, with o = p.q
for unique p and ¢ and the coefficient +1 = sgn(q). From this it follows that
for all p € Py and q € @) we have

p.ax =ax.p=ax , sgn(q)qg.bx =bx.sgn(q)g=>bx , p.ca.sgn(q)q= cx

Moreover, we claim that ¢y is the unique element in CSy (up to a scalar factor)
satisfying the last property. This requires a few preparations.

Assume o ¢ P).Q) and consider the tableaux 7" = ¢T, that is, replacing
the label ¢ of each box in T' by o(i). We claim that there are two distinct
numbers that belong to the same row in T and to the same column in 7”.
If this were not the case, then all the distinct numbers in the first row of T
appear in different columns of 7”. But then we can find an element ¢} in the
subgroup ¢.Q .0~ ! preserving the columns of T” to take all these elements to
the first row of 7. But then, there is an element p; € Ty such that p;T and
g1 T’ have the same first row. We can proceed to the second row and so on and
obtain elements p € Py and ¢’ € 0.Q, o~ ! such that the tableaux pT and ¢'T"
are equal. Hence, pT = ¢'0T entailing that p = ¢'o. Further, ¢’ = 0.q.0c ™! but
then p = ¢’0 = oq whence o = p.g~! € P,.Q,, a contradiction. Therefore, to
o ¢ P\.Q we can assign a transposition T = (ij) (replacing the two distinct
numbers belonging to the same row in T and to the same column in 7”) for
whichp=7¢€ Py and g=o0"'.7.0 € Q.

After these preliminaries, assume that ¢’ = > a,e, is an element such that

p.c.sgn(q)g=c forall pe Py\,q€Qx

We claim that a, = 0 whenever o ¢ P\.Q,. Take the transposition 7 found
above and p = 7, ¢ = 0~ '.7.0, then p.o.¢ = T.0.0 '.7.0 = 0. However, the
coefficient of ¢ in ¢’ is a, and that of p.c’.q is —a, proving the claim. That is

/ J—
¢ = E :apqep-q

p,q

but then by the property of ¢ we must have that a,, = sgn(q)a. whence
¢’ = accy finishing the proof of the claimed uniqueness of the element cj.

As a consequence we have for all elements z € CSy that cy.x, ¢y = a,c)y for
some scalar a,; € C and in particular that ¢3 = nyc,, for

p.(ex.z.cx).sgn(q)g = p.ax.by.xz.ax.by.sgn(q)q
= a,\.bx.x.a»b,\ = C)\.T.C)

and the statement follows from the uniqueness result for cy.
Define V), = CSy.c) then we have ¢).V) C Ccy. We claim that V), is a simple
Sg-representation. Let W C V) be a simple subrepresentation, then being a
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left ideal of CSy, we can write W = CSy.x with 22 = 2 (note that W is a direct
summand). Assume that cx.W = 0, then WW C CSy.cy. W = 0 implying
that x = 0 whence W = 0, a contradiction. Hence, c¢y.W = Cecy C W, but
then

Va=CS4.chx CW whenceV, =W

is simple. It remains to be shown that for different partitions, the correspond-
ing simple representations cannot be isomorphic.
We put a lexicographic ordering on the partitions by the rule that

A >y if the first nonvanishing \; — p; is positive

We claim that if A > p then a).CSg.0, = 0. It suffices to check that ax.0.b, =
0 for 0 € S4. As a.b#.a*1 is the b-element constructed from the tableau b.7”
where T” is the tableaux fixed for p, it is sufficient to check that ax.b, = 0.
As A > p there are distinct numbers ¢ and j belonging to the same row in T
and to the same column in 7. If not, the distinct numbers in any fixed row
of T must belong to different columns of 77, but this can only happen for all
rows if > A. So consider 7 = (¢j), which belongs to Py and to @, whence
ax.7 = ay and 7.b, = —b,. But then

a)\.bu = a).T,T, bH = —aA.b#

proving the claim.
If X # p we claim that V) is not isomorphic to V,,. Assume that A > p and
¢ a CSg-isomorphism with ¢(Vy) =V, then

¢(C)\V)\) = C>\¢(V)\) = C)\V# = C)\(CSdC# =0

Hence, c)\V\ = Ccy # 0 lies in the kernel of an isomorphism that is clearly
absurd.

Summarizing, we have constructed to distinct partitions of d, A and p non-
isomorphic simple CSy-representations V) and V),. As we know that there are
as many isomorphism classes of simples as there are conjugacy classes in Sy
(or partitions), the V) form a complete set of isomorphism classes of simple
Sg-representations, finishing the proof of the theorem.

1.6 Necklace relations

In this section we will prove that all the relations holding among the el-
ements of the necklace algebra N are formal consequences of the Cayley-
Hamilton theorem. First, we will have to set up some notation to clarify what
we mean by this.
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For technical reasons it is sometimes convenient to have an infinite supply
of noncommutative variables {x1, xa, ..., 2;,...}. Two monomials of the same
degree d in these variables

M=z, ...2;;, and M =zjx4,...2;,

are said to be equivalent if M’ is obtained from M by a cyclic permutation,
that is, there is a k such that i1 = ji and all i, = 7, with b = k+a—1 mod d.
That is, if they determine the same necklace word

0O-0
Ve N
0 O
/ \
o 5 O
\ /
O O
N Ve
O-0

with each of the beads one of the noncommuting variables |7 | = z;. To each
equivalence class we assign a formal variable that we denote by

t(.%‘ill‘iz e :L‘id).

The formal necklace algebra N°° is then the polynomial algebra on all these
(infinitely many) letters. Similarly, we define the formal trace algebra T to
be the algebra

T = N Xc C<.’£1,IB2,...,Z’Z‘,...>

that is, the free associative algebra on the noncommuting variables x; with
coefficients in the polynomial algebra N*°.
Crucial for our purposes is the existence of an N*-linear formal trace map

t: T — N
defined by the formula

t(z ail__.ik_xil . Jﬁik) = Z ail.__ikt(a?il . Izk)

where a;, 4, € N*°.

In an analogous manner we will define infinite versions of the neck-
lace and trace algebras. Let MZ2° be the space of all ordered sequences
(A1, Ag, ... A, ) with A, € M, and all but finitely many of the A; are
the zero matrix. Again, GL,, acts on M ° by simultaneous conjugation and
we denote the infinite necklace algebra N:° to be the algebra of polynomial
functions f

M L.c

which are constant along orbits. Clearly, N°° is generated as C-algebra by the
invariants tr(M) where M runs over all monomials in the coordinate generic
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matrices Xy = (z,5(k));,; belonging to the k-th factor of M2°. Similarly, the
infinite trace algebra T7° is the algebra of GL,-equivariant polynomial maps

Clearly, T¢° is the C-algebra generated by No° and the generic matrices Xy,
for 1 <k < 0co. Observe that T5° is a subalgebra of the matrix ring

T —— M, (CIM;*])

and as such has a trace map tr defined on it and from our knowledge of the
generators of N° we know that ¢r(T9°) = N2°.
Now, there are natural algebra epimorphisms

T o Ty and N s Npe

defined by 7(t(ziy ... i) = v(t(ziy ... 2i,)) = tr( X, ... X;,,) and 7(x;) =
X;. That is, v and 7 are compatible with the trace maps

T

']1‘00

oo
- T,

v

NOO

»fo

We are interested in describing the necklace relations , that is, the kernel of v.
In the next section we will describe the trace relations that are the kernel of
7. Note that we obtain the relations holding among the necklaces in NJ* by
setting all z; = 0 with ¢ > m and all ¢(x;, ... ;) = 0 containing a variable

In the description a map T : CS; —— N> will be important. Let Sy be
the symmetric group of permutations on {1,...,d} and let

g = (ilil -~-ia)(j1j2 jﬁ) (legzc)

be a decomposition of ¢ € S, into cycles including those of length one. The
map T assigns to o a formal necklace T;, (21, ...,24) defined by

Ty(w1,. .. wq) = U@ 4y 25, (25,05, - 25,) o (T2 2y 22 )

Let V =V, be again the n-dimensional vector space of column vectors, then
S4 acts naturally on V9 via

0’.(1)1 ®...®’Ud) = V(1) @ ... QVy(a)

hence determines a linear map A, € End(V®%). Recall from section 3 that
under the natural identifications

(M2 ~ (V¥4 @ VE)* ~ End(V?)
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the map )\, defines the multilinear map

po : Mp®...0 M, — C
—_——
d

defined by (using the cycle decomposition of o as before)
MO'(AI X.. ®Ad) == tT‘(AilAZ‘Q e Aia>tT‘(Aj1Aj2 ‘e AJﬁ) ‘e tr(AzlAZQ ce AZC)

Therefore, a linear combination . a,T,(z1,...,24) is a necklace relation
(that is, belongs to Ker v) if and only if the multilinear map > aypo :
MP4 — C is zero. This, in turn, is equivalent to the endomorphism
S as Ao € End(VO™) induced by the action of the element Y a,e, € CSy on
V@4 being zero. In order to answer the latter problem we have to understand
the action of a Young symmetrizer ¢y € CSy on V&,

Let A = (A1, A2,..., k) be a partition of d and equip the corresponding
Young diagram with the standard tableau (that is, order first the boxes in the
first row from left to right, then the second row from left to right and so on)
as shown

[—————1

—

2
The subgroup Py of S; which preserves each row then becomes
1D>\:S,\1 XS)\Z ><...><S>\k — Sy

As ay = ) cp, p we see that the image of the action of a) on V@ is the
subspace

Im(ay) = Sym™ V@ Sym™ V®...® Sym™ V —W V&4

Here, Sym® V denotes the subspace of symmetric tensors in V€.

Similarly, equip the Young diagram of A with the tableau by ordering first
the boxes in the first column from top to bottom, then those of the second
column from top to bottom and so on as shown

1 d]

]
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Equivalently, give the Young diagram corresponding to the dual partition of
A

A" = (MlvﬂQa"'v#’l)

the standard tableau. Then, the subgroup @ of Sy, which preserves each row
of A (or equivalently, each column of A\*) is

Qx =Sy, X Sy, X ... x 8, — S4
As by = quQA sgn(q)e, we see that the image of by on V®? is the subspace

1228

H H
Im(b,\):A V®/§ V..o Ve v

Here, \" V is the subspace of all antisymmetric tensors in V®¢. Note that
A" V = 0 whenever i is greater than the dimension dim V = n. That is,
the image of the action of by on V®? is zero whenever the dual partition \*
contains a row of length > n + 1, or equivalently, whenever A\ has > n + 1
rows. Because the Young symmetrizer ¢y = ax.by € C Sg we have proved the
first result on necklace relations.

THEOREM 1.10 Second fundamental theorem of matrix invariants

A formal necklace

Z aoTy(x1,. .., 24q)

o€Sq

is a necklace relation (for n x n matrices) if and only if the element

Z ases € CSy

belongs to the ideal of CSy spanned by the Young symmetrizers cy relative to
partitions A= (A1,..., Ak)

with a least n + 1 rows, that is, k > n + 1.



38 Noncommutative Geometry and Cayley-Smooth Orders

Example 1.5
(Fundamental necklace and trace relation.) Consider the partition A =
(1,1,...,1) of n + 1, with corresponding Young tableau

The corresponding element is called the fundamental necklace relation

fund,, (z1,...,Zny1) = Z sgn(o)Ty(z1, ...y Tpt1)

CESnt1
Clearly, fund,(z1,...,2Zn+1) is multilinear of degree m + 1 in the variables
{z1,...,2n+1}. Conversely, any multilinear necklace relation of degree n +
1 must be a scalar multiple of fund, (x1,...,2,41). This follows from the

proposition as the ideal described there is for d = n+1 just the scalar multiples
of > es,,, sgn(o)es.

Because fund,,(z1,...,Tn+1) is multilinear in the variables x; we can use
the cyclic permutation property of the formal trace ¢ to write it in the form

fund, (z1,...,2n41) = t(cha,(x1,. .., 2y )Tpe1)withcha, (1, ..., 2,) € T™

Observe that chay,(z1,...,x,) is multilinear in the variables x;. Moreover, by
the nondegeneracy of the trace map tr and the fact that fund, (x1,...,Zpe1)
is a necklace relation, it follows that cha,(z1,...,2,) is a trace relation.
Again, any multilinear trace relation of degree n in the variables {z1,...,z,}
is a scalar multiple of cha,(x1,...,2,). This follows from the corresponding
uniqueness result for fundn(a:l7 - ,xn+1).

We can give an explicit expression of this fundamental trace relation

cha,(z1,...,2,) =
n
Z(—l)k Z Xy iy -+ - T, Z sgn(o) T (x4, -y T4, )
k=0 11 FGaFE . Fig o€Sy
where J = {1,...,n} — {i1,...,9}. In a moment we will see that
cha,(z1,...,2,) and hence also fund,(z1,...,2Zn+1) is obtained by polar-

ization of the Cayley-Hamilton identity for n x n matrices.
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We will explain what we mean by the Cayley-Hamilton polynomial for an
element of T*. Recall that when X € M, (A) is a matrix with coefficients in
a commutative C-algebra A its characteristic polynomial is defined to be

xx(t) =det(tl, — X) € At

and by the Cayley-Hamilton theorem we have the basic relation that y x (X) =
0. We have seen that the coefficients of the characteristic polynomial can be
expressed as polynomial functions in the tr(X?) for 1 <i < n.

For example if n = 2, then the characteristic polynomial can we written as

xx(t) =t? —tr(X)t + %(tr(X)Z —tr(X?))

For general n the method for finding these polynomial functions is based on
the formal recursive algorithm expressing elementary symmetric functions in
term of Newton functions , usually expressed by the formulae

n

f(t) = H(t - Ai),

f(t dlog f(t 1 > 1
f((t)): ZtO:Zt_A.:ZW(ZA?)

i=1 ¢ k=0 i=1

Note, if \; are the eigenvalues of X € M, then f(t) = xx(t) and > ;- A\F =
tr(X*). Therefore, one can use the formulae to express f(t) in terms of
the elements » ., )\f. To get the required expression for the characteristic
polynomial of X one only has to substitute > .| A¥ with tr(X*).

This allows us to construct a formal Cayley-Hamilton polynomial x.(x) €
T of an element x € T° by replacing in the above characteristic polynomial
the term tr(X*) with t(z*) and ¢! with z!. If z is one of the variables x; then
Xz(2) is an element of T homogeneous of degree n. Moreover, by the Cayley-
Hamilton theorem it follows immediately that x.(z) is a trace relation. Hence,
if we fully polarize x.(z) (say, using the variables {z1,...,2,}) we obtain a
multilinear trace relation of degree n. By the argument given in the example
above we know that this element must be a scalar multiple of cha, (z1,. .., 2y).
In fact, one can see that this scale factor must be (—1)" as the leading term
of the multilinearization is Zoesn Ty(1) - - - To(n) and compare this with the
explicit form of cha,(z1,...,Zy,).

Example 1.6
Consider the case n = 2. The formal Cayley-Hamilton polynomial of an
element z € T™ is

Xe() = 2% = e + 3 (12)? — (a?))
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Polarization with respect to the variables x; and xo gives the expression
T1Tg + xoxw1 — t(x1)xe — t(z2)x1 + t(21)t(22) — t(T122)

which is chag (21, 23). Indeed, multiplying it on the right with 25 and applying
the formal trace ¢ to it we obtain

t(x1xows) + t(xaw1xs) — t(x1)t(2223) — t(22)t(x123)
+t(xy)t(za)t(x3) — t(zr22)t(23)
= Tz (w1, 22, 23) + T(213) (21, T2, 3) — T(1)(23) (1, T2, T3)
—Toy13) (71, T2, 23) + T1)(2)(3) (T1, T2, ¥3) — T(12)(3) (1, T2, T3)
= EG’ES;; To(x1,x2,23) = funds(z1, T2, 23)

as required. I

THEOREM 1.11

The necklace relations Ker v is the ideal of N> generated by all the elements
fundn(ﬂml,...,n1n+1)

where the m; run over all monomials in the variables {x1,x2,... 2, ...}

PROOF Take a homogeneous necklace relation f € Ker v of degree d
and polarize it to get a multilinear element f’ € N*°. Clearly, f’ is also a
necklace relation and if we can show that f’ belongs to the described ideal,
then so does f as the process of restitution maps this ideal into itself.

Therefore, we may assume that f is multilinear of degree d. A priori f
may depend on more than d variables xj, but we can separate f as a sum of
multilinear polynomials f; each depending on precisely d variables such that
for i # j f; and f; do not depend on the same variables. Setting some of the
variables equal to zero, we see that each of the f; is again a necklace relation.

Thus, we may assume that f is a multilinear necklace identity of degree d
depending on the variables {x1, ..., 24}. But then we know from theorem 1.10

that we can write
=Y aTonenna
TESY

where > are; € CSy belongs to the ideal spanned by the Young symmetrizers
of Young diagrams A having at least n 4+ 1 rows.

We claim that this ideal is generated by the Young symmetrizer of the
partition (1,...,1) of n 4+ 1 under the natural embedding of S, into Sy.
Let A be a Young diagram having k& > n + 1 boxes and let ¢y be a Young
symmetrizer with respect to a tableau where the boxes in the first column are
labeled by the numbers I = {iq,...,i;} and let S; be the obvious subgroup

of Sg. As Qx = St x Q" we see that by = (3_,¢g, sgn(0)e,).b" with b' € CQ'".
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Hence, ¢y belongs to the two-sided ideal generated by c¢; = desl sgn(o)es
but this is also the two-sided ideal generated by ¢, =3~ g, sgn(o)e, as one
verifies by conjugation with a partition sending I to {1,...,%}. Moreover, by
induction one shows that the two-sided ideal generated by ci belongs to the
two-sided ideal generated by ¢g = > sgn(o)e, finishing the proof of the
claim.

From this claim, we can write

ZaTeTZ Z aijer,.( Z sgn(o)es).er,

TESq Ti,‘l'jesd UESn+1

oc€Sy

and therefore it suffices to analyze the form of the necklace identity associated
to an element of the form

er( Z sgn(o)ey).err with 7,77 € Sy

0ESnt1

Now, if a group element > 4ESa bye,, corresponds to the formal necklace poly-
nomial g(z1,...,xaq), then the element e;.(3 g, buey)-e,—1 corresponds to
the formal necklace polynomial g(z(1y,...,Z(a))-

Therefore, we may replace the element e.(>"
element

€S is sgn(o)ey).e- by the

( Z sgn(o)es).e, with n=7".7 € Sy
0ESht1

We claim that we can write n = ¢’.0 with ¢’ € S,41 and 6 € Sy such that
each cycle of 6 contains at most one of the elements from {1,2,...,n + 1}.
Indeed assume that 7 contains a cycle containing more than one element from
{1,...,n+ 1}, say 1 and 2, that is

n= (12122 .. .iTlejg . ]s)(kl “e ka) ce (2’1 “e Zc)
then we can express the product (12). in cycles as
(lilig .. ZT)(2]1]2 .. ]g)(kl e ka) e (Zl N ZC)

Continuing in this manner we reduce the number of elements from {1,...,n+
1} in every cycle to at most one.

But then as o/ € Sp,11 we have seen that (3 sgn(o)es).eor =
sgn(a’) (> sgn(o)e,) and consequently

( Z sgn(o)es).e,; = £( Z sgn(o)ey).eg

cESh4+1 0€ESnt1

where each cycle of 6 contains at most one of {1,...,n+ 1}. Let us write

ez(lllla)(2]1]ﬁ)(7’L+1818H)(t1t)\)(2124)
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Now, let o € S;,+1 then the cycle decomposition of 0.0 is obtained as follows.
Substitute in each cycle of o the element 1 formally by the string 147 ... 14,,
the element 2 by the string 235 ...j3, and so on until the element n 4 1 by
the string n+1s; ... s, and finally adjoin the cycles of 6 in which no elements
from {1,...,n+ 1} appear.

Finally, we can write out the formal necklace element corresponding to the

element (3, cg . sgn(o)es).eq as
fund, (124, ... @i, T2Tjy - Tjs, ooy T 1Ts, - - Ts,.)
(g, ooy ) (X )
finishing the proof of the theorem. I

1.7 Trace relations

We will again use the nondegeneracy of the trace map to deduce the trace
relations. That is, we will describe the kernel of the epimorphism

T /(C(a:l,xg,...>:'1['°° — ']I'ZO:/ Clxy1, x2,...)

from the description of the necklace relations.

THEOREM 1.12
The trace relations Ker T is the two-sided ideal of the formal trace algebra
T generated by all elements

fund, (mq,...,mp41) and  cha,(my,...,my,)

where the m; run over all monomials in the variables {x1,xa,...,x;,...}.

PROOF Consider a trace relation h(z1,...,24) € Ker 7. Then, we have
a necklace relation of the form

t(h(z1,...,xq)Ta+1) € Ker v
By theorem 1.11 we know that this element must be of the form
Z Niy .oy fundy, (Mg, .o omy, )

where the m; are monomials, the n;, ;. , € N and the expression must be
linear in the variable x441. That is, z441 appears linearly in each of the terms

nfund, (my,...,Mp41)
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so appears linearly in n or in precisely one of the monomials m;. If x4y
appears linearly in n we can write

n=t(n".w4y1) where n'e€T>®

If 441 appears linearly in one of the monomials m; we may assume that it
does so in my11, permuting the monomials if necessary. That is, we may
assume Mg,y = m;lﬂ.md“.m”nﬂ with m, m’ monomials. But then, we can
write

nfund, (my, ..., Mp4p1) = nt(cha,(ma, ..., my).m}, 1 Zap1.m" n41)

= t(n.m” py1.chay(my, ..., my).my, 1. Tay1)

using N*°-linearity and the cyclic permutation property of the formal trace t.
But then, separating the two cases, one can write the total expression

t(h(xy, ..., xq)Ta41) = t([z ngl__.inﬂfundn(mil, e M)
i

9 /
+ E Nj1egntr T G .cha, (mjl Yt m]’n)'mj,,ﬁl}derl)
J

Finally, observe that two formal trace elements h(x1,...,zq) and k(z1,...,Zq)
are equal if the formal necklaces

t(h(xy, ..., zq)xar1) = t(k(z1, ..., Td)Td+1)

are equal, finishing the proof. [

We will give another description of the necklace relations Ker 7, which is
better suited for the categorical interpretation of TS° to be given in the next
chapter. Consider formal trace elements mi,mo,...,m;,... with m; € T,
The formal substitution

fe flmy,ma, .o omg, ..

is the uniquely determined algebra endomorphism of T, which maps the
variable x; to m; and is compatible with the formal trace t. That is, the
substitution sends a monomial x;, z;, ...x;, to the element g;, ¢i,...¢g;, and
an element t(z;, T, ... x;, ) to the element t(g;,gi, - - - gi, ). A substitution in-
variant ideal of T* is a two-sided ideal of T that is closed under all possible
substitutions as well as under the formal trace ¢. For any subset of elements
E C T there is a minimal substitution invariant ideal containing E. This
is the ideal generated by all elements obtained from E by making all possible
substitutions and taking all their formal traces. We will refer to this ideal as
the substitution invariant ideal generated by E.

Recall the definition of the formal Cayley-Hamilton polynomial y,(z) of an
element x € T given in the previous section.
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THEOREM 1.13
The trace relations Ker T is the substitution invariant ideal of T generated
by the formal Cayley-Hamilton polynomials

Xz(z) forall xeT™

PROOF The result follows from theorem 1.12 and the definition of a sub-
stitution invariant ideal once we can show that the full polarization of x.(z),
which we have seen is cha, (21, ..., z,), lies in the substitution invariant ideal
generated by the x.(z).

This is true since we may replace the process of polarization with the process
of multilinearization, whose first step is to replace, for instance

Xz(®) DY Xaty(T +Y) = Xa(®) = Xy (y)

The final result of multilinearization is the same as of full polarization and
the claim follows as multilinearizing a polynomial in a substitution invariant
ideal, we remain in the same ideal.

We will use our knowledge on the necklace and trace relations to improve
the bound of 2" — 1 in the Nagata-Higman problem to n?. Recall that this
problem asks for a number N(n) with the property that if R is an associative
C-algebra without unit such that »™ = 0 for all » € R, then we must have for
all r; € R the identity

Tir2... TNy =0 in R

We start by reformulating the problem. Consider the positive part F of the
free C-algebra generated by the variables {z1,x2,..., 2, ...}

Fi =Clz1,22,..., @iy )4

which is an associative C-algebra without unit. Let T'(n) be the two-sided
ideal of ', generated by all n-powers f" with f € F,.. Note that the ideal
T'(n) is invariant under all substitutions of F,. The Nagata-Higman problem
then asks for a number N(n) such that the product

122 .. TNm) € T(n)

We will now give an alternative description of the quotient algebra F /T'(n).
Let N be the positive part of the infinite necklace algebra No° and T, the
positive part of the infinite trace algebra T3°. Consider the quotient associa-
tive C-algebra without unit

Ty =T /(NLT).

Observe the following facts about T, : as a C-algebra it is generated by
the variables X7, Xo,... as all the other algebra generators of the form
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t(x;, ...2;,) of T are mapped to zero in Ty. Further, from the form of
the Cayley-Hamilton polynomial it follows that every ¢ € T, satisfies t* = 0.
That is, we have an algebra epimorphism

Fy/T(n) — T

and we claim that it is also injective. To see this, observe that the quotient
T /NFT is just the free C-algebra on the variables {z1,x2,...}. To obtain
T, we have to factor out the ideal of trace relations. Now, a formal Cayley-
Hamilton polynomial x, () is mapped to ™ in T*° /N°T*°. That is, to obtain
T, we factor out the substitution invariant ideal (observe that ¢ is zero here)
generated by the elements ™, but this is just the definition of Fy /T'(n).

Therefore, a reformulation of the Nagata-Higman problem is to find a num-
ber N = N(n) such that the product of the first N generic matrices

X1X5... Xy € NPT or, equivalently that ¢r(X1 X2 ... XnXny1)

can be expressed as a linear combination of products of traces of lower de-
gree. Using the description of the necklace relations given in theorem 1.10 we
can reformulate this condition in terms of the group algebra CSy41. Let us
introduce the following subspaces of the group algebra as follows

e A will be the subspace spanned by all N + 1 cycles in Sy41
e B will be the subspace spanned by all elements except N + 1 cycles

e L(n) will be the ideal of CSyy1 spanned by the Young symmetrizers
associated to partitions

L(n)

with < n rows, and

e M(n) will be the ideal of CSn41 spanned by the Young symmetrizers
associated to partitions

having more than n rows.
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With these notations, we can reformulate the above condition as
(12...NN +1) € B+ M(n) and consequently CSyi1; = B+ M(n)

Define an inner product on the group algebra CSy; such that the group
elements form an orthonormal basis, then A and B are orthogonal comple-
ments and also L(n) and M (n) are orthogonal complements. But then, taking
orthogonal complements the condition can be rephrased as

(B+M(n)):=ANLn)=0

Finally, let us define an automorphism 7 on CSy1 induced by sending e, to
sgn(o)es. Clearly, T is just multiplication by (—1)" on A and therefore the
above condition is equivalent to

ANL(n)NTL(n)=0

Moreover, for any Young tableau A we have that 7(ay) = b~ and 7(by) = ax«.
Hence, the automorphism 7 sends the Young symmetrizer associated to a
partition to the Young symmetrizer of the dual partition. This gives the
following characterization

e 7L(n) is the ideal of CSx4+1 spanned by the Young symmetrizers asso-
ciated to partitions

with < n columns.

Now, specialize to the case N = n?. Clearly, any Young diagram having n2+1
boxes must have either more than n columns or more than n rows

—

and consequently we indeed have for N = n? that
ANLn)NTL(n) =0

finishing the proof of the promised refinement of the Nagata-Higman bound
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THEOREM 1.14
Let R be an associative C-algebra without unit element. Assume that r™ = 0
for allr € R. Then, for all r; € R we have

rire...Tp2 =0
THEOREM 1.15

The necklace algebra N7 is generated as a C-algebra by all elements of the
form

tT(XZ‘IXi2 ce X“)

with 1 < n?+1. The trace algebra T is spanned as a module over the necklace
algebra N7 by all monomials in the generic matrices

X, X, ... X,

of degree I < n?.

1.8 Cayley-Hamilton algebras

In this section we define the category alg@n of Cayley-Hamilton algebras
of degree n.

DEFINITION 1.1 A trace map on an (affine) C-algebra A is a C-linear
map

tr: A —— A
satisfying the following three properties for all a,b € A:
1. tr(a)b = btr(a),
2. tr(ab) = tr(ba) and
3. tr(tr(a)b) = tr(a)tr(d).
Note that it follows from the first property that the image tr(A) of the
trace map is contained in the center of A. Consider two algebras A and B

equipped with a trace map, which we will denote by ¢r 4, respectively, trg. A
trace morphism ¢ : A — B will be a C-algebra morphism that is compatible
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with the trace maps, that is, the following diagram commutes

A—% .p
tra trp
A—% .p

This definition turns algebras with a trace map into a category, denoted by
alg@. We will say that an algebra A with trace map tr is trace generated by a
subset of elements I C A if the C-algebra generated by B and tr(B) is equal
to A where B is the C-subalgebra generated by the elements of I. Note that
A does not have to be generated as a C-algebra by the elements from I.

Observe that for T°° the formal trace ¢t : T —» N —— T is a trace
map. Property (1) follows because N> commutes with all elements of T,
property (2) is the cyclic permutation property for ¢ and property (3) is the
fact that ¢ is a N°°-linear map. The formal trace algebra T is trace generated
by the variables {z1,x2,...,2;,...} but not as a C-algebra.

Actually, T* is the free algebra in the generators {z1,zs2,...,2;, ...} in
the category of algebras with a trace map, alg@. That is, if A is an algebra
with trace tr which is trace generated by {aj,as, ...}, then there is a trace
preserving algebra epimorphism

us

T — A

For example, define 7(z;) = a; and w(t(xsy ... x;)) = tr(n(xy) ... 7w(z;,)).
Also, the formal trace algebra T™, that is, the subalgebra of T trace gen-
erated by {x1,...,2,}, is the free algebra in the category of algebras with
trace that are trace generated by at most m elements.

Given a trace map tr on A, we can define for any a € A a formal Cayley-
Hamilton polynomial of degree n . Indeed, express

n

OB I (Y

i=1

as a polynomial in ¢ with coefficients polynomial functions in the Newton
functions ;" ; A¥. Replacing the Newton function > A¥ by tr(a*) we obtain
the Cayley-Hamilton polynomial of degree n

X$V(t) € Alt]
DEFINITION 1.2 An (affine) C-algebra A with trace map tr : A — A

is said to be a Cayley-Hamilton algebra of degree n if the following two prop-
erties are satisfied:
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1. tr(1l) =n, and

2. For all a € A we have x&n)(a) =01 A.

alg@n is the category of Cayley-Hamilton algebras of degree n with trace pre-
serving morphisms.

Observe that if R is a commutative C-algebra, then M, (R) is a Cayley-
Hamilton algebra of degree n. The corresponding trace map is the composition
of the usual trace with the inclusion of R —~ M, (R) via scalar matrices.
As a consequence, the infinite trace algebra T;° has a trace map induced by

the natural inclusion
Ty —— M, (C[M.®])

:
Ny ——— C[M;"]
which has image tr(TS°) the infinite necklace algebra N2°. Clearly, being
a trace-preserving inclusion, T¢° is a Cayley-Hamilton algebra of degree n.
With this definition, we have the following categorical description of the trace
algebra T7°.

THEOREM 1.16

The trace algebra TS° is the free algebra in the generic matriz generators

{X1,Xo,...,X;,...} in the category of Cayley-Hamilton algebras of degree n.
For any m, the trace algebra T} is the free algebra in the generic matriz

generators {X1,..., X} in the category alg@n of Cayley-Hamilton algebras

of degree n which are trace generated by at most m elements.

PROOF Let F, be the free algebra in the generators {y1,y2,...} in the
category alg@n, then by freeness of T* there is a trace preserving algebra
epimorphism

T "~ F, with (x;) = y;
By the universal property of F),, the ideal Ker 7 is the minimal ideal I of T
such that T/ is Cayley-Hamilton of degree n.
We claim that Ker 7 is substitution invariant. Consider a substitution
endomorphism ¢ of T and consider the diagram

¢ T

T

4

i "

T>/Ker x —— F,
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then Ker x is an ideal closed under traces such that T /Ker x is a Cayley-
Hamilton algebra of degree n (being a subalgebra of F),). But then Ker m C
Ker x (by minimality of Ker 7) and therefore x factors over F,, that is, the
substitution endomorphism ¢ descends to an endomorphism ¢ : F,, — F},
meaning that Ker 7 is left invariant under ¢, proving the claim. Further,
any formal Cayley-Hamilton polynomial X&") (2) of degree n of x € T maps
to zero under w. By substitution invariance it follows that the ideal of trace
relations Ker 7 C Ker m. We have seen that T /Ker 7 = T is the infinite
trace algebra, which is a Cayley-Hamilton algebra of degree n. Thus, by
minimality of Ker m we must have Ker 7 = Ker m and hence F,, ~ T?°. The
second assertion follows immediately.

Let A be a Cayley-Hamilton algebra of degree n that is trace generated by
the elements {a1,...,a,}. We have a trace preserving algebra epimorphism
pa defined by p(X;) = a;

tr tra

NG Pe  oh A

and hence a presentation A ~ T /T4 where T4 < T is the ideal of trace
relations holding among the generators a,. We recall that T is the ring of

G Ly-equivariant polynomial maps M, N M, that is

My (C[M;) S =T

n

where the action of GL,, is the diagonal action on M,,(C[M"]) = M,,@C[M™].

Observe that if R is a commutative algebra, then any two-sided ideal I «
M, (R) is of the form M, (J) for an ideal J<R. Indeed, the subsets J;; of (i, j)
entries of elements of I is an ideal of R as can be seen by multiplication with
scalar matrices. Moreover, by multiplying on both sides with permutation
matrices one verifies that J;; = Jy; for all 4, j, k, [ proving the claim.

Applying this to the induced ideal M, (C[M™]) Ta M,(C[M]) <
M, (C[M™]) we find an ideal N4 < C[M"] such that

M, (C[M}"]) Ta My (C[M;]) = My (Na)

n

Observe that both the induced ideal and N4 are stable under the respective
G L,-actions.

Assume that V and W are two (not necessarily finite dimensional) C-vector
spaces with a locally finite G L,-action (that is, every finite dimensional sub-
space is contained in a finite dimensional GL,-stable subspace) and that

\%4 N W is a linear map commuting with the GL,-action. In section 2.5
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we will see that we can decompose V and W uniquely in direct sums of
simple representations and in their isotypical components (that is, collect-
ing all factors isomorphic to a given simple GL,-representation) and prove
that V(o) = VEEn, respectively, W), = WL where (0) denotes the trivial
G L, -representation. We obtain a commutative diagram

f

Vv w

VGL" fo WG

where R is the Reynolds operator, that is, the canonical projection to the
isotypical component of the trivial representation. Clearly, the Reynolds op-
erator commutes with the GL,-action. Moreover, using complete decompos-
ability we see that fy is surjective (resp. injective) if f is surjective (resp.
injective).

Because N4 is a GL,-stable ideal of C[M"] we can apply the above in the

situation
s

M, (€M) - My (CIM;)/Na)
R R
T T M (CIM]/NA)SE

and the bottom map factorizes through A = T /T4 giving a surjection
A —> M, (C[M,]")/N4)CEn

In order to verify that this map is injective (and hence an isomorphism) it
suffices to check that

My, (CIM;]) Ta My (CIM]) NI =T

Using the functor property of the Reynolds operator with respect to multipli-
cation in M, (C[MS°]) with an element x € T} or with respect to the trace
map (both commuting with the GL,-action) we deduce the following relations

e For all z € T and all z € M,,(C[M:°]) we have R(zz) = zR(z) and
R(zz) = R(2)x.

e For all z € M,,(C[M2°]) we have R(tr(z)) = tr(R(2)).
)

Assume that z = ), t;z;n; € M, (C[M"]) Ta M, (C[M*])NT with m;,n; €
M, (C[M™]) and t; € T4. Now, consider X,,11 € T°. Using the cyclic
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property of traces we have

r(zXm+1) Ztr mitin; Xm+1) Ztr 1 Xomr1M4t;)

and if we apply the Reynolds operator to it we obtain the equality

tr(zXma1) = tr(z R(n; Xy p1mi)t;)

For any 4, the term R(n;X,,+1m;) is invariant so belongs to ’]I‘ﬁJrl and is
linear in X, 1. Knowing the generating elements of T™*! we can write

R(niXmiami) = Y i Xomiatiy + Y tr(winXom 1) vi
J k

with all of the elements s;;, ¢;;, u;, and v;, in T}'. Substituting this informa-

tion and again using the cyclic property of traces we obtain

tT(ZXm+1) = t?“((z Sijtijti + lfT(Uikti))Xm+1)
.5,k
and by the nondegeneracy of the trace map we again deduce from this the
equality
2= sijtijti + tr(vict;)
.5,k

Because t; € T4 and T4 is stable under taking traces we deduce from this
that z € T4 as required.

Because A = M,,(C[M™]/N 4)%L we can apply the functor property of the
Reynolds operator to the setting

tr

My (C[M")/Na) "5 C[M,]/Na

tra

< ™ (C[My]/N )"

A

Concluding we also have the equality
tra(A) = (CIM;]/Ja) "

Summarizing, we have proved the following invariant theoretic reconstruction
result for Cayley-Hamilton algebras.

THEOREM 1.17
Let A be a Cayley-Hamilton algebra of degree n, with trace map tra, which
18 trace generated by at most m elements. Then , there is a canonical ideal
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N4 <« C[M]"] from which we can reconstruct the algebras A and tra(A) as
tmvariant algebras

A= M,(C[M™/N4)%E» and tra(A) = (C[M™]/N,)%En

A direct consequence of the above proof is the following universal property
of the embedding

A <2 M, (C[MY]/N4)

Let R be a commutative C-algebra, then M, (R) with the usual trace is a
Cayley-Hamilton algebra of degree n. If f : A —— M, (R) is a trace pre-
serving morphism, we claim that there exists a natural algebra morphism
f:C[M™/Ns — R such that the diagram

A L v Mu(R)

."

D
G
1A NMV

M, (CME/NL)

where M, (f) is the algebra morphism defined entrywise. To see this, consider

the composed trace preserving morphism ¢ : T)" — A N M, (R). Its

image is fully determined by the images of the trace generators Xj of T}’
which are, say, my = (m;;(k)); ;. But then we have an algebra morphism
C[M"] —~ R defined by sending the variable z;;(k) to mg;(k). Clearly,
T4 C Ker ¢ and after inducing to M,,(C[M]"]) it follows that Ny C Ker g
proving that ¢ factors through C[M™]/Js —— R. This morphism has the
required universal property.
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Chapter 2

Reconstructing Algebras

We will associate to an affine C-algebra A its affine scheme of n-dimensional
representations rep,, A. There is a base change action by GL,, on this scheme
and its orbits are exactly the isomorphism classes of n-dimensional represen-
tations. We will prove the Hilbert criterium which describes the nullcone via
one-parameter subgroups and apply it to prove Michael Artin’s result that
the closed orbits in rep,, A correspond to semisimple representations.

We recall the basic results on algebraic quotient varieties in geometric in-
variant theory and apply them to prove Procesi’s reconstruction result. If
A € alg@n, then we can recover A as

A >\ [trep,, A]
the ring of GL,-equivariant polynomial maps from the trace preserving rep-
resentation scheme trep, A to M, (C). However, the functors

trep,,

—— >
algln _ GL(n)-affine

o
do not determine an antiequivalence of categories (as they do in commutative
algebraic geometry, which is the special case n = 1). We will illustrate this
by calculating the rings of equivariant maps of orbit-closures of nilpotent
matrices. These orbit-closures are described by the Gerstenhaber-Hesselink
theorem. Later, we will be able to extend this result and study the nullcones
of more general representation varieties.

2.1 Representation schemes

For a noncommutative affine algebra A with generating set {a1,...,am},
there is an epimorphism

(:<x17~--713nn> 44?L> A
defined by ¢(x;) = a;. That is, a presentation of A as
A~Clxy,...,2m)/1a

55
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where [ 4 is the two-sided ideal of relations holding among the a;. For example,
if A=Clzy,...,Zn], then I4 is the two-sided ideal of C(x1, ..., x,,) generated
by the elements z;z; — x;x; for all 1 < 4,7 < m.

An n-dimensional representation of A is an algebra morphism

AV M,

from A to the algebra of n x n matrices over C. If A is generated by
{a1,...,am}, then ¥ is fully determined by the point

((a1),¥(az),... ., ¥(am)) € M = w

We claim that rep,(A), the set of all n-dimensional representations of A,
forms a Zariski closed subset of M,". To begin, observe that

repn(Clzy, ..., xm)) = M)

as any m-tuple of n x n matrices (A41,...,4,,) € M determines an algebra
morphism C{x1,..., &) v, M, by taking ¢ (z;) = A;.

Given a presentation A = C{xy,...,2Zm)/Ia an m-tuple (A;,..., A,,) €
M™ determines an n-dimensional representation of A if (and only if) for every

noncommutative polynomial 7(x1,...,zy) € T4 <C(x1,...,Tmy) we have that
0...0
’I”(Ah...,Am): e M,
0...0

Hence, consider the ideal I4(n) of C[M]"] = Clxz;;(k)

|1<i,j<nl1<k<
m] generated by all the entries of the matrices in M, (C[M/

M'™]) of the form
r(Xy,..., X)) forall r(zq,...,2y) €14

We see that the reduced representation variety rep, A is the set of simultane-
ous zeroes of the ideal T4(n), that is

repn, A=V(Ia(n)) — M,"

proving the claim. Here, V denotes the closed set in the Zariski topology
determined by an ideal. The complement of V(I) we will denote with X(I)).
Observe that, even when A is not finitely presented, the ideal I4(n) is finitely
generated as an ideal of the commutative (Noetherian) polynomial algebra
ClM;).

Example 2.1
It may happen that rep, A = (). For example, consider the Weyl algebra

A1(C) =C(z,y)/(zy —yr — 1)
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If a couple of n x n-matrices (A, B) € rep, A1(C) then we must have
AB-BA=1,eM,

However, taking traces on both sides gives a contradiction as tr(AB) =
tr(BA) and tr(T,) =n # 0. I

Often, the ideal I4(n) contains more information than the closed subset
repn(A) = V(I4(n)) which, using the Hilbert Nullstellensatz, only determines
the radical ideal of I4(n). This fact forces us to consider the representation
variety (or scheme) rep,, A.

In the foregoing chapter we studied the action of GL,, by simultaneous
conjugation on M. We claim that rep, A —— M" is stable under this
action, that is, if (Ay,...,A;) € rep, A, then also (gA1g7t,...,gAng7!) €
rep, A. This is clear by composing the n-dimensional representation v of A
determined by (Ai,...,A,,) with the algebra automorphism of M,, given by
conjugation with g € GL,

A—Y o,
«9 g9 "
i3
e
M,

Therefore, rep, A is a GL,-variety . We will give an interpretation of the
orbits under this action.

Recall that a left A-module M is a vector space on which elements of A act
on the left as linear operators satisfying the conditions

Ilm=m and a.(b.m)= (ab).m

for all a,b € A and all m € M. An A-module morphism M SN between
two left A-modules is a linear map such that f(a.m) = a.f(m) for all a € A
and all m € M. An A-module automorphism is an A-module morphism
M NN N such that there is an A-module morphism N —2+ M such that
fog=idy and go f = idy.

Assume the A-module M has dimension n, then after fixing a basis we can
identify M with C" (column vectors). For any a € A we can represent the

linear action of ¢ on M by an n x n matrix ¥(a) € M,,. The condition that
a.(b.m) = (ab).m for all m € M asserts that 1(ab) = ¢ (a)y(b) for all a,b € A,

that is, ¢ is an algebra morphism A v, M, and hence M determines an n-

dimensional representation of A. Conversely, an n-dimensional representation

AL M, determines an A-module structure on C™ by the rule

av=1(a)v forall veC”
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Hence, there is a one-to-one correspondence between the n-dimensional rep-
resentations of A and the A-module structures on C". If two n-dimensional
A-module structures M and N on C" are isomorphic (determined by a linear
invertible map g € GL,,) then for all a € A we have the commutative diagram

M g N

M—2 N
Hence, if the action of a on M is represented by the matrix A, then the
action of @ on M is represented by the matrix g.A.g~!. Therefore, two A-
module structures on C" are isomorphic if and only if the points of rep, A
corresponding to them lie in the same GL,-orbit. Concluding, studying n-
dimensional A-modules up to isomorphism is the same as studying the GL,,-
orbits in the reduced representation variety rep, A.

If the defining ideal I4(n) is a radical ideal, the above suffices. In general,
the scheme structure of the representation variety rep, A will be important.
By definition, the scheme rep,, A is the functor assigning to any (affine)
commutative C-algebra R, the set

rep, A(R) = Alge(C[M;"]/I(n), R)

of C-algebra morphisms (CIZ\?%] Y+ R. Such a map 1 is determined by the

image ¥(x;;(k)) = ri;(k) € R. That is, ¢ € rep,, A(R) determines an m-tuple
of n X n matrices with coefficients in R

7’11(]{3) NN ’I"ln(k})
(ri,...,tm) € My(R)® ... ® M,(R) where ry= : :
m ’I“nl(k) “e- Tnn(k‘)

Clearly, for any r(x1, ..., %) € Ia we must have that r(rq, ..., r) is the zero
matrix in M, (R). That is, ¢ determines uniquely an R-algebra morphism

:R®c A — M,(R) by mapping =z +— ri

Alternatively, we can identify the set rep,, (R) with the set of left R® A-module
structures on the free R-module R®™ of rank n.

2.2 Some algebraic geometry

Throughout this book we assume that the reader has some familiarity with
algebraic geometry, as contained in the first two chapters of the textbook [43].



Reconstructing Algebras 59

In this section we restrict to the dimension formulas and the relation between
Zariski and analytic closures. We will illustrate these results by examples
from representation varieties. We will consider only the reduced varieties in
this section.

A morphism X —%+ Y between two affine irreducible varieties (that is, the
coordinate rings C[X] and C[Y] are domains) is said to be dominant if the
image ¢(X) is Zariski dense in Y. On the level of the coordinate algebras
dominance is equivalent to ¢* : C[Y] —— C[X] being injective and hence
inducing a fieldextension ¢* : C(Y) —— C(X) between the function fields.
Indeed, for f € C[Y] the function ¢*(f) is by definition the composition

x .y _t.c

and therefore ¢*(f) = 0 iff f(¢(X)) =0iff f(4(X)) =0.

A morphism X %+ Y between two affine varieties is said to be finite if
under the algebra morphism ¢* the coordinate algebra C[X] is a finite C[Y]-
module. An important property of finite morphisms is that they are closed,
that is the image of a closed subset is closed. Indeed, we can replace without
loss of generality Y by the closed subset ¢(X) = Vy (Ker ¢*) and hence
assume that ¢* is an inclusion C[Y] = C[X]. The claim then follows from
the fact that in a finite extension there exists for any maximal ideal N <«C[Y]
a maximal ideal M < C[X] such that M NC[Y] = C[X].

Example 2.2

Let X be an irreducible affine variety of dimension d. By the Noether
normalization result C[X] is a finite module over a polynomial subalgebra
Clf1,---, fa]- But then, the finite inclusion C[f1,..., fq] —— C[X] deter-
mines a finite surjective morphism

X %
I

An important source of finite morphisms is given by integral extensions.
Recall that, if R —— S is an inclusion of domains we call S integral over R
if every s € S satisfies an equation

n—1
s" = E r;s'  with r; € R.
i=0

A normal domain R has the property that any element of its field of fractions,

which is integral over R, belongs already to R. If X —%+ Y is a dominant
morphism between two irreducible affine varieties, then ¢ is finite if and only
if C[X] in integral over C[Y] for the embedding coming from ¢*.
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PROPOSITION 2.1
Let X —— Y be a dominant morphism between irreducible affine varieties.
Then, for any x € X and any irreducible component C of the fiber ¢~ 1(¢(2))
we have

dim C > dim X —dim Y.

Moreover, there is a nonempty open subset U of Y contained in the image
d(X) such that for all u € U we have

dim ¢ (u) = dim X —dim'Y

PROOF Let d =dim X —dim Y and apply the Noether normalization
result to the affine C(Y")-algebra C(Y)C[X]. Then, we can find a function g €
C[Y'] and algebraic independent functions f1,..., fa € C[X], (g clears away
any denominators that occur after applying the normalization result) such
that C[X], is integral over C[Y]4[f1, ..., fa]. That is, we have the commutative
diagram

Xx(g) e Xy (g) x C?
pri
xX—°% vy > X
-Y < v (9)

where we know that p is finite and surjective. But then we have that the open
subset Xy (¢g) lies in the image of ¢ and in Xy (g) all fibers of ¢ have dimension
d. For the first part of the statement we have to recall the statement of Krull’s
Hauptideal result: if X is an irreducible affine variety and ¢1,...,g, € C[X]
with (g1,...,9r) # C[X], then any component C of Vx(g1,...,g,) satisfies
the inequality

dim C >dim X —r

If dim Y = r apply this result to the g; determining the morphism
X2y

where the latter morphism is the one from example 2.2. I

In fact, a stronger result holds. Chevalley’s theorem asserts the following.

THEOREM 2.1
Let X —— Y be a morphism between affine varieties, the function

X —» N defined by x> dim, ¢~ (o(x))
is upper-semicontinuous. That is, for alln € N, the set

{z € X | dim, ¢ (o(x)) < n}
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18 Zariski open in X.

PROOF  Let Z(¢,n) be the set {x € X | dim, ¢~ (¢p(x)) > n}. We
will prove that Z(¢,n) is closed by induction on the dimension of X. We
first make some reductions. We may assume that X is irreducible. For,
let X = U;X; be the decomposition of X into irreducible components, then
Z(p,n) = UZ(¢ | X;,n). Next, we may assume that ¥ = ¢(X) whence YV
is also irreducible and ¢ is a dominant map. Now, we are in the setting of
proposition 2.1. Therefore, if n < dim X — dim Y we have Z(¢,n) = X by
that proposition, so it is closed. If n > dim X — dim Y consider the open
set U in Y of proposition 2.1. Then, Z(¢,n) = Z(¢ | (X — ¢~ 1(U)),n). the
dimension of the closed subvariety X — ¢~1(U) is strictly smaller that dim X
hence by induction we may assume that Z(¢ | (X — ¢~ 1(U)),n) is closed in
X — ¢~ }(U) whence closed in X.

An immediate consequence of the foregoing proposition is that for any mor-

phism X ¢, Y between affine varieties, the image ¢(X) contains an open

dense subset of ¢(Z) (reduce to irreducible components and apply the propo-
sition).

Example 2.3
Let A be an affine C-algebra and M € rep,, A. We claim that the orbit

O(M)=GL,.M is Zariski open in its closure ~O(M)

Consider the "orbit-map” GL,, _*. rep, A defined by g — ¢g.M. Then, by
the above remark O(M) = ¢(GL,,) contains a Zariski open subset U of O(M)
contained in the image of ¢ which is O(M). But then

OM)=GL,.M =Uyeccr,9.U
is also open in O(M). Next, we claim that O(M) contains a closed orbit.
Indeed, assume O(M) is not closed, then the complement Cyy = O(M) —
O(M) is a proper Zariski closed subset whence dim C < dim O(M). But, C
is the union of GL,-orbits O(M;) with dim O(M;) < dim O(M). Repeating
the argument with the M, and induction on the dimension we will obtain a
closed orbit in O(M).

Next, we want to relate the Zariski closure with the C-closure (that is, clo-
sure in the usual complex or analytic topology). Whereas they are usually not
equal (for example, the unit circle in C!), we will show that they coincide for
the important class of constructible subsets. A subset Z of an affine variety
X is said to be locally closed if Z is open in its Zariski closure Z. A subset
Z is said to be constructible if Z is the union of finitely many locally closed
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subsets. Clearly, finite unions, finite intersections and complements of con-
structible subsets are again constructible. The importance of constructible
sets for algebraic geometry is clear from the following result.

PROPOSITION 2.2
Let X —— Y be a morphism between affine varieties. If Z is a constructible
subset of X, then ¢(Z) is a constructible subset of Y.

PROOF Because every open subset of X is a finite union of special open

sets, which are themselves affine varieties, it suffices to show that ¢(X) is
constructible. We will use induction on dim ¢(X). There exists an open
subset U C ¢(X) that is contained in ¢(X). Consider the closed complement
W = ¢(X) — U and its inverse image X' = ¢~1(W). Then, X’ is an affine
variety and by induction we may assume that ¢(X’) is constructible. But
then, ¢(X) = U U ¢(X’) is also constructible.

Example 2.4

Let A be an affine C-algebra. The subset ind,, A —— rep, A of the inde-
composable n-dimensional A-modules is constructible. Indeed, define for any
pair k, [ such that k£ 4+ [ = n the morphism

GL, x repy Axrepp A — rep, A

by sending a triple (g, M, N) to g.(M & N). By the foregoing result the image
of this map is constructible. The decomposable n-dimensional A-modules
belong to one of these finitely many sets whence are constructible, but then
S0 is its complement which in ind,, A.

Apart from being closed, finite morphisms often satisfy the going-down
property . That is, consider a finite and surjective morphism

X 2.y

where X is irreducible and Y is normal (that is, C[Y] is a normal domain).
Let Y/ —— Y an irreducible Zariski closed subvariety and x € X with image
o(x) =y € Y'. Then, the going-down property asserts the existence of

an irreducible Zariski closed subvariety X’ —— X such that x € X’ and

¢(X’) = Y’'. In particular, the morphism X’ v is again finite and

surjective and in particular dim X' = dim Y.

LEMMA 2.1
Let x € X an irreducible affine variety and U a Zariski open subset. Then,
there is an irreducible curve C' —— X through x and intersecting U .
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PROOF If d = dim X consider the finite surjective morphism X 4, o
of example 2.2. Let y € C? — ¢(X — U) and consider the line L through y and
¢(x). By the going-down property there is an irreducible curve C —— X
containing x such that ¢(C) = L and by construction C N U # . I

PROPOSITION 2.3

Let X . Y be a dominant morphism between irreducible affine varieties
anyy €Y. Then, there is an irreducible curve C — X such that y € ¢(C).

PROOF Consider an open dense subset U < Y contained in the image
@(X). By the lemma there is a curve C’ —— Y containing y and such that
C'NU # (). Then, again applying the lemma to an irreducible component of
»~1(C’) not contained in a fiber, we obtain an irreducible curve C —— X

with ¢(C) = C". I

Any affine variety X —— C* can also be equipped with the induced C-
topology (or analytic topology) from CF, which is much finer than the Zariski

topology . Usually there is no relation between the closure ZC of a subset
Z —— X in the C-topology and the Zariski closure Z.

LEMMA 2.2
Let U C CF containing a subset V that is Zariski open and dense in U. Then,

Ut =T

PROOF By reducing to irreducible components, we may assume that U
is irreducible. Assume first that dim U = 1, that is, U is an irreducible curve
in C*. Let U, be the subset of points where U is a complex manifold, then
U — U, is finite and by the implicit function theorem in analysis every u € U,
has a C-open neighborhood which is C-homeomorphic to the complex line C!,
whence the result holds in this case.

If U is general and z € U we can take by the lemma above an irreducible

curve C — U containing z and such that CNV # (. Then, CNV is Zariski

. ——F—=C —C
open and dense in C and by the curve argument above x € (CNV) C U .

We can do this for any x € U finishing the proof.

Consider the embedding of an affine variety X —— C*, proposition 2.2
and the fact that any constructible set Z contains a subset U which is open
and dense in Z we deduce from the lemma at once the next result.



64 Noncommutative Geometry and Cayley-Smooth Orders

PROPOSITION 2.4
If Z is a constructible subset of an affine variety X, then

7°=-7

Example 2.5

Let A be an affine C-algebra and M € rep,, A. We have proved in example 2.3
that the orbit O(M) = GL,,.M is Zariski open in its closure O(M). Therefore,
the orbit O(M) is a constructible subset of rep,, A. By the proposition above,
the Zariski closure O(M) of the orbit coincides with the closure of O(M) in
the C-topology.

2.3 The Hilbert criterium

A one-parameter subgroup of a linear algebraic group G is a morphism
A C— @G

of affine algebraic groups. That is, A is both a group morphism and a mor-
phism of affine varieties. The set of all one-parameter subgroup of G will be
denoted by Y (G).

If G is commutative algebraic group, then Y (G) is an Abelian group with
additive notation

)\1 + )\2 : C* I—— G with ()\1 + )\2)@) = Al(t))\g(t)
Recall that an n-dimensional torus is an affine algebraic group isomorphic to

C'x...xC"=T,
—_———

n

the closed subgroup of invertible diagonal matrices in GL,,.

LEMMA 2.3
Y (T,) =~ Z™. The correspondence is given by assigning to (r1,...,ry) € Z™
the one-parameter subgroup

A:C*"—— T, givenby t— (t",...;t™)

PROOF For any two affine algebraic groups G and H there is a canonical
bijection Y(G x H) = Y(G) x Y(H) so it suffices to verify that Y (C*) ~ Z
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with any A : C* —— C* given by t + t" for some r € Z. This is obvious as
X induces the algebra morphism

s

C[C*] = Clz, 21 2+ Clz, 27} = C[C*]

which is fully determined by the image of x which must be an invertible
element. Now, any invertible element in C[z, x~!] is homogeneous of the form
cx” for some r € Z and ¢ € C*. The corresponding morphism maps t to ct”,
which is only a group morphism if it maps the identity element 1 to 1 so ¢ =1,
finishing the proof.

PROPOSITION 2.5
Any one-parameter subgroup X : C* — GL,, is of the form

tr 0
t+— gil. . .g
0t
for some g € GL,, and some n-tuple (r1,...,7m,) € Z".

PROOF Let H be the image under A of the subgroup pi.o of roots of unity
in C*. We claim that there is a base change matrix g € GL,, such that

C* 0
gHg ' — .
0 C
Assume h € H not a scalar matrix, then h has a proper eigenspace decom-

position V @& W = C". We use that h! =, and hence all its Jordan blocks
must have size one as for any A # 0 we have

l

A1 0 AT *
= £

'..1 '..l)\l—l

A Al

Because H is commutative, both V and W are stable under H. By induc-
tion on n we may assume that the images of H in GL(V) and GL(W) are
diagonalizable, but then the same holds in GL,,.

AS pioo is infinite, it is Zariski dense in C* and because the diagonal matrices
are Zariski closed in GL,, we have

gMCHg t=gHg ' — T,
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and the result follows from the lemma above I

Let V be a general GL,,-representation considered as an affine space with
GL,-action, let X be a GL,-stable closed subvariety and consider a point

A . .
x € X. A one-parameter subgroup C* —— GL,, determines a morphism

C* 2w X defined by t— A(t).x

Observe that the image A\;(C*) lies in the orbit GL,.x of x. Assume there
is a continuous extension of this map to the whole of C. We claim that this
extension must then be a morphism. If not, the induced algebra morphism

ClX] =~ Cltt ]
does not have its image in C[t], so for some f € C[Z] we have that

ap+ a1t + ...+ a,t?
ts

An(f) = with a9 #0and s>0
But then A:(f)(t) —— =+ oo when ¢ goes to zero, that is, A% cannot have a
continuous extension, a contradiction.

So, if a continuous extension exists there is morphism A, : C —— X.
Then, A\, (0) =y and we denote this by

Q%A(t).x =y
Clearly, the point y € X must belong to the orbitclosure GL,,.x in the Zariski
topology (or in the C-topology as orbits are constructible). Conversely, one
might ask whether if y € GL,,.x we can always approach y via a one-parameter
subgroup. The Hilbert criterium gives situations when this is indeed possible.

The only ideals of the formal power series C[[t]] are principal and generated
by t" for some r € N;. With C((¢)) we will denote the field of fractions of the
domain C((t)).

LEMMA 2.4
Let V be a GL,-representation, v € V and a point w € V lying in the
orbitclosure GL,.v. Then, there exists a matriz g with coefficients in the field

C((t)) and det(g) # 0 such that

(9.v)t=o is well defined and is equal to ~ w

PROOF Note that g.v is a vector with coordinates in the field C((¢)). If
all coordinates belong to C|[[t]] we can set ¢ = 0 in this vector and obtain a
vector in V. It is this vector that we denote with (g.v)¢—g.
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Consider the orbit map u : GL, —— V defined by ¢’ — ¢'.v. As w €
GL,,.v we have seen that there is an irreducible curve C —— GL,, such that
w € pu(C). We obtain a diagram of C-algebras

C[GLy,] — C[C] = C(C)

ClV] —— Clu(C)] = C[C"]

Here, C[C] is defined to be the integral closure of C[u(C)] in the function
field C(C) of C. Two things are important to note here : C' —— u(C) is
finite, so surjective and take ¢ € C’ be a point lying over w € p(C). Further,
C’ having an integrally closed coordinate ring is a complex manifold. Hence,
by the implicit function theorem polynomial functions on C' can be expressed
in a neighborhood of ¢ as power series in one variable, giving an embedding
C|C"] = C][t]] with (¢) "N C[C'] = M,. This inclusion extends to one on
the level of their fields of fractions. That is, we have a diagram of C-algebra
morphisms

ClGL,] — C(C) = C(C) — C(())

ClV] —— Clu(C)] = CIC"] —— C[[]]
The upper composition defines an invertible matrix g¢(¢) with coefficients
in C((t)), its (4, 7)-entry being the image of the coordinate function z;; €
C[GL,). Moreover, the inverse image of the maximal ideal (¢) < C[[t]] under
the lower composition gives the maximal ideal M, < C[V]. This proves the
claim.

LEMMA 2.5
Let g be an n x n matriz with coefficients in C((t)) and det g # 0. Then
there exist uy,uz € GL,(CI[t]]) such that

™ 0

g =ux. U2
withr; €Z andry <re <...<71,.

PROOF By multiplying g with a suitable power of t we may assume that
9 =(9i(t)i; € Mn(C[[t]). If f(t) = 327, fit" € C[[t] define v(f(£)) to be
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the minimal ¢ such that a; # 0. Let (40, jo) be an entry where v(g;;(t)) attains
a minimum, say, r1. That is, for all (4, j) we have g;;(t) = t™t" f(t) with r > 0
and f(t) an invertible element of C[[¢]].

By suitable row and column interchanges we can take the entry (ig,jg) to
the (1,1)-position. Then, multiplying with a unit we can replace it by ¢™
and by elementary row and column operations all the remaining entries in the
first row and column can be made zero. That is, we have invertible matrices
a1, as € GL,(C[[t]]) such that

.as

Repeating the same idea on the submatrix g; and continuing gives the result.

We can now state and prove the Hilbert criterium, which allows us to study
orbit-closures by one-parameter subgroups.

THEOREM 2.2

LetV be a GL,,-representation and X — V a closed G L,,-stable subvariety.
Let O(x) = GLy.x be the orbit of a point x € X. Let Y —— O(x) be a
closed GL,-stable subset. Then, there exists a one-parameter subgroup \ :
C* —— GL,, such that

lim A(t).xeY

t—0

PROOF It suffices to prove the result for X = V. By lemma 2.4 there is
an invertible matrix g € M,,(C((t))) such that

(9x)t—o =y €Y
By lemma 2.5 we can find uy,u2 € GL,(C][t]]) such that
tm 0
g=urN(t)ug with N (t)= ]
0t

a one-parameter subgroup. There exist z; € V such that us.z = Y ;2 zt" in
particular uz(0).z = xo. But then

(N (). ug.2) =0 = Z(X(t)fmti)tzo
0

= (;/(t>‘$0>t:0 + (N (t).x1t) =0 + - . .
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But one easily verifies (using a basis of eigenvectors of X' (t)) that

lim/\,_l(s),()\’(t)xiti)tzo _ {(/\/(t)-xo)t_o if 1 =0,

5—0 0 ifi#0
As (N (t).ug.z)i—0 € Y and Y is a closed GL,-stable subset, we also have that
zméxfl(s).(X(t).uz.x)t:O €Y thatis, (N(t).zo)imo €Y

But then, we have for the one-parameter subgroup A(t) = u2(0) =L\ (¢).u2(0)
that
iirré)\(t).x ey

finishing the proof. I
An important special case occurs when = € V' belongs to the nullcone , that

is, when the orbit closure O(z) contains the fixed point 0 € V. The original
Hilbert criterium asserts the following.

PROPOSITION 2.6
Let V be a GL,-representation and x € V in the nullcone. Then, there is a

A
one-parameter subgroup C* —— GL,, such that
%zﬁr}rg At).x=0
In the statement of theorem 2.2 it is important that Y is closed. In par-

ticular, it does not follow that any orbit O(y) —— O(x) can be reached via
one-parameter subgroups, see example 2.7 below.

2.4 Semisimple modules

In this section we will characterize the closed GL,-orbits in the represen-
tation variety rep, A for an affine C-algebra A. We have seen that any point

1) € rep,, A (that is any n-dimensional representation A . M,,) determines
an n-dimensional A-module, which we will denote with My.

A finite filtration F' on an n-dimensional module M is a sequence of A-
submodules

F o OZMt+1CMtC...CM1CM0=M
The associated graded A-module is the n-dimensional module

agrr M = ®§:0Mi/Mi+1
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We have the following ring theoretical interpretation of the action of one-
parameter subgroups of GL,, on the representation variety rep, A.

LEMMA 2.6
Let ¢, p € rep, A. Equivalent are

1. There is a one-parameter subgroup C* N GL,, such that
Lim ()4 = p

2. There is a finite filtration F' on the A-module My such that
gre My ~ M,

as A-modules.

PROOF (1) = (2): If V is any GL,-representation and C* 2, GL, a
one-parameter subgroup, we have an induced weight space decomposition of
\%4

V=&;Vy;, where Vy,={veV|At)v= tiv,Vt € C*}

In particular, we apply this to the underlying vector space of My, which is
V = C" (column vectors) on which GL,, acts by left multiplication. We define

M; =®i>;Va,

and claim that this defines a finite filtration on My with associated graded
A-module M,. For any a € A (it suffices to vary a over the generators of A)
we can consider the linear maps

bij(a) : Vay = V =My 2o My =V —» V),

(that is, we express the action of a in a block matrix ®, with respect to the
decomposition of V). Then, the action of a on the module corresponding to
A(t).¢) is given by the matrix ®/, = \(¢).®,.A(t)~! with corresponding blocks

¢ij(a)

Va,i %W

A(t) "t A(t)

Va,i %W

¢fij(a)
that is, ¢j;(a) = t/"*¢i;(a). Therefore, if lim; oA(t).4 exists we must have
that
¢ij(a) =0 forall j<i
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But then, the action by a sends any My = @®;51 V) ; to itself, that is, the M}
are A-submodules of M,. Moreover, for j > i we have

lim ¢7;(a) = lim /™"¢;;(a) = 0

Consequently, the action of a on p is given by the diagonal block matrix with
blocks ¢;;(a), but this is precisely the action of a on V; = M;_1/M;, that is,
p corresponds to the associated graded module.

(2) = (1): Given a finite filtration on My

F OZMt_;,_lC...CMlCMQ:Mw
we have to find a one-parameter subgroup C* 2, GL,, which induces the

filtration F' as in the first part of the proof. Clearly, there exist subspaces V;
for 0 <4 <t such that

V=&V and M; =&}V

Then we take A to be defined by \(t) = t'Idy, for all i and it verifies the
claims.

Example 2.6
Let My be the 2-dimensional Clz]-module determined by the Jordan block
and consider the canonical basevectors

Al 1 0
0A  “T o] 271
Then, Ce; is a C[z]-submodule of M, and we have a filtration

O=M2C(C61=M1CCel@CegzMonw

Using the conventions of the second part of the above proof we then have

Vi = Cey Vo =Cey hence A(t) = [8 ﬂ

Indeed, we then obtain that

o bl o= [0

and the limit ¢ —— 0 exists and is the associated graded module grp My =
M, determined by the diagonal matrix.

Consider two modules My, My € rep, A. Assume that

O(M,) — O(M,) and that we can reach the orbit of M, via a one-
parameter subgroup. Then, lemma 2.6 asserts that M, must be decomposable
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T S

(7 [711] [6[2] [7I1] (7[1]

\/ /N N\

[6]1] [6[1]

[6]0] [6]o] [6]0] [610]

\/
/\
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FIGURE 2.1: Kraft’s diamond describing the nullcone of M3.

as it is the associated graded of a nontrivial filtration on M,. This gives us
a criterion to construct examples showing that the closedness assumption in
the formulation of Hilbert’s criterium is essential.

Example 2.7 Nullcone of M2 = M3 @& M3

In chapter 6 we will describe a method to determine the nullcones of m-tuples
of n x n matrices. The special case of two 3 x 3 matrices has been worked
out by H.P. Kraft in [62, p. 202]. The orbits are depicted in figure 2.1 In
this picture, each node corresponds to a torus. The right-hand number is the
dimension of the torus and the left-hand number is the dimension of the orbit
represented by a point in the torus. The solid or dashed lines indicate orbit
closures. For example, the dashed line corresponds to the following two points
in Mg = M3 D M3

001] [010 001] [010
¢=(loo1]|,[000|) p=(lo00]|,|000])
000/ (000 000 (000

We claim that M), is an indecomposable 3-dimensional module of C(z,y).
Indeed, the only subspace of the column vectors C? left invariant under both
z and y is equal to

C

0

0

hence M, cannot have a direct sum decomposition of two or more modules.
Next, we claim that O(M,) —— O(My). Indeed, simultaneous conjugating
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1 with the invertible matrix

let—10 001 010
0 1 0 we obtain the couple (|00e|,]|000()
0 0 €t 000 000
and letting e — 0 we see that the limiting point is p. I

The Jordan-Hélder theorem , see, for example [84, 2.6], asserts that any
finite dimensional A-module M has a composition series , that is, M has a
finite filtration

F oo OZMt+1CMtC...CM1CM0=M

such that the successive quotients S; = M;/M;,1 are all simple A-modules
for 0 <14 < t. Moreover, these composition factors S and their multiplicities
are independent of the chosen composition series, that is, the set {Sg,...,S¢}
is the same for every composition series. In particular, the associated graded
module for a composition series is determined only up to isomorphism and is
the semisimple n-dimensional module

gr M =a!_,S;

THEOREM 2.3
Let A be an affine C-algebra and M € rep,, A.

1. The orbit O(M) is closed in rep,, A if and only if M is an n-dimensional
semisimple A-module.

2. The orbit closure O(M) contains exactly one closed orbit, corresponding
to the direct sum of the composition factors of M.

8. The points of the quotient variety of rep, A under GL, classify the
isomorphism classes of n-dimensional semisimple A-modules. We will
denote the quotient variety by iss, A.

PROOF (1): Assume that the orbit O(M) is Zariski closed. Let gr M be
the associated graded module for a composition series of M. From lemma 2.6
we know that O(gr M) is contained in O(M) = O(M). But then gr M ~ M
whence M is semisimple.

Conversely, assume M is semisimple. We know that the orbit closure O(M)
contains a closed orbit, say O(N). By the Hilbert criterium we have a one-

parameter subgroup C* 2, GL, such that

iin& A(t).M = N' ~ N.
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By lemma 2.6 this means that there is a finite filtration F' on M with asso-
ciated graded module grp M ~ N. For the semisimple module M the only
possible finite filtrations are such that each of the submodules is a direct sum
of simple components, so grp M ~ M, whence M ~ N and hence the orbit
O(M) is closed.

(2): Remains only to prove uniqueness of the closed orbit in O(M). This
either follows from the Jordan-Holder theorem or, alternatively, from the sep-
aration property of the quotient map to be proved in the next section.

(3): We will prove in the next section that the points of a quotient variety
parameterize the closed orbits.

Example 2.8
Recall the description of the orbits in M2 = My @ M, given in the previous
chapter

¢o-H H-S S

and each fiber contains a unique closed orbit. Over a point in H — S this orbit
corresponds to the matrix couple

( aq 0 b1 0 )
0 a9 ’ 0 b2
which is indeed a semisimple module of C{z,y) (the direct sum of two 1-
dimensional simple representations determined by = +— a; and y — b;). In
case a; = as and by = by these two simples coincide and the semisimple

module having this factor with multiplicity two is the unique closed orbit in
the fiber of a point in S.

Example 2.9

Assume A is a finite dimensional C-algebra. Then, there are only a fi-
nite number, say, k, of nonisomorphic n-dimensional semisimple A-modules.
Hence iss, A is a finite number of k£ points, whence rep, A is the disjoint
union of k£ connected components, each consisting of all n-dimensional A-
modules with the same composition factors. Connectivity follows from the
fact that the orbit of the sum of the composition factors lies in the closure of
each orbit.

Example 2.10
Let A be an affine commutative algebra with presentation A =
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Clz1,...,2m]|/Ia and let X be the affine variety V(I4). Observe that any
simple A-module is one-dimensional hence corresponds to a point in X. (In-
deed, for any algebra A a simple k-dimensional module determines an epimor-
phism A —s> M (C) and My(C) is only commutative if k¥ = 1). Applying
the Jordan-Holder theorem we see that

issy, A XM = X x ... x X /S,
—_———

n

the n-th symmetric product of X. I

2.5 Some invariant theory

The results in this section hold for arbitrary reductive algebraic groups.
Because we will only work with GL,, (or later with products GL(a) = GL,, X
...xGL,, ) we include a proof in this case. Our first aim is to prove that GL,
is a reductive group , that is, all GL,,-representations are completely reducible.
Consider the unitary group

U, ={AcGL, | AA* =1}

where A* is the Hermitian transpose of A. Clearly, U, is a compact Lie group.
Any compact Lie group has a so-called Haar measure, which allows one to
integrate continuous complex valued functions over the group in an invariant
way. That is, there is a linear function assigning to every continuous function
f: U, — C its integral

fH/Unf(g)dQGC

which is normalized such that |, . dg =1 and is left and right invariant, which
means that for all u € U, we have the equalities

f(gu)dg = / foydg= [ Flug)dg
Upn Uy Un

This integral replaces the classical idea in representation theory of averaging
functions over a finite group.

PROPOSITION 2.7
Every U, -representation is completely reducible.

PROOF Take a finite dimensional complex vector space V with a U,-
action and assume that W is a subspace of V' left invariant under this action.
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Extending a basis of W to V we get a linear map V' 2 W which is the
identity on W. For any v € V we have a continuous map

U, — W g g.¢(g7 ")

(use that W is left invariant) and hence we can integrate it over U,, (integrate
the coordinate functions). Hence we can define a map ¢g : V. —— W by

Po(v) = / 9-6(9~" v)dg
Un
Clearly, ¢g is linear and is the identity on W. Moreover,

oo(u.v) :/ g.¢(g_1u.v)dg:u./ utg.d(g  uw)dg

n U’n,

éu./ g¢(g_1.v)dg = u.¢p(v)

n

where the starred equality uses the invariance of the Haar measure. Hence,
V =W @ Ker ¢g is a decomposition as U,-representations. Continuing
whenever one of the components has a nontrivial subrepresentation we arrive
at a decomposition of V into simple U, -representations.

We claim that for any n, U, is Zariski dense in GL,,. Let D,, be the group
of all diagonal matrices in GL,,. The Cartan decomposition for GL,, asserts
that

GL,=U,.D,.U,

For, take g € GL,, then g.¢g* is an Hermitian matrix and hence diagonalizable
by unitary matrices. So, there is a u € U,, such that
aq
-1 * _ . e o -1 _x
u”.g.g"u = . =s .g.s.5 .g°.s
—— N——
(o2 P p*

Then, each a; > 0 € Ras o = 37, | pij [I>. Let 8; = \/a; and let d the
diagonal matrix diag(f1, ..., B,). Clearly

g=ud(d'u"tyg) and weclaim v=d lulgeU,
Indeed, we have
vt =(d tutg) (gt ud ) =d (v g.gtu).dt
=d'.d*d ' =1,

proving the Cartan decomposition. Now, D,, = C* x ... x C* and D,, NU,, =
U X ...x Uy and because U; = p is Zariski dense (being infinite) in D; = C*,
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we have that D,, is contained in the Zariski closure of U,. By the Cartan
decomposition we then have that the Zariski closure of U, is GL,,.

THEOREM 2.4
GL, is a reductive group. That is, all GL,-representations are completely
reducible.

PROOF Let V be a GL,-representation having a subrepresentation W. In

particular, V and W are U, -representations, so by the foregoing proposition
we have a decomposition V. = W & W’ as U,-representations. Consider the
subgroup

N =Ngp, (W)={geGL, |gW cW'}

then N is a Zariski closed subgroup of GL,, containing U,,. As the Zariski clo-
sure of U, is GL,, we have N = GL,, and hence that W’ is a representation of
GL,. Continuing gives a decomposition of V' in simple G L,,-representations.

Let S = Sgr, be the set of isomorphism classes of simple GL,-
representations. If W is a simple GL,-representation belonging to the iso-
morphism class s € S, we say that W is of type s and denote this by W € s.
Let X be a complex vector space (not necessarily finite dimensional) with a
linear action of GL,,. We say that the action is locally finite on X if, for any
finite dimensional subspace Y of X, there exists a finite dimensional subspace
Y C Y’ C X which is a GL,-representation. The isotypical component of X
of type s € S is defined to be the subspace

X =Y {W|WcCX,Wes}

If V is a GL,-representation, we have seen that V is completely reducible.
Then, V' = ®V(;) and every isotypical component V(,) =~ W®es for W € s and
some number es. Clearly, e # 0 for only finitely many classes s € S. We
call the decomposition V' = @se5V(s) the isotypical decomposition of V' and

we say that the simple representation W € s occurs with multiplicity es in V.

If V' is another GL,-representation and if V' . V'isa morphism of

GL,-representations (that is, a linear map commuting with the action), then
for any s € S we have that ¢(V(y)) C V('S). If the action of GL,, on X is locally
finite, we can reduce to finite dimensional GG L,,-subrepresentation and obtain
a decomposition

X = BsesX()

which is again called the isotypical decomposition of X.
Let V be a GL,-representation of some dimension m. Then, we can view V
as an affine space C™ and we have an induced action of GL,, on the polynomial
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functions f € C[V] by the rule

that is, (¢9.f)(v) = f(g~'w) for all ¢ € GL,, and all v € V. If C[V] =
Clz1,...,2m] is graded by giving all the x; degree one, then each of the
homogeneous components of C[V] is a finite dimensional G L,,-representation.
Hence, the action of GL,, on C[V] is locally finite. Indeed, let {y1,...,4:} be
a basis of a finite dimensional subspace Y C C[V] and let d be the maximum
of the deg(y;). Then Y’ = &% C[V]; is a GL,-representation containing Y.

Therefore, we have an isotypical decomposition C[V] = @,csC[V](). In
particular, if 0 € S denotes the isomorphism class of the trivial GL,-
representation (Cip,y = Cx with g.x = x for every g € GL,,) then we have

ClV]) = {f €C[V] | g.f = f,¥g € GL,} = C[V]FLn

the ring of polynomial invariants , that is, of polynomial functions which are
constant along orbits in V.

LEMMA 2.7
Let V be a GL,-representation.

1. Let I<C[V] be a GL,-stable ideal, that is, g.I C I for all g € GL,,, then
(CIVY/D) = CVIFE [T N TVIEE).
2. Let J<C[V]%Ln be an ideal, then we have a lying-over property
J = JC[V]nC[V]ELn,

Hence, C[V]%Ln is Noetherian, that is, every increasing chain of ideals
stabilizes.

3. Let I; be a family of GL,-stable ideals of C[V], then
O I;)NCV% =3 (I; nCV]9).
J

J

PROOF  (1): As I has the induced GL,-action, which is locally finite, we
have the isotypical decomposition I = @Iy and clearly Iy = C[V] N 1.
But then also, taking quotients we have

@S(C[V]/I)(s) = C[V]/I = 69S(C[V](s)/l(s)
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Therefore, (C[V]/I)(s) = C[V](s)/I(s) and taking the special case s = 0 is the
statement.

(2): For any f € C[V]9En left multiplication by f in C[V] commutes with
the GL,-action, whence f.C[V/ c% . That is, C[V],) is a C[V]%En-
module. But then, as J C C[V]“*" we have

u(ICV])(e) = JCIV] = .JC[V]

Therefore, (JC[V])) = JC[V](,) and again taking the special value s = 0

we obtain JC[V] N C[ ]¢Ln = (JC[V])@o) = J. The Noetherian statement

follows from the fact that C[V] is Noetherian (the Hilbert basis theorem).
(3): For any j we have the decomposition I; = ®s([;)(s). But then, we

have
@s(zlj (s) ZI _Z@s 52(1])(5)

J
Therefore, (3_; 1)) = Zj(jj)(s) and taking s = 0 gives the required state-

ment. D

THEOREM 2.5
Let 'V be a GLy-representation. Then, the ring of polynomial invariants
C[V]¥Ln is an affine C-algebra.

PROOF Because the action of GL,, on C[V] preserves the gradation, the
ring of invariants is also graded

C[V]f» =R=CO®R ® R, ® ...

From lemma 2.7(2) we know that C[V]9L» is Noetherian and hence the ideal
Ry = Ri®R2®. .. is finitely generated Ry = Rf1+. ..+ Rf; by homogeneous
elements fi,...,f;. We claim that as a C-algebra C[V]%En is generated by
the f;. Indeed, we have Ry = 22:1 Cf; + R% and then also

l
Ri = Z Cfif; + Ri_
ij=1
and iterating this procedure we obtain for all powers m that
Ry = > Cf"™...f"+Rr!
S mi;=m

Now, consider the subalgebra C[fi,..., fi] of R = C[V]9Ln  then we obtain
for any power d > 0 that

C[V]®' =C[fy,..., fil + RL
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For any ¢ we then have for the homogeneous components of degree 4

Now, if d > i we have that (R%); = 0 and hence that R; = C[f1,..., fil;. As
this holds for all ¢ we proved the claim. I

Choose generating invariants f1,..., f; of C[V]9Ln consider the morphism

V -2+ €' definedby v (fi(v),..., fi(v))

and define W to be the Zariski closure ¢(V) in C'. Then, we have a diagram

v —2 ¢

w

and an isomorphism C[W] —— C[V]%Ln. More general, let X be a closed

G L,-stable subvariety of V, then X = V(1) for some GL,-stable ideal I of
C[V]. From lemma 2.7(1) we obtain
CIX]%F = (C[V]/D)m = C[V]FF /(I N CV]Fn)

whence C[X ]9 is also an affine algebra (and generated by the images of the
fi). Define Y to be the Zariski closure of ¢(X) in C!, then we have a diagram

x—*2 ¢

Y

T

and an isomorphism C[Y] —— C[X]%%. We call the morphism X —— Y
an algebraic quotient of X under GL,,. We will now prove some important
properties of this quotient.

PROPOSITION 2.8 universal property

If X £ Zisa morphism, which is constant along G L, -orbits in X, then
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there exists a unique factoring morphism [

X il -
\ /\>
»
A

PROOF  As p is constant along GL,-orbits in X, we have an inclusion
w*(C[Z]) C C[X]%En. We have the commutative diagram

Y

Clx]
¥/ Clx]9F \
/ \
ClZ] - Cly]
n
from which the existence and uniqueness of f follows. I

As a consequence, an algebraic quotient is uniquely determined up to iso-
morphism (that is, we might have started from other generating invariants
and still obtain the same quotient variety up to isomorphism).

PROPOSITION 2.9 onto property

The algebraic quotient X Y s surjective. Moreover, if Z —— X 1is a
closed GLy,-stable subset, then w(Z) is closed in'Y and the morphism

wx | Z: 72 — 7(Z)

is an algebraic quotient, that is, C[r(Z)] ~ C[Z]%L.

PROOF Let y € Y with maximal ideal M, < C[Y]. By lemma 2.7(2)
we have M,C[X] # C[X] and hence there is a maximal ideal M, of C[X]
containing M, C[X], but then n(z) = y. Let Z = Vx(I) for a G-stable ideal

I of C[X], then 7(Z) = Vy (I NC[Y]). That is, C[n(Z)] = C[Y]/(I nC[Y]).
However, we have from lemma 2.7(1) that

CIY)/(CY]N1I) = (C[X]/)¥ = C[Z]%*
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and hence C[r(Z)] = C[Z]%L~. Finally, surjectivity of 7 | Z is proved as
above.

An immediate consequence is that the Zariski topology on Y is the quotient
topology of that on X.

PROPOSITION 2.10 separation property

The quotient X LI ' separates disjoint closed G L,,-stable subvarieties of
X.

PROOF Let Z; be closed GL,-stable subvarieties of X with defining
ideals Z; = Vx(I;). Then, N;Z; = Vx (32, I;). Applying lemma 2.7(3) we
obtain

m(N;Z;) = Vy((z L;)NCY]) = VY(Z(IJ NClY]))
= N;Vy (I; NC[Y]) = nym(Z;)

The onto property implies that m(Z;) = w(Z;) from which the statement
follows. I

PROPOSITION 2.11

The algebraic quotient X —"+ Y is the best continuous approrimation to the
orbit space. That is, points of Y parameterize the closed G Ly -orbits in X. In
fact, every fiber 7= 1(y) contains exactly one closed orbit C and we have

7 y)={rec X |CcGL,x}

PROOF  The fiber F = 7~ 1(y) is a GL,-stable closed subvariety of X.
Take any orbit GL,.xz C F' then either it is closed or contains in its closure an
orbit of strictly smaller dimension. Induction on the dimension then shows
that G.x contains a closed orbit C. On the other hand, assume that F' contains
two closed orbits, then they have to be disjoint contradicting the separation

property.

2.6 Geometric reconstruction

In this section we will give a geometric interpretation of the reconstruction
result of theorem 1.17. Let A be a Cayley-Hamilton algebra of degree n, with
trace map tr4, which is generated by at most m elements aq,...,a,,. We
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will give a functorial interpretation to the affine scheme determined by the
canonical ideal Ny < C[M"] in the formulation of theorem 1.17. First, let
us identify the reduced affine variety V(N4). A point m = (my,...,my,) €
V(N4) determines an algebra map f,, : C[M*]/Ny —— C and hence an
algebra map ¢,

]
8
e

My (C[M;"]/Na)

which is trace preserving. Conversely, from the universal property it follows
that any trace preserving algebra morphism A —— M,,(C) is of this form
by considering the images of the trace generators aq,...,a,, of A. Alterna-
tively, the points of V(N,4) classify n-dimensional trace preserving represen-
tations of A. That is, n-dimensional representations for which the morphism
A —— M, (C) describing the action is trace preserving. For this reason we
will denote the variety V(N4) by trep, A and call it the trace preserving
reduced representation variety of A.

Assume that A is generated as a C-algebra by aq,. .., a,, (observe that this
is no restriction as trace affine algebras are affine) then clearly I4(n) C Ny.
See the following text.

LEMMA 2.8
For A a Cayley-Hamilton algebra of degree n generated by {ai,...,an}, the
reduced trace preserving representation variety

trep, A —— rep, A
s a closed subvariety of the reduced representation variety.

It is easy to determine the additional defining equations. Write any trace
monomial out in the generators

tTA((lil .. .G,Z'k) = E Qg Gy - e - Gy

then for a point m = (my,...,my) € rep, A to belong to trep, A, it must
satisfy all the relations of the form

tr(mil .. .mik) = E Qg Mgy -0y,

with ¢r the usual trace on M,,(C). These relations define the closed subvariety
trep,(A). Usually, this is a proper subvariety.
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Example 2.11

Let A be a finite dimensional semisimple algebra A = My, (C)@...®&My, (C),
then A has precisely k distinct simple modules {Mj, ..., My} of dimensions
{dy,...,dr}. Here, M; can be viewed as column vectors of size d; on which
the component My, (C) acts by left multiplication and the other factors act
as zero. Because A is semisimple every n-dimensional A-representation M is
isomorphic to

M=M@...¢ M

for certain multiplicities e; satisfying the numerical condition
n=-edy+...+edy

That is, rep,, A is the disjoint union of a finite number of (closed) orbits each
determined by an integral vector (ey,...,ey) satisfying the condition called
the dimension vector of M.

repn, A~ |_| GL,/(GLe, x ...GL,)

(e1,..ex)

Let f; > 1 be natural numbers such that n = fid; + ... 4+ fixdr and consider
the embedding of A into M,,(C) defined by

- Tay 0 -
0 al
[ —
f1
(a1,...,ar) € A — € M, (C)
fr
—_—
Qag 0
L 0 ar| |

Via this embedding, A becomes a Cayley-Hamilton algebra of degree n when
equipped with the induced trace tr from M, (C).

Let M be the n-dimensional A-representation with dimension vector
(e1,...,ex) and choose a basis compatible with this decomposition. Let E;
be the idempotent of A corresponding to the identity matrix I4, of the i-th
factor. Then, the trace of the matrix defining the action of E; on M is clearly
e;d;.I,. On the other hand, tr(E;) = fid;.I,, hence the only trace preserv-
ing n-dimensional A-representation is that of dimension vector (fi,..., fx).
Therefore, trep, A consists of the single closed orbit determined by the inte-

gral vector (fi,..., fx).

trepn, A~ GL,/(GLyf, % ...x GLy,)
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I

Consider the scheme structure of the trace preserving representation va-
riety trep, A. The corresponding functor assigns to a commutative affine
C-algebra R

trep,, (R) = Alge(C[M"] /N4, R)

An algebra morphism ¢ : C[M]"]/N4 — R determines uniquely an m-tuple
of n x n matrices with coefficients in R by

P(@11(k)) - P(z1n(k))

Tk = : :
V(@1 (k) - Y(@nn(k))

Composing with the canonical embedding

My (C[M;"]/Na)

determines the trace preserving algebra morphism ¢ : A —— M, (R) where
the trace map on M, (R) is the usual trace. By the universal property any
trace preserving map A — M, (R) is also of this form.

LEMMA 2.9
Let A be a Cayley-Hamilton algebra of degree n that is generated by
{a1,...,am}. The trace preserving representation variety trep,, A represents

the functor
trep, A(R)={A 2. M, (R) | ¢ is trace preserving }
Moreover, trep, A is a closed subscheme of rep,, A.

Recall that there is an action of GL,, on C[M;"] and from the definition
of the ideals T4(n) and Ny it is clear that they are stable under the GL,,-
action. That is, there is an action by automorphisms on the quotient algebras
C[M™]/I4(n) and C[M™]/N4. But then, their algebras of invariants are
equal to

Clrep, A]%" = (C[M;"]/Ta(n))" " = N /(La(n) NN})
Cltrep,, A]%'" = (C[M;"]/Na)“Fn =N /(Na NN}



86 Noncommutative Geometry and Cayley-Smooth Orders

That is, these rings of invariants define closed subschemes of the affine (re-
duced) variety associated to the necklace algebra N*. We will call these
schemes the quotient schemes for the action of GL,, and denote them respec-
tively by

iss,, A=rep, A/GL, and triss, A=trep, A/GL,

We have seen that the geometric points of the reduced variety iss, A of
the affine quotient scheme iss, A parameterize the isomorphism classes of
n-dimensional semisimple A-representations. Similarly, the geometric points
of the reduced variety triss, A of the quotient scheme triss, A parame-
terize isomorphism classes of trace preserving n-dimensional semisimple A-
representations.

PROPOSITION 2.12
Let A be a Cayley-Hamilton algebra of degree n with trace map tra. Then,

we have that
tra(A) = Cltriss, A]

the coordinate ring of the quotient scheme triss, A. In particular, mazimal
ideals of tro(A) parameterize the isomorphism classes of trace preserving n-
dimensional semisimple A-representations.

By definition, a GL,-equivariant map between the affine GL,-schemes
trep, A N M, =M,

means that for any commutative affine C-algebra R the corresponding map

f(R)
) —

trep, A(R M, (R)

commutes with the action of GL, (R). Alternatively, the ring of all morphisms
trep,, A —— M, is the matrixalgebra M, (C[M*]/N4) and those that com-
mute with the GL,, action are precisely the invariants. That is, we have the
following description of A.

THEOREM 2.6
Let A be a Cayley-Hamilton algebra of degree n with trace map tra. Then,
we can recover A as the ring of G L, -equivariant maps

A={f:trep, A— M, GL,-equivariant }

Summarizing the results of this and the previous section we have

THEOREM 2.7
The functor

alg®n TPy GL(n)-affine
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which assigns to a Cayley-Hamilton algebra A of degree n the GL,-affine
scheme trep, A of trace preserving n-dimensional representations has a left
inverse. This left inverse functor

GL(n)-affine A alg@n

assigns to a GLy-affine scheme X its witness algebra 1" [X] = M, (C[X])EE»
which is a Cayley-Hamilton algebra of degree n.

Note however that this functor is mot an equivalence of categories. For,
there are many affine GL,-schemes having the same witness algebra as we
will see in the next section.

We will give an application of the algebraic reconstruction result, theo-
rem 1.17, to finite dimensional algebras.

Let A be a Cayley-Hamilton algebra of degree n wit trace map tr, then we
can define a norm map on A by

N(a) =op(a) forallae A.

Recall that the elementary symmetric function o, is a polynomial func-

tion f(t1,t2,...,t,) in the Newton functions t; = > 7_, %, Then, o(a) =

f(tr(a),tr(a?),...,tr(a")). Because, we have a trace preserving embedding
A — M, (C[trep,, A]) and the norm map N coincides with the determinant

in this matrix-algebra, we have that
N(1)=1 and Va,be A N(ab)=N(a)N(D).

Furthermore, the norm map extends to a polynomial map on A[t] and we have

that szn) (t) = N(t — a). In particular we can obtain the trace by polarization
of the norm map. Consider a finite dimensional semisimple C-algebra

A= Mdl((C) D... @Mdk((C),
then all the Cayley-Hamilton structures of degree n on A with trace values in

C are given by the following result.

LEMMA 2.10

Let A be a semisimple algebra as above and tr a trace map on A making it
into a Cayley-Hamilton algebra of degree n with tr(A) = C. Then, there exist
a dimension vector « = (my,...,my) € Nﬁ such that n = Zle m;d; and for
any a = (A1,...,Ar) € A with A; € My, (C) we have that

tr(a) = miTr(Ay) + ...+ miTr(Ag)

where Tr are the usual trace maps on matrices.
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PROOF The norm-map N on A defined by the trace map tr induces a
group morphism on the invertible elements of A

N:A"=GL4(C)x...x GLy, (C) — C*

that is, a character. Now, any character is of the following form, let A; €
GLg4,(C), then for a = (A4, ..., Ax) we must have

N(a) = det(Ay)™ det(Az)™? ... det(Ag)"*

for certain integers m; € Z. Since N extends to a polynomial map on the
whole of A we must have that all m; > 0. By polarization it then follows that

tr(a) =miTr(Ar) + ...+ mpTr(Ag)

and it remains to show that no m; = 0. Indeed, if m; = 0 then ¢r would be the
zero map on My, (C), but then we would have for any a = (0,...,0, 4,0,...,0)
with A € Mdi ((C) that
XM () ="
(n)

whence xq ' (a) # 0 whenever A is not nilpotent. This contradiction finishes
the proof. I

We can extend this to all finite dimensional C-algebras. Let A be a finite
dimensional algebra with radical J and assume there is a trace map tr on A
making A into a Cayley-Hamilton algebra of degree n and such that tr(A) =
C. We claim that the norm map N : A —— C is zero on J. Indeed, any
j € J satisfies j' = 0 for some [ whence N(j)! = 0. But then, polarization
gives that ¢7(J) = 0 and we have that the semisimple algebra

A%® :A/J:Mdl(C)@@Mdk(C)

is a semisimple Cayley-hamilton algebra of degree n on which we can apply
the foregoing lemma. Finally, note that A ~ A% ® J as C-vector spaces. This
concludes the proof as follows.

PROPOSITION 2.13

Let A be a finite dimensional C-algebra with radical J and semisimple part
A =A)J =My, (C)® ... My, (C).

Lettr : A —— C —— A be a trace map such that A is a Cayley-Hamilton

algebra of degree n. Then, there exists a dimension vector o = (myq,...,my) €
NE such that for all a = (Aq, ..., Ay, j) with A; € My,(C) and j € J we have

tr(a) =miTr(Ar) + ...+ mpTr(Ag)

with Tr the usual traces on Mg, (C) and ), m;d; = n.
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Fix a trace map tr on A determined by a dimension vector a =
(mq,...,my) € N¥. Then, the trace preserving variety trep, A isthe scheme
of A-modules of dimension vector «, that is, those A-modules M such that

M* = P g .. @ S

where S; is the simple A-module of dimension d; determined by the i-th factor
in A%%. An immediate consequence of the reconstruction theorem 2.6 is shown
below.

PROPOSITION 2.14

Let A be a finite dimensional algebra with trace map tr : A —— C determined
by a dimension vector a = (my,...,my) as before with all m; > 0. Then, A
can be recovered from the GLy-structure of the affine scheme trep,, A of all
A-modules of dimension vector .

Still, there can be other trace maps on A making A into a Cayley-Hamilton
algebra of degree n. For example, let C' be a finite dimensional commutative
C-algebra with radical N, then A = M,,(C) is finite dimensional with radical
J = Mp,(N) and the usual trace map ¢r : M,(C) —— C makes A into a
Cayley-Hamilton algebra of degree n such that tr(J) = N # 0. Still, if A
is semisimple, the center Z(A) = C @ ... d C (as many terms as there are
matrix components in A) and any subring of Z(A) is of the form C® ... ®
C. In particular, tr(A) has this form and composing the trace map with
projection on the j-th component we have a trace map tr; to which we can
apply lemma 2.10.

2.7 The Gerstenhaber-Hesselink theorem

In this section we will give examples of distinct GGL,,-affine schemes having
the same witness algebra, proving that the left inverse of theorem 2.7 is not an
equivalence of categories. We will study the orbits in rep,, C[z] or, equivalent,
conjugacy classes of n x n matrices.

It is sometimes convenient to relax our definition of partitions to include ze-
roes at the tail. That is, a partition p of n is an integral n-tuple (aj, as, ..., a,)
with a1 > ay > ... > a, > 0 with Z?:l a; = n. As before, we represent a
partition by a Young diagram by omitting rows corresponding to zeroes.

If g = (by,...,by,) is another partition of n we say that p dominates ¢ and
write

p>gq if and only if ZaiZZbi forall1<r<n
i=1 i=1



90 Noncommutative Geometry and Cayley-Smooth Orders

For example, the partitions of 4 are ordered as indicated below
(LTI > F > EB > @: >

Note however that the dominance relation is not a total ordering whenever
n > 6. For example, the following two partition of 6

_II\ %

are not comparable. The dominance order is induced by the Young move
of throwing a row-ending box down the diagram. Indeed, let p and ¢ be
partitions of n such that p > ¢ and assume there is no partition r such that
p > r and r > q. Let ¢ be the minimal number such that a; > b;. Then by
the assumption a; = b; + 1. Let j > ¢ be minimal such that a; # b;, then we
have b; = a; 4+ 1 because p dominates g. But then, the remaining rows of p
and ¢ must be equal. That is, a Young move can be depicted as

= L 4= O

p:

For example, the Young moves between the partitions of 4 given above are as
indicated
mun Begun BRSO EI = E

A Young p-tableau is the Young diagram of p with the boxes labeled by
integers from {1, 2, ..., s} for some s such that each label appears at least ones.
A Young p-tableau is said to be of type g for some partition ¢ = (by,...,b,)
of n if the following conditions are met:

e the labels are non-decreasing along rows,

e the labels are strictly increasing along columns, and

e the label ¢ appears exactly b; times.
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For example, if p = (3,2,1,1) and ¢ = (2,2,2,1) then the p-tableau below

3]

L]
212]
El

[4]

is of type ¢q (observe that p > ¢ and even p — ¢). In general, let p =
(a1,...,ay) and ¢ = (by,...,b,) be partitions of n and assume that p — g.
Then, there is a Young p-tableau of type g. For, fill the Young diagram of ¢
by putting 1’s in the first row, 2’s in the second and so on. Then, upgrade
the fallen box together with its label to get a Young p-tableau of type ¢. In
the example above

1]e
2

©)

1]3]
2

[=esra]=
[=Jeo]ro ]~

Conversely, assume there is a Young p-tableau of type q. The number of boxes
labeled with a number < 7 is equal to by + ... + b;. Further, any box with
label < ¢ must lie in the first i rows (because the labels strictly increase along
a column). There are a; + ...+ a; boxes available in the first ¢ rows whence

Zbi§2ai forall 1<i¢<n
j=1 j=1

and therefore p > ¢. After these preliminaries on partitions, let us return to
nilpotent matrices.

Let A be a nilpotent matrix of type p = (aq, ..., a,), that is, conjugated to
a matrix with Jordan blocks (all with eigenvalue zero) of sizes a;. We have
seen before that the subspace V; of column vectors v € C* such that Al.v = 0

has dimension l l
S #ila;=ht=>"a;
h=1 h=1
where p* = (af,...,a}

,a’) is the dual partition of p. Choose a basis {v1,...,v,}
of C" such that for all [ the first a] + ...+ a; base vectors span the subspace
Vi. For example, if A is in Jordan normal form of type p = (3,2,1,1)

(010
001
000

01
00
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then p* = (4,2,1) and we can choose the standard base vectors ordered as
follows

{ela €4, €6,€7,€2,€5, €3 }
————— —— \1,/
4 2
Take a partition ¢ = (by,...,b,) with p — ¢ (in particular, p > ¢), then for
the dual partitions we have ¢* — p* (and thus ¢* > p*). But then there is

a Young ¢*-tableau of type p*. In the example with ¢ = (2,2,2,1) we have
q* = (4,3) and p* = (4,2,1) and we can take the Young ¢*-tableau of type p*

Hnng
BHE

Now label the boxes of this tableau by the base vectors {vy, ..., v,} such that
the boxes labeled 7 in the Young ¢*-tableau of type p* are filled with the base
vectors from V; — V;_;. Call this tableau 7. In the example, we can take

€1 1€y 96 67‘

T = |esles|es

Define a linear operator F' on C™ by the rule that F'(v;) = v; if v; is the label
of the box in T' just above the box labeled v;. In case v; is a label of a box in
the first row of T' we take F'(v;) = 0. Obviously, F is a nilpotent n X n matrix
and by construction we have that

rk Fl=n— (b} +...+0b))

That is, F' is nilpotent of type ¢ = (b1, ..., b,). Moreover, F satisfies F'(V;) C
V;_1 for all ¢ by the way we have labeled the tableau T and defined F.

In the example above, we have F(es) = ey, F(e5) = eq, F(e3) = eg and all
other F(e;) = 0. That is, F' is the matrix

[01
00
0 0
01
00
1 0
0

which is seen to be of type (2,2,2,1) after performing a few Jordan moves.

Returning to the general case, consider for all € € C the n X n matrix:

F.=(1—¢)F +€A.
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We claim that for all but finitely many values of € we have F, € O(A). Indeed,
we have seen that F(V;) C V;_; where V; is defined as the subspace such that
AY(V;) = 0. Hence, F (V1) = 0 and therefore

F(Vi)=(1-¢F+eA(V1)=0
Assume by induction that F!(V;) = 0 holds for all i < [, then we have that

F{(Vi) = FI" (1 = ) F +eA)(V1)
CF 7 (Vie) =0

because A(V}) C Vi1 and F(V}) C V;_1. But then we have for all [ that

rkFElSdimVl:n—(aik—i—...—i-az‘):rkAldéfrl

Then for at least one r; x r; submatrix of Fel its determinant considered it
as a polynomial of degree r; in € is not identically zero (as it is nonzero for
€ = 1). But then this determinant is nonzero for all but finitely many e.
Hence, rk F! = rk A! for all [ for all but finitely many e. As these numbers
determine the dual partition p* of the type of A, F, is a nilpotent n x n matrix
of type p for all but finitely many values of ¢, proving the claim. But then,
Fy = F, which we have proved to be a nilpotent matrix of type g, belongs to
the closure of the orbit O(A). That is, we have proved the difficult part of
the Gerstenhaber-Hesselink theorem .

THEOREM 2.8

Let A be a nilpotent n x n matriz of type p = (a1,...,a,) and B nilpotent of
type ¢ = (b1,...,by,). Then, B belongs to the closure of the orbit O(A), that
18

BeO(A) ifandonlyif p>gq

in the domination order on partitions of n.

To prove the theorem we only have to observe that if B is contained in the
closure of A, then B! is contained in the closure of A' and hence rk Al > rk B!
(because 7k A < k is equivalent to vanishing of all determinants of k x k
minors, which is a closed condition). But then

1 1
n—g aon—E b;
i=1 i=1

for all I, that is, ¢* > p* and hence p > q. The other implication was
proved above if we remember that the domination order was induced by the
Young moves and clearly we have that if B € O(C) and C € O(A) then also
B e O(A).
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Example 2.12 Nilpotent matrices for small n

We will apply theorem 2.8 to describe the orbit-closures of nilpotent matrices
of 8 x 8 matrices. The following table lists all partitions (and their dual in
the other column)

The partitions of 8

a  (8) v o (1,1,1,1,1,1,1,1)
b (7.1) u o (2,1,1,1,1,1,1)
¢ (6,2) t 0 (2,2,1,1,1,1)
d (6,1,1) s (3,1,1,1,1,1)
e (53) o (2,2,2,1,1)

£ (5,2,1) a  (3,2,1,1,1)

g (LLD [ p (41,1,1,1)

h  (4,4) o (2,2,2,2)

i (4,3,1) n o (3,2,2,1)
io(422) |m (3311

k  (3,3,2) Kk (3,3,2)

1 (42,11) | 1 (4,2,1,1)

The domination order between these partitions can be depicted as follows
where all the Young moves are from left to right

Of course, from this graph we can read off the dominance order graphs for
partitions of n < 8. The trick is to identify a partition of n with that of 8 by
throwing in a tail of ones and to look at the relative position of both partitions
in the above picture. Using these conventions we get the following graph for
partitions of 7

and for partitions of 6 the dominance order is depicted as follows
OmOn0 () (=) (D)
Nt

The dominance order on partitions of n < 5 is a total ordering.

The Gerstenhaber-Hesselink theorem can be applied to describe the module
varieties of the algebras Clx]/(x").
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Clz]

(z7)

Example 2.13 The representation variety rep,,

Any algebra morphism from C[z] to M,, is determined by the image of z,
whence rep, (Cl[z]) = M,. We have seen that conjugacy classes in M,, are
classified by the Jordan normalform. Let A be conjugated to a matrix in
normalform

Ji

J2

Js

where J; is a Jordan block of size d;, hence n = dy +ds + ...+ ds. Then, the
n-dimensional C[z]-module M determined by A can be decomposed uniquely

as
M=M®&M&...®M,

where M; is a C[z]-module of dimension d; which is indecomposable , that is,
cannot be decomposed as a direct sum of proper submodules.
Now, consider the quotient algebra R = C[z]/(z"), then the ideal Ir(n) of

Clx11, 212, - - -, Tny) is generated by the n? entries of the matrix
T
11 ... T1in
Tnl -+ Tpn

For example if r = m = 2, then the ideal is generated by the entries of the
matrix
2 2
1 @e|” | 2] +xoxs xo(x1 + 4)
XT3 T4 r3(r1 +24) 22+ 073

That is, the ideal with generators
I = (2 + a3, 22(21 + @), 23(21 + 24), (21 — 24) (21 + 24))

The variety V(Ig) — My consists of all matrices A such that A2 = 0.
Conjugating A to an upper triangular form we see that the eigenvalues of A
must be zero, hence

reps Cla]/(a*) = O [8 ﬂ> Lo [8 8})

and we have seen that this variety is a cone with top the zero matrix and
defining equations
V(21 + x4, 22 + 2013)

and we see that I is properly contained in this ideal. Still, we have that

rad(Ig) = (x1 + w47x% + z324)
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for an easy computation shows that m?’ = 0 € Clzy,x2,x3,24]/IR.
Therefore, even in the easiest of examples, the representation variety does
not have to be reduced.

For the general case, observe that when J is a Jordan block of size d with
eigenvalue zero an easy calculation shows that

0...0d-1 0...... 0

del —

Therefore, we see that the representation variety rep, C[z]/(z") is the union
of all conjugacy classes of matrices having 0 as only eigenvalue and all of
which Jordan blocks have size < r. Expressed in module theoretic terms,
any n-dimensional R = C[z]/(z")-module M is isomorphic to a direct sum of
indecomposables

M=I®gIY>o.. ¢I%r

where I; is the unique indecomposable j-dimensional R-module (correspond-
ing to the Jordan block of size j). Of course, the multiplicities e; of the factors
must satisfy the equation

e1+2e+3e3+...+re.=n
In M we can consider the subspaces for all 1 <i<r—1
M; ={me& M |z".m=0}

the dimension of which can be computed knowing the powers of Jordan blocks
(observe that the dimension of M; is equal to n — rank(A?))

tZ:dsz Mi:61+262+...(Z‘71)61+i(6i+6i+1+...+6r)

Observe that giving n and the r — 1-tuple (¢1,t2,...,t,—1) is the same as
giving the multiplicities e; because

2t1 = t2 + e
2t2 = t3 + tl + e9
2t3 =14+ 12+ e3

22 =tp_1+tp_3+en_2
21 =n+tp_2+e,1

n =tn-1+en
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Let n-dimensional C[z]/(z")-modules M and M’ (or associated matrices
A and A’) be determined by the r — 1-tuples (t1,...,t.—1), respectively,
(t},...,t._1) then we have that

O(A") —= O(A) ifandonly if 1 <t),to <th,.. .t <t _,

Therefore, we have an inverse order isomorphism between the orbits in
repn(Clz]/(27)) and the r — 1-tuples of natural numbers (¢1,...,t,_1) sat-
isfying the following linear inequalities (which follow from the above system)

2t1 Z t2,2t2 Z tg + t1,2t3 Z t4 +t2, .. .,2tn,1 2 n—+ tn,Q,’fL Z tn,Q

Let us apply this general result in a few easy cases. First, consider r = 2,
then the orbits in rep, C[z]/(z?) are parameterized by a natural number #;
satisfying the inequalities n > t; and 2¢t; > n, the multiplicities are given by
e1 = 2t; —n and e; = n —t;. Moreover, the orbit of the module M (¢}) lies in
the closure of the orbit of M (t1) whenever t; < ¢].

That is, if n = 2k + § with § = 0 or 1, then rep,, C[z]/(x?) is the union of
k + 1 orbits and the orbitclosures form a linear order as follows (from big to
small)

DoIPy — o2 grp-t . on

If r = 3, orbits in rep, C[z]/(2®) are determined by couples of natural
numbers (¢1,t2) satisfying the following three linear inequalities

2t1 >t2
2t2 Z n -+ t1
n Z tQ

For example, for n = 8 we obtain the following situation

2t = tg
: 2t =8+t

Therefore, repg C[z]/(x?) consists of 10 orbits with orbit closure diagram as
in figure 2.2 (the nodes represent the multiplicities [ejeqes]).

Here we used the equalities e; = 2t1 —ta, eg = 2t5 —n—t; and ez = n — ts.
For general n and r this result shows that rep,, C[x]/(z") is the closure of the
orbit of the module with decomposition

Mgen:I,@eEBIS if n=er+s
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(012]
962]

121]

[040] }31u
[501f T230f
T420f
1610]

1800]

FIGURE 2.2: Orbit closures in reps C[z]/(z3).

I

We are now in a position to give the promised examples of affine GL,-
schemes having the same witness algebra.

Example 2.14

Consider the action of GL, on M, by conjugation and take a nilpotent
matrix A. All eigenvalues of A are zero, so the conjugacy class of A is fully
determined by the sizes of its Jordan blocks. These sizes determine a partition
AA) = (A1, Ag, ..., k) of nowith Ay > Ao > ... > A Moreover, we have
given an algorithm to determine whether an orbit O(B) of another nilpotent
matrix B is contained in the orbit closure O(A), the criterium being that

O(B) CO(A) < AX(B)" > M\(A)*
where A\* denotes the dual partition. We see that the witness algebra of O(A)
is equal to

M (CO(A))) ¥ = C[X]/(X")

where k is the number of columns of the Young diagram A(A).

Hence, the orbit closures of nilpotent matrices such that their associated
Young diagrams have equal number of columns have the same witness alge-
bras. For example, if n = 4 then the closures of the orbits corresponding

to -
1]

and ||
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have the same witness algebra, although the closure of the second is a proper
closed subscheme of the closure of the first.

Recall the orbit closure diagram of conjugacy classes of nilpotent 8 x 8
matrices given by the Gerstenhaber-Hesselink theorem. In the picture below,
the closures of orbits corresponding to connected nodes of the same color have
the same witness algebra.

2.8 The real moment map

In this section we will give another interpretation of the algebraic quotient
variety triss, A with methods coming from symplectic geometry. We have
an involution

GL, =, GL, defined by g— (¢!
where A* is the adjoint matriz of g, that is, the conjugate transpose

mi1 ... Mip mi1 ... Mp1
M= : : M* =

Mp1 ... Mnpn Mip - - Mnpn
The real points of this involution, that is
(GLn)i ={9€GL, | g= (9*)_1} =Up={ueGL, | wu" ="1,}

is the unitary group . On the level of Lie algebras, the involution i gives rise
to the linear map

M, -+ M,  definedby M — — M*

corresponding to the fact that the Lie algebra of the unitary group, that is,
the kernel of di, is the space of skew-Hermitian matrices

LieU,={MeM, | M=—-M"} =iHerm,
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Consider the standard Hermitian inproduct on M,, defined by

(A,B) =tr(A*B) which satisfies (A,eB) =c(A,

As a subgroup of GL,, U, acts on M, by conjugation and because
(vAu*, uBu*) = tr(uA*u*uBu*) = tr(A*B), the inproduct is invariant under
the U,-action. The action of U, on M, induces an action of Lie U, on M,
given for all h € Lie U, and M € M,

h.M =hM + Mh* =hM — Mh

Using this action, we define the real moment map p for the action of U, on
M, as the map from M, to the linear dual of the Lie algebra

M, -2~ (iLie U,)* M — (h— i(h.M, M))

We will identify the inverse image of the zero map 0 : Lie U, — 0 under
. Because

(h.M, M) = tr((h.M — M.h)* M)
= tr(M*h*M — h*M* M)
= tr(h*(MM* — M*M))

and using the nondegeneracy of the Killing form on Lie U, we have the
identification

pwt0)={MeM, | MM*=M*M} = Nor,

the space of normal matrices . Alternatively, we can define the real moment
map to be determined by

M, % Lie U, M —— i(MM* — M*M) = i[M, M*|

Recall that a matrix M € M, (C) is said to be normal if its commutes with its
adjoint. For example, diagonal matrices are normal as are unitary matrices.
Further, it is clear that if M is normal and w unitary, then the conjugated
matrix uMu~! = uMu* is again a normal matrix, that is, we have an action
of the compact Lie group U, on the subset Nor, —— M,(C) of normal
matrices. We recall the proof of the following classical result.

THEOREM 2.9
Every U, orbit in Nor, contains a diagonal matriz. This gives a natural
one-to-one correspondence

w1(0)/U, = Nor, /U, +— M, /GL,
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between the U,-orbits in Nor, and the closed GL,-orbits in M,.

PROOF Equip C" with the standard Hermitian form, that is
(v,w) =7".w=TrW1 + ...+ Trwy,

Take a nonzero eigenvector v of M € Nor,, and normalize it such that (v,v) =
1. Extend v = vy to an orthonormal basis {v1,...,v,} of C" and let u be the
base change matrix from the standard basis. With respect to the new basis,
the linear map determined by M and M* are represented by the normal
matrices

a1l a12 ... Qin a1 0 ... 0
. 0 ag2 ... A2p . . a12 A22 ... Ap2

M, =uMu* = | . . . M =uM™u" =
0 aps ... anp Aip G2p - - - Gpp

Because M is normal, so is M;. The left-hand corner of My M; is aii1a11
whereas that of My M{ is a11@11 + a12G12 + . . . + 1,015, Whence

ai2G12 + ...+ a1pa1, =0

but as all ay;a1; =|| a1, ||> 0, this implies that all a;; = 0, whence
al 0 ... 0
0 a2 ... A2n
M; =
0 ano ... anpn

and induction finishes the claim. Because permutation matrices are unitary
we see that the diagonal entries are determined up to permutation, so every
U,,-orbit determines a unique conjugacy class of semisimple matrices, that is,
a closed GL,,-orbit in M,,.

We will generalize this classical result to m-tuples of n x n matrices, M,
and then by restriction to trace preserving representation varieties. Take
A= (A44,...,A,) and B = (By,...,Bp) in M" and define an Hermitian
inproduct on M]" by

(A,B) = tr(A;By + ...+ A%, By,)

which is again invariant under the action of U,, by simultaneous conjugation
on M]". The induced action of Lie U,, on M is given by

h.A=(hA1 — Arh, ... hAy, — Anh)
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This allows us to define the real moment map p for the action of U,, on M"
to be the assignment

M™ L (iLie U,)* A — (hi(h.A, A))

and again using the nondegeneracy of the Killing form on Lie U,, we have the
identification
PO ={A e M | Y (AA; - AA) =0}

i=1

Again, the real moment map is determined by
M L5 LieU, A= (Ay,..., Ay) —i[A A% =i) [A;, A7)
j=1

We will show that there is a natural one-to-one correspondence between U, -
orbits in the set ©=1(0) and closed GL,-orbits in M™. We first consider the
properties of the real valued function p4 defined as the norm on the orbit of
any A e M"

GL, =+ Ry g — |g.A|°

Because the Hermitian inproduct is invariant under U, we have p4(ug) =
pa(g) for any u € U,. If Stab(A) denotes the stabilizer subgroup of A € GL,,
then for any s € Stab(A) we also have pa(gs) = pa(g) hence p, is constant
along U, gStab(A)-cosets. We aim to prove that the critical points of pa are
minima and that the minimum is attained if and only if O(A) is a closed
G L, -orbit.

Consider the restriction of p4 to the maximal torus 7;, < GL,, of invert-
ible diagonal matrices. Then, T,, "U,, = K = U; x ... x U; is the subgroup

ki 0
KE={| . | Vi [kl =1}
0k

The action by conjugation of T,, on M," decomposes this space into weight
spaces

M, )® @ M (my — m5)
4,5=1
where M7 (m; — ;) = {A € M | diag(ts,...,t,).A = titj_lA}. It follows
from the definition of the Hermitian inproduct on M, that the different
weight spaces are orthogonal to each other. We decompose A € M]" into
eigenvectors for the T),-action as

- S . A(0) € M;(0)
A=AO)+ Y Alij)  with {A(@,j) € MM (m; — 7j5)

ij=1
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With this convention we have for ¢t = diag(t1,...,t,) € T, that

pa(t) = [[A0) + > tit; A, )

i,j=1
n
= AP + Y 224G )P
i,j=1
where the last equality follows from the orthogonality of the different weight

spaces. Further, remark that the stabilizer subgroup Stabr(A) of A in T can
be identified with

St&bT(A) = {t = diag(tl, e ,tn) | ti = tj if A(’L,j) 7é O}

As before, p4 induces a function on double cosets K\T,,/Stabr(A), in partic-
ular pys determines a real valued function on K\T,, ~ R"™ (the isomorphism

is given by the map diag(ty,...,t,) L8, (log |t1],...,log |t,])). That is
T, — % e K\T),, ~R"
pA @P*

where the function p’, is the special function

n

= g2log 140Nl 1 Z e2log |A(E7) 1422 —2x;
4,4:A(4,5) 720

and where K\T,,/Stabr(A) is the quotient space of R™ by the subspace V4

which is the image of Stabr(A) under log

Va= Z Re; + Z R(ei — ej)
#3A(i,§)#0 i,j:A(1.,5) 70
where e; are the standard basis vectors of R"™. Let {i1,...,4x} be the minimal
elements of the nonempty equivalence classes induced by the relation ¢ ~ j iff
A(i, j) # 0, then
K\T,/Stabr(A) ~ 3% Re;,
9 k QiU
pA” (Y155 yk) = o+ 3251 (D0 age™ @)

for certain positive real numbers co, ¢;(;y and real numbers a;(;). But then,
elementary calculus shows that the £ x k£ matrix

Pa(ri, ... rn)

32 ” 32 ”
3yf§y1 ( ) T 8yf§yk (m)
oo oo
0y:§y1 (m) T 8y:§yk (m)
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is a positive definite diagonal matrix in every point m € R¥. That is, p4” is a
strictly convex Morse function and if it has a critical point mg (that is, if all
Og;_ (mg) = 0), it must be a unique minimum. Lifting this information from

the double coset space K\T,,/Stabr(A) to T,, we have proved

PROPOSITION 2.15
Let T, be the mazimal torus of invertible diagonal matrices in GL, and

consider the restriction of the function GL, P, Ry to T, for A € M,
then

1. Any critical point of pa is a point where pa obtains its minimal value.
2. If pa obtains a minimal value, then

o the set V where pa obtains this minimum consists of a single K —
Stabp(A) coset in T, and is connected.

e the second order variation of pa at a point of V' in any direction
not tangent to V is positive.

The same proof applies to all maximal tori T' of GL,, which are defined
over R. Recall the Cartan decomposition of GL, which we proved before
theorem 2.4: any g € GL,, can be written as g = udu’ where u,u’ € U,, and
d is a diagonal matrix with positive real entries. Using this fact we can now
extend the above proposition to GL,,.

THEOREM 2.10
Consider the function GL, A, Ry for Ae M.

1. Any critical point of pa is a point where pa obtains its minimal value.

2. Ifpa obtains its minimal value, it does so on a single U, —Stab(A)-coset.

PROOF  (1): Because for any h € GL,, we have that py.a(g9) = pa(gh)
we may assume that T, is the critical point of p4. We have to prove that
palg) > pa(l,) for all g € GL,,. By the Cartan decomposition g = udu’
whence g = vt where u” = uu’ € U, and t = v/~ 'du’ € T a maximal torus of
GL,, defined over R. Because the Hermitian inproduct is invariant under U,
we have that pa(g) = pa(t). Because 1, is a critical point for the restriction of
pa to T we have by proposition 2.15 that p4(t) > pa(T,), proving the claim.

(2): Because for any h € GL,, pna(g) = pa(gh) and Stab(h.A) =
hStab(A)h~! we may assume that p4 obtains its minimal value at 1,. If
V' denotes the subset of GL, where ps obtains its minimal value we then
have that U, Stab(A) C V and we have to prove the reverse inclusion. As-
sume g € V and write as before g = «”t with «” € U,, and t € T' a maximal
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torus defined over R. Then, by unitary invariance of the inproduct, ¢ is a
point of T where the restriction of p4 to T obtains its minimal value p4 (T,).
By proposition 2.15 we conclude that ¢ € KpStabr(A) where Kr = U, NT.
But then,
V C Un(| J KrStabr(A)) C U,Stab(A)
T

where T runs over all maximal tori of GL,, which are defined over R, finishing
the proof. I

PROPOSITION 2.16
The function pa : GL, — R4 obtains a minimal value if and only if O(A)
is a closed orbit in M), that is, determines a semisimple representation.

PROOF If O(A) is closed then p4 clearly obtains a minimal value. Con-
versely, assume that O(A) is not closed, that is, A does not determine a
semisimple n-dimensional representation M of C{xy,..., %, ). By choosing a
basis in M (that is, possibly going to another point in the orbit O(A)) we

have a one-parameter subgroup C* X, T, — GL,, corresponding to the
Jordan-Holder filtration of M with %mg A(t)A = B with B corresponding to

the semisimplification of M. Now consider the restriction of p/y to U;\C* ~ R,
then as before we can write it uniquely in the form

p%(m):Zaielﬂ a; >0, Li<lh<...<l,

for some real numbers /; and some z. Because the above limit exists, the limit

lim ply(z) €R

Tr——00

and hence none of the I; are negative. Further, because O(A4) # O(B) at least
one of the I; must be positive. Therefore, p/; is a strictly increasing function
on R whence never obtains a minimal value, whence neither does p4. I

Finally, we have to clarify the connection between the function p4 and the
real moment map

M™ L (Lie U,)* A —— (h— (h.A,A))
M 25 Lie U, A — i[A, A7)

Assume A € M]" is such that p4 has a critical point, which we may assume to
be 1, by an argument as in the proof of theorem 2.10. Then, the differential
in T,

(dpa)g : Mn=Tq GL, — R satisfies (dpa)qg (h) =0 Vhe M,

n
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Let us work out this differential
pa(Tn) + €(dpa)qg (h) =tr((A" + e(A"h" — h"A")(A + e(hA — Ah))
=tr(A*A) + etr(A*hA — A*Ah + A*h*A — h*A* A)
=tr(A*A) + etr((AA" — A*A)(h — "))

But then, vanishing of the differential for all A € M, is equivalent by the
nondegeneracy of the Killing form on Lie U, to

AA* — AA =D A A7 - AT A =0
=1

that is, to A € pg'(0). This concludes the proof of the main result on the
real moment map for M.

THEOREM 2.11
There are natural one-to-one correspondences between

1. isomorphism classes of semisimple n-dimensional representations of

Clz1,. .., Tm),
2. closed GLy-orbits in M]",
3. Uy-orbits in the subset uz*(0) = {A € M™ | S [A;, Af] = 0}.

Let A € alg@n be an affine Cayley-Hamilton algebra of degree n, then we
can embed the reduced variety of trep, A in M]" and obtain the following
as a consequence

THEOREM 2.12
For A € alg@n, there are natural one-to-one correspondences between

1. isomorphism classes of semisimple n-dimensional trace preserving rep-
resentations of A,

2. closed GLy-orbits in the representation variety trep, A,

3. Uy-orbits in the intersection trep, AN uz'(0).
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Chapter 3

Etale Technology

Etale topology was introduced in algebraic geometry to bypass the coarseness
of the Zariski topology for classification problems. Let us give an elementary
example: the local classification of smooth varieties in the Zariski topology is
a hopeless task, whereas in the étale topology there is just one local type of
smooth variety in dimension d, namely, affine d-space A%. A major theme of
this book is to generalize this result to noncommutative geometry@n.

Etale cohomology groups are used to classify central simple algebras over
function fields of varieties. Orders in such central simple algebras (over the
central structure sheaf) are an important class of Cayley-Hamilton algebras.

Over the years, one has tried to construct a suitable class of smooth orders
that allows an étale local description. But, except in the case of curves and
surfaces, no such classification is known, say, for orders of finite global dimen-
sion. In this book we introduce the class of Cayley-smooth orders, which does
allow an étale local description in arbitrary dimensions. In this chapter we
will lay the foundations for this classification by investigating étale slices of
representation varieties at semisimple representations. In chapter 5 we will
then show that this local structure is determined by a combinatorial gadget:
a (marked) quiver setting.

3.1 Etale topology

A closed subvariety X —— C™ can be equipped with the Zariski topology or
with the much finer analytic topology. A major disadvantage of the coarseness
of the Zariski topology is the failure to have an implicit function theorem in
algebraic geometry. Etale morphisms are introduced to bypass this problem.

We will define étale morphisms that determine the étale topology . This is
no longer a usual topology determined by subsets, but rather a Grothendieck
topology determined by covers .

DEFINITION 3.1 A finite morphism A J.B of commutative C-

algebras is said to be étale if and only if B = Alt1,...,tx]/(f1,..., fx) such

109
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that the Jacobian matrix

9f1 9f
oty " Oty
Ofx Ofk
oty " Oty

has a determinant which is a unit in B.

Recall that by spec A we denote the prime ideal spectrum or the affine
scheme of a commutative C-algebra A (even when A is not affine as a C-
algebra). That is, spec A is the set of all prime ideals of A equipped with
the Zariski topology . The open subsets are of the form

X(I)={Pespec A | I ¢ P}

for any ideal I< A. If A is an affine C-algebra, the points of the corresponding
affine variety correspond to mazimal ideals of A and the induced Zariski
topology coincides with the one introduced before. In this chapter, however,
not all C-algebras will be affine.

Example 3.1
Consider the morphism Clz, 2~ !] —— Clx, 27!][{/z] and the induced map
on the affine schemes

spec Clz, 2™ 1][/x] 2., spec Clz,z™ '] = C — {0}

Clearly, every point A € C — {0} has exactly n preimages \; = (* {/A. More-
over, in a neighborhood of \;, the map v is a diffeomorphism. Still, we do not
have an inverse map in algebraic geometry as ¥/ is not a polynomial map.
However, C[z,z~!][{/x] is an étale extension of Clz,z~!]. In this way étale
morphisms can be seen as an algebraic substitute for the failure of an inverse
function theorem in algebraic geometry.

PROPOSITION 3.1

Etale morphisms satisfy 7sorite”, that is, they satisfy the commutative dia-
grams of figure 8.1. In these diagrams, et denotes an étale morphism, f.f.
denotes a faithfully flat morphism and the dashed arrow is the étale morphism
implied by “sorite”.

With these properties we can define a Grothendieck topology on the collec-
tion of all étale morphisms.
DEFINITION 3.2 The étale site of A, which we will denote by Agy, is
the category with

e objects: the étale extensions A J.B of A
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A e » A ®4 B
| / \
(basechange) (composition)
A A'®a B
ff / \
A et
.................. g
(descent) (morphisms)

FIGURE 3.1: Sorite for étale morphisms.

e morphisms: compatible A-algebra morphisms

By proposition 3.1 all morphisms in Ay are étale. We can turn Aqy into a
Grothendieck topology by defining

o cover: a collection C = {B —— B;} in Ay such that

spec B =U; I'm (spec B; . spec B )

DEFINITION 3.3 An étale presheaf of groups on Ag is a functor
G : Ay — groups
In analogy with usual (pre)sheaf notation we denote for each

e object B € Ay the global sections I'(B,G) = G(B)

e morphism B . Ccin Aey the restriction map ResZ = G(¢)
G(B) — G(C) and g | C =G()(g)-
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An étale presheaf G is an étale sheaf provided for every B € Ay, and every
cover { B — B;} we have ezactness of the equalizer diagram

0 — G(B) — HG(Bi) — HG(Bi ®g Bj)

i,J

Example 3.2 Constant sheaf
If G is a group, then

G : Ay —> groups B G&B)

is a sheaf where 7 (B) is the number of connected components of spec B. I

Example 3.3 Multiplicative group G,,
The functor
G, : Aey — groups B +— B*

is a sheaf on Ag. I

A sequence of sheaves of Abelian groups on A is said to be exact
G/ f G g G”

if for every B € Ae and s € G(B) such that g(s) = 0 € G”(B) there is a cover
{B — B;} in A4 and sections t; € G’'(B;) such that f(¢;) = s | B;.

Example 3.4 Roots of unity u,
We have a sheaf morphism

G, 2 G,
and we denote the kernel with u,. As A is a C-algebra we can identify u,

with the constant sheaf Z,, = Z/nZ via the isomorphism (* — i after choosing
a primitive n-th root of unity ¢ € C.

LEMMA 3.1
The Kummer sequence of sheaves of Abelian groups

(-

is exact on Mgy (but not necessarily on spec A with the Zariski topology).

PROOF  We only need to verify surjectivity. Let B € A,y and b €
G (B) = B*. Consider the étale extension B’ = B[t]/(t" — b) of B, then b
has an n-th root over in G,,(B’). Observe that this n-th root does not have
to belong to G, (B).
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If p is a prime ideal of A we will denote with k, the algebraic closure of the
field of fractions of A/p. An étale neighborhood of p is an étale extension
B € A such that the diagram below is commutative

nat

A

ky

B

The analog of the localization A, for the étale topology is the strict Henseliza-
tion
A= lim B

where the limit is taken over all étale neighborhoods of p.

Recall that a local algebra L with maximal ideal m and residue map 7 :
L — L/m = k is said to be Henselian if the following condition holds. Let
f € L[t] be a monic polynomial such that 7(f) factors as go.ho in k[t], then f
factors as g.h with 7(g) = go and w(h) = hg. If L is Henselian then tensoring
with k& induces an equivalence of categories between the étale A-algebras and
the étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if
its residue field is algebraically closed. Thus, a strict Henselian ring has no
proper finite étale extensions and can be viewed as a local algebra for the
étale topology.

Example 3.5 The algebraic functions C{x1,...,2z4}
Consider the local algebra of C[xy,...,z4] in the maximal ideal (z1,...,z4),
then the Henselization and strict Henselization are both equal to

(C{xl,...,a:d}

the ring of algebraic functions . That is, the subalgebra of C[[zy,...,xq4]]
of formal power-series consisting of those series ¢(z1,...,zq) which are alge-
braically dependent on the coordinate functions z; over C. In other words,
those ¢ for which there exists a nonzero polynomial f(x;,y) € Clzy,...,2q4,]
with f(z1,...,24,0(x1,...,24)) = 0.

These algebraic functions may be defined implicitly by polynomial equa-
tions. Consider a system of equations

filz1,...,2a;91, .- Ym) = 0 for f; € Clay,y;) and 1 < i <m
Suppose there is a solution in C with

z; =0 and y; =y
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such that the Jacobian matrix is nonzero

afi
0y,

det (220,030, 40)) #0

Then, the system can be solved uniquely for power series y;(z1, ..., zq) with
y;(0,...,0) = y¢ by solving inductively for the coefficients of the series. One
can show that such implicitly defined series y;(z1,...,z4) are algebraic func-
tions and that, conversely, any algebraic function can be obtained in this way.

If G is a sheaf on Ag¢ and p is a prime ideal of A, we define the stalk of G
in p to be
Gp, = lim G(B)

where the limit is taken over all étale neighborhoods of p. One can verify
mono- epi- or isomorphisms of sheaves by checking it in all the stalks.

If A is an affine algebra defined over an algebraically closed field, then it
suffices to verify it in the maximal ideals of A.

Before we define cohomology of sheaves on Ag; let us recall the definition of
derived functors . Let A be an Abelian category . An object I of A is said to
be injective if the functor

A — abelian M — Homa(M,I)

is exact. We say that A has enough injectives if, for every object M in A,
there is a monomorphism M —— [ into an injective object.

If A has enough injectives and f: A —— B is a left exact functor from 4
into a second Abelian category BB, then there is an essentially unique sequence
of functors

Rf:tA—sB i>0

called the right derived functors of f satisfying the following properties
«ROf=7§
e R I =0 for I injective and i > 0
e For every short exact sequence in A
0— M — M — M” —> 0

there are connecting morphisms § : R? f(M”) —— R f(M’) for
i > 0 such that we have a long exact sequence

e R f(M) — R f(M7) 2o R f(M') —» RV f(M) —
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e For any morphism M
R' f(M) — R! f(N) fori >0

N there are morphisms

In order to compute the objects R f(M) define an object N in A to be
f-acyclic if R* f(M) = 0 for all i > 0. If we have an acyclic resolution of M

0— M — Ny — Ny — Ny — ...

by f-acyclic objects N;, then the objects R' f(M) are canonically isomorphic
to the cohomology objects of the complex

0 — f(No) —> f(N1) — f(N2) — ...

One can show that all injectives are f-acyclic and hence that derived objects
of M can be computed from an injective resolution of M.

Now, let 8% (A.:) be the category of all sheaves of Abelian groups on A.
This is an Abelian category having enough injectives whence we can form
right derived functors of left exact functors. In particular, consider the global
section functor

I':S%(A,) — abelian G — G(A)

which is left exact. The right derived functors of I' will be called the étale co-
homology functors and we denote

R'T(G) = Hy (A, G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 — G ——+ G —— G” —— 0, then we have a long exact cohomol-
ogy sequence

. — H',(A,G) — H,(A,G”) — H'[Y(A,G') — ...

If G is a sheaf of non-Abelian groups (written multiplicatively), we cannot
define cohomology groups. Still, one can define a pointed set HY,(A,G) as
follows. Take an étale cover C = {A — A;} of A and define a 1-cocycle for
C with values in G to be a family

gij € G(AU) with Aij =A; R4 Aj
satisfying the cocycle condition
(9i5 | Aiji)(gji | Aijie) = (gir | Aijr)

where Aijk =A; Q4 Aj Qa4 Ap.
Two cocycles g and ¢’ for C are said to be cohomologous if there is a family
h; € G(A;) such that for all i, j € I we have

gij = (hi | Aij)gij(hy | Aiy) ™!
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This is an equivalence relation and the set of cohomology classes is written
as HY(C,G). It is a pointed set having as its distinguished element the coho-
mology class of g;; =1 € G(A,;;) for all 4,5 € I.

We then define the non-Abelian first cohomology pointed set as

where the limit is taken over all étale coverings of A. It coincides with the
previous definition in case G is Abelian.

A sequence 1 — G’ —— G —— G” — 1 of sheaves of groups on Ag
is said to be exact if for every B € A, we have

o G'(B) = Ker G(B) —~ G”(B)

e For every ¢” € G”(B) there is a cover {B —— B;} in Ay and sections
g; € G(B;) such that g; maps to ¢g” | B;.

PROPOSITION 3.2

For an ezxact sequence of groups on Ae
l1—G — G — G — 1
there is associated an exact sequence of pointed sets
1 — G/(A) —> G(A) — G"(4) —» HL(A,G') —

- Helt(A7 G) - Helt(AaG”) """" > Hth(A’ Gl)

where the last map exists when G’ is contained in the center of G (and there-
fore is Abelian whence H? is defined).

PROOF  The connecting map § is defined as follows. Let ¢” € G”(A) and
let C = {A — A;} be an étale covering of A such that there are g; € G(A4;)
that map to g | A; under the map G(4;) — G”(A;). Then, 6(g) is the class
determined by the one cocycle

9i5 = (9 | Aij) (g5 | Aij)

with values in G’. The last map can be defined in a similar manner, the other
maps are natural and one verifies exactness. I

The main applications of this non-Abelian cohomology to noncommutative
algebra is as follows. Let A be a not necessarily commutative A-algebra and
M an A-module. Consider the sheaves of groups Aut(A) resp. Aut(M) on A
associated to the presheaves

B — Autp_q19(A ®4 B) resp. B — Autp_mod(M ®4 B)
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for all B € Ag. A twisted form of A (resp. M) is an A-algebra A’ (resp. an
A-module M’) such that there is an étale cover C = {4 — A;} of A such
that there are isomorphisms

A®AAiﬁ'A/®AAi
M®AA2'&'M/®AA1'

of A;-algebras (resp. A;-modules). The set of A-algebra isomorphism classes
(resp. A-module isomorphism classes) of twisted forms of A (resp. M) is
denoted by Twa(A) (resp. Twa(M)). To a twisted form A’ one associates a
cocycle on C

QAT = Qi = (151_1 e} ¢]

with values in Aut(A). Moreover, one verifies that two twisted forms are
isomorphic as A-algebras if their cocycles are cohomologous. That is, there
are embeddings

Twa(A) — H,(A, hut(A))
Twa(M) — HL (A, Aut(M))
In favorable situations one can even show bijectivity. In particular, this is the

case if the automorphisms group is a smooth affine algebraic group-scheme.

Example 3.6 Azumaya algebras
Consider A = M, (A), then the automorphism group is PGL,, and twisted
forms of A are classified by elements of the cohomology group

HL (A,PGL,)
These twisted forms are precisely the Azumaya algebras of rank n? with center

A. When A is an affine commutative C-algebra and A is an A-algebra with
center A, then A is an Azumaya algebra of rank n? if and only if

for every maximal ideal m of A. I

Azumaya algebras arise in representation theory as follows. Let A be a
noncommutative affine C-algebra and assume that the following two conditions
are satisfied

e A has a simple representation of dimension n,

e rep, A is an irreducible variety.
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Then § A = Clrep, A]¥En is a domain (whence iss, A is irreducible) and
we have an onto trace preserving algebra map corresponding to the simple
representation

/ A = M, (Clrep, A])Lr — M, (C)

Lift the standard basis e;; of M, (C) to elements a;; € fn A and consider the
determinant d of the n? x n? matrix (tr(aijant))ij e with values in fn A. Then
d # 0 and consider the Zariski open affine subset of iss,, A

X(d) = {/ A2 M, (C) | v semisimple and det(tr(v(a;;)¥(ar))) # 0}

If ¢ € X(d), then ¥ : [ A — M,(C) is onto as the ¢(a;;) form a basis of
M, (C) whence ¢ determines a simple n-dimensional representation.

PROPOSITION 3.3
With notations as above,

1. The localization of fn A at the central multiplicative set {1,d,d?, ...} is
an affine Azumaya algebra with center C[X(d)], which is the localization
of . A at this multiplicative set.

2. The restriction of the quotient map rep, A —"r iss, A to the open
set 7 Y(X(d)) is a principal PG Ly,-fibration and determines an element

" H},(CX(d)], PGL,)

gwing the class of the Azumaya algebra.

PROOF (1): If m = Ker ¢ is the maximal ideal of C[X(d)] corresponding
to the semisimple representation ¢ : fn A — M, (C), then we have seen that
the quotient

o

whence [ A ®g 4 C[X(d)] is an Azumaya algebra. (2) will follow from the
theory of Knop-Luna slices and will be proved in chapter 5. I

An Azumaya algebra over a field is a central simple algebra. Under the
above conditions we have that

/A®f 4 C(iss, A)

is a central simple algebra over the function field of iss, A and hence deter-
mines a class in its Brauer group, which is an important birational invariant.
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In the following section we recall the cohomological description of Brauer
groups of fields.

3.2 Central simple algebras

Let K be a field of characteristic zero, choose an algebraic closure K with
absolute Galois group G = Gal(K/K).

LEMMA 3.2
The following are equivalent:

1. K —— A is étale
2. AQk K~Kx...xK
3. A=1]]L; where L;/K is a finite field extension

PROOF  Assume (1), then A = Klx1,...,2,]/(f1,..., fn) where f; have
invertible Jacobian matrix. Then A ® K is a smooth commutative algebra
(hence reduced) of dimension 0 so (2) holds.

Assume (2), then

Homg_q4(A,K) >~ Homg_q14(A @ K, K)

has dimg(A ® K) elements. On the other hand we have by the Chinese
remainder theorem that

A/Jac A = H L;
with L; a finite field extension of K. However,

dimx(A®K) =Y dimg(L;) = dimg (A/Jac A) < dim(A)

and as both ends are equal A is reduced and hence A = [[, L; whence (3).
Assume (3), then each L; = K[xz;]/(f;) with 0f;/0x; invertible in L;. But
then A =[] L; is étale over K whence (1).

To every finite étale extension A = [[ L; we can associate the finite set
rts(A) = Homp_q14(A,K) on which the Galois group G acts via a finite
quotient group. If we write A = K]Jt]/(f), then rts(A) is the set of roots
in K of the polynomial f with obvious action by Gg. Galois theory, in the
interpretation of Grothendieck, can now be stated as follows.
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PROPOSITION 3.4

The functor

t —_
Kot ris(z) finite G — sets

is an antiequivalence of categories.

We will now give a similar interpretation of the Abelian sheaves on Kgy. Let
G be a presheaf on Ke;. Define

Mg = lim G(L)

where the limit is taken over all subfields L —— K, which are finite over
K. The Galois group Gk acts on G(L) on the left through its action on L
whenever L/K is Galois. Hence, Gi acts an Mg and Mg = UMg where
H runs through the open subgroups (that is, containing a normal subgroup
having a finite quotient) of G . That is, Mg is a continuous G g -module .

Conversely, given a continuous G i-module M we can define a presheaf Gy
on K¢ such that

e Gy (L) = MY where H = G = Gal(K/L).

One verifies that G, is a sheaf of Abelian groups on Key.

THEOREM 3.1
There is an equivalence of categories

S(Ket) f’ GK — mod

induced by the correspondences G — Mg and M — Gjp;. Here, G — mod is
the category of continuous G i -modules.

PROOF A Gg-morphism M —— M’ induces a morphism of sheaves
Gar — Gy Conversely, if H is an open subgroup of G with L = K,
then if G —~ G’ is a sheaf morphism, ¢(L) : G(L) — G'(L) commutes
with the action of Gk by functoriality of ¢. Therefore, m o(L) is a
G g-morphism Mg — Mg

One verifies easily that Homg, (M, M') —— Hom/(Gps,Gpyr) is an iso-
morphism and that the canonical map G — Gy, is an isomorphism. I

In particular, we have that G(K) = G(K)“* for every sheaf G of Abelian
groups on Key and where G(K) = Mg. Hence, the right derived functors of T’
and (—) coincide for Abelian sheaves.
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The category G g —mod of continuous G g-modules is Abelian having enough
injectives. Therefore, the left exact functor

(-)¢: Gx —mod —» abelian

admits right derived functors. They are called the Galois cohomology groups
and denoted _ ‘
R MY = H'(Gg, M)

Therefore, we have the following.

PROPOSITION 3.5
For any sheaf of Abelian groups G on K¢y we have a group isomorphism

Hy, (K, G) ~ H'(Gk, G(K))

Hence, étale cohomology is a natural extension of Galois cohomology to
arbitrary commutative algebras. The following definition-characterization of
central simple algebras is classical, see for example [84].

PROPOSITION 3.6
Let A be a finite dimensional K -algebra. The following are equivalent:

1. A has no proper twosided ideals and the center of A is K.
2. Ax = A®k K ~ M,(K) for some n.

3. AL = A®k L ~ M, (L) for some n and some finite Galois extension
L/K.

4. A~ My(D) for some k where D is a division algebra of dimension I?
with center K.

The last part of this result suggests the following definition. Call two central
simple algebras A and A’ equivalent if and only if A ~ M, (A) and A" ~ M;(A)
with A a division algebra. From the second characterization it follows that
the tensor product of two central simple K-algebras is again central simple.
Therefore, we can equip the set of equivalence classes of central simple algebras
with a product induced from the tensorproduct. This product has the class
[K] as unit element and [A]~1 = [A°PP], the opposite algebra as A ® g APP ~
Endg(A) = Mp2(K). This group is called the Brauer group and is denoted
Br(K). We will quickly recall its cohomological description, all of which is
classical.

GL, is an affine smooth algebraic group defined over K and is the auto-
morphism group of a vector space of dimension r. It defines a sheaf of groups
on K¢ that we will denote by GL,.. Using the fact that the first cohomology
classifies twisted forms of vector spaces of dimension r we have the following.
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LEMMA 3.3
HL(K,GL,) = H(Gk,GL.(K)) =0

In particular, we have ”Hilbert’s theorem 90”

HL(K,G,)=H (Gg,K*)=0

PROOF The cohomology group classifies K-module isomorphism classes
of twisted forms of r-dimensional vector spaces over K. There is just one such
class. 0

PGL, is an affine smooth algebraic group defined over K and it is the
automorphism group of the K-algebra M, (K). It defines a sheaf of groups
on Koy denoted by PGL,,. By proposition 3.6 we know that any central simple
K-algebra A of dimension n? is a twisted form of M, (K).

LEMMA 3.4
The pointed set of K-algebra isomorphism classes of central simple algebras
of dimension n? over K coincides with the cohomology set

H!,(K,PGL,) = H'(Gk, PGL,(K))
THEOREM 3.2
There s a natural inclusion
Helt(Ka PGL,) — Hth(Kv pin) = Br(K)
where Br,(K) is the n-torsion part of the Brauer group of K. Moreover,
Br(K) = H2,(K,G,,)

18 a torsion group.

PROOF Consider the exact commutative diagram of sheaves of groups on
Ky of figure 3.2. Taking cohomology of the second exact sequence we obtain

GL,(K) 2%

K* Hclt(KvsLn) Helt(chLn)
where the first map is surjective and the last term is zero, whence
H!,(K,SL,) =0

Taking cohomology of the first vertical exact sequence we get

Helt(Kv SLn) - Helt(Ka PGLH) - Hc?t(K7 :un)
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FIGURE 3.2: Brauer group diagram.

from which the first claim follows.
As for the second assertion, taking cohomology of the first exact sequence
we get

HY\(K,Gp) — HL(K, 1) — HL(K,Gp) —— HAZ(K,Gp)

By Hilbert 90, the first term vanishes and hence H2 (K, u,) is equal to the
n-torsion of the group

H%(K,G,,) = H*(Gg,K*) = Br(K)

where the last equality follows from the crossed product result, see, for exam-
ple, [84].

So far, the field K was arbitrary. If K is of transcendence degree d, this
will put restrictions on the ”size” of the Galois group G . In particular this
will enable us to show in section 3.4 that H* (G, pt,) = 0 for i > d. But first,
we need to recall the definition of spectral sequences.

3.3 Spectral sequences

Let A,B and C be Abelian categories such that A and B have enough
injectives and consider left exact functors

A-L.p 2. ¢
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FIGURE 3.3: Level 1.

Let the functors be such that f maps injectives of A to g-acyclic objects in
B, that is, R* g(f I) = 0 for all i > 0. Then, there are connections between
the objects

R? g(R? f(A)) and R" gf(A)
for all objects A € A. These connections can be summarized by giving a

spectral sequence

THEOREM 3.3
Let A,B,C be Abelian categories with A,B having enough injectives and left
exact functors

At ¢

such that f takes injectives to g-acyclics.
Then, for any object A € A there is a spectral sequence

Ey? =R g(R" f(A)) = R" gf(A)
In particular, there is an ezact sequence
0 — R' g(f(A)) —= R' gf(A) — g(R" f(A)) — R? g(f(4)) — ...
Moreover, if f is an exact functor, then we have
RP gf(A) ~ R g(f(A))

A spectral sequence E5'? = E" (or EY"Y = E™) consists of the following
data:

1. A family of objects E?-? in an Abelian category for p,q,r € Z such that
p,qg>0and r>2 (or r > 1).

2. A family of morphisms in the Abelian category

p-q . P9 p+r,q—r+1
dr4 . EP1 - EP
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pq
E5 =

FIGURE 3.4: Level 2.

satisfying the complex condition
+r,g—r+1 W —
df rq—r+ Odfq—O
and where we assume that d2¢ = 0 if any of the numbers p,q,p + 7 or

qg—7+1is < 1. At level one we have the situation of figure 3.3. At
level two we have the situation of figure 3.4

3. The objects E¥’ ql on level r 4+ 1 are derived from those on level r by
taking the cohomology objects of the complexes, that is

N D>q p—r,q+r—1
E} | = Ker d»? [ Im db

At each place (p, q) this process converges as there is an integer ro de-
pending on (p, q) such that for all » > rg we have d?*4 = 0 = dP~"97" =1
We then define

BRI = BRI DL, =)

Observe that there are injective maps E%4 — EJ7,
4. A family of objects E™ for integers n > 0 and for each we have a filtration
OCE)CE}) ,C...CETCEy=E"
such that the successive quotients are given by
B} | Epyy = BRI

That is, the terms E2:¢ are the composition terms of the limiting terms
EPT4, Pictorially,
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For small n one can make the relation between E™ and the terms E5?
explicit. First note that
0,0 _ 770,0 _ 170
E;"=Ey =FE
Also, E} = ELY = E;° and E'/E} = E%! = Ker dy'. This gives an exact
sequence

0,1
1 1 dy’ 2
0— By’ —+ B — By 2 B°

Further, E? D E? D E? where
E2=E20=E2° ) Im ds!
and E2/E2 = EL! = Ker dy' whence we can extend the above sequence to

01 dy’ 20 2 gl dy! 30

e T by T by T by /Ly T By

as E2/E? = E%2 — EY? we have that E? = Ker (E2 — E3?). If we
specialize to the spectral sequence E5'? = RP g(R? f(A)) = R™ gf(A) we
obtain the exact sequence

0 — R' g(f(4)) — R' gf(4) — g(R' f(A)) — R? g(f(4)) —

— Ef —= R' g(R' f(A)) — R’ g(f(A))

where E? = Ker (R? gf(A) — g(R? f(A))).
An important spectral sequence is the Leray spectral sequence . Assume we
have an algebra morphism A L+ A’ and a sheaf of groups G on A/,. We

define the direct image of G under f to be the sheaf of groups f. G on Ag
defined by

£. G(B)=G(B®a A

for all B € Aet (recall that B ®4 A’ € AL, so the right-hand side is well
defined).

This gives us a left exact functor
o SP(AL) —> S™(Aet)

and therefore we have right-derived functors of it R’ f,. If G is an Abelian
sheaf on AL,, then R f,G is a sheaf on A.;. One verifies that its stalk in a
prime ideal p is equal to

(R [.G)y = Hiy(A 94 A',G)

where the right-hand side is the direct limit of cohomology groups taken over
all étale neighborhoods of p. We can relate cohomology of G and f.G by the
following.
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THEOREM 3.4
(Leray spectral sequence) If G is a sheaf of Abelian groups on AL, and

AL n an algebra morphism, then there is a spectral sequence
Ey? = H(A, R f.G) = H(A,G)

In particular, if B f.G =0 for all j > 0, then for all i > 0 we have isomor-
phisms

H;, (A, £.G) ~ H(,(A', G)

3.4 Tsen and Tate fields

In this section we will use spectral sequences to control the size of the Brauer
group of a function field in terms of its transcendence degree.

DEFINITION 3.4 A field K is said to be a Tsen®-field if every homo-
geneous form of degree deg with coefficients in K and n > deg® variables has
a nontrivial zero in K.

For example, an algebraically closed field K is a T'sen®-field as any form in
n-variables defines a hypersurface in P%_l. In fact, algebraic geometry tells
us a stronger story

LEMMA 3.5
Let K be algebraically closed. If fi,..., fr are forms in n variables over K
and n > r, then these forms have a common nontrivial zero in K.

PROOF  Each f; defines a hypersurface V(f;) = Pg~'. The intersection
of r hypersurfaces has dimension > n — 1 — r from which the claim follows. [

We want to extend this fact to higher Tsen-fields. The proof of the following
result is technical inequality manipulation, see, for example, [97].

PROPOSITION 3.7
Let K be a Tsen®-field and fi,..., f. forms in n variables of degree deg. If
n > rdeg?, then they have a nontrivial common zero in K.

For our purposes the main interest in Tsen-fields comes from the following.
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THEOREM 3.5
Let K be of transcendence degree d over an algebraically closed field C, then
K is a Tsen®-field.

PROOF First we claim that the purely transcendental field C(t1,...,tq)
is a Tsen?-field. By induction we have to show that if L is T'sen”, then L(t)
is T'sen®+1.

By homogeneity we may assume that f(x1,...,2,) is a form of degree
deg with coefficients in L[t] and n > deg®*!. For fixed s we introduce new

variables yl(;) with ¢ <n and 0 < j < s such that

T =y AUty
If r is the maximal degree of the coefficients occurring in f, then we can write

F@i) = foui)) + FrlyS)t 4 oo Faegusir(ylsedesst

where each f; is a form of degree deg in n(s+1)-variables. By the proposition
above, these forms have a common zero in L provided

n(s+1) > deg®(ds + 7+ 1) <= (n — deg"™")s > deg'(r +1) —n

which can be satisfied by taking s large enough. the common nontrivial zero
in L of the f;, gives a nontrivial zero of f in L[t].

By assumption, K is an algebraic extension of C(t1,...,t4) which by the
above argument is T'sen?. As the coefficients of any form over K lie in a finite
extension E of C(ty,...,t4) it suffices to prove that E is Tsen?.

Let f(x1,...,7,) be a form of degree deg in E with n > deg?. Introduce
new variables y;; with

Ti = Yire1 + ... YikCk

where e; is a basis of E over C(ty,...,tq). Then,

f(xi) = filyij)er + -+ fu(yij)er

where the f; are forms of degree deg in k.n variables over C(t,...,¢;). Be-
cause C(ty,...,tq) is T'sen?, these forms have a common zero as k.n > k.deg?.
Finding a nontrivial zero of f in FE is equivalent to finding a common nontrivial
zero to the f1,..., fr in C(¢1,...,tq), done.

A direct application of this result is Tsen’s theorem.

THEOREM 3.6

Let K be the function field of a curve C' defined over an algebraically closed
field. Then, the only central simple K -algebras are M, (K). That is, Br(K) =
1.
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PROOF  Assume there exists a central division algebra A of dimension
n? over K. There is a finite Galois extension L/K such that A® L = M, (L).
If z1,...,2,2 is a K-basis for A, then the reduced norm of any z € A

N(z) =det(z®1)

is a form in n? variables of degree n. Moreover, as  ® 1 is invariant under

the action of Gal(L/K) the coefficients of this form actually lie in K.

By the main result, K is a T'sen'-field and N(z) has a nontrivial zero
whenever n? > n. As the reduced norm is multiplicative, this contradicts
N(x)N(z~!) = 1. Hence, n = 1 and the only central division algebra is K
itself.

If K is the function field of a surface, we have the following.

PROPOSITION 3.8

Let K be the function field of a surface defined over an algebraically closed
field. If A is a central simple K-algebra of dimension n?, then the reduced
norm map

N: A—K

18 surjective.

PROOF Let eq,...,e,2 be a K-basis of A and k € K, then
N(Z 3?,‘61‘) — I{?.’L'ZQJFI

is a form of degree n in n? + 1 variables. Since K is a T'sen? field, it has a
nontrivial solution (2?), but then, § = (3 x?ei)x;; 1 has reduced norm equal

to k. I

From the cohomological description of the Brauer group it is clear that we
need to have some control on the absolute Galois group Gx = Gal(K/K).
We will see that finite transcendence degree forces some cohomology groups
to vanish.

DEFINITION 3.5 The cohomological dimension of a group G, c¢d(G) <
d if and only if H" (G, A) = 0 for allr > d and all torsion modules A € G-mod.

DEFINITION 3.6 A field K is said to be a Tate-field if the absolute
Galois group Gk = Gal(K/K) satisfies cd(G) < d.

First, we will reduce the condition ¢d(G) < d to a more manageable one.
To start, one can show that a profinite group G (that is, a projective limit of
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finite groups, see [97] for more details) has ¢d(G) < d if and only if
H1(G, A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we
can decompose the cohomology in its p-primary parts and relate their vanish-
ing to the cohomological dimension of the p-Sylow subgroups G, of G. This
problem can then be verified by computing cohomology of finite simple G-
modules of p-power order, but for a profinite p-group there is just one such
module, namely, Z/pZ with the trivial action.

Combining these facts we have the following manageable criterium on co-
homological dimension.

PROPOSITION 3.9
cd(G) < d if HY G, Z/pZ) = 0 for the simple G-modules with trivial action
Z/pZ.

We will need the following spectral sequence in Galois cohomology

PROPOSITION 3.10
(Hochschild-Serre spectral sequence) If N is a closed normal subgroup of a
profinite group G, then

Ep? = HP(G/N,H(N,A)) = H"(G, A)
holds for every continuous G-module A.

Now, we are in a position to state and prove Tate’s theorem.

THEOREM 3.7
Let K be of transcendence degree d over an algebraically closed field, then K
is a Tate®-field.

PROOF Let C denote the algebraically closed basefield, then K is alge-
braic over C(¢1,...,tq) and therefore

Thus, K is Tate? if C(t1,...,tq) is Tate?. By induction it suffices to prove
If cd(Gr) < k then cd(Gryy) < k+1

Let L be the algebraic closure of L and M the algebraic closure of L(t). As L(t)
and L are linearly disjoint over L we have the following diagram of extensions
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and Galois groups

c P L(t) <0,

L (
GLK Gr, O\)@
L (

S—

where GL(t)/G]L(t) ~ GL.
We claim that cd(Gy)) < 1. Consider the exact sequence of G',(;)-modules

0 — pp — M om0

where p, is the subgroup (of C*) of p-roots of unity. As G acts trivially
on (i, it is after a choice of primitive p-th root of one isomorphic to Z/pZ.
Taking cohomology with respect to the subgroup G,y we obtain

0= H"(GrLp),M*) — H*(Gru),Z/pZ) — H*(Gr),M*) = Br(L(t))

But the last term vanishes by Tsen’s theorem as L(¢) is the function-
field of a curve defined over the algebraically closed field L. Therefore,
H?*(Gy), Z/pZ) = 0 for all simple modules Z/pZ, whence cd(Gy)) < 1.

By the inductive assumption we have cd(Gp) < k and now we are going to
use exactness of the sequence

0 — G — Gry — Grg — 0

to prove that cd(Gr)) < k+ 1. For, let A be a torsion G'1,(;)-module and
consider the Hochschild-Serre spectral sequence

EYY = HP(Gp, H(GL), A)) = H™(GLa), A)

By the restrictions on the cohomological dimensions of G’ and G () the level
two term has following shape

v
[ ] [ ]
2@ [ ]
[ ] [ ]
Bp = |,

where the only nonzero groups are lying in the lower rectangular region.
Therefore, all E2? = 0 for p+¢q > k+ 1. Now, all the composition fac-
tors of H*2(G L(t), A) are lying on the indicated diagonal line and hence are
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zero. Thus, Hk+2(GL(t),A) = 0 for all torsion G'1,(;)-modules A and hence
cd(Gre) < k+ 1. I

THEOREM 3.8
If A is a constant sheaf of an Abelian torsion group A on Key, then

whenever i > trdege (K).

3.5 Coniveau spectral sequence

In this section we will describe a particularly useful spectral sequence. Con-

sider the setting k <«— A —» K where A is a discrete valuation ring in K
with residue field A/m = k. As always, we will assume that A is a C-algebra.
By now we have a grip on the Galois cohomology groups

Hy(K, M%l) and Hét(k,uf?l)
and we will use this information to compute the étale cohomology groups
H ét(A7 M% l)
Here, u®' = y, ® ... ® p, where the tensorproduct is as sheafs of invertible

1
Z,, = Z/nZ-modules.
We will consider the Leray spectral sequence for ¢ and hence have to com-
pute the derived sheaves of the direct image

LEMMA 3.6
1. RO i*u%l ~ u%l on Agt.
2. R i u® ~ @=L concentrated in m.

3. RV i, u® ~ 0 whenever j > 2.

PROOF The strict Henselizations of A at the two primes {0, m} are resp.

Agh ~ K and A" ~ k{t}
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0 0 0

HO (b, u @) | HE (k@11 [H2 (b, @171

HO(A, u®Y) | B (A, u®Y | HZ(A, 8D |...

FIGURE 3.5: Second term of Leray sequence.

where K (resp. k) is the algebraic closure of K (resp. k). Therefore,
(R dupil o = HL (K, ")

which is zero for i > 1 and p®! for j = 0. Further, A3"® 4 K is the field of frac-
tions of k{t} and hence is of transcendence degree one over the algebraically
closed field k, whence

(RY iy = HL (L, ")
which is zero for j > 2 because L is Tate?!. A
For the field-tower K C L C K we have that G, = Z = lim p,, be-
cause the only Galois extensions of L are the Kummer extensions obtained by
adjoining %/t. But then,
Hy (Lo ') = HY(Z, p (K)) = Hom(Z, iy (K)) = p' ™!

from which the claims follow. |:|

THEOREM 3.9
We have a long exact sequence

0 — H'(A,p3') — H' (K, ") — HO(k,p' ™) —

n

H2(Aalu’§)l) - Hz(Knu‘gl) - Hl(knu’glil) ..

PROOF By the foregoing lemma, the second term of the Leray spectral
sequence for 7,u%! is depicted in figure 3.5 with connecting morphisms

Qg

Hi Mk, p1) = HIN(A, p$h)

The spectral sequences converges to its limiting term which looks like

0 0 0

Ker aj Ker ag Ker ag |...

HO(A, u@Y|HY (A, 1OV |Coker ay ...
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and the Leray sequence gives the short exact sequences
0 —— Hoy(A, ") —= Hy(K, 1)) — Ker ai — 0
0 — Coker oy — H% (K, p%!) — Ker ag — 0
0 — Coker o1 — H',(K,u2") — Ker a; — 0

and gluing these sequences gives us the required result. I

In particular, if A is a discrete valuation ring of K with residue field k we
have for each 7 a connecting morphism

HY (K ) 22 HE (ki)
Like any other topology, the étale topology can be defined locally on any
scheme X. That is, we call a morphism of schemes
y L. x
an étale extension (resp. cover) if locally f has the form
fO U A =T (U, Ox) — B; = T(f~1(U), Oy)

with A; — B; an étale extension (resp. cover) of algebras.

Again, we can construct the étale site of X locally and denote it with X;.
Presheaves and sheaves of groups on X.; are defined similarly and the right
derived functors of the left exact global sections functor

I':S%(X,) — abelian
will be called the cohomology functors and we denote
R' T(G) = H;,(X,G)

From now on we restrict to the case when X is a smooth, irreducible projec-
tive variety of dimension d over C. In this case, we can initiate the computa-
tion of the cohomology groups H¢, (X, u®!) via Galois cohomology of function
fields of subvarieties using the coniveau spectral sequence.

THEOREM 3.10

Let X be a smooth irreducible variety over C. Let X®) denote the set of
irreducible subvarieties x of X of codimension p with function field C(x),
then there exists a coniveau spectral sequence

EM = @ HYP(Clr), u'P) = HEF(X, )
zeX(®)
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FIGURE 3.6: Coniveau spectral sequence

In contrast to the spectral sequences used before, the existence of the
coniveau spectral sequence by no means follows from general principles. In
it, a lot of heavy machinery on étale cohomology of schemes is encoded. In
particular,

e cohomology groups with support of a closed subscheme, see, for example
[82, p. 91-94], and

e cohomological purity and duality, see [82, p. 241-252]

a detailed exposition of which would take us too far afield. For more details
we refer the reader to [22].

Using the results on cohomological dimension and vanishing of Galois co-
homology of u®* when the index is larger than the transcendence degree, we
see that the coniveau spectral sequence has shape as in figure 3.6 where the
only nonzero terms are in the indicated region.

Let us understand the connecting morphisms at the first level, a typical
instance of which is

D #(Cw.u ™) — B HTHCE),

zeX (@) yeX (p+1)

and consider one of the closed irreducible subvarieties x of X of codimension
p and one of those y of codimension p + 1. Then, either y is not contained in
z in which case the component map

HY(C(x), py" ") — H'™H(C(y), ")

is the zero map. Or, y is contained in = and hence defines a codimension one
subvariety of . That is, y defines a discrete valuation on C(z) with residue
field C(y). In this case, the above component map is the connecting morphism
defined above.

In particular, let K be the function field of X. Then we can define the
unramified cohomology groups

0; i— _
D9, 4 @HZ 1(k‘A,,LL®l 1)

n

Fy'(K/C) = Ker H'(K, iy)")
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0 0 0 0
H2(C(S), pn) [®cHNC(S),Zn)| ®p npt 0
HY(C(S), un) ®c Zn 0 0

Hn 0 0 0

FIGURE 3.7: First term of coniveau spectral sequence for S.

where the sum is taken over all discrete valuation rings A of K (or equivalently,
the irreducible codimension one subvarieties of X) with residue field k4. By
definition, this is a (stable) birational invariant of X. In particular, if X is
(stably) rational over C, then

FiY(K/C) =0 for all 4,1 > 0

3.6 The Artin-Mumford exact sequence

The coniveau spectral sequence allows us to control the Brauer group of
function fields of surfaces. This result, due to Michael Artin and David Mum-
ford, was used by them to construct unirational nonrational varieties. Our
main application of the description is to classify in chapter 5 the Brauer classes
which do admit a Cayley-smooth noncommutative model. It will turn out that
even in the case of surfaces, not every central simple algebra over the function
field allows such a noncommutative model. Let S be a smooth irreducible
projective surface.

DEFINITION 3.7 S is called simply connected if every étale cover
Y —— S s trivial, that is, Y is isomorphic to a finite disjoint union of
copies of S.

The first term of the coniveau spectral sequence of S has the shape of
figure 3.7 where C runs over all irreducible curves on S and P over all points
of S.
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=3

Scln =~ Dcoln

FIGURE 3.8: Divisors of rational functions on S.

LEMMA 3.7
For any smooth S we have HY(C(S), pin) —>> @S¢ Zn. If S is simply con-
nected, HL, (S, u,) = 0.

PROOF Using the Kummer sequence
(=)

1 — My —> Gm — Gm -1
and Hilbert 90 we obtain that
H.,(C(S), ) = C(S)*/C(S)™"

The first claim follows from the exact diagram describing divisors of rational
functions given in figure 3.8 By the coniveau spectral sequence we have that
HL(S, 1y,) is equal to the kernel of the morphism

Helt((c(s)vun) 7 Sele) Zn

and in particular, H'(S, i) — H(C(S), i)-

As for the second claim, an element in H!(S, y1,,) determines a cyclic exten-
sion L = C(S) {/f with f € C(S)*/C(S)*" such that in each field component
L; of L there is an étale cover T; — S with C(T;) = L;. By assumption
no nontrivial étale covers exist whence f =1 € C(S)*/C(S)*".

If we invoke another major tool in étale cohomology of schemes, Poincaré
duality , see, for example [82, VI,§11], we obtain the following information on
the cohomology groups for S.

PROPOSITION 3.11
(Poincaré duality for S) If S is simply connected, then
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1. HY(S, ptn) = pin
H (S, pn) =0

3. HZ(S, pn) =
HEy (S, pn) = "

PROOF  The third claim follows from the second as both groups are
dual to each other. The last claim follows from the fact that for a smooth
irreducible projective variety X of dimension d

HE(X, p) = pt 4

We are now in a position to state and prove the important issue.

THEOREM 3.11
(Artin-Mumford exact sequence) If S is a simply connected smooth projective
surface, then the sequence

0 — Bro(S) — Bro(C(S)) — @®c C(C)* /C(C)™ —

15 exact.

PROOF The top complex in the first term of the coniveau spectral se-
quence for S was

H2(C(S), pn) —> @ HY(C(C), Zn) —2» @p pin

The second term of the spectral sequence (which is also the limiting term)
has the following form

0 0 0 0
Ker o Ker 8/Im « Coker (3 0
Ker ~ Coker ~ 0 0

Hn 0 0 0




Etale Technology 139

By the foregoing lemma we know that Coker v = 0. By Poincare duality we
know that Ker 3 = Im a and Coker 3 = u, ‘. Hence, the top complex was
exact in its middle term and can be extended to an exact sequence

0 — H*(S, p,) — H*(C(S), pn) — @c HY(C(O),Z,) —

14»0

Dphy — 1y,

As Z,, ~ py, the third term is equal to ®cC(C)*/C(C)*™ by the argument
given before and the second term we remember to be Br,(C(S). The identi-
fication of Br,(S) with H2(S, pi,) will be explained below.

Some immediate consequences can be drawn from this. For a smooth simply
connected surface S, Br,(S) is a birational invariant (it is the birational
invariant F21(C(S)/C) of the foregoing section. In particular, if S = P? we
have that Br,(P?) =0 and as

0 — Br, C(z,y) — @c C(C)*/C(C)*" — @©p ;' — pty —> 0

we obtain a description of Br,, C(z,y) by a certain geocombinatorial package,
which we call a Z,-wrinkle over P2. A Z,-wrinkle is determined by

e A finite collection C = {C4,...,Cx} of irreducible curves in P2, that is,
C; = V(F;) for an irreducible form in C[X,Y, Z] of degree d;.

e A finite collection P = {P,..., P} of points of P? where each P; is
either an intersection point of two or more C; or a singular point of
some C;.

e For each P € P the branch-data bp = (by,...,b;,) with b; € Z,, = Z/nZ
and {1,...,ip} the different branches of C in P. These numbers must
satisfy the admissibility condition

> bi=0€ez,

for every P € P
e for each C' € C we fix a cyclic Z,-cover of smooth curves
D —C

of the desingularization C of C, which is compatible with the branch-
data. That is, if @ € C corresponds to a C-branch b; in P, then D is
ramified in Q with stabilizer subgroup

Stabg = (b;) C Zy,
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For example, a portion of a Z4-wrinkle can have the following picture

It is clear that the cover-data is the most intractable part of a Z,-wrinkle,
$0 we want to have some control on the covers D —» C. Let {Q1,...,Q:}
be the points of C where the cover ramifies with branch numbers {b1,...,b.},
then D is determined by a continuous module structure (that is, a cofinite
subgroup acts trivially) of

7r1(C~’— {Q1,...,Q.}) on Zy,

where the fundamental group of the Riemann surface C with z punctures is
known (topologically) to be equal to the group

(U1,01,. .., Ug, Vg, T1, ..., ) [([ur,v1] . . [ug, vglay ... x2)

where g is the genus of C. The action of x; on Z, is determined by multi-
plication with b;. In fact, we need to use the étale fundamental group, see
[82], but this group has the same finite continuous modules as the topological
fundamental group.

Example 3.7 Covers of P! and elliptic curves

1. If C = P! then g = 0 and hence 7 (P* — {Q1,...,Q.} is zero if z < 1
(whence no covers exist) and is Z if z = 2. Hence, there exists a unique
cover D —» P! with branch-data (1, —1) in say (0, o0) namely with D
the normalization of P! in C( /).

2. If C' = E an elliptic curve, then g = 1. Hence, 71(C) = Z ® Z and there
exist unramified Z,-covers. They are given by the isogenies

E — E

where E’ is another elliptic curve and E = E’/(r) where 7 is an n-torsion
point on E’.

0

Any n-fold cover D —s» C'is determined by a function f € C(C)*/C(C)*".
This allows us to put a group-structure on the equivalence classes of Z,,-
wrinkles. In particular, we call a wrinkle trivial provided all coverings



Etale Technology 141

D; — C; are trivial (that is, D; is the disjoint union of n copies of C’Z)
The Artin-Mumford theorem for P2 can now be stated as follows.

THEOREM 3.12

If A is a central simple C(x,y)-algebra of dimension n?, then A determines
uniquely a Zp,-wrinkle on P?. Conversely, any Z,,-wrinkle on P? determines a
unique division C(x,y)- algebra whose class in the Brauer group has order n.

Example 3.8
If S is not necessarily simply connected, any class in Br(C(S)),, still deter-
mines a Z,-wrinkle.

Example 3.9
If X is a smooth irreducible rational projective variety of dimension d, the
obstruction to classifying Br(C(X)), by Zy-wrinkles is given by H2,(X, pir,).

We will give a ring theoretical interpretation of the maps in the Artin-
Mumford sequence. Observe that nearly all maps are those of the top complex
of the first term in the coniveau spectral sequence for S. We gave an explicit
description of them using discrete valuation rings. The statements below
follow from this description.

Let us consider a discrete valuation ring A with field of fractions K and

residue field k. Let A be a central simple K-algebra of dimension n2.

DEFINITION 3.8 An A-subalgebra A of A will be called an A-order if
it is a free A-module of rank n® with A.K = A. An A-order is said to be
maximal if it is not properly contained in any other order.

In order to study maximal orders in A (they will turn out to be all con-
jugated), we consider the completion A with respect to the m-adic filtration
where m = At with ¢ a uniformizing parameter of A. K will denote the field
of fractions of A and A = A @ K.

Because A is a central simple K -algebra of dimension n? it is of the form

A = M, (D)

where D is a division algebra with center K of dimension s2 and hence n = s.t.
We call ¢ the capacity of A at A.

In D we can construct a unique maximal A-order T', namely, the integral
closure of A in D. We can view I' as a discrete valuation ring extending the
valuation v defined by A on K. If v: K — Z, then this extended valuation

w: D — n"27Z is defined as w(a) = (K(a) : K)_lv(NK(a)/K(a))
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for every a € D where K (a) is the subfield generated by a and N is the norm
map of fields.

The image of w is a subgroup of the form e ™'Z —— n~2.Z. The number
e= e(D/K) is called the ramification index of D over K. We can use it to
normalize the valuation w to

e
vp : D —— Z defined by vp(a) = EU(ND/R(G))

With these conventions we have that vp(t) = e.
The maximal order I' is then the subalgebra of all elements a € D with
vp(a) > 0. It has a unique maximal ideal generated by a prime element

T and we have that I' = % is a division algebra finite dimensional over

A/tA =k (but not necessarily having k as its center). A
_The inertial degree of D over K is defined to be the number f = f(D/K) =
(T : k) and one shows that

s> =e.f and e | s whence s | f

After this detour, we can now take A = M;(I') as a maximal A-order in

A. One shows that all other maximal A-orders are conjugated to A. A has a
unique maximal ideal M with A = M(T").

DEFINITION 3.9  With notations as above, we call the numbers e =
e(D/K), f = f(D/K) and t resp. the ramification, inertia and capacity of
the central simple algebra A at A. If e = 1 we call A an Azumaya algebra

over A, or equivalently, if A/tA is a central simple k-algebra of dimension n?.

Now let us consider the case of a discrete valuation ring A in K such that
the residue field k is T'sen'. The center of the division algebra I is a finite
dimensional field extension of k and hence is also T'sen! whence has a trivial
Brauer group and therefore must coincide with I'. Hence

I' =k(a)

a commutative field, for some a € I'. But then, f < s and we havee = f = s
and k(@) is a cyclic degree s field extension of k.
Because s | n, the cyclic extension k(a) determines an element of H', (k, Z,,).

DEFINITION 3.10 Let Z be a normal domain with field of fractions K
and let A be a central simple K-algebra of dimension n®>. A Z-order B is a
subalgebra that is a finitely generated Z-module. It is called mazimal if it is
not properly contained in any other order. One can show that B is a maximal
Z-order if and only if A = By, is a mazimal order over the discrete valuation
ring A = Z,, for every height one prime ideal p of Z.
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Return to the situation of an irreducible smooth projective surface S. If A
is a central simple C(S)-algebra of dimension n?, we define a maximal order
as a sheaf A of Og-orders in A which for an open affine cover U; —— S is
such that

A; =T(U;, A) is a maximal Z; = T'(U;, Og) order in A

Any irreducible curve C on S defines a discrete valuation ring on C(S) with
residue field C(C') which is T'sen!. Hence, the above argument can be ap-
plied to obtain from A a cyclic extension of C(C), that is, an element of

cey/ceym.

DEFINITION 3.11  We call the union of the curves C such that A
determines a nontrivial cyclic extension of C(C') the ramification divisor of

A (or of A).
The map in the Artin-Mumford exact sequence

Bra(C(8)) — DHA(C(C), jn)
C

assigns to the class of A the cyclic extensions introduced above.

DEFINITION 3.12 An S-Azumaya algebra (of index n) is a sheaf of
mazimal orders in a central simple C(S)-algebra A of dimension n? such that
it is Azumaya at each curve C, that is, such that [A] lies in the kernel of the
above map.

Observe that this definition of Azumaya algebra coincides with the one
given in the discussion of twisted forms of matrices. One can show that if
A and A" are S-Azumaya algebras of index n resp. n’, then A®p, A’ is an
Azumaya algebra of index n.n’. We call an Azumaya algebra trivial if it is of
the form End(P) where P is a vectorbundle over S. The equivalence classes of
S-Azumaya algebras can be given a group-structure called the Brauer-group
Br(S) of the surface S.

Let us briefly sketch how Michael Artin and David Mumford used their
sequence to construct unirational nonrational threefolds via the Brauer-Severi
varieties. Let K be a field and A = (a,b) ¢ the quaternion algebra determined
by a,b € K*. That is

A=KleoKi®oKjeKij with i2=a j2=0b and ji=—ij

The norm map on A defines a conic in P% called the Brauer-Severi variety of

A
BS(A) = V(22 — ay? — b2?) — P% = proj K[z, v, 2|
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Its characteristic property is that a field extension L of K admits an L-rational
point on BS(A) if and only if A ®x L admits zero-divisors and hence is
isomorphic to My(L).

In general, let K be the algebraic closure of K, then we have seen that the
Galois cohomology pointed set

HY(Gal(K/K), PGL,(K))

classifies at the same time the isomorphism classes of the following geometric
and algebraic objects

e Brauer-Severi K-varieties B.S, which are smooth projective K-varieties
such that BSk ~ }P’%_l.

e Central simple K-algebras A, which are K-algebras of dimension n?

such that A ® x K ~ M, (K).

The one-to-one correspondence between these two sets is given by associat-
ing to a central simple K-algebra A its Brauer-Severi variety BS(A), which
represents the functor associating to a field extension L of K the set of left
ideals of A ® x L that have L-dimension equal to n. In particular, BS(A) has
an L-rational point if and only if A ® ¢ L ~ M,,(L) and hence the geometric
object BS(A) encodes the algebraic splitting behavior of A.

Now restrict to the case when K is the function field C(X) of a projective
variety X and let A be a central simple C(X)-algebra of dimension n?. Let
A be a sheaf of Ox-orders in A then we one can show that there is a Brauer-
Severi scheme BS(.A), which is a projective space bundle over X with general
fiber isomorphic to P"~!(C) embedded in PV (C) where N = ("*; ') — 1.
Over an arbitrary point of = the fiber may degenerate.

For example if n = 2 the P!(C) embedded as a conic in P?(C) can degenerate
into a pair of P1(C)’s. Now, let us specialize further and consider the case when
X = P2 Consider E; and E; two elliptic curves in P? and take C = {Ey, E»}
and P = {P1,... Py} the intersection points and all the branch data zero. Let
E! be a twofold unramified cover of E;, by the Artin-Mumford result there is
a quaternion algebra A corresponding to this Zs-wrinkle.

Next, blow up the intersection points to get a surface S with disjoint elliptic
curves (7 and C3. Now take a maximal Qg order in A then the relevance of
the curves C; is that they are the locus of the points s € S where A, % My (C),
the so called ramification locus of the order A. The local structure of A in a
point s € S is

e when s ¢ C7 UCy, then A, is an Azumaya Og s-algebra in A

e when s € C;, then Ay = Og,5.1® Og5.i ® Og 5.5 ® Og .45 with
) =a
j2 =t
ji =-ij
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FIGURE 3.9: The Artin-Mumford bundle.

where ¢t = 0 is a local equation for C; and a and b are units in Og ;.

In chapter 5 we will see that this is the local description of a Cayley-smooth
order over a smooth surface in a quaternion algebra. Artin and Mumford
then define the Brauer-Severi scheme of A as representing the functor that
assigns to an S-scheme S’ the set of left ideals of A®p, Og which are locally
free of rank 2. Using the local description of A they show that BS(A) is a
projective space bundle over S as in figure 3.9 with the properties that BS(.A)

is a smooth variety and the projection morphism BS(A) —"o» S is flat, all
of the geometric fibers being isomorphic to P! (resp. to P! Vv P!) whenever
s¢ CyUCs (resp. s € Cy UCy).

Finally, for specific starting configurations F1 and FEs, they prove that the
obtained Brauer-Severi variety BS(A) cannot be rational because there is
torsion in H4(BS(A),Zs), whereas BS(A) can be shown to be unirational.

3.7 Normal spaces

In the next section we will see that in the étale topology we can describe
the local structure of representation varieties in a neighborhood of a closed
orbit in terms of the normal space to this orbit. In this section we will give a
representation theoretic description of this normal space.

We recall some standard facts about tangent spaces first. Let X be a not
necessarily reduced affine variety with coordinate ring C[X] = Clxy, ..., 2,]/I.
If the origin 0 = (0,...,0) € V(I), elements of I have no constant terms and
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we can write any p € I as

p= Zp(i) with p(i) homogeneous of degree 1.
=1

The order ord(p) is the least integer r > 1 such that p(") # 0. Define the
following two ideals in Clxy, ..., ;]

L={pW|pel} andl,={p" |pel and ord(p)=r}.

The subscripts [ (respectively m) stand for linear terms (respectively, terms
of minimal degree).

The tangent space to X in o , T,(X) is by definition the subscheme of C"
determined by I;. Observe that

I =(an1x1+ ... + @1nTny ., a11T1 + - oo+ A Ty)

for some ! x n matrix A = (a;;); ; of rank [. That is, we can express all x;, as
linear combinations of some {z;,,...,x;,_,}, but then clearly

ClTo(X)] = Clx1, ..., zn]/I = Clagy, ..y x4, ]

In particular, T,(X) is reduced and is a linear subspace of dimension n — [ in
C™ through the point o.

Next, consider an arbitrary geometric point z of X with coordinates
(a1y...,ay,). We can translate x to the origin o and the translate of X is
then the scheme defined by the ideal

(fi(lz1+ar,...;xn+an),..., fu(xr +a1,...,2, + an))
Now, the linear term of the translated polynomial f;(x1 + a1,..., T, + ay) is

equal to
ofi Of;
o1 Oy,

and hence the tangent space to X in x , T,(X) is the linear subspace of C™
defined by the set of zeroes of the linear terms

(a1, ,an)T1 + ...+ (a1, ..., Gn)Ty

il

— Ofi
oz, (®)xj, ...,y =—

T.(X) =V( oz,

(z)z;) — C"

j=1 j=1

In particular, the dimension of this linear subspace can be computed from the
Jacobian matriz in x associated with the polynomials (f1,..., fx)

) )

(@) ... Fl(x)

dim T,(X) =n—rk : :

o . o .
agj; () ... agj: (x)
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Let C[e] be the algebra of dual numbers , that is, Cle] ~ Cly]/(y?). Consider
a C-algebra morphism
Clz1y ..., xy] N Cle]  defined by z; — a; + ¢;e

Because £2 = 0 it is easy to verify that the image of a polynomial f(x1,...,z,)
under ¢ is of the form

o(f(x1,...,20)) = flar,...,an Za—f (a1,...,an)cje

Therefore, ¢ factors through I, that is, ¢(f;) = 0 for all 1 < i < k, if and

only if (c1,...,¢,) € T,(X). Hence, we can also identify the tangent space

to X in x with the algebra morphisms C[X] 2. Cle] whose composition

with the projection m : Cle] — C (sending € to zero) is the evaluation
inz = (a1,...,a,). That is, let ev, € X(C) be the point corresponding to
evaluation in z, then

T (X) = {¢ € X(C[e]) | X(m)(¢) = eva}

The following two examples compute the tangent spaces to the (trace preserv-
ing) representation varieties.

Example 3.10 Tangent space to rep,,
Let A be an affine C-algebra generated by {ai,...an} and p: A — M, (C)

an algebra morphism, that is, p € rep,, A. We call a linear map A = M, (C)
a p-derivation if and only if for all a,a’ € A we have that

D(ad") = D(a).p(d’) + p(a).D(d)

We denote the vector space of all p-derivations of A by Der,(A). Observe
that any p-derivation is determined by its image on the generators a;, hence
Der,(A) C M]". We claim that

T,(rep,, A) = Der,(A)
Indeed, we know that rep,, A(Cle]) is the set of algebra morphisms
A~ My (C[))

By the functorial characterization of tangentspaces we have that T,(rep, A)
is equal to

{D:A — M,(C) linear | p+ De : A — M, (C[e]) is an algebra map}.
Because p is an algebra morphism, the algebra map condition

plaa’) + D(aa')e = (p(a) + D(a)e)-(p(a') + D(a)e)
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is equivalent to D being a p-derivation. I

Example 3.11 Tangent space to trep,,

Let A be a Cayley-Hamilton algebra of degree n with trace map tr4 and trace
generated by {ai,...,am}. Let p € trep, A, that is, p : A —— M, (C) is
a trace preserving algebra morphism. Because trep, A(C[e]) is the set of all
trace preserving algebra morphisms A —— M, (C[e]) (with the usual trace
map tr on M, (C[e])) and the previous example one verifies that

T,(trep, A) = Der] (A) C Der,(A)

the subset of trace preserving p-derivations D, that is, those satisfying

D

A M, (C)
Dotrp=troD tra tr
D
A M, (C)
Again, using this property and the fact that A is trace generated by
{a1,...,an} a trace preserving p-derivation is determined by its image on
the a; so is a subspace of M. I

The tangent cone to X in o, TC,(X), is by definition the subscheme of C"
determined by I,,, that is

C[TC,(X)] = Clz1,. .., zn]/Im.

It is called a cone because if ¢ is a point of the underlying variety of TC,(X),
then the line | = o¢ is contained in this variety because I,,, is a graded ideal.
Further, observe that as I; C I,,,, the tangent cone is a closed subscheme of
the tangent space at X in 0. Again, if = is an arbitrary geometric point of X we
define the tangent cone to X in x , TC,(X) as the tangent cone T'C,(X’) where
X' is the translated scheme of X under the translation taking x to o. Both
the tangent space and tangent cone contain local information of the scheme X
in a neighborhood of z.

Let m, be the maximal ideal of C[X] corresponding to z (that is, the ideal
of polynomial functions vanishing in z). Then, its complement S, = C[X] —
m, is a multiplicatively closed subset and the local algebra O,(X) is the
corresponding localization C[X]s,. It has a unique maximal ideal m, with
residue field O, (X)/m, = C. We equip the local algebra O, = O, (X) with the
my-adic filtration that is the increasing Z-filtration

1

Fo Lcmicm™lc...cmcO0,=0,=...=0, =...
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with associated graded algebra

momel o m
gr(0y) = ...@ngH@m—;@...@m—%@C@O@...@O@...

PROPOSITION 3.12
If x is a geometric point of the affine scheme X, then

1. C[T,(X)] is isomorphic to the polynomial algebra C[T5].

2. C[TC,(X)] is isomorphic to the associated graded algebra gr(O,(X)).

PROOF  After translating we may assume that z = o lies in V(I) = C".
That is
CX] =Clz1,...,zp)/I and my = (x1,...,2,)/1

(1): Under these identifications we have

my
miigmm/mi
~(x, . xn) /(21 xn)? + 1)

~(x1,. . x0) /(21,0 20)? + 1)

and as I; is generated by linear terms it follows that the polynomial algebra
on ::—g is isomorphic to the quotient algebra Clxy,...,x,]/I;, which is by
definition the coordinate ring of the tangent space.
(2): Again using the above 