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Preface

This book explains the theory of Cayley-smooth orders in central simple al-
gebras over functionfields of varieties. In particular, we will describe the
étale local structure of such orders as well as their central singularities and
finite dimensional representations. There are two major motivations to study
Cayley-smooth orders.

A first application is the construction of partial desingularizations of (com-
mutative) singularities from noncommutative algebras. This approach is sum-
marized in the introductory chapter 0 can be read independently, modulo
technical details and proofs, which are deferred to the main body of the
book. A second motivation stems from noncommutative algebraic geometry
as developed by Joachim Cuntz, Daniel Quillen, Maxim Kontsevich, Michael
Kapranov and others. One studies formally smooth algebras or quasi-free alge-
bras (in this book we will call them Quillen-smooth algebras) which are huge,
non-Noetherian algebras, the free associative algebras being the archetypical
examples. One attempts to study these algebras via their finite dimensional
representations which, in turn, are controlled by associated Cayley-smooth
algebras. In the final two chapters, we will give an introduction to this fast
developing theory.

Chapters 5 and 6 contain the main results on Cayley-smooth orders. In
chapter 5, we describe the étale local structure of a Cayley-smooth order in a
semi-simple representation and classify the associated central singularity up
to smooth equivalence. This is done by associating to a semi-simple repre-
sentation a combinatorial gadget, a marked quiver setting, which encodes the
tangent-space information to the noncommutative manifold in the cluster of
points determined by the simple factors of the representation. In chapter 6 we
will describe the nullcone of these marked quiver representations and relate
them to the study of all isomorphism classes of n-dimensional representations
of a Cayley-smooth order.

This book is based on a series of courses given since 1999 in the ’advanced
master programme on noncommutative geometry’ organized by the NOncom-
mutative Geometry (NOG) project, sponsored by the European Science Foun-
dation (ESF). As the participating students came from different countries
there was a need to include background information on a variety of topics in-
cluding invariant theory, algebraic geometry, central simple algebras and the
representation theory of quivers. In this book, these prerequisites are covered
in chapters 1 to 4.

Chapters 1 and 2 contain the invariant theoretic description of orders and
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xiv Noncommutative Geometry and Cayley-Smooth Orders

their centers, due to Michael Artin and Claudio Procesi. Chapter 3 contains
an introduction to étale topology and its use in noncommutative algebra,
in particular to the study of Azumaya algebras and to the local description
of algebras via Luna slices. Chapter 4 collects the necessary material on
representations of quivers, including the description of their indecomposable
roots, due to Victor Kac, the determination of dimension vectors of simple
representations, and results on general quiver representations, due to Aidan
Schofield. The results in these chapters are due to many people and the
presentation is influenced by a variety of sources. For this reason, references
are added at the end of each chapter, giving (hopefully) adequate credit.



Introduction

Ever since the dawn of noncommutative algebraic geometry in the mid-
seventies, see for example the work of P. Cohn [21], J. Golan [38], C. Pro-
cesi [86], F. Van Oystaeyen and A. Verschoren [103],[105], it has been ring
theorists’ hope that this theory might one day be relevant to commutative
geometry, in particular to the study of singularities and their resolutions.

Over the last decade, noncommutative algebras have been used to construct
canonical (partial) resolutions of quotient singularities. That is, take a finite
group G acting on Cd freely away from the origin then its orbit-space Cd/G
is an isolated singularity. Resolutions Y -- Cd/G have been constructed
using the skew group algebra

C[x1, . . . , xd]#G

which is an order with center C[Cd/G] = C[x1, . . . , xd]G or deformations of it.
In dimension d = 2 (the case of Kleinian singularities) this gives us minimal

resolutions via the connection with the preprojective algebra, see for example
[27]. In dimension d = 3, the skew group algebra appears via the superpo-
tential and commuting matrices setting (in the physics literature) or via the
McKay quiver, see for example [23]. If G is Abelian one obtains from this
study crepant resolutions but for general G one obtains at best partial resolu-
tions with conifold singularities remaining. In dimension d > 3 the situation
is unclear at this moment.

Usually, skew group algebras and their deformations are studied via homo-
logical methods as they are Serre-smooth orders, see for example [102]. In
this book, we will follow a different approach.

We want to find a noncommutative explanation for the omnipresence of
conifold singularities in partial resolutions of three-dimensional quotient sin-
gularities. One may argue that they have to appear because they are somehow
the nicest singularities. But then, what is the corresponding list of ”nice” sin-
gularities in dimension four? or five, six...?

The results contained in this book suggest that the nicest partial resolutions
of C4/G should only contain singularities that are either polynomials over the
conifold or one of the following three types

C[[a, b, c, d, e, f ]]
(ae− bd, af − cd, bf − ce)

C[[a, b, c, d, e]]
(abc− de)

C[[a, b, c, d, e, f, g, h]]
I

where I is the ideal of all 2× 2 minors of the matrix[
a b c d
e f g h

]
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FIGURE I.1: Local structure of Cayley-smooth orders

In dimension d = 5 there is another list of ten new specific singularities that
will appear; in dimension d = 6 another 63 new ones appear and so on.

How do we arrive at these specific lists? The hope is that any quotient
singularity X = Cd/G has associated to it a ”nice” order A with center
R = C[X] such that there is a stability structure θ such that the scheme of
all θ-semistable representations of A is a smooth variety (all these terms will
be explained in the main body of the book). If this is the case, the associated
moduli space will be a partial resolution

moduliθα A -- X = Cd/G

and has a sheaf of Cayley-smooth orders A over it, allowing us to control its
singularities in a combinatorial way as depicted in figure .

If A is a Cayley-smooth order over R = C[X] then its noncommutative
variety max A of maximal twosided ideals is birational to X away from the
ramification locus. If P is a point of the ramification locus ram A then there is
a finite cluster of infinitesimally nearby noncommutative points lying over it.
The local structure of the noncommutative variety max A near this cluster can
be summarized by a (marked) quiver setting (Q,α), which in turn allows us to
compute the étale local structure of A and R in P . The central singularities
that appear in this way have been classified in [14] (see also section 5.8) up to
smooth equivalence giving us the small lists of singularities mentioned before.
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In this introduction we explain this noncommutative approach to the desin-
gularization project of commutative singularities. Proofs and more details will
be given in the following chapters.

1. Noncommutative algebra

Let me begin by trying to motivate why one might be interested in non-
commutative algebra if you want to understand quotient singularities and
their resolutions. Suppose we have a finite group G acting on d-dimensional
affine space Cd such that this action is free away from the origin. Then the
orbit-space, the so called quotient singularity Cd/G, is an isolated singularity

Cd

Cd/G

??
��res Y

and we want to construct ”minimal” or ”canonical” resolutions (so called
crepant resolutions) of this singularity. In his Bourbaki talk [89] Miles Reid
asserts that McKay correspondence follows from a much more general princi-
ple

Miles Reid’s Principle: Let M be an algebraic manifold, G a group of
automorphisms ofM , and Y -- X a resolution of singularities ofX = M/G.
Then the answer to any well-posed question about the geometry of Y is the
G-equivariant geometry of M .

Applied to the case of quotient singularities, the content of his slogan is that
the G-equivariant geometry of Cd already knows about the crepant resolution
Y -- Cd/G. Let us change this principle slightly: assume we have an affine
variety M on which a reductive group (we will take PGLn) acts with algebraic
quotient variety M/PGLn ' Cd/G

Cd

M -- M/PGLn 'Cd/G

??
��res Y

then, in favorable situations, we can argue that the PGLn-equivariant geome-
try ofM knows about good resolutions Y . One of the key lessons to be learned
from this book is that PGLn-equivariant geometry of M is roughly equivalent
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to the study of a certain noncommutative algebra over Cd/G. In fact, an
order in a central simple algebra of dimension n2 over the function field of the
quotient singularity. Hence, if we know of good orders over Cd/G, we might
get our hands on ”good” resolutions Y by noncommutative methods.

We will work in the following, quite general, setting:

• X will be a normal affine variety, possibly having singularities.

• R will be the coordinate ring C[X] of X.

• K will be the function field C(X) of X.

If you are only interested in quotient singularities, you should replace X by
Cd/G, R by the invariant ring C[x1, . . . , xd]G and K by the invariant field
C(x1, . . . , xd)G in all statements below.

Our goal will be to construct lots of R-orders A in a central simple K-
algebra Σ.

A ⊂ - Σ ⊂ - Mn(K)

R
∪

6

⊂ - K
∪

6

⊂ - K

∪

6

A central simple algebra is a noncommutativeK-algebra Σ with center Z(Σ) =
K such that over the algebraic closure K of K we obtain full n× n matrices

Σ⊗K K 'Mn(K)

(more details will be given in section 3.2). There are plenty such central
simple K-algebras:

EXAMPLE 1 For any nonzero functions f, g ∈ K∗, the cyclic algebra

Σ = (f, g)n defined by (f, g)n =
K〈x, y〉

(xn − f, yn − g, yx− qxy)

with q is a primitive n-th root of unity, is a central simple K-algebra of di-
mension n2. Often, (f, g)n will even be a division algebra, that is a noncom-
mutative algebra such that every nonzero element has an inverse.

For example, this is always the case when E = K[x] is a (commutative) field
extension of dimension n and if g has order n in the quotient K∗/NE/K(E∗)
where NE/K is the norm map of E/K.

Fix a central simple K-algebra Σ, then an R-order A in Σ is a subalgebras
A ⊂ Σ with center Z(A) = R such that A is finitely generated as an R-module
and contains a K-basis of Σ, that is

A⊗R K ' Σ
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The classic reference for orders is Irving Reiner’s book [90] but it is somewhat
outdated and focuses mainly on the one-dimensional case. With this book we
hope to remedy this situation somewhat.

EXAMPLE 2 In the case of quotient singularities X = Cd/G a natural
choice of R-order might be the skew group ring : C[x1, . . . , xd]#G, which
consists of all formal sums

∑
g∈G rg#g with multiplication defined by

(r#g)(r′#g′) = rφg(r′)#gg′

where φg is the action of g on C[x1, . . . , xd]. The center of the skew group
algebra is easily verified to be the ring of G-invariants

R = C[Cd/G] = C[x1, . . . , xd]G

Further, one can show that C[x1, . . . , xd]#G is an R-order in Mn(K) with
n the order of G. Later we will give another description of the skew group
algebra in terms of the McKay-quiver setting and the variety of commuting
matrices.

However, there are plenty of other R-orders in Mn(K), which may or may
not be relevant in the study of the quotient singularity Cd/G.

EXAMPLE 3 If f, g ∈ R−{0}, then the free R-submodule of rank n2 of the
cyclic K-algebra Σ = (f, g)n of example 1

A =
n−1∑
i,j=0

Rxiyj

is an R-order. But there is really no need to go for this ”canonical” example.
Someone more twisted may take I and J any two nonzero ideals of R, and
consider

AIJ =
n−1∑
i,j=0

IiJjxiyj

which is also an R-order in Σ, far from being a projective R-module unless I
and J are invertible R-ideals.

For example, in Mn(K) we can take the ”obvious” R-order Mn(R) but one
might also take the subring [

R I
J R

]
which is an R-order if I and J are nonzero ideals of R.
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From a geometric viewpoint, our goal is to construct lots of affine PGLn-
varieties M such that the algebraic quotient M/PGLn is isomorphic to X
and, moreover, such that there is a Zariski open subset U ⊂ X

M � ⊃ π−1(U)

X 'M/PGLn

π

??
� ⊃ U

principal PGLn-fibration

??

for which the quotient map is a principal PGLn-fibration, that is, all fibers
π−1(u) ' PGLn for u ∈ U . For the connection between such varieties M
and orders A in central simple algebras think of M as the affine variety of
n-dimensional representations repn A and of U as the Zariski open subset of
all simple n-dimensional representations.

Naturally, one can only expect the R-order A (or the corresponding PGLn-
variety M) to be useful in the study of resolutions of X if A is smooth in
some appropriate noncommutative sense. There are many characterizations
of commutative smooth domains R:

• R is regular, that is, has finite global dimension

• R is smooth, that is, X is a smooth variety

and generalizing either of them to the noncommutative world leads to quite
different concepts. We will call an R-order A a central simple K-algebra Σ:

• Serre-smooth if A has finite global dimension together with some extra
features such as Auslander regularity or Cohen-Macaulay property, see
for example [80].

• Cayley-smooth if the corresponding PGLn-affine variety M is a
smooth variety as we will clarify later.

For applications of Serre-smooth orders to desingularizations we refer to the
paper [102]. We will concentrate on the properties of Cayley-smooth orders
instead. Still, it is worth pointing out the strengths and weaknesses of both
definitions.

Serre-smooth orders are excellent if you want to control homological proper-
ties, for example, if you want to study the derived categories of their modules.
At this moment there is no local characterization of Serre-smooth orders if
dimX ≥ 3. Cayley-smooth orders are excellent if you want to have smooth
moduli spaces of semistable representations. As we will see later, in each di-
mension there are only a finite number of local types of Cayley-smooth orders
and these will be classified in this book. The downside of this is that Cayley-
smooth orders are less versatile than Serre-smooth orders. In general though,
both theories are quite different.
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EXAMPLE 4 The skew group algebra C[x1, . . . , xd]#G is always a Serre-
smooth order but it is virtually never a Cayley-smooth order.

EXAMPLE 5 Let X be the variety of matrix-invariants, that is

X = Mn(C)⊕Mn(C)/PGLn

where PGLn acts on pairs of n×n matrices by simultaneous conjugation. The
trace ring of two generic n×n matrices A is the subalgebra of Mn(C[Mn(C)⊕
Mn(C)]) generated over C[X] by the two generic matrices

X =

x11 . . . x1n

...
...

xn1 . . . xnn

 and Y =

y11 . . . y1n...
...

yn1 . . . ynn


Then, A is an R-order in a division algebra of dimension n2 over K, called
the generic division algebra. Moreover, A is a Cayley-smooth order but is
Serre-smooth only when n = 2, see [78].

Descent theory allows construction of elaborate examples out of trivial ones
by bringing in topology and enables one to classify objects that are only locally
(but not necessarily globally) trivial. For applications to orders there are two
topologies to consider : the well-known Zariski topology and the perhaps
lesser-known étale topology. Let us try to give a formal definition of Zariski
and étale covers aimed at ring theorists. Much more detail on étale topology
will be given in section 3.1.

A Zariski cover of X is a finite product of localizations at elements of R

Sz =
k∏
i=1

Rfi
such that (f1, . . . , fk) = R

and is therefore a faithfully flat extension of R. Geometrically, the ring-
morphism R - Sz defines a cover of X = spec R by k disjoint sheets
spec Sz = tispec Rfi

, each corresponding to a Zariski open subset of X, the
complement of V(fi), and the condition is that these closed subsets V(fi) do
not have a point in common. That is, we have the picture of figure I.2.

Zariski covers form a Grothendieck topology, that is, two Zariski covers
S1
z =

∏k
i=1Rfi and S2

z =
∏l
j=1Rgj

have a common refinement

Sz = S1
z ⊗R S2

z =
k∏
i=1

l∏
j=1

Rfigj
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FIGURE I.2: A Zariski cover of X = spec R.

For a given Zariski cover Sz =
∏k
i=1Rfi

a corresponding étale cover is a
product

Se =
k∏
i=1

Rfi
[x(i)1, . . . , x(i)ki

]
(g(i)1, . . . , g(i)ki)

with


∂g(i)1
∂x(i)1

. . . ∂g(i)1
∂x(i)ki

...
...

∂g(i)ki

∂x(i)1
. . .

∂g(i)ki

∂x(i)ki


a unit in the i-th component of Se. In fact, for applications to orders it is
usually enough to consider special etale extensions

Se =
k∏
i=1

Rfi [x]
(xki − ai)

where ai is a unit in Rfi

Geometrically, an étale cover determines for every Zariski sheet spec Rfi
a

locally isomorphic (for the analytic topology) multicovering and the number
of sheets may vary with i (depending on the degrees of the polynomials g(i)j ∈
Rfi [x(i)1, . . . , x(i)ki ]. That is, the mental picture corresponding to an étale
cover is given in figure I.3.

Again, étale covers form a Zariski topology as the common refinement S1
e⊗R

S2
e of two étale covers is again étale because its components are of the form

Rfigj
[x(i)1, . . . , x(i)ki

, y(j)1, . . . , y(j)lj ]
(g(i)1, . . . , g(i)ki

, h(j)1, . . . , h(j)lj )

and the Jacobian-matrix condition for each of these components is again sat-
isfied. Because of the local isomorphism property many ring theoretical local
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FIGURE I.3: An étale cover of X = spec R.

properties (such as smoothness, normality, etc.) are preserved under étale
covers.

For a fixed R-order B in some central simple K-algebra Σ, then a Zariski
twisted form A of B is an R-algebra such that

A⊗R Sz ' B ⊗R Sz

for some Zariski cover Sz of R. If P ∈ X is a point with corresponding
maximal ideal m, then P ∈ spec Rfi

for some of the components of Sz and
as Afi ' Bfi we have for the local rings at P

Am ' Bm

that is, the Zariski local information of any Zariski-twisted form of B is that
of B itself.

Likewise, an étale twisted form A of B is an R-algebra such that

A⊗R Se ' B ⊗R Se

for some étale cover Se of R. This time the Zariski local information of A
and B may be different at a point P ∈ X but we do have that the m-adic
completions of A and B

Âm ' B̂m
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are isomorphic as R̂m-algebras. Thus, the Zariski local structure of A deter-
mines the localization Am, the étale local structure determines the completion
Âm.

Descent theory allows us to classify Zariski- or étale twisted forms of an
R-order B by means of the corresponding cohomology groups of the automor-
phism schemes. For more details on this please read [57], [82] or section 3.1. If
one applies descent to the most trivial of all R-orders, the full matrix algebra
Mn(R), one arrives at Azumaya algebras. A Zariski twisted form of Mn(R) is
an R-algebra A such that

A⊗R Sz 'Mn(Sz) =
k∏
i=1

Mn(Rfi
)

Conversely, you can construct such twisted forms by gluing together the matrix
rings Mn(Rfi

). The easiest way to do this is to glue Mn(Rfi
) with Mn(Rfj

)
over Rfifj via the natural embeddings

Rfi
⊂ - Rfifj

� ⊃ Rfj

Not surprisingly, we obtain in this way Mn(R) back. However there are more
clever ways to perform the gluing by bringing in the noncommutativity of
matrix-rings. We can glue

Mn(Rfi
) ⊂ - Mn(Rfifj

)
gij .g

−1
ij

'
- Mn(Rfifj

) � ⊃ Mn(Rfj
)

over their intersection via conjugation with an invertible matrix gij in
GLn(Rfifj

). If the elements gij for 1 ≤ i, j ≤ k satisfy the cocycle condi-
tion (meaning that the different possible gluings are compatible over their
common localization Rfifjfl

), we obtain a sheaf of noncommutative algebras
A over X = spec R such that its global sections are not necessarily Mn(R).

PROPOSITION 1 Any Zariski twisted form of Mn(R) is isomorphic to
EndR(P ) where P is a projective R-module of rank n. Two such twisted
forms are isomorphic as R-algebras

EndR(P ) ' EndR(Q) iff P ' Q⊗ I

for some invertible R-ideal I.

PROOF We have an exact sequence of group schemes

1 - Gm
- GLn - PGLn - 1

(here, Gm is the sheaf of units) and taking Zariski cohomology groups over X
we have a sequence

1 - H1
Zar(X,Gm) - H1

Zar(X, GLn) - H1
Zar(X, PGLn)
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where the first term is isomorphic to the Picard group Pic(R) and the second
term classifies projective R-modules of rank n upto isomorphism. The final
term classifies the Zariski twisted forms of Mn(R) as the automorphism group
of Mn(R) is PGLn.

EXAMPLE 6 Let I and J be two invertible ideals of R, then

EndR(I ⊕ J) '
[
R I−1J

IJ−1 R

]
⊂M2(K)

and if IJ−1 = (r) then I ⊕ J ' (Rr⊕R)⊗ J and indeed we have an isomor-
phism [

1 0
0 r−1

] [
R I−1J

IJ−1 R

] [
1 0
0 r

]
=

[
R R
R R

]
The situation becomes a lot more interesting when we replace the Zariski

topology by the étale topology.

DEFINITION 1 An n-Azumaya algebra over R is an étale twisted form A
of Mn(R). If A is also a Zariski twisted form we call A a trivial Azumaya
algebra.

LEMMA 1 If A is an n-Azumaya algebra over R, then:

1. The center Z(A) = R and A is a projective R-module of rank n2.

2. All simple A-representations have dimension n and for every maximal
ideal m of R we have

A/mA 'Mn(C)

PROOF For (2) take M ∩ R = m where M is the kernel of a simple
representation A -- Mk(C), then as Âm 'Mn(R̂m) it follows that

A/mA 'Mn(C)

and hence that k = n and M = Am.

It is clear from the definition that when A is an n-Azumaya algebra and A′

is an m-Azumaya algebra over R, A⊗R A′ is an mn-Azumaya and also that

A⊗R Aop ' EndR(A)

where Aop is the opposite algebra (that is, equipped with the reverse multi-
plication rule). These facts allow us to define the Brauer group BrR to be the
set of equivalence classes [A] of Azumaya algebras over R where

[A] = [A′] iff A⊗R A′ ' EndR(P )
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for some projective R-module P and where multiplication is induced from the
rule

[A].[A′] = [A⊗R A′]

One can extend the definition of the Brauer group from affine varieties to
arbitrary schemes and A. Grothendieck has shown that the Brauer group of
a projective smooth variety is a birational invariant, see [40]. Moreover, he
conjectured a cohomological description of the Brauer group BrR, which was
subsequently proved by O. Gabber in [34].

THEOREM 1 The Brauer group is an étale cohomology group

BrR ' H2
et(X,Gm)torsion

where Gm is the unit sheaf and where the subscript denotes that we take only
torsion elements. If R is regular, then H2

et(X,Gm) is torsion so we can forget
the subscript.

This result should be viewed as the ring theory analogon of the crossed prod-
uct theorem for central simple algebras over fields. Observe that in Gabber’s
result there is no sign of singularities in the description of the Brauer group.
In fact, with respect to the desingularization project, Azumaya algebras are
only as good as their centers.

PROPOSITION 2 If A is an n-Azumaya algebra over R, then

1. A is Serre-smooth iff R is commutative regular.

2. A is Cayley-smooth iff R is commutative regular.

PROOF (1) follows from faithfully flat descent and (2) from lemma 1,
which asserts that the PGLn-affine variety corresponding to A is a principal
PGLn-fibration in the étale topology, which shows that both n-Azumaya al-
gebras and principal PGLn-fibrations are classified by the étale cohomology
group H1

et(X, PGLn). More details are given in chapter 3.

In the correspondence between R-orders and PGLn-varieties, Azumaya al-
gebras correspond to principal PGLn-fibrations over X and with respect to
desingularizations, Azumaya algebras are of little use. So let us bring in ram-
ification in order to construct orders that may be more useful.

EXAMPLE 7 Consider the R-order in M2(K)

A =
[
R R
I R

]
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where I is some ideal of R and let P ∈ X be a point with corresponding
maximal ideal m. For I not contained in m we have Am 'M2(Rm) whence A
is an Azumaya algebra in P . For I ⊂ m we have

Am '
[
Rm Rm

Im Rm

]
6= M2(Rm)

whence A is not Azumaya in P .

DEFINITION 2 The ramification locus of an R-order A is the Zariski
closed subset of X consisting of those points P such that for the corresponding
maximal ideal m

A/mA 6'Mn(C)

That is, ram A is the locus of X where A is not an Azumaya algebra. Its
complement azu A is called the Azumaya locus of A, which is always a Zariski
open subset of X.

DEFINITION 3 An R-order A is said to be a reflexive n-Azumaya algebra
iff

1. ram A has codimension at least two in X, and

2. A is a reflexive R-module

that is, A ' HomR(HomR(A,R), R) = A∗∗.

The origin of the terminology is that when A is a reflexive n-Azumaya
algebra we have that Ap is n-Azumaya for every height one prime ideal p of R
and that A = ∩pAp where the intersection is taken over all height one primes.

For example, in example 7 if I is a divisorial ideal of R, then A is not
reflexive Azumaya as Ap is not Azumaya for p a height one prime containing
I and if I has at least height two, then A is often not a reflexive Azumaya
algebra because A is not reflexive as an R-module. For example take

A =
[
C[x, y] C[x, y]
(x, y) C[x, y]

]
then the reflexive closure of A is A∗∗ = M2(C[x, y]).

Sometimes though, we get reflexivity of A for free, for example when A is
a Cohen-Macaulay R-module. An other important fact to remember is that
for A a reflexive Azumaya, A is Azumaya if and only if A is projective as an
R-module.

EXAMPLE 8 Let A = C[x1, . . . , xd]#G, then A is a reflexive Azumaya
algebra whenever G acts freely away from the origin and d ≥ 2. Moreover, A is
never an Azumaya algebra as its ramification locus is the isolated singularity.
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In analogy with the Brauer group one can define the reflexive Brauer group
β(R) whose elements are the equivalence classes [A] for A a reflexive Azumaya
algebra over R with equivalence relation

[A] = [A′] iff (A⊗R A′)∗∗ ' EndR(M)

where M is a reflexive R-module and with multiplication induced by the rule

[A].[A′] = [(A⊗R A′)∗∗]

In [66] it was shown that the reflexive Brauer group does have a cohomological
description similar to Gabber’s result above.

PROPOSITION 3 The reflexive Brauer group is an étale cohomology group

β(R) ' H2
et(Xsm,Gm)

where Xsm is the smooth locus of X.

This time we see that the singularities of X do appear in the description so
perhaps reflexive Azumaya algebras are a class of orders more suitable for our
project. This is even more evident if we impose noncommutative smoothness
conditions on A.

PROPOSITION 4 Let A be a reflexive Azumaya algebra over R, then:

1. if A is Serre-smooth, then ram A = Xsing, and

2. if A is Cayley-smooth, then Xsing is contained in ram A.

PROOF (1) was proved in [68] the essential point being that if A is Serre-
smooth then A is a Cohen-Macaulay R-module whence it must be projective
over a Cayley-smooth point of X but then it is not just an reflexive Azumaya
but actually an Azumaya algebra in that point. The second statement can be
further refined as we will see later.

Many classes of well-studied algebras are reflexive Azumaya algebras.

• Trace rings Tm,n of m generic n × n matrices (unless (m,n) = (2, 2)),
see [65].

• Quantum enveloping algebras Uq(g) of semisimple Lie algebras at roots
of unity, see for example [16].

• Quantum function algebras Oq(G) for semisimple Lie groups at roots of
unity, see for example [17].

• Symplectic reflection algebras At,c, see [18].
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Now that we have a large supply of orders, it is time to clarify the connection
with PGLn-equivariant geometry. We will introduce a class of noncommu-
tative algebras, the so-called Cayley-Hamilton algebras, which are the level n
generalization of the category of commutative algebras and which contain all
R-orders.

A trace map tr is a C-linear function A - A satisfying for all a, b ∈ A

tr(tr(a)b) = tr(a)tr(b) tr(ab) = tr(ba) and tr(a)b = btr(a)

so in particular, the image tr(A) is contained in the center of A. IfM ∈Mn(R)
where R is a commutative C-algebra, then its characteristic polynomial

χM = det(t1n −M) = tn + a1t
n−1 + a2t

n−2 + . . .+ an

has coefficients ai which are polynomials with rational coefficients in traces of
powers of M

ai = fi(tr(M), tr(M2), . . . , tr(Mn−1)

Hence, if we have an algebra A with a trace map tr we can define a formal
characteristic polynomial of degree n for every a ∈ A by taking

χa = tn + f1(tr(a), . . . , tr(an−1))tn−1 + . . .+ fn(tr(a), . . . , tr(an−1))

which allows us to define the category alg@n of Cayley-Hamilton algebras of
degree n.

DEFINITION 4 An object A in alg@n is a Cayley-Hamilton algebra of de-
gree n, that is, a C-algebra with trace map tr : A - A satisfying

tr(1) = n and ∀a ∈ A : χa(a) = 0

Morphisms A - B in alg@n are trace preserving C-algebra morphisms.

EXAMPLE 9 Azumaya algebras, reflexive Azumaya algebras and more gen-
erally every R-order A in a central simple K-algebra of dimension n2 is a
Cayley-Hamilton algebra of degree n. For, consider the inclusions

A ⊂ - Σ ⊂ - Mn(K)

R

tr

?

.................
⊂ - K

tr

?

.................
⊂ - K

tr

?

Here, tr : Mn(K) - K is the usual trace map. By Galois descent this
induces a trace map, the so-called reduced trace, tr : Σ - K. Finally,
because R is integrally closed in K and A is a finitely generated R-module it
follows that tr(a) ∈ R for every element a ∈ A.
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If A is a finitely generated object in alg@n, we can define an affine PGLn-
scheme, trepn A, classifying all trace preserving n-dimensional representa-

tions A
φ- Mn(C) of A. The action of PGLn on trepn A is induced by

conjugation in the target space, that is, g.φ is the trace preserving algebra
map

A
φ- Mn(C)

g.−.g−1
- Mn(C)

Orbits under this action correspond precisely to isomorphism classes of rep-
resentations. The scheme trepn A is a closed subscheme of repn A the more
familiar PGLn-affine scheme of all n-dimensional representations of A. In
general, both schemes may be different.

EXAMPLE 10 Let A be the quantum plane at −1, that is

A =
C〈x, y〉

(xy + yx)

then A is an order with center R = C[x2, y2] in the quaternion algebra
(x, y)2 = K1 ⊕ Ku ⊕ Kv ⊕ Kuv over K = C(x, y) where u2 = x.v2 =
y and uv = −vu. Observe that tr(x) = tr(y) = 0 as the embedding
A ⊂ - (x, y)2 ⊂ - M2(C[u, y]) is given by

x 7→
[
u 0
0 −u

]
and y 7→

[
0 1
y 0

]
Therefore, a trace preserving algebra map A - M2(C) is fully determined
by the images of x and y, which are trace zero 2× 2 matrices

φ(x) =
[
a b
c −a

]
and φ(y) =

[
d e
f −d

]
satisfying bf + ce = 0

That is, trep2 A is the hypersurface V(bf + ce) ⊂ A6, which has a unique
isolated singularity at the origin. However, rep2 A contains more points, for
example

φ(x) =
[
a 0
0 b

]
and φ(y) =

[
0 0
0 0

]
is a point in rep2 A− trep2 A whenever b 6= −a.

A functorial description of trepn A is given by the following universal
property due to C. Procesi [87], which will be proved in chapter 2.

THEOREM 2 Let A be a C-algebra with trace map trA, then there is a trace
preserving algebra morphism

jA : A - Mn(C[trepn A])
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satisfying the following universal property. If C is a commutative C-algebra
and there is a trace preserving algebra map A

ψ- Mn(C) (with the usual
trace on Mn(C)), then there is a unique algebra morphism C[trepn A]

φ- C
such that the diagram

A
ψ- Mn(C)

Mn(C[trepn A])

jA

?

M
n
(φ

)
-

is commutative. Moreover, A is an object in alg@n if and only if jA is a
monomorphism.

The PGLn-action on trepn A induces an action of PGLn by automor-
phisms on C[trepn A]. On the other hand, PGLn acts by conjugation
on Mn(C) so we have a combined action on Mn(C[trepn A]) = Mn(C) ⊗
C[trepn A] and it follows from the universal property that the image of jA is
contained in the ring of PGLn-invariants

A
jA- Mn(C[trepn A])PGLn

which is an inclusion if A is a Cayley-Hamilton algebra. In fact, C. Procesi
proved in [87] the following important result that allows reconstruction of
orders and their centers from PGLn-equivariant geometry. This result will be
proved in chapter 2.

THEOREM 3 The functor

trepn : alg@n - PGL(n)-affine

has a left inverse

A− : PGL(n)-affine - alg@n

defined by AY = Mn(C[Y ])PGLn . In particular, we have for any A in alg@n

A = Mn(C[trepn A])PGLn and tr(A) = C[trepn A]PGLn

That is the central subalgebra tr(A) is the coordinate ring of the algebraic
quotient variety

trepn A/PGLn = trissn A

classifying isomorphism classes of trace preserving semisimple n-dimensional
representations of A.
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The category alg@n is to noncommutative geometry@n what comm, the
category of all commutative algebras is to commutative algebraic geometry. In
fact, alg@1 ' comm by taking as trace maps the identity on every commutative
algebra. Further we have a natural commutative diagram of functors

alg@n
trepn -�
A−

PGL(n)-aff

comm

tr

?

spec
- aff

quot

?

where the bottom map is the antiequivalence between affine algebras and affine
schemes and the top map is the correspondence between Cayley-Hamilton
algebras and affine PGLn-schemes, which is not an equivalence of categories.

EXAMPLE 11 Conjugacy classes of nilpotent matrices in Mn(C) corre-
spond bijective to partitions λ = (λ1 ≥ λ2 ≥ . . .) of n (the λi determine
the sizes of the Jordan blocks). It follows from the Gerstenhaber-Hesselink
theorem that the closures of such orbits

Oλ = ∪µ≤λOµ

where ≤ is the dominance order relation. Each Oλ is an affine PGLn-variety
and the corresponding algebra is

AOλ
= C[x]/(xλ1)

whence many orbit closures (all of which are affine PGLn-varieties) corre-
spond to the same algebra. More details are given in section 2.7.

Among the many characterizations of commutative smooth (that is, regular)
algebras is the following, due to A. Grothendieck.

THEOREM 4 A commutative C-algebra A is smooth if and only if it sat-
isfies the following lifting property: if (B, I) is a test-object such that B is a
commutative algebra and I is a nilpotent ideal of B, then for any algebra map
φ, there exists a lifted algebra morphism φ̃

A ....................
∃φ̃

- B

B/I

π

??

φ

-
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As the category comm of all commutative C-algebras is just alg@1 it makes
sense to define Cayley-smooth Cayley-Hamilton algebras by the same lifting
property. This was done first by W. Schelter [91] in the category of algebras
satisfying all polynomial identities of n × n matrices and later by C. Procesi
[87] in alg@n. Cayley-smooth algebras and their representation theory will be
the main topic of this book.

DEFINITION 5 A Cayley-smooth algebra A is an object in alg@n satisfy-
ing the following lifting property. If (B, I) is a test-object in alg@n, that is,
B is an object in alg@n, I is a nilpotent ideal in B such that B/I is an object
in alg@n and such that the natural map B

π-- B/I is trace preserving, then
every trace preserving algebra map φ has a lift φ̃

A ....................
∃φ̃

- B

B/I

π

??

φ

-

making the diagram commutative. If A is in addition an order, we say that A
is a Cayley-smooth order.

In the next section we will give a large class of Cayley-smooth orders, but
it should be stressed that there is no connection between this notion of non-
commutative smoothness and the more homological notion of Serre-smooth
orders (except in dimension one when all notions coincide). Under the corre-
spondence between alg@n and PGL(n)-aff, Cayley-smooth Cayley-Hamilton
algebras correspond to smooth PGLn-varieties.

THEOREM 5 An object A in alg@n is Cayley-smooth if and only if the cor-
responding affine PGLn-scheme trepn A is smooth (and hence, in particular,
reduced).

PROOF (One implication) Assume A is Cayley-smooth, then to prove
that trepn A is smooth we have to prove that C[trepn A] satisfies
Grothendieck’s lifting property. So let (B, I) be a test-object in comm and
take an algebra morphism φ : C[trepn A] - B/I. Consider the following
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diagram
A

Mn(C[trepn A])

jA

?

∩

.......
(2)
- Mn(B)

.....................................

(1)

-

Mn(B/I)

??

M
n (φ) -

the morphism (1) follows from Cayley-smoothness of A applied to the mor-
phism Mn(φ) ◦ jA. From the universal property of the map jA it follows
that there is a morphism (2), which is of the form Mn(ψ) for some algebra
morphism ψ : C[trepn A] - B. This ψ is the required lift. The inverse
implication will be proved in section 4.1.

EXAMPLE 12 Trace rings Tm,n are the free algebras generated by m ele-
ments in alg@n and as such trivially satisfy the lifting property whence are
Cayley-smooth orders. Alternatively, because

trepn Tm,n 'Mn(C)⊕ . . .⊕Mn(C) = Cmn
2

is a smooth PGLn-variety, Tm,n is Cayley-smooth by the previous result.

EXAMPLE 13 Consider again the quantum plane at −1

A =
C〈x, y〉

(xy + yx)

then we have seen that trep2 A = V(bf + ce) ⊂ A6 has a unique isolated
singularity at the origin. Hence, A is not a Cayley-smooth order.

2. Noncommutative geometry

We will associate to A ∈ alg@n a noncommutative variety max A and ar-
gue that this gives a noncommutative manifold when A is a Cayley-smooth
order. In particular, we will show that for fixed n and central dimension d
there are a finite number of étale types of such orders. This fact is the non-
commutative analogon of the classical result that a commutative manifold is
locally diffeomorphic to affine space or, in ring theory terms, that the m-adic
completion of a smooth algebra C of dimension d has just one étale type :
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Ĉm ' C[[x1, . . . , xd]]. There is one new feature which noncommutative ge-
ometry has to offer compared to commutative geometry : distinct points can
lie infinitesimally close to each other. As desingularization is the process of
separating bad tangents, this fact should be useful somehow in our project.

Recall that if X is an affine commutative variety with coordinate ring R,
then to each point P ∈ X corresponds a maximal ideal mP / R and a one-
dimensional simple representation

SP =
R

mP

A basic tool in the study of Hilbert schemes is that finite closed subschemes
of X can be decomposed according to their support. In algebraic terms this
means that there are no extensions between different points, that if P 6= Q
then

Ext1R(SP , SQ) = 0 whereas Ext1R(SP , SP ) = TP X

That is, all infinitesimal information of X near P is contained in the self-
extensions of SP and separate points do not contribute. This is no longer the
case for noncommutative algebras.

EXAMPLE 14 Take the path algebra A of the quiver �������� //��������, that is

A '
[
C C
0 C

]
Then A has two maximal ideals and two corresponding one-dimensional simple
representations

S1 =
[
C
0

]
=

[
C C
0 C

]
/

[
0 C
0 C

]
and S2 =

[
0
C

]
=

[
C C
0 C

]
/

[
C C
0 0

]
Then, there is a nonsplit exact sequence with middle term the second column
of A

0 - S1 =
[
C
0

]
- M =

[
C
C

]
- S2 =

[
0
C

]
- 0

Whence Ext1A(S2, S1) 6= 0 whereas Ext1A(S1, S2) = 0. It is no accident that
these two facts are encoded into the quiver.

DEFINITION 6 For A an algebra in alg@n, define its maximal ideal spec-
trum max A to be the set of all maximal two-sided ideals M of A equipped with
the noncommutative Zariski topology, that is, a typical open set of max A is
of the form

X(I) = {M ∈ max A | I 6⊂M}
Recall that for every M ∈ max A the quotient

A

M
'Mk(C) for some k ≤ n
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that is, M determines a unique k-dimensional simple representation SM of
A.

Every maximal ideal M of A intersects the center R in a maximal ideal
mP = M ∩R so, in the case of an R-order A a continuous map

max A
c- X defined by M 7→ P where M ∩R = mP

Ring theorists have studied the fibers c−1(P ) of this map in the seventies and
eighties in connection with localization theory. The oldest description is the
Bergman-Small theorem, see for example [8]

THEOREM 6 (Bergman-Small) If c−1(P ) = {M1, . . . ,Mk} then there
are natural numbers ei ∈ N+ such that

n =
k∑
i=1

eidi where di = dimC SMi

In particular, c−1(P ) is finite for all P .

Here is a modern proof of this result based on the results of this book.
Because X is the algebraic quotient trepn A/GLn, points of X correspond to
closedGLn-orbits in repn A. By a result of M. Artin [2] (see section 2.4) closed
orbits are precisely the isomorphism classes of semisimple n-dimensional rep-
resentations, and therefore we denote the quotient variety

X = trepn A/GLn = trissn A

A point P determines a semisimple n-dimensional A-representation

MP = S⊕e11 ⊕ . . .⊕ S⊕ek

k

with the Si the distinct simple components, say of dimension di = dimC Si
and occurring in MP with multiplicity ei ≥ 1. This gives n =

∑
eidi and

clearly the annihilator of Si is a maximal ideal Mi of A lying over mP .
Another interpretation of c−1(P ) follows from the work of A. V. Jategaonkar

and B. Müller. Define a link diagram on the points of max A by the rule

M  M ′ ⇔ Ext1A(SM , SM ′) 6= 0

In fancier language, M  M ′ if and only if M and M ′ lie infinitesimally close
in max A. In fact, the definition of the link diagram in [47, Ch.5] or [39, Ch.11]
is slightly different but amounts to the same thing.

THEOREM 7 (Jategaonkar-Müller) The connected components of the
link diagram on max A are all finite and are in one-to-one correspondence
with P ∈ X. That is, if

{M1, . . . ,Mk} = c−1(P ) ⊂ max A

then this set is a connected component of the link diagram.
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In max A there is a Zariski open set of Azumaya points, that is those M ∈
max A such that A/M 'Mn(C). It follows that each of these maximal ideals
is a singleton connected component of the link diagram. So on this open
set there is a one-to-one correspondence between points of X and maximal
ideals of A so we can say that max A and X are birational. However, over the
ramification locus there may be several maximal ideals of A lying over the
same central maximal ideal and these points should be thought of as lying
infinitesimally close to each other.

One might hope that the cluster of infinitesimally nearby points of max A lying
over a central singularity P ∈ X can be used to separate tangent information
in P rather than having to resort to a blowing-up process to achieve this.

Because an R-order A in a central simple K-algebra Σ of dimension n2 is
a finite R-module, we can associate with A the sheaf OA of noncommutative
OX -algebras using central localization. That is, the section over a basic affine
open piece X(f) ⊂ X are

Γ(X(f),OA) = Af = A⊗R Rf
which is readily checked to be a sheaf with global sections Γ(X,OA) = A. As
we will investigate Cayley-smooth orders via their (central) étale structure,
(that is, information about ÂmP

), we will only need the structure sheaf OA
over X in this book. However, in the 1970s F. Van Oystaeyen [103] and
A. Verschoren [105] introduced genuine noncommutative structure sheaves
associated to an R-order A. It is not my intention to promote nostalgia here
but perhaps these noncommutative structure sheaves OncA on max A deserve
renewed investigation.

DEFINITION 7 OncA is defined by taking as the sections over the typical
open set X(I) (for I a two-sided ideal of A) in max A

Γ(X(I),OncA ) = {δ ∈ Σ | ∃l ∈ N : I lδ ⊂ A }

By [103] this defines a sheaf of noncommutative algebras over max A with
global sections Γ(max A,OncA ) = A. The stalk of this sheaf at a point M ∈
max A is the symmetric localization

OncA,M = QA−M (A) = {δ ∈ Σ | Iδ ⊂ A for some ideal I 6⊂ P }
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EXAMPLE 15 Let X = A1, that is, R = C[x] and consider the order

A =
[
R R
m R

]
where m = (x) / R. A is an hereditary order so is both a Serre-smooth order
and a Cayley-smooth order. The ramification locus of A is P0 = V(x) so over
any P0 6= P ∈ A1 there is a unique maximal ideal of A lying over mP and
the corresponding quotient is M2(C). However, over m there are two maximal
ideals of A

M1 =
[
m R
m R

]
and M2 =

[
R R
m m

]
Both M1 and M2 determine a one-dimensional simple representation of A, so
the Bergman-Small number are e1 = e2 = 1 and d1 = d2 = 1. That is, we
have the following picture

There is one nonsingleton connected component in the link diagram of A,
namely

�������� ��?� =}
:z 8x

4t /o *j &f $d !a �_ ��������^^ �?}=z:x8t4o/j*f&d$
a!_�

with the vertices corresponding to {M1,M2}. The stalk of OA at the central
point P0 is clearly

OA,P0 =
[
Rm Rm

mm Rm

]
On the other hand the stalks of the noncommutative structure sheaf OncA in
M1 resp. M2 can be computed to be

OncA,M1
=

[
Rm Rm

Rm Rm

]
and OncA,M2

=
[
Rm x−1Rm

xRm Rm

]
and hence both stalks are Azumaya algebras. Observe that we recover the
central stalk OA,P0 as the intersection of these two rings in M2(K). Hence,
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somewhat surprisingly, the noncommutative structure sheaf of the hereditary
non-Azumaya algebra A is a sheaf of Azumaya algebras over max A.

Consider the continuous map for the Zariski topology

max A
c- X

and let for a central point P ∈ X the fiber be {M1, . . . ,Mk} where the Mi are
maximal ideals of A with corresponding simple di-dimensional representation
Si. We have introduced the Bergman-Small data, that is

α = (e1, . . . , ek) and β = (d1, . . . , dk) ∈ Nk+ satisfying α.β =
k∑
i=1

eidi = n

(recall that ei is the multiplicity of Si in the semisimple n-dimensional rep-
resentation corresponding to P ). Moreover, we have the Jategaonkar-Müller
data, which is a directed connected graph on the vertices {v1, . . . , vk} (corre-
sponding to the Mi) with an arrow

vi  vj iff Ext1A(Si, Sj) 6= 0

We will associate a combinatorial object to this local data. To begin, introduce
a quiver setting (Q,α) where Q is a quiver (that is, a directed graph) on the
vertices {v1, . . . , vk} with the number of arrows from vi to vj equal to the
dimension of Ext1A(Si, Sj)

# ( vi - vj ) = dimC Ext1A(Si, Sj)

and where α = (e1, . . . , ek) is the dimension vector of the multiplicities ei.
Recall that the representation space repαQ of a quiver-setting is

⊕aMei×ej
(C) where the sum is taken over all arrows a : vi - vj of Q. On

this space there is a natural action by the group

GL(α) = GLe1 × . . .×GLek

by base-change in the vertex-spaces Vi = Cei . The ring theoretic relevance of
the quiver-setting (Q,α) is that

repα Q ' Ext
1
A(MP ,MP ) as GL(α)-modules

where MP is the semisimple n-dimensional A-module corresponding to P

MP = S⊕e11 ⊕ . . .⊕ S⊕ek

k

and because GL(α) is the automorphism group of MP there is an induced
action on Ext1A(MP ,MP ).
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Because MP is n-dimensional, an element ψ ∈ Ext1A(MP ,MP ) defines an
algebra morphism

A
ρ- Mn(C[ε])

where C[ε] = C[x]/(x2) is the ring of dual numbers. As we are working in the
category alg@n we need the stronger assumption that ρ is trace preserving.
For this reason we have to consider the GL(α)-subspace

ExttrA (MP ,MP ) ⊂ Ext1A(MP ,MP )

of trace preserving extensions. As traces only use blocks on the diagonal (cor-
responding to loops in Q) and as any subspace Mei

(C) of repα Q decomposes
as a GL(α)-module in simple representations

Mei(C) = M0
ei

(C)⊕ C

where M0
ei

(C) is the subspace of trace zero matrices, we see that

repα Q
• ' ExttrA (MP ,MP ) as GL(α)-modules

where Q• is a marked quiver that has the same number of arrows between dis-
tinct vertices as Q has, but may have fewer loops and some of these loops may
acquire a marking meaning that their corresponding component in repα Q

•

is M0
ei

(C) instead of Mei
(C).

Summarizing, if the local structure of the noncommutative variety max A
near the fiber c−1(P ) of a central point P ∈ X is determined by the Bergman-
Small data

α = (e1, . . . , ek) and β = (d1, . . . , dk)

and by the Jategoankar-Müller data, which is encoded in the marked quiver
Q• on k-vertices, then we associate to P the combinatorial data

type(P ) = (Q•, α, β)

We call (Q•, α) the marked quiver setting associated to A in P ∈ X. The
dimension vector β = (d1, . . . , dk) will be called the Morita setting associated
to A in P .

EXAMPLE 16 If A is an Azumaya algebra over R. Then for every maximal
ideal m corresponding to a point P ∈ X we have that

A/mA = Mn(C)

so there is a unique maximal ideal M = mA lying over m whence the
Jategaonkar-Müller data are α = (1) and β = (n). If SP = R/m is the
simple representation of R we have

Ext1A(MP ,MP ) ' Ext1R(SP , SP ) = TP X
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and as all the extensions come from the center, the corresponding algebra
representations A - Mn(C[ε]) are automatically trace preserving. That is,
the marked quiver-setting associated to A in P is

��������1
## ��
cc

where the number of loops is equal to the dimension of the tangent space TP X
in P at X and the Morita-setting associated to A in P is (n).

EXAMPLE 17 Consider the order of example 15, which is generated as a
C-algebra by the elements

a =
[
1 0
0 0

]
b =

[
0 1
0 0

]
c =

[
0 0
x 0

]
d =

[
0 0
0 1

]
and the 2-dimensional semisimple representation MP0 determined by m is
given by the algebra morphism A - M2(C) sending a and d to themselves
and b and c to the zero matrix. A calculation shows that

Ext1A(MP0 ,MP0) = repα Q for (Q,α) = ��������1

u
&& ��������1

v

ff

and as the correspondence with algebra maps to M2(C[ε]) is given by

a 7→
[
1 0
0 0

]
b 7→

[
0 εv
0 0

]
c 7→

[
0 0
εu 0

]
d 7→

[
0 0
0 1

]
each of these maps is trace preserving so the marked quiver setting is (Q,α)
and the Morita-setting is (1, 1).

Because the combinatorial data type(P ) = (Q•, α, β) encodes the infinites-
imal information of the cluster of maximal ideals of A lying over the central
point P ∈ X, (repα Q

•, β) should be viewed as analogous to the usual tan-
gent space TP X. If P ∈ X is a singular point, then the tangent space is
too large so we have to impose additional relations to describe the variety X
in a neighborhood of P , but if P is a smooth point we can recover the local
structure of X from TP X. In the noncommutative case we might expect
a similar phenomenon: in general the data (repα Q•, β) will be too big to
describe ÂmP

unless A is a Cayley-smooth order in P in which case we can
recover ÂmP

.
We begin by defining some algebras that can be described combinatorially

from (Q•, α, β). For every arrow a : vi - vj define a generic rectangular
matrix of size ej × ei

Xa =

 x11(a) . . . . . . x1ei(a)
...

...
xej1(a) . . . . . . xejei

(a)


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In the case when a is a marked loop, make this a generic trace zero matrix,
that is, let

xeiei
(a) = −x11(a)− x22(a)− . . .− xei−1ei−1(a)

Then, the coordinate ring C[repα Q
•] is the polynomial ring in the entries of

all Xa. For an oriented path p in the marked quiver Q• with starting vertex
vi and terminating vertex vj

vi ........
p
- vj = vi

a1- vi1
a2- . . .

al−1- vil
al- vj

we can form the square ej × ei matrix

Xp = Xal
Xal−1 . . . Xa2Xa1

which has all its entries polynomials in C[repα Q
•]. In particular, if the path

is an oriented cycle c in Q• starting and ending in vi then Xc is a square ei×ei
matrix and we can take its trace tr(Xc) ∈ C[repα Q

•] which is a polynomial
invariant under the action of GL(α) on repα Q•. In fact, we will prove in
section 4.3 that these traces along oriented cycles generate the invariant ring

RαQ• = C[repα Q
•]GL(α) ⊂ C[repα Q

•]

Next we bring in the Morita-setting β = (d1, . . . , dk) and define a block-matrix
ring

Aα,βQ• =

Md1×d1(P11) . . . Md1×dk
(P1k)

...
...

Mdk×d1(Pk1) . . . Mdk×dk
(Pkk)

 ⊂Mn(C[repα Q
•])

where Pij is the RαQ• -submodule of Mej×ei(C[repα Q
•]) generated by all Xp

where p is an oriented path in Q• starting in vi and ending in vk. Observe
that for triples (Q•, α, β1) and (Q•, α, β2) we have that

Aα,β1
Q• is Morita-equivalent to Aα,β2

Q•

whence the name Morita-setting for β.Recall that the Euler-form of the un-
derlying quiver Q of Q• (that is, forgetting the markings of some loops) is the
bilinear form χQ on Zk such that χQ(ei, ej) is equal to δij minus the number
of arrows from vi to vj . The next result will be proved in section 5.2.

THEOREM 8 For a triple (Q•, α, β) with α.β = n we have

1. Aα,βQ• is an RαQ-order in alg@n if and only if α is the dimension vector
of a simple representation of Q•, that is, for all vertex-dimensions δi we
have

χQ(α, δi) ≤ 0 and χQ(δi, α) ≤ 0

unless Q• is an oriented cycle of type Ãk−1 then α must be (1, . . . , 1).
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2. If this condition is satisfied, the dimension of the center RαQ• is equal to

dim RαQ• = 1− χQ(α, α)−#{marked loops in Q•}

These combinatorial algebras determine the étale local structure of Cayley-
smooth orders as was proved in [74] (or see section 5.2). The principal tech-
nical ingredient in the proof is the Luna slice theorem, see, for example, [99]
[81] or section 3.8.

THEOREM 9 Let A be a Cayley-smooth order over R in alg@n and let
P ∈ X with corresponding maximal ideal m. If the marked quiver setting and
the Morita-setting associated to A in P is given by the triple (Q•, α, β), then
there is a Zariski open subset X(fi) containing P and an étale extension S of
both Rfi

and the algebra RαQ• such that we have the following diagram

Afi
⊗Rfi

S ' Aα,βQ• ⊗Rα
Q•
S

Afi

-

S

6

Aα,βQ•

�

Rfi

6

et
al
e

-

RαQ•

6

�

etale

In particular, we have

R̂m ' R̂αQ• and Âm ' Âα,βQ•

where the completions at the right-hand sides are with respect to the maximal
(graded) ideal of RαQ• corresponding to the zero representation.

EXAMPLE 18 From example 16 we recall that the triple (Q•, α, β) associ-
ated to an Azumaya algebra in a point P ∈ X is given by

��������1
## ��
cc and β = (n)

where the number of arrows is equal to dimC TPX. In case P is a Cayley-
smooth point of X this number is equal to d = dim X. Observe that GL(α) =
C∗ acts trivially on repα Q

• = Cd in this case. Therefore we have that

RαQ• ' C[x1, . . . , xd] and Aα,βQ• = Mn(C[x1, . . . , xd])
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Because A is a Cayley-smooth order in such points we get that

ÂmP
'Mn(C[[x1, . . . , xd]])

consistent with our étale local knowledge of Azumaya algebras.

Because α.β = n, the number of vertices of Q• is bounded by n and as

d = 1− χQ(α, α)−#{marked loops}

the number of arrows and (marked) loops is also bounded. This means that
for a particular dimension d of the central variety X there are only a finite
number of étale local types of Cayley-smooth orders in alg@n. This might be
seen as a noncommutative version of the fact that there is just one étale type
of a Cayley-smooth variety in dimension d namely, C[[x1, . . . , xd]]. At this
moment a similar result for Serre-smooth orders seems to be far out of reach.

The reduction steps below were discovered by R. Bocklandt in his Ph.D.
thesis (see also [10] or section 5.7) in which he classified quiver settings having
a Serre-smooth ring of invariants. These steps were slightly extended in [14]
(or section 5.8) in order to classify central singularities of Cayley-smooth
orders. All reductions are made locally around a vertex in the marked quiver.
There are three types of allowed moves.

Vertex removal: Assume we have a marked quiver setting (Q•, α) and
a vertex v such that the local structure of (Q•, α) near v is indicated by the
picture on the left below, that is, inside the vertices we have written the
components of the dimension vector and the subscripts of an arrow indicate
how many such arrows there are in Q• between the indicated vertices. Define
the new marked quiver setting (Q•R, αR) obtained by the operation RvV , which
removes the vertex v and composes all arrows through v, the dimensions of
the other vertices are unchanged

'&%$ !"#u1 · · · /.-,()*+uk

/.-,()*+αv

b1

bbDDDDDDDD bk

<<yyyyyyy

'&%$ !"#i1

a1

<<zzzzzzzz · · · '&%$ !"#il

al

bbDDDDDDDD


Rv

V-


'&%$ !"#u1 · · · /.-,()*+uk

'&%$ !"#i1

c11

OO

c1k

<<xxxxxxxxxxxxxxxx · · · '&%$ !"#il

clk

OO

cl1

bbFFFFFFFFFFFFFFFF


where cij = aibj (observe that some of the incoming and outgoing vertices
may be the same so that one obtains loops in the corresponding vertex). This
reduction can be made provided

αv ≥
l∑

j=1

ajij or αv ≥
k∑
j=1

bjuj

(observe that if we started off from a marked quiver setting (Q•, α) coming
from an order, then these inequalities must actually be equalities).
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Small loop removal: If v is a vertex with vertex-dimension αv = 1 and
having k ≥ 1 loops. Let (Q•R, αR) be the marked quiver setting obtained by
the loop removal operation Rvl

��������1

k

��

 Rv
l-


��������1

k−1

��


removing one loop in v and keeping the same dimension vector.

Loop removal: If the local situation in v is such that there is exactly one
(marked) loop in v, the dimension vector in v is k ≥ 2 and there is exactly
one arrow leaving v and this to a vertex with dimension vector 1, then one is
allowed to make the reduction RvL indicated below ��������k

~~}}
}}

}}
}

•

��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+um

iiRRRRRRRRRRRRR

 Rv
L-

 ��������k

k

z� }}
}}

}}

}}
}}

}}

��������1 '&%$ !"#u1

OO

· · · /.-,()*+um

iiRRRRRRRRRRRRR



 ��������k

~~}}
}}

}}
}
��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+um

iiRRRRRRRRRRRRR

 Rv
L-

 ��������k

k

z� }}
}}

}}

}}
}}

}}

��������1 '&%$ !"#u1

OO

· · · /.-,()*+um

iiRRRRRRRRRRRRR


Similarly, if there is one (marked) loop in v and αv = k ≥ 2 and there is only
one arrow arriving at v coming from a vertex of dimension vector 1, then one
is allowed to make the reduction RvL ��������k

�� ))RRRRRRRRRRRRR

•

��

��������1

>>}}}}}}} '&%$ !"#u1 · · · /.-,()*+um

 Rv
L-

 ��������k

�� ))RRRRRRRRRRRRR

��������1

k
:B}}}}}}

}}}}}} '&%$ !"#u1 · · · /.-,()*+um



 ��������k

�� ))RRRRRRRRRRRRR
��

��������1

>>}}}}}}} '&%$ !"#u1 · · · /.-,()*+um

 Rv
L-

 ��������k

�� ))RRRRRRRRRRRRR

��������1

k
:B}}}}}}

}}}}}} '&%$ !"#u1 · · · /.-,()*+um


The relevance of these reducation steps on marked quiver settings is that if

(Q•1, α1) (Q•2, α2)

is a sequence of legal moves then

Rα1
Q•1
' Rα2

Q•2
[y1, . . . , yz]
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where z is the sum of all loops removed in Rvl reductions plus the sum of αv
for each reduction step RvL involving a genuine loop and the sum of αv − 1
for each reduction step RvL involving a marked loop. In section 5.3 we will
prove that every marked quiver setting (Q•, α) can be reduced uniquely to a
reduced or zero-setting Z(Q•, α) = (Q•0, α0) that is a setting from which no
further reductions can be made. Therefore it is sufficient to classify these
zero-settings if we want to classify all central singularities of a Cayley-smooth
order for a given central dimension d.

To start, can we decide when P is a smooth point of X? If A is an Azumaya
algebra in P , we know that A can only be Cayley-smooth if X is smooth in
P . For Cayley-smooth orders the situation is more delicate but we have
a complete solution in terms of the reduction steps, as will be proved in
section 5.7.

THEOREM 10 If A is a Cayley-smooth R-order and (Q•, α, β) is the com-
binatorial data associated to A in P ∈ X. Then, P is a smooth point of X if
and only if the unique zero-setting

Z(Q•, α) ∈ { ��������1 ��������k

�� ��������k

•

�� ��������2
## {{ ��������2

##
•

{{ ��������2•
##

•
{{ }

The Azumaya points are such that Z(Q•, α) = ��������1 hence the singular locus of
X is contained in the ramification locus ram A but may be strictly smaller.

To classify the central singularities of Cayley-smooth orders we may reduce
to zero-settings (Q•, α) = Z(Q•, α). For such a setting we have for all vertices
vi the inequalities

χQ(α, δi) < 0 and χQ(δi, α) < 0

and the dimension of the central variety can be computed from the Euler-form
χQ. This gives us an estimate of d = dim X, which is very efficient to classify
the singularities in low dimensions.

THEOREM 11 Let (Q•, α) = Z(Q•, α) be a zero-setting on k ≥ 2 vertices.
Then

dim X ≥ 1 +
a≥1∑

��������a

a+
a>1∑

��������a• ;;

(2a− 1) +
a>1∑

��������a;;

(2a) +
a>1∑

��������a• ;; •cc

(a2 + a− 2) +

a>1∑
��������a• ;; cc

(a2 +a−1)+
a>1∑

��������a;; cc

(a2 +a)+ . . .+
a>1∑

��������a•k ;; lcc

((k+ l−1)a2 +a−k) + . . .

In this sum the contribution of a vertex v with αv = a is determined by the
number of (marked) loops in v. By the reduction steps (marked) loops only
occur at vertices where αv > 1.
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EXAMPLE 19 (dimension 2) When dim X = 2 no zero-settings on at
least two vertices satisfy the inequality of theorem 5.14, so the only zero-
position possible to be obtained from a marked quiver-setting (Q•, α) in di-
mension two is

Z(Q•, α) = ��������1

and therefore the central two-dimensional variety X of a Cayley-smooth order
is smooth.

EXAMPLE 20 (dimension 3) If (Q•, α) is a zero-setting for dimension
≤ 3 then Q• can have at most two vertices. If there is just one vertex it must
have dimension 1 (reducing again to ��������1 whence smooth) or must be

Z(Q•, α) = ��������2• ;; •cc

which is again a smooth setting. If there are two vertices both must have
dimension 1 and both must have at least two incoming and two outgoing arrows
(for otherwise we could perform an additional vertex-removal reduction). As
there are no loops possible in these vertices for zero-settings, it follows from
the formula d = 1− χQ(α, α) that the only possibility is

Z(Q•, α) = ��������1
a ((

b

  ��������1
chh

d

``

The ring of polynomial invariants RαQ• is generated by traces along oriented
cycles in Q• so in this case it is generated by the invariants

x = ac, y = ad, u = bc and v = bd

and there is one relation between these generators, so

RαQ• '
C[x, y, u, v]
(xy − uv)

Therefore, the only étale type of central singularity in dimension three is the
conifold singularity.

EXAMPLE 21 (dimension 4) If (Q•, α) is a zero-setting for dimension 4
then Q• can have at most three vertices. If there is just one, its dimension
must be 1 (smooth setting) or 2 in which case the only new type is

Z(Q•, α) = ��������2;; •cc

which is again a smooth setting.
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If there are two vertices, both must have dimension 1 and have at least two
incoming and outgoing arrows as in the previous example. The only new type
that occurs is

Z(Q•, α) = ��������1
** $$ ��������1jjhhdd

for which one calculates as before the ring of invariants to be

RαQ• =
C[a, b, c, d, e, f ]

(ae− bd, af − cd, bf − ce)

If there are three vertices all must have dimension 1 and each vertex must
have at least two incoming and two outgoing vertices. There are just two such
possibilities in dimension 4

Z(Q•, α) ∈ { ��������1
**

��

��������1jj

vv��������1

66VV ��������1
&. ��������1

rz��������1

RZ }

The corresponding rings of polynomial invariants are

RαQ• =
C[x1, x2, x3, x4, x5]
(x4x5 − x1x2x3)

resp. RαQ• =
C[x1, x2, x3, x4, y1, y2, y3, y4]

R2

where R2 is the ideal generated by all 2× 2 minors of the matrix[
x1 x2 x3 x4

y1 y2 y3 y4

]
Hence, in low dimensions (and we will extend the above calculation to di-

mension 5 in section 5.8) there is a full classification of the central singularities
R̂m of a Cayley-smooth order in alg@n. There is even a classification of all
isolated simgularities that can arise in arbitrary dimension.

THEOREM 12 Let A be a Cayley-smooth order over R and let (Q•, α, β)
be the combinatorial data associated to a A in a point P ∈ X. Then, P is an
isolated singularity if and only if Z(Q•, α) = T (k1, . . . , kl) where

T (k1, . . . , kl) = 1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

kl +3

k1
;C����

����

k2

KS
k3

[c????
????

k4

ks

$$
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with d = dim X =
∑
i ki− l+1. Moreover, two such singularities, correspond-

ing to T (k1, . . . , kl) and T (k′1, . . . , k
′
l′), are isomorphic if and only if

l = l′ and k′i = kσ(i)

for some permutation σ ∈ Sl.

3. Noncommutative desingularizations

In view of the last theorem, the coordinate ring R = C[Cd/G] of a quotient
singularity can never be the center of a Cayley-smooth order A. However,
there are nice orders A ∈ alg@n that are quotients A ' Aα,βQ• /I of the Cayley-
smooth order Aα,βQ• modulo an ideal I of relations and having C[Cd/G] as their
center.

EXAMPLE 22 (Kleinian singularities) For a Kleinian singularity, that
is, a quotient singularity C2/G with G ⊂ SL2(C) there is an extended Dynkin
diagram D associated.

Let Q be the double quiver of D, that is to each arrow �������� x //�������� in D we

adjoin an arrow �������� ��������x∗oo in Q in the opposite direction and let α be the unique
minimal dimension vector such that χD(α, α) = 0. Further, consider the
moment element

m =
∑
x∈D

[x, x∗]

in the order AαQ then

A =
AαQ
(m)

is an order with center R = C[C2/G] which is isomorphic to the skew-group
algebra C[x, y]#G. Moreover, A is Morita equivalent to the preprojective
algebra which is the quotient of the path algebra of Q by the ideal generated
by the moment element

Π0 = CQ/(
∑

[x, x∗])

For more details we refer to the lecture notes by W. Crawley-Boevey [27] and
section 5.6.

EXAMPLE 23 Consider a quotient singularity X = Cd/G with G ⊂
SLd(C) and Q be the McKay quiver of G acting on V = Cd. That is, the ver-
tices {v1, . . . , vk} of Q are in one-to-one correspondence with the irreducible
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representations {R1, . . . , Rk} of G such that R1 = Ctriv is the trivial repre-
sentation. Decompose the tensorproduct in irreducibles

V ⊗C Rj = R⊕j11 ⊕ . . .⊕R⊕jkk

then the number of arrows in Q from vi to vj

# (vi - vj) = ji

is the multiplicity of Ri in V ⊗ Rj. Let α = (e1, . . . , ek) be the dimension
vector where ei = dimC Ri. The relevance of this quiver-setting is that

repα Q = HomG(R,R⊗ V )

where R is the regular representation, see, for example, [23]. Consider Y ⊂
repα Q the affine subvariety of all α-dimensional representations of Q for
which the corresponding G-equivariant map B ∈ HomG(R, V ⊗R) satisfies

B ∧B = 0 ∈ HomG(R,∧2V ⊗R)

Y is called the variety of commuting matrices and its defining relations can
be expressed as linear equations between paths in Q evaluated in repα Q, say
(l1, . . . , lz). Then

A =
AαQ

(l1, . . . , lz)

is an order with center R = C[Cd/G]. In fact, A is the skew group algebra

A = C[x1, . . . , xd]#G

EXAMPLE 24 Consider the natural action of Z3 on C2 via its embedding
in SL2(C) sending the generator to the matrix[

ρ 0
0 ρ−1

]
where ρ is a primitive 3rd root of unity. Z3 has three one-dimensional simples
R1 = Ctriv, R2 = Cρ and R2 = Cρ2 . As V = C2 = R2⊕R3 it follows that the
McKay quiver setting (Q,α) is

��������1

y3
ww

x1

����������1

x3

77

y2
++ ��������1

y1

WW

y2

kk

Consider the matrices

X =

 0 0 x3

x1 0 0
0 x2 0

 and Y =

 0 y1 0
0 0 y2
y3 0 0


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then the variety of commuting matrices is determined by the matrix-entries of
[X,Y ] that is

I = (x3y3 − y1x1, x1y1 − y2x2, x2y2 − y3x3)

so the skew-group algebra is the quotient of the Cayley-smooth order AαQ (which
incidentally is one of our zero-settings for dimension 4)

C[x, y]#Z3 '
AαQ

(x3y3 − y1x1, x1y1 − y2x2, x2y2 − y3x3)

Taking yi = x∗i this coincides with the description via preprojective algebras
as the moment element is

m =
3∑
i=1

[xi, x∗i ] = (x3y3 − y1x1)e1 + (x1y1 − y2x2)e2 + (x2y2 − y3x3)e3

where the ei are the vertex-idempotents.

From now on we will restrict to quotient algebras A = AαQ•/I satisfying the
following conditions :

• α = (e1, . . . , ek) is the dimension vector of a simple representation of A,
and

• the center R = Z(A) is an integrally closed domain.

These requirements imply that A is an order over R in alg@n where n is the
total dimension of the simple representation, that is |α| =

∑
i ei.

For such an A = AαQ•/I define the affine variety of α-dimensional represen-
tations

repα A = {V ∈ repα Q
• | r(V ) = 0 ∀r ∈ I}

The action of GL(α) =
∏
iGLei by base change on repα Q

• induces an action
on repα A. Usually, repα A will have singularities but it may be smooth on
the Zariski open subset of θ-semistable representations, which we will now
define.

A character of GL(α) is determined by an integral k-tuple θ = (t1, . . . , tk) ∈
Zk

χθ : GL(α) - C∗ (g1, . . . , gk) 7→ det(g1)t1 . . . det(gk)tk

Characters define stability structures on A-representations but as the acting
group on repα A is really PGL(α) = GL(α)/C∗(1e1 , . . . , 1ek

) we only consider
characters θ satisfying θ.α =

∑
i tiei = 0. If V ∈ repα A and V ′ ⊂ V is an

A-subrepresentation we denote the dimension vector of V ′ by dimV ′.

DEFINITION 8 For θ satisfying θ.α = 0, a representation V ∈ repα A is
said to be
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• θ-semistable if and only if for every proper A-subrepresentation 0 6=
V ′ ⊂ V we have θ.dimV ′ ≥ 0.

• θ-stable if and only if for every proper A-subrepresentation 0 6= V ′ ⊂ V
we have θ.dimV ′ > 0.

For any setting θ.α = 0 we have the following inclusions of Zariski open
GL(α)-stable subsets of repα A

repsimpleα A ⊂ repθ−stableα A ⊂ repθ−semistα A ⊂ repα A

but one should note that some of these open subsets may actually be empty!
Recall that a point of the algebraic quotient variety issα A =

repαA/GL(α) represents the orbit of an α-dimensional semisimple represen-
tation V and such representations can be separated by the values f(V ) where
f is a polynomial invariant on repα A. For θ-stable and θ-semistable repre-
sentations there are similar results and morally one should view θ-stable rep-
resentations as corresponding to simple representations whereas θ-semistables
are arbitrary representations. For this reason we will only be able to classify
direct sums of θ-stable representations by certain algebraic varieties, which
are called moduli spaces of semistables representations. More details will be
given in section 4.8.

The notion corresponding to a polynomial invariant in this more general
setting is that of a polynomial semi-invariant. A polynomial function f ∈
C[repα A] is said to be a θ-semi-invariant of weight l if for all g ∈ GL(α) we
have

g.f = χθ(g)lf

where χθ is the character of GL(α) corresponding to θ. A representation
V ∈ repα A is θ-semistable if and only if there is a θ-semi-invariant f of some
weight l such that f(V ) 6= 0. Clearly, θ-semi-invariants of weight zero are just
polynomial invariants and the multiplication of θ-semi-invariants of weight l
resp. l′ has weight l + l′. Hence, the ring of all θ-semi-invariants

C[repα A]GL(α),θ = ⊕∞l=0{f ∈ C[repα A] |∀g ∈ GL(α) : g.f = χθ(g)lf }

is a graded algebra with part of degree zero C[issα A]. But then we have a
projective morphism

proj C[repα A]GL(α),θ π-- issα A

such that all fibers of π are projective varieties. The main properties of π can
be deduced from [54] or section 4.8.

THEOREM 13 Points in proj C[repα A]GL(α),θ are in one-to-one corre-
spondence with isomorphism classes of direct sums of θ-stable representations
of total dimension α. If α is such that there are α-dimensional simple A-
representations, then π is a birational map.
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DEFINITION 9 We call proj C[repα A]GL(α),θ the moduli space of θ-
semistable representations of A and denote it with moduliθα A.

EXAMPLE 25 In the case of Kleinian singularities, example 22, if we take
θ to be a generic character such that θ.α = 0, then the projective map

moduliθα A -- X = C2/G

is a minimal resolution of singularities. Note that the map is birational as α
is the dimension vector of a simple representation of A = Π0, see [27].

EXAMPLE 26 For general quotient singularities, see example 23, assume
that the first vertex in the McKay quiver corresponds to the trivial represen-
tation. Take a character θ ∈ Zk such that t1 < 0 and all ti > 0 for i ≥ 2, for
example take

θ = (−
k∑
i=2

dimRi, 1, . . . , 1)

Then, the corresponding moduli space is isomorphic to

moduliθα A ' G− Hilb Cd

the G-equivariant Hilbert scheme, which classifies all #G-codimensional ideals
I / C[x1, . . . , xd] where

C[x1, . . . , xd]
I

' CG

as G-modules, hence, in particular I must be stable under the action of G. It
is well known that the natural map

G− Hilb Cd -- X = Cd/G

is a minimal resolution if d = 2 and if d = 3 it is often a crepant resolution, for
example whenever G is Abelian. In non-Abelian cases it may have remaining
singularities though which often are of conifold type. See [23] for more details.

EXAMPLE 27 In the C2/Z3-example one can take θ = (−2, 1, 1). The
following representations
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are all nilpotent and are θ-stable. In fact if bc = 0 they are representants of
the exceptional fiber of the desingularization

moduliθα A -- issα A = C2/Z3
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THEOREM 14 Let A = AαQ•/(R) be an R-order in alg@n. Assume that
there exists a stability structure θ ∈ Zk such that the Zariski open subset
repθ−semistα A of all θ-semistable α-dimensional representations of A is a
smooth variety. Then there exists a sheaf A of Cayley-smooth orders over
moduliθα A such that the diagram below is commutative

spec A

moduliθα A

c

?
π-- X = spec R

φ

-

Here, spec A is a noncommutative variety obtained by gluing affine noncom-
mutative varieties spec Ai together and c is the map that intersects locally
a maximal ideal with the center. As A is a sheaf of Cayley-smooth orders,
φ can be viewed as a noncommutative desingularization of X. The map π
itself is a partial resolution of X and we have full control over the remaining
singularities in moduliθα A, that is, all remaining singularities are of the form
described in the previous section. Moreover, if θ is such that all θ-semistable
A-representations are actually θ-stable, then A is a sheaf of Azumaya algebras
over moduliθα A and in this case π is a commutative desingularization of X.
If, in addition, also gcd(α) = 1, then A ' End P for some vectorbundle of
rank n over moduliθα A.

EXAMPLE 28 In the case of Kleinian singularities, example 22, there ex-
ists a suitable stability structure θ such that repθ−semistα Π0 is smooth. Con-
sider the moment map

repα Q
µ- lie GL(α) = Mα(C) = Me1(C)⊕ . . .⊕Mek

(C)

defined by sending V = (Va, Va∗) to

(
∑

�������� a // ��������1

VaVa∗ −
∑

��������1
a //��������

Va∗Va, . . . ,
∑

�������� a // ��������k

VaVa∗ −
∑

��������k
a //��������

Va∗Va)

The differential dµ can be verified to be surjective in any representation
V ∈ repα Q that has a stabilizer subgroup C∗(1e1 , . . . , 1ek

) (a so-called Schur
representation) see, for example, [26, lemma 6.5]. Further, any θ-stable rep-
resentation is Schurian. Moreover, for a generic stability structure θ ∈ Zk
we have that every θ-semistable α-dimensional representation is θ-stable as
the gcd(α) = 1. Combining these facts it follows that µ−1(0) = repα Π0 is
smooth in all θ-stable representations.

EXAMPLE 29 Another case where smoothness of repθ−semistα A is evident
is when A = AαQ• is a Cayley-smooth order as then repα A itself is smooth.
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This observation can be used to resolve the remaining singularities in the par-
tial resolution. If gcd(α) = 1 then for a sufficiently general θ all θ-semistable
representations are actually θ-stable whence the quotient map

repθ−semistα A -- moduliθα A

is a principal PGL(α)-fibration and as the total space is smooth, so is
moduliθα A. Therefore, the projective map

moduliθα A
π-- issα A

is a resolution of singularities in this case. However, if l = gcd(α), then
moduliθα A will usually contain singularities that are as bad as the quotient
variety singularity of tuples of l× l matrices under simultaneous conjugation.

The bulk of the proof of the theorem follows from the results of the last
section. Because A has Ck as the subalgebra generated by the vertex idempo-
tents, the trace map on A determines the trace on Ck and hence, the dimension
vector α. Moreover, we will see that

trepn A = GLn ×GL(α) repα A

and hence is a principal fiber bundle. As is the case for any principal fiber
bundle, this gives a natural one-to-one correspondence between

• GLn-orbits in trepn A, and

• GL(α)-orbits in repα A.

Moreover the corresponding quotient varieties trissn A = trepn A/GLn and
issα A = repα A/GL(α) are isomorphic so we can apply all our GLn-results
of the previous section to this setting. Further, we claim that we can cover
the moduli space

moduliθα A =
⋃
D

XD

where XD is an affine open subset such that under the canonical quotient map

repθ−semistα A
π-- moduliθα A

we have that
π−1(XD) = repα AD

for some C[XD]-order AD in alg@n. If in addition repθ−semistα A is a smooth
variety, each of the repα AD are smooth affine GL(α)-varieties whence the
orders AD are all Cayley-smooth and the result will follow from the foregoing
sections.

Because moduliθα A = proj C[repα A]GL(α),θ we need control on the gen-
erators of all θ-semi-invariants. Such a generating set was found by Aidan
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Schofield and Michel Van den Bergh in [95] and will be proved in section 7.2.
Reorder the vertices in Q• such that the entries of θ are separated in three
strings

θ = (t1, . . . , ti︸ ︷︷ ︸
>0

, ti+1, . . . , tj︸ ︷︷ ︸
=0

, tj+1, . . . , tk︸ ︷︷ ︸
<0

)

and let θ be such that θ.α = 0. Fix a weight l ∈ N+ and take arbitrary natural
numbers {li+1, . . . , lj}. Consider a rectangular matrix L = (Lr,c) where each
entry of the block Lr,c is a linear combination of oriented paths in the marked
quiver Q• with starting vertex vc and ending vertex vr and the sizes of the
blocks Lr,c are such that L is a square matrix on lt1 + . . .+ lti+ li+1 + . . .+ lj
rows and li+1 + . . . + lj − ltj+1 − . . . − ltk columns. So we can evaluate all
entries of L at all representations V ∈ repαA, consider D(V ) = detL(V ) and
verify that D is a GL(α)-semi-invariant polynomial on repα A of weight χlθ.
The result of [95] asserts that these determinantal semi-invariants are algebra
generators of the graded algebra

C[repα A]GL(α),θ

Because a representation V ∈ repα A is θ-semistable if and only if some semi-
invariant of weight χlθ for some l is nonzero on it. This proves the following.

THEOREM 15 The Zariski open subset of θ-semistable α-dimensional A-
representations can be covered by affine GL(α)-stable open subsets

repθ−semistα A =
⊔
D

{V | D(V ) = detL(V ) 6= 0}

and hence the moduli space can also be covered by affine open subsets

moduliθα A =
⋃
D

XD

where XD = {[V ] ∈ moduliθα A | D(V ) = detL(V ) 6= 0}.

EXAMPLE 30 In the C2/Z3 example, the θ-semistable representations
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with θ = (−2, 1, 1) all lie in the affine open subset XD where L is a matrix of
the form

L =
[
x1 0
∗ y3

]
where ∗ is any path in Q starting in x1 and ending in x3.
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Analogous to the rectangular matrix L we define a rectangular matrix N
with lt1 + . . .+ lti+ li+1 + . . .+ lj columns and li+1 + . . .+ lj− ltj+1− . . .− ltk
rows filled with new variables and define an extended marked quiver Q•D where
we adjoin for each entry in Nr,c an additional arrow from vc to vr and denote
it with the corresponding variable from N . Let I1 (resp. I2) be the set of
relations in CQ•D determined from the matrix-equations that L.N and N.L
are made up of identity matrix vertex-blocks. Define a new noncommutative
order

AD =
AαQ•D

(I, I1, I2)

then AD is a C[XD]-order in alg@n.

EXAMPLE 31 In the setting of example 30 with ∗ = y3, the extended
quiver-setting (QD, α) is ��������1

y3
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Hence, with

L =
[
x1 0
y3 y3

]
N =

[
n1 n3

n2 n4

]
the defining equations of the order AD become

I = (x3y3 − y1x1, x1y1 − y2x2, x2y2 − y3x3)
I1 = (n1x1 + n3y3 − v1, n3y3, n2x1 + n4y3, n4y3 − v1)
I2 = (x1n1 − v2, x1n3, y3n1 + y2n2, y3n3 + y3n4 − v3)

This construction may seem a bit mysterious at first but what we are really
doing is to construct the universal localization as in, for example [92], (or see
section 7.3) associated to the map between projective A-modules determined
by L, but this time not in the category alg of all algebras but in alg@α. We
have the situation

repθ−semist A �⊃ π−1(XD) ' repα AD

moduliθα A

π

??
� ⊃ XD

??

and theorem 14 follows from the next result.

THEOREM 16 The following statements are equivalent:

1. V ∈ repθ−semistα A lies in π−1(XD), and
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2. There is a unique extension Ṽ of V such that Ṽ ∈ repα AD.

PROOF 1 ⇒ 2: Because L(V ) is invertible we can take N(V ) to be its
inverse and decompose it into blocks corresponding to the new arrows in Q•D.
This then defines the unique extension Ṽ ∈ repα Q•D of V . As Ṽ satisfies
R (because V does) and I1 and I2 (because N(V ) = L(V )−1) we have that
Ṽ ∈ repα AD.

2 ⇒ 1: Restrict Ṽ to the arrows of Q to get a V ∈ repα Q. As Ṽ (and
hence V ) satisfies R, V ∈ repα A. Moreover, V is such that L(V ) is invertible
(this follows because Ṽ satisfies I1 and I2). Hence, D(V ) 6= 0 and because
D is a θ-semi-invariant it follows that V is an α-dimensional θ-semistable
representation of A.

EXAMPLE 32 In the setting of example 30 with ∗ = y3 we have that the
uniquely determined extension of the A-representation
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Observe that this extension is a simple AD-representation for every b, c ∈ C.

There remains one more thing to clarify: how are the different AD’s glued
together to form a sheaf A of noncommutative algebras over moduliθα A and
how can we construct the noncommutative variety spec A? The solution to
both problems follows from the universal property of AD. Let AD1 (resp.
AD2) be the algebra constructed from a rectangular matrix L1 (resp. L2),
then we can construct the direct sum map L = L1 ⊕ L2 for which the cor-
responding semi-invariant D = D1D2. As A - AD makes the projective
module morphisms associated to L1 and L2 an isomorphism we have uniquely
determined maps in alg@α

AD

AD1

i1

-

AD2

�

i2

repα AD

repα AD1

�

i
∗
1

repα AD2

i ∗
2

-

As repα AD = π−1(XD) (and similarly for Di) we have that i∗j are embed-
dings as are the ij . This way we can glue the sections Γ(XD1 ,A) = AD1 with
Γ(XD2 ,A) = AD2 over their intersection XD = XD1 ∩ XD2 via the inclu-
sions ij . Hence we get a coherent sheaf of noncommutative algebras A over
moduliθα A. Observe that many of the orders AD are isomorphic. In exam-
ple 30 all matrices L with fixed diagonal entries x1 and y3 but with varying
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∗-entry have isomorphic orders AD (use the universal property). In a simi-
lar way we would like to glue max AD1 with max AD2 over max AD using the
algebra maps ij to form a noncommutative variety spec A. However, the con-
struction of max A and the noncommutative structure sheaf is not functorial
in general.

EXAMPLE 33 Consider the inclusion map map in alg@2

A =
[
R R
I R

]
⊂ -

[
R R
R R

]
= A′

then all two-sided maximal ideals of A′ are of the form M2(m) where m is a
maximal ideal of R. If I ⊂ m then the intersection[

m m
m m

]
∩

[
R R
I R

]
=

[
m m
I m

]
which is not a maximal ideal of A as[

m R
I R

] [
R R
I m

]
=

[
m m
I m

]
and so there is no natural map maxA′ - max A, let alone a continuous one.

In [86] it was proved that if A
f- B is an extension (that is, an algebra

map such that B = f(A)ZB(A) where ZB(A) = {b ∈ B | bf(a) = f(a)b ∀a ∈
A}) then the map

spec B - spec R P - f−1(P )

is well-defined and continuous for the Zariski topology. In our situation, the
maps ij : ADj

- AD are even central extensions, that is

AD = ADjZ(AD)

which follows again from the universal property by localizing ADj
at the

central element D. Hence, we can define a genuine noncommutative variety
spec A with central scheme moduliθα A, finishing the proof of the noncom-
mutative desingularization approach.
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Chapter 1

Cayley-Hamilton Algebras

In this chapter we will define the category alg@n of Cayley-Hamilton algebras
of degree n. These are affine C-algebras A equipped with a trace map trA such
that all trace identities holding in n×nmatrices also hold in A. Hence, we have
to study trace identities and, closely related to them, necklace relations.This
requires the description of the generic algebras∫

n

C〈x1, . . . , xm〉 = Tmn and
∮
n

C〈x1, . . . , xm〉 = Nmn

called the trace algebra of m generic n × n matrices, respectively the neck-
lace algebra of m generic n × n matrices. For every A ∈ alg@n there are
epimorphisms Tmn -- A and Nmn -- trA(A) for some m.

In chapter 2 we will reconstruct the Cayley-Hamilton algebra A (and its
central subalgebra trA(A)) as the ring of GLn-equivariant polynomial func-
tions (resp. invariant polynomials) on the representation scheme repn A.
Using the Reynolds operator in geometric invariant theory, it suffices to prove
these results for the generic algebras mentioned above. An n-dimensional rep-
resentation of the free algebra C〈x1, . . . , xm〉 is determined by the images of
the generators xi in Mn(C), whence

repn C〈x1, . . . , xm〉 'Mn(C)⊕ . . .⊕Mn(C)︸ ︷︷ ︸
m

and the GLn-action on it is simultaneous conjugation. For this reason we have
to understand the fundamental results on the invariant theory of m-tuples on
n× n matrices, due to Claudio Procesi [85].

1.1 Conjugacy classes of matrices

In this section we recall the standard results in the case when m = 1, that
is, the study of conjugacy classes of n × n matrices. Clearly, the conjugacy
classes are determined by matrices in Jordan normal form. Though this gives
a complete set-theoretic solution to the orbit problem in this case, there can-
not be an orbit variety due to the existence of nonclosed orbits. Hence, the

1
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geometric study of the conjugacy classes splits up into a quotient problem (the
polynomial invariants determine an affine variety whose points correspond to
the closed orbits) and a nullcone problem (the study of the orbits having a
given closed orbit in their closures). In this section we will solve the first part
in full detail, the second part will be solved in section 2.7. A recurrent theme
of this book will be to generalize this two-part approach to the orbit-space
problem to other representation varieties.

We denote by Mn the space of all n × n matrices Mn(C) and by GLn
the general linear group GLn(C). A matrix A ∈ Mn determines by left
multiplication a linear operator on the n-dimensional vector space Vn = Cn
of column vectors . If g ∈ GLn is the matrix describing the base change from
the canonical basis of Vn to a new basis, then the linear operator expressed
in this new basis is represented by the matrix gAg−1. For a given matrix A
we want to find a suitable basis such that the conjugated matrix gAg−1 has a
simple form.

Consider the linear action of GLn on the n2-dimensional vector space Mn

GLn ×Mn
- Mn (g,A) 7→ g.A = gAg−1

The orbit O(A) = {gAg−1 | g ∈ GLn } of A under this action is called the
conjugacy class of A. We look for a particularly nice representative in a given
conjugacy class. The answer to this problem is, of course, given by the Jordan
normal form of the matrix.

With eij we denote the matrix whose unique nonzero entry is 1 at entry
(i, j). Recall that the group GLn is generated by the following three classes
of matrices :

• the permutation matrices pij = rr
n + eij + eji − eii − ejj for all i 6= j,

• the addition matrices aij(λ) = rr
n + λeij for all i 6= j and 0 6= λ, and

• the multiplication matrices mi(λ) = rr
n + (λ− 1)eii for all i and 0 6= λ.

Conjugation by these matrices determine the three types of Jordan moves on
n × n matrices, as depicted below, where the altered rows and columns are
indicated

i j

i

type p

j

����

gg

ww

i j

i

type a

j

−λ.

��

+λ.

gg

i
type m

i

λ−1.

��

λ.__
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Therefore, it suffices to consider sequences of these moves on a given n× n
matrix A ∈ Mn. The characteristic polynomial of A is defined to be the
polynomial of degree n in the variable t

χA(t) = det(trrn −A) ∈ C[t]

As C is algebraically closed, χA(t) decomposes as a product of linear terms

e∏
i=1

(t− λi)di

Here, the {λ1, . . . , λe} are called the eigenvalues of the matrix A. Observe
that λi is an eigenvalue of A if and only if there is a nonzero eigenvector
v ∈ Vn = Cn with eigenvalue λi, that is, A.v = λiv. In particular, the rank
ri of the matrix Ai = λi

rr
n − A satisfies n − di ≤ ri < n. A nice inductive

procedure using only Jordan moves is given in [35] and proves the Jordan-
Weierstrass theorem .

THEOREM 1.1 Jordan-Weierstrass

Let A ∈ Mn with characteristic polynomial χA(t) =
∏e
i=1(t− λi)di . Then,

A determines unique partitions

pi = (ai1, ai2, . . . , aimi
) of di

associated to the eigenvalues λi of A such that A is conjugated to a unique
(up to permutation of the blocks) block-diagonal matrix

J(p1,...,pe) =


B1 0 . . . 0
0 B2 0
...

. . .
...

0 0 . . . Bm


with m = m1 + . . .+me and exactly one block Bl of the form Jaij (λi) for all
1 ≤ i ≤ e and 1 ≤ j ≤ mi where

Jaij
(λi) =


λi 1

λi
. . .
. . . 1

λi

 ∈Maij
(C)

Let us prove uniqueness of the partitions pi of di corresponding to the
eigenvalue λi of A. Assume A is conjugated to another Jordan block matrix
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J(q1,...,qe), necessarily with partitions qi = (bi1, . . . , bim′
i
) of di. To begin,

observe that for a Jordan block of size k we have that

rk Jk(0)l = k − l for all l ≤ k and if µ 6= 0 then rk Jk(µ)l = k

for all l. As J(p1,...,pe) is conjugated to J(q1,...,qe) we have for all λ ∈ C and all
l

rk (λrr
n − J(p1,...,pe))l = rk (λrr

n − J(q1,...,qe))l

Take λ = λi then only the Jordan blocks with eigenvalue λi are important in
the calculation and one obtains for the ranks

n−
l∑

h=1

#{j | aij ≥ h} respectively n−
l∑

h=1

#{j | bij ≥ h}

For any partition p = (c1, . . . , cu) and any natural number h we see that the
number z = #{j | cj ≥ h}

c1
c2

cz
cz+1

cu h

is the number of blocks in the h-th row of the dual partition p∗ which is defined
to be the partition obtained by interchanging rows and columns in the Young
diagram of p (see section 1.5 for the definition). Therefore, the above rank
equality implies that p∗i = q∗i and hence that pi = qi. As we can repeat this
argument for the other eigenvalues we have the required uniqueness.

Hence, the Jordan normal form shows that the classification of GLn-orbits
in Mn consists of two parts: a discrete part choosing

• a partition p = (d1, d2, . . . , de) of n, and for each di

• a partition pi = (ai1, ai2, . . . , aimi) of di

determining the sizes of the Jordan blocks and a continuous part choosing

• an e-tuple of distinct complex numbers (λ1, λ2, . . . , λe)

fixing the eigenvalues. Moreover, this e-tuple (λ1, . . . , λe) is determined only
up to permutations of the subgroup of all permutations π in the symmetric
group Se such that pi = pπ(i) for all 1 ≤ i ≤ e.
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FIGURE 1.1: Orbit closure for 2× 2 matrices.

Whereas this gives a satisfactory set-theoretical description of the orbits we
cannot put an Hausdorff topology on this set due to the existence of non-closed
orbits in Mn. For example, if n = 2, consider the matrices

A =
[
λ 1
0 λ

]
and B =

[
λ 0
0 λ

]
which are in different normal form so correspond to distinct orbits. For any
ε 6= 0 we have that [

ε 0
0 1

]
.

[
λ 1
0 λ

]
.

[
ε−1 0
0 1

]
=

[
λ ε
0 λ

]
belongs to the orbit of A. Hence if ε - 0, we see that B lies in the closure
of O(A). As any matrix in O(A) has trace 2λ, the orbit is contained in the
3-dimensional subspace [

λ+ x y
z λ− x

]
⊂ - M2

In this space, the orbit-closure O(A) is the set of points satisfying x2 +yz = 0
(the determinant has to be λ2), which is a cone having the origin as its top:
The orbit O(B) is the top of the cone and the orbit O(A) is the complement,
see figure 1.1.

Still, for general n we can try to find the best separated topological quotient
space for the action of GLn on Mn. We will prove that this space coincide
with the quotient variety determined by the invariant polynomial functions.

If two matrices are conjugated A ∼ B, then A and B have the same un-
ordered n-tuple of eigenvalues {λ1, . . . , λn} (occurring with multiplicities).
Hence any symmetric function in the λi will have the same values in A as
in B. In particular this is the case for the elementary symmetric functions σl

σl(λ1, . . . , λl) =
∑

i1<i2<...<il

λi1λi2 . . . λil .
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Observe that for every A ∈Mn with eigenvalues {λ1, . . . , λn} we have

n∏
j=1

(t− λj) = χA(t) = det(trrn −A) = tn +
n∑
i=1

(−1)iσi(A)tn−i

Developing the determinant det(trrn − A) we see that each of the coefficients
σi(A) is in fact a polynomial function in the entries of A. Therefore, σi(A) is
a complex valued continous function on Mn. The above equality also implies
that the functions σi : Mn

- C are constant along orbits. We now construct
the continuous map

Mn
π- Cn

sending a matrix A ∈ Mn to the point (σ1(A), . . . , σn(A)) in Cn. Clearly, if
A ∼ B then they map to the same point in Cn. We claim that π is surjective.
Take any point (a1, . . . , an) ∈ Cn and consider the matrix A ∈Mn

A =


0 an
−1 0 an−1

. . . . . .
...

−1 0 a2

−1 a1

 (1.1)

then we will show that π(A) = (a1, . . . , an), that is

det(trrn −A) = tn − a1t
n−1 + a2t

n−2 − . . .+ (−1)nan

Indeed, developing the determinant of trrn−A along the first column we obtain

0
...
0
0

0
t

1

0
0

0
0
t

. . .

. . .

. . .
1

0
0
0
...
t

1

−an

−a
n-1

−a
n-2

...
−a

2

t− a
1

1

−

t07162534

0
...
0
0

0
t

1

0
0

0
0
t

. . .

. . .

. . .
1

0
0
0
...
t

1

−an

−a
n-1

−a
n-2

...
−a

2

t− a
1

t

107162534

Here, the second determinant is equal to (−1)n−1an and by induction on n
the first determinant is equal to t.(tn−1−a1t

n−2+. . .+(−1)n−1an−1), proving
the claim.

Next, we will determine which n× n matrices can be conjugated to a ma-
trix in the canonical form A as above. We call a matrix B ∈ Mn cyclic if
there is a (column) vector v ∈ Cn such that Cn is spanned by the vectors
{v,B.v,B2.v, . . . , Bn−1.v}. Let g ∈ GLn be the basechange transforming the
standard basis to the ordered basis

(v,−B.v,B2.v,−B3.v, . . . , (−1)n−1Bn−1.v)
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In this new basis, the linear map determined by B (or equivalently, g.B.g−1)
is equal to the matrix in canonical form

0 bn
−1 0 bn−1

. . . . . .
...

−1 0 b2
−1 b1


where Bn.v has coordinates (bn, . . . , b2, b1) in the new basis. Conversely, any
matrix in this form is a cyclic matrix.

We claim that the set of all cyclic matrices in Mn is a dense open subset.
To see this take v = (x1, . . . , xn)τ ∈ Cn and compute the determinant of the
n× n matrix

v Bv . . .
B
n-1

v

This gives a polynomial of total degree n in the xi with all its coefficients
polynomial functions cj in the entries bkl of B. Now, B is a cyclic matrix if
and only if at least one of these coefficients is nonzero. That is, the set of non-
cyclic matrices is exactly the intersection of the finitely many hypersurfaces

Vj = {B = (bkl)k,l ∈Mn | cj(b11, b12, . . . , bnn) = 0}

in the vector space Mn.

THEOREM 1.2
The best continuous approximation to the orbit space is given by the surjection

Mn
π -- Cn

mapping a matrix A ∈Mn(C) to the n-tuple (σ1(A), . . . , σn(A))

Let f : Mn
- C be a continuous function which is constant along con-

jugacy classes. We will show that f factors through π, that is, f is really a
continuous function in the σi(A). Consider the diagram

Mn
f - C

Cn

s

6

π

?.....
.....

.....
.....

.....
.....

.

f
′ =
f◦
s

-
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where s is the section of π (that is, π ◦ s = idCn) determined by sending a
point (a1, . . . , an) to the cyclic matrix in canonical form A as in equation (1.1).
Clearly, s is continuous, hence so is f ′ = f ◦ s. The approximation property
follows if we prove that f = f ′ ◦ π. By continuity, it suffices to check equality
on the dense open set of cyclic matrices in Mn.

There it is a consequence of the following three facts we have proved before
(1) : any cyclic matrix lies in the same orbit as one in standard form, (2) : s
is a section of π and (3): f is constant along orbits.

Example 1.1 Orbits in M2

A 2 × 2 matrix A can be conjugated to an upper triangular matrix with
diagonal entries the eigenvalues λ1, λ2 of A. As the trace and determinant of
both matrices are equal we have

σ1(A) = tr(A) and σ2(A) = det(A)

The best approximation to the orbitspace is therefore given by the surjective
map

M2
π-- C2

[
a b
c d

]
7→ (a+ d, ad− bc)

The matrix A has two equal eigenvalues if and only if the discriminant of the
characteristic polynomial t2 − σ1(A)t+ σ2(A) is zero, that is when σ1(A)2 −
4σ2(A) = 0. This condition determines a closed curve C in C2 where

C = {(x, y) ∈ C2 | x2 − 4y = 0}.

C

Observe that C is a smooth 1-dimensional submanifold of C2. We will describe
the fibers (that is, the inverse images of points) of the surjective map π.

If p = (x, y) ∈ C2 −C, then π−1(p) consists of precisely one orbit (which is
then necessarily closed in M2) namely, that of the diagonal matrix[

λ1 0
0 λ2

]
where λ1,2 =

−x±
√
x2 − 4y

2

If p = (x, y) ∈ C then π−1(p) consists of two orbits

O24λ 1
0 λ

35 and O24λ 0
0 λ

35
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•2

•

•2

0

FIGURE 1.2: Orbit closures of 2× 2 matrices.

where λ = 1
2x. We have seen that the second orbit lies in the closure of the

first. Observe that the second orbit reduces to one point in M2 and hence is
closed. Hence, also π−1(p) contains a unique closed orbit.

To describe the fibers of π as closed subsets of M2 it is convenient to write
any matrix A as a linear combination

A = u(A)
[

1
2 0
0 1

2

]
+ v(A)

[
1
2 0
0 − 1

2

]
+ w(A)

[
0 1
0 0

]
+ z(A)

[
0 0
1 0

]
Expressed in the coordinate functions u, v, w and z the fibers π−1(p) of a point
p = (x, y) ∈ C2 are the common zeroes of{

u = x

v2 + 4wz = x2 − 4y

The first equation determines a three-dimensional affine subspace of M2 in
which the second equation determines a quadric. If p /∈ C this quadric is non-
degenerate and thus π−1(p) is a smooth 2-dimensional submanifold of M2.
If p ∈ C, the quadric is a cone with top lying in the point x

2
rr
2. Under the

GL2-action, the unique singular point of the cone must be clearly fixed giving
us the closed orbit of dimension 0 corresponding to the diagonal matrix. The
other orbit is the complement of the top and hence is a smooth 2-dimensional
(nonclosed) submanifold of M2. The graphs in figure 1.2 represent the orbit-
closures and the dimensions of the orbits.

Example 1.2 Orbits in M3

We will describe the fibers of the surjective map M3
π-- C3. If a 3 × 3

matrix has multiple eigenvalues then the discriminant d = (λ1 − λ2)2(λ2 −
λ3)2(λ3 − λ1)2 is zero. Clearly, d is a symmetric polynomial and hence can
be expressed in terms of σ1, σ2 and σ3. More precisely

d = 4σ3
1σ3 + 4σ3

2 + 27σ2
3 − σ2

1σ
2
2 − 18σ1σ2σ3
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FIGURE 1.3: Representation strata for 3× 3 matrices.

The set of points in C3 where d vanishes is a surface S with singularities.
These singularities are the common zeroes of the ∂d

∂σi
for 1 ≤ i ≤ 3. One

computes that these singularities form a twisted cubic curve C in C3, that is

C = {(3c, 3c2, c3) | c ∈ C}

The description of the fibers π−1(p) for p = (x, y, z) ∈ C3 is as follows. When
p /∈ S, then π−1(p) consists of a unique orbit (which is therefore closed in M3),
the conjugacy class of a matrix with paired distinct eigenvalues. If p ∈ S−C,
then π−1(p) consists of the orbits of

A1 =

λ 1 0
0 λ 0
0 0 µ

 and A2 =

λ 0 0
0 λ 0
0 0 µ


Finally, if p ∈ C, then the matrices in the fiber π−1(p) have a single eigenvalue
λ = 1

3x and the fiber consists of the orbits of the matrices

B1 =

λ 1 0
0 λ 1
0 0 λ

 B2 =

λ 1 0
0 λ 0
0 0 λ

 B3 =

λ 0 0
0 λ 0
0 0 λ


We observe that the strata with distinct fiber behavior (that is, C3−S, S−C
and C) are all submanifolds of C3, see figure 1.3.

The dimension of an orbit O(A) in Mn is computed as follows. Let CA be
the subspace of all matrices in Mn commuting with A. Then, the stabilizer
subgroup of A is a dense open subset of CA whence the dimension of O(A) is
equal to n2 − dim CA.

Performing these calculations for the matrices given above, we obtain the
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following graphs representing orbit-closures and the dimensions of orbits

C3 − S

•6

•

•

•6

4

0

OB1

OB2

OB3

•

•6

4

OA1

OA2

S − C C

Returning to Mn, the set of cyclic matrices is a Zariski open subset of Mn.
For, consider the generic matrix of coordinate functions and generic column
vector

X =

x11 . . . x1n

...
...

xn1 . . . xnn

 and v =

v1...
vn


and form the square matrix[

v X.v X2.v . . . Xn−1.v
]
∈Mn(C[x11, x12, . . . , xnn, v1, . . . , vn])

Then its determinant can be written as
∑z
l=1 pl(xij)ql(vk) where the ql are

polynomials in the vk and the pl polynomials in the xij . Let A ∈Mn be such
that at least one of the pl(A) 6= 0, then the polynomial d =

∑
l pl(A)ql(vk) ∈

C[v1, . . . , vk] is nonzero. But then there is a c = (c1, . . . , cn) ∈ Cn such that
d(c) 6= 0 and hence cτ is a cyclic vector for A. The converse implication is
obvious.

THEOREM 1.3

Let f : Mn
- C is a regular (that is, polynomial) function on Mn which

is constant along conjugacy classes, then

f ∈ C[σ1(X), . . . , σn(X)]

PROOF Consider again the diagram

Mn
f - C

Cn

s

6

π

?.....
.....

.....
.....

.....
.....

.

f
′ =
f◦
s

-



12 Noncommutative Geometry and Cayley-Smooth Orders

The function f ′ = f ◦ s is a regular function on Cn whence is a polynomial in
the coordinate functions of Cm (which are the σi(X)), so

f ′ ∈ C[σ1(X), . . . , σn(X)] ⊂ - C[Mn].

Moreover, f and f ′ are equal on a Zariski open (dense) subset of Mn whence
they are equal as polynomials in C[Mn].

The ring of polynomial functions on Mn which are constant along conjugacy
classes can also be viewed as a ring of invariants. The group GLn acts as
algebra automorphisms on the polynomial ring C[Mn]. The automorphism
φg determined by g ∈ GLn sends the variable xij to the (i, j)-entry of the
matrix g−1.X.g, which is a linear form in C[Mn]. This action is determined
by the property that for all g ∈ GLn, A ∈ A and f ∈ C[Mn] we have that

φg(f)(A) = f(g.A.g−1)

The ring of polynomial invariants is the algebra of polynomials left invariant
under this action

C[Mn]GLn = {f ∈ C[Mn] | φg(f) = f for all g ∈ GLn}

and hence is the ring of polynomial functions on Mn that are constant along
orbits. The foregoing theorem determines the ring of polynomials invariants

C[Mn]GLn = C[σ1(X), . . . , σn(X)]

We will give an equivalent description of this ring below.
Consider the variables λ1, . . . , λn and consider the polynomial

fn(t) =
n∏
i=1

(t− λi) = tn +
n∑
i=1

(−1)iσitn−i

then σi is the i-th elementary symmetric polynomial in the λj . We know
that these polynomials are algebraically independent and generate the ring of
symmetric polynomials in the λj , that is,

C[σ1, . . . , σn] = C[λ1, . . . , λn]Sn

where Sn is the symmetric group on n letters acting by automorphisms on the
polynomial ring C[λ1, . . . , λn] via π(λi) = λπ(i) and the algebra of polynomi-
als, which are fixed under these automorphisms are precisely the symmetric
polynomials in the λj .

Consider the symmetric Newton functions si = λi1 + . . .+λin, then we claim
that this is another generating set of symmetric polynomials, that is

C[σ1, . . . , σn] = C[s1, . . . , sn]
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To prove this it suffices to express each σi as a polynomial in the sj . More
precisely, we claim that the following identities hold for all 1 ≤ j ≤ n

sj − σ1sj−1 + σ2sj−2 − . . .+ (−1)j−1σj−1s1 + (−1)jσj .j = 0 (1.2)

For j = n this identity holds because we have

0 =
n∑
i=1

fn(λi) = sn +
n∑
i=1

(−1)iσisn−i

if we take s0 = n. Assume now j < n then the left hand side of equation 1.2
is a symmetric function in the λi of degree ≤ j and is therefore a polynomial
p(σ1, . . . , σj) in the first j elementary symmetric polynomials. Let φ be the
algebra epimorphism

C[λ1, . . . , λn]
φ-- C[λ1, . . . , λj ]

defined by mapping λj+1, . . . , λj to zero. Clearly, φ(σi) is the i-th elementary
symmetric polynomial in {λ1, . . . , λj} and φ(si) = λi1 + . . . + λij . Repeating
the above j = n argument (replacing n by j) we have

0 =
j∑
i=1

fj(λi) = φ(sj) +
j∑
i=1

(−1)iφ(σi)φ(sn−i)

(this time with s0 = j). But then, p(φ(σ1), . . . , φ(σj)) = 0 and as the φ(σk)
for 1 ≤ k ≤ j are algebraically independent we must have that p is the zero
polynomial finishing the proof of the claimed identity.

If λ1, . . . , λn are the eigenvalues of an n × n matrix A, then A can be
conjugated to an upper triangular matrix B with diagonal entries (λ1, . . . , λ1).
Hence, the trace tr(A) = tr(B) = λ1 + . . . + λn = s1. In general, Ai can be
conjugated to Bi which is an upper triangular matrix with diagonal entries
(λi1, . . . , λ

i
n) and hence the traces of Ai and Bi are equal to λi1 + . . .+λin = si.

Concluding, we have

THEOREM 1.4
Consider the action of conjugation by GLn on Mn. Let X be the generic
matrix of coordinate functions on Mn

X =

x11 . . . xnn
...

...
xn1 . . . xnn


Then, the ring of polynomial invariants is generated by the traces of powers
of X, that is

C[Mn]GLn = C[tr(X), tr(X2), . . . , tr(Xn)]
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PROOF The result follows from theorem 1.3 and the fact that

C[σ1(X), . . . , σn(X)] = C[tr(X), . . . , tr(Xn)]

1.2 Simultaneous conjugacy classes

As mentioned in the introduction, we need to extend what we have done for
conjugacy classes of matrices to simultaneous conjugacy classes of m-tuples
of matrices . Consider the mn2-dimensional complex vector space

Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

of m-tuples (A1, . . . , Am) of n × n-matrices Ai ∈ Mn. On this space we let
the group GLn act by simultaneous conjugation, that is

g.(A1, . . . , Am) = (g.A1.g
−1, . . . , g.Am.g

−1)

for all g ∈ GLn and all m-tuples (A1, . . . , Am). Unfortunately, there is no
substitute for the Jordan normalform result in this more general setting.

Still, for small m and n one can work out the GLn-orbits by brute force
methods. In this section we will give the details for the first nontrivial case,
that of couples of 2× 2 matrices. These explicit calculations will already ex-
hibit some of the general features we will prove later. For example, that all
subvarieties of the quotient variety determined by points of the same repre-
sentation type are smooth and that the fiber structure depends only on the
representation type.

Example 1.3 Orbits in M2
2 = M2 ⊕M2

We can try to mimic the geometric approach to the conjugacy class prob-
lem, that is, we will try to approximate the orbitspace via polynomial func-
tions on M2

2 that are constant along orbits. For (A,B) ∈ M2
2 = M2 ⊕M2

clearly the polynomial functions we have encountered before tr(A), det(A) and
tr(B), det(B) are constant along orbits. However, there are more: for example
tr(AB). In the next section, we will show that these five functions generate
all polynomials functions that are constant along orbits. Here, we will show
that the map M2

2 = M2 ⊕M2
π- C5 defined by

(A,B) 7→ (tr(A), det(A), tr(B), det(B), tr(AB))

is surjective such that each fiber contains precisely one closed orbit. In the
next chapter, we will see that this property characterizes the best polynomial
approximation to the (nonexistent) orbit space.
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First, we will show surjectivity of π, that is, for every (x1, . . . , x5) ∈ C5

we will construct a couple of 2 × 2 matrices (A,B) (or rather its orbit) such
that π(A,B) = (x1, . . . , x5). Consider the open set where x2

1 6= 4x2. We have
seen that this property characterizes those A ∈ M2 such that A has distinct
eigenvalues and hence diagonalizable. Hence, we can take a representative of
the orbit O(A,B) to be a couple

(
[
λ 0
0 µ

]
,

[
c1 c2
c3 c4

]
)

with λ 6= µ. We need a solution to the set of equations
x3 = c1 + c4

x4 = c1c4 − c2c3
x5 = λc1 + µc4

Because λ 6= µ the first and last equation uniquely determine c1, c4 and sub-
stitution in the second gives us c2c3. Analogously, points of C5 lying in the
open set x2

3 6= x4 lie in the image of π. Finally, for a point in the complement
of these open sets, that is, when x2

1 = x2 and x2
3 = 4x4 we can consider a

couple (A,B)

(
[
λ 1
0 λ

]
,

[
µ 0
c µ

]
)

where λ = 1
2x1 and µ = 1

2x3. Observe that the remaining equation x5 =
tr(AB) = 2λµ+ c has a solution in c.

Now, we will describe the fibers of π. Assume (A,B) is such that A and B
have a common eigenvector v. Simultaneous conjugation with a g ∈ GLn ex-
pressing a basechange from the standard basis to {v, w} for some w shows that
the orbit O(A,B) contains a couple of upper-triangular matrices. We want
to describe the image of these matrices under π. Take an upper triangular
representative in O(A,B)

(
[
a1 a2

0 a3

]
,

[
b1 b2
0 b3

]
).

with π-image (x1, . . . , x5). The coordinates x1, x2 determine the eigenvalues
a1, a3 of A only as an unordered set (similarly, x3, x4 only determine the
set of eigenvalues {b1, b3} of B). Hence, tr(AB) is one of the following two
expressions

a1b1 + a3b3 or a1b3 + a3b1

and therefore satisfies the equation

(tr(AB)− a1b1 − a3b3)(tr(AB)− a1b3 − a3b1) = 0.

Recall that x1 = a1 + a3, x2 = a1a3, x3 = b1 + b3, x4 = b1b3 and x5 = tr(AB)
we can express this equation as

x2
5 − x1x3x5 + x2

1x4 + x2
3x2 − 4x2x4 = 0
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This determines an hypersurface H ⊂ - C5. If we view the left-hand side
as a polynomial f in the coordinate functions of C5 we see that H is a four
dimensional subset of C5 with singularities the common zeroes of the partial
derivatives

∂f

∂xi
for 1 ≤ i ≤ 5

These singularities for the 2-dimensional submanifold S of points of the form
(2a, a2, 2b, b2, 2ab). We now claim that the smooth submanifolds C5 − H,
H − S and S of C5 describe the different types of fiber behavior. In chapter
6 we will see that the subsets of points with different fiber behavior (actually,
of different representation type) are manifolds for m-tuples of n×n matrices.

If p /∈ H we claim that π−1(p) is a unique orbit, which is therefore closed
in M2

2 . Let (A,B) ∈ π−1 and assume first that x2
1 6= 4x2 then there is a

representative in O(A,B) of the form

(
[
λ 0
0 µ

]
,

[
c1 c2
c3 c4

]
)

with λ 6= µ. Moreover, c2c3 6= 0 (for otherwise A and B would have a common
eigenvector whence p ∈ H) hence we may assume that c2 = 1 (eventually after
simultaneous conjugation with a suitable diagonal matrix diag(t, t−1)). The
value of λ, µ is determined by x1, x2. Moreover, c1, c3, c4 are also completely
determined by the system of equations

x3 = c1 + c4

x4 = c1c4 − c3
x5 = λc1 + µc4

and hence the point p = (x1, . . . , x5) completely determines the orbit O(A,B).
Remains to consider the case when x2

1 = 4x2 (that is, when A has a single
eigenvalue). Consider the couple (uA + vB,B) for u, v ∈ C∗. To begin,
uA + vB and B do not have a common eigenvalue. Moreover, p = π(A,B)
determines π(uA+ vB,B) as

tr(uA+ vB) = utr(A) + vtr(B)
det(uA+ vB) = u2det(A) + v2det(B) + uv(tr(A)tr(B)− tr(AB))
tr((uA+ vB)B) = utr(AB) + v(tr(B)2 − 2det(B))

Assume that for all u, v ∈ C∗ we have the equality tr(uA+vB)2 = 4det(uA+
vB) then comparing coefficients of this equation expressed as a polynomial in
u and v we obtain the conditions x2

1 = 4x2, x2
3 = 4x4 and 2x5 = x1x3 whence

p ∈ S ⊂ - H, a contradiction. So, fix u, v such that uA + vB has distinct
eigenvalues. By the above argument O(uA+ vB,B) is the unique orbit lying
over π(uA+ vB,B), but then O(A,B) must be the unique orbit lying over p.
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Let p ∈ H − S and (A,B) ∈ π−1(p), then A and B are simultaneous upper
triangularizable, with eigenvalues a1, a2 respectively b1, b2. Either a1 6= a2 or
b1 6= b2 for otherwise p ∈ S. Assume a1 6= a2, then there is a representative
in the orbit O(A,B) of the form

(
[
ai 0
0 aj

]
,

[
bk b
0 bl

]
)

for {i, j} = {1, 2} = {k, l}. If b 6= 0 we can conjugate with a suitable diagonal
matrix to get b = 1 hence we get at most 9 possible orbits. Checking all
possibilities we see that only three of them are distinct, those corresponding
to the couples

(
[
a1 0
0 a2

]
,

[
b1 1
0 b2

]
) (

[
a1 0
0 a2

]
,

[
b1 0
0 b2

]
) (

[
a2 0
0 a1

]
,

[
b1 1
0 b2

]
)

Clearly, the first and last orbit have the middle one lying in its closure. Ob-
serve that the case assuming that b1 6= b2 is handled similarly. Hence, if
p ∈ H − S then π−1(p) consists of three orbits, two of dimension three whose
closures intersect in a (closed) orbit of dimension two.

Finally, consider the case when p ∈ S and (A,B) ∈ π−1(p). Then, both A
and B have a single eigenvalue and the orbit O(A,B) has a representative of
the form

(
[
a x
0 a

]
,

[
b y
0 b

]
)

for certain x, y ∈ C. If either x or y are nonzero, then the subgroup of GL2

fixing this matrix consists of the matrices of the form

Stab

[
c 1
0 c

]
= {

[
u v
0 u

]
| u ∈ C∗, v ∈ C}

but these matrices also fix the second component. Therefore, if either x or
y is nonzero, the orbit is fully determined by [x : y] ∈ P1. That is, for
p ∈ S, the fiber π−1(p) consists of an infinite family of orbits of dimension 2
parameterized by the points of the projective line P1 together with the orbit
of

(
[
a 0
0 a

]
,

[
b 0
0 b

]
)

which consists of one point (hence is closed in M2
2 ) and lies in the closure of

each of the 2-dimensional orbits.
Concluding, we see that each fiber π−1(p) contains a unique closed orbit

(that of minimal dimension). The orbit closure and dimension diagrams have
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the following shapes

C5 −H

•3 ///////

�������•

• •3 3

2

H − S
•

• •77777777

��������0

2 2
P1

S

The reader is invited to try to extend this to the case of three 2×2 matrices
(relatively easy) or to two 3×3 matrices (substantially harder). By the end of
this book you will have learned enough techniques to solve the general case,
at least in principle. As this problem is the archetypical example of a wild
representation problem it is customary to view it as ”hopeless”. Hence, sooner
or later we will hit the wall, but what this book will show you is that you can
push the wall a bit further than was generally expected.

1.3 Matrix invariants and necklaces

In this section we will determine the ring of all polynomial maps

Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

f- C

which are constant along orbits under the action of GLn on Mm
n by simulta-

neous conjugation. The strategy we will use is classical in invariant theory.

• First, we will determine the multilinear maps which are constant along
orbits, equivalently, the linear maps

M⊗mn = Mn ⊗ . . .⊗Mn︸ ︷︷ ︸
m

- C

which are constant along GLn-orbits where GLn acts by the diagonal
action, that is

g.(A1 ⊗ . . .⊗Am) = gA1g
−1 ⊗ . . .⊗ gAmg−1.

• Afterward, we will be able to obtain from them all polynomial invariant
maps by using polarization and restitution operations.
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First, we will translate our problem into one studied in classical invariant
theory of GLn.

Let Vn ' Cn be the n-dimensional vector space of column vectors on which
GLn acts naturally by left multiplication

Vn =


C
C
...
C

 with action g.


ν1
ν2
...
νn


In order to define an action on the dual space V ∗n = Hom(Vn,C) ' Cn of
covectors (or, row vectors) we have to use the contragradient action

V ∗n =
[
C C . . . C

]
with action

[
φ1 φ2 . . . φn

]
.g−1

Observe that we have an evaluation map V ∗n × Vn - C which is given by
the scalar product f(v) for all f ∈ V ∗n and v ∈ Vn

[
φ1 φ2 . . . φn

]
.


ν1
ν2
...
νn

 = φ1ν1 + φ2ν2 + . . .+ φnνn

which is invariant under the diagonal action of GLn on V ∗n × Vn. Further, we
have the natural identification

Mn = Vn ⊗ V ∗n =


C
C
...
C

⊗ [
C C . . . C

]

Under this identification, a pure tensor v ⊗ f corresponds to the rank one
matrix (or rank one endomorphism of Vn) defined by

v ⊗ f : Vn - Vn with w 7→ f(w)v

and we observe that the rank one matrices span Mn. The diagonal action of
GLn on Vn ⊗ V ∗n is then determined by its action on the pure tensors where
it is equal to

g.


ν1
ν2
· · ·
νn

⊗ [
φ1 φ2 . . . φn

]
.g−1

and therefore coincides with the action of conjugation on Mn. Now, let us
consider the identification

(V ∗⊗mn ⊗ V ⊗mn )∗ ' End(V ⊗mn )



20 Noncommutative Geometry and Cayley-Smooth Orders

obtained from the nondegenerate pairing

End(V ⊗mn )× (V ∗⊗mn ⊗ V ⊗mn ) - C

given by the formula

〈λ, f1 ⊗ . . .⊗ fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(λ(v1 ⊗ . . .⊗ vm))

GLn acts diagonally on V ⊗mn and hence again by conjugation on End(V ⊗mn )
after embedding GLn ⊂ - GL(V ⊗mn ) = GLmn. Thus, the above identifica-
tions are isomorphism as vector spaces with GLn-action. But then, the space
of GLn-invariant linear maps

V ∗⊗mn ⊗ V ⊗mn
- C

can be identified with the space EndGLn
(V ⊗mn ) of GLn-linear endomorphisms

of V ⊗mn . We will now give a different presentation of this vector space relating
it to the symmetric group.

Apart from the diagonal action of GLn on V ⊗mn given by

g.(v1 ⊗ . . .⊗ vm) = g.v1 ⊗ . . .⊗ g.vm

we have an action of the symmetric group Sm on m letters on V ⊗mn given by

σ.(v1 ⊗ . . .⊗ vm) = vσ(1) ⊗ . . .⊗ vσ(m)

These two actions commute with each other and give embeddings of GLn and
Sm in End(V ⊗mn ). The subspace of V ⊗mn spanned by the image of GLn will
be denoted by 〈GLn〉. Similarly, with 〈Sm〉 we denote the subspace spanned
by the image of Sm.

THEOREM 1.5
With notations as above we have

1. 〈GLn〉 = EndSm
(V ⊗mn )

2. 〈Sm〉 = EndGLn
(V ⊗mn ).

PROOF (1): Under the identification End(V ⊗mn ) = End(Vn)⊗m an ele-
ment g ∈ GLn is mapped to the symmetric tensor g ⊗ . . .⊗ g. On the other
hand, the image of EndSm(V ⊗mn ) in End(Vn)⊗m is the subspace of all sym-
metric tensors in End(V )⊗m. We can give a basis of this subspace as follows.
Let {e1, . . . , en2} be a basis of End(Vn), then the vectors ei1⊗ . . .⊗eim form a
basis of End(Vn)⊗m that is stable under the Sm-action. Further, any Sm-orbit
contains a unique representative of the form

e⊗h1
1 ⊗ . . .⊗ e⊗hn2

n2
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with h1+. . .+hn2 = m. If we denote by r(h1, . . . , hn2) the sum of all elements
in the corresponding Sm-orbit then these vectors are a basis of the symmetric
tensors in End(Vn)⊗m.

The claim follows if we can show that every linear map λ on the symmetric
tensors, which is zero on all g ⊗ . . .⊗ g with g ∈ GLn is the zero map. Write
e =

∑
xiei, then

λ(e⊗ . . .⊗ e) =
∑

xh1
1 . . . x

hn2

n2 λ(r(h1, . . . , hn2))

is a polynomial function on End(Vn). As GLn is a Zariski open subset of
End(V ) on which by assumption this polynomial vanishes, it must be the zero
polynomial. Therefore, λ(r(h1, . . . , hn2)) = 0 for all (h1, . . . , hn2) finishing the
proof.

(2) : Recall that the groupalgebra CSm of Sm is a semisimple algebra . Any
epimorphic image of a semisimple algebra is semisimple. Therefore, 〈Sm〉 is
a semisimple subalgebra of the matrix algebra End(V ⊗mn ) ' Mnm. By the
double centralizer theorem (see, for example [84]), it is therefore equal to the
centralizer of EndSm(V ⊗mm ). By the first part, it is the centralizer of 〈GLn〉
in End(V ⊗mn ) and therefore equal to EndGLn

(V ⊗mn ).

Because EndGLn
(V ⊗mn ) = 〈Sm〉, every GLn-endomorphism of V ⊗mn can be

written as a linear combination of the morphisms λσ describing the action of
σ ∈ Sm on V ⊗mn . Our next job is to trace back these morphisms λσ through
the canonical identifications until we can express them in terms of matrices.

To start let us compute the linear invariant

µσ : V ∗⊗mn ⊗ V ⊗mn
- C

corresponding to λσ under the identification (V ∗⊗mn ⊗ V ⊗mn )∗ ' End(V ⊗mn ).
By the identification we know that µσ(f1⊗ . . . fm⊗ v1⊗ . . .⊗ vm) is equal to

〈λσ, f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(vσ(1) ⊗ . . . vσ(m))
=

∏
i fi(vσ(i))

That is, we have proved the following.

PROPOSITION 1.1
Any multilinear GLn-invariant map

γ : V ∗⊗mn ⊗ V ⊗mn
- C

is a linear combination of the invariants

µσ(f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm) =
∏
i

fi(vσ(i))

for σ ∈ Sm.
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Using the identification Mn(C) = Vn⊗V ∗n a multilinear GLn-invariant map

(V ∗n ⊗ Vn)⊗m = V ∗⊗mn ⊗ V ⊗mn
- C

corresponds to a multilinear GLn-invariant map

Mn(C)⊗ . . .⊗Mn(C) - C

We will now give a description of the generating maps µσ in terms of matrices.
Under the identification, matrix multiplication is induced by composition on
rank one endomorphisms and here the rule is given by

v ⊗ f.v′ ⊗ f ′ = f(v′)v ⊗ f ′ν1...
νn

⊗ [
φ1 . . . φn

]
.

ν
′
1
...
ν′n

⊗ [
φ′1 . . . φ

′
n

]
=

ν1...
νn

 f(v′)⊗
[
φ′1 . . . φ

′
n

]
Moreover, the trace map onMn is induced by that on rank one endomorphisms
where it is given by the rule

tr(v ⊗ f) = f(v)

tr(

ν1...
νn

⊗ [
φ1 . . . φn

]
) = tr(

ν1φ1 . . . ν1φn
...

. . .
...

νnφ1 . . . νnφn

) =
∑
i

νiφi = f(v)

With these rules we can now give a matrix-interpretation of the GLn-invariant
maps µσ.

PROPOSITION 1.2
Let σ = (i1i2 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ) be a decomposition of σ ∈ Sm
into cycles (including those of length one). Then, under the above identifica-
tion we have

µσ(A1⊗. . .⊗Am) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ
)

PROOF Both sides are multilinear, hence it suffices to verify the equality
for rank one matrices. Write Ai = vi ⊗ fi, then we have that

µσ(A1 ⊗ . . .⊗Am) = µσ(v1 ⊗ . . . vm ⊗ f1 ⊗ . . .⊗ fm)
=

∏
i fi(vσ(i))

Consider the subproduct

fi1(vi2)fi2(vi3) . . . fiα−1(viα) = S
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Now, look at the matrixproduct

vi1 ⊗ fi1 .vi2 ⊗ fi2 . . . . .viα ⊗ fiα

which is by the product rule equal to

fi1(vi2)fi2(vi3) . . . fiα−1(viα)vi1 ⊗ fiα

Hence, by the trace rule we have that

tr(Ai1Ai2 . . . Aiα) =
α∏
j=1

fij (vσ(ij)) = S

Having found a description of the multilinear invariant polynomial maps

Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

- C

we will now describe all polynomial maps that are constant along orbits by
polarization. The coordinate algebra C[Mm

n ] is the polynomial ring in mn2

variables xij(k) where 1 ≤ k ≤ m and 1 ≤ i, j ≤ n. Consider the m generic
n× n matrices

k = Xk =

x11(k) . . . x1n(k)
...

...
xn1(k) . . . xnn(k)

 ∈Mn(C[Mm
n ])

The action of GLn on polynomial maps f ∈ C[Mm
n ] is fully determined by the

action on the coordinate functions xij(k). As in the case of one n× n matrix
we see that this action is given by

g.xij(k) = (g−1.Xk.g)ij

We see that this action preserves the subspaces spanned by the entries of
any of the generic matrices. Hence, we can define a gradation on C[Mm

n ] by
deg(xij(k)) = (0, . . . , 0, 1, 0, . . . , 0) (with 1 at place k) and decompose

C[Mm
n ] =

⊕
(d1,...,dm)∈Nm

C[Mm
n ](d1,...,dm)

where C[Mm
n ](d1,...,dm) is the subspace of all multihomogeneous forms f in the

xij(k) of degree (d1, . . . , dm), that is, in each monomial term of f there are
exactly dk factors coming from the entries of the generic matrix Xk for all
1 ≤ k ≤ m. The action of GLn stabilizes each of these subspaces, that is

if f ∈ C[Mm
n ](d1,...,dm) then g.f ∈ C[Mm

n ](d1,...,dm) for all g ∈ GLn
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In particular, if f determines a polynomial map on Mm
n which is constant

along orbits, that is, if f belongs to the ring of invariants C[Mm
n ]GLn then

each of its multihomogeneous components is also an invariant and therefore
it suffices to determine all multihomogeneous invariants.

Let f ∈ C[Mm
n ](d1,...,dm) and take for each 1 ≤ k ≤ m dk new variables

t1(k), . . . , tdk
(k). Expand

f(t1(1)A1(1) + . . .+ td1Ad1(1), . . . , t1(m)A1(m) + . . .+ tdm
(m)Adm

(m))

as a polynomial in the variables ti(k), then we get an expression∑
t1(1)s1(1) . . . tsd1 (1)

d1
. . . t1(m)s1(m) . . . tdm

(m)sdm (m).

f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m))(A1(1), . . . , Ad1(1), . . . , A1(m), . . . , Adm
(m))

such that for all 1 ≤ k ≤ m we have
∑dk

i=1 si(k) = dk. Moreover, each of the
f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m)) is a multihomogeneous polynomial function
on

Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
d1

⊕Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
d2

⊕ . . .⊕Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
dm

of multidegree (s1(1), . . . , sd1(1), . . . , s1(m), . . . , sdm(m)). Observe that if
f is an invariant polynomial function on Mm

n , then each of these multi-
homogeneous functions is an invariant polynomial function on MD

n where
D = d1 + . . .+ dm.

In particular, we consider the multilinear function

f1,...,1 : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C

which we call the polarization of the polynomial f and denote with Pol(f).
Observe that Pol(f) in symmetric in each of the entries belonging to a block
Mdk
n for every 1 ≤ k ≤ m. If f is invariant under GLn, then so is the

multilinear function Pol(f) and we know the form of all such functions by the
results given before (replacing Mm

n by MD
n ).

Finally, we want to recover f back from its polarization. We claim to have
the equality

Pol(f)(A1, . . . , A1︸ ︷︷ ︸
d1

, . . . , Am, . . . , Am︸ ︷︷ ︸
dm

) = d1! . . . dm!f(A1, . . . , Am)

and hence we recover f . This process is called restitution . The claim follows
from the observation that

f(t1(1)A1 + . . .+ td1(1)A1, . . . , t1(m)Am + . . .+ tdm(m)Am) =
f((t1(1) + . . .+ td1(1))A1, . . . , (t1(m) + . . .+ tdm(m))Am) =

(t1(1) + . . .+ td1(1))d1 . . . (t1(m) + . . .+ tdm(m))dmf(A1, . . . , Am)
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and the definition of Pol(f). Hence we have proved that any multi-
homogeneous invariant polynomial function f on Mm

n of multidegree
(d1, . . . , dm) can be obtained by restitution of a multilinear invariant func-
tion

Pol(f) : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C

If we combine this fact with our description of all multilinear invariant func-
tions on Mn ⊕ . . .⊕Mn we finally obtain the following.

THEOREM 1.6 First fundamental theorem of matrix invariants
Any polynomial function Mm

n

f- C that is constant along orbits under the
action of GLn by simultaneous conjugation is a polynomial in the invariants

tr(Xi1 . . . Xil)

where Xi1 . . . Xil run over all possible noncommutative polynomials in the
generic matrices {X1, . . . , Xm}.

We will call the algebra C[Mm
n ] generated by these invariants the necklace

algebra Nmn = C[Mm
n ]GLn . The terminology is justified by the observation

that the generators
tr(Xi1Xi2 . . . Xil)

are only determined up to cyclic permutation of the factors Xj . They corre-
spond to a necklace word w

�

�))

� HH�
�

vv

�
��

�

))

�
HH

�
�vv

��
x
w

where each i-colored bead i corresponds to a generic matrix Xi. To ob-
tain an invariant, these bead-matrices are cyclically multiplied to obtain an
n × n matrix with coefficients in Mn(C[Mm

n ]). The trace of this matrix is
called tr(w) and theorem 1.6 asserts that these elements generate the ring of
polynomial invariants.

1.4 The trace algebra

In this section we will prove that there is a bound on the length of the
necklace words w necessary for the tr(w) to generate Nmn . Later, after we
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have determined the relations between these necklaces tr(w), we will be able
to improve this bound.

First, we will characterize all GLn-equivariant maps from Mm
n to Mn, that

is all polynomial maps Mm
n

f- Mn, such that for all g ∈ GLn the diagram
below is commutative

Mm
n

f - Mn

Mm
n

g.g−1

?
f - Mn

g.g−1

?

With pointwise addition and multiplication in the target algebra Mn, these
polynomial maps form a noncommutative algebra Tmn called the trace algebra.
Obviously, the trace algebra is a subalgebra of the algebra of all polynomial
maps from Mm

n to Mn, that is

Tmn ⊂ - Mn(C[Mm
n ])

Clearly, using the diagonal embedding of C in Mn any invariant polynomial
on Mm

n determines a GLn-equivariant map. Equivalently, using the diagonal
embedding of C[Mm

n ] in Mn(C[Mm
n ]) we can embed the necklace algebra

Nmn = C[Mm
n ]GLn ⊂ - Tmn

Another source of GLn-equivariant maps are the coordinate maps

Xi : Mm
n = Mn ⊕ . . .⊕Mm

n
- Mn (A1, . . . , Am) 7→ Ai

Observe that the coordinate map Xi is represented by the generic matrix
i = Xi in Mn(C[Mm

n ]).

PROPOSITION 1.3

As an algebra over the necklace algebra Nmn , the trace algebra Tmn is generated
by the elements {X1, . . . , Xm}.

PROOF Consider a GLn-equivariant map Mm
n

f- Mn and associate
to it the polynomial map

Mm+1
n = Mm

n ⊕Mn
tr(fXm+1) - C

defined by sending (A1, . . . , Am, Am+1) to tr(f(A1, . . . , Am).Am+1). For
all g ∈ GLn we have that f(g.A1.g

−1, . . . , g.Am.g
−1) is equal to
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g.f(A1, . . . , Am).g−1 and hence

tr(f(g.A1.g
−1, . . . , g.Am.g

−1).g.Am+1.g
−1) =

tr(g.f(A1, . . . , Am).g−1.g.Am+1.g
−1) =

tr(g.f(A1, . . . , Am).Am+1.g
−1) = tr(f(A1, . . . , Am).Am+1)

so tr(fXm+1) is an invariant polynomial function on Mm+1
n , which is linear

in Xm+1. By theorem 1.6 we can therefore write

tr(fXm+1) =
∑

gi1...il︸ ︷︷ ︸
∈Nm

n

tr(Xi1 . . . XilXm+1)

Here, we used the necklace property allowing to permute cyclically the trace
terms in which Xm+1 occurs such that Xm+1 occurs as the last factor. But
then, tr(fXm+1) = tr(gXm+1) where

g =
∑

gi1...ilXi1 . . . Xil .

Finally, using the nondegeneracy of the trace map onMn (that is, if A,B ∈Mn

such that tr(AC) = tr(BC) for all C ∈Mn, then A = B) it follows that f = g.

If we give each of the generic matrices Xi degree one, we see that the trace
algebra Tmn is a connected positively graded algebra

Tmn = T0 ⊕ T1 ⊕ T2 ⊕ . . . with T0 = C

Our aim is to bound the length of the monomials in the Xi necessary to
generate Tmn as a module over the necklace algebra Nmn . Before we can do
this we need to make a small detour in one of the more exotic realms of
noncommutative algebra: the Nagata-Higman problem .

THEOREM 1.7 Nagata-Higman
Let R be an associative algebra without a unit element. Assume there is a

fixed natural number n such that xn = 0 for all x ∈ R. Then, R2n−1 = 0, that
is

x1.x2. . . . x2n−1 = 0

for all xj ∈ R.

PROOF We use induction on n, the case n = 1 being obvious. Consider
for all x, y ∈ R

f(x, y) = yxn−1 + xyxn−2 + x2yxn−3 + . . .+ xn−2yx+ xn−1y.
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Because for all c ∈ C we must have that

0 = (y + cx)n = xncn + f(x, y)cn−1 + . . .+ yn

it follows that all the coefficients of the ci with 1 ≤ i < n must be zero, in
particular f(x, y) = 0. But then we have for all x, y, z ∈ R that

0 = f(x, z)yn−1 + f(x, zy)yn−2 + f(x, zy2)yn−3 + . . .+ f(x, zyn−1)

= nxn−1zyn−1 + zf(y, xn−1) + xzf(y, xn−2)+

x2zf(y, xn−3) + . . .+ xn−2zf(y, x)

and therefore xn−1zyn−1 = 0. Let I /R be the two-sided ideal of R generated
by all elements xn−1, then we have that I.R.I = 0. In the quotient algebra
R = R/I every element x satisfies xn−1 = 0.

By induction we may assume that R
2n−1−1

= 0, or equivalently that
R2n−1−1 is contained in I. But then

R2n−1 = R2(2n−1−1)+1 = R2n−1−1.R.R2n−1−1 ⊂ - I.R.I = 0

finishing the proof.

PROPOSITION 1.4
The trace algebra Tmn is spanned as a module over the necklace algebra Nmn by
all monomials in the generic matrices

Xi1Xi2 . . . Xil

of degree l ≤ 2n − 1.

PROOF By the diagonal embedding of Nmn in Mn(C[Mm
n ]) it is clear that

Nmn commutes with any of the Xi. Let T+ and N+ be the strict positive
degrees of Tmn and Nmn and form the graded associative algebra (without unit
element)

R = T+/N+.T+

Observe that any element t ∈ T+ satisfies an equation of the form

tn + c1t
n−1 + c2t

n−2 + . . .+ cn = 0

with all of the ci ∈ N+. Indeed we have seen that all the coefficients of the
characteristic polynomial of a matrix can be expressed as polynomials in the
traces of powers of the matrix. But then, for any x ∈ R we have that xn = 0.

By the Nagata-Higman theorem we know that R2n−1 = (R1)2
n−1 = 0. Let

T′ be the graded Nmn -submodule of Tmn spanned by all monomials in the generic
matrices Xi of degree at most 2n − 1, then the above can be reformulated as

Tmn = T′ + N+.Tmn
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We claim that Tnm = T′. Otherwise there is a homogeneous t ∈ Tmn of minimal
degree d not contained in T′ but still we have a description

t = t′ + c1.t1 + . . .+ cs.ts

with t′ and all ci, ti homogeneous elements. As deg(ti) < d, ti ∈ T′ for all i
but then is t ∈ T′ a contradiction.

Finally we are in a position to bound the length of the necklaces generating
Nmn as an algebra.

THEOREM 1.8
The necklace algebra Nmn is generated by all necklaces tr(w) where w is a
necklace word in the bead-matrices {X1, . . . , Xm} of length l ≤ 2n.

PROOF Let T′ be the C-subalgebra of Tmn generated by the generic
matrices Xi. Then, tr(T′+) generates the ideal N+. Let S be the set of all
monomials in the Xi of degree at most 2n − 1. By the foregoing proposition
we know that T′ ⊂ - Nmn .S. The trace map

tr : Tmn - Nmn

is Nmn -linear and therefore, because T′+ ⊂ T′.(CX1 + . . .+ CXm) we have

tr(T′+) ⊂ tr(Nmn .S.(CX1 + . . .+ CXm)) ⊂ Nmn .tr(S′)

where S′ is the set of monomials in the Xi of degree at most 2n. If N′ is the
C-subalgebra of Nmn generated by all tr(S′), then we have tr(T′+) ⊂ Nmn .N′+.
But then, we have

N+ = Nmn tr(T+) ⊂ Nmn N′+ and thus Nmn = N′ + Nmn N′+

from which it follows that Nmn = N′ by a similar argument as in the foregoing
proof.

Example 1.4 The algebras N2
2 and T2

2

When working with 2× 2 matrices, the following identities are often helpful

0 = A2 − tr(A)A+ det(A)
A.B +B.A = tr(AB)− tr(A)tr(B) + tr(A)B + tr(B)A

for all A,B ∈M2. Let N′ be the subalgebra of N2
2 generated by tr(X1), tr(X2),

det(X1), det(X2) and tr(X1X2). Using the two formulas above and N2
2-

linearity of the trace on T2
2 we see that the trace of any monomial in X1
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and X2 of degree d ≥ 3 can be expressed in elements of N′ and traces of
monomials of degree ≤ d− 1. Hence, we have

N2
2 = C[tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)].

Observe that there can be no algebraic relations between these generators as
we have seen that the induced map π : M2

2
- C5 is surjective. Another

consequence of the above identities is that over N2
2 any monomial in theX1, X2

of degree d ≥ 3 can be expressed as a linear combination of 1, X1, X2 and
X1X2 and so these elements generate T2

2 as a N2
2-module. In fact, they are a

basis of T2
2 over N2

2. Assume otherwise, there would be a relation, say

X1X2 = αI2 + βX1 + γX2

with α, β, γ ∈ C(tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)). Then this rela-
tion has to hold for all matrix couples (A,B) ∈ M2

2 and we obtain a contra-
diction if we take the couple

A =
[
0 1
0 0

]
B =

[
0 0
1 0

]
whence AB =

[
1 0
0 0

]
.

Concluding, we have the following description of N2
2 and T2

2 as a subalgebra
of C[M2

2 ] respectively, M2(C[M2
2 ]){

N2
2 = C[tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)]

T2
2 = N2

2.I2 ⊕ N2
2.X1 ⊕ N2

2.X2 ⊕ N2
2.X1X2

Observe that we might have taken the generators tr(X2
i ) rather than det(Xi)

because det(Xi) = 1
2 (tr(Xi)2 − tr(Xi)2) as follows from taking the trace of

characteristic polynomial of Xi.

1.5 The symmetric group

Let Sd be the symmetric group of all permutations on d letters. The
group algebra C Sd is a semisimple algebra. In particular, any simple Sd-
representation is isomorphic to a minimal left ideal of C Sd, which is generated
by an idempotent . We will now determine these idempotents.

To start, conjugacy classes in Sd correspond naturally to partitions λ =
(λ1, . . . , λk) of d, that is, decompositions in natural numbers

d = λ1 + . . .+ λk with λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1

The correspondence associates to a partition λ = (λ1, . . . , λk) the conjugacy
class of a permutation consisting of disjoint cycles of lengths λ1, . . . , λk. It is
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traditional to assign to a partition λ = (λ1, . . . , λk) a Young diagram with λi
boxes in the i-th row, the rows of boxes lined up to the left. The dual partition
λ∗ = (λ∗1, . . . , λ

∗
r) to λ is defined by interchanging rows and columns in the

Young diagram of λ .
For example, to the partition λ = (3, 2, 1, 1) of 7 we assign the Young

diagram

λ = λ∗ =

with dual partition λ∗ = (4, 2, 1). A Young tableau is a numbering of the boxes
of a Young diagram by the integers {1, 2, . . . , d}. For example, two distinct
Young tableaux of type λ are

1 2 3
4 5
6
7

1 3 5
2 4
6
7

Now, fix a Young tableau T of type λ and define subgroups of Sd by

Pλ = {σ ∈ Sd | σ preserves each row }

Qλ = {σ ∈ Sd | σ preserves each column }

For example, for the second Young tableaux given above we have that{
Pλ = S{1,3,5} × S{2,4} × {(6)} × {(7)}
Qλ = S{1,2,6,7} × S{3,4} × {(5)}

Observe that different Young tableaux for the same λ define different sub-
groups and different elements to be defined below. Still, the simple represen-
tations we will construct from them turn out to be isomorphic.

Using these subgroups, we define the following elements in the groupalgebra
CSd

aλ =
∑
σ∈Pλ

eσ , bλ =
∑
σ∈Qλ

sgn(σ)eσ and cλ = aλ.bσ

The element cλ is called a Young symmetrizer . The next result gives an
explicit one-to-one correspondence between the simple representations of CSd
and the conjugacy classes in Sd (or, equivalently, Young diagrams).

THEOREM 1.9
For every partition λ of d the left ideal CSd.cλ = Vλ is a simple Sd-
representations and, conversely, any simple Sd-representation is isomorphic
to Vλ for a unique partition λ.



32 Noncommutative Geometry and Cayley-Smooth Orders

PROOF (sketch) Observe that Pλ∩Qλ = {e} (any permutation preserving
rows as well as columns preserves all boxes) and so any element of Sd can be
written in at most one way as a product p.q with p ∈ Pλ and q ∈ Qλ. In
particular, the Young symmetrizer can be written as cλ =

∑
±eσ with σ = p.q

for unique p and q and the coefficient ±1 = sgn(q). From this it follows that
for all p ∈ Pλ and q ∈ Qλ we have

p.aλ = aλ.p = aλ , sgn(q)q.bλ = bλ.sgn(q)q = bλ , p.cλ.sgn(q)q = cλ

Moreover, we claim that cλ is the unique element in CSd (up to a scalar factor)
satisfying the last property. This requires a few preparations.

Assume σ /∈ Pλ.Qλ and consider the tableaux T ′ = σT , that is, replacing
the label i of each box in T by σ(i). We claim that there are two distinct
numbers that belong to the same row in T and to the same column in T ′.
If this were not the case, then all the distinct numbers in the first row of T
appear in different columns of T ′. But then we can find an element q′1 in the
subgroup σ.Qλ.σ−1 preserving the columns of T ′ to take all these elements to
the first row of T ′. But then, there is an element p1 ∈ Tλ such that p1T and
q′1T

′ have the same first row. We can proceed to the second row and so on and
obtain elements p ∈ Pλ and q′ ∈ σ.Qλ, σ−1 such that the tableaux pT and q′T ′

are equal. Hence, pT = q′σT entailing that p = q′σ. Further, q′ = σ.q.σ−1 but
then p = q′σ = σq whence σ = p.q−1 ∈ Pλ.Qλ, a contradiction. Therefore, to
σ /∈ Pλ.Qλ we can assign a transposition τ = (ij) (replacing the two distinct
numbers belonging to the same row in T and to the same column in T ′) for
which p = τ ∈ Pλ and q = σ−1.τ.σ ∈ Qλ.

After these preliminaries, assume that c′ =
∑
aσeσ is an element such that

p.c′.sgn(q)q = c′ for all p ∈ Pλ, q ∈ Qλ

We claim that aσ = 0 whenever σ /∈ Pλ.Qλ. Take the transposition τ found
above and p = τ , q = σ−1.τ.σ, then p.σ.q = τ.σ.σ−1.τ.σ = σ. However, the
coefficient of σ in c′ is aσ and that of p.c′.q is −aσ proving the claim. That is

c′ =
∑
p,q

apqep.q

but then by the property of c′ we must have that apq = sgn(q)ae whence
c′ = aecλ finishing the proof of the claimed uniqueness of the element cλ.

As a consequence we have for all elements x ∈ CSd that cλ.x, cλ = αxcλ for
some scalar αx ∈ C and in particular that c2λ = nλcλ, for

p.(cλ.x.cλ).sgn(q)q = p.aλ.bλ.x.aλ.bλ.sgn(q)q
= aλ.bλ.x.aλ.bλ = cλ.x.cλ

and the statement follows from the uniqueness result for cλ.
Define Vλ = CSd.cλ then we have cλ.Vλ ⊂ Ccλ. We claim that Vλ is a simple

Sd-representation. Let W ⊂ Vλ be a simple subrepresentation, then being a
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left ideal of CSd, we can writeW = CSd.x with x2 = x (note thatW is a direct
summand). Assume that cλ.W = 0, then W.W ⊂ CSd.cλ.W = 0 implying
that x = 0 whence W = 0, a contradiction. Hence, cλ.W = Ccλ ⊂ W , but
then

Vλ = CSd.cλ ⊂W whenceVλ = W

is simple. It remains to be shown that for different partitions, the correspond-
ing simple representations cannot be isomorphic.

We put a lexicographic ordering on the partitions by the rule that

λ > µ if the first nonvanishing λi − µi is positive

We claim that if λ > µ then aλ.CSd.bµ = 0. It suffices to check that aλ.σ.bµ =
0 for σ ∈ Sd. As σ.bµ.σ−1 is the b-element constructed from the tableau b.T ′

where T ′ is the tableaux fixed for µ, it is sufficient to check that aλ.bµ = 0.
As λ > µ there are distinct numbers i and j belonging to the same row in T
and to the same column in T ′. If not, the distinct numbers in any fixed row
of T must belong to different columns of T ′, but this can only happen for all
rows if µ ≥ λ. So consider τ = (ij), which belongs to Pλ and to Qµ, whence
aλ.τ = aλ and τ.bµ = −bµ. But then

aλ.bµ = aλ.τ, τ, bµ = −aλ.bµ

proving the claim.
If λ 6= µ we claim that Vλ is not isomorphic to Vµ. Assume that λ > µ and

φ a CSd-isomorphism with φ(Vλ) = Vµ, then

φ(cλVλ) = cλφ(Vλ) = cλVµ = cλCSdcµ = 0

Hence, cλVλ = Ccλ 6= 0 lies in the kernel of an isomorphism that is clearly
absurd.

Summarizing, we have constructed to distinct partitions of d, λ and µ non-
isomorphic simple CSd-representations Vλ and Vµ. As we know that there are
as many isomorphism classes of simples as there are conjugacy classes in Sd
(or partitions), the Vλ form a complete set of isomorphism classes of simple
Sd-representations, finishing the proof of the theorem.

1.6 Necklace relations

In this section we will prove that all the relations holding among the el-
ements of the necklace algebra Nmn are formal consequences of the Cayley-
Hamilton theorem. First, we will have to set up some notation to clarify what
we mean by this.
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For technical reasons it is sometimes convenient to have an infinite supply
of noncommutative variables {x1, x2, . . . , xi, . . .}. Two monomials of the same
degree d in these variables

M = xi1xi2 . . . xid and M ′ = xj1xj2 . . . xjd

are said to be equivalent if M ′ is obtained from M by a cyclic permutation,
that is, there is a k such that i1 = jk and all ia = jb with b = k+a−1 mod d.
That is, if they determine the same necklace word
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��
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w

with each of the beads one of the noncommuting variables i = xi. To each
equivalence class we assign a formal variable that we denote by

t(xi1xi2 . . . xid).

The formal necklace algebra N∞ is then the polynomial algebra on all these
(infinitely many) letters. Similarly, we define the formal trace algebra T∞ to
be the algebra

T∞ = N∞ ⊗C C〈x1, x2, . . . , xi, . . .〉

that is, the free associative algebra on the noncommuting variables xi with
coefficients in the polynomial algebra N∞.

Crucial for our purposes is the existence of an N∞-linear formal trace map

t : T∞ -- N∞

defined by the formula

t(
∑

ai1...ikxi1 . . . xik) =
∑

ai1...ikt(xi1 . . . xik)

where ai1...ik ∈ N∞.
In an analogous manner we will define infinite versions of the neck-

lace and trace algebras. Let M∞n be the space of all ordered sequences
(A1, A2, . . . , Ai, . . .) with Ai ∈ Mn and all but finitely many of the Ai are
the zero matrix. Again, GLn acts on M∞n by simultaneous conjugation and
we denote the infinite necklace algebra N∞n to be the algebra of polynomial
functions f

M∞n
f- C

which are constant along orbits. Clearly, N∞n is generated as C-algebra by the
invariants tr(M) where M runs over all monomials in the coordinate generic
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matrices Xk = (xij(k))i,j belonging to the k-th factor of M∞n . Similarly, the
infinite trace algebra T∞n is the algebra of GLn-equivariant polynomial maps

M∞n - Mn.

Clearly, T∞n is the C-algebra generated by N∞n and the generic matrices Xk

for 1 ≤ k <∞. Observe that T∞n is a subalgebra of the matrix ring

T∞n ⊂ - Mn(C[M∞n ])

and as such has a trace map tr defined on it and from our knowledge of the
generators of N∞n we know that tr(T∞n ) = N∞n .

Now, there are natural algebra epimorphisms

T∞ τ-- T∞n and N∞ ν-- N∞n

defined by τ(t(xi1 . . . xik)) = ν(t(xi1 . . . xik)) = tr(Xi1 . . . Xik) and τ(xi) =
Xi. That is, ν and τ are compatible with the trace maps

T∞ τ -- T∞n

N∞

t

??
ν -- N∞n

tr

??

We are interested in describing the necklace relations , that is, the kernel of ν.
In the next section we will describe the trace relations that are the kernel of
τ . Note that we obtain the relations holding among the necklaces in Nmn by
setting all xi = 0 with i > m and all t(xi1 . . . xik) = 0 containing a variable
with ij > m.

In the description a map T : CSd - N∞ will be important. Let Sd be
the symmetric group of permutations on {1, . . . , d} and let

σ = (i1i1 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ)

be a decomposition of σ ∈ Sd into cycles including those of length one. The
map T assigns to σ a formal necklace Tσ(x1, . . . , xd) defined by

Tσ(x1, . . . , xd) = t(xi1xi2 . . . xiα)t(xj1xj2 . . . xjβ ) . . . t(xz1xz2 . . . xzζ
)

Let V = Vn be again the n-dimensional vector space of column vectors, then
Sd acts naturally on V ⊗d via

σ.(v1 ⊗ . . .⊗ vd) = vσ(1) ⊗ . . .⊗ vσ(d)

hence determines a linear map λσ ∈ End(V ⊗d). Recall from section 3 that
under the natural identifications

(M⊗dn )∗ ' (V ∗⊗d ⊗ V ⊗d)∗ ' End(V ⊗d)
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the map λσ defines the multilinear map

µσ : Mn ⊗ . . .⊗Mn︸ ︷︷ ︸
d

- C

defined by (using the cycle decomposition of σ as before)

µσ(A1⊗ . . .⊗Ad) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ
)

Therefore, a linear combination
∑
aσTσ(x1, . . . , xd) is a necklace relation

(that is, belongs to Ker ν) if and only if the multilinear map
∑
aσµσ :

M⊗dn - C is zero. This, in turn, is equivalent to the endomorphism∑
aσλσ ∈ End(V ⊗m), induced by the action of the element

∑
aσeσ ∈ CSd on

V ⊗d, being zero. In order to answer the latter problem we have to understand
the action of a Young symmetrizer cλ ∈ CSd on V ⊗d.

Let λ = (λ1, λ2, . . . , λk) be a partition of d and equip the corresponding
Young diagram with the standard tableau (that is, order first the boxes in the
first row from left to right, then the second row from left to right and so on)
as shown

1

d

//
//

//

The subgroup Pλ of Sd which preserves each row then becomes

Pλ = Sλ1 × Sλ2 × . . .× Sλk
⊂ - Sd

As aλ =
∑
p∈Pλ

ep we see that the image of the action of aλ on V ⊗d is the
subspace

Im(aλ) = Symλ1 V ⊗ Symλ2 V ⊗ . . .⊗ Symλk V ⊂ - V ⊗d

Here, Symi V denotes the subspace of symmetric tensors in V ⊗i.
Similarly, equip the Young diagram of λ with the tableau by ordering first

the boxes in the first column from top to bottom, then those of the second
column from top to bottom and so on as shown

1 d

��

�� ��
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Equivalently, give the Young diagram corresponding to the dual partition of
λ

λ∗ = (µ1, µ2, . . . , µl)

the standard tableau. Then, the subgroup Qλ of Sd, which preserves each row
of λ (or equivalently, each column of λ∗) is

Qλ = Sµ1 × Sµ2 × . . .× Sµl
⊂ - Sd

As bλ =
∑
q∈Qλ

sgn(q)eq we see that the image of bλ on V ⊗d is the subspace

Im(bλ) =
µ1∧

V ⊗
µ2∧

V ⊗ . . .⊗
µl∧

V ⊂ - V ⊗d .

Here,
∧i

V is the subspace of all antisymmetric tensors in V ⊗i. Note that∧i
V = 0 whenever i is greater than the dimension dim V = n. That is,

the image of the action of bλ on V ⊗d is zero whenever the dual partition λ∗

contains a row of length ≥ n + 1, or equivalently, whenever λ has ≥ n + 1
rows. Because the Young symmetrizer cλ = aλ.bλ ∈ C Sd we have proved the
first result on necklace relations.

THEOREM 1.10 Second fundamental theorem of matrix invariants

A formal necklace ∑
σ∈Sd

aσTσ(x1, . . . , xd)

is a necklace relation (for n× n matrices) if and only if the element∑
aσeσ ∈ CSd

belongs to the ideal of CSd spanned by the Young symmetrizers cλ relative to
partitions λ = (λ1, . . . , λk)

n

with a least n+ 1 rows, that is, k ≥ n+ 1.
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Example 1.5
(Fundamental necklace and trace relation.) Consider the partition λ =
(1, 1, . . . , 1) of n+ 1, with corresponding Young tableau

n+1

...

2
1

Then, Pλ = {e}, Qλ = Sn+1 and we have the Young symmetrizer

aλ = 1 bλ = cλ =
∑

σ∈Sn+1

sgn(σ)eσ

The corresponding element is called the fundamental necklace relation

fundn(x1, . . . , xn+1) =
∑

σ∈Sn+1

sgn(σ)Tσ(x1, . . . , xn+1)

Clearly, fundn(x1, . . . , xn+1) is multilinear of degree n + 1 in the variables
{x1, . . . , xn+1}. Conversely, any multilinear necklace relation of degree n +
1 must be a scalar multiple of fundn(x1, . . . , xn+1). This follows from the
proposition as the ideal described there is for d = n+1 just the scalar multiples
of

∑
σ∈Sn+1

sgn(σ)eσ.
Because fundn(x1, . . . , xn+1) is multilinear in the variables xi we can use

the cyclic permutation property of the formal trace t to write it in the form

fundn(x1, . . . , xn+1) = t(chan(x1, . . . , xn)xn+1)withchan(x1, . . . , xn) ∈ T∞

Observe that chan(x1, . . . , xn) is multilinear in the variables xi. Moreover, by
the nondegeneracy of the trace map tr and the fact that fundn(x1, . . . , xn+1)
is a necklace relation, it follows that chan(x1, . . . , xn) is a trace relation.
Again, any multilinear trace relation of degree n in the variables {x1, . . . , xn}
is a scalar multiple of chan(x1, . . . , xn). This follows from the corresponding
uniqueness result for fundn(x1, . . . , xn+1).

We can give an explicit expression of this fundamental trace relation

chan(x1, . . . , xn) =
n∑
k=0

(−1)k
∑

i1 6=i2 6=... 6=ik

xi1xi2 . . . xik
∑
σ∈SJ

sgn(σ)Tσ(xj1 , . . . , xjn−k
)

where J = {1, . . . , n} − {i1, . . . , ik}. In a moment we will see that
chan(x1, . . . , xn) and hence also fundn(x1, . . . , xn+1) is obtained by polar-
ization of the Cayley-Hamilton identity for n× n matrices.
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We will explain what we mean by the Cayley-Hamilton polynomial for an
element of T∞. Recall that when X ∈Mn(A) is a matrix with coefficients in
a commutative C-algebra A its characteristic polynomial is defined to be

χX(t) = det(trrn −X) ∈ A[t]

and by the Cayley-Hamilton theorem we have the basic relation that χX(X) =
0. We have seen that the coefficients of the characteristic polynomial can be
expressed as polynomial functions in the tr(Xi) for 1 ≤ i ≤ n.

For example if n = 2, then the characteristic polynomial can we written as

χX(t) = t2 − tr(X)t+
1
2
(tr(X)2 − tr(X2))

For general n the method for finding these polynomial functions is based on
the formal recursive algorithm expressing elementary symmetric functions in
term of Newton functions , usually expressed by the formulae

f(t) =
n∏
i=1

(t− λi),

f ′(t)
f(t)

=
d log f(t)

dt
=

n∑
i=1

1
t− λi

=
∞∑
k=0

1
tk+1

(
n∑
i=1

λki )

Note, if λi are the eigenvalues of X ∈Mn, then f(t) = χX(t) and
∑n
i=1 λ

k
i =

tr(Xk). Therefore, one can use the formulae to express f(t) in terms of
the elements

∑n
i=1 λ

k
i . To get the required expression for the characteristic

polynomial of X one only has to substitute
∑n
i=1 λ

k
i with tr(Xk).

This allows us to construct a formal Cayley-Hamilton polynomial χx(x) ∈
T∞ of an element x ∈ T∞ by replacing in the above characteristic polynomial
the term tr(Xk) with t(xk) and tl with xl. If x is one of the variables xi then
χx(x) is an element of T∞ homogeneous of degree n. Moreover, by the Cayley-
Hamilton theorem it follows immediately that χx(x) is a trace relation. Hence,
if we fully polarize χx(x) (say, using the variables {x1, . . . , xn}) we obtain a
multilinear trace relation of degree n. By the argument given in the example
above we know that this element must be a scalar multiple of chan(x1, . . . , xn).
In fact, one can see that this scale factor must be (−1)n as the leading term
of the multilinearization is

∑
σ∈Sn

xσ(1) . . . xσ(n) and compare this with the
explicit form of chan(x1, . . . , xn).

Example 1.6

Consider the case n = 2. The formal Cayley-Hamilton polynomial of an
element x ∈ T∞ is

χx(x) = x2 − t(x)x+
1
2
(t(x)2 − t(x2))
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Polarization with respect to the variables x1 and x2 gives the expression

x1x2 + x2x1 − t(x1)x2 − t(x2)x1 + t(x1)t(x2)− t(x1x2)

which is cha2(x1, x2). Indeed, multiplying it on the right with x3 and applying
the formal trace t to it we obtain

t(x1x2x3) + t(x2x1x3)− t(x1)t(x2x3)− t(x2)t(x1x3)
+t(x1)t(x2)t(x3)− t(x1x2)t(x3)

= T(123)(x1, x2, x3) + T(213)(x1, x2, x3)− T(1)(23)(x1, x2, x3)
−T(2)(13)(x1, x2, x3) + T(1)(2)(3)(x1, x2, x3)− T(12)(3)(x1, x2, x3)

=
∑
σ∈S3

Tσ(x1, x2, x3) = fund2(x1, x2, x3)

as required.

THEOREM 1.11
The necklace relations Ker ν is the ideal of N∞ generated by all the elements

fundn(m1, . . . ,mn+1)

where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}

PROOF Take a homogeneous necklace relation f ∈ Ker ν of degree d
and polarize it to get a multilinear element f ′ ∈ N∞. Clearly, f ′ is also a
necklace relation and if we can show that f ′ belongs to the described ideal,
then so does f as the process of restitution maps this ideal into itself.

Therefore, we may assume that f is multilinear of degree d. A priori f
may depend on more than d variables xk, but we can separate f as a sum of
multilinear polynomials fi each depending on precisely d variables such that
for i 6= j fi and fj do not depend on the same variables. Setting some of the
variables equal to zero, we see that each of the fi is again a necklace relation.

Thus, we may assume that f is a multilinear necklace identity of degree d
depending on the variables {x1, . . . , xd}. But then we know from theorem 1.10
that we can write

f =
∑
τ∈Sd

aτTτ (x1, . . . , xd)

where
∑
aτeτ ∈ CSd belongs to the ideal spanned by the Young symmetrizers

of Young diagrams λ having at least n+ 1 rows.
We claim that this ideal is generated by the Young symmetrizer of the

partition (1, . . . , 1) of n + 1 under the natural embedding of Sn+1 into Sd.
Let λ be a Young diagram having k ≥ n + 1 boxes and let cλ be a Young
symmetrizer with respect to a tableau where the boxes in the first column are
labeled by the numbers I = {i1, . . . , ik} and let SI be the obvious subgroup
of Sd. As Qλ = SI ×Q′ we see that bλ = (

∑
σ∈SI

sgn(σ)eσ).b′ with b′ ∈ CQ′.
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Hence, cλ belongs to the two-sided ideal generated by cI =
∑
σ∈SI

sgn(σ)eσ
but this is also the two-sided ideal generated by ck =

∑
σ∈Sk

sgn(σ)eσ as one
verifies by conjugation with a partition sending I to {1, . . . , k}. Moreover, by
induction one shows that the two-sided ideal generated by ck belongs to the
two-sided ideal generated by cd =

∑
σ∈Sd

sgn(σ)eσ, finishing the proof of the
claim.

From this claim, we can write∑
τ∈Sd

aτeτ =
∑

τi,τj∈Sd

aijeτi .(
∑

σ∈Sn+1

sgn(σ)eσ).eτj

and therefore it suffices to analyze the form of the necklace identity associated
to an element of the form

eτ .(
∑

σ∈Sn+1

sgn(σ)eσ).eτ ′ with τ, τ ′ ∈ Sd

Now, if a group element
∑
µ∈Sd

bµeµ corresponds to the formal necklace poly-
nomial g(x1, . . . , xd), then the element eτ .(

∑
µ∈Sd

bµeµ).eτ−1 corresponds to
the formal necklace polynomial g(xτ(1), . . . , xτ(d)).

Therefore, we may replace the element eτ .(
∑
σ∈Sn+1

sgn(σ)eσ).eτ ′ by the
element

(
∑

σ∈Sn+1

sgn(σ)eσ).eη with η = τ ′.τ ∈ Sd

We claim that we can write η = σ′.θ with σ′ ∈ Sn+1 and θ ∈ Sd such that
each cycle of θ contains at most one of the elements from {1, 2, . . . , n + 1}.
Indeed assume that η contains a cycle containing more than one element from
{1, . . . , n+ 1}, say 1 and 2, that is

η = (1i1i2 . . . ir2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

then we can express the product (12).η in cycles as

(1i1i2 . . . ir)(2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

Continuing in this manner we reduce the number of elements from {1, . . . , n+
1} in every cycle to at most one.

But then as σ′ ∈ Sn+1 we have seen that (
∑
sgn(σ)eσ).eσ′ =

sgn(σ′)(
∑
sgn(σ)eσ) and consequently

(
∑

σ∈Sn+1

sgn(σ)eσ).eη = ±(
∑

σ∈Sn+1

sgn(σ)eσ).eθ

where each cycle of θ contains at most one of {1, . . . , n+ 1}. Let us write

θ = (1i1 . . . iα)(2j1 . . . jβ) . . . (n+ 1s1 . . . sκ)(t1 . . . tλ) . . . (z1 . . . zζ)
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Now, let σ ∈ Sn+1 then the cycle decomposition of σ.θ is obtained as follows.
Substitute in each cycle of σ the element 1 formally by the string 1i1 . . . iα,
the element 2 by the string 2j1 . . . jβ , and so on until the element n + 1 by
the string n+1s1 . . . sκ and finally adjoin the cycles of θ in which no elements
from {1, . . . , n+ 1} appear.

Finally, we can write out the formal necklace element corresponding to the
element (

∑
σ∈Sn+1

sgn(σ)eσ).eθ as

fundn(x1xi1 . . . xiα , x2xj1 . . . xjβ , . . . , xn+1xs1 . . . xsκ)
t(xt1 . . . xtλ) . . . t(xz1 . . . xzζ

)

finishing the proof of the theorem.

1.7 Trace relations

We will again use the nondegeneracy of the trace map to deduce the trace
relations. That is, we will describe the kernel of the epimorphism

τ :
∫

C〈x1, x2, . . .〉 = T∞ -- T∞n =
∫
n

C〈x1, x2, . . .〉

from the description of the necklace relations.

THEOREM 1.12
The trace relations Ker τ is the two-sided ideal of the formal trace algebra

T∞ generated by all elements

fundn(m1, . . . ,mn+1) and chan(m1, . . . ,mn)

where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}.

PROOF Consider a trace relation h(x1, . . . , xd) ∈ Ker τ . Then, we have
a necklace relation of the form

t(h(x1, . . . , xd)xd+1) ∈ Ker ν

By theorem 1.11 we know that this element must be of the form∑
ni1...in+1fundn(mi1 , . . . ,min+1)

where the mi are monomials, the ni1...in+1 ∈ N∞ and the expression must be
linear in the variable xd+1. That is, xd+1 appears linearly in each of the terms

nfundn(m1, . . . ,mn+1)
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so appears linearly in n or in precisely one of the monomials mi. If xd+1

appears linearly in n we can write

n = t(n′.xd+1) where n′ ∈ T∞

If xd+1 appears linearly in one of the monomials mi we may assume that it
does so in mn+1, permuting the monomials if necessary. That is, we may
assume mn+1 = m′n+1.xd+1.m”n+1 with m,m′ monomials. But then, we can
write

nfundn(m1, . . . ,mn+1) = nt(chan(m1, . . . ,mn).m′n+1.xd+1.m”n+1)
= t(n.m”n+1.chan(m1, . . . ,mn).m′n+1.xd+1)

using N∞-linearity and the cyclic permutation property of the formal trace t.
But then, separating the two cases, one can write the total expression

t(h(x1, . . . , xd)xd+1) = t([
∑
i

n′i1...in+1
fundn(mi1 , . . . ,min+1)

+
∑
j

nj1...jn+1 .m”jn+1 .chan(mj1 , . . . ,mjn).m′jn+1
]xd+1)

Finally, observe that two formal trace elements h(x1, . . . , xd) and k(x1, . . . , xd)
are equal if the formal necklaces

t(h(x1, . . . , xd)xd+1) = t(k(x1, . . . , xd)xd+1)

are equal, finishing the proof.

We will give another description of the necklace relations Ker τ , which is
better suited for the categorical interpretation of T∞n to be given in the next
chapter. Consider formal trace elements m1,m2, . . . ,mi, . . . with mj ∈ T∞.
The formal substitution

f 7→ f(m1,m2, . . . ,mi, . . .)

is the uniquely determined algebra endomorphism of T∞, which maps the
variable xi to mi and is compatible with the formal trace t. That is, the
substitution sends a monomial xi1xi1 . . . xik to the element gi1gi2 . . . gik and
an element t(xi1xi2 . . . xik) to the element t(gi1gi2 . . . gik). A substitution in-
variant ideal of T∞ is a two-sided ideal of T∞ that is closed under all possible
substitutions as well as under the formal trace t. For any subset of elements
E ⊂ T∞ there is a minimal substitution invariant ideal containing E. This
is the ideal generated by all elements obtained from E by making all possible
substitutions and taking all their formal traces. We will refer to this ideal as
the substitution invariant ideal generated by E.

Recall the definition of the formal Cayley-Hamilton polynomial χx(x) of an
element x ∈ T∞ given in the previous section.



44 Noncommutative Geometry and Cayley-Smooth Orders

THEOREM 1.13
The trace relations Ker τ is the substitution invariant ideal of T∞ generated
by the formal Cayley-Hamilton polynomials

χx(x) for all x ∈ T∞

PROOF The result follows from theorem 1.12 and the definition of a sub-
stitution invariant ideal once we can show that the full polarization of χx(x),
which we have seen is chan(x1, . . . , xn), lies in the substitution invariant ideal
generated by the χx(x).

This is true since we may replace the process of polarization with the process
of multilinearization, whose first step is to replace, for instance

χx(x) by χx+y(x+ y)− χx(x)− χy(y)

The final result of multilinearization is the same as of full polarization and
the claim follows as multilinearizing a polynomial in a substitution invariant
ideal, we remain in the same ideal.

We will use our knowledge on the necklace and trace relations to improve
the bound of 2n − 1 in the Nagata-Higman problem to n2. Recall that this
problem asks for a number N(n) with the property that if R is an associative
C-algebra without unit such that rn = 0 for all r ∈ R, then we must have for
all ri ∈ R the identity

r1r2 . . . rN(n) = 0 in R

We start by reformulating the problem. Consider the positive part F+ of the
free C-algebra generated by the variables {x1, x2, . . . , xi, . . .}

F+ = C〈x1, x2, . . . , xi, . . .〉+

which is an associative C-algebra without unit. Let T (n) be the two-sided
ideal of F+ generated by all n-powers fn with f ∈ F+. Note that the ideal
T (n) is invariant under all substitutions of F+. The Nagata-Higman problem
then asks for a number N(n) such that the product

x1x2 . . . xN(n) ∈ T (n)

We will now give an alternative description of the quotient algebra F+/T (n).
Let N+ be the positive part of the infinite necklace algebra N∞n and T+ the
positive part of the infinite trace algebra T∞n . Consider the quotient associa-
tive C-algebra without unit

T+ = T+/(N+T∞n ).

Observe the following facts about T+ : as a C-algebra it is generated by
the variables X1, X2, . . . as all the other algebra generators of the form
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t(xi1 . . . xir ) of T∞ are mapped to zero in T+. Further, from the form of
the Cayley-Hamilton polynomial it follows that every t ∈ T+ satisfies tn = 0.
That is, we have an algebra epimorphism

F+/T (n) -- T+

and we claim that it is also injective. To see this, observe that the quotient
T∞/N∞+ T∞ is just the free C-algebra on the variables {x1, x2, . . .}. To obtain
T+ we have to factor out the ideal of trace relations. Now, a formal Cayley-
Hamilton polynomial χx(x) is mapped to xn in T∞/N∞+ T∞. That is, to obtain
T+ we factor out the substitution invariant ideal (observe that t is zero here)
generated by the elements xn, but this is just the definition of F+/T (n).

Therefore, a reformulation of the Nagata-Higman problem is to find a num-
ber N = N(n) such that the product of the first N generic matrices

X1X2 . . . XN ∈ N∞+ T∞n or, equivalently that tr(X1X2 . . . XNXN+1)

can be expressed as a linear combination of products of traces of lower de-
gree. Using the description of the necklace relations given in theorem 1.10 we
can reformulate this condition in terms of the group algebra CSN+1. Let us
introduce the following subspaces of the group algebra as follows

• A will be the subspace spanned by all N + 1 cycles in SN+1

• B will be the subspace spanned by all elements except N + 1 cycles

• L(n) will be the ideal of CSN+1 spanned by the Young symmetrizers
associated to partitions

n

L(n)

with ≤ n rows, and

• M(n) will be the ideal of CSN+1 spanned by the Young symmetrizers
associated to partitions

n

M(n)

having more than n rows.



46 Noncommutative Geometry and Cayley-Smooth Orders

With these notations, we can reformulate the above condition as

(12 . . . NN + 1) ∈ B +M(n) and consequently CSN+1 = B +M(n)

Define an inner product on the group algebra CSN+1 such that the group
elements form an orthonormal basis, then A and B are orthogonal comple-
ments and also L(n) and M(n) are orthogonal complements. But then, taking
orthogonal complements the condition can be rephrased as

(B +M(n))⊥ = A ∩ L(n) = 0

Finally, let us define an automorphism τ on CSN+1 induced by sending eσ to
sgn(σ)eσ. Clearly, τ is just multiplication by (−1)N on A and therefore the
above condition is equivalent to

A ∩ L(n) ∩ τL(n) = 0

Moreover, for any Young tableau λ we have that τ(aλ) = bλ∗ and τ(bλ) = aλ∗ .
Hence, the automorphism τ sends the Young symmetrizer associated to a
partition to the Young symmetrizer of the dual partition. This gives the
following characterization

• τL(n) is the ideal of CSN+1 spanned by the Young symmetrizers asso-
ciated to partitions

n

τL(n)

with ≤ n columns.

Now, specialize to the case N = n2. Clearly, any Young diagram having n2+1
boxes must have either more than n columns or more than n rows

n

and consequently we indeed have for N = n2 that

A ∩ L(n) ∩ τL(n) = 0

finishing the proof of the promised refinement of the Nagata-Higman bound
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THEOREM 1.14

Let R be an associative C-algebra without unit element. Assume that rn = 0
for all r ∈ R. Then, for all ri ∈ R we have

r1r2 . . . rn2 = 0

THEOREM 1.15

The necklace algebra Nmn is generated as a C-algebra by all elements of the
form

tr(Xi1Xi2 . . . Xil)

with l ≤ n2+1. The trace algebra Tmn is spanned as a module over the necklace
algebra Nmn by all monomials in the generic matrices

Xi1Xi2 . . . Xil

of degree l ≤ n2.

1.8 Cayley-Hamilton algebras

In this section we define the category alg@n of Cayley-Hamilton algebras
of degree n.

DEFINITION 1.1 A trace map on an (affine) C-algebra A is a C-linear
map

tr : A - A

satisfying the following three properties for all a, b ∈ A:

1. tr(a)b = btr(a),

2. tr(ab) = tr(ba) and

3. tr(tr(a)b) = tr(a)tr(b).

Note that it follows from the first property that the image tr(A) of the
trace map is contained in the center of A. Consider two algebras A and B
equipped with a trace map, which we will denote by trA, respectively, trB . A
trace morphism φ : A - B will be a C-algebra morphism that is compatible
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with the trace maps, that is, the following diagram commutes

A
φ - B

A

trA

?
φ - B

trB

?

This definition turns algebras with a trace map into a category, denoted by
alg@. We will say that an algebra A with trace map tr is trace generated by a
subset of elements I ⊂ A if the C-algebra generated by B and tr(B) is equal
to A where B is the C-subalgebra generated by the elements of I. Note that
A does not have to be generated as a C-algebra by the elements from I.

Observe that for T∞ the formal trace t : T∞ -- N∞ ⊂ - T∞ is a trace
map. Property (1) follows because N∞ commutes with all elements of T∞,
property (2) is the cyclic permutation property for t and property (3) is the
fact that t is a N∞-linear map. The formal trace algebra T∞ is trace generated
by the variables {x1, x2, . . . , xi, . . .} but not as a C-algebra.

Actually, T∞ is the free algebra in the generators {x1, x2, . . . , xi, . . .} in
the category of algebras with a trace map, alg@. That is, if A is an algebra
with trace tr which is trace generated by {a1, a2, . . .}, then there is a trace
preserving algebra epimorphism

T∞ π-- A

For example, define π(xi) = ai and π(t(xi1 . . . xil)) = tr(π(xi1) . . . π(xil)).
Also, the formal trace algebra Tm, that is, the subalgebra of T∞ trace gen-
erated by {x1, . . . , xm}, is the free algebra in the category of algebras with
trace that are trace generated by at most m elements.

Given a trace map tr on A, we can define for any a ∈ A a formal Cayley-
Hamilton polynomial of degree n . Indeed, express

f(t) =
n∏
i=1

(t− λi)

as a polynomial in t with coefficients polynomial functions in the Newton
functions

∑n
i=1 λ

k
i . Replacing the Newton function

∑
λki by tr(ak) we obtain

the Cayley-Hamilton polynomial of degree n

χ(n)
a (t) ∈ A[t]

DEFINITION 1.2 An (affine) C-algebra A with trace map tr : A - A
is said to be a Cayley-Hamilton algebra of degree n if the following two prop-
erties are satisfied:
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1. tr(1) = n, and

2. For all a ∈ A we have χ(n)
a (a) = 0 in A.

alg@n is the category of Cayley-Hamilton algebras of degree n with trace pre-
serving morphisms.

Observe that if R is a commutative C-algebra, then Mn(R) is a Cayley-
Hamilton algebra of degree n. The corresponding trace map is the composition
of the usual trace with the inclusion of R -- Mn(R) via scalar matrices.
As a consequence, the infinite trace algebra T∞n has a trace map induced by
the natural inclusion

T∞n ⊂ - Mn(C[M∞n ])

N∞n

tr

?

................
⊂ - C[M∞n ]

tr

?

which has image tr(T∞n ) the infinite necklace algebra N∞n . Clearly, being
a trace-preserving inclusion, T∞n is a Cayley-Hamilton algebra of degree n.
With this definition, we have the following categorical description of the trace
algebra T∞n .

THEOREM 1.16
The trace algebra T∞n is the free algebra in the generic matrix generators
{X1, X2, . . . , Xi, . . .} in the category of Cayley-Hamilton algebras of degree n.

For any m, the trace algebra Tmn is the free algebra in the generic matrix
generators {X1, . . . , Xm} in the category alg@n of Cayley-Hamilton algebras
of degree n which are trace generated by at most m elements.

PROOF Let Fn be the free algebra in the generators {y1, y2, . . .} in the
category alg@n, then by freeness of T∞ there is a trace preserving algebra
epimorphism

T∞ π- Fn with π(xi) = yi

By the universal property of Fn, the ideal Ker π is the minimal ideal I of T∞
such that T∞/I is Cayley-Hamilton of degree n.

We claim that Ker π is substitution invariant. Consider a substitution
endomorphism φ of T∞ and consider the diagram

T∞ φ - T∞

T∞/Ker χ
?

.................
⊂ - Fn

π

??

.................................
χ

-
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then Ker χ is an ideal closed under traces such that T∞/Ker χ is a Cayley-
Hamilton algebra of degree n (being a subalgebra of Fn). But then Ker π ⊂
Ker χ (by minimality of Ker π) and therefore χ factors over Fn, that is, the
substitution endomorphism φ descends to an endomorphism φ : Fn - Fn
meaning that Ker π is left invariant under φ, proving the claim. Further,
any formal Cayley-Hamilton polynomial χ(n)

x (x) of degree n of x ∈ T∞ maps
to zero under π. By substitution invariance it follows that the ideal of trace
relations Ker τ ⊂ Ker π. We have seen that T∞/Ker τ = T∞n is the infinite
trace algebra, which is a Cayley-Hamilton algebra of degree n. Thus, by
minimality of Ker π we must have Ker τ = Ker π and hence Fn ' T∞n . The
second assertion follows immediately.

Let A be a Cayley-Hamilton algebra of degree n that is trace generated by
the elements {a1, . . . , am}. We have a trace preserving algebra epimorphism
pA defined by p(Xi) = ai

Tmn
pa -- A

Tmn

tr

?
pa -- A

trA

?

and hence a presentation A ' Tmn /TA where TA / Tmn is the ideal of trace
relations holding among the generators ai. We recall that Tmn is the ring of
GLn-equivariant polynomial maps Mm

n

f- Mn, that is

Mn(C[Mm
n ])GLn = Tmn

where the action ofGLn is the diagonal action onMn(C[Mm
n ]) = Mn⊗C[Mm

n ].
Observe that if R is a commutative algebra, then any two-sided ideal I /

Mn(R) is of the form Mn(J) for an ideal J /R. Indeed, the subsets Jij of (i, j)
entries of elements of I is an ideal of R as can be seen by multiplication with
scalar matrices. Moreover, by multiplying on both sides with permutation
matrices one verifies that Jij = Jkl for all i, j, k, l proving the claim.

Applying this to the induced ideal Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) /
Mn(C[Mm

n ]) we find an ideal NA / C[Mm
n ] such that

Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) = Mn(NA)

Observe that both the induced ideal and NA are stable under the respective
GLn-actions.

Assume that V and W are two (not necessarily finite dimensional) C-vector
spaces with a locally finite GLn-action (that is, every finite dimensional sub-
space is contained in a finite dimensional GLn-stable subspace) and that
V

f- W is a linear map commuting with the GLn-action. In section 2.5
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we will see that we can decompose V and W uniquely in direct sums of
simple representations and in their isotypical components (that is, collect-
ing all factors isomorphic to a given simple GLn-representation) and prove
that V(0) = V GLn , respectively, W(0) = WGLn where (0) denotes the trivial
GLn-representation. We obtain a commutative diagram

V
f - W

V GLn

R

??
f0 - WG

R

??

where R is the Reynolds operator, that is, the canonical projection to the
isotypical component of the trivial representation. Clearly, the Reynolds op-
erator commutes with the GLn-action. Moreover, using complete decompos-
ability we see that f0 is surjective (resp. injective) if f is surjective (resp.
injective).

Because NA is a GLn-stable ideal of C[Mm
n ] we can apply the above in the

situation
Mn(C[Mm

n ])
π -- Mn(C[Mm

n ]/NA)

Tmn

R

??
π0 -- Mn(C[Mm

n ]/NA)GLn

R

??

and the bottom map factorizes through A = Tmn /TA giving a surjection

A -- Mn(C[Mm
n ]/NA)GLn

In order to verify that this map is injective (and hence an isomorphism) it
suffices to check that

Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) ∩ Tmn = TA

Using the functor property of the Reynolds operator with respect to multipli-
cation in Mn(C[M∞n ]) with an element x ∈ Tmn or with respect to the trace
map (both commuting with the GLn-action) we deduce the following relations
:

• For all x ∈ Tmn and all z ∈ Mn(C[M∞n ]) we have R(xz) = xR(z) and
R(zx) = R(z)x.

• For all z ∈Mn(C[M∞n ]) we have R(tr(z)) = tr(R(z)).

Assume that z =
∑
i tixini ∈Mn(C[Mm

n ]) TA Mn(C[Mm
n ])∩Tmn with mi, ni ∈

Mn(C[Mm
n ]) and ti ∈ TA. Now, consider Xm+1 ∈ T∞n . Using the cyclic
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property of traces we have

tr(zXm+1) =
∑
i

tr(mitiniXm+1) =
∑
i

tr(niXm+1miti)

and if we apply the Reynolds operator to it we obtain the equality

tr(zXm+1) = tr(
∑
i

R(niXm+1mi)ti)

For any i, the term R(niXm+1mi) is invariant so belongs to Tm+1
n and is

linear in Xm+1. Knowing the generating elements of Tm+1
n we can write

R(niXm+1mi) =
∑
j

sijXm+1tij +
∑
k

tr(uikXm+1)vik

with all of the elements sij , tij , uik and vik in Tmn . Substituting this informa-
tion and again using the cyclic property of traces we obtain

tr(zXm+1) = tr((
∑
i,j,k

sijtijti + tr(vikti))Xm+1)

and by the nondegeneracy of the trace map we again deduce from this the
equality

z =
∑
i,j,k

sijtijti + tr(vikti)

Because ti ∈ TA and TA is stable under taking traces we deduce from this
that z ∈ TA as required.

Because A = Mn(C[Mm
n ]/NA)GLn we can apply the functor property of the

Reynolds operator to the setting

Mn(C[Mm
n ]/NA)

tr --
� ⊃ C[Mn]/NA

A

R

?? trA --
� ⊃ (C[Mn]/NA)GLn

R

??

Concluding we also have the equality

trA(A) = (C[Mm
n ]/JA)GLn

Summarizing, we have proved the following invariant theoretic reconstruction
result for Cayley-Hamilton algebras.

THEOREM 1.17
Let A be a Cayley-Hamilton algebra of degree n, with trace map trA, which

is trace generated by at most m elements. Then , there is a canonical ideal
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NA / C[Mm
n ] from which we can reconstruct the algebras A and trA(A) as

invariant algebras

A = Mn(C[Mm
n ]/NA)GLn and trA(A) = (C[Mm

n ]/NA)GLn

A direct consequence of the above proof is the following universal property
of the embedding

A ⊂
iA- Mn(C[Mm

n ]/NA)

Let R be a commutative C-algebra, then Mn(R) with the usual trace is a
Cayley-Hamilton algebra of degree n. If f : A - Mn(R) is a trace pre-
serving morphism, we claim that there exists a natural algebra morphism
f : C[Mm

n ]/NA - R such that the diagram

A
f- Mn(R)

Mn(C[Mm
n ]/NA)

iA

?

∩

.....
.....

.....
.....

.....
.....

.....

M
n
(f

)
-

where Mn(f) is the algebra morphism defined entrywise. To see this, consider
the composed trace preserving morphism φ : Tmn -- A

f- Mn(R). Its
image is fully determined by the images of the trace generators Xk of Tmn
which are, say, mk = (mij(k))i,j . But then we have an algebra morphism

C[Mm
n ]

g- R defined by sending the variable xij(k) to mij(k). Clearly,
TA ⊂ Ker φ and after inducing to Mn(C[Mm

n ]) it follows that NA ⊂ Ker g
proving that g factors through C[Mm

n ]/JA - R. This morphism has the
required universal property.
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Chapter 2

Reconstructing Algebras

We will associate to an affine C-algebra A its affine scheme of n-dimensional
representations repn A. There is a base change action by GLn on this scheme
and its orbits are exactly the isomorphism classes of n-dimensional represen-
tations. We will prove the Hilbert criterium which describes the nullcone via
one-parameter subgroups and apply it to prove Michael Artin’s result that
the closed orbits in repn A correspond to semisimple representations.

We recall the basic results on algebraic quotient varieties in geometric in-
variant theory and apply them to prove Procesi’s reconstruction result. If
A ∈ alg@n, then we can recover A as

A '⇑n [trepn A]

the ring of GLn-equivariant polynomial maps from the trace preserving rep-
resentation scheme trepn A to Mn(C). However, the functors

alg@n

trepn ..
GL(n)-affine

⇑n

ll

do not determine an antiequivalence of categories (as they do in commutative
algebraic geometry, which is the special case n = 1). We will illustrate this
by calculating the rings of equivariant maps of orbit-closures of nilpotent
matrices. These orbit-closures are described by the Gerstenhaber-Hesselink
theorem. Later, we will be able to extend this result and study the nullcones
of more general representation varieties.

2.1 Representation schemes

For a noncommutative affine algebra A with generating set {a1, . . . , am},
there is an epimorphism

C〈x1, . . . , xm〉
φ-- A

defined by φ(xi) = ai. That is, a presentation of A as

A ' C〈x1, . . . , xm〉/IA

55



56 Noncommutative Geometry and Cayley-Smooth Orders

where IA is the two-sided ideal of relations holding among the ai. For example,
if A = C[x1, . . . , xm], then IA is the two-sided ideal of C〈x1, . . . , xm〉 generated
by the elements xixj − xjxi for all 1 ≤ i, j ≤ m.

An n-dimensional representation of A is an algebra morphism

A
ψ- Mn

from A to the algebra of n × n matrices over C. If A is generated by
{a1, . . . , am}, then ψ is fully determined by the point

(ψ(a1), ψ(a2), . . . , ψ(am)) ∈Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

We claim that repn(A), the set of all n-dimensional representations of A,
forms a Zariski closed subset of Mm

n . To begin, observe that

repn(C〈x1, . . . , xm〉) = Mm
n

as any m-tuple of n× n matrices (A1, . . . , Am) ∈Mm
n determines an algebra

morphism C〈x1, . . . , xm〉
ψ- Mn by taking ψ(xi) = Ai.

Given a presentation A = C〈x1, . . . , xm〉/IA an m-tuple (A1, . . . , Am) ∈
Mm
n determines an n-dimensional representation of A if (and only if) for every

noncommutative polynomial r(x1, . . . , xm) ∈ IA /C〈x1, . . . , xm〉 we have that

r(A1, . . . , Am) =

0 . . . 0
...

...
0 . . . 0

 ∈Mn

Hence, consider the ideal IA(n) of C[Mm
n ] = C[xij(k) | 1 ≤ i, j ≤ n, 1 ≤ k ≤

m] generated by all the entries of the matrices in Mn(C[Mm
n ]) of the form

r(X1, . . . , Xm) for all r(x1, . . . , xm) ∈ IA

We see that the reduced representation variety repn A is the set of simultane-
ous zeroes of the ideal IA(n), that is

repn A = V(IA(n)) ⊂ - Mm
n

proving the claim. Here, V denotes the closed set in the Zariski topology
determined by an ideal. The complement of V(I) we will denote with X(I)).
Observe that, even when A is not finitely presented, the ideal IA(n) is finitely
generated as an ideal of the commutative (Noetherian) polynomial algebra
C[Mm

n ].

Example 2.1
It may happen that repn A = ∅. For example, consider the Weyl algebra

A1(C) = C〈x, y〉/(xy − yx− 1)
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If a couple of n× n-matrices (A,B) ∈ repn A1(C) then we must have

A.B −B.A = rr
n ∈Mn

However, taking traces on both sides gives a contradiction as tr(AB) =
tr(BA) and tr(rrn) = n 6= 0.

Often, the ideal IA(n) contains more information than the closed subset
repn(A) = V(IA(n)) which, using the Hilbert Nullstellensatz, only determines
the radical ideal of IA(n). This fact forces us to consider the representation
variety (or scheme) repn A.

In the foregoing chapter we studied the action of GLn by simultaneous
conjugation on Mm

n . We claim that repn A ⊂ - Mm
n is stable under this

action, that is, if (A1, . . . , Am) ∈ repn A, then also (gA1g
−1, . . . , gAmg

−1) ∈
repn A. This is clear by composing the n-dimensional representation ψ of A
determined by (A1, . . . , Am) with the algebra automorphism of Mn given by
conjugation with g ∈ GLn

A
ψ - Mn

Mn

g.g−1

?

...............................

g.ψ

-

Therefore, repn A is a GLn-variety . We will give an interpretation of the
orbits under this action.

Recall that a left A-module M is a vector space on which elements of A act
on the left as linear operators satisfying the conditions

1.m = m and a.(b.m) = (ab).m

for all a, b ∈ A and all m ∈ M . An A-module morphism M
f- N between

two left A-modules is a linear map such that f(a.m) = a.f(m) for all a ∈ A
and all m ∈ M . An A-module automorphism is an A-module morphism
M

f- N such that there is an A-module morphism N
g- M such that

f ◦ g = idM and g ◦ f = idN .
Assume the A-module M has dimension n, then after fixing a basis we can

identify M with Cn (column vectors). For any a ∈ A we can represent the
linear action of a on M by an n × n matrix ψ(a) ∈ Mn. The condition that
a.(b.m) = (ab).m for all m ∈M asserts that ψ(ab) = ψ(a)ψ(b) for all a, b ∈ A,
that is, ψ is an algebra morphism A

ψ- Mn and hence M determines an n-
dimensional representation of A. Conversely, an n-dimensional representation
A

ψ- Mn determines an A-module structure on Cn by the rule

a.v = ψ(a)v for all v ∈ Cn
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Hence, there is a one-to-one correspondence between the n-dimensional rep-
resentations of A and the A-module structures on Cn. If two n-dimensional
A-module structures M and N on Cn are isomorphic (determined by a linear
invertible map g ∈ GLn) then for all a ∈ A we have the commutative diagram

M
g - N

M

a.

?
g - N

a.

?

Hence, if the action of a on M is represented by the matrix A, then the
action of a on M is represented by the matrix g.A.g−1. Therefore, two A-
module structures on Cn are isomorphic if and only if the points of repn A
corresponding to them lie in the same GLn-orbit. Concluding, studying n-
dimensional A-modules up to isomorphism is the same as studying the GLn-
orbits in the reduced representation variety repn A.

If the defining ideal IA(n) is a radical ideal, the above suffices. In general,
the scheme structure of the representation variety repn A will be important.
By definition, the scheme repn A is the functor assigning to any (affine)
commutative C-algebra R, the set

repn A(R) = AlgC(C[Mm
n ]/IA(n), R)

of C-algebra morphisms C[Mm
n ]

IA(n)

ψ- R. Such a map ψ is determined by the
image ψ(xij(k)) = rij(k) ∈ R. That is, ψ ∈ repn A(R) determines an m-tuple
of n× n matrices with coefficients in R

(r1, . . . , rm) ∈Mn(R)⊕ . . .⊕Mn(R)︸ ︷︷ ︸
m

where rk =

r11(k) . . . r1n(k)...
...

rn1(k) . . . rnn(k)


Clearly, for any r(x1, . . . , xm) ∈ IA we must have that r(r1, . . . , rm) is the zero
matrix in Mn(R). That is, ψ determines uniquely an R-algebra morphism

ψ : R⊗C A - Mn(R) by mapping xk 7→ rk

Alternatively, we can identify the set repn(R) with the set of left R⊗A-module
structures on the free R-module R⊕n of rank n.

2.2 Some algebraic geometry

Throughout this book we assume that the reader has some familiarity with
algebraic geometry, as contained in the first two chapters of the textbook [43].
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In this section we restrict to the dimension formulas and the relation between
Zariski and analytic closures. We will illustrate these results by examples
from representation varieties. We will consider only the reduced varieties in
this section.

A morphism X
φ- Y between two affine irreducible varieties (that is, the

coordinate rings C[X] and C[Y ] are domains) is said to be dominant if the
image φ(X) is Zariski dense in Y . On the level of the coordinate algebras
dominance is equivalent to φ∗ : C[Y ] - C[X] being injective and hence
inducing a fieldextension φ∗ : C(Y ) ⊂ - C(X) between the function fields.
Indeed, for f ∈ C[Y ] the function φ∗(f) is by definition the composition

X
φ- Y

f- C

and therefore φ∗(f) = 0 iff f(φ(X)) = 0 iff f(φ(X)) = 0.
A morphism X

φ- Y between two affine varieties is said to be finite if
under the algebra morphism φ∗ the coordinate algebra C[X] is a finite C[Y ]-
module. An important property of finite morphisms is that they are closed,
that is the image of a closed subset is closed. Indeed, we can replace without
loss of generality Y by the closed subset φ(X) = VY (Ker φ∗) and hence
assume that φ∗ is an inclusion C[Y ] ⊂ - C[X]. The claim then follows from
the fact that in a finite extension there exists for any maximal ideal N /C[Y ]
a maximal ideal M / C[X] such that M ∩ C[Y ] = C[X].

Example 2.2
Let X be an irreducible affine variety of dimension d. By the Noether

normalization result C[X] is a finite module over a polynomial subalgebra
C[f1, . . . , fd]. But then, the finite inclusion C[f1, . . . , fd] ⊂ - C[X] deter-
mines a finite surjective morphism

X
φ-- Cd

An important source of finite morphisms is given by integral extensions.
Recall that, if R ⊂ - S is an inclusion of domains we call S integral over R
if every s ∈ S satisfies an equation

sn =
n−1∑
i=0

ris
i with ri ∈ R.

A normal domain R has the property that any element of its field of fractions,
which is integral over R, belongs already to R. If X

φ- Y is a dominant
morphism between two irreducible affine varieties, then φ is finite if and only
if C[X] in integral over C[Y ] for the embedding coming from φ∗.
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PROPOSITION 2.1
Let X

φ- Y be a dominant morphism between irreducible affine varieties.
Then, for any x ∈ X and any irreducible component C of the fiber φ−1(φ(z))
we have

dim C ≥ dim X − dim Y.

Moreover, there is a nonempty open subset U of Y contained in the image
φ(X) such that for all u ∈ U we have

dim φ−1(u) = dim X − dim Y

PROOF Let d = dim X − dim Y and apply the Noether normalization
result to the affine C(Y )-algebra C(Y )C[X]. Then, we can find a function g ∈
C[Y ] and algebraic independent functions f1, . . . , fd ∈ C[X]g (g clears away
any denominators that occur after applying the normalization result) such
that C[X]g is integral over C[Y ]g[f1, . . . , fd]. That is, we have the commutative
diagram

XX(g)
ρ -- XY (g)× Cd

X
?

∩

φ - Y � ⊃ XY (g)

pr1

??

where we know that ρ is finite and surjective. But then we have that the open
subset XY (g) lies in the image of φ and in XY (g) all fibers of φ have dimension
d. For the first part of the statement we have to recall the statement of Krull’s
Hauptideal result: if X is an irreducible affine variety and g1, . . . , gr ∈ C[X]
with (g1, . . . , gr) 6= C[X], then any component C of VX(g1, . . . , gr) satisfies
the inequality

dim C ≥ dim X − r
If dim Y = r apply this result to the gi determining the morphism

X
φ- Y -- Cr

where the latter morphism is the one from example 2.2.

In fact, a stronger result holds. Chevalley’s theorem asserts the following.

THEOREM 2.1
Let X

φ- Y be a morphism between affine varieties, the function

X - N defined by x 7→ dimx φ
−1(φ(x))

is upper-semicontinuous. That is, for all n ∈ N, the set

{x ∈ X | dimx φ
−1(φ(x)) ≤ n}
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is Zariski open in X.

PROOF Let Z(φ, n) be the set {x ∈ X | dimx φ−1(φ(x)) ≥ n}. We
will prove that Z(φ, n) is closed by induction on the dimension of X. We
first make some reductions. We may assume that X is irreducible. For,
let X = ∪iXi be the decomposition of X into irreducible components, then
Z(φ, n) = ∪Z(φ | Xi, n). Next, we may assume that Y = φ(X) whence Y
is also irreducible and φ is a dominant map. Now, we are in the setting of
proposition 2.1. Therefore, if n ≤ dim X − dim Y we have Z(φ, n) = X by
that proposition, so it is closed. If n > dim X − dim Y consider the open
set U in Y of proposition 2.1. Then, Z(φ, n) = Z(φ | (X − φ−1(U)), n). the
dimension of the closed subvariety X −φ−1(U) is strictly smaller that dim X
hence by induction we may assume that Z(φ | (X − φ−1(U)), n) is closed in
X − φ−1(U) whence closed in X.

An immediate consequence of the foregoing proposition is that for any mor-
phism X

φ- Y between affine varieties, the image φ(X) contains an open
dense subset of φ(Z) (reduce to irreducible components and apply the propo-
sition).

Example 2.3
Let A be an affine C-algebra and M ∈ repn A. We claim that the orbit

O(M) = GLn.M is Zariski open in its closure O(M)

Consider the ”orbit-map” GLn
φ- repn A defined by g 7→ g.M . Then, by

the above remark O(M) = φ(GLn) contains a Zariski open subset U of O(M)
contained in the image of φ which is O(M). But then

O(M) = GLn.M = ∪g∈GLn
g.U

is also open in O(M). Next, we claim that O(M) contains a closed orbit.
Indeed, assume O(M) is not closed, then the complement CM = O(M) −
O(M) is a proper Zariski closed subset whence dim C < dim O(M). But, C
is the union of GLn-orbits O(Mi) with dim O(Mi) < dim O(M). Repeating
the argument with the Mi and induction on the dimension we will obtain a
closed orbit in O(M).

Next, we want to relate the Zariski closure with the C-closure (that is, clo-
sure in the usual complex or analytic topology). Whereas they are usually not
equal (for example, the unit circle in C1), we will show that they coincide for
the important class of constructible subsets. A subset Z of an affine variety
X is said to be locally closed if Z is open in its Zariski closure Z. A subset
Z is said to be constructible if Z is the union of finitely many locally closed
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subsets. Clearly, finite unions, finite intersections and complements of con-
structible subsets are again constructible. The importance of constructible
sets for algebraic geometry is clear from the following result.

PROPOSITION 2.2
Let X

φ- Y be a morphism between affine varieties. If Z is a constructible
subset of X, then φ(Z) is a constructible subset of Y .

PROOF Because every open subset of X is a finite union of special open
sets, which are themselves affine varieties, it suffices to show that φ(X) is
constructible. We will use induction on dim φ(X). There exists an open
subset U ⊂ φ(X) that is contained in φ(X). Consider the closed complement
W = φ(X) − U and its inverse image X ′ = φ−1(W ). Then, X ′ is an affine
variety and by induction we may assume that φ(X ′) is constructible. But
then, φ(X) = U ∪ φ(X ′) is also constructible.

Example 2.4
Let A be an affine C-algebra. The subset indn A ⊂ - repn A of the inde-

composable n-dimensional A-modules is constructible. Indeed, define for any
pair k, l such that k + l = n the morphism

GLn × repk A× repl A - repn A

by sending a triple (g,M,N) to g.(M ⊕N). By the foregoing result the image
of this map is constructible. The decomposable n-dimensional A-modules
belong to one of these finitely many sets whence are constructible, but then
so is its complement which in indn A.

Apart from being closed, finite morphisms often satisfy the going-down
property . That is, consider a finite and surjective morphism

X
φ- Y

where X is irreducible and Y is normal (that is, C[Y ] is a normal domain).
Let Y ′ ⊂ - Y an irreducible Zariski closed subvariety and x ∈ X with image
φ(x) = y′ ∈ Y ′. Then, the going-down property asserts the existence of
an irreducible Zariski closed subvariety X ′ ⊂ - X such that x ∈ X ′ and
φ(X ′) = Y ′. In particular, the morphism X ′

φ- Y ′ is again finite and
surjective and in particular dim X ′ = dim Y ′.

LEMMA 2.1
Let x ∈ X an irreducible affine variety and U a Zariski open subset. Then,
there is an irreducible curve C ⊂ - X through x and intersecting U .
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PROOF If d = dim X consider the finite surjective morphism X
φ- Cd

of example 2.2. Let y ∈ Cd−φ(X−U) and consider the line L through y and
φ(x). By the going-down property there is an irreducible curve C ⊂ - X
containing x such that φ(C) = L and by construction C ∩ U 6= ∅.

PROPOSITION 2.3

Let X
φ- Y be a dominant morphism between irreducible affine varieties

any y ∈ Y . Then, there is an irreducible curve C ⊂ - X such that y ∈ φ(C).

PROOF Consider an open dense subset U ⊂ - Y contained in the image
φ(X). By the lemma there is a curve C ′ ⊂ - Y containing y and such that
C ′ ∩ U 6= ∅. Then, again applying the lemma to an irreducible component of
φ−1(C ′) not contained in a fiber, we obtain an irreducible curve C ⊂ - X
with φ(C) = C ′.

Any affine variety X ⊂ - Ck can also be equipped with the induced C-
topology (or analytic topology) from Ck, which is much finer than the Zariski
topology . Usually there is no relation between the closure Z

C
of a subset

Z ⊂ - X in the C-topology and the Zariski closure Z.

LEMMA 2.2

Let U ⊂ Ck containing a subset V that is Zariski open and dense in U . Then,

U
C

= U

PROOF By reducing to irreducible components, we may assume that U
is irreducible. Assume first that dim U = 1, that is, U is an irreducible curve
in Ck. Let Us be the subset of points where U is a complex manifold, then
U −Us is finite and by the implicit function theorem in analysis every u ∈ Us
has a C-open neighborhood which is C-homeomorphic to the complex line C1,
whence the result holds in this case.

If U is general and x ∈ U we can take by the lemma above an irreducible
curve C ⊂ - U containing z and such that C∩V 6= ∅. Then, C∩V is Zariski
open and dense in C and by the curve argument above x ∈ (C ∩ V )

C
⊂ U

C
.

We can do this for any x ∈ U finishing the proof.

Consider the embedding of an affine variety X ⊂ - Ck, proposition 2.2
and the fact that any constructible set Z contains a subset U which is open
and dense in Z we deduce from the lemma at once the next result.
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PROPOSITION 2.4
If Z is a constructible subset of an affine variety X, then

Z
C

= Z

Example 2.5
Let A be an affine C-algebra and M ∈ repn A. We have proved in example 2.3
that the orbitO(M) = GLn.M is Zariski open in its closure O(M). Therefore,
the orbit O(M) is a constructible subset of repn A. By the proposition above,
the Zariski closure O(M) of the orbit coincides with the closure of O(M) in
the C-topology.

2.3 The Hilbert criterium

A one-parameter subgroup of a linear algebraic group G is a morphism

λ : C∗ - G

of affine algebraic groups. That is, λ is both a group morphism and a mor-
phism of affine varieties. The set of all one-parameter subgroup of G will be
denoted by Y (G).

If G is commutative algebraic group, then Y (G) is an Abelian group with
additive notation

λ1 + λ2 : C∗ - G with (λ1 + λ2)(t) = λ1(t).λ2(t)

Recall that an n-dimensional torus is an affine algebraic group isomorphic to

C∗ × . . .× C∗︸ ︷︷ ︸
n

= Tn

the closed subgroup of invertible diagonal matrices in GLn.

LEMMA 2.3
Y (Tn) ' Zn. The correspondence is given by assigning to (r1, . . . , rn) ∈ Zn
the one-parameter subgroup

λ : C∗ - Tn given by t 7→ (tr1 , . . . , trn)

PROOF For any two affine algebraic groups G and H there is a canonical
bijection Y (G ×H) = Y (G) × Y (H) so it suffices to verify that Y (C∗) ' Z
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with any λ : C∗ - C∗ given by t 7→ tr for some r ∈ Z. This is obvious as
λ induces the algebra morphism

C[C∗] = C[x, x−1]
λ∗- C[x, x−1] = C[C∗]

which is fully determined by the image of x which must be an invertible
element. Now, any invertible element in C[x, x−1] is homogeneous of the form
cxr for some r ∈ Z and c ∈ C∗. The corresponding morphism maps t to ctr,
which is only a group morphism if it maps the identity element 1 to 1 so c = 1,
finishing the proof.

PROPOSITION 2.5
Any one-parameter subgroup λ : C∗ - GLn is of the form

t 7→ g−1.

t
r1 0

. . .
0 trn

 .g
for some g ∈ GLn and some n-tuple (r1, . . . , rn) ∈ Zn.

PROOF Let H be the image under λ of the subgroup µ∞ of roots of unity
in C∗. We claim that there is a base change matrix g ∈ GLn such that

g.H.g−1 ⊂ -

C∗ 0
. . .

0 C∗


Assume h ∈ H not a scalar matrix, then h has a proper eigenspace decom-
position V ⊕W = Cn. We use that hl = rr

n and hence all its Jordan blocks
must have size one as for any λ 6= 0 we have

λ 1 0
. . . . . .

. . . 1
λ


l

=


λl lλl−1 ∗

. . . . . .
. . . lλl−1

λl

 6= rr
n

Because H is commutative, both V and W are stable under H. By induc-
tion on n we may assume that the images of H in GL(V ) and GL(W ) are
diagonalizable, but then the same holds in GLn.

As µ∞ is infinite, it is Zariski dense in C∗ and because the diagonal matrices
are Zariski closed in GLn we have

g.λ(C∗).g−1 = g.H.g−1 ⊂ - Tn
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and the result follows from the lemma above

Let V be a general GLn-representation considered as an affine space with
GLn-action, let X be a GLn-stable closed subvariety and consider a point
x ∈ X. A one-parameter subgroup C∗ λ- GLn determines a morphism

C∗ λx- X defined by t 7→ λ(t).x

Observe that the image λx(C∗) lies in the orbit GLn.x of x. Assume there
is a continuous extension of this map to the whole of C. We claim that this
extension must then be a morphism. If not, the induced algebra morphism

C[X]
λ∗x- C[t, t−1]

does not have its image in C[t], so for some f ∈ C[Z] we have that

λ∗x(f) =
a0 + a1t+ . . .+ azt

z

ts
with a0 6= 0 and s > 0

But then λ∗x(f)(t) - ±∞ when t goes to zero, that is, λ∗x cannot have a
continuous extension, a contradiction.

So, if a continuous extension exists there is morphism λx : C - X.
Then, λx(0) = y and we denote this by

lim
t→0

λ(t).x = y

Clearly, the point y ∈ X must belong to the orbitclosure GLn.x in the Zariski
topology (or in the C-topology as orbits are constructible). Conversely, one
might ask whether if y ∈ GLn.x we can always approach y via a one-parameter
subgroup. The Hilbert criterium gives situations when this is indeed possible.

The only ideals of the formal power series C[[t]] are principal and generated
by tr for some r ∈ N+. With C((t)) we will denote the field of fractions of the
domain C((t)).

LEMMA 2.4
Let V be a GLn-representation, v ∈ V and a point w ∈ V lying in the

orbitclosure GLn.v. Then, there exists a matrix g with coefficients in the field
C((t)) and det(g) 6= 0 such that

(g.v)t=0 is well defined and is equal to w

PROOF Note that g.v is a vector with coordinates in the field C((t)). If
all coordinates belong to C[[t]] we can set t = 0 in this vector and obtain a
vector in V . It is this vector that we denote with (g.v)t=0.
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Consider the orbit map µ : GLn - V defined by g′ 7→ g′.v. As w ∈
GLn.v we have seen that there is an irreducible curve C ⊂ - GLn such that
w ∈ µ(C). We obtain a diagram of C-algebras

C[GLn] - C[C] ⊂ - C(C)

C[V ]

µ∗

6

- C[µ(C)]

µ∗

∪

6

⊂ - C[C ′]
∪

6

Here, C[C] is defined to be the integral closure of C[µ(C)] in the function
field C(C) of C. Two things are important to note here : C ′ - µ(C) is
finite, so surjective and take c ∈ C ′ be a point lying over w ∈ µ(C). Further,
C ′ having an integrally closed coordinate ring is a complex manifold. Hence,
by the implicit function theorem polynomial functions on C can be expressed
in a neighborhood of c as power series in one variable, giving an embedding
C[C ′] ⊂ - C[[t]] with (t) ∩ C[C ′] = Mc. This inclusion extends to one on
the level of their fields of fractions. That is, we have a diagram of C-algebra
morphisms

C[GLn] - C(C) = C(C ′) ⊂ - C((t))

C[V ]

µ∗

6

- C[µ(C)]
∪

6

⊂ - C[C ′]
∪

6

⊂ - C[[t]]
∪

6

The upper composition defines an invertible matrix g(t) with coefficients
in C((t)), its (i, j)-entry being the image of the coordinate function xij ∈
C[GLn]. Moreover, the inverse image of the maximal ideal (t) / C[[t]] under
the lower composition gives the maximal ideal Mw / C[V ]. This proves the
claim.

LEMMA 2.5
Let g be an n × n matrix with coefficients in C((t)) and det g 6= 0. Then

there exist u1, u2 ∈ GLn(C[[t]]) such that

g = u1.

t
r1 0

. . .
0 trn

 .u2

with ri ∈ Z and r1 ≤ r2 ≤ . . . ≤ rn.

PROOF By multiplying g with a suitable power of t we may assume that
g = (gij(t))i,j ∈ Mn(C[[t]]). If f(t) =

∑∞
i=0 fit

i ∈ C[[t]] define v(f(t)) to be
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the minimal i such that ai 6= 0. Let (i0, j0) be an entry where v(gij(t)) attains
a minimum, say, r1. That is, for all (i, j) we have gij(t) = tr1trf(t) with r ≥ 0
and f(t) an invertible element of C[[t]].

By suitable row and column interchanges we can take the entry (i0, j0) to
the (1, 1)-position. Then, multiplying with a unit we can replace it by tr1

and by elementary row and column operations all the remaining entries in the
first row and column can be made zero. That is, we have invertible matrices
a1, a2 ∈ GLn(C[[t]]) such that

g = a1.


tr1 0 . . . 0
0
... g1
0

 .a2

Repeating the same idea on the submatrix g1 and continuing gives the result.

We can now state and prove the Hilbert criterium, which allows us to study
orbit-closures by one-parameter subgroups.

THEOREM 2.2
Let V be a GLn-representation and X ⊂ - V a closed GLn-stable subvariety.
Let O(x) = GLn.x be the orbit of a point x ∈ X. Let Y ⊂ - O(x) be a
closed GLn-stable subset. Then, there exists a one-parameter subgroup λ :
C∗ - GLn such that

lim
t→0

λ(t).x ∈ Y

PROOF It suffices to prove the result for X = V . By lemma 2.4 there is
an invertible matrix g ∈Mn(C((t))) such that

(g.x)t=0 = y ∈ Y

By lemma 2.5 we can find u1, u2 ∈ GLn(C[[t]]) such that

g = u1.λ
′(t).u2 with λ′(t) =

t
r1 0

. . .
0 trn


a one-parameter subgroup. There exist xi ∈ V such that u2.x =

∑∞
i=0 zit

i in
particular u2(0).x = x0. But then

(λ′(t).u2.x)t=0 =
∞∑
i=0

(λ′(t).xiti)t=0

= (λ′(t).x0)t=0 + (λ′(t).x1t)t=0 + . . .
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But one easily verifies (using a basis of eigenvectors of λ′(t)) that

lim
s→0

λ
′−1(s).(λ′(t)xiti)t=0 =

{
(λ′(t).x0)t=0 if i = 0,
0 if i 6= 0

As (λ′(t).u2.x)t=0 ∈ Y and Y is a closed GLn-stable subset, we also have that

lim
s→0

λ
′−1(s).(λ′(t).u2.x)t=0 ∈ Y that is, (λ′(t).x0)t=0 ∈ Y

But then, we have for the one-parameter subgroup λ(t) = u2(0)−1.λ′(t).u2(0)
that

lim
t→0

λ(t).x ∈ Y

finishing the proof.

An important special case occurs when x ∈ V belongs to the nullcone , that
is, when the orbit closure O(x) contains the fixed point 0 ∈ V . The original
Hilbert criterium asserts the following.

PROPOSITION 2.6
Let V be a GLn-representation and x ∈ V in the nullcone. Then, there is a
one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).x = 0

In the statement of theorem 2.2 it is important that Y is closed. In par-
ticular, it does not follow that any orbit O(y) ⊂ - O(x) can be reached via
one-parameter subgroups, see example 2.7 below.

2.4 Semisimple modules

In this section we will characterize the closed GLn-orbits in the represen-
tation variety repn A for an affine C-algebra A. We have seen that any point
ψ ∈ repn A (that is any n-dimensional representation A

ψ- Mn) determines
an n-dimensional A-module, which we will denote with Mψ.

A finite filtration F on an n-dimensional module M is a sequence of A-
submodules

F : 0 = Mt+1 ⊂Mt ⊂ . . . ⊂M1 ⊂M0 = M

The associated graded A-module is the n-dimensional module

grF M = ⊕ti=0Mi/Mi+1
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We have the following ring theoretical interpretation of the action of one-
parameter subgroups of GLn on the representation variety repn A.

LEMMA 2.6
Let ψ, ρ ∈ repn A. Equivalent are

1. There is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).ψ = ρ

2. There is a finite filtration F on the A-module Mψ such that

grF Mψ 'Mρ

as A-modules.

PROOF (1) ⇒ (2): If V is any GLn-representation and C∗ λ- GLn a
one-parameter subgroup, we have an induced weight space decomposition of
V

V = ⊕iVλ,i where Vλ,i = {v ∈ V | λ(t).v = tiv,∀t ∈ C∗}

In particular, we apply this to the underlying vector space of Mψ, which is
V = Cn (column vectors) on which GLn acts by left multiplication. We define

Mj = ⊕i>jVλ,i

and claim that this defines a finite filtration on Mψ with associated graded
A-module Mρ. For any a ∈ A (it suffices to vary a over the generators of A)
we can consider the linear maps

φij(a) : Vλ,i ⊂ - V = Mψ
a.- Mψ = V -- Vλ,j

(that is, we express the action of a in a block matrix Φa with respect to the
decomposition of V ). Then, the action of a on the module corresponding to
λ(t).ψ is given by the matrix Φ′a = λ(t).Φa.λ(t)−1 with corresponding blocks

Vλ,i
φij(a)- Vλ,j

Vλ,i

λ(t)−1

6

φ′ij(a)
- Vλ,j

λ(t)

?

that is, φ′ij(a) = tj−iφij(a). Therefore, if limt→0λ(t).ψ exists we must have
that

φij(a) = 0 for all j < i
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But then, the action by a sends any Mk = ⊕i>kVλ,i to itself, that is, the Mk

are A-submodules of Mψ. Moreover, for j > i we have

lim
t→0

φ′ij(a) = lim
t→0

tj−iφij(a) = 0

Consequently, the action of a on ρ is given by the diagonal block matrix with
blocks φii(a), but this is precisely the action of a on Vi = Mi−1/Mi, that is,
ρ corresponds to the associated graded module.

(2)⇒ (1): Given a finite filtration on Mψ

F : 0 = Mt+1 ⊂ . . . ⊂M1 ⊂M0 = Mψ

we have to find a one-parameter subgroup C∗ λ- GLn, which induces the
filtration F as in the first part of the proof. Clearly, there exist subspaces Vi
for 0 ≤ i ≤ t such that

V = ⊕ti=0Vi and Mj = ⊕tj=iVi

Then we take λ to be defined by λ(t) = tiIdVi
for all i and it verifies the

claims.

Example 2.6
Let Mψ be the 2-dimensional C[x]-module determined by the Jordan block

and consider the canonical basevectors[
λ 1
0 λ

]
e1 =

[
1
0

]
e2 =

[
0
1

]
Then, Ce1 is a C[x]-submodule of Mψ and we have a filtration

0 = M2 ⊂ Ce1 = M1 ⊂ Ce1 ⊕ Ce2 = M0 = Mψ

Using the conventions of the second part of the above proof we then have

V1 = Ce1 V2 = Ce2 hence λ(t) =
[
t 0
0 1

]
Indeed, we then obtain that[

t 0
0 1

]
.

[
λ 1
0 λ

]
.

[
t−1 0
0 1

]
=

[
λ t
0 λ

]
and the limit t - 0 exists and is the associated graded module grF Mψ =
Mρ determined by the diagonal matrix.

Consider two modules Mψ,Mψ ∈ repn A. Assume that
O(Mρ) ⊂ - O(Mψ) and that we can reach the orbit of Mρ via a one-
parameter subgroup. Then, lemma 2.6 asserts that Mρ must be decomposable
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FIGURE 2.1: Kraft’s diamond describing the nullcone of M2
3 .

as it is the associated graded of a nontrivial filtration on Mψ. This gives us
a criterion to construct examples showing that the closedness assumption in
the formulation of Hilbert’s criterium is essential.

Example 2.7 Nullcone of M2
3 = M3 ⊕M3

In chapter 6 we will describe a method to determine the nullcones of m-tuples
of n × n matrices. The special case of two 3 × 3 matrices has been worked
out by H.P. Kraft in [62, p. 202]. The orbits are depicted in figure 2.1 In
this picture, each node corresponds to a torus. The right-hand number is the
dimension of the torus and the left-hand number is the dimension of the orbit
represented by a point in the torus. The solid or dashed lines indicate orbit
closures. For example, the dashed line corresponds to the following two points
in M2

3 = M3 ⊕M3

ψ = (

0 0 1
0 0 1
0 0 0

 ,
0 1 0

0 0 0
0 0 0

) ρ = (

0 0 1
0 0 0
0 0 0

 ,
0 1 0

0 0 0
0 0 0

)

We claim that Mρ is an indecomposable 3-dimensional module of C〈x, y〉.
Indeed, the only subspace of the column vectors C3 left invariant under both
x and y is equal to C

0
0


hence Mρ cannot have a direct sum decomposition of two or more modules.
Next, we claim that O(Mρ) ⊂ - O(Mψ). Indeed, simultaneous conjugating
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ψ with the invertible matrix1 ε−1 − 1 0
0 1 0
0 0 ε−1

 we obtain the couple (

0 0 1
0 0 ε
0 0 0

 ,
0 1 0

0 0 0
0 0 0

)

and letting ε - 0 we see that the limiting point is ρ.

The Jordan-Hölder theorem , see, for example [84, 2.6], asserts that any
finite dimensional A-module M has a composition series , that is, M has a
finite filtration

F : 0 = Mt+1 ⊂Mt ⊂ . . . ⊂M1 ⊂M0 = M

such that the successive quotients Si = Mi/Mi+1 are all simple A-modules
for 0 ≤ i ≤ t. Moreover, these composition factors S and their multiplicities
are independent of the chosen composition series, that is, the set {S0, . . . , St}
is the same for every composition series. In particular, the associated graded
module for a composition series is determined only up to isomorphism and is
the semisimple n-dimensional module

gr M = ⊕ti=0Si

THEOREM 2.3
Let A be an affine C-algebra and M ∈ repn A.

1. The orbit O(M) is closed in repn A if and only if M is an n-dimensional
semisimple A-module.

2. The orbit closure O(M) contains exactly one closed orbit, corresponding
to the direct sum of the composition factors of M .

3. The points of the quotient variety of repn A under GLn classify the
isomorphism classes of n-dimensional semisimple A-modules. We will
denote the quotient variety by issn A.

PROOF (1): Assume that the orbit O(M) is Zariski closed. Let gr M be
the associated graded module for a composition series of M . From lemma 2.6
we know that O(gr M) is contained in O(M) = O(M). But then gr M 'M
whence M is semisimple.

Conversely, assume M is semisimple. We know that the orbit closure O(M)
contains a closed orbit, say O(N). By the Hilbert criterium we have a one-
parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).M = N ′ ' N.
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By lemma 2.6 this means that there is a finite filtration F on M with asso-
ciated graded module grF M ' N . For the semisimple module M the only
possible finite filtrations are such that each of the submodules is a direct sum
of simple components, so grF M ' M , whence M ' N and hence the orbit
O(M) is closed.

(2): Remains only to prove uniqueness of the closed orbit in O(M). This
either follows from the Jordan-Hölder theorem or, alternatively, from the sep-
aration property of the quotient map to be proved in the next section.

(3): We will prove in the next section that the points of a quotient variety
parameterize the closed orbits.

Example 2.8
Recall the description of the orbits in M2

2 = M2⊕M2 given in the previous
chapter

C5 −H

•3 //////

������•

• •3 3

2

H − S
•

• •7777777

�������0

2 2P1

S

and each fiber contains a unique closed orbit. Over a point in H−S this orbit
corresponds to the matrix couple

(
[
a1 0
0 a2

]
,

[
b1 0
0 b2

]
)

which is indeed a semisimple module of C〈x, y〉 (the direct sum of two 1-
dimensional simple representations determined by x 7→ ai and y 7→ bi). In
case a1 = a2 and b1 = b2 these two simples coincide and the semisimple
module having this factor with multiplicity two is the unique closed orbit in
the fiber of a point in S.

Example 2.9
Assume A is a finite dimensional C-algebra. Then, there are only a fi-

nite number, say, k, of nonisomorphic n-dimensional semisimple A-modules.
Hence issn A is a finite number of k points, whence repn A is the disjoint
union of k connected components, each consisting of all n-dimensional A-
modules with the same composition factors. Connectivity follows from the
fact that the orbit of the sum of the composition factors lies in the closure of
each orbit.

Example 2.10
Let A be an affine commutative algebra with presentation A =
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C[x1, . . . , xm]/IA and let X be the affine variety V(IA). Observe that any
simple A-module is one-dimensional hence corresponds to a point in X. (In-
deed, for any algebra A a simple k-dimensional module determines an epimor-
phism A -- Mk(C) and Mk(C) is only commutative if k = 1). Applying
the Jordan-Hölder theorem we see that

issn A ' X(n) = X × . . .×X︸ ︷︷ ︸
n

/Sn

the n-th symmetric product of X.

2.5 Some invariant theory

The results in this section hold for arbitrary reductive algebraic groups.
Because we will only work with GLn (or later with products GL(α) = GLa1×
. . .×GLak

) we include a proof in this case. Our first aim is to prove that GLn
is a reductive group , that is, all GLn-representations are completely reducible.
Consider the unitary group

Un = {A ∈ GLn | A.A∗ = rr
n}

where A∗ is the Hermitian transpose of A. Clearly, Un is a compact Lie group.
Any compact Lie group has a so-called Haar measure, which allows one to
integrate continuous complex valued functions over the group in an invariant
way. That is, there is a linear function assigning to every continuous function
f : Un - C its integral

f 7→
∫
Un

f(g)dg ∈ C

which is normalized such that
∫
Un
dg = 1 and is left and right invariant, which

means that for all u ∈ Un we have the equalities∫
Un

f(gu)dg =
∫
Un

f(g)dg =
∫
Un

f(ug)dg

This integral replaces the classical idea in representation theory of averaging
functions over a finite group.

PROPOSITION 2.7
Every Un-representation is completely reducible.

PROOF Take a finite dimensional complex vector space V with a Un-
action and assume that W is a subspace of V left invariant under this action.



76 Noncommutative Geometry and Cayley-Smooth Orders

Extending a basis of W to V we get a linear map V
φ-- W which is the

identity on W . For any v ∈ V we have a continuous map

Un - W g 7→ g.φ(g−1.v)

(use that W is left invariant) and hence we can integrate it over Un (integrate
the coordinate functions). Hence we can define a map φ0 : V - W by

φ0(v) =
∫
Un

g.φ(g−1.v)dg

Clearly, φ0 is linear and is the identity on W . Moreover,

φ0(u.v) =
∫
Un

g.φ(g−1u.v)dg = u.

∫
Un

u−1g.φ(g−1u.v)dg

∗=u.
∫
Un

gφ(g−1.v)dg = u.φ0(v)

where the starred equality uses the invariance of the Haar measure. Hence,
V = W ⊕ Ker φ0 is a decomposition as Un-representations. Continuing
whenever one of the components has a nontrivial subrepresentation we arrive
at a decomposition of V into simple Un-representations.

We claim that for any n, Un is Zariski dense in GLn. Let Dn be the group
of all diagonal matrices in GLn. The Cartan decomposition for GLn asserts
that

GLn = Un.Dn.Un

For, take g ∈ GLn then g.g∗ is an Hermitian matrix and hence diagonalizable
by unitary matrices. So, there is a u ∈ Un such that

u−1.g.g∗.u =

α1

. . .
αn

 = s−1.g.s︸ ︷︷ ︸
p

. s−1.g∗.s︸ ︷︷ ︸
p∗

Then, each αi > 0 ∈ R as αi =
∑n
j=1 ‖ pij ‖2. Let βi =

√
αi and let d the

diagonal matrix diag(β1, . . . , βn). Clearly

g = u.d.(d−1.u−1.g) and we claim v = d−1.u−1.g ∈ Un

Indeed, we have

v.v∗ =(d−1.u−1.g).(g∗.u.d−1) = d−1.(u−1.g.g∗.u).d−1

=d−1.d2.d−1 = rr
n

proving the Cartan decomposition. Now, Dn = C∗× . . .×C∗ and Dn ∩Un =
U1× . . .×U1 and because U1 = µ is Zariski dense (being infinite) in D1 = C∗,
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we have that Dn is contained in the Zariski closure of Un. By the Cartan
decomposition we then have that the Zariski closure of Un is GLn.

THEOREM 2.4
GLn is a reductive group. That is, all GLn-representations are completely

reducible.

PROOF Let V be a GLn-representation having a subrepresentationW . In
particular, V and W are Un-representations, so by the foregoing proposition
we have a decomposition V = W ⊕W ′ as Un-representations. Consider the
subgroup

N = NGLn
(W ′) = {g ∈ GLn | g.W ′ ⊂W ′}

then N is a Zariski closed subgroup of GLn containing Un. As the Zariski clo-
sure of Un is GLn we have N = GLn and hence that W ′ is a representation of
GLn. Continuing gives a decomposition of V in simple GLn-representations.

Let S = SGLn
be the set of isomorphism classes of simple GLn-

representations. If W is a simple GLn-representation belonging to the iso-
morphism class s ∈ S, we say that W is of type s and denote this by W ∈ s.
Let X be a complex vector space (not necessarily finite dimensional) with a
linear action of GLn. We say that the action is locally finite on X if, for any
finite dimensional subspace Y of X, there exists a finite dimensional subspace
Y ⊂ Y ′ ⊂ X which is a GLn-representation. The isotypical component of X
of type s ∈ S is defined to be the subspace

X(s) =
∑
{W |W ⊂ X,W ∈ s}

If V is a GLn-representation, we have seen that V is completely reducible.
Then, V = ⊕V(s) and every isotypical component V(s) 'W⊕es for W ∈ s and
some number es. Clearly, es 6= 0 for only finitely many classes s ∈ S. We
call the decomposition V = ⊕s∈SV(s) the isotypical decomposition of V and
we say that the simple representation W ∈ s occurs with multiplicity es in V .

If V ′ is another GLn-representation and if V
φ- V ′ is a morphism of

GLn-representations (that is, a linear map commuting with the action), then
for any s ∈ S we have that φ(V(s)) ⊂ V ′(s). If the action of GLn on X is locally
finite, we can reduce to finite dimensional GLn-subrepresentation and obtain
a decomposition

X = ⊕s∈SX(s)

which is again called the isotypical decomposition of X.
Let V be a GLn-representation of some dimension m. Then, we can view V

as an affine space Cm and we have an induced action of GLn on the polynomial
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functions f ∈ C[V ] by the rule

V
f - C

V

g.

?.....
.....

.....
.....

.....
.....

..

g.
f

-

that is, (g.f)(v) = f(g−1.v) for all g ∈ GLn and all v ∈ V . If C[V ] =
C[x1, . . . , xm] is graded by giving all the xi degree one, then each of the
homogeneous components of C[V ] is a finite dimensional GLn-representation.
Hence, the action of GLn on C[V ] is locally finite. Indeed, let {y1, . . . , yl} be
a basis of a finite dimensional subspace Y ⊂ C[V ] and let d be the maximum
of the deg(yi). Then Y ′ = ⊕di=0C[V ]i is a GLn-representation containing Y .

Therefore, we have an isotypical decomposition C[V ] = ⊕s∈SC[V ](s). In
particular, if 0 ∈ S denotes the isomorphism class of the trivial GLn-
representation (Ctriv = Cx with g.x = x for every g ∈ GLn) then we have

C[V ](0) = {f ∈ C[V ] | g.f = f,∀g ∈ GLn} = C[V ]GLn

the ring of polynomial invariants , that is, of polynomial functions which are
constant along orbits in V .

LEMMA 2.7
Let V be a GLn-representation.

1. Let I /C[V ] be a GLn-stable ideal, that is, g.I ⊂ I for all g ∈ GLn, then

(C[V ]/I)GLn ' C[V ]GLn/(I ∩ C[V ]GLn).

2. Let J / C[V ]GLn be an ideal, then we have a lying-over property

J = JC[V ] ∩ C[V ]GLn .

Hence, C[V ]GLn is Noetherian, that is, every increasing chain of ideals
stabilizes.

3. Let Ij be a family of GLn-stable ideals of C[V ], then

(
∑
j

Ij) ∩ C[V ]GLn =
∑
j

(Ij ∩ C[V ]GLn).

PROOF (1): As I has the induced GLn-action, which is locally finite, we
have the isotypical decomposition I = ⊕I(s) and clearly I(s) = C[V ](s) ∩ I.
But then also, taking quotients we have

⊕s(C[V ]/I)(s) = C[V ]/I = ⊕sC[V ](s)/I(s)
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Therefore, (C[V ]/I)(s) = C[V ](s)/I(s) and taking the special case s = 0 is the
statement.

(2): For any f ∈ C[V ]GLn left-multiplication by f in C[V ] commutes with
the GLn-action, whence f.C[V ](s) ⊂ C[V ](s). That is, C[V ](s) is a C[V ]GLn-
module. But then, as J ⊂ C[V ]GLn we have

⊕s(JC[V ])(s) = JC[V ] = ⊕sJC[V ](s)

Therefore, (JC[V ])(s) = JC[V ](s) and again taking the special value s = 0
we obtain JC[V ] ∩ C[V ]GLn = (JC[V ])(0) = J . The Noetherian statement
follows from the fact that C[V ] is Noetherian (the Hilbert basis theorem).

(3): For any j we have the decomposition Ij = ⊕s(Ij)(s). But then, we
have

⊕s(
∑
j

Ij)(s) =
∑
j

Ij =
∑
j

⊕s(Ij)(s) = ⊕s
∑
j

(Ij)(s)

Therefore, (
∑
j Ij)(s) =

∑
j(Ij)(s) and taking s = 0 gives the required state-

ment.

THEOREM 2.5
Let V be a GLn-representation. Then, the ring of polynomial invariants
C[V ]GLn is an affine C-algebra.

PROOF Because the action of GLn on C[V ] preserves the gradation, the
ring of invariants is also graded

C[V ]GLn = R = C⊕R1 ⊕R2 ⊕ . . .

From lemma 2.7(2) we know that C[V ]GLn is Noetherian and hence the ideal
R+ = R1⊕R2⊕. . . is finitely generated R+ = Rf1+. . .+Rfl by homogeneous
elements f1, . . . , fl. We claim that as a C-algebra C[V ]GLn is generated by
the fi. Indeed, we have R+ =

∑l
i=1 Cfi +R2

+ and then also

R2
+ =

l∑
i,j=1

Cfifj +R3
+

and iterating this procedure we obtain for all powers m that

Rm+ =
∑

P
mi=m

Cfm1
1 . . . fml

l +Rm+1
+

Now, consider the subalgebra C[f1, . . . , fl] of R = C[V ]GLn , then we obtain
for any power d > 0 that

C[V ]GLn = C[f1, . . . , fl] +Rd+
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For any i we then have for the homogeneous components of degree i

Ri = C[f1, . . . , fl]i + (Rd+)i

Now, if d > i we have that (Rd+)i = 0 and hence that Ri = C[f1, . . . , fl]i. As
this holds for all i we proved the claim.

Choose generating invariants f1, . . . , fl of C[V ]GLn , consider the morphism

V
φ- Cl defined by v 7→ (f1(v), . . . , fl(v))

and define W to be the Zariski closure φ(V ) in Cl. Then, we have a diagram

V
φ - Cl

W
∪

6

π

-

and an isomorphism C[W ]
π∗- C[V ]GLn . More general, let X be a closed

GLn-stable subvariety of V , then X = VV (I) for some GLn-stable ideal I of
C[V ]. From lemma 2.7(1) we obtain

C[X]GLn = (C[V ]/I)GLn = C[V ]GLn/(I ∩ C[V ]GLn)

whence C[X]GLn is also an affine algebra (and generated by the images of the
fi). Define Y to be the Zariski closure of φ(X) in Cl, then we have a diagram

X
φ - Cl

Y
∪

6

π

-

and an isomorphism C[Y ]
π- C[X]GLn . We call the morphism X

π- Y
an algebraic quotient of X under GLn. We will now prove some important
properties of this quotient.

PROPOSITION 2.8 universal property

If X
µ- Z is a morphism, which is constant along GLn-orbits in X, then
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there exists a unique factoring morphism µ

X
π - Y

Z
�...

.....
.....

.....
.....

.....
....

µ
µ

-

PROOF As µ is constant along GLn-orbits in X, we have an inclusion
µ∗(C[Z]) ⊂ C[X]GLn . We have the commutative diagram

C[X]

C[X]GLn

∪

6

C[Z] ............................................
µ∗

-

µ
∗

-

-

C[Y ]

�

π ∗

�

'

from which the existence and uniqueness of µ follows.

As a consequence, an algebraic quotient is uniquely determined up to iso-
morphism (that is, we might have started from other generating invariants
and still obtain the same quotient variety up to isomorphism).

PROPOSITION 2.9 onto property

The algebraic quotient X
π- Y is surjective. Moreover, if Z ⊂ - X is a

closed GLn-stable subset, then π(Z) is closed in Y and the morphism

πX | Z : Z - π(Z)

is an algebraic quotient, that is, C[π(Z)] ' C[Z]GLn .

PROOF Let y ∈ Y with maximal ideal My / C[Y ]. By lemma 2.7(2)
we have MyC[X] 6= C[X] and hence there is a maximal ideal Mx of C[X]
containing MyC[X], but then π(x) = y. Let Z = VX(I) for a G-stable ideal
I of C[X], then π(Z) = VY (I ∩ C[Y ]). That is, C[π(Z)] = C[Y ]/(I ∩ C[Y ]).
However, we have from lemma 2.7(1) that

C[Y ]/(C[Y ] ∩ I) ' (C[X]/I)GLn = C[Z]GLn
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and hence C[π(Z)] = C[Z]GLn . Finally, surjectivity of π | Z is proved as
above.

An immediate consequence is that the Zariski topology on Y is the quotient
topology of that on X.

PROPOSITION 2.10 separation property

The quotient X
π- Y separates disjoint closed GLn-stable subvarieties of

X.

PROOF Let Zj be closed GLn-stable subvarieties of X with defining
ideals Zj = VX(Ij). Then, ∩jZj = VX(

∑
j Ij). Applying lemma 2.7(3) we

obtain

π(∩jZj) = VY ((
∑
j

Ij) ∩ C[Y ]) = VY (
∑
j

(Ij ∩ C[Y ]))

= ∩jVY (Ij ∩ C[Y ]) = ∩jπ(Zj)

The onto property implies that π(Zj) = π(Zj) from which the statement
follows.

PROPOSITION 2.11
The algebraic quotient X

π- Y is the best continuous approximation to the
orbit space. That is, points of Y parameterize the closed GLn-orbits in X. In
fact, every fiber π−1(y) contains exactly one closed orbit C and we have

π−1(y) = {x ∈ X | C ⊂ GLn.x}

PROOF The fiber F = π−1(y) is a GLn-stable closed subvariety of X.
Take any orbit GLn.x ⊂ F then either it is closed or contains in its closure an
orbit of strictly smaller dimension. Induction on the dimension then shows
thatG.x contains a closed orbit C. On the other hand, assume that F contains
two closed orbits, then they have to be disjoint contradicting the separation
property.

2.6 Geometric reconstruction

In this section we will give a geometric interpretation of the reconstruction
result of theorem 1.17. Let A be a Cayley-Hamilton algebra of degree n, with
trace map trA, which is generated by at most m elements a1, . . . , am. We
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will give a functorial interpretation to the affine scheme determined by the
canonical ideal NA / C[Mm

n ] in the formulation of theorem 1.17. First, let
us identify the reduced affine variety V(NA). A point m = (m1, . . . ,mm) ∈
V(NA) determines an algebra map fm : C[Mm

n ]/NA - C and hence an
algebra map φm

A .......................
φm
- Mn(C)

Mn(C[Mm
n ]/NA)
?

∩

M
n
(f

m
)

-

which is trace preserving. Conversely, from the universal property it follows
that any trace preserving algebra morphism A - Mn(C) is of this form
by considering the images of the trace generators a1, . . . , am of A. Alterna-
tively, the points of V(NA) classify n-dimensional trace preserving represen-
tations of A. That is, n-dimensional representations for which the morphism
A - Mn(C) describing the action is trace preserving. For this reason we
will denote the variety V(NA) by trepn A and call it the trace preserving
reduced representation variety of A.

Assume that A is generated as a C-algebra by a1, . . . , am (observe that this
is no restriction as trace affine algebras are affine) then clearly IA(n) ⊂ NA.
See the following text.

LEMMA 2.8

For A a Cayley-Hamilton algebra of degree n generated by {a1, . . . , am}, the
reduced trace preserving representation variety

trepn A ⊂ - repn A

is a closed subvariety of the reduced representation variety.

It is easy to determine the additional defining equations. Write any trace
monomial out in the generators

trA(ai1 . . . aik) =
∑

αj1...jlaj1 . . . ajl

then for a point m = (m1, . . . ,mm) ∈ repn A to belong to trepn A, it must
satisfy all the relations of the form

tr(mi1 . . .mik) =
∑

αj1...jlmj1 . . .mjl

with tr the usual trace on Mn(C). These relations define the closed subvariety
trepn(A). Usually, this is a proper subvariety.
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Example 2.11
LetA be a finite dimensional semisimple algebraA = Md1(C)⊕. . .⊕Mdk

(C),
then A has precisely k distinct simple modules {M1, . . . ,Mk} of dimensions
{d1, . . . , dk}. Here, Mi can be viewed as column vectors of size di on which
the component Mdi

(C) acts by left multiplication and the other factors act
as zero. Because A is semisimple every n-dimensional A-representation M is
isomorphic to

M = M⊕e11 ⊕ . . .⊕M⊕ek

k

for certain multiplicities ei satisfying the numerical condition

n = e1d1 + . . .+ ekdk

That is, repn A is the disjoint union of a finite number of (closed) orbits each
determined by an integral vector (e1, . . . , ek) satisfying the condition called
the dimension vector of M .

repn A '
⊔

(e1,...,ek)

GLn/(GLe1 × . . . GLek
)

Let fi ≥ 1 be natural numbers such that n = f1d1 + . . .+ fkdk and consider
the embedding of A into Mn(C) defined by

(a1, . . . , ak) ∈ A -

2666666666666666664

264a1 0

. . .

0 a1

375
| {z }

f1

. . .
fkz }| {264ak 0

. . .

0 ak

375

3777777777777777775

∈ Mn(C)

Via this embedding, A becomes a Cayley-Hamilton algebra of degree n when
equipped with the induced trace tr from Mn(C).

Let M be the n-dimensional A-representation with dimension vector
(e1, . . . , ek) and choose a basis compatible with this decomposition. Let Ei
be the idempotent of A corresponding to the identity matrix Idi

of the i-th
factor. Then, the trace of the matrix defining the action of Ei on M is clearly
eidi.In. On the other hand, tr(Ei) = fidi.In, hence the only trace preserv-
ing n-dimensional A-representation is that of dimension vector (f1, . . . , fk).
Therefore, trepn A consists of the single closed orbit determined by the inte-
gral vector (f1, . . . , fk).

trepn A ' GLn/(GLf1 × . . .×GLfk
)
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Consider the scheme structure of the trace preserving representation va-
riety trepn A. The corresponding functor assigns to a commutative affine
C-algebra R

trepn(R) = AlgC(C[Mm
n ]/NA, R)

An algebra morphism ψ : C[Mm
n ]/NA - R determines uniquely an m-tuple

of n× n matrices with coefficients in R by

rk =

ψ(x11(k)) . . . ψ(x1n(k))
...

...
ψ(xn1(k)) . . . ψ(xnn(k))


Composing with the canonical embedding

A .......................
φ
- Mn(R)

Mn(C[Mm
n ]/NA)
?

∩

M
n
(ψ

)

-

determines the trace preserving algebra morphism φ : A - Mn(R) where
the trace map on Mn(R) is the usual trace. By the universal property any
trace preserving map A - Mn(R) is also of this form.

LEMMA 2.9
Let A be a Cayley-Hamilton algebra of degree n that is generated by
{a1, . . . , am}. The trace preserving representation variety trepn A represents
the functor

trepn A(R) = {A φ- Mn(R) | φ is trace preserving }

Moreover, trepn A is a closed subscheme of repn A.

Recall that there is an action of GLn on C[Mm
n ] and from the definition

of the ideals IA(n) and NA it is clear that they are stable under the GLn-
action. That is, there is an action by automorphisms on the quotient algebras
C[Mm

n ]/IA(n) and C[Mm
n ]/NA. But then, their algebras of invariants are

equal to{
C[repn A]GLn = (C[Mm

n ]/IA(n))GLn = Nmn /(IA(n) ∩ Nmn )
C[trepn A]GLn = (C[Mm

n ]/NA)GLn = Nmn /(NA ∩ Nmn )
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That is, these rings of invariants define closed subschemes of the affine (re-
duced) variety associated to the necklace algebra Nmn . We will call these
schemes the quotient schemes for the action of GLn and denote them respec-
tively by

issn A = repn A/GLn and trissn A = trepn A/GLn

We have seen that the geometric points of the reduced variety issn A of
the affine quotient scheme issn A parameterize the isomorphism classes of
n-dimensional semisimple A-representations. Similarly, the geometric points
of the reduced variety trissn A of the quotient scheme trissn A parame-
terize isomorphism classes of trace preserving n-dimensional semisimple A-
representations.

PROPOSITION 2.12
Let A be a Cayley-Hamilton algebra of degree n with trace map trA. Then,
we have that

trA(A) = C[trissn A]

the coordinate ring of the quotient scheme trissn A. In particular, maximal
ideals of trA(A) parameterize the isomorphism classes of trace preserving n-
dimensional semisimple A-representations.

By definition, a GLn-equivariant map between the affine GLn-schemes

trepn A
f- Mn = Mn

means that for any commutative affine C-algebra R the corresponding map

trepn A(R)
f(R)- Mn(R)

commutes with the action of GLn(R). Alternatively, the ring of all morphisms
trepn A

- Mn is the matrixalgebra Mn(C[Mm
n ]/NA) and those that com-

mute with the GLn action are precisely the invariants. That is, we have the
following description of A.

THEOREM 2.6
Let A be a Cayley-Hamilton algebra of degree n with trace map trA. Then,

we can recover A as the ring of GLn-equivariant maps

A = {f : trepn A - Mn GLn-equivariant }

Summarizing the results of this and the previous section we have

THEOREM 2.7
The functor

alg@n
trepn- GL(n)-affine
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which assigns to a Cayley-Hamilton algebra A of degree n the GLn-affine
scheme trepn A of trace preserving n-dimensional representations has a left
inverse. This left inverse functor

GL(n)-affine
⇑n

- alg@n

assigns to a GLn-affine scheme X its witness algebra ⇑n [X] = Mn(C[X])GLn

which is a Cayley-Hamilton algebra of degree n.

Note however that this functor is not an equivalence of categories. For,
there are many affine GLn-schemes having the same witness algebra as we
will see in the next section.

We will give an application of the algebraic reconstruction result, theo-
rem 1.17, to finite dimensional algebras.

Let A be a Cayley-Hamilton algebra of degree n wit trace map tr, then we
can define a norm map on A by

N(a) = σn(a) for all a ∈ A.

Recall that the elementary symmetric function σn is a polynomial func-
tion f(t1, t2, . . . , tn) in the Newton functions ti =

∑n
j=1 x

i
j . Then, σ(a) =

f(tr(a), tr(a2), . . . , tr(an)). Because, we have a trace preserving embedding
A ⊂ - Mn(C[trepn A]) and the norm map N coincides with the determinant
in this matrix-algebra, we have that

N(1) = 1 and ∀a, b ∈ A N(ab) = N(a)N(b).

Furthermore, the norm map extends to a polynomial map on A[t] and we have
that χ(n)

a (t) = N(t−a). In particular we can obtain the trace by polarization
of the norm map. Consider a finite dimensional semisimple C-algebra

A = Md1(C)⊕ . . .⊕Mdk
(C),

then all the Cayley-Hamilton structures of degree n on A with trace values in
C are given by the following result.

LEMMA 2.10
Let A be a semisimple algebra as above and tr a trace map on A making it

into a Cayley-Hamilton algebra of degree n with tr(A) = C. Then, there exist
a dimension vector α = (m1, . . . ,mk) ∈ Nk+ such that n =

∑k
i=1midi and for

any a = (A1, . . . , Ak) ∈ A with Ai ∈Mdi
(C) we have that

tr(a) = m1Tr(A1) + . . .+mkTr(Ak)

where Tr are the usual trace maps on matrices.
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PROOF The norm-map N on A defined by the trace map tr induces a
group morphism on the invertible elements of A

N : A∗ = GLd1(C)× . . .×GLdk
(C) - C∗

that is, a character. Now, any character is of the following form, let Ai ∈
GLdi(C), then for a = (A1, . . . , Ak) we must have

N(a) = det(A1)m1det(A2)m2 . . . det(Ak)mk

for certain integers mi ∈ Z. Since N extends to a polynomial map on the
whole of A we must have that all mi ≥ 0. By polarization it then follows that

tr(a) = m1Tr(A1) + . . .+mkTr(Ak)

and it remains to show that no mi = 0. Indeed, if mi = 0 then tr would be the
zero map on Mdi

(C), but then we would have for any a = (0, . . . , 0, A, 0, . . . , 0)
with A ∈Mdi

(C) that
χ(n)
a (t) = tn

whence χ(n)
a (a) 6= 0 whenever A is not nilpotent. This contradiction finishes

the proof.

We can extend this to all finite dimensional C-algebras. Let A be a finite
dimensional algebra with radical J and assume there is a trace map tr on A
making A into a Cayley-Hamilton algebra of degree n and such that tr(A) =
C. We claim that the norm map N : A - C is zero on J . Indeed, any
j ∈ J satisfies jl = 0 for some l whence N(j)l = 0. But then, polarization
gives that tr(J) = 0 and we have that the semisimple algebra

Ass = A/J = Md1(C)⊕ . . .⊕Mdk
(C)

is a semisimple Cayley-hamilton algebra of degree n on which we can apply
the foregoing lemma. Finally, note that A ' Ass⊕J as C-vector spaces. This
concludes the proof as follows.

PROPOSITION 2.13
Let A be a finite dimensional C-algebra with radical J and semisimple part

Ass = A/J = Md1(C)⊕ . . .⊕Mdk
(C).

Let tr : A - C ⊂ - A be a trace map such that A is a Cayley-Hamilton
algebra of degree n. Then, there exists a dimension vector α = (m1, . . . ,mk) ∈
Nk+ such that for all a = (A1, . . . , Ak, j) with Ai ∈Mdi(C) and j ∈ J we have

tr(a) = m1Tr(A1) + . . .+mkTr(Ak)

with Tr the usual traces on Mdi
(C) and

∑
imidi = n.
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Fix a trace map tr on A determined by a dimension vector α =
(m1, . . . ,mk) ∈ Nk. Then, the trace preserving variety trepn A is the scheme
of A-modules of dimension vector α, that is, those A-modules M such that

Mss = S⊕m1
1 ⊕ . . .⊕ S⊕mk

k

where Si is the simple A-module of dimension di determined by the i-th factor
in Ass. An immediate consequence of the reconstruction theorem 2.6 is shown
below.

PROPOSITION 2.14
Let A be a finite dimensional algebra with trace map tr : A - C determined
by a dimension vector α = (m1, . . . ,mk) as before with all mi > 0. Then, A
can be recovered from the GLn-structure of the affine scheme trepn A of all
A-modules of dimension vector α.

Still, there can be other trace maps on A making A into a Cayley-Hamilton
algebra of degree n. For example, let C be a finite dimensional commutative
C-algebra with radical N , then A = Mn(C) is finite dimensional with radical
J = Mn(N) and the usual trace map tr : Mn(C) - C makes A into a
Cayley-Hamilton algebra of degree n such that tr(J) = N 6= 0. Still, if A
is semisimple, the center Z(A) = C ⊕ . . . ⊕ C (as many terms as there are
matrix components in A) and any subring of Z(A) is of the form C ⊕ . . . ⊕
C. In particular, tr(A) has this form and composing the trace map with
projection on the j-th component we have a trace map trj to which we can
apply lemma 2.10.

2.7 The Gerstenhaber-Hesselink theorem

In this section we will give examples of distinct GLn-affine schemes having
the same witness algebra, proving that the left inverse of theorem 2.7 is not an
equivalence of categories. We will study the orbits in repn C[x] or, equivalent,
conjugacy classes of n× n matrices.

It is sometimes convenient to relax our definition of partitions to include ze-
roes at the tail. That is, a partition p of n is an integral n-tuple (a1, a2, . . . , an)
with a1 ≥ a2 ≥ . . . ≥ an ≥ 0 with

∑n
i=1 ai = n. As before, we represent a

partition by a Young diagram by omitting rows corresponding to zeroes.
If q = (b1, . . . , bn) is another partition of n we say that p dominates q and

write

p > q if and only if
r∑
i=1

ai ≥
r∑
i=1

bi for all 1 ≤ r ≤ n
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For example, the partitions of 4 are ordered as indicated below

> > > >

Note however that the dominance relation is not a total ordering whenever
n ≥ 6. For example, the following two partition of 6

are not comparable. The dominance order is induced by the Young move
of throwing a row-ending box down the diagram. Indeed, let p and q be
partitions of n such that p > q and assume there is no partition r such that
p > r and r > q. Let i be the minimal number such that ai > bi. Then by
the assumption ai = bi + 1. Let j > i be minimal such that aj 6= bj , then we
have bj = aj + 1 because p dominates q. But then, the remaining rows of p
and q must be equal. That is, a Young move can be depicted as

p =

i

j

−→ q =

i

j

For example, the Young moves between the partitions of 4 given above are as
indicated

.
→

.
→

.

→

.

→

A Young p-tableau is the Young diagram of p with the boxes labeled by
integers from {1, 2, . . . , s} for some s such that each label appears at least ones.
A Young p-tableau is said to be of type q for some partition q = (b1, . . . , bn)
of n if the following conditions are met:

• the labels are non-decreasing along rows,

• the labels are strictly increasing along columns, and

• the label i appears exactly bi times.
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For example, if p = (3, 2, 1, 1) and q = (2, 2, 2, 1) then the p-tableau below

4
3
2
1 1 3

2

is of type q (observe that p > q and even p → q). In general, let p =
(a1, . . . , an) and q = (b1, . . . , bn) be partitions of n and assume that p → q.
Then, there is a Young p-tableau of type q. For, fill the Young diagram of q
by putting 1’s in the first row, 2’s in the second and so on. Then, upgrade
the fallen box together with its label to get a Young p-tableau of type q. In
the example above

4
3

=⇒2
1 1

2
3'&%$ !"#
•PP

4
3
2
1 1 3

2

Conversely, assume there is a Young p-tableau of type q. The number of boxes
labeled with a number ≤ i is equal to b1 + . . . + bi. Further, any box with
label ≤ i must lie in the first i rows (because the labels strictly increase along
a column). There are a1 + . . .+ ai boxes available in the first i rows whence

i∑
j=1

bi ≤
i∑

j=1

ai for all 1 ≤ i ≤ n

and therefore p > q. After these preliminaries on partitions, let us return to
nilpotent matrices.

Let A be a nilpotent matrix of type p = (a1, . . . , an), that is, conjugated to
a matrix with Jordan blocks (all with eigenvalue zero) of sizes ai. We have
seen before that the subspace Vl of column vectors v ∈ Cn such that Al.v = 0
has dimension

l∑
h=1

#{j | aj ≥ h} =
l∑

h=1

a∗h

where p∗ = (a∗1, . . . , a
∗
n) is the dual partition of p. Choose a basis {v1, . . . , vn}

of Cn such that for all l the first a∗1 + . . .+ a∗l base vectors span the subspace
Vl. For example, if A is in Jordan normal form of type p = (3, 2, 1, 1)2666666664

0 1 0
0 0 1
0 0 0

0 1
0 0

0
0

3777777775
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then p∗ = (4, 2, 1) and we can choose the standard base vectors ordered as
follows

{e1, e4, e6, e7︸ ︷︷ ︸
4

, e2, e5︸ ︷︷ ︸
2

, e3︸︷︷︸
1

}

Take a partition q = (b1, . . . , bn) with p → q (in particular, p > q), then for
the dual partitions we have q∗ → p∗ (and thus q∗ > p∗). But then there is
a Young q∗-tableau of type p∗. In the example with q = (2, 2, 2, 1) we have
q∗ = (4, 3) and p∗ = (4, 2, 1) and we can take the Young q∗-tableau of type p∗

2 2 3
1 1 1 1

Now label the boxes of this tableau by the base vectors {v1, . . . , vn} such that
the boxes labeled i in the Young q∗-tableau of type p∗ are filled with the base
vectors from Vi − Vi−1. Call this tableau T . In the example, we can take

T = e2 e5 e3

e1 e4 e6 e7

Define a linear operator F on Cn by the rule that F (vi) = vj if vj is the label
of the box in T just above the box labeled vi. In case vi is a label of a box in
the first row of T we take F (vi) = 0. Obviously, F is a nilpotent n×n matrix
and by construction we have that

rk F l = n− (b∗1 + . . .+ b∗l )

That is, F is nilpotent of type q = (b1, . . . , bn). Moreover, F satisfies F (Vi) ⊂
Vi−1 for all i by the way we have labeled the tableau T and defined F .

In the example above, we have F (e2) = e1, F (e5) = e4, F (e3) = e6 and all
other F (ei) = 0. That is, F is the matrix2666666664

0 1
0 0

0 0
0 1
0 0

1 0
0

3777777775
which is seen to be of type (2, 2, 2, 1) after performing a few Jordan moves.

Returning to the general case, consider for all ε ∈ C the n× n matrix:

Fε = (1− ε)F + εA.
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We claim that for all but finitely many values of ε we have Fε ∈ O(A). Indeed,
we have seen that F (Vi) ⊂ Vi−1 where Vi is defined as the subspace such that
Ai(Vi) = 0. Hence, F (V1) = 0 and therefore

Fε(V1) = (1− ε)F + εA(V1) = 0

Assume by induction that F iε (Vi) = 0 holds for all i < l, then we have that

F lε(Vl) = F l−1
ε ((1− ε)F + εA)(Vl)

⊂ F l−1
ε (Vl−1) = 0

because A(Vl) ⊂ Vl−1 and F (Vl) ⊂ Vl−1. But then we have for all l that

rk F lε ≤ dim Vl = n− (a∗1 + . . .+ a∗l ) = rk Al
def
= rl

Then for at least one rl × rl submatrix of F lε its determinant considered it
as a polynomial of degree rl in ε is not identically zero (as it is nonzero for
ε = 1). But then this determinant is nonzero for all but finitely many ε.
Hence, rk F lε = rk Al for all l for all but finitely many ε. As these numbers
determine the dual partition p∗ of the type of A, Fε is a nilpotent n×n matrix
of type p for all but finitely many values of ε, proving the claim. But then,
F0 = F , which we have proved to be a nilpotent matrix of type q, belongs to
the closure of the orbit O(A). That is, we have proved the difficult part of
the Gerstenhaber-Hesselink theorem .

THEOREM 2.8
Let A be a nilpotent n×n matrix of type p = (a1, . . . , an) and B nilpotent of
type q = (b1, . . . , bn). Then, B belongs to the closure of the orbit O(A), that
is

B ∈ O(A) if and only if p > q

in the domination order on partitions of n.

To prove the theorem we only have to observe that if B is contained in the
closure of A, then Bl is contained in the closure of Al and hence rk Al ≥ rk Bl
(because rk Al < k is equivalent to vanishing of all determinants of k × k
minors, which is a closed condition). But then

n−
l∑
i=1

a∗i ≥ n−
l∑
i=1

b∗i

for all l, that is, q∗ > p∗ and hence p > q. The other implication was
proved above if we remember that the domination order was induced by the
Young moves and clearly we have that if B ∈ O(C) and C ∈ O(A) then also
B ∈ O(A).
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Example 2.12 Nilpotent matrices for small n
We will apply theorem 2.8 to describe the orbit-closures of nilpotent matrices
of 8 × 8 matrices. The following table lists all partitions (and their dual in
the other column)

The partitions of 8

a (8) v (1,1,1,1,1,1,1,1)
b (7,1) u (2,1,1,1,1,1,1)
c (6,2) t (2,2,1,1,1,1)
d (6,1,1) s (3,1,1,1,1,1)
e (5,3) r (2,2,2,1,1)
f (5,2,1) q (3,2,1,1,1)
g (5,1,1,1) p (4,1,1,1,1)
h (4,4) o (2,2,2,2)
i (4,3,1) n (3,2,2,1)
j (4,2,2) m (3,3,1,1)
k (3,3,2) k (3,3,2)
l (4,2,1,1) l (4,2,1,1)

The domination order between these partitions can be depicted as follows
where all the Young moves are from left to right

a�������� b�������� c��������
d��������

e��������
f��������

g��������
h��������

i�������� j��������
k��������

l��������
m�������� n��������

o��������
p��������

q��������
r��������

s��������
t�������� u�������� v��������

??
? ��� ??

?

??
?

??
? ���

??
?

??
?

���

���
���

���
���

Of course, from this graph we can read off the dominance order graphs for
partitions of n ≤ 8. The trick is to identify a partition of n with that of 8 by
throwing in a tail of ones and to look at the relative position of both partitions
in the above picture. Using these conventions we get the following graph for
partitions of 7

b�������� d�������� f��������
g��������

i��������
l��������

m��������
p��������

n��������
q��������

r��������
s��������

t�������� u�������� v�����������

OOOOO
OOOOO

���

���

OOOOO ooooo

??
? ooooo

??
?

??
?

ooooo

and for partitions of 6 the dominance order is depicted as follows

c�������� g�������� l��������
p��������

m��������
q��������

s��������
r��������

t�������� u�������� v��������
??

?
??

? ���
���

The dominance order on partitions of n ≤ 5 is a total ordering.

The Gerstenhaber-Hesselink theorem can be applied to describe the module
varieties of the algebras C[x]/(xr).
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Example 2.13 The representation variety repn
C[x]
(xr)

Any algebra morphism from C[x] to Mn is determined by the image of x,
whence repn(C[x]) = Mn. We have seen that conjugacy classes in Mn are
classified by the Jordan normalform. Let A be conjugated to a matrix in
normalform 2666666664

J1

J2

. . .

Js

3777777775
where Ji is a Jordan block of size di, hence n = d1 + d2 + . . .+ ds. Then, the
n-dimensional C[x]-module M determined by A can be decomposed uniquely
as

M = M1 ⊕M2 ⊕ . . .⊕Ms

where Mi is a C[x]-module of dimension di which is indecomposable , that is,
cannot be decomposed as a direct sum of proper submodules.

Now, consider the quotient algebra R = C[x]/(xr), then the ideal IR(n) of
C[x11, x12, . . . , xnn] is generated by the n2 entries of the matrixx11 . . . x1n

...
...

xn1 . . . xnn


r

For example if r = m = 2, then the ideal is generated by the entries of the
matrix [

x1 x2

x3 x4

]2

=
[
x2

1 + x2x3 x2(x1 + x4)
x3(x1 + x4) x2

4 + x2x3

]
That is, the ideal with generators

IR = (x2
1 + x2x3, x2(x1 + x4), x3(x1 + x4), (x1 − x4)(x1 + x4))

The variety V(IR) ⊂ - M2 consists of all matrices A such that A2 = 0.
Conjugating A to an upper triangular form we see that the eigenvalues of A
must be zero, hence

rep2 C[x]/(x2) = O(
[
0 1
0 0

]
) ∪ O(

[
0 0
0 0

]
)

and we have seen that this variety is a cone with top the zero matrix and
defining equations

V(x1 + x4, x
2
1 + x2x3)

and we see that IR is properly contained in this ideal. Still, we have that

rad(IR) = (x1 + x4, x
2
1 + x3x4)
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for an easy computation shows that x1 + x4
3 = 0 ∈ C[x1, x2, x3, x4]/IR.

Therefore, even in the easiest of examples, the representation variety does
not have to be reduced.

For the general case, observe that when J is a Jordan block of size d with
eigenvalue zero an easy calculation shows that

Jd−1 =


0 . . . 0 d− 1

. . . 0
. . .

...
0

 and Jd =


0 . . . . . . 0
...

...
...

...
0 . . . . . . 0


Therefore, we see that the representation variety repn C[x]/(xr) is the union
of all conjugacy classes of matrices having 0 as only eigenvalue and all of
which Jordan blocks have size ≤ r. Expressed in module theoretic terms,
any n-dimensional R = C[x]/(xr)-module M is isomorphic to a direct sum of
indecomposables

M = I⊕e11 ⊕ I⊕e22 ⊕ . . .⊕ I⊕er
r

where Ij is the unique indecomposable j-dimensional R-module (correspond-
ing to the Jordan block of size j). Of course, the multiplicities ei of the factors
must satisfy the equation

e1 + 2e2 + 3e3 + . . .+ rer = n

In M we can consider the subspaces for all 1 ≤ i ≤ r − 1

Mi = {m ∈M | xi.m = 0}

the dimension of which can be computed knowing the powers of Jordan blocks
(observe that the dimension of Mi is equal to n− rank(Ai))

ti = dimC Mi = e1 + 2e2 + . . . (i− 1)ei + i(ei + ei+1 + . . .+ er)

Observe that giving n and the r − 1-tuple (t1, t2, . . . , tn−1) is the same as
giving the multiplicities ei because

2t1 = t2 + e1

2t2 = t3 + t1 + e2

2t3 = t4 + t2 + e3
...

2tn−2 = tn−1 + tn−3 + en−2

2tn−1 = n+ tn−2 + en−1

n = tn−1 + en
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Let n-dimensional C[x]/(xr)-modules M and M ′ (or associated matrices
A and A′) be determined by the r − 1-tuples (t1, . . . , tr−1), respectively,
(t′1, . . . , t

′
r−1) then we have that

O(A′) ⊂ - O(A) if and only if t1 ≤ t′1, t2 ≤ t′2, . . . , tr−1 ≤ t′r−1

Therefore, we have an inverse order isomorphism between the orbits in
repn(C[x]/(xr)) and the r − 1-tuples of natural numbers (t1, . . . , tr−1) sat-
isfying the following linear inequalities (which follow from the above system)

2t1 ≥ t2, 2t2 ≥ t3 + t1, 2t3 ≥ t4 + t2, . . . , 2tn−1 ≥ n+ tn−2, n ≥ tn−2

Let us apply this general result in a few easy cases. First, consider r = 2,
then the orbits in repn C[x]/(x2) are parameterized by a natural number t1
satisfying the inequalities n ≥ t1 and 2t1 ≥ n, the multiplicities are given by
e1 = 2t1−n and e2 = n− t1. Moreover, the orbit of the module M(t′1) lies in
the closure of the orbit of M(t1) whenever t1 ≤ t′1.

That is, if n = 2k + δ with δ = 0 or 1, then repn C[x]/(x2) is the union of
k + 1 orbits and the orbitclosures form a linear order as follows (from big to
small)

Iδ1 ⊕ I⊕k2 I⊕δ+2
1 ⊕ I⊕k−1

2 . . . I⊕n1

If r = 3, orbits in repn C[x]/(x3) are determined by couples of natural
numbers (t1, t2) satisfying the following three linear inequalities

2t1 ≥ t2
2t2 ≥ n+ t1

n ≥ t2

For example, for n = 8 we obtain the following situation

2t1 = t2
2t2 = 8 + t1

t2 = 8

• •
• • •

• • •• •

Therefore, rep8 C[x]/(x3) consists of 10 orbits with orbit closure diagram as
in figure 2.2 (the nodes represent the multiplicities [e1e2e3]).

Here we used the equalities e1 = 2t1− t2, e2 = 2t2−n− t1 and e3 = n− t2.
For general n and r this result shows that repn C[x]/(xr) is the closure of the
orbit of the module with decomposition

Mgen = I⊕er ⊕ Is if n = er + s
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[800]

[610]

[420]

[501]
??

[040]
��

[121]
��

[202]

[012]

[420]

[230]
��

[311]
��

[121]
??

[230]

[040]
??

FIGURE 2.2: Orbit closures in rep8 C[x]/(x3).

We are now in a position to give the promised examples of affine GLn-
schemes having the same witness algebra.

Example 2.14

Consider the action of GLn on Mn by conjugation and take a nilpotent
matrix A. All eigenvalues of A are zero, so the conjugacy class of A is fully
determined by the sizes of its Jordan blocks. These sizes determine a partition
λ(A) = (λ1, λ2, . . . , λk) of n with λ1 ≥ λ2 ≥ . . . ≥ λk. Moreover, we have
given an algorithm to determine whether an orbit O(B) of another nilpotent
matrix B is contained in the orbit closure O(A), the criterium being that

O(B) ⊂ O(A)⇐⇒ λ(B)∗ ≥ λ(A)∗

where λ∗ denotes the dual partition. We see that the witness algebra of O(A)
is equal to

Mn(C[O(A)])GLn = C[X]/(Xk)

where k is the number of columns of the Young diagram λ(A).
Hence, the orbit closures of nilpotent matrices such that their associated

Young diagrams have equal number of columns have the same witness alge-
bras. For example, if n = 4 then the closures of the orbits corresponding
to

and
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have the same witness algebra, although the closure of the second is a proper
closed subscheme of the closure of the first.

Recall the orbit closure diagram of conjugacy classes of nilpotent 8 × 8
matrices given by the Gerstenhaber-Hesselink theorem. In the picture below,
the closures of orbits corresponding to connected nodes of the same color have
the same witness algebra.

◦ • ◦
◦
•
•
•

◦
◦ ◦

•

◦
• •

◦

◦
•
◦
•
◦ ◦ •?? �� ??

??

?? ��
??

??

��

��

��

�� ��

2.8 The real moment map

In this section we will give another interpretation of the algebraic quotient
variety trissn A with methods coming from symplectic geometry. We have
an involution

GLn
i- GLn defined by g - (g∗)−1

where A∗ is the adjoint matrix of g, that is, the conjugate transpose

M =

m11 . . . m1n

...
...

mn1 . . . mnn

 M∗ =

m11 . . . mn1

...
...

m1n . . . mnn


The real points of this involution, that is

(GLn)i = {g ∈ GLn | g = (g∗)−1} = Un = {u ∈ GLn | uu∗ = rr
n}

is the unitary group . On the level of Lie algebras, the involution i gives rise
to the linear map

Mn
di- Mn defined by M - −M∗

corresponding to the fact that the Lie algebra of the unitary group, that is,
the kernel of di, is the space of skew-Hermitian matrices

Lie Un = {M ∈Mn | M = −M∗} = iHermn
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Consider the standard Hermitian inproduct on Mn defined by

(A,B) = tr(A∗B) which satisfies


(cA,B) = c(A,B)
(A, cB) = c(A,B)
(B,A) = (A,B)

As a subgroup of GLn, Un acts on Mn by conjugation and because
(uAu∗, uBu∗) = tr(uA∗u∗uBu∗) = tr(A∗B), the inproduct is invariant under
the Un-action. The action of Un on Mn induces an action of Lie Un on Mn

given for all h ∈ Lie Un and M ∈Mn

h.M = hM +Mh∗ = hM −Mh

Using this action, we define the real moment map µ for the action of Un on
Mn as the map from Mn to the linear dual of the Lie algebra

Mn
µ- (iLie Un)∗ M - (h 7→ i(h.M,M))

We will identify the inverse image of the zero map 0 : Lie Un - 0 under
µ. Because

(h.M,M) = tr((h.M −M.h)∗M)
= tr(M∗h∗M − h∗M∗M)
= tr(h∗(MM∗ −M∗M))

and using the nondegeneracy of the Killing form on Lie Un we have the
identification

µ−1(0) = {M ∈Mn | MM∗ = M∗M} = Norn

the space of normal matrices . Alternatively, we can define the real moment
map to be determined by

Mn
µR- Lie Un M - i(MM∗ −M∗M) = i[M,M∗]

Recall that a matrix M ∈Mn(C) is said to be normal if its commutes with its
adjoint. For example, diagonal matrices are normal as are unitary matrices.
Further, it is clear that if M is normal and u unitary, then the conjugated
matrix uMu−1 = uMu∗ is again a normal matrix, that is, we have an action
of the compact Lie group Un on the subset Norn ⊂ - Mn(C) of normal
matrices. We recall the proof of the following classical result.

THEOREM 2.9
Every Un orbit in Norn contains a diagonal matrix. This gives a natural
one-to-one correspondence

µ−1(0)/Un = Norn/Un ←→Mn/GLn
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between the Un-orbits in Norn and the closed GLn-orbits in Mn.

PROOF Equip Cn with the standard Hermitian form, that is

〈v, w〉 = vτ .w = v1w1 + . . .+ vnwn

Take a nonzero eigenvector v of M ∈ Norn and normalize it such that 〈v, v〉 =
1. Extend v = v1 to an orthonormal basis {v1, . . . , vn} of Cn and let u be the
base change matrix from the standard basis. With respect to the new basis,
the linear map determined by M and M∗ are represented by the normal
matrices

M1 = uMu∗ =


a11 a12 . . . a1n

0 a22 . . . a2n

...
...

...
0 an2 . . . ann

 M∗1 = uM∗u∗ =


a11 0 . . . 0
a12 a22 . . . an2

...
...

...
a1n a2n . . . ann


Because M is normal, so is M1. The left-hand corner of M∗1M1 is a11a11

whereas that of M1M
∗
1 is a11a11 + a12a12 + . . .+ a1na1n, whence

a12a12 + . . .+ a1na1n = 0

but as all a1ia1i =‖ a1i ‖≥ 0, this implies that all a1i = 0, whence

M1 =


a11 0 . . . 0
0 a22 . . . a2n

...
...

...
0 an2 . . . ann


and induction finishes the claim. Because permutation matrices are unitary
we see that the diagonal entries are determined up to permutation, so every
Un-orbit determines a unique conjugacy class of semisimple matrices, that is,
a closed GLn-orbit in Mn.

We will generalize this classical result to m-tuples of n× n matrices, Mm
n ,

and then by restriction to trace preserving representation varieties. Take
A = (A1, . . . , Am) and B = (B1, . . . , Bm) in Mm

n and define an Hermitian
inproduct on Mm

n by

(A,B) = tr(A∗1B1 + . . .+A∗mBm)

which is again invariant under the action of Un by simultaneous conjugation
on Mm

n . The induced action of Lie Un on Mm
n is given by

h.A = (hA1 −A1h, . . . , hAm −Amh)
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This allows us to define the real moment map µ for the action of Un on Mm
n

to be the assignment

Mm
n

µ- (iLie Un)∗ A - (h 7→ i(h.A,A))

and again using the nondegeneracy of the Killing form on Lie Un we have the
identification

µ−1(0) = {A ∈Mm
n |

m∑
i=1

(AiA∗i −A∗iAi) = 0}

Again, the real moment map is determined by

Mm
n

µR- Lie Un A = (A1, . . . , Am) 7→ i[A,A∗] = i
m∑
j=1

[Aj , A∗j ]

We will show that there is a natural one-to-one correspondence between Un-
orbits in the set µ−1(0) and closed GLn-orbits in Mm

n . We first consider the
properties of the real valued function pA defined as the norm on the orbit of
any A ∈Mm

n

GLn
pA- R+ g - ‖g.A‖2

Because the Hermitian inproduct is invariant under Un we have pA(ug) =
pA(g) for any u ∈ Un. If Stab(A) denotes the stabilizer subgroup of A ∈ GLn,
then for any s ∈ Stab(A) we also have pA(gs) = pA(g) hence pA is constant
along UngStab(A)-cosets. We aim to prove that the critical points of pA are
minima and that the minimum is attained if and only if O(A) is a closed
GLn-orbit.

Consider the restriction of pA to the maximal torus Tn ⊂ - GLn of invert-
ible diagonal matrices. Then, Tn ∩ Un = K = U1 × . . .× U1 is the subgroup

K = {

k1 0
. . .

0 kn

 | ∀i : |ki| = 1 }

The action by conjugation of Tn on Mm
n decomposes this space into weight

spaces

Mm
n = Mm

n (0)⊕
n⊕

i,j=1

Mm
n (πi − πj)

where Mm
n (πi − πj) = {A ∈ Mm

n | diag(t1, . . . , tn).A = tit
−1
j A}. It follows

from the definition of the Hermitian inproduct on Mm
n that the different

weight spaces are orthogonal to each other. We decompose A ∈ Mm
n into

eigenvectors for the Tn-action as

A = A(0) +
n∑

i,j=1

A(i, j) with

{
A(0) ∈Mm

n (0)
A(i, j) ∈Mm

n (πi − πj)
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With this convention we have for t = diag(t1, . . . , tn) ∈ Tn that

pA(t) = ‖A(0) +
n∑

i,j=1

tit
−1
j A(i, j)‖2

= ‖A(0)‖2 +
n∑

i,j=1

t2i t
−2
j ‖A(i, j)‖2

where the last equality follows from the orthogonality of the different weight
spaces. Further, remark that the stabilizer subgroup StabT (A) of A in T can
be identified with

StabT (A) = {t = diag(t1, . . . , tn) | ti = tj if A(i, j) 6= 0}

As before, pA induces a function on double cosets K\Tn/StabT (A), in partic-
ular pM determines a real valued function on K\Tn ' Rn (the isomorphism
is given by the map diag(t1, . . . , tn)

log- (log |t1|, . . . , log |tn|)). That is

Tn
log-- K\Tn ' Rn

R+

pA

?
�

pA”

�

p
′
A

K\Tn/StabT (A)

??

where the function p′M is the special function

p′A(r1, . . . , rn) = e2log ‖A(0)‖ +
n∑

i,j:A(i,j) 6=0

e2log ‖A(i,j)‖+2xi−2xj

and where K\Tn/StabT (A) is the quotient space of Rn by the subspace VA
which is the image of StabT (A) under log

VA =
∑

i: 6∃A(i,j) 6=0

Rei +
∑

i,j:A(i,j) 6=0

R(ei − ej)

where ei are the standard basis vectors of Rn. Let {i1, . . . , ik} be the minimal
elements of the nonempty equivalence classes induced by the relation i ∼ j iff
A(i, j) 6= 0, then{

K\Tn/StabT (A) '
∑k
j=1 Reij

pA”(y1, . . . , yk) = c0 +
∑k
j=1(

∑
l(j) cl(j)e

al(j)yj )

for certain positive real numbers c0, cl(j) and real numbers al(j). But then,
elementary calculus shows that the k × k matrix

∂2pA”
∂y1∂y1

(m) . . . ∂2pA”
∂y1∂yk

(m)
...

...
∂2pA”
∂yk∂y1

(m) . . . ∂2pA”
∂yk∂yk

(m)


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is a positive definite diagonal matrix in every point m ∈ Rk. That is, pA” is a
strictly convex Morse function and if it has a critical point m0 (that is, if all
∂pA”
∂yi

(m0) = 0), it must be a unique minimum. Lifting this information from
the double coset space K\Tn/StabT (A) to Tn we have proved

PROPOSITION 2.15
Let Tn be the maximal torus of invertible diagonal matrices in GLn and

consider the restriction of the function GLn
pA- R+ to Tn for A ∈ Mm

n ,
then

1. Any critical point of pA is a point where pA obtains its minimal value.

2. If pA obtains a minimal value, then

• the set V where pA obtains this minimum consists of a single K −
StabT (A) coset in Tn and is connected.

• the second order variation of pA at a point of V in any direction
not tangent to V is positive.

The same proof applies to all maximal tori T of GLn which are defined
over R. Recall the Cartan decomposition of GLn which we proved before
theorem 2.4: any g ∈ GLn can be written as g = udu′ where u, u′ ∈ Un and
d is a diagonal matrix with positive real entries. Using this fact we can now
extend the above proposition to GLn.

THEOREM 2.10
Consider the function GLn

pA- R+ for A ∈Mm
n .

1. Any critical point of pA is a point where pA obtains its minimal value.

2. If pA obtains its minimal value, it does so on a single Un−Stab(A)-coset.

PROOF (1): Because for any h ∈ GLn we have that ph.A(g) = pA(gh)
we may assume that rr

n is the critical point of pA. We have to prove that
pA(g) ≥ pA(rrn) for all g ∈ GLn. By the Cartan decomposition g = udu′

whence g = u”t where u” = uu′ ∈ Un and t = u′−1du′ ∈ T a maximal torus of
GLn defined over R. Because the Hermitian inproduct is invariant under Un
we have that pA(g) = pA(t). Because rr

n is a critical point for the restriction of
pA to T we have by proposition 2.15 that pA(t) ≥ pA(rrn), proving the claim.

(2): Because for any h ∈ GLn, ph.A(g) = pA(gh) and Stab(h.A) =
hStab(A)h−1 we may assume that pA obtains its minimal value at rr

n. If
V denotes the subset of GLn where pA obtains its minimal value we then
have that UnStab(A) ⊂ V and we have to prove the reverse inclusion. As-
sume g ∈ V and write as before g = u”t with u” ∈ Un and t ∈ T a maximal
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torus defined over R. Then, by unitary invariance of the inproduct, t is a
point of T where the restriction of pA to T obtains its minimal value pA(rrn).
By proposition 2.15 we conclude that t ∈ KTStabT (A) where KT = Un ∩ T .
But then,

V ⊂ Un(
⋃
T

KTStabT (A)) ⊂ UnStab(A)

where T runs over all maximal tori of GLn which are defined over R, finishing
the proof.

PROPOSITION 2.16
The function pA : GLn - R+ obtains a minimal value if and only if O(A)
is a closed orbit in Mm

n , that is, determines a semisimple representation.

PROOF If O(A) is closed then pA clearly obtains a minimal value. Con-
versely, assume that O(A) is not closed, that is, A does not determine a
semisimple n-dimensional representation M of C〈x1, . . . , xm〉. By choosing a
basis in M (that is, possibly going to another point in the orbit O(A)) we
have a one-parameter subgroup C∗ ⊂

λ- Tn ⊂ - GLn corresponding to the
Jordan-Hölder filtration of M with lim

t→0
λ(t)A = B with B corresponding to

the semisimplification of M . Now consider the restriction of p′A to U1\C∗ ' R,
then as before we can write it uniquely in the form

p′A(x) =
∑
i

aie
lix ai > 0, l1 < l2 < . . . < lz

for some real numbers li and some z. Because the above limit exists, the limit

lim
x→−∞

p′A(x) ∈ R

and hence none of the li are negative. Further, because O(A) 6= O(B) at least
one of the li must be positive. Therefore, p′A is a strictly increasing function
on R whence never obtains a minimal value, whence neither does pA.

Finally, we have to clarify the connection between the function pA and the
real moment map{

Mm
n

µ- (Lie Un)∗ A - (h 7→ (h.A,A))

Mn
n

µR- Lie Un A - i[A,A∗]

Assume A ∈Mm
n is such that pA has a critical point, which we may assume to

be rr
n by an argument as in the proof of theorem 2.10. Then, the differential

in rr
n

(dpA)rr
n

: Mn = Trr
n
GLn - R satisfies (dpA)rr

n
(h) = 0 ∀h ∈Mn
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Let us work out this differential

pA(rrn) + ε(dpA)rr
n
(h) = tr((A∗ + ε(A∗h∗ − h∗A∗)(A+ ε(hA−Ah))

= tr(A∗A) + εtr(A∗hA−A∗Ah+A∗h∗A− h∗A∗A)
= tr(A∗A) + εtr((AA∗ −A∗A)(h− h∗))

But then, vanishing of the differential for all h ∈ Mn is equivalent by the
nondegeneracy of the Killing form on Lie Un to

AA∗ −A∗A =
m∑
i=1

AiA
∗
i −A∗iAi = 0

that is, to A ∈ µ−1
R (0). This concludes the proof of the main result on the

real moment map for Mm
n .

THEOREM 2.11
There are natural one-to-one correspondences between

1. isomorphism classes of semisimple n-dimensional representations of
C〈x1, . . . , xm〉,

2. closed GLn-orbits in Mm
n ,

3. Un-orbits in the subset µ−1
R (0) = {A ∈Mm

n |
∑m
i=1[Ai, A

∗
i ] = 0}.

Let A ∈ alg@n be an affine Cayley-Hamilton algebra of degree n, then we
can embed the reduced variety of trepn A in Mm

n and obtain the following
as a consequence

THEOREM 2.12
For A ∈ alg@n, there are natural one-to-one correspondences between

1. isomorphism classes of semisimple n-dimensional trace preserving rep-
resentations of A,

2. closed GLn-orbits in the representation variety trepn A,

3. Un-orbits in the intersection trepn A ∩ µ
−1
R (0).
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Chapter 3

Etale Technology

Etale topology was introduced in algebraic geometry to bypass the coarseness
of the Zariski topology for classification problems. Let us give an elementary
example: the local classification of smooth varieties in the Zariski topology is
a hopeless task, whereas in the étale topology there is just one local type of
smooth variety in dimension d, namely, affine d-space Ad. A major theme of
this book is to generalize this result to noncommutative geometry@n.

Etale cohomology groups are used to classify central simple algebras over
function fields of varieties. Orders in such central simple algebras (over the
central structure sheaf) are an important class of Cayley-Hamilton algebras.

Over the years, one has tried to construct a suitable class of smooth orders
that allows an étale local description. But, except in the case of curves and
surfaces, no such classification is known, say, for orders of finite global dimen-
sion. In this book we introduce the class of Cayley-smooth orders, which does
allow an étale local description in arbitrary dimensions. In this chapter we
will lay the foundations for this classification by investigating étale slices of
representation varieties at semisimple representations. In chapter 5 we will
then show that this local structure is determined by a combinatorial gadget:
a (marked) quiver setting.

3.1 Etale topology

A closed subvarietyX ⊂ - Cm can be equipped with the Zariski topology or
with the much finer analytic topology. A major disadvantage of the coarseness
of the Zariski topology is the failure to have an implicit function theorem in
algebraic geometry. Etale morphisms are introduced to bypass this problem.

We will define étale morphisms that determine the étale topology . This is
no longer a usual topology determined by subsets, but rather a Grothendieck
topology determined by covers .

DEFINITION 3.1 A finite morphism A
f- B of commutative C-

algebras is said to be étale if and only if B = A[t1, . . . , tk]/(f1, . . . , fk) such

109
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that the Jacobian matrix 
∂f1
∂t1

. . . ∂f1∂tk
...

...
∂fk

∂t1
. . . ∂fk

∂tk


has a determinant which is a unit in B.

Recall that by spec A we denote the prime ideal spectrum or the affine
scheme of a commutative C-algebra A (even when A is not affine as a C-
algebra). That is, spec A is the set of all prime ideals of A equipped with
the Zariski topology . The open subsets are of the form

X(I) = {P ∈ spec A | I 6⊂ P}

for any ideal I /A. If A is an affine C-algebra, the points of the corresponding
affine variety correspond to maximal ideals of A and the induced Zariski
topology coincides with the one introduced before. In this chapter, however,
not all C-algebras will be affine.

Example 3.1
Consider the morphism C[x, x−1] ⊂ - C[x, x−1][ n

√
x] and the induced map

on the affine schemes

spec C[x, x−1][ n
√
x]

ψ- spec C[x, x−1] = C− {0}

Clearly, every point λ ∈ C− {0} has exactly n preimages λi = ζi n
√
λ. More-

over, in a neighborhood of λi, the map ψ is a diffeomorphism. Still, we do not
have an inverse map in algebraic geometry as n

√
x is not a polynomial map.

However, C[x, x−1][ n
√
x] is an étale extension of C[x, x−1]. In this way étale

morphisms can be seen as an algebraic substitute for the failure of an inverse
function theorem in algebraic geometry.

PROPOSITION 3.1
Etale morphisms satisfy ”sorite”, that is, they satisfy the commutative dia-

grams of figure 3.1. In these diagrams, et denotes an étale morphism, f.f.
denotes a faithfully flat morphism and the dashed arrow is the étale morphism
implied by ”sorite”.

With these properties we can define a Grothendieck topology on the collec-
tion of all étale morphisms.

DEFINITION 3.2 The étale site of A, which we will denote by Aet, is
the category with

• objects: the étale extensions A
f- B of A
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A′ ...........
et
- A′ ⊗A B

A

6

et - B

6

B

A .................................................
et

-

et

-

C

et

-

(basechange) (composition)

A′ et- A′ ⊗A B

A

f.f.

6

...................
et

- B

6

A

B .................................................
et

A−alg
-

�

et

B′

et

-

(descent) (morphisms)

FIGURE 3.1: Sorite for étale morphisms.

• morphisms: compatible A-algebra morphisms

A

B1
φ -

�

f 1

B2

f
2

-

By proposition 3.1 all morphisms in Aet are étale. We can turn Aet into a
Grothendieck topology by defining

• cover: a collection C = {B fi- Bi} in Aet such that

spec B = ∪i Im (spec Bi
f- spec B )

DEFINITION 3.3 An étale presheaf of groups on Aet is a functor

G : Aet - groups

In analogy with usual (pre)sheaf notation we denote for each

• object B ∈ Aet the global sections Γ(B,G) = G(B)

• morphism B
φ- C in Aet the restriction map ResBC = G(φ) :

G(B) - G(C) and g | C = G(φ)(g).
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An étale presheaf G is an étale sheaf provided for every B ∈ Aet and every
cover {B - Bi} we have exactness of the equalizer diagram

0 - G(B) -
∏
i

G(Bi)
-
-

∏
i,j

G(Bi ⊗B Bj)

Example 3.2 Constant sheaf
If G is a group, then

G : Aet - groups B 7→ G⊕π0(B)

is a sheaf where π0(B) is the number of connected components of spec B.

Example 3.3 Multiplicative group Gm

The functor
Gm : Aet - groups B 7→ B∗

is a sheaf on Aet.

A sequence of sheaves of Abelian groups on Aet is said to be exact

G′ f- G g- G”

if for every B ∈ Aet and s ∈ G(B) such that g(s) = 0 ∈ G”(B) there is a cover
{B - Bi} in Aet and sections ti ∈ G′(Bi) such that f(ti) = s | Bi.

Example 3.4 Roots of unity µn
We have a sheaf morphism

Gm
(−)n

- Gm

and we denote the kernel with µn. As A is a C-algebra we can identify µn
with the constant sheaf Zn = Z/nZ via the isomorphism ζi 7→ i after choosing
a primitive n-th root of unity ζ ∈ C.

LEMMA 3.1
The Kummer sequence of sheaves of Abelian groups

0 - µn - Gm
(−)n

- Gm
- 0

is exact on Aet (but not necessarily on spec A with the Zariski topology).

PROOF We only need to verify surjectivity. Let B ∈ Aet and b ∈
Gm(B) = B∗. Consider the étale extension B′ = B[t]/(tn − b) of B, then b
has an n-th root over in Gm(B′). Observe that this n-th root does not have
to belong to Gm(B).
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If p is a prime ideal of A we will denote with kp the algebraic closure of the
field of fractions of A/p. An étale neighborhood of p is an étale extension
B ∈ Aet such that the diagram below is commutative

A
nat - kp

B

et

?

-

The analog of the localization Ap for the étale topology is the strict Henseliza-
tion

Ashp = lim- B

where the limit is taken over all étale neighborhoods of p.
Recall that a local algebra L with maximal ideal m and residue map π :

L -- L/m = k is said to be Henselian if the following condition holds. Let
f ∈ L[t] be a monic polynomial such that π(f) factors as g0.h0 in k[t], then f
factors as g.h with π(g) = g0 and π(h) = h0. If L is Henselian then tensoring
with k induces an equivalence of categories between the étale A-algebras and
the étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if
its residue field is algebraically closed. Thus, a strict Henselian ring has no
proper finite étale extensions and can be viewed as a local algebra for the
étale topology.

Example 3.5 The algebraic functions C{x1, . . . , xd}
Consider the local algebra of C[x1, . . . , xd] in the maximal ideal (x1, . . . , xd),
then the Henselization and strict Henselization are both equal to

C{x1, . . . , xd}

the ring of algebraic functions . That is, the subalgebra of C[[x1, . . . , xd]]
of formal power-series consisting of those series φ(x1, . . . , xd) which are alge-
braically dependent on the coordinate functions xi over C. In other words,
those φ for which there exists a nonzero polynomial f(xi, y) ∈ C[x1, . . . , xd, y]
with f(x1, . . . , xd, φ(x1, . . . , xd)) = 0.

These algebraic functions may be defined implicitly by polynomial equa-
tions. Consider a system of equations

fi(x1, . . . , xd; y1, . . . , ym) = 0 for fi ∈ C[xi, yj ] and 1 ≤ i ≤ m

Suppose there is a solution in C with

xi = 0 and yj = yoj
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such that the Jacobian matrix is nonzero

det (
∂fi
∂yj

(0, . . . , 0; yo1, . . . , y
0
m)) 6= 0

Then, the system can be solved uniquely for power series yj(x1, . . . , xd) with
yj(0, . . . , 0) = yoj by solving inductively for the coefficients of the series. One
can show that such implicitly defined series yj(x1, . . . , xd) are algebraic func-
tions and that, conversely, any algebraic function can be obtained in this way.

If G is a sheaf on Aet and p is a prime ideal of A, we define the stalk of G
in p to be

Gp = lim- G(B)

where the limit is taken over all étale neighborhoods of p. One can verify
mono- epi- or isomorphisms of sheaves by checking it in all the stalks.

If A is an affine algebra defined over an algebraically closed field, then it
suffices to verify it in the maximal ideals of A.

Before we define cohomology of sheaves on Aet let us recall the definition of
derived functors . Let A be an Abelian category . An object I of A is said to
be injective if the functor

A - abelian M 7→ HomA(M, I)

is exact. We say that A has enough injectives if, for every object M in A,
there is a monomorphism M ⊂ - I into an injective object.

If A has enough injectives and f : A - B is a left exact functor from A
into a second Abelian category B, then there is an essentially unique sequence
of functors

Ri f : A - B i ≥ 0

called the right derived functors of f satisfying the following properties

• R0 f = f

• Ri I = 0 for I injective and i > 0

• For every short exact sequence in A

0 - M ′ - M - M” - 0

there are connecting morphisms δi : Ri f(M”) - Ri+1 f(M ′) for
i ≥ 0 such that we have a long exact sequence

- Ri f(M) - Ri f(M”)
δi

- Ri+1 f(M ′) - Ri+1 f(M) -
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• For any morphism M - N there are morphisms
Ri f(M) - Ri f(N) for i ≥ 0

In order to compute the objects Ri f(M) define an object N in A to be
f -acyclic if Ri f(M) = 0 for all i > 0. If we have an acyclic resolution of M

0 - M - N0
- N1

- N2
- . . .

by f -acyclic objects Ni, then the objects Ri f(M) are canonically isomorphic
to the cohomology objects of the complex

0 - f(N0) - f(N1) - f(N2) - . . .

One can show that all injectives are f -acyclic and hence that derived objects
of M can be computed from an injective resolution of M .

Now, let Sab(Aet) be the category of all sheaves of Abelian groups on Aet.
This is an Abelian category having enough injectives whence we can form
right derived functors of left exact functors. In particular, consider the global
section functor

Γ : Sab(Aet) - abelian G 7→ G(A)

which is left exact. The right derived functors of Γ will be called the étale co-
homology functors and we denote

Ri Γ(G) = Hi
et(A,G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 - G′ - G - G” - 0, then we have a long exact cohomol-
ogy sequence

. . . - Hi
et(A,G) - Hi

et(A,G”) - Hi+1
et (A,G′) - . . .

If G is a sheaf of non-Abelian groups (written multiplicatively), we cannot
define cohomology groups. Still, one can define a pointed set H1

et(A,G) as
follows. Take an étale cover C = {A - Ai} of A and define a 1-cocycle for
C with values in G to be a family

gij ∈ G(Aij) with Aij = Ai ⊗A Aj

satisfying the cocycle condition

(gij | Aijk)(gjk | Aijk) = (gik | Aijk)

where Aijk = Ai ⊗A Aj ⊗A Ak.
Two cocycles g and g′ for C are said to be cohomologous if there is a family

hi ∈ G(Ai) such that for all i, j ∈ I we have

g′ij = (hi | Aij)gij(hj | Aij)−1
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This is an equivalence relation and the set of cohomology classes is written
as H1

et(C,G). It is a pointed set having as its distinguished element the coho-
mology class of gij = 1 ∈ G(Aij) for all i, j ∈ I.

We then define the non-Abelian first cohomology pointed set as

H1
et(A,G) = lim- H1

et(C,G)

where the limit is taken over all étale coverings of A. It coincides with the
previous definition in case G is Abelian.

A sequence 1 - G′ - G - G” - 1 of sheaves of groups on Aet
is said to be exact if for every B ∈ Aet we have

• G′(B) = Ker G(B) - G”(B)

• For every g” ∈ G”(B) there is a cover {B - Bi} in Aet and sections
gi ∈ G(Bi) such that gi maps to g” | Bi.

PROPOSITION 3.2
For an exact sequence of groups on Aet

1 - G′ - G - G” - 1

there is associated an exact sequence of pointed sets

1 - G′(A) - G(A) - G”(A)
δ- H1

et(A,G′) -

- H1
et(A,G) - H1

et(A,G”) ........- H2
et(A,G′)

where the last map exists when G′ is contained in the center of G (and there-
fore is Abelian whence H2 is defined).

PROOF The connecting map δ is defined as follows. Let g” ∈ G”(A) and
let C = {A - Ai} be an étale covering of A such that there are gi ∈ G(Ai)
that map to g | Ai under the map G(Ai) - G”(Ai). Then, δ(g) is the class
determined by the one cocycle

gij = (gi | Aij)−1(gj | Aij)

with values in G′. The last map can be defined in a similar manner, the other
maps are natural and one verifies exactness.

The main applications of this non-Abelian cohomology to noncommutative
algebra is as follows. Let Λ be a not necessarily commutative A-algebra and
M an A-module. Consider the sheaves of groups Aut(Λ) resp. Aut(M) on Aet
associated to the presheaves

B 7→ AutB−alg(Λ⊗A B) resp. B 7→ AutB−mod(M ⊗A B)
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for all B ∈ Aet. A twisted form of Λ (resp. M) is an A-algebra Λ′ (resp. an
A-module M ′) such that there is an étale cover C = {A - Ai} of A such
that there are isomorphisms{

Λ⊗A Ai
φi- Λ′ ⊗A Ai

M ⊗A Ai
ψi- M ′ ⊗A Ai

of Ai-algebras (resp. Ai-modules). The set of A-algebra isomorphism classes
(resp. A-module isomorphism classes) of twisted forms of Λ (resp. M) is
denoted by TwA(Λ) (resp. TwA(M)). To a twisted form Λ′ one associates a
cocycle on C

αΛ′ = αij = φ−1
i ◦ φj

with values in Aut(Λ). Moreover, one verifies that two twisted forms are
isomorphic as A-algebras if their cocycles are cohomologous. That is, there
are embeddings {

TwA(Λ) ⊂ - H1
et(A, Aut(Λ))

TwA(M) ⊂ - H1
et(A, Aut(M))

In favorable situations one can even show bijectivity. In particular, this is the
case if the automorphisms group is a smooth affine algebraic group-scheme.

Example 3.6 Azumaya algebras
Consider Λ = Mn(A), then the automorphism group is PGLn and twisted
forms of Λ are classified by elements of the cohomology group

H1
et(A, PGLn)

These twisted forms are precisely the Azumaya algebras of rank n2 with center
A. When A is an affine commutative C-algebra and Λ is an A-algebra with
center A, then Λ is an Azumaya algebra of rank n2 if and only if

Λ
ΛmΛ

'Mn(C)

for every maximal ideal m of A.

Azumaya algebras arise in representation theory as follows. Let A be a
noncommutative affine C-algebra and assume that the following two conditions
are satisfied

• A has a simple representation of dimension n,

• repn A is an irreducible variety.
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Then
∮
n
A = C[repn A]GLn is a domain (whence issn A is irreducible) and

we have an onto trace preserving algebra map corresponding to the simple
representation ∫

n

A = Mn(C[repnA])GLn
φ-- Mn(C)

Lift the standard basis eij of Mn(C) to elements aij ∈
∫
n
A and consider the

determinant d of the n2×n2 matrix (tr(aijakl))ij,kl with values in
∮
n
A. Then

d 6= 0 and consider the Zariski open affine subset of issn A

X(d) = {
∫
n

A
ψ- Mn(C) | ψ semisimple and det(tr(ψ(aij)ψ(akl))) 6= 0}

If ψ ∈ X(d), then ψ :
∫
n
A - Mn(C) is onto as the ψ(aij) form a basis of

Mn(C) whence ψ determines a simple n-dimensional representation.

PROPOSITION 3.3
With notations as above,

1. The localization of
∫
n
A at the central multiplicative set {1, d, d2, . . .} is

an affine Azumaya algebra with center C[X(d)], which is the localization
of

∮
n
A at this multiplicative set.

2. The restriction of the quotient map repn A
π-- issn A to the open

set π−1(X(d)) is a principal PGLn-fibration and determines an element
in

H1
et(C[X(d)], PGLn)

giving the class of the Azumaya algebra.

PROOF (1) : If m = Ker ψ is the maximal ideal of C[X(d)] corresponding
to the semisimple representation ψ :

∫
n
A - Mn(C), then we have seen that

the quotient ∫
n
A∫

n
Am

∫
n
A
'Mn(C)

whence
∫
n
A ⊗H

n
A C[X(d)] is an Azumaya algebra. (2) will follow from the

theory of Knop-Luna slices and will be proved in chapter 5.

An Azumaya algebra over a field is a central simple algebra. Under the
above conditions we have that∫

n

A⊗H
n
A C(issn A)

is a central simple algebra over the function field of issn A and hence deter-
mines a class in its Brauer group, which is an important birational invariant.
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In the following section we recall the cohomological description of Brauer
groups of fields.

3.2 Central simple algebras

Let K be a field of characteristic zero, choose an algebraic closure K with
absolute Galois group GK = Gal(K/K).

LEMMA 3.2
The following are equivalent:

1. K - A is étale

2. A⊗K K ' K× . . .×K

3. A =
∏
Li where Li/K is a finite field extension

PROOF Assume (1), then A = K[x1, . . . , xn]/(f1, . . . , fn) where fi have
invertible Jacobian matrix. Then A ⊗ K is a smooth commutative algebra
(hence reduced) of dimension 0 so (2) holds.

Assume (2), then

HomK−alg(A,K) ' HomK−alg(A⊗K,K)

has dimK(A ⊗ K) elements. On the other hand we have by the Chinese
remainder theorem that

A/Jac A =
∏
i

Li

with Li a finite field extension of K. However,

dimK(A⊗K) =
∑
i

dimK(Li) = dimK(A/Jac A) ≤ dimK(A)

and as both ends are equal A is reduced and hence A =
∏
i Li whence (3).

Assume (3), then each Li = K[xi]/(fi) with ∂fi/∂xi invertible in Li. But
then A =

∏
Li is étale over K whence (1).

To every finite étale extension A =
∏
Li we can associate the finite set

rts(A) = HomK−alg(A,K) on which the Galois group GK acts via a finite
quotient group. If we write A = K[t]/(f), then rts(A) is the set of roots
in K of the polynomial f with obvious action by GK . Galois theory, in the
interpretation of Grothendieck, can now be stated as follows.
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PROPOSITION 3.4
The functor

Ket
rts(−)- finite GK − sets

is an antiequivalence of categories.

We will now give a similar interpretation of the Abelian sheaves on Ket. Let
G be a presheaf on Ket. Define

MG = lim- G(L)

where the limit is taken over all subfields L ⊂ - K, which are finite over
K. The Galois group GK acts on G(L) on the left through its action on L
whenever L/K is Galois. Hence, GK acts an MG and MG = ∪MH

G where
H runs through the open subgroups (that is, containing a normal subgroup
having a finite quotient) of GK . That is, MG is a continuous GK-module .

Conversely, given a continuous GK-module M we can define a presheaf GM

on Ket such that

• GM (L) = MH where H = GL = Gal(K/L).

• GM (
∏
Li) =

∏
GM (Li).

One verifies that GM is a sheaf of Abelian groups on Ket.

THEOREM 3.1
There is an equivalence of categories

S(Ket)
-� GK − mod

induced by the correspondences G 7→ MG and M 7→ GM . Here, GK − mod is
the category of continuous GK-modules.

PROOF A GK-morphism M - M ′ induces a morphism of sheaves
GM

- GM ′ . Conversely, if H is an open subgroup of GK with L = KH ,
then if G φ- G′ is a sheaf morphism, φ(L) : G(L) - G′(L) commutes
with the action of GK by functoriality of φ. Therefore, lim- φ(L) is a
GK-morphism MG - MG′ .

One verifies easily that HomGK
(M,M ′) - Hom(GM ,GM ′) is an iso-

morphism and that the canonical map G - GMG is an isomorphism.

In particular, we have that G(K) = G(K)GK for every sheaf G of Abelian
groups on Ket and where G(K) = MG. Hence, the right derived functors of Γ
and (−)G coincide for Abelian sheaves.
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The category GK−mod of continuous GK-modules is Abelian having enough
injectives. Therefore, the left exact functor

(−)G : GK − mod - abelian

admits right derived functors. They are called the Galois cohomology groups
and denoted

Ri MG = Hi(GK ,M)

Therefore, we have the following.

PROPOSITION 3.5
For any sheaf of Abelian groups G on Ket we have a group isomorphism

Hi
et(K,G) ' Hi(GK ,G(K))

Hence, étale cohomology is a natural extension of Galois cohomology to
arbitrary commutative algebras. The following definition-characterization of
central simple algebras is classical, see for example [84].

PROPOSITION 3.6
Let A be a finite dimensional K-algebra. The following are equivalent:

1. A has no proper twosided ideals and the center of A is K.

2. AK = A⊗K K 'Mn(K) for some n.

3. AL = A ⊗K L ' Mn(L) for some n and some finite Galois extension
L/K.

4. A ' Mk(D) for some k where D is a division algebra of dimension l2

with center K.

The last part of this result suggests the following definition. Call two central
simple algebras A and A′ equivalent if and only if A 'Mk(∆) and A′ 'Ml(∆)
with ∆ a division algebra. From the second characterization it follows that
the tensor product of two central simple K-algebras is again central simple.
Therefore, we can equip the set of equivalence classes of central simple algebras
with a product induced from the tensorproduct. This product has the class
[K] as unit element and [∆]−1 = [∆opp], the opposite algebra as ∆⊗K ∆opp '
EndK(∆) = Ml2(K). This group is called the Brauer group and is denoted
Br(K). We will quickly recall its cohomological description, all of which is
classical.
GLr is an affine smooth algebraic group defined over K and is the auto-

morphism group of a vector space of dimension r. It defines a sheaf of groups
on Ket that we will denote by GLr. Using the fact that the first cohomology
classifies twisted forms of vector spaces of dimension r we have the following.
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LEMMA 3.3
H1
et(K, GLr) = H1(GK , GLr(K)) = 0

In particular, we have ”Hilbert’s theorem 90”

H1
et(K,Gm) = H1(GK ,K∗) = 0

PROOF The cohomology group classifies K-module isomorphism classes
of twisted forms of r-dimensional vector spaces over K. There is just one such
class.

PGLn is an affine smooth algebraic group defined over K and it is the
automorphism group of the K-algebra Mn(K). It defines a sheaf of groups
on Ket denoted by PGLn. By proposition 3.6 we know that any central simple
K-algebra ∆ of dimension n2 is a twisted form of Mn(K).

LEMMA 3.4
The pointed set of K-algebra isomorphism classes of central simple algebras
of dimension n2 over K coincides with the cohomology set

H1
et(K, PGLn) = H1(GK , PGLn(K))

THEOREM 3.2
There is a natural inclusion

H1
et(K, PGLn) ⊂ - H2

et(K,µn) = Brn(K)

where Brn(K) is the n-torsion part of the Brauer group of K. Moreover,

Br(K) = H2
et(K,Gm)

is a torsion group.

PROOF Consider the exact commutative diagram of sheaves of groups on
Ket of figure 3.2. Taking cohomology of the second exact sequence we obtain

GLn(K)
det- K∗ - H1

et(K, SLn) - H1
et(K, GLn)

where the first map is surjective and the last term is zero, whence

H1
et(K, SLn) = 0

Taking cohomology of the first vertical exact sequence we get

H1
et(K, SLn) - H1

et(K, PGLn) - H2
et(K,µn)
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1 1

1 - µn

? - Gm

?
(−)n- Gm - 1

||

1 - SLn

?
- GLn

?
det- Gm - 1

PGLn

?
= PGLn

?

1
?

1
?

FIGURE 3.2: Brauer group diagram.

from which the first claim follows.
As for the second assertion, taking cohomology of the first exact sequence

we get

H1
et(K,Gm) - H2

et(K,µn) - H2
et(K,Gm)

n.- H2
et(K,Gm)

By Hilbert 90, the first term vanishes and hence H2
et(K,µn) is equal to the

n-torsion of the group

H2
et(K,Gm) = H2(GK ,K∗) = Br(K)

where the last equality follows from the crossed product result, see, for exam-
ple, [84].

So far, the field K was arbitrary. If K is of transcendence degree d, this
will put restrictions on the ”size” of the Galois group GK . In particular this
will enable us to show in section 3.4 that Hi(GK , µn) = 0 for i > d. But first,
we need to recall the definition of spectral sequences.

3.3 Spectral sequences

Let A,B and C be Abelian categories such that A and B have enough
injectives and consider left exact functors

A f- B g- C
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Ep,q1 =

6

-•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

- - - - -

- - - - -

- - - - -

- - - - -

q

p

FIGURE 3.3: Level 1.

Let the functors be such that f maps injectives of A to g-acyclic objects in
B, that is, Ri g(f I) = 0 for all i > 0. Then, there are connections between
the objects

Rp g(Rq f(A)) and Rn gf(A)

for all objects A ∈ A. These connections can be summarized by giving a
spectral sequence

THEOREM 3.3
Let A,B, C be Abelian categories with A,B having enough injectives and left
exact functors

A f- B g- C

such that f takes injectives to g-acyclics.
Then, for any object A ∈ A there is a spectral sequence

Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A)

In particular, there is an exact sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) - . . .

Moreover, if f is an exact functor, then we have

Rp gf(A) ' Rp g(f(A))

A spectral sequence Ep.q2 =⇒ En (or Ep,q1 =⇒ En) consists of the following
data:

1. A family of objects Ep,qr in an Abelian category for p, q, r ∈ Z such that
p, q ≥ 0 and r ≥ 2 (or r ≥ 1).

2. A family of morphisms in the Abelian category

dp.qr : Ep.qr - Ep+r,q−r+1
r



Etale Technology 125

Ep,q2 =

6

-•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

HHHj
HHHj

HHHj
HHHj

HHHj

HHHj
HHHj

HHHj
HHHj

HHHj

H
HHj

H
HHj

H
HHj

H
HHj

H
HHj

HHHj
HHHj

HHHj
HHHj

HHHj

q

p

FIGURE 3.4: Level 2.

satisfying the complex condition

dp+r,q−r+1
r ◦ dp,qr = 0

and where we assume that dp.qr = 0 if any of the numbers p, q, p + r or
q − r + 1 is < 1. At level one we have the situation of figure 3.3. At
level two we have the situation of figure 3.4

3. The objects Ep,qr+1 on level r + 1 are derived from those on level r by
taking the cohomology objects of the complexes, that is

Epr+1 = Ker dp,qr / Im dp−r,q+r−1
r

At each place (p, q) this process converges as there is an integer r0 de-
pending on (p, q) such that for all r ≥ r0 we have dp.qr = 0 = dp−r,q+r−1

r .
We then define

Ep,q∞ = Ep,qr0 (= Ep,qr0+1 = . . .)

Observe that there are injective maps E0,q
∞

⊂ - E0,q
2 .

4. A family of objects En for integers n ≥ 0 and for each we have a filtration

0 ⊂ Enn ⊂ Enn−1 ⊂ . . . ⊂ En1 ⊂ En0 = En

such that the successive quotients are given by

Enp / E
n
p+1 = Ep,n−p∞

That is, the terms Ep,q∞ are the composition terms of the limiting terms
Ep+q. Pictorially,

Ep,q∞ =

6

-•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

@@ @@ @@ @@ @@

@@ @@ @@ @@ @@

@@ @@ @@ @@ @@

@@ @@ @@ @@ @@

q

pE0 E1 E2 E3 E4
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For small n one can make the relation between En and the terms Ep,q2

explicit. First note that
E0,0

2 = E0,0
∞ = E0

Also, E1
1 = E1,0

∞ = E1,0
2 and E1/E1

1 = E0,1
∞ = Ker d0,1

2 . This gives an exact
sequence

0 - E1,0
2

- E1 - E0,1
2

d0,1
2- E2,0

2

Further, E2 ⊃ E2
1 ⊃ E2

2 where

E2
2 = E2,0

∞ = E2,0
2 / Im d0,1

2

and E2
1/E

2
2 = E1,1

∞ = Ker d1,1
2 whence we can extend the above sequence to

. . . - E0,1
2

d0,1
2- E2,0

2
- E2

1
- E1,1

2

d1,1
2- E3,0

2

as E2/E2
1 = E0,2

∞
⊂ - E0,2

2 we have that E2
1 = Ker (E2 - E0,2

2 ). If we
specialize to the spectral sequence Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A) we
obtain the exact sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) -

- E2
1

- R1 g(R1 f(A)) - R3 g(f(A))

where E2
1 = Ker (R2 gf(A) - g(R2 f(A))).

An important spectral sequence is the Leray spectral sequence . Assume we
have an algebra morphism A

f- A′ and a sheaf of groups G on A′et. We
define the direct image of G under f to be the sheaf of groups f∗ G on Aet
defined by

f∗ G(B) = G(B ⊗A A′)

for all B ∈ Aet (recall that B ⊗A A′ ∈ A′et so the right-hand side is well
defined).

This gives us a left exact functor

f∗ : Sab(A′et) - Sab(Aet)

and therefore we have right-derived functors of it Ri f∗. If G is an Abelian
sheaf on A′et, then Ri f∗G is a sheaf on Aet. One verifies that its stalk in a
prime ideal p is equal to

(Ri f∗G)p = Hi
et(A

sh
p ⊗A A′,G)

where the right-hand side is the direct limit of cohomology groups taken over
all étale neighborhoods of p. We can relate cohomology of G and f∗G by the
following.
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THEOREM 3.4

(Leray spectral sequence) If G is a sheaf of Abelian groups on A′et and
A

f- A′ an algebra morphism, then there is a spectral sequence

Ep,q2 = Hp
et(A,R

q f∗G) =⇒ Hn
et(A,G)

In particular, if Rj f∗G = 0 for all j > 0, then for all i ≥ 0 we have isomor-
phisms

Hi
et(A, f∗G) ' Hi

et(A
′,G)

3.4 Tsen and Tate fields

In this section we will use spectral sequences to control the size of the Brauer
group of a function field in terms of its transcendence degree.

DEFINITION 3.4 A field K is said to be a Tsend-field if every homo-
geneous form of degree deg with coefficients in K and n > degd variables has
a nontrivial zero in K.

For example, an algebraically closed field K is a Tsen0-field as any form in
n-variables defines a hypersurface in Pn−1

K . In fact, algebraic geometry tells
us a stronger story

LEMMA 3.5

Let K be algebraically closed. If f1, . . . , fr are forms in n variables over K
and n > r, then these forms have a common nontrivial zero in K.

PROOF Each fi defines a hypersurface V (fi) ⊂ - Pn−1
K . The intersection

of r hypersurfaces has dimension ≥ n− 1− r from which the claim follows.

We want to extend this fact to higher Tsen-fields. The proof of the following
result is technical inequality manipulation, see, for example, [97].

PROPOSITION 3.7

Let K be a Tsend-field and f1, . . . , fr forms in n variables of degree deg. If
n > rdegd, then they have a nontrivial common zero in K.

For our purposes the main interest in Tsen-fields comes from the following.
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THEOREM 3.5
Let K be of transcendence degree d over an algebraically closed field C, then
K is a Tsend-field.

PROOF First we claim that the purely transcendental field C(t1, . . . , td)
is a Tsend-field. By induction we have to show that if L is Tsenk, then L(t)
is Tsenk+1.

By homogeneity we may assume that f(x1, . . . , xn) is a form of degree
deg with coefficients in L[t] and n > degk+1. For fixed s we introduce new
variables y(s)

ij with i ≤ n and 0 ≤ j ≤ s such that

xi = y
(s)
i0 + y

(s)
i1 t+ . . .+ y

(s)
is t

s

If r is the maximal degree of the coefficients occurring in f , then we can write

f(xi) = f0(y
(s)
ij ) + f1(y

(s)
ij )t+ . . .+ fdeg.s+r(y

(s)
ij )tdeg.s+r

where each fj is a form of degree deg in n(s+1)-variables. By the proposition
above, these forms have a common zero in L provided

n(s+ 1) > degk(ds+ r + 1)⇐⇒ (n− degi+1)s > degi(r + 1)− n

which can be satisfied by taking s large enough. the common nontrivial zero
in L of the fj , gives a nontrivial zero of f in L[t].

By assumption, K is an algebraic extension of C(t1, . . . , td) which by the
above argument is Tsend. As the coefficients of any form over K lie in a finite
extension E of C(t1, . . . , td) it suffices to prove that E is Tsend.

Let f(x1, . . . , xn) be a form of degree deg in E with n > degd. Introduce
new variables yij with

xi = yi1e1 + . . . yikek

where ei is a basis of E over C(t1, . . . , td). Then,

f(xi) = f1(yij)e1 + . . .+ fk(yij)ek

where the fi are forms of degree deg in k.n variables over C(t1, . . . , td). Be-
cause C(t1, . . . , td) is Tsend, these forms have a common zero as k.n > k.degd.
Finding a nontrivial zero of f in E is equivalent to finding a common nontrivial
zero to the f1, . . . , fk in C(t1, . . . , td), done.

A direct application of this result is Tsen’s theorem.

THEOREM 3.6
Let K be the function field of a curve C defined over an algebraically closed
field. Then, the only central simple K-algebras are Mn(K). That is, Br(K) =
1.
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PROOF Assume there exists a central division algebra ∆ of dimension
n2 over K. There is a finite Galois extension L/K such that ∆⊗L = Mn(L).
If x1, . . . , xn2 is a K-basis for ∆, then the reduced norm of any x ∈ ∆

N(x) = det(x⊗ 1)

is a form in n2 variables of degree n. Moreover, as x ⊗ 1 is invariant under
the action of Gal(L/K) the coefficients of this form actually lie in K.

By the main result, K is a Tsen1-field and N(x) has a nontrivial zero
whenever n2 > n. As the reduced norm is multiplicative, this contradicts
N(x)N(x−1) = 1. Hence, n = 1 and the only central division algebra is K
itself.

If K is the function field of a surface, we have the following.

PROPOSITION 3.8
Let K be the function field of a surface defined over an algebraically closed
field. If ∆ is a central simple K-algebra of dimension n2, then the reduced
norm map

N : ∆ - K

is surjective.

PROOF Let e1, . . . , en2 be a K-basis of ∆ and k ∈ K, then

N(
∑

xiei)− kxnn2+1

is a form of degree n in n2 + 1 variables. Since K is a Tsen2 field, it has a
nontrivial solution (x0

i ), but then, δ = (
∑
x0
i ei)x

−1
n2+1 has reduced norm equal

to k.

From the cohomological description of the Brauer group it is clear that we
need to have some control on the absolute Galois group GK = Gal(K/K).
We will see that finite transcendence degree forces some cohomology groups
to vanish.

DEFINITION 3.5 The cohomological dimension of a group G, cd(G) ≤
d if and only if Hr(G,A) = 0 for all r > d and all torsion modules A ∈ G-mod.

DEFINITION 3.6 A field K is said to be a Tated-field if the absolute
Galois group GK = Gal(K/K) satisfies cd(G) ≤ d.

First, we will reduce the condition cd(G) ≤ d to a more manageable one.
To start, one can show that a profinite group G (that is, a projective limit of
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finite groups, see [97] for more details) has cd(G) ≤ d if and only if

Hd+1(G,A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we
can decompose the cohomology in its p-primary parts and relate their vanish-
ing to the cohomological dimension of the p-Sylow subgroups Gp of G. This
problem can then be verified by computing cohomology of finite simple Gp-
modules of p-power order, but for a profinite p-group there is just one such
module, namely, Z/pZ with the trivial action.

Combining these facts we have the following manageable criterium on co-
homological dimension.

PROPOSITION 3.9
cd(G) ≤ d if Hd+1(G,Z/pZ) = 0 for the simple G-modules with trivial action
Z/pZ.

We will need the following spectral sequence in Galois cohomology

PROPOSITION 3.10
(Hochschild-Serre spectral sequence) If N is a closed normal subgroup of a
profinite group G, then

Ep,q2 = Hp(G/N,Hq(N,A)) =⇒ Hn(G,A)

holds for every continuous G-module A.

Now, we are in a position to state and prove Tate’s theorem.

THEOREM 3.7
Let K be of transcendence degree d over an algebraically closed field, then K
is a Tated-field.

PROOF Let C denote the algebraically closed basefield, then K is alge-
braic over C(t1, . . . , td) and therefore

GK ⊂ - GC(t1,...,td)

Thus, K is Tated if C(t1, . . . , td) is Tated. By induction it suffices to prove

If cd(GL) ≤ k then cd(GL(t)) ≤ k + 1

Let L be the algebraic closure of L and M the algebraic closure of L(t). As L(t)
and L are linearly disjoint over L we have the following diagram of extensions
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and Galois groups

L ⊂ - L(t) ⊂
GL(t) - M

L

GL

∪

6

⊂ - L(t)

GL

∪

6

⊂

GL
(t
)

-

where GL(t)/GL(t) ' GL.
We claim that cd(GL(t)) ≤ 1. Consider the exact sequence of GL(t)-modules

0 - µp - M∗ (−)p

- M∗ - 0

where µp is the subgroup (of C∗) of p-roots of unity. As GL(t) acts trivially
on µp it is after a choice of primitive p-th root of one isomorphic to Z/pZ.
Taking cohomology with respect to the subgroup GL(t) we obtain

0 = H1(GL(t),M∗) - H2(GL(t),Z/pZ) - H2(GL(t),M∗) = Br(L(t))

But the last term vanishes by Tsen’s theorem as L(t) is the function-
field of a curve defined over the algebraically closed field L. Therefore,
H2(GL(t),Z/pZ) = 0 for all simple modules Z/pZ, whence cd(GL(t)) ≤ 1.

By the inductive assumption we have cd(GL) ≤ k and now we are going to
use exactness of the sequence

0 - GL - GL(t)
- GL(t)

- 0

to prove that cd(GL(t)) ≤ k + 1. For, let A be a torsion GL(t)-module and
consider the Hochschild-Serre spectral sequence

Ep,q2 = Hp(GL,Hq(GL(t), A)) =⇒ Hn(GL(t), A)

By the restrictions on the cohomological dimensions of GL and GL(t) the level
two term has following shape

Ep,q2 =

6

-•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

. . .

. . .

. . .

. . .

@
@

@
@

@
@

@
q

k k + 1 k + 2

p

2

where the only nonzero groups are lying in the lower rectangular region.
Therefore, all Ep,q∞ = 0 for p + q > k + 1. Now, all the composition fac-
tors of Hk+2(GL(t), A) are lying on the indicated diagonal line and hence are
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zero. Thus, Hk+2(GL(t), A) = 0 for all torsion GL(t)-modules A and hence
cd(GL(t)) ≤ k + 1.

THEOREM 3.8
If A is a constant sheaf of an Abelian torsion group A on Ket, then

Hi
et(K,A) = 0

whenever i > trdegC(K).

3.5 Coniveau spectral sequence

In this section we will describe a particularly useful spectral sequence. Con-
sider the setting k ��π A ⊂

i- K where A is a discrete valuation ring in K
with residue field A/m = k. As always, we will assume that A is a C-algebra.
By now we have a grip on the Galois cohomology groups

Hi
et(K,µ

⊗l
n ) and Hi

et(k, µ
⊗l
n )

and we will use this information to compute the étale cohomology groups

Hi
et(A,µ

⊗l
n )

Here, µ⊗ln = µn ⊗ . . .⊗ µn︸ ︷︷ ︸
l

where the tensorproduct is as sheafs of invertible

Zn = Z/nZ-modules.
We will consider the Leray spectral sequence for i and hence have to com-

pute the derived sheaves of the direct image

LEMMA 3.6

1. R0 i∗µ
⊗l
n ' µ⊗ln on Aet.

2. R1 i∗µ
⊗l
n ' µ⊗l−1

n concentrated in m.

3. Rj i∗µ⊗ln ' 0 whenever j ≥ 2.

PROOF The strict Henselizations of A at the two primes {0,m} are resp.

Ash0 ' K and Ashm ' k{t}
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0 0 0 . . .

H0(k, µ⊗l−1
n ) H1(k, µ⊗l−1

n ) H2(k, µ⊗l−1
n ) . . .

H0(A, µ⊗l
n ) H1(A, µ⊗l

n ) H2(A, µ⊗l
n ) . . .

FIGURE 3.5: Second term of Leray sequence.

where K (resp. k) is the algebraic closure of K (resp. k). Therefore,

(Rj i∗µ⊗ln )0 = Hj
et(K, µ⊗ln )

which is zero for i ≥ 1 and µ⊗ln for j = 0. Further, Ashm ⊗AK is the field of frac-
tions of k{t} and hence is of transcendence degree one over the algebraically
closed field k, whence

(Rj i∗µ⊗ln )m = Hj
et(L, µ

⊗l
n )

which is zero for j ≥ 2 because L is Tate1.
For the field-tower K ⊂ L ⊂ K we have that GL = Ẑ = lim� µm be-

cause the only Galois extensions of L are the Kummer extensions obtained by
adjoining m

√
t. But then,

H1
et(L, µ

⊗l
n ) = H1(Ẑ, µ⊗ln (K)) = Hom(Ẑ, µ⊗ln (K)) = µ⊗l−1

n

from which the claims follow.

THEOREM 3.9
We have a long exact sequence

0 - H1(A,µ⊗ln ) - H1(K,µ⊗ln ) - H0(k, µ⊗l−1
n ) -

H2(A,µ⊗ln ) - H2(K,µ⊗ln ) - H1(k, µ⊗l−1
n ) - . . .

PROOF By the foregoing lemma, the second term of the Leray spectral
sequence for i∗µ⊗ln is depicted in figure 3.5 with connecting morphisms

Hi−1
et (k, µ⊗l−1

n )
αi- Hi+1

et (A,µ⊗ln )

The spectral sequences converges to its limiting term which looks like

0 0 0 . . .

Ker α1 Ker α2 Ker α3 . . .

H0(A, µ⊗l
n ) H1(A, µ⊗l

n ) Coker α1 . . .
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and the Leray sequence gives the short exact sequences

0 - H1
et(A,µ

⊗l
n ) - H1

et(K,µ
⊗l
n ) - Ker α1

- 0

0 - Coker α1
- H2

et(K,µ
⊗l
n ) - Ker α2

- 0

0 - Coker αi−1
- Hi

et(K,µ
⊗l
n ) - Ker αi - 0

and gluing these sequences gives us the required result.

In particular, if A is a discrete valuation ring of K with residue field k we
have for each i a connecting morphism

Hi
et(K,µ

⊗l
n )

∂i,A- Hi−1
et (k, µ⊗l−1

n )

Like any other topology, the étale topology can be defined locally on any
scheme X. That is, we call a morphism of schemes

Y
f- X

an étale extension (resp. cover) if locally f has the form

fa | Ui : Ai = Γ(Ui,OX) - Bi = Γ(f−1(Ui),OY )

with Ai - Bi an étale extension (resp. cover) of algebras.
Again, we can construct the étale site of X locally and denote it with Xet.

Presheaves and sheaves of groups on Xet are defined similarly and the right
derived functors of the left exact global sections functor

Γ : Sab(Xet) - abelian

will be called the cohomology functors and we denote

Ri Γ(G) = Hi
et(X,G)

From now on we restrict to the case when X is a smooth, irreducible projec-
tive variety of dimension d over C. In this case, we can initiate the computa-
tion of the cohomology groups Hi

et(X,µ
⊗l
n ) via Galois cohomology of function

fields of subvarieties using the coniveau spectral sequence.

THEOREM 3.10
Let X be a smooth irreducible variety over C. Let X(p) denote the set of
irreducible subvarieties x of X of codimension p with function field C(x),
then there exists a coniveau spectral sequence

Ep.q1 =
⊕

x∈X(p)

Hq−p
et (C(x), µ⊗l−pn ) =⇒ Hp+q

et (X,µ⊗ln )
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Ep,q1 =

6

• • • • •
• • • • •
• • • • •

• • • • •
• • • • •

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

. . .

. . .

. . .

. . .

. . .

. . .

�
�

�
�

�
�

�
�

q

p

d

FIGURE 3.6: Coniveau spectral sequence

In contrast to the spectral sequences used before, the existence of the
coniveau spectral sequence by no means follows from general principles. In
it, a lot of heavy machinery on étale cohomology of schemes is encoded. In
particular,

• cohomology groups with support of a closed subscheme, see, for example
[82, p. 91-94], and

• cohomological purity and duality, see [82, p. 241-252]

a detailed exposition of which would take us too far afield. For more details
we refer the reader to [22].

Using the results on cohomological dimension and vanishing of Galois co-
homology of µ⊗kn when the index is larger than the transcendence degree, we
see that the coniveau spectral sequence has shape as in figure 3.6 where the
only nonzero terms are in the indicated region.

Let us understand the connecting morphisms at the first level, a typical
instance of which is⊕

x∈X(p)

Hi(C(x), µ⊕l−pn ) -
⊕

y∈X(p+1)

Hi−1(C(y), µ⊕l−p−1
n )

and consider one of the closed irreducible subvarieties x of X of codimension
p and one of those y of codimension p+ 1. Then, either y is not contained in
x in which case the component map

Hi(C(x), µ⊕l−pn ) - Hi−1(C(y), µ⊕l−p−1
n )

is the zero map. Or, y is contained in x and hence defines a codimension one
subvariety of x. That is, y defines a discrete valuation on C(x) with residue
field C(y). In this case, the above component map is the connecting morphism
defined above.

In particular, let K be the function field of X. Then we can define the
unramified cohomology groups

F i,ln (K/C) = Ker Hi(K,µ⊗ln )
⊕∂i,A- ⊕Hi−1(kA, µ⊗l−1

n )
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µn 0 0 0

0 0

0

00 0 0

H1(C(S), µn) ⊕C Zn

H2(C(S), µn) ⊕P µ−1
n⊕C H1(C(S), Zn)

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

FIGURE 3.7: First term of coniveau spectral sequence for S.

where the sum is taken over all discrete valuation rings A ofK (or equivalently,
the irreducible codimension one subvarieties of X) with residue field kA. By
definition, this is a (stable) birational invariant of X. In particular, if X is
(stably) rational over C, then

F i,ln (K/C) = 0 for all i, l ≥ 0

3.6 The Artin-Mumford exact sequence

The coniveau spectral sequence allows us to control the Brauer group of
function fields of surfaces. This result, due to Michael Artin and David Mum-
ford, was used by them to construct unirational nonrational varieties. Our
main application of the description is to classify in chapter 5 the Brauer classes
which do admit a Cayley-smooth noncommutative model. It will turn out that
even in the case of surfaces, not every central simple algebra over the function
field allows such a noncommutative model. Let S be a smooth irreducible
projective surface.

DEFINITION 3.7 S is called simply connected if every étale cover
Y - S is trivial, that is, Y is isomorphic to a finite disjoint union of
copies of S.

The first term of the coniveau spectral sequence of S has the shape of
figure 3.7 where C runs over all irreducible curves on S and P over all points
of S.
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µn ' µn 0

0 - C∗
?

- C(S)∗
?

div- ⊕C Z
?

- 0

0 - C∗
?

- C(S)∗

(−)n

?
div- ⊕C Z

n.

?
- 0

0
?

⊕C Zn

?
' ⊕C Zn

?

FIGURE 3.8: Divisors of rational functions on S.

LEMMA 3.7
For any smooth S we have H1(C(S), µn) -- ⊕C Zn. If S is simply con-
nected, H1

et(S, µn) = 0.

PROOF Using the Kummer sequence

1 - µn - Gm
(−)- Gm

- 1

and Hilbert 90 we obtain that

H1
et(C(S), µn) = C(S)∗/C(S)∗n

The first claim follows from the exact diagram describing divisors of rational
functions given in figure 3.8 By the coniveau spectral sequence we have that
H1
et(S, µn) is equal to the kernel of the morphism

H1
et(C(S), µn)

γ- ⊕C Zn

and in particular, H1(S, µn) ⊂ - H1(C(S), µn).
As for the second claim, an element in H1(S, µn) determines a cyclic exten-

sion L = C(S) n
√
f with f ∈ C(S)∗/C(S)∗n such that in each field component

Li of L there is an étale cover Ti - S with C(Ti) = Li. By assumption
no nontrivial étale covers exist whence f = 1 ∈ C(S)∗/C(S)∗n.

If we invoke another major tool in étale cohomology of schemes, Poincaré
duality , see, for example [82, VI,§11], we obtain the following information on
the cohomology groups for S.

PROPOSITION 3.11
(Poincaré duality for S) If S is simply connected, then
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1. H0
et(S, µn) = µn

2. H1
et(S, µn) = 0

3. H3
et(S, µn) = 0

4. H4
et(S, µn) = µ−1

n

PROOF The third claim follows from the second as both groups are
dual to each other. The last claim follows from the fact that for a smooth
irreducible projective variety X of dimension d

H2d
et (X,µn) ' µ⊗1−d

n

We are now in a position to state and prove the important issue.

THEOREM 3.11
(Artin-Mumford exact sequence) If S is a simply connected smooth projective
surface, then the sequence

0 - Brn(S) - Brn(C(S)) - ⊕C C(C)∗/C(C)∗n -

- ⊕P µ−1
n

- µ−1
n

- 0

is exact.

PROOF The top complex in the first term of the coniveau spectral se-
quence for S was

H2(C(S), µn)
α- ⊕C H1(C(C),Zn)

β- ⊕P µn

The second term of the spectral sequence (which is also the limiting term)
has the following form

µn 0 0 0

0 0

0

00 0 0

Ker γ Coker γ

Ker α Coker βKer β/Im α

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.
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By the foregoing lemma we know that Coker γ = 0. By Poincare duality we
know that Ker β = Im α and Coker β = µ−1

n . Hence, the top complex was
exact in its middle term and can be extended to an exact sequence

0 - H2(S, µn) - H2(C(S), µn) - ⊕C H1(C(C),Zn) -

⊕Pµ−1
n

- µ−1
n

- 0

As Zn ' µn the third term is equal to ⊕CC(C)∗/C(C)∗n by the argument
given before and the second term we remember to be Brn(C(S). The identi-
fication of Brn(S) with H2(S, µn) will be explained below.

Some immediate consequences can be drawn from this. For a smooth simply
connected surface S, Brn(S) is a birational invariant (it is the birational
invariant F 2,1

n (C(S)/C) of the foregoing section. In particular, if S = P2 we
have that Brn(P2) = 0 and as

0 - Brn C(x, y) - ⊕C C(C)∗/C(C)∗n - ⊕P µ−1
n

- µn - 0

we obtain a description of Brn C(x, y) by a certain geocombinatorial package,
which we call a Zn-wrinkle over P2. A Zn-wrinkle is determined by

• A finite collection C = {C1, . . . , Ck} of irreducible curves in P2, that is,
Ci = V (Fi) for an irreducible form in C[X,Y, Z] of degree di.

• A finite collection P = {P1, . . . , Pl} of points of P2 where each Pi is
either an intersection point of two or more Ci or a singular point of
some Ci.

• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ
and {1, . . . , iP } the different branches of C in P . These numbers must
satisfy the admissibility condition∑

i

bi = 0 ∈ Zn

for every P ∈ P

• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C, which is compatible with the branch-
data. That is, if Q ∈ C̃ corresponds to a C-branch bi in P , then D is
ramified in Q with stabilizer subgroup

StabQ = 〈bi〉 ⊂ Zn
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For example, a portion of a Z4-wrinkle can have the following picture

B
B
B�
�
�

�
�
�B
B
B

0

2

1

3

D

C̃
0 2 1• • •

It is clear that the cover-data is the most intractable part of a Zn-wrinkle,
so we want to have some control on the covers D -- C̃. Let {Q1, . . . , Qz}
be the points of C̃ where the cover ramifies with branch numbers {b1, . . . , bz},
then D is determined by a continuous module structure (that is, a cofinite
subgroup acts trivially) of

π1(C̃ − {Q1, . . . , Qz}) on Zn

where the fundamental group of the Riemann surface C̃ with z punctures is
known (topologically) to be equal to the group

〈u1, v1, . . . , ug, vg, x1, . . . , xz〉/([u1, v1] . . . [ug, vg]x1 . . . xz)

where g is the genus of C̃. The action of xi on Zn is determined by multi-
plication with bi. In fact, we need to use the étale fundamental group, see
[82], but this group has the same finite continuous modules as the topological
fundamental group.

Example 3.7 Covers of P1 and elliptic curves

1. If C̃ = P1 then g = 0 and hence π1(P1 − {Q1, . . . , Qz} is zero if z ≤ 1
(whence no covers exist) and is Z if z = 2. Hence, there exists a unique
cover D -- P1 with branch-data (1,−1) in say (0,∞) namely with D
the normalization of P1 in C( n

√
x).

2. If C̃ = E an elliptic curve, then g = 1. Hence, π1(C) = Z⊕Z and there
exist unramified Zn-covers. They are given by the isogenies

E′ -- E

where E′ is another elliptic curve and E = E′/〈τ〉 where τ is an n-torsion
point on E′.

Any n-fold cover D -- C̃ is determined by a function f ∈ C(C)∗/C(C)∗n.
This allows us to put a group-structure on the equivalence classes of Zn-
wrinkles. In particular, we call a wrinkle trivial provided all coverings
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Di
-- C̃i are trivial (that is, Di is the disjoint union of n copies of C̃i).

The Artin-Mumford theorem for P2 can now be stated as follows.

THEOREM 3.12
If ∆ is a central simple C(x, y)-algebra of dimension n2, then ∆ determines
uniquely a Zn-wrinkle on P2. Conversely, any Zn-wrinkle on P2 determines a
unique division C(x, y)- algebra whose class in the Brauer group has order n.

Example 3.8
If S is not necessarily simply connected, any class in Br(C(S))n still deter-
mines a Zn-wrinkle.

Example 3.9
If X is a smooth irreducible rational projective variety of dimension d, the

obstruction to classifying Br(C(X))n by Zn-wrinkles is given by H3
et(X,µn).

We will give a ring theoretical interpretation of the maps in the Artin-
Mumford sequence. Observe that nearly all maps are those of the top complex
of the first term in the coniveau spectral sequence for S. We gave an explicit
description of them using discrete valuation rings. The statements below
follow from this description.

Let us consider a discrete valuation ring A with field of fractions K and
residue field k. Let ∆ be a central simple K-algebra of dimension n2.

DEFINITION 3.8 An A-subalgebra Λ of ∆ will be called an A-order if
it is a free A-module of rank n2 with Λ.K = ∆. An A-order is said to be
maximal if it is not properly contained in any other order.

In order to study maximal orders in ∆ (they will turn out to be all con-
jugated), we consider the completion Â with respect to the m-adic filtration
where m = At with t a uniformizing parameter of A. K̂ will denote the field
of fractions of Â and ∆̂ = ∆⊗K K̂.

Because ∆̂ is a central simple K̂-algebra of dimension n2 it is of the form

∆̂ = Mt(D)

where D is a division algebra with center K̂ of dimension s2 and hence n = s.t.
We call t the capacity of ∆ at A.

In D we can construct a unique maximal Â-order Γ, namely, the integral
closure of Â in D. We can view Γ as a discrete valuation ring extending the
valuation v defined by A on K. If v : K̂ - Z, then this extended valuation

w : D - n−2Z is defined as w(a) = (K̂(a) : K̂)−1v(NK̂(a)/K̂(a))
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for every a ∈ D where K̂(a) is the subfield generated by a and N is the norm
map of fields.

The image of w is a subgroup of the form e−1Z ⊂ - n−2.Z. The number
e = e(D/K̂) is called the ramification index of D over K̂. We can use it to
normalize the valuation w to

vD : D - Z defined by vD(a) =
e

n2
v(ND/K̂(a))

With these conventions we have that vD(t) = e.
The maximal order Γ is then the subalgebra of all elements a ∈ D with

vD(a) ≥ 0. It has a unique maximal ideal generated by a prime element
T and we have that Γ = Γ

T Γ is a division algebra finite dimensional over
Â/tÂ = k (but not necessarily having k as its center).

The inertial degree of D over K̂ is defined to be the number f = f(D/K̂) =
(Γ : k) and one shows that

s2 = e.f and e | s whence s | f

After this detour, we can now take Λ = Mt(Γ) as a maximal Â-order in
∆̂. One shows that all other maximal Â-orders are conjugated to Λ. Λ has a
unique maximal ideal M with Λ = Mt(Γ).

DEFINITION 3.9 With notations as above, we call the numbers e =
e(D/K̂), f = f(D/K̂) and t resp. the ramification, inertia and capacity of
the central simple algebra ∆ at A. If e = 1 we call Λ an Azumaya algebra
over A, or equivalently, if Λ/tΛ is a central simple k-algebra of dimension n2.

Now let us consider the case of a discrete valuation ring A in K such that
the residue field k is Tsen1. The center of the division algebra Γ is a finite
dimensional field extension of k and hence is also Tsen1 whence has a trivial
Brauer group and therefore must coincide with Γ. Hence

Γ = k(a)

a commutative field, for some a ∈ Γ. But then, f ≤ s and we have e = f = s
and k(a) is a cyclic degree s field extension of k.

Because s | n, the cyclic extension k(a) determines an element ofH1
et(k,Zn).

DEFINITION 3.10 Let Z be a normal domain with field of fractions K
and let ∆ be a central simple K-algebra of dimension n2. A Z-order B is a
subalgebra that is a finitely generated Z-module. It is called maximal if it is
not properly contained in any other order. One can show that B is a maximal
Z-order if and only if Λ = Bp is a maximal order over the discrete valuation
ring A = Zp for every height one prime ideal p of Z.
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Return to the situation of an irreducible smooth projective surface S. If ∆
is a central simple C(S)-algebra of dimension n2, we define a maximal order
as a sheaf A of OS-orders in ∆ which for an open affine cover Ui ⊂ - S is
such that

Ai = Γ(Ui,A) is a maximal Zi = Γ(Ui,OS) order in ∆

Any irreducible curve C on S defines a discrete valuation ring on C(S) with
residue field C(C) which is Tsen1. Hence, the above argument can be ap-
plied to obtain from A a cyclic extension of C(C), that is, an element of
C(C)∗/C(C)∗n.

DEFINITION 3.11 We call the union of the curves C such that A
determines a nontrivial cyclic extension of C(C) the ramification divisor of
∆ (or of A).

The map in the Artin-Mumford exact sequence

Brn(C(S)) -
⊕
C

H1
et(C(C), µn)

assigns to the class of ∆ the cyclic extensions introduced above.

DEFINITION 3.12 An S-Azumaya algebra (of index n) is a sheaf of
maximal orders in a central simple C(S)-algebra ∆ of dimension n2 such that
it is Azumaya at each curve C, that is, such that [∆] lies in the kernel of the
above map.

Observe that this definition of Azumaya algebra coincides with the one
given in the discussion of twisted forms of matrices. One can show that if
A and A′ are S-Azumaya algebras of index n resp. n′, then A ⊗OS

A′ is an
Azumaya algebra of index n.n′. We call an Azumaya algebra trivial if it is of
the form End(P) where P is a vectorbundle over S. The equivalence classes of
S-Azumaya algebras can be given a group-structure called the Brauer-group
Br(S) of the surface S.

Let us briefly sketch how Michael Artin and David Mumford used their
sequence to construct unirational nonrational threefolds via the Brauer-Severi
varieties. Let K be a field and ∆ = (a, b)K the quaternion algebra determined
by a, b ∈ K∗. That is

∆ = K.1⊕K.i⊕K.j ⊕K.ij with i2 = a j2 = b and ji = −ij

The norm map on ∆ defines a conic in P2
K called the Brauer-Severi variety of

∆
BS(∆) = V(x2 − ay2 − bz2) ⊂ - P2

K = proj K[x, y, z]
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Its characteristic property is that a field extension L ofK admits an L-rational
point on BS(∆) if and only if ∆ ⊗K L admits zero-divisors and hence is
isomorphic to M2(L).

In general, let K be the algebraic closure of K, then we have seen that the
Galois cohomology pointed set

H1(Gal(K/K), PGLn(K))

classifies at the same time the isomorphism classes of the following geometric
and algebraic objects

• Brauer-Severi K-varieties BS, which are smooth projective K-varieties
such that BSK ' Pn−1

K .

• Central simple K-algebras ∆, which are K-algebras of dimension n2

such that ∆⊗K K 'Mn(K).

The one-to-one correspondence between these two sets is given by associat-
ing to a central simple K-algebra ∆ its Brauer-Severi variety BS(∆), which
represents the functor associating to a field extension L of K the set of left
ideals of ∆⊗K L that have L-dimension equal to n. In particular, BS(∆) has
an L-rational point if and only if ∆⊗K L 'Mn(L) and hence the geometric
object BS(∆) encodes the algebraic splitting behavior of ∆.

Now restrict to the case when K is the function field C(X) of a projective
variety X and let ∆ be a central simple C(X)-algebra of dimension n2. Let
A be a sheaf of OX -orders in ∆ then we one can show that there is a Brauer-
Severi scheme BS(A), which is a projective space bundle over X with general
fiber isomorphic to Pn−1(C) embedded in PN (C) where N =

(
n + k − 1

k

)
− 1.

Over an arbitrary point of x the fiber may degenerate.
For example if n = 2 the P1(C) embedded as a conic in P2(C) can degenerate

into a pair of P1(C)’s. Now, let us specialize further and consider the case when
X = P2. Consider E1 and E2 two elliptic curves in P2 and take C = {E1, E2}
and P = {P1, . . . P9} the intersection points and all the branch data zero. Let
E′i be a twofold unramified cover of Ei, by the Artin-Mumford result there is
a quaternion algebra ∆ corresponding to this Z2-wrinkle.

Next, blow up the intersection points to get a surface S with disjoint elliptic
curves C1 and C2. Now take a maximal OS order in ∆ then the relevance of
the curves Ci is that they are the locus of the points s ∈ S where As 6'M2(C),
the so called ramification locus of the order A. The local structure of A in a
point s ∈ S is

• when s /∈ C1 ∪ C2, then As is an Azumaya OS,s-algebra in ∆

• when s ∈ Ci, then As = OS,s.1⊕OS,s.i⊕OS,s.j ⊕OS,s.ij with
i2 = a

j2 = bt

ji = −ij
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FIGURE 3.9: The Artin-Mumford bundle.

where t = 0 is a local equation for Ci and a and b are units in OS,s.

In chapter 5 we will see that this is the local description of a Cayley-smooth
order over a smooth surface in a quaternion algebra. Artin and Mumford
then define the Brauer-Severi scheme of A as representing the functor that
assigns to an S-scheme S′ the set of left ideals of A⊗OS

OS′ which are locally
free of rank 2. Using the local description of A they show that BS(A) is a
projective space bundle over S as in figure 3.9 with the properties that BS(A)
is a smooth variety and the projection morphism BS(A)

π-- S is flat, all
of the geometric fibers being isomorphic to P1 (resp. to P1 ∨ P1) whenever
s /∈ C1 ∪ C2 (resp. s ∈ C1 ∪ C2).

Finally, for specific starting configurations E1 and E2, they prove that the
obtained Brauer-Severi variety BS(A) cannot be rational because there is
torsion in H4(BS(A),Z2), whereas BS(A) can be shown to be unirational.

3.7 Normal spaces

In the next section we will see that in the étale topology we can describe
the local structure of representation varieties in a neighborhood of a closed
orbit in terms of the normal space to this orbit. In this section we will give a
representation theoretic description of this normal space.

We recall some standard facts about tangent spaces first. Let X be a not
necessarily reduced affine variety with coordinate ring C[X] = C[x1, . . . , xn]/I.
If the origin o = (0, . . . , 0) ∈ V(I), elements of I have no constant terms and
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we can write any p ∈ I as

p =
∞∑
i=1

p(i) with p(i) homogeneous of degree i.

The order ord(p) is the least integer r ≥ 1 such that p(r) 6= 0. Define the
following two ideals in C[x1, . . . , xn]

Il = {p(1) | p ∈ I} and Im = {p(r) | p ∈ I and ord(p) = r}.

The subscripts l (respectively m) stand for linear terms (respectively, terms
of minimal degree).

The tangent space to X in o , To(X) is by definition the subscheme of Cn
determined by Il. Observe that

Il = (a11x1 + . . .+ a1nxn, . . . , al1x1 + . . .+ alnxn)

for some l× n matrix A = (aij)i,j of rank l. That is, we can express all xk as
linear combinations of some {xi1 , . . . , xin−l

}, but then clearly

C[To(X)] = C[x1, . . . , xn]/Il = C[xi1 , . . . , xin−l
]

In particular, To(X) is reduced and is a linear subspace of dimension n− l in
Cn through the point o.

Next, consider an arbitrary geometric point x of X with coordinates
(a1, . . . , an). We can translate x to the origin o and the translate of X is
then the scheme defined by the ideal

(f1(x1 + a1, . . . , xn + an), . . . , fk(x1 + a1, . . . , xn + an))

Now, the linear term of the translated polynomial fi(x1 + a1, . . . , xn + an) is
equal to

∂fi
∂x1

(a1, . . . , an)x1 + . . .+
∂fi
∂xn

(a1, . . . , an)xn

and hence the tangent space to X in x , Tx(X) is the linear subspace of Cn
defined by the set of zeroes of the linear terms

Tx(X) = V(
n∑
j=1

∂f1
∂xj

(x)xj , . . . ,
n∑
j=1

∂fk
∂xj

(x)xj) ⊂ - Cn

In particular, the dimension of this linear subspace can be computed from the
Jacobian matrix in x associated with the polynomials (f1, . . . , fk)

dim Tx(X) = n− rk


∂f1
∂x1

(x) . . . ∂f1∂xn
(x)

...
...

∂fk

∂x1
(x) . . . ∂fk

∂xn
(x)

 .
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Let C[ε] be the algebra of dual numbers , that is, C[ε] ' C[y]/(y2). Consider
a C-algebra morphism

C[x1, . . . , xn]
φ- C[ε] defined by xi 7→ ai + ciε

Because ε2 = 0 it is easy to verify that the image of a polynomial f(x1, . . . , xn)
under φ is of the form

φ(f(x1, . . . , xn)) = f(a1, . . . , an) +
n∑
j=1

∂f

∂xj
(a1, . . . , an)cjε

Therefore, φ factors through I, that is, φ(fi) = 0 for all 1 ≤ i ≤ k, if and
only if (c1, . . . , cn) ∈ Tx(X). Hence, we can also identify the tangent space
to X in x with the algebra morphisms C[X]

φ- C[ε] whose composition
with the projection π : C[ε] -- C (sending ε to zero) is the evaluation
in x = (a1, . . . , an). That is, let evx ∈ X(C) be the point corresponding to
evaluation in x, then

Tx(X) = {φ ∈ X(C[ε]) | X(π)(φ) = evx}

The following two examples compute the tangent spaces to the (trace preserv-
ing) representation varieties.

Example 3.10 Tangent space to repn
Let A be an affine C-algebra generated by {a1, . . . am} and ρ : A - Mn(C)
an algebra morphism, that is, ρ ∈ repn A. We call a linear map A

D- Mn(C)
a ρ-derivation if and only if for all a, a′ ∈ A we have that

D(aa′) = D(a).ρ(a′) + ρ(a).D(a′)

We denote the vector space of all ρ-derivations of A by Derρ(A). Observe
that any ρ-derivation is determined by its image on the generators ai, hence
Derρ(A) ⊂Mm

n . We claim that

Tρ(repn A) = Derρ(A)

Indeed, we know that repn A(C[ε]) is the set of algebra morphisms

A
φ- Mn(C[ε])

By the functorial characterization of tangentspaces we have that Tρ(repn A)
is equal to

{D : A - Mn(C) linear | ρ+Dε : A - Mn(C[ε]) is an algebra map}.

Because ρ is an algebra morphism, the algebra map condition

ρ(aa′) +D(aa′)ε = (ρ(a) +D(a)ε).(ρ(a′) +D(a′)ε)
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is equivalent to D being a ρ-derivation.

Example 3.11 Tangent space to trepn
Let A be a Cayley-Hamilton algebra of degree n with trace map trA and trace
generated by {a1, . . . , am}. Let ρ ∈ trepn A, that is, ρ : A - Mn(C) is
a trace preserving algebra morphism. Because trepn A(C[ε]) is the set of all
trace preserving algebra morphisms A - Mn(C[ε]) (with the usual trace
map tr on Mn(C[ε])) and the previous example one verifies that

Tρ(trepn A) = Dertrρ (A) ⊂ Derρ(A)

the subset of trace preserving ρ-derivations D, that is, those satisfying

D ◦ trA = tr ◦D

A
D- Mn(C)

A

trA

?
D- Mn(C)

tr

?

Again, using this property and the fact that A is trace generated by
{a1, . . . , am} a trace preserving ρ-derivation is determined by its image on
the ai so is a subspace of Mm

n .

The tangent cone to X in o, TCo(X), is by definition the subscheme of Cn
determined by Im, that is

C[TCo(X)] = C[x1, . . . , xn]/Im.

It is called a cone because if c is a point of the underlying variety of TCo(X),
then the line l = −→oc is contained in this variety because Im is a graded ideal.
Further, observe that as Il ⊂ Im, the tangent cone is a closed subscheme of
the tangent space at X in o. Again, if x is an arbitrary geometric point of X we
define the tangent cone to X in x , TCx(X) as the tangent cone TCo(X ′) where
X ′ is the translated scheme of X under the translation taking x to o. Both
the tangent space and tangent cone contain local information of the scheme X
in a neighborhood of x.

Let mx be the maximal ideal of C[X] corresponding to x (that is, the ideal
of polynomial functions vanishing in x). Then, its complement Sx = C[X] −
mx is a multiplicatively closed subset and the local algebra Ox(X) is the
corresponding localization C[X]Sx . It has a unique maximal ideal mx with
residue field Ox(X)/mx = C. We equip the local algebra Ox = Ox(X) with the
mx-adic filtration that is the increasing Z-filtration

Fx : ... ⊂ mi ⊂ mi−1 ⊂ . . . ⊂ m ⊂ Ox = Ox = . . . = Ox = . . .
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with associated graded algebra

gr(Ox) = . . .⊕ mi
x

mi+1
x

⊕ mi−1
x

mi
x

⊕ . . .⊕ mx

m2
x

⊕ C⊕ 0⊕ . . .⊕ 0⊕ . . .

PROPOSITION 3.12
If x is a geometric point of the affine scheme X, then

1. C[Tx(X)] is isomorphic to the polynomial algebra C[mx

m2
x
].

2. C[TCx(X)] is isomorphic to the associated graded algebra gr(Ox(X)).

PROOF After translating we may assume that x = o lies in V(I) ⊂ - Cn.
That is

C[X] = C[x1, . . . , xn]/I and mx = (x1, . . . , xn)/I

(1): Under these identifications we have

mx

m2
x

' mx/m
2
x

' (x1, . . . , xn)/((x1, . . . , xn)2 + I)

' (x1, . . . , xn)/((x1, . . . , xn)2 + Il)

and as Il is generated by linear terms it follows that the polynomial algebra
on mx

m2
x

is isomorphic to the quotient algebra C[x1, . . . , xn]/Il, which is by
definition the coordinate ring of the tangent space.
(2): Again using the above identifications we have

gr(Ox) ' ⊕∞i=0m
i
x/m

i+1
x

' ⊕∞i=0m
i
x/m

i+1
x

' ⊕∞i=0(x1, . . . , xn)i/((x1, . . . , xn)i+1 + (I ∩ (x1, . . . , xn)i))

' ⊕∞i=0(x1, . . . , xn)i/((x1, . . . , xn)i+1 + Im(i))

where Im(i) is the homogeneous part of Im of degree i. On the other hand,
the i-th homogeneous part of C[x1, . . . , xn]/Im is equal to

(x1, . . . , xn)i

(x1, . . . , xn)i+1 + Im(i)

we obtain the required isomorphism.

This gives a third interpretation of the tangent space as

Tx(X) = HomC(
mx

m2
x

,C) = HomC(
mx

m2
x

,C).
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Hence, we can also view the tangent space Tx(X) as the space of point deriva-
tions Derx(Ox) on Ox(X) (or of the point derivations Derx(C[X]) on C[X]).
That is, C-linear maps D : Ox - C (or D : C[X] - C) such that for all
functions f, g we have

D(fg) = D(f)g(x) + f(x)D(g)

If we define the local dimension of an affine scheme X in a geometric point
x dimx X to be the maximal dimension of irreducible components of the
reduced variety X passing through x, then

dimx X = dimo TCx(X)

We say that X is nonsingular at x (or equivalently, that x is a nonsingular
point of X) if the tangent cone to X in x coincides with the tangent space to X
in x. An immediate consequence is discussed below.

PROPOSITION 3.13
If X is nonsingular at x, then Ox(X) is a domain. That is, in a Zariski
neighborhood of x, X is an irreducible variety.

PROOF If X is nonsingular at x, then

gr(Ox) ' C[TCx(X)] = C[Tx(X)]

the latter one being a polynomial algebra whence a domain. Now, let 0 6=
a, b ∈ Ox then there exist k, l such that a ∈ mk − mk+1 and b ∈ ml − ml+1,
that is a is a nonzero homogeneous element of gr(Ox) of degree −k and b one
of degree −l. But then, a.b ∈ mk+l −mk+l−1 hence certainly a.b 6= 0 in Ox.

Now, consider the natural map φ : C[X] - Ox. Let {P1, . . . , Pl} be the
minimal prime ideals of C[X]. All but one of them, say P1 = φ−1(0), extend
to the whole ring Ox. Taking the product of f functions fi ∈ Pi nonvanishing
in x for 2 ≤ i ≤ l gives the Zariski open set X(f) containing x and whose
coordinate ring is a domain, whence X(f) is an affine irreducible variety.

When restricting to nonsingular points we reduce to irreducible affine vari-
eties. From the Jacobian condition it follows that nonsingularity is a Zariski
open condition on X and by the implicit function theorem, X is a complex
manifold in a neighborhood of a nonsingular point.

Let X
φ- Y be a morphism of affine varieties corresponding to the algebra

morphism C[Y]
φ∗- C[X]. Let x be a geometric point of X and y = φ(x). As

φ∗(my) ⊂ mx, φ induces a linear map my

m2
y

- mx

m2
x

and taking the dual map
gives the differential of φ in x, which is a linear map

dφx : Tx(X) - Tφ(x)(Y)
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Assume X a closed subscheme of Cn and Y a closed subscheme of Cm and let
φ be determined by the m polynomials {f1, . . . , fm} in C[x1, . . . , xn]. Then,
the Jacobian matrix in x

Jx(φ) =


∂f1
∂x1

(x) . . . ∂fm

∂x1
(x)

...
...

∂f1
∂xn

(x) . . . ∂fm

∂xn
(x)


defines a linear map from Cn to Cm and the differential dφx is the induced
linear map from Tx(X) ⊂ Cn to Tφ(x)(Y) ⊂ Cm. Let D ∈ Tx(X) = Derx(C[X])
and xD the corresponding element of X(C[ε]) defined by xD(f) = f(x)+D(f)ε,
then xD ◦ φ∗ ∈ Y(C[ε]) is defined by

xD ◦ φ∗(g) = g(φ(x)) + (D ◦ φ∗)ε = g(φ(x)) + dφx(D)ε

giving us the ε-interpretation of the differential

φ(x+ vε) = φ(x) + dφx(v)ε

for all v ∈ Tx(X).

PROPOSITION 3.14

Let X
φ- Y be a dominant morphism between irreducible affine varieties.

There is a Zariski open dense subset U ⊂ - X such that dφx is surjective
for all x ∈ U .

PROOF We may assume that φ factorizes into

X
ρ-- Y × Cd

Y

prY

?

φ

-

with φ a finite and surjective morphism. Because the tangent space of a
product is the sum of the tangent spaces of the components we have that
d(prW )z is surjective for all z ∈ Y × Cd, hence it suffices to verify the claim
for a finite morphism φ. That is, we may assume that S = C[Y ] is a finite
module over R = C[X] and let L/K be the corresponding extension of the
function fields. By the principal element theorem we know that L = K[s] for
an element s ∈ L, which is integral over R with minimal polynomial

F = tn + gn−1t
n−1 + . . .+ g1t+ g0 with gi ∈ R
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Consider the ring S′ = R[t]/(F ), then there is an element r ∈ R such that the
localizations S′r and Sr are isomorphic. By restricting we may assume that
X = V(F ) ⊂ - Y × C and that

X = V(F ) ⊂ - Y × C

Y

prY

?

φ

-

Let x = (y, c) ∈ X then we have (again using the identification of the tangent
space of a product with the sum of the tangent spaces of the components)
that

Tx(X) = {(v, a) ∈ Ty(Y )⊕ C | c∂F
∂t

(x) + vgn−1c
n−1 + . . .+ vg1c+ vg0 = 0}

But then, dφx i surjective whenever ∂F
∂t (x) 6= 0. This condition determines

a nonempty open subset of X as otherwise ∂F
∂t would belong to the defining

ideal of X in C[Y ×C] (which is the principal ideal generated by F ), which is
impossible by a degree argument

Example 3.12 Differential of orbit map
Let X be a closed GLn-stable subscheme of a GLn-representation V and x a
geometric point of X. Consider the orbit closure O(x) of x in V . Because the
orbit map

µ : GLn -- GLn.x ⊂ - O(x)

is dominant we have that C[O(x)] ⊂ - C[GLn] and therefore a domain, so
O(x) is an irreducible affine variety. We define the stabilizer subgroup Stab(x)
to be the fiber µ−1(x), then Stab(x) is a closed subgroup of GLn. We claim
that the differential of the orbit map in the identity matrix e = rr

n

dµe : gln
- Tx(X)

satisfies the following properties

Ker dµe = stab(x) and Im dµe = Tx(O(x))

By the proposition we know that there is a dense open subset U of GLn such
that dµg is surjective for all g ∈ U . By GLn-equivariance of µ it follows that
dµg is surjective for all g ∈ GLn, in particular dµe : gln

- Tx(O(x)) is
surjective. Further, all fibers of µ over O(x) have the same dimension. But
then it follows from the dimension formula of proposition that

dim GLn = dim Stab(x) + dim O(x)
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(which, incidentally gives us an algorithm to compute the dimensions of orbit
closures). Combining this with the above surjectivity, a dimension count
proves that Ker dµe = stab(x), the Lie algebra of Stab(x).

Let A be a C-algebra and let M and N be two A-representations of di-
mensions, say, m and n. An A-representation P of dimension m + n is said
to be an extension of N by M if there exists a short exact sequence of left
A-modules

e : 0 - M - P - N - 0

We define an equivalence relation on extensions (P, e) of N by M : (P, e) ∼=
(P ′, e′) if and only if there is an isomorphism P

φ- P ′ of left A-modules
such that the diagram below is commutative

e : 0 - M - P - N - 0

e′ : 0 - M

idM

?
- P ′

φ

?
- N

idN

?
- 0

The set of equivalence classes of extensions of N by M will be denoted by
Ext1A(N,M).

An alternative description of Ext1A(N,M) is as follows. Let ρ : A - Mm

and σ : A - Mn be the representations definingM andN . For an extension
(P, e) we can identify the C-vector space with M ⊕ N and the A-module
structure on P gives an algebra map µ : A - Mm+n and we can represent
the action of a on P by left multiplication of the block-matrix

µ(a) =
[
ρ(a) λ(a)
0 σ(a)

]
where λ(a) is an m× n matrix and hence defines a linear map

λ : A - HomC(N,M)

The condition that µ is an algebra morphism is equivalent to the condition

λ(aa′) = ρ(a)λ(a′) + λ(a)σ(a′)

and we denote the set of all liner maps λ : A - HomC(N,M) by Z(N,M)
and call it the space of cycle . The extensions of N by M corresponding to
two cycles λ and λ′ from Z(N,M) are equivalent if and only if we have an
A-module isomorphism in block form[

idM β
0 idN

]
with β ∈ HomC(N,M)
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between them. A-linearity of this map translates into the matrix relation[
idM β
0 idN

]
.

[
ρ(a) λ(a)
0 σ(a)

]
=

[
ρ(a) λ′(a)
0 σ(a)

]
.

[
idM β
0 idN

]
for all a ∈ A

or equivalently, that λ(a)− λ′(a) = ρ(a)β − βσ(a) for all a ∈ A. We will now
define the subspace of Z(N,M) of boundaries B(N,M)

{δ ∈ HomC(N,M) | ∃β ∈ HomC(N,M) : ∀a ∈ A : δ(a) = ρ(a)β − βσ(a)}

We then have the description Ext1A(N,M) = Z(N,M)
B(N,M) .

Example 3.13 Normal space to repn
Let A be an affine C-algebra generated by {a1, . . . , am} and ρ : A - Mn(C)
an algebra morphism, that is, ρ ∈ repn A determines an n-dimensional A-
representation M . We claim to have the following description of the normal
space to the orbitclosure Cρ = O(ρ) of ρ

Nρ(repn A)
def
=

Tρ(repn A)
Tρ(Cρ)

= Ext1A(M,M)

We have already seen that the space of cycles Z(M,M) is the space of ρ-
derivations of A in Mn(C), Derρ(A), which we know to be the tangent space
Tρ(repn A). Moreover, we know that the differential dµe of the orbit map

GLn
µ- Cρ ⊂ - Mm

n

dµe : gln = Mn
- Tρ(Cρ)

is surjective. Now, ρ = (ρ(a1), . . . , ρ(am)) ∈ Mm
n and the action of action

of GLn is given by simultaneous conjugation. But then we have for any
A ∈ gln = Mn that

(In +Aε).ρ(ai).(In −Aε) = ρ(ai) + (Aρ(ai)− ρ(ai)A)ε

Therefore, by definition of the differential we have that

dµe(A)(a) = Aρ(a)− ρ(a)A for all a ∈ A

that is, dµe(A) ∈ B(M,M) and as the differential map is surjective we have
Tρ(Cρ) = B(M,M) from which the claim follows.

Example 3.14 Normal space to trepn
Let A be a Cayley-Hamilton algebra with trace map trA and trace generated
by {a1, . . . , am}. Let ρ ∈ trepn A, that is, ρ : A - Mn(C) is a trace
preserving algebra morphism. Any cycle λ : A - Mn(C) in Z(M,M) =
Derρ(A) determines an algebra morphism

ρ+ λε : A - Mn(C[ε])
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We know that the tangent space Tρ(trepn A) is the subspace Dertrρ (A) of
trace preserving ρ-derivations, that is, those satisfying

λ(trA(a)) = tr(λ(a)) for all a ∈ A

Observe that for all boundaries δ ∈ B(M,M), that is, such that there is an
m ∈Mn(C) with δ(a) = ρ(a).m−m.ρ(a) are trace preserving as

δ(trA(a)) = ρ(trA(a)).m−m.ρ(trA(a)) = tr(ρ(a)).m−m.tr(ρ(a))
= 0 = tr(m.ρ(a)− ρ(a).m) = tr(δ(a))

Hence, we can define the space of trace preserving self-extensions

ExttrA (M,M) =
Dertrρ (A)
B(M,M)

and obtain as before that the normal space to the orbit closure Cρ = O(ρ) is
equal to

Nρ(trepn A)
def
=

Tρ(trepn A)
Tρ(Cρ)

= ExttrA (M,M)

3.8 Knop-Luna slices

Let A be an affine C-algebra and ξ ∈ issn A a point in the quotient space
corresponding to an n-dimensional semisimple representation Mξ of A. In the
next chapter we will present a method to study the étale local structure of
issn A near ξ and the étale local GLn-structure of the representation variety
repn A near the closed orbit O(Mξ) = GLn.Mξ. First, we will outline the
main idea in the setting of differential geometry.

Let M be a compact C∞-manifold on which a compact Lie group G acts
differentially. By a usual averaging process we can define a G-invariant Rie-
mannian metric on M . For a point m ∈M we define

• The G-orbit O(m) = G.m of m in M ,

• the stabilizer subgroup H = StabG(m) = {g ∈ G | g.m = m} and

• the normal space Nm defined to be the orthogonal complement to the
tangent space in m to the orbit in the tangent space to M . That is, we
have a decomposition of H-vector spaces

Tm M = Tm O(m)⊕Nm
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The normal spaces Nx when x varies over the points of the orbit O(m) define
a vector bundle N p-- O(m) over the orbit. We can identify the bundle
with the associated fiber bundle

N ' G×H Nm

Any point n ∈ N in the normal bundle determines a geodesic

γn : R - M defined by

{
γn(0) = p(n)
dγn

dt (0) = n

Using this geodesic we can define a G-equivariant exponential map from the
normal bundle N to the manifold M via

N exp- M where exp(n) = γn(1)

•

XX22222222

n

x

γn

O(m)

Nx

M

Now, take ε > 0 and define the C∞ slice Sε to be

Sε = {n ∈ Nm | ‖ n ‖< ε }

then G ×H Sε is a G-stable neighborhood of the zero section in the normal
bundle N = G×H Nm. But then we have a G-equivariant exponential

G×H Sε
exp- M

which for small enough ε gives a diffeomorphism with a G-stable tubular
neighborhood U of the orbit O(m) in M as in figure 3.10 If we assume more-
over that the action of G on M and the action of H on Nm are such that the
orbit-spaces are manifolds M/G and Nm/H, then we have the situation

G×H Sε
exp

'
- U ⊂ - M

Sε/H

??

'
- U/G

??
⊂ - M/G

??

giving a local diffeomorphism between a neighborhood of 0 in Nm/H and a
neighborhood of the point m in M/G corresponding to the orbit O(m).
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Nm

0•
ε

−ε

G/H

exp-

•
m

O(m)

U

Nx

M

FIGURE 3.10: Tubular neighborhood of the orbit.

Returning to the setting of the orbit O(Mξ) in repn A we would equally
like to define a GLn-equivariant morphism from an associated fiber bundle

GLn ×GL(α) Nξ
e- repn A

where GL(ξ) is the stabilizer subgroup of Mξ and Nξ is a normal space to the
orbit O(Mξ). Because we do not have an exponential-map in the setting of
algebraic geometry, the map e will have to be an étale map. Such a map does
exist and is usually called a Luna slice in case of a smooth point on repn A.
Later, F. Knop extended this result to allow singular points, or even points
in which the scheme is not reduced.

Although the result holds for any reductive algebraic group G, we will apply
it only in the case G = GLn or GL(α) = GLa1 × . . . × GLak

, so restrict to
the case of GLn. We fix the setting : X and Y are (not necessarily reduced)
affine GLn-varieties, ψ is a GLn-equivariant map

x = ψ(y) ` X � ψ
Y a y

X/GLn

πX

??
Y/GLn

πY

??

and we assume the following restrictions :

• ψ is étale in y,

• the GLn-orbits O(y) in Y and O(x) in X are closed. For example, in
representation varieties, we restrict to semisimple representations,

• the stabilizer subgroups are equal Stab(x) = Stab(y). In the case of
representation varieties, for a semisimple n-dimensional representation
with decomposition

M = S⊕e11 ⊕ . . .⊕ S⊕ek

k
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into distinct simple components, this stabilizer subgroup is

GL(α) =

GLe1(C⊗
rr
d1)

. . .
GLek

(C⊗ rr
dk

)

 ⊂ - GLn

where di = dim Si. In particular, the stabilizer subgroup is again re-
ductive.

In algebraic terms: consider the coordinate rings R = C[X] and S = C[Y] and
the dual morphism R

ψ∗- S. Let I / R be the ideal describing O(x) and
J /S the ideal describing O(y). With R̂ we will denote the I-adic completion
lim
←

R
In of R and with Ŝ the J-adic completion of S.

LEMMA 3.8
The morphism ψ∗ induces for all n an isomorphism

R

In
ψ∗- S

Jn

In particular, R̂ ' Ŝ.

PROOF Let Z be the closed GLn-stable subvariety of Y where ψ is not
étale. By the separation property, there is an invariant function f ∈ SGLn

vanishing on Z such that f(y) = 1 because the two closed GLn-subschemes
Z and O(y) are disjoint. Replacing S by Sf we may assume that ψ∗ is an
étale morphism. Because O(x) is smooth, ψ−1 O(x) is the disjoint union of
its irreducible components and restricting Y if necessary we may assume that
ψ−1 O(x) = O(y). But then J = ψ∗(I)S and as O(y)

'- O(x) we have
R
I '

S
J so the result holds for n = 1.

Because étale maps are flat, we have ψ∗(In)S = In⊗RS = Jn and an exact
sequence

0 - In+1 ⊗R S - In ⊗R S - In

In+1
⊗R S - 0

But then we have
In

In+1
=

In

In+1
⊗R/I

S

J
=

In

In+1
⊗R S '

Jn

Jn+1

and the result follows from induction on n and the commuting diagram

0 - In

In+1
- R

In+1
- R

In
- 0

0 - Jn

Jn+1

'

?

- S

Jn+1

?

............

- S

Jn

'

?

- 0
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For an irreducible GLn-representation s and a locally finite GLn-module X
we denote its s-isotypical component by X(s).

LEMMA 3.9

Let s be an irreducible GLn-representation. There are natural numbers m ≥ 1
(independent of s) and n ≥ 0 such that for all k ∈ N we have

Imk+n ∩R(s)
⊂ - (IGLn)kR(s)

⊂ - Ik ∩R(s)

PROOF Consider A = ⊕∞i=0I
ntn ⊂ - R[t], then AGLn is affine so cer-

tainly finitely generated as RGLn-algebra, say, by

{r1tm1 , . . . , rzt
mz} with ri ∈ R and mi ≥ 1

Further, A(s) is a finitely generated AGLn -module, say generated by

{s1tn1 , . . . , syt
ny} with si ∈ R(s) and ni ≥ 0

Take m = max mi and n = max ni and r ∈ Imk+n∩R(s), then rtmk+n ∈ A(s)

and
rtmk+n =

∑
j

pj(r1tm1 , . . . , rzt
mz )sjtnj

with pj a homogeneous polynomial of t-degree mk + n− nj ≥ mk. But then
each monomial in pj occurs at least with ordinary degree mk

m = k and therefore
is contained in (IGLn)kR(s)t

mk+n.

Let R̂GLn be the IGLn -adic completion of the invariant ring RGLn and let
ŜGLn be the JGLn -adic completion of SGLn .

LEMMA 3.10

The morphism ψ∗ induces an isomorphism

R⊗RGLn R̂GLn
'- S ⊗ SGLn ŜGLn

PROOF Let s be an irreducible GLn-module, then the IGLn -adic com-
pletion of R(s) is equal to R̂(s) = R(s) ⊗RGLn R̂GLn . Moreover

R̂(s) = lim
←

(
R

Ik
)(s) = lim

←

R(s)

(Ik ∩R(s))
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which is the I-adic completion of R(s). By the foregoing lemma both topolo-
gies coincide on R(s) and therefore

R̂(s) = R̂(s) and similarly Ŝ(s) = Ŝ(s)

Because R̂ ' Ŝ it follows that R̂(s) ' Ŝ(s) from which the result follows as
the foregoing holds for all s.

THEOREM 3.13
Consider a GLn-equivariant map Y

ψ- X, y ∈ Y, x = ψ(y) and ψ étale in y.
Assume that the orbits O(x) and O(y) are closed and that ψ is injective on
O(y). Then, there is an affine open subset U ⊂ - Y containing y such that

1. U = π−1
Y (πY (U)) and πY (U) = U/GLn

2. ψ is étale on U with affine image

3. The induced morphism U/GLn
ψ- X/GLn is étale

4. The diagram below is commutative

U
ψ - X

U/GLn

πU

??
ψ- X/GLn

πX

??

PROOF By the foregoing lemma we have R̂GLn ' ŜGLn , which means
that ψ is étale in πY (y). As étaleness is an open condition, there is an open
affine neighborhood V of πY (y) on which ψ is étale. If R = R ⊗RGLn SGLn

then the above lemma implies that

R⊗SGLn ŜGLn ' S ⊗SGLn ŜGLn

Let SGLn

loc be the local ring of SGLn in JGLn , then as the morphism

SGLn

loc
- ŜGLn is faithfully flat we deduce that

R⊗SGLn S
GLn

loc ' S ⊗SGLn S
GLn

loc

but then there is an f ∈ SGLn − JGLn such that Rf ' Sf . Now, intersect V
with the open affine subset where f 6= 0 and let U ′ be the inverse image under
πY of this set. Remains to prove that the image of ψ is affine. As U ′

ψ- X
is étale, its image is open and GLn-stable. By the separation property we
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GLn ×H Nx � GLn×Hφ
GLn ×H S

ψ - X

Nx/H

??
� φ/H

S/H

??
ψ/GLn - X/GLn

π

??

FIGURE 3.11: Etale slice diagram.

can find an invariant h ∈ RGLn such that h is zero on the complement of the
image and h(x) = 1. But then we take U to be the subset of U ′ of points u
such that h(u) 6= 0.

THEOREM 3.14 Slice theorem
Let X be an affine GLn-variety with quotient map X

π-- X/GLn. Let x ∈ X
be such that its orbit O(x) is closed and its stabilizer subgroup Stab(x) = H is
reductive. Then, there is a locally closed affine subscheme S ⊂ - X containing
x with the following properties:

1. S is an affine H-variety

2. the action map GLn× S - X induces an étale GLn-equivariant mor-
phism GLn ×H S

ψ- X with affine image

3. the induced quotient map ψ/GLn is étale

(GLn ×H S)/GLn ' S/H
ψ/GLn- X/GLn

and the right-hand side of figure 3.11 is commutative.

If we assume moreover that X is smooth in x, then we can choose the slice S
such that also the following properties are satisfied:

1. S is smooth

2. there is an H-equivariant morphism S
φ- Tx S = Nx with φ(x) = 0

having an affine image

3. the induced morphism is étale

S/H
φ/H- Nx/H

and the left-hand side of figure 3.11 is commutative.

PROOF Choose a finite dimensional GLn-subrepresentation V of C[X]
that generates the coordinate ring as algebra. This gives a GLn-equivariant
embedding

X ⊂
i- W = V ∗
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Choose in the vector space W an H-stable complement S0 of gln.i(x) =
Ti(x) O(x) and denote S1 = i(x) + S0 and S2 = i−1(S1).Then, the diagram
below is commutative

GLn ×H S2
⊂ - GLn ×H S1

X

ψ

?
⊂

i - W

ψ0

?

By construction we have that ψ0 induces an isomorphism between the tangent
spaces in (1, i(x)) ∈ GLn ×H S0 and i(x) ∈ W , which means that ψ0 is étale
in i(x), whence ψ is étale in (1, x) ∈ GLn ×H S2. By the fundamental lemma
we get an affine neighborhood U , which must be of the form U = GLn ×H S
giving a slice S with the required properties.

Assume that X is smooth in x, then S1 is transversal to X in i(x) as

Ti(x) i(X) + S0 = W

Therefore, S is smooth in x. Again using the separation property we can find
an invariant f ∈ C[S]H such that f is zero on the singularities of S (which is
an H-stable closed subscheme) and f(x) = 1. Then replace S with its affine
reduced subvariety of points s such that f(s) 6= 0. Let m be the maximal
ideal of C[S] in x, then we have an exact sequence of H-modules

0 - m2 - m
α- N∗x - 0

Choose a H-equivariant section φ∗ : N∗x - m ⊂ - C[S] of α then this gives
an H-equivariant morphism S

φ- Nx which is étale in x. Applying again
the fundamental lemma to this setting finishes the proof.

References.

More details on étale cohomology can be found in the textbook of J.S. Milne
[82] . The material of Tsen and Tate fields is based on the lecture notes of
S. Shatz [97]. For more details on the coniveau spectral sequence we refer to
the paper [22]. The description of the Brauer group of the function field of a
surface is due to M. Artin and D. Mumford [6] . The étale slices are due to D.
Luna [81] and in the form presented here to F. Knop [56] . For more details
we refer to the lecture notes of P. Slodowy [99].



Chapter 4

Quiver Technology

Having generalized the classical antiequivalence between commutative algebra
and (affine) algebraic geometry to the pair of functors

alg@n

trepn ..
GL(n)-affine

⇑n

ll

where ⇑n is a left-inverse for trepn, we will define Cayley-smooth algebras A ∈
alg@n, which are analogous to smooth commutative algebras. The definition
is in terms of a lifting property with respect to nilpotent ideals, following
Grothendieck’s characterization of regular algebras. We will prove Procesi’s
result that a degree n Cayley-Hamilton algebra A is Cayley-smooth if and
only if trepn A is a smooth (commutative) affine variety.

This result allows us, via the theory of Knop-Luna slices, to describe the
étale local structure of Cayley-smooth algebras. We will prove that the lo-
cal structure of A in a point ξ ∈ trissn A is determined by a combinato-
rial gadget: a (marked) quiver Q (given by the simple components of the
semisimple n-dimensional representation Mξ corresponding to ξ and their
(self)extensions)and a dimension vector α (given by the multiplicities of the
simple factors in Mxi).

In the next chapter we will use this description to classify Cayley-smooth or-
ders (as well as their central singularities) in low dimensions. In this study we
will need standard results on the representation theory of quivers: the descrip-
tion of the simple (resp. indecomposable) dimension vectors, the canonical
decomposition and the notion of semistable representations.

4.1 Smoothness

In this section we will introduce smoothness relative to a category of C-
algebras. For comm this notion is equivalent to the usual geometric smoothness
and we will show that for alg@n smoothness of a Cayley-Hamilton algebra A
is equivalent to trepn A being a smooth affine variety. Examples of such

163
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Cayley-smooth algebras arise as level n approximations of smooth algebras in
alg, called Quillen smooth algebras.

DEFINITION 4.1 Let cat be a category of C-algebras. An object A ∈
Ob(cat) is said to be cat-smooth if it satisfies the following lifting property.
For B ∈ Ob(cat), a nilpotent ideal I / B such that B/I ∈ Ob(cat) and a
C-algebra morphism A

κ- B/I in Mor(cat), there exist a lifting

A

B ��
�...

.....
.....

.....
.....

.....
....

∃
λ

B

I

κ

?

with λ ∈ Mor(cat) making the diagram commutative. An alg-smooth alge-
bra is called Quillen-smooth , comm-smooth algebras are called Grothendieck-
smooth and alg@n-smooth algebras Cayley-smooth.

To motivate these definitions, we will show that the categorical notion of
comm-smoothness coincides with geometric smoothness. Let X be a possibly
nonreduced affine variety and x a geometric point of X. As we are interested
in local properties of X near x, we may assume (after translation) that x = o
in Cn and that we have a presentation

C[X] = C[x1, . . . , xn]/I with I = (f1, . . . , fm) and mx = (x1, . . . , xn)/I

Denote the polynomial algebra P = C[x1, . . . , xn] and consider the map

d : I - (Pdx1 ⊕ . . .⊕ Pdxn)⊗P C[X] = C[X]dx1 ⊕ . . .⊕ C[X]dxn

where the dxi are a formal basis of the free module of rank n and the map is
defined by

d(f) = (
∂f

∂x1
, . . . ,

∂f

∂xn
) mod I

This gives a C[X]-linear mapping I
I2

d- C[X]dx1⊕ . . .⊕C[X]dxn. Extending
to the local algebra Ox at x and then quotient out the maximal ideal mx we
get a C = Ox/mx- linear map I

I2

d(x)- Cdx1 ⊕ . . . ⊕ Cdxn Clearly, x is a
nonsingular point of X if and only if the C-linear map d(x) is injective. This
is equivalent to the existence of a C-section and by the Nakayama lemma also
to the existence of a Ox-linear splitting sx of the induced Ox-linear map dx

I

I2

⊂
dx-

��
sx

Oxdx1 ⊕ . . .⊕Oxdxn
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satisfying sx ◦ dx = id I
I2

A C-algebra epimorphism (between commutative algebras) R
π-- S with

square zero kernel is called an infinitesimal extension of S . It is called a trivial
infinitesimal extension if π has an algebra section σ : S ⊂ - R satisfying
π ◦ σ = idS . An infinitesimal extension R

π-- S of S is said to be versal
if for any other infinitesimal extension R′

π′-- S of S there is a C-algebra
morphism

R
π -- S

R′

π
′

--
...............................

∃
g

-

making the diagram commute. From this universal property it is clear that
versal infinitesimal extensions are uniquely determined up to isomorphism.
Moreover, if a versal infinitesimal extension is trivial, then so is any infinitesi-
mal extension. By iterating, S is Grothendieck-smooth if and only if it has the
lifting property with respect to nilpotent ideals I with square zero. Therefore,
assume we have a test object (T, I) with I2 = 0, then we have a commuting
diagram

S ×T/I T
pr1 -- S

T

pr2

??

p
-- T/I

κ

?

where we define the pull-back algebra S×T/IT = {(s, t) ∈ S×T | κ(s) = p(t)}.
Observe that pr1 : S ×T/I T -- S is a C-algebra epimorphism with kernel
0 ×T/I I having square zero, that is, it is an infinitesimal extension of S.
Moreover, the existence of a lifting λ of κ is equivalent to the existence of a
C-algebra section

σ : S - S ×T/I T defined by s 7→ (s, λ(s))

Hence, S is Grothendieck-smooth if and only if a versal infinitesimal extension
of S is trivial.

Returning to the situation of interest to us, we claim that the algebra
epimorphism Ox(Cn)/I2

x

cx-- Ox is a versal infinitesimal extension of Ox.
Indeed, consider any other infinitesimal extension R

π-- Ox then we define
a C-algebra morphism Ox(Cn)/I2

x
- R as follows: let ri ∈ R such that

π(ri) = cx(xi) and define an algebra morphism C[x1, . . . , xn] - R by
sending the variable xi to ri. As the image of any polynomial nonvanishing
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in x is a unit in R, this algebra map extends to one from the local algebra
Ox(Cn) and it factors over Ox(Cn)/I2

x as the image of Ix lies in the kernel of π,
which has square zero, proving the claim. Hence, Ox is Grothendieck-smooth
if and only if there is a C-algebra section

Ox(Cn)/I2
x

cx --
�
rx

⊃ Ox

satisfying cx ◦ rx = idOx
.

PROPOSITION 4.1
The affine scheme X is nonsingular at the geometric point x if and only if the
local algebra Ox(X) is Grothendieck-smooth.

PROOF The result will follow once we prove that there is a natural one-
to-one correspondence between Ox-module splittings sx of dx and C-algebra
sections rx of cx. This correspondence is given by assigning to an algebra
section rx the map sx defined by

sx(dxi) = (xi − rx ◦ cx(xi)) mod I2
x

If X is an affine scheme that is smooth in all of its geometric points, then
we have seen before that X = X must be reduced, that is, an affine variety.
Restricting to its disjoint irreducible components we may assume that

C[X] = ∩x∈XOx

Clearly, if C[X] is Grothendieck-smooth, so is any of the local algebras Ox.
Conversely, if all Ox are Grothendieck-smooth and C[X] = C[x1, . . . , xn]/I
one knows that the algebra epimorphism

C[x1, . . . , xn]/I2 c-- C[X]

has local sections in every x, but then there is an algebra section. Because
c is clearly a versal infinitesimal deformation of C[X], it follows that C[X] is
Grothendieck-smooth.

PROPOSITION 4.2
Let X be an affine scheme. Then, C[X] is Grothendieck-smooth if and only if X
is nonsingular in all of its geometric points. In this case, X is a reduced affine
variety.

However, Grothendieck-smooth algebras do not have to be cat-smooth for
more general categories of C-algebras.
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Example 4.1
Consider the polynomial algebra C[x1, . . . , xd] and the 4-dimensional noncom-
mutative local algebra

T =
C〈x, y〉

(x2, y2, xy + yx)
= C⊕ Cx⊕ Cy ⊕ Cxy

Consider the one-dimensional nilpotent ideal I = C(xy − yx) of T , then
the 3-dimensional quotient T

I is commutative and we have a morphism

C[x1, . . . , xd]
φ- T

I by x1 7→ x, x2 7→ y and xi 7→ 0 for i ≥ 2. This
morphism admits no lift to T as for any potential lift the commutator

[φ̃(x), φ̃(y)] 6= 0 in T

Therefore, C[x1, . . . , xd] can only be Quillen smooth if d = 1.

Because comm = alg@1, it is natural to generalize the foregoing to Cayley-
smooth algebras. Let B be a Cayley-Hamilton algebra of degree n with trace
map trB and trace generated by m elements, say, {b1, . . . , bm}. Then, we can
write

B = Tmn /TB with TB closed under traces

Now, consider the extended ideal

EB = Mn(C[Mm
n ]).TB .Mn(C[Mm

n ]) = Mn(NB)

and we have seen that C[trepn B] = C[Mm
n ]/NB . We need the following

technical result.

LEMMA 4.1
With notations as above, we have for all k that

Ekn
2

B ∩ Tmn ⊂ T kB

PROOF Let Tmn be the trace algebra on the generic n × n matri-
ces {X1, . . . , Xm} and Tl+mn the trace algebra on the generic matrices
{Y1, . . . , Yl, X1, . . . , Xm}. Let {U1, . . . , Ul} be elements of Tmn and consider
the trace preserving map Tl+mn

u- Tmn induced by the map defined by send-
ing Yi to Ui. Then, by the universal property we have a commutative diagram
of Reynold operators

Mn(C[M l+m
n ])

ũ- Mn(C[Mm
n ])

Tl+mn

R

?
u - Tmn

R

?
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Now, let A1, . . . , Al+1 be elements from Mn(C[Mm
n ]), then we can calculate

R(A1U1A2U2A3 . . . AlUlAl+1) by first computing

r = R(A1Y1A2Y2A3 . . . AlYlAl+1)

and then substituting the Yi with Ui. The Reynolds operator preserves the
degree in each of the generic matrices, therefore r will be linear in each of the
Yi and is a sum of trace algebra elements. By our knowledge of the generators
of necklaces and the trace algebra we can write each term of the sum as an
expression

tr(M1)tr(M2) . . . tr(Mz)Mz+1

where each of the Mi is a monomial of degree ≤ n2 in the generic matrices
{Y1, . . . , Yl, X1, . . . , Xm}. Now, look at how the generic matrices Yi are dis-
tributed among the monomials Mj . Each Mj contains at most n2 of the Yi’s,
hence the monomial Mz+1 contains at least l − vn2 of the Yi where v ≤ z is
the number of Mi with i ≤ z containing at least one Yj .

Now, assume all the Ui are taken from the ideal TB / Tmn that is closed
under taking traces, then it follows that

R(A1U1A2U2A3 . . . AlUlAl+1) ∈ T v+(l−vn2)
B ⊂ T kB

if we take l = kn2 as v + (k − v)n2 ≥ k. But this finishes the proof of the
required inclusion.

Let B be a Cayley-Hamilton algebra of degree n with trace map trB and I
a two-sided ideal of B that is closed under taking traces. We will denote by
E(I) the extended ideal with respect to the universal embedding, that is

E(I) = Mn(C[trepn B])IMn(C[trepn B])

Then, for all powers k we have the inclusion E(I)kn
2 ∩B ⊂ Ik.

THEOREM 4.1

Let A be a Cayley-Hamilton algebra of degree n with trace map trA. Then,
A is Cayley-smooth if and only if the trace preserving representation variety
trepn A is nonsingular in all points (in particular, trepn A is reduced).

PROOF Let A be Cayley-smooth, then we have to show that C[trepn A] is
Grothendieck-smooth. Take a commutative test-object (T, I) with I nilpotent
and an algebra map κ : C[trepn A] - T/I. Composing with the universal
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embedding iA we obtain a trace preserving morphism µ0

A ................................................
µ1

- Mn(T )

Mn(C[trepn A])

iA

?

∩

Mn(κ)
- Mn(T/I)

??

µ0

-

Because Mn(T ) with the usual trace is a Cayley-Hamilton algebra of degree
n and Mn(I) a trace stable ideal and A is Cayley-smooth there is a trace pre-
serving algebra map µ1. But then, by the universal property of the embedding
iA there exists a C-algebra morphism

λ : C[trepn A] - T

such that Mn(λ) completes the diagram. The morphism λ is the required lift.
Conversely, assume that C[trepn A] is Grothendieck-smooth. Assume

we have a Cayley-Hamilton algebra of degree n with trace map trT and
a trace-stable nilpotent ideal I of T and a trace preserving C-algebra map
κ : A - T/I. If we combine this test-data with the universal embeddings
we obtain a diagram

T ⊂
iT- Mn(C[trepn T ])

A
κ -.....

.....
.....

.....
.....

.....
.....

...

?∃
λ

-

T/I

??
⊂
iT/I- Mn(C[trepn T/I])

??
=Mn(C[trepn T ]/J)

Mn(C[trepn A])

iA

?

∩

.........
.........

.........
.........

.........
.........

.........
..

Mn
(α)

-

Here, J = Mn(C[trepn T ])IMn(C[trepn T ]) and we know already that J ∩
T = I. By the universal property of the embedding iA we obtain a C-algebra
map

C[trepn A]
α- C[trepn T ]/J

which we would like to lift to C[trepn T ]. This does not follow from
Grothendieck-smoothness of C[trepn A] as J is usually not nilpotent. How-
ever, as I is a nilpotent ideal of T there is some h such that Ih = 0. As I
is closed under taking traces we know by the remark preceding the theorem
that

E(I)hn
2
∩ T ⊂ Ih = 0
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T ⊂ - Mn(C[trepn T ]/Jkn
2
)

A
κ -.....

.....
.....

.....
.....

.....
.....

...

λ

-

T/I

??
⊂
iT/I- Mn(C[trepn T ]/J)

??

Mn(C[trepn A])

iA

?

∩

......
......

......
......

......
......

......
......

......
......

......
......

......
......

....-

Mn
(α)

-

FIGURE 4.1: The lifted morphism.

Now, by definition E(I) = Mn(C[trepn T ])IMn(C[trepn T ]), which is equal
to Mn(J). That is, the inclusion can be rephrased as Mn(J)hn

2 ∩ T = 0,
whence there is a trace preserving embedding T ⊂ - Mn(C[trepn T ]/Jhn

2
).

Now, we are in the situation of figure 4.1 This time we can lift α to a C-algebra
morphism

C[trepn A] - C[trepn T ]/Jhn
2

This in turn gives us a trace preserving morphism

A
λ- Mn(C[trepn T ]/Jhn

2
)

the image of which is contained in the algebra of GLn-invariants. Because
T ⊂ - Mn(C[trepn T ]/Jhn

2
) and by surjectivity of invariants under surjec-

tive maps, the GLn-equivariants are equal to T , giving the required lift λ.

For an affine C-algebra A recall the construction of its level n approximation∫
n

A =
∫
A

(tr(1)− n, χ(n)
a (a) ∀a ∈ A)

= Mn(C[repn A])GLn

In general, it may happen that
∫
n
A = 0 for example if A has no n-dimensional

representations. The characteristic feature of
∫
n
A is that any C-algebra map

A - B with B a Cayley-Hamilton algebra of degree n factors through
∫
n
A

A
φ - B

∫
n

A

.....
.....

.....
.....

.....
..

∃φ
n

-
can

-
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with φn a trace preserving algebra morphism. From this universal property
we deduce the following.

PROPOSITION 4.3
If A is Quillen-smooth, then for every integer n, the Cayley-Hamilton algebra
of degree n,

∫
n
A, is Cayley-smooth. Moreover

repn A ' trepn

∫
n

A

is a smooth affine GLn-variety.

This result allows us to study a Quillen-smooth algebra locally in the étale
topology. We know that the algebra

∫
n
A is given by the GLn-equivariant

maps from repn A = trepn
∫
n
A to Mn(C). As this representation variety is

smooth we can apply the full strength of the slice theorem to determine the
local structure of the GLn-variety trepn

∫
n
A and hence of

∫
n
A. In the next

section we will prove that this local structure is fully determined by a quiver
setting.

Therefore, let us recall the definition of quivers and their path algebras and
show that these algebras are all Quillen-smooth.

DEFINITION 4.2 A quiver Q is a directed graph determined by

• a finite set Qv = {v1, . . . , vk} of vertices, and

• a finite set Qa = {a1, . . . , al} of arrows where we allow multiple arrows
between vertices and loops in vertices.

Every arrow ��������i��������j
aoo has a starting vertex s(a) = i and a terminating

vertex t(a) = j. Multiplication in the path algebra CQ is induced by (left)
concatenation of paths. More precisely, 1 = v1 + . . . + vk is a decomposition
of 1 into mutually orthogonal idempotents and further we define

• vj .a is always zero unless ��������j ��������aoo in which case it is the path a,

• a.vi is always zero unless ��������i�������� aoo in which case it is the path a,

• ai.aj is always zero unless ���������������� ��������aioo ajoo in which case it is
the path aiaj.

Consider the commutative C-algebra

Ck = C[e1, . . . , ek]/(e2i − ei, eiej ,
k∑
i=1

ei − 1)
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Ck is the universal C-algebra in which 1 is decomposed into k orthogonal
idempotents, that is, if R is any C-algebra such that 1 = r1 + . . . + rk with
ri ∈ R idempotents satisfying rirj = 0, then there is an embedding Ck ⊂ - R
sending ei to ri.

PROPOSITION 4.4
Ck is Quillen smooth. That is, if I be a nilpotent ideal of a C-algebra T

and if 1 = e1 + . . . + ek is a decomposition of 1 into orthogonal idempotents
ei ∈ T/I. Then, we can lift this decomposition to 1 = e1 + . . . + ek for
orthogonal idempotents ei ∈ T such that π(ei) = ei where T

π-- T/I is the
canonical projection.

PROOF Assume that I l = 0, clearly any element 1 − i with i ∈ I is
invertible in T as

(1− i)(1 + i+ i2 + . . .+ il−1) = 1− il = 1

If e is an idempotent of T/I and x ∈ T such that π(x) = e. Then, x− x2 ∈ I
whence

0 = (x− x2)l = xl − lxl+1 +
(
l
2

)
xl+2 − . . .+ (−1)lx2l

and therefore xl = axl+1 where a = l −
(
l
2

)
x + . . . + (−1)l−1xl−1 and so

ax = xa. If we take e = (ax)l, then e is an idempotent in T as

e2 = (ax)2l = al(alx2l) = alxl = e

the next to last equality follows from xl = axl+1 = a2xl+2 = . . . = alx2l.
Moreover,

π(e) = π(a)lπ(x)l = π(a)lπ(x)2l = π(alx2l) = π(x)l = e

If f is another idempotent in T/I such that ef = 0 = fe then as above we
can lift f to an idempotent f ′ of T . As f ′e ∈ I we can form the element

f = (1− e)(1− f ′e)−1f ′(1− f ′e)

Because f ′(1 − f ′e) = f ′(1 − e) one verifies that f is idempotent, π(f) = f
and e.f = 0 = f.e. Assume by induction that we have already lifted the pair-
wise orthogonal idempotents e1, . . . , ek−1 to pairwise orthogonal idempotents
e1, . . . , ek−1 of R, then e = e1 + . . . + ek−1 is an idempotent of T such that
eek = 0 = eke. Hence, we can lift ek to an idempotent ek ∈ T such that
eek = 0 = eke. But then also

eiek = (eie)ek = 0 = ek(eei) = ekei
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Finally, as e1 + . . .+ ek − 1 = i ∈ I we have that

e1 + . . .+ ek − 1 = (e1 + . . .+ ek − 1)l = il = 0

finishing the proof.

PROPOSITION 4.5
For any quiver Q, the path algebra CQ is Quillen smooth.

PROOF Take an algebra T with a nilpotent two-sided ideal I / T and
consider

T -- T

I

CQ

φ

6

�...............................

?φ̃

The decomposition 1 = φ(v1) + . . . + φ(vk) into mutually orthogonal idem-
potents in T

I can be lifted up the nilpotent ideal I to a decomposition
1 = φ̃(v1) + . . . + φ̃(vk) into mutually orthogonal idempotents in T . But
then, taking for every arrow a

��������j ��������i
aoo an arbitrary element φ̃(a) ∈ φ̃(vj)(φ(a) + I)φ̃(vi)

gives a required lifted algebra morphism CQ φ̃- T .

Recall that a representation V of the quiver Q is given by

• a finite dimensional C-vector space Vi for each vertex vi ∈ Qv, and

• a linear map Vj �Va
Vi for every arrow ��������i��������j

aoo in Qa.

If dim Vi = di we call the integral vector α = (d1, . . . , dk) ∈ Nk the dimension
vector of V and denote it with dim V . A morphism V

φ- W between two
representations V and W of Q is determined by a set of linear maps

Vi
φi- Wi for all vertices vi ∈ Qv

satisfying the following compatibility conditions for every arrow ��������i��������j
aoo

in Qa
Vi

Va - Vj

Wi

φi

?
Wa - Wj

φj

?



174 Noncommutative Geometry and Cayley-Smooth Orders

Clearly, composition of morphisms V
φ- W

ψ- X is given by the rule
that (ψ ◦ φ)i = ψi ◦ ψi and one readily verifies that this is again a morphism
of representations of Q. In this way we form a category rep Q of all finite
dimensional representations of the quiver Q.

PROPOSITION 4.6
The category rep Q is equivalent to the category of finite dimensional CQ-
representations CQ− mod.

PROOF Let M be an n-dimensional CQ-representation. Then, we con-
struct a representation V of Q by taking

• Vi = viM , and for any arrow ��������i��������j
aoo in Qa define

• Va : Vi - Vj by Va(x) = vjax.

Observe that the dimension vector dim(V ) = (d1, . . . , dk) satisfies
∑
di = n.

If φ : M - N is CQ-linear, then we have a linear map Vi = viM
φi- Wi =

viN , which clearly satisfies the compatibility condition.
Conversely, let V be a representation of Q with dimension vector dim(V ) =

(d1, . . . , dk). Then, consider the n =
∑
di-dimensional space M = ⊕iVi,

which we turn into a CQ-representation as follows. Consider the canonical
injection and projection maps Vj ⊂

ij- M
πj-- Vj . Then, define the action

of CQ by fixing the action of the algebra generators vj and al to be{
vjm = ij(πj(m))
alm = ij(Va(πi(m)))

for all arrows ��������i��������j
aloo . A computation verifies that these two operations

are inverse to each other and induce an equivalence of categories.

4.2 Local structure

In this section we give some applications of the slice theorem to the local
structure of quotient varieties of representation spaces. We will first handle
the case of an affine C-algebra A leading to a local description of

∫
n
A. Next,

we will refine this slightly to prove similar results for an arbitrary affine C-
algebra B in alg@n.

When A is an affine C-algebra generated by m elements {a1, . . . , am}, its
level n approximation

∫
n
A is trace generated by m determining a trace pre-

serving epimorphism Tmn --
∫
n
A. Thus we have a GLn-equivariant closed
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embedding of affine schemes

repn A = trepn

∫
n

A ⊂
ψ- trepn Tmn = Mm

n

Take a point ξ of the quotient scheme issn A = trepn
∫
n
A/GLn. We

know that ξ determines the isomorphism class of a semisimple n-dimensional
representation of A, say

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct simple A-representations, say, of dimension di and
occurring in Mξ with multiplicity ei. These numbers determine the represen-
tation type τ(ξ) of ξ (or of the semisimple representation Mξ), that is

τ(ξ) = (e1, d1; e2, d2; . . . ; ek, dk)

Choosing a basis of Mξ adapted to this decomposition gives us a point x =
(X1, . . . , Xm) in the orbit O(Mξ) such that each n × n matrix Xi is of the
form

Xi =


m

(i)
1 ⊗

rr
e1 0 . . . 0

0 m
(i)
2 ⊗

rr
e2 . . . 0

...
...

. . .
...

0 0 . . . m
(i)
k ⊗

rr
ek


where each m(i)

j ∈Mdj
(C). Using this description we can compute the stabi-

lizer subgroup Stab(x) of GLn consisting of those invertible matrices g ∈ GLn
commuting with everyXi. That is, Stab(x) is the multiplicative group of units
of the centralizer of the algebra generated by the Xi. It is easy to verify that
this group is isomorphic to

Stab(x) ' GLe1 ×GLe2 × . . .×GLek
= GL(αξ)

for the dimension vector αξ = (e1, . . . , ek) determined by the multiplicities
and with embedding Stab(x) ⊂ - GLn given by

GLe1(C⊗
rr
d1) 0 . . . 0

0 GLe2(C⊗
rr
d2) . . . 0

...
...

. . .
...

0 0 . . . GLek
(C⊗ rr

dk
)


A different choice of point in the orbit O(Mξ) gives a subgroup of GLn con-
jugated to Stab(x).

We know that the normal space Nsm
x can be identified with the self-

extensions Ext1A(M,M) and we will give a quiver-description of this space.
The idea is to describe first the GL(α)-module structure of N big

x , the normal
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•

22
22

22
22

22
22

22
22

22
22

22
2

22
22

22
22

22
22

22
22

22
22

22
2

x

O(Mξ)

Nsm
x

N
big
x

repn A

Nsm
x =

Tx repn A

Tx O(Mξ)
/ Nbig

x =
Tx Mm

n

Tx O(Mξ)

FIGURE 4.2: Big and small normal spaces to the orbit.

space to the orbit O(Mξ) in Mm
n (see figure 4.2) and then to identify the direct

summand Nsm
x . The description of N big

x follow from a bookkeeping operation
involving GL(α)-representations. For x = (X1, . . . , Xm), the tangent space
Tx O(Mxi) in Mm

n to the orbit is equal to the image of the linear map

gln = Mn
- Mn ⊕ . . .⊕Mn = Tx M

m
n

A 7→ ([A,X1], . . . , [A,Xm])

Observe that the kernel of this map is the centralizer of the subalgebra gen-
erated by the Xi, so we have an exact sequence of Stab(x) = GL(α)-modules

0 - gl(α) = Lie GL(α) - gln = Mn
- Tx O(x) - 0

Because GL(α) is a reductive group every GL(α)-module is completely re-
ducible and so the sequence splits. But then, the normal space in Mm

n =
Tx M

m
n to the orbit is isomorphic as GL(α)-module to

N big
x = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m−1

⊕gl(α)

with the action of GL(α) (embedded as above in GLn) is given by simultane-
ous conjugation. If we consider the GL(α)-action on Mn depicted in figure 4.2
we see that it decomposes into a direct sum of subrepresentations

• for each 1 ≤ i ≤ k we have d2
i copies of the GL(α)-module Mei

on which
GLei

acts by conjugation and the other factors of GL(α) act trivially,
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︸ ︷︷ ︸
d1

︸ ︷︷ ︸
d2

FIGURE 4.3: The GL(α)-action on Mn

• for all 1 ≤ i, j ≤ k we have didj copies of the GL(α)-module Mei×ej

on which GLei
×GLej

acts via g.m = gimg
−1
j and the other factors of

GL(α) act trivially.

These GL(α) components are precisely the modules appearing in representa-
tion spaces of quivers.

THEOREM 4.2

Let ξ be of representation type τ = (e1, d1; . . . ; ek, dk) and let α = (e1, . . . , ek).
Then, the GL(α)-module structure of the normal space N big

x in Mm
n to the

orbit of the semisimple n-dimensional representation O(Mξ) is isomorphic to

repα Q
big
ξ

where the quiver Qbigξ has k vertices (the number of distinct simple summands
of Mξ) and the subquiver on any two vertices vi, vj for 1 ≤ i 6= j ≤ k has the
following shape

ei8?9>:=;< ej8?9>:=;< (m − 1)d
2
j + 1(m − 1)d

2
i + 1

(m − 1)didj

''

(m − 1)didj

gg77 gg

That is, in each vertex vi there are (m−1)d2
i+1-loops and there are (m−1)didj

arrows from vertex vi to vertex vj for all 1 ≤ i 6= j ≤ k.

Example 4.2

If m = 2 and n = 3 and the representation type is τ = (1, 1; 1, 1; 1, 1) (that is,
Mξ is the direct sum of three distinct one-dimensional simple representations),
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then the quiver Qξ is

18?9>:=;< 18?9>:=;<

18?9>:=;<

**
jj

;;

{{

SS

��
--
MM

qq
QQ

qq--

We have GLn-equivariant embeddings O(Mξ) ⊂ - trepn
∫
n
A ⊂ - Mm

n

and corresponding embeddings of the tangent spaces in x

Tx O(Mξ) ⊂ - Tx trepn

∫
n

A ⊂ - Tx M
m
n

Because GL(α) is reductive we then obtain that the normal spaces to the
orbit is a direct summand of GL(α)-modules.

Nsm
x =

Tx trepn
∫
n
A

Tx O(Mξ)
/ N big

x =
Tx M

m
n

Tx O(Mξ)

As we know the isotypical decomposition of N big
x as the GL(α)-module

repα Qξ this allows us to control Nsm
x . We only have to observe that ar-

rows in Qξ correspond to simple GL(α)-modules, whereas a loop at vertex vi
decomposes as GL(α)-module into the simples

Mei
= M0

ei
⊕ Ctriv

where Ctriv is the one-dimensional simple with trivial GL(α)-action and M0
ei

is the space of trace zero matrices in Mei
. Any GL(α)-submodule of N big

x can
be represented by a marked quiver using the dictionary

• a loop at vertex vi corresponds to the GL(α)-module Mei
on which GLei

acts by conjugation and the other factors act trivially,

• a marked loop at vertex vi corresponds to the simple GL(α)-module M0
ei

on which GLei
acts by conjugation and the other factors act trivially,

• an arrow from vertex vi to vertex vj corresponds to the simple GL(α)-
module Mei×ej on which GLei ×GLej acts via g.m = gimg

−1
j and the

other factors act trivially,

Combining this with the calculation that the normal space is the space
of self-extensions Ext1A(Mξ,Mξ) or the trace preserving self-extensions
ExttrB (Mξ,Mxi) (in case B ∈ Ob(alg@n)) we have the following.
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THEOREM 4.3
Consider the marked quiver on k vertices such that the full marked subquiver
on any two vertices vi 6= vj has the form

ei8?9>:=;< ej8?9>:=;<
ajjaii

mjjmii

aij

''

aji

gg
��

•

DD

��

•

ZZ

where these numbers satisfy aij ≤ (m− 1)didj and aii +mii ≤ (m− 1)d2
i + 1.

Then,

1. Let A be an affine C-algebra generated by m elements, let Mξ be
an n-dimensional semisimple A-module of representation-type τ =
(e1, d1; . . . ; ek, dk) and let α = (e1, . . . , ek). Then, the normal space Nsm

x

in a point x ∈ O(Mξ) to the orbit with respect to the representation space
repn A is isomorphic to the GL(α)-module of quiver-representations
repα Qξ of above type with

• aii = dimC Ext1A(Si, Si) and mii = 0 for all 1 ≤ i ≤ k.
• aij = dimC Ext1A(Si, Sj) for all 1 ≤ i 6= j ≤ n.

2. Let B be a Cayley-Hamilton algebra of degree n, trace generated by m ele-
ments, let Mξ be a trace preserving n-dimensional semisimple B-module
of representation type τ = (e1, d1; . . . ; ek, dk) and let α = (e1, . . . , ek).
Then, the normal space N tr

x in a point x ∈ O(Mξ) to the orbit with
respect to the trace preserving representation space trepn B is isomor-
phic to the GL(α)-module of marked quiver-representations repα Q

•
ξ of

above type with

• aij = dimC Ext1B(Si, Sj) for all 1 ≤ i 6= j ≤ k

and the (marked) vertex loops further determine the structure of
ExttrB (Mξ,Mξ).

By a marked quiver-representation we mean a representation of the under-
lying quiver (that is, forgetting the marks) subject to the condition that the
matrices corresponding to marked loops have trace zero.

Consider the slice diagram of figure 4.4 for the representation space repn A.
The left-hand side exists when x is a smooth point of repn A, the right-hand
side exists always. The horizontal maps are étale and the upper ones GLn-
equivariant.

DEFINITION 4.3 A point ξ ∈ issn A is said to belong to the n-smooth
locus of A iff the representation space repn A is smooth in x ∈ O(Mξ). The
n-smooth locus of A will be denoted by Smn(A).



180 Noncommutative Geometry and Cayley-Smooth Orders

GLn ×GL(α) Nsm
x

�GLn×GL(α)φ
GLn ×GL(α) Sx

ψ - repn A

Nsm
x /GL(α)

??
� φ/GL(α)

Sx/GL(α)

??
ψ/GL(α) - issn A

??

FIGURE 4.4: Slice diagram for representation space.

To determine the étale local structure of Cayley-Hamilton algebras in their
n-smooth locus, we need to investigate the special case of quiver orders. We
will do this in the next section and, at its end, draw some consequences about
the étale local structure. We end this section by explaining the remarkable
success of these local quiver settings and suggest that one can extend this
using the theory of A∞-algebras.

The category alg has a topological origin. Consider the tiny interval operad
D1, that is, let D1(n) be the collection of all configurations

i1 i2 in

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

consisting of the unit interval with n closed intervals removed, each gap given
a label ij where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n). Clearly, D1(n)
is a real 2n-dimensional C∞-manifold having n! connected components, each of
which is a contractible space. The operad structure comes from the collection
of composition maps

D1(n)× (D1(m1)× . . . D1(mn))
m(n,m1,...,mn)- D1(m1 + . . .+mn)

defined by resizing the configuration in the D1(mi)-component such that it
fits precisely in the i-th gap of the configuration of the D1(n)-component, see
figure 4.5. We obtain a unit interval having m1 + . . . + mn gaps which are
labeled in the natural way, that is the first m1 labels are for the gaps in the
D1(m1)-configuration fitted in gap 1, the next m2 labels are for the gaps in
the D1(m2)-configuration fitted in gap 2 and so on. The tiny interval operad
D1 consists of

• a collection of topological spaces D1(n) for n ≥ 0,

• a continuous action of Sn on D1(n) by relabeling, for every n,

• an identity element id ∈ D1(1),

• the continuous composition maps m(n,m1,...,mn), which satisfy associa-
tivity and equivariance with respect to the symmetric group actions.
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i1

j1 j2 jmi1

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

k1 k2 kmi2

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

l1 l2 lmin

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

i2 in

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

FIGURE 4.5: The tiny interval operad.

By taking the homology groups of these manifolds D1(n) we obtain a linear
operad assoc. Because D1(n) has n! contractible components we can identify
assoc(n) with the subspace of the free algebra C〈x1, . . . , xn〉 spanned by the
multilinear monomials. assoc(n) has dimension n! with basis xσ(1) . . . xσ(n)

for σ ∈ Sn. Each assoc(n) has a natural action of Sn and as Sn-
representation it is isomorphic to the regular representation. The composition
maps m(n,m1,...,mn) induce on the homology level linear composition maps

assoc(n)⊗ assoc(m1)⊗ . . .⊗ assoc(mn)
γ(n,m1,...,mn)- assoc(m1 + . . .+mn)

obtained by substituting the multilinear monomials φi ∈ assoc(mi) in the
place of the variable xi into the multilinear monomial ψ ∈ assoc(n).

In general, a C-linear operad P consists of a family of vector spaces P(n)
each equipped with an Sn-action, P(1) contains an identity element and there
are composition linear morphisms

P(n)⊗ P(m1)⊗ . . .⊗ P(mn)
c(n,m1,...,mn)- P(m1 + . . .+mn)

satisfying the same compatibility relations as the maps γ(n,m1,...,mn) above.
An example is the endomorphism operad endV for a vector space V defined
by taking

endV (n) = HomC(V ⊗n, V )

with compositions and Sn-action defined in the obvious way and unit element
rr
V ∈ endV (1) = End(V ). A morphism of linear operads P

f- P′ is a
collection of linear maps, which are equivariant with respect to the Sn-action,
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commute with the composition maps and take the identity element of P to
the identity element of P′.

DEFINITION 4.4 Let P be a C-linear operad. A P-algebra is a vector
space A equipped with a morphism of operads P

f- endA.

For example, assoc-algebras are just associative C-algebras, explaining the
topological origin of alg. Instead of considering the homology operad assoc
of the tiny intervals D1 we can consider its chain operad chain. For a topo-
logical space X, let chains(X) be the complex concentrated in nonpositive
degrees, whose −k-component consists of the finite formal additive combina-
tions

∑
ci.fi where ci ∈ C and fi : [0, 1]k - X is a continuous map (a

singular cube in X ) modulo the following relations

• For any σ ∈ Sk acting on [0, 1]k by permutation, we have f ◦σ = sg(σ)f .

• For prkk−1 : [0, 1]k
k−1-- the projection on the first k − 1 coordinates

and any continuous map [0, 1]k−1 f ′- X we have f ′ ◦ prkk−1 = 0.

Then, chain is the collection of complexes chains(D1(n)) and is an operad
in the category of complexes of vector spaces with cohomology the homology
operad assoc. Again, we can consider chain-algebras, this time as complexes
of vector spaces. These are the A∞-algebras.

DEFINITION 4.5 An A∞-algebra is a Z-graded complex vector space

B = ⊕p∈ZBp

endowed with homogeneous C-linear maps

mn : B⊗n - B

of degree 2− n for all n ≥ 1, satisfying the following relations

• We have m1 ◦m1 = 0, that is (B,m1) is a differential complex

. . .
m1- Bi−1

m1- Bi
m1- Bi+1

m1- . . .

• We have the equality of maps B ⊗B - B

m1 ◦m2 = m2 ◦ (m1 ⊗ rr + rr⊗m1)

where rr is the identity map on the vector space B. That is, m1 is a
derivation with respect to the multiplication B ⊗B m2- B.
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∑
± = 0
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FIGURE 4.6: A∞-identities.

• We have the equality of maps B ⊗B ⊗B - B

m2 ◦ (rr⊗m2 −m2 ⊗ rr)
= m1 ◦m3 +m3 ◦ (m1 ⊗ rr⊗ rr + rr⊗m1 ⊗ 1 + rr⊗ rr⊗m1)

where the right second expression is the associator for the multiplication
m2 and the first is a boundary of m3, implying that m2 is associative up
to homology.

• More generally, for n ≥ 1 we have the relations∑
(−1)i+j+kml ◦ (rr⊗i ⊗mj ⊗ rr⊗k) = 0

where the sum runs over all decompositions n = i + j + k and where
l = i+ 1 + k. These identities are pictorially represented in figure 4.6.

Observe that an A∞-algebra B is in general not associative for the multi-
plication m2, but its homology

H∗ B = H∗(B,m2)

is an associative graded algebra for the multiplication induced bym2. Further,
if mn = 0 for all n ≥ 3, then B is an associative differentially graded algebra
and conversely every differentially graded algebra yields an A∞-algebra with
mn = 0 for all n ≥ 3.

Let A be an associative C-algebra and M a left A-module. Choose an
injective resolution of M

0 - M - I0 - I1 - . . .

with the Ik injective left A-modules and denote by I• the complex

I• : 0 - I0 d- I1 d- . . .
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Let B = HOM•A(I•, I•) be the morphism complex. That is, its n-th compo-
nent are the graded A-linear maps I• - I• of degree n. This space can be
equipped with a differential

d(f) = d ◦ f − (−1)nf ◦ d for f in the n-th part

Then, B is a differentially graded algebra where the multiplication is the
natural composition of graded maps. The homology algebra

H∗ B = Ext∗A(M,M)

is the extension algebra of M . Generalizing the description of Ext1A(M,M)
given in section 4.3, an element of ExtkA(M,M) is an equivalence class of
exact sequences of A-modules

0 - M - P1
- P2

- . . . - Pk - M - 0

and the algebra structure on the extension algebra is induced by concatenation
of such sequences. This extension algebra has a canonical structure of A∞-
algebra with m1 = 0 and m2 the usual multiplication.

Now, let M1, . . . ,Mk be A-modules (for example, finite dimensional repre-
sentations) and with filt(M1, . . . ,Mk) we denote the full subcategory of all
A-modules whose objects admit finite filtrations with subquotients among the
Mi. We have the following result, for a proof and more details we refer to the
excellent notes by B. Keller [51, §6].

THEOREM 4.4

Let M = M1 ⊕ . . . ⊕Mk. The canonical A∞-structure on the extension al-
gebra Ext∗A(M,M) contains enough information to reconstruct the category
filt(M1, . . . ,Mk).

If we specialize to the case when M is a semisimple n-dimensional repre-
sentation of A of representation type τ = (e1, d1; . . . ; ek, dk), say, with decom-
position

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

Then, the first two terms of the extension algebra Ext∗A(Mξ,Mξ) are

• Ext0A(Mξ,Mξ) = EndA(Mξ) = Me1(C) ⊕ . . . ⊕ Mek
(C) because

by Schur’s lemma HomA(Si, Sj) = δijC. Hence, the 0-th part of
Ext∗A(Mξ,Mξ) determine the dimension vector α = (e1, . . . , ek).

• Ext1A(Mξ,Mξ) = ⊕ki,j=1Mej×ei
(Ext1A(Si, Sj)) and we have seen that

dimC Ext1A(Si, Sj) is the number of arrows from vertex vi to vj in the
local quiver Qξ.
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A brief summary follows.

PROPOSITION 4.7

Let ξ ∈ Smn(A), then the first two terms of the extension algebra
Ext∗A(Mξ,Mξ) contain enough information to determine the étale local struc-
ture of repn A and issn A near Mξ.

If one wants to extend this result to noncommutative singular points ξ /∈
Smn(A), one will have to consider the canonical A∞-structure on the full
extension algebra Ext∗A(Mξ,Mξ).

4.3 Quiver orders

In this section and the next we will construct a large class of central simple
algebras controlled by combinatorial data, using the setting of proposition 3.3.

The description of the quiver Q can be encoded in an integral k× k matrix

χQ =

χ11 . . . χ1k

...
...

χk1 . . . χkk

 with χij = δij −# { ��������i��������j oo }

Example 4.3

Consider the quiver Q

�������� ��������
��������

// ��

77 GG

2 3

1

Then, with the indicated ordering of the vertices we have that the integral
matrix is

χQ =

 1 0 0
−2 1 −1
0 0 0


and the path algebra of Q is isomorphic to the block-matrix algebra

CQ′ '

C C⊕ C 0
0 C 0
0 C[x] C[x]


where x is the loop in vertex v3.
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The subspace CQvi has as its basis the paths starting in vertex vi and
because CQ = ⊕iCQvi, CQvi is a projective left ideal of CQ. Similarly, viCQ
has as its basis the paths ending at vi and is a projective right ideal of CQ.
The subspace viCQvj has as its basis the paths starting at vj and ending at vi
and CQviCQ is the two-sided ideal of CQ having as its basis all paths passing
through vi. If 0 6= f ∈ CQvi and 0 6= g ∈ viCQ, then f.g 6= 0 for let p be a
longest path occurring in f and q a longest path in g, then the coefficient of
p.q in f.g cannot be zero. As a consequence we have the following.

LEMMA 4.2

The projective left ideals CQvi are indecomposable and pairwise non-
isomorphic.

PROOF If CQvi is not indecomposable, then there exists a projection
idempotent f ∈ HomCQ(CQvi,CQvi) ' viCQvi. But then, f2 = f = f.vi
whence f.(f − vi) = 0, contradicting the remark above. Further, for any left
CQ-module M we have that HomCQ(CQvi,M) ' viM . So, if CQvi ' CQvj
then the isomorphism gives elements f ∈ viCQvj and g ∈ vjCQvi such that
f.g = vi and g.f = vj . But then, vi ∈ CQvjCQ, a contradiction unless i = j

as this space has as its basis all paths passing through vj .

Example 4.4

Let Q be a quiver, then the following properties hold:

1. CQ is finite dimensional if and only if Q has no oriented cycles.

2. CQ is prime (that is, I.J 6= 0 for all two-sided ideals I, J 6= 0) if and
only if Q is strongly connected, that is, for all vertices vi and vj there is
a path from vi to vj .

3. CQ is Noetherian (that is, satisfies the ascending chain condition on
left (or right) ideals) if and only if for every vertex vi belonging to an
oriented cycle there is only one arrow starting at vi and only one arrow
terminating at vi.

4. The radical of CQ has as its basis all paths from vi to vj for which there
is no path from vj to vi.

5. The center of CQ is of the form C × . . . × C × C[x] × . . . × C[x] with
one factor for each connected component C of Q (that is, connected
component for the underlying graph forgetting the orientation) and this
factor is isomorphic to C[x] if and only if C is one oriented cycle.
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The Euler form of the quiver Q is the bilinear form on Zk

χQ(., .) : Zk × Zk - Z defined by χQ(α, β) = α.χQ.β
τ

for all row vectors α, β ∈ Zk.

THEOREM 4.5
Let V and W be two representations of Q, then

dimC HomCQ(V,W )− dimC Ext1CQ(V,W ) = χQ(dim(V ), dim(W ))

PROOF We claim that there exists an exact sequence of C-vector spaces

0 - HomCQ(V,W )
γ- ⊕vi∈Qv

HomC(Vi,Wi)
dV

W-

dV
W- ⊕a∈Qa

HomC(Vs(a),Wt(a))
ε- Ext1CQ(V,W ) - 0

Here, γ(φ) = (φ1, . . . , φk) and dVW maps a family of linear maps (f1, . . . , fk)
to the linear maps µa = ft(a)Va −Wafs(a) for any arrow a in Q, that is, to
the obstruction of the following diagram to be commutative

Vs(a)
Va - Vt(a)

Ws(a)

fs(a)

?
Wa- Wt(a)

ft(a)

?

.............................

µ
a

-

By the definition of morphisms between representations of Q it is clear that
the kernel of dVW coincides with HomCQ(V,W ).

Further, the map ε is defined by sending a family of maps (g1, . . . , gs) =
(ga)a∈Qa

to the equivalence class of the exact sequence

0 - W
i- E

p- V - 0

where for all vi ∈ Qv we have Ei = Wi⊕Vi and the inclusion i and projection
map p are the obvious ones and for each generator a ∈ Qa the action of a on
E is defined by the matrix

Ea =
[
Wa ga
0 Va

]
: Es(a) = Ws(a) ⊕ Vs(a) - Wt(a) ⊕ Vt(a) = Et(a)

Clearly, this makes E into a CQ-module and one verifies that the above short
exact sequence is one of CQ-modules. Remains to prove that the cokernel of
dVW can be identified with Ext1CQ(V,W ).
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A set of algebra generators of CQ is given by {v1, . . . , vk, a1, . . . , al}. A
cycle is given by a linear map λ : CQ - HomC(V,W ) such that for all
f, f ′ ∈ CQ we have the condition

λ(ff ′) = ρ(f)λ(f ′) + λ(f)σ(f ′)

where ρ determines the action on W and σ that on V . First, consider vi
then the condition says λ(v2

i ) = λ(vi) = pWi λ(vi) + λ(vi)pVi whence λ(vi) :
Vi - Wi but then applying again the condition we see that λ(vi) = 2λ(vi) so
λ(vi) = 0. Similarly, using the condition on a = vt(a)a = avs(a) we deduce that
λ(a) : Vs(a) - Wt(a). That is, we can identify ⊕a∈QaHomC(Vs(a),Wt(a))
with Z(V,W ) under the map ε. Moreover, the image of δ gives rise to a family
of morphisms λ(a) = ft(a)Va−Wafs(a) for a linear map f = (fi) : V - W so
this image coincides precisely to the subspace of boundaries B(V,W ) proving
that indeed the cokernel of dVW is Ext1CQ(V,W ) finishing the proof of exactness
of the long sequence of vector spaces. But then, if dim(V ) = (r1, . . . , rk) and
dim(W ) = (s1, . . . , sk), we have that dim Hom(V,W ) − dim Ext1(V,W ) is
equal to ∑

vi∈Qv

dim HomC(Vi,Wi)−
∑
a∈Qa

dim HomC(Vs(a),Wt(a))

=
∑
vi∈Qv

risi −
∑
a∈Qa

rs(a)st(a)

= (r1, . . . , rk)MQ(s1, . . . , sk)τ = χQ(dim(V ), dim(W ))

finishing the proof.

Fix a dimension vector α = (d1, . . . , dk) ∈ Nk and consider the set repα Q
of all representations V of Q such that dim(V ) = α. Because V is completely
determined by the linear maps

Va : Vs(a) = Cds(a) - Cdt(a) = Vt(a)

we see that repα Q is the affine space

repα Q =
⊕

��������i��������j
aoo

Mdj×di(C) ' Cr

where r =
∑
a∈Qa

ds(a)dt(a). On this affine space we have an action of the
algebraic group GL(α) = GLd1 × . . . × GLdk

by conjugation. That is, if
g = (g1, . . . , gk) ∈ GL(α) and if V = (Va)a∈Qa then g.V is determined by the
matrices

(g.V )a = gt(a)Vag
−1
s(a)

If V and W in repα Q are isomorphic as representations of Q, such an iso-
morphism is determined by invertible matrices gi : Vi - Wi ∈ GLdi

such
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that for every arrow ��������i��������j
aoo we have a commutative diagram

Vi
Va - Vj

Wi

gi

?
Wa - Wj

gj

?

or equivalently, gjVa = Wagi. That is, two representations are isomorphic if
and only if they belong to the same orbit under GL(α). In particular, we see
that

StabGL(α) V ' AutCQ V

and the latter is an open subvariety of the affine space EndCQ(V ) =
HomCQ(V, V ) whence they have the same dimension. The dimension of the
orbit O(V ) of V in repα Q is equal to

dim O(V ) = dim GL(α)− dim StabGL(α) V

But then we have a geometric reformulation of the above theorem.

LEMMA 4.3

Let V ∈ repα Q, then

dim repα Q− dim O(V ) = dim EndCQ(V )− χQ(α, α) = dim Ext1CQ(V, V )

PROOF We have seen that dim repα Q− dim O(V ) is equal to∑
a

ds(a)dt(a) − (
∑
i

d2
i − dim EndCQ(V )) = dim EndCQ(V )− χQ(α, α)

and the foregoing theorem asserts that the latter term is equal to
dim Ext1CQ(V, V ).

In particular it follows that the orbit O(V ) is open in repα Q if and only if
V has no self-extensions. Moreover, as repα Q is irreducible there can be at
most one isomorphism class of a representation without self-extensions.

For every dimension vector α = (d1, . . . , dk) we will construct a quiver order
TαQ which is a Cayley-Hamilton algebra of degree n where n = d1 + . . .+ dk.
First, we describe the n-dimensional representations of the Quillen-smooth
algebra Ck.
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PROPOSITION 4.8
Let Ck = C[e1, . . . , ek]/(e2i − ei, eiej ,

∑k
i=1 ei − 1), then repn Ck is reduced

and is the disjoint union of the homogeneous varieties

repn Ck =
⋃
α

GLn/(GLd1 × . . .×GLdk
)

where the union is taken over all α = (d1, . . . , dk) such that n =
∑
i di.

PROOF As Ck is Quillen smooth we will see in section 4.1 that all its
representation spaces repn Ck are smooth varieties, hence in particular re-
duced. Therefore, it suffices to describe the points. For any n-dimensional
representation

Ck
φ- Mn(C)

the image is a commutative semisimple algebra with orthogonal idempotents
fi = φ(ei) of rank di. Because

∑
i ei = rr

n we must have that
∑
i di = n.

Alternatively, the corresponding n-dimensional representation M = ⊕iMi

where Mi = eiCn has dimension di. The stabilizer subgroup of M is equal to
GL(α) = GLd1 × . . .×GLdk

, proving the claim.

The algebra embedding Ck
φ- CQ obtained by φ(ei) = vi determines a

morphism

repn CQ π- repn Ck = ∪αO(α) = ∪αGLn/GL(α)

where the disjoint union is taken over all the dimension vectors α =
(d1, . . . , dk) such that n =

∑
di. Consider the point pα ∈ O(α) determined

by sending the idempotents ei to the canonical diagonal idempotents

Pi
l=1 di∑

j=
Pi−1

l=1 dl+1

ejj ∈Mn(C)

We denote by Ck(α) this semisimple commutative subalgebra of Mn(C). As
repα Q can be identified with the variety of n-dimensional representations of
CQ in block form determined by these idempotents we see that repα Q =
π−1(p).

We define the quiver trace algebra TQ to be the path algebra of Q over
the polynomial algebra R in the variables tp where p is a word in the arrows
aj ∈ Qa and is determined only up to cyclic permutation. As a consequence
we only retain the variables tp where p is an oriented cycle in Q (as all the
others have a cyclic permutation that is the zero element in CQ). We define
a formal trace map tr on TQ by tr(p) = tp if p is an oriented cycle in Q and
tr(p) = 0 otherwise.
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For a fixed dimension vector α = (d1, . . . , dk) with
∑
i di = n we define

Tα Q to be the quotient

TαQ =
TQ

(χ(n)
a (a), tr(vi)− di)

by dividing out the substitution invariant two-sided ideal generated by all the
evaluations of the formal Cayley-Hamilton algebras of degree n, χ(n)

a (a) for
a ∈ TQ together with the additional relations that tr(vi) = di. Tα Q is a
Cayley-Hamilton algebra of degree n with a decomposition 1 = e1 + . . .+ ek
into orthogonal idempotents such that tr(ei) = di.

More generally, let A be a Cayley-Hamilton algebra of degree n with
decomposition 1 = a1 + . . . + an into orthogonal idempotents such that
tr(ai) = di ∈ N+ and

∑
di = n. Then, we have a trace preserving em-

bedding Ck(α) ⊂
i- A making A into a Ck(α) = ×ki=1C-algebra. We have

a trace preserving embedding Ck(α) ⊂
i′- Mn(C) by sending the idempotent

ei to the diagonal idempotent Ei ∈ Mn(C) with ones on the diagonal from
position

∑i−1
j=1 dj−1 to

∑i
j=1 di. This calls for the introduction of a restricted

representation space of all trace preserving algebra morphisms χ such that the
diagram below is commutative

A
χ- Mn(C)

Ck(α)

i

∪

6

⊂

i
′

-

that is, such that χ(ai) = Ei. This again determines an affine scheme
represα A, which is in fact a closed subscheme of trepn A. The functorial
description of the restricted module scheme is as follows. Let C be any com-
mutative C-algebra, then Mn(C) is a Ck(α)-algebra and the idempotents Ei
allow for a block decomposition

Mn(C) = ⊕i,jEiMn(C)Ej =

E1Mn(C)E1 . . . E1Mn(C)Ek
...

...
EkMn(C)E1 . . . EkMn(C)Ek


The scheme represα A assigns to the algebra C the set of all trace preserving
algebra maps

A
φ- Mn(B) such that φ(ai) = Ei

Equivalently, the idempotents ai decompose A into block form A =
⊕i,jaiAaj and then represα A(C) are the trace preserving algebra morphisms
A - Mn(B) compatible with the block decompositions.
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Still another description of the restricted representation scheme is therefore
that represα A is the scheme theoretic fiber π−1(pα) of the point pα under the
GLn-equivariant morphism

trepn A
π- trepn Ck(α)

Hence, the stabilizer subgroup of p acts on represα A. This stabilizer is the
subgroup GL(α) = GLm1 × . . .×GLmk

embedded in GLn along the diagonal

GL(α) =

GLm1

. . .
GLmk

 ⊂ - GLn

Clearly, GL(α) acts via this embedding by conjugation on Mn(C).

THEOREM 4.6
Let A be a Cayley-Hamilton algebra of degree n such that 1 = a1 + . . .+ ak is
a decomposition into orthogonal idempotents with tr(ai) = mi ∈ N+. Then,
A is isomorphic to the ring of GL(α)-equivariant maps

represα A - Mn.

PROOF We know that A is the ring of GLn-equivariant maps
trepn A

- Mn. Further, we have a GLn-equivariant map

trepn A
π- repntr Ck(α) = GLn.p ' GLn/GL(α)

Thus, the GLn-equivariant maps from trepn A to Mn coincide with the
Stab(p) = GL(α)-equivariant maps from the fiber π−1(p) = represα A to
Mn.

That is, we have a block matrix decomposition for A. Indeed, we have

A ' (C[represα A]⊗Mn(C))GL(α)

and this isomorphism is clearly compatible with the block decomposition and
thus we have for all i, j that

aiAaj ' (C[represα A]⊗Mmi×mj
(C))GL(α)

where Mmi×mj (C) is the space of rectangular mi × mj matrices M with
coefficients in C on which GL(α) acts via

g.M = giMg−1
j where g = (g1, . . . , gk) ∈ GL(α).
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If we specialize this result to the case of quiver orders we have

represα TαQ ' repα Q

as GL(α)-varieties and we deduce

THEOREM 4.7
With notations as before,

1. TαQ is the algebra of GL(α)-equivariant maps from repα Q to Mn, that
is,

TαQ = Mn(C[repα Q])GL(α)

2. The quiver necklace algebra

NαQ = C[repα Q]GL(α)

is generated by traces along oriented cycles in the quiver Q of length
bounded by n2 + 1.

A concrete realization of these algebras is as follows. To an arrow��������j ��������i
a

oo corresponds a dj × di matrix of variables from C[repα Q]

Ma =

 x11(a) . . . . . . x1di
(a)

...
...

xdj1(a) . . . . . . xdjdi
(a)


where xij(a) are the coordinate functions of the entries of Va of a representa-
tion V ∈ repα Q. Let p = a1a2 . . . ar be an oriented cycle in Q, then we can
compute the following matrix

Mp = Mar . . .Ma2Ma1

over C[repα Q]. As we have that s(ar) = t(a1) = vi, this is a square di × di
matrix with coefficients in C[repα Q] and we can take its ordinary trace

Tr(Mp) ∈ C[repα Q].

Then, Nα Q is the C-subalgebra of C[repα Q] generated by these elements.
Consider the block structure of Mn(C[repα Q]) with respect to the idempo-
tents ei 

Md1(S) . . . . . . Md1×dk
(S)

...
...

... Mdj×di
(S)

...
Mdk×di

(S) . . . . . . Mdk
(S)


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where S = C[repα Q]. Then, we can also view the matrix Ma for an arrow��������j ��������i
a

oo as a block matrix in Mn(C[repα Q])
0 . . . . . . 0
...

...
... Ma

...
0 . . . . . . 0


Then, Tα Q is the Ck(α)-subalgebra of Mn(C[repα Q]) generated by Nα Q
and these block matrices for all arrows a ∈ Qa. Tα Q itself has a block
decomposition

Tα Q =


P11 . . . . . . P1k

...
...

... Pij
...

Pk1 . . . . . . Pkk


where Pij is the Nα Q-module spanned by all matrices Mp where p is a path
from vi to vj of length bounded by n2.

Example 4.5
Consider the path algebra M of the quiver which we will encounter in chapter 8
in connection with the Hilbert scheme of points in the plane and with the
Calogero-Moser system

e(/).*-+,

f(/).*-+,

y

qq

x

--

u

<<

v

||

and take as dimension vector α = (n, 1). The total dimension is in this case
n = n + 1 and we fix the embedding C2 = C × C ⊂ - M given by the
decomposition 1 = e + f . Then, the above realization of Tα M consists in
taking the following n× n matrices

en =


1 0

. . .
...

1 0
0 . . . 0 0

 fn =


0 . . . 0 0
...

...
...

0 . . . 0 0
0 . . . 0 1

 xn =


x11 . . . x1n 0
...

...
...

xn1 . . . xnn 0
0 . . . 0 0



yn =


y11 . . . y1n 0
...

...
...

yn1 . . . ynn 0
0 . . . 0 0

 un =


0 . . . 0 u1

...
...

...
0 . . . 0 un
0 . . . 0 0

 vn =


0 . . . 0 0
...

...
...

0 . . . 0 0
v1 . . . vn 0


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In order to determine the ring of GL(α)-polynomial invariants of repα M we
have to consider the traces along oriented cycles in the quiver. Any nontrivial
such cycle must pass through the vertex e and then we can decompose the
cycle into factors x, y and uv (observe that if we wanted to describe circuits
based at the vertex f they are of the form c = vc′u with c′ a circuit based
at e and we can use the cyclic property of traces to bring it into the claimed
form). That is, all relevant oriented cycles in the quiver can be represented
by a necklace word w

�
� PP

�
nn

�
��

�
99

�

�
��

&&x
w

where each bead is one of the elementst = x d = y and H = uv

In calculating the trace, we first have to replace each occurrence of x, y, u or
v by the relevant n × n-matrix above. This results in replacing each of the
beads in the necklace by one of the following n× n matrices

t =

x11 . . . x1n

...
...

xn1 . . . xnn

 d =

y11 . . . y1n...
...

yn1 . . . ynn

 H =

u1v1 . . . u1vn
...

...
unv1 . . . unvn


and taking the trace of the n×n matrix obtained after multiplying these bead-
matrices cyclically in the indicated orientation. This concludes the description
of the invariant ring Nα Q. The algebra Tα M of GL(α)-equivariant maps
from repα M to Mn is then the subalgebra of Mn(C[repα M]) generated as
C2(α)-algebra (using the idempotent n × n matrices corresponding to e and
f) by Nα M and the n× n-matrices corresponding to x, y, u and v.

After these preliminaries, let us return to the local quiver setting (Qξ, α)
associated to a point ξ ∈ Smn(A) as described in the previous section. Above,
we have seen that quiver necklace algebra Nα Qξ is the coordinate ring of
Nx/GL(α). Nα Qξ is a graded algebra and is generated by all traces along
oriented cycles in the quiverQξ. Let m0 be the graded maximal ideal of Nα Qξ,
that is corresponding to the closed orbit of the trivial representation. With
T̂ξ (respectively N̂α) we will denote the m0-adic filtration of the quiver-order
Tα Qξ (respectively of the quiver necklace algebra Nα Qξ). Recall that the
quiver-order Tα Qξ has a block-decomposition determined by oriented paths
in the quiver Qξ. A consequence of the slice theorem and the description of
Cayley-Hamilton algebras and their algebra of traces by geometric data we
deduce.
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THEOREM 4.8
Let ξ ∈ Smn(A). Let N = tr

∫
n
A, let m be the maximal ideal of N corre-

sponding to ξ and denote T =
∫
n
A, then we have the isomorphism and Morita

equivalence
N̂m ' N̂α and T̂m ∼

Morita
T̂α

We have an explicit description of the algebras on the right in terms of the
quiver setting (Qξ, α) and the Morita equivalence is determined by the embed-
ding GL(α) ⊂ - GLn.

LetQ• be a marked quiver with underlying quiverQ and let α = (d1, . . . , dk)
be a dimension vector. We define the marked quiver-necklace algebra Nα Q•
to be the ring of GL(α)-polynomial invariants on the representation space
repα Q•, that is, Nα Q• is the coordinate ring of the quotient variety
repα Q•/GL(α). The marked quiver-order Tα Q• is defined to be the al-
gebra of GL(α)-equivariant polynomial maps from repα Q

• to Md(C) where
d =

∑
i di. Because we can separate traces, it follows that

NαQ• =
Nα Q

(tr(m1), . . . , tr(ml))
and TαQ• =

Tα Q
(tr(m1), . . . , tr(ml))

where {m1, . . . ,ml} is the set of all marked loops in Q•.
Let B be a Cayley-Hamilton algebra of degree n and let Mξ be a trace

preserving semisimple B-representation of type τ = (e1, d1; . . . ; ek, dk) corre-
sponding to the point ξ in the quotient variety isstrn B.

DEFINITION 4.6 A point ξ ∈ isstrn B is said to belong to the smooth
locus of B iff the trace preserving representation space trepn B is smooth in
x ∈ O(Mξ). The smooth locus of the Cayley-Hamilton algebra B of degree n
will be denotes by Smtr(B).

THEOREM 4.9
Let ξ ∈ Smtr(B) and N = tr B. Let m be the maximal ideal of N correspond-
ing to ξ, then we have the isomorphism and Morita equivalence

N̂m ' N̂•α and B̂m ∼
Morita

T̂•α

where we have an explicit description of the algebras on the right in terms of
the quiver setting (Qξ, α) and where the Morita equivalence is determined by
the embedding GL(α) ⊂ - GL(n).

Even if the left hand sides of the slice diagrams are not defined when ξ is
not contained in the smooth locus, the dimension of the normal spaces (that
is, the (trace preserving) self-extensions of Mξ) allow us to have a numerical
measure of the ’badness’ of this noncommutative singularity.
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DEFINITION 4.7 Let A be an affine C-algebra and ξ ∈ issn A of
type τ = (e1, d1; . . . ; ek, dk). The measure of singularity in ξ is given by the
non-negative number

ms(ξ) = n2 + dimC Ext1A(Mξ,Mξ)− e21 − . . .− e2k − dimMξ
repn A

Let B be a Cayley-Hamilton algebra of degree n and ξ ∈ isstrn B of type τ =
(e1, d1; . . . ; ek, dk). The measure of singularity in ξ is given by the nonnegative
number

ms(ξ) = n2 + dimC ExttrB (Mξ,Mξ)− e21 − . . .− e2k − dimMξ
trepn A

Clearly, ξ ∈ Smn(A) (respectively, ξ ∈ Smtr(B)) if and only if ms(ξ) = 0.

As an application to the slice theorem, let us prove the connection between
Azumaya algebras and principal fibrations. The Azumaya locus of an algebra
A will be the open subset UAz of issn A consisting of the points ξ of type
(1, n). Let repn A

π-- issn A be the quotient map.

PROPOSITION 4.9
The quotient π−1(UAz) -- UAz is a principal PGLn-fibration in the étale

topology, that is determines an element in H1
et(UAz, PGLn).

PROOF Let ξ ∈ UAz and x = Mξ a corresponding simple representation.
Let Sx be the slice in x for the PGLn-action on repn A. By taking traces
of products of a lifted basis from Mn(C) we find a PGLn-affine open neigh-
borhood Uξ of ξ contained in UAz and hence by the slice result a commuting
diagram

PGLn × Sx
ψ - π−1(Uξ)

Sx

??

ψ/PGLn

- Uξ

π

??

where ψ and ψ/PGLn are étale maps. That is, ψ/PGLn is an étale neigh-
borhood of ξ over which π is trivialized. As this holds for all points ξ ∈ UAz
the result follows.

4.4 Simple roots

In this section we will use proposition 3.3 to construct quiver orders TαQ
that determine central simple algebras over the functionfield of the quotient
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variety issα Q = repα Q/GL(α). With PGL(α) we denote the group scheme
corresponding to the algebraic group

PGL(α) = GL(α)/C∗(rrd1 , . . . ,
rr
dk

)

If C is a commutative C-algebra, then using the embedding
PGL(α) ⊂ - PGLn, the pointed cohomology set

H1
et(C, PGL(α)) ⊂ - H1

et(C, PGLn)

classifies Azumaya algebras A over C with a distinguished embedding
Ck ⊂ - A that are split by an étale cover such that on this cover the em-
bedding of Ck in matrices is conjugate to the standard embedding Ck(α).
Modifying the argument of proposition 3.3 we have the following.

PROPOSITION 4.10
If α is the dimension vector of a simple representation of Q, then

TαQ⊗NαQ C(issα Q)

is a central simple algebra over the function field of the quotient variety
issα Q.

Remains to classify the simple roots α, that is, the dimension vectors of sim-
ple representations of the quiver Q. Consider the vertex set Qv = {v1, . . . , vk}.
To a subset S ⊂ - Qv we associate the full subquiver QS of Q, that is, QS
has as set of vertices the subset S and as set of arrows all arrows ��������i��������j

aoo

in Qa such that vi and vj belong to S. A full subquiver QS is said to be
strongly connected if and only if for all vi, vj ∈ V there is an oriented cycle in
QS passing through vi and vj . We can partition

Qv = S1 t . . . t Ss

such that the QSi are maximal strongly connected components of Q. Clearly,
the direction of arrows in Q between vertices in Si and Sj is the same by the
maximality assumption and can be used to define an orientation between Si
and Sj . The strongly connected component quiver SC(Q) is then the quiver
on s vertices {w1, . . . , ws} with wi corresponding to Si and there is one arrow
from wi to wj if and only if there is an arrow in Q from a vertex in Si to a
vertex in Sj . Observe that when the underlying graph of Q is connected, then
so is the underlying graph of SC(Q) and SC(Q) is a quiver without oriented
cycles.

Vertices with specific in- and out-going arrows are given names as in fig-
ure 4.7 If α = (d1, . . . , dk) is a dimension vector, we define the support of α
to be supp(α) = {vi ∈ Qv | di 6= 0}.
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��������
source
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;;
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##G
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;;
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//

FIGURE 4.7: Vertex terminology.

LEMMA 4.4
If α is the dimension vector of a simple representation of Q, then Qsupp(α) is
a strongly connected subquiver.

PROOF If not, we consider the strongly connected component quiver
SC(Qsupp(α)) and by assumption there must be a sink in it corresponding

to a proper subset S ⊂
6=- Qv. If V ∈ repα Q we can then construct a

representation W by

• Wi = Vi for vi ∈ S and Wi = 0 if vi /∈ S

• Wa = Va for an arrow a in QS and Wa = 0 otherwise

One verifies that W is a proper subrepresentation of V , so V cannot be simple,
a contradiction.

The second necessary condition involves the Euler form of Q. With εi
be denote the dimension vector of the simple representation having a one-
dimensional space at vertex vi and zero elsewhere and all arrows zero matrices.

LEMMA 4.5
If α is the dimension vector of a simple representation of Q, then{

χQ(α, εi) ≤ 0
χQ(εi, α) ≤ 0

for all vi ∈ supp(α).

PROOF Let V be a simple representation of Q with dimension vector
α = (d1, . . . , dk). One verifies that

χQ(εi, α) = di −
∑

��������j ��������ioo
dj



200 Noncommutative Geometry and Cayley-Smooth Orders

Assume that χQ(εi, α) > 0, then the natural linear map⊕
��������j ��������i

a
oo

Va : Vi -
⊕

��������j ��������i
a
oo

Vj

has a nontrivial kernel, say K. But then we consider the representation W of
Q determined by

• Wi = K and Wj = 0 for all j 6= i,

• Wa = 0 for all a ∈ Qa.

It is clear that W is a proper subrepresentation of V , a contradiction.
Similarly, assume that χQ(α, εi) = di −

∑��������i ��������joo dj > 0, then the linear
map ⊕

��������i ��������j
a
oo

Va :
⊕

��������i ��������j
a
oo

Vj - Vi

has an image I that is a proper subspace of Vi. The representation W of Q
determined by

• Wi = I and Wj = Vj for j 6= i,

• Wa = Va for all a ∈ Qa.

is a proper subrepresentation of V , a contradiction finishing the proof.

Example 4.6
The necessary conditions of the foregoing two lemmas are not sufficient.

Consider the extended Dynkin quiver of type Ãk with cyclic orientation.

a(/).*-+, a(/).*-+,
a(/).*-+,
a(/).*-+,

a(/).*-+,a(/).*-+,

//
??���

OO

__???
oo

""

and dimension vector α = (a, . . . , a). For a simple representation all arrow
matrices must be invertible but then, under the action of GL(α), they can
be diagonalized. Hence, the only simple representations (which are not the
trivial simples concentrated in a vertex) have dimension vector (1, . . . , 1).

Nevertheless, we will show that these are the only exceptions. A vertex vi is
said to be large with respect to a dimension vector α = (d1, . . . , dk) whenever
di is maximal among the dj . The vertex vi is said to be good if vi is large
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and has no direct successor, which is a large prism nor a direct predecessor
that is a large focus.

LEMMA 4.6

Let Q be a strongly connected quiver, not of type Ãk, then one of the following
hold

1. Q has a good vertex, or,

2. Q has a large prism having no direct large prism successors, or

3. Q has a large focus having no direct large focus predecessors.

PROOF If neither of the cases hold, we would have an oriented cycle in
Q consisting of prisms (or consisting of focusses). Assume (vi1 , . . . , vil) is a
cycle of prisms, then the unique incoming arrow of vij belongs to the cycle. As
Q 6= Ãk there is at least one extra vertex va not belonging to the cycle. But
then, there can be no oriented path from va to any of the vij , contradicting
the assumption that Q is strongly connected.

If we are in one of the two last cases, let a be the maximum among the
components of the dimension vector α and assume that α satisfies χQ(α, εi) ≤
0 and χQ(εi, α) ≤ 0 for all 1 ≤ i ≤ k, then we have the following subquiver in
Q

��������a ��������a

large focus large prism

##G
GGGGGGG

++WWWWWWW
33ggggggg
;;wwwwwwww

//

77ooooooo //

''OOOOOOO

We can reduce to a quiver situation with strictly less vertices.

LEMMA 4.7

Assume Q is strongly connected and we have a vertex vi, which is a prism with
unique predecessor the vertex vj, which is a focus. Consider the dimension
vector α = (d1, . . . , dk) with di = dj = a 6= 0. Then, α is the dimension of a
simple representation of Q if and only if

α′ = (d1, . . . , di−1, di+1, . . . , dk) ∈ Nk−1

is the dimension vector of a simple representation of the quiver Q′ on k − 1
vertices, obtained from Q by identifying the vertices vi and vj, that is, the
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above subquiver in Q is simplified to the one below in Q′

��������a
##G

GGGGGGG

++WWWWWWW
33ggggggg
;;wwwwwwww

77ooooooo //

''OOOOOOO

PROOF If b is the unique arrow from vj to vi and if V ∈ repα Q is a
simple representation then Vb is an isomorphism, so we can identify Vi with
Vj and obtain a simple representation of Q′. Conversely, if V ′ ∈ repα′ Q

′

is a simple representation, define V ∈ repα Q by Vi = V ′j and Vz = V ′z for
z 6= i, Vb′ = V ′b′ for all arrows b′ 6= b and Vb = rr

a. Clearly, V is a simple
representation of Q.

THEOREM 4.10
α = (d1, . . . , dk) is the dimension vector of a simple representation of Q if

and only if one of the following two cases holds

1. supp(α) = Ãk, the extended Dynkin quiver on k vertices with cyclic
orientation and di = 1 for all 1 ≤ i ≤ k

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

//
??���

OO

__???
oo

&&

2. supp(α) 6= Ãk. Then, supp(α) is strongly connected and for all 1 ≤ i ≤ k
we have {

χQ(α, εi) ≤ 0
χQ(εi, α) ≤ 0

PROOF We will use induction, both on the number of vertices k in
supp(α) and on the total dimension n =

∑
i di of the representation. If

supp(α) does not possess a good vertex, then the above lemma finishes the
proof by induction on k. Observe that the Euler-form conditions are preserved
in passing from Q to Q′ as di = dj .

Hence, assume vi is a good vertex in supp(α). If di = 1 then all dj = 1 for
vj ∈ supp(α) and we can construct a simple representation by taking Vb = 1
for all arrows b in supp(α). Simplicity follows from the fact that supp(α) is
strongly connected.

If di > 1, consider the dimension vector α′ = (d1, . . . , di−1, di −
1, di+1, . . . , dk). Clearly, supp(α′) = supp(α) is strongly connected and we
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claim that the Euler-form conditions still hold for α′. the only vertices vl
where things might go wrong are direct predecessors or direct successors of
vi. Assume for one of them χQ(εl, α) > 0 holds, then

dl = d′l >
∑

��������l��������m
aoo

d′m ≥ d′i = di − 1

But then, dl = di whence vl is a large vertex of α and has to be also a focus
with end vertex vi (if not, dl > di), contradicting goodness of vi.

Hence, by induction on n we may assume that there is a simple representa-
tion W ∈ repα′ Q. Consider the space repW of representations V ∈ repα Q
such that V | α′ = W . That is, for every arrow

��������i��������j
aoo Va =

Wa

v1 . . . vdj

��������j��������i
aoo Va =

v1

Wa

...
vdj

Hence, repW is an affine space consisting of all representations degenerating
to W ⊕Si where Si is the simple one-dimensional representation concentrated
in vi. As χQ(α′, εi) < 0 and χQ(εi, α′) < 0 we have that Ext1(W,Si) 6=
0 6= Ext1(Si,W ) so there is an open subset of representations which are not
isomorphic to W ⊕ Si.

As there are simple representations of Q having a one-dimensional compo-
nent at each vertex in supp(α) and as the subset of simple representations in
repα′ Q is open, we can choose W such that repW contains representations
V such that a trace of an oriented cycle differs from that of W ⊕ Si. Hence,
by the description of the invariant ring C[repα Q]GL(α) as being generated
by traces along oriented cycles and by the identification of points in the quo-
tient variety as isomorphism classes of semisimple representations, it follows
that the Jordan-Hölder factors of V are different from W and Si. In view of
the definition of repW , this can only happen if V is a simple representation,
finishing the proof of the theorem.

4.5 Indecomposable roots

Throughout, Q will be a quiver on k vertices {v1, . . . , vk} with Euler form
χQ. For a dimension vector α = (d1, . . . , dk), any V ∈ repα Q decomposes
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uniquely into
V = W⊕f11 ⊕ . . .⊕W⊕fz

z

where the Wi are indecomposable representations . This follows from the fact
that End(V ) is finite dimensional. Recall also that a representation W of Q is
indecomposable if and only if End(W ) is a local algebra , that is, the nilpotent
endomorphisms in EndCQ(W ) form an ideal of codimension one. Equivalently,
the maximal torus of the stabilizer subgroup StabGL(α)(W ) = AutCQ(W ) is
one-dimensional, which means that every semisimple element of AutCQ(W )
lies in C∗(rrd1 , . . . ,

rr
dk

). More generally, decomposing a representation V into
indecomposables corresponds to choosing a maximal torus in the stabilizer
subgroup AutCQ(V ). Let T be such a maximal torus, we define a decomposi-
tion of the vertexspaces

Vi = ⊕χVi(χ) where Vi(χ) = {v ∈ Vi | t.v = χ(t)v ∀t ∈ T}

where χ runs over all characters of T . One verifies that each V (χ) = ⊕iVi(χ)
is a subrepresentation of V giving a decomposition V = ⊕χV (χ). Because T
acts by scalar multiplication on each component V (χ), we have that C∗ is the
maximal torus of AutCQ(V (χ)), whence V (χ) is indecomposable. Conversely,
if V = W1⊕. . .⊕Wr is a decomposition with the Wi indecomposable, then the
product of all the one-dimensional maximal tori in AutCQ(Wi) is a maximal
torus of AutCQ(V ).

In this section we will give a classification of the indecomposable roots ,
that is, the dimension vectors of indecomposable representations. As the
name suggests, these dimension vectors will form a root system .

The Tits form of a quiver Q is the symmetrization of its Euler form, that
is,

TQ(α, β) = χQ(α, β) + χQ(β, α)

This symmetric bilinear form is described by the Cartan matrix

CQ =

c11 . . . c1k...
...

ck1 . . . ckk

 withcij = 2δij −# { ��������i��������j }

where we count all arrows connecting vi with vj forgetting the orientation.
The corresponding quadratic form qQ(α) = 1

2χQ(α, α) on Qk is defined to be

qQ(x1, . . . , xk) =
k∑
i=1

x2
i −

∑
a∈Qa

xt(a)xh(a)

Hence, qQ(α) = dim GL(α)−dim repα Q. With ΓQ we denote the underlying
graph of Q, that is, forgetting the orientation of the arrows. The following
classification result is classical, see for example [15]. A quadratic form q on
Zk is said to be positive definite if 0 6= α ∈ Zk implies q(α) > 0. It is
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Am , m ≥ 1 �������� �������� �������� �������� �������� ��������

Dm , m ≥ 4 �������� �������� �������� �������� �������� ��������
��������

E6 �������� �������� �������� �������� ��������
��������

E7 �������� �������� �������� �������� �������� ��������
��������

E8 �������� �������� �������� �������� �������� �������� ��������
��������

FIGURE 4.8: The Dynkin diagrams.

called positive semi-definite if q(α) ≥ 0 for all α ∈ Zk. The radical of q is
rad(q) = {α ∈ Zk | T (α,−) = 0}. Recall that when Q is a connected and
α ≥ 0 is a nonzero radical vector, then α is sincere (that is, all components
of α are nonzero) and qQ is positive semidefinite. There exist a minimal
δQ ≥ 0 with the property that qQ(α) = 0 if and only if α ∈ QδQ if and
only if α ∈ rad(qQ). If the quadratic form q is neither positive definite nor
semidefinite, it is called indefinite.

THEOREM 4.11
Let Q be a connected quiver with Tits form qQ, Cartan matrix CQ and un-
derlying graph ΓQ. Then,

1. qQ is positive definite if and only if ΓQ is a Dynkin diagram , that is
one of the graphs of figure 4.8. The number of vertices is m.

2. qQ is semidefinite if and only if ΓQ is an extended Dynkin diagram,
that is one of the graphs of figure 4.9 and δQ is the indicated dimension
vector. The number of vertices is m+ 1.

Let V ∈ repα Q be decomposed into indecomposables

V = W⊕f11 ⊕ . . .⊕W⊕fz
z

If dim(Wi) = γi we say that V is of type (f1, γ1; . . . ; fz, γz).

PROPOSITION 4.11
For any dimension vector α, there exists a unique type τcan =
(e1, β1; . . . ; el, βl) with α =

∑
i eiβi such that the set repα(τcan) =

{V ∈ repα Q | V 'W
⊕e1
1 ⊕. . .⊕W⊕el

l , dim(Wi) = βi, Wi is indecomposable }
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Ãm , m ≥ 1 ��������
��������

�������� �������� �������� �������� ��������oooooooooo

OOOOOOOOOO

��������1

��������1

��������1 ��������1 ��������1 ��������1 ��������1
oooooooooo

OOOOOOOOOO

D̃m , m ≥ 4 ��������
�������� �������� �������� �������� �������� ��������

��������
ooo
OOO

OOO
ooo ��������1

��������1 ��������2 ��������2 ��������2 ��������2 ��������1

��������1

oo
OO

OO
oo
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FIGURE 4.9: The extended Dynkin diagrams.

contains a dense open set of repα Q.

PROOF Recall from example 2.4 that for any dimension vector β the sub-
set repindβ Q of indecomposable representations of dimension β is constructible.
Consider for a type τ = (f1, γ1, ; . . . ; fz, γz) the subset repα(τ) =

{V ∈ repα Q | V 'W
⊕f1
1 ⊕. . .⊕W⊕fz

z , dim(Wi) = γi,Wi indecomposable }

then repα(τ) is a constructible subset of repα Q as it is the image of the
constructible set

GL(α)× repindγ1 Q× . . .× repindγz
Q

under the map sending (g,W1, . . . ,Wz) to g.(W⊕f11 ⊕ . . . ⊕W⊕fz
z ). Because

of the uniqueness of the decomposition into indecomposables we have a finite
disjoint decomposition

repα Q =
⊔
τ

repα(τ)

and by irreducibility of repα Q precisely one of the repα(τ) contains a dense
open set of repα Q.

We call τcan the canonical decomposition of α. In the next section we will
give an algorithm to compute the canonical decomposition. Consider the
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action morphisms GL(α)×repα Q
φ- repα Q. By Chevalley’s theorem 2.1

we know that the function

V 7→ dim StabGL(α)(V )

is upper semi-continuous. Because dim GL(α) = dim StabGL(α)(V ) +
dim O(V ) we conclude that for all m, the subset

repα(m) = {V ∈ repα Q | dim O(V ) ≥ m}

is Zariski open. In particular, repα(max) the union of all orbits of maximal
dimension is open and dense in repα Q. A representation V ∈ repα Q lying
in the intersection

repα(τcan) ∩ repα(max)

is called a generic representation of dimension α.
Assume that Q is a connected quiver of finite representation type , that

is, there are only a finite number of isomorphism classes of indecomposable
representations. Let α be an arbitrary dimension vector. Since any represen-
tation of Q can be decomposed into a direct sum of indecomposables, repα Q
contains only finitely many orbits. Hence, one orbit O(V ) must be dense and
have th same dimension as repα Q, but then

dim repα Q = dim O(V ) ≤ dim GL(α)− 1

as any representation has C∗(rra1 , . . . ,
rr
ak

) in its stabilizer subgroup. That is,
for every α ∈ Nk we have qQ(α) ≥ 1. Because all off-diagonal entries of the
Cartan matrix CQ are non-positive, it follows that qQ is positive definite on
Zk whence ΓQ must be a Dynkin diagram. It is well known that to a Dynkin
diagram one associates a simple Lie algebra and a corresponding root system
. We will generalize the notion of a root system to an arbitrary quiver Q.

Let εi = (δ1i, . . . , δki) be the standard basis of Qk. The fundamental set of
roots is defined to be the following set of dimension vectors

FQ = {α ∈ Nk − 0 | TQ(α, εi) ≤ 0 and supp(α) is connected }

Recall that it follows from the description of dimension vectors of simple rep-
resentations given in section 4.4 that any simple root lies in the fundamental
set.

LEMMA 4.8
Let α = β1 + . . . + βs ∈ FQ with βi ∈ Nk − 0 for 1 ≤ i ≤ s ≥ 2. If
qQ(α) ≥ qQ(β1) + . . . + qQ(βs), then supp(α) is a tame quiver (that is, its
underlying graph is an extended Dynkin diagram) and α ∈ Nδsupp(α).

PROOF Let s = 2, β1 = (c1, . . . , ck) and β2 = (d1, . . . , dk) and we may
assume that supp(α) = Q. By assumption TQ(β1, β2) = qQ(α) − qQ(β1) −
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qQ(β2) ≥ 0. Using that CQ is symmetric and α = β1 + β2 we have

0 ≤ TQ(β1, β2) =
∑
i,j

cijcidi

=
∑
j

cjdj
aj

∑
i

cijai +
1
2

∑
i 6=j

cij(
ci
ai
− cj
aj

)2aiaj

and because TQ(α, εi) ≤ 0 and cij ≤ 0 for all i 6= j, we deduce that

ci
ai

=
cj
aj

for all i 6= j such that cij 6= 0

Because Q is connected, α and β1 are proportional. But then, TQ(α, εi) = 0
and hence CQα = 0. By the classification result, qQ is semidefinite whence
ΓQ is an extended Dynkin diagram and α ∈ NδQ. Finally, if s > 2, then

TQ(α, α) =
∑
i

TQ(α, βi) ≥
∑
i

TQ(βi, βi)

whence TQ(α − βi, βi) ≥ 0 for some i and then we can apply the foregoing
argument to βi and α− βi.

DEFINITION 4.8 If G is an algebraic group acting on a variety Y and
if X ⊂ - Y is a G-stable subset, then we can decompose X =

⋃
dX(d) where

X(d) is the union of all orbits O(x) of dimension d. The number of parameters
of X is

µ(X) = max
d

(dim X(d) − d)

where dim X(d) denotes the dimension of the Zariski closure of X(d).
In the special case of GL(α) acting on repα Q, we denote µ(repα(max)) =

pQ(α) and call it the number of parameters of α. For example, if α is a Schur
root, then p(α) = dim repα Q− (dim GL(α)− 1) = 1− qQ(α).

Recall that a matrix m ∈ Mn(C) is unipotent if some power mk = rr
n. It

follows from the Jordan normal form that GL(α) and PGL(α) = GL(α)/C∗

contain only finitely many conjugacy classes of unipotent matrices.

THEOREM 4.12
If α lies in the fundamental set and supp(α) is not tame, then

pQ(α) = µ(repα(max)) = µ(repindα Q) = 1− qQ(α) > µ(repindα (d))

for all d > 1 where repindα (d) is the union of all indecomposable orbits of
dimension d.
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PROOF A representation V ∈ repα Q is indecomposable if and only
if its stabilizer subgroup StabGL(α)(V ) is a unipotent group , that is all
its elements are unipotent elements. By proposition 4.14 we know that
repα(max) ⊂ - repindα Q and that pQ(α) = µ(repα(max)) = 1 − qQ(α).
Denote repα(sub) = repα Q− repα(max). We claim that for any unipotent
element u 6= rr we have that

dim repα(sub)(u)− dim cenGL(α)(u) + 1 < 1− qQ(α)

where repα(sub)(g) denotes the representations in repα(sub) having g in their
stabilizer subgroup. In fact, for any g ∈ GL(α)− C∗ we have

dim cenGL(α)(g)− dim repα(g) > qQ(α)

Indeed, we may reduce to g being a semisimple element, see [61, lemma
3.4]. then, if α = α1 + . . . + αs is the decomposition of α obtained from
the eigenspace decompositions of g (we have s ≥ 2 as g /∈ C∗), then

cenGL(α)(g) =
∏
i

GL(αi) and repα(g) =
∏
i

repαi
(g)

whence dim cenGL(α)(g) − dim repα(g) =
∑
i qQ(αi) > qQ(α), proving the

claim. Further, we claim that

µ(repα(sub)) ≤ max
u

(dim repα(sub)(u)− dim cenGL(α)(u) + 1)

Let Z = repα(sub) and consider the closed subvariety of PGL(α)× Z

L = {(g, z) | g.z = z}

For z ∈ Z we have pr−1
1 (z) = StabPGL(α)(z)×{z} and if z is indecomposable

with orbit dimension d then dim StabPGL(α)(z) = dim PGL(α)− d, whence

dim pr−1
1 (repindα )(d) = dim (repindα )(d) + dim PGL(α)− d

But then,

pQ(α) = max
d

(dim (repindα )(d) − d)

= −dim PGL(α) +max
d

dim pr−1
1 ((repindα )(d))

= −dim PGL(α) + dim pr−1
1 (repindα Q)

By the characterization of indecomposables, we have pr−1
1 (repindα Q) ⊂

pr−1
2 (U) where U consists of the (finitely many) conjugacy classes Cu of con-

jugacy classes of unipotent u ∈ PGL(α). But then,

pQ(α) ≤ −dim PGL(α) +max
u

dim pr−1
2 (Cu)

= −dim PGL(α) +max
u
dim repα(sub)(u) + dim PGL(α)− dim cenPGL(α)(u)
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proving the claim. Finally, as dim repα(sub)−dim PGL(α) < dim repα Q−
dim GL(α) + 1 < 1− qQ(α), we are done.

We will now extend this result to arbitrary roots using reflection functors .
Let vi be a source vertex of Q and let α = (a1, . . . , ak) be a dimension vector
such that

∑
t(a)=vi

ah(a) ≥ ai, then we can consider the subset

repmonoα (i) = {V ∈ repα Q | ⊕ Va : Vi - ⊕t(a)=vi
Vs(a) is injective }

Clearly, all indecomposable representations are contained in repmonoα (i). Con-
struct the reflected quiver RiQ obtained from Q by reversing the direction of
all arrows with tail vi. The reflected dimension vector Riα = (r1, . . . , rk) is
defined to be

rj =

{
aj if j 6= i∑
t(a)=i as(a) − ai if j = i

then clearly we have in the reflected quiver RiQ that
∑
h(a)=i rt(a) ≥ ri and

we define the subset

repepiRiα
(i) = {V ∈ repRiα

RiQ | ⊕ Va : ⊕s(a)=iVt(a) - Vi is surjective }

Before stating the main result on reflection functors, we need to recall the
definition of the Grassmann manifolds.

Let k ≤ l be integers, then the points of the Grassmannian Grassk(l) are in
one-to-one correspondence with k-dimensional subspaces of Cl. For example,
if k = 1 then Grass1(l) = Pl−1. We know that projective space can be covered
by affine spaces defining a manifold structure on it. Also Grassmannians admit
a cover by affine spaces.

Let W be a k-dimensional subspace of Cl then fixing a basis {w1, . . . , wk}
of W determines an k × l matrix M having as i-th row the coordinates of wi
with respect to the standard basis of Cl. Linear independence of the vectors
wi means that there is a barcode design I on M

w1

...
wk

i1 i2 . . . ik

where I = 1 ≤ i1 < i2 < . . . < ik ≤ l such that the corresponding k× k minor
MI of M is invertible. Observe that M can have several such designs.

Conversely, given a k × l matrix M of rank k determines a k-dimensional
subspace of l spanned by the transposed rows. Two k × l M and M ′ ma-
trices of rank k determine the same subspace provided there is a basechange
matrix g ∈ GLk such that gM = M ′. That is, we can identify Grassk(l)
with the orbit space of the linear action of GLk by left multiplication on the
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open set Mmax
k×l (C) of Mk×l(C) of matrices of maximal rank. Let I be a bar-

code design and consider the subset of Grassk(l)(I) of subspaces having a
matrix representation M having I as barcode design. Multiplying on the left
with M−1

I the GLk-orbit OM has a unique representant N with NI = rr
k.

Conversely, any matrix N with NI = rr
k determines a point in Grassk(l)(I).

Thus, Grassk(l)(I) depends on k(l − k) free parameters (the entries of the
negative of the barcode)

w1

...
wk

i1 i2 . . . ik

and we have an identification Grassk(l)(I)
πI- Ck(l−k). For a different bar-

code design I ′ the image πI(Grassk(l)(I) ∩Grassk(l)(I ′)) is an open subset
of Ck(l−k) (one extra nonsingular minor condition) and πI′ ◦ π−1

I is a diffeo-
morphism on this set. That is, the maps πI provide us with an atlas and
determine a manifold structure on Grassk(l).

THEOREM 4.13

For the quotient Zariski topology, we have an homeomorphism

repmonoα (i)/GL(α)
'- repepiRiα

(i)/GL(Riα)

such that corresponding representations have isomorphic endomorphism rings.
In particular, the number of parameters as well as the number of irre-

ducible components of maximal dimension coincide for (repindα Q)(d) and
repindRiα

RiQ)(d) for all dimensions d.

PROOF Let m =
∑
t(a)=i ai, rep = ⊕t(a) 6=iMas(a)×at(a)(C) and GL =∏

j 6=iGLaj . We have the following isomorphisms

repmonoα (i)/GLai

'- rep×Gassai
(m)

defined by sending a representation V to its restriction to rep and im ⊕t(a)=i
Va. In a similar way, sending a representation V to its restriction and
ker ⊕s(a)=i Va we have

repepiRiα
(i)/GLri

'- rep×Grassai(m)

But then, the first claim follows from the diagram of figure 4.10. If V ∈ repα Q
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rep
mono
α (i) rep

epi
Riα

(i)

rep
mono
α (i)/GL(α)

??
rep

epi
Riα

(i)/GL(Riα)

??

rep×Grassai(m)
�

'
'

-

rep
mono
α (i)/GL(α)

/GL

??
.................................-

�
rep

epi
Riα

(i)/GL(Riα)

/GL

??-

FIGURE 4.10: Reflection functor diagram.

and V ′ ∈ repRiα
RiQ with images respectively v and v′ in rep×Grassai

(m),
we have isomorphismsStabGL×GLai

(V )
'- StabGL(v)

StabGL×GLri
(V ′)

'- StabGL(v′)

from which the claim about endomorphisms follows.

A similar results holds for sink vertices, hence we can apply these Bernstein-
Gelfand- Ponomarev reflection functors iteratively using a sequence of admis-
sible vertices (that is, either a source or a sink).

To a vertex vi in which Q has no loop, we define a reflection Zk ri- Zk
by

ri(α) = α− TQ(α, εi)

The Weyl group of the quiver Q WeylQ is the subgroup of GLk(Z) generated
by all reflections ri.

A root of the quiver Q is a dimension vector α ∈ Nk such that repα Q
contains indecomposable representations. All roots have connected support.
A root is said to be {

real if µ(repindα Q) = 0
imaginary if µ(repindα Q) ≥ 1

For a fixed quiver Q we will denote the set of all roots, real roots and
imaginary roots respectively by ∆,∆re and ∆im. With Π we denote the set
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{εi | vi has no loops }. the main result on indecomposable representations
is due to V. Kac .

THEOREM 4.14
With notations as before, we have

1. ∆re = WeylQ.Π ∩ Nk and if α ∈ ∆re, then repindα Q is one orbit

2. ∆im = Weyl.FQ ∩ Nk and if α ∈ ∆im then

pQ(α) = µ(repindα Q) = 1− qQ(α)

For a sketch of the proof we refer to [35, §7], full details can be found in
the lecture notes [61].

4.6 Canonical decomposition

In this section we will determine the canonical decomposition. We need a
technical result.

LEMMA 4.9
Let W -- W ′ be an epimorphism of CQ-representations. Then, for any

CQ-representation V we have that the canonical map

Ext1CQ(V,W ) -- Ext1CQ(V,W ′)

is surjective. If W ⊂ - W ′ is a monomorphism of CQ-representations, then
the canonical map

Ext1CQ(W ′, V ) -- Ext1CQ(W,V )

is surjective.

PROOF From the proof of theorem 4.5 we have the exact diagram

⊕
vi∈Qv

HomC(Vi, Wi)
dV

W- ⊕
a∈Qa

HomC(Vs(a), Wt(a)) - Ext1CQ(V, W ) - 0

⊕
vi∈Qv

HomC(Vi, W
′
i )

??
dV

W ′- ⊕
a∈Qa

HomC(Vs(a), W
′
t(a))

??
- Ext1CQ(V, W ′)

?

...............
- 0
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and applying the snake lemma gives the result. The second part is proved
similarly.

LEMMA 4.10
If V = V ′ ⊕ V ” ∈ repα(max), then Ext1CQ(V ′, V ”) = 0.

PROOF Assume Ext1(V ′, V ”) 6= 0, that is, there is a nonsplit exact
sequence

0 - V ” - W - V ′ - 0

then it follows from section 2.3 that O(V ) ⊂ O(W ) − O(W ), whence
dim O(W ) > dim O(V ) contradicting the assumption that V ∈ repα(max).

LEMMA 4.11
If W,W ′ are indecomposable representation with Ext1CQ(W,W ′) = 0, then

any nonzero map W ′
φ- W is an epimorphism or a monomorphism. In

particular, if W is indecomposable with Ext1CQ(W,W ) = 0, then EndCQ(W ) '
C.

PROOF Assume φ is neither mono- nor epimorphism then decompose φ
into

W ′
ε-- U ⊂

µ- W

As ε is epi, we get a surjection from lemma 4.9

Ext1CQ(W/U,W ′) -- Ext1CQ(W/U,U)

giving a representation V fitting into the exact diagram of extensions

0 - W ′ µ′ - V - W ′/U - 0

0 - U

ε

??
µ - W

ε′

?
- W ′/U

id

?
- 0

from which we construct an exact sequence of representations

0 - W ′

24 ε
−µ′

35
- U ⊕ V

h
µ ε′

i
- W - 0

This sequence cannot split as otherwise we would have W ⊕ W ′ ' U ⊕ V
contradicting uniqueness of decompositions, whence Ext1CQ(W,W ′) 6= 0, a
contradiction.
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For the second part, as W is finite dimensional it follows that EndCQ(W )
is a (finite dimensional) division algebra whence it must be C.

DEFINITION 4.9 A representation V ∈ repα Q is said to be a Schur
representation if EndCQ(V ) = C. The dimension vector α of a Schur repre-
sentation is said to be a Schur root.

THEOREM 4.15
α is a Schur root if and only if there is a Zariski open subset of repα Q
consisting of indecomposable representations.

PROOF If V ∈ repα Q is a Schur representation, V ∈ repα(max)
and therefore all representations in the dense open subset repα(max) have
endomorphism ring C and are therefore indecomposable. Conversely, let
Ind ⊂ - repα Q be an open subset of indecomposable representations
and assume that for V ∈ Ind we have StabGL(α)(V ) 6= C∗ and consider
φ0 ∈ StabGL(α)(V ) − C∗. For any g ∈ GL(α) we define the set of fixed
elements

repα(g) = {W ∈ repα Q | g.W = W}

Define the subset of GL(α)

S = {g ∈ GL(α) | dim repα(g) = dim repα(φ0)

which has no intersection with C∗(rrd1 , . . . ,
rr
dk

) as φ0 /∈ C∗. Consider the
subbundle of the trivial vectorbundle over S

B = {(s,W ) ∈ S × repα Q | s.W = W} ⊂ - S × repα Q
p-- S

As all fibers have equal dimension, the restriction of p to B is a flat morphism
whence open . In particular, the image of the open subset B ∩ S × Ind

S′ = {g ∈ S | ∃W ∈ Ind : g.W = W}

is an open subset of S. Now, S contains a dense set of semisimple elements,
see for example [61, (2.5)], whence so does S′ = ∪W∈IndEndCQ(W ) ∩ S. But
then one of the W ∈ Ind must have a torus of rank greater than one in its
stabilizer subgroup contradicting indecomposability.

Schur roots give rise to principal PGL(α) = GL(α)/C∗-fibrations, and
hence to quiver orders and division algebras.

PROPOSITION 4.12
If α = (a1, . . . , ak) is a Schur root, then there is a GL(α)-stable affine open
subvariety Uα of repα Q such that generic orbits are closed in U .
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PROOF Let Tk = C∗ × . . . × C∗ the k-dimensional torus in GL(α).
Consider the semisimple subgroup SL(α) = SLa1 × . . . × SLak

and consider
the corresponding quotient map

repα Q
πs-- repα Q/SL(α)

As GL(α) = TkSL(α), Tk acts on repα Q/SL(α) and the generic stabilizer
subgroup is trivial by the Schurian condition. Hence, there is a Tk-invariant
open subset U1 of repα Q/SL(α) such that Tk-orbits are closed. But then,
according to [52, §2, Thm.5] there is a Tk-invariant affine open U2 in U1.
Because the quotient map ψs is an affine map, U = ψ−1

s (U2) is an affine
GL(α)-stable open subvariety of repα Q. Let x be a generic point in U , then
its orbit

O(x) = GL(α).x = TkSL(α).x = Tk(ψ−1
s (ψs(x))) = ψ−1

s (Tk.ψs(x))

is the inverse image under the quotient map of a closed set, hence is itself
closed.

If we define Tsα Q to be the ring of GL(α)-equivariant maps from Uα to
Mn(C), then this Schurian quiver order has simple α-dimensional represen-
tations. Then, extending the argument of proposition 4.9 we have that the
quotient map repα Q

-- issα Q is a principal PGL(α)-fibration in the étale
topology over the Azumaya locus of the Schurian quiver order Tsα Q. Recall
that H1

et(X,PGL(α)) classifies twisted forms of Mn(C) (where n =
∑
a ai)

as Ck-algebra. That is, Azumaya algebras over X with a distinguished em-
bedding of Ck that are split by an étale cover on which this embedding is
conjugate to the standard α-embedding of Ck in Mn(C). The class in the
Brauer group of the functionfield of issα Tsα Q determined by the quiver
order Tsα Q is rather special.

PROPOSITION 4.13

If α = (a1, . . . , ak) is a Schur root of Q such that gcd(a1, . . . , ak) = 1, then
Tsα Q determines the trivial class in the Brauer group.

PROOF Let A be an Azumaya localization of Tsα Q. By assumption, the
natural map between the K-groups K0(Ck) - K0(Mn(C)) is surjective,
whence the same is true for A proving that the class of A is split by a Zariski
cover, that is repα Q ' X × PGL(α) where X = issα A.

PROPOSITION 4.14

If α lies in the fundamental region FQ and supp(α) is not a tame quiver.
then, α is a Schur root.
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PROOF Let α = β1 + . . .+βs be the canonical decomposition of α (some
βi may occur with higher multiplicity) and assume that s ≥ 2. By definition,
the image of

GL(α)× (repβ1
Q× . . .× repβs

Q)
φ- repα Q

is dense and φ is constant on orbits of the free action of GL(α) on the left
hand side given by h.(g, V ) = (gh−1, h.V ). But then

dim GL(α) +
∑
i

dim repβi
Q−

∑
i

dim GL(βi) ≥ dim repα Q

whence qQ(α) ≥
∑
i qQ(βi) and lemma 4.8 finishes the proof.

Next, we want to describe morphisms between quiver-representations. Let
α = (a1, . . . , ak) and β = (b1, . . . , bk) and V ∈ repα Q, W ∈ repβ Q. Consider
the closed subvariety

HomQ(α, β) ⊂ - Ma1×b1 ⊕ . . .⊕Mak×bk
⊕ repα Q⊕ repβ Q

consisting of the triples (φ, V,W ) where φ = (φ1, . . . , φk) is a morphism of
quiver-representations V - W . Projecting to the two last components we
have an onto morphism between affine varieties

HomQ(α, β)
h-- repα Q⊕ repβ Q

In theorem 2.1 we have proved that the dimension of fibers is an upper-
semicontinuous function. That is, for every natural number d, the set

{Φ ∈ HomQ(α, β) | dimΦ h−1(h(Φ)) ≤ d}

is a Zariski open subset ofHomQ(α, β). As the target space repα Q⊕repβ Q is
irreducible, it contains a nonempty open subset hommin where the dimension
of the fibers attains a minimal value. This minimal fiber dimension will be
denoted by hom(α, β).

Similarly, we could have defined an affine variety ExtQ(α, β) where the
fiber over a point (V,W ) ∈ repα Q ⊕ repβ Q is given by the extensions
Ext1CQ(V,W ). If χQ is the Euler-form of Q we recall that for all V ∈ repα Q
and W ∈ repβ Q we have

dimC HomCQ(V,W )− dimC Ext1Q̧(V,W ) = χQ(α, β)

Hence, there is also an open set extmin of repα Q ⊕ repβ Q where the di-
mension of Ext1(V,W ) attains a minimum. This minimal value we denote
by ext(α, β). As hommin ∩ extmin is a nonempty open subset we have the
numerical equality

hom(α, β)− ext(α, β) = χQ(α, β).
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In particular, if hom(α, α + β) > 0, there will be an open subset where the
morphism V

φ- W is a monomorphism. Hence, there will be an open subset
of repα+β Q consisting of representations containing a subrepresentation of
dimension vector α. We say that α is a general subrepresentation of α + β
and denote this with α ⊂ - α + β. We want to characterize this property.
To do this, we introduce the quiver-Grassmannians

Grassα(α+ β) =
k∏
i=1

Grassai
(ai + bi)

which is a projective manifold.
Consider the following diagram of morphisms of reduced varieties

repα+β Q

rep
α+β
α Q ⊂ -

s

-

repα+β Q×Grassα(α + β)

pr1

66

Grassα(α + β)

pr2

??

p

--

with the following properties

• repα+β Q × Grassα(α + β) is the trivial vectorbundle with fiber
repα+β Q over the projective smooth variety Grassα(α+β) with struc-
tural morphism pr2.

• repα+β
α Q is the subvariety of repα+β Q×Grassα(α+ β) consisting of

couples (W,V ) where V is a subrepresentation of W (observe that this
is for fixed W a linear condition). Because GL(α+ β) acts transitively
on the Grassmannian Grassα(α + β) (by multiplication on the right)
we see that repα+β

α Q is a sub-vectorbundle over Grassα(α + β) with
structural morphism p. In particular, repα+β

α Q is a reduced variety.

• The morphism s is a projective morphism, that is, can be factored via
the natural projection

repα+β Q× PN

rep
α+β
α Q

s -

f

-

repα+β Q

π2

??

where f is the composition of the inclusion repα+β
α Q ⊂ - repα+β Q×

Grassα(α+β) with the natural inclusion of Grassmannians in projective
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spaces recalled in the previous section Grassα(α + β) ⊂ - ∏k
i=1 Pni

with the Segre embedding
∏k
i=1 Pni ⊂ - PN . In particular, s is proper

by [43, Thm. II.4.9], that is, maps closed subsets to closed subsets.

We are interested in the scheme-theoretic fibers of s. If W ∈ repα+β Q lies
in the image of s, we denote the fiber s−1(W ) by Grassα(W ). Its geomet-
ric points are couples (W,V ) where V is an α-dimensional subrepresentation
of W . Whereas Grassα(W ) is a projective scheme, it is in general neither
smooth, nor irreducible nor even reduced. Therefore, in order to compute the
tangent space in a point (W,V ) of Grassα(W ) we have to clarify the functor
it represents on the category commalg of commutative C-algebras.

Let C be a commutative C-algebra, a representation R of the quiver Q over
C consists of a collection Ri = Pi of projective C-modules of finite rank and
a collection of C-module morphisms for every arrow a in Q

��������i��������j
aoo Rj = Pj �Ra

Pi = Ri

The dimension vector of the representation R is given by the k-tuple
(rkC R1, . . . , rkC Rk). A subrepresentation S of R is determined by a col-
lection of projective subsummands (and not merely submodules) Si /Ri. In
particular, for W ∈ repα+β Q we define the representation WC of Q over the
commutative ring C by {

(WC)i = C ⊗C Wi

(WC)a = idC ⊗C Wa

With these definitions, we can now define the functor represented by
Grassα(W ) as the functor assigning to a commutative C-algebra C the set of
all subrepresentations of dimension vector α of the representation WC .

LEMMA 4.12
Let x = (W,V ) be a geometric point of Grassα(W ), then

Tx Grassα(W ) = HomCQ(V,
W

V
)

PROOF The tangent space in x = (W,V ) are the C[ε]-points of
Grassα(W ) lying over (W,V ). To start, let V

ψ- W
V be a homomorphism

of representations of Q and consider a C-linear lift of this map ψ̃ : V - W .
Consider the C-linear subspace of WC[ε] = C[ε]⊗W spanned by the sets

{v + ε⊗ ψ̃(v) | v ∈ V } and ε⊗ V

This determines a C[ε]-subrepresentation of dimension vector α ofWC[ε] lying
over (W,V ) and is independent of the chosen linear lift ψ̃.
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Conversely, if S is a C[ε]-subrepresentation ofWC[ε] lying over (W,V ), then
S
εS = V ⊂ - W . But then, a C-linear complement of εS is spanned by
elements of the form v+εψ(v) where ψ(v) ∈W and ε⊗ψ is determined modulo
an element of ε⊗ V . But then, we have a C-linear map ψ̃ : V - W

V and as
S is a C[ε]-subrepresentation, ψ̃ must be a homomorphism of representations
of Q.

THEOREM 4.16
The following are equivalent

1. α ⊂ - α+ β

2. Every representation W ∈ repα+β Q has a subrepresentation V of di-
mension α

3. ext(α, β) = 0

PROOF Assume 1., then the image of the proper map

s : repα+β
α Q - repα+β Q

contains a Zariski open subset. As properness implies that the image of s
must also be a closed subset of repα+β Q it follows that Im s = repα+β Q,
that is 2. holds. Conversely, 2. clearly implies 1. so they are equivalent.

We compute the dimension of the vectorbundle repα+β
α Q over Grassα(α+

β). Using that the dimension of a Grassmannians Grassk(l) is k(l − k) we
know that the base has dimension

∑k
i=1 aibi. Now, fix a point V ⊂ - W in

Grassα(α + β), then the fiber over it determines all possible ways in which
this inclusion is a subrepresentation of quivers. That is, for every arrow in Q
of the form ��������i��������j

aoo we need to have a commuting diagram

Vi - Vj

Wi

?

∩

- Wj

?

∩

Here, the vertical maps are fixed. If we turn V ∈ repα Q, this gives us the
aiaj entries of the upper horizontal map as degrees of freedom, leaving only
freedom for the lower horizontal map determined by a linear map Wi

Vi

- Wj ,
that is, having bi(aj + bj) degrees of freedom. Hence, the dimension of the
vector space-fibers is ∑

��������i��������j
aoo

(aiaj + bi(aj + bj))



Quiver Technology 221

giving the total dimension of the reduced variety repα+β
α Q. But then

dim repα+β
α Q− dim repα+β Q =

k∑
i=1

aibi +
∑

��������i��������j
aoo

(aiaj + bi(aj + bj))

−
∑

��������i��������j
aoo

(ai + bi)(aj + bj)

=
k∑
i=1

aibi −
∑

��������i��������j
aoo

aibj = χQ(α, β)

Assume that 2. holds, then the proper map repα+β
α

s-- repα+β Q is onto
and as both varieties are reduced, the general fiber is a reduced variety of
dimension χQ(α, β), whence the general fiber contains points such that their
tangentspaces have dimension χQ(α, β). By the foregoing lemma we can com-
pute the dimension of this tangentspace as dim HomCQ(V, WV ). But then, as

χQ(α, β) = dimC HomCQ(V,
W

V
)− dimC Ext1CQ(V,

W

V
)

it follows that Ext1(V, WV ) = 0 for some representation V of dimension vector
α and W

V of dimension vector β. But then, ext(α, β) = 0, that is, 3. holds.
Conversely, assume that ext(α, β) = 0. Then, for a general point W ∈

repα+β Q in the image of s and for a general point in its fiber (W,V ) ∈
repα+β

α Q we have dimC Ext1CQ(V, WV ) = 0 whence dimC HomCQ(V, WV ) =
χQ(α, β). But then, the general fiber of s has dimension χQ(α, β) and as this
is the difference in dimension between the two irreducible varieties, the map
is generically onto. Finally, properness of s then implies that it is onto, giving
2. and finishing the proof.

PROPOSITION 4.15
Let α be a Schur root such that χQ(α, α) < 0, then for any integer n we have
that nα is a Schur root.

PROOF There are infinitely many nonisomorphic Schur representations
of dimension vector α. Pick n of them {W1, . . . ,Wn} and from χQ(α, α) < 0
we deduce

HomCQ(Wi,Wj) = δijC and Ext1CQ(Wi,Wj) 6= 0

By lemma 4.9 we can construct a representation Vn having a filtration

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn with
Vj
Vj−1

'Wj
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and such that the short exact sequences 0 - Vj−1
- Vj - Wj

- 0
do not split. By induction on n we may assume that EndCQ(Vn−1) = C
and we have that HomCQ(Vn−1,Wn) = 0. But then, the restriction of any
endomorphism φ of Vn to Vn−1 must be an endomorphism of Vn−1 and
therefore a scalar λrr. Hence, φ − λrr ∈ EndCQ(Vn) is trivial on Vn−1. As
HomCQ(Wn, Vn−1) = 0, EndCQ(Wn) = C and nonsplitness of the sequence
0 - Vn−1

- Vn - Wn
- 0 we must have φ − λrr = 0 whence

EndCQ(Vn) = C, that is, nα is a Schur root.

We say that a dimension vector α is left orthogonal to β if hom(α, β) = 0
and ext(α, β) = 0.

DEFINITION 4.10 An ordered sequence C = (β1, . . . , βs) of dimension
vectors is said to be a compartment for Q if and only if

1. for all i, βi is a Schur root

2. for al i < j, βi is left orthogonal to βj

3. for all i < j we have χQ(βj , βi) ≥ 0

THEOREM 4.17
Suppose that C = (β1, . . . , βs) is a compartment for Q and that there are

nonnegative integers e1, . . . , es such that α = e1β1 + . . .+ esβs. Assume that
ei = 1 whenever χQ(βi, βi) < 0. Then,

τcan = (e1, β1; . . . ; es, βs)

is the canonical decomposition of the dimension vector α.

PROOF Let V be a generic representation of dimension vector α with
decomposition into indecomposables

V = W⊕e11 ⊕ . . .⊕W⊕es
s with dim(Wi) = βi

we will show that (after possibly renumbering the factors (β1, . . . , βs) is a
compartment for Q. To start, it follows from lemma 4.10 that for all i 6= j
we have Ext1CQ(Wi,Wj) = 0. From lemma 4.11 we deduce a partial or-
dering i → j on the indices whenever HomCQ(Wi,Wj) 6= 0. Indeed, any
nonzero morphism Wi

- Wj is either a mono- or an epimorphism, assume
Wi

-- Wj then there can be no monomorphism Wj
⊂ - Wk as the com-

position Wi
- Wk would be neither mono nor epi. That is, all nonzero

morphisms from Wj to factors must be (proper) epi and we cannot obtain cy-
cles in this way by counting dimensions. If Wi

⊂ - Wj , a similar argument
proves the claim. From now on we assume that the chosen index-ordering of
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the factors is (reverse) compatible with the partial ordering i → j, that is
Hom(Wi,Wj) = 0 whenever i < j, that is, βi is left orthogonal to βj when-
ever i < j. As Ext1CQ(Wj ,Wi) = 0, it follows that χQ(βj , βi) ≥ 0. As generic
representations are open it follows that all repβi

Q have an open subset of
indecomposables, proving that the βi are Schur roots. Finally, it follows from
proposition 4.15 that a Schur root βi with χQ(βi, βi) can occur only with
multiplicity one in any canonical decomposition.

Conversely, assume that (β1, . . . , βs) is a compartment for Q, α =
∑
i eiβi

satisfying the requirements on multiplicities. Choose Schur representations
Wi ∈ repβi

Q, then we have to prove that

V = W⊕e11 ⊕ . . .⊕W⊕es
s

is a generic representation of dimension vector α. In view of the properties
of the compartment we already know that Ext1CQ(Wi,Wj) = 0 for all i < j

and we need to show that Ext1CQ(Wj ,Wi) = 0. Indeed, if this condition is
satisfied we have
dim repα Q− dim O(V ) = dimCExt

1(V, V )

=
∑
i

e2i dimCExt
1(Wi,Wi) =

∑
i

e2i (1− qQ(βi)

We know that the Schur representations of dimension vector βi depend on
1 − qQ(βi) parameters by Kac s theorem 4.14 and ei = 1 unless qQ(βi) = 1.
Therefore, the union of all orbits of representations with the same Schur-
decomposition type as V contain a dense open set of repα Q and so this must
be the canonical decomposition.

If this extension space is nonzero, HomCQ(Wj ,Wi) 6= 0 as χQ(βj , βi) ≥ 0.
But then by lemma 4.11 any nonzero homomorphism from Wj to Wi must be
either a mono or an epi. Assume it is a mono, so βj < βi, so in particular a gen-
eral representation of dimension βi contains a subrepresentation of dimension
βj and hence by theorem 4.16 we have ext(βj , βi−βj) = 0. Suppose that βj is
a real Schur root, then Ext1CQ(Wj ,Wj) = 0 and therefore also ext(βj , βi) = 0
as Ext1CQ(Wj ,Wj ⊕ (Wj/Wi)) = 0. If β is not a real root, then for a general
representation S ∈ repβj

Q take a representation R ∈ repβi
Q in the open set

where Ext1CQ(S,R) = 0, then there is a monomorphism S ⊂ - R. Because
Ext1CQ(S, S) 6= 0 we deduce from lemma 4.9 that Ext1CQ(R,S) 6= 0 contra-
dicting the fact that ext(βi, βj) = 0. If the nonzero morphism Wj

- Wi is
epi one has a similar argument.

This result can be used to obtain a fairly efficient algorithm to compute the
canonical decomposition in case the quiver Q has no oriented cycles. Fortu-
nately, one can reduce the general problem to that of quiver without oriented
cycles using the bipartite double Qb of Q. We double the vertex-set of Q in a
left and right set of vertices, that is

Qbv = {vl1, . . . , vlk, vr1, . . . , vrk}
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To every arrow a ∈ Qa from vi to vj we assign an arrow ã ∈ Qba from vli to vrj .
In addition, we have for each 1 ≤ i ≤ k one extra arrow ĩ in Qba from vli to
vri . If α = (a1, . . . , ak) is a dimension vector for Q, the associated dimension
vector α̃ for Qb has components

α̃ = (a1, . . . , ak, a1, . . . , ak)

Example 4.7
Consider the quiver Q and dimension vector α = (a, b) on the left-hand side,
then

b(/).*-+,

a(/).*-+,

y

qq

x

--

u

<<

v

||

b(/).*-+,

a(/).*-+,

b(/).*-+,

a(/).*-+,

2̃ //

1̃ //

ũ

<<
ṽ

��

x̃

��

ỹ
@@

the bipartite quiver situation Qb and α̃ is depicted on the right-hand side.

If the canonical decomposition of α for Q is τcan = (e1, β1; . . . ; es, βs), then
the canonical decomposition of α̃ for Qb is (e1, β̃1; . . . ; es, β̃s) as for a general
representation of Qb of dimension vector α̃ the morphisms corresponding to ĩ
for 1 ≤ i ≤ k are all invertible matrices and can be used to identify the left
and right vertex sets, that is, there is an equivalence of categories between
representations of Qb where all the maps ĩ are invertible and representations
of the quiver Q. That is, the algorithm below can be applied to (Qb, α̃) to
obtain the canonical decomposition of α for an arbitrary quiver Q.

Let Q be a quiver without oriented cycles then we can order the vertices
{v1, . . . , vk} such that there are no oriented paths from vi to vj whenever i < j
(start with a sink of Q, drop it and continue recursively). For example, for
the bipartite quiver Qb we first take all the right vertices and then the left
ones.

input: quiver Q, ordered set of vertices as above, dimension vector α =
(a1, . . . , ak) and type τ = (a1, ~v1; . . . ; ak, ~vk) where ~vi = (δij)j = dim vi is the
canonical basis. By the assumption on the ordering of vertices we have that
τ is a good type for α. We say that a type (f1, γ1; . . . ; fs, γs) is a good type
for α if α =

∑
i fiγi and the following properties are satisfied

1. fi ≥ 0 for all i

2. γi is a Schur root

3. for each i < j, γi is left orthogonal to γj

4. fi = 1 whenever χQ(γi, γi) < 0
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A type is said to be excellent provided that, in addition to the above, we also
have that for all i < j, χQ(αj , αi) ≥ 0. In view of theorem 4.17 the purpose of
the algorithm is to transform the good type τ into the excellent type τcan. We
will describe the main loop of the algorithm on a good type (f1, γ1; . . . ; fs, γs).

step 1: Omit all couples (fi, γi) with fi = 0 and verify whether the remaining
type is excellent. If it is, stop and output this type. If not, proceed.
step 2: Reorder the type as follows, choose i and j such that j − i is minimal
and χQ(βj , βi) < 0. Partition the intermediate entries {i+ 1, . . . , j − 1} into
the sets

• {k1, . . . , ka} such that χQ(γj , γkm) = 0

• {l1, . . . , lb} such that χQ(γj , γlm) > 0

Reorder the couples in the type in the sequence

(1, . . . , i− 1, k1, . . . , ka, i, j, l1, . . . , lb, j + 1, . . . , s)

define µ = γi, ν = γj , p = fi, q = fj , ζ = pµ + qν and t = −χQ(ν, µ), then
proceed.
step 3: Change the part (p, µ; q, ν) of the type according to the following
scheme

• If µ and ν are real Schur roots, consider the subcases

1. χQ(ζ, ζ) > 0, replace (p, µ, q, ν) by (p′, µ′; q′; ν′) where ν′ and ν′ are
nonnegative combinations of ν and µ such that µ′ is left orthogonal
to ν′, χQ(ν′, µ′) = t ≥ 0 and ζ = p′µ′+q′ν′ for nonnegative integers
p′, q′.

2. χQ(ζ, ζ) = 0, replace (p, µ; q, ν) by (k, ζ ′) with ζ = kζ ′, k positive
integer, and ζ ′ an indivisible root.

3. χQ(ζ, ζ) < 0, replace (p, µ; q, ν) by (1, ζ).

• If µ is a real root and ν is imaginary, consider the subcases

1. If p + qχQ(ν, µ) ≥ 0, replace (p, µ; q, ν) by (q, ν − χQ(ν, µ)µ; p +
qχQ(ν, µ), µ).

2. If p+ qχQ(ν, µ) < 0, replace (p, µ; q, ν) by (1, ζ).

• If µ is an imaginary root and ν is real, consider the subcases

1. If q + pχQ(ν, µ) ≥ 0, replace (p, µ; q, ν) by (q + pχQ(ν, µ), ν; p, µ−
χQ(ν, µ)ν).

2. If q + pχQ(ν, µ) < 0, replace (p, µ; q, ν) by (1, ζ).

• If µ and ν are imaginary roots, replace (p, µ; q, ν) by (1, ζ).
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then go to step 1.

One can show that in every loop of the algorithm the number
∑
i fi de-

creases, so the algorithm must stop, giving the canonical decomposition of
α. A consequence of this algorithm is that r(α) + 2i(α) ≤ k where r(α) is
the number of real Schur roots occurring in the canonical decomposition of α,
i(α) the number of imaginary Schur roots and k the number of vertices of Q.
For more details we refer to [30].

4.7 General subrepresentations

Often, we will need to determine the dimension vectors of general subrep-
resentations . It follows from theorem 4.16 that this problem is equivalent to
the calculation of ext(α, β). An inductive algorithm to do this was discovered
by A. Schofield [93].

Recall that α ⊂ - β iff a general representation W ∈ repβ Q contains
a subrepresentation S ⊂ - W of dimension vector α. Similarly, we denote
β -- γ if and only if a general representation W ∈ repβ Q has a quotient-
representation W -- T of dimension vector γ. As before, Q will be a quiver
on k-vertices {v1, . . . , vk} and we denote dimension vectors α = (a1, . . . , ak),
β = (b1, . . . , bk) and γ = (c1, . . . , ck). We will first determine the rank of a
general homomorphism V - W between representations V ∈ repα Q and
W ∈ repβ Q. We denote

Hom(α, β) = ⊕ki=1Mbi×ai and Hom(V, β) = Hom(α, β) = Hom(α,W )

for any representations V and W as above. With these conventions we have
the following.

LEMMA 4.13

There is an open subset Homm(α, β) ⊂ - repα Q×repβ Q and a dimension

vector γ
def
= rk hom(α, β) such that for all (V,W ) ∈ Hommin(α, β)

• dimC HomCQ(V,W ) is minimal, and

• {φ ∈ HomCQ(V,W ) | rk φ = γ} is a nonempty Zariski open subset of
HomCQ(V,W ).
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PROOF Consider the subvariety HomQ(α, β) of the trivial vectorbundle

HomQ(α, β) ⊂- Hom(α, β)× repα Q× repβ Q

repα Q× repβ Q

pr

??

Φ

-

of triples (φ, V,W ) such that V
φ- W is a morphism of representations of

Q. The fiber Φ−1(V,W ) = HomCQ(V,W ). As the fiber dimension is upper
semicontinuous, there is an open subset Hommin(α, β) of repα Q × repβ Q
consisting of points (V,W ) where dimC HomCQ(V,W ) is minimal. For given
dimension vector δ = (d1, . . . , dk) we consider the subset

HomQ(α, β, δ) = {(φ, V,W ) ∈ HomQ(α, β) | rk φ = δ} ⊂ - HomQ(α, β)

This is a constructible subset of HomQ(α, β) and hence there is a dimension
vector γ such that HomQ(α, β, γ) ∩Φ−1(Hommin(α, β)) is constructible and
dense in Φ−1(Hommin(α, β)). But then

Φ(HomQ(α, β, γ) ∩ Φ−1(Hommin(α, β)))

is constructible and dense in Hommin(V,W ). Therefore it contains an open
subset Homm(V,W ) satisfying the requirements of the lemma.

LEMMA 4.14
Assume we have short exact sequences of representations of Q{

0 - S - V - X - 0
0 - Y - W - T - 0

then there is a natural onto map

Ext1CQ(V,W ) -- Ext1CQ(S, T )

PROOF By lemma 4.9 we have surjective maps

Ext1CQ(V,W ) -- Ext1CQ(V, T ) -- Ext1CQ(S, T )

from which the assertion follows.

THEOREM 4.18
Let γ = rk hom(α, β) (with notations as in lemma 4.13), then

1. α− γ ⊂ - α -- γ ⊂ - β -- β − γ
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2. ext(α, β) = −χQ(α− γ, β − γ) = ext(α− γ, β − γ)

PROOF The first statement is obvious from the definitions. The strategy
of the proof of the second statement is to compute the dimension of the
subvariety of Hom(α, β)× repα × repβ × repγ defined by

Hfactor = {(φ, V, W, X) |

V
φ - W

X = Im φ
⊂

-

--
factors as representations }

in two different ways. Consider the intersection of the open set Homm(α, β)
determined by lemma 4.13 with the open set of couples (V,W ) such that
dim Ext(V,W ) = ext(α, β) and let (V,W ) lie in this intersection. In the
previous section we have proved that

dim Grassγ(W ) = χQ(γ, β − γ)

Let H be the subbundle of the trivial vectorbundle over Grassγ(W )

H ⊂ - Hom(α, W )× Grassγ(W )

Grassγ(W )

??
--

consisting of triples (φ,W,U) with φ : ⊕iC⊕ai - W a linear map such that
Im(φ) is contained in the subrepresentation U ⊂ - W of dimension γ. That
is, the fiber over (W,U) is Hom(α,U) and therefore has dimension

∑k
i=1 aici.

With Hfull we consider the open subvariety of H of triples (φ,W,U) such
that Im φ = U . We have

dim Hfull =
k∑
i=1

aici + χQ(γ, β − γ)

But then, Hfactor is the subbundle of the trivial vectorbundle over Hfull

Hfactor ⊂- repα Q×Hfull

Hfull

??

π

--

consisting of quadruples (V, φ,W,X) such that V
φ- W is a morphism

of representations, with image the subrepresentation X of dimension γ. The
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fiber of π over a triple (φ,W,X) is determined by the property that for each
arrow ��������i��������j

aoo the following diagram must be commutative, where we
decompose the vertex spaces Vi = Xi ⊕Ki for K = Ker φ

Xi ⊕Ki

24A B
C D

35
- Xj ⊕Kj

Xi

hrr
ci 0

i
??

A
- Xj

hrr
cj 0

i
??

where A is fixed, giving the condition B = 0 and hence the fiber has dimension
equal to∑

��������i��������j
aoo

(ai − ci)(aj − cj) +
∑

��������i��������j
aoo

ci(aj − cj) =
∑

��������i��������j
aoo

ai(aj − cj)

This gives our first formula for the dimension of Hfactor

Hfactor =
k∑
i=1

aici + χQ(γ, β − γ) +
∑

��������i��������j
aoo

ai(aj − cj)

On the other hand, we can consider the natural map Hfactor Φ- repα Q
defined by sending a quadruple (V, φ,W,X) to V . the fiber in V is given by all
quadruples (V, φ,W,X) such that V

φ- W is a morphism of representations
with Im φ = X a representation of dimension vector γ, or equivalently

Φ−1(V ) = {V φ- W | rk φ = γ}

Now, recall our restriction on the couple (V,W ) giving at the beginning of the
proof. There is an open subset max of repα Q of such V and by construction
max ⊂ - Im Φ, Φ−1(max) is open and dense inHfactor and the fiber Φ−1(V )
is open and dense in HomCQ(V,W ). This provides us with the second formula
for the dimension of Hfactor

dim Hfactor = dim repα Q+ hom(α,W ) =
∑

��������i��������j
aoo

aiaj + hom(α, β)

Equating both formulas we obtain the equality

χQ(γ, β − γ) +
k∑
i=1

aici −
∑

��������i��������j
aoo

aicj = hom(α, β)
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which is equivalent to

χQ(γ, β − γ) + χQ(α, γ)− χQ(α, β) = ext(α, β)

Now, for our (V,W ) we have that Ext(V,W ) = ext(α, β) and we have exact
sequences of representations

0 - S - V - X - 0 0 - X - W - T - 0

and using lemma 4.14 this gives a surjection Ext(V,W ) -- Ext(S, T ). On
the other hand we always have from the homological interpretation of the
Euler form the first inequality

dimC Ext(S, T ) ≥ −χQ(α− γ, β − γ) = χQ(γ, β − γ)− χQ(α, β) + χQ(α, γ)
= ext(α, β)

As the last term is dimC Ext(V,W ), this implies that the above surjection
must be an isomorphism and that

dimC Ext(S, T ) = −χQ(α− γ, β − γ) whence dimC Hom(S, T ) = 0

But this implies that hom(α− γ, β− γ) = 0 and therefore ext(α− γ, β− γ) =
−χQ(α− γ, β − γ). Finally,

ext(α− γ, β − γ) = dim Ext(S, T ) = dim Ext(V,W ) = ext(α, β)

finishing the proof.

THEOREM 4.19
For all dimension vectors α and β we have

ext(α, β) = max
α′ ⊂ - α
β

--
β′

− χQ(α′, β′)

= max
β -- β”

− χQ(α, β”)

= max
α” ⊂ - α

− χQ(α”, β)

PROOF Let V and W be representation of dimension vector α and β
such that dim Ext(V,W ) = ext(α, β). Let S ⊂ - V be a subrepresentation
of dimension α′ and W -- T a quotient representation of dimension vector
β′. Then, we have

ext(α, β) = dimC Ext(V,W ) ≥ dimC Ext(S, T ) ≥ −χQ(α′, β′)

where the first inequality is lemma 4.14 and the second follows from the
interpretation of the Euler form. Therefore, ext(α, β) is greater or equal
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than all the terms in the statement of the theorem. The foregoing the-
orem asserts the first equality, as for rk hom(α, β) = γ we do have that
ext(α, β) = −χQ(α− γ, β − γ).

In the proof of the above theorem, we have found for sufficiently general V
and W an exact sequence of representations

0 - S - V - W - T - 0

where S is of dimension α− γ and T of dimension β − γ. Moreover, we have
a commuting diagram of surjections

Ext(V,W ) -- Ext(V, T )

Ext(S,W )

??
-- Ext(S, T )

??

...............................-

and the dashed map is an isomorphism, hence so are all the epimorphisms.
Therefore, we have{

ext(α, β − γ) ≤ dim Ext(V, T ) = dim Ext(V,W ) = ext(α, β)
ext(α− γ, β) ≤ dim Ext(S,W ) = dim Ext(V,W ) = ext(α, β)

Further, let T ′ be a sufficiently general representation of dimension β − γ,
then it follows from Ext(V, T ′) -- Ext(S, T ) that

ext(α− γ, β − γ) ≤ dim Ext(S, T ′) ≤ dim Ext(V, T ′) = ext(α, β − γ)

but the left term is equal to ext(α, β) by the above theorem. But then, we
have ext(α, β) = ext(α, β − γ). Now, we may assume by induction that the
theorem holds for β − γ. That is, there exists β − γ -- β” such that
ext(α, β−γ) = −χQ(α, β”). Whence, β -- β” and ext(α, β) = −χQ(α, β”)
and the middle equality of the theorem holds. By a dual argument so does
the last.

By induction we therefore have that β ⊂ - α if and only if

0 = ext(β, α− β) = max
β′ ⊂ - β

− χQ(β′, α− β)

4.8 Semistable representations

Let Q be a quiver on k vertices {v1, . . . , vk} and fix a dimension vector α.
So far, we have considered the algebraic quotient map

repα Q
-- issα Q
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classifying closed GL(α)-orbits in repα Q, that is, isomorphism classes of
semisimple representations of dimension α. We have seen that the invariant
polynomial maps are generated by traces along oriented cycles in the quiver.
Hence, if Q has no oriented cycles, the quotient variety issα Q is reduced to
one point corresponding to the semisimple

S⊕a1
1 ⊕ . . .⊕ S⊕ak

k

where Si is the trivial one-dimensional simple concentrated in vertex vi. Still,
in these cases one can often classify nice families of representations.

Example 4.8
Consider the quiver setting

��������1��������1

x

��y //

z

CC

Then, repα Q = C3 and the action of GL(α) = C∗ × C∗ is given by
(λ, µ).(x, y, z) = (λµx,

λ
µy,

λ
µz). The only closed GL(α)-orbit in C3 is (0, 0, 0)

as the one-parameter subgroup λ(t) = (t, 1) has the property

lim
t→0

λ(t).(x, y, z) = (0, 0, 0)

so (0, 0, 0) ∈ O(x, y, z) for any representation (x, y, z). Still, if we throw away
the zero-representation, then we have a nice quotient map

C3 − {(0, 0, 0)} π-- P2 (x, y, z) 7→ [x : y : z]

and as O(x, y, z) = C∗(x, y, z) we see that every GL(α)-orbit is closed in this
complement C3 − {(0, 0, 0)}. We will generalize such settings to arbitrary
quivers.

A character of GL(α) is an algebraic group morphism χ : GL(α) - C∗.
They are fully determined by an integral k-tuple θ = (t1, . . . , tk) ∈ Zk where

GL(α)
χθ- C∗ (g1, . . . , gk) 7→ det(g1)t1 . . . . .det(gk)tk

For a fixed θ we can extend the GL(α)-action to the space repα ⊕ C by

GL(α)× repα Q⊕ C - repα Q⊕ C g.(V, c) = (g.V, χ−1
θ (g)c)

The coordinate ring C[repα Q ⊕ C] = C[repα][t] can be given a Z-gradation
by defining deg(t) = 1 and deg(f) = 0 for all f ∈ C[repα Q]. The induced
action of GL(α) on C[repα Q ⊕ C] preserves this gradation. Therefore, the
ring of invariant polynomial maps

C[repα Q⊕ C]GL(α) = C[repα Q][t]GL(α)
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is also graded with homogeneous part of degree zero the ring of invariants
C[repα]GL(α). An invariant of degree n, say, ftn with f ∈ C[repα Q] has the
characteristic property that

f(g.V ) = χnθ (g)f(V )

that is, f is a semi-invariant of weight χnθ . That is, the graded decomposition
of the invariant ring is

C[repα Q⊕ C]GL(α) = R0 ⊕R1 ⊕ . . . with Ri = C[repα Q]GL(α),χnθ

DEFINITION 4.11 With notations as above, the moduli space of semi-
stable quiver representations of dimension α is the projective variety

Mss
α (Q, θ) = proj C[repα Q⊕ C]GL(α) = proj ⊕∞n=0 C[repα Q]GL(α),χnθ

Recall that for a positively graded affine commutative C-algebra R =
⊕∞i=0Ri, the geometric points of the projective scheme proj R correspond
to graded-maximal ideals m not containing the positive part R+ = ⊕∞i=1Ri.
Intersecting m with the part of degree zero R0 determines a point of spec R0,
the affine variety with coordinate ring R0 and defines a structural morphism

proj R - spec R0

The Zariski closed subsets of proj R are of the form

V(I) = {m ∈ proj R | I ⊂ m}

for a homogeneous ideal I /R. Further, recall that proj R can be covered by
affine varieties of the form X(f) with f a homogeneous element in R+. The
coordinate ring of this affine variety is the part of degree zero of the graded
localization Rgf . We refer to [43, II.2] for more details.

Example 4.9
Consider again the quiver-situation

��������1��������1

x

��y //

z

CC

and character θ = (−1, 1), then the three coordinate functions x, y and z of
C[repα Q] are semi-invariants of weight χθ. It is clear that the invariant ring
is equal to

C[repα Q⊕ C]GL(α) = C[xt, yt, zt]
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��������� ��
��
��
��
�

•

•

V(f)

V0

Vc

V(t)

FIGURE 4.11: The projection map.

where the three generators all have degree one. That is,

Mss
α (Q, θ) = proj C[xt, yt, zt] = P2

as desired.

We will now investigate which orbits in repα Q are parameterized by the
moduli space Mss

α (Q, θ).

DEFINITION 4.12 We say that a representation V ∈ repα Q is χθ-
semistable if and only if there is a semi-invariant f ∈ C[repα Q]GL(α),χnθ for
some n ≥ 1 such that f(V ) 6= 0.

The subset of repα Q consisting of all χθ-semistable representations will be
denoted by repssα (Q, θ).

Observe that repssα (Q, θ) is Zariski open (but it may be empty for certain
(α, θ)). We can lift a representation V ∈ repα Q to points Vc = (V, c) ∈
repα Q ⊕ C and use GL(α)-invariant theory on this larger GL(α)-module
see figure 4.8 Let c 6= 0 and assume that the orbit closure O(Vc) does not
intersect V(t) = repα Q × {0}. As both are GL(α)-stable closed subsets
of repα Q ⊕ C we know from the separation property of invariant theory,
proposition 2.10, that this is equivalent to the existence of a GL(α)-invariant
function g ∈ C[repα Q⊕ C]GL(α) such that g(O(Vc)) 6= 0 but g(V(t)) = 0.

We have seen that the invariant ring is graded, hence we may assume g to be
homogeneous, that is, of the form g = ftn for some n. But then, f is a semi-
invariant on repα Q of weight χnθ and we see that V must be χθ-semistable.
Moreover, we must have that θ(α) =

∑k
i=1 tiai = 0, for the one-dimensional

central torus of GL(α)

µ(t) = (trra1 , . . . , t
rr
ak

) ⊂ - GL(α)

acts trivially on repα Q but acts on C via multiplication with
∏k
i=1 t

−aiti

hence if θ(α) 6= 0 then O(Vc) ∩ V(t) 6= ∅.
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More generally, we have from the strong form of the Hilbert criterion proved
in theorem 2.2 that O(Vc) ∩ V(t) = ∅ if and only if for every one-parameter
subgroup λ(t) of GL(α) we must have that lim

t→0
λ(t).Vc /∈ V(t). We can also

formulate this in terms of the GL(α)-action on repα Q. The composition of
a one-parameter subgroup λ(t) of GL(α) with the character

C∗ λ(t)- GL(α)
χθ- C∗

is an algebraic group morphism and is therefore of the form t - tm for
some m ∈ Z and we denote this integer by θ(λ) = m. Assume that λ(t) is a
one-parameter subgroup such that lim

t→0
λ(t).V = V ′ exists in repα Q, then as

λ(t).(V, c) = (λ(t).V, t−mc)

we must have that θ(λ) ≥ 0 for the orbitclosure O(Vc) not to intersect V(t).
That is, we have the following characterization of χθ-semistable represen-

tations.

PROPOSITION 4.16

The following are equivalent

1. V ∈ repα Q is χθ-semistable.

2. For c 6= 0, we have O(Vc) ∩ V(t) = ∅.

3. For every one-parameter subgroup λ(t) of GL(α) we have lim
t→0

λ(t).Vc /∈
V(t) = repα Q× {0}.

4. For every one-parameter subgroup λ(t) of GL(α) such that lim
t→0

λ(t).V

exists in repα Q we have θ(λ) ≥ 0.

Moreover, these cases can only occur if θ(α) = 0.

Assume that g = ftn is a homogeneous invariant function for the GL(α)-
action on repα Q⊕C and consider the affine open GL(α)-stable subset X(g).
The construction of the algebraic quotient and the fact that the invariant rings
here are graded asserts that the closed GL(α)-orbits in X(g) are classified by
the points of the graded localization at g which is of the form

(C[repα Q⊕ C]GL(α))g = Rf [h, h−1]

for some homogeneous invariant h and where Rf is the coordinate ring of the
affine open subset X(f) in Mss

α (Q, θ) determined by the semi-invariant f of
weight χnθ . Because the moduli space is covered by such open subsets we have
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PROPOSITION 4.17
The moduli space of θ-semistable representations of repα Q

Mss
α (Q, θ)

classifies closed GL(α)-orbits in the open subset repssα (Q, θ) of all χθ-
semistable representations of Q of dimension vector α.

Example 4.10
In the foregoing example repssα (Q, θ) = C3 − {(0, 0, 0)} as for all these points
one of the semi-invariant coordinate functions is nonzero. For θ = (−1, 1) the
lifted GL(α) = C∗ × C∗-action to repα Q⊕ C = C4 is given by

(λ, µ).(x, y, z, t) = (
µ

λ
x,
µ

λ
y,
µ

λ
z,
λ

µ
t)

We have seen that the ring of invariants is C[xt, yt, zt]. Consider the affine
open set X(xt) of C4, then the closed orbits in X(xt) are classified by

C[xt, yt, zt]gxt = C[
y

x
,
z

x
][xt,

1
xt

]

and the part of degree zero C[ yx ,
z
x ] is the coordinate ring of the open set X(x)

in P2.

We have seen that closed GLn-orbits in repn A correspond to semisimple
n-dimensional representations. We will now give a representation theoretic
interpretation of closed GL(α)-orbits in repssα (Q, θ).

Again, the starting point is that one-parameter subgroups λ(t) of GL(α)
correspond to filtrations of representations. Let us go through the motions one
more time. For λ : C∗ - GL(α) a one-parameter subgroup and V ∈ repα Q
we can decompose for every vertex vi the vertex-space in weight spaces

Vi = ⊕n∈ZV
(n)
i

where λ(t) acts on the weight space V (n)
i as multiplication by tn. This de-

composition allows us to define a filtration

V
(≥n)
i = ⊕m≥nV (m)

i

For every arrow ��������i��������j
aoo , λ(t) acts on the components of the arrow maps

V
(n)
i

Vm,n
a - V

(m)
j

by multiplication with tm−n. That is, a limit lim
t→0

Va exists if and only if
V m,na = 0 for all m < n, that is, if Va induces linear maps

V
(≥n)
i

Va- V
(≥n)
j
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Hence, a limiting representation exists if and only if the vertex-filtration spaces
V

(≥n)
i determine a subrepresentation Vn ⊂ - V for all n. That is, a one-

parameter subgroup λ such that lim
t→

λ(t).V exists determines a decreasing
filtration of V by subrepresentations

. . . � ⊃ Vn � ⊃ Vn+1
� ⊃ . . .

Further, the limiting representation is then the associated graded representa-
tion

lim
t→0

λ(t).V = ⊕n∈Z
Vn
Vn+1

where of course only finitely many of these quotients can be nonzero. For the
given character θ = (t1, . . . , tk) and a representation W ∈ repβ Q we denote

θ(W ) = t1b1 + . . .+ tkbk where β = (b1, . . . , bk)

Assume that θ(V ) = 0, then with the above notations, we have an interpre-
tation of θ(λ) as

θ(λ) =
k∑
i=1

ti
∑
n∈Z

ndimC V
(n)
i =

∑
n∈Z

nθ(
Vn
Vn+1

) =
∑
n∈Z

θ(Vn)

DEFINITION 4.13 A representation V ∈ repα Q is said to be

• θ-semistable if θ(V ) = 0 and for all subrepresentations W ⊂ - V we
have θ(W ) ≥ 0.

• θ-stable if V is θ-semistable and if the only subrepresentations
W ⊂ - V such that θ(W ) = 0 are V and 0.

PROPOSITION 4.18
For V ∈ repα Q the following are equivalent

1. V is χθ-semistable.

2. V is θ-semistable.

PROOF (1)⇒ (2) : Let W be a subrepresentation of V and let λ be the
one-parameter subgroup associated to the filtration V � ⊃ W � ⊃ 0, then
lim
t→0

λ(t).V exists whence by proposition 4.16.4 we have θ(λ) ≥ 0, but we have

θ(λ) = θ(V ) + θ(W ) = θ(W )

(2)⇒ (1) : Let λ be a one-parameter subgroup of GL(α) such that lim
t→0

λ(t).V
exists and consider the induced filtration by subrepresentations Vn defined
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above. By assumption all θ(Vn) ≥ 0, whence

θ(λ) =
∑
n∈Z

θ(Vn) ≥ 0

and again proposition 4.16.4 finishes the proof.

LEMMA 4.15
Let V ∈ repα Q and W ∈ repβ Q be both θ-semistable and

V
f- W

a morphism of representations. Then, Ker f , Im f and Coker f are θ-
semistable representations.

PROOF Consider the two short exact sequences of representations of Q{
0 - Ker f - V - Im f - 0
0 - Im f - W - Coker f - 0

As θ(−) is additive, we have 0 = θ(V ) = θ(Ker f) + θ(Im f) and as both
are subrepresentations of θ-semistable representations V resp. W , the right-
hand terms are ≥ 0 whence are zero. But then, from the second sequence
also θ(Coker f) = 0. Being submodules of θ-semistable representations,
Ker f and Im f also satisfy θ(S) ≥ 0 for all their subrepresentations U .
Finally, a subrepresentation T ⊂ - Coker f can be lifted to a subrepre-
sentation T ′ ⊂ - W and θ(T ) ≥ 0 follows from the short exact sequence
0 - Im f - T ′ - T - 0.

That is, the full subcategory repss(Q, θ) of rep Q consisting of all θ-
semistable representations is an Abelian subcategory and clearly the sim-
ple objects in repss(Q, θ) are precisely the θ-stable representations. As this
Abelian subcategory has the necessary finiteness conditions, one can prove a
version of the Jordan-Hölder theorem. That is, every θ-semistable represen-
tation V has a finite filtration

V = V0
� ⊃ V1

� ⊃ . . . � ⊃ Vz = 0

of subrepresentation such that every factor Vi

Vi+1
is θ-stable. Moreover, the

unordered set of these θ-stable factors are uniquely determined by V .

THEOREM 4.20
For a θ-semistable representation V ∈ repα Q the following are equivalent

1. The orbit O(V ) is closed in repssα (Q,α).
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2. V 'W⊕e11 ⊕ . . .⊕W⊕el

l with every Wi a θ-stable representation.

That is, the geometric points of the moduli space Mss
α (Q, θ) are in natural

one-to-one correspondence with isomorphism classes of α-dimensional repre-
sentations which are direct sums of θ-stable subrepresentations. The quotient
map

repssα (Q, θ) -- Mss
α (Q, θ)

maps a θ-semistable representation V to the direct sum of its Jordan-Hölder
factors in the Abelian category repss(Q, θ).

PROOF Assume that O(V ) is closed in repssα (Q, θ) and consider the θ-
semistable representation W = grss V , the direct sum of the Jordan-Hölder
factors in repss(Q, θ). As W is the associated graded representation of a
filtration on V , there is a one-parameter subgroup λ of GL(α) such that
lim
t→0

λ(t).V ' W , that is O(W ) ⊂ O(V ) = O(V ), whence W ' V and 2.
holds.

Conversely, assume that V is as in 2. and let O(W ) be a closed orbit
contained in O(V ) (one of minimal dimension). By the Hilbert criterium
there is a one-parameter subgroup λ in GL(α) such that lim

t→0
λ(t).V ' W .

Hence, there is a finite filtration of V with associated graded θ-semistable
representation W . As none of the θ-stable components of V admits a proper
quotient which is θ-semistable (being a direct summand of W ), this shows
that V ' W and so O(V ) = O(W ) is closed. The other statements are clear
from this.

Remains to determine the situations (α, θ) such that the corresponding
moduli space Mss

α (Q, θ) is non-empty, or equivalently, such that the Zariski
open subset repssα (Q, θ) ⊂ - repα Q is non-empty.

THEOREM 4.21

Let α be a dimension vector such that θ(α) = 0. Then,

1. repssα (Q,α) is a non-empty Zariski open subset of repα Q if and only if
for every β ⊂ - α we have that θ(β) ≥ 0.

2. The θ-stable representations repsα(Q,α) are a non-empty Zariski open
subset of repα Q if and only if for every 0 6= β ⊂ - α we have that
θ(β) > 0

The algorithm at the end of the last section gives an inductive procedure
to calculate these conditions.

The graded algebra C[repα ⊕ C]GL(α) of all semi-invariants on repα Q of
weight χnθ for some n ≥ 0 has as degree zero part the ring of polynomial
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invariants C[repα Q]GL(α). This embedding determines a proper morphism

Mss
α (Q, θ)

π- issα Q

which is onto whenever repssα (Q,α) is non-empty. In particular, ifQ is a quiver
without oriented cycles, then the moduli space of θ-semistable representations
of dimension vector α, Mss

α (Q, θ), is a projective variety.
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Chapter 5

Semisimple Representations

For a Cayley-Hamilton algebra A ∈ alg@n we have seen that the quotient
scheme

trissn A = trepn A/GLn

classifies isomorphism classes of (trace preserving) semisimple n-dimensional
representations. A point ξ ∈ trissn A is said to lie in the Cayley-smooth
locus of A if trepn A is a smooth variety in the semisimple module Mξ

determined by ξ. In this case, the étale local structure of A and its central
subalgebra tr(A) are determined by a marked quiver setting.

We will extend some results on quotient varieties of representations of quiv-
ers to the setting of marked quivers. We will give a computational method to
verify whether ξ belongs to the Cayley-smooth locus of A and develop reduc-
tion steps for the corresponding marked quiver setting that preserve geometric
information, such as the type of singularity.

In low dimensions we can give a complete classification of all marked quiver
settings that can arise for a Cayley-smooth order, allowing us to determine
the classes in the Brauer group of the function field of a projective smooth
surface, which allow a noncommutative smooth model.

In the arbitrary (central) dimension we are able to determine the smooth
locus of the center as well as to classify the occurring singularities up to
smooth equivalence.

5.1 Representation types

In this section we will determine the étale local structure of quotient vari-
eties of marked quivers, characterize their dimension vectors of simples and
introduce the representation type of a representation.

We fix a quiver Q and dimension vector α. Closed GL(α)-orbits is repα Q
correspond to isomorphism classes of semisimple representations of Q of di-
mension vector α. We have a quotient map

repα Q
π-- repα Q/GL(α) = issα Q

241
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and we know that the coordinate ring C[issα Q] is generated by traces along
oriented cycles in the quiver Q. Consider a point ξ ∈ issα Q and assume
that the corresponding semisimple representation Vξ has a decomposition

Vξ = V ⊕e11 ⊕ . . .⊕ V ⊕ez
z

into distinct simple representations Vi of dimension vector, say, αi and occur-
ring in Vξ with multiplicity ei. We then say that ξ is a point of representation-
type

τ = t(ξ) = (e1, α1; . . . , ez, αz) with α =
z∑
i=1

eiαi

We want to apply the slice theorem to obtain the étale GL(α)-local structure
of the representation space repα Q in a neighborhood of Vξ and the étale local
structure of the quotient variety issα Q in a neighborhood of ξ. We have to
calculate the normal space Nξ to the orbit O(Vξ) as a representation over the
stabilizer subgroup GL(α)ξ = StabGL(α)(Vξ).

Denote ai =
∑k
j=1 aij where αi = (ai1, . . . , aik), that is, ai = dim Vi. We

will choose a basis of the underlying vectorspace

⊕vi∈Qv
C⊕eiai of Vξ = V ⊕e11 ⊕ . . .⊕ V ⊕ez

z

as follows: the first e1a1 vectors give a basis of the vertex spaces of all simple
components of type V1, the next e2a2 vectors give a basis of the vertex spaces
of all simple components of type V2, and so on. If n =

∑k
i=1 eidi is the total

dimension of Vξ, then with respect to this basis, the subalgebra of Mn(C)
generated by the representation Vξ has the following block-decomposition

Ma1(C)⊗ rr
e1 0 . . . 0

0 Ma2(C)⊗ rr
e2 0

...
. . .

...
0 0 . . . Maz

(C)⊗ rr
ez


But then, the stabilizer subgroup

StabGL(α)(Vξ) ' GLe1 × . . .×GLez

embedded in GL(α) with respect to this particular basis as
GLe1(C⊗

rr
a1) 0 . . . 0

0 GLe2(C⊗
rr
a2) 0

...
. . .

...
0 0 . . . GLez

(C⊗ rr
az

)


The tangent space to the GL(α)-orbit in Vξ is equal to the image of the natural
linear map

Lie GL(α) - repα Q
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sending a matrix m ∈ Lie GL(α) ' Me1 ⊕ . . . ⊕Mek
to the representation

determined by the commutator [m,Vξ] = mVξ − Vξm. By this we mean that
the matrix [m,Vξ]a corresponding to an arrow a is obtained as the commutator
in Mn(C) using the canonical embedding with respect to the above choice of
basis. The kernel of this linear map is the centralizer subalgebra. That is, we
have an exact sequence of GL(α)ξ-modules

0 - CMn(C)(Vξ) - Lie GL(α) - TVξ
O(Vξ) - 0

where

CMn(C)(Vξ) =


Me1(C⊗

rr
a1) 0 . . . 0

0 Me2(C⊗
rr
a2) 0

...
. . .

...
0 0 . . . Mez

(C⊗ rr
az

)


and the action of GL(α)Vξ

is given by conjugation on Mn(C) via the above
embedding. We will now engage in a bookkeeping operation counting the
factors of the relevant GL(α)ξ-spaces. We identify the factors by the action
of the GLei-components of GL(α)ξ

1. The centralizer CMn(C)(Vξ) decomposes as a GL(α)ξ-module into

• one factor Mei
on which GLe1 acts via conjugation and the other

factors act trivially
...

• one factor Mez on which GLez acts via conjugation and the other
factors act trivially

2. Recall the notation αi = (ai1, . . . , aik),then the Lie algebra Lie GL(α)
decomposes as a GL(α)ξ-module into

•
∑k
j=1 a

2
1j factors Me1 on which GLe1 acts via conjugation and the

other factors act trivially
...

•
∑k
j=1 a

2
zj factors Mez

on which GLez
acts via conjugation and the

other factors act trivially

•
∑k
j=1 a1ja2j factors Me1×e2 on which GLe1 × GLe2 acts via

γ1.m.γ
−1
2 and the other factors act trivially

...

•
∑k
j=1 azjaz−1 j factors Mez×ez−1 on which GLez

×GLez−1 acts via
γz.m.γ

−1
z−1 and the other factors act trivially
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3. The representation space repα Q decomposes as a GL(α)ξ-modulo into

the following factors, for every arrow ��������i��������j
aoo in Q (or every loop in

vi by setting i = j in the expressions below) we have

• a1ia1j factors Me1 on which GLe1 acts via conjugation and the
other factors act trivially

• a1ia2j factors Me1×e2 on which GLe1×GLe2 acts via γ1.m.γ
−1
2 and

the other factors act trivially

...

• aziaz−1 j factors Mez×ez−1 on which GLez
× GLez−1 act via

γz.m.γ
−1
z−1 and the other factors act trivially

• aziazj factors Mez
on which GLez

acts via conjugation and the
other factors act trivially

Removing the factors of 1. from those of 2. we obtain a description of the
tangent space to the orbit TVξ

O(Vξ). But then, removing these factors from
those of 3, we obtain the description of the normal space NVξ

as a GL(α)ξ-
module as there is an exact sequence of GL(α)ξ-modules

0 - TVξ
O(Vξ) - repα Q

- NVξ
- 0

This proves that the normal space to the orbit in Vξ depends only on the
representation type τ = t(ξ) of the point ξ and can be identified with the
representation space of a local quiver Qτ .

THEOREM 5.1
Let ξ ∈ issα Q be a point of representation type

τ = t(ξ) = (e1, α1; . . . , ez, αz)

Then, the normal space NVξ
to the orbit, as a module over the stabilizer

subgroup, is identical to the representation space of a local quiver situation

NVξ
' repατ

Qτ

where Qτ is the quiver on z vertices (the number of distinct simple components
of Vξ) say {w1, . . . , wz} such that in Qτ

# ��������i��������j
aoo = −χQ(αi, αj) for i 6= j, and

# ��������i
��

= 1− χQ(αi, αi)
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and such that the dimension vector ατ = (e1, . . . , ez) (the multiplicities of the
simple components in Vξ).

We can repeat this argument in the case of a marked quiver Q•. The only
difference is the description of the factors of repα Q

• where we need to replace
the factors Mej in the description of a loop in vi by M0

ei
(trace zero matrices)

in case the loop gets a mark in Q•. We define the Euler form of the marked
quiver Q•

χ1
Q• =


1− a11 χ12 . . . χ1k

χ21 1− a22 . . . χ2k

...
...

. . .
...

χk1 χk2 . . . 1− akk

 χ2
Q• =


−m11

−m22

. . .
−mkk


such that χQ = χ1

Q• + χ2
Q• where Q is the underlying quiver of Q•.

THEOREM 5.2
Let ξ ∈ issα Q• be a point of representation type

τ = t(ξ) = (e1, α1; . . . , ez, αz)

Then, the normal space NVξ
to the orbit, as a module over the stabilizer

subgroup, is identical to the representation space of a local marked quiver
situation

NVξ
' repατ

Q•τ

where Q•τ is the quiver on z vertices (the number of distinct simple components
of Vξ) say {w1, . . . , wz} such that in Q•τ

# ��������i��������j
aoo = −χQ(αi, αj) for i 6= j, and

# ��������i
��

= 1− χ1
Q•(αi, αi)

# ��������i

•

��
= −χ2

Q•(αi, αi)

and such that the dimension vector ατ = (e1, . . . , ez) (the multiplicities of the
simple components in Vξ).

PROPOSITION 5.1
If α = (d1, . . . , dk) is the dimension vector of a simple representation of Q•,
then the dimension of the quotient variety issα Q• is equal to

1− χ1
Q•(α, α)
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PROOF There is a Zariski open subset of issα Q• consisting of points
ξ such that the corresponding semisimple module Vξ is simple, that is, ξ has
representation type τ = (1, α). But then the local quiver setting (Qτ , ατ ) is

��������1 • bcca ;;

where a = 1−χ1
Q•(α, α) and b = −χ2

Q•(α, α). The corresponding representa-
tion space has the coordinate ring

C[repατ
Q•τ ] = C[x1, . . . , xa]

on which GL(ατ ) = C∗ acts trivially. That is, the quotient variety is

repατ
Q•τ/GL(ατ ) = repατ

Q•τ ' Ca

By the slice theorem, issα Q• has the same local structure near ξ as this
quotient space near the origin and the result follows.

We can extend the classifications of simple roots of a quiver to the setting
of marked quivers. Let Q be the underlying quiver of a marked quiver Q•. If
α = (a1, . . . , ak) is a simple root of Q and if l is a marked loop in a vertex
vi with ai > 1, then we can replace the matrix Vl of a simple representation
V ∈ repα Q by V ′l = Vl − 1

di

rr
di

and retain the property that V ′ is a simple
representation. Things are different, however, for a marked loop in a vertex
vi with ai = 1 as this 1× 1-matrix factor is removed from the representation
space. That is, we have the following characterization result.

THEOREM 5.3
α = (a1, . . . , ak) is the dimension vector of a simple representation of a marked
quiver Q• if and only if α = (a1, . . . , ak) is the dimension vector of a simple
representation of the quiver Q′ obtained from the underlying quiver Q of Q•

after removing the loops in Q, which are marked in Q• in all vertices vi where
ai = 1.

We draw some consequences from the description of the local quiver. We
state all results in the setting of marked quivers. Often, the quotient varieties
issα Q• = repα Q

•/GL(α) classifying isomorphism classes of semisimple α-
dimensional representations have singularities. Still, we can decompose these
quotient varieties into smooth pieces according to representation types.

PROPOSITION 5.2
Let issα Q•(τ) be the set of points ξ ∈ issα Q• of representation type

τ = (e1, α1; . . . ; ez, αz)
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Then, issα Q•(τ) is a locally closed smooth subvariety of issα Q• and

issα Q
• =

⊔
τ

issα Q
•(τ)

is a finite smooth stratification of the quotient variety.

PROOF Let Q•τ be the local marked quiver in ξ. Consider a nearby point
ξ′. If some trace of an oriented cycles of length > 1 in Q•τ is nonzero in ξ′, then
ξ′ cannot be of representation type τ as it contains a simple factor composed
of vertices of that cycle. That is, locally in ξ the subvariety issα Q•(τ) is
determined by the traces of unmarked loops in vertices of the local quiver Q•τ
and hence is locally in the étale topology an affine space whence smooth. All
other statements are direct.

Given a stratification of a topological space , one wants to determine which
strata make up the boundary of a given stratum. For the above stratification
of issα Q• we have a combinatorial solution to this problem. Two represen-
tation types

τ = (e1, α1; . . . ; ez, αz) and τ ′ = (e′1, α
′
1; . . . ; e

′
z′ , α

′
z′)

are said to be direct successors τ < τ ′ if and only if one of the following two
cases occurs

• (splitting of one simple): z′ = z + 1 and for all but one 1 ≤ i ≤ z we
have that (ei, αi) = (e′j , α

′
j) for a uniquely determined j and for the

remaining i0 we have that the remaining couples of τ ′ are

(ei, α′u; ei, α
′
v) with αi = α′u + α′v

• (combining two simple types): z′ = z − 1 and for all but one 1 ≤ i ≤ z′
we have that (e′i, α

′
i) = (ej , αj) for a uniquely determined j and for the

remaining i we have that the remaining couples of τ are

(eu, α′i; ev, α
′
i) with eu + ev = e′i

This direct successor relation < induces an ordering that we will denote with
<<. Observe that τ << τ ′ if and only if the stabilizer subgroup GL(α)τ is
conjugated to a subgroup of GL(α)τ ′ . The following result either follows from
general theory, see, for example, [96, lemma 5.5], or from the description of
the local marked quivers.

PROPOSITION 5.3
The stratum issα Q•(τ ′) lies in the closure of the stratum issα Q• if and
only if τ << τ ′.
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Proposition 5.1 gives us the dimensions of the different strata issα Q•(τ).

PROPOSITION 5.4
Let τ = (e1, α1; . . . ; ez, αz) a representation type of α. Then

dim issα Q
•(τ) =

z∑
j=1

(1− χ1
Q•(αj , αj))

Because repα Q• and hence issα Q• is an irreducible variety, there is a
unique representation type τ ssgen such that issα Q•(τ ssgen) is Zariski open in the
quotient variety issα Q•. We call τ ssgen the generic semisimple representation
type for α. The generic semisimple representation type can be determined by
the following algorithm.

input : A quiver Q, a dimension vector α = (a1, . . . , ak) and a semisimple
representation type

τ = (e1, α1; . . . ; el, αl)

with α =
∑

+i = 1leiαi and all αi simple roots for Q. For example, one can
always start with the type (a1, ~v1; . . . ; ak, ~vk).

step 1: Compute the local quiver Qτ on l vertices and the dimension vector
ατ . If the only oriented cycles in Qτ are vertex-loops, stop and output this
type. If not, proceed.
step 2: Take a proper oriented cycle C = (j1, . . . , jr) with r ≥ 2 in Qτ
where js is the vertex in Qτ determined by the dimension vector αjs . Set
β = αj1 + . . . + αjr , e

′
i = ei − δiC where δiC = 1 if i ∈ C and is 0 otherwise.

replace τ by the new semisimple representation type

τ ′ = (e′1, α1; . . . ; e′l, αl; 1, β)

delete the terms (e′i, αi) with e′i = 0 and set τ to be the resulting type. go to
step 1.

The same algorithm extends to marked quivers with the modified con-
struction of the local marked quiver Q•τ in that case. We can give an A∞-
interpretation of the characterization of the canonical decomposition and the
generic semisimple representation type . Let

τ = (e1, α1; . . . ; ez, αz) α =
z∑
i=1

eiαi

be a decomposition of α with all the αi roots. We define ατ = (e1, . . . , ez)
and construct two quivers Q0

τ and Q1
τ on z vertices determined by the rules

in Q0
τ : # ��������i��������j

aoo = dimC HomCQ(Vi, Vj)
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in Q1
τ : # ��������i��������j

aoo = dimC Ext1CQ(Vi, Vj)

where Vi is a general representation of Q of dimension vector αi.

THEOREM 5.4
With notations as above, we have:

1. The canonical decomposition τcan is the unique type τ =
(e1, α1; . . . ; ez, αz) such that all αi are Schur roots, Q0

τ has no (non-
loop) oriented cycles and Q1

τ has no arrows and loops only in vertices
where ei = 1.

2. The generic semisimple representation type τ ssgen is the unique type τ =
(e1, α1; . . . ; ez, αz) such that all αi are simple roots, Q0

τ has only loops
and Q1

τ has no (nonloop) oriented cycles.

5.2 Cayley-smooth locus

Let A be a Cayley-Hamilton algebra of degree n equipped with a trace map
A

tr- A and consider the quotient map

trepn A
π-- trissn A

Let ξ be a geometric point of he quotient scheme trissn A with corresponding
n-dimensional trace preserving semisimple representation Vξ with decomposi-
tion

Vξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct simple representations of A of dimension di such
that n =

∑k
i=1 diei.

DEFINITION 5.1 The Cayley-smooth locus of A is the subset of
trissn A

Smtr A = {ξ ∈ trissn A | trepn A is smooth along π−1(ξ) }

As the singular locus of trepn A is a GLn-stable closed subscheme of trepn A
this is equivalent to

Smtr A = {ξ ∈ trissn A | trepn A is smooth in Vξ }

We will give some numerical conditions on ξ to be in the smooth locus
Smtr A. To start, trepn A is smooth in Vξ if and only if the dimension of the
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tangent space in Vξ is equal to the local dimension of trepn A in Vξ. From
example 3.11 we know that the tangent space is the set of trace preserving
derivations A

D- Mn(C) satisfying

D(aa′) = D(a)ρ(a′) + ρ(a)D(a′)

where A
ρ- Mn(C) is the C-algebra morphism determined by the action

of A on Vξ. The C-vectorspace of such derivations is denoted by Dertρ A.
Therefore

ξ ∈ Smtr A⇐⇒ dimC Dertρ A = dimVξ
trepn A

Next, if ξ ∈ Smtr A, then we know from the slice theorem that the local
GLn-structure of trepn A near Vξ is determined by a local marked quiver
setting (Q•ξ , αξ) as defined in theorem 4.3. We have local étale isomorphisms
between the varieties

GLn×GL(αξ)repαξ
Q•ξ

et←→ trepn A and repαξ
Q•ξ/GL(αξ)

et←→ trissn A

which gives us the following numerical restrictions on ξ ∈ Smtr A :

PROPOSITION 5.5
ξ ∈ Smtr A if and only if the following two equalities hold{

dimVξ
trepn A = n2 − (e21 + . . .+ e2k) + dimC ExttrA (Vξ, Vξ)

dimξ trissn A = dim0 repαξ
Q•ξ/GL(αξ) = dim0 issαξ

Q•ξ

Moreover, if ξ ∈ Smtr A, then trepn A is a normal variety (that is, the
coordinate ring is integrally closed) in a neighborhood of ξ.

PROOF The last statement follows from the fact that C[repαξ
Q•ξ ]

GL(αξ)

is integrally closed and this property is preserved under the étale map.

In general, the difference between these numbers gives a measure for the
noncommutative singularity of A in ξ.

Example 5.1 Quantum plane of order 2
Consider the affine C-algebra A = C〈x,y〉

(xy+yx) then u = x2 and v = y2 are central
elements of A and A is a free module of rank 4 over C[u, v]. In fact, A is a
C[u, v]-order in the quaternion division algebra

∆ =
(
u v

C(u, v)

)
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and the reduced trace map on ∆ makes A into a Cayley-Hamilton algebra of
degree 2. More precisely, tr is the linear map on A such that{

tr(xiyj) = 0 if either i or j are odd, and
tr(xiyj) = 2xiyj if i and j are even.

In particular, a trace preserving 2-dimensional representation is determined
by a couple of 2× 2 matrices

ρ = (
[
x1 x2

x3 −x1

]
,

[
x4 x5

x6 −x4

]
) with tr(

[
x1 x2

x3 −x1

]
.

[
x4 x5

x6 −x4

]
) = 0

That is,trep2 A is the hypersurface in C6 determined by the equation

trep2 A = V(2x1x4 + x2x6 + x3x5) ⊂ - C6

and is therefore irreducible of dimension 5 with an isolated singularity at
p = (0, . . . , 0). The image of the trace map is equal to the center of A, which
is C[u, v], and the quotient map

trep2 A
π-- triss2 A = C2 π(x1, . . . , x6) = (x2

1 + x2x3, x
2
4 + x5x6)

There are three different representation types to consider. Let ξ = (a, b) ∈
C2 = triss2 A with ab 6= 0, then π−1(ξ) is a closed GL2-orbit and a corre-
sponding simple A-module is given by the matrixcouple([

i
√
a 0

0 −i
√
a

]
,

[
0
√
b

−
√
b 0

])
That is, ξ is of type (1, 2) and the stabilizer subgroup are the scalar matrixes
C∗rr2

⊂ - GL2. So, the action on both the tangent space to trep2 A and the
tangent space to the orbit are trivial. As they have, respectively, dimension
5 and 3, the normal space corresponds to the quiver setting

Nξ = ��������1
## {{

which is compatible with the numerical restrictions. Next, consider a point
ξ = (0, b) (or similarly, (a, 0)), then ξ is of type (1, 1; 1, 1) and the correspond-
ing semisimple representation is given by the matrices([

0 0
0 0

]
,

[
i
√
b 0

0 −i
√
b

])
The stabilizer subgroup is in this case the maximal torus of diagonal matrices
C∗ × C∗ ⊂ - GL2. The tangent space in this point to trep2 A are the
6-tuples (a1, . . . , a6) such that

tr (
[
0 0
0 0

]
+ ε

[
a1 a2

a3 −a1

]
).(

[
i
√
b 0

0 −i
√
b

]
+ ε

[
b4 b5
b6 −b4

]
) = 0 where ε2 = 0
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This leads to the condition a1 = 0, so the tangent space are the matrix couples([
0 a2

a3 0

]
,

[
a4 a5

a6 −a4

])
on which the stabilizer

[
λ 0
0 µ

]
acts via conjugation. That is, the tangent space corresponds to the quiver
setting

��������1 ��������1
%% ��

[[ ee cc

Moreover, the tangent space to the orbit is the image of the linear map

(rr2 + ε

[
m1 m2

m3 m4

]
).

([
0 0
0 0

]
,

[√
b 0

0 −
√
b

])
, (rr2 −

[
m1 m2

m3 m4

]
)

which is equal to([
0 0
0 0

]
,

[√
b 0

0 −
√
b

]
+ ε

[
0 −2m2

√
b

2m3

√
b 0

])
on which the stabilizer acts again via conjugation giving the quiver setting

��������1 ��������1
%%

ee

Therefore, the normal space to the orbit corresponds to the quiver setting

��������1 ��������1
%%

ee cc

which is again compatible with the numerical restrictions. Finally, consider
ξ = (0, 0) which is of type (2, 1) and whose semisimple representation corre-
sponds to the zero matrix-couple. The action fixes this point, so the stabilizer
is GL2 and the tangent space to the orbit is the trivial space. Hence, the
tangent space to trep2 A coincides with the normal space to the orbit and
both spaces are acted on by GL2 via simultaneous conjugation leading to the
quiver setting

Nξ = ��������2

•

��

•

[[

This time, the data is not compatible with the numerical restriction as

5 = dim trep2 A 6= n2 − e2 + dim repα Q
• = 4− 4 + 6

consistent with the fact that the zero matrix-couple is a (in fact, the only)
singularity on trep2 A.
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We will put additional conditions on the Cayley-Hamilton algebra A. Let
X be a normal affine variety with coordinate ring C[X] and function field
C(X). Let ∆ be a central simple C(X)-algebra of dimension n2 which is a
Cayley-Hamilton algebra of degree n using the reduced trace map tr. Let A
be a C[X]-order in ∆, that is, the center of A is C[X] and A⊗C[X] C(X) ' ∆.
Because C[X] is integrally closed, the restriction of the reduced trace tr to
A has its image in C[X], that is, A is a Cayley-Hamilton algebra of degree n
and

tr(A) = C[X]

Consider the quotient morphism for the representation variety

trepn A
π-- trissn A

then the above argument shows that X ' trissn A and in particular the
quotient scheme is reduced.

PROPOSITION 5.6
Let A be a Cayley-Hamilton order of degree n over C[X]. Then, its smooth
locus Smtr A is a nonempty Zariski open subset of X. In particular, the set
Xaz of Azumaya points, that is, of points x ∈ X = trissn A of representation
type (1, n) is a nonempty Zariski open subset of X and its intersection with
the Zariski open subset Xreg of smooth points of X satisfies

Xaz ∩Xreg
⊂ - Smtr A

PROOF Because AC(X) = ∆, there is an f ∈ C[X] such that Af =
A⊗C[X]C[X]f is a free C[X]f -module of rank n2, say, with basis {a1, . . . , an2}.
Consider the n2 × n2 matrix with entries in C[X]f

R =

 tr(a1a1) . . . tr(a1an2)
...

...
tr(an2a1) . . . tr(an2an2)


The determinant d = det R is nonzero in C[X]f . For, let K be the algebraic
closure of C(X) then Af⊗C[X]f K 'Mn(K) and for any K-basis of Mn(K) the
corresponding matrix is invertible (for example, verify this on the matrixes
eij). As {a1, . . . , an2} is such a basis, d 6= 0. Next, consider the Zariski open
subset U = X(f)∩X(d) ⊂ - X. For any x ∈ X with maximal ideal mx/C[X]
we claim that

A

AmxA
'Mn(C)

Indeed, the images of the ai give a C-basis in the quotient such that the n2×n2-
matrix of their product-traces is invertible. This property is equivalent to the
quotient being Mn(C). The corresponding semisimple representation of A is
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simple, proving that Xaz is a nonempty Zariski open subset of X. But then,
over U the restriction of the quotient map

trepn A | π
−1(U) -- U

is a principal PGLn-fibration. In fact, this restricted quotient map determines
an element in H1

et(U,PGLn) determining the class of the central simple C(X)-
algebra ∆ in H1

et(C(X), PGLn). Restrict this quotient map further to U ∩
Xreg, then the PGLn-fibration

trepn A | π
−1(U ∩Xreg) -- U ∩Xreg

has a smooth base and therefore also the total space is smooth. But then,
U ∩Xreg is a nonempty Zariski open subset of Smtr A.

Observe that the normality assumption on X is no restriction as the quo-
tient scheme is locally normal in a point of Smtr A. Our next result limits
the local dimension vectors αξ.

PROPOSITION 5.7
Let A be a Cayley-Hamilton order and ξ ∈ Smtr A such that the normal space
to the orbit of the corresponding semisimple n-dimensional representation is

Nξ = repαξ
Q•ξ

Then, αξ is the dimension vector of a simple representation of Q•ξ .

PROOF Let Vξ be the semisimple representation of A determined by
ξ. Let Sξ be the slice variety in Vξ then by the slice theorem we have the
following diagram of étale GLn-equivariant maps

GLn ×GL(αξ) Sξ

GLn ×GL(αξ)
repαξ

Q•
ξ

�

et

trepn A

et

-

linking a neighborhood of Vξ with one of (rrn, 0). Because A is an order,
every Zariski neighborhood of Vξ in trepn A contains simple n-dimensional
representations, that is, closed GLn-orbits with stabilizer subgroup isomor-
phic to C∗. Transporting this property via the GLn-equivariant étale maps,
every Zariski neighborhood of (rrn, 0) contains closed GLn-orbits with stabi-
lizer C∗. By the correspondence of orbits is associated fiber bundles, every
Zariski neighborhood of the trivial representation 0 ∈ repαξ

Q•ξ contains
closed GL(αξ)-orbits with stabilizer subgroup C∗. We have seen that closed
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GL(αξ)-orbits correspond to semisimple representations of Q•ξ . However, if
the stabilizer subgroup of a semisimple representation is C∗ this representation
must be simple.

THEOREM 5.5
Let A be a Cayley-Hamilton order of degree n with center C[X], X a normal
variety of dimension d. For ξ ∈ X = trissn A with corresponding semisimple
representation

Vξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

and normal space to the orbit O(Vξ) isomorphic to repαξ
Q•ξ as GL(αξ)-

modules where αξ = (e1, . . . , ek). Then, ξ ∈ Smtr A if and only if the follow-
ing two conditions are met{

αξ is the dimension vector of a simple representation of Q•, and
d = 1− χQ(αξ, αξ)−

∑k
i=1mii

where Q is the underlying quiver of Q•ξ and mii is the number of marked loops
in Q•ξ in vertex vi.

PROOF By the slice theorem we have étale maps

repαξ
Q•ξ/GL(αξ) �et Sξ/GL(αξ)

et- trissn A = X

connecting a neighborhood of ξ ∈ X with one of the trivial semisimple repre-
sentation 0. By definition of the Euler-form of Q we have that

χQ(αξ, αξ) = −
∑
i 6=j

eiejχij +
∑
i

e2i (1− aii −mii)

On the other hand we have

dim repα Q
•
αξ

=
∑
i 6=j

eiejχij +
∑
i

e2i (aii +mii)−
∑
i

mii

dim GL(αξ) =
∑
i

e2i

As any Zariski open neighborhood of ξ contains an open set where the quo-
tient map is a PGL(αξ) = GL(αξ)

C∗ -fibration we see that the quotient variety
repαξ

Q•ξ has dimension equal to

dim repαξ
Q•ξ − dim GL(αξ) + 1

and plugging in the above information we see that this is equal to 1 −
χQ(αξ, αξ)−

∑
imii.
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1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

//
??���

OO

__???
oo

))

qq

YY YY

mm

����

FIGURE 5.1: Ext-quiver of quantum plane.

Example 5.2 Quantum plane
We will generalize the discussion of example 5.1 to the algebra

A =
C〈x, y〉

(yx− qxy)

where q is a primitive n-th root of unity. Let u = xn and v = yn then it is
easy to see that A is a free module of rank n2 over its center C[u, v] and is a
Cayley-Hamilton algebra of degree n with the trace determined on the basis

tr(xiyj) =

{
0 when either i or j is not a multiple of n
nxiyj when i and j are multiples of n

Let ξ ∈ issn A = C2 be a point (an, b) with a.b 6= 0, then ξ is of representation
type (1, n) as the corresponding (semi)simple representation Vξ is determined
by (if m is odd, for even n we replace a by ia and b by −b)

ρ(x) =


a
qa

. . .
qn−1a

 and ρ(y) =


0 1 0 . . . 0
0 0 1 0
...

...
. . .

0 0 0 . . . 1
b 0 0 . . . 0


One computes that Ext1A(Vξ, Vξ) = C2 where the algebra map

A
φ- Mn(C[ε]) corresponding to (α, β) is given by{

φ(x) = ρ(x) + ε αrr
n

φ(y) = ρ(y) + ε βrr
n

and all these algebra maps are trace preserving. That is, Ext1A(Vξ, Vξ) =
ExttrA (Vξ, Vξ) and as the stabilizer subgroup is C∗ the marked quiver-setting
(Q•ξ , αξ) is

��������1
"" pp
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and d = 1− χQ(α, α)−
∑
imii as 2 = 1− (−1) + 0, compatible with the fact

that over these points the quotient map is a principal PGLn-fibration.
Next, let ξ = (an, 0) with a 6= 0 (or, by a similar argument (0, bn) with

b 6= 0). Then, the representation type of ξ is (1, 1; . . . ; 1, 1) because

Vξ = S1 ⊕ . . .⊕ Sn

where the simple one-dimensional representation Si is given by{
ρ(x) = qia

ρ(y) = 0

One verifies that

Ext1A(Si, Si) = C and Ext1A(Si, Sj) = δi+1,j C

and as the stabilizer subgroup is C∗ × . . . × C∗, the Ext-quiver setting is
depicted in figure 5.1. The algebra map A

φ- Mn(C[ε]) corresponding to
the extension (α1, β1, . . . , αn, βn) ∈ Ext1A(Vξ, Vξ) is given by

φ(x) =


a+ ε α1

qa+ ε α2

. . .

qn−1a+ ε αn



φ(y) = ε



0 β1 0 . . . 0
0 0 β2 0
...

...
. . .

...
0 0 0 βn−1

βn 0 0 . . . 0


The conditions tr(xj) = 0 for 1 ≤ i < n impose n − 1 linear conditions
among the αj , whence the space of trace preserving extensions ExttrA (Vξ, Vξ)
corresponds to the quiver setting

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

&&

qq
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The Euler-form of this quiver Q• is given by the n× n matrix
0 −1 0 . . . 0

1 −1 0
. . . . . .

1 −1
−1 1


giving the numerical restriction as αξ = (1, . . . , 1)

1− χQ(α, α)−
∑
i

mii = 1− (−1)− 0 = 2 = dim trissn A

so ξ ∈ Smtr A. Finally, the only remaining point is ξ = (0, 0). This has
representation type (n, 1) as the corresponding semisimple representation Vξ
is the trivial one. The stabilizer subgroup is GLn and the (trace preserving)
extensions are given by

Ext1A(Vξ, Vξ) = Mn ⊕Mn and ExttrA (Vξ, Vξ) = M0
n ⊕M0

n

determined by the algebra maps A
φ- Mn(C[ε]) given by{

φ(x) = ε m1

φ(y) = ε m2

That is, the relevant quiver setting (Q•ξ , αξ) is in this point

��������n

• "" •
pp

This time, ξ /∈ Smtr A as the numerical condition fails

1− χQ(α, α)−
∑
i

mii = 1− (−n2)− 0 6= 2 = dim trissn A

unless n = 1. That is, Smtr A = C2 − {(0, 0)}.

5.3 Reduction steps

If we want to study the local structure of Cayley-Hamilton orders A of
degree n over a central normal variety X of dimension d, we have to compile
a list of admissible marked quiver settings, that is, couples (Q•, α) satisfying
the two properties{

α is the dimension vector of a simple representation of Q•, and
d = 1− χQ(α, α)−

∑
imi
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In this section, we will give two methods to start this classification project.
The first idea is to shrink a marked quiver-setting to its simplest form

and classify these simplest forms for given d. By shrinking we mean the
following process. Assume α = (e1, . . . , ek) is the dimension vector of a simple
representation of Q• and let vi and vj be two vertices connected with an arrow
such that ei = ej = e. That is, locally we have the following situation

e8?9>:=;< e8?9>:=;<
χij

''

χji

gg

aii

��

•
mii

WW

ajj

��

•
mjj

WW

χpi
WWWW

++WWWW

χiq
gggg

ssgggg

χrj
gggg

ssgggg
χjs

WWWW
++WWWW

We will use one of the arrows connecting vi with vj to identify the two vertices.
That is, we form the shrinked marked quiver-setting (Q•s, αs) where Q•s is the
marked quiver on k − 1 vertices {v1, . . . , v̂i, . . . , vk} and αs is the dimension
vector with ei removed. Q•s has the following form in a neighborhood of the
contracted vertex

e8?9>:=;<
aii + ajj + χij + χji − 1

��

•
mii + mjj

WW

χpi + χpj
\\\\\\\\\\

--\\\\\\\\\\

χiq + χjq
bbbbbbbbbb

qqbbbbbbbbbb

χrj + χri
bbbbbbbbbb

qqbbbbbbbbbb

χjs + χis
\\\\\\\\\\\

--\\\\\\\\\\

In Q•s we have for all k, l 6= i, j that χskl = χkl, askk = akk, ms
kk = mkk and

the number of arrows and (marked) loops connected to vj are determined as
follows

• χsjk = χik + χjk

• χskj = χki + χkj

• asjj = aii + ajj + χij + χji − 1

• ms
jj = mii +mjj

LEMMA 5.1
α is the dimension vector of a simple representation of Q• if and only if αs

is the dimension vector of a simple representation of Q•s. Moreover

dim repα Q
•/GL(α) = dim repαs

Q•s/GL(αs)

PROOF Fix an arrow ��������i��������j
aoo . As ei = ej = e there is a Zariski

open subset U ⊂ - repα Q
• of points V such that Va is invertible. By base
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change in either vi or vj we can find a point W in its orbit such that Wa = rr
e.

If we think of Wa as identifying Cei with Cej we can view the remaining
maps of W as a representation in repαs

Q•s and denote it by W s. The map
U - repαs

Q•s is well-defined and maps GL(α)-orbits to GL(αs)-orbits.
Conversely, given a representation W ′ ∈ repαs

Q•s we can uniquely determine
a representation W ∈ U mapping to W ′. Both claims follow immediately
from this observation.

A marked quiver-setting can be uniquely shrinked to its simplified form ,
which has the characteristic property that no arrow-connected vertices can
have the same dimension. The shrinking process has a converse operation,
which we will call splitting of a vertex . However, this splitting operation is
usually not uniquely determined.

Before compiling a lists of marked-quiver settings in simplified form for a
specific base-dimension d, we bound the components of α.

PROPOSITION 5.8
Let α = (e1, . . . , ek) be the dimension vector of a simple representation of Q
and let 1 − χQ(α, α) = d = dim repα Q/GL(α). Then, if e = max ei, we
have that d ≥ e+ 1.

PROOF By lemma 5.1 we may assume that (Q,α) is brought in its simpli-
fied form, that is, no two arrow-connected vertices have the same dimension.
Let χii denote the number of loops in a vertex vi, then

−χQ(α, α) =

{∑
i ei (

∑
j χijej − ei)∑

i ei (
∑
j χjiej − ei)

and observe that the bracketed terms are positive by the requirement that α
is the dimension vector of a simple representation. We call them the incoming
ini, respectively outgoing outi, contribution of the vertex vi to d. Let vm be
a vertex with maximal vertex-dimension e.

inm = e(
∑
j 6=m

χjmej + (χii − 1)e) and outm = e(
∑
j 6=m

χijej + (χii − 1)e)

If there are loops in vm, then inm ≥ 2 or outm ≥ 2 unless the local structure
of Q is

��������1 ��������e ��������1// //��

in which case inm = e = outm. Let vi be the unique incoming vertex of vm,
then we have outi ≥ e− 1. But then

d = 1− χQ(α, α) = 1 +
∑
j

outj ≥ 2e
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If vm has no loops, consider the incoming vertices {vi1 , . . . , vis}, then

inm = e(
s∑
j=1

χijmeij − e)

which is ≥ e unless
∑
χijmeij = e, but in that case we have

s∑
j=1

outij ≥ e2 −
s∑
j=1

e2ij ≥ e

the last inequality because all eij < e. In either case we have that d =
1− χQ(α, α) = 1 +

∑
i outi = 1 +

∑
i ini ≥ e+ 1.

Example 5.3
In a list of simplified marked quivers we are only interested in repα Q• as
GL(α)-module and we call two setting equivalent if they determine the same
GL(α)-module. For example, the marked quiver-settings

��������1 ��������2
%%

ee

•

����
and ��������1 ��������2

%%
ee

��

determine the same C∗ ×GL2-module, hence are equivalent.

THEOREM 5.6
Let A be a Cayley-Hamilton order of degree n over a central normal variety
X of degree d. Then, the local quiver of A in a point ξ ∈ X = trissn A
belonging to the smooth locus Smtr A can be shrunk to one of a finite list
of equivalence classes of simplified marked quiver-settings. For d ≤ 4, the
complete list is given in figure 5.2 where the boxed value is the dimension d of
X.

An immediate consequence is a noncommutative analog of the fact that
commutative smooth varieties have only one type of analytic (or étale) local
behavior.

THEOREM 5.7
There are only finitely many types of étale local behavior of smooth Cayley-
Hamilton orders of degree n over a central variety of dimension d.

PROOF The foregoing reduction shows that for fixed d there are only
a finite number of marked quiver-settings shrinked to their simplified form.
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��������1
��

1

��������1
## {{

2

��������1
"" ||
[[

3

��������2•
##

•
{{

3

��������1 ��������2
  

``

•

��

3

��������1 ��������2 ��������1
  

`` ``
  

3

��������1
�� qqQQ11

4

��������2•
## {{

4

��������1 ��������2
  

``
��

4

��������1 ��������2
%%

ee
��

[[
4

��������1 ��������2 ��������1
  

`` ``
  ��

4

FIGURE 5.2: The simplified local quivers for d ≤ 4

As
∑
ei ≤ n, we can apply the splitting operations on vertices only a finite

number of times.

The second set of reduction steps is due to Raf Bocklandt who found them
to prove his theorem, see section 5.7, which is crucial to study the smooth
locus and the singularities of trissn A. In essence the reduction steps relate
quiver settings that have invariants rings which are isomorphic (up to adding
variables).

THEOREM 5.8
We have the following reductions:

1. b1: Let (Q,α) be a quiver setting and v a vertex without loops such that

χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0.

Define the quiver setting (Q′, α′) by composing arrows through v
'&%$ !"#u1 · · · /.-,()*+uk

/.-,()*+αv
b1

ccGGGG
bk

;;wwww

'&%$ !"#i1

a1 ;;wwww · · · '&%$ !"#il

al
ccGGGG

 −→


'&%$ !"#u1 · · · /.-,()*+uk

'&%$ !"#i1

c11

OO

c1k

::uuuuuuuuuu · · · '&%$ !"#il

clk

OO

cl1

ddIIIIIIIIII

 .
(some of the vertices may be the same). Then

C[issα Q] ' C[issα′ Q′]
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2. b2: Let (Q,α) be a quiver setting and v a vertex with k loops such that
αv = 1. Let (Q′, α) be the quiver setting where Q′ is the quiver obtained
by removing the loops in v, then

C[issα Q] ' C[issα Q′]⊗ C[X1, · · · , Xk]

3. b3: Let (Q,α) be a quiver setting and v a vertex with one loop such that
αv = k ≥ 2 and

χQ(α, εv) = −1 or χQ(εv, α) = −1

Define the quiver setting (Q′, α) by changing the quiver as below

[ ��������k

�� ))SSSSSSSSS
��

��������1

>>|||| '&%$ !"#u1 · · · /.-,()*+uk

]
−→

[ ��������k

�� ))SSSSSSSSS

��������1

k :B||||
|||| '&%$ !"#u1 · · · /.-,()*+uk

]
,

[ ��������k

~~||
||
��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSSS

]
−→

[ ��������k
k

z� ||
|||||
|

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSSS

]
.

Then,
C[issα Q] ' C[issαQ′]⊗ C[X1, . . . , Xk]

PROOF (1): repα Q can be decomposed as

repα Q =
⊕

a, s(a)=v

Mαt(a)×αs(a)(C)

︸ ︷︷ ︸
arrows starting in v

⊕
⊕

a, t(a)=v

Mαt(a)×αs(a)(C)

︸ ︷︷ ︸
arrows terminating in v

⊕rest

= MP
s(a)=v αt(a)×αv

(C)⊕Mαv×
P

t(a)=v αs(a)
(C)⊕ rest

= Mαv−χ(α,εv)×αv
(C)⊕Mαv×αv−χ(εv,α)(C)⊕ rest

GLαv (C) only acts on the first two terms and not on rest. Taking the quotient
corresponding to GLαv (C) involves only the first two terms.

We recall the first fundamental theorem for GLn-invariants , see, for exam-
ple, [63, II.4.1]. The quotient variety

(Ml×n(C)⊕Mn×m)/GLn

where GLn acts in the natural way, is for all l, n,m ∈ N isomorphic to the
space of all l ×m matrices of rank ≤ n. The projection map is induced by
multiplication

Ml×n(C)⊕Mn×m(C)
π- Ml×m(C) (A,B) 7→ A.B
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In particular, if n ≥ l and n ≥ m then π is surjective and the quotient variety
is isomorphic to Ml×m(C).

By this fundamental theorem and the fact that either χQ(α, εv) ≥ 0 or
χQ(εv, α) ≥ 0, the above quotient variety is isomorphic to

Mαv−χ(α,εv)×αv−χ(εv,α)(C)⊕ rest

This space can be decomposed as⊕
a, t(a)=vb, s(b)=v

Mαt(b)×αs(a)(C)⊕ rest = repα′ Q
′

Taking quotients for GL(α′) then proves the claim.
(2): Trivial as GL(α) acts trivially on the loop-representations in v.
(3): We only prove this for the first case. Call the loop in the first quiver

` and the incoming arrow a. Call the incoming arrows in the second quiver
ci, i = 0, . . . , k − 1.

There is a map

π : repα Q→ repα′ Q
′×Ck : V 7→ (V ′, T r(V`), . . . , T r(V`k)) with V ′ci

:= V i` Va

Suppose (V ′, x1, . . . , xk) ∈ repα′Q
′ × Ck ∈ such that (x1, . . . , xk) correspond

to the traces of powers of an invertible diagonal matrix D with k different
eigenvalues (λi, i = 1, . . . , k) and the matrix A made of the columns (Vci

, i =
0, . . . , k − 1) is invertible. The image of the representation

V ∈ repα Q : Va = V ′c0 , V` = A

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

−1

D

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

A−1

under π is (V ′, x1, . . . , xk) because

V i` Va = A

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

−1

Di

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

A−1V ′c0

= A

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

−1  λi
1

...
λi

k


= Vci

and the traces of V` are the same as those of D. The conditions on
(V ′, x1, . . . , xk), imply that the image of π, U , is dense, and hence π is a
dominant map.

There is a bijection between the generators of C[issαQ] and C[issα′Q′]⊗
C[X1, . . . , Xk] by identifying

f`i 7→ Xi, i = 1, . . . , k , f···a`i··· 7→ f···ci···, i = 0, . . . , k − 1
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Notice that higher orders of ` don’t occur by the Caley Hamilton identity on
V`. If n is the number of generators of C[issαQ], we have two maps

φ : C[Y1, · · ·Yn]→ C[issαQ] ⊂ C[repαQ]

φ′ : C[Y1, · · ·Yn]→ C[issα′Q′]⊗ C[X1, . . . , Xk] ⊂ C[repα′Q
′ × Ck]

Note that φ′(f) ◦ π ≡ φ(f) and φ(f) ◦ π−1|U ≡ φ′(f)|U . So if φ(f) = 0
then also φ′(f)|U = 0. Because U is zariski-open and dense in repα′Q

′ × C2,
φ′(f) ≡ 0. A similar argument holds for the inverse implication whence
Ker(φ) = Ker(φ′).

We have to work with marked quiver settings and therefore we need slightly
more general reduction steps. The proofs of the claims below follow immedi-
ately from the above theorem by separating traces.

With εv we denote the base vector concentrated in vertex v and αv will
denote the vertex dimension component of α in vertex v. There are three
types of reduction moves, each with their own condition and effect on the ring
of invariants.

Vertex removal (b1): Let (Q•, α) be a marked quiver setting and v a
vertex satisfying the condition CvV , that is, v is without (marked) loops and
satisfies

χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0

Define the new quiver setting (Q•
′
, α′) obtained by the operation RvV that

removes the vertex v and composes all arrows through v, the dimensions of
the other vertices are unchanged

'&%$ !"#u1 · · · /.-,()*+uk

/.-,()*+αv

b1

bbEEEEEEE bk

<<yyyyyyy

'&%$ !"#i1

a1
<<yyyyyyy · · · '&%$ !"#il

al

bbEEEEEEE

 Rv
V-


'&%$ !"#u1 · · · /.-,()*+uk

'&%$ !"#i1

c11

OO

c1k

;;xxxxxxxxxxxxxxx · · · '&%$ !"#il

clk

OO

cl1

ccFFFFFFFFFFFFFFF

 .
where cij = aibj (observe that some of the incoming and outgoing vertices
may be the same so that one obtains loops in the corresponding vertex). In
this case we have

C[repα Q
•]GL(α) ' C[repα′ Q

•′ ]GL(α′)

loop removal (b2): Let (Q•, α) be a marked quiver setting and v a vertex
satisfying the condition Cvl that the vertex-dimension αv = 1 and there are
k ≥ 1 loops in v. Let (Q•

′
, α) be the quiver setting obtained by the loop

removal operation Rvl
��������1

k

��

 Rv
l-


��������1

k−1

��


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removing one loop in v and keeping the dimension vector the same, then

C[repα Q
•]GL(α) ' C[repα Q

•′ ]GL(α)[x]

Loop removal (b3): Let (Q•, α) be a marked quiver setting and v a
vertex satisfying condition CvL, that is, the vertex dimension αv ≥ 2, v has
precisely one (marked) loop in v and

χQ(εv, α) = −1 or χQ(α, εv) = −1

(that is, there is exactly one other incoming or outgoing arrow from/to a
vertex with dimension 1). Let (Q•

′
, α) be the marked quiver setting obtained

by changing the quiver as indicated below (depending on whether the incoming
or outgoing condition is satisfied and whether there is a loop or a marked loop
in v)

 ��������k

�� ))RRRRRRRRRRRRR
��

��������1

>>}}}}}}} '&%$ !"#u1 · · · /.-,()*+um

 Rv
L-

 ��������k

�� ))RRRRRRRRRRRRR

��������1

k
:B}}}}}}

}}}}}} '&%$ !"#u1 · · · /.-,()*+um


 ��������k

�� ))RRRRRRRRRRRRR

•

��

��������1

>>}}}}}}} '&%$ !"#u1 · · · /.-,()*+um

 Rv
L-

 ��������k

�� ))RRRRRRRRRRRRR

��������1

k
:B}}}}}}

}}}}}} '&%$ !"#u1 · · · /.-,()*+um



 ��������k

~~}}
}}

}}
}

•

��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+um

iiRRRRRRRRRRRRR

 Rv
L-

 ��������k

k

z� }}
}}
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��������1 '&%$ !"#u1

OO

· · · /.-,()*+um

iiRRRRRRRRRRRRR

 .
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}
��
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OO

· · · /.-,()*+um
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 Rv
L-

 ��������k

k
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��������1 '&%$ !"#u1

OO

· · · /.-,()*+um
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 .
and the dimension vector is left unchanged, then we have

C[repα Q
•]GL(α) =

{
C[repα Q

•′ ]GL(α)[x1, . . . , xk] (loop)
C[repα Q

•′ ]GL(α)[x1, . . . , xk−1] (marked loop)

DEFINITION 5.2 A marked quiver Q• is said to be strongly connected
if for every pair of vertices {v, w} there is an oriented path from v to w and
an oriented path from w to v.



Semisimple Representations 267

A marked quiver setting (Q•, α) is said to be reduced if and only if there is
no vertex v such that one of the conditions CvV , Cvl or CvL is satisfied.

LEMMA 5.2
Every marked quiver setting (Q•1, α1) can be reduced by a sequence of opera-
tions RvV , R

v
l and RvL to a reduced quiver setting (Q•2, α2) such that

C[repα1
Q•1]

GL(α1) ' C[repα2
Q•2]

GL(α2)[x1, . . . , xz]

Moreover, the number z of extra variables is determined by the reduction se-
quence

(Q•2, α2) = R
viu

Xu
◦ . . . ◦Rvi1

X1
(Q•1, α1)

where for every 1 ≤ j ≤ u, Xj ∈ {V, l, L}. More precisely

z =
∑
Xj=l

1 +
(unmarked)∑

Xj=L

αvij
+

(marked)∑
Xj=L

(αvij
− 1)

PROOF As any reduction step removes a (marked) loop or a vertex,
any sequence of reduction steps starting with (Q•1, α1) must eventually end
in a reduced marked quiver setting. The statement then follows from the
discussion above.

As the reduction steps have no uniquely determined inverse, there is no a
priori reason why the reduced quiver setting of the previous lemma should be
unique. Nevertheless this is true.

We will say that a vertex v is reducible if one of the conditions CvV (vertex
removal), Cvl (loop removal in vertex dimension one) or CvL (one (marked)
loop removal) is satisfied. If we let the specific condition unspecified we will
say that v satisfies CvX and denote RvX for the corresponding marked quiver
setting reduction. The resulting marked quiver setting will be denoted by

RvX(Q•, α)

If w 6= v is another vertex in Q• we will denote the corresponding vertex in
RvX(Q•) also with w. The proof of the uniqueness result relies on three claims

1. If w 6= v satisfies RwY in (Q•, α), then w virtually always satisfies RwY in
RvX(Q•, α).

2. If v satisfies RvX and w satisfies RwY , then RvX(RwY (Q•, α)) =
RwY (RvX(Q•, α)).

3. The previous two facts can be used to prove the result by induction on
the minimal length of the reduction chain.
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By the neighborhood of a vertex v in Q• we mean the (marked) subquiver
on the vertices connected to v. A neighborhood of a set of vertices is the
union of the vertex-neighborhoods. Incoming resp. outgoing neighborhoods
are defined in the natural manner.

LEMMA 5.3

Let v 6= w be vertices in (Q•, α).

1. If v satisfies CvV in (Q•, α) and w satisfies CwX , then v satisfies CwV in
RwX(Q•, α) unless the neighborhood of {v, w} looks like

'&%$ !"#i1

��:
::

::
: '&%$ !"#u1

...
��������v // ��������w

AA�������

��;
;;

;;
;;

...

/.-,()*+ik

AA������ '&%$ !"#ul

or

'&%$ !"#i1

��;
;;

;;
; '&%$ !"#u1

...
��������w // ��������v

AA�������

��;
;;

;;
;;

...

/.-,()*+ik

AA������ '&%$ !"#ul

and αv = αw. Observe that in this case RvV (Q•, α) = RwV (Q•, α)

2. If v satisfies Cvl and w satisfies CwX then then v satisfies Cvl in RwX(Q•, α)

3. If v satisfies CvV and w satisfies CwX then then v satisfies CvV in
RwX(Q•, α)

PROOF (1): If X = l then RwX does not change the neighborhood of v so
CvV holds in Rwl (Q•, α). If X = L then RwX does not change the neighborhood
of v unless αv = 1 and χQ(εw, εv) = −1 (resp. χQ(εv, εw) = −1) depending
on whether w satisfies the in- or outgoing condition CwL . We only consider the
first case, the latter is similar. Then v cannot satisfy the outgoing form of CvV
in (Q•, α) so the incoming condition is satisfied. Because the RwL -move does
not change the incoming neighborhood of v, CvV still holds for v in RwL(Q•, α).

If X = V and v and w have disjoint neighborhoods then CvV trivially
remains true in RwV (Q•, α). Hence assume that there is at least one arrow
from v to w (the case where there are only arrows from w to v is similar). If
αv < αw then the incoming condition CvV must hold (outgoing is impossible)
and hence w does not appear in the incoming neighborhood of v. But then
RwV preserves the incoming neighborhood of v and CvV remains true in the
reduction. If αv > αw then the outgoing condition CwV must hold and hence
w does not appear in the incoming neighborhood of v. So if the incoming
condition CvV holds in (Q•, α) it will still hold after the application of RwV . If
the outgoing condition CvV holds, the neighborhoods of v and w in (Q•, α) and
v in RwV (Q•, α) are depicted in figure 5.3. Let A be the set of arrows in Q• and
A′ the set of arrows in the reduction, then because

∑
a∈A,s(a)=w αt(a) ≤ αw
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FIGURE 5.3: Neighborhoods of v and w.

(the incoming condition for w) we have

∑
a∈A′,s(a)=v

α′t(a) =
∑
a∈A,

s(a)=v,t(a)6=w

αt(a) +
∑
a∈A

t(a)=w,s(a)=v

∑
a∈A,s(a)=w

αt(a)

≤
∑
a∈A,

s(a)=v,t(a)6=w

αt(a) +
∑
a∈A

t(a)=w,s(a)=w

αw

=
∑

a∈A,s(a)=v

αt(a) ≤ αv

and therefore the outgoing condition CvV also holds in RwV (Q•, α). Finally
if αv = αw, it may be that CvV does not hold in RwV (Q•, α). In this case
χ(εv, α) < 0 and χ(α, εw) < 0 (CvV is false in RwV (Q•, α)). Also χ(α, εv) ≥ 0
and χ(εw, α) ≥ 0 (otherwise CV does not hold for v or w in (Q•, α)). This
implies that we are in the situation described in the lemma and the conclusion
follows.
(2) : None of the RwX -moves removes a loop in v nor changes αv = 1.
(3) : Assume that the incoming condition CvL holds in (Q•, α) but not in
RwX(Q•, α), then w must be the unique vertex, which has an arrow to v and
X = V . Because αw = 1 < αv, the incoming condition CwV holds. This means
that there is also only one arrow arriving in w and this arrow is coming from
a vertex with dimension 1. Therefore after applying RwV , v will still have only
one incoming arrow starting in a vertex with dimension 1. A similar argument
holds for the outgoing condition CvL.
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LEMMA 5.4
Suppose that v 6= w are vertices in (Q•, α) and that CvX and CwY are satisfied.
If CvX holds in RwY (Q•, α) and CwY holds in RvX(Q•, α) then

RvXR
w
Y (Q•, α) = RwYR

v
X(Q•, α)

PROOF If X,Y ∈ {l, L} this is obvious, so let us assume that X = V . If
Y = V as well, we can calculate the Euler form χRw

V R
v
V Q

(εx, εy). Because

χRv
V Q

(εx, εy) = χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)

it follows that

χRw
V
Rv

V
Q(εx, εy) = χRv

V
Q(εx, εy)− χRv

V
Q(εx, εw)χRv

V
Q(εv, εy)

= χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)

− (χQ(εx, εw)− χQ(εx, εv)χQ(εv, εw)) (χQ(εw, εy)− χQ(εw, εv)χQ(εv, εy))

= χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)− χQ(εx, εw)χQ(εw, εy)

− χQ(εx, εv)χQ(εv, εw)χQ(εw, εv)χQ(εv, εy)

+ χQ(εx, εw)χQ(εw, εv)χQ(εv, εy) + χQ(εx, εv)χQ(εv, εw)χQ(εw, εy)

This is symmetric in v and w and therefore the ordering of RvV and RwV is
irrelevant.
If Y = l we have the following equalities

χRw
l R

v
V Q

(εx, εy) = χRv
V Q

(εx, εy)− δwxδwy
= χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)− δwxδwy
= χQ(εx, εy)− δwxδwy − (χQ(εx, εv)− δwxδwv)(χQ(εv, εy)− δwvδwy)
= χRw

l Q
(εx, εy)− χRw

l Q
(εx, εv)χRw

l Q
(εv, εy)

= χRv
V R

w
l Q
.

If Y = L, an RwL -move commutes with the RvV move because it does not
change the neighborhood of v except when v is the unique vertex of dimension
1 connected to w. In this case the neighborhood of v looks like

��������w
��

~~}}
}}

1

��

. . .

ccFFFFF

��������1

or ��������w
��

##F
FF

FF

1

>>}}}} . . .

��������1

OO

In this case the reduction at v is equivalent to a reduction at v′ (i.e. the lower
vertex) which certainly commutes with RwL .

We are now in a position to prove the claimed uniqueness result.
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THEOREM 5.9
If (Q•, α) is a strongly connected marked quiver setting and (Q•1, α1) and
(Q•2, α2) are two reduced marked quiver setting obtained by applying reduc-
tion moves to (Q•, α) then

(Q•1, α1) = (Q•2, α2)

PROOF We do induction on the length l1 of the reduction chain R1

reducing (Q•, α) to (Q•1, α1). If l1 = 0, then (Q•, α) has no reducible vertices
so the result holds trivially. Assume the result holds for all lengths < l1.
There are two cases to consider.

There exists a vertex v satisfying a loop removal condition CvX , X = l or L.
Then, there is a RvX -move in both reduction chains R1 and R2. This follows
from lemma 5.3 and the fact that none of the vertices in (Q•1, α1) and (Q•2, α2)
are reducible. By the commutation relations from lemma 5.4, we can bring
this reduction to the first position in both chains and use induction.

If there is a vertex v satisfying condition CvV , either both chains will contain
an RvV -move or the neighborhood of v looks like the figure in lemma 5.3
(1). Then, R1 can contain an RvV -move and R2 an RwV -move. But then we
change the RwV move into a RvV move, because they have the same effect. The
concluding argument is similar to that above.

5.4 Curves and surfaces

W. Schelter has proved in [91] that in dimension one, Cayley-smooth orders
are hereditary. We give an alternative proof of this result using the étale local
classification. The next result follows also by splitting the dimension 1 case
in figure 5.2. We give a direct proof illustrating the type-stratification result
of section 5.1.

THEOREM 5.10
Let A be a Cayley-Hamilton order of degree n over an affine curve X =
trissn A. If ξ ∈ Smtr A, then the étale local structure of A in ξ is determined
by a marked quiver-setting, which is an oriented cycle on k vertices with k ≤ n
and an unordered partition p = (d1, . . . , dk) having precisely k parts such that∑
i di = n determining the dimensions of the simple components of Vξ, see

figure 5.4.

PROOF Let (Q•, α) be the corresponding local marked quiver-setting.
Because Q• is strongly connected, there exist oriented cycles in Q•. Fix one
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FIGURE 5.4: Cayley-smooth curve types.

such cycle of length s ≤ k and renumber the vertices of Q• such that the first
s vertices make up the cycle. If α = (e1, . . . , ek), then there exist semisimple
representations in repα Q

• with composition

α1 = (1, . . . , 1︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
k−s

)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕es−1

s ⊕ ε⊕es+1
s+1 ⊕ . . .⊕ ε⊕ek

k

where εi stands for the simple one-dimensional representation concen-
trated in vertex vi. There is a one-dimensional family of simple rep-
resentations of dimension vector α1, hence the stratum of semisimple
representations in issα Q• of representation type τ = (1, α1; e1 −
1, ε1; . . . ; es − 1, εs; es+1, εs+1; ek, εk) is at least one-dimensional. However,
as dim issα Q• = 1 this can only happen if this semisimple representation is
actually simple. That is, when α = α1 and k = s.

If Vξ is the semisimple n-dimensional representation of A corresponding to
ξ, then

Vξ = S1 ⊕ . . .⊕ Sk with dim Si = di

and the stabilizer subgroup is GL(α) = C∗ × . . .× C∗ embedded in GLn via
the diagonal embedding

(λ1, . . . , λk) - diag(λ1, . . . , λ1︸ ︷︷ ︸
d1

, . . . , λk, . . . , λk︸ ︷︷ ︸
dk

)

Further, using basechange in repα Q
• we can bring every simple α-dimensional

representation of Qα in standard form

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

1 //
1 ??����

x

OO
1

__????1
oo

%%
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where x ∈ C∗ is the arrow from vk to v1. That is, C[repα Q•]GL(α) ' C[x]
proving that the quotient (or central) variety X must be smooth in ξ by the
slice result. Moreover, as Âξ ' T̂α we have, using the numbering conventions
of the vertices), the following block decomposition

cAξ '

266666666666666664

Md1(C[[x]]) Md1×d2(C[[x]]) . . . Md1×dk (C[[x]])

Md2×d1(xC[[x]]) Md2(C[[x]]) . . . Md2×dk (C[[x]])

...
...

. . .
...

Mdk×d1(xC[[x]]) Mdk×d2(xC[[x]]) . . . Mdk (C[[x]])

377777777777777775
From the local description of hereditary orders given in [90, Thm. 39.14]
we deduce that Aξ is a hereditary order. That is, we have the following
characterization of the smooth locus.

PROPOSITION 5.9
Let A be a Cayley-Hamilton order of degree n over a central affine curve X.
Then, Smtr A is the locus of points ξ ∈ X such that Aξ is an hereditary order
(in particular, ξ must be a smooth point of X).

THEOREM 5.11
Let A be a Cayley-Hamilton central OX-order of degree n where X is a pro-
jective curve. Equivalent are

1. A is a sheaf of Cayley-smooth orders

2. X is smooth and A is a sheaf of hereditary OX-orders

We now turn to orders over surfaces. The next result can equally be proved
using splitting and the classification of figure 5.2.

THEOREM 5.12
Let A be a Cayley-Hamilton order of degree n over an affine surface X =
trissn A. If ξ ∈ Smtr A, then the étale local structure of A in ξ is determined
by a marked local quiver-setting Aklm on k + l + m ≤ n vertices and an
unordered partition p = (d1, . . . , dk+l+m) of n with k + l + m nonzero parts
determined by the dimensions of the simple components of Vξ as in figure 5.5.

PROOF Let (Q•, α) be the marked quiver-setting on r vertices with
α = (e1, . . . , er) corresponding to ξ. As Q• is strongly connected and the
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FIGURE 5.5: Cayley-smooth surface types.

quotient variety is two-dimensional, Q• must contain more than one oriented
cycle, hence it contains a subquiver of type Aklm, possibly degenerated with
k or l equal to zero. Order the first k+ l+m vertices of Q• as indicated. One
verifies that Aklm has simple representations of dimension vector (1, . . . , 1).
Assume that Aklm is a proper subquiver and denote s = k + l + m + 1
then Q• has semisimple representations in repα Q• with dimension-vector
decomposition

α1 = (1, . . . , 1︸ ︷︷ ︸
k+l+m

, 0, . . . , 0)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕ek+l+m−1

k+l+m ⊕ ε⊕es
s ⊕ . . .⊕ ε⊕er

r

Applying the formula for the dimension of the quotient variety shows that
iss(1,...,1) Aklm has dimension 2 so there is a two-dimensional family of such
semisimple representation in the two-dimensional quotient variety issα Q•.
This is only possible if this semisimple representation is actually simple,
whence r = k + l +m, Q• = Aklm and α = (1, . . . , 1).

If Vξ is the semisimple n-dimensional representation of A corresponding to
ξ, then

Vξ = S1 ⊕ . . .⊕ Sr with dim Si = di

and the stabilizer subgroup GL(α) = C∗ × . . . × C∗ embedded diagonally in
GLn

(λ1, . . . , λr) 7→ diag(λ1, . . . , λ1︸ ︷︷ ︸
d1

, . . . , λr, . . . , λr︸ ︷︷ ︸
dr

)

By base change in repα Aklm we can bring every simple α-dimensional rep-
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resentation in the following standard form

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
1 //

1 ??���

1
OO

1
OO

x

__???1
oo

y //

1
oo

OO

%%

xx

with x, y ∈ C∗ and as C[issα Aklm] = C[repα Aklm]GL(α) is the ring generated
by traces along oriented cycles in Aklm, it is isomorphic to C[x, y]. From the
slice result one deduces that ξ must be a smooth point of X and because
Âξ ' T̂α we deduce it must have the following block-decomposition

Âξ '

@
@

@
@

@
@

@
@

@
@@

(x)

(x)

(y)

(y)

(1)

(1)
(1)

(1)

(1)

(x)

(y)

(x, y)︸ ︷︷ ︸
k

︸ ︷︷ ︸
l

︸ ︷︷ ︸
m

⊂ - Mn(C[[x, y]])

where at spot (i, j) with 1 ≤ i, j ≤ k + l + m, there is a block of dimension
di × dj with entries the indicated ideal of C[[x, y]].

DEFINITION 5.3 Let A be a Cayley-Hamilton central C[X]-order of
degree n in a central simple C(X)- algebra ∆ of dimension n2.

1. A is said to be étale locally split in ξ if and only if Âξ is a central
ÔX,x-order in Mn(ÔX,x ⊗OX,x

C(X)).

2. The ramification locus ramA of A is the locus of points ξ ∈ X such that

A

mξAmξ
6'Mn(C)

The complement X − ramA is the Azumaya locus Xaz of A.

THEOREM 5.13
Let A be a Cayley-smooth central OX-order of degree n over a projective

surface X. Then
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1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
1 //

1 ??���

1
OO

1
OO

x

__???1
oo

OO

%%
1(/).*-+, 1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,1
OO

1
OO
y //

1
oo

OO

xx

FIGURE 5.6: Proper semisimples of Aklm.

1. X is smooth.

2. A is étale locally split in all points of X.

3. The ramification divisor ramA ⊂ - X is either empty or consists of a
finite number of isolated (possibly embedded) points and a reduced divisor
having as its worst singularities normal crossings.

PROOF (1) and (2) follow from the above local description of A. As
for (3) we have to compute the local quiver-settings in proper semisimple
representations of repα Aklm. As simples have a strongly connected support,
the decomposition types of these proper semisimples are depicted in figure 5.6.
with x, y ∈ C∗. By the description of local quivers given in section 3 we see
that they are respectively of the forms in figure 5.7. The associated unordered
partitions are defined in the obvious way, that is, to the looped vertex one
assigns the sum of the di belonging to the loop-contracted circuit and the other
components of the partition are preserved. Using the étale local isomorphism
between X in a neighborhood of ξ and of issα Aklm in a neighborhood of
the trivial representation, we see that the local picture of quiver-settings of
A in a neighborhood of ξ is described in figure 5.8. The Azumaya points are
the points in which the quiver-setting is A001 (the two-loop quiver). From
this local description the result follows if we take care of possibly degenerated
cases.

An isolated point in ξ can occur if the quiver-setting in ξ is of type A00m

with m ≥ 2. In the case of curves and surfaces, the central variety X of a
Cayley-smooth model A had to be smooth and that A is étale locally split
in every point ξ ∈ X. Both of these properties are no longer valid in higher
dimensions.
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oo
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FIGURE 5.7: Local quivers for Aklm.

LEMMA 5.5
For dimension d ≥ 3, the center Z of a Cayley-smooth order of degree n can
have singularities.

PROOF Consider the marked quiver-setting of figure 5.9 that is allowed
for dimension d = 3 and degree n = 2. The quiver-invariants are generated by
the traces along oriented cycles, that is, by ac, ad, bc and bd. The coordinate
ring is

C[issα Q] ' C[x, y, z, v]
(xv − yz)

having a singularity in the origin. This example can be extended to dimensions
d ≥ 3 by adding loops in one of the vertices

1(/).*-+, 1(/).*-+,a
%%

b

��

c

ee

d

YYd − 3 99

LEMMA 5.6
For dimension d ≥ 3, a Cayley-smooth algebra does not have to be locally étale
split in every point of its central variety.

PROOF Consider the following allowable quiver-setting for d = 3 and
n = 2

2(/).*-+,•
%%

•
yy
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FIGURE 5.8: Local picture for Aklm.
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''

b
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gg
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__

FIGURE 5.9: Central singularities can arise.

The corresponding Cayley-smooth algebra A is generated by two generic 2×2
trace zero matrices, say A and B. From the description of the trace algebra
T2

2 we see that its center is generated by A2 = x, B2 = z and AB +BA = z.
Alternatively, we can identify A with the Clifford-algebra over C[x, y, z] of the
nondegenerate quadratic form [

x y
y z

]
This is a noncommutative domain and remains so over the formal power series
C[[x, y, z]]. That is, A cannot be split by an étale extension in the origin. More
generally, whenever the local marked quiver contains vertices with dimension
≥ 2, the corresponding Cayley-smooth algebra cannot be split by an étale
extension as the local quiver-setting does not change and for a split algebra
all vertex-dimensions have to be equal to 1. In particular, the Cayley-smooth
algebra of degree 2 corresponding to the quiver-setting

2(/).*-+,•k

%%
l

yy

cannot be split by an étale extension in the origin. Its corresponding dimen-
sion is

d = 3k + 4l − 3

whenever k + l ≥ 2 and all dimensions d ≥ 3 are obtained.
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LetX be a projective surface. We will characterize the central simple C(X)-
algebras ∆ allowing a Cayley-smooth model . We first need to perform a local
calculation. Consider the ring of algebraic functions in two variables C{x, y}
and let Xloc = Spec C{x, y}. There is only one codimension two subvariety:
m = (x, y). Let us compute the coniveau spectral sequence for Xloc. If K is
the field of fractions of C{x, y} and if we denote with kp the field of fractions
of C{x, y}/p where p is a height one prime, we have as its first term

0 0 0 0 . . .

H2(K, µn) ⊕p H1(kp, Zn) µ−1
n 0 . . .

H1(K, µn) ⊕pZn 0 0 . . .

µn 0 0 0 . . .

Because C{x, y} is a unique factorization domain, we see that the map

H1
et(K,µn) = K∗/(K∗)n

γ- ⊕p Zn

is surjective. Moreover, all fields kp are isomorphic to the field of fractions
of C{z} whose only cyclic extensions are given by adjoining a root of z and
hence they are all ramified in m. Therefore, the component maps

Zn = H1
et(kp,Zn)

βL- µ−1

are isomorphisms. But then, the second (and limiting) term of the spectral
sequence has the form

0 0 0 0 . . .

Ker α Ker β/Im α 0 0 . . .

Ker γ 0 0 0 . . .

µn 0 0 0 . . .
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Finally, we use the fact that C{x, y} is strict Henselian whence has no proper
étale extensions. But then

Hi
et(Xloc, µn) = 0 for i ≥ 1

and substituting this information in the spectral sequence we obtain that the
top sequence of the coniveau spectral sequence

0 - Brn K
α- ⊕p Zn - Zn - 0

is exact. From this sequence we immediately obtain the following

LEMMA 5.7

With notations as before, we have

1. Let U = Xloc − V (x), then Brn U = 0

2. Let U = Xloc − V (xy), then Brn U = Zn with generator the quantum-
plane algebra

Cζ [u, v] =
C〈u, v〉

(vu− ζuv)

where ζ is a primitive n-th root of one

Let ∆ be a central simple algebra of dimension n2 over a field L of transcen-
dence degree 2. We want to determine when ∆ admits a Cayley-smooth model
A, that is, a sheaf of Cayley-smooth OX -algebras where X is a projective

surface with functionfield C(X) = L. It follows from theorem 5.13 that, if
such a model exists, X must be a smooth projective surface. We may assume
that X is a (commutative) smooth model for L. By the Artin-Mumford ex-
act sequence 3.11 the class of ∆ in Brn C(X) is determined by the following
geocombinatorial data

• A finite collection C = {C1, . . . , Ck} of irreducible curves in X.

• A finite collection P = {P1, . . . , Pl} of points ofX where each Pi is either
an intersection point of two or more Ci or a singular point of some Ci.

• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ
and {1, . . . , iP } the different branches of C in P . These numbers must
satisfy the admissibility condition∑

i

bi = 0 ∈ Zn

for every P ∈ P
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• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C which is compatible with the branch-
data.

If A is a maximal OX -order in ∆, then the ramification locus ramA coincides
with the collection of curves C. We fix such a maximal OX -order A and
investigate its Cayley-smooth locus.

PROPOSITION 5.10

Let A be a maximal OX-order in ∆ with X a projective smooth surface
and with geocombinatorial data (C,P, b,D) determining the class of ∆ in
Brn C(X).

If ξ ∈ X lies in X − C or if ξ is a nonsingular point of C, then A is
Cayley-smooth in ξ.

PROOF If ξ /∈ C, then Aξ is an Azumaya algebra over OX,x. As X is
smooth in ξ, A is Cayley-smooth in ξ. Alternatively, we know that Azumaya
algebras are split by étale extensions, whence Âξ 'Mn(C[[x, y]]), which shows
that the behavior of A near ξ is controlled by the local data

1(/).*-+,%% yy . . .︸ ︷︷ ︸
n

and hence ξ ∈ Smtr A. Next, assume that ξ is a nonsingular point of the
ramification divisor C. Consider the pointed spectrumXξ = SpecOX,ξ−{mξ}.
The only prime ideals are of height one, corresponding to the curves on X
passing through ξ and hence this pointed spectrum is a Dedekind scheme.
Further, A determines a maximal order over Xξ. But then, tensoring A with
the strict henselization OshX,ξ ' C{x, y} determines a sheaf of hereditary orders
on the pointed spectrum X̂ξ = Spec C{x, y}−{(x, y)} and we may choose the
local variable x such that x is a local parameter of the ramification divisor C
near ξ.

Using the characterization result for hereditary orders over discrete valua-
tion rings, given in [90, Thm. 39.14] we know the structure of this extended
sheaf of hereditary orders over any height one prime of X̂ξ. Because Aξ is a
reflexive (even a projective) OX,ξ-module, this height one information deter-
mines Ashξ or Âξ. This proves that Ashξ must be isomorphic to the following
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block decomposition266666666666666664

Md1(C{x, y}) Md1×d2(C{x, y}) . . . Md1×dk (C{x, y})

Md2×d1(xC{x, y}) Md2(C{x, y}) . . . Md2×dk (C{x, y})

...
...

. . .
...

Mdk×d1(xC{x, y}) Mdk×d2(xC{x, y}) . . . Mdk (C{x, y})

377777777777777775
for a certain partition p = (d1, . . . , dk) of n having k parts. In fact, as we
started out with a maximal order A one can even show that all these integers
di must be equal. This local form corresponds to the following quiver-setting

1(/).*-+, 1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

Ak01

WW//////

KK������������

ee

//

oo

%%
p = (d1, . . . , dk)

whence ξ ∈ Smtr A as this is one of the allowed surface settings.

A maximal OX -order in ∆ can have at worst noncommutative singularities
in the singular points of the ramification divisor C. Theorem 5.13 a Cayley-
smooth order over a surface has as ramification-singularities at worst normal
crossings. We are always able to reduce to normal crossings by the following
classical result on commutative surfaces, see, for example, [43, V.3.8].

THEOREM 5.14 Embedded resolution of curves in surfaces
Let C be any curve on the surface X. Then, there exists a finite sequence of

blow-ups
X ′ = Xs

- Xs−1
- . . . - X0 = X

and, if f : X ′ -- X is their composition, then the total inverse image
f−1(C) is a divisor with normal crossings.

Fix a series of blow-ups X ′
f-- X such that the inverse image f−1(C)

is a divisor on X ′ having as worst singularities normal crossings. We will
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replace the Cayley-Hamilton OX -order A by a Cayley-Hamilton OX′ -order
A′ where A′ is a sheaf of OX′ -maximal orders in ∆. In order to determine the
ramification divisor ofA′ we need to be able to keep track how the ramification
divisor C of ∆ changes if we blow up a singular point p ∈ P.

LEMMA 5.8
Let X̃ -- X be the blow-up of X at a singular point p of C, the ramification
divisor of ∆ on X. Let C̃ be the strict transform of C and E the exceptional
line on X̃. Let C′ be the ramification divisor of ∆ on the smooth model X̃.
Then,

1. Assume the local branch data at p distribute in an admissible way on C̃,
that is ∑

i at q

bi,p = 0 for all q ∈ E ∩ C̃

where the sum is taken only over the branches at q. Then, C′ = C̃.

2. Assume the local branch data at p do not distribute in an admissible
way, then C′ = C̃ ∪ E.

PROOF Clearly, C̃ ⊂ - C′ ⊂ - C̃ ∪E. By the Artin-Mumford sequence
applied to X ′ we know that the branch data of C′ must add up to zero at all
points q of C̃ ∩ E. We investigate the two cases

1.: Assume E ⊂ C′. Then, the E-branch number at q must be zero for all
q ∈ C̃ ∩ E. But there are no nontrivial étale covers of P1 = E so ram(∆)
gives the trivial element in H1

et(C(E), µn), a contradiction. Hence C′ = C̃.

??
??

??
??

??
??

??
??

? �����������������

•
p

a −a

E

a

−a

−a

a

2.: If at some q ∈ C̃ ∩ E the branch numbers do not add up to zero, the
only remedy is to include E in the ramification divisor and let the E-branch
number be such that the total sum is zero in Zn.

THEOREM 5.15
Let ∆ be a central simple algebra of dimension n2 over a field L of tran-
scendence degree two. Then, there exists a smooth projective surface S with
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function field C(S) = L such that any maximal OS-order AS in ∆ has at
worst a finite number of isolated noncommutative singularities. Each of these
singularities is locally étale of quantum-plane type.

PROOF We take any projective smooth surface X with function field
C(X) = L. By the Artin-Mumford exact sequence, the class of ∆ determines
a geocombinatorial set of data

(C,P, b,D)

as before. In particular, C is the ramification divisor ram(∆) and P is the set
of singular points of C. We can separate P in two subsets

• Punr = {P ∈ P where all the branch-data bP = (b1, . . . , biP ) are trivial,
that is, all bi = 0 in Zn}

• Pram = {P ∈ P where some of the branch-data bP = (b1, . . . , biP ) are
non-trivial, that is, some bi 6= 0 in Zn}

After a finite number of blow-ups we get a birational morphism S1
π-- X

such that π−1(C) has as its worst singularities normal crossings and all
branches in points of P are separated in S. Let C1 be the ramification di-
visor of ∆ in S1. By the foregoing argument we have

• If P ∈ Punr, then we have that C′ ∩ π−1(P ) consists of smooth points
of C1,

• If P ∈ Pram, then π−1(P ) contains at least one singular points Q of C1
with branch data bQ = (a,−a) for some a 6= 0 in Zn.

In fact, after blowingup singular points Q′ in π−1(P ) with trivial branchdata
we obtain a smooth surface S -- S1

-- X such that the only singular
points of the ramification divisor C′ of ∆ have nontrivial branchdata (a,−a)
for some a ∈ Zn. Then, take a maximal OS-order A in ∆. By the local
calculation of Brn C{x, y} performed in the last section we know that locally
étale A is of quantum-plane type in these remaining singularities. As the
quantum-plane is not étale locally split, A is not Cayley-smooth in these
finite number of singularities.

In fact, the above proof gives a complete classification of the central simple
algebras admitting a Cayley-smooth model.

THEOREM 5.16
Let ∆ be a central simple C(X)-algebra of dimension n2 determined by the geo-
combinatorial data (C,P, b,D) given by the Artin-Mumford sequence. Then,
∆ admits a Cayley-smooth model if and only if all branchdata are trivial.
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PROOF If all branch-data are trivial, the foregoing proof constructs a
Cayley-smooth model of ∆. Conversely, if A is a Cayley-smooth OS-order in
∆ with S a smooth projective model of C(X), then A is locally étale split in
every point s ∈ S. But then, so is any maximal OS-order Amax containing A.
By the foregoing arguments this can only happen if all branchdata are trivial.

5.5 Complex moment map

We fix a quiver Q on k vertices {v1, . . . , vk} and define the opposite quiver
Qo the quiver on {v1, . . . , vk} obtained by reversing all arrows in Q. That is,

there is an arrow ��������i��������j
a∗ // in Qo for each arrow ��������i��������j

aoo in the quiver
Q. Fix a dimension vector α = (a1, . . . , ak), using the trace pairings

Mai×aj
×Maj×ai

- C (Va∗ , Va) 7→ tr(Va∗Va)

we can identify the representation space repα Qo with the dual space
(repα Q)∗ = HomC(repα Q,C). Observe that the base change action of
GL(α) on repα Q

o coincides with the action dual to that of GL(α) on repα Q.
The dual quiver Qd is the superposition of the quivers Q and Qo. Clearly,

for an dimension vector α we have

repα Q
d = repα Q⊕ repα Q

o = repα Q⊕ (repα Q)∗

whence repα Q
d can be viewed as the cotangent bundle T ∗repα Q on repα Q

with structural morphism projection on the first factor. Cotangent bundles
are equipped with a canonical symplectic structure, see [20, Example 1.1.3] or
chapter 8 for more details. The natural action of GL(α) on repα Q extends
to an action of GL(α) on T ∗repα Q preserving the symplectic structure and
it coincides with the base change action of GL(α) on repα Q

d. Such an action
on the cotangent bundle gives rise to a complex moment map

T ∗repα Q
µC- (Lie GL(α))∗

Recall that Lie GL(α) = Mα(C) = Ma1(C)⊕ . . .⊕Mak
(C). Using the trace

pairings on both sides, the complex moment map is the mapping

repα Q
d µC- Mα(C)

defined by
µC(V )i =

∑
a∈Qa
t(a)=i

VaVa∗ −
∑
a∈Qa
s(a)=i

Va∗Va
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Observe that the image of the complex moment map is contained in M0
α(C)

where

M0
α(C) = {(M1, . . . ,Mk) ∈Mα(C) |

∑
i

tr(Mi) = 0} = Lie PGL(α)

corresponding to the fact that the action of GL(α) on T ∗repα Q is really a
PGL(α) = GL(α)/C∗ action.

DEFINITION 5.4 Elements of Ck = CQv are called weights . If λ is a
weight, one defines the deformed preprojective algebra of the quiver Q to be

Πλ(Q)
dfn
= Πλ =

CQd

c− λ
where c is the commutator element

c =
∑
a∈Qa

[a, a∗]

in CQd and where λ = (λ1, . . . , λk) is identified with the element
∑
i λivi ∈

CQd.
The algebra Π(Q) = Π is known as the preprojective algebra of the quiver

Q.

LEMMA 5.9
The ideal (c− λ) / CQd is the same as the ideal with a generator∑

a∈Qa
t(a)=i

aa∗ −
∑
a∈Qa
s(a)=i

a∗a− λivi

for each vertex vi ∈ Qv.

PROOF These elements are of the form vj(c − λ)vi, so they belong to
the ideal (c − λ). As c − λ is also the sum of them, the ideal they generate
contains c− λ.

That is, α-dimensional representations of the deformed preprojective alge-
bra Πλ coincide with representations V ∈ repα Q

d that satisfy∑
a∈Qa
t(a)=i

VaVa∗ −
∑
a∈Qa
s(a)=i

Va∗Va = λi
rr
ai

for each vertex vi. That is, we have an isomorphism between the scheme
theoretic fiber of the complex moment map and the representation space

repα Πλ = µ−1
C (λ)
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As the image of µC is contained in M0
α(C) we have in particular the following.

LEMMA 5.10

If λ.α =
∑
i λiai 6= 0, then there are no α-dimensional representations of

Πλ.

Because we have an embedding Ck ⊂ - Πλ, the n-dimensional represen-
tations of the deformed preprojective algebra decompose into disjoint subva-
rieties

repn Πλ =
⊔

α:
P

i ai=n

GLn ×GL(α) repα Πλ

Hence, in studying Cayley-smoothness of Πλ we may reduce to the distinct
components and hence to the study of α-Cayley-smoothness , that is, smooth-
ness in the category of Ck(α)-algebras, which are Cayley-Hamilton algebras
of degree n =

∑
i ai. Again, one can characterize this smoothness condition

in a geometric way by the property that the restricted representation scheme
repα is smooth. In the next section we will investigate this property for the
preprojective algebra Π0, in chapter 8 we will be able to extend these results
to arbitrary Πλ. In this section we will compute the dimension of these repre-
sentation schemes. First, we will investigate the fibers of the structural map
of the cotangent bundle, that is, the projection

T ∗repα Q ' repα Q
d - repα Q

PROPOSITION 5.11

If V ∈ repα Q, then there is an exact sequence

0 - Ext1CQ(V, V )∗ - repα Q
o c- Mα(C)

t- HomCQ(V, V )∗ - 0

where c maps W = (Wa∗)a∗ ∈ repα Qo to
∑
a∈Qa

[Va,Wa∗ ] and t maps
M = (Mi)i ∈ M|alpha(C) to the linear map HomCQ(V, V ) - C sending a
morphism N = (Ni)i to

∑
i tr(MiNi).

PROOF There is an exact sequence

0 - HomCQ(V, V ) - Mα(C)
f- repα Q

- Ext1CQ(V, V ) - 0

where f sends M = (Mi)i ∈ Mα(C) to V ′ = (V ′a)a with V ′a = Mt(a)Va −
VaMs(a). By definition, the kernel of f is HomCQ(V, V ) and by the Euler
form interpretation of theorem 4.5 we have

dimC HomCQ(V, V )−dimC Ext
1
CQ(V, V ) = χQ(α, α) = dimC Mα(C)−dimC repα Q
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so the cokernel of f has the same dimension as Ext1CQ(V, V ) and using the
standard projective resolution of V one can show that it is naturally isomor-
phic to it. The required exact sequence follows by dualizing, using the trace
pairing to identify repα Q

o with (repα Q)∗ and Mα(C) with its dual.

This result allows us to give a characterization of the dimension vectors α
such that repα Q 6= ∅.

THEOREM 5.17
For a weight λ ∈ Ck and a representation V ∈ repα Q the following are

equivalent

1. V extends to an α-dimensional representation of the deformed prepro-
jective algebra Πλ.

2. For all dimension vectors β of direct summands W of V we have λ.β =
0.

Moreover, if V ∈ repα Q does lift, then π−1(V ) ' (Ext1CQ(V, V ))∗.

PROOF If V lifts to a representation of Πλ, then there is a repre-
sentation W ∈ repα Qo mapping under c of proposition 5.11 to λ. But
then, by exactness of the sequence in proposition 5.11 λ must be in the
kernel of t. In particular, for any morphism N = (Ni)i ∈ HomCQ(V, V )
we have that

∑
i λitr(Ni) = 0. In particular, let W be a direct summand

of V (as Q-representation) and let N = (Ni)i be the projection morphism
V -- W ⊂ - V , then

∑
i λitr(Ni) =

∑
i λibi where β = (b1, . . . , bk) is the

dimension vector of W .
Conversely, it suffices to prove the lifting of any indecomposable represen-

tation W having a dimension vector β satisfying λ.β = 0. Because the endo-
morphism ring of W is a local algebra, any endomorphism N = (Ni)i of W is
the sum of a nilpotent matrix and a scalar matrix whence

∑
i λitr(Ni) = 0.

But then considering the sequence of proposition 5.11 for β and considering
λ as an element of M|β|(C), it lies in the kernel of t whence in the image of c
and therefore W can be extended to a representation of Πλ.

The last statement follows again from the exact sequence of proposi-
tion 5.11.

In particular, if α is a root for Q satisfying λ.α = 0, then there are α-
dimensional representations of Πλ. Recall the definition of the number of
parameters given in definition 4.8

µ(X) = max
d

(dim X(d) − d)

where X(d) is the union of all orbits of dimension d. We denote µ(repindα Q)
for the GL(α)-action on the indecomposables of repα Q by pQ(α). Recall
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that part of Kac’s theorem 4.14 asserts that

pQ(α) = 1− χQ(α, α)

We will apply these facts to the determination of the dimension of the fibers
of the complex moment map.

LEMMA 5.11
Let U be a GL(α)-stable constructible subset of repα Q contained in the

image of the projection map repα Q
d π-- repα Q. Then

dim π−1(U) = µ(U) + α.α− χQ(α, α)

If in addition U = O(V ) is a single orbit, then π−1(U) is irreducible of di-
mension α.α− χQ(α, α).

PROOF Let V ∈ U(d), then by theorem 5.17, the fiber π−1(V ) is iso-
morphic to (Ext1CQ(V, V ))∗ and has dimension dimCEnd(V ) − χQ(α, α) by
theorem 4.5 and

dimC End(V ) = dim GL(α)− dim O(V ) = α.α− d

Hence, dim π−1(U(d)) = (dim U(d) − d) + α.α − χQ(α, α). If we now vary d,
the result follows.

For the second assertion, suppose that π−1(U) � ⊃ Z1 t Z2 with Zi a
GL(α)-stable open subset, but then π−1(V ) ∩ Zi are nonempty disjoint open
subsets of the irreducible variety π−1(V ), a contradiction.

THEOREM 5.18
Let λ be a weight and α a dimension vector such that λ.α = 0. Then

dim repα Πλ = dim µ−1
C (λ) = α.α− χQ(α, α) +m

where m is the maximum number among all

pQ(β1) + . . .+ pQ(βr)

with r ≥ 1, all βi are (positive) roots such that λ.βi = 0 and α = β1 + . . .+βr.

PROOF Decompose repα Q =
⊔
τ repα(τ) where repα(τ) are the rep-

resentations decomposing as a direct sum of indecomposables of dimension
vector τ = (β1, . . . , βr). By Kac’s theorem 4.14 we have that

µ(repα(τ)) = pQ(β1) + . . .+ pQ(βr)
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If some of the βi are such that λ.βi 6= 0, and µ−1
C (λ)

π- repα Q is the projec-
tion then π−1(repα(τ)) = ∅ by lemma 5.10. Combining this with lemma 5.11
the result follows.

DEFINITION 5.5 The set of λ-Schur roots Sλ is defined to be the set
of α ∈ Nk such that pQ(α) ≥ pQ(β1) + . . . + pQ(βr) for all decompositions
α = β1 + . . .+ βr with βi positive roots satisfying λ.βi = 0.
S0 is the set of α ∈ Nk such that pQ(α) ≥ pQ(β1) + . . . + pQ(βr) for all

decompositions α = β1 + . . .+ βr with βi ∈ Nk

Observe that S0 consists of Schur roots for Q, for if

τcan = (e1, β1; . . . ; es, βs) = (γ1, . . . , γt)

(the γj possibly occurring with multiplicities) is the canonical decomposition
of α with t ≥ 2 we have

pQ(α) = 1− χQ(α, α)

= 1−
∑
i,j

χQ(γi, γj)

=
∑
i

(1− χQ(γi, γi))−
∑
i 6=j

χQ(γi, γj)− (t− 1)

>
∑
i

pQ(γi)

whence α /∈ S0. This argument also shows that in the definition of S0 we could
have taken all decompositions in positive roots, replacing the components βi
by their canonical decompositions.

THEOREM 5.19
For α ∈ Nk, the following are equivalent

1. The complex moment map repα Q
d µC- repα Q is flat.

2. repα Π0 = µ−1
C (0) has dimension α.α− 1 + 2pQ(α).

3. α ∈ S0.

PROOF The dimensions of the relevant representation spaces are
dim repα Q = α.α− χQ(α, α) = α.α− 1 + pQ(α)
dim repα Q

d = 2α.α− 2χQ(α, α) = 2α.α− 2 + 2pQ(α)
dim M0

α(C) = α.α− 1
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so the relative dimension of the complex moment map is d = α.α−1+2pQ(α).
(1) ⇒ (2): Because µC os flat, its image U is an open subset of M0

α(C)
which obviously contains 0, but then the dimension of µ−1

C (0) is equal to the
relative dimension d.

(2) ⇒ (3): Assume pQ(α) <
∑
i pQ(βi) for some decomposition α = β1 +

. . .+ βs with βi ∈ Nk. Replacing each βi by its canonical decomposition, we
may assume that the βi are actually positive roots. But then, theorem 5.18
implies that µ−1

C (0) has dimension greater than d.
(3) ⇒ (1): We have that α is a Schur root. We claim that

repα Qd
µC- M0

α(C) is surjective. Let V ∈ repα Q be a general repre-
sentation, then HomCQ(V, V ) = C. But then, the map c in proposition 5.11
has a one-dimensional cokernel. But as the image of c is contained in M0

α(C),
this shows that

repα Q
0 c-- M0

α(C)

is surjective from which the claim follows. Let M = (Mi)i ∈ M0
α(C) and

consider the projection

µ−1
C (M)

π̃- repα Q

If U is a constructible GL(α)-stable subset of repα Q, then by an argument
as in lemma 5.11 we have that

dim π̃−1(U) ≤ µ(U) + α.α− χQ(α, α)

But then, decomposing repα Q into types τ of direct sums of indecomposables,
it follows from the assumption that µ−1

C (M) has dimension at most d. But
then by the dimension formula it must be equidimensional of dimension d
whence flat.

5.6 Preprojective algebras

In this section we will determine the n-smooth locus of the preprojective
algebra Π0. By the étale local description of section 4.2 it is clear that we
need to control the Ext1-spaces of representations of Π0.

PROPOSITION 5.12

Let V and W be representations of Π0 of dimension vectors α and β, then
we have

dimC Ext1Π0
(V,W ) = dimC HomΠ0(V,W ) + dimC HomΠ0(W,V )− TQ(α, β)
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PROOF It is easy to verify by direct computation that V has a projective
resolution as Π0-module, which starts as

. . . -
M
i∈Qv

Π0vi⊗viV
f-

M
��������i��������j

a
oo

a∈Qd
a

Π0vj⊗viV
g-

M
i∈Qv

Π0vi⊗viV
h- V - 0

where f is defined by

f(
∑
i

pi ⊗mi) =
∑

��������i��������j
a
oo

a∈Qa

(pia∗ ⊗mi − pj ⊗ a∗mj)a − (pja⊗mj − pi ⊗ ami)a∗

where pi ∈ Π0vi and mi ∈ viV . The map g is defined on the summand
corresponding to an arrow ��������i��������j

a
oo in Qd by

g(pa⊗m) = (pa⊗m)i − (p⊗ am)j

for p ∈ Π0vj and m ∈ viV . the map h is the multiplication map. If we
compute homomorphisms to W and use the identification

HomΠ0(Π0vj ⊗ viV,W ) = HomC(viV, vjW )

we obtain a complexM
i∈Qv

HomC(viV, viW ) ⊂ -
M

��������i��������j
a
oo

a∈Qd
a

HomC(viV, vjW ) -
M
i∈Qv

HomC(viV, viW )

in which the left-hand cohomology is HomΠ0(V,W ) and the middle cohomol-
ogy is Ext1Π0

(V,W ). Moreover, the alternating sum of the dimensions of the
terms is TQ(α, β). It remains to prove that the cokernel of the right-hand side
map has the same dimension as HomΠ0(W,V ). But using the trace pairing
to identify

HomC(M,N)∗ = HomC(N,M)

we obtain that the dual of this complex isM
i∈Qv

HomC(viW, viV ) -
M

��������i��������j
a
oo

a∈Qd
a

HomC(viW, vjV ) --
M
i∈Qv

HomC(viW, viV )

and, up to changing the sign of components in the second direct sum corre-
sponding to arrows that are not in Q, this is the same complex as the complex
arising with V and W interchanged. From this the result follows.
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In order to determine the n-smooth locus we observe that the representation
space decomposes into a disjoint union and we have quotient morphisms

repn Π0
=-

⊔
α=(a1,...,ak)
a1+...+ak=n

GLn ×GL(α) repα Π0

issn Π0

πn

??
= -

⊔
α=(a1,...,ak)
a1+...+ak=n

issα Π0

tπα

??

Hence if ξ ∈ issα Π0 for ξ ∈ Smtr Π0 it is necessary and sufficient that
repα Π0 is smooth along O(Mξ) where Mξ is the semisimple α-dimensional
representation of Π0 corresponding to ξ. Assume that ξ is of type τ =
(e1, α1; . . . ; ez, αz), that is

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ez
z

with Si a simple Π0-representation of dimension vector αi. Again, the nor-
mal space to the orbit O(Mξ) is determined by Ext1Πo

(Mξ,Mξ) and can be
depicted by a local quiver setting (Qξ, αξ) where Qξ is a quiver on z vertices
and where αξ = ατ = (e1, . . . , ez). Repeating the arguments of section 4.2 we
have the following.

LEMMA 5.12
With notations as above, ξ ∈ Smn Π0 if and only if

dim GL(α)×GL(αξ) Ext1Π0
(Mξ,Mξ) = dimMξ

repα Π0

As we have enough information to compute both sides, we can prove the
following.

THEOREM 5.20
If ξ ∈ issα Π0 with α = (a1, . . . , ak) ∈ S0 and

∑
i ai = n, then ξ ∈ Smn Π0

if and only if Mξ is a simple n-dimensional representation of Π0.

PROOF Assume that ξ is a point of semisimple representation type τ =
(e1, α1; . . . ; ez, αz), that is

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ez
z with dim(Si) = αi

and Si a simple Π0-representation. Then, by proposition 5.12 we have{
dimC Ext1Π0

(Si, Sj) = −TQ(αi, αj) i 6= j

dimC Ext1Π0
(Si, Si) = 2− TQ(αi, αi)



294 Noncommutative Geometry and Cayley-Smooth Orders

But then, the dimension of Ext1Π0
(Mξ,Mξ) is equal to

z∑
i=1

(2− TQ(αi, αi))e2i +
∑
i 6=j

eiej(−TQ(αi, αj) = 2
z∑
i=1

ei − TQ(α, α)

from which it follows immediately that

dim GL(α)×GL(αξ) Ext1Π0
(Mξ,Mξ) = α.α+

z∑
i=1

e2i − TQ(α, α)

On the other hand, as α ∈ S0 we know from theorem 5.19 that

dim repα Π0 = α.α−1+2pQ(α) = α.α−1+2+2χQ(α, α) = α.α+1−TQ(α, α)

But then, equality occurs if and only if
∑
i e

2
i = 1, that is, τ = (1, α) or Mξ

is a simple n-dimensional representation of Π0.

In particular it follows that the preprojective algebra Π0 is never Quillen-
smooth. Further, as ~vi = (0, . . . , 1, 0, . . . , 0) are dimension vectors of simple
representations of Π0 it follows that Π0 is α-smooth if and only if α = ~vi
for some i. In chapter 8 we will determine the dimension vectors of simple
representations of the (deformed) preprojective algebras.

Example 5.4
Let Q be an extended Dynkin diagram and δQ the corresponding dimension
vector. Then, we will show that δQ is the dimension vector of a simple repre-
sentation and δQ ∈ S0. Then, the dimension of the quotient variety

dim issδQ
Π0 = dim repδQ

Π0 − δQ.δQ + 1

= 2pQ(δQ) = 2

so it is a surface. The only other semisimple δQ-dimensional representation
of Π0 is the trivial representation. By the theorem, this must be an isolated
singular point of issδQ

Q. In fact, one can show that issδQ
Π0 is the Kleinian

singularity corresponding to the extended Dynkin diagram Q.

5.7 Central smooth locus

In this section we will prove the characterization, due to Raf Bocklandt, of
(marked) quiver settings such that the ring of invariants is smooth. Remark
that as the ring of invariants is a positively graded algebra, this is equivalent
to being a polynomial algebra.
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DEFINITION 5.6 A quiver setting (Q,α) is said to be final iff none of
the reduction steps b1, b2 or b3 of theorem 5.8 can be applied. Every quiver
setting can be reduced to a final quiver setting that we denote as (Q,α)  
(Qf , αf ).

THEOREM 5.21
For a quiver setting (Q,α) with Q = suppα strongly connected, the following
are equivalent :

1. C[issα Q] = C[repα Q]GL(α) is commalg-smooth.

2. (Qf , αf ) (Qf , αf ) with (Qf , αf ) one of the following quiver settings

��������k ��������k

�� ��������2
��
[[.

PROOF (2) ⇒ (1): Follows from the foregoing theorem and the
fact that the rings of invariants of the three quiver settings are resp. C,
C[tr(X), tr(X2), . . . , tr(Xk)] and C[tr(X), tr(Y ), tr(X2), tr(Y 2), tr(XY )].

(1)⇒ (2): Take a final reduction (Q,α) (Qf , αf ) and to avoid subscripts
rename (Qf , αf ) = (Q,α) (observe that the condition of the theorem as well
as (1) is preserved under the reduction steps by the foregoing theorem). That
is, we will assume that (Q,α) is final whence, in particular as b1 cannot be
applied,

χQ(α, εv) < 0 χQ(εv, α) < 0

for all vertices v of Q. With 1 we denote the dimension vector (1, . . . , 1).

claim 1 : Either (Q,α) = ��������k or Q has loops. Assume neither, then if α 6= 1
we can choose a vertex v with maximal αv. By the above inequalities and
theorem 4.10 we have that

τ = (1, α− εv; 1, εv) ∈ typesαQ

As there are no loops in v, we have{
χQ(α− εv, εv) = χ(α, εv)− 1 < −1
χQ(εv, α− εv) = χ(εv, α)− 1 < −1

and the local quiver setting (Qτ , ατ ) contains the subquiver

��������1

k
"* ��������1

l

bj with k, l ≥ 2
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The invariant ring of the local quiver setting cannot be a polynomial ring as
it contains the subalgebra

C[a, b, c, d]
(ab− cd)

where a = x1y1, b = x2y2, c = x1y2 and d = x2y1 are necklaces of length 2
with xi arrows from w1 to w2 and yi arrows from w2 to w1. This contradicts
the assumption (1) by the étale local structure result.

Hence, α = 1 and because (Q,α) is final, every vertex must have least have
two incoming and two outgoing arrows. Because Q has no loops

dim iss1 Q = 1− χQ(1, 1) = #arrows−#vertices + 1

On the other hand, a minimal generating set for C[iss1 Q] is the set of
Eulerian necklaces , that is, those necklaces in Q not re-entering any vertex.
By (1) both numbers must be equal, so we will reach a contradiction by
showing that #euler, the number of Eulerian necklaces is strictly larger than
χ(Q) = #arrows − #vertices + 1. We will do this by induction on the
number of vertices.

If #vertices = 2, the statement is true because

Q := ��������1

k
"* ��������1

l

bj whence #euler = kl > χ(Q) = k + l − 1

as both k and l are at least 2.
Assume #vertices > 2 and that there is a subquiver of the form

basic = ��������1

k
"* ��������1

l

bj

If k > 1 and l > 1 we have seen before that this subquiver and hence Q cannot
have a polynomial ring of invariants.

If k = 1 and l = 1 then substitute this subquiver by one vertex ...
��������1
&&

\\9999 ��������1ff

BB���� ...BB����

\\9999

 −→
 ...

��������1

\\9999
BB���� ...BB����

\\9999


The new quiver Q′ is again final without loops because there are at least four
incoming arrows in the vertices of the subquiver and we only deleted two (the
same holds for the outgoing arrows). Q′ has one Eulerian necklace less than
Q. By induction, we have that

#euler = #euler′ + 1
> χ(Q′) + 1
= χ(Q)
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If k > 1 then one can look at the subquiver Q′ of Q obtained by deleting k−1
of these arrows. If Q′ is final, we are in the previous situation and obtain the
inequality as before. If Q′ is not final, then Q contains a subquiver of the
form

��������1

k
"* ��������1ff

��?
??

??
??

?

��������1

??�������� ��������1oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

which cannot have a polynomial ring of invariants, as it is reducible to basic
with both k and l at least equal to 2.

Finally, if #vertices > 2 and there is no basic-subquiver, take an arbi-
trary vertex v. Construct a new quiver Q′ bypassing v

l arrows︷ ︸︸ ︷��������1 · · · ��������1

��������1

bbDDDD
<<zzzz

��������1

<<zzzz · · · ��������1

bbDDDD︸ ︷︷ ︸
k arrows


−→


��������1 · · · ��������1

��������1

OO ;;wwwwwwwwww · · · ��������1

OOccGGGGGGGGGG︸ ︷︷ ︸
kl arrows


Q′ is again final without loops and has the same number of Eulerian necklaces.
By induction

#euler = #euler′

> #arrows′ −#vertices′ + 1
= #arrows + (kl − k − l)−#vertices + 1 + 1
> #arrows−#vertices + 1

In all cases, we obtain a contradiction with (1) and hence have proved claim
1. So we may assume from now on that Q has loops.

claim 2: If Q has loops in v, then there is at most one loop in v or (Q,α) is

2twobytwo = ��������2
��
[[

Because (Q,α) is final, we have αv ≥ 2. If αv = a ≥ 3 then there is only one
loop in v. If not, there is a subquiver of the form

��������a
��
[[

and its ring of invariants cannot be a polynomial algebra. Indeed, consider
its representation type τ = (1, k − 1; 1, 1) then the local quiver is of type
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basic with k = l = a − 1 ≥ 2 and we know already that this cannot have
a polynomial algebra as invariant ring. If αv = 2 then either we are in the
2twobytwo case or there is at most one loop in v. If not, we either have at
least three loops in v or two loops and a cyclic path through v, but then we
can use the reductions

��������2 qq-- [[
b1−1

−→

��������2

��
��������2

rr��������2

22RR

����������k

EE
b1,b1−1

←−
��������2

  B
BB

Bqq--

'&%$ !"#i1

>>}}}} '&%$ !"#u1oo o/ o/ o/

The middle quiver cannot have a polynomial ring as invariants because we
consider the type

��������1

��
��������0

pp��������2

VV 00

����������1

FF

⊕


��������0

��
��������1

pp��������0

VV 00

����������0

FF

⊕ · · ·
The number of arrows between the first and the second simple component
equals

−
(
2 1 1 0

) 
1 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1




0
0
0
1

 = 2

whence the corresponding local quiver contains basic with k = l = 2 as
subquiver. This proves claim 2. From now on we will assume that the quiver
setting (Q,α) is such that there is precisely one loop in v and that k = αv ≥ 2.
Let

τ = (1, 1; 1, εv;αv1 − 1, εv1 ; . . . ; . . . ;αv − 2, εv; . . . ;αvl
− 1, εvl

) ∈ typesαQ

Here, the second simple representation, concentrated in v has nonzero trace
in the loop whereas the remaining αv− 2 simple representations concentrated
in v have zero trace. Further, 1 ∈ simpCQ as Q is strongly connected by
theorem 4.10. We work out the local quiver setting (Qτ , ατ ). The number
of arrows between the vertices in Qτ corresponding to simple components
concentrated in a vertex is equal to the number of arrows in Q between these
vertices. We will denote the vertex (and multiplicity) in Qτ corresponding to
the simple component of dimension vector 1 by 1 .

The number of arrows between the vertex in Qτ corresponding to a simple
concentrated in vertex w in Q to 1 is −χQ(εw, 1) and hence is one less than
the number of outgoing arrows from w in Q. Similarly, the number of arrows
from the vertex 1 to that of the simple concentrated in w is −χQ(1, εw) and
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is equal to one less than the number of incoming arrows in w in Q. But then
we must have for all vertices w in Q that

χQ(εw, 1) = −1 or χQ(1, εw) = −1

Indeed, because (Q,α) is final we know that these numbers must be strictly
negative, but they cannot be both ≤ −2 for then the local quiver Qτ will
contain a subquiver of type ��������1

#+
1bj

contradicting that the ring of invariants is a polynomial ring. Similarly, we
must have

χQ(εw, εv) ≥ −1 or χQ(εv, εv)

for all vertices w in Q for which αw ≥ 2. Let us assume that χQ(εv, 1) = −1.

claim 3: If w1 is the unique vertex in Q such that χQ(εv, εw1) = −1, then
αw1 = 1. If this was not the case there is a vertex corresponding to a simple
representation concentrated in w1 in the local quiver Qτ . If χQ(1, εw1) = 0
then the dimension of the unique vertex w2 with an arrow to w1 has strictly
bigger dimension than w1, otherwise χQ(α, εw1) ≥ 0 contradicting finality of
(Q,α). The vertex w2 corresponds again to a vertex in the local quiver. If
χQ(1, εw2) = 0, the unique vertex w3 with an arrow to w2 has strictly bigger
dimension than w2. Proceeding this way one can find a sequence of vertices
with increasing dimension, which attains a maximum in vertex wk. Therefore
χQ(1, εwk

) ≤ −1. This last vertex is in the local quiver connected with W , so
one has a path from 1 to εv.

��������k

��

�'G
GGG

GG

GGG
GGG

/.-,()*+w1

;;xxxxxx . . .

/.-,()*+wk

OO
O�
O�

. . .

;;wwwwww . . .

ccGGGGGG

local−→

��������1
��

��

/.-,()*+w1

=={{{{{{

/.-,()*+wk

OO
O�
O�

1

`B̀BBBB

JJ

The subquiver of the local quiverQτ consisting of the vertices corresponding to
the simple representation of dimension vector 1 and the simples concentrated
in vertex v resp. wk is reducible via b1 to ��������1

#+
1bj , at least if χQ(1, εv) ≤ −2,

a contradiction finishing the proof of the claim. But then, the quiver setting
(Q,α) has the following shape in the neighborhood of v

��������k

�� ))SSSSSSSSS
��

��������1

>>|||| '&%$ !"#u1 · · · /.-,()*+uk
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contradicting finality of (Q,α) for we can apply b3. In a similar way one
proves that the quiver setting (Q,α) has the form

��������k

~~||
||
��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSSS

in a neighborhood of v if χQ(1, εv) = −1 and χQ(εv, 1) ≤ −2, again contra-
dicting finality.

There remains one case to consider: χQ(1, εv) = −1 and χQ(εv, 1) = −1.
Suppose w1 is the unique vertex in Q such that χQ(εv, εw1) = −1 and wk is the
unique vertex in Q such that χQ(εwk

, εv) = −1, then we claim the following.

claim 4: Either αw1 = 1 or αwk
= 1. If not, consider the path connecting

wk and w1 and call the intermediate vertices wi, 1 < i < k. Starting from
w1 we go back the path until αwi

reaches a maximum. at that point we know
that χQ(1, εwk

) ≤ −1, otherwise χQ(α, εwk
) ≥ 0. In the local quiver there

is a path from the vertex corresponding to the 1-dimensional simple over
the ones corresponding to the simples concentrated in wi to v. Repeating
the argument, starting from wk we also have a path from the vertex of the
simple v-representation over the vertices of the wj-simples to the vertex of
the 1-dimensional simple

��������2
��

!!B
BB

BB
B

/.-,()*+w1

==|||||| /.-,()*+wk

���O
�O

'&%$ !"#wi

OO
O�
O� /.-,()*+wj

##G
GGG

GGjj

##G
GGG

GG

. . .

;;wwwwww . . .

local−→

��������1
��

��

!!C
CC

CC
C

/.-,()*+w1

==|||||| /.-,()*+wk

���O
�O

'&%$ !"#wi

OO
O�
O� /.-,()*+wj

~~}}
}}

}

1

``AAAAA

JJ

The subquiver consisting of 1, εv and the two paths through the εwi is reducible
to ��������1

#+
1bj and we again obtain a contradiction.

The only way out of these dilemmas is that the final quiver setting (Q,α)
is of the form

��������k

��

finishing the proof.

DEFINITION 5.7 Let (Q,α) and (Q′, α′) be two quiver settings such
that there is a vertex v in Q and a vertex v′ in Q′ with αv = 1 = α′v′ . We
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define the connected sum of the two settings to be the quiver setting

( Q
v

#
v′
Q′ , α

v

#
v′
α′ )

where Q
v

#
v′
Q is the quiver obtained by identifying the two vertices v and v′

. . .

  B
BB

BB
BB

BB
. . .

~~||
||

||
||

|

Q1
��������1

  B
BB

BB
BB

BB

~~||
||

||
||

| Q2

. . . . . .

and where α
v

#
v′
α′ is the dimension vector that restricts to α (resp. α′) on Q

(resp. Q′).

Example 5.5

With this notation we have

C[iss
α

v

#
v′
α′
Q
v

#
v′
Q′] ' C[issαQ]⊗ C[issα′Q′]

Because traces of necklaces passing more than once through a vertex where the
dimension vector is equal to 1 can be split as a product of traces of necklaces
which pass through this vertex only one time, we see that the invariant ring
of the connected sum is generated by Eulerian necklaces fully contained in Q
or in Q′.

Theorem 5.21 gives a procedure to decide whether a given quiver setting
(Q,α) has a regular ring of invariants. However, is is not feasible to give a
graph theoretic description of all such settings in general. Still, in the special
(but important) case of symmetric quivers, there is a nice graphtheoretic
characterization.

THEOREM 5.22

Let (Q,α) be a symmetric quiver setting such that Q is connected and has no
loops. Then, the ring of polynomial invariants

C[issαQ] = C[repαQ]GL(α)

is a polynomial ring if and only if the following conditions are satisfied.
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1. Q is tree-like, that is, if we draw an edge between vertices of Q whenever
there is at least one arrow between them in Q, the graph obtained in a
tree.

2. α is such that in every branching vertex v of the tree we have αv = 1.

3. The quiver subsetting corresponding to branches of the tree are connected
sums of the following atomic pieces

I ��������n
&& '&%$ !"#mff

II ��������1

k "* ��������n

k

ai , k ≤ n

III ��������1
&& ��������nee

&& '&%$ !"#mff

IV ��������n
%% ��������2ff

&&'&%$ !"#mee

PROOF Using theorem 5.21 any of the atomic quiver settings has a
polynomial ring of invariants. Type I reduces via b1 to

��������k

��

where k = min(m,n), type II reduces via b1 and b2 to ��������1 , type III reduces
via b1, b3, b1 and b2 to ��������1 and finally, type IV reduces via b1 to

��������2
��
[[

By the previous example, any connected sum constructed out of these atomic
quiver settings has a regular ring of invariants. Observe that such connected
sums satisfy the first two requirements. Therefore, any quiver setting satisfy-
ing the requirements has indeed a polynomial ring of invariants.

Conversely, assume that the ring of invariants C[issαQ] is a polynomial
ring, then there can be no quiver subsetting of the form

�������� ,,

tt

��������ll

����������
44

��

#vertices ≥ 3 ��������
QQ

tt��������
QQ

��������
44



Semisimple Representations 303

For we could look at a semisimple representation type τ with decomposition
��������0

((

tt

��������0hh

����������1

44

��

��������0

TT

tt��������0

TT

��������0

44

⊕


��������1
((

tt

��������1hh

����������0

44

��

��������1

TT

tt��������1

TT

��������1

44

⊕ · · ·
The local quiver contains a subquiver (corresponding to the first two compo-
nents) of type basic with k and l ≥ 2 whence cannot give a polynomial ring.
That is, Q is tree-like.

Further, the dimension vector α cannot have components ≥ 2 at a branching
vertex v. For we could consider the semisimple representation type with
decomposition 

��������1

��
��������0

pp��������2

VV 00

����������1

FF

⊕


��������0

��
��������1

pp��������0

VV 00

����������0

FF

⊕ · · ·
and again the local quiver contains a subquiver setting of type basic with
k = 2 = l (the one corresponding to the first two components). Hence, α
satisfies the second requirement.

It remains to be shown that the branches do not contain other subquiver
settings than those made of the atomic components. That is, we have to rule
out the following subquiver settings

'&%$ !"#a1
(( '&%$ !"#a2hh

(( '&%$ !"#a3hh
(( '&%$ !"#a4hh

with a2 ≥ 2 and a3 ≥ 2 '&%$ !"#a1
(( '&%$ !"#a2hh

(( '&%$ !"#a3hh

with a2 ≥ 3 and a1 ≥ 2, a3 ≥ 2 and

'&%$ !"#a1
(( '&%$ !"#a2hh

$, '&%$ !"#a3dl

whenever a2 ≥ 2. These situations are easily ruled out by theorem 5.21 and
we leave this as a pleasant exercise.

Example 5.6
The quiver setting ��������3

%% ��������2ee

��

��������k

px��������1

TT

tt

%% ��������1

08

��

ee

��������1
%% ��������3ee

44

��������4

TT
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has a polynomial ring of invariants if and only if k ≥ 2.

Example 5.7
Let (Q•, α) be a marked quiver setting and assume that {l1, . . . , lu} are the
marked loops in Q•. If Q is the underlying quiver forgetting the markings we
have by separating traces that

C[issαQ] ' C[issαQ•][tr(l1), . . . , tr(lu)]

Hence, we do not have to do extra work in the case of marked quivers:

A marked quiver setting (Q•, α) has a regular ring of invariants if and only if
(Q,α) can be reduced to a one of the three final quiver settings of theorem 5.21.

5.8 Central singularities

Surprisingly, the reduction steps of section 5.3 allow us to classify all central
singularities of a Cayley-smooth algebra A ∈ alg@n up to smooth equivalence.
Recall that two commutative local rings Cm and Dn are said to be smooth
equivalent if there are numbers k and l such that

Ĉm[[x1, . . . , xk]] ' D̂n[[y1, . . . , yl]]

By theorem 5.8 (and its extension to marked quivers) and the étale local
classification of Cayley-smooth orders it is enough to classify the rings of
invariants of reduced marked quiver settings up to smooth equivalence. We
can always assume that the quiver Q is strongly connected (if not, the ring
of invariants is the tensor product of the rings of invariants of the maximal
strongly connected subquivers). Our aim is to classify the reduced quiver
singularities up to equivalence, so we need to determine the Krull dimension
of the rings of invariants.

LEMMA 5.13
Let (Q•, α) be a reduced marked quiver setting and Q strongly connected.
Then,

dim issα Q
• = 1− χQ(α, α)−m

where m is the total number of marked loops in Q•.

PROOF Because (Q•, α) is reduced, none of the vertices satisfies condition
CvV , whence

χQ(εv, α) ≤ −1 and χQ(α, εv) ≤ −1



Semisimple Representations 305

for all vertices v. In particular it follows (because Q is strongly connected)
from section 4.3 that α is the dimension vector of a simple representation of
Q and that the dimension of the quotient variety

dim issα Q = 1− χQ(α, α)

Finally, separating traces of the loops to be marked gives the required formula.

Extending theorem 5.21 to the setting of marked quivers, we can classify
all smooth points of trissn A for a Cayley-smooth order A.

THEOREM 5.23
Let (Q•, α) be a marked quiver setting such that Q is strongly connected. Then
issα Q• is smooth if and only if the unique reduced marked quiver setting to
which (Q•, α) can be reduced is one of the following five types

��������k ��������k:: ��������2;; cc ��������2;; •cc ��������2• ;; •cc

The next step is to classify for a given dimension d all reduced marked
quiver settings (Q•, α) such that dim issα Q• = d. The following result
limits the possible cases drastically in low dimensions.

LEMMA 5.14
Let (Q•, α) be a reduced marked quiver setting on k ≥ 2 vertices. Then,

dim issα Q
• ≥ 1+

a≥1∑
��������a

a+
a>1∑

��������a• ;;

(2a−1)+
a>1∑

��������a;;

(2a)+
a>1∑

��������a• ;; •cc

(a2 +a−2))+

a>1∑
��������a• ;; cc

(a2 +a−1)+
a>1∑

��������a;; cc

(a2 +a)+ . . .+
a>1∑

��������a•k ;; lcc

((k+ l−1)a2 +a−k)+ . . .

In this sum the contribution of a vertex v with αv = a is determined by the
number of (marked) loops in v. By the reduction steps (marked) loops only
occur at vertices where αv > 1.

PROOF We know that the dimension of issα Q• is equal to

1− χQ(α, α)−m = 1−
∑
v

χQ(εv, α)αv −m

If there are no (marked) loops at v, then χQ(εv, α) ≤ −1 (if not we would
reduce further) which explains the first sum. If there is exactly one (marked)
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loop at v then χQ(εv, α) ≤ −2 for if χQ(εv, α) = −1 then there is just one
outgoing arrow to a vertex w with αw = 1 but then we can reduce the quiver
setting further. This explains the second and third sums. If there are k
marked loops and l ordinary loops in v (and Q has at least two vertices), then

−χQ(εv, α)αv − k ≥ ((k + l)αv − αv + 1)αv − k

which explains all other sums.

Observe that the dimension of the quotient variety of the one vertex marked
quivers ��������a•k ;; lcc

is equal to (k + l − 1)a2 + 1 − k and is singular (for a ≥ 2) unless k + l = 2.
We will now classify the reduced singular settings when there are at least two
vertices in low dimensions. By the previous lemma it follows immediately
that

1. the maximal number of vertices in a reduced marked quiver setting
(Q•, α) of dimension d is d−1 (in which case all vertex dimensions must
be equal to one)

2. if a vertex dimension in a reduced marked quiver setting is a ≥ 2, then
the dimension d ≥ 2a.

LEMMA 5.15

Let (Q•, α) be a reduced marked quiver setting such that issα Q• is singular
of dimension d ≤ 5, then α = (1, . . . , 1). Moreover, each vertex must have at
least two incoming and two outgoing arrows and no loops.

PROOF From the lower bound of the sum formula it follows that if some
αv > 1 it must be equal to 2 and must have a unique marked loop and there
can only be one other vertex w with αw = 1. If there are x arrows from w to
v and y arrows from v to w, then

dim issα Q
• = 2(x+ y)− 1

whence x or y must be equal to 1 contradicting reducedness. The second
statement follows as otherwise we could perform extra reductions.

PROPOSITION 5.13

The only reduced marked quiver singularity in dimension 3 is

3con : ��������1
&. ��������1fn
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The reduced marked quiver singularities in dimension 4 are

43a :

��������1
**

��

��������1jj

vv��������1

66VV

43b :

��������1
&. ��������1

rz��������1

RZ

42 : ��������1
&. ��������1Udo

PROOF All one vertex marked quiver settings with quotient dimension
≤ 5 are smooth, so we are in the situation of lemma 5.15. If the dimension
is 3 there must be two vertices each having exactly two incoming and two
outgoing arrows, whence the indicated type is the only one. The resulting
singularity is the conifold singularity

C[[x, y, u, v]]
(xy − uv)

In dimension 4 we can have three or two vertices. In the first case, each
vertex must have exactly two incoming and two outgoing arrows whence the
first two cases. If there are two vertices, then just one of them has three
incoming arrows and one has three outgoing arrows.

Assume that all vertex dimensions are equal to one, then one can write any
(trace of an) oriented cycle as a product of (traces of) primitive oriented cycles
(that is, those that cannot be decomposed further). From this one deduces
immediately the following.

LEMMA 5.16
Let (Q•, α) be a reduced marked quiver setting such that all αv = 1. Let m be
the maximal graded ideal of C[repα Q

•]GL(α), then a vectorspace basis of

mi

mi+1

is given by the oriented cycles in Q which can be written as a product of i
primitive cycles, but not as a product of i+ 1 such cycles.

Clearly, the dimensions of the quotients mi/mi+1 are (étale) isomorphism
invariants. Recall that the first of these numbers m/m2 is the embedding
dimension of the singularity. Hence, for d ≤ 5 this simple-minded counting
method can be used to separate quiver singularities.

THEOREM 5.24
There are precisely three reduced quiver singularities in dimension d = 4.

PROOF The number of primitive oriented cycles of the three types of
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reduced marked quiver settings in dimension four

43a :

��������1
**

��

��������1jj

vv��������1

66VV

43b :

��������1
&. ��������1

rz��������1

RZ

42 : ��������1
&. ��������1Udo

is 5, respectively 8 and 6. Hence, they give nonisomorphic rings of invariants.

If some of the vertex dimensions are ≥ 2 we have no easy description of
the vectorspaces mi/mi+1 and we need a more refined argument. The idea is
to answer the question ”what other singularities can the reduced singularity
see?” An α-representation type is a datum

τ = (e1, β1; . . . ; el, βl)

where the ei are natural numbers ≥ 1, the βi are dimension vectors of simple
representations of Q such that α =

∑
i eiβi. Any neighborhood of the trivial

representation contains semisimple representations of Q of type τ for any α-
representation type. Let (Q•τ , ατ ) be the associated (marked) local quiver
setting. Assume that issατ Qτ has a singularity, then the couple

(dimension of strata, type of singularity)

is a characteristic feature of the singularity of issα Q• and one can often
distinguish types by these couples. The fingerprint of a reduced quiver singu-
larity will be the Hasse diagram of those α-representation types τ such that
the local marked quiver setting (Q•τ , ατ ) can be reduced to a reduced quiver
singularity (necessarily occurring in lower dimension and the difference be-
tween the two dimensions gives the dimension of the stratum). Clearly, this
method fails in case the marked quiver singularity is an isolated singularity.
Fortunately, we have a complete characterization of these.

THEOREM 5.25

[13] The only reduced marked quiver settings (Q•, α) such that the quotient
variety is an isolated singularity are of the form

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

kl +3

k1
;C����

����

k2

KS
k3

[c????
????

k4

ks

$$
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where Q has l vertices and all ki ≥ 2. The dimension of the corresponding
quotient is

d =
∑
i

ki + l − 1

and the unordered l-tuple {k1, . . . , kl} is an (étale) isomorphism invariant of
the ring of invariants.

Not only does this result distinguish among isolated reduced quiver sin-
gularities, but it also shows that in all other marked quiver settings we will
have additional families of singularities. We will illustrate the method in some
detail to separate the reduced marked quiver settings in dimension 6 having
one vertex of dimension two.

PROPOSITION 5.14

The reduced singularities of dimension 6 such that α contains a component
equal to 2 are pairwise non-equivalent.

PROOF One can show that the reduced marked quiver setting for d = 6
with at least one component ≥ 2 are

��������1

����������1
'' ��������2gg

''

FF

��������1gg

type A

��������1
'' ��������2gg

''

•

�� ��������1gg

type B

��������1
'' ��������2gg

•

��

•

\\

type C

��������2 •cc• ;;

•

��

type D

We will order the vertices such that α1 = 2.

type A: There are three different representation types τ1 =
(1, (2; 1, 1, 0); 1, (0; 0, 0, 1)) (and permutations of the 1-vertices). The local
quiver setting has the form

��������1
&.��

;; [[ ��������1fn

because for β1 = (2; 1, 1, 0) and β2 = (0; 0, 0, 1) we have that χQ(β1, β1) =
−2, χQ(β1, β2) = −2, χQ(β2, β1) = −2 and χ(β2, β2) = 1. These three
representation types each give a three-dimensional family of conifold (type
3con) singularities.
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Further, there are three different representation types τ2 =
(1, (1; 1, 1, 0); 1, (1; 0, 0, 1)) (and permutations) of which the local quiver
setting is of the form

��������1
&.-- MM ��������1fn cc

as with β1 = (1; 1, 1, 0) and β2 = (1; 0, 0, 1) we have χQ(β1, β1) = −1,
χQ(β1, β2) = −2, χQ(β2, β1) = −2 and χQ(β2, β2) = 0. These three represen-
tation types each give a three-dimensional family of conifold singularities.

Finally, there are the three representation types

τ3 = (1, (1; 1, 0, 0); 1, (1; 0, 1, 0); 1, (0; 0, 0, 1))

(and permutations) with local quiver setting

��������1
**

��

-- ��������1jj

vv

qq

��������1

66VV

These three types each give a two-dimensional family of reduced singularities
of type 43a.

The degeneration order on representation types gives τ1 < τ3 and τ2 < τ3
(but for different permutations) and the fingerprint of this reduced singularity
can be depicted as

3con

E�)
EEEEEEE

EEEEEEE

EEEEEEE 3con

yu� yyyyyyy

yyyyyyy

yyyyyyy

43a

�
�
•

type B: There is one representation type τ1 = (1, (1; 1, 0); 1, (1; 0, 1)) giving
as above a three-dimensional family of conifold singularities, one represen-
tation type τ2 = (1, (1; 1, 1); 1, (1; 0, 0)) giving a three-dimensional family of
conifolds and finally one representation type

τ3 = (1, (1; 0, 0); 1, (1; 0, 0); 1, (0; 1, 1); 1, (0; 0, 1))

of which the local quiver setting has the form

��������1
**

��

-- ��������1jj

����������1
**

FF

��������1jj

FF
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(the loop in the downright corner is removed to compensate for the marking)
giving rise to a one-dimensional family of five-dimensional singularities of type
54a. This gives the fingerprint

3con

""E
EE

EE
EE

E 3con

||yy
yy

yy
yy

54a

��
•

type C: We have a three-dimensional family of conifold singularities com-
ing from the representation type (1, (1; 1); 1, (1; 0)) and a two-dimensional
family of type 43a singularities corresponding to the representation type
(1, (1; 0); 1, (1, 0); 1, (0; 1)). Therefore, the fingerprint is depicted as

3con - 43a
- •

type D: We have just one three-dimensional family of conifold singulari-
ties determined by the representation type (1, (1); 1, (1)) so the fingerprint is
3con - •. As fingerprints are isomorphism invariants of the singularity,
this finishes the proof.

We claim that the minimal number of generators for these invariant rings
is 7. The structure of the invariant ring of three 2× 2 matrices upto simulta-
neous conjugation was determined by Ed Formanek [33] who showed that it
is generated by 10 elements

{tr(X1), tr(X2), tr(X3), det(X1), det(X2), det(X3), tr(X1X2), tr(X1X3),

tr(X2X3), tr(X1X2X3)}
and even gave the explicit quadratic polynomial satisfied by tr(X1X2X3) with
coefficients in the remaining generators. The rings of invariants of the four
cases of interest to us are quotients of this algebra by the ideal generated by
three of its generators : for type A it is (det(X1), det(X2), det(X3)), for type
B: (det(X1), tr(X2), det(X3)), for type C: (det(X1), tr(X2), tr(X3)) and for
type D: (tr(X1), tr(X2), tr(X3)).

These two tricks (counting cycles and fingerprinting) are sufficient to classify
all central singularities of Cayley-smooth orders for central dimension d ≤ 6.
We will give the details for d = 5, the remaining cases for d = 6 can be found
in the paper [14].

PROPOSITION 5.15
The reduced marked quiver settings for d = 5 are

52a :
��������1

&. ��������1

4

fn
52b : ��������1

U$/ ��������1Udo
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53a :

��������1
**

��

��������1

rz��������1

66RZ

53b :

��������1
&.

��

��������1jj

vv��������1

66VV

53c :

��������1
U$/ ��������1

rz��������1

RZ

53d :

��������1
&. ��������1

rz

jj

��������1

RZ

54a :

��������1
**

��

��������1jj

����������1
**

FF

��������1jj

FF

54b :

��������1
**

��

��������1jj

����������1
**

77ppppppppppppp ��������1jj

ggNNNNNNNNNNNNN
54c :

��������1
&. ��������1

wwppppppppppppp

����������1
**

OO

��������1jj

ggNNNNNNNNNNNNN

54d :

��������1
&. ��������1

�
��������1

BJ

��������1fn

54e :

��������1
&. ��������1jj

����������1
**

OO

��������1fn

PROOF We are in the situation of lemma 5.15 and hence know that all
vertex-dimensions are equal to one, every vertex has at least two incoming
and two outgoing arrows and the total number of arrows is equal to 5− 1 + k
where k is the number of arrows, which can be at most 4.

k = 2: There are 6 arrows and as there must be at least two incoming
arrows in each vertex, the only possibilities are types 52a and 52b.

k = 3: There are seven arrows. Hence every two vertices are connected,
otherwise one needs at least 8 arrows

��������1
"* ��������1

"*
bj ��������1bj

There is one vertex with 3 incoming arrows and one vertex with 3 outgoing
arrows. If these vertices are equal (= v), there are no triple arrows. Call x
the vertex with 2 arrows coming from v and y the other one. Because there
are already two incoming arrows in x, χQ(εy, εx) = 0. This also implies that
χQ(εy, εv) = −2 and χQ(εx, εv) = χQ(εx, εy) = −1. This gives us setting 53a.
If the two vertices are different, we can delete one arrow between them, which
leaves us with a singularity of dimension d = 4 (because now all vertices have
2 incoming and 2 outgoing vertices). So starting from the types 43a−b and
adding one extra arrow we obtain three new types 53b−d.

k = 4: There are 8 arrows so each vertex must have exactly two incoming
and two outgoing arrows. First consider the cases having no double arrows.
Fix a vertex v, there is at least one vertex connected to v in both directions.
This is because there are 3 remaining vertices and four arrows connected to v
(two incoming and two outgoing). If there are two such vertices, w1 and w2,
the remaining vertex w3 is not connected to v. Because there are no double
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arrows we must be in case 54a. If there is only one such vertex, the quiver
contains two disjoint cycles of length 2. This leads to type 54b.

If there is precisely one double arrow (from v to w), the two remaining
vertices must be contained in a cycle of length 2 (if not, there would be 3
arrows leaving v). This leads to type 54c.

If there are two double arrows, they can be consecutive or disjoint. In the
first case, all arrows must be double (if not, there are three arrows leaving one
vertex), so this is type 54d. In the latter case, let v1 and v2 be the starting
vertices of the double arrows and w1 and w2 the end points. As there are
no consecutive double arrows, the two arrows leaving w1 must go to different
vertices not equal to w2. An analogous condition holds for the arrows leaving
w2 and therefore we are in type 54e.

Next, we have to separate the corresponding rings of invariants up to iso-
morphism.

THEOREM 5.26
There are exactly ten reduced marked quiver singularities in dimension d = 5.
Only the types 53a and 54e have an isomorphic ring of invariants.

PROOF Recall that the dimension of m/m2 is given by the number of
primitive cycles in Q. These numbers are

type dim m/m2 type dim m/m2

52a 8 54a 6
52b 9 54b 6
53a 8 54c 9
53b 7 54d 16
53c 12 54e 8
53d 10

Type 54a can be separated from type 54b because 54a contains 2 + 4 two-
dimensional families of conifold singularities corresponding to representation
types of the form {

1 1
0 0 ⊕ 0 0

1 1
1 0
1 0 ⊕ 0 1

0 1

and 4× 1 1
1 0 ⊕ 0 0

0 1

whereas type 54b has only 1 + 4 such families as the decomposition

0 1
0 1 ⊕ 1 0

1 0

is not a valid representation type.
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Type 52a and 52b are both isolated singularities because we have no non-
trivial representation types, whereas types 54c, and 54e are not as they have
representation types of the form

0 1
0 0 ⊕ 1 0

0 0 ⊕ 0 0
1 1

giving local quivers smooth equivalent to type 43b (in the case of type 54c)
and to type 3a (in the case of 53e).

Finally, as we know the algebra generators of the rings of invariants (the
primitive cycles) it is not difficult to compute these rings explicitly. Type 53a

and type 54e have a ring of invariants isomorphic to

C[Xi,Yi,Zij :1≤i,j≤2]
(Z11Z22=Z12Z21,X1Y1Z22=X1Y2Z21=X2Y1Z12=X2Y2Z11)
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Chapter 6

Nilpotent Representations

Having obtained some control over the quotient variety trissn A of a Cayley-
smooth algebra A we turn to the study of the fibers of the quotient map

trepn A
π-- trissn A

If (Q•, α) is the local marked quiver setting of a point ξ ∈ trissn A then the
GLn-structure of the fiber π−1(ξ) is isomorphic to the GL(α)-structure of the
nullcone Nullα Q• consisting of all nilpotent α-dimensional representations of
Q•. In geometric invariant theory, nullcones are investigated by a refinement
of the Hilbert criterion : Hesselink’s stratification.

The main aim of the present chapter is to prove that the different strata
in the Hesselink stratification of the nullcone of quiver-representations can be
studied via moduli spaces of semistable quiver-representations. We will illus-
trate the method first by considering nilpotent m-tuples of n × n matrices
and generalize the results later to quivers and Cayley-smooth orders. The
methods allow us to begin to attack the ”hopeless” problem of studying si-
multaneous conjugacy classes of matrices. We then turn to the description of
representation fibers, which can be studied quite explicitly for low-dimensional
Cayley-smooth orders, and investigate the fibers of the Brauer-Severi fibra-
tion. Before reading the last two sections on Brauer-Severi varieties, it may
be helpful to glance through the final chapter where similar, but easier, con-
structions are studied.

6.1 Cornering matrices

In this section we will outline the main idea of the Hesselink stratification of
the nullcone [45] in the generic case, that is, the action of GLn by simultaneous
conjugation on m-tuples of matrices Mm

n = Mn ⊕ . . .⊕Mn. With Nullmn we
denote the nullcone of this action

Nullmn = {x = (A1, . . . , Am) ∈Mm
n | 0 = (0, . . . , 0) ∈ O(x)}

It follows from the Hilbert criterium 2.2 that x = (A1, . . . , Am) belongs to the
nullcone if and only if there is a one-parameter subgroup C∗ λ- GLn such

315
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that

lim
t→0

λ(t).(A1, . . . , Am) = (0, . . . , 0)

We recall from proposition 2.5 that any one-parameter subgroup of GLn is
conjugated to one determined by an integral n-tuple (r1, . . . , rn) ∈ Zn by

λ(t) =

t
r1 0

. . .
0 trn


Moreover, permuting the basis if necessary, we can conjugate this λ to one
where the n-tuple if dominant , that is, r1 ≥ r2 ≥ . . . ≥ rn. By applying
permutation Jordan-moves , that is, by simultaneously interchanging certain
rows and columns in all Ai, we may therefore assume that the limit-formula
holds for a dominant one-parameter subgroup λ of the maximal torus

Tn ' C∗ × . . .× C∗︸ ︷︷ ︸
n

= {

c1 0
. . .

0 cn

 | ci ∈ C∗ } ⊂ - GLn

of GLn. Computing its action on an n× n matrix A we obtain

t
r1 0

. . .
0 trn


a11 . . . a1n

...
...

an1 . . . ann


t
−r1 0

. . .
0 r−rn

 =

t
r1−r1a11 . . . t

r1−rna1n

...
...

trn−r1an1 . . . t
rn−rnann


But then, using dominance ri ≤ rj for i ≥ j, we see that the limit is only
defined if aij = 0 for i ≥ j, that is, when A is a strictly upper triangular
matrix. We have proved the first ”cornering” result.

LEMMA 6.1

Any m-tuple x = (A1, . . . , Am) ∈ Nullmn has a point in its orbit O(x) under
simultaneous conjugation x′ = (A′1, . . . , A

′
m) with all A′i strictly upper trian-

gular matrices. In fact permutation Jordan-moves suffice to arrive at x′.

For specific m-tuples x = (A1, . . . , Am) it might be possible to improve on
this result. That is, we want to determine the smallest ”corner” C in the upper
right-hand corner of the matrix, such that all the component matrices Ai can
be conjugated simultaneously to matrices A′i having only nonzero entries in
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the corner C

C =

and no strictly smaller corner C ′ can be found with this property. Our first
task will be to compile a list of the relevant corners and to define an order
relation on this set. Consider the weight space decomposition of Mm

n for the
action by simultaneous conjugation of the maximal torus Tn

Mm
n = ⊕1≤i,j≤nM

m
n (πi − πj) = ⊕1≤i,j≤nC⊕mπi−πj

where c = diag(c1, . . . , cn) ∈ Tm acts on any element of Mm
n (πi − πj) by

multiplication with cic−1
j , that is, the eigenspace Mm

n (πi− πj) is the space of
the (i, j)-entries of the m-matrices. We call

W = {πi − πj | 1 ≤ i, j ≤ n}

the set of Tn-weights of Mm
n . Let x = (A1, . . . , Am) ∈ Nullmn and consider the

subset Ex ⊂ W consisting of the elements πi−πj such that for at least one of
the matrix components Ak the (i, j)-entry is nonzero. Repeating the argument
above, we see that if λ is a one-parameter subgroup of Tn determined by the
integral n-tuple (r1, . . . , rn) ∈ Zn such that lim λ(t).x = 0 we have

∀ πi − πj ∈ Ex we have ri − rj ≥ 1

Conversely, let E ⊂ W be a subset of weights, we want to determine the
subset

{s = (s1, . . . , sn) ∈ Rn | si − sj ≥ 1 ∀ πi − πj ∈ E }

and determine a point in this set, minimal with respect to the usual norm

‖ s ‖=
√
s21 + . . .+ s2n

Let s = (s1, . . . , sn) attain such a minimum. We can partition the entries of
s in a disjoint union of strings

{pi, pi + 1, . . . , pi + ki}

with ki ∈ N and subject to the condition that all the numbers pij
def
= pi + j

with 0 ≤ j ≤ ki occur as components of s, possibly with a multiplicity that we
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denote by aij . We call a string stringi = {pi, pi + 1, . . . , pi + ki} of s balanced
if and only if ∑

sk∈stringi

sj =
ki∑
j=0

aij(pi + j) = 0

In particular, all balanced strings consists entirely of rational numbers. We
have

LEMMA 6.2
Let E ⊂ W, then the subset of Rn determined by

RnE = { (r1, . . . , rn) | ri − rj ≥ 1 ∀ πi − πj ∈ E}

has a unique point sE = (s1, . . . , sn) of minimal norm ‖ sE ‖. This point is
determined by the characteristic feature that all its strings are balanced. In
particular, sE ∈ Qn.

PROOF Let s be a minimal point for the norm in RnE and consider a string
of s and denote with S the indices k ∈ {1, . . . , n} such that sk ∈ string. Let
πi− πj ∈ E, then if only one of i or j belongs to S we have a strictly positive
number aij

si − sj = 1 + rij with rij > 0

Take ε0 > 0 smaller than all rij and consider the n-tuple

sε = s+ ε(δ1S , . . . , δnS) with δkS = 1 if k ∈ S and 0 otherwise

with | ε |≤ ε0. Then, sε ∈ RnE for if πi − πj ∈ E and i and j both belong to S
or both do not belong to S then (sε)i − (sε)j = si − sj ≥ 1 and if one of i or
j belong to S, then

(sε)i − (sε)j = 1 + rij ± ε ≥ 1

by the choice of ε0. However, the norm of sε is

‖ sε ‖=
√
‖ s ‖ +2ε

∑
k∈S

sk + ε2#S

Hence, if the string would not be balanced,
∑
k∈S sk 6= 0 and we can choose

ε small enough such that ‖ sε ‖<‖ s ‖, contradicting minimality of s.

For given n we have the following algorithm to compile the list Sn of all
dominant n-tuples (s1, . . . , sn) (that is, si ≤ sj whenever i ≥ j) having all its
strings balanced.

• List all Young-diagrams Yn = {Y1, . . .} having ≤ n boxes.



Nilpotent Representations 319

• For every diagram Yl fill the boxes with strictly positive integers subject
to the rules

1. the total sum is equal to n

2. no two rows are filled identically

3. at most one row has length 1

This gives a list Tn = {T1, . . .} of tableaux.

• For every tableau Tl ∈ Tn, for each of its rows (a1, a2, . . . , ak) find a
solution p to the linear equation

a1x+ a2(x+ 1) + . . .+ ak(x+ k) = 0

and define the
∑
ai-tuple of rational numbers

(p, . . . , p︸ ︷︷ ︸
a1

, p+ 1, . . . , p+ 1︸ ︷︷ ︸
a2

, . . . p+ k, . . . , p+ k︸ ︷︷ ︸
ak

)

Repeating this process for every row of Tl we obtain an n-tuple, which
we then order.

The list Sn will be the combinatorial object underlying the relevant corners
and the stratification of the nullcone.

Example 6.1 Sn for small n

For n = 2, we have 1 1 giving ( 1
2 ,−

1
2 ) and 2 giving (0, 0). For n = 3 we

have five types

S3 =

tableau s1 s2 s3 ‖ s ‖2

1 1 1 1 0 −1 2
1 2 1

3
1
3 −

2
3

2
3

2 1 2
3 −

1
3 −

1
3

2
3

1 1
1 1

2 0 − 1
2

1
2

3 0 0 0 0
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S4 has eleven types

S4 =

tableau s1 s2 s3 s4 ‖ s ‖2

1 1 1 1 3
2

1
2 −

1
2 −

3
2 5

2 1 1 5
4

1
4 −

3
4 −

3
4

11
4

1 1 2 3
4

3
4 −

1
4 −

5
4

11
4

1 2 1 1 0 0 −1 2
2 2 1

2
1
2 −

1
2 −

1
2 1

3 1 3
4 −

1
4 −

1
4 −

1
4

3
4

1 3 1
4

1
4

1
4 −

3
4

3
4

1 2
1 1

3
1
3 0 − 2

3
2
3

2 1
1 2

3 0 − 1
3 −

1
3

2
3

1 1
2 1

2 0 0 − 1
2

1
2

4 0 0 0 0 0

Observe that we ordered the elements in Sn according to ‖ s ‖. The reader is
invited to verify that S5 has 28 different types.

To every s = (s1, . . . , sn) ∈ Sn we associate the following data

• the corner Cs is the subspace of Mm
n consisting of those m tuples of

n× n matrices with zero entries except perhaps at position (i, j) where
si − sj ≥ 1. A partial ordering is defined on these corners by the rule

Cs′ < Cs ⇔ ‖ s′ ‖ < ‖ s ‖

• the parabolic subgroup Ps which is the subgroup of GLn consisting of
matrices with zero entries except perhaps at entry (i, j) when si−sj ≥ 0

• the Levi subgroup Ls which is the subgroup of GLn consisting of matrices
with zero entries except perhaps at entry (i, j) when si−sj = 0. Observe
that Ls =

∏
GLaij

where the aij are the multiplicities of pi + j

Example 6.2
Using the sequence of types in the previous example, we have that the relevant
corners and subgroup for 3× 3 matrices are

Cs
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Ps

t t tt tt
t t tt t tt

t t tt tt t
t t tt tt

t t tt t tt t t
Ls

t t t
t tt t t

t t tt t
t t t

t t tt t tt t t
For 4× 4 matrices the relevant corners are

Returning to the corner-type of an m-tuple x = (A1, . . . , Am) ∈ Nullmn , we
have seen that Ex ⊂ W determines a unique sEx ∈ Qn which is unique up
to permuting the entries an element s of Sn. As permuting the entries of s
translates into permuting rows and columns in Mn(C) we have the following.

THEOREM 6.1
Every x = (A1, . . . , Am) ∈ Nullmn can be brought by permutation Jordan-
moves to an m-tuple x′ = (A′1, . . . , A

′
m) ∈ Cs. Here, s is the dominant re-

ordering of sEx
with Ex ⊂ W the subset πi − πj determined by the nonzero

entries at place (i, j) of one of the components Ak. The permutation of rows
and columns is determined by the dominant reordering.

The m-tuple s (or sEx
) determines a one-parameter subgroup λs of Tn

where λ corresponds to the unique n-tuple of integers

(r1, . . . , rn) ∈ N+s ∩ Zn with gcd(ri) = 1

For any one-parameter subgroup µ of Tn determined by an integral n-tuple
µ = (a1, . . . , an) ∈ Zn and any x = (A1, . . . , An) ∈ Nullmn we define the
integer

m(x, µ) = min {ai − aj | x contains a nonzero entry in Mm
n (πi − πj) }

From the definition of RnE it follows that the minimal value sE and λsE
is

sEx =
λsEx

m(x, λsEx
)

and s =
λs

m(x, λs)
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We can now state to what extent λs is an optimal one-parameter subgroup of
Tn.

THEOREM 6.2
Let x = (A1, . . . , Am) ∈ Nullmn and let µ be a one-parameter subgroup con-
tained in Tn such that lim

t→0
λ(t).x = 0, then

‖ λsEx
‖

m(x, λsEx
)
≤ ‖ µ ‖
m(x, µ)

The proof follows immediately from the observation that µ
m(x,µ) ∈ RnEx

and
the minimality of sEx

. Phrased differently, there is no simultaneous reordering
of rows and columns that admit an m-tuple x” = (A”1, . . . , A”m) ∈ Cs′ for a
corner Cs′ < Cs. In the next section we will improve on this result.

6.2 Optimal corners

We have seen that one can transform anm-tuple x = (A1, . . . , Am) ∈ Nullmn
by interchanging rows and columns to an m-tuple in cornerform Cs. However,
it is possible that another point in the orbit O(x), say, y = g.x = (B1, . . . , Bm)
can be transformed by permutation Jordan moves in a strictly smaller corner.

Example 6.3
Consider one 3× 3 nilpotent matrix of the form

x =

0 a b
0 0 0
0 0 0

 with ab 6= 0

Then, Ex = {π1 − π2, π1 − π3} and the corresponding s = sEx
= ( 2

3 ,−
1
3 ,−

1
3 )

so x is clearly of corner type

Cs =

However, x is a nilpotent matrix of rank 1 and by the Jordan-normalform we
can conjugate it in standard form, that is, there is some g ∈ GL3 such that

y = g.x = gxg−1 =

0 1 0
0 0 0
0 0 0


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For this y we have Ey = {π1 − π2} and the corresponding sEy
= ( 1

2 ,−
1
2 , 0),

which can be brought into standard dominant form s′ = ( 1
2 , 0,−

1
2 ) by inter-

changing the two last entries. Hence, by interchanging the last two rows and
columns, y is indeed of corner type

Cs′ =

and we have that Cs′ < Cs.

We have used the Jordannormalform to produce this example. As there
are no known canonical forms for m tuples of n× n matrices, it is a difficult
problem to determine the optimal corner type in general.

DEFINITION 6.1 We say that x = (A1, . . . , Am) ∈ Nullmn is of optimal
corner type Cs if after reordering rows and columns, x is of corner type Cs
and there is no point y = g.x in the orbit that is of corner type Cs′ with
Cs′ < Cs.

We can give an elegant solution to the problem of determining the optimal
corner type of an m-tuple in Nullmn by using results on θ-semistable repre-
sentations. We assume that x = (A1, . . . , Am) is brought into corner type Cs
with s = (s1, . . . , sn) ∈ Sn. We will associate a quiver-representation to x. As
we are interested in checking whether we can transform x to a smaller corner-
type, it is intuitively clear that the border region of Cs will be important.

• the border Bs is the subspace of Cs consisting of those m-tuples of
n × n matrices with zero entries except perhaps at entries (i, j) where
si − sj = 1.

Example 6.4
For 3×3 matrices we have the following corner-types Cs having border-regions
Bs and associated Levi-subgroups Ls

Cs

Bs

d

Ls

t t t
t tt t t

t t tt t
t t t

t t tt t tt t t
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For 4× 4 matrices the relevant data are

Cs =

Bs =

d dd d d dd d

Ls =

t t t t
t t t tt t

t tt t t t
t t tt t t

t tt t t tt t
t t t tt t tt t t

Cs =

Bs =

Ls =

t t tt t tt t t t
t tt t t t

t t t tt t
t t tt t t

t t t tt t t tt t t tt t t t
From these examples, it is clear that the action of the Levi-subgroup Ls on
the border Bs is a quiver-setting. In general, let s ∈ Sn be determined by the
tableau Ts, then the associated quiver-setting (Qs, αs) is

• Qs is the quiver having as many connected components as there are
rows in the tableau Ts. If the i-th row in Ts is

(ai0, ai1, . . . , aiki)

then the corresponding string of entries in s is of the form

{pi, . . . , pi︸ ︷︷ ︸
ai0

, pi + 1, . . . , pi + 1︸ ︷︷ ︸
ai1

, . . . , pi + ki, . . . , pi + ki︸ ︷︷ ︸
aiki

}

and the i-th component of Qs is defined to be the quiver Qi on ki + 1
vertices having m arrows between the consecutive vertices, that is, Qi
is ��������0 m +3 ��������1 m +3 ��������2 m +3 . . . m +3/.-,()*+ki
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• the dimension vector αi for the i-th component quiver Qi is equal to the
i-th row of the tableau Ts, that is

αi = (ai0, ai1, . . . , aiki
)

and the total dimension vector αs is the collection of these component
dimension vectors.

• the character GL(αs)
χs- C∗ is determined by the integral n-tuple

θs = (t1, . . . , tn) ∈ Zn where if entry k corresponds to the j-th vertex of
the i-th component of Qs we have

tk = nij
def= d.(pi + j)

where d is the least common multiple of the numerators of the pi’s for
all i. Equivalently, the nij are the integers appearing in the descrip-
tion of the one-parameter subgroup λs = (r1, . . . , rn) grouped together
according to the ordering of vertices in the quiver Qs. Recall that the
character χs is then defined to be

χs(g1. . . . , gn) =
n∏
i=1

det(gi)ti

or in terms of GL(αs) it sends an element gij ∈ GL(αs) to∏
i,j det(gij)

nij .

PROPOSITION 6.1
The action of the Levi-subgroup Ls =

∏
i,j GLaij

on the border Bs coincides
with the base-change action of GL(αs) on the representation space repαs

Qs.
The isomorphism

Bs - repαs
Qs

is given by sending an m-tuple of border Bs-matrices (A1, . . . , Am) to the
representation in repαs

Qs where the j-th arrow between the vertices va and
va+1 of the i-th component quiver Qi is given by the relevant block in the
matrix Aj.

Some examples are depicted in figure 6.1 Using these conventions we can
now state the main result of this section, giving a solution to the problem of
optimal corners.

THEOREM 6.3
Let x = (A1, . . . , Am) ∈ Nullmn be of corner type Cs. Then, x is of optimal

corner type Cs if and only if under the natural maps

Cs -- Bs
'- repαs

Qs
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tableau Ls Bs θs (Qs, αs, θs)

2 1 1

t t t tt t
d d

(5, 1,−3,−3)
5 1 −3��������1 ��������1 ��������2moo moo

1 2 1

t t tt t t
d

(1, 0, 0,−1)
1 0 −1��������1 ��������2 ��������1moo moo

1 2
1

t tt t t t (1, 1, 0,−2)

1 −2

0

��������2 ��������1

��������1

moo

FIGURE 6.1: Some examples for 4× 4 matrices.

(the first map forgets the nonborder entries) x is mapped to a θs-semistable
representation in repαs

Qs.

6.3 Hesselink stratification

Every orbit in Nullmn has a representative x = (A1, . . . , Am) with all Ai
strictly upper triangular matrices. That is, if N ⊂ Mn is the subspace of
strictly upper triangular matrices, then the action map determines a surjection

GLn ×Nm ac-- Nullmn

Recall that the standard Borel subgroup B is the subgroup of GLn consisting
of all upper triangular matrices and consider the action of B on GLn ×Mm

n

determined by
b.(g, x) = (gb−1, b.x)

Then, B-orbits in GLn × Nm are mapped under the action map ac to the
same point in the nullcone Nullmn . Consider the morphisms

GLn ×Mm
n

π-- GLn/B ×Mm
n

which sends a point (g, x) to (gB, g.x). The quotient GLn/B is called a flag
variety and is a projective manifold. Its points are easily seen to correspond
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to complete flags

F : 0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn = Cn with dimC Fi = i

of subspaces of Cn. For example, if n = 2 then GL2/B ' P1. Consider the
fiber π−1 of a point (g, (B1, . . . , Bm)) ∈ GLn/B ×Mm

n . These are the points

(h, (A1, . . . , Am)) such that

{
g−1h = b ∈ B
bAib

−1 = g−1Big for all 1 ≤ i ≤ m.

Therefore, the fibers of π are precisely the B-orbits in GLn ×Mm
n . That is,

there exists a quotient variety for the B-action on GLn ×Mm
n which is the

trivial vectorbundle of rank mn2

T = GLn/B ×Mm
n

p-- GLn/B

over the flag variety GLn/B. We will denote with GLn ×B Nm the image of
the subvariety GLn × Nm of GLn ×Mm

n under this quotient map. That is,
we have a commuting diagram

GLn ×Nm ⊂ - GLn ×Mm
n

GLn ×B Nm

??
⊂- GLn/B ×Mm

n

??

Hence, V = GLn×BNm is a subbundle of rank m.n(n−1)
2 of the trivial bundle

T over the flag variety. Note however that V itself is not trivial as the action
of GLn does not map Nm to itself.

THEOREM 6.4
Let U be the open subvariety of m-tuples of strictly upper triangular matrices
Nm consisting of those tuples such that one of the component matrices has
rank n− 1. The action map ac induces the commuting diagram of figure 6.2.
The upper map is an isomorphism of GLn-varieties for the action on fiber
bundles to be left multiplication in the first component.

Therefore, there is a natural one-to-one correspondence between GLn-orbits
in GLn.U and B-orbits in U . Further, ac is a desingularization of the nullcone
and Nullmn is irreducible of dimension

(m+ 1)
n(n− 1)

2
.

PROOF Let A ∈ N be a strictly upper triangular matrix of rank n − 1
and g ∈ GLn such that gAg−1 ∈ N , then g ∈ B as one verifies by first
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GLn ×B U
' - GLn.U

GLn ×B Nm

?

∩

ac - Nullmn

?

∩

FIGURE 6.2: Resolution of the nullcone.

bringing A into Jordan-normal form Jn(0). This implies that over a point
x = (A1, . . . , Am) ∈ U the fiber of the action map

GLn ×Nm ac-- Nullmn

has dimension n(n−1)
2 = dim B. Over all other points the fiber has at least

dimension n(n−1)
2 . But then, by the dimension formula we have

dim Nullmn = dim GLn + dim Nm − dim B = (m+ 1)
n(n− 1)

2

Over GLn.U this map is an isomorphism of GLn-varieties. Irreducibility of
Nullmn follows from surjectivity of ac as C[Nullmn ] ⊂ - C[GLn]⊗C[Nm] and
the latter is a domain. These facts imply that the induced action map

GLn ×B Nm ac- Nullmn

is birational and as the former is a smooth variety (being a vector bundle over
the flag manifold), this is a desingularization.

Example 6.5
Let n = 2 and m = 1. We have seen in chapter 3 that Null12 is a cone
in 3-space with the singular top the orbit of the zero-matrix and the open
complement the orbit of [

0 1
0 0

]
In this case the flag variety is P1 and the fiber bundle GL2 ×B N has rank

one. The action map is depicted in figure 6.3 and is a GL2-isomorphism over
the complement of the fiber of the top.

Theorem 6.4 gives us a complexity-reduction, both in the dimension of the
acting group and in the dimension of the space acted upon, from

• GLn-orbits in the nullcone Nullmn , to

• B-orbits in Nm.
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FIGURE 6.3: Resolution of Null12.

at least on the stratum GLn.U described before. The aim of the Hesselink
stratification of the nullcone is to extend this reduction also to the comple-
ment.

Let s ∈ Sn and let Cs be the vector space of all m-tuples in Mm
n which

are of cornertype Cs. We have seen that there is a Zariski open subset (but,
possibly empty) Us of Cs consisting of m-tuples of optimal corner type Cs.
Observe that the action of conjugation of GLn on Mm

n induces an action of
the associated parabolic subgroup Ps on Cs.

DEFINITION 6.2 The Hesselink stratum Ss associated to s is the sub-
variety GLn.Us where Us is the open subset of Cs consisting of the optimal
Cs-type tuples.

THEOREM 6.5

With notations as before we have a commuting diagram

GLn ×Ps Us
' - Ss

GLn ×Ps Cs

?

∩

ac - Ss

?

∩

where ac is the action map, Ss is the Zariski closure of Ss in Nullmn and the
upper map is an isomorphism of GLn-varieties.

Here, GLn/Ps is the flag variety associated to the parabolic subgroup Ps and
is a projective manifold. The variety GLn ×Ps Cs is a vector bundle over the
flag variety GLn/Ps and is a subbundle of the trivial bundle GLn ×Ps Mm

n .
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Therefore, the Hesselink stratum Ss is an irreducible smooth variety of di-
mension

dim Ss = dim GLn/Ps + rk GLn ×Ps Cs

= n2 − dim Ps + dimC Cs

and there is a natural one-to-one correspondence between the GLn-orbits in
Ss and the Ps-orbits in Us.

Moreover, the vector bundle GLn ×Ps Cs is a desingularization of Ss hence
”feels” the gluing of Ss to the remaining strata. Finally, the ordering of cor-
ners has the geometric interpretation

Ss ⊂
⋃

‖s′‖≤‖s‖

Ss′

We have seen that Us = p−1 repssαs
(Qs, θs) where Cs

p-- Bs is the canoni-
cal projection forgetting the nonborder entries. As the action of the parabolic
subgroup Ps restricts to the action of its Levi-part Ls on Bs = repαs

Q we
have a canonical projection

Us/Ps
p-- Mss

αs
(Qs, θs)

to the moduli space of θs-semistable representations in repαs
Qs. As none

of the components of Qs admits cycles, these moduli spaces are projective
varieties. For small values of m and n these moduli spaces give good approx-
imations to the study of the orbits in the nullcone.

Example 6.6 Nullcone of m-tuples of 2× 2 matrices
In the first volume we have seen by a brute force method that the orbits
in Null22 correspond to points on P1 together with one extra orbit, the zero
representation. For arbitrary m, the relevant strata-information for Nullm2 is
contained in the following table

tableau s Bs = Cs Ps (Qs, αs, θs)

1 1 ( 1
2 ,−

1
2 )

t tt 1 −1��������1 ��������1moo

2 (0, 0)

t tt t 0��������2

Because Bs = Cs we have that the orbit space Us/Ps ' Mss
αs

(Qs, θs). For
the first stratum, every representation in repαs

Qs is θs-semistable except the
zero-representation (as it contains a subrepresentation of dimension β = (1, 0)
and θs(β) = −1 < 0. The action of Ls = C∗×C∗ on Cm−0 has as orbit space
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Pm−1, classifying the orbits in the maximal stratum. The second stratum
consists of one point, the zero representation.

Example 6.7
A more interesting application, illustrating all of the general phenomena, is
the description of orbits in the nullcone of two 3 × 3 matrices. H. Kraft
described them in [62, p. 202] by brute force. The orbit space decomposes as
a disjoint union of tori and can be represented by the picture

r
0 0

p
4 0

q
4 0

o
4 1

k
6 0

l
6 0

m
6 0

n
6 0

g
7 0

h
6 1

i
6 1

j
7 0

b
7 1

c
7 1

d
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a
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Here, each node corresponds to a torus of dimension the right-hand side num-
ber in the bottom row. A point in this torus represents an orbit with dimen-
sion the left-hand side number. The top letter is included for classification
purposes. That is, every orbit has a unique representant in the following list
of couples of 3× 3 matrices (A,B). The top letter gives the torus, the first 2
rows give the first two rows of A and the last two rows give the first two rows
of B, x, y ∈ C∗

a
0 1 0
0 0 1
0 x 0
0 0 y

b
0 1 0
0 0 1
0 0 0
0 0 x

c
0 1 0
0 0 1
0 x 0
0 0 0

d
0 1 0
0 0 1
0 x y
0 0 x

e
0 1 0
0 0 1
0 x 0
0 0 0

f
0 0 0
0 0 1
0 1 0
0 0 x

g
0 1 0
0 0 0
0 0 0
0 0 1

h
0 1 0
0 0 1
0 0 x
0 0 0

i
0 0 x
0 0 0
0 1 0
0 0 1

j
0 0 0
0 0 1
0 1 0
0 0 0

k
0 0 1
0 0 0
0 1 0
0 0 0

l
0 0 0
0 0 1
0 0 1
0 0 0

m
0 0 1
0 0 0
0 1 0
0 0 0

n
0 0 0
0 0 0
0 1 0
0 0 1

o
0 1 0
0 0 0
0 x 0
0 0 0

p
0 1 0
0 0 0
0 0 0
0 0 0

q
0 0 0
0 0 0
0 1 0
0 0 0

r
0 0 0
0 0 0
0 0 0
0 0 0

We will now derive this result from the above description of the Hesselink
stratification. To begin, the relevant data concerning S3 is summarized in the
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following table

tableau s Bs, Cs Ps (Qs, αs, θs)

1 1 1 (1, 0,−1)

t t t tt tt 1 0 −1��������1 ��������1 ��������1dd
zz

dd
zz

1 2 ( 1
3 ,

1
3 ,−

2
3 )

t t tt t tt 1 −2��������2 ��������1dd
zz

2 1 ( 2
3 ,−

1
3 ,−

1
3 )

t t tt tt t 2 −1��������1 ��������2dd
zz

1 1
1 ( 1

2 , 0,−
1
2 )

t t tt tt
1 −1

0

��������1 ��������1

��������1

dd
zz

3 (0, 0, 0, )

t t tt t tt t t 0��������3

For the last four corner types, Bs = Cs whence the orbit space Us/Ps is
isomorphic to the moduli space Mss

αs
(Qs, θs). Consider the quiver-setting

1 −2

��������2 ��������1ggww

If the two arrows are not linearly independent, then the representation con-
tains a proper subrepresentation of dimension-vector β = (1, 1) or (1, 0) and
in both cases θs(β) < 0 whence the representation is not θs-semistable. If the
two arrows are linearly independent, we can use the GL2-component to bring

them in the form (
[
0
1

]
,

[
1
0

]
), whence Mss

αs
(Qs, αs) is reduced to one point,

corresponding to the matrix-couple of type l

(

0 0 0
0 0 1
0 0 0

 ,

0 0 1
0 0 0
0 0 0

 )

A similar argument, replacing linear independence by common zero-vector
shows that also the quiver-setting corresponding to the tableau 2 1 has
one point as its moduli space, the matrix-tuple of type k. Incidentally, this
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shows that the corners corresponding to the tableaux 2 1 or 1 2 cannot
be optimal when m = 1 as then the row or column vector always has a kernel
or cokernel whence cannot be θs-semistable. This of course corresponds to
the fact that the only orbits in Null13 are those corresponding to the Jordan-
matrixes 0 1 0

0 0 1
0 0 0

 0 1 0
0 0 0
0 0 0

 0 0 0
0 0 0
0 0 0



which are, respectively, of corner type 1 1 1 ,
1 1
1 and 3 , whence the two

other types do not occur. Next, consider the quiver setting

1 −1

0

��������1 ��������1

��������1

ggww

A representation in repαs
Qs is θs-semistable if and only if the two maps are

not both zero (otherwise, there is a subrepresentation of dimension β = (1, 0)
with θs(β) < 0). The action of GL(αs) = C∗ × C∗ on C2 − 0 has as orbit
space P1 and they are represented by matrix-couples

(

0 0 a
0 0 0
0 0 0

 ,

0 0 b
0 0 0
0 0 0

 )

with [a : b] ∈ P1 giving the types o,p and q. Clearly, the stratum 3 consists
just of the zero-matrix, which is type r. Remains to investigate the quiver-
setting

1 0 −1

��������1 ��������1 ��������1

b

gg

a

ww

d

gg

c

ww

Again, one easily verifies that a representation in repαs
Qs is θs-semistable if

and only if (a, b) 6= (0, 0) 6= (c, d) (for otherwise one would have subrepresen-
tations of dimensions (1, 1, 0) or (1, 0, 0)). The corresponding GL(αs)-orbits
are classified by

Mss
αs

(Qs.θs) ' P1 × P1

corresponding to the matrix-couples of types a, b, c, e, f, g, j, k and n

(

0 c 0
0 0 a
0 0 0

 ,

0 d 0
0 0 b
0 0 0

 )
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FIGURE 6.4: Nullcone of couples of 3× 3 matrices.

where [a : b] and [c : d] are points in P1. In this case, however, Cs 6= Bs and
we need to investigate the fibers of the projection

Us/Ps
p-- Mss

αs
(Qs, αs)

Now, Ps is the Borel subgroup of upper triangular matrices and one verifies
that the following two couples

(

0 c 0
0 0 a
0 0 0

 ,

0 d 0
0 0 b
0 0 0

 ) and (

0 c x
0 0 a
0 0 0

 ,

0 d y
0 0 b
0 0 0

 )

lie in the same B-orbit if and only if det
[
a c
b d

]
6= 0, that is, if and only if

[a : b] 6= [c : d] in P1. Hence, away from the diagonal p is an isomorphism. On
the diagonal one can again verify by direct computation that the fibers of p
are isomorphic to C, giving rise to the cases d, h and i in the classification.
The connection between this approach and Kraft’s result is depicted in fig-
ure 6.4. The picture on the left is Kraft’s toric degeneration picture where
we enclosed all orbits belonging to the same Hesselink strata, that is, having
the same optimal corner type. The dashed region enclosed the orbits which
do not come from the moduli spaces Mss

αs
(Qs, θs), that is, those coming from

the projection Us/Ps -- Mss
αs

(Qs, θs)). The picture on the right gives the
ordering of the relevant corners.
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Example 6.8
We see that we get most orbits in the nullcone from the moduli spaces
Mss
αs

(Qs, θs). The reader is invited to work out the orbits in Null24. We
list here the moduli spaces of the relevant corners

corner Mss
αs

(Qs, θs) corner Mss
αs

(Qs, θs) corner Mss
αs

(Qs, θs)

P1 × P1 × P1 P1 P1

P3 t P1 × P1 t P1 × P1 P1 t S2(P1) P0

P1 P1 P0

Observe that two potential corners are missing in this list. This is because we
have the following quiver setting for the corner

3 −1

��������1 ��������3

d

gg

c

ww

and there are no θs-semistable representations as the two maps have a common
kernel, whence a subrepresentation of dimension β = (1, 0) and θs(β) < 0. A
similar argument holds for the other missing corner.

For general n, a similar argument proves that the corners associated to the
tableaux 1 n and n 1 are not optimal for tuples in Nullmn+1 unless m ≥ n.
It is also easy to see that with m ≥ n all relevant corners appear in Nullmn+1,
that is all potential Hesselink strata are non-empty.

6.4 Cornering quiver representations

In this section we generalize the results on matrices to representation of
arbitrary quivers. Let Q be a quiver on k vertices {v1, . . . , vk} and fix a
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dimension vector α = (a1, . . . , ak) and denote the total dimension
∑k
i=1 ai by

a. A representation V ∈ repα Q is said to belong to the nullcone Nullα Q if
the trivial representation 0 ∈ O(V ). Equivalently, all polynomial invariants
are zero when evaluated in V , that is, the traces of all oriented cycles in Q
are zero in V . By the Hilbert criterium 2.2 for GL(α), V ∈ Nullα Q if and
only if there is a one-parameter subgroup

C∗ λ- GL(α) =

GLa1

. . .
GLak

 ⊂ - GLa

such that lim
→

λ(t).V = 0. Up to conjugation in GL(α), or equivalently,

replacing V by another point in the orbit O(V ), we may assume that λ lies
in the maximal torus Ta of GL(α) (and of GLa) and can be represented by
an integral a-tuple (r1, . . . , ra) ∈ Za such that

λ(t) =

t
r1

. . .
tra


We have to take the vertices into account, so we decompose the integer interval
[1, 2, . . . , a] into vertex intervals Ivi

such that

[1, 2, . . . , a] = tki=1 Ivi
with Ivi

= [
i−1∑
j=1

aj + 1, . . . ,
i∑

j=1

aj ]

If we recall that the weights of Ta are isomorphic to Za having canonical
generators πp for 1 ≤ p ≤ a we can decompose the representation space into
weight spaces

repα Q =
⊕

πpq=πq−πp

repα Q(πpq)

where the eigenspace of πpq is nonzero if and only if for p ∈ Ivi
and q ∈ Ivj

,
there is an arrow ��������i��������j oo

in the quiver Q. Call πα Q the set of weights πpq which have nonzero
eigenspace in repα Q. Using this weight space decomposition we can write
every representation as V =

∑
p,q Vpq where Vpq is a vector of the (p, q)-entries

of the maps V (a) for all arrows a in Q from vi to vj . Using the fact that the
action of Ta on repα Q is induced by conjugation, we deduce as before that
for λ determined by (r1, . . . , ra)

lim
t→0

λ(t).V = 0 ⇔ rq − rp ≥ 1 whenever Vpq 6= 0
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Again, we define the corner type C of the representation V by defining the
subset of real a-tuples

EV = {(x1, . . . , xa) ∈ Ra | xq − xp ≥ 1 ∀ Vpq 6= 0}

and determine a minimal element sV in it, minimal with respect to the usual
norm on Ra. Similar to the case of matrices considered before, it follows that
sV is a uniquely determined point in Qa, having the characteristic property
that its entries can be partitioned into strings

{pl, . . . , pl︸ ︷︷ ︸
al0

, pl + 1, . . . , pl + 1︸ ︷︷ ︸
al1

, . . . , pl + kl, . . . , pl + kl︸ ︷︷ ︸
alkl

} with all alm ≥ 1

which are balanced, that is,
∑kl

m=0 alm(pl +m) = 0.
Note however that this time we are not allowed to bring sV into dominant

form, as we can only permute base-vectors of the vertex-spaces. That is, we
can only use the action of the vertex-symmetric groups

Sa1 × . . .× Sak
⊂ - Sa

to bring sV into vertex dominant form , that is if sV = (s1, . . . , sa) then

sq ≤ sp whenever p, q ∈ Ivi
for some i and p < q

We compile a list Sα of such rational a-tuples by the following algorithm

• Start with the list Sa of matrix corner types.

• For every s ∈ Sa consider all permutations σ ∈ Sa/(Sa1 × . . . × Sak
)

such that σ.s = (sσ(1), . . . , sσ(a)) is vertex dominant.

• Take Hα to be the list of the distinct a-tuples σ.s which are vertex
dominant.

• Remove s ∈ Hα whenever there is an s′ ∈ Hα such that

πs Q = {πpq ∈ πα Q | sq−sp ≥ 1} ⊂ πs′ Q = {πpq ∈ πα Q | s′q−s′p ≥ 1}

and ‖ s ‖>‖ s′ ‖.

• The list Sα are the remaining entries s from Hα.

For s ∈ Sα, we define associated data similar to the case of matrices

• The corner Cs is the subspace of repα Q such that all arrow matrices Vb,
when viewed as a× a matrices using the partitioning in vertex-entries,
have only nonzero entries at spot (p, q) when sq − sp ≥ 1.

• The border Bs is the subspace of repα Q such that all arrow matrices Vb,
when viewed as a× a matrices using the partitioning in vertex-entries,
have only nonzero entries at spot (p, q) when sq − sp = 1.
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• The parabolic subgroup Ps(α) is the intersection of Ps ⊂ GLa withGL(α)
embedded along the diagonal. Ps(α) is a parabolic subgroup of GL(α),
that is, contains the product of the Borels B(α) = Ba1 × . . .×Bak

.

• The Levi-subgroup Ls(α) is the intersection of Ls ⊂ GLa with GL(α)
embedded along the diagonal.

We say that a representation V ∈ repα Q is of corner type Cs whenever
V ∈ Cs.

THEOREM 6.6
By permuting the vertex-bases, every representation V ∈ repα Q can be
brought to a corner type Cs for a uniquely determined s, which is a vertex-
dominant reordering of sV .

Example 6.9
Consider the following quiver setting

2(/).*-+,

1(/).*-+,

y

qq

x

--

u

<<

v

||

Then, the relevant corners have the following block decomposition

(1, 0,−1) (0,−1, 1) (1,−1, 0) ( 1
3 , 1

3 ,− 2
3 ) ( 1

3 ,− 2
3 , 1

3 ) ( 2
3 ,− 1

3 ,− 1
3 )

(− 1
3 ,− 1

3 , 2
3 ) ( 1

2 , 0,− 1
2 ) (0,− 1

2 , 1
2 ) ( 1

2 ,− 1
2 , 0) (0, 0, 0)

Again, we solve the problem of optimal corner representations by introduc-
ing a new quiver setting.

Fix a type s ∈ Sα Q and let J1, . . . , Ju be the distinct strings partitioning
the entries of s, say with

Jl = {pl, . . . , pl︸ ︷︷ ︸Pk
i=1 bi,l0

, pl + 1, . . . , pl + 1︸ ︷︷ ︸Pk
i=1 bi,l1

, . . . , pl + kl, . . . , pl + kl︸ ︷︷ ︸Pk
i=1 bi,lkl

}
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where bi,lm is the number of entries p ∈ Ivi
such that sp = pl +m. To every

string l we will associate a quiver Qs,l and dimension vector αs,l as follows

• Qs,l has k.(kl+1) vertices labeled (vi,m) with 1 ≤ i ≤ k and 0 ≤ m ≤ kl.

• In Qs,l there are as many arrows from vertex (vi,m) to vertex (vj ,m+1)
as there are arrows in Q from vertex vi to vertex vj . There are no arrows
between (vi,m) and (vj ,m′) if m′ −m 6= 1.

• The dimension-component of αs,l in vertex (vi,m) is equal to bi,lm.

Example 6.10
For the above quiver, all component quivers Qs,l are pieces of the quiver below

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,
. . .

**44 ** 44 ** 44 ''77??�������� ��?
??

??
??

? ??�������� ��?
??

??
??

? ??�������� ��?
??

??
??

? ??��������� ��?
??

??
??

??

Clearly, we only need to consider that part of the quiver Qs,l where the di-
mensions of the vertex spaces are nonzero.

The quiver-setting (Qs, αs) associated to a type s ∈ Sα Q will be the disjoint
union of the string quiver-settings (Qs,l, αs,l) for 1 ≤ l ≤ u.

THEOREM 6.7
With notations as before, for s ∈ Sα Q we have isomorphisms{

Bs ' repαs
Qs

Ls(α) ' GL(αs)

Moreover, the base-change action of GL(αs) on repαs
Qs coincides under the

isomorphisms with the action of the Levi-subgroup Ls(α) on the border Bs.

In order to determine the representations in repαs
Qs which have optimal

corner type Cs we define the following character on the Levi-subgroup

Ls(α) =
u∏
l=1

×ki=1 ×
kl
m=0 GLbi,lm

χθs- C∗

determined by sending a tuple (gi,lm)ilm - ∏
ilm det g

mi,lm

i,lm where the
exponents are determined by

θs = (mi,lm)ilm where mi,lm = d(pl +m)
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with d the least common multiple of the numerators of the rational numbers
pl for all 1 ≤ l ≤ u.

THEOREM 6.8
Consider a representation V ∈ Nullα Q of corner type Cs. Then, V is of

optimal corner type Cs if and only if under the natural maps

Cs
π-- Bs

'- repαs
Qs

V is mapped to a θs-semistable representation in repαs
Qs. If Us is the open

subvariety of Cs consisting of all representations of optimal corner type Cs,
then

Us = π−1 repssαs
(Qs, θs)

For the corresponding Hesselink stratum Ss = GL(α).Us we have the com-
muting diagram

GL(α)×Ps(α) Us
' - Ss

GL(α)×Ps(α) Cs

?

∩

ac - Ss

?

∩

where ac is the action map, Ss is the Zariski closure of Ss in Nullα Q and
the upper map is an isomorphism as GL(α)-varieties.

Here, GL(α)/Ps(α) is the flag variety associated to the parabolic subgroup
Ps(α) and is a projective manifold. The variety GL(α) ×Ps(α) Cs is a vec-
torbundle over the flag variety GL(α)/Ps(α) and is a subbundle of the trivial
bundle GL(α)×Ps(α) repα Q.

Hence, the Hesselink stratum Ss is an irreducible smooth variety of dimen-
sion

dim Ss = dim GL(α)/Ps(α) + rk GL(α)×Ps(α) Cs

=
k∑
i=1

a2
i − dim Ps(α) + dimC Cs

and there is a natural one-to-one correspondence between the GL(α)-orbits in
Ss and the Ps(α)-orbits in Us.

Moreover, the vector bundle GL(α) ×Ps(α) Cs is a desingularization of Ss
hence ”feels” the gluing of Ss to the remaining strata. The ordering of corners
has the geometric interpretation

Ss ⊂
⋃

‖s′‖≤‖s‖

Ss′
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Finally, because Ps(α) acts on Bs by the restriction to its subgroup Ls(α) =
GL(αs) we have a projection from the orbit space

Us/Ps
p-- Mss

αs
(Qs, θs)

to the moduli space of θs-semistable quiver representations.

Example 6.11
Above we have listed the relevant corner-types for the nullcone of the quiver-
setting

2(/).*-+,

1(/).*-+,

y

qq

x

--

u

<<

v

||

In the table below we list the data of the three irreducible components of
Nullα Q/GL(α) corresponding to the three maximal Hesselink strata

Cs, Bs Ls (Qs, αs, θs) Mss
αs

(Qs, θs)

t
(1, 0,−1)

t t t −1

0 1

1��������

0��������

0��������

1��������

0��������

1��������))66??�������� P1

t
(0,−1, 1)

t t t
−1 0

1

0��������

1��������

0��������

1��������

1��������

0��������))66

��?
??

??
??

?

P1

t
(1,−1, 0)

t t t
−1

0

1

0��������

1��������

1��������

0��������

0��������

1��������

��?
??

??
??

? ??�������� P0

There are 6 other Hesselink strata consisting of precisely one orbit. Finally,
two possible corner-types do not appear as there are no θs-semistable rep-
resentations for the corresponding quiver setting as depicted in figure 6.5
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Cs, Bs Ls (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
3 , 1

3 ,− 2
3 )

t tt t t −2

1

1��������

0��������

0��������

2��������??�������� ∅

(− 1
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−1
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FIGURE 6.5: Missing strata.

6.5 Simultaneous conjugacy classes

We have come a long way from our bare-hands description of the simul-
taneous conjugacy classes of couples of 2 × 2 matrices in the first chapter of
volume 1. In this section we will summarize what we have learned so far to
approach the hopeless problem of classifying conjugacy classes of m tuples of
n× n matrices.

First, we show how one can reduce the study of representations of a Quillen-
smooth algebra to that of studying nullcones of quiver representations. Let
A be an affine C-algebra and Mξ is a semi-simple n-dimensional module such
that the representation variety repn

∫
n
A is smooth in Mξ, that is ξ ∈ Smn A.

Let Mξ be of representation type τ = (e1, d1; . . . ; ek, dk), that is

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

with distinct simple components Si of dimension di and occurring in Mξ with
multiplicity ei, then the GL(α) = Stab Mξ-structure on the normal space Nξ
to the orbit O(Mξ) is isomorphic to that of the representation space

repα Q
•

of a certain marked quiver on k vertices. The slice theorem asserts the exis-
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tence of a slice Sξ
φ- Nξ and a commuting diagram

GLn ×GL(α) Sξ

GLn ×GL(α) Nξ

�

GL
n
×

GL(α
) φ

repn

Z
n

A

ψ

-

Sξ/GL(α)

??

Nξ/GL(α)

π2

?? �
φ/
GL

(α
)

issn

Z
n

A

π1
??

ψ/GL
n

-

in a neighborhood of ξ ∈ issn
∫
n
A on the right and a neighborhood of the

image 0 of the trivial representation in Nξ/GL(α) on the left. In this diagram,
the vertical maps are the quotient maps, all diagonal maps are étale and the
upper ones are GLn-equivariant. In particular, there is a GLn-isomorphism
between the fibers

π−1
2 (0) ' π−1

1 (ξ)

Because π−1
2 (0) ' GLn×GL(α)π−1(0) with π is the quotient morphism for the

marked quiver representations Nξ = repα Q
• π-- issα Q• = Nx/GL(α) we

have a GLn-isomorphism

π−1
1 (ξ) ' GLn ×GL(α) π−1(0)

That is, there is a natural one-to-one correspondence between

• GLn-orbits in the fiber π−1
1 (ζ), that is, isomorphism classes of n-

dimensional representations of A with Jordan-Hölder decompositionMξ,
and

• GL(α)-orbits in π−1(0), that is, the nullcone of the marked quiver
Nullα Q

•.

A summary follows.

THEOREM 6.9
Let A be an affine Quillen-smooth C-algebra and Mξ a semi-simple n-
dimensional representation of A. Then, the isomorphism classes of n-
dimensional representations of A with Jordan-Hölder decomposition isomor-
phic to Mξ are given by the GL(α)-orbits in the nullcone Nullα Q• of the
local marked quiver setting.
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The problem of classifying simultaneous conjugacy classes of m-tuples of
n × n matrices is the same as n-dimensional representations of the Quillen-
smooth algebra C〈x1, . . . , xm〉. To study semi-simple representations, one
considers the quotient map

Mm
n = repnC〈x1, . . . , xm〉

π-- issn C〈x1, . . . , xm〉 = issmn

Fix a point ξ ∈ issmn and assume that the corresponding semi-
simple n-dimensional representation Mξ is of representation type τ =
(e1, d1; . . . ; ek, dk).

We have shown that the coordinate ring C[issmn ] = Nmn is the necklace
algebra, that is, is generated by traces of monomials in the generic n × n
matrices X1, . . . , Xm of length bounded by n2 + 1. Further, if we collect all
Mξ with representation type τ in the subset issmn (τ), then

issn =
⊔
τ

issmn (τ)

is a finite stratification of issmn into locally closed smooth algebraic subvari-
eties.

We have an ordering on the representation types τ ′ < τ indicating that the
stratum issmn (τ ′) is contained in the Zariski closure of issmn (τ). This order
relation is induced by the direct ordering

τ ′ = (e′1, d
′
1; . . . ; e

′
k′ , d

′
k′) <

dir τ = (e1, d1; . . . ; ek, dk)

if there is a permutation σ of [1, 2, . . . , k′] and there are numbers

1 = j0 < j1 < j2 . . . < jk = k′

such that for every 1 ≤ i ≤ k we have the following relations{
eidi =

∑ji
j=ji−1+1 e

′
σ(j)d

′
σ(j)

ei ≤ e′σ(j) for all ji−1 < j ≤ ji

Because issmn is irreducible, there is an open stratum corresponding to the
simple representations, that is, type (1, n). The subgeneric strata are all of
the form

τ = (1,m1; 1,m2) with m1 +m2 = n

The (in)equalities describing the locally closed subvarieties issmn (τ) can (in
principle) be deduced from the theory of trace identities. Remains to study
the local structure of the quotient variety issmn near ξ and the description of
the fibers π−1(ξ).

Both problems can be tackled by studying the local quiver setting (Qξ, αξ)
corresponding to ξ, which describes the GL(αξ) = Stab(Mξ)-module struc-
ture of the normal space to the orbit of Mξ. If ξ is of representation type
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τ = (e1, d1; . . . ; ek, dk) then the local quiver Qξ has k-vertices {v1, . . . , vk}
corresponding to the k distinct simple components S1, . . . , Sk of Mξ and the
number of arrows (resp. loops) from vi to vj (resp. in vi) are given by the
dimensions

dimCExt
1(Si, Sj) resp. dimCExt

1(Si, Si)

and these numbers can be computed from the dimensions of the simple com-
ponents 

# ��������i��������j
aoo = (m− 1)didj

# ��������i
��

= (m− 1)d2
i + 1

Further, the local dimension vector αξ is given by the multiplicities
(e1, . . . , ek). The étale local structure of issmn in a neighborhood of ξ is
the same as that of the quotient variety issαξ

Qξ in a neighborhood of 0.
The local algebra of the latter is generated by traces along oriented cycles in
the quiver Qξ. A direct application is discussed below.

PROPOSITION 6.2

For m ≥ 2, ξ is a smooth point of issmn if and only if Mξ is a simple repre-
sentation, unless (m,n) = (2, 2) in which case iss2

2 ' C5 is a smooth variety.

PROOF If ξ is of representation type (1, n), the local quiver setting
(Qξ, αξ) is

��������1

d

��

where d = (m− 1)n2 + 1, whence the local algebra is the formal power series
ring in d variables and so issmn is smooth in ξ. Because the singularities form
a Zariski closed subvariety of issmn , the result follows if we prove that all
points ξ lying in subgeneric strata, say, of type (1,m1; 1,m2) are singular. In
this case the local quiver setting is equal to

��������1 ��������1

a

&&

a

ffl1 ;; l2cc

where a = (m−1)m1m2 and li = (m−1)m2
i+1. Let us denote the arrows from

v1 to v2 by x1, . . . , xa and those from v2 to v1 by y1, . . . , ya. If (m,n) 6= (2, 2)
then a ≥ 2, but then we have traces along cycles

{xiyj | 1 ≤ i, j ≤ a}
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that is, the polynomial ring of invariants is the polynomial algebra in l1 + l2
variables (the traces of the loops) over the homogeneous coordinate ring of
the Segre embedding

Pa−1 × Pa−1 ⊂ - Pa
2−1

which has a singularity at the top (for example, we have equations of the form
(x1y2)(x2y1) − (x1y1)(x2y2)). Thus, the local algebra of issmn cannot be a
formal power series ring in ξ whence issmn is singular in ξ. We have seen in
section 1.2 that for the exceptional case iss2

2 ' C5.

To determine the fibers of the quotient map Mm
n

π-- issmn we have to
study the nullcone of this local quiver setting, Nullαξ

Qξ. Observe that
the quiver Qξ has loops in every vertex and arrows connecting each ordered
pair of vertices, whence we do not have to worry about potential corner-type
removals. Denote

∑
ei = z ≤ n and let Cz be the set of all s = (s1, . . . , sz) ∈

Qz, which are disjoint unions of strings of the form

{pi, pi + 1, . . . , pi + ki}

where li ∈ N, all intermediate numbers pi + j with j ≤ ki do occur as compo-
nents in s with multiplicity aij ≥ 1 and pi satisfies the balance-condition

ki∑
j=0

aij(pi + j) = 0

for every string in s. For fixed s ∈ Cz we can distribute the components si
over the vertices of Qξ (ej of them to vertex vj) in all possible ways modulo
the action of the small Weyl group Se1 × . . . Sek

⊂ - Sz. That is, we can
rearrange the si’s belonging to a fixed vertex such that they are in decreasing
order. This gives us the list Sαξ

or Sτ of all corner-types in Nullαξ
Qξ. For

each s ∈ Sαξ
we then construct the corner-quiver setting

(Qξ s, αξ s, θξ s)

and study the Hesselink strata Ss that actually do appear, which is equivalent
to verifying whether there are θξs-semistable representations in repαξs

Qξs.
We have given a purely combinatorial way to settle this (in general quite hard)
problem of optimal corner-types.

That is, we can determine which Hesselink strata Ss actually occur in
π−1(ξ) ' Nullαxi

Qξ. The GL(αξ s)-orbits in the stratum Ss are in natu-
ral one-to-one correspondence with the orbits under the associated parabolic
subgroup Ps acting on the semistable representations

Us = π−1 repssαξ s
(Qξ s, θξ s)

and there is a natural projection morphism from the corresponding orbit-space

Us/Ps
ps-- Mss

αξ s
(Qξ s, θξ s)
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type τ (Qτ , ατ )

2a (1, 2) ��������1

4m − 3

��

2b (1, 1; 1, 1) ��������1 ��������1

m − 1

&&

m − 1

ffm ;; mcc

2c (2, 1) ��������2

m

��

FIGURE 6.6: Local quiver settings for 2× 2 matrices.

to the moduli space of θξ s-semistable representations. The remaining (hard)
problem in the classification of m-tuples of n×n matrices under simultaneous
conjugation is the description of the fibers of this projection map ps.

Example 6.12 m-tuples of 2× 2 matrices
There are three different representation types τ of 2-dimensional representa-
tions of C〈x1, . . . , xm〉 with corresponding local quiver settings (Qτ , ατ ) given
in figure 6.6 The defining (in)equalities of the strata issm2 (τ) are given by
k × k minors (with k ≤ 4 of the symmetric m×m matrix tr(x

0
1x

0
1) . . . tr(x

0
1x

0
m)

...
...

tr(x0
mx

0
1) . . . tr(x

0
mx

0
m)


where x0

i = xi − 1
2 tr(xi) is the generic trace zero matrix. These facts follow

from the description of the trace algebras Tm2 as polynomial algebras over the
generic Clifford algebras of rank ≤ 4 (determined by the above symmetric
matrix) and the classical matrix decomposition of Clifford algebras over C.
For more details we refer to [67].

To study the fibers Mm
2

-- issm2 we need to investigate the different
Hesselink strata in the nullcones of these local quiver settings. Type 2a has
just one potential corner type corresponding to s = (0) ∈ S1 and with corre-
sponding corner-quiver setting

0

��������1

which obviously has P0 (one point) as corresponding moduli (and orbit) space.
This corresponds to the fact that for ξ ∈ issm2 (1, 2), Mξ is simple and hence
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s Bs, Cs (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
2 ,−

1
2 )

−1

1

1��������

0��������

0��������

1��������
m − 1

���

??���

Pm−2

(− 1
2 ,

1
2 )

−1

1

0��������

1��������

1��������

0��������
m − 1

??

��?
???

Pm−2

(0, 0)

0

0

1��������

1��������

P0

FIGURE 6.7: Moduli spaces for type 2b.

the fiber π−1(ξ) consists of the closed orbit O(Mξ).
For type 2b the list of figure 6.7 gives the potential corner-types Cs together

with their associated corner-quiver settings and moduli spaces (note that as
Bs = Cs in all cases, these moduli spaces describe the full fiber) That is, for
ξ ∈ issm2 (1, 1; 1, 1), the fiber π−1(ξ) consists of the unique closed orbit O(Mξ)
(corresponding to the P0) and two families Pm−2 of nonclosed orbits. Observe
that in the special case m = 2 we recover the two nonclosed orbits found in
section 1.2.

Finally, for type 2c, the fibers are isomorphic to the nullcones of m-tuples
of 2 × 2 matrices. We have the following list of corner-types, corner-quiver
settings and moduli spaces. Again, as Bs = Cs in all cases, these moduli
spaces describe the full fiber.

s Bs, Cs (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
2 ,−

1
2 )

−1 1

1�������� 0��������m // Pm−1

(0, 0)
0

2�������� P0

whence the fiber π−1(ξ) consists of the closed orbit, together with a Pm−1-
family of non-closed orbits. Again, in the special case m = 2, we recover the
P1-family found in section 1.2.
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type τ (Qτ , ατ )

3a (1, 3) ��������1

9m − 8

��

3b (1, 2; 1, 1) ��������1 ��������1

2m − 2

&&

2m − 2

ff4m − 3 ;; mcc

3c (1, 1; 1, 1; 1, 1) ��������1 ��������1

��������1

m − 1

&&

m − 1

ff

m − 1

55

m − 1

uu

m − 1

��

m − 1

PP

m

MM

m

QQ

m

��

3d (2, 1; 1, 1) ��������2 ��������1

m − 1

&&

m − 1

ffm ;; mcc

3e (3, 1) ��������3

m

��

FIGURE 6.8: Local quiver settings for 3× 3 matrices.

Example 6.13 m-tuples of 3× 3 matrices
There are 5 different representation-types for 3-dimensional representations.
Their associated local quiver settings are given in figure 6.8 For each of these
types we can perform an analysis of the nullcones as before. We leave the
details to the interested reader and mention only the end-result

• For type 3a the fiber is one closed orbit

• For type 3b the fiber consists of the closed orbit together with two P2m−3-
families of nonclosed orbits

• For type 3c the fiber consists of the closed orbit together with twelve
Pm−2 × Pm−2-families and one Pm−2-family of nonclosed orbits
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• For type 3d the fiber consists of the closed orbit together with four
Pm−1×Pm−2-families, one Pm−2×Pm−2-family, two Pm−2-families, one
Pm−1-family and twoM -families of nonclosed orbits determined by mod-
uli spaces of quivers, where M is the moduli space of the following quiver
setting

−1 2

��������2 ��������1m − 1 //

together with some additional orbits coming from the projection maps
ps.

• For type 3e we have to study the nullcone of m-tuples of 3× 3 matrices,
which can be done as in the case of couples but for m ≥ 3 the two extra
strata do occur.

We see that in this case the only representation-types where the fiber is not
fully determined by moduli spaces of quivers are 3d and 3e.

6.6 Representation fibers

Let A be a Cayley-Hamilton algebra of degree n and consider the algebraic
quotient map

trepn A
π-- trissn A

from the variety of n-dimensional trace preserving representations to the va-
riety classifying isomorphism classes of trace preserving n-dimensional semi-
simple representations. Assume ξ ∈ Smtr A ⊂ - trissn A. That is, the
representation variety trepn A is smooth along the GLn-orbit of Mξ where
Mξ is the semi-simple representation determined by ξ ∈ trissn A. We have
seen that the local structure of A and trepn A near ξ is fully determined by
a local marked quiver setting (Q•ξ , αξ). That is, we have a GLn-isomorphism
between the fiber of the quotient map, that is, the n-dimensional trace pre-
serving representation degenerating to Mξ

π−1(ξ) ' GLn ×GL(αξ) Nullαξ
Qξ

and the nullcone of the marked quiver-setting. In this section we will apply
the results on nullcones to the study of these representation fibers π−1(ξ).

Observe that all the facts on nullcones of quivers extend verbatim to marked
quivers Q• using the underlying quiver Q with the proviso that we drop all
loops in vertices with vertex-dimension 1 that get a marking in Q•. This is
clear as nilpotent quiver representations obviously have zero trace along each
oriented cycle, in particular in each loop.
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1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

&&

...

FIGURE 6.9: Local quiver settings for curve orders.

The examples given before illustrate that a complete description of the
nullcone is rather cumbersome. For this reason we restrict ourselves here to the
determination of the number of irreducible components and their dimensions
in the representation fibers. Modulo the GLn-isomorphism above this study
amounts to describing the irreducible components of Nullαξ

Qξ, which are
determined by the maximal corner-types Cs, that is, such that the set of
weights in Cs is maximal among subsets of παxi

Qξ (and hence ‖ s ‖ is
maximal among Sαξ

Qξ).
To illustrate our strategy, consider the case of curve orders. In section 5.4

we proved that if A is a Cayley-Hamilton order of degree n over an affine
curve X = trissn A and if ξ ∈ Smn A, then the local quiver setting (Q,α) is
determined by an oriented cycle Q on k vertices with k ≤ n being the number
of distinct simple components of Mξ, the dimension vector α = (1, . . . , 1) as in
figure 6.9 and an unordered partition p = (d1, . . . , dk) having precisely k parts
such that

∑
i di = n, determining the dimensions of the simple components

of Mξ. Fixing a cyclic ordering of the k-vertices {v1, . . . , vk} we have that the
set of weights of the maximal torus Tk = C∗× . . .×C∗ = GL(α) occurring in
repα Q is the set

πα Q = {πk1, π12, π23, . . . , πk−1k}

Denote K =
∑k−1
i=0 i = k(k−1)

2 and consider the one string vector

s = ( . . . , k − 2− K

k
, k − 1− K

k
,−K

k︸︷︷︸
i

, 1− K

k
, 2− K

k
, . . . )

then s is balanced and vertex-dominant, s ∈ Sα Q and πs Q = Π. To check
whether the corresponding Hesselink strata in Nullα Q is nonempty we have
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to consider the associated quiver-setting (Qs, αs, θs), which is

−K −K + k −K + 2k −K + k2 − 2k −K + k2 − k

vi vi+1 vi+2 vi−2 vi−1

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .// // // // //

It is well known and easy to verify that repαs
Qs has an open orbit with all

representative arrows equal to 1. For this representation all proper subrepre-
sentations have dimension vector β = (0, . . . , 0, 1, . . . , 1) and hence θs(β) > 0.
That is, the representation is θs-stable and hence the corresponding Hesselink
stratum Ss 6= ∅. Finally, because the dimension of repαs

Qs is k − 1 we have
that the dimension of this component in the representation fiber π−1(x) is
equal to

dim GLn − dim GL(α) + dim repαs
Qs = n2 − k + k − 1 = n2 − 1

which completes the proof of the following.

THEOREM 6.10
Let A be a Cayley-Hamilton order of degree n over an affine curve X such
that A is smooth in ξ ∈ X. Then, the representation fiber π−1(ξ) has exactly
k irreducible components of dimension n2 − 1, each the closure of one orbit.
In particular, if A is Cayley-smooth over X, then the quotient map

trepn A
π-- trissn A = X

is flat, that is, all fibers have the same dimension n2 − 1.

For Cayley-Hamilton orders over surfaces, the situation is slightly more
complicated. From section 5.4 we recall that if A is a Cayley-Hamilton order
of degree n over an affine surface S = trissn A and if A is smooth in ξ ∈ X,
then the local structure of A is determined by a quiver setting (Q,α) where
α = (1, . . . , 1) and Q is a two-circuit quiver on k + l + m ≤ n vertices,
corresponding to the distinct simple components of Mξ as in figure 6.10 and
an unordered partition p = (d1, . . . , dk+l+m) of n with k+ l+m nonzero parts
determined by the dimensions of the simple components of Mξ. With the
indicated ordering of the vertices we have that

πα Q = {πi i+1 |


1 ≤ i ≤ k − 1
k + 1 ≤ i ≤ k + l − 1
k + l + 1 ≤ i ≤ k + l +m− 1

}

∪ {πk k+l+1, πk+l k+l+1, πk+l+m 1, πk+l+m k+1}

As the weights of a corner cannot contain all weights of an oriented cycle in
Q we have to consider the following two types of potential corner-weights Π
of maximal cardinality
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1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//

??�����

OO

OO

__?????

oo

//

oo

OO

##

yy

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

...

FIGURE 6.10: Local quiver settings for surface orders.

• (outer type): Π = πα Q − {πa, πb} where a is an edge in the interval
[v1, . . . , vk] and b is an edge in the interval [vk+1, . . . , vk+l]

• (inner type): Π = πα Q − {πc} where c is an edge in the interval
[vk+l+1, vk+l+m]

There are 2 + (k − 1)(l − 1) different subsets Π of outer type, each occurring
as the set of weights of a corner Cs, that is, Π = πs Q for some s ∈ Sα Q.
The two exceptional cases correspond to{

Π1 = πα Q− {πk+l+m 1, πk+l k+l+1}
Π2 = πα Q− {πk+l+m k+1, πk k+l+1}

which are of the form πsi
Q with associated border quiver-setting

(Qsi , αsi , θsi) where αsi = (1, . . . , 1), Qsi are the full line subquivers of Q
given in figure 6.11 with starting point v1 (resp. vk+1). The corresponding
si ∈ Sα Q is a single string with minimal entry

−
∑k+l+m−1
i=0 i

k + l +m
= −k + l +m− 1

2
at place

{
1
k + 1

and going with increments equal to one along the unique path. Again, one
verifies that repαs

Qs has a unique open and θs-stable orbit, whence these
Hesselink strata do occur and the border Bs is the full corner Cs. The cor-
responding irreducible component in π−1(ξ) has therefore a dimension equal
to n2 − 1 and is the closure of a unique orbit. The remaining (k − 1)(l − 1)
subsets Π of outer type are of the form

Πij = πα Q− {πi i+1, πj j+1}
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Qs1

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//

??����

OO

OO

oo
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OO
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1
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2
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k+l

k+l+1

k+l+m
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__????

oo

oo

OO

$$

xx

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

FIGURE 6.11: Border quiver settings.

with 1 ≤ i ≤ k − 1 and k + 1 ≤ j ≤ k + l − 1. We will see in a moment
that they are again of type πs Q for some s ∈ Sα Q with associated border
quiver-setting (Qs, αs, θs) where αs = (1, . . . , 1) and Qs is the full subquiver
of Q

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

i+1

i

j+1

j

//

??����

OO

OO

__????

oo

//

oo

OO��

%%

vv

��

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

If we denote with Al the directed line quiver on l+1 vertices, then Qs can be
decomposes into full line subquivers

(/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,
(/).*-+,

(/).*-+,

AaOOO
AbOOO

Abooo

Ac
AdoooAdOOO

AeOOO

but then we consider the one string s ∈ Sα Q with minimal entry equal to



Nilpotent Representations 355

− x
k+l+m where with notations as above

x =
a∑
i=1

i+ 2
b∑
i=1

(a+ i) +
c∑
i=1

(a+ b+ i)

+ 2
d∑
i=1

(a+ b+ c+ i) +
e∑
i=1

(a+ b+ c+ d+ i)

where the components of s are given to the relevant vertex-indices. Again,
there is a unique open orbit in repαs

Qs which is a θs-stable representation
and the border Bs coincides with the corner Cs. That is, the corresponding
Hesselink stratum occurs and the irreducible component of π−1(ξ) it deter-
mines had dimension equal to

dim GLn − dim GL(α) + dim repαs
Qs = n2 − (k + l +m) + (k + l +m− 1)

= n2 − 1

There are m− 1 different subsets Πu of inner type, where for k+ l+ 1 ≤ u <
k + l +m we define Πu = πα Q− {πu u+1}, that is, dropping an edge in the
middle

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,

1(/).*-+,
1(/).*-+,

//

??�����

OO

OO

__?????

oo

//

oo

OO

OO

vu

vu+1

##

yy

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

First assume that k = l. In this case we can walk through the quiver (with
notations as before)

(/).*-+, (/).*-+, (/).*-+, (/).*-+,Aa

Ab

Ab

Ac

and hence the full subquiver of Q is part of a corner quiver-setting (Qs, αs, θs)
where α = (1, . . . , 1) and where s has as its minimal entry − x

k+l+m where

x =
a∑
i=1

i+ 2
b∑
i=1

(a+ i) +
c∑
i=1

(a+ b+ i)
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In this case we see that repαs
Qs has θs-stable representations, in fact, there is

a P1-family of such orbits. The corresponding Hesselink stratum is nonempty
and the irreducible component of π−1(ξ) determined by it has dimension

dim GLn−dim GL(α)+dim repαs
Qs = n2− (k+ l+m)+ (k+ l+m) = n2

If l < k, then Πu = πs Q for some s ∈ Sα Q but this time the border quiver-
setting (Qs, αs, θs) is determined by αs = (1, . . . , 1) and Qs the full subquiver
of Q by also dropping the arrow corresponding to πk+l+1 k+l, that is

(/).*-+, (/).*-+,
(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

Aa
Ab oooooooo
Ab

OOOOOOOO

AcOOO
AdOOO
��

vu+1 vk+l+m

vk+l

vk+l+1

vu

If Qs is this quiver (without the dashed arrow) then Bs = repαs
Qs and

it contains an open orbit of a θs-stable representation. Observe that s is
determined as the one string vector with minimal entry − x

k+l+m where

x =
a∑
i=1

i+ 2
b∑
i=1

(a+ i) +
c∑
i=1

(a+ b+ i) +
d∑
i=1

(a+ b+ c+ i)

However, in this case Bs 6= Cs and we can identify Cs with repαs
Q′s where

Q′s is Qs together with the dashed arrow. There is an A1-family of orbits
in Cs mapping to the θs-stable representation. In particular, the Hesselink
stratum exists and the corresponding irreducible component in π−1(ξ) has a
dimension equal to

dim GLn − dim GL(α) + dim Cs = n2 − (k + l +m) + (k + l +m) = n2

This concludes the proof of the description of the representation fibers of
smooth orders over surfaces, summarized in the following result.

THEOREM 6.11
Let A be a Cayley-Hamilton order of degree n over an affine surface X =
trissn A and assume that A is smooth in ξ ∈ X of local type (Aklm, α).
Then, the representation fiber π−1(ξ) has exactly 2 + (k− 1)(l− 1) + (m− 1)
irreducible components of which 2 + (k − 1)(l − 1) are of dimension n2 − 1
and are closures of one orbit and the remaining m − 1 have dimension n2

and are closures of a one-dimensional family of orbits. In particular, if A is
Cayley-smooth, then the algebraic quotient map

trepn A
π-- trissn A = X
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is flat if and only if all local quiver settings of A have quiver Aklm with m = 1.

The final example will determine the fibers over smooth points in the quo-
tient varieties (or moduli spaces) provided the local quiver is symmetric. This
computation is due to Geert Van de Weyer.

Example 6.14 Smooth symmetric settings
Recall from theorem 5.22 that a smooth symmetric quiver setting (sss) if

and only if it is a tree constructed as a connected sum of three different types
of quivers

• '&%$ !"#m
'' ��������nhh

• ��������1

m
#+ ��������n

m

ck , with m ≤ n

• ��������1
(( '&%$ !"#mgg

'' ��������nhh

• '&%$ !"#m
'' ��������2hh

'' ��������ngg

where the connected sum is taken in the vertex with dimension 1. We call
the vertices where the connected sum is taken connecting vertices and depict
them by a square vertex �. We want to study the nullcone of connected sums
composed of more than one of these quivers so we will focus on instances of
these four quivers having at least one vertex with dimension 1

I ��������1

m
#+ ��������n

m

ck , with m ≤ n

II(1) ��������1
(( '&%$ !"#mgg

'' ��������1hh

II(2) ��������1
(( '&%$ !"#mgg

'' ��������nhh

We will call the quiver settings of type I and II forming an sss (Q,α) the
terms of Q.

claim 1: Let (Q,α) be an sss and Qµ a type quiver for Q, then any string
quiver of Qµ is either a connected sum of string quivers of type quivers for
terms of Q or a string quiver of type quivers of

'&%$ !"#m
""��������nbb , ��������n
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Consider a string quiver Qµ(i) of Qµ. By definition vertices in a type quiver
are only connected if they originate from the same term in Q. This means we
may divide the string quiver Qµ(i) into segments, each segment either a string
quiver of a type quiver of a term of Q (if it contains the connecting vertex)
or a level quiver of a type quiver of the quivers listed above (if it does not
contain the connecting vertex).

The only vertices these segments may have in common are instances of
the connecting vertices. Now note that there is only one instance of each
connecting vertex in Qµ because the dimension of each connecting vertex is
1. Moreover, two segments cannot have more than one connecting vertex
in common as this would mean that in the original quiver there is a cycle,
proving the claim.

Hence, constructing a type quiver for an sss boils down to patching together
string quivers of its terms. These string quivers are subquivers of the following
two quivers

I : 1

�%
CCCC�������� 9A{{{{ �������� II : 1

  BB
B

. . . ��������
!!D

DD ��������
!!D

DD �������� >>|||
!!D

DD ��������
!!D

DD ��������
!!D

DD ��������
!!D

DD �������� . . .

. . . �������� ==zzz �������� ==zzz �������� ==zzz �������� ==zzz �������� ==zzz �������� ==zzz �������� . . .

Observe that the second quiver has two components. So a string quiver will
either be a tree (possible from all components) or a quiver containing a square.
We will distinguish two different types of squares; S1 corresponding to a term
of type II(1) and S2 corresponding to a term of type II(2)

S1 S2

1

!!CC
C�������� =={{{
!!CC

C ��������
1

=={{{

1

  BB
B

. . .
%%JJ

J �������� >>|||
""E

EE ��������
""E

EE . . .�������� <<yyy �������� <<yyy �������� 99ttt

These squares are the only polygons that can appear in our type quiver.
Indeed, consider a possible polygon

vp
...

��������

��$
$$
$$
$$
$$
$$
$$
$$
$$
$

vi ��������
BB

vj ��������
BB����

��:
::

:

vk...

��������
��vq ��������
��:

::
:

vr ��������
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This polygon corresponds to the following subquiver of Q

vi oo // vp aa
!!BB

B

vj
}}
==|||
aa
!!BB

B vr

vk oo // vq
}}
==|||

But Q is a tree, so this is only a subquiver if it collapses to
vi oo // vj oo // vk .

claim 2: Let (Q,α) be an sss and Qµ a type quiver containing (connected)
squares. If Qµ determines a nonempty Hesselink stratum then

(i) the 0-axis in Qµ lies between the axes containing the outer vertices of
the squares of type S1

(ii) squares of type S1 are connected through paths of maximum length 2

(iii) squares of type S1 that are connected through a path of length 2 are
connected to other quivers in top and bottom vertex (and hence originate
from type II(1) terms that are connected to other terms in both their
connecting vertices)

(iv) the string µ(i) containing squares of type S1 connected through a path
of length two equals (. . . ,−2,−1, 0, 1, 2, . . . )

(v) for a square of type S2

µi

��������1

##G
GG

. . .
%%KK

K �������� ;;xxx
$$I

II ��������
""E

EE . . .�������� <<yyy �������� ::uuu �������� 99sss

with p vertices on its left branch and q vertices on its right branch we
have

−q
2
≤ µi ≤

p

2

Let us call the string quiver of Qµ containing the squares Qµ(i) and let
θ ∈ µ(i)N0 be the character determining this string quiver. Consider the
subrepresentation

θi θi+1 θi+2

��������•
''OOOOO

��������0

88rrrr

&&LLLL ��������•
��������•

77ooooo
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This subrepresentation has character θ(αµ(i))− αµ(i)(v)θi ≥ 0 where v is the
vertex whose dimension we reduced to 0, so θi ≤ 0. But then the subrepre-
sentation

θi θi+1 θi+2

��������0

''OOOOO
��������0

99rrrrr

%%LL
LLL

��������•
��������0

77ooooo

gives θi+2 ≥ 0, whence (i). Note that the left vertex of one square can never
lie on an axis right of the right vertex of another square. At most it can lie
on the same axis as the right vertex, in which case this axis is the 0-axis and
the squares are connected by a path of length 2. In order to prove (iii) look
at the subrepresentation

−2 −1 0 1 2
��������0

!!B
BB��������0

==|||

!!C
CC

��������•
��������•
=={{{

��������•
==zzz

��������•
$$II

II

::uuuu

��������•
88rrrr

&&LLLL ��������•
��������•

::uuuu

This subrepresentation has negative character and hence the original repre-
sentation was not semistable. Finally, for (v) we look at the subrepresentation
obtained by reducing the dimension of all dotted vertices by 1

µi

��������1

""EE
EE

. . .
##G

GG
��������•
<<yyy

##F
FF

��������
  A

AA . . .

��������•
;;www ��������•

>>}}} ��������•
<<xxx �������� ;;www

having character −((p + 1)µi −
∑p
j=1 j) ≥ 0. So µi ≤ p

2 . Mirroring this
argument yields the other inequality µi ≥ − q2 .

claim 3: Let (Q,α) be an sss and Qµ be a type quiver determining a
nonempty stratum and let Qµ(i) be a string quiver determined by a segment
µ(i) not containing 0. Then the only possible dimension vectors for squares
of type S1 in Qµ(i) are those of figure 6.12.

Top and bottom vertex of the square are constructed from the connecting
vertices so can only be one-dimensional. Left and right vertex of the square
are constructed from a vertex of dimension n. Claim 2 asserts that the leftmost
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α1 =

 1
1 1

1


α2 =

 1
1 2

1


α3 =

 1
2 2

1


FIGURE 6.12: Possible dimension vectors for squares.

vertex lies on a negative axis while the rightmost vertex lies on a positive axis.
If the left dimension is > 2 then the representation splits

��������1

��?
??

?

V1
��������2

??����

��?
???

��������
��������1

??����

⊕

V2
��������r

with r = m− 2. By semistability the character of V2 must be zero. A similar
argument applies to the right vertex.

claim 4: Let µ be a type determining a non-empty stratum.

(i) When a vertex (v, i) in Qµ determined by a term of type II(1) has
α(v, i) > 2 then µi = 0

(ii) When a vertex (v, i) in Qµ determined by a term of type I with m arrows
has α(v, i) > m then µi = 0

Suppose we have a vertex v with dimension αµ(i)(v) > 2, then the number of
paths running through this vertex is at most 2: would there be at least three
paths arriving or departing in the vertex, it would be a connecting vertex,
which is not possible because of its dimension. If there are two paths arriving
and at least one path departing, it must be a central vertex of a type II(2)
term. But then the only possible subtrees generated from type II(1) terms
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with vertices of dimension at least three are (modulo reversing all arrows)

θi

1

""D
DD ��������n

""D
DD

1

θi

1

""D
DD ��������n

1

<<zzz

θi

1

""D
DD ��������n

In the last tree there are no other arrows from the vertex with dimension
n. For each of these trees we have a subrepresentation whence θi ≥ 0. But
if θi > 0, reducing the dimension of the vertex with dimension ≥ 3 gives
a subrepresentation with negative character, so θi = 0. The second part is
proved similarly.
Let (Q,α) be an sss and µ a type determining a nonempty stratum in
nullα Q. Let Qµ be the corresponding type quiver and αµ the correspond-
ing dimension vector, then

(i) every connected component Qµ(i) of Qµ is a connected sum of string
quivers of either terms of Q or quivers generated from terms of Q by
removing the connecting vertex. The connected sum is taken in the in-
stances of the connecting vertices and results in a connected sum of trees
and quivers of the form

µ(i)j

''OOOO
. . .

%%
�������� 77oooo

''OOOO ��������
""

. . .�������� << �������� 77oooo �������� 99

(ii) For a square of type S1 we have µ(i)j−1 ≤ 0 ≤ µ(i)j+1. Moreover, such
squares cannot be connected by paths longer than two arrows and can
only be connected by paths of this length if µ(i)j+1 = 0.

(iii) For vertices (v, j) constructed from type II(1) terms we have αµi(v, j) ≤
2 when µi 6= 0.

(iv) For a vertex (v, j) constructed from a type I term with m arrows we
have αµi

(v, j) ≤ m when µi 6= 0.

6.7 Brauer-Severi varieties

In this section we will reconsider the Brauer-Severi scheme BSn(A) of an al-
gebra A. In the generic case, that is when A is the free algebra C〈x1, . . . , xm〉,
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we will show that it is a moduli space of a certain quiver situation. This
then allows us to give the étale local description of BSn(A) whenever A is a
Cayley-smooth algebra. Again, this local description will be a moduli space.

The generic Brauer-Severi scheme of degree n for m-generators, BSmn (gen)
is defined as follows. Consider the free algebra on m generators C〈x1, . . . , xm〉
and consider the GLn-action on repn C〈x1, . . . , xm〉 × Cn = Mm

n ⊕ Cn given
by

g.(A1, . . . , Am, v) = (gA1g
−1, . . . , gAmg

−1, gv)

and consider the open subset Brauers(gen) consisting of those points
(A1, . . . , Am, v) where v is a cyclic vector, that is, there is no proper subspace
of Cn containing v and invariant under left multiplication by the matrices Ai.
The GLn-stabilizer is trivial in every point of Brauers(gen) whence we can
define the orbit space

BSmn (gen) = Brauers(gen)/GLn

Consider the following quiver situation

��������1 ��������n//

m

��

on two vertices {v1, v2} such that there are m loops in v2 and consider the
dimension vector α = (1, n). Then, clearly

repα Q = Cn ⊕Mm
n ' repn C〈x1, . . . , xm〉 ⊕ Cn

where the isomorphism is as GLn-module. On repα Q we consider the action
of the larger group GL(α) = C∗ ×GLn acting as

(λ, g).(v,A1, . . . , Am) = (gvλ−1, gA1g
−1, . . . , gAmg

−1)

Consider the character χθ where θ = (−n, 1), then θ(α) = 0 and consider the
open subset of θ-semistable representations in repα Q.

LEMMA 6.3
The following are equivalent for V = (v,A1, . . . , Am) ∈ repα Q

1. V is θ-semistable

2. V is θ-stable

3. V ∈ Brauers(gen)

Consequently
Mss
α (Q,α) ' BSmn (gen)
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PROOF 1. ⇒ 2.: If V is θ-semistable it must contain a largest θ-stable
subrepresentation W (the first term in the Jordan-Hölder filtration for θ-
semistables). In particular, if the dimension vector of W is β = (a, b) < (1, n),
then θ(β) = 0, which is impossible unless β = α whence W = V is θ-stable.

2.⇒ 3.: Observe that v 6= 0, for otherwise V would contain a subrepresen-
tation of dimension vector β = (1, 0) but θ(β) = −n is impossible. Assume
that v is noncyclic and let U ⊂ - Cn be a proper subspace, say, of dimension
l < n containing v and stable under left multiplication by the Ai, then V has
a subrepresentation of dimension vector β′ = (1, l) and again θ(β′) = l−n < 0
is impossible.

3. ⇒ 1.: By cyclicity of v, the only proper subrepresentations of V have
dimension vector β = (0, l) for some 0 < l ≤ n, but they satisfy θ(β) > 0,
whence V is θ-(semi)stable.

As for the last statement, recall that geometric points of Mss
α (Q,α) classify

isomorphism classes of direct sums of θ-stable representations. As there are no
proper θ-stable subrepresentations, Mss

α (Q,α) classifies the GL(α)-orbits in
Brauers(gen). Finally, as in chapter 1, there is a one-to-one correspondence
between the GLn-orbits as described in the definition of the Brauer-Severi
variety and the GL(α)-orbits on repα Q.

By definition, Mss
α (Q, θ) = proj ⊕∞n=0 C[repα Q]GL(α),χnθ and we can

either use the results of section 3 or the previous section to show that these
semi-invariants f are generated by brackets, that is

f(V ) = det
[
w1(A1, . . . , Am)v . . . wn(A1, . . . , Am)v

]
where the wi are words in the noncommuting variables x1, . . . , xm. As before
we can restrict these n-tuples of words {w1, . . . , wn} to sequences arising from
multicolored Hilbert n-stairs. That is, the lower triangular part of a square
n× n array

1

n

1 n

this time filled with colored stones ��������i where 1 ≤ i ≤ m subject to the two
coloring rules

• each row contains exactly one stone
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• each column contains at most one stone of each color

The relevant sequences W (σ) = {1, w2, . . . , wn} of words are then constructed
by placing the identity element 1 at the top of the stair, and descend according
to the rule

• Every go-stone has a top word T that we may assume we have con-
structed before and a side word S and they are related as indicated
below

T

S

1

T

xiT

1

��������i

In a similar way to the argument in chapter 1 we can cover Mss
α (Q,α) =

BSmn (gen) by open sets determined by Hilbert stairs and find representatives
of the orbits in σ-standard form, that is, replacing every i-colored stone in σ
by a 1 at the same spot in Ai and fill the remaining spots in the same column
of Ai by zeroes

i

j

1

n

1 n

��������i

Ai =

1i

j

0

0

.

.

.

0

0

.

.

.

As this fixes (n − 1)n entries of the mn2 + n entries of V , one recovers the
following result of M. Van den Bergh [101].

THEOREM 6.12

The generic Brauer-Severi variety BSmn (gen) of degree n in m generators is
a smooth variety, which can be covered by affine open subsets each isomorphic
to C(m−1)n2+n.
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For an arbitrary affine C-algebra A, one defines the Brauer stable points to
be the open subset of repn A× Cn

Brauersn(A) = {(φ, v) ∈ repn A× Cn | φ(A)v = Cn}

As Brauer stable points have trivial stabilizer in GLn all orbits are closed and
we can define the Brauer-Severi variety of A of degree n to be the orbit space

BSn(A) = Brauersn(A)/GLn

We claim that Quillen-smooth algebras have smooth Brauer-Severi varieties.
Indeed, as the quotient morphism

Brauersn(A) -- BSn(A)

is a principal GLn-fibration, the base is smooth whenever the total space is
smooth. The total space is an open subvariety of repnA×Cn, which is smooth
whenever A is Quillen-smooth.

PROPOSITION 6.3
If A is Quillen-smooth, then for every n we have that the Brauer-Severi variety
of A at degree n is smooth.

Next, we bring in the approximation at level n. Observe that for every
affine C-algebra A we have a GLn-equivariant isomorphism

repn A ' trepn

∫
n

A

More generally, we can define for every Cayley-Hamilton algebra A of degree n
the trace preserving Brauer-Severi variety to be the orbit space of the Brauer
stable points in trepn A×Cn. We denote this variety with BStrn (A). Again,
the same argument applies.

PROPOSITION 6.4
If A is Cayley-smooth of degree n, then the trace preserving Brauer-Severi
variety BStrn (A) is smooth.

We have seen that the moduli spaces are projective fiber bundles over the
variety determined by the invariants

Mss
α (Q, θ) -- issα Q

Similarly, the (trace preserving) Brauer-Severi variety is a projective fiber
bundle over the quotient variety of repn A, that is, there is a proper map

BSn(A)
π-- issn A
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and we would like to study the fibers of this map. Recall that when A is an
order in a central simple algebra of degree n, then the general fiber will be
isomorphic to the projective space Pn−1 embedded in a higher dimensional
PN . Over non-Azumaya points we expect this Pn−1 to degenerate to more
complex projective varieties that we would like to describe. To perform this
study we need to control the étale local structure of the fiber bundle π in a
neighborhood of ξ ∈ issn A. Again, it is helpful to consider first the generic
case, that is, when A = C〈x1, . . . , xm〉 or Tmn . In this case, we have seen that
the following two fiber bundles are isomorphic

BSmn (gen) -- issn Tmn and Mss
α (Q, θ) -- issα Q

where α = (1, n), θ = (−n, 1) and the quiver

��������1 ��������n//

m

��
has Euler form χQ =

[
1 −1
0 1−m

]
A semi-simple α-dimensional representation Vζ of Q has representation type

(1, 0)⊕ (0, d1)⊕e1 ⊕ . . .⊕ (0, dk)⊕ek with
∑
i

diei = n

and hence corresponds uniquely to a point ξ ∈ issn Tmn of representation type
τ = (e1, d1; . . . ; ek, dk). The étale local structure of repα Q and of issα Q near
ζ is determined by the local quiver Qζ on k + 1-vertices, say {v0, v1, . . . , vk},
with dimension vector αζ = (1, e1, . . . , ek) and where Qζ has the following
local form for every triple (v0, vi, vj) as can be verified from the Euler-form

(/).*-+,1

(/).*-+,ei

(/).*-+,ej

di

OOOOOO
OOOOOO

#+OOOOOOOOO

OOOOOOOOO

djoooooo
oooooo

3;ooooooooo

ooooooooo

aij

?G

aji

��

aj

��

ai

@H

where aij = (m − 1)didj = aji and ai = (m − 1)d2
i + 1, aj = (m − 1)d2

j + 1.
The dashed part of Qζ is the same as the local quiver Qξ describing the
étale local structure of issn Tmn near ξ. Hence, we see that the fibration
BSmn (gen) -- issn Tmn is étale isomorphic in a neighborhood of ξ to the
fibration of the moduli space

Mss
αζ

(Qζ , θζ) -- issαζ
Qζ ' issαξ

Qξ



368 Noncommutative Geometry and Cayley-Smooth Orders

in a neighborhood of the trivial representation and where θζ =
(−n, d1, . . . , dk). Another application of the Luna slice results gives the fol-
lowing.

THEOREM 6.13
Let A be a Cayley-smooth algebra of degree n. Let ξ ∈ trissn A correspond
to the trace preserving n-dimensional semi-simple representation

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct simple representations of dimension di and occurring
with multiplicity ei. Then, the projective fibration

BStrn (A)
π-- trissn A

is étale isomorphic in a neighborhood of ξ to the fibration of the moduli space

Mss
αζ

(Q•ζ , θζ) -- issαζ
Q•ζ ' issαξ

Q•ξ

in a neighborhood of the trivial representation. Here, Q•ξ is the local marked
quiver describing the étale local structure of trepn A near ξ, where Q•ζ is
the extended marked quiver situation, which locally for every triple (v0, vi, vj)
has the following shape where the dashed region is the local marked quiver
Q•ξ describing ExttrA (Mξ,Mξ) and where αζ = (1, e1, . . . , ek) and θζ =
(−n, d1, . . . , dk)

(/).*-+,1

(/).*-+,ei

(/).*-+,ej

di

OOOOOO
OOOOOO

#+OOOOOOOOO

OOOOOOOOO

djoooooo
oooooo

3;ooooooooo

ooooooooo

aij

?G

aji

��

uj


�
•

mj

� 

ui

LT

•
mi

>F

6.8 Brauer-Severi fibers

In the foregoing section we have given a description of the generic Brauer-
Severi variety BSmn (gen) as a moduli space of quiver representation as well
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as a local description of the fibration

BSmn (gen)
ψ-- issmn

in an étale neighborhood of a point ξ ∈ issmn of representation type τ =
(e1, d1; . . . ; ek, dk). We proved that it is étale locally isomorphic to the fibra-
tion

Mss
αζ

(Qζ , θζ) -- issαζ
Qζ

in a neighborhood of the trivial representation. That is, we can obtain
the generic Brauer-Severi fiber ψ−1(ξ) from the description of the nullcone
Nullαζ

Qζ provided we can keep track of θζ-semistable representations. Let
us briefly recall the description of the quiver-setting (Qζ , αζ , θζ).

• The quiver Qζ has k + 1 vertices {v0, v1, . . . , vk} such that there are
di arrows from v0 to vi for 1 ≤ i ≤ k. For 1 ≤ i, j ≤ k there are
aij = (m− 1)didj + δij directed arrows from vi to vj

• The dimension vector αζ = (1, e1, . . . , ek)

• The character θζ is determined by the integral k + 1-tuple
(−n, d1, . . . , dk)

That is, for any triple (v0, vi, vj) of vertices, the full subquiver of Qζ on these
three vertices has the following form

1(/).*-+,

ei(/).*-+,

ej(/).*-+,

−n

di

dj

dioooooo
oooooo

3;ooooooooo

ooooooooo

dj

OOOOOO
OOOOOO

#+OOOOOOOOO

OOOOOOOOO

aii

�	

ajj

U]

aij

��

aji

@H

Let E =
∑k
i=1 ei and T the usual (diagonal) maximal torus of dimension 1+E

in GL(αζ) ⊂ - GLE and let {π0, π1, . . . , πE} be the obvious basis for the
weights of T .. As there are loops in every vi for i ≥ 1 and there are arrows
from vi to vj for all i, j ≥ 1 we see that the set of weights of repαζ

Qζ is

παζ
Qζ = {πij = πj − πi | 0 ≤ i ≤ E, 1 ≤ j ≤ E}

The maximal sets πs Qζ for s ∈ Sαζ
Qζ are of the form

πs Qζ
dfn
= πσ = {πij | i = 0 or σ(i) < σ(j)}
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for some fixed permutation σ ∈ SE of the last E entries. To begin, there can
be no larger subset as this would imply that for some 1 ≤ i, j ≤ E both πij
and πji would belong to it, which cannot be the case for a subset πs′ Qζ .
Next, πσ = πs Qζ where

s = (p, p+ σ(1), p+ σ(2), . . . , p+ σ(E)) where p = −E2

If we now make s vertex-dominant, or equivalently if we only take a σ in the
factor SE/(Se1 × Se2 × . . .× Sek

), then s belongs to Sαζ
Qζ . For example, if

E = 3 and σ = id ∈ S3, then the corresponding border and corner regions for
πs are

Cs = and Bs =

t tt
We have to show that the corresponding Hesselink stratum is nonempty in
Nullαζ

Qζ and that it contains θζ-semistable representations. For s corre-
sponding to a fixed σ ∈ SE the border quiver-setting (Qs, αs, θs) is equal
to

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .z0 +3 z1 +3 z2 +3 zE−1 +3 zE +3
−E −E + 2 −E + 4 E − 2 E

where the number of arrows zi are determined by{
z0 = pu if σ(1) ∈ Ivu

zi = auv if σ(i) ∈ Ivu
and σ(i+ 1) ∈ Ivv

where we recall that Ivi is the interval of entries in [1, . . . , E] belonging to
vertex vi. As all the zi ≥ 1 it follows that repαs

Qs contains θs-stable repre-
sentations, so the stratum in Nullαζ

Qζ determined by the corner-type Cs is
nonempty. We can depict the Ls = T -action on the corner as a representation
space of the extended quiver-setting

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .z0 +3 z1 +3 z2 +3 zE +3

v02

�!

v0E

��

v1E

� 

Translating representations of this extended quiver back to the original quiver-
setting (Qζ , αζ) we see that the corner Cs indeed contains θζ-semistable rep-
resentations and hence that this stratum in the nullcone determines an irre-
ducible component in the Brauer-Severi fiber ψ(ξ) of the generic Brauer-Severi
variety.
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THEOREM 6.14
Let ξ ∈ issmn be of representation type τ = (e1, d1; . . . ; ek, dk) and let E =∑k
i=1 ei. Then, the fiber π−1(ξ) of the Brauer-Severi fibration

Brauers(gen)

BSmn (gen)

??

π
-- issmn

ψ

-

has exactly E!
e1!e2!...ek! irreducible components, all of dimension

n+ (m− 1)
∑
i<j

eiejdidj + (m− 1)
∑
i

ei(ei − 1)
2

−
∑
i

ei

PROOF In view of the foregoing remarks we only have to compute the di-
mension of the irreducible components. For a corner type Cs as above we have
that the corresponding irreducible component in Nullαζ

Qζ has dimension

dim GL(αζ)− dim Ps + dim Cs

and from the foregoing description of Cs as a quiver-representation space we
see that

• dim Ps = 1 + ei(ei+1)
2

• dim Cs = n+
∑
i
ei(ei−1)

2 ((m− 1)d2
i + 1) +

∑
i<j(m− 1)eiejdidj

as we can identify Ps ' C∗ ×Be1 × . . .×Bek
where Be is the Borel subgroup

of GLe. Moreover, as ψ−1(ξ) is a Zariski open subset of

(C∗ ×GLn)×GL(αζ) Nullαζ
Qζ

we see that the corresponding irreducible component of ψ−1(ξ) has dimension

1 + dim GLn − dim Ps + dim Cs

As the quotient morphism ψ−1(ξ) -- π−1(ξ) is surjective, we have that the
Brauer-Severi fiber π−1(ξ) has the same number of irreducible components of
ψ−1(ξ). As the quotient

ψ−1(ξ) -- π−1(ξ)

is by Brauer-stability of all point a principal PGL(1, n)-fibration, substituting
the obtained dimensions finishes the proof.
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In particular, we deduce that the Brauer-Severi fibration
BSmn (gen)

π-- issmn is a flat morphism if and only if (m,n) = (2, 2)
in which case all Brauer-Severi fibers have dimension one.

As a final application, let us compute the Brauer-Severi fibers in a point
ξ ∈ X = trissn A of the smooth locus Smn A of a Cayley-Hamilton order
of degree n, which is of local quiver type (Q,α) where α = (1, . . . , 1) and Q
is the quiver

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

&&

qq
...

where the cycle has k vertices and p = (p1, . . . , pk) is an unordered partition
of n having exactly k parts. That is, A is a local Cayley-smooth order over a
surface of type Ak−101. These are the only types that can occur for smooth
surface orders which are maximal orders and have a nonsingular ramification
divisor. Observe also that in the description of nullcones, the extra loop will
play no role, so the discussion below also gives the Brauer-Severi fibers of
smooth curve orders. The Brauer-Severi fibration is étale locally isomorphic
to the fibration

Mss
α′ (Q

′, θ′)
π-- issα Q = issα′ Q

′

in a neighborhood of the trivial representation. Here, Q′ is the extended
quiver by one vertex v0

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

//

??���������

OO
qq

__?????????

oo

!!

p1cccccccccccccccc
cccccccccccccccc

-5ccccccccccccccccccccccc
ccccccccccccccccccccccc

p2lllllllllllll

lllllllllllll

19llllllllllllllllllll

llllllllllllllllllllp3rrrrrrrrr

rrrrrrrrr

5=rrrrrrrrrrrrrr

rrrrrrrrrrrrrr

pk−2
LLLLLLL

LLLLLLL

!)LLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLL

pk−1
RRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRR

%-RRRRRRRRRRRRR

RRRRRRRRRRRRR

pk
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

)1[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[[[[[[[[[[[[[[[[[[

the extended dimension vector is α′ = (1, 1, . . . , 1) and the character is de-
termined by the integral k + 1-tuple (−n, p1, p2, . . . , pk). The weights of the
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maximal torus T = GL(α′) of dimension k + 1 that occur in representations
in the nullcone are

πα′ Q
′ = {π0 i, πi i+1, 1 ≤ i ≤ k}

Therefore, maximal corners Cs are associated to s ∈ Sα′ Q′ where

πs Q
′ = {π0 j , 1 ≤ j ≤ k} ∪ {πi i+1, πi+1 i+2, . . . , πi−2 i−1}

for some fixed i. For such a subset the corresponding s is a one string k + 1-
tuple having as minimal value −k2 at entry 0, −k2 + 1 at entry i, −k2 + 2 at
entry i+ 1 and so on. To verify that this corner-type occurs in Nullα′ Q′ we
have to consider the corresponding border quiver-setting (Q′s, α

′
s, θ
′
s), which

is

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .pi +3 // // // //
−k −k + 2 −k + 4 k − 2 k

which clearly has θ′s-semistable representations, in fact, the corresponding
moduli space Mss

α′s
(Q′s, θ

′
s) ' Pp1−1. In this case we have that Ls = Ps =

GL(α′s) and therefore we can also interpret the corner as an open subset of
the representation space

Cs ⊂ - repα′s Q”s

where the embedding is Ps = GL(α′s)-equivariant and the extended quiver
Q”s is

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .pi +3 // // //

pi+1

�!

pi−1

��

Translating corner representations back to repα′ Q
′ we see that Cs contains

θ′-semistable representations, so will determine an irreducible component in
the Brauer-Severi fiber π−1(ξ). Let us calculate its dimension. The irreducible
component Ns of Nullα′ Q′ determined by the corner Cs has dimension

dim GL(α′)− dim Ps + dim Cs = (k + 1)− (k + 1) +
∑
i

pi + (k − 1)

= n+ k − 1

But then, the corresponding component in the Brauer-stable is an open sub-
variety of (C∗ ×GLn)×GL(α′) Ns and therefore has dimension

dim C∗ ×GLn − dim GL(α′) + dim Ns = 1 + n2 − (k + 1) + n+ k − 1

= n2 + n− 1
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But then, as the stabilizer subgroup of all Brauer-stable points is one dimen-
sional in C∗ × GLn the corresponding irreducible component in the Brauer-
Severi fiber π−1(ξ) has dimension n− 1. The following completes the proof.

THEOREM 6.15
Let A be a Cayley-Hamilton order of degree n over a surface X = trissn A
and let A be Cayley-smooth in ξ ∈ X of type Ak−101 and p as before. Then,
the fiber of the Brauer-Severi fibration

BStn(A) -- X

in ξ has exactly k irreducible components, each of dimension n − 1. In par-
ticular, if A is a Cayley-smooth order over the surface X such that all local
types are (Ak−101.p) for some k ≥ 1 and partition p of n in having k-parts,
then the Brauer-Severi fibration is a flat morphism.

In fact, one can give a nice geometric interpretation to the different compo-
nents. Consider the component corresponding to the corner Cs with notations
as before. Consider the sequence of k − 1 rational maps

Pn−1 -- Pn−1−pi−1 -- Pn−1−pi−1−pi−2 -- . . . -- Ppi−1

defined by killing the right-hand coordinates

[x1 : . . . : xn] 7→ [x1 : . . . : xn−pi−1 : 0 : . . . : 0︸ ︷︷ ︸
pi−1

] 7→ . . . 7→ [x1 : . . . : xpi
: 0 : . . . : 0︸ ︷︷ ︸

n−pi

]

that is in the extended corner-quiver setting

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .pi +3 // // //

pi+1

� 

pi−1

��

we subsequently set all entries of the arrows from v0 to vi−j zero for j ≥
1, the extreme projection Pn−1 -- Ppi−1 corresponds to the projection
Cs/Ps -- Bs/Ls = Mss

α′s
(Q′s, θ

′
s). Let Vi be the subvariety in ×kj=1 Pn−1

be the closure of the graph of this sequence of rational maps. If we label the
coordinates in the k − j-th component Pn−1 as x(j) = [x1(j) : . . . : xn(j)],
then the multihomogeneous equations defining Vi are{

xa(j) = 0 if a > pi + pi+1 + . . .+ pi+j

xa(j)xb(j − 1) = xb(j)xa(j − 1) if 1 ≤ a < b ≤ pi + . . .+ pi+l−1
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One verifies that Vi is a smooth variety of dimension n− 1. If we would have
the patience to work out the whole nullcone (restricting to the θ′-semistable
representations) rather than just the irreducible components, we would see
that the Brauer-Severi fiber π−1(ξ) consists of the varieties V1, . . . , Vk inter-
secting transversally. The reader is invited to compare our description of the
Brauer-Severi fibers with that of M. Artin [3] in the case of Cayley-smooth
maximal curve orders.
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Chapter 7

Noncommutative Manifolds

By now we have developed enough machinery to study the representation
varieties trepn A and trissn A of a Cayley-smooth algebra A ∈ alg@n. In
particular, we now understand the varieties

repn A = trepn

∫
n

A and issn A = trissn

∫
n

A

for the level n approximation
∫
n
A of a Quillen-smooth algebra A, for all

n. In this chapter we begin to study noncommutative manifolds, that is,
families (Xn)n of commutative varieties that are locally controlled by Quillen-
smooth algebras. Observe that for every C-algebra A, the direct sum of
representations induces sum maps

repn A× repm A - repn+m A and issn A× issm A - issn+m A

The characteristic feature of a family (Xn)n of varieties defining a noncom-
mutative variety is that they are connected by sum-maps

Xn ×Xm
- Xn+m

and that these morphisms are locally of the form issn A ×
issm A - issn+m A for a Quillen-smooth algebra A. An important class
of examples of such noncommutative manifolds is given by moduli spaces of
quiver representations. In order to prove that they are indeed of the above
type, we have to recall results on semi-invariants of quiver representations and
universal localization.

7.1 Formal structure

Objects in noncommutative geometry@n are families of varieties (Xi)i,
which are locally controlled by a set of noncommutative algebras A. That
is, Xi is locally the quotient variety of a representation variety repn A for
some n and some C-algebra A ∈ A. In section 2.7 we have seen that the rep-
resentation varieties form a somewhat mysterious subclass of the category of

377
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all (affine) GLn-varieties. For this reason it is important to equip them with
additional structures that make them stand out among the GLn-varieties.
In this section we define the formal structure on representation varieties, ex-
tending in a natural way the formal structure introduced by M. Kapranov on
smooth affine varieties. Let us give an illustrative example of this structure.

Example 7.1 Formal structure on Ad
Consider the affine space Ad with coordinate ring C[x1, . . . , xd] and order the
coordinate functions x1 < x2 < . . . < xd. Let fd be the free Lie algebra on
Cx1 ⊕ . . .⊕ Cxd, which has an ordered basis B = ∪k≥1Bk defined as follows.
B1 is the ordered set {x1, . . . , xd} and B2 = {[xi, xj ] | j < i}, ordered such
that B1 < B2 and [xi, xj ] < [xk, xl] iff j < l or j = l and i < k. Having
constructed the ordered sets Bl for l < k we define

Bk = {[t, w] | t = [u, v] ∈ Bl, w ∈ Bk−l such that v ≤ w < t for l < k}

For l < k we let Bl < Bk and Bk is ordered by [t, w] < [t′.w′] iff w < w′ or
w = w′ and t < t′.

It is well known that B is an ordered C-basis of the Lie algebra fd and that
its enveloping algebra

U(fd) = C〈x1, . . . , xd〉

is the free associative algebra on the xi. We number the elements of ∪k≥2Bk
according to the order {b1, b2, . . .} and for bi ∈ Bk we define ord(bi) = k − 1
(the number of brackets needed to define bi). Let Λ be the set of all functions
with finite support λ : ∪k≥2Bk - N and define ord(λ) =

∑
λ(bi)ord(bi).

Rephrasing the Poincaré-Birkhoff-Witt result for U(fd) we have that any non-
commutative polynomial p ∈ C〈x1, . . . , xd〉 can be written uniquely as a finite
sum

p =
∑
λ∈Λ

[[fλ]] Mλ

where [[fλ]] ∈ C[x1, . . . , xd] = S(B1) and Mλ =
∏
i b
λ(bi)
i . In particular, for ev-

ery λ, µ, ν ∈ Λ, there is a unique bilinear differential operator with polynomial
coefficients

Cνλµ : C[x1, . . . , xd]⊗C C[x1, . . . , xd] - C[x1, . . . , xd]

defined by expressing the product [[f ]] Mλ. [[g]] Mµ in C〈x1, . . . , xd〉 uniquely as∑
ν∈Λ[[Cνλµ(f, g)]] Mν .
By associativity of C〈x1, . . . , xd〉 the Cνλµ satisfy the associativity constraint,

that is, we have equality of the trilinear differential operators∑
µ1

Cνµ1λ3
◦ (Cµ1

λ1λ2
⊗ id) =

∑
µ2

Cνλ1µ2
◦ (id⊗ Cµ2

λ2λ3
)
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for all λ1, λ2, λ3, ν ∈ Λ. That is, one can define the algebra C〈x1, . . . , xd〉[[ab]]
to be the C-vector space of possibly infinite formal sums

∑
λ∈Λ[[fλ]] Mλ with

multiplication defined by the operators Cνλµ.
Let Ad(C) be the d-th Weyl algebra , that is, the ring of differential operators

with polynomial coefficients on Ad. Let OAd be the structure sheaf on Ad, then
it is well-known that the ring of sections OAd(U) on any Zariski open subset
U ⊂ - Ad is a left Ad(C)-module. Define a sheaf OfAd of noncommutative
algebras on Ad by taking as its sections over U the algebra

OfAd(U) = C〈x1, . . . , xd〉[[ab]] ⊗
C[x1,...,xd]

OAd(U)

that is, the C-vector space of possibly infinite formal sums
∑
λ∈Λ[[fλ]] Mλ with

fλ ∈ OAd(U) and the multiplication is given as before by the action of the
bilinear differential operators Cνλµ on the left Ad(C)-module OAd(U), that is,
for all f, g ∈ OAd(U) we have

[[f ]] Mλ.[[g]] Mµ =
∑
ν

[[Cνλµ(f, g)]] Mν

This sheaf of noncommutative algebras OfAd is called the formal structure on
Ad.

We will now define formal structures on arbitrary affine smooth varieties.
Let R be an associative C-algebra, RLie its Lie structure and RLiem the sub-
space spanned by the expressions [r1, [r2, . . . , [rm−1, rm] . . .] containing m− 1
instances of Lie brackets. The commutator filtration of R is the (increasing)
filtration by ideals (F k R)k∈Z with F k R = R for d ∈ N and

F−k R =
∑
m

∑
i1+...+im=k

RRLiei1 R . . . RRLieim R

Observe that all C-algebra morphisms preserve the commutator filtration.
The associated graded algebra grF R is a (negatively) graded commutative
Poisson algebra with part of degree zero, the abelianization Rab = R

[R,R] . If
R = C〈x1, . . . , xd〉, then the commutator filtration has components

F−k C〈x1, . . . , xd〉 = {
∑
λ

[[fλ]] Mλ,∀λ : ord(λ) ≥ k}

DEFINITION 7.1 Denote with nilk the category of associative C-
algebras R such that F−kR = 0 (in particular, nil1 = commalg the category
of commutative C-algebras). An algebra A ∈ Ob(nilk) is said to be k-smooth
if and only if for all T ∈ Ob(nilk), all nilpotent two-sided ideals I / T and all
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C-algebra morphisms A
φ- T

I there exist a lifted C-algebra morphism

T -- T

I

A

φ

6

�................................

∃φ̃

making the diagram commutative. Alternatively, an algebra is k-smooth if and
only if it is nilk-smooth.

For example, the quotient C〈x1,...,xd〉
F−k C〈x1,...,xd〉 is k-smooth using the lifting prop-

erty of free algebras and the fact that algebra morphisms preserve the com-
mutator filtration. Generalizing this, if A is Quillen-smooth then the quotient

A(k) =
A

F−k A

is k-smooth.
Kapranov proves [50, Thm 1.6.1] that an affine commutative Grothendieck-

smooth algebra C has a unique (upto C-algebra isomorphism identical on
C) k-smooth thickening C(k) with C

(k)
ab ' C. The inverse limit (connecting

morphisms are given by the unicity result)

Cf = lim
←

C(k)

is then called the formal completion of C. Clearly, one has Cfab = C. For
example

C[x1, . . . , xd]f = lim
←

C〈x1, . . . , xd〉
F−k C〈x1, . . . , xd〉

' C〈x1, . . . , xd〉[[ab]]

If X is an affine smooth (commutative) variety, one can use the formal com-
pletion C[X]f to define a sheaf of noncommutative algebras OfX defining the
formal structure on X.

The fact that C is Grothendieck-smooth is essential to construct and prove
uniqueness of the formal completion. At present, no sufficiently functorial ex-
tension of formal completion is known for arbitrary commutative C-algebras.
It is not true that any (nonaffine) smooth variety can be equipped with a
formal structure. In fact, the obstruction gives important new invariants of a
smooth variety related to Atiyah classes . We refer to [50, §4] for more details.

We recall briefly the algebraic construction of microlocalization. Let R be
a filtered algebra with a separated filtration {Fn}n∈Z and let S be a multi-
plicatively closed subset of R containing 1 but not 0. For any r ∈ Fn − Fn−1

we denote its principal character σ(r) to be the image of r in the associated
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graded algebra gr(R). We assume that the set σ(S) is a multiplicatively closed
subset of gr(R). We define the Rees ring R̃ to be the graded algebra

R̃ = ⊕n∈ZFntn ⊂ - R[t, t−1]

where t is an extra central variable. If σ(s) ∈ gr(R)n then we define the
element s̃ = stn ∈ R̃n. The set S̃ = {s̃, s ∈ S} is a multiplicatively closed
subset of homogeneous elements in R̃.

Assume that σ(S) is an Ore set in gr(R) = R̃
(t) , then for every n ∈ N0 the

image πn(S̃) is an Ore set in R̃
(tn) where R̃ -- R̃

(tn) is the quotient morphism.
Hence, we have an inverse system of graded localizations and can form the
inverse limit in the graded sense

Qµ
S̃
(R̃) = lim

←
g πn(S̃)−1 R̃

(tn)

The element t acts torsion-free on this limit and hence we can form the filtered
algebra

QµS(R) =
Qµ
S̃
(R̃)

(t− 1)Qµ
S̃
(R̃)

which is the microlocalization of R at the multiplicatively closed subset S.
We recall that the associated graded algebra of the microlocalization can be
identified with the graded localization

gr(QµS(R)) = σ(S)−1gr(R)

Let R be a C-algebra with Rab = R
[R,R] = C. We assume that the commu-

tator filtration (F k)k∈Z is a separated filtration on R. Observe that this is not
always the case (for example, consider U(g) for g a semisimple Lie algebra)
but often one can repeat the argument below replacing R with R

∩Fn .
Observe that gr(R) is a negatively graded commutative algebra with part

of degree zero C. Take a multiplicatively closed subset Sc of C, then S = Sc+
[R,R] is a multiplicatively closed subset of R with the property that σ(S) = Sc
and clearly Sc is an Ore set in gr(R). Therefore, S̃ is a multiplicatively closed
set of the Rees ring R̃ consisting of homogeneous elements of degree zero.
Observing that (tn)0 = F−ntn for all n ∈ N0 we see that

QµS(R) = lim
←

πn(S)−1 R

F−n

where R
πn-- R

Fn is the quotient morphism and QµS is filtered again by the
commutator filtration and has as associated graded algebra

gr(QµS(R)) = S−1
c gr(R).
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One can define a microstructure sheaf OµR on the affine scheme X of C by
taking as its sections over the affine Zariski open set X(f)

Γ(X(f),OµR) = QµSf
(R)

where S = {1, f, f2, . . .}+[R,R]. For C a Grothendieck-smooth affine commu-
tative algebra this sheaf of noncommutative algebras is the formal structure
on X introduced by M. Kapranov.

An important remark to make is that one really needs microlocalization
to construct a sheaf of noncommutative algebras on X. If by some fluke we
would have that all the Sf are already Ore sets in R, we might optimistically
assume that taking as sections over X(f) the Ore localization S−1

f R we would
define a sheaf OR over X. This is in general not the case as the Ore set Sg
need no longer be Ore in a localization S−1

f R !
Still one can remedy this by defining a noncommutative Zariski topology on

X using words in the Ore sets Sf , see [104, §1.3]. Whereas we do not need this
to define formal structures it seems to me inevitable that at a later stage in
the development of noncommutative geometry we will need to resort to such
noncommutative Grothendieck topologies on usual commutative schemes.

Having defined a formal structure on affine smooth varieties, we will now
extend it to arbitrary representation varieties. The starting point is that for
every associative algebra A the functor

alg
Homalg(A,Mn(−)) - sets

is representable in alg. That is, there exists an associative C-algebra n
√
A

such that there is a natural equivalence between the functors

Homalg(A,Mn(−)) ∼
n.e.

Homalg(
n
√
A,−)

In other words, for every associative C-algebra B, there is a functorial one-
to-one correspondence between the sets{

algebra maps A - Mn(B)
algebra maps n

√
A - B

We call n
√
A the n-th root algebra of A .

Example 7.2
If A = C〈x1, . . . , xd〉, then it is easy to see that n

√
A is the free algebra

C〈x11,1, . . . , xnn,d〉 on dn2 variables. For, given an algebra mapA
φ- Mn(B)

we obtain an algebra map n
√
A - B by sending the free variable xij,k to

the (i, j)-entry of the matrix φ(xk) ∈Mn(B). Conversely, to an algebra map
n
√
A

ψ- B we assign the algebra map A - Mn(B) by sending xk to
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the matrix (ψ(xij,k))i,j ∈ Mn(B). Clearly, these operations are each others
inverses.

To define n
√
A in general, consider the free algebra product A ∗Mn(C) and

consider the subalgebra
n
√
A = A∗Mn(C)Mn(C) = {p ∈ A∗Mn(C) | p.(1∗m) = (1∗m).p ∀m ∈Mn(C)}

Before we can prove the universal property of n
√
A we need to recall a property

that Mn(C) shares with any Azumaya algebra : if Mn(C)
φ- R is an algebra

morphism and if RMn(C) = {r ∈ R | r.φ(m) = φ(m).r ∀m ∈Mn(C)}, then we
have R 'Mn(C)⊗C R

Mn(C).
In particular, if we apply this to R = A ∗Mn(C) and the canonical map

Mn(C)
φ- A ∗ Mn(C) where φ(m) = 1 ∗ m we obtain that Mn(

n
√
A) =

Mn(C)⊗C
n
√
A = A ∗Mn(C).

Hence, if n
√
A

f- B is an algebra map we can consider the composition

A
idA∗1- A ∗Mn(C) 'Mn(

n
√
A)

Mn(f)- Mn(B)

to obtain an algebra mapA - Mn(B). Conversely, consider an algebra map
A

g- Mn(B) and the canonical map Mn(C)
i- Mn(B), which centralizes

B in Mn(B). Then, by the universal property of free algebra products we have
an algebra map A ∗Mn(C)

g∗i- Mn(B) and restricting to n
√
A we see that

this maps factors
A ∗Mn(C)

g∗i- Mn(B)

n
√
A

∪

6

...................- B
∪

6

and one verifies that these two operations are each other’s inverses.
It follows from the functoriality of the n

√
. construction that

C〈x1, . . . , xd〉 -- A implies that n
√

C〈x1, . . . , xd〉 -- n
√
A. Therefore,

if A is affine and generated by ≤ d elements, then n
√
A is also affine and

generated by ≤ dn2 elements.
These properties allow us define a formal completion of C[repn A] in a

functorial way for any associative algebra A. Equip n
√
A with the commutator

filtration

. . . ⊂ - F−2
n
√
A ⊂- F−1

n
√
A ⊂ - n

√
A = n

√
A = . . .

Because algebra morphisms are commutator filtration preserving, it follows
from the universal property of n

√
A that

n√
A

F−k
n√
A

is the object in nilk repre-
senting the functor

nilk
Homalg(A,Mn(−)) - sets
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In particular, because the categories commalg and nil1 are naturally equiva-
lent, we deduce that

n
√
Aab =

n
√
A

[ n
√
A, n
√
A]

=
n
√
A

F−1
n
√
A
' C[repn A]

because both algebras represent the same functor. We now define

n
√
A[[ab]] = lim

←

n
√
A

F−k
n
√
A
.

Assume that A is Quillen-smooth, then so is n
√
A because we have seen

before that
Mn(

n
√
A) ' A ∗Mn(C)

and the class of Quillen-smooth algebras is easily seen to be closed under free
products and matrix algebras.

As a consequence, we have for every k ∈ N that the quotient
n√
A

F−k
n√
A

is
k-smooth. Moreover, we have that

(
n
√
A

F−k
n
√
A

)ab '
n
√
A

[ n
√
A, n
√
A]
' C[repn A]

Because C[repn A] is an affine commutative Grothendieck-smooth algebra,
we deduce from the uniqueness of k-smooth thickenings that

C[repn A](k) '
n
√
A

F−k
n
√
A

and consequently that the formal completion of C[repn A] can be identified
with

C[repn A]f ' n
√
A[[ab]]

Therefore, if we define for an arbitrary C-algebra A the formal comple-
tion of C[repn A] to be n

√
A[[ab]] we have a canonical extension of the formal

structure on affine Grothendieck-smooth commutative algebras to the class
of coordinate rings of representation spaces on which it is functorial in the
algebras.

There is a natural action of GLn by algebra automorphisms on n
√
A. Let

uA denote the universal morphism A
uA- Mn(

n
√
A) corresponding to the

identity map on n
√
A. For g ∈ GLn we can consider the composed algebra

map
A

uA- Mn(
n
√
A)

Mn(
n
√
A)

g.g−1

?

ψ
g

-
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Then g acts on n
√
A via the automorphism n

√
A

φg- n
√
A corresponding to the

the composition ψg. It is easy to verify that this indeed defines a GLn-action
on n
√
A.

The formal structure sheaf Ofrepn A defined over repn A constructed from
n
√
A will be denoted by Ofn√

A
. We see that it actually has a GLn-structure

that is compatible with the GLn-action on repn A.

7.2 Semi-invariants

An important class of examples of noncommutative varieties are moduli
spaces of θ-semistable representations of quivers. Because the moduli space
Mss
α (Q, θ) is by definition the projective scheme of the graded algebra of semi-

invariants of weight χnθ for some n

Mss
α (Q, θ) = proj ⊕∞n=0 C[repα Q]GL(α),χnθ

we need some control on these semi-invariants of quivers.
In this section we will give a generating set of semi-invariants. The strategy

of proof should be clear by now. First, we will describe a large set of semi-
invariants. Then we use classical invariant theory to describe all multilinear
semi-invariants ofGL(α), or equivalently, all multilinear invariants of SL(α) =
SLa1 × . . . × SLak

and describe them in terms of these determinantal semi-
invariants. Finally, we show by polarization and restitution that these semi-
invariants do indeed generate all semi-invariants.

Let Q be a quiver on k vertices {v1, . . . , vk}. We introduce the additive
C-category add Q generated by the quiver. For every vertex vi we introduce
an indecomposable object, which we denote by  '!&"%#$07162534i . An arbitrary object in
add Q is then a sum of these

 '!&"%#$071625341
⊕e1 ⊕ . . .⊕  '!&"%#$07162534k

⊕ek

That is, we can identify add Q with Nk. Morphisms in the category add Q
are defined by the rules

Homadd Q(  '!&"%#$07162534i ,  '!&"%#$07162534j ) = ��������i��������j
��

Homadd Q(  '!&"%#$07162534i ,  '!&"%#$07162534i ) = ��������i
��

where the right-hand sides are the C-vector spaces spanned by all oriented
paths from vi to vj in the quiver Q, including the idempotent (trivial) path
ei when i = j.
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Clearly, for any k-tuples of positive integers α = (u1, . . . , uk) and β =
(v1, . . . , vk)

Homadd Q(  '!&"%#$071625341
⊕u1 ⊕ . . .⊕  '!&"%#$07162534k

⊕uk
,  '!&"%#$071625341

⊕v1 ⊕ . . .⊕  '!&"%#$07162534k

⊕vk )

is defined by matrices and composition arises via matrix multiplication

Mv1×u1( ��������1
��

) . . . Mv1×uk
( ��������k��������1
~~

)

...
. . .

...

Mvk×u1( ��������1��������k
~~

) . . . Mvk×uk
( ��������k
��

)


Fix a dimension vector α = (a1, . . . , ak) and a morphism φ in add Q

 '!&"%#$071625341
⊕u1 ⊕ . . .⊕  '!&"%#$07162534k

⊕uk φ-  '!&"%#$071625341
⊕v1 ⊕ . . .⊕  '!&"%#$07162534k

⊕vk

For any representation V ∈ repα Q we can replace each occurrence of an
arrow ��������i��������j

aoo of Q in φ by the aj × ai-matrix Va. This way we obtain a
rectangular matrix

V (φ) ∈MPk
i=1 aivi×

Pk
i=1 aiui

(C)

If we are in a situation where
∑
aivi =

∑
aiui, then we can define a semi-

invariant polynomial function on repα Q by

Pα,φ(V ) = det V (φ)

We call such semi-invariants determinantal semi-invariants . One verifies that
Pφ,α is a semi-invariant of weight χθ where θ = (u1 − v1, . . . , uk − vk). We
will show that such determinantal semi-invariant together with traces along
oriented cycles in the quiver Q generate all semi-invariants.

Because semi-invariants for the GL(α)-action on repα Q are the same as
invariants for the restricted action of SL(α) = SLa1 × . . . × SLak

, we will
describe the multilinear SL(α)-invariants from classical invariant theory. Be-
cause

repα Q =
⊕

��������i��������j
aoo

Maj×ai(C)

=
⊕

��������i��������j
aoo

Cai ⊗ C∗aj
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we have to consider multilinear SL(α)-invariants of⊗
��������i��������j oo

Cai ⊗ C∗aj =
⊗

��������i

[
⊗

��������i��������oo Cai ⊗
⊗

����������������i oo
C∗ai ]

Hence, any multilinear SL(α)-invariant can be written as f =
∏k
i=1 fi where

fi is a SLai-invariant of ⊗
��������i��������oo Cai ⊗

⊗
����������������i oo

C∗ai

Let us recall the classical description of multilinear SLn-invariants onM⊕in ⊕
V ⊕jn ⊕ V ∗⊕zn , that is, the SLn-invariant linear maps

Mn ⊗ . . .⊗Mn︸ ︷︷ ︸
i

⊗Vn ⊗ . . .⊗ Vn︸ ︷︷ ︸
j

⊗V ∗n ⊗ . . .⊗ V ∗n︸ ︷︷ ︸
z

f- C

By the identification Mn = Vn ⊗ V ∗n we have to determine the SLn-invariant
linear maps

V ⊗i+jn ⊗ V ∗⊗i+zn

f- C
The description of such invariants is given by classical invariant theory, see
[107, II.5,Thm. 2.5.A].

THEOREM 7.1
The multilinear SLn-invariants f are linear combinations of invariants of

one of the following two types

1. For (i1, . . . , in, h1, . . . , hn, . . . , t1, . . . , tn, s1, . . . , sr) a permutation of the
i+ j vector indices and (u1, . . . , ur) a permutation of the i+ z covector
indices, consider the SLn-invariant

[vi1 , . . . , vin ] [vh1 , . . . , vhn
] . . . [vt1 , . . . , vtn ] φu1(vs1) . . . φur

(vsr
)

where the brackets are the determinantal invariants

[va1 , . . . , van ] = det
[
va1 va2 . . . van

]
2. For (i1, . . . , in, h1, . . . , hn, . . . , t1, . . . , tn, s1, . . . , sr) a permutation of the

i+ z covector indices and (u1, . . . , ur) a permutation of the i+ j vector
indices, consider the SLn-invariant

[φi1 , . . . , φin ]∗ [φh1 , . . . , φhn ]∗ . . . [φt1 , . . . , φtn ]∗ φu1(vs1) . . . φur (vsr )

where the cobrackets are the determinantal invariants

[φa1 , . . . , φan
]∗ = det

φa1

...
φan


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Observe that we do not have at the same time brackets and cobrackets, due
to the relation

[v1, . . . , vn] [φ1, . . . , φn] = det

φ1(v1) . . . φ1(vn)
...

...
φn(v1) . . . φn(vn)


We can give a matrix-interpretation of these basic invariants. Let us consider
the case of a bracket of vectors (the case of cobrackets is similar)

[vi1 , . . . , vin ]

If all the indices {i1, . . . , in} are original vector-indices (and so do not come
from the matrix-terms) we save this term and go to the next factor. Otherwise,
if, say, i1 is one of the matrix indices, Ai1 = φi1 ⊗ vi1 , then the covector φi1
must be paired up in a scalar product φi1(vu1) with a vector vu1 . Again, two
cases can occur. If u1 is a vector index, we have that

φi1(vu1)[vi1 , . . . , vin ] = [Ai1vu1 , vi2 , . . . , vin ] = [v′i1 , vi2 , . . . , vin ]

Otherwise, we can keep on matching the matrix indices and get an expression

φi1(vu1) φu1(vu2) φu2(vu3) . . .

until we finally hit again a vector index, say, ul, but then we have the expres-
sion

φi1(vu1) φu1(vz1) . . . φul−1(vul
) [vi1 , . . . , vin ] = [Mvul

, vi2 , . . . , vin ]

where M = Ai1Au1 . . . Aul−1 . One repeats the same argument for all vectors
in the brackets. As for the remaining scalar product terms, we have a similar
procedure of matching up the matrix indices and one verifies that in doing so
one obtains factors of the type

φ(Mv) and tr(M)

whereM is a monomial in the matrices. As we mentioned, the case of covector-
brackets is similar except that in matching the matrix indices with a covector
φ, one obtains a monomial in the transposed matrices.

Having found these interpretations of the basic SLn-invariant linear terms,
we can proceed by polarization and restitution processes to prove the follow-
ing.

THEOREM 7.2
The SLn-invariants of W = repα Q

′ where Q′ is the quiver

n(/).*-+,m(/).*-+, p(/).*-+,
k

��
// //
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are generated by the following four types of functions, where we write a typical
element in W as

(A1, . . . , Ak︸ ︷︷ ︸
k

, v1, . . . , vm︸ ︷︷ ︸
m

, φ1, . . . , φp︸ ︷︷ ︸
p

)

with the Ai the matrices corresponding to the loops, the vj making up the rows
of the n×m matrix and the φj the columns of the p× n matrix.

• tr(M) where M is a monomial in the matrices Ai

• scalar products φj(Mvi) where M is a monomial in the matrices Ai

• brackets [M1vi1 ,M2vi2 , . . . ,Mnvin ] where the Mj are monomials in the
matrices Ai

• cobrackets [M1φ
τ
i1
, . . . ,Mnφ

τ
in

] where the Mj are monomials in the ma-
trices Ai

Returning to the special case under consideration, that is, of SLm-invariants
on ⊗BCm ⊗ ⊗CC∗m, it follows from this that the linear SLm-invariants are
determined by the following three sets

• traces, that is, for each pair (b, c) we have Cm ⊗C∗m = Mm(C)
Tr- C

• brackets, that is, for each m-tuple (b1, . . . , bm) we have an invariant
⊗bj

Cm - C defined by

vb1 ⊗ . . .⊗ vbm
7→ det

[
vb1 . . . vbm

]
• cobrackets, that is, for each m-tuple (c1, . . . , cm) we have an invariant
⊗ci

C∗m - C defined by

φc1 ⊗ . . .⊗ φcm
7→ det

φc1...
φcm


Multilinear SLm-invariants of ⊗BCm⊗⊗CC∗m are then spanned by invariants
constructed from the following data. Take three disjoint index-sets I, J and
K and consider surjective maps{

B
µ-- I tK

C
ν-- J tK

subject to the following conditions{
# µ−1(k) = 1 = # ν−1(k) for all k ∈ K.
# µ−1(i) = m = # ν−1(j) for all i ∈ I and j ∈ J
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To this data γ = (µ, ν, I, J,K) we can associate a multilinear SLm-invariant
fγ(⊗Bvb ⊗⊗Cφc) defined by

∏
k∈K

φν−1(k)(vµ−1(k))
∏
i∈I

det
[
vb1 . . . vbm

] ∏
j∈J

det

φc1...
φcm


where µ−1(i) = {b1, . . . , bm} and ν−1(j) = {c1, . . . , cm}. Observe that fγ is
determined only up to a sign by the data γ.

But then, we also have a spanning set for the multilinear SL(α)-invariants
on

repα Q =
⊗

��������v

[
⊗

��������v��������oo Cav ⊗
⊗

����������������v oo
C∗av ]

determined by quintuples Γ = (µ, ν, I, J,K) where we have disjoint index-sets
partitioned over the vertices v ∈ {v1, . . . , vk} of Q

I =
⊔
v Iv

J =
⊔
v Jv

K =
⊔
v Kv

together with surjective maps from the set of all arrows A of Q{
A

µ-- I tK
A

ν-- J tK

where we have for every arrow ��������v��������w
aoo that{

µ(a) ∈ Iv tKv

ν(a) ∈ Jw tKw

and these maps µ and ν are subject to the numerical restrictions{
# µ−1(k) = 1 = # ν−1(k) for all k ∈ K.
# µ−1(i) = av = # ν−1(j) for all i ∈ Iv and all j ∈ Jv

Such a quintuple Γ = (µ, ν, I, J,K) determines for every vertex v a quintuple

γv = (µv = µ | { ��������v�������� aoo }, νv = ν | { ����������������v
aoo }, Iv, Jv,Kv)

satisfying the necessary numerical restrictions to define the SLav
-invariant

fγv described before. Then, the multilinear SL(α)-invariant on repα Q de-
termined by Γ is defined to be

fγ =
∏
v

fγv
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and we have to show that these semi-invariants lie in the linear span of the
determinantal semi-invariants.

First, consider the case where the index set K is empty. If we denote the
total number of arrows in Q by n, then the numerical restrictions imposed
give us two expressions for n∑

v

av.# Iv = n =
∑
v

av.# Jv

Every arrow ��������v��������w
aoo determines a pair of indices µ(a) ∈ Iv and ν(a) ∈ Jw.

To the quintuple Γ we assign a map ΦΓ in add Q

 '!&"%#$071625341
⊕I1 ⊕ . . .⊕  '!&"%#$07162534k

⊕Ik ΦΓ-  '!&"%#$071625341
⊕J1 ⊕ . . .⊕  '!&"%#$07162534k

⊕Jk

which decomposes as a block-matrix in blocks Mv,w ∈ Hom(  '!&"%#$07162534v
⊕Iv

,  '!&"%#$07162534w
⊕Jw )

of which the (i, j) entry is given by the sum of arrows∑
µ(a)=i
ν(a)=j

��������v��������w
aoo

For a representation V ∈ repα Q, V (ΦΓ) is an n × n matrix and the deter-
minant defines the determinantal semi-invariant PΦα,Γ , which we claim to be
equal to the basic invariant fΓ possibly up to a sign.

We introduce a new quiver situation. Let Q′ be the quiver with vertices the
elements of I t J and with arrows the set A of arrows of Q, but this time we
take the starting point of the arrow ���������������� aoo in Q to be µ(a) ∈ I and the
terminating vertex to be ν(a) ∈ J . That is, Q′ is a bipartite quiver

I J

8?9>:=;<µ(a)

8?9>:=;<ν(a)

a

77oooooooooo

On Q′ we have the quintuple Γ′ = (µ′, ν′, I ′, J ′,K ′) where K ′ = ∅

I ′ =
⊔
i∈I

I ′i =
⊔
i∈I
{i} J ′ =

⊔
j∈J

J ′j =
⊔
j∈J
{j}

and µ′ = µ, ν′ = ν. We define an additive functor add Q′
s- add Q by

 '!&"%#$07162534i
s-  '!&"%#$07162534v  '!&"%#$07162534j

s-  '!&"%#$07162534w ���������������� aoo s- ���������������� aoo
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for all i ∈ Iv and all j ∈ Jw. The functor s induces a functor rep Q
s- rep Q′

defined by V
s- V ◦ s. If V ∈ repα Q then s(V ) ∈ repα′ Q

′ where

α′ = (c1, . . . , cp︸ ︷︷ ︸
# I

, d1, . . . , dq︸ ︷︷ ︸
# J

) with

{
ci = av if i ∈ Iv
dj = aw if j ∈ Jw

That is, the characteristic feature of Q′ is that every vertex i ∈ I is the source
of exactly ci arrows (follows from the numerical condition on µ) and that
every vertex j ∈ J is the sink of exactly dj arrows in Q′. That is, locally Q′

has the following form

��������c c // or ��������dd //

There are induced maps

repα Q
s- repα′ Q

′ GL(α)
s- GL(α′)

where the latter follows from functoriality by considering GL(α) as the au-
tomorphism group of the trivial representation in repα Q. These maps are
compatible with the actions as one checks that s(g.V ) = s(g).s(V ). Also
s induces a map on the coordinate rings C[repα Q]

s- C[repα′ Q
′] by

s(f) = f ◦ s. In particular, for the determinantal semi-invariants we have

s(Pα′,φ′) = Pα,s(φ′)

and from the compatibility of the action it follows that when f is a semi-
invariant the GL(α′) action on repα′ Q

′ with character χ′, then s(f) is a
semi-invariant for the GL(α)-action on repα Q with character s(χ) = χ′ ◦ s.
In particular we have that

s(Pα′,ΦΓ′ ) = Pα,s(ΦΓ′ )
= Pα,ΦΓ and s(fΓ′) = fΓ

Hence in order to prove our claim, we may replace the triple (Q,α,Γ) by the
triple (Q′, α′,Γ′). We will do this and forget the dashes from here on.

In order to verify that fΓ = ±Pα,ΦΓ it suffices to check this equality on the
image of

W =
⊕

��������j��������i
a //

Cci ⊕ C∗dj in
⊗

��������j��������i
a //

Cci ⊗ C∗dj

One verifies that both fΓ and Pα,ΦΓ are GL(α)-semi-invariants onW of weight
χθ where

θ = (1, . . . , 1︸ ︷︷ ︸
# I

,−1, . . . ,−1︸ ︷︷ ︸
# J

)
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Using the characteristic local form of Q = Q′, we see that W is isomorphic to
the GL(α)- module⊕
i∈I

(Cci ⊕ . . .⊕ Cci︸ ︷︷ ︸
ci

)⊕
⊕
j∈J

(C∗dj ⊕ . . .⊕ C∗dj︸ ︷︷ ︸
dj

) '
⊕
i∈I

Mci
(C)⊕

⊕
j∈J

Mdj
(C)

and the i factors of GL(α) act by inverse right-multiplication on the com-
ponent Mci

(and trivially on all others) and the j factors act by left-
multiplication on the component Mdj (and trivially on the others). That
is, GL(α) acts on W with an open orbit, say, that of the element

w = (rrc1 , . . . ,
rr
cp ,

rr
d1 , . . . ,

rr
dq

) ∈W

One verifies immediately from the definitions that that both fΓ and Pα,ΦΓ

evaluate to ±1 in w. Hence, indeed, fΓ can be expressed as a determinantal
semi-invariant.

Remains to consider the case whenK is nonempty. For k ∈ K two situations
can occur

• µ−1(k) = a and ν−1(k) = b are distinct, then k corresponds to replacing
the arrows a and b by their concatenation

��������k�������� ��������
b

oo
a

oo

• µ−1(k) = a = ν−1(k) then a is a loop in Q and k corresponds

��������k

a

��

to taking the trace of a.

This time we construct a new quiver Q” with vertices {w1, . . . , wn} corre-
sponding to the set A of arrows in Q. The arrows in Q” will correspond to
elements of K, that is, if k ∈ K we have the arrow (or loop) in Q” with
notations as before

��������a��������b
koo or ��������a

k

��

We consider the connected components of Q”. They are of the following three
types

• (oriented cycle): To an oriented cycle C in Q” corresponds an oriented
cycle C ′C in the original quiver Q. We associate to it the trace tr(C ′C)
of this cycle.
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• (open paths): An open path P in Q” corresponds to an oriented path
P ′P in Q which may be a cycle. To P we associate the corresponding
path P ′P in Q.

• (isolated points): They correspond to arrows in Q.

We will now construct a new quiver Q′ having the same vertex set {v1, . . . , vk}
as Q but with arrows corresponding to the set of paths P ′P described above.
The starting and ending vertex of the arrow corresponding to P ′P are of course
the starting and ending vertex of the path PP in Q. Again, we define an
additive functor add Q′

s- add Q by the rules

 '!&"%#$07162534v
s-  '!&"%#$07162534v and ��������i��������j

P ′Poo s- ��������i��������j

P ′P

��

If the path P ′P is the concatenation of the arrows ad ◦ . . . ◦ a1 in Q, we define
the maps {

µ′(P ′P ) = µ(a1)
ν′(P ′P ) = ν(ad)

whence

{
{P ′P }

µ-- I ′

{P ′P }
ν-- J ′

that is, a quintuple Γ′ = (µ′, ν′, I ′, J ′,K ′ = ∅) for the quiver Q′. One then
verifies that

fΓ = s(fΓ′)
∏
C

tr(C ′C) = s(Pα,ΦΓ′ )
∏
C

tr(C ′C)

= Pα,s(ΦΓ′ )

∏
C

tr(C ′C)

finishing the proof of the fact that multilinear semi-invariants lie in the linear
span of determinantal semi-invariants (and traces of oriented cycles).

The arguments above can be reformulated in a more combinatorial form
that is often useful in constructing semi-invariants of a specific weight, as is
necessary in the study of the moduli spaces Mss

α (Q, θ). Let Q be a quiver
on the vertices {v1, . . . , vk}, fix a dimension vector α = (a1, . . . , ak) and a
character χθ where θ = (t1, . . . , tk) such that θ(α) = 0. We will call a bipartite
quiver Q′ as in figure 7.1 on left vertex-set L = {l1, . . . , lp} and right vertex-
set R = {r1, . . . , rq} and a dimension vector β = (c1, . . . , cp; d1, . . . , dq) to be
of type (Q,α, θ) if the following conditions are met

• All left and right vertices correspond to vertices of Q, that is, there are
maps {

L
l- {v1, . . . , vk}

R
r- {v1, . . . , vk}
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L R

8?9>:=;<li

8?9>:=;<rj

22eeeeeeeeeeee //
,,YYYYYYYYYYYY

,,YYYYYYYYYYY
//

FIGURE 7.1: Left-right bipartite quiver.

possibly occurring with multiplicities, that is there is a map

L ∪R m- N+

such that ci = m(li)az if l(li) = vz and dj = m(rj)az if r(rj) = vz.

• There can only be an arrow (/).*-+,rj(/).*-+,li
// if for vk = l(li) and vl = r(ri)

there is an oriented path

(/).*-+,vl(/).*-+,vk

  

in Q allowing the trivial path and loops if vk = vl.

• Every left vertex li is the source of exactly ci arrows in Q′ and every
right-vertex rj is the sink of precisely dj arrows in Q′.

• Consider the u× u matrix where u =
∑
i ci =

∑
j dj (both numbers are

equal to the total number of arrows in Q′) where the i-th row contains
the entries of the i-th arrow in Q′ with respect to the obvious left and
right bases. Observe that this is a GL(β) semi-invariant on repβ Q

′ with
weight determined by the integral k + l-tuple (−1, . . . ,−1; 1, . . . , 1). If
we fix for every arrow a from li to rj in Q′ an m(rj) × m(li) matrix
pa of linear combinations of paths in Q from l(li) to r(rj), we obtain a
morphism

repα Q
- repβ Q

′

sending a representation V ∈ repα Q to the representation W of Q′

defined by Wa = pa(V ). Composing this map with the above semi-
invariant we obtain a GL(α) semi-invariant of repα Q with weight de-
termined by the k-tuple θ = (t1, . . . , tk) where

ti =
∑

j∈r−1(vi)

m(rj)−
∑

j∈l−1(vi)

m(lj)

.
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We call such semi-invariants standard determinantal . Summarizing the argu-
ments of this section we have proved after applying polarization and restitu-
tion processes

THEOREM 7.3
The semi-invariants of the GL(α)-action on repα Q are generated by traces
of oriented cycles and by standard determinantal semi-invariants.

7.3 Universal localization

In order to prove that the moduli spaces Mss
α (Q, θ) are locally controlled by

Quillen-smooth algebras, we need to recall the notion of universal localization
and refer to the monograph by A. Schofield [92] for full details.

Let A be a C-algebra and projmod A the category of finitely generated
projective left A-modules. Let Σ be some class of maps in this category (that
is, some left A-module morphisms between certain projective modules). Then,
there exists an algebra map A

jΣ- AΣ with the universal property that the
maps AΣ ⊗A σ have an inverse for all σ ∈ Σ. AΣ is called the universal
localization of A with respect to the set of maps Σ.

PROPOSITION 7.1
When A is Quillen-smooth, then so is AΣ.

PROOF Consider a test-object (T, I) in alg, then we have the following
diagram

T -- T

I

A

ψ

6
.................

jΣ
- AΣ

φ

6

�...............................

φ̃

where ψ exists by Quillen-smoothness of A. By Nakayama’s lemma all maps
σ ∈ Σ become isomorphisms under tensoring with ψ. Then, φ̃ exists by the
universal property of AΣ.

Consider the special case when A is the path algebra CQ of a quiver on
k vertices. Then, we can identify the isomorphism classes in projmod CQ
with the opposite category of add Q introduced in the foregoing section. To
each vertex vi corresponds an indecomposable projective left CQ-ideal Pi =



Noncommutative Manifolds 397

CQei having as C-vector space basis all paths in Q starting at vi. For the
homomorphisms we have

HomCQ(Pi, Pj) =
⊕

��������i ��������j
poo o/ o/ o/ o/

Cp = Homadd Q(  '!&"%#$07162534j ,  '!&"%#$07162534i )

where p is an oriented path in Q starting at vj and ending at vi. Therefore,
any A-module morphism σ between two projective left modules

Pi1 ⊕ . . .⊕ Piu
σ- Pj1 ⊕ . . .⊕ Pjv

can be represented by an u× v matrix Mσ whose (p, q)-entry mpq is a linear
combination of oriented paths in Q starting at vjq and ending at vip .

Now, form an v×u matrix Nσ of free variables ypq and consider the algebra
CQσ, which is the quotient of the free product CQ ∗ C〈y11, . . . , yuv〉 modulo
the ideal of relations determined by the matrix equations

Mσ.Nσ =

vi1 0
. . .

0 viu

 Nσ.Mσ =

vj1 0
. . .

0 vjv


Equivalently, CQσ is the path algebra of a quiver with relations where the
quiver is Q extended with arrows ypq from vip to vjq for all 1 ≤ p ≤ u and
1 ≤ q ≤ v and the relations are the above matrix entry relations.

Repeating this procedure for every σ ∈ Σ we obtain the universal localiza-
tion CQΣ. This proves the following.

PROPOSITION 7.2
If Σ is a finite set of maps, then the universal localization CQΣ is an affine
C-algebra.

It is easy to verify that the representation space repn CQσ is an affine
Zariski open subscheme (but possibly empty) of repn CQ. Indeed, if V =
(Va)a ∈ repα Q, then V determines a point in repn CQΣ if and only if the
matrices Mσ(V ) in which the arrows are all replaced by the matrices Va are
invertible for all σ ∈ Σ.

In particular, this induces numerical conditions on the dimension vectors α
such that repα QΣ 6= ∅. Let α = (a1, . . . , ak) be a dimension vector such that∑
ai = n then every σ ∈ Σ, say, with

P⊕e11 ⊕ . . .⊕ P⊕ek

k

σ- P⊕f11 ⊕ . . .⊕ P⊕fk

k

gives the numerical condition

e1a1 + . . .+ ekak = f1a1 + . . .+ fkak
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These numerical restrictions will be used to relate θ-stable representations of
Q to simple representations of universal localizations of CQ.

Fix a character θ = (t1, . . . , tk) ∈ Zk and divide the set of indices 1 ≤ i ≤ k
into the left set L = {i1, . . . , iu} consisting of those i such that ti ≤ 0 and the
right set R = {j1, . . . , jv} consisting of those j such that tj ≥ 0. Consider a
dimension vector α such that θ.α = 0, then θ determines the character

GL(α)
χθ- C∗ (g1, . . . , gk) 7→

∏
i

det(gi)ti

Next, consider the sets of morphisms

Σθ =
⋂
z∈N+

Σθ(z)

where Σθ(z) is the set of all morphisms

P
⊕−zti1
i1

⊕ . . .⊕ P⊕−ztiu
iu

σ- P
⊕ztj1
j1

⊕ . . .⊕ P⊕ztjv
jv

With notation as before, it follows that

dσ(V ) = det Mσ(V ) V ∈ repα Q

is a semi-invariant on repα Q of weight zχθ. This semi-invariant determines
the Zariski open subset of repα Q

Xσ(α) = {V ∈ repα Q | dσ(V ) 6= 0}

It is clear from the results of section 4.8 that Xσ(α) consists of θ-semistable
representations. We can characterize the θ-stable representations in this open
set.

LEMMA 7.1
For V ∈ Xσ(α) the following are equivalent

1. V is a θ-stable representation

2. V is a simple α-dimensional representation of the universal localization
CQσ

PROOF Let W be a β-dimensional subrepresentation of V with β =
(b1, . . . , bk), then for W to be a β-dimensional representation of the universal
localization CQσ it must satisfy the numerical restriction

−ti1bi1 − . . .− tiubiu = tj1bj1 + . . .+ tjvbjv that is, θ.β = 0

Hence, if V is θ-stable, there are no proper subrepresentations of V as a
CQσ-representation. Conversely, if V is an α-dimensional subrepresentation
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of CQσ we must have that dσ(V ) 6= 0. But then, if W is a β-dimensional
Q-subrepresentation of V we must have that

∑
a−tiabia ≤

∑
b tjbbib (if not,

σ(V ) would have a kernel) whence θ.β ≥ 0. If W is a subrepresentation such
that θ.β = 0, then W would be a proper CQσ subrepresentation of V , a
contradiction. Therefore, V is θ-stable.

THEOREM 7.4
The moduli space of θ-semistable representations of the quiver Q

Mss
α (Q, θ)

is locally controlled by the set of Quillen-smooth algebras {CQσ | σ ∈ Σθ }.

PROOF By the results of the foregoing section we know that the quotient
varieties of the Zariski open affine subsets Xσ(α) cover the moduli space
Mss
α (Q, θ). Further, by lemma 7.1 we have a canonical isomorphism

Xσ(α)/GL(α) ' issα CQσ

Finally, because

repn CQσ = tαGLn ×GL(α) repα CQσ

where the disjoint union is taken over all α = (a1, . . . , ak) such that
∑
i ai = n,

we have that issα CQσ is an irreducible component of issn CQσ finishing
the proof.

Lemma 7.1 also allows us to study the moduli spaces Mss
α (Q, θ) locally by

the local quiver settings associated to semisimple representations. That is, let
ξ ∈Mss

α (Q, θ) be the point corresponding to

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ez
z

where Si is a θ-stable representation of dimension vector βi occurring in Mξ

with multiplicity ei.

THEOREM 7.5
With notations as above, the étale local structure of the moduli space
Mss
α (Q, θ) near ξ is that of the quotient variety issβ Qξ where β = (e1, . . . , ez)

and Qξ is the quiver on z vertices such that
# ��������i��������j

aoo = − χQ(βi, βj)

# ��������i
��

= 1− χQ(βi, βi)
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near the trivial representation.

PROOF In view of the above results and the slice theorems, we only have
to compute the ext-spaces Ext1CQσ

(Si, Sj). From [92, Thm. 4.7] we recall that
the category of CQσ representations is closed under extensions in the category
of representations of Q. Therefore, we have for all CQσ-representations V and
W that

Ext1CQ(V,W ) ' Ext1CQσ
(V,W )

from which the result follows using theorem 4.5.

In the following section we will give some applications of this result. Uni-
versal localizations can also be used to determine the formal structure on
representation spaces of quivers.

Let Q be a quiver on k vertices and consider the extended quiver Q(n)

Q

��������1

��������i

��������k

��������0

n

zzzzz

<<zzzzz

ndddd
22dddd

n

DD
DD

D

""D
DD

DD

That is, we add to the vertices and arrows of Q one extra vertex v0 and for
every vertex vi in Q we add n directed arrows from v0 to vi. We will denote
the j-th arrow 1 ≤ j ≤ n from v0 to vi by xij .

Consider the morphism between projective left CQ(n)-modules

P1 ⊕ P2 ⊕ . . .⊕ Pk
σ- P0 ⊕ . . .⊕ P0︸ ︷︷ ︸

n

determined by the matrix

Mσ =

x11 . . . . . . x1n

...
...

xk1 . . . . . . xkn


We consider the universal localization CQ(n)

σ , that is, we add for each vertex
vi in Q another n arrows yij with 1 ≤ j ≤ n from vi to v0.
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With these arrows yij one forms the n× k matrix

Nσ =


y11 . . . yk1
...

...
...

...
y1n . . . ykn


and the universal localization CQ(n)

σ is described by the relations

Mσ.Nσ =

v1 0
. . .

0 vk

 and Nσ.Mσ =


v0 0

. . .
. . .

0 v1


We will depict this quiver with relations by the picture Q(n)

σ

Q

��������1

��������i

��������k

��������0
||

n

zzzzz

<<zzzzz

rr ndddd
22dddd

bb

n

DD
DD

D

""D
DD

DD

From the discussion above it follows that there is a canonical isomorphism

repm
n
√

CQ ' repm CQ(n)
σ

In fact we can even identify

n
√

CQ = v0 CQ(n)
σ v0

Indeed, the right-hand side is generated by all the oriented cycles in Q
(n)
σ

starting and ending at v0 and is therefore generated by the yipxiq and the
yipaxjq where a is an arrow in Q starting in vj and ending in vi. If we have
an algebra morphism

CQ φ- Mn(B)

then we have an associated algebra morphism

v0 CQ(n)
σ v0

ψ- B
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defined by sending yipaxjq to the (p, q)-entry of the n × n matrix φ(a) and
yipxiq to the (p, q)-entry of φ(vi). The defining relations among the xip and
yiq introduced before imply that ψ is indeed an algebra morphism.

Example 7.3
Let A = C〈a, b〉, that is, A is the path algebra of the quiver

��������1

a

��

b

[[

In order to describe n
√
A we consider the quiver with relations

��������0
n

x

** ��������1

n
y

jj

a

��

b

[[ : yixj = δijv0,
∑
i

xiyi = v1

We see that the algebra of oriented cycles in v0 in this quiver with relations
is isomorphic to the free algebra in 2n2 free variables

C〈y1ax1, . . . , ynaxn, y1bx1, . . . , ynbxn〉

which coincides with our knowledge of n
√

C〈a, b〉.

There is some elementary calculus among the n-th roots of algebras. For
example, it follows from the universal property of n

√
A that there is a natural

morphism
k1

√
k2

√
. . .

kz
√
A � k

√
A

where k =
∏
ki. When A = CQ we can represent this morphism graphically

by the picture

Q

��������1

��������i

��������k

����������������0 �������� . . . ||

kz

zzzzz

<<zzzzz

rr kzdddd
22dddd

bb

kz

DD
DD

D

""D
DDD

D

oo k1 // oo k2 // oo kz−1 // -

Q

��������1

��������i

��������k

��������0
||

k
zzzzz

<<zzzzz

rr kdddd
22dddd

bb

k

DD
DD

D

""D
DD

DD
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Q
1

Q
2

��������1

��������k

��������1

��������i

��������p
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??
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?
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FIGURE 7.2: Free product of quivers.

where the map is given by composing paths from v0 to vi. Also observe that
we used the isomorphisms in the rightmost part of the left quiver to remove
additional arrows from the extra vertices to vi at each stage.

Probably more important are the connecting morphisms

k1
√
A ∗ k2

√
A ∗ . . . ∗ kz

√
A �c(k1,...,kz) k

√
A

with k =
∑
ki obtained from the universal property of n

√
A by composing

algebra morphisms A
φi- Mki(B) to an algebra morphism

A

266664
φ1 0

. . .
0 φz

377775
- Mk(B)

Observe that the ordering of the factors is important (but only up to isomor-
phism of the representations).

We need to have a quiver interpretation of the free product CQ1 ∗ CQ2

of two path algebras (at least as far as finite dimensional representations are
concerned). Let Q1 be a quiver on k vertices {v1, . . . , vk} and Q2 a quiver on
p vertices {w1, . . . , wp} and consider the extended quiver Q1 ∗Q2 of figure 7.2.
That is, we add one extra arrow from each vertex of Q1 to each arrow of Q2.

Let {P1, . . . , Pk} be the projective left CQ1 ∗Q2-modules corresponding to
the vertices of Q1 and {P ′1, . . . , P ′p} those corresponding to the vertices of Q2

and consider the morphism

P ′1 ⊕ . . .⊕ P ′p
σ- P1 ⊕ . . .⊕ Pk

determined by the p× k matrix

Mσ =

x11 . . . x1k

...
...

xp1 . . . xpk





404 Noncommutative Geometry and Cayley-Smooth Orders

where xij denotes the extra arrow from vertex vj to vertex wi.
Let Q1 ∗Q2σ denote the quiver with relations one obtains by inverting this

map (as above). Then, it is fairly easy to see that

repn CQ1 ∗Q2 ' repn Q1 ∗Q2σ

where the right-hand side denote the subscheme of n-dimensional representa-
tions of the quiver Q1 times the n-dimensional representations of Q2 where
the extra arrows determine an isomorphism of the representations.

Using this interpretation of the free product one can now give a graphical
interpretation of the connecting morphisms in the case of the two-loop quiver
(the general case is similar).
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## {{

obtained by ”grafting” the bottom tree. Observe that we used the isomor-
phisms given by the ki bundles to eliminate adding extra arrows in the free
products.

7.4 Compact manifolds

noncommutative geometry@n is the study of families of algebraic varieties
(with specified connecting morphisms) that are controlled locally by a set of
noncommutative algebras. If this set of algebras consists of Quillen-smooth
algebras we say that the family of varieties is a noncommutative manifold . If
all varieties in the family are in addition projective (possibly with singularities)
we say that the family is a compact noncommutative manifold.

So far, we have not specified the properties of the connecting morphisms.
In this section we present a first class of examples, the sum families. In the
next chapter we will encounter another possibility coming from the theory of
completely integrable dynamical systems.

DEFINITION 7.2 A sum family is an object (Xn)n in
noncommutative geometry@n indexed over the positive integers such
that for each n there is a GLn-variety Yn and a quotient morphism

Yn -- Yn/GLn ' Xn
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and Yn is locally of the form repn A for an affine C-algebra A belonging to a
set A of algebras. Moreover, there are equivariant connecting sum-maps

Ym × Yn
⊕- Ym+n

for all m,n ∈ N+ where equivariance means with respect to the group GLm ×
GLn embedded diagonally in GLm+n. If the set A consists of Quillen-smooth
algebras, we call (Xn)n a sum manifold .

THEOREM 7.6
For a quiver Q on k vertices and a fixed character θ ∈ Zk, the family of
varieties

(
⊔

α=(a1,...,ak)P
i ai=n

Mss
α (Q, θ) )n

is a sum manifold in noncommutative geometry@n. If Q has no oriented
cycles, then this family is a compact sum manifold.

PROOF In view of theorem 7.5 we only need to construct equivariant-sum
maps. They are induced from the direct sums of representations

repα Q× repβ Q
⊕- repα+β Q (V,W ) 7→ V ⊕W

and the required properties are clearly satisfied.

Example 7.4
Let MP2(n; 0, n) be the moduli space of semistable vector bundles of rank n
over the projective plane P2 with Chern numbers c1 = 0 and c2 = n. Using
results of K. Hulek [46] one can identify this moduli space with

MP2(n; 0, n) 'Mss
(n,n)(Q, θ)

where Q and θ are the following quiver-setting

����������������
−1 1

!! //==

Therefore, the family of moduli spaces (MP2(n; 0, n))n is a compact noncom-
mutative manifold.

Let C be a smooth projective curve of genus g and let MC(n, 0) be the
moduli space of semistable vector bundles of rank n and degree 0 over C. We
expect that the family of moduli spaces (MC(n, 0))n is a compact noncom-
mutative manifold.
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Next, we will investigate another class of examples: representations of the
torus knot groups . Consider a solid cylinder C with m line segments on its
curved face, equally spaced and parallel to the axis. If the ends of C are
identified with a twist of 2π n

m where n is an integer relatively prime to m, we
obtain a single curve Km,n on the surface of a solid torus T . If we assume
that the torus T lies in R3 in the standard way, the curve Km,n is called the
(m,n) torus knot .

Computing the fundamental group of the complement R3−Km,n one obtains
the (m,n)-torus knot group

π1(R3 −Km,n) = Gm,n ' 〈 a, b | am = bn 〉

An important example is the three-string braid group.

Example 7.5
Consider Artin’s braid group B3 on three strings. B3 has the presentation

B3 ' 〈L,R | LR−1L = R−1LR−1〉

where L and R are the fundamental 3-braids

L R

If we let S = LR−1L and T = R−1L, an algebraic manipulation shows that

B3 = 〈S, T | T 3 = S2〉

is an equivalent presentation for B3. The center of B3 is the infinite cyclic
group generated by the braid

Z = S2 = (LR−1L)2 = (R−1L)3 = T 3

It follows from the second presentation of B3 that the quotient group modulo
the center is isomorphic to

B3

〈Z〉
' 〈s, t | s2 = 1 = t3〉 ' Z2 ∗ Z3

the free product of the cyclic group of order 2 (with generator s) and the
cyclic group of order 3 (with generator t). This group is isomorphic to the
modular group PSL2(Z) via

L -
[
1 1
0 1

]
and R -

[
1 0
1 1

]
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It is well known that the modular group PSL2(Z) acts on the upper half-plane
H2 by left multiplication in the usual way, that is[

a b
c d

]
: H2 - H2 given by z - az + b

cz + d

The fundamental domain H2/PSL2(Z) for this action is the hyperbolic tri-
angle

and the action defines a quilt-tiling on the hyperbolic plane, indexed by ele-
ments of PSL2(Z) = Z2 ∗ Z3

We want to study the irreducible representations of the torus knot group
Gm,n. Recall that the center of Gm,n is generated by am and that the quotient
group is the free product group

Gm,n =
Gm,n
〈 am 〉

= 〈 x, y | xm = 1 = yn 〉 = Zm ∗ Zn

of the cyclic groups of order m and n. As the center acts by scalar multipli-
cation on an irreducible representation by Schur’s lemma the representation
theory of Gm,n essentially reduces to that of the quotient Gm,n. The latter
can be studied by noncommutative geometry as the group algebra CGm,n is
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Quillen-smooth. This follows from

CGm,n = CZm ∗ Zn ' CZm ∗ CZn ' C× . . .× C︸ ︷︷ ︸
m

∗C× . . .× C︸ ︷︷ ︸
n

and as both factors of the free algebra product on the right are Quillen-smooth
(in fact, semisimple) so is the product by the universal property. Further, as
both factors are the path algebras of quivers on m resp. n vertices without
arrows, we know that the representation theory of the free algebra product,
and hence of CGm,n can be reduced to θ-semistable representations the quiver
Qm,n

��������1

��������m

��������1

��������i

��������n
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where θ = (−1, . . . ,−1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n

), by the results of the foregoing section. The

left vertex spaces Si, 1 ≤ i ≤ m for a Gm,n-representation are the eigenspaces
for the restricted Zm-action and the left vertex spaces Tj , 1 ≤ j ≤ n are the
eigenspaces for the restricted Zn-action.

Example 7.6

Consider the modular group PSL2(Z) ' Z2 ∗ Z3, the free product of the
cyclic groups of orders two and three with generators σ resp. τ . Let S be
an n-dimensional simple representation of PSL2(Z). Let ξ be a 3rd root of
unity, then restricting S to these finite Abelian subgroups we have

{
S ↓Z2 ' S⊕a1

1 ⊕ S⊕a2
−1

S ↓Z3 ' T⊕b11 ⊕ T⊕b2ξ ⊕ T⊕b3ξ2

where Sx resp. Tx are the one-dimensional representations on which σ resp.
τ acts via multiplication with x. Observe that a1 + a2 = b1 + b2 + b3 = n and
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we associate to S a representation V of the quiver situation

(/).*-+,a2

(/).*-+,a1

(/).*-+,b3

(/).*-+,b2

(/).*-+,b177oooooooo

''OOOOOOOO
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44

44
44

44
44

44
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with V1i = S⊕ai
i and V2j = T

⊕bj

j and where the linear map corresponding to

an arrow (/).*-+,ai(/).*-+,bj

aij // is the composition of

Vaij
: S⊕ai

i
⊂ - S ↓Z2= V ↓Z3

-- T
⊕bj

j

of the canonical injections and projections. If α = (a1, a2, b1, b2, b3) then we
take θ = (−1,−1,+1,+1,+1). Observe that ⊕i,jVaij : Cn - Cn is a linear
isomorphism. If W ⊂ - V is a subrepresentation, then θ(W ) ≥ 0. Indeed,
if the dimension vector of W is β = (c1, c2, d1, d2, d3) and if we assume that
θ(W ) < 0, then k = c1 + c2 > l = d1 + d2 + d3, but then the restriction
of ⊕Vaij

to W gives a linear map Ck -- Cl having a kernel, which is
impossible. Hence, V is a θ-semistable representation of the quiver. In fact,
V is even θ-stable, for consider a subrepresentation W ⊂ - V with dimension
vector β as before and θ(W ) = 0, that is, c1 + c2 = d1 + d2 + d3 = m, then
the isomorphism ⊕i,jVaij

| W and the decomposition into eigenspaces of
Cm with respect to the Z2 and Z3-action, makes Cm into an m-dimensional
representation of PSL2(Z), which is a subrepresentation of S. S being simple
then implies that W = V or W = 0, whence V is θ-stable. The underlying
reason is that the group algebra CPSL2(Z) is a universal localization of the
path algebra CQ of the above quiver.

As irreducible Gm,n-representations correspond to θ-stable representations
of the quiver Qm,n we need to determine the dimension vectors α of θ-stables.
In section 4.8 we have given an inductive algorithm to determine them. How-
ever, using the fact that the moduli spaces are locally controlled and hence
are determined locally by local quivers we can apply the easier classification
of simple roots given in section 4.4 so solve this problem.

Example 7.7
With Sij we denote the simple 1-dimensional representation of PSL2(Z) de-
termined by

Sij ↓Z2= Si and Sij ↓Z3
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Let n = x1+. . .+x6 and we aim to study the local structure of repn CPSL2(Z)
in a neighborhood of the semisimple n-dimensional representation

Vξ = S⊕x1
11 ⊕ S⊕x2

12 ⊕ S⊕x3
13 ⊕ S⊕x4

21 ⊕ S⊕x5
22 ⊕ S⊕x6

23

To determine the structure of Qξ we have to compute dim Ext1(Sij , Skl). To
do this we view the Sij as representations of the quiver Q2,3 in the example
above. For example S12 is the representation

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

1

''OO
OOO

of dimension vector (1, 0; 0, 1, 0). For representations of Q2,3, the dimensions
of Hom and Ext-groups are determined by the bilinear form

χQ =


1 0 −1 −1 −1
0 1 −1 −1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


If V ∈ repα Q and W ∈ repβ Q where α = (a1, a2; b1, b2, b3) with a1 + a2 =
b1 + b2 + b3 = k and β = (c1, c2; d1, d2, d3) with c1 + c2 = d1 + d2 + d3 = l we
have dim Hom(V,W )− dim Ext1(V,W ) = χQ(α, β)

= kl − (a1c1 + a2c2 + b1d1 + b2d2 + b3d3)

As Hom(Sij , Skl) = C⊕δikδjl we have that

dim Ext1(Sij , Skl) =

{
1 if i 6= k and j 6= l

0 otherwise

The local quiver setting (Qξ, αξ) is depicted in figure 7.3. We want to de-
termine whether the irreducible component of repn CPSL2(Z) containing Vξ
contains simple PSL2(Z)-representations, or equivalently, whether αξ is the
dimension vector of a simple representation of Qξ, that is

χQξ
(αξ, εj) ≤ 0 and χQξ

(εj , αξ) for all 1 ≤ j ≤ 6

The Euler-form of Qξ is determined by the matrix where we number the
vertices cyclically

χQ•ξ =


1 −1 0 0 0 −1
−1 1 −1 0 0 0
0 −1 1 −1 0 0
0 0 −1 1 −1 0
0 0 0 −1 1 −1
−1 0 0 0 −1 1


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FIGURE 7.3: The local quiver.

leading to the following set of inequalities
x1 ≤ x5 + x6

x2 ≤ x4 + x6

x3 ≤ x4 + x5


x4 ≤ x2 + x3

x5 ≤ x1 + x3

x6 ≤ x1 + x2

Finally, observe that Vξ corresponds to a Q2,3-representation of dimension
vector (x1 + x2 + x3, x4 + x5 + x6;x1 + x4, x2 + x5, x3 + x6). If we write this
dimension vector as (a1, a2; b1, b2, b3) then the inequalities are equivalent to
the conditions

ai ≥ bj for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3

which gives us the desired restriction on the quintuples

(/).*-+,a2

(/).*-+,a1

(/).*-+,b3

(/).*-+,b2

(/).*-+,b1

at least when ai ≥ 3 and bj ≥ 2. The remaining cases are handled similarly.

We can use a similar strategy to determine the restrictions on irreducible
representations of any torus knot group quotient Gm,n ' Zm ∗ Zn. Having
the classification of the dimension vectors α of θ-semistable representations of
Qm,n we can use the local quiver settings to study these projective varieties
Mss
α (Qm,n, θ), in particular to determine the α for which this moduli space is

a projective smooth variety. For example, iss4 PSL2(Z) has several compo-
nents of dimensions 3 and 2. For one of the three 3-dimensional components,
the one corresponding to α = (2, 2; 2, 1, 1), the different types of semisimples
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Mξ and corresponding local quivers Qξ are all give a smooth ring of invariants.
For example, consider a point ξ ∈ iss4 PSL2(Z) of type

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1

(/).*-+,0

⊕ (/).*-+,0

(/).*-+,1

(/).*-+,0
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(/).*-+,1
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cc

Then, the traces along oriented cycles in Qξ are generated by the following
three algebraic independent polynomials

x = ac+ bd

y = eg + fh

z = (cg + dh)(ea+ fb)

and hence iss4 PSL2(Z) is smooth in ξ. The other cases being easier, we see
that this component of iss4 PSL2(Z) is a smooth compact manifold.

A further application of our local quiver-settings (Qξ, αξ) is that one can
often describe large families of irreducible Gm,n-representations, starting from
knowing only rather trivial ones.

Example 7.8
Consider the semisimple PSL2(Z)-representation ξ of type

(/).*-+,0
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Then, Mξ is determined by the following matrices

(


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,


1 0 0 0
0 ζ2 0 0
0 0 ζ 0
0 0 0 1

)

The quiver-setting (Qξ, αξ) implies that any nearby orbit is determined by a
matrix-couple

(


1 b1 0 0
a1 −1 d1 0
0 c1 1 f1
0 0 e1 −1

 ,


1 b2 0 0
a2 ζ

2 d2 0
0 c2 ζ f2
0 0 e2 1

)
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and as there is just one arrow in each direction these entries must satisfy

0 = a1a2 = b1b2 = c1c2 = d1d2 = e1e2 = f1f2

As the square of the first matrix must be the identity matrix rr
4, we have in

addition that
0 = a1b1 = c1d1 = e1f1

Hence, we get several sheets of 3-dimensional families of representations
(possibly, matrix-couples lying on different sheets give isomorphic PSL2(Z)-
representations, as the isomorphism holds in the étale topology and not nec-
essarily in the Zariski topology). One of the sheets has representatives

(


1 0 0 0
a −1 d 0
0 0 1 0
0 0 e −1

 ,


1 b 0 0
0 ζ2 0 0
0 c ζ f
0 0 0 1

)

From the description of dimension vectors of semisimple quiver representations
it follows that such a representation is simple if and only if

ab 6= 0 cd 6= 0 and ef 6= 0

Moreover, these simples are not isomorphic unless their traces ab, cd and ef
evaluate to the same numbers.

Finally, one can use the local quiver-settings (Qξ, αξ) to determine the
isomorphism classes of Gm,n-representations having a specified Jordan-Hölder
sequence. For this we apply the theory on nullcones developed in the foregoing
chapter.

Example 7.9
In the above example, this nullcone problem is quite trivial. A representation
has Mξ as Jordan-Hölder sum if and only if all traces vanish, that is

ab = cd = ef = 0

Under the action of the group GL(αξ) = C∗ ×C∗ ×C∗ ×C∗, these orbits are
easily seen to be classified by the arrays

a c e
b d f

filled with zeroes and ones subject to the rule that no column can have two
1’s, giving 27 = 33-orbits.



414 Noncommutative Geometry and Cayley-Smooth Orders

7.5 Differential forms

In this section we will define the complex of noncommutative differential
forms of an arbitrary C-algebra A and deduce some extra features in case A is
Quillen-smooth. In the following section we will compute the noncommutative
deRham cohomology spaces that will be of crucial importance in the final
chapter.

Let us recall briefly the classical (commutative) case. When A is a commu-
tative C-algebra, the A-module of Kähler differentials Ω1

A is generated by the
C-linear symbols da for a ∈ A satisfying the relations

d(ab) = adb+ bda ∀a, b ∈ A

and the map A
d- Ω1

A is the universal derivation. By convention we define{
Ω0
A = A

ΩnA = ∧nA Ω1
A

where the exterior product is taken over A (not over C). Observe that it is
spanned by the elements a0da1∧ . . .∧dan that we usually write a0da1 . . . dan.

The exterior differential operator

ΩnA
d- Ωn+1

A

is defined by
d(a0da1 . . . dan) = da0da1 . . . dan

and gives rise to a sequence

A = Ω0
A

d- Ω1
A

d- . . .
d- ΩnA

d- Ωn+1
A

d- . . .

which is a complex (that is, d ◦ d = 0) called the deRham complex . The
homology groups of this complex

HndR A =
Ker ΩnA

d- Ωn+1
A

Im Ωn−1
A

d- ΩnA

are called the de Rham cohomology groups of A (over C).
We will extend this to noncommutative C-algebras. We denote by dgalg

the category of differential graded C-algebras , that is, an object R ∈ dgalg
is a Z-graded C-algebra

R = ⊕i∈ZRi

endowed with a differential d of degree one

. . .
d- Ri−1

d- Ri
d- Ri+1

d- . . .
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such that d ◦ d = 0 and for all r ∈ Ri and s ∈ R we have

d(rs) = (dr)s+ (−1)ir(ds)

Clearly, morphisms in dgalg are C-algebra morphisms R
φ- S which are

graded and commute with the differentials.
To a C-algebra A we will now associate the differential graded algebra Ω A

of noncommutative differential forms . Denote the quotient vector space
A/C.1 with A and define

Ωn A = A⊗A⊗ . . .⊗A︸ ︷︷ ︸
n

for n ≥ 0 and Ωn A = 0 for n < 0. For ai ∈ A we denote the image of
a0 ⊗ a1 ⊗ . . .⊗ an in Ωn A by

(a0, . . . , an).

Consider the vector space Ω A = ⊕n∈Z Ωn A and define a product on it by

(a0, . . . , an)(an+1, . . . , am) =
n∑
i=0

(−1)n−i(a0, . . . , ai−1, aiai+1, ai+2, . . . , am).

Further, define an operator d of degree one

. . .
d- Ωn−1 A

d- Ωn A
d- Ωn+1 A

d- . . .

by the rule
d(a0, . . . , an) = (1, a0, . . . , an)

THEOREM 7.7
These formulas define the unique dgalg structure on Ω A such that

a0da1 . . . dan = (a0, a1, . . . , an).

PROOF In any R = ⊕iRi ∈ dgalg containing A as an even degree
subalgebra we have the following identities

d(a0da1 . . . dan) = da0da1 . . . dan

(a0da1 . . . dan)(an+1dan+2 . . . dam) = (−1)na0a1da2 . . . dam

+
∑n
i=1(−1)n−ia0da1 . . . d(aiai+1) . . . dam

which proves uniqueness.
To prove existence, we define d on Ω A as above making the Z-graded

C-vector space Ω A into a complex as d ◦ d = 0. Consider the graded endo-
morphism ring of the complex

End = ⊕n∈ZEndn = ⊕n∈ZHomcomplex(Ω• A,Ω•+n A)
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With the composition as multiplication, End is a Z-graded C-algebra and we
make it into an object in dgalg by defining a differential

. . .
D- Endn−1

D- Endn
D- Endn+1

D- . . .

by the formula on any homogeneous φ

Dφ = d ◦ φ− (−1)deg φφ ◦ d

Now define the morphism A
l- End0, which assigns to a ∈ A the left

multiplication operator

la(a0, . . . , an) = (aa0, . . . , an)

and extend it to a map

Ω A
l∗- End by l∗(a0, . . . , an) = la0 ◦D la1 ◦ . . . ◦D lan

Applying the general formulae given at the beginning of the proof to the
subalgebra l(A) ⊂ - End we see that the image of l∗ is a differential graded
subalgebra of End and is the differential graded subalgebra generated by l(A).

Define an evaluation map End
ev- Ω A by ev(φ) = φ(1). Because

D lai(1, ai+1, . . . , an) = d(ai, ai−1, . . . , an)− laid(1, ai+1, . . . , an)
= (1, ai, . . . , an)

we have that

ev(la0 ◦D la1 ◦ . . . ◦D lan) = (a0, . . . , an)

showing that ev is a left inverse for l∗ whence l∗ in injective.
Hence we can use the isomorphism Ω A ' Im(l∗) to transport the dgalg

structure to Ω A finishing the proof.

Example 7.10 Noncommutative differential forms of C× C
Let A = C×C and e and f the idempotents corresponding to the two factors.
The quotient space A = A/C1 can be identified with Ce and therefore

Ωn C× C = (C× C)⊗ Ce⊗n = (C× C)den

The differential d is defined by the formula

d((αe+ βf)den) = (α− β)den+1

and the product of Ω C× C is defined by the rule

(αe+ βf)den(γe+ δf)dem =

{
(αγe+ βδf)den+m when n is even
(αδe+ βγf)den+m when n is odd.
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We will relate the algebra structure of Ω A to that of A. The trick is to
define another multiplication on Ω A making it only into a filtered algebra.
We then prove that this filtered algebra is isomorphic to the I-adic filtration
of an algebra constructed from A and we recover the dgalg multiplication on
Ω A by taking the associated graded algebra.

We introduce the universal algebra LA with respect to based linear maps
from A to C-algebras. A based linear map is a C-linear map

A
ρ- R

where R is a C-algebra and ρ(1) = 1. The curvature of ρ is then defined to
be the bilinear map A×A ω- R defined by

ω(a, a′) = ρ(aa′)− ρ(a)ρ(a′)

that is, it is a measure for the failure of ρ to be an algebra map. Observe that
ω vanishes if either a or a′ is 1 so it can be viewed as a linear map

A⊗A ω- R

Let T (A) = ⊕n≥0A
⊗n be the tensor algebra of the vector space A and define

LA =
T (A)

T (A)(1− 1A)T (A)

where 1A is the identity of A consider as a 1-tensor in T (A), then we have a
based linear map

A
ρun

- LA a 7→ a

where a is the image in LA of the 1-tensor a in T (A). The map ρun is universal
for based linear maps A

ρ- R, that is, there is a unique algebra morphism
LA

φρ- R making the diagram commute

LA

A
ρ -

ρ
u
n

-

R

∃φρ

?

In particular, there is a canonical algebra map LA
φid-- A corresponding to

the identity map on A. We define

IA = Ker φid / LA
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and equip LA with the IA-adic filtration.
For an arbitrary R ∈ dgalg we define the Fedosov product on R to be the

one induced by defining on homogeneous r, s ∈ R the product

r.s = rs− (−1)deg rdrds

One easily checks that the Fedosov product is associative. Observe that if we
decompose R = Rev ⊕ Rodd into its homogeneous components of even (resp.
odd) degree, then this new multiplication is compatible with this decomposi-
tion and makes R into a Z/2Z-graded algebra.

We will now investigate the Fedosov product on Ω A. Let ωun be the
curvature of the universal based linear map A

ρun

- LA.

THEOREM 7.8
There is an isomorphism of algebras

LA ' (Ωev A , . )

between LA and the even forms Ωev A equipped with the Fedosov product given
by

ρun(a0)ωun(a1, a2) . . . ωun(a2n−1, a2n) - a0da1 . . . da2n

Under this isomorphism we have the correspondence

InA ' ⊕k≥nΩ2k A

The associated graded algebra gives an isomorphism

grIA
LA = ⊕ InA

In+1
A

' Ωev A

with even forms equipped with the dgalg structure.

PROOF Consider the based linear map A
ρ- Ωev A given by inclusion,

then its curvature is given by

ω(a, a′) = aa′ − a.a′ = dada′

By the universal property of LA there is an algebra morphism

LA
φ- (Ωev A , . )

such that φ(ρun(a)) = a and φ(ωun(a, a′)) = dada′. Observe that the Fedosov
product coincides with the usual dgalg product when one of the terms is closed
that is dr = 0. Therefore, we have

φ(ρun(a0)ωun(a1, a2) . . . ωun(a2n−1, a2n)) = a0da1 . . . da2n
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On the other hand, as Ω2n A = A ⊗ A
⊗2n

we have a well defined map
Ωev A

ψ- LA given by

ψ(a0da1 . . . da2n) = ρun(a0)ωun(a1, a2) . . . ρun(a2n−1, a2n)

and it remains to prove that this map is surjective. The image of ψ is closed
under left multiplication as it is closed under left multiplication by elements
ρun(a) (and they generate LA) as

ρun(a).ρun(a0)ωun(a1, a2) . . . ωun(a2n−1, a2n)
= ρun(aa0)ωun(a1, a2) . . . ωun(a2n−1, a2n)−

ωun(a, a0)ωun(a1, a2) . . . ωun(a2n−1, a2n)

Because the image contains 1 this proves the claim and the isomorphism.
Identify via this isomorphism LA with Ωev A. Because dada′ ∈ IA we have

Ω2k A ⊂ - InA for all k ≥ n. Thus, Fn = ⊕k≥nΩ2k A ⊂ - IA. Conversely,
IA = F1 and hence

InA = (F1)n ⊂ - Fn

by the definition of the Fedosov product. Therefore, InA = Fn and the claim
over the associated graded follows.

Example 7.11 Even differential forms of C× C
As before, let e and f be the idempotents of A = C×C corresponding to the
two components. By definition

LC×C =
T (Ce+ Cf)
(1− e− f)

=
C〈E,F 〉

(1− E − F )
' C[E]

The universal based linear map is given by

C× C ρun

- C[E]

{
e 7→ E

f 7→ 1− E

and the curvature on A = Ce is given by

ωun(e, e) = E − E2

Therefore the isomorphism between Ωev A and LA = C[E] is given by

(αe+ βf)de2n
ψ- (αE + β(1− E))(E − E2)n

The Fedosov product on Ωev A is given by the formula (using the multiplica-
tion formulas we found above)

(αe+βf)de2n.(γe+δf)de2m = (αγe+βδf)de2n+2m−(α−β)(γ−δ)de2n+2m+2
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In order to check that ψ is indeed an algebra morphism we need to verify that
in C[E] we have the equality

(αE + β(1− E))(E − E2)n(γE + δ(1− E))(E − E2)m

= (αγE + βδ(1− E))(E − E2)n+m − (α− β)(γ − δ)(E − E2)n+m+1

which is indeed the case.
Further, IA = C[E](E − E2) and indeed C[E]

(E−E2) ' C × C. Finally, under
the identification ψ we obtain the usual multiplication of noncommutative
differential forms from Ω2n A× Ω2m A =

(E − E2)n

(E − E2)n+1
× (E − E2)m

(E − E2)m+1
- (E − E2)n+m

(E − E2)n+m+1
= Ω2n+2m A

We now turn to all noncommutative differential forms Ω A. Observe that
this algebra has an involution σ, which is the identity on even forms and is
minus the identity on odd forms. σ is an algebra automorphism both for the
usual dgalg-algebra structure as for the Fedosov product. Algebras with an
involution are called superalgebras .

We want to construct an algebra universal for algebra morphisms from A to
a superalgebra. Consider the free product A ∗A, which is defined as follows.
Let B1 be a vector space basis for A − C.1 and B2 a duplicate of it. As a
C-vector space A ∗A has a basis consisting of words

w = a1b1a2b2 . . . akbk or w = a1b1a2b2 . . . ak

for some k where the ai’s all belong to B1 or all to B2 and the bj ’s all belong
to the other base set. On this vector space one defines a C-algebra structure
in the obvious way, that is by concatenating words and if necessary (if the end
term of the first word lies in the same base-set as the beginning term of the
second) use the multiplication table in A to reduce to a linear combination of
allowed words.

The algebra A ∗ A is universal with respect to pairs of algebra maps

A
f-

g
- R from A to R. That is, there is a unique algebra map γ

R

A ∗A

∃γ

6

A

f

-

i 1

-

A

�

g

�

i2
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making the diagram commute. Here, i1 is the inclusion of A in A ∗ A using
only syllables in B1 and i2 is defined similarly. The construction of γ clearly
is induced by sending a ∈ B1 to f(a) and b ∈ B2 to g(b).

Interchanging the bases B1
τ- B2 equips A ∗ A with an involution, or if

you prefer, makes A ∗ A a superalgebra. Now, let S be a superalgebra with
involution σS and let A

f- S be an algebra morphism, then there is a
unique morphism of superalgebras ψ making the diagram commute

A ∗A

A
f -

i1

-

S

∃ψ

?

ψ is the universal map corresponding to the pair of algebra maps A
f-

σS◦f
- S.

For any a ∈ A we define the elements in A ∗A{
p(a) = 1

2 (i1(a) + i2(a))
q(a) = 1

2 (i1(a)− i2(a))

and we define QA / A ∗ A to be the ideal of A ∗ A generated by the elements
q(a) for a ∈ A, then clearly

A ' A ∗A
QA

We now have an analog of the previous theorem for all differential forms.

THEOREM 7.9
There is an isomorphism of superalgebras

A ∗A ' (Ω A , . )

between A ∗ A and the noncommutative differential forms Ω A equipped with
the Fedosov product given by

p(a0)q(a1) . . . q(an) - a0da1 . . . dan

Under this isomorphism we have the correspondence

Qn
A ' ⊕k≥nΩn A

and the associated graded algebra is isomorphic to Ω A with the usual dgalg
structure.
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PROOF We have an algebra map A
u- Ω A equipped with the Fedosov

product given by a 7→ a+ da because

(a+ da).(a′ + da′) = aa′ − dada′ + ada′ + daa′ + dada′

= aa′ + d(aa′)

By the universal property of A ∗A there is a superalgebra morphism

A ∗A ψ- Ω A ψ(p(a)) = a and ψ(q(a)) = da

But then, because the Fedosov product coincides with the usual product when
one of the forms is closed, we have

ψ(p(a0)q(a1) . . . q(an)) = a0da1 . . . dan

Conversely, we have a section to ψ defined by

Ω A
φ- A ∗A a0da1 . . . dan 7→ p(a0)q(a1) . . . q(an)

and we only have to prove that φ is surjective. The image Im φ is closed under
left multiplication by p(a) and q(a) as p(1) = 1 and{
p(a)p(a0)q(a1) . . . q(an) = p(aa0)q(a1) . . . q(an)− q(a)q(a0)q(a1) . . . q(an)
q(a)p(a0)q(a1) . . . q(an) = q(aa0)q(a1) . . . q(an)− p(a)q(a0)q(a1) . . . q(an)

Because the elements p(a) and q(a) generate A ∗ A, the image Im φ is a left
ideal containing 1, whence ψ is surjective.

The claims about the ideals Qn
A and about the associated graded algebra

follow as in the proof for even forms.

Example 7.12 Noncommutative differential forms of C〈x, y〉
The noncommutative free algebra in two variables C〈x, y〉 is the path algebra
of the quiver

(/).*-+,
y

qq

x

--

Clearly we have C〈x, y〉 ∗ C〈x, y〉 = C〈x1, y1, x2, y2〉 and the maps{
p(x) = 1

2 (x1 + x2) q(x) = 1
2 (x1 − x2)

p(y) = 1
2 (y1 + y2) q(y) = 1

2 (y1 − y2)

It is easy to compute the maps p and q on any monomial in x and y using the
formulae holding in any A ∗A{

p(aa′) = p(a)p(a′) + q(a)q(a′)
q(aa′) = p(a)q(a′) + q(a)p(a′)
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Further note that it follows from this that QC〈x,y〉 = (x1−x2, y1− y2) and we
have all the required tools to calculate (in principle) with Ω C〈x, y〉.

Example 7.13 Noncommutative differential forms of C× C
The infinite dihedral group D∞ is the group with presentation

D∞ = 〈a, b | a2 = 1 = b2〉

that is, an arbitrary element in D∞ is a word of the form

aibabab . . . ababj

where i, j = 0 or 1. Multiplication is given by concatenation of words, using
the relations a2 = 1 = b2 when necessary.

The group algebra C[D∞] is the vector space with basis D∞ and with mul-
tiplication induced by the group multiplication in D∞. We now claim that

(C× C) ∗ (C× C) ' C[D∞]

Indeed, C × C ' C[Z2] the group algebra of the cyclic group of order two,
that is, C[Z2] = C[x]/(x2 − 1), the isomorphism being given by

e - 1
2
(1 + x) f - 1

2
(1− x)

One also has the obvious notion of a free product in the category of groups
and from the definition it is clear that

Z2 ∗ Z2 ' D∞

and therefore also on the level of group algebras

C[Z2] ∗ C[Z2] ' C[D∞]

The relevant maps C× C
p-

q
- C[D∞] are given by

{
p(e) = 1

2 + 1
4 (a+ b) q(e) = 1

4 (a− b)
p(f) = 1

2 −
1
4 (a+ b) q(f) = − 1

4 (a− b)

and so QC×C = (a−b)/C[D∞]. Again, this information allows us to calculate
with Ω C×C by referring all computations to the more familiar group algebra
C[D∞].

The above definitions and results are valid for every C-algebra A. We will
indicate a few extra properties provided the algebra A is Quillen-smooth.
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We have the universal lifting algebra LA for based linear maps from A to
C-algebras and the ideal IA such that

A �φid

'
LA
IA

The IA-adic completion of LA is by definition the inverse limit

L̂A = lim�
n

LA
IA

Assume that A is Quillen-smooth, then for every k we have an algebra map
lifting φid

−1

LA
IkA

A
φid

−1
-

φk

-

LA
IA

??

These compatible lifts define an algebra lift A
lun

- L̂A. This map can be
used to construct algebra lifts modulo nilpotent ideals in a systematic way.
Assume I / R is such that Ik = 0 and there is an algebra map A

µ- R
I .

We can lift µ to R as a based linear map, say, ρ. Now we have the following
situation

LA
can - L̂A

R

φ̂ρ

?

φ
ρ

-

A

ρun

6

µ -

l
u
n

-

ρ

-

R

I

??

Here, φρ is the algebra map coming from the universal lifting property of LA
and φ̂ρ is its extension to the completion. But then, µ̃ = φ̂ρ ◦ lun is an algebra
lift of µ, as shown in the text that follows.

PROPOSITION 7.3

A is Quillen-smooth if and only if there is an algebra section A - L̂A to
the projection L̂A -- A defined by mapping out IA.
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We will give an explicit construction of the embedding A
lun

- L̂A. By
Quillen-smoothness we have an algebra lift

A⊕ Ω2 A =
LA
I2A

A
id

-

l2

-

A =
LA
IA

??

which is of the form l2(a) = a−φ(a) for a linear map A
φ- Ω2 A. As LA is

freely generated by the a ∈ A−C1, we can define a derivation on LA defined
by

LA
D- LA D(a) = φ(a) ∀a ∈ A

This derivation is called the Yang-Mills derivation of A.
Clearly D(LA) ⊂ - IA and we have

D(dada′) = D(aa′ − a.a′)
= D(aa′)−D(a).a′ − a.D(a′)
= φ(aa′)− φ(a).a′ − a.φ(a′)

≡ aa′ − a.a′ mod I2A
≡ dada′ mod I2A

the next to last equality coming from the fact that l2 is an algebra map.
Hence, D = id on IA

I2A
= Ω2 A.

Further, D(InA) ⊂ - InA and so D induces a derivation on the associated
graded grIA

LA. As this derivation is zero on A = LA

IA
and one on IA

I2A
it is n

on In
A

In+1
A

. But then we have by induction

(D − n)...(D − 1)D(LA) ⊂ - In+1
A

Therefore, LA

In+1
A

decomposes into eigenspaces of D corresponding to the eigen-
values 0, 1, . . . , n and because D is a derivation this decomposition defines a
grading compatible with the product.

Hence, we obtain an isomorphism of LA

In+1
A

with its associated graded algebra

by lifting Ik
A

Ik+1
A

to the eigenspace of D on Ik
A

In+1
A

corresponding to the eigenvalue
k.

Taking the inverse limit as n - ∞ we obtain an algebra isomorphism of
L̂A with the completion of its associated graded algebra, that is

Ω̂ev A =
∏
n

Ω2n A ' L̂A
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In particular, the kernel of D is a subalgebra of L̂A mapped isomorphically
onto A by the canonical surjection L̂A -- A. Hence, this subalgebra gives
the desired universal lift A ⊂

lun

- L̂A.
We can even give an explicit formula for lun. Let L be the degree two

operator on Ωev A defined by

L(a0da1 . . . da2n) = φ(a0)da1 . . . da2n+
2n∑
j=1

a0da1 . . . daj−1dφ(aj)daj+1 . . . da2n

and let H denote the degree zero operator on even forms, which is multipli-
cation by n on Ω2n A. Then, we have the relations

[H,L] = L and D = H + L

whence we have on Ω̂ev A that

e−LHeL = H + e−L[H, eL] = H +
∫ 1

0

e−tL[H,L]etLdt = D

Therefore, the universal lift for all a ∈ A is given by

lun(a) = e−La = a− φ(a) +
1
2
Lφ(a)− . . .

Example 7.14 The universal lift for C× C
Recall the correspondence between Ωev C× C and LC×C = C[E] given by

(αe+ βf)de2n - (αE + β(1− E))(E − E2)n

Lifting e to L
I2 we have to compute

(2− E)2E2 = E + (2E − 1)(E − E2) + (E − E2)2

whence φ(e) = (1 − 2E)(E − E2) and as f = 1 − e we have φ(f) = (2E −
1)(E−E2). The Yang-Mills derivation D on C[E] is hence the one determined
by

C[E]
D- C[E] D(E) = (1− 2E)(E − E2)

To determine the universal lift of e we have to compute

lun(e) = e− Le+
1
2
L2e− 1

6
L3e+ . . .

and we have

L(e) = φ(e) = (f − e)de2

L2(e) = L(f − e)de2 = −6(f − e)de4

L3(e) = −6L(f − e)de4 = 60(f − e)de6

L4(e) = ...
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and therefore

lun(e) = E+(2E−1)(E−E2)+3(2E−1)(E−E2)2+10(2E−1)(E−E2)3+· · ·

Another characteristic feature of Quillen-smooth algebras is the existence of
connections on Ω1 A. If E is an A-bimodule, then a connection on E consists
of two operators

• A right connection : E
∇r- E ⊗A Ω1 A satisfying

∇r(aea′) = a(∇re)a′ + aeda′

• A left connection : E
∇l- Ω1 A⊗A E satisfying

∇l(aea′) = a(∇le)a′ + daea′

Given a right connection ∇r there is a bimodule splitting sr of the right
multiplication map mr

E ⊗A A
mr-

�
sr

E

given by the formula

sr(e) = e⊗ 1− j(∇re) where j(e⊗ da) = ea⊗ 1− e⊗ a

Similarly, a left connection gives a bimodule splitting sl to the left multipli-
cation map. Consequently, if a connection exists on E, then E must be a
projective bimodule.

Consider the special bimodule of noncommutative 1-forms Ω1 A, then as
Ω1 A⊗A Ω1 A = Ω2 A a connection on Ω1 A is the datum of three maps

Ω1 A

∇l-
d-
∇r-

Ω2 A

satisfying the following properties

∇l(aea′) = a∇l(e)a′ +(da)ea′

d(aea′) = a(de)a′ +(da)ea′ −ae(da′)
∇r(aea′) = a∇r(e)a′ +ae(da′)

Hence, if ∇r is a right connection then d +∇r is a left connection and if ∇l
is a left connection then ∇l − d is a right connection. Therefore, one sided
connections exist on Ω1 A if and only if connections exist and hence if and
only if Ω1 A is a projective bimodule.
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But then we have an A-bimodule splitting of the exact sequence

0 - Ω2 A
j- Ω1 A⊗ A

m- Ω1 A - 0

where j(ωda) = ωa⊗ 1− ω ⊗ a and m(ω ⊗ a) = ωa.

PROPOSITION 7.4
A connection exists on Ω1 A if and only if A is Quillen-smooth.

PROOF A bimodule splitting of the above map is determined by a re-
traction bimodule map p for j. As Ω1 A⊗ A ' A⊗ A⊗ A, a bimodule map
p

Ω‘ A⊗ A
p- Ω2 A

is equivalent to a map A
φ- Ω2 A via p(a0da1⊗ a2) = a0φ(a1a2). But then

we have

pj(da1da2) =p((da1)a2 ⊗ 1− da1 ⊗ da2)
=p(d(a1a2)⊗ 1− a1(da2)⊗ 1− da1 ⊗ a2)
=φ(a1a2)− a1φ(a2)− φ(a1)a2)

and splitting of the map means pj = id, that is, that φ satisfies

φ(aa′) = aφ(a′) + φ(a)a′ + dada′

which is equivalent to an algebra lift

A
φ∗- LA

IA
= A⊕ Ω2 A

Now, assume we have an algebra morphism

A
f- R

I
with I2 = 0

and lift f to a based linear map A
ρ- R. By the universal property of LA

we have an algebra lift
LA

ρ∗- R

living over f . Therefore ρ∗(IA) ⊂ I and therefore ρ∗ is zero on I2A giving an
algebra morphism

LA
I2A

f∗- R

living over f . But then the existence of an algebra map φ∗ as above gives a
desired lifting f∗ ◦ φ∗ of f , finishing the proof.
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For a map A
φ- Ω2 A as above, a connection is given by the formulae

∇r(ada′) = aφ(a′) and ∇r(ada′) = aφ(a′) + dada′

Example 7.15 Connection on C〈x, y〉
Clearly we have Ω1 C〈x, y〉 = C〈x, y〉 ⊗ Cx + Cy ⊗ C〈x, y〉, which is the free
bimodule generated by dx and dy. There is a canonical connection with{

φ(x) = 0 and ∇l(dx) = ∇r(dx) = 0
φ(y) = 0 and ∇l(dy) = ∇r(dy) = 0

The image of φ on any word z1 . . . zn with zi = x or y is given by the formula

φ(z1 . . . zn) =∇rd(z1 . . . zn)

=∇r(
n∑
i=1

z1 . . . zi−1(dzi)zi+1 . . . zn)

=
n−1∑
i=1

z1 . . . zi−1(dzi)d(zi+1 . . . zn)

Example 7.16 Connection on C× C
We have calculated above that the lifting map φ is determined by

φ(e) = (1− 2E)(E − E2) = (f − e)de2

Therefore the corresponding left and right connections are given by{
∇r((αe+ βf)de) = (βf − αe)de2

∇l((αe+ βf)de) = (αf − βe)de2

7.6 deRham cohomology

In this section we will compute various sorts of noncommutative deRham
cohomology . We have for an arbitrary C-algebra A the complex of noncom-
mutative differential forms

A = Ω0 A
d- Ω1 A

d- . . .
d- Ωn A

d- Ωn+1 A
d- . . .
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A first attempt to define noncommutative de Rham cohomology is to take the
homology groups of this complex, we call these the big noncommutative de
Rham cohomology

Hn
big A =

Ker Ωn A
d- Ωn+1 A

Im Ωn−1 A
d- Ωn A

Example 7.17 Big de Rham cohomology of C× C
We have seen before that Ωn C×C = (C×C)den and that the differential is
given by

Ωn C× C d- Ωn+1 C× C
(αe+ βf)den 7→ (α− β)den+1

From which it is immediately clear that{
H0
big C× C = C

Hn
big C× C = 0

for all n ≥ 1. This is not quite the answer H0 C×C = C⊕C we would expect
from the commutative case.

For a general C-algebra A it is usually very difficult to compute these co-
homology groups. In case of free algebras we can use the graded structure of
the complex together with the Euler derivation to compute them, a trick we
will use later in greater generality.

Example 7.18 Big de Rham cohomology of C〈x, y〉
Define the Euler derivation E on C〈x, y〉 by

E(x) = x and E(y) = y

Observe that if w is a word in x and y of degree k, then we have the Eulerian
property that

E(w) = kw

as one easily verifies.
We can define a degree preserving derivation LE on the differentially graded

algebra Ω C〈x, y〉 by the rules

LE(a) = E(a) and LE(da) = dE(a) ∀a ∈ C〈x, y〉

Further we introduce the degree −1 contraction operator iE which is the super-
derivation on Ω C〈x, y〉 , that is

iE(ωω′) = iE(ω)ω′ + (−1)iωiE(ω′) for ω ∈ Ωi C〈x, y〉
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defined by the rules

iE(a) = 0 iE(da) = E(a) ∀a ∈ C〈x, y〉

That is, we have the following situation

Ωn−1 Ωn Ωn+1

LE

XX

LE

YY

LE

XX

d

!!

iE

aa

d

!!

iE

aa

These operators satisfy the equation

LE = iE ◦ d+ d ◦ iE

as both sides are derivations on Ω C〈x, y〉 and coincide on the generators a
and da for a ∈ C〈x, y〉 of this differentially graded algebra.

We claim that LE is a total degree preserving linear automorphism on

Ωn C〈x, y〉 for n ≥ 1.

For if wi for 0 ≤ i ≤ n are words in x and y of degree ki with ki ≥ 1 for i ≥ 1,
then we have

LE(w0dw1 . . . dwn) = (k0 + . . .+ kn)w0dw1 . . . dwn

Using the words in x and y as a basis for A we see that the kernel and image of
the differential d must be homogeneous. But then, if ω is a multihomogeneous
element in Ωn C〈x, y〉 and in Ker d we have for some integer k 6= 0 that

kω = LE(ω) = (iE ◦ d+ d ◦ iE)ω = d(iE ω)

and hence ω lies in Im d. Therefore, we have proved{
H0
big C〈x, y〉 = C

Hn
big C〈x, y〉 = 0

for all n ≥ 1.

The examples show that the differentially graded algebra Ω A is formal for
A = C×C or C〈x, y〉. Recall that for an arbitrary A∞-algebra Ω (in particular
for Ω ∈ dgalg), the homology algebra H∗ Ω has a canonical A∞-structure.
That is, we have m1 = 0, m2 is induced by the ”multiplication” m2 on Ω and
there is a quasi-isomorphism of A∞-algebras H∗ Ω - Ω lifting the identity
of H∗ Ω.
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The A∞-algebra Ω is said to be formal if the canonical structure makesH∗ Ω
into an ordinary associative graded algebra (that is, such that all mn = 0 for
n ≥ 3). In particular, if Ω = Ω A and if the big deRham cohomology is
concentrated in degree zero, then the degree properties of mn imply that
mn = 0 for n ≥ 3 and hence that Ω A is formal.

Let A be an arbitrary C-algebra and θ ∈ DerC A, the Lie algebra of C-
algebra derivations of A, then we define a degree preserving derivation Lθ and
a degree −1 super-derivation iθ on Ω A

Ωn−1 A Ωn A Ωn+1 A

Lθ

XX

Lθ

YY

Lθ

XX

d

!!

iθ

aa

d

!!

iθ

aa

defined by the rules {
Lθ(a) = θ(a) Lθ(da) = d θ(a)
iθ(a) = 0 iθ(da) = θ(a)

for all a ∈ A. In this generality we again have the fundamental identity

Lθ = iθ ◦ d+ d ◦ iθ

as both sides are degree preserving derivations on Ω A and they agree on all
the generators a and da for a ∈ A.

LEMMA 7.2
Let θ, γ ∈ DerC A, then we have on Ω A the following identities of operators{

Lθ ◦ iγ − iγ ◦ Lθ = [Lθ, iγ ] = i[θ,γ] = iθ◦γ−γ◦θ

Lθ ◦ Lγ − Lγ ◦ Lθ = [Lθ, Lγ ] = L[θ,γ] = Lθ◦γ−γ◦θ

PROOF Consider the first identity. By definition both sides are degree −1
superderivations on Ω A so it suffices to check that they agree on generators.
Clearly, both sides give 0 when evaluated on a ∈ A and for da we have

(Lθ ◦ iγ − iγ ◦ Lθ)da = Lθ γ(a)− iγ d θ(a) = θ γ(a)− γ θ(a) = i[θ,γ](da)

A similar argument proves the second identity.

Let Q be a quiver on k vertices {v1, . . . , vk}, then we can define an Euler
derivation E on CQ by the rules that

E(vi) = 0 ∀1 ≤ i ≤ k and E(a) = a ∀a ∈ Qa
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By induction on the length l(p) of an oriented path p in the quiver Q one easily
verifies that E(p) = l(p)p. By the lemma above we have all the necessary
ingredients to redo the argument in example 7.18.

THEOREM 7.10
For a quiver Q on k vertices, the noncommutative differential forms Ω CQ is
formal. In fact, we have for the big deRham cohomology{

H0
big CQ ' C× . . .× C (k factors)

Hn
big CQ ' 0 ∀n ≥ 1

For ω ∈ Ωi A and ω′ ∈ Ωj A we define the supercommutator to be

[ω, ω′] = ωω′ − (−1)ijω′ω

That is, it is the usual commutator unless both i and j are odd in which case
it is the sum ωω′ + ω′ω.

As the differential d is a super-derivation on Ω A we have that

d([ω, ω′]) = [dω, ω′] + (−1)i[ω, dω′]

and therefore the differential maps the subspaces of supercommutators to sub-
spaces of supercommutators. Therefore, if we define

DRn A =
Ωn A∑n

i=0[Ωi A,Ωn−i A]

Then the dgalg-structure on Ω A induces one on the complex

DR0 A
d- DR1 A

d- DR2 A
d- . . .

which is called the Karoubi complex of A.
We define the noncommutative de Rham cohomology groups of A to be the

homology of the Karoubi complex, that is

Hn
dR A =

Ker DRn A
d- DRn+1 A

Im DRn−1 A
d- DRn A

Example 7.19 Noncommutative de Rham cohomology of C× C
Recall that the product on Ω C× C is given by the formula

(αe+ βf)den(γe+ δf)dem =

{
(αγe+ βδf)den+m when n is even
(αδe+ βγf)den+m when n is odd
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If m is odd, then we deduce from this that the commutator

[αe+ βf, (γe+ δf)dem] = (α− β)(γe− δf)dem

and hence we can write any element of Ωm C×C = (C×C)dem as a (super)
commutator, whence

DRm C× C = 0 when m is odd.

On the other hand, if m is even then any commutator with k even

[(αe+ βf)dek, (γe+ δf)dem−k] = 0

whereas if k is odd we have

[(αe+ βf)dek, (γe+ δf)dem−k] = (αδ + βγ)dem

As a consequence the space of super-commutators in Ωm C×C is one dimen-
sional and therefore

DRm C× C = C when m is even and > 0

Thus, the Karoubi complex of C× C has the following form

C× C d- 0
d- C d- 0

d- C d- 0
d- . . .

and therefore we have for the noncommutative de Rham cohomology groups

HndR C× C =


C× C when n = 0
0 when n is odd
C when n is even and > 0

Example 7.20 Noncommutative de Rham cohomology of C〈x, y〉
Consider again the Eulerian derivation E on C〈x, y〉 and the operators LE
and iE on Ω C〈x, y〉. Repeating the above argument that d is compatible
with the subspaces of supercommutators for iE and LE we see that we have
induced operations

DRn−1 DRn DRn+1

LE

XX

LE

YY

LE

XX

d

!!

iE

aa

d

!!

iE

aa
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We have again that LE is an isomorphism on DRn C〈x, y〉 whenever n ≥ 1 and
again we deduce from the equality LE = iE ◦ d+ d ◦ iE that

HndR C〈x, y〉 =

{
C when n = 0
0 when n ≥ 1

THEOREM 7.11
Let Q be a quiver on k vertices, then the Karoubi complex of CQ is acyclic.
In particular {

H0
dR CQ ' C× . . .× C (k factors)

Hn
dR CQ ' 0 ∀n ≥ 1

So far we have considered differential forms with respect to the basefield
C. Sometimes it is useful to consider only the relative differential forms on A
with respect to a subalgebra B. These can be defined as follows.

Let AB be the cokernel of the inclusion B ⊂ - A in the category B−bimod
of bimodules over B. We define the space of relative differential forms of degree
n with respect to B to be

ΩnB A = A⊗B AB ⊗B . . .⊗B AB︸ ︷︷ ︸
n

By definition ΩnB A is the quotient space of Ωn A by the relations

(a0, . . . , ai−1b, ai, . . . , an) =(a0, . . . , ai−1, bai, . . . , an)
(a0, . . . , ai−1, s, ai+1, . . . , an) =0

for all b ∈ B and 1 ≤ i ≤ n. One verifies that the multiplication and differ-
ential defined on Ω A are compatible with these relations, making ΩB A an
object in dgalg. Moreover, there is a canonical epimorphism

Ω A -- ΩB A in dgalg

We will now determine the kernel. First we give the universal property for
ΩB A. Given Γ = ⊕Γn in dgalg and an algebra map A

f- Γ0 such that
d(f B) = 0, then there is a unique morphism in dgalg making the diagram
commute

ΩB A ................
∃f∗

- Γ

A
∪

6

f - Γ0
∪

6
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Indeed, by the universal property of Ω A there is a unique morphism
Ω A

f∗- Γ in dgalg extending f given by

f∗(a0da1 . . . dan) = f(a0)d(f(a1)) . . . d(f(an)).

If d(f B) = 0 then one verifies that f∗ is compatible with the relations defining
ΩB A, proving the universal property.

PROPOSITION 7.5
For a subalgebra B of A we have an isomorphism in dgalg

ΩB A =
Ω A

Ω A d(B) Ω A

PROOF The ideal generated by d(B) is closed under d and therefore the
quotient is an object in dgalg with the same universal property as ΩB A.

An important special case is when B = C× . . .×C is the subalgebra of CQ
generated by the vertexidempotents. In this case we will denote

Ωrel CQ = ΩB CQ

and call it the relative differential forms on Q.

LEMMA 7.3
Let Q be a quiver on k vertices, then a basis for Ωnrel CQ is given by the
elements

p0dp1 . . . dpn

where pi is an oriented path in the quiver such that length p0 ≥ 0 and
length pi ≥ 1 for 1 ≤ i ≤ n and such that the starting point of pi is the
endpoint of pi+1 for all 1 ≤ i ≤ n− 1.

PROOF Clearly l(pi) ≥ 1 when i ≥ 1 or pi would be a vertexidempotent
whence in B. Let v be the starting point of pi and w the end point of pi+1

and assume that v 6= w, then

pi ⊗B pi+1 = piv ⊗B wpi+1 = pivw ⊗B pi+1 = 0

from which the assertion follows.

We define the big relative de Rham cohomology groups of A with respect
to B to be the cohomology of the complex

Ω0
B A

d- Ω1
B A

d- Ω2
B A

d- . . .
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that is,

Hn
B A =

Ker Ωn A
d- Ωn+1 A

Im Ωn−1 A
d- Ωn A

In the case of path algebras of quivers, we can use the grading by length of
paths and the Eulerian derivation to compute these relative de Rham groups.

Example 7.21 Big relative de Rham cohomology
Let M (resp. C× C) be the path algebras of the quivers

e(/).*-+,

f(/).*-+,

y

qq

x

--

u

<<

v

||
resp.

e(/).*-+,

f(/).*-+,
The Eulerian derivation E on M is defined by

E(e) = E(f) = 0 E(x) = x E(y) = y E(u) = u and E(v) = v.

Observe that E respects all relations holding in M and so is indeed a C× C-
derivation of M.

As before we define a degree preserving derivation LE and a degree −1
superderivation iE on Ωrel M = ΩC×C M by the rules{

LE(a) = E(a) LE(da) = dE(a)
iE(a) = 0 iE(da) = E(a)

for all a ∈M. We have the equality

LE = iE ◦ d+ d ◦ iE

and arguing as before we obtain that

Hnrel M =

{
C× C when n = 0,
0 when n ≥ 1

THEOREM 7.12
Let Q be a quiver on k vertices, then the relative differential forms Ωrel CQ
is a formal differentially graded algebra. In fact{

H0
rel CQ ' C× . . .× C (k factors)

Hn
rel CQ ' 0 ∀n ≥ 1
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We can repeat the construction of the Karoubi complex verbatim for relative
differential operators and define a relative Karoubi complex

DR0
B A

d- DR1
B A

d- DR2
B A

d- . . .

where
DRnB A =

ΩnB A∑n
i=0 [ ΩiB A,Ωn−iB A ]

Clearly, we then define the noncommutative relative de Rham cohomology
groups of A with respect to B to be the homology of this complex

HnB,dR A =
Ker DRnB A

d- DRn+1
B A

Im DRn−1
B A

d- DRnB A

Let θ ∈ DerB A, that is θ is a C-derivation on A such that θ(b) = 0 for
every b ∈ B. Then, as

Lθ(db) = d θ(b) = 0 and iθ(db) = θ(b) = 0

we see that the operators Lθ and iθ can be defined on the relative forms

ΩB A =
Ω A

Ω A dB Ω A

and also on the relative Karoubi complex. Again, these induced operators
satisfy the identities of lemma 7.2. In the special case of the Eulerian deriva-
tion E on the path algebra CQ we see that E ∈ DerB CQ and hence we have
the following result.

THEOREM 7.13
Let Q be a quiver on k vertices. Then, the relative Karoubi complex is acyclic.
That is, {

H0
rel,dR CQ ' C× . . .× C (k factors)

Hn
rel,dR CQ ' 0 ∀n ≥ 1

7.7 Symplectic structure

Let Q be a quiver on k vertices {v1, . . . , vk}. We will determine the first
terms in the relative Karoubi complex. Define

dRnrel CQ =
Ωnrel CQ∑n

i=0[ Ωirel CQ,Ωn−i CQ ]
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In the commutative case, dR0 are the functions on the manifold and dR1 the
1-forms. We will characterize the noncommutative functions and noncommu-
tative 1-forms in the case of quivers.

Recall that a necklace word w in the quiver Q is an equivalence class of an
oriented cycle c = a1 . . . al of length l ≥ 0 in Q, where c ∼ c′ if c′ is obtained
from c by cyclically permuting the composing arrows ai.

LEMMA 7.4
A C-basis for the noncommutative functions

dR0
rel CQ ' CQ

[ CQ,CQ ]

are the necklace words in the quiver Q.

PROOF Let W be the C-space spanned by all necklace words w in Q and
define a linear map

CQ n-- W

{
p 7→ wp if p is a cycle
p 7→ 0 if p is not

for all oriented paths p in the quiver Q, where wp is the necklace word in Q
determined by the oriented cycle p. Because wp1p2 = wp2p1 it follows that the
commutator subspace [CQ,CQ] belongs to the kernel of this map. Conversely,
let

x = x0 + x1 + . . .+ xm

be in the kernel where x0 is a linear combination of noncyclic paths and xi
for 1 ≤ i ≤ m is a linear combination of cyclic paths mapping to the same
necklace word wi, then n(xi) = 0 for all i ≥ 0. Clearly, x0 ∈ [CQ,CQ] as
we can write every noncyclic path p = a.p′ = a.p′ − p′.a as a commutator. If
xi = a1p1 + a2p2 + . . .+ alpl with n(pi) = wi, then p1 = q.q′ and p2 = q′.q for
some paths q, q′ whence p1−p2 is a commutator. But then, xi = a1(p1−p2)+
(a2− a1)p2 + . . .+ alpl is a sum of a commutator and a linear combination of
strictly fewer elements. By induction, this shows that xi ∈ [CQ,CQ].

If we fix a dimension vector α, then taking traces defines a map

dR0 CQ tr- C[repα Q]

whence noncommutative functions determine GL(α)-invariant commutative
functions on the representation space repα Q and hence commutative func-
tions on the quotient varieties issα Q. In fact, we have seen that the image
tr(dR0 CQ) generates the ring of polynomial invariants C[repα Q]GL(α) =
C[issα Q].
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LEMMA 7.5
dR1
rel CQ is isomorphic as C-space to

⊕
j(/).*-+, i(/).*-+,aoo

vi.CQ.vj da =
⊕

j(/).*-+, i(/).*-+,aoo

i(/).*-+, j(/).*-+,��
d j(/).*-+, i(/).*-+,aoo

PROOF If p.q is not a cycle, then pdq = [p, dq] and so vanishes in dR1
rel CQ

so we only have to consider terms pdq with p.q an oriented cycle in Q. For
any three paths p, q and r in Q we have the equality

[p.qdr] = pqdr − qd(rp) + qrdp

whence in dR1
rel CQ we have relations allowing reduction of the length of the

differential part
qd(rp) = pqdr + qrdp

so dR1
rel CQ is spanned by terms of the form pda with a ∈ Qa and p.a an

oriented cycle in Q. Therefore, we have a surjection

Ω1
rel CQ --

⊕
j(/).*-+, i(/).*-+,aoo

vi.CQ.vj da

By construction, it is clear that [Ω0
rel CQ,Ω1

rel CQ] lies in the kernel of this
map and using an argument as in the lemma above one shows also the converse
inclusion.

Example 7.22 dRirel M
Take the path algebra M of the quiver of example 7.21. Noncommutative
functions on M are the 0-forms, which is by definition the quotient space

dR0
rel M =

M
[ M,M ]

If p is an oriented path of length ≥ 1 in the quiver with different begin- and
endpoint, then we can write p as a concatenation p = p1p2 with pi an oriented
path of length ≥ 0 such that p2p1 = 0 in M. As [p1, p2] = p1p2 − p2p1 = 0 in
dR0

rel M we deduce that the space of noncommutative functions on M has as
C-basis the necklace words w

�
� PPPP

�
nnnn

�
��
��

�
99

99

�

�
����

&&&&x
w
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where each bead is one of the elementst = x d = y and H = uv

together with the necklace words of length zero e and f . Each necklace word
w corresponds to the equivalence class of the words in M obtained from multi-
plying the beads in the indicated orientation and and two words in {x, y, u, v}
in M are said to be equivalent if they are identical up to cyclic permutation
of the terms.

Substituting each bead with the n× n matrices specified before and taking
traces we get a map

dR0
rel M =

M
[ M,M ]

tr- C[repα M]

Hence, noncommutative functions on M induce ordinary functions on all the
representation spaces repα M and these functions are GL(α)-invariant. More-
over, the image of this map generates the ring of polynomial invariants as we
mentioned before.

Next, we consider noncommutative 1-forms on M that are by definition
elements of the space

dR1
rel M =

Ω1
rel M

[ M,Ω1
rel M ]

Recall that Ω1
rel M is spanned by the expressions p0dp1 with p0 resp. p1

oriented paths in the quiver of length ≥ 0 resp. ≥ 1 and such that the
starting point of p0 is the endpoint of p1. To form dR1

rel M we have to divide
out expressions such as

[ p, p0dp1 ] = pp0dp1 + p0p1dp− p0d(p1p)

That is, if we have connecting oriented paths p2 and p1 both of length ≥ 1 we
have in dR1

rel M
p0d(p1p2) = p2p0dp1 + p0p1dp2

and by iterating this procedure whenever the differential term is a path of
length ≥ 2 we can represent each class in dR1

rel M as a combination from

Me dx+ Me dy + Me du+ Mf dv

Now, Me = eMe+ fMe and let p ∈ fMe. Then, we have in dR1
rel M

d(xp) = p dx+ x dp

but by our description of Ω1 M the left hand term is zero as is the second
term on the right, whence p dx = 0. A similar argument holds replacing x by
y. As for u, let p ∈ eMe, then we have in dR1

rel M

d(up) = p du+ u dp
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and again the left-hand and the second term on the right are zero whence
p du = 0. An analogous result holds for v and p ∈ fMf . Therefore, we have
the description of noncommutative 1-forms on M

dR1
rel M = eMe dx+ eMe dy + fMe du+ eMf dv

That is, in graphical terms

dR1
rel M = e(/).*-+,�� d e(/).*-+,

x

��
+ e(/).*-+,�� d e(/).*-+,

y

��
+

f(/).*-+, e(/).*-+,��
d e(/).*-+, f(/).*-+,uoo + e(/).*-+, f(/).*-+,��

d f(/).*-+, e(/).*-+,voo

Using the above descriptions of dRirel CQ for i = 0, 1 and the differential

dR0
rel CQ d- dR1

rel CQ we can define partial differential operators associated
to any arrow j(/).*-+, i(/).*-+,aoo in Q.

∂

∂a
: dR0

rel CQ - viCQvj by df =
∑
a∈Qa

∂f

∂a
da

To take the partial derivative of a necklace word w with respect to an arrow
a, we run through w and each time we encounter a we open the necklace by
removing that occurrence of a and then take the sum of all the paths obtained.

Example 7.23
For the path algebra M we have the partial differential operators

∂w
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=
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Recall that a symplectic structure on a (commutative) manifold M is given
by a closed differential 2-form. The nondegenerate 2-form ω gives a canonical
isomorphism

T M ' T ∗ M
that is, between vector fields on M and differential 1-forms. Further, there
is a unique C-linear map from functions f on M to vector fields ξf by the
requirement that −df = iξf

ω where iξ is the contraction of n-forms to n− 1-
forms using the vector field ξ. We can make the functions on M into a Poisson
algebra by defining

{f, g} = ω(ξf , ξg)

and one verifies that this bracket satisfies the Jacobi and Leibnitz identities.
The Lie derivative Lξ with respect to ξ is defined by the Cartan homotopy

formula
Lξ ϕ = iξdϕ+ diξϕ

for any differential form ϕ. A vector field ξ is said to be symplectic if it
preserves the symplectic form, that is, Lξω = 0. In particular, for any function
f on M we have that ξf is symplectic. Moreover the assignment

f - ξf

defines a Lie algebra morphism from the functions O(M) on M equipped with
the Poisson bracket to the Lie algebra of symplectic vector fields, V ectω M .
Moreover, this map fits into the exact sequence

0 - C - O(M) - V ectω M - H1
dR M - 0

Recall the definition of the double quiver Qd of a quiver Q given in sec-
tion 5.5 by assigning to every arrow a ∈ Qa an arrow a∗ in Qd in the opposite
direction.

DEFINITION 7.3 The canonical noncommutative symplectic structure
on the double quiver Qd is given by the element

ω =
∑
a∈Qa

dada∗ ∈ dR2
rel CQd

We will use ω to define a correspondence between the noncommutative 1-
forms dR1

rel CQd and the noncommutative vector fields, which are defined to be
B = CQv -derivations of the path algebra CQd. Recall that if θ ∈ DerB CQd
we define operators Lθ and iθ on Ω CQd and on dR CQd by the rules{

Lθ(a) = θ(a) Lθ(da) = dθ(a)
iθ(a) = 0 iθ(da) = θ(a)
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and that the following identities are satisfied for all θ, γ ∈ DerB CQd

[Lθ, Lγ ] = L[θ,γ] and [iθ, iγ ] = i[θ,γ]

These operators allow us to define a linear map

DerB CQ τ- dR1
rel CQ by τ(θ) = iθ(ω)

We claim that this is an isomorphism. Indeed, every B-derivation θ on CQd is
fully determined by its image on the arrows in Qd that satisfy if a = j(/).*-+, i(/).*-+,aoo

θ(a) = θ(vjavi) = vjθ(a)vi ∈ vjCQdvi

so determines an element θ(a)da∗ ∈ dR1
rel CQd. Further, we compute

iθ(ω) =
∑
a∈Qa

iθ(da)da∗ − iθ(da∗)da

=
∑
a∈Qa

θ(a)da∗ − θ(a∗)da

which lies in dR1
rel CQd. As both B-derivations and 1-forms are determined

by their coefficients, τ is indeed bijective.

Example 7.24
For the path algebra of the double quiver M, the analog of the classical iso-
morphism T M ' T ∗ M is the isomorphism

DerC×C M i.ω- dR1
rel M

as for any C× C-derivation θ we have

iθ ω = iθ(dx)dy − dxiθ(dy) + iθ(du)dv − duiθ(dv)
= θ(x)dy − dxθ(y) + θ(u)dv − duθ(v)
≡ θ(x)dy − θ(y)dx+ θ(u)dv − θ(v)du

and using the relations in M we can easily prove that any C × C derivation
on M must satisfy

θ(x) ∈ eMe θ(y) ∈ eMe θ(u) ∈ eMf θ(v) ∈ fMe

so the above expression belongs to dR1
rel M. Conversely, any θ defined by its

images on the generators x, y, u and v by

−θ(y)dx+ θ(x)dy − θ(v)du+ θ(u)dv ∈ dR1
rel M

induces a derivation on M.
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In analogy with the commutative case we define a derivation θ ∈ DerB CQd
to be symplectic if and only if Lθω = 0 ∈ dR2

rel CQd. We will denote the
subspace of symplectic derivations by Derω CQ. It follows from the noncom-
mutative analog of the Cartan homotopy equality

Lθ = iθ ◦ d+ d ◦ iθ

and the fact that ω is a closed form, that θ ∈ Derω CQd implies

Lθω = diθω = τ(θ) = 0

That is, τ(θ) is a closed form which by the acyclicity of the Karoubi complex
shows that it must be an exact form. That is, we have an isomorphism of
exact sequences of C-vector spaces

0 - B - dR0
rel CQd d- (dR1

rel CQ)exact - 0

0 - B

=

?
- CQd

[CQd,CQd]

'
?

- Derω CQd

τ−1

?
- 0

n the next section we will show that this is in fact an exact sequence of Lie
algebras.

7.8 Necklace Lie algebras

Let Q be a quiver on k vertices, Qd its double and ω =
∑
a∈Qa

dada∗ the
canonical symplectic form on CQd. Recall from last section the definition of
the partial differential operators ∂

∂a for an arrow a in Qd.

DEFINITION 7.4 The Kontsevich bracket on the necklace words in Qd,
dR0
rel CQd is defined to be

{w1, w2}K =
∑
a∈Qa

(
∂w1

∂a

∂w2

∂a∗
− ∂w1

∂a∗
∂w2

∂a
) mod [CQd,CQd]

That is, to compute {w1, w2}K we consider for every arrow a ∈ Qa all
occurrences of a in w1 and a∗ in w2. We then open up the necklaces removing
these factors and gluing the open ends together to form a new necklace word.
We then replace the roles of a∗ and a and redo this operation (with a minus
sign), see figure 7.4. Finally, we add all the obtained necklace words.
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FIGURE 7.4: Kontsevich bracket {w1, w2}K .

Using this graphical description of the Kontsevich bracket, it is an enjoyable
exercise to verify that the bracket turns dR0

rel CQd into a Lie algebra. That
is, for all necklace words wi, the bracket satisfies the Jacobi identity

{{w1, w2}K , w3}K + {{w2, w3}K , w1}K + {{w3, w1}K , w2}K = 0
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Term 1a vanishes against 2c, term 1b against 3d, 1c against 3a, 1d against 2b,
2a against 3c and 2d against 3b.

Recall the exact commutative diagram from last section

0 - B - dR0
rel CQd d- (dR1

rel CQ)exact - 0

0 - B

=

?
- CQd

[CQd,CQd]

'
?

- Derω CQd

τ−1

?
- 0

Clearly, the symplectic derivations Derω CQd are equipped with a Lie algebra
structure via [θ1, θ2] = θ1 ◦ θ2 − θ2 ◦ θ1.
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For every necklace word w we have a derivation θw = τ−1dw, which is
defined by {

θw(a) = ∂w
∂a∗

θw(a∗) = −∂w∂a
With this notation we get the following interpretations of the Kontsevich
bracket

{w1, w2}K = iθw1
(iθw2

ω) = Lθw1
(w2) = −Lθw2

(w1)

where the next to last equality follows because iθw2
ω = dw2 and the fact that

iθw1
(dw) = Lθw1

(w) for any w. More generally, for any B-derivation θ and
any necklace word w we have the equation

iθ(iθw
ω) = Lθ(w)

By the commutation relations for the operators Lθ and iθ we have for all
B-derivations θi the equalities

Lθ1iθ2iθ3ω − iθ2iθ3Lθ1ω = [Lθ1 , iθ2 ]iθ3ω + iθ2Lθ1iθ3ω

− iθ2Lθ1iθ3ω + iθ2 [Lθ1 , iθ3 ]ω
= i[θ1,θ2]iθ3ω + iθ2i[θ1,θ3]ω

By the homotopy formula we have Lθw
ω = 0 for every necklace word w,

whence we get

Lθw1
iθ2iθ3ω = i[θw1 ,θ2]

iθ3ω + iθ2i[θw1 ,θ3]
ω

Take θ2 = θw2 , then the left hand side is equal to

Lθw1
iθw2

iθ3ω = −Lθw1
iθ3iθw2

ω

= −Lθw1
Lθ3w2

whereas the last term on the right equals

iθw2
i[θw1 ,θ3]

ω = −i[θw1 ,θ3]
iθw2

ω

= −L[θw1 ,θ3]
w2 = −Lthetaw1

Lθ3w2 + Lθ3Lθw1
w2

and substituting this we obtain that

i[θw1 ,θw2 ]iθ3ω = −Lθw1
Lθ3w2 + Lθw1

Lθ3w2 − Lθ3Lθw1
w2

= −Lθ3Lθw1
w2 = −Lθ3{w1, w2}K

= −iθ3iθ{w1,w2}K
ω = iθ{w1,w2}K

iθ3ω

Finally, if we take θ = [θw1 , θw2 ] − θ{w1,w2}K
we have that iθω is a closed

1-form and that iθiθ3ω = −iθ3iθω = 0 for all θ3. But then by the homotopy
formula Lθ3iθω = 0 whence iθω = 0, which finally implies that θ = 0. The
following concludes the proof.
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THEOREM 7.14
With notations as before, the necklace words dR0

rel CQd is a Lie algebra for
the Kontsevich bracket, and the sequence

0 - B - dR0
rel CQd τ−1d- Derω CQd - 0

is an exact sequence (hence a central extension) of Lie algebras.

This result will be crucial in the study of coadjoint orbits in the final chapter.

References

The formal structure on smooth affine varieties is due to M. Kapranov [50]
and its extension to module varieties is due to L. Le Bruyn [79]. The semi-
invariants of quivers have been obtained independently by various people,
among which A. Schofield, M. Van den Bergh [95], H. Derksen, J. Weyman
[30] and M. Domokos, A. Zubkov [31]. We follow here the approach of [95].
The results of section 7.3 are due to A. Schofield [92] or based on discussions
with him. The results of section 7.4 are due to L. Le Bruyn [73] and is inspired
by prior work of B. Westbury [106]. The results of section 7.5 are due to J.
Cuntz and D. Quillen [29]. The acyclicity results of section 7.6 for the free
algebra is due to M. Kontsevich [58] and in the quiver case to R. Bockland,
L. Le Bruyn [12] and V. Ginzburg [37] independently as is the description of
the necklace Lie algebra.





Chapter 8

Moduli Spaces

So far, the more interesting applications of the theory developed in the pre-
vious chapter have not been to noncommutative manifolds but to families
(Yn)n of varieties in which the role of Quillen-smooth algebras is replaced by
Cayley-smooth algebras and where the sum-maps are replaced by gluing into
a larger space. In this chapter we give the details of Ginzburg’s coadjoint-
orbit result for Calogero-Moser phase space, which was the first instance of
such a situation.

Hilbn C2

Sn C2 ........................................-
��

π

Calon

H

-

Here, Hilbn C2 is the Hilbert scheme of n points in the complex plane C2,
which is a desingularization of the symmetric power Sn C2. On the other hand,
Sn C2 can be viewed as the special fiber of a family of which the general fiber
is isomorphic to Calon, the phase space of Calogero-Moser particles. Calon is
a smooth affine variety and we will see that it is isomorphic to trissn An for
some Cayley-smooth order An ∈ alg@n. Surprisingly, forgetting the complex
structure, Calon itself is diffeomorphic (as a C∞-manifold) to Hilbn C2 via
rotations of hyper-Kähler structures.

George Wilson has shown that the varieties Calon can be glued together to
form an infinite dimensional manifold, the adelic Grassmannian⊔

n

Calon = Grad

The adelic Grassmannian can be identified with the isomorphism classes of
right ideals in the first Weyl algebra A1(C) and as the automorphism group
of the Weyl algebra acts on this set with countably many orbits it was con-
jectured that every Calon might be a coadjoint orbit. This fact was proved
by Victor Ginzburg who showed that, indeed

Calon ⊂ - g∗

for some infinite dimensional Lie algebra g, which is nothing but the necklace
Lie algebra of the path algebra of a double quiver naturally associated to the

451
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situation. After reading through this chapter, the reader will have no problem
to prove for herself that every quiver variety, in the sense of Nakajima, is
diffeomorphic to a coadjoint orbit of a necklace Lie algebra.

8.1 Moment maps

In section 2.8 we have studied in some detail the real moment map of m-
tuples of n × n matrices. In this section we will first describe the obvious
extension to representation spaces of quivers and then to prove the properties
of the real moment map for moduli spaces of θ-semistable representations.

We fix a quiver Q on k vertices {v1, . . . , vk} and a dimension vector α =
(a1, . . . , ak) ∈ Nk. We take the standard Hermitian inproduct on each of the
vertex spaces C⊕ai and this induces the standard operator inner product on
every arrow-component of repα Q. That is, for every arrow

��������i��������j
aoo we define (Va,Wa) = tr(VaW ∗a )

on the component HomC(C⊕ai ,C⊕aj ) for all V,W ∈ repα and where W ∗a
is the adjoint matrix (wji)i,j of Wa = (wij)i,j . The Hermitian inproduct on
repα Q is defined to be

(V,W ) =
∑
a∈Qa

tr(VaW ∗a )

The maximal compact subgroup of the base change group GL(α) =
∏k
i=1GLai

is the multiple unitary group

U(α) =
k∏
i=1

Uai

which preserves the Hermitian inproduct under the base change action as
subgroup of GL(α). The Lie algebra Lie U(α) is the algebra of multiple
skew-Hermitian matrices

Lie U(α) =
k⊕
j=1

iHermaj = { h = (h1, . . . , hk) | hj = −h∗j }

and the induced action of Lie U(α) on repα Q is given by the rule

(h.V )a = hjVa − Vahi for ��������i��������j
aoo

for all V ∈ repα Q. This action allows us to define the real moment map µ
for the action of U(α) on the representation space repα Q by the assignment

repα Q
µ- (iLie U(α))∗ V - (h 7→ i(h.V, V ))
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That is, the moment map is determined by

(h.V, V ) =
∑

��������i��������j
aoo

tr(hjVaV ∗a − VahiV ∗a )

=
∑
vi∈Qv

tr(hi(
∑

����������������i
aoo

VaV
∗
a −

∑
��������i�������� aoo
V ∗a Va ))

Using the nondegeneracy of the Killing form on Lie U(α) we have the identi-
fication

µ−1(0) = {V ∈ repα Q |
∑

����������������i
aoo

VaV
∗
a =

∑
��������i�������� aoo
V ∗a Va ∀vi ∈ Qv}

The real moment map µR is then defined to be

repα Q
µR- Lie U(α) V 7→ i[V, V ∗] = i(

∑
����������������j

aoo

VaV
∗
a −

∑
��������j�������� aoo
V ∗a Va)j

Reasoning as in section 2.8 we can prove the following moment map descrip-
tion of the isomorphism classes of semisimple α-dimensional representations
of Q.

THEOREM 8.1
There are natural one-to-one correspondences between

1. points of issα Q, and

2. U(α)-orbits in µ−1
R (0).

Next, we will prove a similar result to describe the points of Mss
α (Q, θ), the

moduli space of θ-semistable α-dimensional representations of Q, introduced
and studied in section 4.8. Fix, an integral k-tuple θ = (t1, . . . , tk) ∈ Zk with
associated character

GL(α)
χθ- C∗ g = (g1, . . . , gk) 7→

k∏
i=1

det(gi)ti

We have seen in section 4.8 that in order to describe Mss
α (Q, θ) we consider

the extended representation space repα Q ⊕ C. We introduce a function N
on this extended space replacing the norm in the above discussion.

repα Q⊕ C N- R+ (V, z) 7→ |z|e
1
2‖V ‖

2
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where ‖V ‖ is the norm coming from the Hermitian inproduct on repα Q.
Sometimes, the function N is called the Kähler potential for the inproduct on
repα Q. We will investigate the properties of N .

LEMMA 8.1
Let X be a closed subvariety of repα Q ⊕ C disjoint from rep′α Q =
{(V, 0) | V ∈ repα Q} ⊂ - repα Q ⊕ C. Then, the restriction of N
to X is proper and therefore achieves its minimum.

PROOF BecauseX and rep′α Q are disjoint closed subvarieties of repα Q⊕
C, there is a polynomial f ∈ C[repα Q⊕C] = C[repα Q][z] such that f | X =
1 and f | rep′α Q = 0. That is, X is contained in the hypersurface

V(f − 1) = V(zP1(V ) + . . .+ znPn(V )− 1) ⊂ - repα Q⊕ C

where the Pi ∈ C[repα Q].
Now, N is proper if the inverse images N−1([0, r]) are compact for all r ∈

R+, that is, there exist constants r1 and r2 depending on X and r such that

N(z, V ) ≤ r implies |z| ≤ r1 and ‖V ‖ ≤ r2.

We can always take r1 = r so we only need to bound ‖V ‖. If |z| ≤ re−
1
2‖V ‖

2
,

then we have that

|zP1(V ) + . . .+ znPn(V )| ≤ r|P1(V )|e−
1
2‖V ‖

2
+ . . .+ rn|Pn(V )|e−

n
2 ‖V ‖

2

Choose r2, depending on r and Pi such that the condition

‖V ‖ > r2 implies that |Pi(V )| < 1
nr
−ie

i
2‖V ‖

2
∀1 ≤ i ≤ n

But then if ‖V ‖ > r2, we have |zP1(V ) + . . . + znPn(V )| < 1 and so (V, z)
does not belong to X.

Recall that GL(α) acts on the extended representation space repα Q ⊕ C
via

g.(V, z) = (g.V, χ−1
θ (g)z)

LEMMA 8.2
Let O be a GL(α)-orbit in the extended representation space repα Q ⊕ C
which is disjoint from rep′α Q. Then, if the restriction of N to O achieves its
minimum, then O is a closed orbit.

PROOF Assume that N achieves its minimum in the point Vz = (V, z) ∈
O. If O is not a closed orbit we can by the Hilbert criterion find a one-
parameter subgroup λ of GL(α) such that

lim
t7→0

λ(t).Vz /∈ O
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and the limit exists in repα Q ⊕ C. Decompose the representation V =∑
n∈Z Vn into eigenspaces with respect to the one-parameter subgroup λ, that

is
λ(t).V =

∑
n∈Z

tnVn

Because the limit exists, we have that Vn = 0 whenever n < 0 and θ(λ) ≤ 0.
Because the limit is not contained in O we have that Vn 6= 0 for some n > 0.
Further, by conjugating λ if necessary we may assume that the weight space
decomposition V =

∑
n Vn is orthogonal with respect to the inproduct in

repα Q.
Using these properties we then have that

N(λ(t).(V, z)) = |z|e
1
2 |V0|2 |t|−θ(λ)e

1
2

P
n>0|t|

n‖Vn‖2

This expression will decrease when t approaches zero, contradicting the as-
sumption that the minimum of N | O was achieved in (V, z). This contra-
diction implies that O must be a closed orbit.

Recall from section 4.8 that an orbit O(V, z) is closed and disjoint from
rep′α Q for some z ∈ C∗ if and only if V is the direct sum of θ-stable repre-
sentations of Q. Recall the real moment map

repα Q
µ- (iLie U(α))∗

And consider the special real valued function dχθ on Lie U(α), which is the
restriction to Lie U(α) of the differential of GL(α)

χθ- C∗ at the identity
element (which takes real values). In fact, for any m = (m1, . . . ,mk) ∈
Lie GL(α) = Mα(C) we have that

dχθ(m) =
∑
vj∈Qv

tjtr(mj) =
∑
vj∈Qv

tr(mjtj
rr
aj )

With these notations we have the promised extension to moduli spaces of
θ-semistable representations.

THEOREM 8.2
There are natural one-to-one correspondences between

1. points of Mss
α (Q, θ), and

2. U(α)-orbits in µ−1(dχθ)

PROOF Let Vz = (V, z) ∈ repα Q ⊕ C with z 6= 0. For any h =
(h1, . . . , hk) in iLie U(α) we define the functions

mV (h) =
d

dt
|t=0 log N(eth.Vz)

= (h.V, V )− dχθ(h)
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m
(2)
V (h) =

d

dt
|t=0 log N(eth.Vz)

= 2‖h.V ‖2

The function mV is the zero map if and only if the restriction of N to the
orbit O(Vz) has a critical point at Vz. As the base change action of U(α) on
the extended representation space repα Q⊕C preserves the Kähler potential
N , N induces a function on the quotient O(Vz)/U(α). The formula for m(2)

V

shows that this function is strictly convex (except in directions along the fibers
{(V, c) | c ∈ C} where it is linear). Hence, a critical point is a minimum and
there can be at most one such critical point. From the lemmas above we have
that N has a minimum on O(Vz) if and only if O(Vz) is a closed orbit, which
in its turn is equivalent to V being the direct sum of θ-stable representations,
whence determining a point of Mss

α (Q, θ).

Finally, for any h ∈ iLie U(α) we have the formulas

µ(V )(h) = i
∑
vi∈Qv

tr(hi(
∑

����������������i
aoo

VaV
∗
a −

∑
��������i�������� aoo
V ∗a Va ))

dχθ(h) =
∑
vi∈Qv

tr(hitir
r
ai

)

whence by nondegeneracy of the Killing form, the equality µ(V ) = dχθ is
equivalent to the conditions∑

����������������j
aoo

VaV
∗
a −

∑
��������j�������� aoo
V ∗a Va = itj

rr
aj ∀vj ∈ Qv

We can assign to θ = (t1, . . . , tk) ∈ Zk the element iθrr
α =

(it1rr
a1 , . . . , itk

rr
ak

) ∈ Lie U(α). We then can rephrase the results of this
section as follows.

THEOREM 8.3
There are natural identifications between the spaces

issα Q←→ µ−1
R (0)/U(α) and Mss

α (Q, θ)←→ µ−1
R (iθrr

α)/U(α)

8.2 Dynamical systems

In this chapter we will illustrate what we have learned on the simplest wild
quiver Q, which is neither Dynkin nor extended Dynkin

(/).*-+, (/).*-+, bee
a //
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In this section we will show that the representation theory of this quiver is of
importance in system theory.

A linear time invariant dynamical system Σ is determined by the following
system of differential equations

dx

dt
= Bx+Au

y = Cx
(8.1)

Here, u(t) ∈ Cm is the input or control of the system at tome t, x(t) ∈ Cn the
state of the system and y(t) ∈ Cp the output of the system Σ. Time invariance
of Σ means that the matrices A ∈Mn×m(C), B ∈Mn(C) and C ∈Mp×n(C)
are constant, that is, Σ = (A,B,C) is a representation of the quiver Q̃

(/).*-+, (/).*-+, (/).*-+,
b

��a // c //

of dimension vector α = (m,n, p). The system Σ can be represented as a black
box

u(t) y(t)

x(t)

• •// //

which is in a certain state x(t) that we can try to change by using the input
controls u(t). By reading the output signals y(t) we can try to determine the
state of the system.

Recall that the matrix exponential eB of any n× n matrix B is defined by
the infinite series

eB = rr
n +B +

B2

2!
+ . . .+

Bm

m!
+ · · ·

The importance of this construction is clear from the fact that eBt is the
fundamental matrix for the homogeneous differential equation dx

dt = Bx. That
is, the columns of eBt are a basis for the n-dimensional space of solutions of
the equation dx

dt = Bx.
Motivated by this, we look for a solution to equation (8.1) as the form

x(t) = eBtg(t) for some function g(t). Substitution gives the condition

dg

dt
= e−BtAu whence g(τ) = g(τ0) +

∫ τ

τ0

e−BtAu(t)dt

Observe that x(τ0) = eBτ0g(τ0) and we obtain the solution of the linear dy-
namical system Σ = (A,B,C) :{

x(τ) = e(τ−τ0)Bx(τ0) +
∫ τ
τ0
e(τ−t)BAu(t)dt

y(τ) = CeB(τ−τ0)x(τ0) +
∫ τ
τ0
Ce(τ−t)BAu(t)dt
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Differentiating we see that this is indeed a solution and it is the unique one
having a prescribed starting state x(τ0). Indeed, given another solution x1(τ)
we have that x1(τ)− x(τ) is a solution to the homogeneous system dx

dt = Bt,
but then

x1(τ) = x(τ) + eτBe−τ0B(x1(τ0)− x(τ0))
We call the system Σ completely controllable if we can steer any starting

state x(τ0) to the zero state by some control function u(t) in a finite time
span [τ0, τ ]. That is, the equation

0 = x(τ0) +
∫ τ

τ0

e(τ0−t)BAu(t)dt

has a solution in τ and u(t). As the system is time-invariant we may always
assume that τ0 = 0 and have to satisfy the equation

0 = x0 +
∫ τ

0

etBAu(t)dt for every x0 ∈ Cn (8.2)

Consider the control matrix c(Σ), which is the n×mn matrix

c(Σ) = A BA B2A Bn-1A. . .

Assume that rk c(Σ) < n then there is a nonzero state s ∈ Cn such that
strc(Σ) = 0, where str denotes the transpose (row column) of s. Because B
satisfies the characteristic polynomial χB(t), Bn and all higher powers Bm

are linear combinations of {rrn, B,B2, . . . , Bn−1}. Hence, strBmA = 0 for all
m. Writing out the power series expansion of etB in equation (8.2) this leads
to the contradiction that 0 = strx0 for all x0 ∈ Cn. Hence, if rk c(Σ) < n,
then Σ is not completely controllable.

Conversely, let rk c(Σ) = n and assume that Σ is not completely control-
lable. That is, the space of all states

s(τ, u) =
∫ τ

0

e−tBAu(t)dt

is a proper subspace of Cn. But then, there is a nonzero state s ∈ Cn such
that strs(τ, u) = 0 for all τ and all functions u(t). Differentiating this with
respect to τ we obtain

stre−τBAu(τ) = 0 whence stre−τBA = 0 (8.3)

for any τ as u(τ) can take on any vector. For τ = 0 this gives strA = 0. If we
differentiate (8.3) with respect to τ we get strBe−τBA = 0 for all τ and for
τ = 0 this gives strBA = 0. Iterating this process we show that strBmA = 0
for any m, whence

str
[
A BA B2A . . . Bn−1A

]
= 0



Moduli Spaces 459

contradicting the assumption that rk c(Σ) = n. The proof follows.

PROPOSITION 8.1
A linear time-invariant dynamical system Σ determined by the matrices

(A,B,C) is completely controllable if and only if rk c(Σ) is maximal.

We say that a state x(τ) at time τ is unobservable if Ce(τ−t)Bx(τ) = 0 for
all t. Intuitively this means that the state x(τ) cannot be detected uniquely
from the output of the system Σ. Again, if we differentiate this condition a
number of times and evaluate at t = τ we obtain the conditions

Cx(τ) = CBx(τ) = . . . = CBn−1x(τ) = 0.

We say that Σ is completely observable if the zero state is the only unob-
servable state at any time τ . Consider the observation matrix o(Σ) of the
system Σ that is the pn× n matrix

o(Σ) =
[
Ctr (CB)tr · · · (CBn−1)tr

]tr
An analogous argument as in the proof of proposition 8.1 gives us that a linear
time-invariant dynamical system Σ determined by the matrices (A,B,C) is
completely observable if and only if rk o(Σ) is maximal.

Assume we have two systems Σ and Σ′, determined by matrix triples from
repα Q = Mn×m(C) ×Mn(C) ×Mp×n(C) producing the same output y(t)
when given the same input u(t), for all possible input functions u(t). We
recall that the output function y for a system Σ = (A,B,C) is determined by

y(τ) = CeB(τ−τ0)x(τ0) +
∫ τ

τ0

Ce(τ−t)BAu(t)dt

Differentiating this a number of times and evaluating at τ = τ0 as in the proof
of proposition 8.1 equality of input/output for Σ and Σ′ gives the conditions

CBiA = C ′B
′iA′ for all i

But then, we have for any v ∈ Cmn that c(Σ)(v) = 0 ⇔ c(Σ′)(v) = 0 and
we can decompose Cpn = V ⊕W such that the restriction of c(Σ) and c(Σ′)
to V are the zero map and the restrictions to W give isomorphisms with Cn.
Hence, there is an invertible matrix g ∈ GLn such that c(Σ′) = gc(Σ) and
from the commutative diagram

Cmn c(Σ)-- Cn ⊂
o(Σ)- Cpn

‖ ‖

Cmn c(Σ′)-- Cn

g

?
⊂

o(Σ′)- Cpn
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we obtain that also o(Σ′) = o(Σ)g−1.
Consider the system Σ1 = (A1, B1, C1) equivalent with Σ under the base-

change matrix g. That is, Σ1 = g.Σ = (gA, gBg−1, Cg−1). Then[
A1, B1A1, . . . , B

n−1
1 A1

]
= gc(Σ) = c(Σ′) =

[
A′, B′A′, . . . , B

′n−1A′
]

and so A1 = A′. Further, as Bi+1
1 A1 = B

′i+1A′ we have by induction on
i that the restriction of B1 on the subspace of B

′iIm(A′) is equal to the
restriction of B′ on this space. Moreover, as

∑n−1
i=0 B

′iIm(A′) = Cn it follows
that B1 = B′. Because o(Σ′) = o(Σ)g−1 we also have C1 = C ′. The following
completes the proof.

PROPOSITION 8.2
Let Σ = (A,B,C) and Σ′ = (A′, B′, C ′) be two completely controllable and

completely observable dynamical systems. The following are equivalent

1. The input/output behavior of Σ and Σ′ are equal

2. The systems Σ and Σ′ are equivalent, that is, there exists an invertible
matrix g ∈ GLn such that

A′ = gA, B′ = gBg−1 and C ′ = Cg−1

Hence, in system identification it is important to classify completely con-
trollable and observable systems Σ ∈ repα Q̃ under this restricted base change
action. We will concentrate on the input part and consider completely con-
trollable minisystems, that is, representations Σ = (A,B) ∈ repα Q where
α = (m,n) such that c(Σ) is of maximal rank. First, we relate the sys-
tem theoretic notion to that of θ-semistability for θ = (−n,m) (observe that
θ(α) = 0).

LEMMA 8.3
If Σ = (A,B) ∈ repα Q is θ-semistable, then Σ is completely controllable and
m ≤ n.

PROOF If m > n then (Ker A, 0) is a proper subrepresentation of Σ
of dimension vector β = (dim Im A − m, 0) with θ(β) < 0 so Σ cannot
be θ-semistable. If Σ is not completely controllable then the subspace W of
C⊕n spanned by the images of A,BA, . . . , Bn−1A has dimension k < n. But
then, Σ has a proper subrepresentation of dimension vector β = (m, k) with
θ(β) < 0, contradicting the θ-semistability assumption.

We introduce a combinatorial gadget: the Kalman code . It is an array
consisting of (n + 1) × m boxes each having a position label (i, j) where
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0 ≤ i ≤ n and 1 ≤ j ≤ m. These boxes are ordered lexicographically, that
is, (i′, j′) < (i, j) if and only if either i′ < i or i′ = i and j′ < j. Exactly n
of these boxes are painted black subject to the rule that if box (i, j) is black,
then so is box (i′, j) for all i′ < i. That is, a Kalman code looks like

0

n

1 m

We assign to a completely controllable couple Σ = (A,B) its Kalman code
K(Σ) as follows: let A =

[
A1 A2 . . . Am

]
, that is Ai is the i-th column of A.

Paint the box (i, j) black if and only if the column vector BiAj is linearly
independent of the column vectors BkAl for all (k, l) < (i, j).

The painted array K(Σ) is indeed a Kalman code. Assume that box (i, j)
is black but box (i′, j) white for i′ < i, then

Bi
′
Aj =

∑
(k,l)<(i′,j)

αklB
kAl but then, BiAj =

∑
(k,l)<(i′,j)

αklB
k+i−i′Al

and all (k + i − i′, l) < (i, l), a contradiction. Moreover, K(Σ) has exactly n
black boxes as there are n linearly independent columns of the control matrix
c(Σ) when Σ is completely controllable.

The Kalman code is a discrete invariant of the orbit O(Σ) under the re-
stricted base change action by GLn. This follows from the fact that BiAj is
linearly independent of the BkAl for all (k, l) < (i, j) if and only if gBiAj is
linearly independent of the gBkAl for any g ∈ GLn and the observation that
gBkAl = (gBg−1)k(gA)l.

With repcα Q we will denote the open subset of repα Q of all completely
controllable couples (A,B). We consider the map

repα Q
ψ - Mn×(n+1)m(C)

(A,B) 7→
[
A BA B2A . . . Bn−1A BnA

]
The matrix ψ(A,B) determines a linear map ψ(A,B) : C(n+1)m - Cn and
(A,B) is a completely controllable couple if and only if the corresponding
linear map ψ(A,B) is surjective. Moreover, there is a linear action of GLn on
Mn×(n+1)m(C) by left multiplication and the map ψ is GLn-equivariant.

The Kalman code induces a bar code on ψ(A,B), that is, the n× n minor
of ψ(A,B) determined by the columns corresponding to black boxes in the
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ψ(A,B)

FIGURE 8.1: Kalman code and bar code.

Kalman code, see figure 8.1 By construction this minor is an invertible matrix
g−1 ∈ GLn. We can choose a canonical point in the orbit O(Σ): g.(A,B). It
does have the characteristic property that the n×n minor of its image under
ψ, determined by the Kalman code is the identity matrix rr

n. The matrix
ψ(g.(A,B)) will be denoted by b(A,B) and is called bar code of the completely
controllable pair Σ = (A,B). We claim that the bar code determines the orbit
uniquely.

The map ψ is injective on the open set repcα Q. Indeed, if[
A BA . . . BnA

]
=

[
A′ B′A′ . . . B

′nA′
]

then A = A′, B | Im(A) = B′ | Im(A) and hence by induction also

B | BiIm(A) = B′ | B
′iIm(A′) for all i ≤ n− 1

But then, B = B′ as both couples (A,B) and (A′, B′) are completely control-
lable. Hence, the bar code b(A,B) determines the orbit O(Σ) and is a point
in the Grassmannian Grassn(m(n+ 1)). We have

Vc ⊂
ψ- Mmax

n×m(n+1)(C)

Grassn(m(n+ 1))

χ

??

b(.)

-

where ψ is a GLn-equivariant embedding and χ the orbit map. Observe that
the bar code matrix b(A,B) shows that the stabilizer of (A,B) is trivial.
Indeed, the minor of g.b(A,B) determined by the Kalman code is equal to g.
Moreover, continuity of b implies that the orbit O(Σ) is closed in repcα Q.

Consider the differential of ψ. For all (A,B) ∈ repα Q and (X,Y ) ∈
T(A,B) repα Q ' repα Q we have

(B + εY )j(A+ εX) = BnA+ ε (BnX +
j−1∑
i=0

BiY Bn−1−iA)

Therefore the differential of ψ in (A,B) ∈ repα Q, dψ(A,B)(X,Y ) is equal to[
X BX + Y A B2X +BY A+ Y BA . . . BnX +

∑n−1
i=0 B

iY Bn−1−iA
]
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0

n
1 m

FIGURE 8.2: Generic Kalman code.

Assume dψ(A,B)(X,Y ) is the zero matrix, then X = 0 and substituting in the
next term also Y A = 0. Substituting in the third gives Y BA = 0, then in the
fourth Y B2A = 0 and so on until Y Bn−1A = 0. But then

Y
[
A BA B2A . . . Bn−1A

]
= 0

If (A,B) is a completely controllable pair, this implies that Y = 0 and hence
shows that dψ(A,B) is injective for all (A,B) ∈ repcα Q. By the implicit func-
tion theorem, ψ induces a GLn-equivariant diffeomorphism between repcα Q
and a locally closed submanifold of Mmax

n×(n+1)m(C). The image of this sub-
manifold under the orbit map χ is again a manifold as all fibers are equal to
GLn. This concludes the difficult part of the Kalman theorem.

THEOREM 8.4
The orbit space Oc = repcα Q/GLn of equivalence classes of completely con-

trollable couples is a locally closed submanifold of dimension m.n of the Grass-
mannian Grassn(m(n + 1)). In fact repcα Q

b-- Oc is a principal GLn-
bundle.

To prove the dimension statement, consider repcα(K) the set of completely
controllable pairs (A,B) having Kalman code K and let Oc(K) be the image
under the orbit map. After identifying repcα(K) with its image under ψ, the

bar code matrix b(A,B) gives a section Oc(K) ⊂
s- repcα(K). In fact,

GLn ×Oc(K) - Vc(K) (g, x) 7→ g.s(x)

is a GLn-equivariant diffeomorphism because the n × n minor determined
by K of g.b(A,B) is g. Consider the generic Kalman code Kg of figure 8.2
obtained by painting the top boxes black from left to right until one has n
black boxes. Clearly repcα(Kg) is open in repcα and one deduces

dim Oc = dim Oc(Kg) = dim Vc(Kg)− dim GLn = mn+ n2 − n2 = mn

The Kalman orbit space also naturally defines an order over the moduli space
Mss
α (Q, θ). First, observe that whenever m ≤ n we have θ-stable representa-

tions of dimension vector α = (m,n) for θ = (−n,m). Then, dim Mss
α (Q, θ) =

dim repα Q− dim GL(α) + 1 = n2 +mn− n2 −m2 + 1 = m(n−m) + 1
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By the lemma we have that repssα Q is an open subset of repcα Q and let Oss
be the open subset of Oc it determines. Then, the natural quotient map

Oss -- Mss
α (Q, θ)

is generically a principal PGLm-fibration, so determines a central simple al-
gebra over the function field of Mss

α (Q, θ).
In particular, if m = 1 then Oss ' Mss

α (Q, θ) and both are isomorphic to
An and the orbits are parameterized by an old acquaintance, the companion
matrix and its canonical cyclic vector

A =


1
0
. . .
0
0

 B =


0 xn
−1 0 xn−1

. . . . . .
...

−1 0 x2

−1 x1


Trivial as this case seems, we will see that it soon gets interesting if we consider
its extension to the double quiver Qd and to deformed preprojective algebras.

8.3 Deformed preprojective algebras

Recall the construction of deformed preprojective algebras given in sec-
tion 5.5. Let Q be a quiver on k vertices and Qd its double quiver , that
is to each arrow a ∈ Qa we add an arrow a∗ with the reverse orientation in
Qda and define the commutator element c =

∑
a∈Qa

[a, a∗] in the path algebra
CQd. For a weight λ = (λ1, . . . , λk) ∈ Ck we define the deformed preprojective
algebra

Πλ =
CQd

c− λ
In this section we will give an outline of the determination of the dimension
vectors of simple Πλ-representations due to W. Crawley-Boevey [26].

We know already that a dimension vector α = (a1, . . . , ak) can be the
dimension vector of a Πλ-representation only if λ.α = 0, so we will denote
this subset of Nk by Nkλ. With ∆+

λ we will denote the subset of positive roots
α of Q lying in Nkλ and with N∆+

λ the additive semigroup they generate.

If vi is a loop-free vertex of Q we have defined the reflexion Zk ri- Zk by

ri(α) = α− TQ(α, εi)

and we define its dual reflexion Ck si- Ck by the formula

si(λ)j = λj − TQ(εi, εj)λi
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Clearly, we have si(λ).α = λ.ri(α). We say that a loop-free vertex vi in Q is
admissible for (λ, α) (or for λ) if λi 6= 0. We define an equivalence relation ∼
on pairs (λ, α) ∈ Ck ×Zk induced by (λ, α) ∼ (si(λ), ri(α)) whenever vi is an
admissible vertex for (λ, α). We want to relate the representation theory of
Πλ to that of Πsi(λ).

THEOREM 8.5
If vi is an admissible vertex for λ, then there is an equivalence of categories

Πλ − rep
Ei- Πsi(λ) − rep

that acts as the reflection ri on the dimension vectors.

PROOF Because the definition of Πλ does not depend on the orientation
of the quiver Q, we may assume that there are no arrows in Q having starting
vertex vi. Let V ∈ repα Πλ and consider V as a representation of the double
quiver Qd. Consider the vectorspace

V⊕ =
⊕

��������j��������i
aoo

Vj

where the sum is taken over all arrows a ∈ Qa terminating in vi. Let µa
and πa be the inclusion and projection between Vj and V⊕ and define maps

Vi
µ- V⊕ and V⊕

π- Vi by the formulas

π =
1
λi

∑
����������������i

aoo

Va ◦ πa and µ =
∑

����������������i
aoo

µa ◦ Va

then π ◦ µ = rr
Vi

whence µ ◦ π is an idempotent endomorphism on V⊕.
We define the representation V ′ of Qd by the following data : V ′j = Vj for

j 6= i, V ′a = Va and V ′a∗ = Va∗ whenever the terminating vertex of a is not vi.
Further

V ′i = Im rr− µ ◦ π = Ker π

and for an arrow ��������j��������i
aoo in Q we define{

V ′a = −λi(rr− µ ◦ π) ◦ µa : V ′j - V ′i
V ′a∗ = πa | V ′i : V ′i - V ′j

We claim that V ′ is a representation of Πsi(λ). Indeed, for a vertex vi we have∑
����������������i

aoo

V ′aV
′
a∗ =

∑
����������������i

aoo

−λi(rr−µ◦π)◦µa◦πa | V ′i = −λi(rr−µ◦π) | V ′i = −λirrV ′i
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and (siλ)i = −λi. Further, for an arrow ��������j��������i
aoo in Q then

V ′a∗V
′
a = πa◦(−λi(rr−µ◦π)◦µa) = −λiπa◦µa+λiπa◦µ◦π◦µa = −λirrVj

+Va∗Va

but then, whenever j 6= i we have the equality∑
����������������j

aoo

V ′aV
′
a∗ −

∑
��������j�������� aoo
V ′a∗V

′
a =

∑
����������������j

aoo

VaVa∗ −
∑

��������j�������� aoo
Va∗Va − TQ(εj , εi)λir

r
Vj

because there are −TQ(εj , εi) arrows from vj to vi. Then, this reduces to

λj
rr
Vj
− TQ(εj , εi)λir

r
Vi

= (siλ)jr
r
Vj

The assignment V 7→ V ′ extends to a functor Ei and the exact sequence

0 - V ′i - V⊕
π- Vi - 0

shows that it acts as ri on the dimension vectors. Finally, the reflection also
defines a functor E′i : Πsi(λ) − rep - Πλ − rep and one shows that there
is a natural equivalence V - E′i(Ei(V )) finishing the proof.

Recall from section 5.5 that for a fixed dimension vector α we have the
complex moment map

repα Q
d µα- Mα µα(V )i =

∑
��������i�������� aoo
VaVa∗ −

∑
����������������i

aoo

Va∗Va

and that we have the identification rep
α

Πλ = µ−1
α (λ). A geometric interpre-

tation of the proof of the foregoing theorem tells us that the schemes µ−1
α (λ)

and µ−1
ri(α)(si(λ)) have the same number of irreducible components and that

dim µ−1
α (λ)− α.α = dim µ−1

ri(α)(si(λ))− ri(α).ri(α)

see [26, lemma 1.2] for full details. The set of λ-Schur roots Sλ was defined
to be the set of α ∈ Nk such that

pQ(α) ≥ pQ(β1) + . . .+ pQ(βr)

for all decompositions α = β1 + . . . + βr with the βi ∈ ∆+
λ . If we demand a

proper inequality > for all decompositions we get a subset Σλ and call it the
set of λ-simple roots . Recall that Sλ and hence Σλ consists of Schur roots of
Q.

As in the case of Kac’s theorem where one obtains the set of all roots from
the subsets Π = {εi | vi has no looops} and the fundamental set of roots
FQ = {α ∈ Nk − 0 | TQ(α, εi) ≤ 0 and supp(α) is connected }, we can use
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the above reflection functors Ei to reduce pairs (λ, α) under the equivalence
relation ∼ to a particularly nice form, see [26, Thm. 4.8].

THEOREM 8.6
If α ∈ Σλ, then (λ, α) ∼ (λ′, α′) with{

α′ ∈ Π if α is a real root,
α′ ∈ FQ if α is an imaginary root

PROPOSITION 8.3
If (λ, α) is such that α ∈ Σλ, then rep

α
Πλ = µ−1

α (λ) is irreducible and

dim µ−1
α (λ) = α.α− 1 + 2pQ(α)

In particular, µ−1
α (λ) is a complete intersection.

PROOF If α ∈ Σλ, then we know by theorem 5.18 that

dim µ−1
α (λ) = α.α− χQ(α, α) + pQ(α) = α.α− 1 + 2pQ(α)

as pQ(α) = 1−χQ(α, α). Moreover, this number is also the relative dimension
of the complex moment map µα. Therefore, µ−1

α (λ) is equidimensional and
we only have to prove that it is irreducible.

By theorem 8.6 and the geometric interpretation of the reflexion functor
equivalence we may reduce to the case where α is either a coordinate vector
or lies in the fundamental region. The former case being trivial, we assume
α ∈ FQ. Consider the projection map

µ−1
α (λ)

π- repα Q

then the image of π is described in theorem 5.17 and any nonempty fiber
π−1(V ) ' (Ext1CQ(V, V ))∗ is irreducible. As in the proof of theorem 5.18 we
can decompose repα Q according to representation types in repα(τ). Because
α ∈ Σλ we have that dim π−1(repα(τ)) < d = α.α − 1 + 2pQ(α). for all
τ 6= (1, α).

Because α is a Schur root, repα(1, α) is an open set and π−1(repα Q −
repα(1, α)) has a dimension less than d, whence it is sufficient to prove that
π−1(repα(1, α)) is irreducible. Because it is an open subset of µ−1

α (λ) it
is equidimensional of dimension d and every fiber is irreducible. But, if
X - Y is a dominant map with Y irreducible and all fibers irreducible
of the same dimension, then X is irreducible, finishing the proof.

The term λ-simple roots for Σλ is justified by the following result.
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THEOREM 8.7
Let (λ, α) be such that α ∈ Σλ. Then, rep

α
Πλ = µ−1

α (λ) is a reduced and
irreducible complete intersection of dimension d = α.α − 1 + 2pQ(α) and the
general element of µ−1

α (λ) is a simple representation of Πλ.
In particular, issα Πλ is an irreducible variety of dimension 2pQ(α).

PROOF We know that µ−1
α (λ) is irreducible of dimension d. By the type

stratification, it is enough to prove the existence of one simple representation
of dimension vector α. The reflection functors being equivalences of categories,
we may assume that α is either in Π or in FQ. Clearly, for α a dimension
vector, there is a simple representation, whence assume α ∈ FQ.

Assume there is no simple α-dimensional representation of Πλ. Because
rep

α
Πλ is irreducible, there is a dimension vector β < α and an open subset of

representations containing a subrepresentation of dimension vector β. As the
latter condition is closed, every α-dimensional representation of Πλ contains
a β-dimensional subrepresentation.

Because α is a Schur root for Q, the general α-dimensional representation of
Q extends to Πλ and hence contains a subrepresentation of dimension vector
β, that is β ⊂

Q- α. Applying the same argument to the quiver Qo we also
have β ⊂

Qo

- α.
If we now consider duals, this implies that the general α-dimensional repre-

sentation of Q has a subrepresentation of dimension vector α− β. But then,
by the results of section 4.7 we have ext(β, α−β) = 0 = ext(α−β, β) whence
a general α-dimensional representation of Q decomposes as a direct sum of
representations of dimension β and α − β, contradicting the fact that α is a
Schur root. Hence, there are α-dimensional simple representations of Πλ.

Let V be a simple representation in µ−1
α (λ), then computing differentials

it follows that µα is smooth at V , whence µ−1
α (λ) is generically reduced.

But then, being a complete intersection, it is Cohen-Macaulay and therefore
reduced.

This finishes the proof of the easy part of the characterization of simple
roots for Πλ due to W. Crawley-Boevey [26].

THEOREM 8.8
The following are equivalent

1. Πλ has α-dimensional simple representations

2. α ∈ Σλ

The proof of [26] involves a lengthy case-by-case study and awaits a more
transparent argument, perhaps along the lines of hyper-Kähler reduction as
in section 8.5.



Moduli Spaces 469

If α ∈ Σλ, then Πλ(α) is an order in a central simple algebra over the
functionfield of issα Πλ.

8.4 Hilbert schemes

In this section we will illustrate some of the foregoing results in the special
case of the quiver Q coming from the study of linear dynamical systems, and
its double quiver Qd

(/).*-+, (/).*-+, bee
a // and (/).*-+, (/).*-+,

b

qq

b∗

QQ

a

��

a∗

\\

In order to avoid heavy use of stars, we denote as in the previous chapters,
a = u, a∗ = v, b = x and b∗ = y, so the path algebra of the double Qd

(/).*-+, (/).*-+,
x

qq

y

QQ

u

��

v

\\

is the algebra M considered before. We fix the dimension vector α = (1, n)
and the character θ = (−n, 1) and recall from section 8.2 that the moduli
space Mss

α (Q, θ) ' Cn.
We say that u is a cyclic vector for the matrix-couple (X,Y ) ∈ Mn(C) ⊕

Mn(C) if there is no proper subspace of Cn containing u, which is stable under
left multiplication by X and Y .

LEMMA 8.4

A representation V = (X,Y, u, v) ∈ repα M is θ-semistable if and only if u is
a cyclic vector for (X,Y ). Moreover, in this case V is even θ-stable.

PROOF If there is a proper subspace of Cn of dimension k containing
u and stable under the multiplication with X and Y then V contains a sub-
representation of dimension β = (1, k) and θ(β) < 0. If u is cyclic for (X,Y )
then the only proper subrepresentations of V are of dimension (0, k) for some
k, but for those θ(β) > 0 whence V is θ-stable.
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The complex moment map µ = µα for this situation is

repα Q
d = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗ µ - C⊕Mn(C)

(X,Y, u, v) 7→ (−v.u, [Y,X] + u.v)

Observe that the image is contained in M0
α(C) = {(c,M) | c+ tr(M) = 0}.

The differential dµ in the point (X,Y, u, v) is equal to

dµ(X,Y,u,v) (A,B, c, d) = (−v.c− d.u, [B,X] + [Y,A] + u.d+ c.v)

LEMMA 8.5
The second component of the differential dµ is surjective in (X,Y, u, v) if u is
a cyclic vector for (X,Y ).

PROOF Consider the nondegenerate symmetric bilinear form tr(MN) on
Mn(C) With respect to this inproduct on Mn(C) the space orthogonal to the
image of (the second component of) dµ(X,Y,u,v) is equal to

{M ∈Mn(C) | tr([B,X]M + [Y,A]M + u.dM + c.vM) = 0,∀(A,B, c, d)}

Because the trace does not change under cyclic permutations and is nonde-
generate we see that this space is equal to

{M ∈Mn(C) | [M,X] = 0 [Y,M ] = 0 Mu = 0 and vM = 0}

But then, the kernel ker M is a subspace of Cn containing u and stable under
left multiplication by X and Y . By the cyclicity assumption this implies
that ker M = Cn or equivalently that M = 0. As dµ⊥(X,Y,u,v) = 0 and tr is

nondegenerate, this implies that the differential is surjective.

Let repssα Qd = repsα Q
d = repsα M be the open variety of θ-(semi)stable

representations.

PROPOSITION 8.4
For every matrix (c,M) ∈M0

α(C) in the image of the map

repsα M µ- M0
α(C)

the inverse image µ−1(M) is a submanifold of repα M of dimension n2 +2n.

This is a special case of theorem 5.19. Observe that for the quiver Q we
have pQ(m,n) = mn + 1 −m2. As any decomposition of α = (1, n) is of the
form

(1, n) = (1, a1) + (0, a2) + . . .+ (0, ak) with
∑
i

ai = n
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we have that pQ(α) = n ≥
∑
i pQ(βi) = a1 + 1 + . . . + 1 and equality only

occurs for (1, 1) + (0, 1) + . . .+ (0, 1). Therefore α ∈ S0.
We now turn to the description of the moduli space Mss

α (Qd, θ). In this
particular case we clearly have.

LEMMA 8.6

For α = (1, n) and θ = (−n, 1) there is a natural one-to-one correspondence
between

1. GL(α)-orbits in repsα M, and

2. GLn-orbits in repsα M under the induced action

For the investigation of the GLn(C)-orbits on repsα M we introduce a com-
binatorial gadget : the Hilbert n-stair. This is the lower triangular part of a
square n× n array of boxes

1

n

1 n

filled with go-stones according to the following two rules :

• each row contains exactly one stone, and

• each column contains at most one stone of each color

For example, the set of all possible Hilbert 3-stairs is given below

ue u u u e eu e e e u
To every Hilbert stair σ we will associate a sequence of monomials W (σ) in
the free noncommutative algebra C〈x, y〉, that is, W (σ) is a sequence of words
in x and y.

At the top of the stairs we place the identity element 1. Then, we descend
the stairs according to the following rule.

• Every go-stone has a top word T , which we may assume we have con-
structed before and a side word S and they are related as indicated
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below

T

S

1

T

xT

1

•

T

yT

1

◦

For example, for the Hilbert 3-stairs we have the following sequences of
noncommutative words

ue
1

x

y

u u
1

x

x2

u e
1

x

yx

eu
1

y

x

e e
1

y

y2

e u
1

y

xy

We will evaluate a Hilbert n-stair σ with associated sequence of noncommu-
tative words W (σ) = {1, w2(x, y), . . . , wn(x, y)} on

repα M = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗

For a quadruple (X,Y, u, v) we replace every occurrence of x in the word
wi(x, y) by X and every occurrence of y by Y to obtain an n × n matrix
wi = wi(X,Y ) ∈Mn(C) and by left multiplication on u a column vector wi.v.
The evaluation of σ on (X,Y, u, v) is the determinant of the n× n matrix

σ(X,Y, u, v) = det u w2.u w3.u wn.u. . .

For a fixed Hilbert n-stair σ we denote with rep(σ) the subset of quadruples
(X,Y, u, v) in repα M such that the evaluation σ(v,X, Y ) 6= 0.

THEOREM 8.9
For every Hilbert n-stair, rep (σ) 6= ∅

PROOF Let u be the basic column vector

e1 =


1
0
...
0





Moduli Spaces 473

Let every black stone in the Hilbert stair σ fix a column of X by the rule

i

j

1

n

1 n

•

X =

1i

j

0

0

.

.

.

0

0

.

.

.

That is, one replaces every black stone in σ by 1 at the same spot in X and fills
the remaining spots in the same column by zeroes. The same rule applies to
Y for white stones. We say that such a quadruple (X,Y, u, v) is in σ-standard
form.

With these conventions one easily verifies by induction that

wi(X,Y )e1 = ei for all 2 ≤ i ≤ n

Hence, filling up the remaining spots in X and Y arbitrarily one has that
σ(X,Y, u, v) 6= 0 proving the claim.

Hence, rep (σ) is an open subset of repα M (and even of repsα M) for every
Hilbert n-stair σ. Further, for every word (monomial) w(x, y) and every
g ∈ GLn(C) we have that

w(gXg−1, gY g−1)gv = gw(X,Y )v

and therefore the open sets rep (σ) are stable under the GLn(C)-action on
repα M. We will give representatives of the orbits in rep (σ).

Let Wn = {1, x, . . . , xn, xy, . . . , yn} be the set of all words in the non-
commuting variables x and y of length ≤ n, ordered lexicographically.

For every quadruple (X,Y, u, v) ∈ repα M consider the n×m matrix

ψ(X,Y, u, v) =
[
u Xu X2u . . . Y nu

]
where m = 2n+1− 1 and the j-th column is the column vector w(X,Y )v with
w(x, y) the j-th word in Wn.

Hence, (X,Y, u, v) ∈ rep (σ) if and only if the n× n minor of ψ(X,Y, u, v)
determined by the word-sequence {1, w2, . . . , wn} of σ is invertible. Moreover,
as

ψ(gXg−1, gY g−1, gu, vg−1) = gψ(v,X, Y )

we deduce that the GLn(C)-orbit of (X,Y, u, v) ∈ repα M contains a
unique quadruple (X1, Y1, u1, v1) such that the corresponding minor of
ψ(X1, Y1, u1, v1) = rr

n.
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Hence, each GLn(C)-orbit in rep (σ) contains a unique representant in
σ-standard form. See discussion below.

PROPOSITION 8.5
The action of GLn(C) on rep (σ) is free and the orbit space

rep (σ)/GLn(C)

is an affine space of dimension n2 + 2n.

PROOF The dimension is equal to the number of nonforced entries in X,
Y and v. As we fixed n− 1 columns in X or Y this dimension is equal to

k = 2n2 − (n− 1)n+ n = n2 + 2n

The argument above shows that every GLn(C)-orbit contains a unique
quadruple in σ-standard form so the orbit space is an affine space.

THEOREM 8.10
For α = (1, n) and θ = (−n, 1), the moduli space

Mss
α (Qd, θ) = Mss

α (M, θ)

is a complex manifold of dimension n2 +2n and is covered by the affine spaces
rep (σ).

PROOF Recall that repsα M is the open submanifold consisting of quadru-
ples (x, Y, u, v) such that u is a cyclic vector of (X,Y ) or equivalently such
that

C〈X,Y 〉u = Cn

where C〈X,Y 〉 is the not necessarily commutative subalgebra of Mn(C) gen-
erated by the matrices X and Y .

Hence, clearly rep (σ) ⊂ repn M for any Hilbert n-stair σ. Conversely, we
claim that a quadruple (X,Y, u, v) ∈ repsα M belongs to at least one of the
open subsets rep (σ).

Indeed, either Xu /∈ Cu or Y u /∈ Cu as otherwise the subspace W = Cu
would contradict the cyclicity assumption. Fill the top box of the stairs with
the corresponding stone and define the 2-dimensional subspace V2 = Cu1+Cu2

where u1 = u and u2 = w2(X,Y )u with w2 the corresponding word (either x
or y).

Assume by induction we have been able to fill the first i rows of the stairs
with stones leading to the sequence of words {1, w2(x, y), . . . , wi(x, y)} such
that the subspace Vi = Cu1 + . . .+ Cui with ui = wi(X,Y )v has dimension i.



Moduli Spaces 475

Then, either Xuj /∈ Vi for some j or Y uj /∈ Vi (if not, Vi would contradict
cyclicity). Then, fill the j-th box in the i + 1-th row of the stairs with the
corresponding stone. Then, the top i + 1 rows of the stairs form a Hilbert
i+1-stair as there can be no stone of the same color lying in the same column.
Define wi+1(x, y) = xwi(x, y) (or ywi(x, y)) and ui+1 = wi+1(X,Y )u. Then,
Vi+1 = Cu1 + . . .+ Cui+1 has dimension i+ 1.

Continuing we end up with a Hilbert n-stair σ such that (X,Y, u, v) ∈
rep (σ). This concludes the proof.

Example 8.1 The moduli space Mss
α (Qd, θ) when n = 3

Representatives for the GL3(C)-orbits in rep (σ) are given by the following
quadruples for σ a Hilbert 3-stair

td t t t d dt d d d t
X

0 a b
1 c d
0 e f

 0 0 a
1 0 b
0 1 c

 0 a b
1 c d
0 e f

 0 a b
0 c d
1 e f

 a b cd e f
g h i

 a 0 b
c 0 d
e 1 f



Y

0 g h
0 i j
1 k l

 d e fg h i
j k l

 g 0 h
i 0 j
k 1 l

 0 g h
1 i j
0 k l

 0 0 j
1 0 k
0 1 l

 0 g h
1 i j
0 k l



u

1
0
0

 1
0
0

 1
0
0

 1
0
0

 1
0
0

 1
0
0


v

[
m n o

] [
m n o

] [
m n o

] [
m n o

] [
m n o

] [
m n o

]

We now turn to the deformed preprojective algebras. Let λ = (−nλ, λrr
n) ∈

M0
α(C) for λ ∈ C. Then

Πλ =
M

(v.u+ λv1, [Y,X] + u.v − λv2)

then if we denote by Mss
α (Πλ, θ) the moduli space of θ-semistable representa-
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tions of Πλ, then we have the following situation

µ−1(λ) ∩ repsα M ⊂ - repsα M

Mss
α (Πλ, θ)

??
⊂ - Mss

α (M, θ)

??

and from the theorem above we obtain the following theorem.

THEOREM 8.11
For a λ ∈ M0

α(C), the orbit space of θ-semistable representations of the de-
formed preprojective algebra

Mss
α (Πλ, θ)

is a submanifold of Mss
α (M, θ) of dimension 2n.

We will identify the special case of the preprojective algebra (that is, λ = 0
with the Hilbert scheme of n points in the plane .

Consider a codimension n ideal i /C[x, y] and fix a basis {v1, . . . , vn} of the
quotient space

Vi =
C[x, y]

i
= Cv1 + . . .+ Cvn

Multiplication by x on C[x, y] induces a linear operator on the quotient Vi

and hence determines a matrix Xi ∈Mn(C) with respect to the chosen basis
{v1, . . . , vn}. Similarly, multiplication by y determines a matrix Yi ∈Mn(C).

Moreover, the image of the unit element 1 ∈ C[x, y] in Vi determines with
respect to the basis {v1, . . . , vn} a column vector u ∈ Cn = Vi. Clearly, this
vector and matrices satisfy

[Xi, Yi] = 0 and C[Xi, Yi]u = Cn

Here, C[Xi, Yi] is the n-dimensional subalgebra ofMn(C) generated by the two
matrices Xi and Yi. In particular, u is a cyclic vector for the matrix-couple
(X,Y ).

Conversely, if (X,Y, u) ∈Mn(C)⊕Mn(C)⊕ Cn is a cyclic triple such that
[X,Y ] = 0, then C〈X,Y 〉 = C[X,Y ] is an n-dimensional commutative subal-
gebra of Mn(C), then the kernel of the natural epimorphism

C[x, y] -- C[X,Y ] x 7→ X y 7→ Y

is a codimension n ideal i of C[x, y].
However, there is some redundancy in the assignment i - (Xi, Yi, ui) as it

depends on the choice of basis of Vi. If we choose a different basis {v′1, . . . , v′n}
with base change matrix g ∈ GLn(C), then the corresponding triple is

(X ′i , Y
′
i , u
′
i) = (g.Xi.g

−1, g.Yi.g
−1, gui)
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The above discussion shows that there is a one-to-one correspondence between

• codimension n ideals i of C[x, y], and

• GLn(C)-orbits of cyclic triples (X,Y, u) in Mn(C) ⊕Mn(C) ⊕ Cn such
that [X,Y ] = 0

Example 8.2 The Hilbert scheme Hilb2
Consider a triple (X,Y, u) ∈M2(C)⊕M2(C)⊕C2 and assume that either X
or Y has distinct eigenvalues (type a). As

[
[
ν1 0
0 ν2

]
,

[
a b
c d

]
] =

[
0 (ν1 − ν2)b

(ν2 − ν1)c 0

]
we have a representant in the orbit of the form

(
[
λ1 0
0 λ2

]
,

[
µ1 0
0 µ2

]
,

[
u1

u2

]
)

where cyclicity of the column vector implies that u1u2 6= 0.
The stabilizer subgroup of the matrix-pair is the group of diagonal matrices

C∗ ×C∗ ⊂ - GL2(C), hence the orbit has a unique representant of the form

(
[
λ1 0
0 λ2

]
,

[
µ1 0
0 µ2

]
,

[
1
1

]
)

The corresponding ideal i / C[x, y] is then

i = {f(x, y) ∈ C[x, y] | f(λ1, µ1) = 0 = f(λ2, µ2)}

hence these orbits correspond to sets of two distinct points in C2.
The situation is slightly more complicated when X and Y have only one

eigenvalue (type b). If (X,Y, u) is a cyclic commuting triple, then either X
or Y is not diagonalizable. But then, as

[
[
ν 1
0 ν

]
,

[
a b
c d

]
] =

[
c d− a
0 c

]
we have a representant in the orbit of the form

(
[
λ α
0 λ

]
,

[
µ β
0 µ

]
,

[
u1

u2

]
)

with [α : β] ∈ P1 and u2 6= 0. The stabilizer of the matrixpair is the subgroup

{
[
c d
0 c

]
| c 6= 0} ⊂ - GL2(C)
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and hence we have a unique representant of the form

(
[
λ α
0 λ

]
,

[
µ β
0 µ

]
,

[
0
1

]
)

The corresponding ideal i / C[x, y] is

i = {f(x, y) ∈ C[x, y] | f(λ, µ) = 0 and α
∂f

∂x
(λ, µ) + β

∂f

∂y
(λ, µ) = 0}

as one proves by verification on monomials because[
λ α
0 λ

]k [
µ β
0 µ

]l [0
1

]
=

[
kαλk−1µl + lβλkµl−1

λkµl

]
Therefore, i corresponds to the set of two points at (λ, µ) ∈ C2 infinitesimally
attached to each other in the direction α ∂

∂x +β ∂
∂y . For each point in C2 there

is a P1 family of such fat points.
Thus, points of Hilb2 correspond to either of the following two situations

type a

C2

•

•
p

p’

type b

C2

p
•��

The Hilbert-Chow map Hilb2
π- S2 C2 (where S2 C2 is the symmetric

power of C2, that is S2 = Z/2Z orbits of couples of points from C2) sends
a point of type a to the formal sum [p] + [p′] and a point of type b to 2[p].
Over the complement of (the image of) the diagonal, this map is a one-to-one
correspondence.

However, over points on the diagonal the fibers are P1 corresponding to the
directions in which two points can approach each other in C2. As a matter of
fact, the symmetric power S2 C2 has singularities and the Hilbert-Chow map
Hilb2

π-- S2 C2 is a resolution of singularities.

THEOREM 8.12
Let repα M µ- M0

α(C) be the complex moment map, then

Hilbn 'Mss
α (Π0, θ)
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and is therefore a complex manifold of dimension 2n.

PROOF We identify the triples (X,Y, u) ∈ Mn(C) ⊕Mn(C) ⊕ Cn such
that u is a cyclic vector of (X,Y ) and [X,Y ] = 0 with the subspace

{(X,Y, u, 0) | [X,Y ] = 0 and u is cyclic } ⊂ - repsα M

which is clearly contained in µ−1(0). To prove the converse inclusion assume
that (X,Y, u, v) is a cyclic quadruple such that

[X,Y ] + uv = 0

Let m(x, y) be any word in the noncommuting variables x and y. We claim
that

v.m(X,Y ).u = 0

We will prove this by induction on the length l(m) of the word m(x, y). When
l(m) = 0 then l(x, y) = 1 and we have

v.l(X,Y ).u = v.u = tr(u.v) = tr([X,Y ]) = 0

Assume we proved the claim for all words of length < l and take a word of
the form m(x, y) = m1(x, y)yxm2(x, y) with l(m1) + l(m2) + 2 = l. Then, we
have

wm(X,Y ) = wm1(X,Y )Y Xm2(X,Y )
= wm1(X,Y )([Y,X] +XY )m2(X,Y )
= (wm1(X,Y )v).wm2(X,Y ) + wm1(X,Y )XYm2(X,Y )
= wm1(X,Y )XYm2(X,Y )

where we used the induction hypotheses in the last equality (the bracketed
term vanishes).

Hence we can reorder the terms in m(x, y) if necessary and have that
wm(X,Y ) = wX l1Y l2 with l1 + l2 = l and l1 the number of occurrences
of x in m(x, y). Hence, we have to prove the claim for X l1Y l2

wX l1Y l2v = tr(X l1Y l2vw)
= −tr(X l1Y l2 [X,Y ])
= −tr([X l1Y l2 , X]Y )
= −tr(X l1 [Y l2 , X]Y )

= −
∑l2−1
i=0 tr(X l1Y i[Y,X]Y l2−i)

= −
∑l2−1
i=0 tr(Y l2−iX l1Y i[Y,X]

= −
∑l2−1
i=0 tr(Y l2−iX l1Y iv.w

= −
∑l2−1
i=0 wY m2−iX l1Y iv
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But we have seen that wY l2−iX l1Y i = wX l1Y l2 hence the above implies that
wX l1Y l2v = −l2wX l1Y l2v. But then wX l1Y l2v = 0, proving the claim.

Consequently, w.C〈X,Y 〉.v = 0 and by the cyclicity condition we have
w.Cn = 0 hence w = 0. Finally, as v.w + [X,Y ] = 0 this implies that
[X,Y ] = 0 and we can identify the fiber µ−1(0) with the indicated subspace.
From this the result follows.

We can use the affine covering of Mss
α (M, θ) by Hilbert stairs, to cover the

Hilbert scheme Hilbn by the intersections Hilb(σ) = rep(σ) ∩Hilbn.

Example 8.3 The Hilbert scheme Hilb2
Consider Hilb2 ( t ). Because

[
[
0 a
1 b

]
,

[
c d
e f

]
] =

[
ae− d af − ac− bd

c+ be− f d− ae

]
this subset can be identified with C4 using the equalities

d = ar and f = c+ be

Similarly, Hilb2 ( d ) ' C4.

THEOREM 8.13
The Hilbert scheme Hilbn of n points in C2 is a complex connected manifold
of dimension 2n.

PROOF The symmetric power Sn C1 parameterizes sets of n-points on
the line C1 and can be identified with Cn. Consider the map

Hilbn
π-- Sn C1

defined by mapping a cyclic triple (X,Y, u) with [X,Y ] = 0 in the orbit
corresponding to the point of Hilbn to the set {λ1, . . . , λn} of eigenvalues of
X. Observe that this map does not depend on the point chosen in the orbit.

Let ∆ be the big diagonal in Sn C1, that is, Sn C1−∆ is the space of all sets
of n distinct points from C1. Clearly, Sn C1−∆ is a connected n-dimensional
manifold. We claim that

π−1(Sn C1 −∆) ' (Sn C1 −∆)× Cn

and hence is connected.
Indeed, take a matrix X with n distinct eigenvalues {λ1, . . . , λn}. We may

diagonalize X. But then, as

[

λ1

. . .
λn

 ,
y11 . . . y1n...

...
yn1 . . . ynn

] =

(λ1 − λ1)y11 . . . (λ1 − λn)y1n
...

...
(λn − λ1)yn1 . . . (λn − λn)ynn


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we see that also Y must be a diagonal matrix with entries (µ1, . . . , µn) ∈ Cn
where µi = yii. But then the cyclicity condition implies that all coordinates
of v must be nonzero.

Now, the stabilizer subgroup of the commuting (diagonal) matrix-pair
(X,Y ) is the maximal torus Tn = C∗ × . . . × C∗ of diagonal invertible n × n
matrices. Using its action we may assume that all coordinates of v are equal
to 1. That is, the points in π−1({λ1, . . . , λn}) with λi 6= λj have unique (up
to permutation as before) representatives of the form

(


λ1

λ2

. . .
λn

 ,

µ1

µ2

. . .
µn

 ,


1
1
...
1

)

that is, π−1({λ1, . . . , λn} can be identified with Cn, proving the claim.
Next, we claim that all the fibers of π have dimension at most n. Let

{λ1, . . . , λn} ∈ Sn C1, then there are only finitely many X in Jordan normal-
form with eigenvalues {λ1, . . . , λn}. Fix such an X, then the subset T (X) of
cyclic triples (X,Y, u) with [X,Y ] = 0 has dimension at most n+ dim C(X)
where C(X) is the centralizer of X in Mn(C), that is

C(X) = {Y ∈Mn(C) | XY = Y X}

The stabilizer subgroup Stab(X) = {g ∈ GLn(C) | gXg−1 = X} is an open
subset of the vectorspace C(X) and acts freely on the subset T (X) because
the action of GLn(C) on µ−1(0) ∩ repsα M has trivial stabilizers.

But then, the orbit space for the Stab(X)-action on T (X) has a dimension
at most

n+ dim C(X)− dim Stab(X) = n.

As we only have to consider finitely many X this proves the claim. The
diagonal ∆ has dimension n−1 in Sn C1 and hence by the foregoing we know
that the dimension of π−1(∆) is at most 2n − 1. Let H be the connected
component of Hilbn containing the connected subset π−1(Sn C1 − ∆). If
π−1(∆) were not entirely contained in H, then Hilbn would have a component
of dimension less than 2n, which we proved not to be the case. This finishes
the proof.

We can give a representation theoretic interpretation of the resolution of
singularities Hilbert-Chow morphism

Hilbn
π-- Sn C2

Σ0 = {(1, 0), (0, 1)}, that is, the only simple Π0-representations are one-
dimensional. Any semisimple representation of Π0 of dimension vector α =
(1, n) therefore decomposes as T0⊕S⊕e11 ⊕. . .⊕S⊕er

r with T0 the unique simple
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(1, 0)-dimensional representation and the Si in the two-dimensional family of
(0, 1)-simple representations of Π0 (corresponding to couples (λi, µi) ∈ C2).
Therefore we have the projective bundle morphism

Hilbn = Mss
α (Π0, θ)

π′- issα Π0 = Sn C2

where the mapping sends a point of Hilbn determined by a cyclic triple
(X,Y, u) to the n-tuple of eigenvalues (λi, µi) of X and Y .

8.5 Hyper Kähler structure

Again, Q is a quiver on k vertices and Qd its double. We fix a dimension
vector α = (a1, . . . , ak) ∈ Nk and a character θ = (t1, . . . , tk) ∈ Zk and a
weight λ = (λ1, . . . , λk) ∈ Ck such that the numerical conditions

θ(α) =
k∑
i=1

tiai = 0 and λ(α) =
n∑
i=1

λiai = 0

are satisfied. The first is required to have θ-semistable representations, the
second for λ to lie in the image of the complex moment map

repα Q
d µC- M0

α(C) V 7→
∑

���������������� aoo
a∈Qa

[Va, Va∗ ]

where a∗ is the arrow inQda corresponding to a ∈ Qa (that is, with the opposite
direction).

Recall that the quaternion algebra H is the 4-dimensional division algebra
over R defined by

H = R.1⊕ R.i⊕ R.j ⊕ R.k i2 = j2 = k2 = −1 k = ij = −ji

DEFINITION 8.1 A C∞ (real) manifold M is said to be a hyper-Kähler
manifold if H acts on H by diffeomorphisms.

LEMMA 8.7

For any quiver Q, the representation space repα Q
d is a hyper-Kähler mani-

fold.
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PROOF We have to specify the actions. They are defined as follows, for
V ∈ repα Q

d for all arrows b ∈ Qda and all arrows a ∈ Qa

(i.V )b = iVb

(j.V )a = −V †a∗ (j.V )a∗ = V †a

(k.V )a = −iV †a∗ (k.V )a∗ = iV †a

where this time we denote the Hermitian adjoint of a matrix M by M† to
distinguish it from the star-operation on the arrows of Qd. A calculation
shows that these operations satisfy the required relations.

In section 8.1 we introduced the real moment map for quiver representations.
If we apply this to the double quiver Qd we can take

repα Q
d µR- Lie U(α) V 7→

∑
���������������� boo

b∈Qd
a

i

2
[Vb, V

†
b ]

We will use the action by nonzero elements of H to obtain C∞-diffeomorphisms
between certain subsets of repα Q

d. Let h = i−k√
2

then we have

µC(h.V ) =
1
2

∑
a∈Qa

[iVa + iV †a∗ , iVa∗ − iV †a ]

=
1
2

∑
a∈Qa

( − [Va, Va∗ ] + [Va, V †a ]− [V †a∗ , Va∗ ] + [V †a∗ , V
†
a ] )

=
1
2

∑
a∈Qa

( [Va, Va∗ ]† − [Va, Va∗ ] ) +
1
2

∑
a∈Qa

( [Va, V †a ] + [Va∗ , V
†
a∗ ] )

=
1
2
(µC(V )† − µC(V ))− iµR(V )

and

µR(h.V ) =
i

4
(

∑
a∈Qa

[iVa + iV †a∗ ,−iV †a − iVa∗ ] +
∑
a∈Qa

[iVa∗ − iV †a ,−iV
†
a∗ + iVa] )

=
i

4

∑
a∈Qa

( [Va, V †a ] + [Va, Va∗ ] + [V †a∗ , V
†
a ] + [V †a∗ , Va∗ ]

+ [Va∗ , V
†
a∗ ]− [Va∗ , Va]− [V †a , V

†
a∗ ] + [V †a , Va] )

=
i

4
(2µC(V ) + 2µC(V )†)

In particular we have the following.
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PROPOSITION 8.6
If λ ∈ Rk, then we have a homeomorphism between the real varieties

µ−1
C (λrr

α) ∩ µ−1
R (0)

h.- µ−1
C (0) ∩ µ−1

R (iλrr
α)

Moreover, the hyper-Kähler structure commutes with the base-change action
of U(α), whence we have a natural one-to-one correspondence between the
quotient spaces

(µ−1
C (λrr

α) ∩ µ−1
R (0))/U(α)

h.- (µ−1
C (0) ∩ µ−1

R (iλrr
α))/U(α)

By the results of section 8.1 we can identify both sides. To begin, by
definition of the complex moment map µC we have that

µ−1
C (0) = rep

α
Π0 and µ−1

C (λrr
α) = rep

α
Πλ

Moreover, applying theorem 8.3 to the double quiver Qd we have

issα Q
d ' µ−1

R (0)/U(α) and Mss
α (Qd, λ) ' µ−1

R (iλrr
α)/U(α)

when λ ∈ Zk, concluding with the following proof.

THEOREM 8.14
For a character θ = (t1, . . . , tk) ∈ Zk such that θ(α) = 0, there is a natural

one-to-one correspondence between

issα Πθ
h.- Mss

α (Π0, θ)

which is an homeomorphism in the (induced) real topology.

Note however that this bijection does not respect the complex structures of
these varieties. This is already clear from the fact that issα Πθ is an affine
complex variety and Mss

α (Π0, θ) is a projective bundle over issα Π0.
If V ∈ repα Q

d belongs to µ−1
R (0) we know that V is a semisimple repre-

sentation, that is
V = S⊕e11 ⊕ . . .⊕ S⊕er

r

with the Si simple representations of dimension vector βi. Further, if W ∈
rep−1

α (iθrr
α), then W is a direct sum of θ-stable representations, that is

W = T⊕f11 ⊕ . . .⊕ T⊕fs
s

with the Ti θ-stable representations of dimension vector γi. By the explicit
form of the map, we have that if W = h.V that r = s, ei = fi and βi = γi,
see the discussion below.
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PROPOSITION 8.7
Let θ be a character such that θ(α) = 0, then the deformed preprojective
algebra Πθ has semisimple representations of dimension vector α of represen-
tation type τ = (e1, β1; . . . ; er, βr) if and only if the preprojective algebra Π0

has θ-stable representations of dimension vectors βi for all 1 ≤ i ≤ r.
In particular, Πθ has a simple representation of dimension vector α if and

only if Π0 has a θ-stable representation of dimension vector α.

The variety Mss
α (Π0, θ) is locally controlled by noncommutative algebras.

Indeed, as in the case of moduli spaces of θ-semistable quiver-representations,
it is locally isomorphic to issα (Π0)Σ for some universal localization of Π0.
We can determine the α-smooth locus of the corresponding sheaf of Cayley-
Hamilton algebras.

PROPOSITION 8.8
Let α ∈ Σθ, then the α-smooth locus of Mss

α (Π0, θ) is the open subvariety
Ms
α(Π0, θ) of θ-stable representations of Π0.
In particular, if the sheaf of Cayley-Hamilton algebras over Mss

α (Π0, θ) is a
sheaf of α-smooth algebras if and only if α is a minimal dimension vector in
Σθ.

PROOF As α ∈ Σθ we know that issα Πθ has dimension 2pQ(α) =
2 − TQ(α, α). By the hyper-Kähler correspondence so is the dimension of
Mss
α (Π0, θ), whence the open subset of µ−1

C (0) consisting of θ-semistable rep-
resentations has dimension

α.α− 1 + 2pQ(α)

as there are θ-stable representations in it. Take a GL(α)-closed orbit O(V )
in this open set. That is, V is the direct sum of θ-stable subrepresentations

V = S⊕e11 ⊕ . . .⊕ S⊕er
r

with Si a θ-stable representation of Π0 of dimension vector βi occurring in V
with multiplicity ei whence α =

∑
i eiβi.

As all Si are Π0-representations we can determine the local quiver QV by
the knowledge of all Ext1Π0

(Si, Sj) from proposition 5.12

Ext1Π0
(Si, Sj) = 2δij − TQ(βi, βj)

But then the dimension of the normal space to the orbit is

dim Ext1Π0
(V, V ) = 2

r∑
i=1

ei − TQ(α, α)
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whence the étale local structure in an n-smooth point is of the form

GL(α)×GL(τ) Ext1(V, V )

where τ = (e1, . . . , er) and is therefore of dimension

α.α+
2∑
i=1

e2i − TQ(α, α)

This number is equal to the dimension of the subvariety of θ-semistable rep-
resentations of Π0, which has dimension α.α− 1 + 2− TQ(α, α) if and only if
r = 1 and e1 = 1, that is, if V is θ-stable.

Even in points of Mss
α (Π0, θ), which are not in the α-smooth locus, we can

use the local quiver to deduce combinatorial properties of the set of dimension
vectors Σθ of simple representations of Πθ.

PROPOSITION 8.9
Let α, β ∈ Σθ, then

1. If T (α, β) ≤ −2 then α+ β ∈ Σθ

2. If T (α, β) ≥ −1 then α+ β /∈ Σθ

PROOF The property that α and β are Schur roots of Q such that
TQ(α, β) ≤ −2 ensures that γ = α + β is a Schur root of Q and hence that
µ−1

C (θrr
γ has dimension γ.γ − 1 + 2pQ(γ), whence so is the subvariety of θ-

semistable γ-dimensional representations of Π0. We have to prove that Π0

has a θ-stable γ-dimensional representation.
Let V = S⊕T with S resp. T a θ-stable representation of Π0 of dimension

vector α resp. β (they exist by the hyper-Kähler correspondence). But then
the local quiver QV has the following form

18?9>:=;< 18?9>:=;<
−TQ(α, β)

((

−TQ(α, β)

hh2pQ(α)
77

2pQ(β)
gg

and by a calculation similar to the one in the foregoing proof we see that
the image of the slice morphism in the space GL(γ) ×C∗×C∗ rep(1,1) QV has
codimension 1. However, as TQ(α, β) ≤ −2 there are at least 3 algebraically
independent new invariants coming from the nonloop cycles in QV , so they
cannot all vanish on the image. This means that (1, α; 1, β) cannot be the
generic type for θ-semistables of dimension γ, so by the stratification result,
there must exist θ-stables of dimension γ.
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For the second assertion, assume that γ = α + β is the dimension vec-
tor of a simple representation of Πθ, then issγ Πθ has dimension 2pQ(γ) =
2 − TQ(α, β, α + β) = 2pQ(α) + 2pQ(β) whence so is the dimension of
Mss
γ (Π0, θ). By assumption (1, α; 1, β) cannot be the generic type for θ-

semistable representations, but the stratum consisting of direct sums S ⊕ T
with S ∈ Ms

α(Π0, θ) and T ∈ Ms
β(Q, θ) has the same dimension as the total

space, a contradiction.

The first part of the foregoing proof can also be used to show that usually
the moduli spaces Mss

α (Π), θ) and the quotient varieties issα Πθ have lots of
singularities.

PROPOSITION 8.10

Let α ∈ |sigmaθ such that α = β + γ with β, γ ∈ Σθ. Then

Mss
α (Π0, θ) and issα Πθ

is singular along the stratum of points of type (1, β; 1, γ).

PROOF The quotient space of the local quiver situation (as in the fore-
going proof) contains singularities at the trivial representations that remain
singularities in any codimension one subvariety.

Still, if α is a minimal dimension vector in Σθ, the varieties Mss
α (Π0, θ)

and issα Πθ are smooth. In fact, we will show in section 8.7 that the affine
smooth variety issα Πθ is in fact a coadjoint orbit.

8.6 Calogero particles

The Calogero system is a classical particle system of n particles on the real
line with inverse square potential

• • •
x1 x2 xn

That is, if the i-th particle has position xi and velocity (momentum) yi, then
the Hamiltonian is equal to

H =
1
2

n∑
i=1

y2
i +

∑
i<j

1
(xi − xj)2
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The Hamiltonian equations of motions is the system of 2n differential equa-
tions 

dxi
dt

=
∂H

∂yi

dyi
dt

= −∂H
∂xi

This defines a dynamical system that is integrable .
A convenient way to study this system is as follows. Assign to a position

defined by the 2n vector (x1, y1; . . . , xn, yn) the couple of Hermitian n × n
matrices

X =


x1

. . .

xn

 and Y =



y1
i

x1−x2
. . . . . . i

x1−xn

i
x2−x1

y2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . i

xn−1−xn
i

xn−x1
. . . . . . i

xn−xn−1
yn


Physical quantities are given by invariant polynomial functions under the ac-
tion of the unitary group Un(C) under simultaneous conjugation. In particular
one considers the functions

Fj = tr
Y j

j

For example{
tr(Y ) =

∑
yi the total momentum

1
2 tr(Y

2) = 1
2

∑
y2
i −

∑
i<j

1
(xi−xj)2

the Hamiltonian

We can now consider the Un(C)-translates of these matrix couples. This is
shown to be a manifold with a free action of Un(C) such that the orbits are in
one-to-one correspondence with points (x1, y1; . . . ;xn, yn) in the phase space
(that is, we agree that two such 2n tuples are determined only up to permuting
the couples (xi, yi). The n-functions Fj give a completely integrable system
on the phase space via Liouville’s theorem , see, for example [1].

In the classical case, all points are assumed to lie on the real axis and
the potential is repulsive so that collisions do not appear. G. Wilson [108]
considered an alternative where the points are assumed to lie in the complex
numbers and such that the potential is attractive (to allow for collisions), that
is, the Hamiltonian is of the form

H =
1
2

∑
i

y2
i −

∑
i<j

1
(xi − xj)2
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again giving rise to a dynamical system via the equations of motion. One
recovers the classical situation back if the particles are assumed only to move
on the imaginary axis

•
•

•

x1
x2

xn

In general, we want to extend the phase space of n distinct points analytically
to allow for collisions.

When all the points are distinct, that is, if all eigenvalues of X are distinct
we will see in a moment that there is a unique GLn(C)-orbit of couples of
n× n matrices (up to permuting the n couples (xi, yi)).

X =

x1

. . .
xn

 and Y =



y1
1

x1−x2
. . . . . . 1

x1−xn

1
x2−x1

y2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 1

xn−1−xn
1

xn−x1
. . . . . . 1

xn−xn−1
yn


For matrix couples in this standard form one verifies that

[Y,X] +

1 . . . 1
...

. . .
...

1 . . . 1

 = rr
n

This equality suggests an approach to extend the phase space of n distinct
complex Calogero particles to allow for collisions.

Assign the representation (X,Y, u, v) ∈ repα M where α = (1, n) and M is
the path algebra of the quiver Qd is

(/).*-+, (/).*-+,
x

qq

y

QQ

u

��

v

\\

where X and Y are the matrices above and where

u =


1
1
...
1

 v =
[
1 1 . . . 1

]
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Recall that the complex moment map for this quiver-setting is defined to be

repα Q
d = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗ µ - C⊕Mn(C)

(X,Y, u, v) 7→ (−v.u, [Y,X] + u.v)

Therefore, the above equation entails that (X,Y, u, v) ∈ µ−1
C (θrr

α) where θ =
(−n, 1), that is (X,Y, u, v) ∈ repα Πθ. Observe that α = (1, n) ∈ Σθ (in fact,
α is a minimal element in Σθ), whence theorem 8.7, repα Πθ is an irreducible
complete intersection of dimension d = n2 + 2n and there are α-dimensional
simple representations of Πθ. In particular, issα Πθ is an irreducible variety
of dimension 2n.

We can define the phase space for Calogero collisions of n particles to be
the quotient space

Calon = issα Πθ

In the following we will show that this is actually an orbit-space.

THEOREM 8.15
The phase space Calon of Calogero collisions of n-particles is a connected
complex manifold of dimension 2n.

THEOREM 8.16
Let repα M µC- M0

α(C) be the complex moment map, then any V =
(X,Y, u, v) ∈ repα Πθ is a θ-stable representation. Therefore Calon =

µ−1
C (θrr

α)/GL(α) = issα Πθ ' (µ−1
C (θrr

α) ∩ repsα M)/GL(α) = Ms
α(Πθ, θ)

and is therefore a complex manifold of dimension 2n, which is connected by
theorem 8.7.

PROOF The result will follow if we can prove that any Calogero quadruple
(X,Y, u, v) has the property that u is a cyclic vector, that is, lies in repsα M.

Assume that U is a subspace of Cn stable under X and Y and containing
u. U is then also stable under left multiplication with the matrix

A = [X,Y ] + rr
n

and we have that tr(A | U) = tr(rrn | U) = dim U . On the other hand,
A = u.v and therefore

A.

c1...
cn

 =

u1

...
un

 . [v1 . . . vn] .
c1...
cn

 = (
n∑
i=1

vici)

u1

...
un


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Hence, if we take a basis for U containing u, then we have that

tr(A | U) = a

where A.u = au, that is a =
∑
uivi.

But then, tr(A | U) = dim U is independent of the choice of U . Now, Cn is
clearly a subspace stable under X and Y and containing u, so we must have
that a = n and so the only subspace U possible is Cn proving cyclicity of u
with respect to the matrix-couple (X,Y ).

Again, it follows that we can cover the phase space Calon by open subsets

Calon (σ) = {(X,Y, u, v) in σ-standard form such that [Y,X] + u.v = rr
n }

where σ runs over the Hilbert n-stairs.

Example 8.4 The phase space Calo2
Consider Calo2 ( d ). Because

[
[
0 a
1 b

]
,

[
c d
e f

]
] +

[
1
0

]
.
[
g h

]
− rr

2 =
[
g − d+ ae− 1 h+ af − ac− bd
c− f + be d− ae− 1

]
We obtain after taking Groebner bases that the defining equations are

g = 2
h = b

f = c+ eh

d = 1 + ae

In particular we find

Calo2 ( d ) = {(
[
0 a
1 b

]
,

[
c 1 + ae
e c+ be

]
,

[
1
0

]
,
[
2 b

]
) | a, b, c, e ∈ C} ' C4

and a similar description holds for Calo2 ( t ).

Example 8.5 The phase space Calo3
We claim that

Calo3 (

dt ) ' C6

For, if we compute the 3× 3 matrix

[

0 a b
1 c d
0 e f

 ,
0 g h

0 i j
1 k l

] +

1
0
0

 . [m n o
]
− rr

3



492 Noncommutative Geometry and Cayley-Smooth Orders

then the Groebner basis for its entries gives the following defining equations

m = 3
n = c+ k

o = i+ l

f = k

d = o− l
g = 2 + b

l = g − ej − kl + ko

h = 2jk + 2l2 − jn− 3lo+ o2

a = 2k2 − 2el − kn+ eo

In a similar manner one can show that

Calo3 (

d d ) ' C6 but Calo3 (

d t )

is again more difficult to describe.

We can identify the classical Calogero situations as an open subset of Calon.

PROPOSITION 8.11
Let (X,Y, u, v) ∈ repα Πθ and suppose that X is diagonalizable. Then

1. all eigenvalues of X are distinct, and

2. the GL(α)-orbit contains a representative such that

X =

λ1

. . .
λn

 Y =



α1
1

λ1−λ2
. . . . . . 1

λ1−λn

1
λ2−λ1

α2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 1

λn−1−λn
1

λn−λ1
. . . . . . 1

λn−λn−1
αn



u =


1
1
...
1

 v =
[
1 1 . . . 1

]

and this representative is unique up to permutation of the n couples
(λi, αi).
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PROOF Choose a representative with X a diagonal matrix as indicated.
Equating the diagonal entries in [Y,X] + u.v = rr

n we obtain that for all
1 ≤ i ≤ n we have uivi = 1. Hence, none of the entries of

[X,Y ] + rr
n = u.v

is zero. Consequently, by equating the (i, j)-entry it follows that λi 6= λj for
i 6= j.

The representative with X a diagonal matrix is therefore unique up to the
action of a diagonal matrix D and of a permutation. The freedom in D allows
us to normalize u and v as indicated, the effect of the permutation is described
in the last sentence.

Finally, the precise form of Y can be calculated from the normalized forms
of X, u and v and the equation [Y,X] + u.v = rr

n.

Invoking the hyper-Kähler structure on repα M we have by theorem 8.14
a homeomorphism, in fact in this case a C∞-diffeomorphism between the
Calogero phase-space and the Hilbert scheme

Calon = issα Πθ
h.- Mss

α (Π0, θ) = Hilbn

8.7 Coadjoint orbits

In this section we will give an important application of
noncommutative geometry@n developed in the foregoing chapter. If α
is a minimal dimension vector in Σθ we will prove that the quotient variety
issα Πθ is smooth and a coadjoint orbit for the dual of the necklace algebra.
In particular, the phase space of Calogero particles is a coadjoint orbit.

We fix a quiver Q on k vertices, a dimension vector α ∈ Nk and a character
θ ∈ Zk such that θ(α) = 0 with corresponding weight θrr

α. Recall that Σθ is
the subset of dimension vectors α such that

pQ(α) > pQ(β1) + . . .+ pQ(βr)

for all decompositions α = β1 + . . . + βr with the βi ∈ ∆+θ, that is, βi is a
positive root for the quiver Q and θ(βi) = 0. With Σminθ we will denote the
subset of minimal dimension vectors in Σθ, that is, such that for all β < α we
have β /∈ Σθ.

PROPOSITION 8.12
If α ∈ Σminθ , then the deformed preprojective algebra Πθ is α-smooth, that is,
repα Πθ is a smooth GL(α)-variety of dimension d = α.α− 1 + 2pQ(α).
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Moreover, the quotient variety issα Πθ is a smooth variety of dimension
2pQ(α), and the quotient map

repα Πθ
-- issα Πθ

is a principal PGL(α)-fibration, so determines a central simple algebra.

PROOF Let V ∈ repα Πθ and let V ss be its semisimplification. As Σθ is
the set of simple dimension vectors of Πθ by theorem 8.8 and α is a minimal
dimension vector in this set, V ss must be simple. As V ss is the direct sum
of the Jordan-Hölder components of V , it follows that V ' V ss is simple
and hence its orbit O(V ) is closed. As the stabilizer subgroup of V is C∗rrα
computing the differential of the complex moment map shows that V is a
smooth point of µ−1

C (θrr
α = repα Πθ.

Therefore, repα Πθ is a smooth GL(α)-variety whence Πθ is α-smooth.
Because each α-dimensional representation is simple, the quotient map

repα Πθ
π-- issα Πθ

is a principal PGL(α)-fibration in the étale topology. The total space being
smooth, so is the base space issα Πθ.

The trace pairing identifies repα Q
d with the cotangent bundle T ∗ repα Q

and as such it comes equipped with a canonical symplectic structure . More
explicit, for every arrow ��������i��������j

aoo in Q we have an aj × ai matrix of coor-
dinate functions Auv with 1 ≤ u ≤ aj and 1 ≤ v ≤ ai and for the adjoined
arrow ��������i��������j

a∗
// in Qd an ai × aj matrix of coordinate functions A∗vu. The

canonical symplectic structure on repα Qd is then induced by the closed 2-
form

ω =

1≤v≤ai
1≤u≤aj∑

��������i��������j
aoo

dAuv ∧ dA∗vu

This symplectic structure induces a Poisson bracket on the coordinate ring
C[repα Q

d] by the formula

{f, g} =

1≤v≤ai
1≤u≤aj∑

��������i��������j
aoo

(
∂f

∂Auv

∂g

∂A∗vu
− ∂f

∂A∗vu

∂g

∂Auv
)

The base change action of GL(α) on the representation space repα Qd is
symplectic, which means that for all tangent vectors t, t′ ∈ T repα Q

d we have
for the induced GL(α) action that

ω(t, t′) = ω(g.t, g.t′)
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for all g ∈ GL(α).
The infinitesimal GL(α) action gives a Lie algebra homomorphism

Lie PGL(α) - V ectω repα Q
d

which factorizes through a Lie algebra morphism H to the coordinate ring
making the diagram below commute

Lie PGL(α)

C[repα Q
d]

f 7→ξf

-
�

H
=
µ
∗

C

V ectω repα Q
d

-

where µC is the complex moment map introduced before. We say that the
action of GL(α) on repα M is Hamiltonian .

This makes the ring of polynomial invariants C[repα Q
d]GL(α) into a Pois-

son algebra and we will write

lie = (C[repα Q
d]GL(α), {−,−})

for the corresponding abstract infinite dimensional Lie algebra.
The dual space of this Lie algebra lie∗ is then a Poisson manifold equipped

with the Kirillov-Kostant bracket .
Evaluation at a point in the quotient variety issα Qd defines a linear func-

tion on lie and therefore evaluation gives an embedding

issα Q
d ⊂ - lie∗

as Poisson varieties. That is, the induced map on the polynomial functions is
a morphism of Poisson algebras.

Let us return to the setting of deformed preprojective algebras. So let θ be
a character with θ(α) = 0 and corresponding weight θrr

α ∈ Lie PGL(α).

THEOREM 8.17
Let α ∈ Σminθ , then issα Πθ is an affine symplectic manifold and the Poisson
embeddings

issα Πθ
⊂ - issα Q

d ⊂ - lie∗

make issα Πθ into a closed coadjoint orbit of the infinite dimensional Lie
algebra lie∗.

PROOF We know from proposition 8.12 that issα Πθ is a smooth affine
variety and that PGL(α) acts freely on µ−1

C (θrr
α) = repα Πθ. Moreover, the
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infinitesimal coadjoint action of lie on lie∗ preserves issα Πθ and therefore
C[issα Πθ] is a quotient Lie lie algebra (for the induced bracket) of lie.

In general, if X is a smooth affine variety, then the differentials of polyno-
mial functions on X span the tangent spaces at all points x of X. Therefore,
if X is in addition symplectic, the infinitesimal Hamiltonian action of the Lie
algebra C[X] (with the natural Poisson bracket) on X is infinitesimally tran-
sitive. But then, the evaluation map makes X a coadjoint orbit of the dual
Lie algebra C[X]∗.

Hence, the quotient variety issα Πθ is a coadjoint orbit in lie
∗
. Therefore,

the infinite dimensional group Ham generated by all Hamiltonian flows on
issα Πθ acts with open orbits.

By proposition 8.12 issα Πθ is an irreducible variety, whence is a single
Ham-orbit, finishing the proof.

The Lie algebra lie depends on the dimension vector α. By the general
principle of noncommutative geometry@n we would like to construct a non-
commutative variety from a family of coadjoint quotient spaces of deformed
preprojective algebras. For this reason we need a larger Lie algebra, the neck-
lace Lie algebra.

Recall that the necklace Lie algebra introduced in section 7.8

neck = dR0
rel CQd =

CQd

[CQd,CQd]

is the vector space with basis all the necklace words w in the quiver Qd, that
is, all equivalence classes of oriented cycles in the quiver Qd, equipped with
the Kontsevich bracket

{w1, w2}K =
∑
a∈Qa

(
∂w1

∂a

∂w2

∂a∗
− ∂w1

∂a∗
∂w2

∂a
) mod [CQd,CQd]

We recall that the algebra of polynomial quiver invariants C[issα Qd] =
C[repα Q

d]GL(α) is generated by traces of necklace words. That is, we have
a map

neck =
CQd

[CQd,CQd]
tr- lie = C[issα Qd]

Recalling the definition of the Lie bracket on lie we see that this map is actually
a Lie algebra map, that is, for all necklace words w1 and w2 in Qd we have
the identity

tr {w1, w2}K = {tr(w1), tr(w2)}

Now, the image of tr contains a set of algebra generators of C[issα Qd], so the
elements tr neck are enough to separate points in issα Qd and in the closed
subvariety issα Πθ. That is, the composition

issα Πθ
⊂ - issα Q

d tr∗- neck∗
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is injective. Again, the differentials of functions on issα Πθ obtained by
restricting traces of necklace words span the tangent spaces at all points if
the affine variety issα Πθ is smooth. A summary follows.

THEOREM 8.18
Let α ∈ Σminθ . Then, the quotient variety of the preprojective algebra issα Πθ

is an affine smooth manifold and the embeddings

issα Πθ
⊂ - issα Q

d ⊂ - lie∗ ⊂ - neck∗

make issα Πθ into a closed coadjoint orbit in the dual of the necklace Lie
algebra neck.

We have proved in section 7.8 that there is an exact sequence of Lie algebras

0 - C⊕ . . .⊕ C︸ ︷︷ ︸
k

- neck - Derω CQd - 0

That is, the necklace Lie algebra neck is a central extension of the Lie algebra
of symplectic derivations of CQd. This Lie algebra corresponds to the auto-
morphism group of all B = C × . . . × C-automorphisms of the path algebra
CQd preserving the moment map element, the commutator

c =
∑
a∈Qa

[a, a∗]

That is, we expect a transitive action of an extension of this automorphism
group on the quotient varieties of deformed preprojective algebras issα Πθ

when α ∈ Σminθ . Further, it should be observed that these coadjoint cases
are precisely the situations were the preprojective algebra Πθ is α-smooth.
That is, whereas the Lie algebra of vector fields of the smooth noncommuta-
tive variety corresponding to CQd has rather unpredictable behavior on the
singular noncommutative closed subvariety corresponding to the quotient al-
gebra Πθ, it behaves as expected on those α-dimensional components where
Πθ is α-smooth.

8.8 Adelic Grassmannian

At the moment of this writing it is unclear which coadjoint orbits issα Πθ

should be taken together to form an object in noncommutative geometry@n,
for a general quiver Q. In this section we will briefly recall how the phase
spaces Calon of Calogero particles can be assembled together to form an
infinite dimensional cellular complex, the adelic Grassmannian Grad.
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Let λ ∈ C, a subset V ⊂ C[x] is said to be λ-primary if there is some power
r ∈ N+ such that

(x− λ)rC[x] ⊂ V ⊂ C[x]

A subset V ⊂ C[x] is said to be primary decomposable if it is the finite inter-
section

V = Vλ1 ∩ . . . ∩ Vλr

with λi 6= λj if i 6= j and Vλi
is a λi-primary subset. Let kλi

be the codimen-
sion of Vλi

in C[x] and consider the polynomial

pV (x) =
r∏
i=1

(x− λi)kλi

Finally, take W = pV (x)−1V , then W is a vectorsubspace of the rational
functionfield C(x) in one variable.

DEFINITION 8.2 The adelic Grassmannian Grad is the se of subspaces
W ⊂ C(x) that arise in this way.

We can decompose Grad in affine cells as follows. For a fixed λ ∈ C we
define

Grλ = {W ∈ Grad | ∃k, l ∈ N : (x− λ)kC[x] ⊂W ⊂ (x− λ)−lC[x]}

Then, we can write every element w ∈W as a Laurent series

w = αs(x− λ)s + higher terms

Consider the increasing set of integers S = {s0 < s1 < . . .} consisting of all
degrees s of elements w ∈W . Now, define natural numbers

vi = i− si then v0 ≥ v1 ≥ . . . ≥ vz = 0 = vz+1 = . . .

That is, to W ∈ Grλ we can associate a partition

p(W ) = (v0, v1, . . . , vz−1)

Conversely, if p is a partition of some n, then the set of all W ∈ Grλ with
associated partition pW = p form an affine space An of dimension n. Hence,
Grλ has a cellular structure indexed by the set of all partitions.

As Grad =
∏′
λ∈C Grλ because for any W ∈ Grad there are uniquely de-

termined W (λi) ∈ Grλi such that W = W (λ1) ∩ . . . ∩ W (λr), there is a
natural number n associated to W where n = |pi| where pi = p(W (λi)) is
the partition determined by W (λi). Again, all W ∈ Grad with corresponding
(λ1, p1; . . . ;λr, pr) for an affine cell An of dimension n. In his way, the adelic
Grassmannian Grad becomes an infinite cellular space with the cells indexed
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by r-tuples of complex numbers and partitions for all r ≥ 0. The adelic
Grassmannian is an important object in the theory of dynamical systems as
it parameterizes rational solutions of the KP hierarchy . A surprising connec-
tion between Grad and the Calogero system was discovered by G. Wilson in
[108].

THEOREM 8.19
Let Grad(n) be the collection of all cells of dimension n in grad, then there is
a set-theoretic bijection

Grad(n)←→ Calon

between Grad(n) and the phase space of n Calogero particles.

The adelic Grassmannian also appears in the study of right ideals of the
first Weyl algebra

A1(C) =
C〈x, y〉

(xy − yx− 1)
which is an infinite dimensional simple C-algebra, having no finite dimensional
representations. Consider right ideals of A1(C) under isomorphism, that is

p ' p′ iff f.p = g.p′ for some f, g ∈ A1(C).

If we denote with D1(C) the Weyl skew field, that is, the field of fractions of
A1(C), then the foregoing can also be expressed as

p ' p′ iff p = h.p′ for some h ∈ D1(C)

The set of isomorphism classes will be denoted by Weyl.
The connection between right ideals of A1(C) and grad is contained (in

disguise) in the paper of R. Cannings and M. Holland [19]. A1(C) acts as
differential operators on C[x] and for every right ideal I of A1(C) they show
that I.C[x] is primary decomposable. Conversely, if V ⊂ C[x] is primary
decomposable, they associate the right ideal

IV = {θ ∈ A1(C) | θ.C[x] ⊂ V }

of A1(C) to it. Moreover, isomorphism classes of right ideals correspond to
studying primary decomposable subspaces under multiplication with polyno-
mials. Hence

Grad 'Weyl

The group Aut A1(C) of C-algebra automorphisms of A1(C) acts on the set
of right ideals of A1(C) and respects the notion of isomorphism whence acts
on Weyl. The group Aut A1(C) is generated by automorphisms σfi defined
by{
σf1 (x) = x+ f(y)
σf1 (y) = y

with f ∈ C[y],

{
σf2 (x) = x

σf2 (y) = y + f(x)
with f ∈ C[x]
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We claim that for any polynomial in one variable f(z) ∈ C[z] we have that

f(xy).xn = xn.f(xy − n) and f(xy).yn = yn.f(xy + n)

Indeed, we have (xy).x = x.(yx) = x.(xy − 1) and therefore

f(xy).x = x.f(xy − 1)

from which the claim follows by recursion. In particular, as xn.yn =
xn−1(xy)yn−1 = xn−1yn−1(xy + n− 1) we get by recurrence that

xnyn = xy(xy + 1)(xy + 2) . . . (xy + n− 1)

In calculations with the Weyl algebra it is often useful to decompose A1(C)
in weight spaces. For t ∈ Z let us define

A1(C)(t) = { f ∈ A1(C) | [xy, f ] = tf }

then the foregoing asserts that A1(C) = ⊕t∈ZA1(C)(t) where A1(C)(t) is equal
to {

ytC[xy] = C[xy]yt for t ≥ 0
x−tC[xy] = C[xy]x−t for t < 0

For a natural number n ≥ 1 we define the n-th canonical right ideal of A1(C)
to be

pn = xn+1A1(C) + (xy + n)A1(C)

LEMMA 8.8
The weight space decomposition of pn is given for t ∈ Z

pn(t) = xn+1A1(C)(t+ n+ 1) + (xy + n)A1(C)(t)

which is equal to 
(xy + n)C[xy]yt for t ≥ 0,
(xy + n)C[xy]x−t for −n ≤ t < 0,
C[xy]x−t for t < −n

PROOF Let t = −1, then pn(−1) is equal to

xn+1C[xy]yn + (xy + n)C[xy]x

Using xn+1yn+1 = xy(xy + 1) . . . (xy + n) this is equal to

xy(xy + 1) . . . (xy + n)C[xy]y−1 + (xy + n)C[xy]x

The first factor is (xy + 1) . . . (xy + n)C[xy]x from which the claim follows.
For all other t the calculations are similar.
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One can show that pn 6' pm whenever n 6= m so the isomorphism classes
[pn] are distinct points in Weyl for all n. We define

Weyln = Aut A1(C).[pn] = { [σ(pn)] ∀σ ∈ Aut A1(C)}

the orbit in Weyl of the point [pn] under the action of the automorphism
group.

Example 8.6 The Weyl right ideals Weyl1
For a point (a, b) ∈ C2 we define a right ideal of A1(C) by

pa,b = (x+ a)2A1(C) + ((x+ a)(y + b) + 1)A1(C)

Observe that p1 = p0,0. Consider the action of the automorphism σf2 on these
right ideals. As f ∈ C[x] we can write

f = f(−a) + (x+ a)f1 with f1 ∈ C[x]

Then, recalling the definition of σf2 we have

σf2 (pa,b) = (x+ a)2A1(C) + ((x+ a)(y + b+ f(−a) + (x+ a)f1) + 1)A1(C)
= (x+ a)2A1(C) + ((x+ a)(y + b+ f(−a)) + 1)A1(C) = pa,b+f(−a)

Now, consider the action of an automorphism σf1 . We claim that

pa,b = A1(C) ∩ (y + b)−1(x+ a)A1(C)

This is easily verified on the special case p1 using the above lemma, the arbi-
trary case follows by changing variables. We have

pa,b = A1(C) ∩ (y + b)−1(x+ a)A1(C)
' (x+ a)−1(y + b)A1(C) ∩A1(C) (multiply with h = (x+ a)−1(y + b))

= (y + b)2A1(C) + ((y + b)(x+ a)− 1)A1(C)
def
= qb,a

Writing f = f(−b) + (y + b)f1 with f1 ∈ C[y] we then obtain by mimicking
the foregoing

σf1 (pa,b) ' σf1 (qb,a)
= qb,a+f(−b)

' pa+f(−b),b

and therefore there is an h ∈ D1(C) such that σf1 (pa,b) = hpa+f(−b),b.
As the group Aut A1(C) is generated by the automorphisms σf1 and σf2 we

see that
Weyl1 = Aut A1(C).[p1] ⊂ - { [pa,b | a, b ∈ C }
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Moreover, this inclusion is clearly surjective by the above arguments. Finally,
we claim that Weyl1 ' C2. That is, we have to prove that if

pa,b = h.pa′,b′ ⇒ (a, b) = (a′, b′).

Observe that A1(C) ⊂ - C(x)[y, δ] where this algebra is the differential poly-
nomial algebra over the field C(x) and is hence a right principal ideal domain.
That is, we may assume that the element h ∈ D1(C) actually lies in C(x)[y, δ].
Now, induce the filtration by y-degree on C(x)[y, δ] to the subalgebra A1(C).
This is usually called the Bernstein filtration . Because A1(C) and C(x)[y, δ]
are domains we have for all f ∈ A1(C) that

deg(h.f) = deg(h) + deg(f)

Now, as both pa,b and pa′.b′ contain elements of degree zero x2+a resp. x2+a′

we must have that h ∈ C(x).
View y as the differential operator − ∂

∂x on C[x] and define for every right
ideal p of A1(C) its evaluation to be the subspace of polynomials

ev(p) = { D.f | D ∈ p , f ∈ C[x] }

where D.f is the evaluation of the differential operator on f . One calculates
that

ev(pa,b) = C(1 + b(x+ a)) + (x+ a)2C[x]

and as from pa,b = h.pa′,b′ and h ∈ C(x) follows that

ev(pa,b) = hev(pa′,b′)

we deduce that h ∈ C∗ and hence that pa,b = pa′,b′ and (a, b) = (a′, b′).

Yu. Berest and G. Wilson proved in [7] that the Cannings-Holland corre-
spondence respects the automorphism orbit decomposition.

THEOREM 8.20

We have Weyl =
⊔
n Weyln and there are set-theoretic bijections

Weyln ←→ Grad(n)

whence also with Calon.

Example 8.7

Consider the special case n = 1. As is the only partition of 1, for every
λ ∈ C, grλ is a one-dimensional cell A1, whence Grad(1) ' A2. In fact we
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have

•

•
Grλ

pλ,µ

p1

where the origin corresponds to the canonical right ideal p1 and the right ideal
corresponding to (λ, µ) is pλ,µ = (x− λ)2A1(C) + ((x− λ)(y − µ) + 1)A1(C).

Finally, let us verify that pn should correspond to a point in Grad(n). As
pn = xn+1A1(C) + (xy + n)A1(C) we have that

pn.C[x] = C + Cx+ . . .+ Cxn−1 + (xn+1)C[x]

whence (xn+1)C[x] ⊂ pn.C[x] ⊂ C[x] and converting this to Grad the corre-
sponding subspace is

(xn)C[x] ⊂ x−1pn.C[x] ⊂ x−1C[x]

The associated sequence of degrees is (−1, 0, 1, . . . , n− 2, n, . . .) giving rise to
the partition p = (1, 1, . . . , 1︸ ︷︷ ︸

n

) proving the claim.

If we trace the action of Aut A1(C) onWeyln through all the identifications,
we get a transitive action of Aut A1(C) on Calon. However, this action is non-
differentiable, hence highly nonalgebraic. Berest and Wilson asked whether it
is possible to identify Calon with a coadjoint orbit in some infinite dimensional
Lie algebra. We have seen before that this is indeed the case if we consider
the necklace Lie algebra.
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of Nakajima [83], here we follow W. Crawley-Boevey [25]. The applications
to the hyper-Kähler correspondence are due to R. Bockland and L. Le Bruyn
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[12]. The treatment of Calogero particles is taken from G. Wilson’s paper
[108]. The fact that the Calogero phase space is a coadjoint orbit is due
to V. Ginzburg [36]. The extension to deformed preprojective algebras is
independently due to V. Ginzburg [37] and R. Bockland and L. Le Bruyn
[12]. The results on adelic Grassmannians are due to G. Wilson [108] and Y.
Berest and G. Wilson [7]. More details on the connection with right ideals
of the Weyl algebra can be found in the papers of R. C. Cannings and M.
Holland [19] and L. Le Bruyn [69].
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Lie, Masson, Paris, 1982, Chapitre 9. Groupes de Lie réels compacts.
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Formanek, E., 53
free action, 217
free product, 403

algebra, 408
group, 407

free product algebra, 420
function

algebraic, 113
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