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INTRODUCTION

Let us take a hopeless problem, motivate why something like non-commutative alge-
braic geometry might help to solve it, and verify whether this promise is kept.

Suppose we want to know all solutions in invertible matrices to the braid relation (or
Yang-Baxter equation)
XYX =YXY

All such solutions (for varying size of matrices) form an additive Abelian category
rep Bj, SO a big step forward would be to know all its simple solutions (that is, those
whose matrices cannot be brought in upper triangular block form). A literature check
shows that even this task is far too ambitious. The best result to date is the classification
due to Imre Tuba and Hans Wenzl of simple solutions of which the matrix size is at
most5.

For fixed matrix sizen, finding solutions inrep Bj is the same as solving a system

of n2 cubic polynomial relations i@n? unknowns, which quickly becomes a daunting
task. Algebraic geometry tells us that all solutions, say,, Bs form an affine closed
subvariety ofn?-dimensional affine space. If we assume thep, Bs is a smooth
variety (that is, a manifold) and if we know one solution explicitly, then we can use
the tangent space in this point to linearize the problem and to get at all solutions in a
neighborhood.

So, here is an idea : assume thap Bj itself would be a nhon-commutative manifold,
then we might linearize our problem by considering tangent spaces and obtain new
solutions out of already known ones. But, what is a non-commutative manifold? Well,
by the above we at least require that for all integetise commutative varietyep,, B3

is a commutative manifold.

But, there is still some redundancy in our problem (X,Y") is a solution, then so

is any conjugated paitg~*Xg,g 'Y g) whereg € GL, is a basechange matrix. In
categorical terms, we are only interested in isomorphism classes of solutions. Again, if
we fix the sizen of matrix-solutions, we consider the affine variegp,, B as a variety

with a GL,-action and we like to classify the orbits of simple solutionsrdp,, B3

is a manifold then the theory of Luna slices provides a method, both to linearize the
problem as well as to reduce its complexity. Instead of the tangent space we consider
the normal spacéV to the GL,-orbit (in a suitable solution). On this affine space,
the stabilizer subgroufrL(«) acts and there is a natural one-to-one correspondence
betweenGL,,-orbits inrep,, Bs andGL(«)-orbits in the normal spack (at least in

a neighborhood of the solution).

So, here is a refinement of the idea : we would like to viesp B3 as a non-
commutative manifold with a group action given by the notion of isomorphism. Then,
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in order to get new isoclasses of solutions from a constructed one we want to reduce
the size of our problem by considering a linearization (the normal space to the orbit)
and on it an easier isomorphism problem.

However, we immediately encounter a problem : calculating ranks of Jacobians we
discover that alreadyep, Bs is not a smooth variety so there is not a chance in the
world thatrep Bs might be a useful non-commutative manifold. Still(X,Y) is a
solution to the braid relation, then the mat(iX'Y X')? commutes with bottX andY’,

for

(XYX)?X = (XYX)(XYX)X = (XYX)(YXY)X
= XYXY)XYX)=X(XYX)(XYX)
= X(XYX)?

If (X,Y) is a simple solution, this means that after performing a basechéhge,
(XY X)? becomes a scalar matrix, sajl,,. Butthen,(X’,Y’) = (A\"1X,A71Y)is
a solution to

XY'X'=Y'XY and (X'YV'X')=1
and all such solutions form a non-commutative closed subvariety,&al/ of rep B3
and if we know all (isomorphism classes of) simple solutionsdp I we have solved
our problem as we just have to bring in the additional scalarC*.

Here we strike gold rep I' is indeed a non-commutative manifold. This can be seen
by identifyingI" with one of the most famous discrete infinite groups in mathematics :
the modular groug?S L4 (Z). The modular group acts by dbius transformations on

the upper half plane and this action can be used to Wtitd.»(Z) as the free group
productZ, x Z3. Finally, using classical representation theory of finite groups it follows
that indeed allrep,, I" are commutative manifolds (possibly having many connected
components)! So, let us try to linearize this problem by looking at its non-commutative
tangent space, if we can figure out what this might be.

Here is another idea (or rather a dogma) : in the world of non-commutative manifolds,
the role of affine spaces is played byp Q the representations of finite quives A

quiver is just on oriented graph and a representation of it assigns to each vertex a finite
dimensional vector space and to each arrow a linear map between the vertex-vector
spaces. The notion of isomorphismiep @ is of course induced by base change
actions in all of these vertex-vector spaces.

Now, can we assign such an non-commutative tangent space, thaedpstafor some
quiver @, torep I'? AsT' = Zs, * Z3 we may restrict any solutiol” = (X,Y) in
rep I to the finite subgroup%, andZs. Now, representations of finite cyclic groups
are decomposed into eigen-spaces. For example

V=V, ®V_
whereVy = {v € V' | g.v = +v} with g the generator of,. Similarly,
14 l23: i& Vp ©® Vp2

wherep is a primitive3-rd root of unity. That is, to any solutiol € rep I'" we have
found5 vector space¥,, V_, V1, V, andV,. so we would like them to correspond to
the vertices of our conjectured quivgr
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What are the arrows af), or equivalently, is there a natural linear map between the
vertex-vector spaces? Clearly, as

VieVo=V=VieV,eV,

any choice of two bases df (one compatible with the left-side decomposition, the
other with the right-side decomposition) are related by a basechange mBatrhich
we can decompose into six blocks (corresponding to the two decompositidmesp.
3 subspaces
Bll BlQ
B = |B2a1 B
Bs1 Basg

which gives us6 linear maps between the vertex-vector spaces. Henc#®, te
rep I' does correspond in a natural way a representation of dimension vecter
(a1, az,b1,bz,b3) (Wheredim(V,) = ay,...,dim(V,2) = bs) of the quiverQ) which
is of the form

Clearly, not every representation sép @ is obtained in this way. For starters, the
eigen-space decompositions force the numerical restriction

a1 + ag = dzm(V) = bl +b2 +b3

on the dimension vector and the square matrix constructed from the arrow-linear maps
must be invertible. However, if both these conditions are satisfied, we can reconstruct
the (isomorphism class) of the solutioniep I' from this quiver representation by
taking

0 0 pl,

) 0 L, O 0
Y = [ o }B‘l 0 p’L, 0 |B
“ 0 0 ply,

Hence, it makes sense to viewp @) as a linearization of, or as a tangent space to,
rep I'. However, though we reduced the study of solutions of the polynomial sys-
tem of equations to linear algebra, we have not reduced the isomorphism problem in
size. In fact, if we start of with a matrix-solutioi = (X,Y") of sizen we end up

with a quiver-representation of total dimensiim So, can we construct some sort of
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non-commutative normal space to the isomorphism classes? That is, is there another
quiverQ’ whose representations can be interpreted as normal-spaces to orbits in certain
points?

Here is the construction of this normal space or clkatrtr. The sub-semigroup
of Z® (all dimension vectors of)) consisting of those vectors = (ay, as, b1, ba, b3)
satisfying the numerical conditiom, + ax = n = by + by + b3 is generated by six
dimension vectors, namely those of theon-isomorphic one-dimensional solutions in
rep’

S = ©
©
O,
Sy = ©

In particular, in any componemiep,, ¢ containing an open subset of representations
corresponding to solutions irep I" we have a particular semi-simple solution

M = S?gl @ 55992 @ S?gd D 52994 @ 5?95 P S?Qb

and in particulary = (g1 + g3 + g5, g2 + g4 + go, 91 + 94, g2 + g5, g3 + ge). The normal
space to the7L(«)-orbit of M in rep, @ can be identified with the representation
spacerep; Q' wheres = (g1, ..., gs) andQ’ is the quiver of the following form

Cs C
Ci///ﬂ\\ 12
/CIGC21\

Cse f Ces C3a | Ca3

and we can even identify how the small matric€g; fit into the 3 x 2 block-



Contents 7

decomposition of the base-change mafBix

1a1 0 0 021 0 061
0 034 054 0 1@4 0
Ciz Cs 0 |1, 0 0
0 0 14| 0 Ci Ce
0 1, 0 |Cys Cs 0
Cis 0 Cs| 0 0 1,

B=

6

Hence, it makes sense to c@ll the non-commutative normal space to the isomorphism
problem inrep I'. Moreover, under this correspondence simple representations of
Q' (for which both the dimension vectors and distinguishing characters are known
explicitly) correspond to simple solutionsirp T

Having completed our promised approach via non-commutative geometry to the clas-
sification problem of solutions to the braid relation, it is time to collect what we have
learned. Let3 = (g1,...,96) Withn = 1 + ... + 76, then for every non-zero scalar

A € C* the matrices

1.(11+.l14 0 0 1 0
X = )\B_l 0 p2192+g5 0 B 91+93+9s
0 0 Plg +g 0 _192+g4+g6
3+36
lq +93+g 0 1 1gl+g4 2 0 0
_ g1+93+9s —
Y= 0 _1y2+g4+ge] b X P latos ! b
0 0 plgstgs

give a solution of sizes to the braid relation. Moreover, such a solution can be simple
only if the following numerical relations are satisfied

9i < gi—1+ git1

where indices are viewed moduto In fact, if these conditions are satisfied then a
sufficiently general representation @f does determine a simple solutionsep Bs

and conversely, any sufficiently general simplsize solution of the braid relation can

be conjugated to one of the above form. Here, by sufficiently general we mean a Zariski
open (hence dense) subset.

That is, for all integers: we have constructed nearly all (meaning a dense subset)
simple solutions to the braid relation. As to the classification problem, if we have
representants of simpjé-dimensional representations of the quiggr then the corre-
sponding solution$ X, Y") of the braid relation represent different orbits (up to finite
overlap coming from the fact that our linearizations only give an analytic isomorphism,
or in algebraic terms, aétale map). Such representants can be constructed for low
dimensional3. Finally, our approach also indicates why the classification of braid-
relation solutions of sizel 5 is easier : from sizé on there are new classes of simple
(Q'-representations given by going round the whole six-cycle!
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GROUPS & CHARACTERS

Today, we will introduce some interesting arithmetical groups and the third braid group
which will be our principal examples. Virtually nothing is known about the finite di-
mensional representations of these groups. For example, the best result on the third
braid group is the classification of all simple representations of dimensién We

will see that the arithmetical groups can be constructed from finite groups and recall
the representation theory of finite groups. However, this character theory does not ex-
tend immediately to discrete infinite groups as the easy example of the group of integers
already clarifies. Non-commutative algebraic geometry will provide a handle to study
the finite dimensional representations of such groups.

1.1 Arithmetical groups

We will focus attention to the following four groups of interest

SLy(Z) — GL»(Z)

PSLy(Z) <——— By

GL»(Z) is thegeneral linear groupover the integerZ, that is, it consists of all in-
vertible 2 x 2 matrices with integer coefficients. As1 are the only units irZ we
have

GLo(Z) = { {Z Z} lad —be = +1}

matrix-multiplication turns= L. (Z) into a non-Abelian infinite group.

SL+(7) is thespecial linear groupover the integer&. That is, it is the subgroup of
GL»(Z) consisting of those invertibi2 x 2 matrices with determinant equal to

SLy(Z) = { {CC‘ Z} lad—be=1}

This group has a finite central (hence normal) subgroup of @damely

2= {(1) (1)] ’ [_01 —01}>
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and the correspondinguotient groupSLy(Z)/Z- is called themodular groupand is
denotedPS Ly (Z).

Bs is thethird braid group That is, Bs is the group of alB-string braids up to topo-
logical equivalence. It is generated by the telementary braids

Multiplication is induced by concatenating braids, that is placing them on top of an-
other. Hence, ang-braid can be written as a noncommutative wordinando, but
some of these words represent topologically equivalent braids. For example, the braids

ey

e

\/
7

\_/
A

719291 720192

can be transformed into each other by pulling so we have an identityéhg-Baxter
equatior)
010201 = 020102

in Bs. In fact, Emil Artin proved that this is the only non-trivial relation amangand
02 S0 B3 has a presentation

B = <01702 \ 010201 = 020102 >

Before we can explain the epimorphigy —~ P.SL,(Z) we need to find presenta-
tions of the arithmetic groupS L2 (Z), SLo(Z) and PSLy(Z).

Consider the following three matrices L (Z)
0 —1 0 1 0 1
O B R B
then we claim that? L2 (Z) is generated by, V and R. Consider the products

1 -1 10
C—UV—{O 1} D—VU—{1 1]
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then by multiplying an arbitrary element 6fL,(Z) with powers ofC' and D we obtain
the following matrices

nla b  |la—nc b—nd a bl n |a b—na
¢ [c d]{ c d ] and {c d]c {c d—nc}

nla b a b a bl ., a+nb b

D {c d]:{c—i—na d—&—nb} and {c d]D :[C—Fnd d]
As the determinant of an elementdL1(Z) is 1 it follows that the entries in each
column (resp. row) are coprime integers. By multiplying with power§'and D on
the right we can reduaemoduloc as well as: moduloa and this procedure will finish
if one of them is equal t6 and the other is equal th1 (use coprimeness afandc).
We may assume = 0 (otherwise, multiply byl on the left) and hence the matrix is
of the form

/
[j([)l Z,} whence d =+1

By multiplying this matrix on the right by a power 6f we can get rid ob’ and obtain
the matrix
0 =+£1

so working backwards we have shown that an arbitrary elemetit/af(Z) can be
written as a word i/, V and R. Clearly, there are relations between these generators
and we aim to prove that a presentatiorGf(Z) is given as

[ﬂ O} € {id,UR,RU,U?}

GLy(Z) = (U, V,R|U*=V3U*=R>= (RU)?> = (RV)? =id )

Similarly, one proves that' L, (Z) is generated by the matricésandV'. Indeed, we
used only multiplications b¥{/ or powers ofC and D to reduce the matrix to the form

{ﬁ:l 0 }
0 =1
But as the determinant has to be equal timly the following cases are possible
{01 _OJ =U? and Ll) ﬂ =id
and below we will prove that in fac¥ L1 (Z) has a presentation
SLy(Z) = (U, V |U? =V3 U*=id)

To prove that the obvious relations among the generators are the only ones, we need
to study the action 0§ L,(Z) and of the modular group’S L2 (Z) on the upper-half
planeH which also clarifies the interest of these groups for number theory as well as
the study of Riemann surfaces.

It is a classical fact that the groufiL»(Z) acts on the upper half of the complex nhum-
bers
H={zeC|Imz>0}

by Mobius transformations

) _ g az+b
g_[c d] PR H by Zch+d
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One can compute thgtmapsH to H by verifying that
_ Im=z
ez +dJ?

Consider theunit-circle S = {z € C | |z| = 1 } then one can calculate that the
elementy € SLy(Z) carriesS* N H to the set

Im g(z)

I T TR = T e PR T
{zeH| Rez=ac—3} ifc2=d>=1

Consider the arc
as an oriented edge

wherep = %+z§ Define the sel’ = SL,(Z)L then we claim thal” is a tree. From
(*) it follows that

E ﬂLﬂLcﬁm}

whenceT is a graph. Moreover, it follows fron(«) that the only point ofl’ on the
imaginary axis is the point (observe that ¢ H). The only translategL with g €
SL4(Z) containing: areL andU L therefore there are no closed circuitslirpassing
through L just once. IfT" would have a closed circuit then one can translate it by a
suitable element of L»(Z) so that it included. and therefore there is no such circuit.

-2 -1 0
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To prove thatT" is a tree it only remains to show th@tis connected. AS Ly (Z) is
generated by andV it is also generated by and

1ot
=

LUUL and LUV™'L

which fixesp. Hence,

are connected and hence s&iB;(Z)L.

L is afundamental domaifor the action ofSLy(Z) on the tre€l” as by definition of
T, L contains one point in each orbit and we have seen that it does not contain two
points in the same orbit. Let us compute #tabilizer subgroups

a b ai+b
Gi_{[c d} |ci+d_

which gives the condition: + b = di — ¢ whence

i}

Q:{Vbﬂ&+§:u:uh{2511ﬂ:m

In a similar way we find that the stabilizer subgroupSdi,(Z) atp is

a b|  ap+b
|12t —0)

G, = =
I {|:C d Cp + d
giving after some calculation that

sz{rjf ﬂ|b?+m+d2=1}=<vz{fl1}|VWZM}

It follows that the stabilizer subgrou@;, of L, that is those elements € SLy(7Z)
fixing L is the intersection

-1 0

GL:GMM%:<[O o

}:W:W)

Definition 1.1 If G, and G5 are two finite groups having a common subgratdp
then theamalgamated free product; xy G- is the group having group morphisms

G; —» @4 =y G, satisfying the universal property : for any pair of group morphisms



day 1. Groups & Characters 13

G ERNYE andG, —2~ G such thatf|H = g|H there is a uniquely determined
group morphisnh making the diagram commute

G
3in

G14>G1*HG2<

N

The amalgamated produGt; xg G+ is constructed to be the set of all words

hs(@gatDglatd)  latk) o g ke N

11 T2 13 : lk

and where{1, s; C)} is a set of right coset representative&amodulo H and (a +
j) = (a + j mod2). There is a natural group structure on this set making it into the
amalgamated free product.

If H = {id} is the trivial subgroup the?; g Gs is thefree productand will be
denoted byG; * Gs.

The upshot of all our calculations above is that we can prove :

Theorem 1.2 With notations as before we have :

1. LetZy ~ (U?) = (V3), then
SLy(Z) ~ (U |U* =id ) %z, (V| V® =id) ~ Zy %z, Zg

whence
SLy(Z) ~ (U, V| U =V3U*=1)

2. PSLQ(Z) ~ ZQ * Zg
Proof. As PSLy(Z) = SLy(Z)/(U? = V3) the second statement follows from the
first. As for the first, by the universal property there is a uniquely determined group

morphism
(U|U* =id) %z, (V| V® =id) — SLy(Z)

which is surjective as the images Gfand V' generateSL,(Z). Any element in the
kernel would give a relation i¥ Ly (Z) of the form

UP=V3=0'.vhuveuyu..uviut 4 ke{0,1}, i, € {1,2}

which would produce a nontrivial circuit in the tree, a contradiction. |
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Recall that Artin’s theorem asserted tayf = (01,02 | 010201 = 020102). Consider
the braids
S = 010907 and T =009

From the Yang-Baxter equation we obtain the relations
7718 =0y and ST~ ! = oy
whence the braid groups is also generated by and7'. Moreover,
5% = (010901)(020102) = (0102)(0102)(0109) = T?

is acentralelementC in B3 = (S, T | S? = T3). Dividing out the normal subgroup
generated by’ we obtain the group

B3/(C) = (8, T| S =T =id) ~ Ly + Iy ~ PSLy(Z)
giving us the claimed epimorphisi; — PSLy(Z).
Theorem 1.3 With notations as before we have
GLy(Z)=(U,V,R|U? =V3 U*=R?=(RU)?> = (RV)?=id)
Or, alternatively, ifDy = (R,U?) = (R, V3), then
GLy(Z)= (U,R|U*=R?= (RU)?> =id) *p, (V,R| V% =R? = (RV)? =id)
~ D4 *D2 D6
whereD,, is the dihedral group of orde2n.
Proof. In order to get the defining relations 6fL1(Z) from those ofS L4 (Z) we only

need to know how the extra generaf®operates on the generatorsi,(Z) and the
lowest power ofR belonging toSLy(Z). As R ¢ SLy(Z) we have to add the relations

R*=id RUR'=U"' RVR'=V"!
to those ofS L, (Z) to complete the set. O

Recall that thalihedral groupD,, is the symmetry group of a regulargon, soD, is
the symmetry group of the square abg that of a hexagon.

1.2 Representation theory

If G is a group, am-dimensional representatiaof G is a group morphism
G %+ GL,(C)

and twon-dimensional representations are said tasoenorphicif they are conjugate,
that is if the diagram below commutes

G —% GL,(C)
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that is, there is an invertible matrix € GL,,(C) such that for ally € G we have
¥(g) = mé(g)m~1. In caseG is afinite group, all relevant information about repre-
sentations is contained in tlcbaracter tableof G.

For example, leG = Dg be the symmetry group of the hexagon and order the vertices
clockwisel to 6

LetV = (1,2,3,4,5,6) be the rotation ove60° andR = (2, 6)(3,5) is flipping over
the line through the verticesand4. The character table is

Dg|la 2a 2b 6a 3a 2c
# 11 3 3 2 2 1
id R VR V V% V3

yi|1 1 1 1 1 1
2|1 -1 -1 1 1 1
ys| 1 -1 1 -1 1 -1
yall 1 -1 -1 1 -1
s/ 2 0 0 1 -1 -2
vel|2 0 0 -1 -1 2

In a character table of a finite group, the columns correspond to the differemn-
jugacy classein GG. Recall that two elementg h € G are said to be conjugated if
there is anr € G such thatzgz—! = h. Observe that the number of elements in the
conjugacy clas§’;, of g

#G

# 00 = 57,0

whereZ,(G) = {h € G| gh = hg}.

In the example, one verifies that there @mnjugacy classes. One of elements of order

6 containing2 elements{V, V~1}, one of two elements of ord8rmamely{V?2, V~2}

and three conjugacy classes of order two elements : one containing the single (central)
elementC’ = V3, the two other classes contain eachlements : the three flips over
lines through midpoints of edges (ty2é) resp. flips over lines through antipodal
points (type2a). The rows of a character table correspond to the non-isomosphjie
representation®f G. Observe that a representation: G —— GL,,(C) defines a
G-action on the column vectoiig, = C" by the ruleg.v = ¢(g)v. A G-action on a

finite dimensional vector spadéis a mapG x V —— V satisfying for allv, v’ € V,

allg,h e Gandallx € C

idv=wv, g.(hv) = (gh)v, g.(v+2') =gv+g2, g.(\) = Agw

Observe that) andi are isomorphia:-dimensional representations Gfif and only
if Vi andV; only differ by a basechange. A representatipis said to besimpleif
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and only if V4 does not have a proper linear subspHce- V;; such thaig.w € W for

allg € Gand allw € W. ltis a fact that the character table is a square matrix, that
is, the number of non-isomorphic simple representations of a finite grasmqual to

the number of its conjugacy classes.

In the example, we hav®s = (V,R | V¢ = R? = (RV)? = id ) and so in every
1-dimensional representatidng, —— C* (which is necessarily simple) we must have
R — =1 and then the last identity also forc&s— =+1 whence there are precisely
one-dimensional (simple) representationdgf: x1, x2, x3 andya.

There are two non-isomorphic simgledimensional representations b defined by

wornfs &) aef

2.0 0 1
vl 8] eef
where ¢ = ¢?™/6, As there must be exactly non-isomorphic simpleDs-
representations, we have described them all!

The (i, j)-th entry of the character table of a finite group is tharacterof the j-th
conjugacy clasg; € C; of G on thei-th simple representatiay : G — GL,(C),
that is

Xi(g5) = Tr(i(g;))

the trace of the matrix giving the action ¢9f on Vy,. In particular, as the identity
element ofG acts trivially on each representation we have thaid) is the dimension

of the simple representation. The characters of the identity are classically written in
the first column of the character table. Observe that sihdeX) = Tr(mXm~1) for

anym € GL,(C) we have that the character iglass functionthat is, is the same for

all group elements in the same conjugacy class. Moreover, the class functions over all
simple representations are known to be linearly independent, that is, the square matrix
determined by the character table is invertible!

If¢ : G— GL,(C)andy : G — GL,,,(C) aren- resp. m-dimensional
representations, then there is ant+ m-dimensional representation calléte direct
sum "
¢(g) 0 }
@Y : G —> GLjy1n(C

PDY +m(C) g [ 0 ¥(g)
The fundamental theorem on representations of finite groups is that every representa-
tion is completely reduciblethat is, every representatieh : G —— GL,(C) is
isomorphic

oXTT @XTT B Ox

where the{x1, ..., xx} are the distinct simple representations’dfin particular,k is
the number of conjugacy classes®@f and where the; € N are themultiplicities of
the simple representations Wy. This decomposition (that is, the integes$ can be
easily computed using the character-table. Indeed, giverG — GL,,(C) we can
compute the character gffor any elemeny € G (it suffices to take one representant
in each conjugacy class)

Xo = (Xo(91) =Tr(¢(91)) » - Xolgx) = Tr(d(gr))) € C*
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which, given the decomposition above must be of the form
X¢ = (€1,...,ex).CharacterMatrix (G)
and therefore we obtain the multiplicities and hence the decomposition by

(e1,...,ex) = X¢-CharacterMatrix(G) '

For example, there is adimensionalDg-representatioi;, with character
Xo = (8,0,0,—1,—1,8) andas xy.CharacterMatrix(Ds) ' = (1,1,0,0,0,3)
this gives us the decomposition into simple representations

X1 ®x2 D XT?

If H is a subgroup of the groug-, we canrestrict G-representations taod-
representations. So, let : G —— GL,(C) be ann-dimensional representation
of G, then the restriction is the composition

ély : H— G—2» GL,(C)

and hence is an-dimensional representation 6f. In particular, if 4 is a finite group
we have that | ; is uniquely a direct sum of simplE-representations.

For example, consider the subgrotip= D, = (C = V3, R) of order4 of Dg which

is an Abelian group isomorphic to th€ein VierergruppeZ, x Z,. Consequently,
all conjugacy classes consist of just one element and hence there miisirbple

H-representations, each of dimension one. In fact, the character tablgisf

Dy |la 2a 2b 2c
411 1 1 1
id C R CR

|11 11
v | 1 -1 -1 1
v | 1 -1 1 -1
val 1 1 -1 -1

C = V? defines conjugacy class in Dg and R conjugacy clasga, but in which
conjugacy class lie€' R? Well, as a symmetry of the hexagafi,is point-symmetry
over the center an is a flip over a line through two anti-podal vertices. But then,
CRis aflip over a line through the midpoints of edges, (58 belongs to conjugacy
class2b of Dg. Now, all we have to do to compute the restrictiops| s is to take
the columnsgfid, 2¢, 2a, 2b] of the character table af = Dg and interpret them as
characters ol = D,-representations. So,

la 2¢ 2a 2b

id C R CR
xtle| 1 1 1 1
x2lg| 1 1 -1 -1
x3lg| 1 -1 -1 1
Xxelg |1 -1 1 —1
Xxslg | 2 -2 0 0
xelw |2 2 0 O
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giving us the restriction data

x1le =1
X2 lm =4
X3 lH e
Xalo =3
X5 la =123
X6l ~=Y1@©Yy

However, in case the grou@ is infinite (as is the case for the four groups we promise

to study in more detail) it is no longer true that every representation is the direct sum of
simple representations nor that characters determine the representation up to isomor-
phism.

Example 1.4 LetG = Z ~ {x,2~') then asG is Abelian every simple representation
must be one-dimensional and clearly sending

rz— e C*

defines a one-dimensional simple representatipn. Z —— C* and as conjugation
in C* is trivial they are non-isomorphic for different that is

simples(Z) « C* =C — {0}

An n-dimensional representatiaf : Z — GL,(C) is fully determined by the
image¢(z) € GL,(C) and if such a representation is isomorphic to a direct sum of
simples, say

O Pr, B... Do,
(some possibly occurring more than once) this would mean that there is an invertible
matrixm € GL,,(C) such that

A1 0

0 An
that is,¢ is a direct sum of simple representations if and on¥(if) is adiagonalizable

matrix. But, we know from thdordan normal forntheorem that not every invertible
n X n matrix is diagonalizable. For example, t@limensional representation

¢ Z — GLy(C) zHB ﬂ
is not the direct sum of two simple representations. In particular,ribissomorphic
to thesemi-simple representation

Pss : L — GL3(C) T [/\ 0]

0 A

As Z is Abelian all its conjugacy classes consist of a single elemeand the corre-
sponding characters are } _ _

Xo(2') = 20" = X, (2")
whence character cannot distinguish between the two non-isomadrghinensional
representationg andag,,!
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As the arithmetical groups anl; are more complicated, we expect similar phenom-
ena. Hence, we have to find another approach to study their finite dimensional repre-
sentations. Here, non-commutative algebraic geometry enters the picture.



day 2

ALGEBRAS & REPRESENTATIONS

If G is a group, itsgroup algebraCG is the C-vector spacigeG Ce, with a basis

corresponding to the elements@fand with multiplication linearly induced by the rule
€g-€h = €gh

It is easy to verify that this is an associatilealgebra having a unit elemeht= 1.¢;4.

Moreover,CG is commutative if and only i7 is an Abelian group.

If G is a finite group, then the group algebf&: is a semi-simple algebrathat is
a finite direct sum of full matrix algebras ovér. In fact, the character table @f
indicates which matrix-algebras occur. If the complete set of sifiplepresentations
iS x1,---, X% having dimensiong, ..., ng, then

CG~M,,(C)®...& M,, (C)

so, in particulat# G = n? + ... + n3 is the sum of the squares of the dimensions of
the simple representations. For example,

CDg~CadCah®CaC o My(C)d My(C)
As CG is a finite dimensional vector space witltzaaction by
G xCG — CG (g,en) — egn

we know thatCG must decompose aS-representation into a direct sum of simple
representations. In fact, é5representations,

CG=~xt"@...oxP™
the distincty;-components corresponding to the columns of the matrix-component
M, (C).
For a group G, we have already seen that amdimensional representation
G2 GL,(C) corresponds to &-action on am-dimensional spacg; = C".

The latter is the same thing as definindgeét CG-modulestructure onC™ which in
turn is the same thing as defining an algebra gp—— M,,(C) which we can still
denote byy.

In analogy with the group-case we call an algebra & —— M, (C) an n-
dimensionalrepresentatiorof the group algebr&G. Hence, there are natural one-
to-one correspondences between
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¢ n-dimensional representations Gf
e (G-actions onC"
e left CG-module structures o8™
e n-dimensional representations Gt~
Moreover, these correspondences preserve the natural notion of isomorphisms in each

of the four settings. This allows us to extend the concept of a finite dimensional repre-
sentation to an arbitrar§-algebra.

2.1 Representation schemes

Commutativeaffine C-algebras, that is the objects of the categesymalg, are pre-
cisely thecoordinate ringsof affine schemesRecall that an affine scheméis deter-
mined by a system of polynomial equations

g1(z1,...,z,) =0

gr(z1,...,zy) =0

with all g;(z1,...,z,) € Clxy,...,x,]. The coordinate ring of the affine schervie
is the quotient algebra
(C[V] _ C[Il, e ,Jjn]
(91, e 1gr)

and as any affine commutatii&algebra can be expressed in this way, they are pre-
cisely the coordinate rings of affine schemes.

The set of pointpointsV of an affine schem¥ is the set of points = (¢, ...,¢,) €
C™ which are solutions to the system of equations, that is, such that

gi(c1y...,cn) =0

gr(c1y...,cn) =0

However, it is not true in general that the point petintsl” determines the affine
schemé&/ or the ideall = (g1,...,6.) INClzy,...,x,)!

In fact, theHilbert Nullstellensatasserts that iff = (hq,...,hs) is another ideal in
Clz1, ..., xy], with associated affine scherfig, then

pointsW = pointsV iff rad(I) = rad(J)

whererad(I) = {g € Clxy,...,x,) | 3k € N : ¢* € I} is theradical of the
ideal . ldeals that coincide with their radical are radical (or semi-prime) ideals and the
corresponding affine schemes are catledlicedor affine varieties

Affine schemesire generalizations of affine varieties so that we have an (anti)-
equivalence between the categepmmalg of all commutative affineC-algebras and
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affine the category of affine schemes. So, what isédfiime schemeorresponding to
C? Formally, it is the schemepresenting the functor

rep; C : commalg — sets definedby D — Homcomaig(C, D)
In general, we say that an affine scheMeepresents a functor
F : commalg — sets D w— F(D)
if and only if there is a natural one-to-one correspondence for eVerycommalg
F(D) < Homcomaig(C[X], D)

which in the case ofep;, is just a tautology, so by definition, the affine scheme corre-
sponding toC' is the geometric objeatep, C with coordinate ringC[rep, C| = C.

For those who had a course in commutative algebraic geomedpy, C' is what is
usually denote@dpec C' the prime spectrum of’, that is, the set of all prime ideals of
C which becomes a topological space after endowing it withzZiugski topology that
is, a typical closed set is of the form

V(I)={p € specC|ICp}

for I anideal ofC. Again, this topological space is not sufficient to reconstéifitom
it but if we equip it with astructure sheat)~ we can recove€’ by taking its global
sections.

We will denote the category of all-algebras byalg. A C-algebraA is said to be
affineif it is generated as &-algebra by finitely many elements. For example, if
the groupG is generated by finitely many elements (as is for instance the case for
GLs(Z),(P)SL2(Z) and Bs) then the group algebr@G is an affineC-algebra.

If Ais anon-commutative affin€-algebra, what is the geometric object associated to
A? Afirstidea might be to take the same functor

rep; A : commalg — sets definedby D — Homag(A, D)

but as any algebra map fromto acommutativelgebraD factorizes over thébelian-
ization A

Aab: [A7A]

we see thatep, A = rep, A,, and asA,;, is a commutative affin€-algebra, the
corresponding affine scheme represents the functor and we have

Clrep,; A] = Clrep; Aw) = A
Example 2.1 Take the third braid groups = (S, T | S? = T®) then we have (as the
Abelianization of a group algebra is the group algebra of the Abelianized group)

Cls,t, s~ t71]
-1

and henceep, CB; is represented by the affine (smooth) curve

V(2® — ) - {(0,0)} € C?

(CB3)ap =

which is the cusp minus the singular top.
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However, in this approach we have lost all non-commutative information. So, a second
idea might be to try to represent the functor

rep,, A : commalg — sets definedby D — Homag(A, M, (D))

for any natural number. € N. In fact, we will show that the functor frorall C-
algebras to sets

alg — sets definedby B+ Homa (A, M, (B))

is representableby the anti-matrix algebrai/A which means that there is a natural
one-to-one correspondence

Homalg( Q/Z, B) — Honlalg(Av Mn(B))

As a consequence, the functesp,, A will be representable by the Abelianization of
the anti-matrix algebrd/4,,. Clearly, we have to prove all these claims

Definition 2.2 Theanti-matrix algebraof a C-algebraA is the subalgebra
VA={xe€Ax M,(C)|aF;; = E;a¥1 <i,j <n}
whereE;; are the standard matricé&; = (9x;91j)x, € M, (C).

Theorem 2.3 For any C-algebrasA and B there is a natural one-to-one correspon-
dence
Homag(A, M, (B)) — Homag(VA, B)

and if A is affine, so isY/A. As a consequence, the funciap, A is represented by
the affine commutative schemep, /A, with coordinate ring/A.

Proof. We start with a classical result : 1&t,,(C) %, Rbean algebra map and
denotep(E;;) = e;;. In R we consider the subalgebra

S={reR|e;r=re;Vij}
then we claim thak ~ M,,(S). To begin,we construct an algebra map

11 oo Tin n
R %+ M,(S) definedby a(r)= | : : wherer;; = " epirrjn
k=1
Tn1 oo Thn

To begin,r;; € S asr;je,, = ey ri; because

n
Tij€uv = E €LiT€jkCuv
k=1
n

= E ekieejvéuk = €uiTTju
k=1

n
CuvTij = § CuvCkiT€Ejk
k=1

n
= Sukeuiresn = €uitTjy
k=1
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Moreover,« is indeed an algebra map, fordfr)a(s) = (¢;5);, ;, then

n

lij = E TikSkj

k=1

= E E elﬂ'ekl E emkse_]m
k=1 i=1

= g enrerkse; = g eirsej; = a(rs);;
k=1

We also have an algebra map in the other direction

T11 oo Tin n
M,(S) -2+ R defined by : D S e

This is an algebra map as

7.] - § rlksij § § TikSkj€ij

i,7=1k=1
E 77,362] E sklekl § TikSkl1€il
i,j=1 k=1 i,j=k,l

and one verifies that and/ are each other inverses, proving the claim. Now take
(L/Z = {J) € Ax Mn((C) I l‘Eij = Eij$, VZ,]}

For an algebra mag —"~ M, (B) take the unique map/,,(C) ——~ M, (B) send-
ing E;; to the standard matrix-elements < M, (B) then we have a uniquely deter-
mined algebra map

A% M,(C) 2% M, (B)
which sends the centralizéf'A to the subrindm € M,,(B) : me;; = e;;m Vi, j} =
B giving us the desired map/A — B. Conversely, for an algebra map

YA —“+ B we have the induced algebra map

M, (¢

A% M, (C) = M, (VA) Y ar, (B

and composing this with the natural inclusioh—.~ A * M, (C) we get a map
A —— M, (B). These two constructions are each other inverses and finish the proof.
(I

Example 2.4 For the group algebr@ B; of the third braid group and = 2 we have

f/@: (C<Sla52783;2547t17t27t373t4>
(81 s21 _ |t1 t2 )
83 84 t3 1y
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and henceep,, CBjs is the affine scheme corresponding to the Abelianization

\Z/(C? _ C[Il,I27I3,$4,y17y2,y3,4]
-
@ (i1, f12, fo1, fa2)

wheref;; is the (4, j)-entry of the matrix (with commuting entries)
2 3
1 T2 (Y1 Y2
Lﬁs MJ [ys 94]

fii =22+ 2213 — Y — 2919293 — Y2Y3Ya
fi2 = @@ + 22xs — yIY2 — Y3Ys — Y1Y2Ys — Y2V
for =xzix3+ x374 — y%ys — yzy§ —Y1Y3Ys — y3yi
fa2 = xoxs + 5 — y1yays — 2y2y3ys — Ui

That is,

For a general noncommutatig&algebrad we have natural maps, andjwhereja
satisfies the universal property

A Y A% My(C) = M, (VA)

that for anyC-algebra morphisnp : A —— M, (C) whereC is a commutative
algebra, there is a unique algebra morphism {/A,, — C making the diagram
commute. We will give a few applications of these universal maps.

Theorem 2.5 There is an action of7L,,(C) by automorphisms or/A and hence
there is aG L,,-action on the affine schenrep,, A.

Proof. For anyg € GL,(C) there is an algebra mag : M, (C) — M, (C) by
conjugation and therefore also an algebra map (using the universal property of algebra
free products)

id*cy

M, (VA) = Ax M,(C) =% Ax M,(C) = M,(VA)
whence by the universal property ¢fA an algebra map
Abelianizing this action induces@.L,,-action by automorphisms off' A, and as this

is the coordinate ring of the schemep,, A, this affine scheme is@L,,-scheme. O

The orbits of the GL,-action onrep, A are precisely the isomorphism classes of
n-dimensional representations.
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As there is nothing special about a particularwe argue that theoncommutative
affine schemeorresponding to a noncommutative affiealgebraA is the disjoint
union

rep A = |_| rep, A

whererep A is thecategoryof all finite dimensionald-modules. Observe thakp A
is even ambelian categoryneaning thatA-module morphisms have kernels and cok-
ernels.

2.2 Smooth algebras

Now that we agreed to associate to an affine non-commut&tistgebrad asnon-
commutative affine scherttee Abelian categoryep A (later we will put extra struc-

ture such as a topology on it) we want to know which of these are non-commutative
manifolds, that is which algebras deserve to be called non-commutative smooth al-
gebras. Again, let us look at the commutative case for inspiration.

An important class of reduced schemes aresimooth affine varietieghat is, those
affine scheme¥” such thapointsV is a (complex) manifold. These can be defined
by requiring that the rank of théacobian matrixof the system of equations

991 9g1
oxq ox,
Jac = : :
991 991
Oz Oxy

is locally constant opointsV. By requiring the rank to be only locally constant we
allow smooth affine varieties to have several disjoint connected components, possibly
of different dimensions.

The coordinate ring of a smooth affine varidtyis called asmooth commutative al-
gebra (sometimes also called regular algebrg. Alexander Grothendieck found a
categorical characterization of smooth affine algebras.

Theorem 2.6 (Grothendieck) An affine schem#& is a manifold, or equivalently, its
coordinate ringC[V] is an affine smooth commutative algebra if and onlZ[¥]
satisfies the following lifting property inommalg. For any commutative algebr®
and any nilpotent ideal < B (that is, such that there is a powér € N such that
I* = (0)) and anyC-algebra morphisny : C[V] — B/I

B/I

there is an algebra morphism . B making the diagram commute.
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These facts motivate the approacimtsncommutative algebraic geomety proposed

by Daniel Quillen and Maxim Kontsevich : affifé-algebras should be thought of as
coordinate rings of noncommutative affine schemes and noncommutative affine mani-
folds correspond tesmooth algebras

Definition 2.7 An affine C-algebraA is calledsmoothif it has the following lifting
property inalg. For anyC-algebraB and any nilpotent ideal < B (that is, such
that there is a powek € N such that/* = (0)) and anyC-algebra morphisny :

A—— B/I

A et - B

B/I
there is an algebra morphism . B making the diagram commute.

Before we give an alternative description and classes of examples, let us deduce an
important consequence of smoothness for finite dimensional representations.

Theorem 2.8 If A is a smooth noncommutativ@-algebra, then for alln € N the
affine commutative scheraep,, A is smooth, that is an affine manifold.

Proof. By Grothendieck’s characterization we have to show that eZeajgebra mor-
phism

V Ay = Clrep,, 4] . D/I
can be lifted through the nilpotent idebk D of the commutative algebr®. Consider
the following diagram ofC-algebra maps

Elo)
A e ~-My (D)
R
JjA
M, (C[rep,, 4]) SYRES) M, (D/I)

As M, (I) is a nilpotent ideal of th&€-algebral/,, (D) we can use smoothness 4fto
have a lifted morphismp : A —— M, (D). Then, we use the universal property of
ja to see that the diagonal map of the fol), (¢) exists and) is the required algebra
lift. O

Hence, as M. Kontsevich argues, noncommutative smooth algdbcas be seen as
machinego produce an infinite familfrep, A : n € N} of manifolds. We will give

a few equivalent definitions of smooth algebras. To begin, it is not necessary to check
all nilpotent lifts, it suffices to check those for so callgliare zero extensions
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Recall thatM is called anA-bimodule if M is both a left- and a right module and
satisfies
(aym)as = aj(mas) VYm € M,Va; € A

It is well known that there is an equivalence of categories betwédiimod, the
category of all A-bimodules andA¢-mod, the category of lefd®-modules where
A® = A ® A°PP is theenveloping algebraf A. Indeed, the leftA°-module struc-
ture corresponding to ad-bimodule) is given by

(a®a)m = ama
Using this equivalence of categories one can extend homological properties (such as
projective, free, resolutions etc.) from one-sided to bimodules.

Let A be theC-vector spacel/C.1 4, and consider the freg-bimodules
AA" @ A=Q"Ax A

whereQ" A = A @ A" are thenon-commutative differential formssing the dictio-
nary
(ag,a1,...,a,) = apday ...da, = w

We put a graded algebra structurefod = ¢5°,Q™ A by

n

(a‘07 A1y e vy 0,")(an+17 e 7a7L+k) = Z(_l)nii(aoa R £ 7 7 P 7a7l+k>
=0

which determines maf3" A ® Q1A — Qntk—1and af’A = A this makes all
Q" A into A-bimodules. We have exact sequenceg dfimodules

0—> QA L 0nAgA - "e Q"A——0
where the maps are defined by

Jj(wda) =wa®l—-w®a
mw®a) =wa
in particular, we have the exact sequenceldfimodules
0— A2 ApA "+ A—+0

Differential 1-forms Q' A has the following universal property. derivationfor an
A-bimoduleM is a linear mapD : A —— M such that

DC)=0 and D(ab) = D(a)b+ aD(b)

For exampled : A —— Q'A = A ® A such thatd(a) = (1,a) is a derivation and
any derivationD for a bimoduleM has a unique factorization through

A D

M

«

0tA
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For anA-bimoduleM the Hochschild conomologgpacesi®(M) are defined by
H'(M) = Ext'y.(A, M)

and the first of those have the following interpretatiod$® (M) = M4 = {m €
M | am = maVa € A}.Moreover,

Derivations onM
H'(M)= ——————
(M) inner derivations

where an inner derivation is one of the foith, (a) = am — ma form € M.

Also, H%(M) has a concrete interpretation. s§uare zero extensioof A is a C-
algebraB having an idealM/ satisfyingM? = 0 such thatB/M ~ A. The kernel

M of the quotient mag3 — > A can be given a natural-bimodule structure via
a.m = bm wheneverr(b) = a (because\/? = 0 this does not depend on the choice
of b). Two square zero extensiof\B,, M) and(Bz, M) for a givenA-bimdule M are
sais to be equivalent if there is an algebra mjapB; —— B making the diagram
below commute

M ——— B A
M —— By A

A square-free extension is said to tevial if it is of the form B = A & M with
multiplication rule
(a,m)(a’,m") = (aa’,am’ + ma")

For a fixedA-bimoduleM, the second Hochschild spabé (M) classifies equivalence
classes of square-zero extensionsiaofith kernel M and the zero vector corresponds
to the trivial square-zero extension, that is the one whehas a lift throughr.

General arguments (such as induction on nilpotency of the nilpotent ideal) assert that
A is a smooth algebra if and only # lifts through all square-zero extensions, that is
that

0= H?*(M) = Ext}.(A, M) = Ext!y.(Q" A, M)

for all A-bimodules)M (that is all left A¢-modules)). But this is equivalent t®' A
being a projectived®-module, that is a projectivd-bimodule. So, we have the follow-
ing alternative characterizations of smoé@tkalgebras.

Theorem 2.9 For a C-algebra 4, the following statements are equivalent

1. Ais a smooth algebra
2. Alifts through every square-zero extension

3. Q! Ais a projectiveA-bimodule

But let us return to the examples of interest.
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Theorem 2.10 If GG is a finite group, therd = CG is a smooth algebra. In fact, any
two algebra lifts through a nilpotent ideal

ce 2 . B

B/I

are conjugated, that is, there is a udite B* such thaty(a) = b=1¢(a)b for all
a € CG.

Proof. Consider the exact sequencel@f-bimodules
0 — Q'CG —L+ CGRCE 2+ CG — 0

which splits as we can serido theseparability idempotent

1 -1
— Y gy
#G geG
Hence,CG andQ! CG are direct summands of the fré€&7-bimoduleCG @ CG. As
Q' CG is projective,CG is a smooth algebra. Moreovet,is a projectived-bimodule,
whence
HY(M) = Extly.(A,M) =0

for everyA-bimoduleM . As every lift through the trivial square-zero extensib® M

defines (and is defined by) a derivatidn— M we know that these two differ by an

inner derivation, which can be translated into the conjugation property. Again, standard

arguments allow to extend this from square-zero extensions to arbitrary nilpotent lifts.
O

In fact, as the proof works for all-algebrasS having a separability idempotent, that
is whens' is a semi-simple algebra.

Let S € alg, the category of alC-algebras, and consider the categSry- alg of all
S-algebras. That is, objects it — alg are pairs(A4, i) where A is aC-algebra and

S <"+ Aisaninclusion. Morphisms if — alg areC-algebra morphisms compatible
with the inclusions, that ig : (A,i) — (A’,¢')ifandonlyif f : A — A’isa
C-algebra morphism such that

A— T Ly

S

is a commutative diagram. (f4;,4,) and (A, i>) are twoS-algebras we define the
amalgamated free algebra product

(A1 xg Ao, U)
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as theS-algebra (if it exists) with the universal property that there &ralgebra

embeddingsd; —» A; xg A, and for anyS-algebra(B, j) and S-algebra mor-

phismsf, : Ay —— B and f; : A, —— B (which in particular implies that
fioi1 = j = fe 0iy) there is a unigques-algebra mapy such that the diagram of
C-algebra maps is commutative

J1

For generalS there is no reason why such an algebra should exist, but one can prove
(essentially by a similar method as we constructed amalgamated free products of
groups) that fotS a semi-simple algebra such a universal algebra always exists. When

S = C the construction reduces to thkyebra free productl; x A,.

We will need this only in the following case : I1éf be a finite subgroup of two groups
G, andGs, then the amalgamated free algebra product of the group alg€itaand
CG@G4 exists and is isomorphic to

CG1 #ca CGo ~ CGH g Go

the group algebr&G, x g G of the amalgamated group produd¢t < ; Gs. Indeed, let
f1:CGy —— Bandf, : CGy —— B be twoCH -algebra morphisms. Restricting
to the group-elements gives us a commutative diagram of group morphisms

G1
O
W . 7
J1
' g
H % Gy sy Gy oo - B*
N
2 J2 Ko
U
Gs

where the (uniquely determined) group morphigexists by the universal property of
G4 xpg G4. Linearly extending this group morphism give<d{ -algebra morphism
CG, g G —— B whence the group-algebra has the required universal property.

Theorem 2.11 Let.S be a semi-simple algebra and let;, ¢, ) and(As, i) be twoS-
algebras which are smooth &salgebra. Then, the amalgamated free algebra product

Ay g As
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(which exists!) is a smoot@i-algebra. In particular, the group-algebras of the arith-
metic groups

CPSLy(Z) CSLyZ) and CGLy(Z)

are all smooth algebras, hence are the coordinate rings of noncommutative affine man-
ifolds.

Proof. Let I < B be a nilpotent ideal and take an algebra map«s Ao AN B/I.
Composing with the universal inclusions and using smoothness of thee obtain
lifted algebra maps

> B

Ut T

Hence, we have tw@-algebra liftsg; o i1 andgs o i5 from the semi-simple algebra
S —— B ifting the morphismf o j; 041 = f o js 0 i5. Therefore, these two lifts are
conjugated by a unit = 1 4+ 7 € B*. But then we have a commutative diagram

whence the universal property df, x5 A, provides us with the required lifted algebra
map. The second statement follows from this using the fact that

(CPSLQ(Z) ~ CZQ*CZJ (CSLQ(Z) ~ (CZ4*(CZQCZG (CGLQ(Z) ~ (CD4*(CD2(CD6

and the fact that semi-simple algebras are smooth algebras. O

In particular,rep,, GL2(Z) (and similarly for the other arithmetical groups) are all
smooth varieties (which would be pretty hard to prove by hand). On the other hand, the
group algebraC Bs is nota smooth algebra as one can verify by proving treat, B3

is not a smooth variety.
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QUIVERS & EXAMPLES

As we have described the arithmetical groupsq(Z), SL2(Z) and PSLy(Z) as
(amalgamated) free products of finite subgroups, restricting representations to these
subgroups and applying the representation theory of finite groups gives us a handle on
the representation theory of these infinite groups.

We will consider the easiest case, thatfth Lo (Z) = Zs * Z3, or more explicitly

o -1 0 -1 1 2 ., 3
PSLg(Z)—<O’—|:O _1],7—{_1 0}0 =id=71")
The character tables of the Abelian cyclic groups are easy to work out. In our case we

have
Zs ‘ la 1b 1c

|1 1 1
and nl1 p, 2
T3 |1 p* p

wherep = ¢2™/3, The S; and7}; are all one-dimensional simple representations and
we will use the same notation for the one-dimensional space havifigaxtion. If

¢: PSLy(Z) — GL,(C) is ann-dimensional representation B85S L (Z) then the
restrictions must be isomorphic to

Vo lz,=SP @55 and  Vj |z, =TP" @ T9"” @ TP
with a; andb; integers and clearly they have to satisfy
a1+ as =n=>by +by+ b3

All this does is to divide the:.-dimensional spac&, = C” in two different ways

. one time with respect to the eigenspaces of the order two operatod another
time with respect to the eigenspaces of the rank three operatdfr we take a ba-
sisé = {ei,...,e,} of V,, compatible with the first decomposition and a basis
F = {f1,..., fn} compatible with the second, then the base-change matrix can be
decomposed into block matrices

B Bll B12
E—F where B=|DBy |Byx|eGL,(C)
Bs1 | B3z
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where the blockB;; has size$; x a;. This information can be encoded into ipaver-
representatiorof dimension-vectot = (a1, az; b1, b, b3) depicted by

By this we mean that to eastertexof the quiver corresponds a vector space of dimen-
sion the indicated component of the dimension vector (in our case, these vector spaces
are the eigenspaces, thosevofo the left, those of- to the right) and to eachrrow

of the quiver corresponds a linear map from the starting-vertex space to the end-vertex
space (in our case these are the different blocks in the base-change Batrix

Conversely, to a representation of this quiver of dimension veetor =
(al,QQ;bl,bg,bg) such thata; + a2 = n = by + by + b3 such that the matrix33
constructed from the arrow maps in an invertiblex n matrix, we can associate the
n-dimensional representation

) 0 1,, O 0
PSLy(Z) —2+ GLA(C) o [ S } T B0 ply, 20 B
* 0 0 P ]-bs

If PSLy(Z) 2. GL,(C) is a representation isomorphic ¢othen clearly the two
eigenspacedecompositions of®™ are the same and hence the numbkgrandb; are
the same (isomorphic just means that the imagesarfdr are computed with respect
to a different basis oV, = C" = V) but possibly we have to choose a different basis
in each of the eigen-spaces to gétr) and« () into the matrix-form corresponding
to a quiver representation
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This means that we have ’little’ base change matrices in the eigenspaces
X; € GL,,(C) and  Y; € GLy,(C)

such that the 'big’ base change matrices associatéchtod are related by

Cll 012 Yl_l 0 0 Bll Bl2

—1 X1 0
Con | Cxl=] 0 Y, 0 By | Ba 0 X,
C31 032 0 0 Ygil Bgl ng

We will see today that this is exactly the base change action on quiver representations.

3.1 Quiver representations
A finite quiver(@ is a directed graph having

e kvertices{vy,..., v}
e [ directed arrow@ﬁ@ having a starting vertex; and ending vertex;
where we allow loops (that i®; andv; may be the same vertex).

This directed graph can be encoded by a matrixin € My (Z) or by theEuler
bilinear form it defines where

X1 -+ X1k
xQ=|: 5 7k x 7k X% 7, xo(v,w) = UXQw"
Xkl -+ Xkk

and withy;; = 6;; — #{a : @—“>@ }. A path of lengthz is an orientation
preserving walk along arrows

and we include: paths of length zero which correspond to the vertices.

To such a quiver) we associate itpath algebraCQ which is a vector space having

as basis all paths in the quiv@rand where multiplication is induced by concatenation

of paths. That isCQ is an affine algebra generated by I-elements {eq, ... e}
corresponding to the paths of length zero (the vertices) and which satisfy the relations

eiej:(sijei 61+...+6k:1

so they form a complete set of orthogonal idempotents €, and with
{a1,...,a;}generators corresponding to the paths of length one (the arrows). If
anda’ are the arrows

9=~ and @<T @
then we have the following relations

via =djpa  avj =djpa v;d =§icd vy =054’ ad =dap d'a=d.aq
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wherep (resp. ¢) is the path of length two, which exists onlydf. = v, (resp. if
Vg = Ud)

<T<T resp. @T<T

If @ has no oriented cycles (that is a path having the same beginning and ending vertex)
then the path algebr@@ is finite dimensional. For example,

C 0 0
Q= @<T@<T@ then CQ~|C C 0
C C C

where the correspondence between paths and basis vectors is indicated by

€1 0 0
a e 0
ba b €3

As another example, consider the quiver we encountered in the investigation of repre-
sentations oPS L2 (Z).

then we obtain as the path algelit&) the 11-dimensional algebra (with correspon-
dence indicated)

C o 0 0 O el 0 0O 0 O
0 C 0 0 O 0 e 0 0 O
C C C 0 0 Bll Blg €3 0 0
C C 0 C 0 Bgl B22 0 €4 0
C C o 0 C B31 ng 0 0 €5

Theorem 3.1 If CQ is a finite quiver, then its path algebfaQ is a smooth algebra.

Proof. We have to lift an algebra morphis@r) J. B/I through the nilpotent ideal
1. Consider the subalgebfal = C x ... x C (k copies) generated by the vertex
idempotent;. As this is a semi-simple algebra the map: lifts to an algebra map’

cv -cQ - B/1
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Let b, be any element oB mapping ontof (a) wherea is an arrow*>@ then
we can define a map mappinga to F(v;)b, F'(v;) and one verifies that these images
satisfy all defining equations i8Q whencef is the required algebra lift. d

Next, let us study the representation theoryC6}. If V = C" is ann-dimensional left
CQ-module, we can use the vertex-idempotent® decomposé&’ into subspaces

V=elV&eVe...5e,V

and if we denotelimce;V = a; we see that every-dimensional representation of
CQ determines alimension vectorv = (a4, ...,a;) such that the total dimension
la] = a1+ ...+ ax =n.

As for the action of an arrowf)—==(*) on V we use the fact that = e;ae; to

see that the action is the zero map on all componep¥s with « # ¢ and that the
ae; V' is contained in the componeafV'. That is, the action of on V' is given by a
a; x a;-matrix representing a linear mapl” — e;V.

That is, to anyr-dimensional representation of dimension veetorve can associate
an a-dimensional quiver representation by assigning to the vertéixe vector space
e;V and to each arrow the matrix representing the linear mag” —— ¢;V de-
scribing the action o on V. Conversely, a quiver-representation of dimension vector
a determines an = |a|-dimensional representation 61 by taking as the images of
the vertex-idempotents and the arrows then x n-matrices

_0 - 'O T

€; — .. a —

L 0] 0
where the block matrix at block-positidy, ;) has sizes; x a;. Fixing basis vectors

in each of the vertex spaceg/” we can conjugate any representatiorC@} into such

a standard quiver-representation form and two such quiver-representations determine
isomorphicCQ-representations if they can be conjugated by an element ofettiex

base change group

g1
gj

GL(a) = GLg, X ... X GLg, =1 |g; € GL,, }
9i

9k |
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Under this basechange, thgare mapped to the same matrix-idempotents of gnk
and the arrow: is mapped to

0 -

gj_lMagi

0

Two quiver-representations which transform into each other in this way under the
action of the base-change groGfl.(«) are said to basomorphic Hence, every
n-dimensional representation of the path algeBr@ determines am-dimensional
quiver-representation of some dimension vectowith total dimensiona| = n and

the two notions of isomorphisms are compatible.

3.2 Quiver examples

Recall that we encountered the vertex-basechange group action on quiver-
representations already before in the investigation of representatidn§ bf(Z) in
terms of the quiver with thél1-dimensional path algebra. Reinterpreting this we have :

Theorem 3.2 The study of the isomorphism problem of finite dimensional representa-
tions of the modular grou®S L, (Z) can be reduced to that afertainfinite dimen-
sional representations of thid -dimensional algebra

Qo0
Qo
cofAoco
oo oo
Ao ocoo

Do we have a similar result for the more complicated arithmetical grstipgZ)
andGLy(Z)? TakeSLo(Z) = Z4 %z, Zs. As all occurring groups are Abelian, all

their simple representations are one-dimensional and the character tables are easy to
work out. We will need the restrictions @, resp.Zg-representations to the common
subgrouf,, so itis best to consider a hexagon and a square lined up so that they share
two vertices :
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Let Zy = (ulu* = 1) be rotation ove0°, Zg = (v[v5 = 1) rotation over60° and
let the common subgrouf? = (c|c*> = 1) wherec is reflection over the central point.
With these conventions we have the following character-tables and restriction data

Ze . 2 . 4 5

1 Vv v v

i1 1 1 1 1 1

Zs |1 ¢ Yo| 1 p p?2 =1 p* p°
Zy |1 1 Ys| 1 p* pt 1 p* pt
Zo|1 -1 Va1l -1 1 -1 1 -1
Ys| 1 pt p» 1 pt p?

Ys| 1 p° pt =1 p* p

To determine the restrictionX; |z, andY; |z, we only have to consider the boxed
columns. We obtain

Yilz, =21
Xilz, =21 Yo lz, =22
Xolz, =22 Yslz, =21
X3lz, =721 Yilz, =22
Xy lz, =22 Yslz, =21
Yo lz, =22

If V is ann-dimensionalS Ly (Z)-representation, the restrictions to the subgrdips
andZg are of the form

Vig=X" o X9 e XP» o XP and V |z,=Y®" ... 0YS"

giving a dimension vectat = (a1, ..., a4,b1,...,bs) satisfying) ", a; =n = Zj b;.
However, this time not all of these dimension vectors can occur as we must have that

(Viz) lzo=V lz,= (V lz4) lz,

whence we must have that + a3 = p = by + b3 + bs, as + a4 = g = by + by + bg
andp + ¢ = n. Moreover, the base-change between a basis compatible with the
decomposition in th&,-restriction and a basis compatible with thg-restriction

B
E={e1,. . seapyenent —= F={f1,- s fory---sbn}

must be an isomorphism @, -representations, sB can only have non-zero entries at
places where the corresponding left and right factors are the Zamepresentation.
That is, B is an invertiblen x n matrix with the following (checker-board) block-
decomposition
Bin 0 Bz 0

0 By 0 By
Bs; 00 Bsz 0

0 Bsi 0 By
Bs; 0 Bsz 0

0 Bs2 0 Bey

B =
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That is, we have associated to andimensional SL.(Z)-representation arn-
dimensional representation of the quiver

which is the disjoint union of two copies of the quiver constructed®6t.,(Z). Con-
versely, to anyy-dimensional representation of this quiver (such thatthen matrix

B constructed as before from the arrow-matrix blocks is invertible) one associates an
n-dimensional representation 81.5(Z) = (U,V | U? = V3, U* = 1)

la, O 0
g |0 ile 0 0
0 0 -1, O
0 0 0 —ilg,
[1,, 0 0 0 0 0 ]
0 plp, O 0 0 0
vopga1|0 0 PPl 0 0 0 |5
0 0 0 -1, 0 0
0 0 0 0 p'y, 0
0 0 0 0 0 poly]

Theorem 3.3 The study of the isomorphism problem of finite dimensional representa-
tions of SL2(Z) can be reduced to that artainfinite dimensional representations of
the 22-dimensional algebra

o
aaaao
cofMoco
oo oo
Aocococo
@
aaaoca
aaaao
cofMoco
oo oo
Aocococo
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For GL2(Z) = D¢ *p, D4 we line up as before two vertices of a hexagon (having
symmetry groupDg) and of a square (having symmetry gralip).

Observe thaD, is generated by/ (rotation by90°) and R (symmetry along the line)
and D, has5 conjugacy classes {1, R, R’,U,C} whereC is the central point re-
flection (which is alsd/?) and R’ is reflection along a line through two midpoints of
edges of the squard)s is generated by (rotation over60°) and R and has conju-
gacy classes {1, R, R”,V,V?2,C} whereR” is a reflection along a line through two
midpoints of the hexagon.

The common subgroup: is generated by’ and R and is Klein’s Vierergruppe having
elements (=conjugacy class€s) C, R, CR}. C R viewed as a symmetry of the square
is reflection along a line through two vertices, so belongs to the conjugacy class of
and therefore we have the following character tables and restriction data.

/
D1 ¢ R CR Ds|1 R R U C
X; |1 1 1 1 1
Zil1 1 1 1
Xo |1 =1 -1 1 1
Zol1 -1 -1 1
X;l1 -1 1 -1 1
Zs 1 -1 1 -1
211 1 1 1 X1 1 -1 -1 1
4 X512 0 0 0 =2
Dylp,|1 C R R
X lp, |1 1 1 1
Xolp, |1 1 -1 -1
Xslp, |1 1 1 1
Xyelp, |1 1 -1 -1
Xslp, |2 -2 0 0

whence
Xi1lp,=21 Xolp,=24 X3lp,=21 Xylp,=2Zsy Xs5l|p,=2Z>DZ3

C R when viewed as a symmetry of the hexagon is a reflection along a line through two
midpoints of edges and hence belongs to the conjugacy Blasas we have given the
character table aDg before we give only the restriction data

D¢lp,|1 ¢ R R
Yilp, |1 1 1 1
Yolp, [1 1 -1 -1
Yslp, |1 -1 -1 1
Yilp, |1 -1 1 -1
Yslp, |2 =2 0 0
Yslp, |2 2 0 0
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whence
Yilp,=Z21 Yalp,=Z4s Y3lp,= 23

Yilp,=23 Y5 p,=20®Z3 Yslp,=Z21®Zy

An n-dimensional representatidnof G L, (Z) can be restricted to the finite subgroups
D, and Dg giving decompositions

Vip,=XPae.. . 0X5 and V |p,=Y""@...0 Y

giving a dimension vectat = (aq,...,as,b1,...,bs) this time satisfying (using the
facts that the dimensions of the simpl¥s, Y5 andY; is two)

a1—|—a2+a3+a4+2a5:n:bl+b2+b3+b4+2b5+2b6

Again, the basechange matrix betwdep-bases ol | p, andV' | p, must be aD,-
isomorphism, leading to an-dimensional representation of the quiver

\

Theorem 3.4 The study of the isomorphism problem of finite dimensional representa-
tions of GL2(Z) can be reduced to that ekrtainfinite dimensional representations of
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the23-dimensional algebra

- _ 1

oo ol

ool o

oD oo

>

o

VDO +

8

©

e —— |

S5

_OOOOOOC
oo ocooo o
cocoococolb oo
oo oL
coL oL oD
oboocoocL L
_COOOCOC




day 4

MANIFOLDS & COMPACTIFICATIONS

So far, we have viewed the non-commutative affine schesped = | |, rep,, A only

as an Abelian category or, at best, as the disjoint union of the family of commutative
GL,-schemesep, A. Today, we will define a topology (actually two topologies) on
rep A. This will then allow us to define more general non-commutative varieties and
manifolds bygluing affine pieces together. We will apply this idea to get a natural
compactification ofrep PSLy(Z) (and of the other arithmetical groups) using their
associated finite dimensional path algebras we constructed last time. Then, we will
outline the construction of a truly non-commutative topologyrep A.

4.1 Commutative topologies

Let A be aC-algebra and take a finite s&t = {¢;,...,0;} of A-module morphisms
between projective lefd-modules

P 1<i<k

The universal localizationA is the algebraA —72, A which has the following
universal property. All extended morphisms, ® ¢§; are isomorphisms of left projec-
tive Ax-modules and if there is ad-algebraA —— B such that all the extended
morphismsB ® §; are isomorphisms, then there is an algebra map completing the

commutative diagram
A

N -~ B
Restricting finite dimensional representations gives natural maps

in : rep An —> rep A

and we denote the image of by X(A). From the universal property of universal
localizations, it follows that

AAlqu = (AAi)Aj and X(Al) n X(Ag) = X(Al U Ag)

whence we can view the seX§A) as the basic open sets of a topologyrep A.
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Definition 4.1 The topology orrep A generated by the basic open sEtg\) will be
called thenon-commutative Zariski topologyn the non-commutative affine scheme
rep A.

Having associated to an affine honcommutafisalgebra itsnoncommutative affine
schemerep A which is an Abelian category equipped with a topology, we can 'glue’
these schemes together to construct more general noncommutative schemes (and non-
commutative manifolds).

Definition 4.2 An aggregateagg is an AbelianC-category (meaning that all objects
areC-vector spaces and all morphisms &rdinear maps) having the following prop-
erties :

1. agg is additive, that is for any two objects the direct sum existsgg.

2. agg is Krull-Schmidt, that is, for anyndecomposabl®@bjectV (that is, one
which cannot be written as a direct sum of proper subobjects) the endomorphism
algebraEnd(V) = Homag(V,V) is a localC-algebra (that is, the non-units
form a twosided ideal).

3. agg is hom-finite, that is all homomorphism spacE®m.,(V, W) are finite
dimensionalC-vector spaces.

Observe that for any noncommutative algelrshe categoryrep A is an aggregate.
The Krull-Schmidt property implies that any objekt of an aggregategg can be
written as a direct sum of indecomposable objects

VWP e... o W2 with T; indecomposable
and that this decomposition is unique up to isomorphism.

Definition 4.3 A noncommutative schensan aggregategg equipped with a topol-
ogy such that there are open subdéfs} satisfying the following properties

1. U; is an Abelian subcategory agg

2. U, is equivalent and homeomorphictep A, for some affine non-commutative
algebraA;.

3. For alli, j the intersectio/; N U; is equivalent and homeomorphicitep A;;
and the inclusion maps

Uij = rep Aij — Uz =Trep Al

Uj =rep A;
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are induced by algebra morphisms

A

J

If all A; and 4;; are noncommutative smoot-algebras, then the noncommutative
schemeagg is called a noncommutative manifold.

In order to give an example of a nhon-commutative manifold, let us construct a natural
compactificationPSL4(Z) of rep PSL+(Z). We will see that similar constructions
also work for the other arithmetical groups.

With @ we will denote the quiver we have associatedt®L,(Z), that is

Clearly, rep CQ is an affine noncommutative manifold witemp CQ = Z5 and
every dimension vectgs € Z° determines a component isomorphidia, s, x GL(B)

repy Q. In the study ofPSLy(Z)-representations we were interested in the subset of
dimension vectors: = (a1, as, by, ba, b3) satisfying the numerical restriction

a1+ as = by + by + b3

An equivalent way to describe this is as follows :fdet (—1,-1,1,1,1) € Z® thena
satisfies the restriction if and onlyéfa: = 0. 6 corresponds to eharacterof GL(«)
namely

Xo : GL(a) = GLg, X...xGLp, — C* (91,92, 93, 94, 95) — det(g1g2) ™" det(gsggs)

Such characters allow us to definstability structureonrep Q. If V € rep Q is a
representation with dimension vect®mwe will denotedim(V) = 5.

Definition 4.4 Let o € Z° such tha®.a = 0. An a-dimensional representatidn €
rep,, () is said to be

1. f-semistable if and only if for all subrepresentatiold C V we have
0.dim(W) > 0.
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2. #-stable if and only if for allproper subrepresentatiorts 2 W C V we have
0.dim(W) > 0.

We will denote the subset of @tsemistable representations of the quigeny rep? Q
or of the path algebra byep’ CQ.

Itis an easy verification thatep? Q (using the fact that the dimension vector is additive
on short exact sequences) is an Abelian subcategargwt), that is, the kernel and
cokernel of maps between twbsemistable representations is agéisemistable. In
particular,rep? Q and hence alspep? CQ is an aggregate. In fact, we claim that

rep? CQ = PSLy(7Z)

a natural compactification afep PSL2(Z).

So, let us begin to relate the representation theory?8L.(Z) with this particular
stability structure.

Theorem4.5For § = (—1,—-1,1,1,1) andV € rep, @ a representation corre-
sponding to aP.S Ly (Z)-representation, then

1. V is 6-semistable, and

2. V is 0§ stable ifV determines a simpl&S L. (Z)-representation.

Proof. AsV € rep PSLy(Z) we know already thad.dim(V') = 0. Let the matrices

of V' be denoted by B, ..., Bs2) and the vertex-spaces B, ..., V5. If Wis a
subrepresentation df of dimension vector3 = (c1, ¢a,ds, ds,d3) and associated
matrices(Ch1,...,C32) then W being a subrepresentation means that the diagram
below is commutative

B Bio
By1 B

B3; Bz
Vie Vs - Vs V0 Vs

P=

Wy & Wy - Ws Wy W5
Ci1 Cho

Co1 Coa
Cs1 Cso

dlw=

Now, assumé.dim (W) < 0 this means thadimcW, @ Wy > dimcWs @ Wy & W
whenceg|y, must have a kernel. But this is impossibledas a linear isomorphism
because the matrix is invertible (becadées rep PSL.(Z). This proves (1). As for
(2) it follows from the above argument that every quiver-subrepresentditioa V'
must satisfyd.dim (W) > 0 and W represents &5 Ly (Z)-subrepresentation df
if and only if 6.dim(WW) = 0. Hence,V is ¢-stable iff V' is a simplePSLy(Z)-
representation. a
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Anelement(g, ..., g5) € GL(«) acts onV and hence on the matrix-componefig
so that the composite matrix is mapped to
95 'Bi1g1 g5 'Bi2go g5 0 0 B11 B a0
B'= |g;'Baigi 95'Bosga| = | 0 g;t 0 Bs1 By {0 92}
95 'Bs1g1 95 'Bs2ge 0 0 g5'] |Bsi Bs
whence

det(B') = det(g1g2)det(gs 95 ' g5 " )det(B) = x; ' (g1, -, g5)det(B)

We say thatlet(B) is a polynomiab-semi invariantof weight—1. More generally,

Definition 4.6 A polynomial functionf onrep,, @ is said to be #-semi invariant of
weight—{ if and only if

9-f=x3'f  Vg€GL(a)
The ring ag-semi invariants is the positively graded subalgebr&fakp,, Q]
R), = ®1<oR_ = @i<o{f € Clrep, Q | g.f = x5'f Vg € GL(a) }

Observe thaRy is the ring of polynomial invariants which is known (in general) to be
generated by traces along oriented in the quiver, but as there are no such cygles in
we have thaf?y, = C and hence

proj Ry,
is a projective variety. In fact, one can show that the pointsrofj R’ correspond to
isoclasses of direct sums @fstable representations of total dimensian

The last fact clarifies why we say theép? @ is a noncommutative projective variety
because the best algebraic solution to classifying its isomorphism classes is given by
the family of projective varietieproj RY. In fact we have a characterization of the
representation theoretic notion@®semistability in terms of these semi-invariants : the
following are equivalent

e V €rep, Q isf-semistable

e there is &-semi invariantf € R? such thatf (V) # 0.

So, in order to studyep? @ we have to know a generating set fssemi invariants.
Such a set is given bgeterminantal semi invariantdMe will define them here in the
special case of hipartite quiverQ and a stability structuré having all its left com-
ponents strict negative and all its right components strict positive. From the discussion
above we see thaPSLy(Z) corresponds to such a setting, hence &#4a(Z) (as

the quiver is just two copies @) but alsoG Ly (Z) is such a setting with quiver and
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stability structured depicted by

For such a setting(@,d) with @ having [ left vertices with 6-components
(=t1,...,—t;) andr right vertices withd-componentgs, . .., s,.) we construct &-
semi invariant of weight-a by taking a matrix with block decomposition

where the block4;; has sizesit; x as; and all its entries are linear combinations of
arrows in the quive€) from thei-th vertex on the left to thg-th vertex on the right. If

is a dimension vector @f such that.a. = 0 we can evaluaté in every representation

V € rep, @ and the matrix obtained\ (V') becomes a square matrix whence the
determinantlet(A(V)) is a polynomial function omrep,, @ which is verified to be a
f-semi invariant of weight-a. One can prove that these determinantal semi-invariants
generate all!

To a block-matrixA as above we will associate a noncommutative smooth algebra
Aax = CQa/(Ra). To begin we construct an extended quiget which isQ together

with a bunch ot s; extra arrowsiq(i, 2) from thej-th right vertex to thé-th left vertex

and let these extra arrows be the components of a maggof sizesas; x at;

£ 43,
Dij=1 :
dELszL'),l e d((ngi),atj

and make the bigger block-matrix
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Now, the algebrad A is the quotient of the path algeb&@&) A of the extended quiver
modulo the ideal of relations coming from the following two matrix-identitie€®@a

ellasl 0 fllat1 0
D.A = and A.D =
0 ellasl 0 frlat,«

wheree; (resp. f;) is the vertex idempotent of theth left vertex in@ (resp. of the
j-th right vertex inQ). After all these definitions it is about time to illustrate its use

Theorem 4.7 With notations as before

1. Aa is an affine smootif-algebra.

2. rep Ap = {V € rep? CQ | det A(V) # 0}
and as allf-semi invariants are generated by those coming fidisiwe have
rep’ Q = U rep Aa
D
is @ noncommutative manifold.

Proof. Another description of the algebrda is as auniversal localizationof the
smooth algebr&Q. Let P; = ¢;CQ be theprojectiveright ideal generated by theth
left vertex idempotent of) and@; = f,;CQ that generated by thgth right vertex
idempotent. The matriXA describes £Q-module morphism

Pl@asl D...0 Pl®a51 @ Q?atl D... DO anat,,,

As universal localizations of smooth algebras are again smooth (use the universal prop-
erty to lift modulo nilpotents) the first statement follows.

As for the second, led/ be ana-dimensional representation dfs determined by an
a-dimensionall Ao quiver representation satisfying the required identifiesand let

V = M|q be the restriction of\f to the arrows of). Then, by the very definition

of R it follows thatdet A(V) # 0 and thereford” is ad-semistable representation.
Conversely, any-stable representation such that A(V) # 0 can be extended to

a representation afl o by assigning to the additional arrows the block-matrices oc-
curring in the description of the inverse &f(V'). In fact, by an argument as before

for PSL2(Z) we also have that there is a natural one-to-one correspondence between
simplea-dimensionald A -representations artdstable representationsieyp,, () such
thatdet A(V') # 0. O

We havent brought in the topology yet, but we can gieg? CQ the inducednon-
commutative Zariski topology afep CQ and then use properties of universal local-
izations that all fits well together as demanded by the definition of a non-commutative
manifold.
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In the PSL+(Z)-example with the usual notation for arrows of the corresponding
quiver

we have seen thatp PSLy(Z) = rep Aa for

Bi1 B
A= |By1 B
B31  Bs

but we might have considered other affine smooth pieceB%k,(Z) such as those
determined by the matrices

0 B12 Bll 0 Bll 0
AO = Bgl 0 Al = 0 ng AQ = Bgl 0
Bgl 0 Bgl 0 0 BS2

3 ) ) )

generate the whole ring of semi-invariants, that is

For example, ife = (2,1,1,1,1) one can show that the determinants of these three
RZ = (C[det AO, det Al, det AQ] whence proj Ri =P% = PSLy (Z)@

4.2 Non-commutative topologies

If A is smooth, we have seen that all representation schemes are smooth (hence in
particular reduced) but they may have several connected (which in this case is the same
as irreducible) components and we give each of these components a label

rep, A= |_| rep, A
lo|=n
and we say that is a dimension vector of total dimensigm| = n.

Let comp A be the set of all labela for all natural numbers. € N, that is the set
of all (non-empty) connected componentsip A. We define an Abelian semigroup
structure orcomp A by bringing in the sum-maps

rep, A= |_| rep, Axrep,, A = |_| repﬁALe»repm_i_nA: |_| rep, A

jal=n |8l=m Iyl=m-+n
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We definex + 3 = v if rep., A is the connected componentwdp,, ., A containing
the image of the connected and irreducible variety,, A x rep; A. With gen A we
will denote the set of semigroup generators for tbenponent-semigrowgomp A. It
is unknown whether this set is always finite for a smooth affine algdbid/e have a
representation theoretic description for theget A.

Theorem 4.8 The generator seten A are precisely those componenisc comp A
for whichrep,, A consisting entirely of simple representations4of

Proof. If V' € rep,, A is not simple, then it has dordan-Holder filtration
ocvicViscCc..cicVy=V with all factorsV; /V;11 = S; simples
One can show that theemi-simplificatiorof V/
V¥ =5®...0095

lies in the closure of the orb® (V) = GL,,.V wrt. the Zariski topology omrep,, A
(and in particular is contained in the same connected component). But thgngif
repy, A we have thaty = 5y + ... + ; whencex is not a generator fofomp A. [

Example 4.9 (path algebras)If @ is a quiver ork vertices, thertomp CQ ~ N* and
is generated by the vertex-dimension vectihrs: (0,...,0,1,0,...,0). The addition
on comp CQ is the ordinary addition of".

Example 4.10 PSL2(Z)) The corresponding quiver is the full bipartite quiver

For a dimension vectotr = (a1, as, b1, be, bs) let us denotéa| = n if a; + ag =

n = by + by + bs. For any|a| = n there is a non-empty open sub$gt of rep, @
defining a componer&L,,.U, of rep, PSL,(Z). As a consequence the component
semigroupcomp PSLy(Z) is generated by the six dimension vectors (for 1)

g1 =(1,0,1,0,0)
g2 =1(0,1,0,1,0)
g3 =(1,0,0,0,1)
g+ =1(0,1,1,0,0)
g5 =(1,0,0,1,0)
gs =(0,1,0,0,1)
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and as the addition ogom PSL»(Z) is as a sub-semigroup ebmp CQ = N° there
must be relations among these generators. In fact, we have

g1 +92 =94+ g5 g6 +91 =93+ g4 and g2+ 93 =9gs + gs

Example 4.11 Ly (Z)) As the quiver forSL.(Z) (see before) is the disjoint union
of two copies of that oS L, (Z) we have thatomp S Ly (Z) has exactlyl 2 generators
(all dimension vectors forn = 1 mentioned before)

= (1,0,0,0,1,0,0,0,0,0)
=(0,0,1,0,0,0,1,0,0,0)
=(1,0,0,0,0,0,0,0,1,0)
g1 =1(0,0,1,0,1,0,0,0,0,0)
g5 =1(1,0,0,0,0,0,1,0,0,0)
9 =1(0,0,1,0,0,0,0,0,1,0)
= ( )
= ( )
= ( )
= )
= ( )
= ( )

g1
g2
gs

g7 0,1,0,0,0,1,0,0,0,0
g3 0,0,0,1,0,0,0,1,0,0
9o 0,1,0,0,0,0,0,1,0,0
910 0,0,0,1,0,1,0,0,0,0
g11 0,1,0,0,0,0,0,1,0,0
912 0,0,0,1,0,0,0,0,0,1

and there are the following relations among these generatersuh.S L2 (Z)
g1t92=94+9s g6+ 91 =93+ g4 and  ga+g3 =95+ go
g7 + 98 = gio + g1 912 + g7 = g9 + g1o and  gs+9g9 = g1 + g12

Example 4.12 (GL,(Z)) The corresponding quiver has two components

2

®

and the dimension vecter = (ay,...,as,b1,...,bs) must certainly satisfy the con-
dition denoted bya| = n

a1+ as +az +as +2a5 =n = by + by + bz + by + 2b5 + 2bg

However, not evenja| = n has a non-empty subséf, —— rep_, @ consist-

ing of GL2(Z) representations. The baechange matrix must be an isomorphism
of Ds-representations, hence in each of the two components every irreddgible
representatioty; gives an additional linear condition on the components ekpress-

ing the fact that the total number &@f-components in the left-hand vertices is equal to
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that in the right-hand vertices. Recalling the restriction data, this gives the additional
conditions onx to determine a componentirep, GL2(Z).

(Z1) - a; +az = b1 +bg

(Zg) . as = b3 + b5

(Zg) . a5 = b4 + b5

(Z4) : as + aq4 = b2 + b6

The first component gives @sgeneratorsq for n = 1 and4 for n = 2)

nla ax az ag|by by bg
gg|1/1 0 0 0|1 0 O
gl2|1 1 0 0[]0 0 1
gs|210 0 1 1|0 0 1
gg|211 0 0 1|0 0 1
g (1|0 1 0O 0|0 1 O
g|210 1 1 0|0 0 1
gg|1/0 0 O 1|0 1 O
g|1]0 0 1 0|1 0 O

The second component gives us an additi@ggnerators (for, = 2).

‘ n ‘ as ‘ b3 b4 b5
g 2|11 1 0
go|2| 110 0 1

and again there are plenty of obvious relations between these generators in
comp GLy(Z). In terms of universal localizations (or open subsets&f’ Q we

can identifyrep GL2(Z) with rep CQa for A the matrix (with natural notation in
terms of the arrows af))

By 0 By 0 0 07
0 BQQ 0 B42 0 0
Big 0 B 0 0 0
0 By 0 By 0 0
A=10 0 0 0 By 0
0 0 0 0 0 By
o o o o BY o
Lo o o o o BY

We will give the construction of all blocks for a smooth algebra Consider a con-
nected componentep, A of rep, A such that there is a non-empty Zariski open
subsebricks, A of bricks inrep, A. As the endomorphism ring of a brick is the
field C geometric invariant theory implies that if there is a brickcisp,, A there is a
Zariski open subset of bricks.

Consider an irreducible closa@L,,-stable subvarietyX C rep, A such thatX N
bricks, A # () then one can associate ¥0an epimorphism

A My(D)
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with D a division algebra and|n.

For those who know some GIT here is the construction : Glig, action onY =
XNbricks, Aisreally afreePG L, -action whence one has an orbits spE¢& G L,
and the quotient map — Y/PGL,, is a principalPG L,,-fibration. Now, principal
PGL,-fibrations correspond to Azumaya algebras an ABG L,, is an irreducible
variety, its classical ring of fractions is a central simple algebxaof dimensionn?
over the function fieldk’ = C(Y/PGL,,). By the structure theory of central simple
algebras we have

Yx = M4(D) with D a centralK -division algebra of dimensiofn/d)?.

Two irreducibleG L, -stable subvarietieX and X’ define the same block if and only
if X andX’ have a common Zariski open subset (that is, are birational).

This construction shows that the topology induceteicks,, A by the closed subsets
V(X) of blocks A isroughlyas fine as the Zariski topology @ticks, A.

The underlying idea to construchan-commutative topologynrep A is first to define

a (commutative) topology on a certain subset of all finite dimensional representations
including all simples and then use finite filtratioada Jordan-#lder sequences to
extend this topology to all afep A.

Definition 4.13 For A € alg ablockis a leftA-module (possibly infinite dimensional)
X such that its endomorphism ridg = End 4 (X) is a division ring andX considered
as a rightD-module is finite dimensional.

A brick S for A is a block which is finite dimensional, in particular it follows that
D = Endy(S) =C.

Observe that all simple finite dimensional representation$ afe bricks. We will re-

late blocks teepimorphism®f algebras. Recall that@-algebra morphismt . B
is said too be an epimorphism dng if for all algebra maps

g1
A-L.B C satisfyingg; o f = g» o f we have thay; = g,
92
Common examples of epimorphisms are quotients as well as localizations. Blocks are
defined by certain special epimorphisms
Theorem 4.14 (Ringel) There is a natural one-to-one correspondence between

1. blocks of4, and

2. epimorphismsl —— M,, (D) with D a division algebra.
A L. M, (D) is an epimorphism one considers the bldek" (viewed as am-
dimensional column-space which becomes aefnodule via left multiplication via

f. Conversely, ifX is a block with endomorphism division algebfa= End4(X)
and ifdimp X = n one constructs an algebra map

A —Lv M(D) = Endp(Xp)
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where f(a) is left multiplication bya on X. One verifies that this map is an epimor-
phism and that the two constructions are each other inverses.

We will equip the seblocks A of all A-blocks with a partial order coming from the
notion ofspecialization If D andFE are division algebras we say that the epimorphism
A —%+ M,.(E) is a specialization of the epimorphisi—~ M, (D) if there is an
epimorphismA ", Bsuchthatthe diagram

Mm(E)

is commutative wheréis an embedding and is a quotient map. IX resp.Y are the
blocks corresponding tg resp. g we will denote the specialization by < Y. Itis
easy to verify that this notion turn®locks A, <) into a partially ordered set. This
allows us to define for each block theclosed subseain the set of all bricksricks A

V(X)={Y €bricks A | X <Y}

We will give the construction of all blocks for a smooth algebra Consider a con-
nected componentep,, A of rep, A such that there is a non-empty Zariski open
subsebricks, A of bricks inrep, A. As the endomorphism ring of a brick is the
field C geometric invariant theory implies that if there is a brickcgp,, A there is a
Zariski open subset of bricks.

Consider an irreducible close@L,,-stable subvarietyX C rep, A such thatX N
bricks, A # () then one can associateX0an epimorphism

A 5 wMy(D)
with D a division algebra and|n.

For those who know some GIT here is the construction : Gtig, action onY =
XNbricks, Aisreally afreePG L, -action whence one has an orbits spE¢éG L,
and the quotient map — Y/PGL,, is a principalPG L,,-fibration. Now, principal
PGL,-fibrations correspond to Azumaya algebras an® ABGL,, is an irreducible
variety, its classical ring of fractions is a central simple algebyaof dimensionn?
over the function fieldk’ = C(Y/PGL,,). By the structure theory of central simple
algebras we have

Yx = M4(D) with D a centralK -division algebra of dimensiofn/d)?.

Two irreducibleG L, -stable subvarietieX and X’ define the same block if and only
if X andX’ have a common Zariski open subset (that is, are birational).

This construction shows that the topology inducetoncks,, A by the closed subsets
V(X) of blocks A is roughlyas fine as the Zariski topology @ticks, A.
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Definition 4.15 The block-topologyon the sebricks A = | |, bricks, A is the
topology generated by taking as a subset of its closed sets the sets

V(X)={S cbricks A| X < S}

where X runs overblocks A. With £, we denote the set of all closed subsets of
bricks A in the block-topology.£ 4 will be the set ofletterson which to base our
non-commutative topology.

If M is ann-dimensional representation dfwe call a finite filtration of length:
F*:0=MyCcM;C...CM,=M
of A-representationslarick filtration if the successive quotients

M;

Fi=
M; 4

are bricks. As simple representations are bricks, any JorddaeHfiltration of M is a
brick filtration, but there may be others.

Definition 4.16 With W 4 we denote the non-commutative words in the leti&gs
Wy ={Vi...Vi|Vi € L4,k €N}

For a given wordv = V1V, ...V, € W 4 we define théeft basic open set

Ol ={M c rep A| AF" brick filtration onM such thatF; € V;}
and theright basic open set

O, ={M €rep A| AF" brick filtration onM such thatF,,_; € Vj_;}

Finally, to make these definitions symmetric we definelthsic open set

Ow ={M € rep A| AF" brick filtration onM such thatF;, € V

forsomel <i; <ip <...<ip<u}

Clearly, ©! consists of those representations having restricted bottom structure,
whereasQ);, consists of those with restricted top structure. In order to avoid three
sets of definitions we will denote from now @, whenever we meas € {l,r,0}.

f w= Li...L, andw’ = M;...M;, we will denote withw U w’ the multi-set
{N1,..., Ny} where eachV; is one of L;, M; and N, occurs inw U w’ as many
times as its maximum number of factorsdnor w’. With rep(w U w’) we denote
the subset ofep A consisting of the representations &f having a Jordan-blder
filtration having factor-multi-set containing U w’. For any triple of wordsv, w’ and
w” we denot&)?, (w Uw') = O, Nrep(w Uw').

We define an equivalence relation on the basic open sets by

o8 ~0O:, & O (wUw') =08, (wuw)
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The reason for this definition is that the condition/df € rep A — O, is void if
M does not have enough brick components to get all factors afhich makes it
impossible to define equality of basic open sets defined by different words.

We can now define the partially ordered séfsas consisting of all basic open subsets
Oz, of rep A. The partial ordering< is induced by set-theoretic inclusion modulo

w

equivalence, that is,
o <0O:, & O (wUw') C O (wUw)

As a consequence, equality in the setA$, coincides with equivalence.. Observe
that these partially ordered sets have a unique minimal and a unique maximal element
(up to equivalence)

0=0=0%icks 4 and 1=repA=0;

The operations’ andA are defined as followsA is induced by ordinary set-theoretic
intersection and is induced by concatenation of words, that is

Oy VO =0Os .,
This will turn out to be an example ofraon-commutative topologyf which we recall
the definition. We fix a partially ordered sgt, <) with a unique minimal elemertt
and a unique maximal elemehtequipped with two operations andv. With i, we
will denote the set of aldempotent elements A, that is, those: € A such thattAz =
x. A finite global coveris a finite subsef\;,..., A, } such thatl = Ay V...V A,.
In the table below we have listed the conditions for a (one-sided) non-commutative
topology.
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(A1) rANy<cw c ANy <y
(A2) rANl=x INz=x
zAN0=0 OAxz=0

(43) | (eAy)Az=zA(yAz)=xANyAz

(A4) r<y=zAzx<zAy r<y=zANz<yAz

(A5) x<zVy y<zVy

(A6) xvV1i=1 1ve=1
zV0==z OVe==x

(A7) | (zVy)Vz=zV(yVz)=aVyVz

(A) r<y=zVz<yVz r<y=zVer<zVy
(A9) aV(andb) <(aVa)Ab aV{nra)<(aVb)Aa
(A10) r=(@xAX)V...V(zAN) r=MAZ)V...V(A\,Azx)

where(A3) and(A7) are symmetric conditions.

Definition 4.17 Let (A, <) be a partially ordered set with minimal and maximal ele-
ment0 and1 and operationg andV. Then,

A is said to be &eft non-commutative topologfyand only if the left column conditions
of (A1)-(A10) are valid for allz, y, z € A, all a, b € i5 with a < b and all finite global
covers{Ai, ..., A\n}.

A is said to be aight non-commutative topologfand only if the right column (to-
gether with(A3) and(AT)) conditions of (A1)-(A10) are valid for alt, y, 2 € A, all
a,b € iy with a < b and all finite global cover§), ..., A\, }.

A is said to be anon-commutative topolog§ and only if the conditions (A1)-(A10)
are valid for allz,y,z € A, all a,b € iy with a < b and all finite global covers

Do Ank

There are at least two ways of building a genuine non-commutative topology out of
these sets of basic opens.
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Let T'(A) be the set of all finité A, v)-words in thecontractibleidempotent elements

ip (that is, A\ € i, such that for all\;, Ao with A < A; V A2 we have that\ =

(AA ALV (AAXR)). If Ais a (left,right) non-commutative topology, then sdiA).

The vV-complete topology of virtual opeff3 (A) is then the set of allA, v)-words in

the contractible idempotents of finite length/ir(but not necessarily of finite length in

V). This non-commutative topology has properties very similar to that of an ordinary
topology and, in fact, has associated to dtcemmutative shadaw

The second construction, leading to {hettern topology starts with the equivalence
classes oflirected systemS C A (that s, if for allx, y € S there is & € S such that
z <z andz < y) and where the equivalence relatiSn~ S’ is defined by

Va € S,3a’ € S,a’ <aandb < a < ¥ forsomeb, b € 5’
Ybe S, € 8,0 <banda <V < d forsomea,a’ € S

One can extend the, VV operations om\ to the equivalence class€§A) = {[S] | S
directed} in the obvious way such that al€(A) is a (left,right) non-commutative
topology. A directed sef C A is said to badempotenif for all « € S, there is an
a’ € SNiy suchthat’ < a. If Sisidempotent thefiS] € i,y and those idempotents
will be calledstrong idempotentsThe pattern topolog¥I(A) is the (left,right) non-
commutative topology of finit¢ A, \V)-words in the strong idempotents 6f(A). A
directed systeniS] is called apointiff [S] < V[S,] implies that[S] < [S,] for some
.

Theorem 4.18 With notations as before,

1. (A4, <,=,0,1,V, A) is a left non-commutative topology eap A.

2. (A, <,=,0,1,V, A) is aright non-commutative topology aep A.
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CHARTS & SIMPLES

Today we finally come to applications of non-commutative algebraic geometry to the
representation theory of arithmetical groups (and the third braid gBalpThe crucial
ingredient is the Euler-form which exists arp A wheneverA is a smooth algebra

as smooth algebras anereditary This form then allows us to define tlobart of A
which is a quiverchart 4 containing enough information to reduce all questions on
rep A to quiver-problems. One might vieshart 4 as a sort ofangent spacéo the
non-commutative manifoldep A. We will state just one application of it : to construct
nearly all simple representations 4f We will work through the details in the case of
PSLy(Z) and finish by giving nearly all simple representationgf

5.1 Euler forms

Definition 5.1 Let M and N be two representations of dimensiansandn of A €
alg. A representatio” of dimensionm + n is said to be amxtension ofV by M if
there exists a short exact sequence of fefnodules

e: O— M — P —> N —0

Define an equivalence relation on extensioftse) of N by M : (P,e) = (P',¢') if

and only if there is an isomorphisi —?, P’ ofleft A-modules such that the diagram
below is commutative

e: 0 - M - P - N > 0
id s [ idN
e : 0 M - P’ - N > 0

The set of equivalence classes of extensionsNofby M will be denoted by
ExtYy (N, M).

An alternative description o2zt (N, M) is as follows. Letp : A —— M,,(C)
ando : A —— M, (C) be the representations definidg and N. For an extension
(P, e) we identify theC-vector space withi/ & N and theA-module structure o
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gives a algebramap: A — M,,,.,,(C). We represent the action afon P by left
multiplication of the block-matrix

whereA(a) is anm x n matrix and hence defines a linear map
A: A —— Homg(N, M).
The condition thaj: is an algebra morphism is equivalent to the condition
Maa'") = p(a)\(a") + Xa)o(a’)

and we denote the set of all liner maps A —— Hom¢(N, M) by Z(N, M) and
call it the space ofycle.

The extensions o by M corresponding to two cycles and )\’ from Z(N, M) are
equivalent if and only if there is ad-module isomorphism in block form

id .
[ OM Z(/fNil with 3 € Hom¢(N, M)

between themA-linearity of this map translates to the matrix relation

Ul I S ] e

or equivalently, thai(a) — X (a) = p(a)8 — fo(a) for all a € A. We will define the
subspace of/ (N, M) of boundariesB(N, M)

{6 € Hom¢(N, M) | 38 € Homc(N, M) :Va € A: §(a) = p(a)B — Bo(a)}.

Therefore Exth (N, M) = Ze37

Recall that theEuler formof a quiverQ on k vertices is the bilinear form oi*
xq(.) 1 ZF xZF —~ 7 defined by xo(a,8) = a.xg.67
for all row vectorsy, 3 € ZF.

Theorem 5.2 Let V resp. W be representations of the quivér of dimension vector
a resp. s, then

dim¢c Homeq(V,W) — dimc Extto(V,W) = xq(a, B)

In particular, the right-hand side does not depend on the particular representations but
only on the dimension vector.

Proof. There is an exact sequence®fvector spaces

\4
dW

0 — Homeo(V, W) — > @®,,cq, Home(Vi, W;) —%»

dyy

e Baeq, Home(Via), Wya)) — Batio(V,W) — 0
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Here,y(¢) = (¢1,...,¢r) anddy;, maps a family of linear mapéfi, . . ., fi) to the

linear mapse, = f;V, — W, f; forany arronD<—®in Q, that is, to the obstruction
of the following diagram to be commutative

V(L
v v
fi fi
Wa RS

By the definition of morphisms between representationg dfis clear that the kernel
of dy;, coincides withH omcg (V, W).

The mape is defined by sending a family of mags:,...,gs) = (ga)acq, t0 the
equivalence class of the exact sequence

00— W "+ E-2e vV _—+0

where for allv; € Q, we haveE; = W; @ V; and the inclusion and projection map
are the obvious ones and for each arww @, the action ofz on F is defined by the

matrix
Wa  da

&:h my&ZM@W*%@W=@
This makesE into a CQ-representation and one verifies that the above short exact

sequence is one @Q-representations. Remains to prove that the cokerné}oéan
be identified withExt g, (V, W).

A set of algebra generators®f) is given by{vs, ..., vk, a1,...,a;}. Acycleis given
by a linear map\ : CQ —— Hom¢(V, W) such that for allf, /' € CQ we have the
condition

ML) = p(HAS) + Ao (f)
wherep determines the action oW and ¢ that onV. For anywv; the condition is
Av?) = Av;) = pY Mw;) + A(v;)pY whencel(v;) : V; — W; but then applying
again the condition we see thtv;) = 2A(v;) soA(v;) = 0. Similarly, for the arrow
O<2—@ the condition oru = vja = av; implies that\(a) : V; —— W,. That s,
we can identify®qcq, Home (Vi, W;) with Z(V, W) under the map. Moreover, the
image ofd gives rise to a family of morphisms(a) = f;V, — W, f; for a linear map
f=1(f;) : V — W so this image coincides precisely to the subspace of boundaries
B(V, W) proving that indeed the cokernel @f;, is Extpo(V,W).

If dim(V) = a = (r1,...,7) anddim(W) = g = (s1,...,sr), then
dim Hom(V,W) — dim Ext*(V,W) is equal to

ZdimHomc(Vi,Wi)— Z dim Homg(V;, W;)
Vi €Qy

= E TiSi — E TiSj

V;€EQy

= (Tlv oo 7Tk)XQ(517 .. '75k)T = XQ(O(,/B)
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For any algebral and finite dimensional representatidrisandW we can define
xa(V,W) = dimc Hom4(V,W) — dim¢ Ext’y (V,W)

but this has no good properties in general. Howevet, i§ smooth, then the functions
xa(V, =) andx4(—, W) areadditive on short exact sequences! This follows from
standard homological algebra and the fact that smooth algebrasi@ditary Recall
that A is hereditary if every lefd-module M has a projective resolution

0—>P —>Py—>M—>0

has length< 1 which implies thatExt, (M, N) = 0 wheneveri > 2 and then the
theory of derived functors implies additivity.

Theorem 5.3 A smooth algebral is hereditary.

Proof. Becaused ® A is a free one-sided-module, the sequence
0— QA —+ A®A —+ A —0

splits as a sequence of rightmodules. Therefore, tensoring this sequence with a left
A-moduleM we get an exact sequence

0 VAUM > AQARAM — AQ4 M 0

0 QO es A AQM - M >0

The middle term is a free lefi-module and a§' A is a projectived-bimodule it is a
direct summand of somé @ V' ® A. But then,

VAR AAQV QAU M=AVeOM

is also a projective lefi-module. O

Using the additivity and some heavy geometric invariant theory we were able to prove
Theorem 5.4 Let A be a smooth algebra and € rep, A, W € repg A. Then,
xa(V, W) = dimcHom s(V,W) — dimcExt’y (V, W)

does depend only on the componentsand 5 and not on the particular choice of
representations. Therefore, we have a bilinear form

xa : comp A x comp A — Z

on the component semigrodpmp A which we call theEuler formof teh smooth alge-
bra A.
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Example 5.5 Take A = CB5 the group algebra of the third braid group. We have seen
that
rep; B3 = V(a® —3?) — {(0,0)}

and consists entirely of simple representations. £eindl" be two such simples
corresponding to distinct points, y) and(z’, y’) on the cusp. The space a cycles are
those(a, b) € C? such that
' a y b
TI—>|:0 x} and Sl—>|:0 y}

is a2-dimensional representation giving the condition that
a(z? + 22’ +2'%) = by +/)
which for generalS, T' gives one relation betweanandb so the cycle-space it
dimensional generically. Two such extensidasb) and(a’, b') are equivalent iff
a—a =Nz’ —x) and bV =Xy —v)

giving a one-dimensional subspace of boundaries. So, for gefisfalve have that
ExtYy(S,T) = 0. However, for(S, T) € A U A; U Ay where

A :{((:c,y),(a:,y)) : $3:y2}
Ay ={((z,y), (pr,~y)) : 2° =y*}
Ay ={((z,y), (PPz,~y) : 2® =y

the cycle space is two-dimensional whenget, (S, T) ~ C. So, in this case the
Euler-form does depend on the choice of representations and li&Bgds not a
smooth algebra. In fact, the calculations above can be used to find singular points
in rep, CBs.

Definition 5.6 If A is a smooth algebra, we define dart chart 4 to be the quiver
with vertices corresponding to the generatingget A of the component semigroup
comp A andifa, 3 € gen A, the number of directed arrows between the corresponding
verticesv, andvg in chart 4 is given by

#{ @—=(2) } = dap — xa(. §)

Example 5.7 If @ is a quiver, then the chathartcg = Q. Indeed, we have seen
that the generators afomp CQ correspond to the vertex-simplés (with dimension
vectord,) and we have seen that

XCQ(SmSw) = XQ((Sva(Sw) = 5Uw - #{@H@ }

For the arithmetical group&P)SLs(Z), GL2(Z) we can use the Euler form of the
corresponding quiver to calculate the dimension of the ext-spaces.

Example 5.8 The Euler-form of the quiver associatedR® Lo (Z) is

10 -1 -1 -1
01 -1 -1 -1
00 1 0 0
00 O 1 0
0 0 O 0 1
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So, forg: = (1,0, 1,0,0) we have thay;.xq = (1,0,0,—1, —1) implying that

XQ(91,91) =1 xq@(91,92) = =1 =xq(91,96) and xq(g1,9:) =0

fori # 1,2,6. Performing similar computations for the other generators we see that
the chart ofPSLy(Z) has the following form

chartpSL2(Z) = }5’%
/// }\\
\
g

AN

As the quiver ofSLy(Z) is the disjoint union of two copies of that #1SL»(Z) we
immediately obtain that the chart 8f.5(Z) has the following form

charts ) = < /K \ﬂ /q\
AN,

Example 5.9 The Euler-form matrices for the two components of the quiver associated
to GLy(Z) are respectively

1000 —1 0 —1]
0100 0 -1 -1
0010 -1 0 =1 (1)_11_01_02
0001 0 -1 -1 and o0 1 o
0000 1 0 0 o 0 o0 1
0000 0 1 0
0000 0 0 1

From this is it easy to work out the inproducts. For example, the inproduct matrix of
the second component is given by

x(9i,95) | 90 910
99 1 -1
910 -1 0

whence the corresponding componentbért;,(z) has the following form

® @)
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Calculating all inproduck (g, g;) for 1 < ¢, 7 < 8 we find that the other component
of chartgy,(z) has the following form

where every double arrow means 'one arrow in each direction’.

It is an interesting exercise to compute the charts of other smooth algebras, such as
those coming from universal localizations of path algebras (as in the compactification
of PSLy(Z)). Inthe PSLy(Z)-case one can show that every chart of such a universal
localization is a subquiver ofhartpgr,(z), Mainly because in the bipartite quiver
associated tdS L2 (Z) there is only one arrow between a left and a right vertex. For
example, for each of the three universal localization& athe chart is of the form

Sl - e

A more interesting example is for the components of the bipartite g@va&ssociated
to GL2(Z) which is
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For the second component, létbe the universal localization of the path algebra at the
matrix with natural notation

Bss 0
0 Bsy
A= 1 2
By P
Bsy' Bss

then we only have to satisfy the numerical condition
2a5 = b3 + by + 2bs

and not the two extra conditions coming from the requirement that on the left and right
hand side there must be the samgrepresentation. Hence, in addition to the gener-
atorsgg andg; the component semigroupmp A has the two additional generators
(for dimensionn = 4) g13 andgy4

‘ n ‘ as ‘ b3 b4 b5
gz |41 212 0 1
g |2]1]1 1 0
guld|l 20 2 1
giol2]1 10 0 1

and computing the inproducts one finds tha&rt 4 has the following shape

o0

DR

If B is the universal localization of the path algebra of the first component at the matrix

By 0 Bsi 0
0 Bso 0 Byo

Big Bss Bss 0

Big B 0 By

thencomp B has, in addition to th8 generatorg, . .., gs of comp GLy(Z) the addi-
tional two generatorg;; andg;,
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and computing all inproducts gives us thatrt g has the form, also depicted in the
fronti-piece

chartp

which is a non-symmetric quiver having the interesting property that every vertex has
3 incoming and3 outgoing arrows.

5.2 Constructing simples

What can we do with the chart of a smooth algebra? To start it gives us a way to
construct nearly all representations of the smooth algebra. Let us sketch the general
procedure and then work it out in the special cas®6f.,(Z)-representations.

Lety € comp A, thena can be written as an integral combination of the generators

{7, ., =gen A
Y=a1m+ ... Fapvk

giving us a dimension vecter = (a4, ..., ay) Of the chartchart 4. Let S; be simple
A-representations imep. A, then by construction of the chart, we see that we can
identify

rep,, charty = Extl (M, M) with M=S{"o...087"

the space of self-extensions of a pomt € rep., A and this identification is one as
GL(a) = Stab(M)-modules.

The space of self-extensions has another interpretation in terms 6fiihestructure
onrep., Awheren = |y|. LetO(M) be theGL,-orbit of M in rep. A, then because
Stab(M) = GL(a)) we have the followindg7 L(a)-modules

T rep., A, the tangent space it/ to the componentep, A
TyvO(M), the tangent space il to the orbitO (M)
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and ag7 L(«) is a reductive group the subspdtg O(M) is a directG'L(«)-summand
of T rep., A and the quotient, that is thrrmal space to the orbit

T'n rep., A

Nar = 7 000

~ Ext' (M, M) = rep,, chart

where the isomorphism is one Stab(M) = GL(«)-modules.

Becaused is a smooth algebra we know that the componest, A is smooth inM
and therefore we can apply thena slice theoremvhich asserts that locally around
the orbitO(M) the GL,,-structure ofrep., A looks like that of the fiber bundle

GL,, xL@ rep, charty

where ’'locally’ means in thétale (or if you want the analytic) topology. All this sounds
pretty scary so let us work it out in the case®f L»(Z) of which we calculated the
chart to be of the form

chartpSLQ(Z) = c /;:%\\
61 Ci2
//016C21\\

Cse { Ces C3a | Cas
\ C54C43 @
O\
AN /
Css \/ C3y

where theg; are the generators corresponding to the six one-dimensional simple
PSLy(Z)-representationsS;, corresponding to the quiver representations

<N
—

Take the componentep., PSLy(Z) containing the semi-simple representation

M = SP% @ S99 @ 59 @ 5P @ SP* @ Sg°



day 5. Charts & Simples 71

that isy = (a1 + as + as,a2 + a4 + ag,a1 + ag, a2 + a5, a3 + ag) and M is the
PSLy-representation corresponding to the quiver representation

with the B;; block-matrices, each block of sizg x a, for the appropriate:, v
la, O 0} [0 15, O

0 0 O
BH:[O 0 0 3212{ }

0 0 14

o 0 o ~[la, 00 oo o
Bl?‘[o Lo, 0} 322_[0 0 o} B32_[0 0 1]

Clearly, asrep, @ is an affine space, the tangent spdce rep, PSL2(Z) =

Ty rep, @ can be identified withrep, Q. The stabilizer subgroup ol is
GL(a) = GL,, x ... x GL(ag). To compute the components of the tangent space in
M to the orbit, takelie(GL(a)) as the set of matrices

Ay Az Asgs Ay Agy Ay A Au AL Asg A, Asg
A1 As Ass|@ A As A |® Ay A P Asy Al @ A Al
As1 Asz  As Ago Ags  Ag 4 5 6

and hence the tangent space to the orbit is computed using the actidn9j on the
quiver-representations, giving for example for g -arrow

) 1(11 0 0 Ay Az Asgs
i bl bl o i Bl 5 )
s 41 4 0 0 1 As1 Asz  As

which is equal to

la, 0 0O np A — Ay —Ais —Ags
0O 0 O Ay 0 0

and thee-components of3s1, B3y, Bia, Bao resp. Bas.

0 0 Ass ]

Boy - —Az Az — Ay —Ass
| —As1 —Ass A5 — Af

B : { 0 Ags 0

0 Ag 0 ]

Bis Ay — Ay —Ay —Ay
Bl oAy Ay - A —Ag

Baz { A 00
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[0 0 Ay
320 _Agy —Ags A — Al

Hence, the only non-zero blocks correspond precisely to the matrices in
rep,, chpgsr,(z) Which can therefore be identified with the normal space to the orbit.
So, representations of the forld + N, are determined by the matrices

B

|14 0 0] . [C12 C3 0
Bu | 0 O Csa B = 0 0 1]

[0 1, 0] _[Ca 0 Gl
Bz 1Ci6 0 Cisg] Brz = |0 1, O |

[y, 0 0] _[Cas Cuz 0]
Bar |0 Cus Ces) B2=179" L]

and the Luna slice theorem asserts that every representatiep jn”.S Lo (Z) nearM

can be brought in this form. In fact, there is a lot more to be said about the connection
between representations of a smooth algebra and representations of its chart. We state
these facts here in the special casé’6L,(Z) but they hold in general.

Theorem 5.10 Lety = a1 g1 +. . .+asgs thenthereis &' L,, (n = >, a;)-equivariant
étale isomorphism on Zariski open subsets between

GL, x® rep chpsr,(z) and  rep PSL»(Z)

wherea = (aq,...,a¢) and the correspondence is given by

(9, V) =g (M+V) where M=S7"a&...0S55%

andrep, chpgr,(z) is identified with the normal space to the orbitid. Explicitly,
to a representatiofCls, . . ., C1) in rep,, chpgy,(z) corresponds the-dimensional
representation’SLy(Z) — GL,(C)

1 0 1(11 +ay 0 0
o | atastas and 7+— B! 0 Plastas 0 B
0 71a2+a4+a6 0 0 P21 i
az-rtae
whenever the following matrix is invertible
lay O 0 Ca 0 Cg
0 Cs Css 0 15 O

g |C2 C 0 L, 0 0
0 0 1, 0 Cy5 Ces
0 1, 0 Ch Cu3 0
016 0 056 0 0 1(16

Under this correspondence, a simple chart representation corresponds to a simple
PSLy(Z) representation.

Moreover, two simple chart representations determine isomorBi€,(Z) represen-
tations if and only if all their traces along oriented cycles in the chart are the same
(hence these can be viewed as generalized characters) arid the dimension vector
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of a simple chart representation, then the dimension of the quotient variety parametriz-
ing isomorphism classes gfdimensionalPS L, (Z)-representations is equal to

dim issy PSLy(Z) =1 — Xen(ov, @)

In particular, if we have representants of isoclassesvedimensional simple chart
representations, then we have representants of isoclasses of sifile(Z)-
representations neat/.

In order for this result to be useful, we need a classification of all dimension vectors of
simple quiver representations. Such a classification is known

Theorem 5.11 « = (dy,...,dx) € simpCQ if and only if one of the following two
cases holds

1. suppa = Ay, the extended Dynkin quiver dnvertices with cyclic orientation
andd; =1forall1<i<k

s O,
EN
O—)

2. suppa # Ay Then,suppa is strongly connected (meaning that any pair of
vertices belongs to an oriented cycle) and forlakk i < k£ we have

{m(a,en <0

XQ (eia Oé) S 0
In either casesimpCQ is a cone incompCQ = N,
Applying this in the case aPSL2(Z) we deduce

Theorem 5.121f v = aig1 + ... + aegs, thenrep, PSLy(Z) contains a simple
representation if and only if

a; < a;—1+ a1
where subscripts are taken moduio The only exceptional case is wheapp(a) =
{v;, v;+1} in which case the two non-zero components afiust be equal ta.

So how can we use this to get at the promised simple representations of the third braid
group Bs. Recall thatB; was generated by the two elementary braids
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and the defining relation dB; is the Yang-Baxter equation
010201 = 020109

For the braidsS = oi0501 andT = o105 We see thatl = S? = 79 is a central
element ofB3 and the quotient

B3/(C)=(0=8,7=T|0*>=1=7% =7y x 73 = PSLy(Z)

Because the central elemett acts by a non-zero scalar on every simpbg-
representation we see that every simpl§ L, (Z)-representation determines (and is
determined by) a one-parameter family of simplerepresentations. Finally, to get at
matrices satisfying the Yang-Baxter equation we have to recall that

o1 :T_lS and 02 :ST_l

These facts allow us to determine nearly all simBlgrepresentations in any dimen-
sion!

Theorem 5.13 Consider the quiver (which is the chart BIS L, (Z))

chart =
PSLa(Z) 061/ \016

and construct from a representatidin = (C;;) € rep, chartpgr,z) With a =
(a1,...,a6) then x n matrix (wheren = 3. a;)

1a1 0 0 021 0 061
0 C3 Csy 0 1, O

Ciza Csa 0 1, O 0
0 0 14 0 Ci Cgs

016 0 056 0 0 Lls

By =

Then, for any non-zero scalare C* we have that

1¢11+a4 0 0 1 0
o1—=AB7Y | 0 pPlayias 0 B { MSWS )
0 0 P1a3+a5 —taz+taystag
1al+a3+¢15 0 -1 1a1+a4 2 0 0
o9 A 0 . :| B 0 P ]-a2+a5 0 B
aaraatas 0 0 p1a3+a6

is ann-dimensional representation of the third braid groizg.
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If for all ¢ modulo6 we have that; < a;_1+a;41 then this representation is simple for
sufficiently general’ and any sufficiently general simptedimensional representation
of B3 (meaning a Zariski open subset of simples) can be conjugated to one of this form.

Finally, if we have representants of isomorphism classes of simplienensional rep-
resentations oéhart pgy,(z), then the correspondings-representations classify the
isomorphism classes of simplg-representations, finite to one.

The methods we used to construct these simple representations are general, hence also
for GL2(Z) we can use its chart to construct nearly all simple representations (at least
in principle).



