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INTRODUCTION

Let us take a hopeless problem, motivate why something like non-commutative alge-
braic geometry might help to solve it, and verify whether this promise is kept.

Suppose we want to know all solutions in invertible matrices to the braid relation (or
Yang-Baxter equation)

XYX = Y XY

All such solutions (for varying size of matrices) form an additive Abelian category
rep B3, so a big step forward would be to know all its simple solutions (that is, those
whose matrices cannot be brought in upper triangular block form). A literature check
shows that even this task is far too ambitious. The best result to date is the classification
due to Imre Tuba and Hans Wenzl of simple solutions of which the matrix size is at
most5.

For fixed matrix sizen, finding solutions inrep B3 is the same as solving a system
of n2 cubic polynomial relations in2n2 unknowns, which quickly becomes a daunting
task. Algebraic geometry tells us that all solutions, sayrepn B3 form an affine closed
subvariety ofn2-dimensional affine space. If we assume thatrepn B3 is a smooth
variety (that is, a manifold) and if we know one solution explicitly, then we can use
the tangent space in this point to linearize the problem and to get at all solutions in a
neighborhood.

So, here is an idea : assume thatrep B3 itself would be a non-commutative manifold,
then we might linearize our problem by considering tangent spaces and obtain new
solutions out of already known ones. But, what is a non-commutative manifold? Well,
by the above we at least require that for all integersn the commutative varietyrepn B3

is a commutative manifold.

But, there is still some redundancy in our problem : if(X,Y ) is a solution, then so
is any conjugated pair(g−1Xg, g−1Y g) whereg ∈ GLn is a basechange matrix. In
categorical terms, we are only interested in isomorphism classes of solutions. Again, if
we fix the sizen of matrix-solutions, we consider the affine varietyrepn B3 as a variety
with aGLn-action and we like to classify the orbits of simple solutions. Ifrepn B3

is a manifold then the theory of Luna slices provides a method, both to linearize the
problem as well as to reduce its complexity. Instead of the tangent space we consider
the normal spaceN to theGLn-orbit (in a suitable solution). On this affine space,
the stabilizer subgroupGL(α) acts and there is a natural one-to-one correspondence
betweenGLn-orbits inrepn B3 andGL(α)-orbits in the normal spaceN (at least in
a neighborhood of the solution).

So, here is a refinement of the idea : we would like to viewrep B3 as a non-
commutative manifold with a group action given by the notion of isomorphism. Then,
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in order to get new isoclasses of solutions from a constructed one we want to reduce
the size of our problem by considering a linearization (the normal space to the orbit)
and on it an easier isomorphism problem.

However, we immediately encounter a problem : calculating ranks of Jacobians we
discover that alreadyrep2 B3 is not a smooth variety so there is not a chance in the
world thatrep B3 might be a useful non-commutative manifold. Still, if(X,Y ) is a
solution to the braid relation, then the matrix(XYX)2 commutes with bothX andY ,
for

(XYX)2X = (XYX)(XYX)X = (XYX)(Y XY )X
= X(Y XY )(XYX) = X(XYX)(XYX)

= X(XYX)2

If (X,Y ) is a simple solution, this means that after performing a basechange,C =
(XYX)2 becomes a scalar matrix, sayλ61n. But then,(X ′, Y ′) = (λ−1X,λ−1Y ) is
a solution to

X ′Y ′X ′ = Y ′X ′Y ′ and (X ′Y ′X ′)2 = 1

and all such solutions form a non-commutative closed subvariety, sayrep Γ of rep B3

and if we know all (isomorphism classes of) simple solutions inrep Γ we have solved
our problem as we just have to bring in the additional scalarλ ∈ C∗.

Here we strike gold :rep Γ is indeed a non-commutative manifold. This can be seen
by identifyingΓ with one of the most famous discrete infinite groups in mathematics :
the modular groupPSL2(Z). The modular group acts by M̈obius transformations on
the upper half plane and this action can be used to writePSL2(Z) as the free group
productZ2∗Z3. Finally, using classical representation theory of finite groups it follows
that indeed allrepn Γ are commutative manifolds (possibly having many connected
components)! So, let us try to linearize this problem by looking at its non-commutative
tangent space, if we can figure out what this might be.

Here is another idea (or rather a dogma) : in the world of non-commutative manifolds,
the role of affine spaces is played byrep Q the representations of finite quiversQ. A
quiver is just on oriented graph and a representation of it assigns to each vertex a finite
dimensional vector space and to each arrow a linear map between the vertex-vector
spaces. The notion of isomorphism inrep Q is of course induced by base change
actions in all of these vertex-vector spaces.

Now, can we assign such an non-commutative tangent space, that is arep Q for some
quiverQ, to rep Γ? As Γ = Z2 ∗ Z3 we may restrict any solutionV = (X,Y ) in
rep Γ to the finite subgroupsZ2 andZ3. Now, representations of finite cyclic groups
are decomposed into eigen-spaces. For example

V ↓Z2= V+ ⊕ V−

whereV± = {v ∈ V | g.v = ±v} with g the generator ofZ2. Similarly,

V ↓Z3= V1 ⊕ Vρ ⊕ Vρ2

whereρ is a primitive3-rd root of unity. That is, to any solutionV ∈ rep Γ we have
found5 vector spacesV+, V−, V1, Vρ andVρ2 so we would like them to correspond to
the vertices of our conjectured quiverQ.



Contents 5

What are the arrows ofQ, or equivalently, is there a natural linear map between the
vertex-vector spaces? Clearly, as

V+ ⊕ V− = V = V1 ⊕ Vρ ⊕ Vρ2

any choice of two bases ofV (one compatible with the left-side decomposition, the
other with the right-side decomposition) are related by a basechange matrixB which
we can decompose into six blocks (corresponding to the two decompositions in2 resp.
3 subspaces

B =

B11 B12

B21 B22

B31 B32


which gives us6 linear maps between the vertex-vector spaces. Hence, toV ∈
rep Γ does correspond in a natural way a representation of dimension vectorα =
(a1, a2, b1, b2, b3) (wheredim(V+) = a1, . . . , dim(Vρ2) = b3) of the quiverQ which
is of the form /.-,()*+b1

'&%$ !"#a1

B11

33hhhhhhhhhhhhhhhhhhhhhhhh
B21

++VVVVVVVVVVVVVVVVVVVVVVVV

B31

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

/.-,()*+b2

'&%$ !"#a2

B12

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
B22

33hhhhhhhhhhhhhhhhhhhhhhhh

B23 ++VVVVVVVVVVVVVVVVVVVVVVVV

/.-,()*+b3

Clearly, not every representation ofrep Q is obtained in this way. For starters, the
eigen-space decompositions force the numerical restriction

a1 + a2 = dim(V ) = b1 + b2 + b3

on the dimension vector and the square matrix constructed from the arrow-linear maps
must be invertible. However, if both these conditions are satisfied, we can reconstruct
the (isomorphism class) of the solution inrep Γ from this quiver representation by
taking

X = B−1

1b1 0 0
0 ρ21b2 0
0 0 ρ1b3

B [
1a1 0
0 −1a2

]

Y =
[
1a1 0
0 −1a2

]
B−1

1b1 0 0
0 ρ21b2 0
0 0 ρ1b3

B
Hence, it makes sense to viewrep Q as a linearization of, or as a tangent space to,
rep Γ. However, though we reduced the study of solutions of the polynomial sys-
tem of equations to linear algebra, we have not reduced the isomorphism problem in
size. In fact, if we start of with a matrix-solutionV = (X,Y ) of sizen we end up
with a quiver-representation of total dimension2n. So, can we construct some sort of
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non-commutative normal space to the isomorphism classes? That is, is there another
quiverQ′ whose representations can be interpreted as normal-spaces to orbits in certain
points?

Here is the construction of this normal space or chartchartΓ. The sub-semigroup
of Z5 (all dimension vectors ofQ) consisting of those vectorsα = (a1, a2, b1, b2, b3)
satisfying the numerical conditiona1 + a2 = n = b1 + b2 + b3 is generated by six
dimension vectors, namely those of the6 non-isomorphic one-dimensional solutions in
rep Γ

S1 = ��������1

��������1

1
44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

!!DD
DD

DD
DD

DD
DD

DD
DD

DD

��������0

��������0

==zzzzzzzzzzzzzzzzzz

44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

��������0

S2 = ��������0

��������0

44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

!!DD
DD

DD
DD

DD
DD

DD
DD

DD

��������1

��������1

==zzzzzzzzzzzzzzzzzz
1

44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

��������0

S3 = ��������0

��������1

44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

1

!!DD
DD

DD
DD

DD
DD

DD
DD

DD

��������0

��������0

==zzzzzzzzzzzzzzzzzz

44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

��������1

S4 = ��������1

��������0

44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

!!DD
DD

DD
DD

DD
DD

DD
DD

DD

��������0

��������1

1

==zzzzzzzzzzzzzzzzzz

44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

��������0

S5 = ��������0

��������1

44hhhhhhhhhhhhhh
1

**VVVVVVVVVVVVVV

!!DD
DD

DD
DD

DD
DD

DD
DD

DD

��������1

��������0

==zzzzzzzzzzzzzzzzzz

44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

��������0

S6 = ��������0

��������0

44hhhhhhhhhhhhhh

**VVVVVVVVVVVVVV

!!DD
DD

DD
DD

DD
DD

DD
DD

DD

��������0

��������1

==zzzzzzzzzzzzzzzzzz

44hhhhhhhhhhhhhh
1

**VVVVVVVVVVVVVV

��������1

In particular, in any componentrepα Q containing an open subset of representations
corresponding to solutions inrep Γ we have a particular semi-simple solution

M = S⊕g11 ⊕ S⊕g22 ⊕ S⊕g33 ⊕ S⊕g44 ⊕ S⊕g55 ⊕ S⊕g66

and in particularα = (g1 +g3 +g5, g2 +g4 +g6, g1 +g4, g2 +g5, g3 +g6). The normal
space to theGL(α)-orbit of M in repα Q can be identified with the representation
spacerepβ Q

′ whereβ = (g1, . . . , g6) andQ′ is the quiver of the following form

'&%$ !"#g1

C16vv

C12

��'&%$ !"#g6

C61
66

C65

��

'&%$ !"#g2
C21

WW

C23

��'&%$ !"#g5

C56

GG

C54

��

'&%$ !"#g3

C32

GG

C34vv'&%$ !"#g4
C45

WW
C43

66

and we can even identify how the small matricesCij fit into the 3 × 2 block-
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decomposition of the base-change matrixB

B =


1a1 0 0 C21 0 C61

0 C34 C54 0 1a4 0
C12 C32 0 1a2 0 0
0 0 1a5 0 C45 C65

0 1a3 0 C23 C43 0
C16 0 C56 0 0 1a6


Hence, it makes sense to callQ′ the non-commutative normal space to the isomorphism
problem inrep Γ. Moreover, under this correspondence simple representations of
Q′ (for which both the dimension vectors and distinguishing characters are known
explicitly) correspond to simple solutions inrep Γ.

Having completed our promised approach via non-commutative geometry to the clas-
sification problem of solutions to the braid relation, it is time to collect what we have
learned. Letβ = (g1, . . . , g6) with n = γ1 + . . . + γ6, then for every non-zero scalar
λ ∈ C∗ the matrices

X = λB−1

1g1+g4 0 0
0 ρ21g2+g5 0
0 0 ρ1g3+g6

B [
1g1+g3+g5 0

0 −1g2+g4+g6

]

Y = λ

[
1g1+g3+g5 0

0 −1g2+g4+g6

]
B−1

1g1+g4 0 0
0 ρ21g2+g5 0
0 0 ρ1g3+g6

B
give a solution of sizen to the braid relation. Moreover, such a solution can be simple
only if the following numerical relations are satisfied

gi ≤ gi−1 + gi+1

where indices are viewed modulo6. In fact, if these conditions are satisfied then a
sufficiently general representation ofQ′ does determine a simple solution inrep B3

and conversely, any sufficiently general simplen size solution of the braid relation can
be conjugated to one of the above form. Here, by sufficiently general we mean a Zariski
open (hence dense) subset.

That is, for all integersn we have constructed nearly all (meaning a dense subset)
simple solutions to the braid relation. As to the classification problem, if we have
representants of simpleβ-dimensional representations of the quiverQ′, then the corre-
sponding solutions(X,Y ) of the braid relation represent different orbits (up to finite
overlap coming from the fact that our linearizations only give an analytic isomorphism,
or in algebraic terms, ańetale map). Such representants can be constructed for low
dimensionalβ. Finally, our approach also indicates why the classification of braid-
relation solutions of size≤ 5 is easier : from size6 on there are new classes of simple
Q′-representations given by going round the whole six-cycle!
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GROUPS & CHARACTERS

Today, we will introduce some interesting arithmetical groups and the third braid group
which will be our principal examples. Virtually nothing is known about the finite di-
mensional representations of these groups. For example, the best result on the third
braid group is the classification of all simple representations of dimension≤ 5. We
will see that the arithmetical groups can be constructed from finite groups and recall
the representation theory of finite groups. However, this character theory does not ex-
tend immediately to discrete infinite groups as the easy example of the group of integers
already clarifies. Non-commutative algebraic geometry will provide a handle to study
the finite dimensional representations of such groups.

1.1 Arithmetical groups

We will focus attention to the following four groups of interest

SL2(Z) ⊂ - GL2(Z)

PSL2(Z)

??
�� B3

GL2(Z) is thegeneral linear groupover the integersZ, that is, it consists of all in-
vertible 2 × 2 matrices with integer coefficients. As±1 are the only units inZ we
have

GL2(Z) = {
[
a b
c d

]
| ad− bc = ±1 }

matrix-multiplication turnsGL2(Z) into a non-Abelian infinite group.

SL2(Z) is thespecial linear groupover the integersZ. That is, it is the subgroup of
GL2(Z) consisting of those invertible2× 2 matrices with determinant equal to1

SL2(Z) = {
[
a b
c d

]
| ad− bc = 1 }

This group has a finite central (hence normal) subgroup of order2 namely

Z2 = 〈
[
1 0
0 1

]
,

[
−1 0
0 −1

]
〉
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and the correspondingquotient groupSL2(Z)/Z2 is called themodular groupand is
denotedPSL2(Z).

B3 is thethird braid group. That is,B3 is the group of all3-string braids up to topo-
logical equivalence. It is generated by the twoelementary braids

σ1 σ2

Multiplication is induced by concatenating braids, that is placing them on top of an-
other. Hence, any3-braid can be written as a noncommutative word inσ1 andσ2 but
some of these words represent topologically equivalent braids. For example, the braids

σ1σ2σ1 σ2σ1σ2

can be transformed into each other by pulling so we have an identity (theYang-Baxter
equation)

σ1σ2σ1 = σ2σ1σ2

in B3. In fact, Emil Artin proved that this is the only non-trivial relation amongσ1 and
σ2 soB3 has a presentation

B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2 〉

Before we can explain the epimorphismB3
-- PSL2(Z) we need to find presenta-

tions of the arithmetic groupsGL2(Z), SL2(Z) andPSL2(Z).

Consider the following three matrices inGL2(Z)

U =
[
0 −1
1 0

]
V =

[
0 1
−1 1

]
R =

[
0 1
1 0

]
then we claim thatGL2(Z) is generated byU, V andR. Consider the products

C = UV =
[
1 −1
0 1

]
D = V U =

[
1 0
1 1

]
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then by multiplying an arbitrary element ofGL2(Z) with powers ofC andD we obtain
the following matrices

Cn
[
a b
c d

]
=

[
a− nc b− nd
c d

]
and

[
a b
c d

]
Cn =

[
a b− na
c d− nc

]

Dn

[
a b
c d

]
=

[
a b

c+ na d+ nb

]
and

[
a b
c d

]
Dn =

[
a+ nb b
c+ nd d

]
As the determinant of an element inGL2(Z) is ±1 it follows that the entries in each
column (resp. row) are coprime integers. By multiplying with powers ofC andD on
the right we can reduceamoduloc as well ascmoduloa and this procedure will finish
if one of them is equal to0 and the other is equal to±1 (use coprimeness ofa andc).
We may assumec = 0 (otherwise, multiply byU on the left) and hence the matrix is
of the form [

±1 b′

0 d′

]
whence d′ = ±1

By multiplying this matrix on the right by a power ofC we can get rid ofb′ and obtain
the matrix [

±1 0
0 ±1

]
∈ { id, UR,RU,U2 }

so working backwards we have shown that an arbitrary element ofGL2(Z) can be
written as a word inU, V andR. Clearly, there are relations between these generators
and we aim to prove that a presentation ofGL2(Z) is given as

GL2(Z) = 〈U, V,R | U2 = V 3, U4 = R2 = (RU)2 = (RV )2 = id 〉

Similarly, one proves thatSL2(Z) is generated by the matricesU andV . Indeed, we
used only multiplications byU or powers ofC andD to reduce the matrix to the form[

±1 0
0 ±1

]
But as the determinant has to be equal to1 only the following cases are possible[

−1 0
0 −1

]
= U2 and

[
1 0
0 1

]
= id

and below we will prove that in factSL2(Z) has a presentation

SL2(Z) = 〈 U, V | U2 = V 3, U4 = id 〉

To prove that the obvious relations among the generators are the only ones, we need
to study the action ofSL2(Z) and of the modular groupPSL2(Z) on the upper-half
planeH which also clarifies the interest of these groups for number theory as well as
the study of Riemann surfaces.

It is a classical fact that the groupSL2(Z) acts on the upper half of the complex num-
bers

H = { z ∈ C | Im z > 0 }
by Möbius transformations

g =
[
a b
c d

]
: H g- H by z 7→ az + b

cz + d
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One can compute thatg mapsH toH by verifying that

Im g(z) =
Im z

|cz + d|2

Consider theunit-circle S1 = {z ∈ C | |z| = 1 } then one can calculate that the
elementg ∈ SL2(Z) carriesS1 ∩H to the set

(∗) =

{
{ z ∈ H | |z − ac−bd

c2−d2 | = | 1
c2−d2 | } if c2 6= d2

{ z ∈ H | Re z = ac− 1
2 } if c2 = d2 = 1

Consider the arc
L = { eiθ | π

3
≤ θ ≤ π

2
}

as an oriented edge ��������i // ��������ρ

whereρ = 1
2 + i

√
3

2 . Define the setT = SL2(Z)L then we claim thatT is a tree. From
(∗) it follows that [

a b
c d

]
L ∩ L ⊂ {i, ρ}

whenceT is a graph. Moreover, it follows from(∗) that the only point ofT on the
imaginary axis is the pointi (observe that0 6∈ H). The only translatesgL with g ∈
SL2(Z) containingi areL andUL therefore there are no closed circuits inT passing
throughL just once. IfT would have a closed circuit then one can translate it by a
suitable element ofSL2(Z) so that it includesL and therefore there is no such circuit.
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To prove thatT is a tree it only remains to show thatT is connected. AsSL2(Z) is
generated byU andV it is also generated byU and

V −1 =
[
1 −1
0 1

]
which fixesρ. Hence,

L ∪ UL and L ∪ V −1L

are connected and hence so isSL2(Z)L.

L is a fundamental domainfor the action ofSL2(Z) on the treeT as by definition of
T , L contains one point in each orbit and we have seen that it does not contain two
points in the same orbit. Let us compute thestabilizer subgroups

Gi = {
[
a b
c d

]
| ai+ b

ci+ d
= i}

which gives the conditionai+ b = di− c whence

Gi = {
[
a b
−b a

]
| a2 + b2 = 1} = 〈 U =

[
0 −1
1 0

]
| U4 = id〉

In a similar way we find that the stabilizer subgroup ofSL2(Z) atρ is

Gρ = {
[
a b
c d

]
| aρ+ b

cρ+ d
= ρ}

giving after some calculation that

Gρ = {
[
b+ d b
−b d

]
| b2 + bd+ d2 = 1 } = 〈 V =

[
0 1
−1 1

]
| V 6 = id }

It follows that the stabilizer subgroupGL of L, that is those elementsg ∈ SL2(Z)
fixing L is the intersection

GL = Gi ∩Gρ = 〈
[
−1 0
0 −1

]
= U2 = V 3 〉

Definition 1.1 If G1 andG2 are two finite groups having a common subgroupH,
then theamalgamated free productG1 ∗H G2 is the group having group morphisms

Gi
ci- G1 ∗HG2 satisfying the universal property : for any pair of group morphisms
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G1
f- G andG2

g- G such thatf |H = g|H there is a uniquely determined
group morphismh making the diagram commute

G

G1
c1-

f

-

G1 ∗H G2

∃!h

6

�c2 G2

�

g

H
⊂

-
�

⊃

The amalgamated productG1 ∗H G2 is constructed to be the set of all words

h.s
(a)
i1
s
(a+1)
i2

s
(a+2)
i3

. . . s
(a+k)
ik

h ∈ H, k ∈ N

and where{1, s(c)i } is a set of right coset representatives aGc moduloH and (a +
j) = (a + j mod2). There is a natural group structure on this set making it into the
amalgamated free product.

If H = {id} is the trivial subgroup thenG1 ∗H G2 is the free productand will be
denoted byG1 ∗G2.

The upshot of all our calculations above is that we can prove :

Theorem 1.2 With notations as before we have :

1. LetZ2 ' 〈U2〉 = 〈V 3〉, then

SL2(Z) ' 〈U | U4 = id 〉 ∗Z2 〈 V | V 6 = id 〉 ' Z4 ∗Z2 Z6

whence
SL2(Z) ' 〈 U, V | U2 = V 3, U4 = 1 〉

2. PSL2(Z) ' Z2 ∗ Z3

Proof. As PSL2(Z) = SL2(Z)/(U2 = V 3) the second statement follows from the
first. As for the first, by the universal property there is a uniquely determined group
morphism

〈U | U4 = id 〉 ∗Z2 〈 V | V 6 = id 〉 - SL2(Z)

which is surjective as the images ofU andV generateSL2(Z). Any element in the
kernel would give a relation inSL2(Z) of the form

U2 = V 3 = U j .V i1 .U.V i2 .U . . . U.V il .Uk j, k ∈ {0, 1}, iu ∈ {1, 2}

which would produce a nontrivial circuit in the tree, a contradiction. �
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Recall that Artin’s theorem asserted thatB3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉. Consider
the braids

S = σ1σ2σ1 and T = σ1σ2

From the Yang-Baxter equation we obtain the relations

T−1S = σ1 and ST−1 = σ2

whence the braid groupB3 is also generated byS andT . Moreover,

S2 = (σ1σ2σ1)(σ2σ1σ2) = (σ1σ2)(σ1σ2)(σ1σ2) = T 3

is acentralelementC in B3 = 〈S, T | S2 = T 3〉. Dividing out the normal subgroup
generated byC we obtain the group

B3/〈C〉 = 〈S, T | S2
= T

3
= id〉 ' Z2 ∗ Z3 ' PSL2(Z)

giving us the claimed epimorphismB3
-- PSL2(Z).

Theorem 1.3 With notations as before we have

GL2(Z) = 〈 U, V,R | U2 = V 3, U4 = R2 = (RU)2 = (RV )2 = id 〉

Or, alternatively, ifD2 = 〈R,U2〉 = 〈R, V 3〉, then

GL2(Z) = 〈U,R | U4 = R2 = (RU)2 = id〉 ∗D2 〈V,R | V 6 = R2 = (RV )2 = id〉
' D4 ∗D2 D6

whereDn is the dihedral group of order2n.

Proof. In order to get the defining relations ofGL2(Z) from those ofSL2(Z) we only
need to know how the extra generatorR operates on the generators ofSL2(Z) and the
lowest power ofR belonging toSL2(Z). AsR /∈ SL2(Z) we have to add the relations

R2 = id RUR−1 = U−1 RV R−1 = V −1

to those ofSL2(Z) to complete the set. �

Recall that thedihedral groupDn is the symmetry group of a regularn-gon, soD4 is
the symmetry group of the square andD6 that of a hexagon.

1.2 Representation theory

If G is a group, ann-dimensional representationof G is a group morphism

G
φ- GLn(C)

and twon-dimensional representations are said to beisomorphicif they are conjugate,
that is if the diagram below commutes

G
φ- GLn(C)

GLn(C)

ψ

?�
m
.m
−
1
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that is, there is an invertible matrixm ∈ GLn(C) such that for allg ∈ G we have
ψ(g) = mφ(g)m−1. In caseG is afinite group, all relevant information about repre-
sentations is contained in thecharacter tableof G.

For example, letG = D6 be the symmetry group of the hexagon and order the vertices
clockwise1 to 6

◦

◦1111111111

◦

◦















◦1
11

11
11

11
1

◦













Let V = (1, 2, 3, 4, 5, 6) be the rotation over60o andR = (2, 6)(3, 5) is flipping over
the line through the vertices1 and4. The character table is

D6 1a 2a 2b 6a 3a 2c
# 1 3 3 2 2 1

id R V R V V 2 V 3

χ1 1 1 1 1 1 1
χ2 1 −1 −1 1 1 1
χ3 1 −1 1 −1 1 −1
χ4 1 1 −1 −1 1 −1
χ5 2 0 0 1 −1 −2
χ6 2 0 0 −1 −1 2

In a character table of a finite groupG, the columns correspond to the differentcon-
jugacy classesin G. Recall that two elementsg, h ∈ G are said to be conjugated if
there is anx ∈ G such thatxgx−1 = h. Observe that the number of elements in the
conjugacy classCg of g

# Cg =
# G

# Zg(G)

whereZg(G) = {h ∈ G | gh = hg}.

In the example, one verifies that there are6 conjugacy classes. One of elements of order
6 containing2 elements{V, V −1}, one of two elements of order3 namely{V 2, V −2}
and three conjugacy classes of order two elements : one containing the single (central)
elementC = V 3, the two other classes contain each3 elements : the three flips over
lines through midpoints of edges (type2b) resp. flips over lines through antipodal
points (type2a). The rows of a character table correspond to the non-isomorphicsimple
representationsof G. Observe that a representationφ : G - GLn(C) defines a
G-action on the column vectorsVφ = Cn by the ruleg.v = φ(g)v. A G-action on a
finite dimensional vector spaceV is a mapG×V - V satisfying for allv, v′ ∈ V ,
all g, h ∈ G and allλ ∈ C

id.v = v , g.(h.v) = (gh).v , g.(v + v′) = g.v + g.v′ , g.(λv) = λg.v

Observe thatφ andψ are isomorphicn-dimensional representations ofG if and only
if Vφ andVψ only differ by a basechange. A representationφ is said to besimpleif
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and only ifVφ does not have a proper linear subspaceW ⊂ Vφ such thatg.w ∈W for
all g ∈ G and allw ∈ W . It is a fact that the character table is a square matrix, that
is, the number of non-isomorphic simple representations of a finite groupG is equal to
the number of its conjugacy classes.

In the example, we haveD6 = 〈V,R | V 6 = R2 = (RV )2 = id 〉 and so in every
1-dimensional representationD6

- C∗ (which is necessarily simple) we must have
R 7→ ±1 and then the last identity also forcesV 7→ ±1 whence there are precisely4
one-dimensional (simple) representations ofD6 : χ1, χ2, χ3 andχ4.

There are two non-isomorphic simple2-dimensional representations ofD6 defined by

χ5 : V 7→
[
ζ 0
0 ζ−1

]
R 7→

[
0 1
1 0

]

χ6 : V 7→
[
ζ2 0
0 ζ−2

]
R 7→

[
0 1
1 0

]
where ζ = e2πi/6. As there must be exactly6 non-isomorphic simpleD6-
representations, we have described them all!

The (i, j)-th entry of the character table of a finite group is thecharacterof the j-th
conjugacy classgj ∈ Cj ofG on thei-th simple representationφi : G - GLn(C),
that is

χi(gj) = Tr(φi(gj))

the trace of the matrix giving the action ofgj on Vφi
. In particular, as the identity

element ofG acts trivially on each representation we have thatχi(id) is the dimension
of the simple representation. The characters of the identity are classically written in
the first column of the character table. Observe that sinceTr(X) = Tr(mXm−1) for
anym ∈ GLn(C) we have that the character is aclass function, that is, is the same for
all group elements in the same conjugacy class. Moreover, the class functions over all
simple representations are known to be linearly independent, that is, the square matrix
determined by the character table is invertible!

If φ : G - GLn(C) andψ : G - GLm(C) aren- resp.m-dimensional
representations, then there is ann + m-dimensional representation calledthe direct
sum

φ⊕ ψ : G - GLn+m(C) g 7→
[
φ(g) 0

0 ψ(g)

]
The fundamental theorem on representations of finite groups is that every representa-
tion is completely reducible, that is, every representationφ : G - GLn(C) is
isomorphic

φ ' χ⊕e11 ⊕ χ⊕e22 ⊕ . . .⊕ χ⊕ek

k

where the{χ1, . . . , χk} are the distinct simple representations ofG (in particular,k is
the number of conjugacy classes ofG) and where theei ∈ N are themultiplicitiesof
the simple representations inVφ. This decomposition (that is, the integersei) can be
easily computed using the character-table. Indeed, givenφ : G - GLn(C) we can
compute the character ofφ for any elementg ∈ G (it suffices to take one representant
in each conjugacy class)

χφ = (χφ(g1) = Tr(φ(g1)) , . . . , χφ(gk) = Tr(φ(gk))) ∈ Ck
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which, given the decomposition above must be of the form

χφ = (e1, . . . , ek).CharacterMatrix(G)

and therefore we obtain the multiplicities and hence the decomposition by

(e1, . . . , ek) = χφ.CharacterMatrix(G)
−1

For example, there is an8-dimensionalD6-representationVφ with character

χφ = (8, 0, 0,−1,−1, 8) and as χV .CharacterMatrix(D6)−1 = (1, 1, 0, 0, 0, 3)

this gives us the decomposition into simple representations

φ ' χ1 ⊕ χ2 ⊕ χ⊕3
6

If H is a subgroup of the groupG, we can restrict G-representations toH-
representations. So, letφ : G - GLn(C) be ann-dimensional representation
of G, then the restriction is the composition

φ ↓H : H ⊂ - G
φ- GLn(C)

and hence is ann-dimensional representation ofG. In particular, ifH is a finite group
we have thatφ ↓H is uniquely a direct sum of simpleH-representations.

For example, consider the subgroupH = D2 = 〈C = V 3, R〉 of order4 of D6 which
is an Abelian group isomorphic to theKlein VierergruppeZ2 × Z2. Consequently,
all conjugacy classes consist of just one element and hence there must be4 simple
H-representations, each of dimension one. In fact, the character table ofD2 is

D2 1a 2a 2b 2c
# 1 1 1 1

id C R CR

ψ1 1 1 1 1
ψ2 1 −1 −1 1
ψ3 1 −1 1 −1
ψ4 1 1 −1 −1

C = V 3 defines conjugacy class2c in D6 andR conjugacy class2a, but in which
conjugacy class liesCR? Well, as a symmetry of the hexagon,C is point-symmetry
over the center andR is a flip over a line through two anti-podal vertices. But then,
CR is a flip over a line through the midpoints of edges, soCR belongs to conjugacy
class2b of D6. Now, all we have to do to compute the restrictionsχi ↓H is to take
the columns[id, 2c, 2a, 2b] of the character table ofG = D6 and interpret them as
characters ofH = D2-representations. So,

1a 2c 2a 2b
id C R CR

χ1 ↓H 1 1 1 1
χ2 ↓H 1 1 −1 −1
χ3 ↓H 1 −1 −1 1
χ4 ↓H 1 −1 1 −1
χ5 ↓H 2 −2 0 0
χ6 ↓H 2 2 0 0
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giving us the restriction data 

χ1 ↓H ' ψ1

χ2 ↓H ' ψ4

χ3 ↓H ' ψ2

χ4 ↓H ' ψ3

χ5 ↓H ' ψ2 ⊕ ψ3

χ6 ↓H ' ψ1 ⊕ ψ4

However, in case the groupG is infinite (as is the case for the four groups we promise
to study in more detail) it is no longer true that every representation is the direct sum of
simple representations nor that characters determine the representation up to isomor-
phism.

Example 1.4 LetG = Z ' 〈x, x−1〉 then asG is Abelian every simple representation
must be one-dimensional and clearly sending

x 7→ λ ∈ C∗

defines a one-dimensional simple representation.φλ : Z - C∗ and as conjugation
in C∗ is trivial they are non-isomorphic for differentλ, that is

simples(Z) ↔ C∗ = C− {0}

An n-dimensional representationφ : Z - GLn(C) is fully determined by the
imageφ(x) ∈ GLn(C) and if such a representation is isomorphic to a direct sum of
simples, say

φ ' φλ1 ⊕ . . .⊕ φλn

(some possibly occurring more than once) this would mean that there is an invertible
matrixm ∈ GLn(C) such that

mφ(x)m−1 =

λ1 0
...

0 λn


that is,φ is a direct sum of simple representations if and only ifφ(x) is adiagonalizable
matrix. But, we know from theJordan normal formtheorem that not every invertible
n× n matrix is diagonalizable. For example, the2-dimensional representation

φ : Z - GL2(C) x 7→
[
λ 1
0 λ

]
is not the direct sum of two simple representations. In particular, it isnot isomorphic
to thesemi-simple representation

φss : Z - GL2(C) x 7→
[
λ 0
0 λ

]
As Z is Abelian all its conjugacy classes consist of a single elementxi and the corre-
sponding characters are

χφ(xi) = 2λi = χφss
(xi)

whence character cannot distinguish between the two non-isomorphic2-dimensional
representationsφ andφss!
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As the arithmetical groups andB3 are more complicated, we expect similar phenom-
ena. Hence, we have to find another approach to study their finite dimensional repre-
sentations. Here, non-commutative algebraic geometry enters the picture.



day 2

ALGEBRAS & REPRESENTATIONS

If G is a group, itsgroup algebraCG is theC-vector space
∑
g∈G Ceg with a basis

corresponding to the elements ofG and with multiplication linearly induced by the rule

eg.eh = egh

It is easy to verify that this is an associativeC-algebra having a unit element1 = 1.eid.
Moreover,CG is commutative if and only ifG is an Abelian group.

If G is a finite group, then the group algebraCG is a semi-simple algebra, that is
a finite direct sum of full matrix algebras overC. In fact, the character table ofG
indicates which matrix-algebras occur. If the complete set of simpleG-representations
is χ1, . . . , χk having dimensionsn1, . . . , nk, then

CG 'Mn1(C)⊕ . . .⊕Mnk
(C)

so, in particular#G = n2
1 + . . . + n2

k is the sum of the squares of the dimensions of
the simple representations. For example,

CD6 ' C⊕ C⊕ C⊕ C⊕M2(C)⊕M2(C)

As CG is a finite dimensional vector space with aG-action by

G× CG - CG (g, eh) 7→ egh

we know thatCG must decompose asG-representation into a direct sum of simple
representations. In fact, asG-representations,

CG ' χ⊕n1
1 ⊕ . . .⊕ χ⊕nk

k

the distinctχi-components corresponding to the columns of the matrix-component
Mni

(C).

For a group G, we have already seen that ann-dimensional representation

G
φ- GLn(C) corresponds to aG-action on ann-dimensional spaceVφ = Cn.

The latter is the same thing as defining aleft CG-modulestructure onCn which in
turn is the same thing as defining an algebra mapCG - Mn(C) which we can still
denote byφ.

In analogy with the group-case we call an algebra mapCG - Mn(C) an n-
dimensionalrepresentationof the group algebraCG. Hence, there are natural one-
to-one correspondences between
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• n-dimensional representations ofG

• G-actions onCn

• left CG-module structures onCn

• n-dimensional representations ofCG

Moreover, these correspondences preserve the natural notion of isomorphisms in each
of the four settings. This allows us to extend the concept of a finite dimensional repre-
sentation to an arbitraryC-algebra.

2.1 Representation schemes

Commutativeaffine C-algebras, that is the objects of the categorycommalg, are pre-
cisely thecoordinate ringsof affine schemes. Recall that an affine schemeV is deter-
mined by a system of polynomial equations

g1(x1, . . . , xn) = 0
...

...

gr(x1, . . . , xn) = 0

with all gi(x1, . . . , xn) ∈ C[x1, . . . , xn]. The coordinate ring of the affine schemeV
is the quotient algebra

C[V ] =
C[x1, . . . , xn]
(g1, . . . , gr)

and as any affine commutativeC-algebra can be expressed in this way, they are pre-
cisely the coordinate rings of affine schemes.

The set of pointspointsV of an affine schemeV is the set of pointsc = (c1, . . . , cn) ∈
Cn which are solutions to the system of equations, that is, such that

g1(c1, . . . , cn) = 0
...

...

gr(c1, . . . , cn) = 0

However, it is not true in general that the point setpointsV determines the affine
schemeV or the idealI = (g1, . . . , gr) in C[x1, . . . , xn]!

In fact, theHilbert Nullstellensatzasserts that ifJ = (h1, . . . , hs) is another ideal in
C[x1, . . . , xn], with associated affine schemeW , then

pointsW = pointsV iff rad(I) = rad(J)

whererad(I) = {g ∈ C[x1, . . . , xn] | ∃k ∈ N : gk ∈ I} is the radical of the
idealI. Ideals that coincide with their radical are radical (or semi-prime) ideals and the
corresponding affine schemes are calledreducedor affine varieties.

Affine schemesare generalizations of affine varieties so that we have an (anti)-
equivalence between the categorycommalg of all commutative affineC-algebras and
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affine the category of affine schemes. So, what is theaffine schemecorresponding to
C? Formally, it is the schemerepresenting the functor

rep1 C : commalg - sets defined by D 7→ Homcommalg(C,D)

In general, we say that an affine schemeX represents a functor

F : commalg - sets D 7→ F (D)

if and only if there is a natural one-to-one correspondence for everyD ∈ commalg

F (D) ↔ Homcommalg(C[X], D)

which in the case ofrep1 is just a tautology, so by definition, the affine scheme corre-
sponding toC is the geometric objectrep1 C with coordinate ringC[rep1 C] = C.

For those who had a course in commutative algebraic geometry,rep1 C is what is
usually denotedspec C theprime spectrum ofC, that is, the set of all prime ideals of
C which becomes a topological space after endowing it with theZariski topology, that
is, a typical closed set is of the form

V(I) = {p ∈ spec C | I ⊂ p}

for I an ideal ofC. Again, this topological space is not sufficient to reconstructC from
it but if we equip it with astructure sheafOC we can recoverC by taking its global
sections.

We will denote the category of allC-algebras byalg. A C-algebraA is said to be
affine if it is generated as aC-algebra by finitely many elements. For example, if
the groupG is generated by finitely many elements (as is for instance the case for
GL2(Z), (P )SL2(Z) andB3) then the group algebraCG is an affineC-algebra.

If A is a non-commutative affineC-algebra, what is the geometric object associated to
A? A first idea might be to take the same functor

rep1 A : commalg - sets defined by D 7→ Homalg(A,D)

but as any algebra map fromA to acommutativealgebraD factorizes over theAbelian-
ization

Aab =
A

[A,A]
we see thatrep1 A = rep1 Aab and asAab is a commutative affineC-algebra, the
corresponding affine scheme represents the functor and we have

C[rep1 A] = C[rep1 Aab] = Aab

Example 2.1 Take the third braid groupB3 = 〈S, T | S2 = T 3〉 then we have (as the
Abelianization of a group algebra is the group algebra of the Abelianized group)

(CB3)ab =
C[s, t, s−1, t−1]

(s2 − t3)

and hencerep1 CB3 is represented by the affine (smooth) curve

V(x2 − y3)− {(0, 0)} ⊂ C2

which is the cusp minus the singular top.
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However, in this approach we have lost all non-commutative information. So, a second
idea might be to try to represent the functor

repn A : commalg - sets defined by D 7→ Homalg(A,Mn(D))

for any natural numbern ∈ N. In fact, we will show that the functor fromall C-
algebras to sets

alg - sets defined by B 7→ Homalg(A,Mn(B))

is representableby theanti-matrix algebra n
√
A which means that there is a natural

one-to-one correspondence

Homalg(
n
√
A,B) ↔ Homalg(A,Mn(B))

As a consequence, the functorrepn A will be representable by the Abelianization of
the anti-matrix algebran

√
Aab. Clearly, we have to prove all these claims

Definition 2.2 Theanti-matrix algebraof aC-algebraA is the subalgebra

n
√
A = {x ∈ A ∗Mn(C) | aEij = Eija ∀1 ≤ i, j ≤ n}

whereEij are the standard matricesEij = (δkiδlj)k,l ∈Mn(C).

Theorem 2.3 For anyC-algebrasA andB there is a natural one-to-one correspon-
dence

Homalg(A,Mn(B)) ↔ Homalg(
n
√
A,B)

and ifA is affine, so isn
√
A. As a consequence, the functorrepn A is represented by

the affine commutative schemerep1
n
√
Aab with coordinate ring n

√
A.

Proof. We start with a classical result : letMn(C)
φ- R be an algebra map and

denoteφ(Eij) = eij . InR we consider the subalgebra

S = {r ∈ R | eijr = reij ∀i, j}

then we claim thatR 'Mn(S). To begin,we construct an algebra map

R
α- Mn(S) defined by α(r) =

r11 . . . r1n
...

...
rn1 . . . rnn

 whererij =
n∑
k=1

ekirrjk

To begin,rij ∈ S asrijeuv = euvrij because

rijeuv =
n∑
k=1

ekirejkeuv

=
n∑
k=1

ekieejvδuk = euirrjv

euvrij =
n∑
k=1

euvekirejk

=
n∑
k=1

δvkeuirejk = euirrjv
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Moreover,α is indeed an algebra map, for ifα(r)α(s) = (tij)i,j , then

tij =
n∑
k=1

rikskj

=
n∑
k=1

(
n∑
l=1

elirekl)(
n∑

m=1

emksejm)

=
n∑

k,l=1

elirekksejl =
n∑
l=1

elirsejl = α(rs)i,j

We also have an algebra map in the other direction

Mn(S)
β- R defined by

r11 . . . r1n
...

...
rn1 . . . rnn

 7→
n∑

i,j=1

rijeij

This is an algebra map as

tij =
n∑
k=1

rikskj 7→
n∑

i,j=1

n∑
k=1

rikskjeij

(
n∑

i,j=1

rijeij)(
n∑

k,l=1

sklekl) =
∑
i,j=k,l

rikskleil

and one verifies thatα andβ are each other inverses, proving the claim. Now take

n
√
A = {x ∈ A ∗Mn(C) | xEij = Eijx, ∀i, j}

For an algebra mapA
φ- Mn(B) take the unique mapMn(C)

i- Mn(B) send-
ingEij to the standard matrix-elementseij ∈ Mn(B) then we have a uniquely deter-
mined algebra map

A ∗Mn(C)
φ∗i- Mn(B)

which sends the centralizern
√
A to the subring{m ∈Mn(B) : meij = eijm ∀i, j} =

B giving us the desired mapn
√
A - B. Conversely, for an algebra map

n
√
A

ψ- B we have the induced algebra map

A ∗Mn(C) = Mn(
n
√
A)

Mn(ψ)- Mn(B)

and composing this with the natural inclusionA
j- A ∗ Mn(C) we get a map

A - Mn(B). These two constructions are each other inverses and finish the proof.
�

Example 2.4 For the group algebraCB3 of the third braid group andn = 2 we have

2
√

CB3 =
C〈s1, s2, s3, s4, t1, t2, t3, t4〉

(
[
s1 s2
s3 s4

]2

=
[
t1 t2
t3 t4

]3

)
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and hencerep2 CB3 is the affine scheme corresponding to the Abelianization

2
√

CB3ab =
C[x1, x2, x3, x4, y1, y2, y3,4 ]

(f11, f12, f21, f22)

wherefij is the(i, j)-entry of the matrix (with commuting entries)[
x1 x2

x3 x4

]2

−
[
y1 y2
y3 y4

]3

That is, 
f11 = x2

1 + x2x3 − y3
1 − 2y1y2y3 − y2y3y4

f12 = x1x2 + x2x4 − y2
1y2 − y2

2y3 − y1y2y4 − y2y
2
4

f21 = x1x3 + x3x4 − y2
1y3 − y2y

2
3 − y1y3y4 − y3y

2
4

f22 = x2x3 + x2
4 − y1y2y3 − 2y2y3y4 − y3

4

For a general noncommutativeC-algebraA we have natural mapsiA andjAwherejA
satisfies the universal property

A
iA - A ∗Mn(C) = Mn(

n
√
A)

Mn(C)

φ

?
�...........................
∃!Mn(ψ)

Mn(
n
√
Aab)

π

??

jA

-

that for anyC-algebra morphismφ : A - Mn(C) whereC is a commutative
algebra, there is a unique algebra morphismψ : n

√
Aab - C making the diagram

commute. We will give a few applications of these universal maps.

Theorem 2.5 There is an action ofGLn(C) by automorphisms onn
√
A and hence

there is aGLn-action on the affine schemerepn A.

Proof. For anyg ∈ GLn(C) there is an algebra mapcg : Mn(C) - Mn(C) by
conjugation and therefore also an algebra map (using the universal property of algebra
free products)

Mn(
n
√
A) = A ∗Mn(C)

id∗cg- A ∗Mn(C) = Mn(
n
√
A)

whence by the universal property ofn
√
A an algebra map

n
√
A

ag- n
√
A

Abelianizing this action induces aGLn-action by automorphisms onn
√
Aab and as this

is the coordinate ring of the schemerepn A, this affine scheme is aGLn-scheme. �

The orbits of theGLn-action onrepn A are precisely the isomorphism classes of
n-dimensional representations.
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As there is nothing special about a particularn, we argue that thenoncommutative
affine schemecorresponding to a noncommutative affineC-algebraA is the disjoint
union

rep A =
⊔
n

repn A

whererep A is thecategoryof all finite dimensionalA-modules. Observe thatrep A
is even anAbelian categorymeaning thatA-module morphisms have kernels and cok-
ernels.

2.2 Smooth algebras

Now that we agreed to associate to an affine non-commutativeC-algebraA asnon-
commutative affine schemethe Abelian categoryrep A (later we will put extra struc-
ture such as a topology on it) we want to know which of these are non-commutative
manifolds, that is which algebrasA deserve to be called non-commutative smooth al-
gebras. Again, let us look at the commutative case for inspiration.

An important class of reduced schemes are thesmooth affine varieties, that is, those
affine schemesV such thatpointsV is a (complex) manifold. These can be defined
by requiring that the rank of theJacobian matrixof the system of equations

Jac =


∂g1
∂x1

. . . ∂g1
∂xn

...
...

∂g1
∂x1

. . . ∂g1
∂xn


is locally constant onpointsV . By requiring the rank to be only locally constant we
allow smooth affine varieties to have several disjoint connected components, possibly
of different dimensions.

The coordinate ring of a smooth affine varietyV is called asmooth commutative al-
gebra (sometimes also called aregular algebra). Alexander Grothendieck found a
categorical characterization of smooth affine algebras.

Theorem 2.6 (Grothendieck) An affine schemeV is a manifold, or equivalently, its
coordinate ringC[V ] is an affine smooth commutative algebra if and only ifC[V ]
satisfies the following lifting property incommalg. For any commutative algebraB
and any nilpotent idealI / B (that is, such that there is a powerk ∈ N such that
Ik = (0)) and anyC-algebra morphismf : C[V ] - B/I

C[V ] .................
f̃

- B

B/I

π

??

f

-

there is an algebra morphismA
f̃- B making the diagram commute.
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These facts motivate the approach tononcommutative algebraic geometryas proposed
by Daniel Quillen and Maxim Kontsevich : affineC-algebras should be thought of as
coordinate rings of noncommutative affine schemes and noncommutative affine mani-
folds correspond tosmooth algebras.

Definition 2.7 An affine C-algebraA is calledsmoothif it has the following lifting
property inalg. For anyC-algebraB and any nilpotent idealI / B (that is, such
that there is a powerk ∈ N such thatIk = (0)) and anyC-algebra morphismf :
A - B/I

A ....................
f̃

- B

B/I

π

??

f

-

there is an algebra morphismA
f̃- B making the diagram commute.

Before we give an alternative description and classes of examples, let us deduce an
important consequence of smoothness for finite dimensional representations.

Theorem 2.8 If A is a smooth noncommutativeC-algebra, then for alln ∈ N the
affine commutative schemerepn A is smooth, that is an affine manifold.

Proof. By Grothendieck’s characterization we have to show that everyC-algebra mor-
phism

n
√
Aab = C[repn A]

φ- D/I

can be lifted through the nilpotent idealI /D of the commutative algebraD. Consider
the following diagram ofC-algebra maps

A ............................
∃φ̃

- Mn(D)

Mn(C[repn A])

jA

?

Mn(φ)
-

.....
.....

.....
.....

.....
.....

.....
...

-

Mn(D/I)

??

AsMn(I) is a nilpotent ideal of theC-algebraMn(D) we can use smoothness ofA to
have a lifted morphism̃φ : A - Mn(D). Then, we use the universal property of
jA to see that the diagonal map of the formMn(ψ) exists andψ is the required algebra
lift. �

Hence, as M. Kontsevich argues, noncommutative smooth algebrasA can be seen as
machinesto produce an infinite family{repn A : n ∈ N} of manifolds. We will give
a few equivalent definitions of smooth algebras. To begin, it is not necessary to check
all nilpotent lifts, it suffices to check those for so calledsquare zero extensions.
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Recall thatM is called anA-bimodule ifM is both a left- and a right module and
satisfies

(a1m)a2 = a1(ma2) ∀m ∈M,∀ai ∈ A
It is well known that there is an equivalence of categories betweenA-bimod, the
category of allA-bimodules andAe-mod, the category of leftAe-modules where
Ae = A ⊗ Aopp is theenveloping algebraof A. Indeed, the leftAe-module struc-
ture corresponding to anA-bimoduleM is given by

(a⊗ a′)m = ama′

Using this equivalence of categories one can extend homological properties (such as
projective, free, resolutions etc.) from one-sided to bimodules.

LetA be theC-vector spaceA/C.1A, and consider the freeA-bimodules

A⊗A
⊗n ⊗A = Ωn A⊗A

whereΩn A = A ⊗ A
⊗n

are thenon-commutative differential formsusing the dictio-
nary

(a0, a1, . . . , an) = a0da1 . . . dan = ω

We put a graded algebra structure onΩA = ⊕∞i=0Ω
n A by

(a0, a1, . . . , an)(an+1, . . . , an+k) =
n∑
i=0

(−1)n−i(a0, . . . , aiai+1, . . . , an+k)

which determines mapsΩnA⊗Ωk−1A - Ωn+k−1 and asΩ0A = A this makes all
ΩnA intoA-bimodules. We have exact sequences ofA-bimodules

0 - Ωn+1 A
j- Ωn A⊗A

m- Ωn A - 0

where the maps are defined by{
j(ωda) = ωa⊗ 1− ω ⊗ a

m(ω ⊗ a) = ωa

in particular, we have the exact sequence ofA-bimodules

0 - Ω1 A
j- A⊗A

m- A - 0

Differential 1-forms Ω1A has the following universal property. Aderivation for an
A-bimoduleM is a linear mapD : A - M such that

D(C) = 0 and D(ab) = D(a)b+ aD(b)

For example,d : A - Ω1A = A ⊗ A such thatd(a) = (1, a) is a derivation and
any derivationD for a bimoduleM has a unique factorization throughd

A
D - M

Ω1A

d

?....
....

....
....

....
....

....
..

-
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For anA-bimoduleM theHochschild cohomologyspacesHi(M) are defined by

Hi(M) = ExtiAe(A,M)

and the first of those have the following interpretations.H0(M) = MA = {m ∈
M | am = ma∀a ∈ A}.Moreover,

H1(M) =
Derivations onM
inner derivations

where an inner derivation is one of the formDm(a) = am−ma for m ∈M .

Also, H2(M) has a concrete interpretation. Asquare zero extensionof A is a C-
algebraB having an idealM satisfyingM2 = 0 such thatB/M ' A. The kernel

M of the quotient mapB
π-- A can be given a naturalA-bimodule structure via

a.m = bm wheneverπ(b) = a (becauseM2 = 0 this does not depend on the choice
of b). Two square zero extensions(B1,M) and(B2,M) for a givenA-bimduleM are
sais to be equivalent if there is an algebra mapφ : B1

- B2 making the diagram
below commute

M ⊂ - B1
-- A

M

idM

?
⊂ - B2

φ

?
-- A

idA

?

A square-free extension is said to betrivial if it is of the form B = A ⊕ M with
multiplication rule

(a,m)(a′,m′) = (aa′, am′ +ma′)

For a fixedA-bimoduleM , the second Hochschild spaceH2(M) classifies equivalence
classes of square-zero extensions ofA with kernelM and the zero vector corresponds
to the trivial square-zero extension, that is the one whereA has a lift throughπ.

General arguments (such as induction on nilpotency of the nilpotent ideal) assert that
A is a smooth algebra if and only ifA lifts through all square-zero extensions, that is
that

0 = H2(M) = Ext2Ae(A,M) = Ext1Ae(Ω1 A,M)

for all A-bimodulesM (that is all leftAe-modulesM ). But this is equivalent toΩ1 A
being a projectiveAe-module, that is a projectiveA-bimodule. So, we have the follow-
ing alternative characterizations of smoothC-algebras.

Theorem 2.9 For a C-algebraA, the following statements are equivalent

1. A is a smooth algebra

2. A lifts through every square-zero extension

3. Ω1 A is a projectiveA-bimodule

But let us return to the examples of interest.
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Theorem 2.10 If G is a finite group, thenA = CG is a smooth algebra. In fact, any
two algebra lifts through a nilpotent ideal

CG φ,ψ - B

B/I

??

f

-

are conjugated, that is, there is a unitb ∈ B∗ such thatψ(a) = b−1φ(a)b for all
a ∈ CG.

Proof. Consider the exact sequence ofCG-bimodules

0 - Ω1CG j- CG⊗ CG m- CG - 0

which splits as we can send1 to theseparability idempotent

1
#G

∑
g∈G

g ⊗ g−1

Hence,CG andΩ1 CG are direct summands of the freeCG-bimoduleCG⊗ CG. As
Ω1 CG is projective,CG is a smooth algebra. Moreover,A is a projectiveA-bimodule,
whence

H1(M) = Ext1Ae(A,M) = 0

for everyA-bimoduleM . As every lift through the trivial square-zero extensionA⊕M
defines (and is defined by) a derivationA - M we know that these two differ by an
inner derivation, which can be translated into the conjugation property. Again, standard
arguments allow to extend this from square-zero extensions to arbitrary nilpotent lifts.

�

In fact, as the proof works for allC-algebrasS having a separability idempotent, that
is whenS is a semi-simple algebra.

Let S ∈ alg, the category of allC-algebras, and consider the categoryS − alg of all
S-algebras. That is, objects inS − alg are pairs(A, i) whereA is a C-algebra and

S ⊂
i- A is an inclusion. Morphisms inS−alg areC-algebra morphisms compatible

with the inclusions, that isf : (A, i) - (A′, i′) if and only if f : A - A′ is a
C-algebra morphism such that

A
f - A′

S

i

∪

6

⊂

i
′

-

is a commutative diagram. If(A1, i1) and(A2, i2) are twoS-algebras we define the
amalgamated free algebra product

(A1 ∗S A2, u)
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as theS-algebra (if it exists) with the universal property that there areS-algebra

embeddingsAi ⊂
ji- A1 ∗S A2 and for anyS-algebra(B, j) andS-algebra mor-

phismsf1 : A1
- B and f2 : A2

- B (which in particular implies that
f1 ◦ i1 = j = f2 ◦ i2) there is a uniqueS-algebra mapg such that the diagram of
C-algebra maps is commutative

A1

S ⊂
u-

⊂

i1

-

A1 ∗S A2

j1

?

∩

g - B

f
1

-

A2

j2

∪

6

f2

-
⊂

i2

-

For generalS there is no reason why such an algebra should exist, but one can prove
(essentially by a similar method as we constructed amalgamated free products of
groups) that forS a semi-simple algebra such a universal algebra always exists. When
S = C the construction reduces to thealgebra free productA1 ∗A2.

We will need this only in the following case : letH be a finite subgroup of two groups
G1 andG2, then the amalgamated free algebra product of the group algebrasCG1 and
CG2 exists and is isomorphic to

CG1 ∗CH CG2 ' CG1 ∗H G2

the group algebraCG1∗HG2 of the amalgamated group productG1∗HG2. Indeed, let
f1 : CG1

- B andf2 : CG2
- B be twoCH-algebra morphisms. Restricting

to the group-elements gives us a commutative diagram of group morphisms

G1

H ⊂
u-

⊂

i1

-

G1 ∗H G2

j1

?

∩

...........
g

- B∗

f
1

-

G2

j2

∪

6

f2

-
⊂

i2

-

where the (uniquely determined) group morphismg exists by the universal property of
G1 ∗H G2. Linearly extending this group morphism gives aCH-algebra morphism
CG1 ∗H G2

- B whence the group-algebra has the required universal property.

Theorem 2.11 LetS be a semi-simple algebra and let(A1, i1) and(A2, i2) be twoS-
algebras which are smooth asC-algebra. Then, the amalgamated free algebra product

A1 ∗S A2
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(which exists!) is a smoothC-algebra. In particular, the group-algebras of the arith-
metic groups

CPSL2(Z) CSL2(Z) and CGL2(Z)

are all smooth algebras, hence are the coordinate rings of noncommutative affine man-
ifolds.

Proof. Let I / B be a nilpotent ideal and take an algebra mapA1 ∗S A2
f- B/I.

Composing with the universal inclusions and using smoothness of theAk we obtain
lifted algebra maps

B

π

��
S

ik // Ak
jk //

gk

44

A1 ∗S A2
f // B/I

Hence, we have twoC-algebra liftsg1 ◦ i1 andg2 ◦ i2 from the semi-simple algebra
S - B lifting the morphismf ◦ j1 ◦ i1 = f ◦ j2 ◦ i2. Therefore, these two lifts are
conjugated by a unitb = 1 + i ∈ B∗. But then we have a commutative diagram

A1

S ⊂
u-

⊂

i1

-

A1 ∗S A2

j1

?

∩

............- B

g
1 ◦i1

-

A2

j2

∪

6

bg
2
◦i2
b
−
1

-
⊂

i2

-

whence the universal property ofA1 ∗S A2 provides us with the required lifted algebra
map. The second statement follows from this using the fact that

CPSL2(Z) ' CZ2∗CZ3 CSL2(Z) ' CZ4∗CZ2CZ6 CGL2(Z) ' CD4∗CD2CD6

and the fact that semi-simple algebras are smooth algebras. �

In particular,repn GL2(Z) (and similarly for the other arithmetical groups) are all
smooth varieties (which would be pretty hard to prove by hand). On the other hand, the
group algebraCB3 is not a smooth algebra as one can verify by proving thatrep2 B3

is not a smooth variety.
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QUIVERS & EXAMPLES

As we have described the arithmetical groupsGL2(Z), SL2(Z) and PSL2(Z) as
(amalgamated) free products of finite subgroups, restricting representations to these
subgroups and applying the representation theory of finite groups gives us a handle on
the representation theory of these infinite groups.

We will consider the easiest case, that ofPSL2(Z) = Z2 ∗ Z3, or more explicitly

PSL2(Z) = 〈 σ =
[
−1 0
0 −1

]
, τ =

[
−1 1
−1 0

]
| σ2 = id = τ3 〉

The character tables of the Abelian cyclic groups are easy to work out. In our case we
have

Z2 1a 1b
S1 1 1
S2 1 −1

and

Z3 1a 1b 1c
T1 1 1 1
T2 1 ρ ρ2

T3 1 ρ2 ρ

whereρ = e2πi/3. TheSi andTj are all one-dimensional simple representations and
we will use the same notation for the one-dimensional space having aZk-action. If
φ : PSL2(Z) - GLn(C) is ann-dimensional representation ofPSL2(Z) then the
restrictions must be isomorphic to

Vφ ↓Z2= S⊕a1
1 ⊕ S⊕a2

2 and Vφ ↓Z3= T⊕b11 ⊕ T⊕b22 ⊕ T⊕b33

with ai andbj integers and clearly they have to satisfy

a1 + a2 = n = b1 + b2 + b3

All this does is to divide then-dimensional spaceVφ = Cn in two different ways
: one time with respect to the eigenspaces of the order two operatorσ and another
time with respect to the eigenspaces of the rank three operatorτ . If we take a ba-
sis E = {e1, . . . , en} of Vφ compatible with the first decomposition and a basis
F = {f1, . . . , fn} compatible with the second, then the base-change matrix can be
decomposed into block matrices

E B- F where B =
B11 B12

B21 B22

B31 B32

∈ GLn(C)
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where the blockBij has sizesbi×aj . This information can be encoded into thequiver-
representationof dimension-vectorα = (a1, a2; b1, b2, b3) depicted by

/.-,()*+b1

'&%$ !"#a1

B11

33hhhhhhhhhhhhhhhhhhhhhhhh
B21

++VVVVVVVVVVVVVVVVVVVVVVVV

B31

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

/.-,()*+b2

'&%$ !"#a2

B12

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
B22

33hhhhhhhhhhhhhhhhhhhhhhhh

B23 ++VVVVVVVVVVVVVVVVVVVVVVVV

/.-,()*+b3

By this we mean that to eachvertexof the quiver corresponds a vector space of dimen-
sion the indicated component of the dimension vector (in our case, these vector spaces
are the eigenspaces, those ofσ to the left, those ofτ to the right) and to eacharrow
of the quiver corresponds a linear map from the starting-vertex space to the end-vertex
space (in our case these are the different blocks in the base-change matrixB).

Conversely, to a representation of this quiver of dimension vectorα =
(a1, a2; b1, b2, b3) such thata1 + a2 = n = b1 + b2 + b3 such that the matrixB
constructed from the arrow maps in an invertiblen × n matrix, we can associate the
n-dimensional representation

PSL2(Z)
φ- GLn(C) σ 7→

[
1a1 0
0 −1a2

]
τ 7→ B−1

1b1 0 0
0 ρ1b2 0
0 0 ρ21b3

B
If PSL2(Z)

ψ- GLn(C) is a representation isomorphic toφ then clearly the two
eigen-spacedecompositions ofCn are the same and hence the numbersai andbj are
the same (isomorphic just means that the images ofσ andτ are computed with respect
to a different basis ofVφ = Cn = Vψ) but possibly we have to choose a different basis
in each of the eigen-spaces to getψ(σ) andψ(τ) into the matrix-form corresponding
to a quiver representation

/.-,()*+b1

'&%$ !"#a1

C11

33hhhhhhhhhhhhhhhhhhhhhhhh
C21

++VVVVVVVVVVVVVVVVVVVVVVVV

C31

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

/.-,()*+b2

'&%$ !"#a2

C12

<<yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
C22

33hhhhhhhhhhhhhhhhhhhhhhhh

C23 ++VVVVVVVVVVVVVVVVVVVVVVVV

/.-,()*+b3
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This means that we have ’little’ base change matrices in the eigenspaces

Xi ∈ GLai(C) and Yj ∈ GLbj (C)

such that the ’big’ base change matrices associated toφ andψ are related by

C11 C12

C21 C22

C31 C32

=

Y −1
1 0 0
0 Y −1

2 0
0 0 Y −1

3

 B11 B12

B21 B22

B31 B32

[
X1 0
0 X2

]

We will see today that this is exactly the base change action on quiver representations.

3.1 Quiver representations

A finite quiverQ is a directed graph having

• k vertices{v1, . . . , vk}

• l directed arrows'&%$ !"#vi // /.-,()*+vj having a starting vertexvi and ending vertexvj
where we allow loops (that is,vi andvj may be the same vertex).

This directed graph can be encoded by a matrix inχQ ∈ Mk(Z) or by theEuler
bilinear form it defines where

χQ =

χ11 . . . χ1k

...
...

χk1 . . . χkk

 Zk × Zk χQ- Z χQ(v, w) = vχQw
tr

and withχij = δij − #{a : '&%$ !"#vi
a // /.-,()*+vj }. A path of lengthz is an orientation

preserving walk alongz arrows

/.-,()*+viz oo . . . /.-,()*+vi2oo /.-,()*+vi1oo /.-,()*+vi0oo

and we includek paths of length zero which correspond to the vertices.

To such a quiverQ we associate itspath algebraCQ which is a vector space having
as basis all paths in the quiverQ and where multiplication is induced by concatenation
of paths. That is,CQ is an affine algebra generated byk + l-elements :{e1, . . . , ek}
corresponding to the paths of length zero (the vertices) and which satisfy the relations

eiej = δijei e1 + . . .+ ek = 1

so they form a complete set of orthogonal idempotents inCQ, and with
{a1, . . . , al}generators corresponding to the paths of length one (the arrows). Ifa
anda′ are the arrows

'&%$ !"#va '&%$ !"#vb
a

oo and '&%$ !"#vc ��������d

a′
oo

then we have the following relations

via = δiaa avj = δjba via
′ = δica

′ a′vj = δjda
′ aa′ = δcbp a′a = δadq
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wherep (resp. q) is the path of length two, which exists only ifvc = vb (resp. if
va = vd)

'&%$ !"#va '&%$ !"#vb
a

oo '&%$ !"#vd

a′
oo resp. '&%$ !"#vc '&%$ !"#vd

a′
oo '&%$ !"#vb

a
oo

If Q has no oriented cycles (that is a path having the same beginning and ending vertex)
then the path algebraCQ is finite dimensional. For example,

Q = '&%$ !"#v3 '&%$ !"#v2
b

oo '&%$ !"#v1
a

oo then CQ '

C 0 0
C C 0
C C C


where the correspondence between paths and basis vectors is indicated bye1 0 0

a e2 0
ba b e3


As another example, consider the quiver we encountered in the investigation of repre-
sentations ofPSL2(Z).

'&%$ !"#v3

'&%$ !"#v1

B11

33gggggggggggggggggggggggg
B21

++WWWWWWWWWWWWWWWWWWWWWWWW

B31

""FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

'&%$ !"#v4

'&%$ !"#v2

B12

<<xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
B22

33gggggggggggggggggggggggg

B23 ++WWWWWWWWWWWWWWWWWWWWWWWW

'&%$ !"#v5

then we obtain as the path algebraCQ the 11-dimensional algebra (with correspon-
dence indicated)

C 0 0 0 0
0 C 0 0 0
C C C 0 0
C C 0 C 0
C C 0 0 C



e1 0 0 0 0
0 e2 0 0 0
B11 B12 e3 0 0
B21 B22 0 e4 0
B31 B32 0 0 e5


Theorem 3.1 If CQ is a finite quiver, then its path algebraCQ is a smooth algebra.

Proof. We have to lift an algebra morphismCQ f- B/I through the nilpotent ideal
I. Consider the subalgebraCV = C × . . . × C (k copies) generated by the vertex
idempotentei. As this is a semi-simple algebra the mapf ◦ i lifts to an algebra mapF

B

π

��
CV

F

66lllllllllllllllll i // CQ
f̃

<<

f // B/I
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Let ba be any element ofB mapping ontof(a) wherea is an arrow'&%$ !"#vi // /.-,()*+vj then
we can define a map̃f mappinga to F (vj)baF (vi) and one verifies that these images
satisfy all defining equations inCQ whencef̃ is the required algebra lift. �

Next, let us study the representation theory ofCQ. If V = Cn is ann-dimensional left
CQ-module, we can use the vertex-idempotentsei to decomposeV into subspaces

V = e1V ⊕ e2V ⊕ . . .⊕ ekV

and if we denotedimCeiV = ai we see that everyn-dimensional representation of
CQ determines adimension vectorα = (a1, . . . , ak) such that the total dimension
|α| = a1 + . . .+ ak = n.

As for the action of an arrow'&%$ !"#vi
a // /.-,()*+vj on V we use the fact thata = ejaei to

see that the action is the zero map on all componentsexV with x 6= i and that the
aeiV is contained in the componentejV . That is, the action ofa on V is given by a
aj × ai-matrix representing a linear mapeiV - ejV .

That is, to anyn-dimensional representation of dimension vectorα we can associate
anα-dimensional quiver representation by assigning to the vertexvi the vector space
eiV and to each arrowa the matrix representing the linear mapeiV - ejV de-
scribing the action ofa onV . Conversely, a quiver-representation of dimension vector
α determines ann = |α|-dimensional representation ofCQ by taking as the images of
the vertex-idempotentsei and the arrowsa then× n-matrices

ei 7→



0
...

...
...

1ai

...
0


a 7→



0
...

... Ma

...
...

...
0


where the block matrix at block-position(j, i) has sizesaj × ai. Fixing basis vectors
in each of the vertex spaceseiV we can conjugate any representation ofCQ into such
a standard quiver-representation form and two such quiver-representations determine
isomorphicCQ-representations if they can be conjugated by an element of thevertex
base change group

GL(α) = GLa1× . . .×GLak
= {



g1
...

gj
...

gi
...

gk


| gi ∈ GLai

}
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Under this basechange, theei are mapped to the same matrix-idempotents of rankai
and the arrowa is mapped to

a 7→



0
...

... g−1
j Magi

...
...

...
0


Two quiver-representations which transform into each other in this way under the
action of the base-change groupGL(α) are said to beisomorphic. Hence, every
n-dimensional representation of the path algebraCQ determines anα-dimensional
quiver-representation of some dimension vectorα with total dimension|α| = n and
the two notions of isomorphisms are compatible.

3.2 Quiver examples

Recall that we encountered the vertex-basechange group action on quiver-
representations already before in the investigation of representations ofPSL2(Z) in
terms of the quiver with the11-dimensional path algebra. Reinterpreting this we have :

Theorem 3.2 The study of the isomorphism problem of finite dimensional representa-
tions of the modular groupPSL2(Z) can be reduced to that ofcertainfinite dimen-
sional representations of the11-dimensional algebra

C 0 0 0 0
0 C 0 0 0
C C C 0 0
C C 0 C 0
C C 0 0 C


Do we have a similar result for the more complicated arithmetical groupsSL2(Z)
andGL2(Z)? TakeSL2(Z) = Z4 ∗Z2 Z6. As all occurring groups are Abelian, all
their simple representations are one-dimensional and the character tables are easy to
work out. We will need the restrictions ofZ4 resp.Z6-representations to the common
subgroupZ2, so it is best to consider a hexagon and a square lined up so that they share
two vertices :
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Let Z4 = 〈u|u4 = 1〉 be rotation over90o, Z6 = 〈v|v6 = 1〉 rotation over60o and
let the common subgroupZ2 = 〈c|c2 = 1〉 wherec is reflection over the central point.
With these conventions we have the following character-tables and restriction data

Z2 1 c
Z1 1 1
Z2 1 −1

Z4 1 v c v3

X1 1 1 1 1
X2 1 i −1 −i
X3 1 −1 1 −1
X4 1 −i −1 i

Z6 1 v v2 c v4 v5

Y1 1 1 1 1 1 1
Y2 1 ρ ρ2 −1 ρ4 ρ5

Y3 1 ρ2 ρ4 1 ρ2 ρ4

Y4 1 −1 1 −1 1 −1
Y5 1 ρ4 ρ2 1 ρ4 ρ2

Y6 1 ρ5 ρ4 −1 ρ2 ρ

To determine the restrictionsXi ↓Z2 andYj ↓Z2 we only have to consider the boxed
columns. We obtain


X1 ↓Z2 = Z1

X2 ↓Z2 = Z2

X3 ↓Z2 = Z1

X4 ↓Z2 = Z2



Y1 ↓Z2 = Z1

Y2 ↓Z2 = Z2

Y3 ↓Z2 = Z1

Y4 ↓Z2 = Z2

Y5 ↓Z2 = Z1

Y6 ↓Z2 = Z2

If V is ann-dimensionalSL2(Z)-representation, the restrictions to the subgroupsZ4

andZ6 are of the form

V ↓Z4= X⊕a1
1 ⊕X⊕a2

2 ⊕X⊕a3
3 ⊕X⊕a4

4 and V ↓Z6= Y ⊕b11 ⊕ . . .⊕ Y ⊕b66

giving a dimension vectorα = (a1, . . . , a4, b1, . . . , b6) satisfying
∑
i ai = n =

∑
j bj .

However, this time not all of these dimension vectors can occur as we must have that

(V ↓Z4) ↓Z2= V ↓Z2= (V ↓Z6) ↓Z2

whence we must have thata1 + a3 = p = b1 + b3 + b5, a2 + a4 = q = b2 + b4 + b6
and p + q = n. Moreover, the base-change between a basis compatible with the
decomposition in theZ4-restriction and a basis compatible with theZ6-restriction

E = {e1, . . . , ea1 , . . . , en}
B- F = {f1, . . . , fb1 , . . . , bn}

must be an isomorphism ofZ2-representations, soB can only have non-zero entries at
places where the corresponding left and right factors are the sameZ2-representation.
That is,B is an invertiblen × n matrix with the following (checker-board) block-
decomposition

B =


B11 0 B13 0
0 B21 0 B24

B31 00 B33 0
0 B42 0 B44

B51 0 B53 0
0 B62 0 B64


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That is, we have associated to ann-dimensionalSL2(Z)-representation anα-
dimensional representation of the quiver
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which is the disjoint union of two copies of the quiver constructed forPSL2(Z). Con-
versely, to anyα-dimensional representation of this quiver (such that then× n matrix
B constructed as before from the arrow-matrix blocks is invertible) one associates an
n-dimensional representation ofSL2(Z) = 〈U, V | U2 = V 3, U4 = 1〉

U 7→


1a1 0 0 0
0 i1a2 0 0
0 0 −1a3 0
0 0 0 −i1a4



V 7→ B−1



1b1 0 0 0 0 0
0 ρ1b2 0 0 0 0
0 0 ρ21b3 0 0 0
0 0 0 −1b4 0 0
0 0 0 0 ρ41b5 0
0 0 0 0 0 ρ51b6


B

Theorem 3.3 The study of the isomorphism problem of finite dimensional representa-
tions ofSL2(Z) can be reduced to that ofcertainfinite dimensional representations of
the22-dimensional algebra

C 0 0 0 0
0 C 0 0 0
C C C 0 0
C C 0 C 0
C C 0 0 C

⊕


C 0 0 0 0
0 C 0 0 0
C C C 0 0
C C 0 C 0
C C 0 0 C


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ForGL2(Z) = D6 ∗D2 D4 we line up as before two vertices of a hexagon (having
symmetry groupD6) and of a square (having symmetry groupD4).
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Observe thatD4 is generated byU (rotation by90o) andR (symmetry along the line)
andD4 has5 conjugacy classes :{1, R,R′, U, C} whereC is the central point re-
flection (which is alsoU2) andR′ is reflection along a line through two midpoints of
edges of the square.D6 is generated byV (rotation over60o) andR and has6 conju-
gacy classes ”{1, R,R”, V, V 2, C} whereR” is a reflection along a line through two
midpoints of the hexagon.

The common subgroupD2 is generated byC andR and is Klein’s Vierergruppe having
elements (=conjugacy classes){1, C,R,CR}. CR viewed as a symmetry of the square
is reflection along a line through two vertices, so belongs to the conjugacy class ofR
and therefore we have the following character tables and restriction data.

D2 1 C R CR
Z1 1 1 1 1
Z2 1 −1 −1 1
Z3 1 −1 1 −1
Z4 1 1 −1 −1

D4 1 R R′ U C
X1 1 1 1 1 1
X2 1 −1 −1 1 1
X3 1 −1 1 −1 1
X4 1 1 −1 −1 1
X5 2 0 0 0 −2

D4 ↓D2 1 C R R
X1 ↓D2 1 1 1 1
X2 ↓D2 1 1 −1 −1
X3 ↓D2 1 1 1 1
X4 ↓D2 1 1 −1 −1
X5 ↓D2 2 −2 0 0

whence

X1 ↓D2= Z1 X2 ↓D2= Z4 X3 ↓D2= Z1 X4 ↓D2= Z4 X5 ↓D2= Z2 ⊕ Z3

CR when viewed as a symmetry of the hexagon is a reflection along a line through two
midpoints of edges and hence belongs to the conjugacy classR”. As we have given the
character table ofD6 before we give only the restriction data

D6 ↓D2 1 C R R”
Y1 ↓D2 1 1 1 1
Y2 ↓D2 1 1 −1 −1
Y3 ↓D2 1 −1 −1 1
Y4 ↓D2 1 −1 1 −1
Y5 ↓D2 2 −2 0 0
Y6 ↓D2 2 2 0 0
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whence
Y1 ↓D2= Z1 Y2 ↓D2= Z4 Y3 ↓D2= Z2

Y4 ↓D2= Z3 Y5 ↓D2= Z2 ⊕ Z3 Y6 ↓D2= Z1 ⊕ Z4

An n-dimensional representationV ofGL2(Z) can be restricted to the finite subgroups
D4 andD6 giving decompositions

V ↓D4= X⊕a1
1 ⊕ . . .⊕X⊕a5

5 and V ↓D6= Y ⊕b11 ⊕ . . .⊕ Y ⊕b66

giving a dimension vectorα = (a1, . . . , a5, b1, . . . , b6) this time satisfying (using the
facts that the dimensions of the simplesX5, Y5 andY6 is two)

a1 + a2 + a3 + a4 + 2a5 = n = b1 + b2 + b3 + b4 + 2b5 + 2b6

Again, the basechange matrix betweenD2-bases ofV ↓D4 andV ↓D6 must be aD2-
isomorphism, leading to anα-dimensional representation of the quiver
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This quiver is the disjoint union of two connected components
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Theorem 3.4 The study of the isomorphism problem of finite dimensional representa-
tions ofGL2(Z) can be reduced to that ofcertainfinite dimensional representations of
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the23-dimensional algebra

C 0 0 0 0 0 0
0 C 0 0 0 0 0
0 0 C 0 0 0 0
0 0 0 C 0 0 0
C 0 C 0 C 0 0
0 C 0 C 0 C 0
C C C C 0 0 C


⊕


C 0 0 0
C C 0 0
C 0 C 0

Cx+ Cy 0 0 C





day 4

MANIFOLDS & COMPACTIFICATIONS

So far, we have viewed the non-commutative affine schemerep A =
⊔
n repn A only

as an Abelian category or, at best, as the disjoint union of the family of commutative
GLn-schemesrepn A. Today, we will define a topology (actually two topologies) on
rep A. This will then allow us to define more general non-commutative varieties and
manifolds bygluing affine pieces together. We will apply this idea to get a natural
compactification ofrep PSL2(Z) (and of the other arithmetical groups) using their
associated finite dimensional path algebras we constructed last time. Then, we will
outline the construction of a truly non-commutative topology onrep A.

4.1 Commutative topologies

LetA be aC-algebra and take a finite set∆ = {δ1, . . . , δk} of A-module morphisms
between projective leftA-modules

Pi
δi- Qi 1 ≤ i ≤ k

The universal localizationA∆ is the algebraA
j∆- A∆ which has the following

universal property. All extended morphismsA∆ ⊗ δi are isomorphisms of left projec-
tive A∆-modules and if there is anA-algebraA - B such that all the extended
morphismsB ⊗ δi are isomorphisms, then there is an algebra map completing the
commutative diagram

A

A∆

j∆

?
..................- B

-

Restricting finite dimensional representations gives natural maps

i∆ : rep A∆
- rep A

and we denote the image ofi∆ by X(∆). From the universal property of universal
localizations, it follows that

A∆1∪∆2 = (A∆i
)∆j

and X(∆1) ∩ X(∆2) = X(∆1 ∪∆2)

whence we can view the setsX(∆) as the basic open sets of a topology onrep A.
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Definition 4.1 The topology onrep A generated by the basic open setsX(∆) will be
called thenon-commutative Zariski topologyon the non-commutative affine scheme
rep A.

Having associated to an affine noncommutativeC-algebra itsnoncommutative affine
schemerep A which is an Abelian category equipped with a topology, we can ’glue’
these schemes together to construct more general noncommutative schemes (and non-
commutative manifolds).

Definition 4.2 An aggregateagg is an AbelianC-category (meaning that all objects
areC-vector spaces and all morphisms areC-linear maps) having the following prop-
erties :

1. agg is additive, that is for any two objects the direct sum exists inagg.

2. agg is Krull-Schmidt, that is, for anyindecomposableobjectV (that is, one
which cannot be written as a direct sum of proper subobjects) the endomorphism
algebraEnd(V ) = Homagg(V, V ) is a localC-algebra (that is, the non-units
form a twosided ideal).

3. agg is hom-finite, that is all homomorphism spacesHomalg(V,W ) are finite
dimensionalC-vector spaces.

Observe that for any noncommutative algebraA the categoryrep A is an aggregate.
The Krull-Schmidt property implies that any objectV of an aggregateagg can be
written as a direct sum of indecomposable objects

V 'W⊕e1
1 ⊕ . . .⊕W⊕ek

k with Wi indecomposable

and that this decomposition is unique up to isomorphism.

Definition 4.3 A noncommutative schemeis an aggregateagg equipped with a topol-
ogy such that there are open subsets{Ui} satisfying the following properties

1. Ui is an Abelian subcategory ofagg

2. Ui is equivalent and homeomorphic torep Ai for some affine non-commutative
algebraAi.

3. For alli, j the intersectionUi ∩ Uj is equivalent and homeomorphic torep Aij
and the inclusion maps

Uij = rep Aij ⊂- Ui = rep Ai

Uj = rep Aj
?

∩
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are induced by algebra morphisms

Aij � Ai

Aj

6

If all Ai andAij are noncommutative smoothC-algebras, then the noncommutative
schemeagg is called a noncommutative manifold.

In order to give an example of a non-commutative manifold, let us construct a natural
compactificationPSL2(Z) of rep PSL2(Z). We will see that similar constructions
also work for the other arithmetical groups.

With Q we will denote the quiver we have associated toPSL2(Z), that is
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Clearly, rep CQ is an affine noncommutative manifold withcomp CQ = Z5 and
every dimension vectorβ ∈ Z5 determines a component isomorphic toGL|β| ×GL(β)

repβ Q. In the study ofPSL2(Z)-representations we were interested in the subset of
dimension vectorsα = (a1, a2, b1, b2, b3) satisfying the numerical restriction

a1 + a2 = b1 + b2 + b3

An equivalent way to describe this is as follows : letθ = (−1,−1, 1, 1, 1) ∈ Z5 thenα
satisfies the restriction if and only ifθ.α = 0. θ corresponds to acharacterof GL(α)
namely

χθ : GL(α) = GLa1×. . .×GLb3 - C∗ (g1, g2, g3, g4, g5) 7→ det(g1g2)−1det(g3g4g5)

Such characters allow us to define astability structureon rep Q. If V ∈ rep Q is a
representation with dimension vectorβ we will denotedim(V ) = β.

Definition 4.4 Let α ∈ Z5 such thatθ.α = 0. An α-dimensional representationV ∈
repα Q is said to be

1. θ-semistable if and only if for all subrepresentationsW ⊂ V we have
θ.dim(W ) ≥ 0.
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2. θ-stable if and only if for allproper subrepresentations0 6= W ( V we have
θ.dim(W ) > 0.

We will denote the subset of allθ-semistable representations of the quiverQ byrepθ Q
or of the path algebra byrepθ CQ.

It is an easy verification thatrepθ Q (using the fact that the dimension vector is additive
on short exact sequences) is an Abelian subcategory ofrep Q, that is, the kernel and
cokernel of maps between twoθ-semistable representations is againθ-semistable. In
particular,repθ Q and hence alsorepθ CQ is an aggregate. In fact, we claim that

repθ CQ = PSL2(Z)

a natural compactification ofrep PSL2(Z).

So, let us begin to relate the representation theory ofPSL2(Z) with this particular
stability structure.

Theorem 4.5 For θ = (−1,−1, 1, 1, 1) and V ∈ repα Q a representation corre-
sponding to aPSL2(Z)-representation, then

1. V is θ-semistable, and

2. V is θ stable ifV determines a simplePSL2(Z)-representation.

Proof. As V ∈ rep PSL2(Z) we know already thatθ.dim(V ) = 0. Let the matrices
of V be denoted by(B11, . . . , B32) and the vertex-spaces byV1, . . . , V5. If W is a
subrepresentation ofV of dimension vectorβ = (c1, c2, d2, d2, d3) and associated
matrices(C11, . . . , C32) thenW being a subrepresentation means that the diagram
below is commutative

V1 ⊕ V2

φ=

2664
B11 B12

B21 B22

B31 B32

3775
- V3 ⊕ V4 ⊕ V5

W1 ⊕W2

∪

6

φ|W =

2664
C11 C12

C21 C22

C31 C32

3775
- W3 ⊕W4 ⊕W5

∪

6

Now, assumeθ.dim(W ) < 0 this means thatdimCW1⊕W2 > dimCW3⊕W4⊕W5

whenceφ|W must have a kernel. But this is impossible asφ is a linear isomorphism
because the matrix is invertible (becauseV ∈ rep PSL2(Z). This proves (1). As for
(2) it follows from the above argument that every quiver-subrepresentationW ⊂ V
must satisfyθ.dim(W ) ≥ 0 andW represents aPSL2(Z)-subrepresentation ofV
if and only if θ.dim(W ) = 0. Hence,V is θ-stable iff V is a simplePSL2(Z)-
representation. �
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An element(g1, . . . , g5) ∈ GL(α) acts onV and hence on the matrix-componentsBij
so that the composite matrix is mapped to

B′ =

g−1
3 B11g1 g−1

3 B12g2
g−1
4 B21g1 g−1

4 B22g2
g−1
5 B31g1 g−1

5 B32g2

 =

g−1
3 0 0
0 g−1

4 0
0 0 g−1

5

B11 B12

B21 B22

B31 B32

[
g1 0
0 g2

]

whence

det(B′) = det(g1g2)det(g−1
3 g−1

4 g−1
5 )det(B) = χ−1

θ (g1, . . . , g5)det(B)

We say thatdet(B) is a polynomialθ-semi invariantof weight−1. More generally,

Definition 4.6 A polynomial functionf onrepα Q is said to be aθ-semi invariant of
weight−l if and only if

g.f = χ−lθ f ∀g ∈ GL(α)

The ring aθ-semi invariants is the positively graded subalgebra ofC[repα Q]

Rθα = ⊕l≤0R−l = ⊕l≤0{f ∈ C[repα Q | g.f = χ−lθ f ∀g ∈ GL(α) }

Observe thatR0 is the ring of polynomial invariants which is known (in general) to be
generated by traces along oriented in the quiver, but as there are no such cycles inQ
we have thatR0 = C and hence

proj Rθα

is a projective variety. In fact, one can show that the points ofproj Rθα correspond to
isoclasses of direct sums ofθ-stable representations of total dimensionα.

The last fact clarifies why we say thatrepθ Q is a noncommutative projective variety
because the best algebraic solution to classifying its isomorphism classes is given by
the family of projective varietiesproj Rθα. In fact we have a characterization of the
representation theoretic notion ofθ-semistability in terms of these semi-invariants : the
following are equivalent

• V ∈ repα Q is θ-semistable

• there is aθ-semi invariantf ∈ Rθα such thatf(V ) 6= 0.

So, in order to studyrepθ Q we have to know a generating set forθ-semi invariants.
Such a set is given bydeterminantal semi invariants. We will define them here in the
special case of abipartite quiverQ and a stability structureθ having all its left com-
ponents strict negative and all its right components strict positive. From the discussion
above we see thatPSL2(Z) corresponds to such a setting, hence alsoSL2(Z) (as
the quiver is just two copies ofQ) but alsoGL2(Z) is such a setting with quiver and
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stability structureθ depicted by
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For such a setting(Q, θ) with Q having l left vertices with θ-components
(−t1, . . . ,−tl) andr right vertices withθ-components(s1, . . . , sr) we construct aθ-
semi invariant of weight−a by taking a matrix with block decomposition

∆ =


A11 . . . Al1

...
...

Ar1 . . . Arl


where the blockAij has sizesatj × asi and all its entries are linear combinations of
arrows in the quiverQ from thei-th vertex on the left to thej-th vertex on the right. Ifα
is a dimension vector ofQ such thatθ.α = 0 we can evaluate∆ in every representation
V ∈ repα Q and the matrix obtained∆(V ) becomes a square matrix whence the
determinantdet(∆(V )) is a polynomial function onrepα Q which is verified to be a
θ-semi invariant of weight−a. One can prove that these determinantal semi-invariants
generate all!

To a block-matrix∆ as above we will associate a noncommutative smooth algebra
A∆ = CQ∆/(R∆). To begin we construct an extended quiverQ∆ which isQ together
with a bunch ofa2tjsi extra arrowsd(ji)

u,v from thej-th right vertex to thei-th left vertex
and let these extra arrows be the components of a matrixDij of sizesasi × atj

Dij =


d
(ij)
1,1 . . . d

(ij)
1,atj

...
...

d
(ij)
asi,1

. . . d
(ij)
asi,atj


and make the bigger block-matrix

D =


D11 . . . D1r

...
...

Dl1 . . . Dlr


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Now, the algebraA∆ is the quotient of the path algebraCQ∆ of the extended quiver
modulo the ideal of relations coming from the following two matrix-identities inCQ∆

D.∆ =

e11as1 0
...

0 el1asl

 and ∆.D =

f11at1 0
...

0 fr1atr


whereei (resp. fj) is the vertex idempotent of thei-th left vertex inQ (resp. of the
j-th right vertex inQ). After all these definitions it is about time to illustrate its use

Theorem 4.7 With notations as before

1. A∆ is an affine smoothC-algebra.

2. rep A∆ = {V ∈ repθ CQ | det ∆(V ) 6= 0}

and as allθ-semi invariants are generated by those coming from∆’s we have

repθ Q =
⋃
D

rep A∆

is a noncommutative manifold.

Proof. Another description of the algebraA∆ is as auniversal localizationof the
smooth algebraCQ. LetPi = eiCQ be theprojectiveright ideal generated by thei-th
left vertex idempotent ofQ andQj = fjCQ that generated by thej-th right vertex
idempotent. The matrix∆ describes aCQ-module morphism

P⊕as11 ⊕ . . .⊕ P⊕asl

l

φ- Q⊕at11 ⊕ . . .⊕Q⊕atrr

As universal localizations of smooth algebras are again smooth (use the universal prop-
erty to lift modulo nilpotents) the first statement follows.

As for the second, letM be anα-dimensional representation ofA∆ determined by an
α-dimensionalQ∆ quiver representation satisfying the required identitiesR∆ and let
V = M |Q be the restriction ofM to the arrows ofQ. Then, by the very definition
of R∆ it follows thatdet ∆(V ) 6= 0 and thereforeV is aθ-semistable representation.
Conversely, anyθ-stable representation such thatdet ∆(V ) 6= 0 can be extended to
a representation ofA∆ by assigning to the additional arrows the block-matrices oc-
curring in the description of the inverse of∆(V ). In fact, by an argument as before
for PSL2(Z) we also have that there is a natural one-to-one correspondence between
simpleα-dimensionalA∆-representations andθ-stable representations inrepα Q such
thatdet ∆(V ) 6= 0. �

We havent brought in the topology yet, but we can giverepθ CQ the inducednon-
commutative Zariski topology ofrep CQ and then use properties of universal local-
izations that all fits well together as demanded by the definition of a non-commutative
manifold.
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In the PSL2(Z)-example with the usual notation for arrows of the corresponding
quiver /.-,()*+b1
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we have seen thatrep PSL2(Z) = rep A∆ for

∆ =

B11 B12

B21 B22

B31 B32


but we might have considered other affine smooth pieces ofPSL2(Z) such as those
determined by the matrices

∆0 =

 0 B12

B21 0
B31 0

 ∆1 =

B11 0
0 B22

B31 0

 ∆2 =

B11 0
B21 0
0 B32


For example, ifα = (2, 1, 1, 1, 1) one can show that the determinants of these three
generate the whole ring of semi-invariants, that is

Rθα = C[det ∆0, det ∆1, det ∆2] whence proj Rθα = P2 = PSL2(Z)α

4.2 Non-commutative topologies

If A is smooth, we have seen that all representation schemes are smooth (hence in
particular reduced) but they may have several connected (which in this case is the same
as irreducible) components and we give each of these components a label

repn A =
⊔
|α|=n

repα A

and we say thatα is a dimension vector of total dimension|α| = n.

Let comp A be the set of all labelsα for all natural numbersn ∈ N, that is the set
of all (non-empty) connected components inrep A. We define an Abelian semigroup
structure oncomp A by bringing in the sum-maps

repn A =
⊔
|α|=n

repα A×repm A =
⊔

|β|=m

repβ A
⊕- repm+n A =

⊔
|γ|=m+n

repγ A
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We defineα+ β = γ if repγ A is the connected component ofrepm+n A containing
the image of the connected and irreducible varietyrepα A× repβ A. With gen A we
will denote the set of semigroup generators for thecomponent-semigroupcomp A. It
is unknown whether this set is always finite for a smooth affine algebraA. We have a
representation theoretic description for the setgen A.

Theorem 4.8 The generator setgen A are precisely those componentsα ∈ comp A
for whichrepα A consisting entirely of simple representations ofA.

Proof. If V ∈ repα A is not simple, then it has aJordan-Ḧolder filtration

0 ⊂ Vl ⊂ Vl−1 ⊂ . . . ⊂ V1 ⊂ V0 = V with all factorsVi/Vi+1 = Si simples

One can show that thesemi-simplificationof V

V ss = S0 ⊕ . . .⊕ Sl

lies in the closure of the orbitO(V ) = GLn.V wrt. the Zariski topology onrepα A
(and in particular is contained in the same connected component). But then, ifSi ∈
repβi

A we have thatα = β0 + . . .+βl whenceα is not a generator forcomp A. �

Example 4.9 (path algebras)If Q is a quiver onk vertices, thencomp CQ ' Nk and
is generated by the vertex-dimension vectorsδi = (0, . . . , 0, 1, 0, . . . , 0). The addition
oncomp CQ is the ordinary addition onNk.

Example 4.10 (PSL2(Z)) The corresponding quiver is the full bipartite quiver
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For a dimension vectorα = (a1, a2, b1, b2, b3) let us denote|α| = n if a1 + a2 =
n = b1 + b2 + b3. For any|α| = n there is a non-empty open subsetUα of repα Q
defining a componentGLn.Uα of repn PSL2(Z). As a consequence the component
semigroupcomp PSL2(Z) is generated by the six dimension vectors (forn = 1)

g1 = (1, 0, 1, 0, 0)
g2 = (0, 1, 0, 1, 0)
g3 = (1, 0, 0, 0, 1)
g4 = (0, 1, 1, 0, 0)
g5 = (1, 0, 0, 1, 0)
g6 = (0, 1, 0, 0, 1)
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and as the addition oncom PSL2(Z) is as a sub-semigroup ofcomp CQ = N5 there
must be relations among these generators. In fact, we have

g1 + g2 = g4 + g5 g6 + g1 = g3 + g4 and g2 + g3 = g5 + g6

Example 4.11 (SL2(Z)) As the quiver forSL2(Z) (see before) is the disjoint union
of two copies of that ofPSL2(Z) we have thatcomp SL2(Z) has exactly12 generators
(all dimension vectors forn = 1 mentioned before)

g1 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0)
g2 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
g3 = (1, 0, 0, 0, 0, 0, 0, 0, 1, 0)
g4 = (0, 0, 1, 0, 1, 0, 0, 0, 0, 0)
g5 = (1, 0, 0, 0, 0, 0, 1, 0, 0, 0)
g6 = (0, 0, 1, 0, 0, 0, 0, 0, 1, 0)
g7 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 0)
g8 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0)
g9 = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0)
g10 = (0, 0, 0, 1, 0, 1, 0, 0, 0, 0)
g11 = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0)
g12 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 1)

and there are the following relations among these generators incomp SL2(Z)

g1 + g2 = g4 + g5 g6 + g1 = g3 + g4 and g2 + g3 = g5 + g6

g7 + g8 = g10 + g11 g12 + g7 = g9 + g10 and g8 + g9 = g11 + g12

Example 4.12 (GL2(Z)) The corresponding quiver has two components
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and the dimension vectorα = (a1, . . . , a5, b1, . . . , b6) must certainly satisfy the con-
dition denoted by|α| = n

a1 + a2 + a3 + a4 + 2a5 = n = b1 + b2 + b3 + b4 + 2b5 + 2b6

However, not every|α| = n has a non-empty subsetUα ⊂ - repα Q consist-
ing of GL2(Z) representations. The baechange matrix must be an isomorphism
of D2-representations, hence in each of the two components every irreducibleD2-
representationZi gives an additional linear condition on the components ofα express-
ing the fact that the total number ofZi-components in the left-hand vertices is equal to
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that in the right-hand vertices. Recalling the restriction data, this gives the additional
conditions onα to determine a component inrepn GL2(Z).

(Z1) : a1 + a3 = b1 + b6

(Z2) : a5 = b3 + b5

(Z3) : a5 = b4 + b5

(Z4) : a2 + a4 = b2 + b6

The first component gives us8 generators (4 for n = 1 and4 for n = 2)

n a1 a2 a3 a4 b1 b2 b6
g1 1 1 0 0 0 1 0 0
g2 2 1 1 0 0 0 0 1
g3 2 0 0 1 1 0 0 1
g4 2 1 0 0 1 0 0 1
g5 1 0 1 0 0 0 1 0
g6 2 0 1 1 0 0 0 1
g7 1 0 0 0 1 0 1 0
g8 1 0 0 1 0 1 0 0

The second component gives us an additional2 generators (forn = 2).

n a5 b3 b4 b5
g9 2 1 1 1 0
g10 2 1 0 0 1

and again there are plenty of obvious relations between these generators in
comp GL2(Z). In terms of universal localizations (or open subsets ofrepθ Q we
can identifyrep GL2(Z) with rep CQ∆ for ∆ the matrix (with natural notation in
terms of the arrows ofQ)

∆ =



B11 0 B31 0 0 0
0 B22 0 B42 0 0
B16 0 B36 0 0 0
0 B26 0 B46 0 0
0 0 0 0 B53 0
0 0 0 0 0 B54

0 0 0 0 B
(1)
55 0

0 0 0 0 0 B
(2)
55


We will give the construction of all blocks for a smooth algebraA. Consider a con-
nected componentrepα A of repn A such that there is a non-empty Zariski open
subsetbricksα A of bricks inrepα A. As the endomorphism ring of a brick is the
field C geometric invariant theory implies that if there is a brick inrepα A there is a
Zariski open subset of bricks.

Consider an irreducible closedGLn-stable subvarietyX ⊂ repα A such thatX ∩
bricksα A 6= ∅ then one can associate toX an epimorphism

A
fX- Md(D)
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with D a division algebra andd|n.

For those who know some GIT here is the construction : theGLn action onY =
X∩bricksα A is really a freePGLn-action whence one has an orbits spaceY/PGLn
and the quotient mapY -- Y/PGLn is a principalPGLn-fibration. Now, principal
PGLn-fibrations correspond to Azumaya algebras and asY/PGLn is an irreducible
variety, its classical ring of fractions is a central simple algebraΣX of dimensionn2

over the function fieldK = C(Y/PGLn). By the structure theory of central simple
algebras we have

ΣX = Md(D) with D a centralK-division algebra of dimension(n/d)2.

Two irreducibleGLn-stable subvarietiesX andX ′ define the same block if and only
if X andX ′ have a common Zariski open subset (that is, are birational).

This construction shows that the topology induced onbricksα A by the closed subsets
V(X) of blocks A is roughlyas fine as the Zariski topology onbricksα A.

The underlying idea to construct anon-commutative topologyonrepA is first to define
a (commutative) topology on a certain subset of all finite dimensional representations
including all simples and then use finite filtrationsá la Jordan-Ḧolder sequences to
extend this topology to all ofrep A.

Definition 4.13 ForA ∈ alg ablockis a leftA-module (possibly infinite dimensional)
X such that its endomorphism ringD = EndA(X) is a division ring andX considered
as a rightD-module is finite dimensional.

A brick S for A is a block which is finite dimensional, in particular it follows that
D = EndA(S) = C.

Observe that all simple finite dimensional representations ofA are bricks. We will re-

late blocks toepimorphismsof algebras. Recall that aC-algebra morphismA
f- B

is said too be an epimorphism inalg if for all algebra maps

A
f- B

g1-

g2
- C satisfyingg1 ◦ f = g2 ◦ f we have thatg1 = g2

Common examples of epimorphisms are quotients as well as localizations. Blocks are
defined by certain special epimorphisms

Theorem 4.14 (Ringel)There is a natural one-to-one correspondence between

1. blocks ofA, and

2. epimorphismsA - Mn(D) withD a division algebra.

If A
f- Mn(D) is an epimorphism one considers the blockD⊕n (viewed as ann-

dimensional column-space which becomes a leftA-module via left multiplication via
f . Conversely, ifX is a block with endomorphism division algebraD = EndA(X)
and ifdimD X = n one constructs an algebra map

A
f- Mn(D) = EndD(XD)
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wheref(a) is left multiplication bya onX. One verifies that this map is an epimor-
phism and that the two constructions are each other inverses.

We will equip the setblocks A of all A-blocks with a partial order coming from the
notion ofspecialization. If D andE are division algebras we say that the epimorphism

A
g- Mm(E) is a specialization of the epimorphismA

f- Mn(D) if there is an

epimorphismA
h- B such that the diagram

Mn(D)

A
h -

f

-

B

i

∪

6

Mm(E)

π

??

g

-

is commutative wherei is an embedding andπ is a quotient map. IfX resp.Y are the
blocks corresponding tof resp. g we will denote the specialization byX ≤ Y . It is
easy to verify that this notion turns(blocks A,≤) into a partially ordered set. This
allows us to define for each blockX theclosed subseton the set of all bricksbricksA

V(X) = {Y ∈ bricks A | X ≤ Y }

We will give the construction of all blocks for a smooth algebraA. Consider a con-
nected componentrepα A of repn A such that there is a non-empty Zariski open
subsetbricksα A of bricks inrepα A. As the endomorphism ring of a brick is the
field C geometric invariant theory implies that if there is a brick inrepα A there is a
Zariski open subset of bricks.

Consider an irreducible closedGLn-stable subvarietyX ⊂ repα A such thatX ∩
bricksα A 6= ∅ then one can associate toX an epimorphism

A
fX- Md(D)

with D a division algebra andd|n.

For those who know some GIT here is the construction : theGLn action onY =
X∩bricksα A is really a freePGLn-action whence one has an orbits spaceY/PGLn
and the quotient mapY -- Y/PGLn is a principalPGLn-fibration. Now, principal
PGLn-fibrations correspond to Azumaya algebras and asY/PGLn is an irreducible
variety, its classical ring of fractions is a central simple algebraΣX of dimensionn2

over the function fieldK = C(Y/PGLn). By the structure theory of central simple
algebras we have

ΣX = Md(D) with D a centralK-division algebra of dimension(n/d)2.

Two irreducibleGLn-stable subvarietiesX andX ′ define the same block if and only
if X andX ′ have a common Zariski open subset (that is, are birational).

This construction shows that the topology induced onbricksα A by the closed subsets
V(X) of blocks A is roughlyas fine as the Zariski topology onbricksα A.
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Definition 4.15 The block-topologyon the setbricks A =
⊔
α bricksα A is the

topology generated by taking as a subset of its closed sets the sets

V(X) = {S ∈ bricks A | X ≤ S}

whereX runs overblocks A. With LA we denote the set of all closed subsets of
bricks A in the block-topology.LA will be the set ofletterson which to base our
non-commutative topology.

If M is ann-dimensional representation ofA we call a finite filtration of lengthu

Fu : 0 = M0 ⊂M1 ⊂ . . . ⊂Mu = M

of A-representations abrick filtration if the successive quotients

Fi =
Mi

Mi−1

are bricks. As simple representations are bricks, any Jordan-Hölder filtration ofM is a
brick filtration, but there may be others.

Definition 4.16 With WA we denote the non-commutative words in the lettersLA.

WA = {V1 . . . Vk | Vi ∈ LA, k ∈ N}

For a given wordw = V1V2 . . . Vk ∈ WA we define theleft basic open set

Olw = {M ∈ rep A | 6 ∃Fu brick filtration onM such thatFi ∈ Vi}

and theright basic open set

Orw = {M ∈ rep A | 6 ∃Fu brick filtration onM such thatFu−i ∈ Vk−i}

Finally, to make these definitions symmetric we define thebasic open set

Ow = {M ∈ rep A | 6 ∃Fu brick filtration onM such thatFij ∈ Vj

for some1 ≤ i1 < i2 < . . . < ik ≤ u }

Clearly, Olw consists of those representations having restricted bottom structure,
whereasOrw consists of those with restricted top structure. In order to avoid three
sets of definitions we will denote from now onO•

w whenever we mean• ∈ {l, r, ∅}.

If w = L1 . . . Lk andw′ = M1 . . .Ml, we will denote withw ∪ w′ the multi-set
{N1, . . . , Nm} where eachNi is one ofLj ,Mj andNi occurs inw ∪ w′ as many
times as its maximum number of factors inw or w′. With rep(w ∪ w′) we denote
the subset ofrep A consisting of the representations ofM having a Jordan-Ḧolder
filtration having factor-multi-set containingw ∪ w′. For any triple of wordsw,w′ and
w” we denoteO•

w”(w ∪ w′) = O•
w” ∩ rep(w ∪ w′).

We define an equivalence relation on the basic open sets by

O•
w ≈ O•

w′ ⇔ O•
w(w ∪ w′) = O•

w′(w ∪ w′)
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The reason for this definition is that the condition ofM ∈ rep A − O•
w is void if

M does not have enough brick components to get all factors ofw which makes it
impossible to define equality of basic open sets defined by different words.

We can now define the partially ordered setsΛ•A as consisting of all basic open subsets
O•
w of rep A. The partial ordering≤ is induced by set-theoretic inclusion modulo

equivalence, that is,

O•
w ≤ O•

w′ ⇔ O•
w(w ∪ w′) ⊆ O•

w′(w ∪ w′)

As a consequence, equality= in the setΛ•A coincides with equivalence≈. Observe
that these partially ordered sets have a unique minimal and a unique maximal element
(up to equivalence)

0 = ∅ = O•
bricks A and 1 = rep A = O•

∅

The operations∨ and∧ are defined as follows :∧ is induced by ordinary set-theoretic
intersection and∨ is induced by concatenation of words, that is

O•
w ∨ O•

w′ ≈ O•
ww′

This will turn out to be an example of anon-commutative topologyof which we recall
the definition. We fix a partially ordered set(Λ,≤) with a unique minimal element0
and a unique maximal element1, equipped with two operations∧ and∨. With iΛ we
will denote the set of allidempotent elementsof Λ, that is, thosex ∈ Λ such thatx∧x =
x. A finite global coveris a finite subset{λ1, . . . , λn} such that1 = λ1 ∨ . . . ∨ λn.
In the table below we have listed the conditions for a (one-sided) non-commutative
topology.
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(A1) x ∧ y ≤ x x ∧ y ≤ y

(A2) x ∧ 1 = x 1 ∧ x = x
x ∧ 0 = 0 0 ∧ x = 0

(A3) (x ∧ y) ∧ z = x ∧ (y ∧ z) = x ∧ y ∧ z

(A4) x ≤ y ⇒ z ∧ x ≤ z ∧ y x ≤ y ⇒ x ∧ z ≤ y ∧ z

(A5) x ≤ x ∨ y y ≤ x ∨ y

(A6) x ∨ 1 = 1 1 ∨ x = 1
x ∨ 0 = x 0 ∨ x = x

(A7) (x ∨ y) ∨ z = x ∨ (y ∨ z) = x ∨ y ∨ z

(A8) x ≤ y ⇒ x ∨ z ≤ y ∨ z x ≤ y ⇒ z ∨ x ≤ z ∨ y

(A9) a ∨ (a ∧ b) ≤ (a ∨ a) ∧ b a ∨ (b ∧ a) ≤ (a ∨ b) ∧ a

(A10) x = (x ∧ λ1) ∨ . . . ∨ (x ∧ λn) x = (λ1 ∧ x) ∨ . . . ∨ (λn ∧ x)

where(A3) and(A7) are symmetric conditions.

Definition 4.17 Let (Λ,≤) be a partially ordered set with minimal and maximal ele-
ment0 and1 and operations∧ and∨. Then,

Λ is said to be aleft non-commutative topologyif and only if the left column conditions
of (A1)-(A10) are valid for allx, y, z ∈ Λ, all a, b ∈ iΛ with a ≤ b and all finite global
covers{λ1, . . . , λn}.

Λ is said to be aright non-commutative topologyif and only if the right column (to-
gether with(A3) and(A7)) conditions of (A1)-(A10) are valid for allx, y, z ∈ Λ, all
a, b ∈ iΛ with a ≤ b and all finite global covers{λ1, . . . , λn}.

Λ is said to be anon-commutative topologyif and only if the conditions (A1)-(A10)
are valid for allx, y, z ∈ Λ, all a, b ∈ iΛ with a ≤ b and all finite global covers
{λ1, . . . , λn}.

There are at least two ways of building a genuine non-commutative topology out of
these sets of basic opens.
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Let T (Λ) be the set of all finite(∧,∨)-words in thecontractibleidempotent elements
iΛ (that is, λ ∈ iΛ such that for allλ1, λ2 with λ ≤ λ1 ∨ λ2 we have thatλ =
(λ ∧ λ1) ∨ (λ ∧ λ2)). If Λ is a (left,right) non-commutative topology, then so isT (Λ).
The∨-complete topology of virtual opensT ′(Λ) is then the set of all(∧,∨)-words in
the contractible idempotents of finite length in∧ (but not necessarily of finite length in
∨). This non-commutative topology has properties very similar to that of an ordinary
topology and, in fact, has associated to it acommutative shadow.

The second construction, leading to thepattern topology, starts with the equivalence
classes ofdirected systemsS ⊂ Λ (that is, if for allx, y ∈ S there is az ∈ S such that
z ≤ x andz ≤ y) and where the equivalence relationS ∼ S′ is defined by{

∀a ∈ S,∃a′ ∈ S, a′ ≤ a andb ≤ a′ ≤ b′ for someb, b′ ∈ S′

∀b ∈ S′,∃b′ ∈ S′, b′ ≤ b anda ≤ b′ ≤ a′ for somea, a′ ∈ S

One can extend the∧,∨ operations onΛ to the equivalence classesC(Λ) = {[S] | S
directed} in the obvious way such that alsoC(Λ) is a (left,right) non-commutative
topology. A directed setS ⊂ Λ is said to beidempotentif for all a ∈ S, there is an
a′ ∈ S∩iΛ such thata′ ≤ a. If S is idempotent then[S] ∈ iC(Λ) and those idempotents
will be calledstrong idempotents. The pattern topologyΠ(Λ) is the (left,right) non-
commutative topology of finite(∧,∨)-words in the strong idempotents ofC(Λ). A
directed system[S] is called apoint iff [S] ≤ ∨[Sα] implies that[S] ≤ [Sα] for some
α.

Theorem 4.18 With notations as before,

1. (ΛlA,≤,=, 0, 1,∨,∧) is a left non-commutative topology onrep A.

2. (ΛrA,≤,=, 0, 1,∨,∧) is a right non-commutative topology onrep A.



day 5

CHARTS & SIMPLES

Today we finally come to applications of non-commutative algebraic geometry to the
representation theory of arithmetical groups (and the third braid groupB3). The crucial
ingredient is the Euler-form which exists onrep A wheneverA is a smooth algebra
as smooth algebras arehereditary. This form then allows us to define thechart of A
which is a quiverchartA containing enough information to reduce all questions on
rep A to quiver-problems. One might viewchartA as a sort oftangent spaceto the
non-commutative manifoldrepA. We will state just one application of it : to construct
nearly all simple representations ofA. We will work through the details in the case of
PSL2(Z) and finish by giving nearly all simple representations ofB3.

5.1 Euler forms

Definition 5.1 Let M andN be two representations of dimensionsm andn of A ∈
alg. A representationP of dimensionm + n is said to be anextension ofN byM if
there exists a short exact sequence of leftA-modules

e : 0 - M - P - N - 0

Define an equivalence relation on extensions(P, e) of N by M : (P, e) ∼= (P ′, e′) if

and only if there is an isomorphismP
φ- P ′ of leftA-modules such that the diagram

below is commutative

e : 0 - M - P - N - 0

e′ : 0 - M

idM

?
- P ′

φ

?
- N

idN

?
- 0

The set of equivalence classes of extensions ofN by M will be denoted by
Ext1A(N,M).

An alternative description ofExt1A(N,M) is as follows. Letρ : A - Mm(C)
andσ : A - Mn(C) be the representations definingM andN . For an extension
(P, e) we identify theC-vector space withM ⊕ N and theA-module structure onP
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gives a algebra mapµ : A - Mm+n(C). We represent the action ofa onP by left
multiplication of the block-matrix

µ(a) =
[
ρ(a) λ(a)
0 σ(a)

]
,

whereλ(a) is anm× n matrix and hence defines a linear map

λ : A - HomC(N,M).

The condition thatµ is an algebra morphism is equivalent to the condition

λ(aa′) = ρ(a)λ(a′) + λ(a)σ(a′)

and we denote the set of all liner mapsλ : A - HomC(N,M) by Z(N,M) and
call it the space ofcycle.

The extensions ofN by M corresponding to two cyclesλ andλ′ from Z(N,M) are
equivalent if and only if there is anA-module isomorphism in block form[

idM β
0 idN

]
with β ∈ HomC(N,M)

between them.A-linearity of this map translates to the matrix relation[
idM β
0 idN

]
.

[
ρ(a) λ(a)
0 σ(a)

]
=

[
ρ(a) λ′(a)
0 σ(a)

]
.

[
idM β
0 idN

]
for all a ∈ A

or equivalently, thatλ(a)− λ′(a) = ρ(a)β − βσ(a) for all a ∈ A. We will define the
subspace ofZ(N,M) of boundariesB(N,M)

{δ ∈ HomC(N,M) | ∃β ∈ HomC(N,M) : ∀a ∈ A : δ(a) = ρ(a)β − βσ(a)}.

Therefore,Ext1A(N,M) = Z(N,M)
B(N,M) .

Recall that theEuler formof a quiverQ onk vertices is the bilinear form onZk

χQ(., .) : Zk × Zk - Z defined by χQ(α, β) = α.χQ.β
τ

for all row vectorsα, β ∈ Zk.

Theorem 5.2 Let V resp.W be representations of the quiverQ of dimension vector
α resp.β, then

dimC HomCQ(V,W )− dimC Ext
1
CQ(V,W ) = χQ(α, β)

In particular, the right-hand side does not depend on the particular representations but
only on the dimension vector.

Proof. There is an exact sequence ofC-vector spaces

0 - HomCQ(V,W )
γ- ⊕vi∈Qv

HomC(Vi,Wi)
dV

W-

dV
W- ⊕a∈Qa

HomC(Vs(a),Wt(a))
ε- Ext1CQ(V,W ) - 0
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Here,γ(φ) = (φ1, . . . , φk) anddVW maps a family of linear maps(f1, . . . , fk) to the

linear mapsµa = fjVa−Wafi for any arrow ��������i��������j
aoo in Q, that is, to the obstruction

of the following diagram to be commutative

Vi
Va - Vj

Wi

fi

?
Wa - Wj

fj

?

..............................

µ
a

-

By the definition of morphisms between representations ofQ it is clear that the kernel
of dVW coincides withHomCQ(V,W ).

The mapε is defined by sending a family of maps(g1, . . . , gs) = (ga)a∈Qa to the
equivalence class of the exact sequence

0 - W
i- E

p- V - 0

where for allvi ∈ Qv we haveEi = Wi ⊕ Vi and the inclusioni and projection mapp
are the obvious ones and for each arrowa ∈ Qa the action ofa onE is defined by the
matrix

Ea =
[
Wa ga
0 Va

]
: Ei = Wi ⊕ Vi - Wj ⊕ Vj = Ej

This makesE into a CQ-representation and one verifies that the above short exact
sequence is one ofCQ-representations. Remains to prove that the cokernel ofdVW can
be identified withExt1CQ(V,W ).

A set of algebra generators ofCQ is given by{v1, . . . , vk, a1, . . . , al}. A cycle is given
by a linear mapλ : CQ - HomC(V,W ) such that for allf, f ′ ∈ CQ we have the
condition

λ(ff ′) = ρ(f)λ(f ′) + λ(f)σ(f ′)

whereρ determines the action onW andσ that onV . For anyvi the condition is
λ(v2

i ) = λ(vi) = pWi λ(vi) + λ(vi)pVi whenceλ(vi) : Vi - Wi but then applying
again the condition we see thatλ(vi) = 2λ(vi) soλ(vi) = 0. Similarly, for the arrow

��������i��������j
aoo the condition ona = vja = avi implies thatλ(a) : Vi - Wj . That is,

we can identify⊕a∈QaHomC(Vi,Wj) with Z(V,W ) under the mapε. Moreover, the
image ofδ gives rise to a family of morphismsλ(a) = fjVa −Wafi for a linear map
f = (fi) : V - W so this image coincides precisely to the subspace of boundaries
B(V,W ) proving that indeed the cokernel ofdVW isExt1CQ(V,W ).

If dim(V ) = α = (r1, . . . , rk) and dim(W ) = β = (s1, . . . , sk), then
dim Hom(V,W )− dim Ext1(V,W ) is equal to∑

vi∈Qv

dim HomC(Vi,Wi)−
∑

��������i��������j
aoo

dim HomC(Vi,Wj)

=
∑
vi∈Qv

risi −
∑

��������i��������j
aoo

risj

= (r1, . . . , rk)χQ(s1, . . . , sk)τ = χQ(α, β)

�
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For any algebraA and finite dimensional representationsV andW we can define

χA(V,W ) = dimC HomA(V,W )− dimC Ext
1
A(V,W )

but this has no good properties in general. However, ifA is smooth, then the functions
χA(V,−) andχA(−,W ) areadditiveon short exact sequences! This follows from
standard homological algebra and the fact that smooth algebras arehereditary. Recall
thatA is hereditary if every leftA-moduleMhas a projective resolution

0 - P1
- P0

- M - 0

has length≤ 1 which implies thatExtiA(M,N) = 0 wheneveri ≥ 2 and then the
theory of derived functors implies additivity.

Theorem 5.3 A smooth algebraA is hereditary.

Proof. BecauseA⊗A is a free one-sidedA-module, the sequence

0 - Ω1A - A⊗A - A - 0

splits as a sequence of rightA-modules. Therefore, tensoring this sequence with a left
A-moduleM we get an exact sequence

0 - Ω1A⊗AM - A⊗A⊗AM - A⊗AM - 0

0 - Ω1 ⊗A A

=

?
- A⊗M

=

?
- M

=

?
- 0

The middle term is a free leftA-module and asΩ1A is a projectiveA-bimodule it is a
direct summand of someA⊗ V ⊗A. But then,

Ω1A⊗A A / A⊗ V ⊗A⊗AM = A⊗ V ⊗M

is also a projective leftA-module. �

Using the additivity and some heavy geometric invariant theory we were able to prove

Theorem 5.4 LetA be a smooth algebra andV ∈ repα A,W ∈ repβ A. Then,

χA(V,W ) = dimCHomA(V,W )− dimCExt
1
A(V,W )

does depend only on the componentsα and β and not on the particular choice of
representations. Therefore, we have a bilinear form

χA : comp A× comp A - Z

on the component semigroupcomp A which we call theEuler formof teh smooth alge-
braA.
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Example 5.5 TakeA = CB3 the group algebra of the third braid group. We have seen
that

rep1 B3 = V(x3 − y2)− {(0, 0)}
and consists entirely of simple representations. LetS andT be two such simples
corresponding to distinct points(x, y) and(x′, y′) on the cusp. The space a cycles are
those(a, b) ∈ C2 such that

T 7→
[
x′ a
0 x

]
and S 7→

[
y′ b
0 y

]
is a2-dimensional representation giving the condition that

a(x2 + xx′ + x
′2) = b(y + y′)

which for generalS, T gives one relation betweena and b so the cycle-space is1-
dimensional generically. Two such extensions(a, b) and(a′, b′) are equivalent iff

a− a′ = λ(x′ − x) and b− b′ = λ(y′ − y)

giving a one-dimensional subspace of boundaries. So, for generalS, T we have that
Ext1A(S, T ) = 0. However, for(S, T ) ∈ ∆ ∪∆1 ∪∆2 where

∆ = {((x, y), (x, y)) : x3 = y2 }
∆1 = {((x, y), (ρx,−y)) : x3 = y2 }
∆2 = {((x, y), (ρ2x,−y) : x3 = y2 }

the cycle space is two-dimensional whenceExt1A(S, T ) ' C. So, in this case the
Euler-form does depend on the choice of representations and henceCB3 is not a
smooth algebra. In fact, the calculations above can be used to find singular points
in rep2 CB3.

Definition 5.6 If A is a smooth algebra, we define itschart chartA to be the quiver
with vertices corresponding to the generating setgen A of the component semigroup
compA and ifα, β ∈ genA, the number of directed arrows between the corresponding
verticesvα andvβ in chartA is given by

#{ '&%$ !"#vα // /.-,()*+vβ } = δαβ − χA(α, β)

Example 5.7 If Q is a quiver, then the chartchartCQ = Q. Indeed, we have seen
that the generators ofcomp CQ correspond to the vertex-simplesSv (with dimension
vectorδv) and we have seen that

χCQ(Sv, Sw) = χQ(δv, δw) = δvw −#{ ��������v // ��������w }

For the arithmetical groups(P )SL2(Z), GL2(Z) we can use the Euler form of the
corresponding quiver to calculate the dimension of the ext-spaces.

Example 5.8 The Euler-form of the quiver associated toPSL2(Z) is
1 0 −1 −1 −1
0 1 −1 −1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


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So, forg1 = (1, 0, 1, 0, 0) we have thatg1.χQ = (1, 0, 0,−1,−1) implying that

χQ(g1, g1) = 1 χQ(g1, g2) = −1 = χQ(g1, g6) and χQ(g1, gi) = 0

for i 6= 1, 2, 6. Performing similar computations for the other generators we see that
the chart ofPSL2(Z) has the following form

chartPSL2(Z) = '&%$ !"#g1

vv ��'&%$ !"#g6

66

��

'&%$ !"#g2

WW

��'&%$ !"#g5

GG

��

'&%$ !"#g3

GG

vv'&%$ !"#g4

WW 66

As the quiver ofSL2(Z) is the disjoint union of two copies of that ofPSL2(Z) we
immediately obtain that the chart ofSL2(Z) has the following form

chartSL2(Z) = '&%$ !"#g1

vv ��'&%$ !"#g6

66

��

'&%$ !"#g2

WW

��'&%$ !"#g5

GG

��

'&%$ !"#g3

GG

vv'&%$ !"#g4

WW 66

'&%$ !"#g7

uu ��/.-,()*+g12

55

��

'&%$ !"#g8

XX

��/.-,()*+g11

GG

��

'&%$ !"#g9

GG

vv/.-,()*+g10

YY 55

Example 5.9 The Euler-form matrices for the two components of the quiver associated
toGL2(Z) are respectively

1 0 0 0 −1 0 −1
0 1 0 0 0 −1 −1
0 0 1 0 −1 0 −1
0 0 0 1 0 −1 −1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


and


1 −1 −1 −2
0 1 0 0
0 0 1 0
0 0 0 1



From this is it easy to work out the inproducts. For example, the inproduct matrix of
the second component is given by

χ(gi, gj) g9 g10
g9 1 −1
g10 −1 0

whence the corresponding component ofchartGL2(Z) has the following form

'&%$ !"#g9
++ /.-,()*+g10kk ee
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Calculating all inproductχQ(gi, gj) for 1 ≤ i, j ≤ 8 we find that the other component
of chartGL2(Z) has the following form

'&%$ !"#g3 ks +3KS

��

:B

z� }}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

'&%$ !"#g5

'&%$ !"#g2 ks +3KS

��

'&%$ !"#g8 \d

�$
AA

AA
AA

AA
AA

AA
AA

AA

AA
AA

AA
AA

AA
AA

AA
AA

'&%$ !"#g1 '&%$ !"#g4
��

KS

'&%$ !"#g7 ks +3 '&%$ !"#g6
�$

\dAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAA
z�

:B}}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}}

where every double arrow means ’one arrow in each direction’.

It is an interesting exercise to compute the charts of other smooth algebras, such as
those coming from universal localizations of path algebras (as in the compactification
of PSL2(Z)). In thePSL2(Z)-case one can show that every chart of such a universal
localization is a subquiver ofchartPSL2(Z), mainly because in the bipartite quiver
associated toPSL2(Z) there is only one arrow between a left and a right vertex. For
example, for each of the three universal localizations at∆i the chart is of the form

�������� ))��������ii ))��������ii

A more interesting example is for the components of the bipartite quiverQ associated
toGL2(Z) which is

'&%$ !"#a1

))TTTTTTTTTTTTTTTTTTT

��=
==

==
==

==
==

==
==

==
==

==
==

==
==

'&%$ !"#a2

))TTTTTTTTTTTTTTTTTTT

$$HHHHHHHHHHHHHHHHHHHHHH /.-,()*+b1

'&%$ !"#a3

55kkkkkkkkkkkkkkkkkkk

))TTTTTTTTTTTTTTTTTTT /.-,()*+b2

'&%$ !"#a4

55kkkkkkkkkkkkkkkkkkk // /.-,()*+b6

/.-,()*+b3

'&%$ !"#a5

55kkkkkkkkkkkkkkkkkkk //

%-TTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTT /.-,()*+b4

/.-,()*+b5
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For the second component, letA be the universal localization of the path algebra at the
matrix with natural notation

∆ =


B53 0
0 B54

B
(1)
55 B

(2)
55

B
(2)
55 B

(1)
55


then we only have to satisfy the numerical condition

2a5 = b3 + b4 + 2b5

and not the two extra conditions coming from the requirement that on the left and right
hand side there must be the sameD2-representation. Hence, in addition to the gener-
atorsg9 andg10 the component semigroupcomp A has the two additional generators
(for dimensionn = 4) g13 andg14

n a5 b3 b4 b5
g13 4 2 2 0 1
g9 2 1 1 1 0
g14 4 2 0 2 1
g10 2 1 0 0 1

and computing the inproducts one finds thatchartA has the following shape

/.-,()*+g13
X&0 /.-,()*+g14Xfp

/.-,()*+g10
�%

]eBBBBBBBBBBBBBBBB

BBBBBBBBBBBBBBBB

KS

��

y�

9A||||||||||||||||

||||||||||||||||
bb

'&%$ !"#g9

If B is the universal localization of the path algebra of the first component at the matrix
B11 0 B31 0
0 B22 0 B42

B16 B26 B36 0
B16 B26 0 B46


thencomp B has, in addition to the8 generatorsg1, . . . , g8 of comp GL2(Z) the addi-
tional two generatorsg11 andg12

n a1 a2 a3 a4 b1 b2 b6
g11 2 1 0 1 0 0 0 1
g12 2 0 1 0 1 0 0 1
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and computing all inproducts gives us thatchartB has the form, also depicted in the
fronti-piece
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chartB

which is a non-symmetric quiver having the interesting property that every vertex has
3 incoming and3 outgoing arrows.

5.2 Constructing simples

What can we do with the chart of a smooth algebra? To start it gives us a way to
construct nearly all representations of the smooth algebra. Let us sketch the general
procedure and then work it out in the special case ofPSL2(Z)-representations.

Let γ ∈ comp A, thenα can be written as an integral combination of the generators
{γ1, . . . , γk} = gen A

γ = a1γ1 + . . .+ akγk

giving us a dimension vectorα = (a1, . . . , ak) of the chartchartA. LetSi be simple
A-representations inrepγ1 A, then by construction of the chart, we see that we can
identify

repα chartA = Ext1A(M,M) with M = S⊕a1
1 ⊕ . . .⊕ S⊕ak

k

the space of self-extensions of a pointM ∈ repγ A and this identification is one as
GL(α) = Stab(M)-modules.

The space of self-extensions has another interpretation in terms of theGLn-structure
onrepγ A wheren = |γ|. LetO(M) be theGLn-orbit ofM in repγ A, then because
Stab(M) = GL(α) we have the followingGL(α)-modules{

TM repγ A, the tangent space inM to the componentrepγ A

TMO(M), the tangent space inM to the orbitO(M)
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and asGL(α) is a reductive group the subspaceTM O(M) is a directGL(α)-summand
of TM repγ A and the quotient, that is thenormal space to the orbit

NM =
TM repγ A

TM O(M)
' Ext1A(M,M) = repα chartA

where the isomorphism is one ofStab(M) = GL(α)-modules.

BecauseA is a smooth algebra we know that the componentrepγ A is smooth inM
and therefore we can apply theLuna slice theoremwhich asserts that locally around
the orbitO(M) theGLn-structure ofrepγ A looks like that of the fiber bundle

GLn ×GL(α) repα chartA

where ’locally’ means in théetale (or if you want the analytic) topology. All this sounds
pretty scary so let us work it out in the case ofPSL2(Z) of which we calculated the
chart to be of the form

chartPSL2(Z) = '&%$ !"#g1

C16vv

C12

��'&%$ !"#g6

C61
66

C65

��

'&%$ !"#g2
C21

WW

C23

��'&%$ !"#g5

C56

GG

C54

��

'&%$ !"#g3

C32

GG

C34vv'&%$ !"#g4
C45

WW
C43

66

where thegi are the generators corresponding to the six one-dimensional simple
PSL2(Z)-representationsSi, corresponding to the quiver representations
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Take the componentrepγ PSL2(Z) containing the semi-simple representation

M = S⊕a1
1 ⊕ S⊕a2

2 ⊕ S⊕a3
3 ⊕ S⊕a4

4 ⊕ S⊕a5
5 ⊕ S⊕a6

6
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that isγ = (a1 + a3 + a5, a2 + a4 + a6, a1 + a4, a2 + a5, a3 + a6) andM is the
PSL2-representation corresponding to the quiver representation

'&%$ !"#v3

'&%$ !"#v1

B11

33gggggggggggggggggggggggg
B21

++WWWWWWWWWWWWWWWWWWWWWWWW

B31

""FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

'&%$ !"#v4

'&%$ !"#v2

B12

<<xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
B22

33gggggggggggggggggggggggg

B23 ++WWWWWWWWWWWWWWWWWWWWWWWW

'&%$ !"#v5

with theBij block-matrices, each block of sizeau × av for the appropriateu, v

B11 =
[
1a1 0 0
0 0 0

]
B21 =

[
0 0 0
0 0 1a5

]
B31 =

[
0 1a3 0
0 0 0

]

B12 =
[
0 0 0
0 1a4 0

]
B22 =

[
1a2 0 0
0 0 0

]
B32 =

[
0 0 0
0 0 1a6

]
Clearly, asrepγ Q is an affine space, the tangent spaceTM repγ PSL2(Z) =
TM repγ Q can be identified withrepγ Q. The stabilizer subgroup ofM is
GL(α) = GLa1 × . . .×GL(a6). To compute the components of the tangent space in
M to the orbit, takeLie(GL(α)) as the set of matricesA1 A13 A15

A31 A3 A35

A51 A53 A5

⊕
A2 A24 A26

A42 A4 A46

A62 A64 A6

⊕[
A′1 A14

A41 A′4

]
⊕

[
A′2 A25

A52 A′5

]
⊕

[
A′3 A36

A63 A′6

]

and hence the tangent space to the orbit is computed using the action ofGL(γ) on the
quiver-representations, giving for example for theB11-arrow

(
[
1a1 0
0 1a4

]
+ε

[
A′1 A14

A41 A′4

]
).

[
1a1 0 0
0 0 0

]
.(

1a1 0 0
0 1a3 0
0 0 1a5

−ε
A1 A13 A15

A31 A3 A35

A51 A53 A5

)

which is equal to [
1a1 0 0
0 0 0

]
+ ε

[
A1 −A′1 −A13 −A15

A41 0 0

]
and theε-components ofB21, B31, B12, B22 resp.B23.

B21 :
[

0 0 A25

−A51 −A53 A5 −A′5

]
B31 :

[
−A31 A3 −A′3 −A35

0 A63 0

]

B12 :
[

0 A41 0
−A42 A4 −A′4 −A46

]
B22 :

[
A2 −A′2 −A24 −A26

A52 0 0

]
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B32 :
[

0 0 A36

−A62 −A64 A6 −A′6

]
Hence, the only non-zero blocks correspond precisely to the matrices in
repα chPSL2(Z) which can therefore be identified with the normal space to the orbit.
So, representations of the formM +NM are determined by the matrices

B11 =
[
1a1 0 0
0 C34 C54

]
B21 =

[
C12 C32 0
0 0 1a5

]

B31 =
[

0 1a3 0
C16 0 C56

]
B12 =

[
C21 0 C61

0 1a4 0

]
B22 =

[
1a2 0 0
0 C45 C65

]
B32 =

[
C23 C43 0
0 0 1a6

]
and the Luna slice theorem asserts that every representation inrepγ PSL2(Z) nearM
can be brought in this form. In fact, there is a lot more to be said about the connection
between representations of a smooth algebra and representations of its chart. We state
these facts here in the special case ofPGL2(Z) but they hold in general.

Theorem 5.10 Letγ = a1g1+. . .+a6g6 then there is aGLn (n =
∑
i ai)-equivariant

étale isomorphism on Zariski open subsets between

GLn ×GL(α) repα chPSL2(Z) and repγPSL2(Z)

whereα = (a1, . . . , a6) and the correspondence is given by

(g, V ) ↔ g.(M + V ) where M = S⊕a1
1 ⊕ . . .⊕ S⊕a6

6

andrepα chPSL2(Z) is identified with the normal space to the orbit inM . Explicitly,
to a representation(C12, . . . , C61) in repα chPSL2(Z) corresponds then-dimensional
representationPSL2(Z) - GLn(C)

σ 7→
[
1a1+a3+a5 0

0 −1a2+a4+a6

]
and τ 7→ B−1

1a1+a4 0 0
0 ρ1a2+a5 0
0 0 ρ21a3+a6

B
whenever the following matrix is invertible

B =


1a1 0 0 C21 0 C61

0 C34 C54 0 1a4 0
C12 C32 0 1a2 0 0
0 0 1a5 0 C45 C65

0 1a3 0 C23 C43 0
C16 0 C56 0 0 1a6


Under this correspondence, a simple chart representation corresponds to a simple
PSL2(Z) representation.

Moreover, two simple chart representations determine isomorphicPSL2(Z) represen-
tations if and only if all their traces along oriented cycles in the chart are the same
(hence these can be viewed as generalized characters) and ifα is the dimension vector
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of a simple chart representation, then the dimension of the quotient variety parametriz-
ing isomorphism classes ofγ-dimensionalPSL2(Z)-representations is equal to

dim issγ PSL2(Z) = 1− χch(α, α)

In particular, if we have representants of isoclasses ofα-dimensional simple chart
representations, then we have representants of isoclasses of simplePSL2(Z)-
representations nearM .

In order for this result to be useful, we need a classification of all dimension vectors of
simple quiver representations. Such a classification is known

Theorem 5.11α = (d1, . . . , dk) ∈ simpCQ if and only if one of the following two
cases holds

1. suppα = Ãk, the extended Dynkin quiver onk vertices with cyclic orientation
anddi = 1 for all 1 ≤ i ≤ k

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

""

2. suppα 6= Ãk. Then,suppα is strongly connected (meaning that any pair of
vertices belongs to an oriented cycle) and for all1 ≤ i ≤ k we have{

χQ(α, εi) ≤ 0
χQ(εi, α) ≤ 0

In either case,simpCQ is a cone incompCQ = Nk.

Applying this in the case ofPSL2(Z) we deduce

Theorem 5.12 If γ = a1g1 + . . . + a6g6, thenrepγ PSL2(Z) contains a simple
representation if and only if

ai ≤ ai−1 + ai+1

where subscripts are taken modulo6. The only exceptional case is whensupp(α) =
{vi, vi+1} in which case the two non-zero components ofα must be equal to1.

So how can we use this to get at the promised simple representations of the third braid
groupB3. Recall thatB3 was generated by the two elementary braids

σ1 σ2
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and the defining relation ofB3 is the Yang-Baxter equation

σ1σ2σ1 = σ2σ1σ2

For the braidsS = σ1σ2σ1 andT = σ1σ2 we see thatC = S2 = T 3 is a central
element ofB3 and the quotient

B3/〈C〉 = 〈σ = S, τ = T | σ2 = 1 = τ3〉 = Z2 ∗ Z3 = PSL2(Z)

Because the central elementC acts by a non-zero scalar on every simpleB3-
representation we see that every simplePSL2(Z)-representation determines (and is
determined by) a one-parameter family of simpleB3-representations. Finally, to get at
matrices satisfying the Yang-Baxter equation we have to recall that

σ1 = T−1S and σ2 = ST−1

These facts allow us to determine nearly all simpleB3-representations in any dimen-
sion!

Theorem 5.13 Consider the quiver (which is the chart ofPSL2(Z))

chartPSL2(Z) = '&%$ !"#g1

C12vv

C16

��'&%$ !"#g6

C61
66

C65

��

'&%$ !"#g2
C21

WW

C23

��'&%$ !"#g5

C56

GG

C54

��

'&%$ !"#g3

C32

GG

C34vv'&%$ !"#g4
C45

WW
C43

66

and construct from a representationV = (Cij) ∈ repα chartPSL2(Z) with α =
(a1, . . . , a6) then× n matrix (wheren =

∑
i ai)

BV =


1a1 0 0 C21 0 C61

0 C34 C54 0 1a4 0
C12 C32 0 1a2 0 0
0 0 1a5 0 C45 C65

0 1a3 0 C23 C43 0
C16 0 C56 0 0 1a6


Then, for any non-zero scalarλ ∈ C∗ we have that

σ1 7→ λB−1

1a1+a4 0 0
0 ρ21a2+a5 0
0 0 ρ1a3+a6

B [
1a1+a3+a5 0

0 −1a2+a4+a6

]

σ2 7→ λ

[
1a1+a3+a5 0

0 −1a2+a4+a6

]
B−1

1a1+a4 0 0
0 ρ21a2+a5 0
0 0 ρ1a3+a6

B
is ann-dimensional representation of the third braid groupB3.
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If for all imodulo6 we have thatai ≤ ai−1+ai+1 then this representation is simple for
sufficiently generalV and any sufficiently general simplen-dimensional representation
ofB3 (meaning a Zariski open subset of simples) can be conjugated to one of this form.

Finally, if we have representants of isomorphism classes of simpleα-dimensional rep-
resentations ofchartPSL2(Z), then the correspondingB3-representations classify the
isomorphism classes of simpleB3-representations, finite to one.

The methods we used to construct these simple representations are general, hence also
for GL2(Z) we can use its chart to construct nearly all simple representations (at least
in principle).


