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Introduction

A crucial result in (commutative) algebraic geometry is the anti-equivalence of categories

spec
e —
commalg <. affine
Cl-]

between the category commalg of all affine commutative C-algebras and the category affine of all
affine schemes, determined by associating to an affine commutative C-algebra C' its affine scheme
spec C and to an affine scheme X its coordinate ring C[X].

The points of spec C' correspond to the maximal ideals m of C, or equivalently, to the one-
dimensional representations of C' (that is, to the algebra morphisms C —— C). We will see that
the set of all one-dimensional representations of C' can be given the structure of an affine scheme,
rep, C, such that there is an isomorphism of affine schemes spec C' ~ rep; C. Hence, the above
anti-equivalence can be rephrased as

rep;
T T
commalg <. affine
Cl-]

In this book we will prove a natural extension of this anti-equivalence to the category alg
of all affine C-algebras. For a non-commutative algebra A, it is not natural to restrict to one-
dimensional representations so we will define an affine scheme rep,, A whose points are precisely
the n-dimensional representations of A, that is, the C-algebra morphisms A — M, (C). We will
view rep,, A as a level n approzimation of a non-commutative affine scheme associated to A. Hence,
we can define a functor

rep’!l

alg ————> affine

but this can never be close to an anti-equivalence.

To begin, the map is not surjective as the affine scheme rep,, A has some additional structure.
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For example, we can conjugate an algebra morphism ¢

A—"24 M, (C)

M, (C)

by any invertible n X n matrix g € GL, to obtain another algebra morphism ¢g4. This defines an
action of the linear reductive group GL, on the affine scheme rep, A. Therefore, the image of
the above functor must be contained in GL(n)-affine, the category of all affine schemes with a
GLy-action. Remark that in the special case of one-dimensional representations (that is n = 1) we
considered before, we didn’t spot this extra structure as the natural C*-action on rep; A is trivial.
So, for fixed n, we’d better consider the functor

repn
alg ———— > GL(n)-affine

Still, this cannot be an anti-equivalence because the map is not injective. There may be non-
isomorphic affine C-algebras A and B with rep,, A ~ rep, B. For example, assume that A does
not satisfy all the polynomial identities of n x n matrices and let I,, be the twosided ideal of A
generated by all evaluations p, (a1, ..., ax) of polynomial identities p,of M, (C) in elements a; € A,
then it follows that every C-algebra morphism A — M, (C) factors through A = A/I, whence
rep, A ~ rep, A. So, we better restrict to algebras satisfying all polynomial identities of n x n
matrices.

In fact, we will consider a slightly different category, alg@n, the category of all affine Cayley-
Hamilton algebras of degree n. Consider the category alg@ of affine algebras A with a trace map
tra : A —— A and with trace preserving algebra maps as morphisms. There is a functor
J : alg———————> alg@ which assigns to an affine C-algebra A the algebra | A obtained by
tensoring A with the symmetric algebra on the vector-space quotient A/[A, A], and equipped with
the trace map which sends a € A to its image @ in the space A/[A, A],. Factor [ A by the two-sided
ideal of all trace identities holding in n X n matrices to obtain an (affine) algebra [ A. We have a
commuting triangle of functors

algln
rep,,
alg GL(n)-affine

The functor trep, (which assigns to A € alg@n the affine scheme trep, A of trace preserving n-
dimensional representations of A) is our best hope to extend the classical anti-equivalence between
commutative affine algebras and affine schemes to level n, that is to noncommutative geometry@n.
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For X € GL(n)-affine, a natural substitute for the coordinate ring C[X] of polynomial functions
is the algebra 1" [X] of all GLy-equivariant polynomial maps X — My (C). It turns out that this
witness algebra " [X] is indeed a Cayley-Hamilton algebra of degree n and so we do have functors

trep,
T T T T T T
~~——
e

algln GL(n)-affine

The desired extension of the anti-equivalence to level n noncommutative geometry is the following
result, due to Claudio Procesi [68]

Theorem 0.1 (Procesi) The witness functor ff" is a left inverse to the functor trep,, associating
to a Cayley-Hamilton algebra A € alg@n the affine GL,-scheme of trace preserving n-dimensional
representations.

Hence, we can recover the Cayley-Hamilton algebra A € alg@n from the GL,-geometry of the
affine scheme trep, A. However, we will give examples that these functors do not determine an
anti-equivalence of categories. In fact, it is a major open problem to identify among all G L,-affine
varieties the representation schemes of algebras.

We can connect this near miss anti-equivalence at level n to the anti-equivalence of commutative
algebraic geometry. We associate to an A € alg@n the commutative subalgebra 55” A = tra(A).
Conversely, geometric invariant theory associates to an affine GL,-scheme trep, A the quotient
scheme

trep, A/GL, ~ triss, A

whose points classify the closed orbits. We will see that GL,-closed orbits correspond to the
isomorphism classes of n-dimensional semi-simple representations of A. We obtain a commuting
diagram of functors
trep,,
T T T
<~ GL(n)-affinme
ﬂ"b

algln

$n /GLn,

spec

— T T

~—
C[-]

commalg affine

Hence, in particular, we recover the central subalgebra fn A as the coordinate algebra of the scheme
triss, A classifying isomorphism classes of n-dimensional semi-simple representations.

Having generalized the classical anti-equivalence of categories commalg ~ affine® to level n,
we turn to defining and classifying smooth objects in alg@n. These Cayley-smooth algebras are
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defined in terms of a lifting property with respect to nilpotent ideals, motivated by Grothendieck’s
characterization of commutative regular algebras. We will prove Procesi’s result that A € alg@n is
Cayley-smooth if and only if the corresponding representation scheme trep, A is a smooth affine
variety. An important source of examples of Cayley-smooth algebras is the level n approximations
fn A of Quillen-smooth algebras A, that is, quasi-free algebras in the terminology of J. Cuntz and
D. Quillen [23] or formally smooth algebras in the terminology of M. Kontsevich [46].

A commutative smooth variety is locally diffeomorphic to affine space. Rephrased in algebraic
terms, for every maximal ideal m of C, the coordinate ring of an affine variety X of dimension d,
we have that the m-adic completion

Cm ~ Cl[z1, - - -, zd]]

is isomorphic to the algebra of formal power series in d variables. In this book we will be able to
extend this étale local classification to Cayley-smooth algebras. It is no longer true that there is
just one local type for every central dimension d, but the different types can be classified, up to
Morita equivalence, by a combinatorial gadget : a marked quiver Q® and a dimension vector «.

Let A € algn and consider a maximal ideal m of the central subalgebra tra(A). As this is the
coordinate ring of the quotient variety triss,, A, the ideal m determines the isomorphism class of
an n-dimensional semi-simple representation

M=SP"q...©S2*

where the S; are simple representations of A of dimension d; and occurring in M with multiplicity
e; (son =>d;e;). We associate to M a quiver @ on k vertices (where vertex ¢ corresponds to the
simple factor S;) and where the number of arrows in @ between vertices is given by the formula

# { } = dimc Exta(S;, S;)

Remark that taking the multiplicities e; to be the components of the dimension vector a =
(e1,...,exr), then the affine space of a-dimensional quiver representations rep, @ can be identified
with the space

repa Q ~ Exty (M, M)

of self-extensions of M. A self-extension e € Exth (M, M) defines an algebra morphism
be A —— Mn(Cle])

to m x n-matrices over the dual numbers Cl¢] = C[z]/(2?), so we can look at the subspace
ExtYy (M, M) of trace-preserving self-extensions. We will see that this subspace can be identi-
fied with the representation space rep, Q°, this time of a marked quiver Q°® which is obtained from
Q@ by removing certain loops and possibly marking others. We call the pair (Q°, «) the local quiver
setting of the Cayley-Hamilton algebra A in m. The desired étale local characterization was proved
in [58].
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Theorem 0.2 If A € alg@n is Cayley-smooth and m is a mazimal ideal of the central subalge-

bra tra(A), then the m-adic completion An can be reconstructed from the local quiver setting of
A in m together with knowledge of the dimensions of the simple components of the semi-simple
representation M determined by m.






1 — Cayley-Hamilton Algebras

In this chapter we will define the category alg@n of Cayley-Hamilton algebras of degree n. These
are affine C-algebras A equipped with a trace map tr4 such that all trace identities holding in n x n
matrices also hold in A. Hence, we have to study trace identities and, closely related to them,
necklace relations.This requires the description of the generic algebras

/C(ml,...,xm>:'ﬂ? and f@(ml,...,mm)zN;ﬂ

called the trace algebra of m gemeric n X n matrices, respectively the necklace algebra of m generic
n X n matrices. For every A € alg@n there are epimorphisms T} —»> A and N} —»» tra(A) for
some m.

In chapter 2 we will reconstruct the Cayley-Hamilton algebra A (and its central subalgebra
tra(A)) as the ring of GLy-equivariant polynomial functions (resp. invariant polynomials) on the
representation scheme rep,, A. Using the Reynolds operator in geometric invariant theory, it suffices
to prove these results for the generic algebras mentioned above. An n-dimensional representation
of the free algebra C(z1,...,Zm) is determined by the images of the generators z; in M, (C) whence

rep, C{z1,...,2m) =~ Mn(C)® ... My(C)

m

and the G L,-action on it is that of simultaneous conjugation. For this reason we have to understand
the fundamental results on the invariant theory of m-tuples on nxn matrices, due to Claudio Procesi
[67].

1.1 Conjugacy classes of matrices

In this section we recall the standard results in the case when m = 1, that is, the study of conjugacy
classes of nxn matrices. Clearly, the conjugacy classes are determined by matrices in Jordan normal
form. Though this gives a complete set-theoretic solution to the orbit problem in this case, there
cannot be an orbit variety due to the existence of non-closed orbits. Hence, the geometric study
of the conjugacy classes splits up into a quotient problem (the polynomial invariants determine an
affine variety whose points correspond to the closed orbits) and a nullcone problem (the study of
the orbits having a given closed orbit in their closures). In this section we will solve the first part
in full detail, the second part will be solved in section 2.7. A recurrent theme of this book will be
to generalize this two part approach to the orbit-space problem to other representation varieties.



Cayley-Hamilton Algebras

We denote by M,, the space of all n x n matrices M,,(C) and by GL,, the general linear group
GL,(C). A matrix A € M,, determines by left multiplication a linear operator on the n-dimensional
vectorspace V,, = C" of column vectors . If g € GL,, is the matrix describing the base change from
the canonical basis of V,, to a new basis, then the linear operator expressed in this new basis is
represented by the matrix gAg~'. For a given matrix A we want to find a suitable basis such that
the conjugated matriz gAg~" has a simple form.

Consider the linear action of GL, on the n?>-dimensional vectorspace M,

GLn X M, —» M,  (g,A) — g.A=gAg "

The orbit O(A) = {gAg™" | g € GL, } of A under this action is called the conjugacy class of
A. We look for a particularly nice representative in a given conjugacy class. The answer to this
problem is, of course, given by the Jordan normal form of the matrix.

With e;; we denote the matrix whose unique non-zero entry is 1 at entry (¢, 7). Recall that the
group GL,, is generated by the following three classes of matrices :

e the permutation matrices p;; = 1. + eij + eji — ey —ej; for all i # j,
e the addition matrices a;;(A\) =T, + Ae;; for all i # j and 0 # A, and
e the multiplication matrices m;(A\) =T, + (A — 1)ey; for all ¢ and 0 # .

Conjugation by these matrices determine the three types of Jordan moves on n X n matrices, as
depicted below, where the altered rows and columns are indicated.

>
|
=

)
).
O

e T ] R— e <O
| ) )

i g i J i
type p type a type m

Therefore, it suffices to consider sequences of these moves on a given n X n matrix A € M,. The
characteristic polynomial of A is defined to be the polynomial of degree n in the variable ¢

xa(t) = det(tT, — A) € C[t].



1.1. Conjugacy classes of matrices

As C is algebraically closed, xa(t) decomposes as a product of linear terms

e

[—x)®

=1

Here, the {A1,..., A} are called the eigenvalues of the matrix A. Observe that ), is an eigenvalue
of A if and only if there is a non-zero eigenvector v € V,, = C™ with eigenvalue \;, that is, A.v = \v.
In particular, the rank r; of the matrix A; = \;T, — A satisfies n — d; < r; < n. A nice inductive
procedure using only Jordan moves is given in [28] and proves the Jordan- Weierstrass theorem .

Theorem 1.1 (Jordan-Weierstrass) Let A € M, with characteristic polynomial xa(t) =
[15_,(t — X\i)%. Then, A determines unique partitions

pi:(ai17ai2,...7aimi) Of di

associated to the eigenvalues A\; of A such that A is conjugated to a unique (up to permutation of
the blocks) block-diagonal matriz

By | 0 |... 0

0 | B 0
Jip1,pe) =

0 0 |...| Bm

with m = mi1 + ... 4+ me and exactly one block B, of the form Jaij (Ni) for all 1 <4 < e and
1 < j < m; where

A1
Jaz; (Ni) = A eM

ajj
1

Ai

(©)

Let us prove uniqueness of the partitions p; of d; corresponding to the eigenvalue \; of A.
Assume A is conjugated to another Jordan block matrix Ji, ... q.), Decessarily with partitions
qi = (bi1, - .., bi) of di. To begin, observe that for a Jordan block of size k we have that

rk Jo(0)' =k —1 foralll <k andif u#0then rk Ji(pn)' =k

for all I. As Jp, q0) we have for all A € C and all [

..........

rk (X — Jip pe))l =71k (X — Jaar, ..., Qe))l

.....
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Now, take A = A; then only the Jordan blocks with eigenvalue \; are important in the calculation
and one obtains for the ranks

! l
n— Z#{j | aij > h} respectively n — Z #{j | bij > h}.

h=1 h=1

Now, for any partition p = (c1,...,¢,) and any natural number h we see that the number z =

#{jlc; > h}

o ]

o ]

‘ ]

Cz+1

Cu :] h

is the number of blocks in the h-th row of the dual partition p* which is defined to be the partition
obtained by interchanging rows and columns in the Young diagram of p (see section 1.5 for the
definition). Therefore, the above rank equality implies that p; = ¢; and hence that p; = ¢;. As we
can repeat this argument for the other eigenvalues we have the required uniqueness.

Hence, the Jordan normal form shows that the classification of G'Ly,-orbits in M,, consists of
two parts : a discrete part choosing

e a partition p = (d1,da,...,d.) of n, and for each d;,
e a partition p; = (a1, as2, . .., Gim;) of di,

determining the sizes of the Jordan blocks and a continuous part choosing
e an e-tuple of distinct complex numbers (A1, Az, ..., Ae).

fixing the eigenvalues. Moreover, this e-tuple (A1, ..., Ae) is determined only up to permutations of
the subgroup of all permutations 7 in the symmetric group Se such that p; = p,(;) forall 1 <i <e.

Whereas this gives a satisfactory set-theoretical description of the orbits we cannot put an
Hausdorff topology on this set due to the existence of non-closed orbits in M,,. For example, if
n = 2, consider the matrices

A1 A0
A:{O )\} and B:[O )\}



1.1. Conjugacy classes of matrices 11

Figure 1.1: Orbit closure for 2 x 2 matrices

which are in different normal form so correspond to distinct orbits. For any € # 0 we have that

B 94D

belongs to the orbit of A. Hence if ¢ —— 0, we see that B lies in the closure of O(A). As any
matrix in O(A) has trace 2, the orbit is contained in the 3-dimensional subspace

{)\—&-x Y

z )\—x} M,

In this space, the orbit-closure O(A) is the set of points satisfying 2® + yz = 0 (the determinant
has to be A?), which is a cone having the origin as its top : The orbit O(B) is the top of the cone
and the orbit O(A) is the complement, see figure 1.1.

Still, for general n we can try to find the best separated topological quotient space for the action
of GL,, on M,,. We will prove that this space coincide with the quotient variety determined by the
invariant polynomial functions.

If two matrices are conjugated A ~ B, then A and B have the same unordered n-tuple of
eigenvalues {A1,...,A\n} (occurring with multiplicities). Hence any symmetric function in the \;
will have the same values in A as in B. In particular this is the case for the elementary symmetric
functions oy

O‘l(Ah.,.,Al): Z Ail)‘iz"')‘iz'
i1<in<...<i]
Observe that for every A € M,, with eigenvalues {\1,...,\,} we have

LI =) = xa(t) = det(tT, — A) =" + Z(—l)ivi(A)t"_i

Jj=1
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Developing the determinant det(¢1, — A) we see that each of the coefficients o;(A) is in fact a
polynomial function in the entries of A. A fortiori, 0;(A) is a complex valued continuous function
on M,. The above equality also implies that the functions o; : M, —— C are constant along
orbits. We now construct the continuous map

M, T, cn
sending a matrix A € M, to the point (01(A),...,0n(A)) in C". Clearly, if A ~ B then they map

to the same point in C". We claim that m is surjective. Take any point (ai,...,a,) € C" and
consider the matrix A € M,

A= ; (1.1)

then we will show that 7(A) = (a1,...,an), that is,
det(tl, —A) =t" —a1t" ' aot" 2 — ... 4+ (=1 "an.

Indeed, developing the determinant of ¢7,, — A along the first column we obtain

@zzz H O REEEEE ST A § HEE el AR t 0 0 0 —a,
1 t 0 0o —a,, @zzz [ AREEEEEN | EEEEEEEMEEEEIR § HEsHbes ¢ Y
0 1 ¢ 0 —a,, 0 1t 0 —a,,
0 0 1t -—a 0 0 1t -—a
(} 0 1 t—a, () 0 1 t—a,

Here, the second determinant is equal to (71)"71(1” and by induction on n the first determinant is

equal to t.(t" " — a1t 2 + ...+ (=1)""'a,_1), proving the claim.

Next, we will determine which n X n matrices can be conjugated to a matrix in the canonical
form A as above. We call a matrix B € M,, cyclic if there is a (column) vector v € C" such that C™
is spanned by the vectors {v, B.v, B2, ..., B™ '}, Let g € GL,, be the basechange transforming
the standard basis to the ordered basis

(v,—B.v,B>v,—B®w,...,(—=1)" " 'B" ).
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13

In this new basis, the linear map determined by B (or equivalently, g.B.g™") is equal to the matrix
in canonical form

0 bn
—1 O bnfl
-1 0 b2
—1 by
where B™.v has coordinates (by,...,b2,b1) in the new basis. Conversely, any matrix in this form

is a cyclic matrix.
We claim that the set of all cyclic matrices in M, is a dense open subset. To see this take
v=(21,...,2n)" € C" and compute the determinant of the n X n matrix

This gives a polynomial of total degree n in the z; with all its coefficients polynomial functions c;
in the entries bg; of B. Now, B is a cyclic matrix if and only if at least one of these coefficients
is non-zero. That is, the set of non-cyclic matrices is exactly the intersection of the finitely many
hypersurfaces

Vi ={B = (bki)k,1 € Mn | cj(b11,b12,...,bpn) = 0}

in the vectorspace M,,.

Theorem 1.2 The best continuous approximation to the orbit space is given by the surjection

M, — " C"
mapping a matriz A € M, (C) to the n-tuple (o1(A),...,on(A)).

Let f: M,, — C be a continuous function which is constant along conjugacy classes. We will
show that f factors through =, that is, f is really a continuous function in the o;(A). Consider the



14

Cayley-Hamilton Algebras

diagram
M, —I .
.~"
° " \ //SSO
5
(Cn
where s is the section of 7 (that is, m 0 s = idcn) determined by sending a point (ai1,...,an) to

the cyclic matrix in canonical form A as in equation (1.1). Clearly, s is continuous, hence so is
f' = fos. The approximation property follows if we prove that f = f’ ow. By continuity, it suffices
to check equality on the dense open set of cyclic matrices in M,,.

There it is a consequence of the following three facts we have proved before : (1) : any cyclic
matrix lies in the same orbit as one in standard form, (2) : s is a section of 7 and (3) : f is constant
along orbits.

Example 1.1 (Orbits in M) A 2x 2 matrix A can be conjugated to an upper triangular matrix
with diagonal entries the eigenvalues A1, A2 of A. As the trace and determinant of both matrices
are equal we have

01(A) =tr(A) and o2(A) = det(A).

The best approximation to the orbitspace is therefore given by the surjective map
T 2 a b
My — C ¢ d — (a + d,ad — bc)

The matrix A has two equal eigenvalues if and only if the discriminant of the characteristic poly-
nomial t* — a1 (A)t + 02(A) is zero, that is when o1(A)? — 402(A) = 0. This condition determines
a closed curve C in C* where

C={(x,y) € C* | 2° — 4y = 0}.

c
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Figure 1.2: Orbit closures of 2 X 2 matrices

Observe that C is a smooth 1-dimensional submanifold of C2. We will describe the fibers (that is,
the inverse images of points) of the surjective map .

If p = (z,y) € C*> — C, then 7 '(p) consists of precisely one orbit (which is then necessarily
closed in M>) namely that of the diagonal matrix

_ /22 — 4
|:)\1 0:| Where >\1,2 = —l’ + 21: Y

0 X

If p= (z,y) € C then 77 (p) consists of two orbits,
(@) 1 and O A0
0 A 0 A

where A = %m We have seen that the second orbit lies in the closure of the first. Observe that the

second orbit reduces to one point in My and hence is closed. Hence, also 7771(;1)) contains a unique
closed orbit.

To describe the fibers of 7 as closed subsets of M> it is convenient to write any matrix A as a
linear combination

0

} +w(A) {8 é} +2(A) {(1) 8} .

Expressed in the coordinate functions u, v, w and z the fibers Wﬁl(p) of a point p = (z,y) € C? are
the common zeroes of

A= u(A) {% (ﬂ +o(A) {é

1
2

U =z
v+ dwz =22 -4y
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Figure 1.3: Representation strata for 3 x 3 matrices.

The first equation determines a three dimensional affine subspace of M2 in which the second equa-
tion determines a quadric. If p ¢ C this quadric is non-degenerate and thus 7 *(p) is a smooth
2-dimensional submanifold of Ms. If p € C, the quadric is a cone with top lying in the point
%/ﬂg. Under the G Lg-action, the unique singular point of the cone must be clearly fixed giving
us the closed orbit of dimension 0 corresponding to the diagonal matrix. The other orbit is the
complement of the top and hence is a smooth 2-dimensional (non-closed) submanifold of M. The
graphs in figure 1.2 represent the orbit-closures and the dimensions of the orbits.

Example 1.2 (Orbits in M3) We will describe the fibers of the surjective map Mz —»» C3. If
a 3 x 3 matrix has multiple eigenvalues then the discriminant d = (A — X2)?(A2 — A3)2(A3 — A1)? is
zero. Clearly, d is a symmetric polynomial and hence can be expressed in terms of 01,02 and o3.
More precisely,

d= 40305 + 405 + 2703 — 0205 — 18010203

The set of points in C* where d vanishes is a surface S with singularities. These singularities are
the common zeroes of the % for 1 <4 < 3. One computes that these singularities form a twisted

cubic curve C' in C3, that is,

C = {(3¢,3¢%,¢%) | c € C}.

The description of the fibers 7! (p) for p = (x,y, z) € C? is as follows. When p ¢ S, then 7~ '(p)
consists of a unique orbit (which is therefore closed in M3), the conjugacy class of a matrix with
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paired distinct eigenvalues. If p € S — C, then 7~ !(p) consists of the orbits of

A =

o O >

1 0
)\ 0 and AQ =
0 n

o O >
O > O
T oo

Finally, if p € C, then the matrices in the fiber 77 (p) have a single eigenvalue A\ = %:c and the
fiber consists of the orbits of the matrices

31: BQZ B3:

o O >
O > =
> = O
O O
O > =
> o O
oSO >
O > O
> oo

We observe that the strata with distinct fiber behavior (that is, C* — S, § — C and C) are all
submanifolds of C3, see figure 1.3.

The dimension of an orbit O(A) in M, is computed as follows. Let C'a be the subspace of all
matrices in M,, commuting with A. Then, the stabilizer subgroup of A is a dense open subset of
Ca whence the dimension of O(A) is equal to n? —dim Ca.

Performing these calculations for the matrices given above, we obtain the following graphs
representing orbit-closures and the dimensions of orbits

6 Oa, 96 OB, 96
Oa, 04 Op, ¢4
Op, 0

cd_9 S—-C C

Returning to M, the set of cyclic matrices is a Zariski open subset of M,. For, consider the
generic matrix of coordinate functions and generic column vector

11 ... Tin U1

X = and V=

and form the square matrix

[U Xv X%v ... X”_l.v]€Mn(C[:cn,mlz,...,xnn,vl,...,vn])
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Then its determinant can be written as >.;_; pi(xi;)qi(vk) where the ¢; are polynomials in the vy
and the p; polynomials in the x;;. Let A € M,, be such that at least one of the p;(A) # 0, then the
polynomial d = 3, pi(A)qi(vk) € Cluy, ..., vx] is non-zero. But then thereisac= (c1,...,¢n) € C"
such that d(c) # 0 and hence ¢” is a cyclic vector for A. The converse implication is obvious.

Theorem 1.3 Let f : M,, —— C is a regular (that is, polynomial) function on M, which is
constant along conjugacy classes, then

feClo(X),...,on(X)]

Proof. Consider again the diagram

(Cn
The function f' = f o s is a regular function on C" whence is a polynomial in the coordinate
functions of C™ (which are the 0;(X)), so

f € Cloi(X),...,0n(X)] &> C[M,].
Moreover, f and f’ are equal on a Zariski open (dense) subset of M, whence they are equal as

polynomials in C[My,]. O

The ring of polynomial functions on M,, which are constant along conjugacy classes can also be
viewed as a ring of invariants. The group GL,, acts as algebra automorphisms on the polynomial
ring C[M,,]. The automorphism ¢, determined by g € GL,, sends the variable z;; to the (¢, j)-entry
of the matrix ¢g~'.X.g which is a linear form in C[M,]. This action is determined by the property
that for all g € GL,, A € A and f € C[M,] we have that

$o(/)(A) = f(9-Ag™")
The ring of polynomial invariants is the algebra of polynomials left invariant under this action
C[M)%"" = {f € C[My] | ¢g(f) = f for all g€ GL.}

and hence is the ring of polynomial functions on M,, which are constant along orbits. The foregoing
theorem determines the ring of polynomials invariants

C[M, )" = Clo1(X),. .., 0n(X)]
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We will give an equivalent description of this ring below.
Consider the variables A1,..., A, and consider the polynomial

n

1@ = [ =2) = ¢+ > (1ot

=1

then o; is the i-th elementary symmetric polynomial in the A;. We know that these polynomials
are algebraically independent and generate the ring of symmetric polynomials in the \;, that is,

Clot,...,0n] = C[A1, ..., An]""

where S, is the symmetric group on n letters acting by automorphisms on the polynomial ring
C[A1, ..., An] via m(Xi) = Az(;) and the algebra of polynomials which are fixed under these auto-
morphisms are precisely the symmetric polynomials in the A;.

Consider the symmetric Newton functions s; = A7+ ...+ A;,, then we claim that this is another
generating set of symmetric polynomials, that is,

Cloi,...,00] =CJs1, ..., Sn].

To prove this it suffices to express each o; as a polynomial in the s;. More precisely, we claim that
the following identities hold for all 1 < j <n

S —O01Sj—-1 =+ 0285-2 — ... + (—1)j_10']'_151 =+ (—1)j0'j.j =0 (12)

For j = n this identity holds because we have
0= Z fn()\z) = Sp + Z(_l)igisnfi
i=1 i=1

if we take so = m. Assume now j < n then the left hand side of equation 1.2 is a symmetric
function in the A; of degree < j and is therefore a polynomial p(o1,...,0;) in the first j elementary
symmetric polynomials. Let ¢ be the algebra epimorphism

ClA1,- o An] =5 C[AL, ..., A
defined by mapping Aj+1,...,A; to zero. Clearly, ¢(o;) is the i-th elementary symmetric polynomial

in {A1,...,A;} and ¢(s;) = A} +...+ A}. Repeating the above j = n argument (replacing n by j)
we have

0= Z Fi) = (s5) + > _(=1)'¢(0:)p(sn—i)

-

(this time with so = j). But then, p(¢(o1),...,¢(0;)) = 0 and as the ¢(oy) for 1 < k < j are

algebraically independent we must have that p is the zero polynomial finishing the proof of the
claimed identity.
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If A1,..., A\ are the eigenvalues of an n X n matrix A, then A can be conjugated to an upper
triangular matrix B with diagonal entries (A1, ..., A1). Hence, the trace tr(A) =tr(B) = A +...+
An = s1. In general, A‘ can be conjugated to Bl which is an upper triangular matrix with diagonal
entries (Af,...,\;,) and hence the traces of A* and B® are equal to A + ...+ A}, = s;. Concluding,
we have

Theorem 1.4 Consider the action of conjugation by GLy, on M,. Let X be the generic matriz of
coordinate functions on M,
T11 e Tnn
X =
Tnl N Tnn

Then, the ring of polynomial invariants is generated by the traces of powers of X, that is,
C[Mn])%F = Cltr(X), tr(X?),...,tr(X™)]
Proof. The result follows from theorem 1.3 and the fact that

Clo1(X),...,0n(X)] = Cltr(X), ..., tr(X™)]

1.2 Simultaneous conjugacy classes

As mentioned in the introduction, we need to extend what we have done for conjugacy classes of
matrices to simultaneous conjugacy classes of m-tuples of matrices . Consider the mn?-dimensional
complex vectorspace

M»=M,&...oM,

m

of m-tuples (Ai,..., Am) of n X n-matrices A; € M,. On this space we let the group GL, act by
simultaneous conjugation, that is

g.(A1,..., Ap) = (g.Al.gfl7 e ,g.Am.gfl)

for all g € GL, and all m-tuples (Aq,...,Ay). Unfortunately, there is no substitute for the Jordan
normalform result in this more general setting.

Still, for small m and n one can work out the G L,-orbits by brute force methods. In this section
we will give the details for the first non-trivial case, that of couples of 2 x 2 matrices. These explicit
calculations will already exhibit some of the general features we will prove later. For example, that
all subvarieties of the quotient variety determined by points of the same representation type are
smooth and that the fiber structure depends only on the representation type.
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Example 1.3 (Orbits in M3 = My @ M>) We can try to mimic the geometric approach to the
conjugacy class problem, that is, we will try to approximate the orbitspace via polynomial functions
on M3 which are constant along orbits. For (A,B) € M3 = My ® M> clearly the polynomial
functions we have encountered before tr(A),det(A) and tr(B),det(B) are constant along orbits.
However, there are more : for example ¢r(AB). In the next section, we will show that these five
functions generate all polynomials functions which are constant along orbits. Here, we will show

that the map M22 = M ® M> ~ "+ CP defined by
(A, B) — (tr(A),det(A), tr(B),det(B), tr(AB))

is surjective such that each fiber contains precisely one closed orbit. In the next chapter, we will
see that this property characterizes the best polynomial approximation to the (non-existent) orbit
space.

First, we will show surjectivity of m, that is, for every (z1,...,z5) € C® we will construct a
couple of 2 x 2 matrices (A, B) (or rather its orbit) such that 7(A4, B) = (1, ...,x5). Consider the
open set where 7 # 4. We have seen that this property characterizes those A € My such that A
has distinct eigenvalues and hence diagonalizable. Hence, we can take a representative of the orbit

O(A, B) to be a couple
( )\ 0 C1 C2 )
0 n ’ 3 C4

with A # p. We need a solution to the set of equations

T3 = C1+cCq
T4 = C1C4 — C2C3
Ts = Ac1 + jica

Because \ # p the first and last equation uniquely determine c¢1, ¢4 and substitution in the second
gives us cacs. Analogously, points of C® lying in the open set 22 # x4 lie in the image of 7. Finally,
for a point in the complement of these open sets, that is when 27 = z2 and z3 = 4z4 we can

consider a couple (4, B)
Al w0
( 0 A ’ c U )

where \ = %a:l and p = %Ig. Observe that the remaining equation x5 = tr(AB) = 2 Au + ¢ has a
solution in c.

Now, we will describe the fibers of m. Assume (A, B) is such that A and B have a common
eigenvector v. Simultaneous conjugation with a ¢ € GL, expressing a basechange from the standard
basis to {v,w} for some w shows that the orbit O(A, B) contains a couple of upper-triangular
matrices. We want to describe the image of these matrices under m. Take an upper triangular

representative in O(A, B)
( al a b1 b2 )
0 as ’ 0 b3 ’
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with 7-image (x1,...,25). The coordinates z1,z2 determine the eigenvalues a1, as of A only as an
unordered set (similarly, x3, z4 only determine the set of eigenvalues {b1, b3} of B). Hence, tr(AB)
is one of the following two expressions

aibi +asbs or aibs + asbi
and therefore satisfies the equation
(t’I“(AB) — a1b1 — a3b3)(tr(AB) — a1b3 — a3b1) =0.

Recall that 1 = a1 + a3, x2 = a1as, 3 = b1 + bz, x4 = b1bz and x5 = tr(AB) we can express this
equation as
mg — 1235 + m?:m + xgacz — 4xoxy = 0.

This determines an hypersurface H —— C5. If we view the left-hand side as a polynomial f in
the coordinate functions of C® we see that H is a four dimensional subset of C® with singularities
the common zeroes of the partial derivatives

of

a—xifor 1<i:<5

These singularities for the 2-dimensional submanifold S of points of the form (2a,a?,2b,b?, 2ab).
We now claim that the smooth submanifolds C* — H, H — S and S of C® describe the different types
of fiber behavior. In chapter 6 we will see that the subsets of points with different fiber behavior
(actually, of different representation type) are manifolds for m-tuples of n X n matrices.

If p ¢ H we claim that 7~ (p) is a unique orbit, which is therefore closed in M3. Let (A, B) € 7!
and assume first that =} # 4z then there is a representative in O(A, B) of the form

( A 0 C1 C2 )
0 1% ’ C3 C4
with A # u. Moreover, cacs # 0 (for otherwise A and B would have a common eigenvector whence
p € H) hence we may assume that co = 1 (eventually after simultaneous conjugation with a suitable

diagonal matrix diag(t,t™')). The value of A, i is determined by z1,z2. Moreover, ci,cs,cs are
also completely determined by the system of equations

T3 = C1+ ¢y
T4 = C1C4 — C3
Ts = Ac1 + pca

and hence the point p = (z1,...,zs) completely determines the orbit O(A, B). Remains to consider
the case when 27 = 422 (that is, when A has a single eigenvalue). Consider the couple (uA+vB, B)
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for u,v € C*. To begin, uA +vB and B do not have a common eigenvalue. Moreover, p = w(A, B)
determines w(uA 4+ vB, B) as

tr(uA +vB) = utr(A) + vir(B)
det(uA + vB) = u?det(A) + v:det(B) + uv(tr(A)tr(B) — tr(AB))
tr((uA +vB)B) = utr(AB) + v(tr(B)? — 2det(B))

Assume that for all u,v € C* we have the equality tr(uA + vB)? = 4det(uA 4+ vB) then comparing
coefficients of this equation expressed as a polynomial in u and v we obtain the conditions 27 = 4xs,
22 = 4z4 and 25 = z123 whence p € S —— H, a contradiction. So, fix u, v such that uA + vB
has distinct eigenvalues. By the above argument O(uA + vB, B) is the unique orbit lying over
m(uA 4+ vB, B), but then O(A, B) must be the unique orbit lying over p.

Let p € H— S and (A,B) € m'(p), then A and B are simultaneous upper triangularizable,
with eigenvalues a1, az respectively b1, be. Either a1 # as or by # by for otherwise p € S. Assume
a1 # a2, then there is a representative in the orbit O(A, B) of the form

0 a; ’ 0 bl
for {3,j} = {1,2} = {k,1}. If b # 0 we can conjugate with a suitable diagonal matrix to get b = 1

hence we get at most 9 possible orbits. Checking all possibilities we see that only three of them
are distinct, those corresponding to the couples

(al 0 b1 1 ) (a1 0 b1 0) (ag O b1 1 )

0 a ’ 0 b2 0 a ’ 0 bz 0 ail ’ 0 b2

Clearly, the first and last orbit have the middle one lying in its closure. Observe that the case
assuming that by # bo is handled similarly. Hence, if p € H — S then 7' (p) consists of three orbits,
two of dimension three whose closures intersect in a (closed) orbit of dimension two.

Finally, consider the case when p € S and (A, B) € 7~ '(p). Then, both A and B have a single
eigenvalue and the orbit O(A, B) has a representative of the form

o2 5

for certain x,y € C. If either z or y are non-zero, then the subgroup of GL» fixing this matrix
consists of the matrices of the form

Stab [g i]:{[g ;ﬂme(C*,ve(C}

but these matrices also fix the second component. Therefore, if either x or y is nonzero, the orbit is
fully determined by [z : y] € P'. That is, for p € S, the fiber 7—!(p) consists of an infinite family of
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orbits of dimension 2 parameterized by the points of the projective line P! together with the orbit

of
a 0 b 0
( {0 a] ’ {O b} )
which consists of one point (hence is closed in M3 ) and lies in the closure of each of the 2-dimensional
orbits.

Concluding, we see that each fiber 7 !(p) contains a unique closed orbit (that of minimal
dimension). The orbitclosure and dimension diagrams have the following shapes

*3 3 3

Pl

0
C°’—H H-S S

The reader is invited to try to extend this to the case of three 2 x 2 matrices (relatively easy) or
to two 3 x 3 matrices (substantially harder). By the end of this book you will have learned enough
techniques to solve the general case, at least in principle. As this problem is the archetypical
example of a wild representation problem it is customary to view it as ’hopeless’. Hence, sooner or
later we will hit the wall, but what this book will show you is that you can push the wall a bit
further than was generally expected.

1.3 Matrix invariants and necklaces

In this section we will determine the ring of all polynomial maps

M =M, &...0 My —» C
—————

m

which are constant along orbits under the action of GL,, on M,;* by simultaneous conjugation. The
strategy we will use is classical in invariant theory.

o First, we will determine the multilinear maps which are constant along orbits, equivalently,
the linear maps
M =M, ®...0 M, —> C
—————

m
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which are constant along G L,-orbits where GL,, acts by the diagonal action, that is,
g(A1®...0 Ap) = gA1g7 ' ® ... Q gAmg .
e Afterwards, we will be able to obtain from them all polynomial invariant maps by using
polarization and restitution operations.
First, we will translate our problem into one studied in classical invariant theory of GL,,.
Let V,, ~ C™ be the n-dimensional vectorspace of column vectors on which GL,, acts naturally
by left multiplication

(C 140

C 12
Vo=1. with action g.

C Vn

In order to define an action on the dual space V,; = Hom(V;,,C) ~ C" of covectors (or, row vectors)
we have to use the contragradient action

Vi=[C C ... C] withaction [¢1 ¢2 ... ¢n].g""
Observe, that we have an evaluation map V,, x V;, —— C which is given by the scalar product
f(v) forall f €V, andv eV,

vi
va

[(bl P2 ... ¢n] . = Q11 + P2v2 + ... + Py
Un

which is invariant under the diagonal action of GL, on V,  x V,. Further, we have the natural
identification

C
C
M,=V,@Vy=|.|®[C C ... C].
C
Under this identification, a pure tensor v ® f corresponds to the rank one matrix (or rank one
endomorphism of V) defined by
v f:Vy, — V, with w— f(w)v

and we observe that the rank one matrices span M,,. The diagonal action of GL,, on V,, ® V;; is
then determined by its action on the pure tensors where it is equal to

V1
1]

g |2 @lsr ¢ oo da] g

Un
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and therefore coincides with the action of conjugation on M,,. Now, let us consider the identification
(V8™ @ V,E™)* ~ End(V;E™)
obtained from the nondegenerate pairing
End(V;E™) x (V¥ @ V,2™) — C
given by the formula
MNA®R..8MmRVIR..0Un)=fiR...0 fm(A(v1 ® ... @ vm))

GL, acts diagonally on V,®™ and hence again by conjugation on End(V,®™) after embedding
GL, —> GL(V2™) = GLymn. Thus, the above identifications are isomorphism as vectorspaces
with G L,-action. But then, the space of GL,-invariant linear maps

Viemeyem . C

can be identified with the space Endcr, (V,2™) of GLy-linear endomorphisms of V,;¥™. We will
now give a different presentation of this vectorspace relating it to the symmetric group.
Apart from the diagonal action of GL, on V,;¥™ given by

g ®...Q0UR) =91 Q... R g.um
we have an action of the symmetric group S, on m letters on V2™ given by
0'.(111 R...&Q Um) = Vo (1) X... & Vo (m)

These two actions commute with each other and give embeddings of GL, and S, in End(V,®™).
The subspace of V,®™ spanned by the image of GL,, will be denoted by (GL,). Similarly, with
(Sm) we denote the subspace spanned by the image of Sy,.

Theorem 1.5 With notations as above we have :
1. (GL,) = Ends,, (V;¥™)
2. (Sm) = Enchn(Vn®m)

Proof. (1) : Under the identification End(V,2™) = End(V,)®™ an element g € G L, is mapped to
the symmetric tensor ¢ ®...® g. On the other hand, the image of Ends,, (V,;2™) in End(V,,)®™ is
the subspace of all symmetric tensors in End(V)®™. We can give a basis of this subspace as follows.
Let {e1,...,e,2} be a basis of End(V;,), then the vectors e;, ®...®e;,, form a basis of End(V;,)®™
which is stable under the S,,-action. Further, any S,,-orbit contains a unique representative of the
form N

e ®...®e§2"2
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with h1+...+h,2 = m. If we denote by r(h1, ..., h,2) the sum of all elements in the corresponding
Sm-orbit then these vectors are a basis of the symmetric tensors in End(V,,)®™.

The claim follows if we can show that every linear map A on the symmetric tensors which is zero
onall g®...® g with g € GL, is the zero map. Write e = > z;e;, then

Me®...0e) = &)t ..ag® Ar(ha, ... hy2))

is a polynomial function on End(V,). As GL,, is a Zariski open subset of End(V') on which by as-
sumption this polynomial vanishes, it must be the zero polynomial. Therefore, A(r(h1,...,h,2)) =0
for all (h1,...,h,2) finishing the proof.

(2) : Recall that the groupalgebra CS,, of S, is a semisimple algebra . Any epimorphic image of
a semisimple algebra is semisimple. Therefore, (S,,) is a semisimple subalgebra of the matrixalgebra
End(V,®™) o~ Mym. By the double centralizer theorem (see for example [66]), it is therefore equal
to the centralizer of Ends,, (V;¥™). By the first part, it is the centralizer of (GL,) in End(V,2™)
and therefore equal to Endgr,, (V;2™). O

Because Endgr,, (V;?™) = (Sm), every G Ly-endomorphism of V,®™ can be written as a linear
combination of the morphisms A\, describing the action of o € S,, on V™. Our next job is to
trace back these morphisms A\, through the canonical identifications until we can express them in
terms of matrices.

To start let us compute the linear invariant

to : Vi®m @ VE™ & C

corresponding to A, under the identification (V;®™ @ V,¥™)* ~ End(V,¥™). By the identification
we know that ps(fi ® ... fm QU1 ® ... R vm) is equal to

<)\a,f1®-~~fm®vl®...®’0m> = f1®...®fm(vd(1) ®...Ua(m>)
I fi(UU(i))

That is, we have proved

Proposition 1.1 Any multilinear G L, -invariant map
v VT QVE™

is a linear combination of the invariants

po([i® ... frn @1 ®...Qvm) = Hfi(va(i))

for o € Sp,.



28

Cayley-Hamilton Algebras

Using the identification M, (C) =V, ® V;; a multilinear G L,,-invariant map
(Vi @ V)®" =Vi®" @ V2™ — C
corresponds to a multilinear G L,-invariant map
M,(C)®...® M,(C) — C

We will now give a description of the generating maps jt» in terms of matrices. Under the identifi-
cation, matrix multiplication is induced by composition on rank one endomorphisms and here the
rule is given by

v fu'®f = f e f

v 4 2

@lr .. e || @[ . )= [ @6 . sl

/
Un Uy, Un

Moreover, the trace map on M, is induced by that on rank one endomorphisms where it is given

by the rule
tr(v® f) = f(v)
V1 vigr ... Vidn
tr(| | @[ .. en])=tr(| )= vidi = f(v)
Vn Un®i ... Un®n B
With these rules we can now give a matrix-interpretation of the G Ly-invariant maps p. .

Proposition 1.2 Let o = (i192...9a)(J1j2 ... J3) - .- (2122 ... 2¢) be a decomposition of o € Sy, into
cycles (including those of length one). Then, under the above identification we have

/.Lg(Al ®R...0 Am) = tT‘(AilA,'Q .. .Aia)tT(AlejQ .. 'Ajﬁ) .. .tT(AzlAZQ .o 'Azg)

Proof. Both sides are multilinear hence it suffices to verify the equality for rank one matrices.
Write A; = v; ® fi, then we have that

,UG'(A1®®Am): MG(U1®---Um®f1®---®fm)
= IT; fi(vo)

Consider the subproduct
fil (viz)fiz (vis) s fi(x—l (via) =9

Now, look at the matrixproduct

Vi, @ fil Wiy ® f1‘2. e W, ® fia
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which is by the product rule equal to
fir (Vig) fig (Vig) - fio 1 (Vig )iy ® fig

Hence, by the trace rule we have that

tr(Ai Aiy .. Aiy) = [ [ £i;(0oy)) = S
j=1

Having found a description of the multilinear invariant polynomial maps

M=M,®...® M, — C
—_—————
we will now describe all polynomial maps which are constant along orbits by polarization. The
coordinate algebra C[M"] is the polynomial ring in mn? variables z;;(k) where 1 < k < m and
1 <i,j < n. Consider the m generic n X n matrices
z11(k) ... zin(k)
=Xp=| | € Ma(CIMT)).

The action of GL, on polynomial maps f € C[M;"] is fully determined by the action on the
coordinate functions z;;(k). As in the case of one n x n matrix we see that this action is given by

g.wij(k) = (97" Xk.9)ij-

We see that this action preserves the subspaces spanned by the entries of any of the generic matrices.
Hence, we can define a gradation on C[M.'] by deg(x;;(k)) = (0,...,0,1,0,...,0) (with 1 at place
k) and decompose

CIM = @B  CIMMw....dm)

where C[M}"](q,.,....d,,) is the subspace of all multihomogeneous forms f in the z;;(k) of degree
(di,...,dm), that is, in each monomial term of f there are exactly di factors coming from the
entries of the generic matrix X}, for all 1 < k < m. The action of GL,, stabilizes each of these
subspaces, that is,

if feC[M)a,. . an) then g.f € C[M; (4, . .4 forall gée GLy.
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In particular, if f determines a polynomial map on M,* which is constant along orbits, that is, if f
belongs to the ring of invariants (C[M,T}GL" then each of its multihomogeneous components is also
an invariant and therefore it suffices to determine all multihomogeneous invariants.

Let f € C[M}")(q,,...,d,n) and take for each 1 < k < m di new variables t1(k), ..., tq, (k). Expand

f(tl(l)Al(l) + ...+ tdlAdl (1), oot (m)Al(m) + ...+ ta,, (m)Adm (m))

as a polynomial in the variables ¢;(k), then we get an expression

S @O Y ) ) g, () ),
f(sl(l) ,,,,, 5d1<1) ..... s1(m),..., sdm(m))(Al(l)y"'7Ad1(1)a"'7A1(m)7"'7Adm(m))

such that for all 1 < k < m we have Zji151(k) = di. Moreover, each of the
f(51(1),m,341(1),m,51(m),m,34m(m)) is a multi-homogeneous polynomial function on

M,®&.. oM, oM, d... M, .. M, D...H5 M,
—_————
di da dm
of multi-degree (si(1),...,8q;(1),...,s1(m),...,Sq4,,(m)). Observe that if f is an invariant poly-
nomial function on M;", then each of these multi homogeneous functions is an invariant polynomial

function on M,’? where D =d; + ...+ dm.
In particular, we consider the multi-linear function

fioa:MP=M'e.. . eaM™ —C

which we call the polarization of the polynomial f and denote with Pol(f). Observe that Pol(f)
in symmetric in each of the entries belonging to a block M2 for every 1 < k <m. If f is invariant
under G Ly, then so is the multilinear function Pol(f) and we know the form of all such functions
by the results given before (replacing M by M>).
Finally, we want to recover f back from its polarization. We claim to have the equality
POl(f)(Al, .. .,Al,. . .,Am, .. ,Am) = d1' .. dm'f(Al, . ,Am)
——— ——

dy dm

and hence we recover f. This process is called restitution . The claim follows from the observation
that

f(tl(l)Al +...+ tdl(l)Al, e ,t1 (m)Am + R tdm (m)Am) =
F( (D) + .o+ ta, (1)) A, .., (t(m) + ... F ta,, (M) Am) =

(1 (1) + oAty Ot (m) + - A b, (M) f(Ar, ., A)
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and the definition of Pol(f). Hence we have proved that any multi-homogeneous invariant polyno-
mial function f on M, of multidegree (di,...,dm) can be obtained by restitution of a multilinear
invariant function

Pol(f) : MP =M» @ ...® Mi™ — C

If we combine this fact with our description of all multilinear invariant functions on M, ®...® M,
we finally obtain :

Theorem 1.6 (First fundamental theorem of matrix invariants) Any polynomial function

M —J o C which is constant along orbits under the action of GL, by simultaneous conjugation

is a polynomial in the tnvariants
tT(Xil . X”)

where X, ... Xy, run over all possible moncommutative polynomials in the generic matrices
{X1,..., Xm}.

We will call the algebra C[M;'] generated by these invariants the necklace algebra Nj' =
C[M]En . The terminology is justified by the observation that the generators

tr(XilXiz e Xil)

are only determined up to cyclic permutation of the factors X,;. They correspond to a necklace
word w

O
g5
O

where each i-colored bead corresponds to a generic matrix X;. To obtain an invariant, these
bead-matrices are cyclically multiplied to obtain an n x n matrix with coefficients in M, (C[M;"]).
The trace of this matrix is called ¢r(w) and theorem 1.6 asserts that these elements generate the
ring of polynomial invariants.
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1.4 The trace algebra

In this section we will prove that there is a bound on the length of the necklace words w necessary
for the tr(w) to generate N;;'. Later, after we have determined the relations between these necklaces
tr(w), we will be able to improve this bound.

First, we will characterize all GL,,-equivariant maps from M," to M, that is all polynomial

maps M," S, M, such that for all g € GL,, the diagram below is commutative
M —— M,

My ——— M,

With pointwise addition and multiplication in the target algebra M, these polynomial maps form
a noncommutative algebra T} called the trace algebra. Obviously, the trace algebra is a subalgebra
of the algebra of all polynomial maps from M;" to M,, that is,

T —— Ma(C[M;'])

Clearly, using the diagonal embedding of C in M,, any invariant polynomial on M, determines a
G Ly-equivariant map. Equivalently, using the diagonal embedding of C[M;'] in M, (C[M]"]) we
can embed the necklace algebra

N = C[M ]t o T
Another source of GL,-equivariant maps are the coordinate maps
Observe that the coordinate map X; is represented by the generic matrix | | = X; in M, (C[M;]).
Proposition 1.3 As an algebra over the necklace algebra N, the trace algebra T} is generated
by the elements {X1,...,Xm}.

Proof. Consider a G Ly-equivariant map M, A M, and associate to it the polynomial map

tr(fXm+1)

M™h =M™ e M, C
defined by sending (A1, ..., Am, Am+1) to tr(f(4i,..., Am) Am+1). For all g € GL, we have that
flg.Ar.g™t, ..., 9. Am.g7 ") is equal to g.f (A1, ..., An).g” " and hence
tr(f(g.Al.g_l, - 7g.Am.g_l).g.Am+1.g_l) g.f(Aq, ..., Am).g_l.g.Am+1.g_1)

(
7(g-f(A1,..., Am). Ami1.97 ")
r(f(Ars sy Am) Amsr)

m)-
tr
t
t
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50 t7(f Xom41) is an invariant polynomial function on M2+ which is linearin X,,+1. By theorem 1.6
we can therefore write

me+1 Zgzl K7 t?” Q1 .- ~XiLXm+1)
ENm

Here, we used the necklace property allowing to permute cyclically the trace terms in which X,,,+1
occurs such that X, 41 occurs as the last factor. But then, tr(fXm+1) = tr(gXm+1) where

9= Zgil...ilXil le

Finally, using the nondegeneracy of the trace map on M,, (that is, if A, B € M, such that tr(AC) =
tr(BC) for all C' € My, then A = B) it follows that f = g. O

If we give each of the generic matrices X; degree one, we see that the trace algebra T; is a
connected positively graded algebra

Our aim is to bound the length of the monomials in the X; necessary to generate T, as a module
over the necklace algebra N;'. Before we can do this we need to make a small detour in one of the
more exotic realms of noncommutative algebra : the Nagata-Higman problem .

Theorem 1.7 (Nagata-Higman) Let R be an associative algebra without a unit element. As-
sume there is a fized natural number n such that x™ = 0 for all x € R. Then, R¥ ' =0, that
18

X1.r2....2n_1 = 0

forallx; € R.

Proof. We use induction on n, the case n = 1 being obvious. Consider for all z,y € R

n—3 1

fz,y) = ya" " + ayz" " + 2yx +.o 4" g+ "y

Because for all ¢ € C we must have that

-1 n

O0=(y+ecx)" =a"c" + flz,y)c" " +... 4y

it follows that all the coefficients of the ¢ with 1 < i < n must be zero, in particular f(zx,y) = 0.
But then we have for all z,y, 2z € R that

0= f(z,2)y" "+ fla,z29)y" > + f(z,29®)y" > + .+ fla,zy" ")
=na" eyt 2f(y, 2" ) Faef(y, 2" ) + P2 f(y, 2" ) 2" e f (g, )
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and therefore 2" 29"~ ! = 0. Let I <R be the twosided ideal of R generated by all elements z"~*,

then we have that I.R.I = 0. In the quotient algebra R = R/I every element Z satisfies Z"~* = 0.
-1

n—1

By induction we may assume that 7 = 0, or equivalently that R?" "1 is contained in 1.

But then,
RQ"—I _ R2(2"*1—1)+1 _ RQnil_l‘R‘Rﬂil_l « w IRI=0

finishing the proof. O

Proposition 1.4 The trace algebra T;' is spanned as a module over the necklace algebra N}' by
all monomials in the generic matrices

Xiy Xiy .. Xy,
of degree [ < 2™ — 1.

Proof. By the diagonal embedding of N7 in M, (C[M."]) it is clear that N}’ commutes with any of
the X;. Let T4+ and N4 be the strict positive degrees of T;," and NJI* and form the graded associative
algebra (without unit element)

R=T4/N;.T+

Observe that any element t € T, satisfies an equation of the form
et et" e =0

with all of the ¢; € Ny. Indeed we have seen that all the coefficients of the characteristic polynomial
of a matrix can be expressed as polynomials in the traces of powers of the matrix. But then, for
any x € R we have that 2™ = 0.

By the Nagata-Higman theorem we know that R¥-! = (Rl)QL1 = 0. Let TV be the graded
N'-submodule of T}, spanned by all monomials in the generic matrices X; of degree at most 2" —1,
then the above can be reformulated as

T =T + N, T

We claim that T}, = T’. Assume not, then there is a homogeneous t € T}' of minimal degree d not
contained in T” but still we have a description

t=t 4+ci1d1 4 ...+ cots

with ¢' and all ¢;,¢; homogeneous elements. As deg(t;) < d, t; € T' for all 4 but then is t € T' a
contradiction. O

Finally we are in a position to bound the length of the necklaces generating N, as an algebra.
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Theorem 1.8 The necklace algebra N} is generated by all necklaces tr(w) where w is a necklace
word in the bead-matrices {X1,...,Xm} of length | < 2",

Proof. Let T’ be the C-subalgebra of Tj' generated by the generic matrices X;. Then, tr(T/)
generates the ideal N;. Let S be the set of all monomials in the X; of degree at most 2" — 1. By
the foregoing proposition we know that T' & NI*.S. The trace map

tr: T — N
is NJ/"-linear and therefore, because T/, C T'.(CX1 + ...+ CX,,) we have
tr(T)) C tr(NJ'.S.(CX1 + ...+ CXyn)) C N tr(S))

where S’ is the set of monomials in the X; of degree at most 2". If N’ is the C-subalgebra of NI
generated by all ¢tr(S’), then we have tr(T’,) C N;*.N',. But then, we have

N; = N'tr(T4) C NN, and thus N} = N’ + N’N/,

from which it follows that N = N’ by a similar argument as in the foregoing proof. a

Example 1.4 (The algebras NZ and ’]I‘%) When working with 2 X 2 matrices, the following iden-
tities are often helpful

0= A% —tr(A)A + det(A)
A.B+ B.A=tr(AB) —tr(A)tr(B) + tr(A)B + tr(B)A

for all A, B € M. Let N’ be the subalgebra of N3 generated by tr(X1),tr(X2), det(X1),det(Xz)
and tr(X1X2). Using the two formulas above and N%-linearity of the trace on 'JI‘% we see that the
trace of any monomial in X; and X5 of degree d > 3 can be expressed in elements of N’ and traces
of monomials of degree < d — 1. Hence, we have

N3 = C[tr(X1), tr(X2), det(X1), det(Xa), tr( X1 X2)].

Observe that there can be no algebraic relations between these generators as we have seen that the
induced map 7 : M2 — CP is surjective. Another consequence of the above identities is that
over N2 any monomial in the X, X, of degree d > 3 can be expressed as a linear combination of
1, X1, X2 and X1 X5 and so these elements generate T3 as a N3-module. In fact, they are a basis of
T3 over N2. Assume otherwise, there would be a relation say

X1 Xo =aly + X1 +vX2

with a, 8,7 € C(tr(X1),tr(X2), det(X1), det(X2),tr(X1X2)). Then this relation has to hold for all
matrix couples (A, B) € M3 and we obtain a contradiction if we take the couple

0 1 0 0 1 0
A:{O 0} B:[l O] whence AB:{O 0}.



36

Cayley-Hamilton Algebras

Concluding, we have the following description of N3 and T3 as a subalgebra of C[M3] respectively
M>(C[M3))

N3 = Cltr(Xy1),tr(Xz), det(X1), det(X2), tr(X1X2)]

T3 = N3LoN3X: &N3.X, © N3 X1 X,

Observe that we might have taken the generators tr(X?) rather than det(X;) because det(X;) =
1(tr(X;)? — tr(X:)?) as follows from taking the trace of characteristic polynomial of X;.

1.5 The symmetric group

Let Sgq be the symmetric group of all permutations on d letters. The group algebra C Sy is a
semisimple algebra. In particular, any simple Sg-representation is isomorphic to a minimal left
ideal of C S4 which is generated by an idempotent . We will now determine these idempotents.

To start, conjugacy classes in Sy correspond naturally to partitions A = (A1,...,Ax) of d, that
is, decompositions in natural numbers

d=X+...+ X with M >X>...>2 X >1

The correspondence associates to a partition A = (A1, ..., A\x) the conjugacy class of a permutation
consisting of disjoint cycles of lengths Ai,..., A\x. It is traditional to assign to a partition A =
(A1,..., X&) a Young diagram with \; boxes in the i-th row, the rows of boxes lined up to the left.
The dual partition X* = (A],..., ;) to X is defined by interchanging rows and columns in the
Young diagram of A .

For example, to the partition A = (3,2,1,1) of 7 we assign the Young diagram

A=l AF =

with dual partition A\* = (4,2,1). A Young tableau is a numbering of the boxes of a Young diagram
by the integers {1,2,...,d}. For example, two distinct Young tableaux of type A are

2[3]
5

3]5]
4

\\1\@ Iy
‘\I‘Gb o=

Now, fix a Young tableau T of type A and define subgroups of S; by
Py = {0 € Sq | o preserves each row }

Qx = {0 € Sq | o preserves each column }
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For example, for the second Young tableaux given above we have that

Py = S350 X Sgz,ay x {(6)} x {(7)}
Qx =5(,26,7 X Sz, x {(5)}

Observe that different Young tableaux for the same X\ define different subgroups and different
elements to be defined below. Still, the simple representations we will construct from them turn
out to be isomorphic.

Using these subgroups, we define the following elements in the groupalgebra CSy

ay = Z es , byn= Z sgn(o)es and ¢y = ax.bs

oge Py gEQ N

The element cy is called a Young symmetrizer . The next result gives an explicit one-to-one
correspondence between the simple representations of CS; and the conjugacy classes in Sy (or,
equivalently, Young diagrams).

Theorem 1.9 For every partition X of d the left ideal CSq.cx = Vi is a simple Sq-representations
and, conversely, any simple Sq-representation is isomorphic to Vi for a unique partition \.

Proof. (sketch) Observe that Px N Qx = {e} (any permutation preserving rows as well as columns
preserves all boxes) and so any element of Sy can be written in at most one way as a product p.q
with p € Py and ¢ € Q. In particular, the Young symmetrizer can be written as cx = >, +e, with
o = p.q for unique p and ¢ and the coefficient +1 = sgn(q). From this it follows that for all p € Py
and g € @ we have

p.ax =ax.p=ax , sgn(q)g.bx =bx.sgn(q)g=">br , p.cx.sgn(q)q = cx

Moreover, we claim that ¢y is the unique element in CSy (up to a scalar factor) satisfying the last
property. This requires a few preparations.

Assume o ¢ Py.Qx and consider the tableaux T = ¢T', that is, replacing the label i of each box
in T by o(z). We claim that there are two distinct numbers which belong to the same row in T'
and to the same column in 7”. If this were not the case, then all the distinct numbers in the first
row of T appear in different columns of 7”. But then we can find an element ¢j in the subgroup
0.Qx.0~ " preserving the columns of T” to take all these elements to the first row of T”. But then,
there is an element p; € T such that p;T and ¢iT’ have the same first row. We can proceed to
the second row and so on and obtain elements p € Py and ¢’ € 6.Qx, 0! such that the tableaux
pT and ¢'T’ are equal. Hence, pT = ¢'oT entailing that p = ¢'o. Further, ¢ = 0.g.c~! but then
p=q'oc =o0q whence o = p.qg”' € P\.Qx, a contradiction. Therefore, to o ¢ Px.Qx we can assign
a transposition T = (ij) (replacing the two distinct numbers belonging to the same row in 7" and
to the same column in T") for which p =7 € Py and ¢ = ¢~ *.7.0 € Q..

After these preliminaries, assume that ¢’ = > ases is an element such that

p.c.sgn(q)g=¢ forall pe Py,q€Qx
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We claim that ac = 0 whenever o ¢ Px.Qx. For take the transposition 7 found above and p = 7,
g = o~ '.7.0, then p.o.q = T.0.0 " .7.0 = 0. However, the coefficient of ¢ in ¢ is a, and that of
p.c'.q is —a, proving the claim. That is,
d = Z Apq€p.q
P.q

but then by the property of ¢’ we must have that a,, = sgn(q)a. whence ¢’ = accy finishing the
proof of the claimed uniqueness of the element cy.

As a consequence we have for all elements € CSy that cx.z, cx = agcy for some scalar o, € C
and in particular that ¢2 = naca, for,

p.(ex.z.cx).sgn(q)g = p.ax.br.x.ax.br.sgn(q)q
= aA.b)\.il'.Ll)\.b)\ = C)\.Z.C)

and the statement follows from the uniqueness result for cy.

Define V) = CS4.cx then we have cx.Vy C Cey. We claim that V) is a simple Sg-representation.
Let W C V) be a simple subrepresentation, then being a left ideal of CSy we can write W = CSg.x
with 22 = x (note that W is a direct summand). Assume that cx.W = 0, then W.W C CSg4.cx.W =
0 implying that £ = 0 whence W = 0, a contradiction. Hence, cx.W = Ccx C W, but then

Vi =CSq.cx CW whenceVy, =W

is simple. Remains to show that for different partitions, the corresponding simple representations
cannot be isomorphic.
We put a lexicographic ordering on the partitions by the rule that

A > p if the first nonvanishing A\; — p; is positive

We claim that if A\ > p then ax.CS4.b, = 0. It suffices to check that ax.0.b, = 0 for o € S4. As
o.b,.07" is the ”b-clement” constructed from the tableau b.T’ where T” is the tableaux fixed for pu,
it is sufficient to check that ax.b, = 0. As XA > p there are distinct numbers ¢ and j belonging to
the same row in T and to the same column in 7”. If not, the distinct numbers in any fixed row of T'
must belong to different columns of T”, but this can only happen for all rows if s > X\. So consider
7 = (i7) which belongs to Py and to Q,, whence ax.7 = ax and 7.b, = —b,. But then,

a)\.bu = ax.7,T, bu = 70,)\.b‘u

proving the claim.

If A # p we claim that V is not isomorphic to V,,. Assume that A > p and ¢ a CSg-isomorphism
with ¢(Vi) = Vj,, then

d(exVa) = exd(Va) = eV, = exCSqc, =0

Hence, ¢\ Vx = Cca # 0 lies in the kernel of an isomorphism which is clearly absurd.

Summarizing, we have constructed to distinct partitions of d, A and p nonisomorphic simple
CSg-representations V and V,. As we know that there are as many isomorphism classes of simples
as there are conjugacy classes in Sy (or partitions), the V) form a complete set of isomorphism
classes of simple S4-representations, finishing the proof of the theorem. O
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1.6 Necklace relations

In this section we will prove that all the relations holding among the elements of the necklace
algebra NJ' are formal consequences of the Cayley-Hamilton theorem. First, we will have to set up
some notation to clarify what we mean by this.

For technical reasons it is sometimes convenient to have an infinite supply of noncommutative
variables {x1,x2,...,%;,...}. Two monomials of the same degree d in these variables

!/
M =24 %iy...xs; and M =uxj x5, ...2j5

are said to be equivalent if M’ is obtained from M by a cyclic permutation, that is, there is a k
such that i1 = ji and all i, = jp with b = k+ a — 1 mod d. That is, if they determine the same
necklace word

Oo——0O

O
g5
O

o——0d

with each of the beads one of the noncommuting variables = z;. To each equivalence class we
assign a formal variable that we denote by

t(wilxiz .. .l‘id).

The formal necklace algebra N°° is then the polynomial algebra on all these (infinitely many)
letters. Similarly, we define the formal trace algebra T°° to be the algebra

Too :NOO ®CC<$17CL‘2,...,{E1‘,...>

that is, the free associative algebra on the noncommuting variables z; with coefficients in the
polynomial algebra N*°.
Crucial for our purposes is the existence of an N°°-linear formal trace map

t: T —> N

defined by the formula

t(z @iy .ig Tiy - - Tiy) = Zail...ikt(xil C L Tiy)
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where a;, ..., € N*.

In an analogous manner we will define infinite versions of the necklace and trace algebras. Let
M;® be the space of all ordered sequences (A1, A2, ..., A;,...) with A; € M, and all but finitely
many of the A; are the zero matrix. Again, GL,, acts on M;° by simultaneous conjugation and we
denote the infinite necklace algebra N;° to be the algebra of polynomial functions f

mr L c
which are constant along orbits. Clearly, N5° is generated as C-algebra by the invariants tr(M)
where M runs over all monomials in the coordinate generic matrices X = (z;;(k)):,; belonging to
the k-th factor of M;°. Similarly, the infinite trace algebra T,° is the algebra of GL,-equivariant
polynomial maps

Clearly, T;? is the C-algebra generated by N;° and the generic matrices X for 1 < k < co. Observe
that T;° is a subalgebra of the matrixring

T > Mn(C[M;7))

and as such has a trace map tr defined on it and from our knowledge of the generators of N;° we
know that tr(T5) = N;°.
Now, there are natural algebra epimorphisms

T —5%» T and N s N2

defined by 7(t(xi; ... xi,)) = v(t(ziy ... x4,)) = tr(Xs, ... X;,) and 7(z;) = X;. That is, v and 7
are compatible with the trace maps

oo T oo
T —— T,
t tr
oo v oo
N N2

We are interested in describing the necklace relations , that is, the kernel of v. In the next section
we will describe the trace relations which is the kernel of 7. Note that we obtain the relations
holding among the necklaces in Nj' by setting all z; = 0 with ¢ > m and all ¢t(z;, ...z;,) = 0
containing a variable with ¢; > m.

In the description a map T : CS; —— N will be important. Let S4 be the symmetric group
of permutations on {1,...,d} and let

g = (i1i1 ...ia)(jljg...jlg)...(zlzg...ZC)



1.6. Necklace relations

41

be a decomposition of o € S, into cycles including those of length one. The map T assigns to o a
formal necklace To(21,...,2q) defined by

To(z1,. .y %a) = t(Tiy Tiy « - Tig JU(T5, g+ - Xjg) o (T2 oy - - T )

Let V = V,, be again the n-dimensional vectorspace of column vectors, then Sq acts naturally on
V& via
0'.(1}1 ® ®’l}d) = 'Ua(l) ® ®Ud(d)

hence determines a linear map A\, € End(V®%). Recall from section 3 that under the natural
identifications
(MEY)* = (V& @ VO ~ Bnd(V®?)

the map A\, defines the multilinear map

po : Mp®...0 M, —> C
—— —

d

defined by (using the cycle decomposition of o as before)
/,LU(A:[ ®R...Q Ad) = tT(AilAiQ e Aia)tT(Alej2 e Aj;a) PPN tr(AzlAzz e Azg)

Therefore, a linear combination Y asTo (21, . .., zq) is a necklace relation (that is, belongs to Ker v)
if and only if the multilinear map > ao i : M®? —» Cis zero. This, in turn, is equivalent to the
endomorphism Y asAs € End(V®m), induced by the action of the element " arse, € CSq on yod
being zero. In order to answer the latter problem we have to understand the action of a Young
symmetrizer ¢y € CS; on yed,

Let A = (A1, A2, ..., Ax) be a partition of d and equip the corresponding Young diagram with the
standard tableau (that is, order first the boxes in the first row from left to right, then the second
row from left to right and so on).

E:,
The subgroup Py of Sq which preserves each row then becomes

PAZSAl XS}\QX-HXSA;C — Sy.
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As ay = EPEPA e, we see that the image of the action of ay on V®? is the subspace

Im(ay) = Sym™ V@ Sym™ V®...® Sym™ V — V&

Here, Sym® V denotes the subspace of symmetric tensors in ¥V ®*.
Similarly, equip the Young diagram of A with the tableau by ordering first the boxes in the first
column from top to bottom, then those of the second column from top to bottom and so on.

1 d]

1

m

Equivalently, give the Young diagram corresponding to the dual partition of A

A= (/-1“17,u27~'~7ul)

the standard tableau. Then, the subgroup @ of Sg which preserves each row of A (or equivalently,
each column of \*) is
Qx = Su, X Spy X ... xSy, & Sa

As by = Z‘IGQ)\ sgn(q)eq we see that the image of by on V@4 is the subspace

151 M2 i
mb ) =A\VeA\Vve..e /) Ve ve

Here, \' V is the subspace of all anti-symmetric tensors in V®¢. Note that A* V = 0 whenever
i is greater than the dimension dim V = n. That is, the image of the action of by on V®? is zero
whenever the dual partition A* contains a row of length > n + 1, or equivalently, whenever A has
> n+ 1 rows. Because the Young symmetrizer ¢y = ax.bx € C Sq we have proved the first result
on necklace relations.

Theorem 1.10 (Second fundamental theorem of matrix invariants) A formal necklace

Z aoTo(T1,...,T4)

oceSy

is a necklace relation (for n x n matrices) if and only if the element

Z ases € CSy
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belongs to the ideal of CSyq spanned by the Young symmetrizers cx relative to partitions A =
Ay .oy Ak)

I

I

with a least n + 1 rows, that is, k > n + 1.

Example 1.5 (Fundamental necklace and trace relation.) Consider the partition A = (1,1,...,1)
of n 4+ 1, with corresponding Young tableau

Then, Py = {e}, Qx» = Snh+1 and we have the Young symmetrizer

ay =1 by =c\ = Z sgn(o)ee.

o€Sp41

The corresponding element is called the fundamental necklace relation

fund, (z1,...,%ns1) = Z sgn(o)Ts(z1, ..., Tnt1)-
o€Sn41

Clearly, fund,(z1,...,%n+1) is multilinear of degree m + 1 in the variables {z1,...,Zny1}.
Conversely, any multilinear necklace relation of degree m + 1 must be a scalar multiple of
fund, (z1,...,%n+1). This follows from the proposition as the ideal described there is for d =n+1
just the scalar multiples of ZaeSnH sgn(o)es.

Because fund, (z1,...,Zn+1) is multilinear in the variables z; we can use the cyclic permutation
property of the formal trace t to write it in the form

fund, (z1,...,Tnt1) = t(chan(T1,...,Tn)Tnt1) with chap(z1,...,2,) € T

Observe that cha,(z1,...,2y) is multilinear in the variables z;. Moreover, by the nondegeneracy
of the trace map tr and the fact that fund,(z1,...,Zn+1) is a necklace relation, it follows that
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chan(z1,...,%,) is a trace relation. Again, any multilinear trace relation of degree n in the variables
{z1,...,%n} is ascalar multiple of cha, (z1,..., ). This follows from the corresponding uniqueness
result for fund, (z1,...,Znt+1).

We can give an explicit expression of this fundamental trace relation

chan (T1,...,Tn) :Z(—l)k Z Tiy Tig - - - Tiy, Z sgn(o)To(zjyy .-y Tj, 1)

k=0 i1 iR i ceSy
where J = {1,...,n} — {i1,...,ix}. In a moment we will see that cha,(z1,...,z,) and hence also
fund, (z1,...,Tn+1) is obtained by polarization of the Cayley-Hamilton identity for n X n matrices.

We will explain what we mean by the Cayley-Hamilton polynomial for an element of T*°. Recall
that when X € M, (A) is a matrix with coefficients in a commutative C-algebra A its characteristic
polynomial is defined to be

xx (t) = det(tT, — X) € Alt]

and by the Cayley-Hamilton theorem we have the basic relation that xx(X) = 0. We have seen
that the coefficients of the characteristic polynomial can be expressed as polynomial functions in
the tr(X*) for 1 < i < n.

For example if n = 2, then the characteristic polynomial can we written as

xx(t) = £~ tr(X)t + L (tr(X)? — (X))

For general n the method for finding these polynomial functions is based on the formal recursive al-
gorithm expressing elementary symmetric functions in term of Newton functions , usually expressed
by the formulae

n

OB I (B9}

=1

f'(t) _ dlog f(t) _ 1 X1
S a S 2 (M)

i=1 * k=0 i=1

n n

Note, if \; are the eigenvalues of X € M,, then f(t) = xx(t) and 31" | \¥ = tr(X*). Therefore,
one can use the formulae to express f(t) in terms of the elements Y . , AF. To get the required
expression for the characteristic polynomial of X one only has to substitute Y, AF with tr(Xk).

This allows us to construct a formal Cayley-Hamilton polynomial xz(z) € T* of an element
xz € T by replacing in the above characteristic polynomial the term tr(X") with t(z*) and #'
with 2. If z is one of the variables z; then Xz () is an element of T* homogeneous of degree n.
Moreover, by the Cayley-Hamilton theorem it follows immediately that x.(z) is a trace relation.
Hence, if we fully polarize x.(x) (say, using the variables {z1,...,2,}) we obtain a multilinear
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trace relation of degree n. By the argument given in the example above we know that this element

must be a scalar multiple of cha,(z1,...,Z,). In fact, one can see that this scale factor must be
(—1)" as the leading term of the multilinearization is ZoESn To(1) - - - To(n) and compare this with
the explicit form of chan(z1,...,Zn).

Example 1.6 Consider the case n = 2. The formal Cayley-Hamilton polynomial of an element
x € T is 1
Xo(2) = 2® — t(z)z + 5(75(93)2 —t(z*))
Polarization with respect to the variables 1 and x2 gives the expression
z1x2 + x2x1 — t(x1)22 — t(x2)21 + t(z1)t(22) — t(Z122)

which is chaz(x1,z2). Indeed, multiplying it on the right with z3 and applying the formal trace ¢
to it we obtain

t(z1xows) + t(xow1x3) — t(z1)t(w223) — t(22)t(T123)
+t(z1)t(z2)t(xs) — t(z122)t(T3)
= Tz (x1, w2, 23) + Ti213) (T1, T2, 23) — T(1y(23) (%1, T2, ¥3) — T(2)(13) (T1, T2, T3)
+T(1)(2)3) (T1, T2, 23) — Ta2y3y (21, T2, T3)

=2 ves; Lo(T1, 2, 23) = funds (21, 22, T3)

as required.

Theorem 1.11 The necklace relations Ker v is the ideal of N> generated by all the elements
fund, (M, ..., Mpt1)
where the m; run over all monomials in the variables {x1,x2,...,%s,...}.

Proof. Take a homogeneous necklace relation f € Ker v of degree d and polarize it to get a
multilinear element f' € N*°. Clearly, f’ is also a necklace relation and if we can show that f’
belongs to the described ideal, then so does f as the process of restitution maps this ideal into
itself.

Therefore, we may assume that f is multilinear of degree d. A priori f may depend on more
than d variables x, but we can separate f as a sum of multilinear polynomials f; each depending
on precisely d variables such that for ¢ # j f; and f; do not depend on the same variables. Setting
some of the variables equal to zero, we see that each of the f; is again a necklace relation.

Thus, we may assume that f is a multilinear necklace identity of degree d depending on the
variables {z1,...,2q}. But then we know from theorem 1.10 that we can write

f= Z a:T-(x1,...,24q)

TESy
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where Y a-e; € CSq belongs to the ideal spanned by the Young symmetrizers of Young diagrams
A having at least n + 1 rows.

We claim that this ideal is generated by the Young symmetrizer of the partition (1,...,1) of
n + 1 under the natural embedding of S,41 into Sq. Let A be a Young diagram having &k > n + 1
boxes and let c¢x be a Young symmetrizer with respect to a tableau where the boxes in the first
column are labeled by the numbers I = {i1,...,ix} and let St be the obvious subgroup of Sq. As
Qx = S1 x Q" we see that by = (3, g, sgn(0)es).b" with b € CQ'. Hence, cx belongs to the
twosided ideal generated by c; = ZGGSI sgn(o)es but this is also the twosided ideal generated
by ¢r = Zaesk sgn(o)e, as one verifies by conjugation with a partition sending I to {1,...,k}.
Moreover, by induction one shows that the twosided ideal generated by cr belongs to the twosided
ideal generated by cq = ZUESd sgn(o)es, finishing the proof of the claim.

From this claim, we can write

ZaTeT: Z aijer,-( Z sgn(a)eg).eTj

TESY T, T €54 0ESht1

and therefore it suffices to analyze the form of the necklace identity associated to an element of the
form

er.( Z sgn(o)es).e.s with 7,7° € Sg

oESn41

Now, if a groupelement Zuesd bue, corresponds to the formal necklace polynomial g(z1,...,z4),

then the element e,.(3"

g(Tr1), - Tr(a))-
Therefore, we may replace the element e-.(>

ues, bueu).e.—1 corresponds to the formal necklace polynomial

o sgn(o)eqs).e,r by the element

( Z sgn(o)es).e, with n =711 €Sy
0ESp41

We claim that we can write n = ¢’.0 with ¢’ € S,+1 and § € Sy such that each cycle of § contains
at most one of the elements from {1,2,...,n+1}. Indeed assume that 7 contains a cycle containing
more than one element from {1,...,n + 1}, say 1 and 2, that is

n= (1Z1’LQ . .’ir2j1j2 .. ]g)(kl e ka) e (Zl .. .Z()
then we can express the product (12).n in cycles as

(1i1i2 .. .ir)(2j1j2 .. .js)(k1 .. .k’a) . (Zl . 'ZC)

Continuing in this manner we reduce the number of elements from {1....,n 4 1} in every cycle to
at most one.
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But then as o’ € S, 41 we have seen that (3 sgn(o)es).e,r = sgn(a’)(>_ sgn(o)e,) and conse-

quently
( Z sgn(o)eqs).en = £( Z sgn(o)es).eq
TESy 41 oESnt1

where each cycle of 6 contains at most one of {1,...,n+ 1}. Let us write

9:(11'1...ia)(2j1...jg)...(n—l—lsl...s,ﬁ)(tll..t)\)...(zl...z<)

Now, let o € S,,+1 then the cycle decomposition of ¢.0 is obtained as follows : substitute in each
cycle of o the element 1 formally by the string 1i: ...¢q, the element 2 by the string 2j; ... jg, and
so on until the element n + 1 by the string n + 1s1 ... s, and finally adjoin the cycles of 8 in which
no elements from {1,...,n + 1} appear.

Finally, we can write out the formal necklace element corresponding to the element

(Zoesn+1 Sgn(o')eg).eg as
fund,, (T1%iy - - - Tig, T2Tjy -+ Tjgy oo Tnp1Tsy - o Ts )Tty oo Ty ) o E(Tay oo s, )

finishing the proof of the theorem. g

1.7 Trace relations

We will again use the non-degeneracy of the trace map to deduce the trace relations. That is, we
will describe the kernel of the epimorphism

T @ /(C(a:l,xg,>:1l‘°°—»']l‘ff’:/ (C<331,$2,...>

from the description of the necklace relations.

Theorem 1.12 The trace relations Ker 7 is the twosided ideal of the formal trace algebra T
generated by all elements

fund,(mi,...,mp+1) and chap(mi,...,my)
where the m; run over all monomials in the variables {x1,x2,...,%s,...}.
Proof. Consider a trace relation h(z1,...,xq) € Ker 7. Then, we have a necklace relation of the
form
t(h(z1,...,xd)Ta11) € Ker v

By theorem 1.11 we know that this element must be of the form

E nil,._inﬂfundn (mil geeey minJrl)
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where the m; are monomials, the Niy.ipyr € N and the expression must be linear in the variable
Z4+1. That is, z4+1 appears linearly in each of the terms

nfundy, (M1, ..., Mpy1)

so appears linearly in n or in precisely one of the monomials m;. If x441 appears linearly in n we
can write
n=t(n".z441) where n’ €T,

If x441 appears linearly in one of the monomials m; we may assume that it does so in my11,
permuting the monomials if necessary. That is, we may assume mpn41 = My, 11.Ta+1.m n1 With
m, m’ monomials. But then, we can write

nfund, (mi,...,mnt1) = nt(chay(mi,...,my)mp 1 Tap1.m nt1)

= t(n.m”nt1.chan(ma, ..., Mn).My41-Tat1)

using N°°-linearity and the cyclic permutation property of the formal trace ¢. But then, separating
the two cases, one can write the total expression

tth(z1,...,xd)Td41) = t([z NGy iy FU0dn (Mg oM, )
i
+ Z Nj1.nt1 'm”jn+l 'Chan(mhv ) mjn)'m.;vz+1:| xd+1)
J
Finally, observe that two formal trace elements h(z1,...,zq) and k(z1,...,zq) are equal if the
formal necklaces
t(h(:El, ceey xd)xd+1) = t(k(wl, ceey a:d)xd+1)
are equal, finishing the proof. O

We will give another description of the necklace relations Ker 7 which is better suited for the
categorical interpretation of T5° to be given in the next chapter. Consider formal trace elements
mi,ma,...,Mmi,... with m; € T°. The formal substitution

fe flmi,ma,...,mg,...)

is the uniquely determined algebra endomorphism of T which maps the variable z; to m; and is
compatible with the formal trace ¢t. That is, the substitution sends a monomial x;, s, ... s, to the
element gi, gi, - . . gi,, and an element ¢(x;, s, . . . i, ) to the element t(gi, gi, - - - giy, ). A substitution
invariant ideal of T is a twosided ideal of T* that is closed under all possible substitutions as well
as under the formal trace ¢. For any subset of elements E C T* there is a minimal substitution
invariant ideal containing E. This is the ideal generated by all elements obtained from E by
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making all possible substitutions and taking all their formal traces. We will refer to this ideal as
the substitution invariant ideal generated by E.

Recall the definition of the formal Cayley-Hamilton polynomial x(z) of an element x € T
given in the previous section.

Theorem 1.13 The trace relations Ker 7 is the substitution invariant ideal of T generated by
the formal Cayley-Hamilton polynomials

Xz() forall x €T

Proof. The result follows from theorem 1.12 and the definition of a substitution invariant ideal
once we can show that the full polarization of x.(z), which we have seen is cha, (z1,...,zy), lies
in the substitution invariant ideal generated by the xz(z).

This is true since we may replace the process of polarization with the process of multilineariza-
tion, whose first step is to replace, for instance

Xz(Z) by Xaty(® +Y) — Xa(®) — Xy (y)-

The final result of multilinearization is the same as of full polarization and the claim follows as
multilinearizing a polynomial in a substitution invariant ideal, we remain in the same ideal. a

We will use our knowledge on the necklace and trace relations to improve the bound of 2" — 1
in the Nagata-Higman problem to n®. Recall that this problem asks for a number N(n) with the
property that if R is an associative C-algebra without unit such that r™ = 0 for all » € R, then we
must have for all ; € R the identity

7‘17”2...7"N(n):0 in R.

We start by reformulating the problem. Consider the positive part F of the free C-algebra gener-
ated by the variables {z1,z2,...,2i,...}

]F+ :C(a:1,m2,...,mi,...>+

which is an associative C-algebra without unit. Let T'(n) be the twosided ideal of F, generated by
all n-powers f™ with f € F;. Note that the ideal T(n) is invariant under all substitutions of F.
The Nagata-Higman problem then asks for a number N(n) such that the product

T1T2 ... TNy € T(n).

We will now give an alternative description of the quotient algebra F /T'(n). Let Nt be the positive
part of the infinite necklace algebra N;° and T4 the positive part of the infinite trace algebra T;’.
Consider the quotient associative C-algebra without unit

Ty = T+ /(N4 T7Y).
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Observe the following facts about T : as a C-algebra it is generated by the variables X1, Xo, ... as
all the other algebra generators of the form ¢(z;, ...z;,.) of T° are mapped to zero in T. Further,

from the form of the Cayley-Hamilton polynomial it follows that every ¢ € Ty satisfies " = 0.
That is, we have an algebra epimorphism

Fi/T(n) — Ty

and we claim that it is also injective. To see this, observe that the quotient T°°/NT™ is just

the free C-algebra on the variables {z1,x2,...}. To obtain T4 we have to factor out the ideal of
trace relations. Now, a formal Cayley-Hamilton polynomial x(z) is mapped to ™ in T*°/NT>.

That is, to obtain T+ we factor out the substitution invariant ideal (observe that ¢ is zero here)
generated by the elements z™, but this is just the definition of Fy /T'(n).

Therefore, a reformulation of the Nagata-Higman problem is to find a number N = N(n) such
that the product of the first N generic matrices

X1X5...Xn € NTT,®  or, equivalently that tr(X1X2... XnXn+1)

can be expressed as a linear combination of products of traces of lower degree. Using the description
of the necklace relations given in theorem 1.10 we can reformulate this conditions in terms of the
group algebra CSn41. Let us introduce the following subspaces of the groupalgebra :

e A will be the subspace spanned by all N 4 1 cycles in Sy41,
e B will be the subspace spanned by all elements except N 4+ 1 cycles,

e L(n) will be the ideal of CSn+1 spanned by the Young symmetrizers associated to partitions

L(n)

with < n rows, and

e M(n) will be the ideal of CSn41 spanned by the Young symmetrizers associated to partitions

having more than n rows.
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With these notations, we can reformulate the above condition as
(12...NN +1) € B4+ M(n) and consequently CSyy1 =B+ M(n)

Define an inner product on the groupalgebra CSy 41 such that the groupelements form an orthonor-
mal basis, then A and B are orthogonal complements and also L(n) and M(n) are orthogonal
complements. But then, taking orthogonal complements the condition can be rephrased as

(B4+M(n))" =AnL(n)=0.

Finally, let us define an automorphism 7 on CSn+1 induced by sending e, to sgn(o)es. Clearly, 7
is just multiplication by (—1)" on A and therefore the above condition is equivalent to

ANL(n)N7L(n) =0.

Moreover, for any Young tableau A we have that 7(ax) = bx~ and 7(bx) = ax~. Hence, the
automorphism 7 sends the Young symmetrizer associated to a partition to the Young symmetrizer
of the dual partition. This gives the following characterization

e 7L(n) is the ideal of CSn41 spanned by the Young symmetrizers associated to partitions

with < n columns.

Now, specialize to the case N = n?. Clearly, any Young diagram having n® + 1 boxes must have
either more than n columns or more than n rows

—

and consequently we indeed have for N = n? that
ANLn)NTL(n)=0

finishing the proof of the promised refinement of the Nagata-Higman bound
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Theorem 1.14 Let R be an associative C-algebra without unit element. Assume that r™ = 0 for
all r € R. Then, for all r; € R we have

rira... T2 =0

Theorem 1.15 The necklace algebra N} is generated as a C-algebra by all elements of the form
t?”(XhXQ . X”)

with 1 < n% + 1. The trace algebra TT is spanned as a module over the necklace algebra N™ by all
monomials in the generic matrices
X Xip ... Xy,

of degree I < n?.

1.8 Cayley-Hamilton algebras

In this section we define the category alg@n of Cayley-Hamilton algebras of degree n.

Definition 1.1 A trace map on an (affine) C-algebra A is a C-linear map
tr: A— A
satisfying the following three properties for all a,b € A :
1. tr(a)b = btr(a),
2. tr(ab) = tr(ba) and
3. tr(tr(a)b) = tr(a)tr(b).

Note that it follows from the first property that the image tr(A) of the trace map is contained in
the center of A. Consider two algebras A and B equipped with a trace map which we will denote
by tra respectively trg. A trace morphism ¢ : A —— B will be a C-algebra morphism which is
compatible with the trace maps, that is, the following diagram commutes

This definition turns algebras with a trace map into a category, denoted by alg@. We will say that
an algebra A with trace map tr is trace generated by a subset of elements I C A if the C-algebra
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generated by B and tr(B) is equal to A where B is the C-subalgebra generated by the elements of
I. Note that A does not have to be generated as a C-algebra by the elements from I.

Observe that for T the formal trace t : T® — N ©—— T is a trace map. Property
(1) follows because N*° commutes with all elements of T, property (2) is the cyclic permutation
property for ¢ and property (3) is the fact that ¢ is a N*°-linear map. The formal trace algebra T
is trace generated by the variables {x1,x2,...,Z;,...} but not as a C-algebra.

Actually, T* is the free algebra in the generators {x1,z2,...,Z;,...} in the category of algebras
with a trace map, alg@. That is, if A is an algebra with trace ¢r which is trace generated by
{a1,a2,...}, then there is a trace preserving algebra epimorphism

T 5 A
For example, define w(x;) = a; and w(t(xs, ... zy)) = tr(n(zs,) ... 7(zy,)). Also, the formal trace
algebra T™, that is the subalgebra of T trace generated by {z1,...,Zm}, is the free algebra in
the category of algebras with trace that are trace generated by at most m elements.
Given a trace map tr on A, we can define for any a € A a formal Cayley-Hamilton polynomial

of degree n . Indeed, express

HOES | (ERY
i=1
as a polynomial in ¢ with coefficients polynomial functions in the Newton functions Y, AF. Re-

placing the Newton function 3 AE by tr(ak) we obtain the Cayley-Hamilton polynomial of degree
n
XV (t) € Alt]

Definition 1.2 An (affine) C-algebra A with trace map tr : A —— A is said to be a Cayley-

Hamilton algebra of degree n if the following two properties are satisfied :
1. tr(1) =n, and

2. For all a € A we have x5 (a) =0 in A.

alg®n is the category of Cayley-Hamilton algebras of degree n with trace preserving morphisms.

Observe that if R is a commutative C-algebra, then M, (R) is a Cayley-Hamilton algebra of
degree n. The corresponding trace map is the composition of the usual trace with the inclusion of
R — M, (R) via scalar matrices. As a consequence, the infinite trace algebra T5® has a trace
map induced by the natural inclusion

To —— Mn(C[M;7))

v
Nw* & C[M;"]
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which has image tr(T;) the infinite necklace algebra N;°. Clearly, being a trace preserving inclu-
sion, T;° is a Cayley-Hamilton algebra of degree n. With this definition, we have the following
categorical description of the trace algebra T5°.

Theorem 1.16 The trace algebra T5° is the free algebra in the generic matriz generators
{X1,X2,...,Xi,...} in the category of Cayley-Hamilton algebras of degree n.

For any m, the trace algebra T} is the free algebra in the generic matriz generators {X1,..., Xm}
in the category alg@n of Cayley-Hamilton algebras of degree n which are trace generated by at most
m elements.

Proof. Let F, be the free algebra in the generators {yi,y2,...} in the category alg@n, then by
freeness of T°° there is a trace preserving algebra epimorphism

By the universal property of F,, the ideal Ker m is the minimal ideal I of T* such that T*/I is
Cayley-Hamilton of degree n.

We claim that Ker 7 is substitution invariant. Consider a substitution endomorphism ¢ of T
and consider the diagram

; o
T/Ker x —— F,

then Ker x is an ideal closed under traces such that T°°/Ker x is a Cayley-Hamilton algebra of
degree n (being a subalgebra of F,). But then Ker m C Ker x (by minimality of Ker m) and
therefore x factors over F;,, that is, the substitution endomorphism ¢ descends to an endomorphism
¢ : F,, —— F,, meaning that Ker 7 is left invariant under ¢, proving the claim. Further, any
formal Cayley-Hamilton polynomial X;")(x) of degree n of x € T° maps to zero under 7. By
substitution invariance it follows that the ideal of trace relations Ker 7 C Ker m. We have seen
that T°°/Ker 7 = T;° is the infinite trace algebra which is a Cayley-Hamilton algebra of degree
n. Thus, by minimality of Ker m we must have Ker 7 = Ker m and hence F,, ~ T;°. The second
assertion follows immediately. O



1.8. Cayley-Hamilton algebras

Let A be a Cayley-Hamilton algebra of degree n which is trace generated by the elements
{a1,...,am}. We have a trace preserving algebra epimorphism pa defined by p(X;) = a;

™ Pe A

and hence a presentation A ~ T}' /Ta where Ta< T} is the ideal of trace relations holding among the

generators a;. We recall that T} is the ring of G L,-equivariant polynomial maps M, e M,

that is,
M (C[MT]) S =T
where the action of GL,, is the diagonal action on M, (C[M;']) = M, ® C[M,].

Observe that if R is a commutative algebra, then any twosided ideal I < M, (R) is of the form
M, (J) for an ideal J < R. Indeed, the subsets J;; of (Z,7) entries of elements of I is an ideal of R
as can be seen by multiplication with scalar matrices. Moreover, by multiplying on both sides with
permutation matrices one verifies that J;; = Jy; for all 4, j, k, ! proving the claim.

Applying this to the induced ideal M, (C[M}]) Ta M, (C[M}"]) < M, (C[M;]) we find an ideal
N4 <« C[M;?] such that

My (C[M;']) Ta Mn(C[M;']) = Mn(Na)
Observe that both the induced ideal and N4 are stable under the respective GL,-actions.

Assume that V and W are two (not necessarily finite dimensional) C-vectorspaces with a locally
finite GLp-action (that is, every finite dimensional subspace is contained in a finite dimensional

GL,-stable subspace) and that V I, W is a linear map commuting with the GLy-action. In

section 2.5 we will see that we can decompose V' and W uniquely in direct sums of simple repre-
sentations and in their isotypical components (that is, collecting all factors isomorphic to a given

simple GL,-representation) and prove that Vo) = V<" respectively W(p) = W= where (0)
denotes the trivial GL,-representation. We obtain a commutative diagram

1% '~ w

yGLn fo wo
where R is the Reynolds operator , that is, the canonical projection to the isotypical component of
the trivial representation. Clearly, the Reynolds operator commutes with the G L,-action. More-
over, using complete decomposability we see that fo is surjective (resp. injective) if f is surjective
(resp. injective).
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Because N4 is a GL,-stable ideal of C[M,] we can apply the above in the situation

™

M, (C[M,;"]) M, (C[M;"]/Na)
R R
™ 7o M,,(CIM"]/N4)En

and the bottom map factorizes through A = T} /T giving a surjection
A —» My (C[M;]/Na) .
In order to verify that this map is injective (and hence an isomorphism) it suffices to check that
M, (CIM;]) Ta M, (C[M;']) NTy = Ta.

Using the functoriality of the Reynolds operator with respect to multiplication in M, (C[M3°]) with
an element x € T} or with respect to the trace map (both commuting with the G L,-action) we
deduce the following relations :

e For all z € T and all z € M,(C[M;°]) we have R(xz) = zR(z) and R(zz) = R(z)z.

e For all z € M, (C[M;°]) we have R(tr(z)) = tr(R(z)).
Assume that z = Y, tsxing € Mn(C[M]']) Ta M, (C[M;*]) N Ty with my,n; € M, (C[M,;']) and
t; € Ta. Now, consider X,, 11 € T;°. Using the cyclic property of traces we have

tr(ZXm-!—l Ztr mitin; X, m+1 Ztr Uz m+1mztz)

and if we apply the Reynolds operator to it we obtain the equality
tr(2Xmi1) = tr(>_ R(n:Xmi1ma)t:)
For any i, the term R(n; Xm+1m;) is invariant so belongs to 'JITJrl and is linear in X,,+1. Knowing
the generating elements of T we can write
R(ni Xm+1m;) = Z Sij Xm+1tij + Z tr(Wik Xom41)Vik
J k
with all of the elements s;j,t;;, uir and v, in T;'. Substituting this information and again using

the cyclic property of traces we obtain

tT(ZXm+1) = t’l“((z sijtijti + tT(Uikti))Xm+1)
i,j,k
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and by the nondegeneracy of the trace map we again deduce from this the equality

z = Z Sijtijti =4 tr(vikti)

4,k

Because t; € T4 and T4 is stable under taking traces we deduce from this that z € T4 as required.
Because A = M,,(C[MZ']/Na)%"" we can apply functoriality of the Reynolds operator to the
setting

tr

My (C[My"]/Na) "5 C[Mx]/Na

tra

- ™ (C[Ma]/Na)“

A

Concluding we also have the equality
tra(A) = (CIM]/Ja) "

Summarizing, we have proved the following invariant theoretic reconstruction result for Cayley-
Hamilton algebras.

Theorem 1.17 Let A be a Cayley-Hamilton algebra of degree n, with trace map tra, which is trace
generated by at most m elements. Then , there is a canonical ideal Na <C[M]"] from which we can
reconstruct the algebras A and tra(A) as invariant algebras

A= M, (C[M]/Na)°" ™ and tra(A) = (C[M']/Na)°"n
A direct consequence of the above proof is the following universal property of the embedding
A <A M, (C[M"]/Na).

Let R be a commutative C-algebra, then M, (R) with the usual trace is a Cayley-Hamilton algebra
of degree n. If f : A —— M, (R) is a trace preserving morphism, we claim that there exists a
natural algebra morphism f : C[M;']/Na — R such that the diagram

A L M.(R)
.-"

®

iA QQQX

M (C[M)/N )
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where M, (f) is the algebra morphism defined entrywise. To see this, consider the composed trace

preserving morphism ¢ : Tp' —> A N M, (R). Its image is fully determined by the images
of the trace generators X of T} which are say mi = (m4;(k))s,;. But then we have an algebra

morphism C[M"] —+ R defined by sending the variable x;(k) to m;;(k). Clearly, Ta C Ker ¢
and after inducing to M, (C[M,"]) it follows that Na C Ker g proving that g factors through
C[M}"']/Ja — R. This morphism has the required universal property.

References

The first fundamental theorem of matrix invariants, theorem 1.6, is due independently to G. B.
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notes of H-P. Kraft [52] and E. Formanek [26]. The invariant theoretic reconstruction result,
theorem 1.17, is due to C. Procesi [68].



2 — Reconstructing Algebras

We will associate to an affine C-algebra A its affine scheme of n-dimensional representations rep,, A.
There is a basechange action by GL, on this scheme and its orbits are exactly the isomorphism
classes of n-dimensional representations. We will prove the Hilbert criterium which describes the
nullcone via one-parameter subgroups and apply it to prove Michael Artin’s result that the closed
orbits in rep,, A correspond to semi-simple representations.

We recall the basic results on algebraic quotient varieties in geometric invariant theory and apply
them to prove Procesi’s reconstruction result. If A € alg@n, then we can recover A as

A ~q\" [trep, A

the ring of GLy-equivariant polynomial maps from the trace preserving representation scheme
trep, A to M,(C). However, the functors

trep,

algOn <~ GL(m)-affine

I

do not determine an anti-equivalence of categories (as they do in commutative algebraic geometry,
which is the special case n = 1). We will illustrate this by calculating the rings of equivariant maps
of orbit-closures of nilpotent matrices. These orbit-closures are described by the Gerstenhaber-
Hesselink theorem. Later, we will be able to extend this result and study the nullcones of more
general representation varieties.

2.1 Representation schemes

For a noncommutative affine algebra A with generating set {a1,...,am}, there is an epimorphism
Clz1,... Tm) —» A

defined by ¢(z;) = a;. That is, a presentation of A as

A~C(z1,...,zm)/1a

where 14 is the twosided ideal of relations holding among the a;. For example, if A = C[z1,...,2Zm]
then I4 is the twosided ideal of C(z1,...,Zm) generated by the elements z;z; — z;jz; for all 1 <
i,j <m.
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An n-dimensional representation of A is an algebra morphism
A v, M,

from A to the algebra of n x n matrices over C. If A is generated by {a1,...,am}, then ¢ is fully
determined by the point

(¢(a1)7¢(a2)7 s 71/)(0‘771)) S M;zn =M,®...&M,.

We claim that rep,(A), the set of all n-dimensional representations of A, forms a Zariski closed
subset of M,;". To begin, observe that

repn(Clx1, ..., 2m)) = M"

as any m-tuple of n x n matrices (A1,...,An) € M) determines an algebra morphism

Clz1,...,Tm) v, M, by taking ¥ (z;) = A;.

Given a presentation A = C(z1,...,Zm)/Ia an m-tuple (Ai,...,An) € M, determines
an n-dimensional representation of A if (and only if) for every noncommutative polynomial
r(@1,...,&m) € La <C{x1,...,zm) we have that

r(A1, ..., An) = | | e M.
0 ... 0
Hence, consider the ideal I4(n) of C[M'] = Clzi;(k) | 1 < 4,5 < n,1 < k < m] generated by all
the entries of the matrices in M, (C[M,"]) of the form
r(X1,...,Xm) forall r(z1,...,2m) € La.

We see that the reduced representation variety rep, A is the set of simultaneous zeroes of the ideal
Ia(n), that is,
repn A =V(Ia(n)) — M)"

proving the claim. Here, V denotes the closed set in the Zariski topology determined by an ideal. The
complement of V(I) we will denote with X(I)). Observe that, even when A is not finitely presented,
the ideal 14 (n) is finitely generated as an ideal of the commutative (Noetherian) polynomial algebra
C[M7].

Example 2.1 It may happen that rep, A = ). For example, consider the Weyl algebra
A1(C) = Clz, y)/(xy —yz — 1)
If a couple of n x n-matrices (A, B) € rep, A1(C) then we must have
AB—-BA="1,€ M,
However, taking traces on both sides gives a contradiction as tr(AB) = tr(BA) and tr(1,) =n # 0.
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Often, the ideal Ia(n) contains more information than the closed subset rep,(A) = V(Ia(n))
which, using the Hilbert Nullstellensatz, only determines the radical ideal of 14 (n). This fact forces
us to consider the representation variety (or scheme) rep, A.

In the foregoing chapter we studied the action of GL,, by simultaneous conjugation on M,;". We
claim that rep, A —— M, is stable under this action, that is, if (A1,...,Am) € repn A, then
also (gA197 %, ..., gAmg ") € rep, A. This is clear by composing the n-dimensional representation
1 of A determined by (Ai,..., An) with the algebra automorphism of M, given by conjugation
with g € GL,,

A—2Y M,
o g9t
‘&
"
My

Therefore, rep, A is a GLy-variety . We will give an interpretation of the orbits under this action.

Recall that a left A-module M is a vectorspace on which elements of A act on the left as linear
operators satisfying the conditions

lm=m and a.(b.m)= (ab).m

for all a,b € A and all m € M. An A-module morphism M —L+ N between two left A-modules is
a linear map such that f(a.m) = a.f(m) for all a € A and all m € M. An A-module automorphism

is an A-module morphism M —'» N such that there is an A-module morphism N —2» M such
that fog =1idy and go f = idn.

Assume the A-module M has dimension n, then after fixing a basis we can identify M with C"
(column vectors). For any a € A we can represent the linear action of a on M by an n X n matrix
1(a) € M. The condition that a.(b.m) = (ab).m for all m € M asserts that ¥ (ab) = ¥(a)y(b) for

alla,b € A, that is, ¥ is an algebra morphism A 2, M, and hence M determines an n-dimensional

representation of A. Conversely, an n-dimensional representation A Y. M,, determines an A-
module structure on C™ by the rule

av=1(a)v forall veC"

Hence, there is a one-to-one correspondence between the n-dimensional representations of A and
the A-module structures on C". If two n-dimensional A-module structures M and N on C" are
isomorphic (determined by a linear invertible map g € GLy) then for all a € A we have the
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commutative diagram

M 9 N

M g N

Hence, if the action of a on M is represented by the matrix A, then the action of a on M is
represented by the matrix g.A.g~!. Therefore, two A-module structures on C" are isomorphic if
and only if the points of rep, A corresponding to them lie in the same GL,-orbit. Concluding,
studying n-dimensional A-modules up to isomorphism is the same as studying the G L,-orbits in
the reduced representation variety rep, A.

If the defining ideal I4(n) is a radical ideal, the above suffices. In general, the scheme structure
of the representation variety rep,, A will be important. By definition, the scheme rep,, A is the
functor assigning to any (affine) commutative C-algebra R, the set

rep, A(R) = Alge(C[M,"]/1a(n), R)

of C-algebra morphisms (ir[,i\{ig] %+ R. Sucha map 1 is determined by the image ¥ (x;;(k)) =

rij(k) € R. That is, ¥ € rep,, A(R) determines an m-tuple of n X n matrices with coefficients in R

Tll(k) e Tln(k)
(ri,...,mm) € Mp(R)®...® My(R) where 715 =
m rni(k) ... Tan(k)
Clearly, for any r(z1,...,Zm) € I4 we must have that r(r1,...,7m) is the zero matrix in M, (R).

That is, ¥ determines uniquely an R-algebra morphism
Y:R®c A —> M,(R) by mapping =z Tk.

Alternatively, we can identify the set rep, (R) with the set of left R ® A-module structures on the
free R-module R®™ of rank n.

2.2 Some algebraic geometry

Throughout this book we assume that the reader has some familiarity with algebraic geometry, as
contained in the first two chapters of the textbook [33]. In this section we restrict to the dimension
formulas and the relation between Zariski and analytic closures. We will illustrate these results by
examples from representation varieties. We will consider only the reduced varieties in this section.

A morphism X %+ Y between two affine irreducible varieties (that is, the coordinate rings
C[X] and C[Y] are domains) is said to be dominant if the image ¢(X) is Zariski dense in Y. On
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the level of the coordinate algebras dominance is equivalent to ¢* : C[Y] — C[X] being injective
and hence inducing a fieldextension ¢* : C(Y) —— C(X) between the functionfields. Indeed, for
f € C[Y] the function ¢*(f) is by definition the composition

x - y-tic
and therefore ¢™(f) = 0 iff f(4(X)) =0iff f(¢(X)) =0.

A morphism X —% + Y between two affine varieties is said to be finite if under the algebra
morphism ¢* the coordinate algebra C[X] is a finite C[Y]-module. An important property of finite
morphisms is that they are closed , that is the image of a closed subset is closed. Indeed, we
can replace without loss of generality Y by the closed subset ¢(X) = Vy(Ker ¢*) and hence
assume that ¢* is an inclusion C[Y] & C[X]. The claim then follows from the fact that in a
finite extension there exists for any maximal ideal N < C[Y] a maximal ideal M < C[X] such that
M N ClY] =C[X].

Example 2.2 Let X be an irreducible affine variety of dimension d. By the Noether normalization
result C[X] is a finite module over a polynomial subalgebra C[fi,..., fq]. But then, the finite
inclusion C[f1,..., fai] = C[X] determines a finite surjective morphism

qu(cd

An important source of finite morphisms is given by integral extensions. Recall that, if R < S
is an inclusion of domains we call S integral over R if every s € S satisfies an equation

n—1
st = Z rist  with r; € R.
i=0

A normal domain R has the property that any element of its field of fractions which is integral

over R belongs already to R. If X —%+ Y is a dominant morphism between two irreducible affine
varieties, then ¢ is finite if and only if C[X] in integral over C[Y] for the embedding coming from

o".

Proposition 2.1 Let X — %+ Y be a dominant morphism between irreducible affine varieties.

Then, for any = € X and any irreducible component C of the fiber ¢~ (4(z)) we have
dim C > dim X —dim Y.

Moreover, there is a nonempty open subset U of Y contained in the image ¢(X) such that for all
u € U we have
dim ¢~ ' (u) = dim X — dim Y.
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Proof. Let d = dim X — dim Y and apply the Noether normalization result to the affine C(Y')-
algebra C(Y)C[X]. Then, we can find a function g € C[Y] and algebraic independent functions

fi,.-., fa € C[X]y (g clears away any denominators that occur after applying the normalization
result) such that C[X], is integral over C[Y]4[f1,- ., fa]. That is, we have the commutative diagram
Xx(9) L Xy(g) x C*
pri
¢
X Y <« Xy (9)

where we know that p is finite and surjective. But then we have that the open subset Xy (g) lies in
the image of ¢ and in Xy (g) all fibers of ¢ have dimension d. For the first part of the statement
we have to recall the statement of Krull’s Hauptideal result : if X is an irreducible affine variety
and g1,...,9r € C[X] with (g1,...,9r) # C[X], then any component C of Vx(gi,...,gr) satisfies
the inequality

dim C > dim X —r.

If dim Y = r apply this result to the g; determining the morphism
[ I
X—Y —C

where the latter morphism is the one from example 2.2. 0

In fact, a stronger result holds. Chevalley’s theorem asserts the following.

Theorem 2.1 Let X —~ Y be a morphism between affine varieties, the function
X — N defined by x— dim, ¢ (¢(z))
is upper-semicontinuous. That is, for all n € N, the set

{z € X | dimz ¢~ (6(x)) <n}

is Zariski open in X.

Proof. Let Z(¢,n) be the set {x € X | dims ¢~ (p(x)) > n}. We will prove that Z(¢,n) is
closed by induction on the dimension of X. We first make some reductions. We may assume that
X is irreducible. For, let X = U; X; be the decomposition of X into irreducible components, then
Z(p,n) =UZ(¢ | Xi,n). Next, we may assume that Y = ¢(X) whence Y is also irreducible and ¢
is a dominant map. Now, we are in the setting of proposition 2.1. Therefore, if n < dim X —dim Y
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we have Z(¢,n) = X by that proposition, so it is closed. If n > dim X — dim Y consider the
open set U in Y of proposition 2.1. Then, Z(¢,n) = Z(¢ | (X — ¢~ *(U)),n). the dimension of the
closed subvariety X — ¢~ '(U) is strictly smaller that dim X hence by induction we may assume
that Z(¢ | (X — ¢~ (U)),n) is closed in X — ¢~*(U) whence closed in X. O

An immediate consequence of the foregoing proposition is that for any morphism X Ly

between affine varieties, the image ¢(X) contains an open dense subset of ¢(Z) (reduce to irreducible
components and apply the proposition).

Example 2.3 Let A be an affine C-algebra and M € rep, A. We claim that the orbit
O(M) = GL,.M is Zariski open in its closure = O(M).

Consider the ’‘orbit-map’ GL, 2. rep, A defined by g — ¢g.M. Then, by the above remark

O(M) = ¢(GLy) contains a Zariski open subset U of O(M) contained in the image of ¢ which is
O(M). But then,

O(M) = GLn,.M = Ugear, g.U

is also open in O(M). Next, we claim that O(M) contains a closed orbit. Indeed, assume O(M)
is not closed, then the complement Cyr = O(M) — O(M) is a proper Zariski closed subset whence
dim C < dim O(M). But, C is the union of GLy-orbits O(M;) with dim O(M;) < dim O(M).
Repeating the argument with the M; and induction on the dimension we will obtain a closed orbit

in O(M).

Next, we want to relate the Zariski closure with the C-closure (that is, closure in the usual
complex or analytic topology). Whereas they are usually not equal (for example, the unit circle in
Ch), we will show that they coincide for the important class of constructible subsets. A subset Z
of an affine variety X is said to be locally closed if Z is open in its Zariski closure Z. A subset Z
is said to be constructible if Z is the union of finitely many locally closed subsets. Clearly, finite
unions, finite intersections and complements of constructible subsets are again constructible. The
importance of constructible sets for algebraic geometry is clear from the following result.

Proposition 2.2 Let X e Y bea morphism between affine varieties. If Z is a constructible

subset of X, then ¢(Z) is a constructible subset of Y.

Proof. Because every open subset of X is a finite union of special open sets which are themselves
affine varieties, it suffices to show that ¢(X) is constructible. We will use induction on dim ¢(X).
There exists an open subset U C ¢(X) which is contained in ¢(X). Consider the closed complement
W = ¢(X) — U and its inverse image X’ = ¢~ *(W). Then, X’ is an affine variety and by induction
we may assume that ¢(X’) is constructible. But then, ¢(X) = UU¢(X’) is also constructible. [
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Example 2.4 Let A be an affine C-algebra. The subset ind,, A < rep,, A of the indecomposable
n-dimensional A-modules is constructible. Indeed, define for any pair k,[ such that k 4+ 1 = n the
morphism

GL,, X repr AXrepp A — rep, A

by sending a triple (g, M, N) to g.(M & N). By the foregoing result the image of this map is
constructible. The decomposable n-dimensional A-modules belong to one of these finitely many
sets whence are constructible, but then so is its complement which in ind,, A.

Apart from being closed, finite morphisms often satisfy the going-down property . That is,
consider a finite and surjective morphism

X 2.y

where X is irreducible and Y is normal (that is, C[Y] is a normal domain). Let Y/ —— Y an
irreducible Zariski closed subvariety and x € X with image ¢(x) =y’ € Y’'. Then, the going-down
property asserts the existence of an irreducible Zariski closed subvariety X’ < X such that

z € X" and ¢(X’) = Y. In particular, the morphism X’ v is again finite and surjective and
in particular dim X' = dim Y.

Lemma 2.1 Let x € X an irreducible affine variety and U a Zariski open subset. Then, there is
an irreducible curve C —— X through x and intersecting U.

Proof. If d = dim X consider the finite surjective morphism X — %, ¢ of example 2.2. Let
y € C* — ¢(X — U) and consider the line L through y and ¢(x). By the going-down property
there is an irreducible curve C —— X containing « such that ¢(C) = L and by construction
CNnU#0. O

Proposition 2.3 Let X —®+ Y be a dominant morphism between irreducible affine varieties any
y €Y. Then, there is an irreducible curve C — X such that y € ¢(C).

Proof. Consider an open dense subset U < Y contained in the image ¢(X). By the lemma
there is a curve C’ —— Y containing y and such that C' N U # (). Then, again applying the
lemma to an irreducible component of ¢~ *(C’) not contained in a fiber, we obtain an irreducible

curve C —— X with ¢(C) = C". O

Any affine variety X < C* can also be equipped with the induced C-topology (or analytic
topology) from C* which is much finer than the Zariski topology . Usually there is no relation

between the closure Z- of a subset Z —— X in the C-topology and the Zariski closure Z.
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Lemma 2.2 Let U C C* containing a subset V which is Zariski open and dense in U. Then,

U =0

Proof. By reducing to irreducible components, we may assume that U is irreducible. Assume first
that dim U = 1, that is, U is an irreducible curve in C*. Let U, be the subset of points where U
is a complex manifold, then U — Us is finite and by the implicit function theorem in analysis every
u € U, has a C-open neighborhood which is C-homeomorphic to the complex line C', whence the
result holds in this case. o o

If U is general and = € U we can take by the lemma above an irreducible curve C —— U
containing z and such that C NV # (. Then, C NV is Zariski open and dense in C' and by the

curve argument above z € (CNV) C T°. We can do this for any = € U finishing the proof. O

Consider the embedding of an affine variety X —— CF, proposition 2.2 and the fact that any
constructible set Z contains a subset U which is open and dense in Z we deduce from the lemma
at once the next result.

Proposition 2.4 If Z is a constructible subset of an affine variety X, then
Z°=Z

Example 2.5 Let A be an affine C-algebra and M € rep, A. We have proved in example 2.3 that
the orbit O(M) = GL,.M is Zariski open in its closure O(M). Therefore, the orbit O(M) is a
constructible subset of rep, A. By the proposition above, the Zariski closure O(M) of the orbit
coincides with the closure of O(M) in the C-topology.

2.3 The Hilbert criterium

A one parameter subgroup of a linear algebraic group G is a morphism
A:C"— G

of affine algebraic groups. That is, A is both a groupmorphism and a morphism of affine varieties.
The set of all one parameter subgroup of G will be denoted by Y (G).
If G is commutative algebraic group, then Y (G) is an Abelian group with additive notation

A1+ Ao CcCr — G with ()\1 + )\2)(15) = Al(t).Az(t)
Recall that an n-dimensional torus is an affine algebraic group isomorphic to
C'x...xC"=T,
N—————

the closed subgroup of invertible diagonal matrices in G L.
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Lemma 2.3 Y (7T,) ~ Z". The correspondence is given by assigning to (r1,...,mn) € Z" the
one-parameter subgroup

A:C" —— T, gwenby t— (.. ,t™)

Proof. For any two affine algebraic groups G and H there is a canonical bijection Y (G x H) =
Y (G) x Y(H) so it suffices to verify that Y (C*) ~ Z with any A : C* —— C* given by t — t" for
some r € Z. This is obvious as A induces the algebra morphism

C[C*] = Clz, 2] 2> Clz,z™] = C[C"]

which is fully determined by the image of x which must be an invertible element. Now, any invertible
element in Clz, 2™ !] is homogeneous of the form ca” for some r € Z and ¢ € C*. The corresponding
morphism maps ¢ to c¢t” which is only a groupmorphism if it maps the identity element 1 to 1 so
¢ = 1, finishing the proof. O

Proposition 2.5 Any one-parameter subgroup A : C* —— GL,, is of the form
t 0
t— gil. . g
0 tTn
for some g € GL,, and some n-tuple (r1,...,r,) € Z".

Proof. Let H be the image under A of the subgroup po of roots of unity in C*. We claim that
there is a basechange matrix g € GL,, such that

c* 0
gH.g & —— )
0 c*
Assume h € H not a scalar matrix, then h has a proper eigenspace decomposition V& W = C".
We use that h! =, and hence all its Jordan blocks must have size one as for any A # 0 we have

A1 01t b ot %
= - - # T
1 ROt
A AL

Because H is commutative, both V' and W are stable under H. By induction on n we may assume
that the images of H in GL(V) and GL(W) are diagonalizable, but then the same holds in GL,.
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AS oo is infinite, it is Zariski dense in C* and because the diagonal matrices are Zariski closed
in GL,, we have
gMCg '=gHg ' T,

and the result follows from the lemma above O

Let V be a general G L,,-representation considered as an affine space with G L,,-action, let X be a
G L, -stable closed subvariety and consider a point x € X. A one-parameter subgroup C* 2, GL,
determines a morphism

C* 22w X defined by ¢ A(t).z

Observe that the image Az (C*) lies in the orbit GL,.z of . Assume there is a continuous extension
of this map to the whole of C. We claim that this extension must then be a morphism. If not, the
induced algebra morphism

C[X] 22w Clt,t7Y
does not have its image in C[t], so for some f € C[Z] we have that

ap +ait+ ...+ a.t?
tS

() = with ap#0and s >0

But then A3 (f)(t) — = co when ¢ goes to zero, that is, A; cannot have a continuous extension,
a contradiction.

So, if a continuous extension exists there is morphism A, : C — X. Then, A\;(0) = y and we
denote this by

izl%)\(t).x =y
Clearly, the point y € X must belong to the orbitclosure GL,.x in the Zariski topology (or in the
C-topology as orbits are constructible). Conversely, one might ask whether if y € GL,.x we can
always approach y via a one-parameter subgroup. The Hilbert criterium gives situations when this
is indeed possible.

The only ideals of the formal power series C[[t]] are principal and generated by ¢" for some
r € Ny. With C((¢)) we will denote the field of fractions of the domain C((t)).

Lemma 2.4 Let V be a GLy-representation, v € V and a point w € V lying in the orbitclosure
GLy.v. Then, there exists a matriz g with coefficients in the field C((t)) and det(g) # 0 such that

(g.v)i=0 1is well defined and is equal to ~ w
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Proof. Note that g.v is a vector with coordinates in the field C((¢)). If all coordinates belong to
C[[t]] we can set t = 0 in this vector and obtain a vector in V. It is this vector that we denote with
(9-v)i=0.

Consider the orbit map i : GL, — V defined by ¢’ — ¢’.v. As w € GL,.v we have seen that
there is an irreducible curve C — GL,, such that w € u(C). We obtain a diagram of C-algebras

C[GLy] —» C[C] — C(C)

Clv] Clu(C)) = C[C]

Here, C[C] is defined to be the integral closure of C[u(C)] in the functionfield C(C) of C. Two
things are important to note here : ¢’ —— u(C) is finite, so surjective and take ¢ € C’ be a

point lying over w € p(C). Further, C’ having an integrally closed coordinate ring is a complex
manifold. Hence, by the implicit function theorem polynomial functions on C' can be expressed in
a neighborhood of ¢ as power series in one variable, giving an embedding C[C'] &< C[[t]] with
(t) NC[C’] = M.. This inclusion extends to one on the level of their fields of fractions. That is, we
have a diagram of C-algebra morphisms

ClGLy] — C(C) = C(C") — C((t))

ClV] — C[u(C)] = C[C"] = CIIt]]

The upper composition defines an invertible matrix g(t) with coefficients in C((t)), its (¢, j)-entry
being the image of the coordinate function z;; € C[GL,]. Moreover, the inverse image of the
maximal ideal (¢) < C[[t]] under the lower composition gives the maximal ideal M, < C[V]. This
proves the claim. O

Lemma 2.5 Let g be an n x n matriz with coefficients in C((t)) and det g # 0. Then there exist
u1, u2 € GLn(CJ[[t]]) such that
t 0

withr; €EZ andry <re <...<rp,.
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Proof. By multiplying g with a suitable power of ¢t we may assume that g = (g:;(t)):,; € M, (C[[t]]).
If f(t) =2, fit" € C[[t]] define v(f(t)) to be the minimal i such that a; # 0. Let (io,jo) be an
entry where v(g;;(t)) attains a minimum, say r1. That is, for all (i,7) we have g;;(t) = t"'¢" f(t)
with » > 0 and f(t) an invertible element of C[[t]].

By suitable row and column interchanges we can take the entry (io,jo) to the (1,1)-position.
Then, multiplying with a unit we can replace it by t"* and by elementary row and column operations
all the remaining entries in the first row and column can be made zero. That is, we have invertible
matrices a1, a2 € GL,(CJ[[t]]) such that

.az

Repeating the same idea on the submatrix g1 and continuing gives the result. |

We can now state and prove the Hilbert criterium which allows us to study orbit-closures by one
parameter subgroups.

Theorem 2.2 Let V be a GL,-representation and X —— V a closed GLy-stable subvariety. Let
O(x) = GLp.x be the orbit of a point x € X. Let Y —— O(x) be a closed GL,-stable subset.
Then, there exists a one-parameter subgroup \ : C* —— GL,, such that

lim A\t)x €Y
t—0

Proof. It suffices to prove the result for X = V. By lemma 2.4 there is an invertible matrix
g € Mn(C((t))) such that
(9-2)i=0 =y €Y
By lemma 2.5 we can find u;,u2 € GL,(C][[t]]) such that
" 0
g=u1.N(t)uz with X\(t)= .
0 t'm

a one-parameter subgroup. There exist z; € V such that us.x = Zi:o 2;t' in particular u2(0).x =
zo. But then,
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But one easily verifies (using a basis of eigenvectors of A’'(¢)) that

Loy ’ i . (X' (t).w0)t=0 ifi =0,
LimA (). (N (t)zit")i=0 = {O 30

As (N (t).u2.2)t=0 € Y and Y is a closed GL,-stable subset, we also have that
zmékl(s).(X(t).m.x)t:o €Y thatis, (N(t).zo)i—o €Y
But then, we have for the one-parameter subgroup A(t) = u2(0) 1.\ (¢).u2(0) that
limA\(t).z €Y
t—0

finishing the proof. 0

An important special case occurs when z € V belongs to the nullcone , that is, when the orbit
closure O(z) contains the fixed point 0 € V. The original Hilbert criterium asserts the following.

Proposition 2.6 Let V be a GL,-representation and x € V in the nullcone. Then, there is a

one-parameter subgroup C* A, GL,, such that
%ZI% At).z =0

In the statement of theorem 2.2 it is important that Y is closed. In particular, it does not follow
that any orbit O(y) < O(z) can be reached via one-parameter subgroups, see example 2.7 below.

2.4 Semisimple modules

In this section we will characterize the closed GL,-orbits in the representation variety rep, A
for an affine C-algebra A. We have seen that any point ¢ € rep, A (that is any n-dimensional

representation A 2, M,,) determines an n-dimensional A-module which we will denote with M.
A finite filtration F' on an n-dimensional module M is a sequence of A-submodules

F : OIMt+1CMtC...CM1CM0=M.
The associated graded A-module is the n-dimensional module
grr M = @fzoMi/MiH-

We have the following ringtheoretical interpretation of the action of one-parameter subgroups of
GL, on the representation variety rep, A.
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Lemma 2.6 Let ¢, p € repn, A. Equivalent are,

1. There is a one-parameter subgroup C* 2, GL, such that

lim At)W=p

t—0

2. There is a finite filtration F' on the A-module My such that
grr My >~ M,
as A-modules.

Proof. (1) = (2) : If V is any G Ly-representation and C* 2, G L, a one-parameter subgroup,
we have an induced weight space decomposition of V'

V =a;Va; where Vy,={veV|At)v=tvVteC}

In particular, we apply this to the underlying vectorspace of M, which is V' = C" (column vectors)
on which GL,, acts by left multiplication. We define

Mj = ®i>i Vi

and claim that this defines a finite filtration on M, with associated graded A-module M,. For any
a € A (it suffices to vary a over the generators of A) we can consider the linear maps

qﬁij(a) : V)\J‘ s V= M¢, L Mw =V — VA,]'
(that is, we express the action of a in a blockmatrix ®, with respect to the decomposition of
V). Then, the action of a on the module corresponding to A(t).®) is given by the matrix ®, =
A(t).®4.\(t) " with corresponding blocks

¢ij(a)
—_—

Vi %W
A7t A(t)
Vi Vs

[ —
4%;]' (a)
that is ¢};(a) =t/ *¢i;(a). Therefore, if lim,—oA(t).1) exists we must have that

¢ij(a) =0 forall j<i.
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But then, the action by a sends any My = @;>, V) to itself, that is, the M} are A-submodules of
My. Moreover, for j > ¢ we have

; . — Lim 97 _

lim (@) = lim £/ 61;(a) = 0
Consequently, the action of a on p is given by the diagonal blockmatrix with blocks ¢;;(a), but
this is precisely the action of a on V; = M;_1/M;, that is, p corresponds to the associated graded
module.

(2) = (1) : Given a finite filtration on My

F 0:]\4754,.1C...C]\41C]\Jo:]\4¢Y

we have to find a one-parameter subgroup C* 2, GL,, which induces the filtration F' as in the
first part of the proof. Clearly, there exist subspaces V; for 0 < i <t such that

V=0V, and M;=a,_,V.

Then we take A to be defined by A(t) = t'Idy, for all i and it verifies the claims. O

Example 2.6 Let M, we the 2-dimensional C[z]-module determined by the Jordan block and
consider the canonical basevectors

Al 1 0
0 A A=) 271
Then, Ce; is a C[z]-submodule of M, and we have a filtration

OZMQC(Cel:M1CC€1@C€2:MO:MUJ

Using the conventions of the second part of the above proof we then have

Vi = Ceq Vo =Ces hence A(t) = {8 (1)}

Indeed, we then obtain that
t o] [A 1] [¢' o] _[» ¢
0 1710 X|["] 0O 1l 710 A

and the limit ¢ — 0 exists and is the associated graded module grr M, = M, determined by
the diagonal matrix.
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Figure 2.1: Kraft’s diamond describing the nullcone of M35.

Consider two modules My, My € rep, A. Assume that O(M,) —— O(M,) and that we
can reach the orbit of M, via a one-parameter subgroup. Then, lemma 2.6 asserts that M, must
be decomposable as it is the associated graded of a nontrivial filtration on My. This gives us
a criterium to construct examples showing that the closedness assumption in the formulation of
Hilbert’s criterium is essential.

Example 2.7 (Nullcone of Mj = M3 @ M3) In chapter 6 we will describe a method to deter-
mine the nullcones of m-tuples of n X n matrices. The special case of two 3 x 3 matrices has been
worked out by H.P. Kraft in [50, p.202]. The orbits are depicted in figure 2.1 In this picture, each
node corresponds to a torus. The right hand number is the dimension of the torus and the left
hand number is the dimension of the orbit represented by a point in the torus. The solid or dashed
lines indicate orbitclosures. For example, the dashed line corresponds to the following two points
in M2 =Ms® M;

00 1] Jo 1 0 00 1] Jo 1 0
v=(lo 0o 1|,l0 0o o) p=(lo 0o o|,l0 o o)
00 0| [00 0 00 0/ [00 0

We claim that M, is an indecomposable 3-dimensional module of C(z, y). Indeed, the only subspace
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of the column vectors C left invariant under both x and ¥ is equal to

C
0
0

hence M, cannot have a direct sum decomposition of two or more modules. Next, we claim that
O(M,) — O(My). Indeed, simultaneous conjugating ¢ with the invertible matrix

0 1 0 we obtain the couple (

o OO
OO O
o
o OO
o O
o OO
—

and letting ¢ — 0 we see that the limiting point is p.

The Jordan-Holder theorem , see for example [66, 2.6] asserts that any finite dimensional A-
module M has a composition series , that is, M has a finite filtration

F : OZMt+1CMtC...CM1CM0=M

such that the successive quotients S; = M;/M; 11 are all simple A-modules for 0 < ¢ < ¢t. Moreover,
these composition factors S and their multiplicities are independent of the chosen composition
series, that is, the set {So,...,S:} is the same for every composition series. In particular, the
associated graded module for a composition series is determined only up to isomorphism and is the
semisimple n-dimensional module

gr M = &S,

Theorem 2.3 Let A be an affine C-algebra and M € rep, A.

1. The orbit O(M) is closed in rep, A if and only if M is an n-dimensional semisimple A-
module.

2. The orbitclosure O(M) contains exactly one closed orbit, corresponding to the direct sum of
the composition factors of M.

8. The points of the quotient variety of rep, A under GL,, classify the isomorphism classes of
n-dimensional semisimple A-modules. We will denote the quotient variety by iss, A.

Proof. (1) : Assume that the orbit O(M) is Zariski closed. Let gr M be the associated graded
module for a composition series of M. From lemma 2.6 we know that O(gr M) is contained in

O(M) = O(M). But then gr M ~ M whence M is semisimple.
Conversely, assume M is semisimple. We know that the orbitclosure O(M) contains a closed

orbit, say O(N). By the Hilbert criterium we have a one-parameter subgroup C* 2, GL, such
that
lim A\(t).M = N' ~ N.

t—0
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By lemma 2.6 this means that there is a finite filtration F' on M with associated graded module
grr M =~ N. For the semisimple module M the only possible finite filtrations are such that each of
the submodules is a direct sum of simple components, so grr M ~ M, whence M ~ N and hence
the orbit O(M) is closed.

(2) : Remains only to prove uniqueness of the closed orbit in O(M). This either follows from
the Jordan-Holder theorem or, alternatively, from the separation property of the quotient map to
be proved in the next section.

(3) : We will prove in the next section that the points of a quotient variety parameterize the
closed orbits. g

Example 2.8 Recall the description of the orbits in M2 = M, @ M, given in the previous chapter.

3 3 3

Pl

0
C°—H H-S S

and each fiber contains a unique closed orbit. The one over a point in H — S corresponding to the

matrix couple
( ail 0 b1 0 )
0 az2|’ |0 be

which is indeed a semi-simple module of C(z,y) (the direct sum of the two 1-dimensional simple
representations determined by x — a; and y +— b;). In case a1 = a2 and b1 = ba these two simples
coincide and the semi-simple module having this factor with multiplicity two is the unique closed
orbit in the fiber of a point in S.

Example 2.9 Assume A is a finite dimensional C-algebra. Then, there are only a finite number,
say k, of nonisomorphic n-dimensional semisimple A-modules. Hence iss, A is a finite number of
k points, whence rep,, A is the disjoint union of k connected components, each consisting of all
n-dimensional A-modules with the same composition factors. Connectivity follows from the fact
that the orbit of the sum of the composition factors lies in the closure of each orbit.

Example 2.10 Let A be an affine commutative algebra with presentation A = Clz1,...,2m]|/la
and let X be the affine variety V(I4). Observe that any simple A-module is one-dimensional hence
corresponds to a point in X. (Indeed, for any algebra A a simple k-dimensional module determines
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an epimorphism A — M, and M}, is only commutative if K = 1). Applying the Jordan-Holder
theorem we see that
issn A XM = X x ... x X /S,
—_———

the n-th symmetric product of X.

2.5 Some invariant theory

The results in this section hold for arbitrary reductive algebraic groups. Because we will only work
with GL,, (or later with products GL(«) = GLa, X ...%x GLq, ) we include a proof in this case. Our
first aim is to prove that GL,, is a reductive group , that is, all GL,-representations are completely
reducible. Consider the unitary group

Uy, ={A€GL, | AA =1}

where A* is the Hermitian transpose of A. Clearly, U, is a compact Lie group. Any compact
Lie group has a so called Haar measure which allows one to integrate continuous complex valued
functions over the group in an invariant way. That is, there is a linear function assigning to every
continuous function f : U, — C its integral

fre| [flg)dgeC
Un

which is normalized such that fU dg = 1 and is left and right invariant, which means that for all
u € U, we have the equalities

fgwdg = [ flodg= [ flug)ds.
Un Un Un
This integral replaces the classical idea in representation theory of averaging functions over a finite
group.
Proposition 2.7 Every U, -representation is completely reducible.

Proof. Take a finite dimensional complex vectorspace V with a Up-action and assume that W is

a subspace of V' left invariant under this action. Extending a basis of W to V' we get a linear map

V —%= W which is the identity on W. For any v € V we have a continuous map

Uy — W g g.6(g ")

(use that W is left invariant) and hence we can integrate it over U, (integrate the coordinate
functions). Hence we can define a map ¢g : V. —— W by

po(v) = / 9.9(g~ " v)dg.

n
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Clearly, ¢o is linear and is the identity on W. Moreover,

¢o(u.v) :/ g.(;S(g*lu.v)dg :u,/ uilg.zp(g*lu.v)dg

n n

“u. / 96(g™" 0)dg = u.do(v)

n

where the starred equality uses the invariance of the Haar measure. Hence, V. =W & Ker ¢¢ is a
decomposition as U,-representations. Continuing whenever one of the components has a nontrivial
subrepresentation we arrive at a decomposition of V' into simple U, -representations. (|

We claim that for any n, U, is Zariski dense in GL,,. Let D, be the group of all diagonal
matrices in GL,,. The Cartan decomposition for GL,, asserts that

GLn, =Un.Dn.Un

For, take g € GL,, then g.¢g" is an Hermitian matrix and hence diagonalizable by unitary matrices.
So, there is a u € U,, such that

g

—1 * _ . o 1 —1 =
u .9.9 .u= .. =S .g.s.8 .9 .8
N———

*

Qn P P

Then, each o > 0 € Ras a; = 377, || pij II>. Let 8; = /o and let d the diagonal matrix
diag(B1, ..., 0Bn). Clearly,

g=ud.(d'wtg) andweclaim v=d 'ul.geU,.
Indeed, we have

vt =(d tuhg) (¢t ud ) =d (v gyt u).d !
=d'.d*.d" =1,
proving the Cartan decomposition. Now, D,, = C* x ... x C* and D, NU,, = Uy x ... x Uy and
because Uy = p is Zariski dense (being infinite) in D1 = C*, we have that D, is contained in the

Zariski closure of U,,. By the Cartan decomposition we then have that the Zariski closure of U, is
GL,.

Theorem 2.4 GL, is a reductive group. That is, all GL,-representations are completely reducible.
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Proof. Let V be a GLy-representation having a subrepresentation W. In particular, V and W
are U,-representations, so by the foregoing proposition we have a decomposition V = W & W' as
U, -representations. Consider the subgroup

N = Ngr, (W) ={g € GL, | gW' Cc W'}

then N is a Zariski closed subgroup of GL,, containing U,. As the Zariski closure of U,, is GL,, we
have N = GL,, and hence that W' is a representation of GL,. Continuing gives a decomposition
of V' in simple G L, -representations. O

Let S = Sar,, be the set of isomorphism classes of simple G L, -representations. If W is a simple
G L, -representation belonging to the isomorphism class s € S, we say that W is of type s and denote
this by W € s. Let X be a complex vectorspace (not necessarily finite dimensional) with a linear
action of GL,,. We say that the action is locally finite on X if, for any finite dimensional subspace
Y of X, there exists a finite dimensional subspace Y C Y’ C X which is a GL,-representation.
The isotypical component of X of type s € S is defined to be the subspace

X => {W|WCX,WEes})

If V is a GLy-representation, we have seen that V' is completely reducible. Then, V' = ©V(,) and
every isotypical component V() ~ W®es for W € s and some number es. Clearly, es # 0 for only
finitely many classes s € S. We call the decomposition V' = @sesV(s) the isotypical decomposition
of V and we say that the simple representation W € s occurs with multiplicity es in V.

If V' is another GL,-representation and if V e V'isa morphism of G L,-representations
(that is, a linear map commuting with the action), then for any s € S we have that ¢(V(,)) C V<'S). If
the action of GL, on X is locally finite, we can reduce to finite dimensional G L,-subrepresentation
and obtain a decomposition

X = Dses X(s),

which is again called the isotypical decomposition of X.
Let V be a GLy-representation of some dimension m. Then, we can view V as an affine space
C™ and we have an induced action of GL, on the polynomial functions f € C[V] by the rule

that is (g.f)(v) = f(g~ ) for all g € GL, and all v € V. If C[V] = Clz1,...,2n] is graded
by giving all the x; degree one, then each of the homogeneous components of C[V] is a finite
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dimensional GL,-representation. Hence, the action of GL, on C[V] is locally finite. Indeed, let
{y1,...,yi} be a basis of a finite dimensional subspace Y C C[V] and let d be the maximum of the
deg(yi). Then Y’ = @%_,C[V]; is a G L,-representation containing Y.

Therefore, we have an isotypical decomposition C[V] = @sesC[V](s). In particular, if 0 € S
denotes the isomorphism class of the trivial G Ly-representation (C¢riw = Cx with g.z = x for every
g € GL,) then we have

CV]) ={f €C[V] | g.f = f,¥g € GL,} = C[V]""
the ring of polynomial invariants , that is, of polynomial functions which are constant along orbits
inV.
Lemma 2.7 Let V be a GL,,-representation.

1. Let I aC[V] be a GLy-stable ideal, that is, g.I C I for all g € GLy, then
(CV)/D® = VI /(I N Clv)on),
2. Let JaC[V]9En be an ideal, then we have a lying-over property
J = JC[v]nc[v]¢tn.

Hence, (C[V]GL" is Noetherian, that is, every increasing chain of ideals stabilizes.

3. Let I; be a family of GLy-stable ideals of C[V], then

(Z L)NCV]¥En =3 (1N ClV]n).

J

Proof. (1) : As I has the induced GL,-action which is locally finite we have the isotypical
decomposition I = @) and clearly Iy = C[V](,y N 1. But then also, taking quotients we have

©s(C[V]/I)(s) = CV]/I = @sC[V](s)/I(5)-

Therefore, (C[V]/I)s) = C[V](s)/I(s) and taking the special case s = 0 is the statement.

(2) : For any f € C[V]9L™ left-multiplication by f in C[V] commutes with the GL,-action,
whence f.C[V]) C C[V]). That is, C[V],) is a C[V]“*"-module. But then, as J C C[V]9*" we
have

s (JCV])(s) = JCV] = ®sJC[V](s).-
Therefore, (JC[V])(sy = JC[V](s) and again taking the special value s = 0 we obtain JC[V] N

C[V]¢En = (JC[V])(oy = J. The Noetherian statement follows from the fact that C[V] is Noetherian
(the Hilbert basis theorem).
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(3) : For any j we have the decomposition I = @, ([;)). But then, we have

@S(Z I)s) = le = Z@S(Ij)(s) =®s ) _(Ii)s)-

J

Therefore, (37, 1;)(s) = >_;(I;)(s) and taking s = 0 gives the required statement. O

Theorem 2.5 Let V be a GLy-representation. Then, the ring of polynomial invariants C[V]GL"
is an affine C-algebra.

Proof. Because the action of GL, on C[V] preserves the gradation, the ring of invariants is also
graded
ClVI°" =R=C®R I ®R:&...

From lemma 2.7(2) we know that C[V]“%" is Noetherian and hence the ideal R+ = R1 @ R2 & . ..
is finitely generated Ry = Rfi + ...+ Rfi; by homogeneous elements f1,..., fi. We claim that as
a C-algebra C[V]9I is generated by the f;. Indeed, we have R, = 22:1 Cf; + R% and then also

i
RL =Y Cfif; + R
ij=1
and iterating this procedure we obtain for all powers m that
RY= > Cf™ .. f"+ R
S my=m

Now, consider the subalgebra C[f1,..., fi] of R = C[V}GL’Z then we obtain for any power d > 0
that
C[vV)¢* =Clfi,..., i) + RY.

For any i we then have for the homogeneous components of degree ¢
R; = C[f1, RN fl]z + (Ri)l

Now, if d > i we have that (R%); = 0 and hence that R; = C[fi1,..., fi];. As this holds for all i we
proved the claim. O

Choose generating invariants fi,..., fi of (C[V]GL", consider the morphism

v %, ¢ defined by v (f1(v),..., fi(v))
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and define W to be the Zariski closure ¢(V) in C'. Then, we have a diagram

v ¢ (Cl

w

and an isomorphism C[W] . C[V]9%». More general, let X be a closed G'Ly,-stable subvariety
of V, then X = Vy (I) for some GLy,-stable ideal I of C[V]. From lemma 2.7(1) we obtain

C[X]%" = (C[v]/D)%" = C[V]?" /(I nC[V]F")

whence (C[X]GL” is also an affine algebra (and generated by the images of the f;). Define Y to be
the Zariski closure of ¢(X) in C', then we have a diagram

X ¢ .

Y

and an isomorphism C[Y] —» C[X]%L». We call the morphism X —— Y an algebraic quotient

of X under GL,,. We will now prove some important properties of this quotient.

Proposition 2.8 (universal property) If X —t e Zisa morphism which is constant along
GLy,-orbits in X, then there exists a unique factoring morphism [

™

X > Y
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Proof. As i is constant along G'Ln-orbits in X, we have an inclusion p*(C[Z]) C C[X]%F". We
have the commutative diagram

Clx]

»

*

3/ C[x)9E \™

ClZ] - ClY]

from which the existence and uniqueness of fi follows. O

As a consequence, an algebraic quotient is uniquely determined up to isomorphism (that is, we
might have started from other generating invariants and still obtain the same quotient variety up
to isomorphism).

Proposition 2.9 (onto property) The algebraic quotient X —"+ Y is surjective. Moreover, if
Z — X is a closed GLy-stable subset, then w(Z) is closed in' Y and the morphism

x| Z:Z — w(Z)
is an algebraic quotient, that is, C[n(Z)] ~ C[Z]%tn.

Proof. Let y € Y with maximal ideal M, < C[Y]. By lemma 2.7(2) we have M,C[X] # C[X] and
hence there is a maximal ideal M, of C[X] containing M,C[X], but then 7(z) = y. Let Z = Vx(I)

for a G-stable ideal I of C[X], then n(Z) = Vy (I N C[Y]). That is, C[x(Z)] = C[Y]/(I N C[Y]).
However, we have from lemma 2.7(1) that

CIY]/(ClY] N 1) ~ (C[x]/D%* = Clz]
and hence C[r(Z)] = C[Z]%*". Finally, surjectivity of 7 | Z is proved as above. O
An immediate consequence is that the Zariski topology on Y is the quotient topology of that

on X. For, take U C Y with 7~ !(U) Zariski open in X. Then, X — 7~ (U) is a G Ly-stable closed
subset of X. Then, 7(X — 7 *(U)) =Y — U is Zariski closed in Y.
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Proposition 2.10 (separation property) The quotient X — " + Y separates disjoint closed
G L, -stable subvarieties of X.

Proof. Let Z; be closed GLy,-stable subvarieties of X with defining ideals Z; = Vx(I;). Then,
N;Z; = Vx (32, 1;). Applying lemma 2.7(3) we obtain

m(N;Z5) = VY((Z I;)NCly)) = VY(Z(IJ NC[Y)

=n;Vy (I; NC[Y]) = N;7(Z;)

The onto property implies that 7(Z;) = w(Z;) from which the statement follows. O

It follows from the universal property that the quotient variety Y determined by the ring of
polynomial invariants (C[Y]GL" is the best algebraic approximation to the orbit space problem.
From the separation property a stronger fact follows.

Proposition 2.11 The algebraic quotient X —— Y is the best continuous approzimation to the
orbit space. That is, points of Y parameterize the closed GLy-orbits in X. In fact, every fiber
7Y (y) contains exactly one closed orbit C' and we have

7 'y)={r € X|CCGLyx}

Proof. The fiber F = 7~ !(y) is a GLy-stable closed subvariety of X. Take any orbit GL,.z C F
then either it is closed or contains in its closure an orbit of strictly smaller dimension. Induction on
the dimension then shows that G.x contains a closed orbit C'. On the other hand, assume that F'
contains two closed orbits, then they have to be disjoint contradicting the separation property. [

2.6 Geometric reconstruction

In this section we will give a geometric interpretation of the reconstruction result of theorem 1.17.
Let A be a Cayley-Hamilton algebra of degree n, with trace map tr 4, which is generated by at most
m elements aq,...,a,. We will give a functorial interpretation to the affine scheme determined
by the canonical ideal N4 < C[M]] in the formulation of theorem 1.17. First, let us identify the
reduced affine variety V(N4). A point m = (mi,...,mm) € V(N4) determines an algebra map
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fm : C[M]']/Na — C and hence an algebra map ¢,

W”k
M, (C[M"]/Na)

which is trace preserving. Conversely, from the universal property it follows that any trace preserv-
ing algebra morphism A — M, (C) is of this form by considering the images of the trace generators
ai,...,am of A. Alternatively, the points of V(NN4) classify n-dimensional trace preserving repre-
sentations of A. That is, n-dimensional representations for which the morphism A —— M, (C)
describing the action is trace preserving. For this reason we will denote the variety V(N4) by
trep, A and call it the trace preserving reduced representation variety of A.

Assume that A is generated as a C-algebra by a1,...,an (observe that this is no restriction as
trace affine algebras are affine) then clearly I4(n) C Na. That is,

Lemma 2.8 For A a Cayley-Hamilton algebra of degree n generated by {a1,...,am}, the reduced
trace preserving representation variety

trep, A < rep, A
is a closed subvariety of the reduced representation variety.

It is easy to determine the additional defining equations. Write any trace monomial out in the
generators

trA(ail .. .aik) = E ocjl,_,jlajl . .ajl

then for a point m = (mu,...,mm) € repn A to belong to trep, A, it must satisfy all the relations
of the form

tr(mil .. .mik) = E aj1~~~jzmj1 . .m]'l

with ¢r the usual trace on M, (C). These relations define the closed subvariety trep,(A). Usually,
this is a proper subvariety.

Example 2.11 Let A be a finite dimensional semi-simple algebra A = Mg, (C)&...® Mg, (C), then
A has precisely k distinct simple modules {Mi, ..., M} of dimensions {di,...,dr}. Here, M; can
be viewed as column vectors of size d; on which the component Mg, (C) acts by left multiplication
and the other factors act as zero. Because A is semi-simple every n-dimensional A-representation
M is isomorphic to

M=M&"@...¢ M
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for certain multiplicities e; satisfying the numerical condition
n=-ed +...+erds

That is, rep, A is the disjoint union of a finite number of (closed) orbits each determined by an
integral vector (e1,...,ey) satisfying the condition called the dimension vector of M.

repn A~ |_| GL,/(GLe, X ...GLe,)

Let fi; > 1 be natural numbers such that n = fidi + ...+ frdr and consider the embedding of A
into M, (C) defined by

-Tay 0 -
0 al
f1
(a1y...,a) € A — € M,(C)
Ik
—_———
ak 0
L 0 ar | J

Via this embedding, A becomes a Cayley-Hamilton algebra of degree n when equipped with the
induced trace tr from M, (C).

Let M be the n-dimensional A-representation with dimension vector (e1,...,ex) and choose a
basis compatible with this decomposition. Let F; be the idempotent of A corresponding to the
identity matrix Ig, of the i-th factor. Then, the trace of the matrix defining the action of E; on M is
clearly e;d;.I,,. On the other hand, tr(E;) = fid;.I, hence the only trace preserving n-dimensional
A-representation is that of dimension vector (f1,..., fx). Therefore, trep, A consists of the single
closed orbit determined by the integral vector (fi,..., fx).

trepn A~ GLyn/(GLy, X ... x GLy,)

Consider the scheme structure of the trace preserving representation variety trep, A. The
corresponding functor assigns to a commutative affine C-algebra R

trep, (R) = Algc(C[M,"]/Na, R).
An algebra morphism ¢ : C[M,*]/Na — R determines uniquely an m-tuple of n X n matrices
with coefficients in R by
Y(w11(k)) Y(z1n(k))

Tk =

(@ (k) V(@ (k)



Reconstructing Algebras

Composing with the canonical embedding

My (C[M;"]/Na)

determines the trace preserving algebra morphism ¢ : A —— M, (R) where the trace map on
M, (R) is the usual trace. By the universal property any trace preserving map A — M, (R) is
also of this form.

Lemma 2.9 Let A be a Cayley-Hamilton algebra of degree n which is generated by {a1,...,am}.
The trace preserving representation variety trep, A represents the functor

trep, A(R)={A 2. M, (R) | ¢ is trace preserving }
Moreover, trep, A is a closed subscheme of rep, A.

Recall that there is an action of GL, on C[M]'] and from the definition of the ideals I4(n)
and Nj it is clear that they are stable under the GLy-action. That is, there is an action by
automorphisms on the quotient algebras C[M,"]/Ia(n) and C[M;']/Na. But then, their algebras
of invariants are equal to

Clrep, A" = (C[M;"]/La(n))“ " = N7 /(La(n) NN}
C[trep,, AJ9En = (C[M™]/N4)CEm = N /(N4 NNT)
That is, these rings of invariants define closed subschemes of the affine (reduced) variety associated

to the necklace algebra N;;'. We will call these schemes the quotient schemes for the action of G Ly,
and denote them respectively by

iss, A=rep, A/GL, and triss, A=trep, A/GL,.

We have seen that the geometric points of the reduced variety iss, A of the affine quotient scheme
iss, A parameterize the isomorphism classes of n-dimensional semisimple A-representations. Sim-
ilarly, the geometric points of the reduced variety triss, A of the quotient scheme triss, A
parameterize isomorphism classes of trace preserving n-dimensional semisimple A-representations.

Proposition 2.12 Let A be a Cayley-Hamilton algebra of degree n with trace map tra. Then, we
have that
tra(A) = Cltriss, A],

the coordinate ring of the quotient scheme triss, A. In particular, mazimal ideals of tr a(A) param-
eterize the isomorphism classes of trace preserving n-dimensional semi-simple A-representations.
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By definition, a G L,-equivariant map between the affine G L, -schemes
trep, A N M, =M,
means that for any commutative affine C-algebra R the corresponding map
trep, A(R) EACO) M, (R)

commutes with the action of GL,(R). Alternatively, the ring of all morphisms trep,, A — M,
is the matrixalgebra M, (C[M,"]/N4) and those that commute with the GL, action are precisely
the invariants. That is, we have the following description of A.

Theorem 2.6 Let A be a Cayley-Hamilton algebra of degree n with trace map tra. Then, we can
recover A as the ring of G Ly, -equivariant maps

A={f:trep, A —> M, GLy-equivariant }

Summarizing the results of this and the previous section we have

Theorem 2.7 The functor

algln % GL(n)-affine
which assigns to a Cayley-Hamilton algebra A of degree n the G Ly -affine scheme trep, A of trace
preserving n-dimensional representations has a left inverse. This left inverse functor

GL(n)-affine —» algen

assigns to a GLy-affine scheme X its witness algebra (" [X] = M, (C[X])“"" which is a Cayley-
Hamilton algebra of degree n.

Note however that this functor is not an equivalence of categories. For, there are many affine
G L,,-schemes having the same witness algebra as we will see in the next section.

We will give an application of the algebraic reconstruction result, theorem 1.17, to finite dimen-
sional algebras.

Let A be a Cayley-Hamilton algebra of degree n wit trace map tr, then we can define a norm
map on A by

N(a) =on(a) forallae€ A.

Recall that the elementary symmetric function o, is a polynomial function f(t1,t2,...,t,) in the
Newton functions t; = Z;L:1x§. Then, o(a) = f(tr(a),tr(a?),...,tr(a™)). Because, we have a
trace preserving embedding A —— M, (C[trep,, A]) and the norm map N coincides with the
determinant in this matrix-algebra, we have that

N1)=1 and Va,be A N(ab)=N(a)N(b).
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Furthermore, the norm map extends to a polynomial map on A[t] and we have that xg")(t) =
N(t — a). In particular we can obtain the trace by polarization of the norm map. Consider a finite
dimensional semi-simple C-algebra

A=M4 (C)®...d My, (C),

then all the Cayley-Hamilton structures of degree n on A with trace values in C are given by the
following result.

Lemma 2.10 Let A be a semi-simple algebra as above and tr a trace map on A making it into a
Cayley-Hamilton algebra of degree n with tr(A) = C. Then, there exist a dimension vector o =
(mi,...,mg) € NE such that n = Zf:l msd; and for any a = (Ax, ..., Ax) € A with A; € My, (C)
we have that

tr(a) =miTr(A1) + ...+ miTr(Ax)

where T'r are the usual trace maps on matrices.

Proof. The norm-map N on A defined by the trace map ¢r induces a group morphism on the
invertible elements of A

N:A"=GLq, (C) x...x GLg4, (C) — C*

that is, a character. Now, any character is of the following form, let A; € GLg,(C), then for
a = (Ai,...,Ar) we must have

N(a) = det(Ay)™ det(A2)™ ... det(Ay)™

for certain integers m; € Z. Since N extends to a polynomial map on the whole of A we must have
that all m; > 0. By polarization it then follows that

tr(a) =miTr(A1) + ...+ miTr(Ax)

and it remains to show that no m; = 0. Indeed, if m; = 0 then ¢r would be the zero map on

Mg, (C), but then we would have for any a = (0,...,0,A4,0,...,0) with A € My, (C) that
xXe () =t
whence Xé")(a) # 0 whenever A is not nilpotent. This contradiction finishes the proof. O

We can extend this to all finite dimensional C-algebras. Let A be a finite dimensional algebra
with radical J and assume there is a trace map ¢r on A making A into a Cayley-Hamilton algebra
of degree n and such that ¢r(A) = C. We claim that the norm map N : A —— C is zero on J.
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Indeed, any j € J satisfies j' = 0 for some [ whence N(j)' = 0. But then, polarization gives that
tr(J) = 0 and we have that the semisimple algebra

A*° :A/J:Mdl(C)@...@Mdk((C)

is a semisimple Cayley-hamilton algebra of degree n on which we can apply the foregoing lemma.
Finally, note that A ~ A®® @ J as C-vectorspaces. This concludes the proof of

Proposition 2.13 Let A be a finite dimensional C-algebra with radical J and semisimple part
A°° = A/J = Mg, ((C) D...D Mdk((C)

Let tr : A —— C —— A be a trace map such that A is a Cayley-Hamilton algebra of degree n.
Then, there exists a dimension vector a = (ma, ..., my) € NE such that for all a = (A, ..., Ay, 7)
with A; € Mg, (C) and j € J we have

tr(a) =maTr(A) + ...+ meTr(Ag)

with Tr the usual traces on Mg, (C) and Y, mid; = n.

Fix a trace map tr on A determined by a dimension vector oo = (mu,...,mg) € N*. Then, the
trace preserving variety trep, A is the scheme of A-modules of dimension vector «, that is, those
A-modules M such that

M =8P g g gPmE

where S; is the simple A-module of dimension d; determined by the i-th factor in A°°. An immediate
consequence of the reconstruction theorem 2.6 is

Proposition 2.14 Let A be a finite dimensional algebra with trace map tr : A —— C determined
by a dimension vector o = (ma, ..., my) as before with all m; > 0. Then, A can be recovered from
the GLy-structure of the affine scheme trep, A of all A-modules of dimension vector a.

Still, there can be other trace maps on A making A into a Cayley-Hamilton algebra of degree n.
For example let C be a finite dimensional commutative C-algebra with radical N, then A = M,,(C)
is finite dimensional with radical J = M,,(N) and the usual trace map ¢r : M,(C) — C makes A
into a Cayley-Hamilton algebra of degree n such that ¢r(J) = N # 0. Still, if A is semi-simple, the
center Z(A) =C@® ... ®C (as many terms as there are matrix components in A) and any subring
of Z(A) is of the form C®...® C. In particular, tr(A) has this form and composing the trace map
with projection on the j-th component we have a trace map tr; on which we can apply lemma 2.10.
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2.7 The Gerstenhaber-Hesselink theorem

In this section we will give examples of distinct G L,-affine schemes having the same witness algebra,
proving that the left inverse of theorem 2.7 is not an equivalence of categories. We will study the
orbits in rep, Clz] or, equivalent, conjugacy classes of n X n matrices.

It is sometimes convenient to relax our definition of partitions to include zeroes at its tail.
That is, a partition p of n is an integral n-tuple (ai,as2,...,an) with a1 > a2 > ... > an > 0
with >, a; = n. As before, we represent a partition by a Young diagram by omitting rows
corresponding to zeroes.

If ¢ = (b1,...,by) is another partition of n we say that p dominates ¢ and write

p>q if and only if ZaiZZbi forall 1 <r <n.
i=1 i=1

For example, the partitions of 4 are ordered as indicated below
L1 > BI\ > EE > @] > E

Note however that the dominance relation is not a total ordering whenever n > 6. For example,
the following two partition of 6
o

are not comparable. The dominance order is induced by the Young move of throwing a row-ending
box down the diagram. Indeed, let p and g be partitions of n such that p > ¢ and assume there is
no partition r such that p > r and r > ¢. Let ¢ be the minimal number such that a; > b;. Then
by the assumption a; = b; + 1. Let 7 > ¢ be minimal such that a; # b;, then we have b; = a; + 1
because p dominates gq. But then, the remaining rows of p and ¢ must be equal. That is, a Young
move can be depicted as
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For example, the Young moves between the partitions of 4 given above are as indicated
- Bl - =! - @J - E

A Young p-tableau is the Young diagram of p with the boxes labeled by integers from {1,2, ..., s}
for some s such that each label appears at least ones. A Young p-tableau is said to be of type g for
some partition ¢ = (b1, ...,byn) of n if the following conditions are met :

e the labels are non-decreasing along rows,

e the labels are strictly increasing along columns, and

e the label ¢ appears exactly b; times.

For example, if p = (3,2,1,1) and ¢ = (2,2,2,1) then the p-tableau below

= W N

is of type ¢ (observe that p > g and even p — ¢). In general, let p = (a1,...,an) and ¢ = (b1,...,bn)
be partitions of n and assume that p — g. Then, there is a Young p-tableau of type ¢. For, fill the
Young diagram of ¢ by putting 1’s in the first row, 2’s in the second and so on. Then, upgrade the
fallen box together with its label to get a Young p-tableau of type ¢. In the example above

11| 1113
|

22/:> 2| 2

313 3

4 4

Conversely, assume there is a Young p-tableau of type q. The number of boxes labeled with a
number < ¢ is equal to b1 + ...+ b;. Further, any box with label < ¢ must lie in the first i rows
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(because the labels strictly increase along a column). There are a; + ...+ a; boxes available in the
first 4 rows whence

ZbiSZai forall 1<i<n
j=1 j=1
and therefore p > ¢q. After these preliminaries on partitions, let us return to nilpotent matrices.

Let A be a nilpotent matrix of type p = (au, ..., a»), that is, conjugated to a matrix with Jordan
blocks (all with eigenvalue zero) of sizes a;. We have seen before that the subspace V; of column

vectors v € C™ such that A'.v = 0 has dimension
! l
S #{ila;=h}=> aj
h=1 h=1

where p* = (a],...,ay ) is the dual partition of p. Choose a basis {v1,...,v,} of C" such that for
all [ the first aj + ...+ a] base vectors span the subspace V;. For example, if A is in Jordan normal
form of type p = (3,2,1,1)

0 1 0
0 0 1
0 0 0

o O
O =

0

then p* = (4,2,1) and we can choose the standard base vectors ordered as follows

{61,647667677627657 €3 }
N e N e N~

4 2 1

Take a partition ¢ = (b, ..., with p — ¢ (in particular, p > ¢), then for the dual partitions we
have ¢* — p* (and thus ¢* > But then there is a Young ¢*-tableau of type p*. In the example
with ¢ = (2,2,2,1) we have ¢* = (4, 3) and p* = (4,2,1) and we can take the Young ¢*-tableau of
type p”*

bn)
).

Now label the boxes of this tableau by the base vectors {vi,...,v,} such that the boxes labeled i
in the Young ¢*-tableau of type p* are filled with the base vectors from V; — V;_;. Call this tableau
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T. In the example, we can take

€1 €4 6 €7

T=1|¢e [e | e

Define a linear operator F' on C™ by the rule that F'(v;) = v; if v; is the label of the box in T just
above the box labeled v;. In case v; is a label of a box in the first row of T" we take F'(v;) = 0.
Obviously, F' is a nilpotent n X n matrix and by construction we have that

rk F'=n— (b} +...4+ b))

That is, F' is nilpotent of type ¢ = (b1,...,bn). Moreover, F satisfies F'(V;) C V;_1 for all ¢ by the
way we have labeled the tableau T and defined F'.
In the example above, we have F(e2) = e1, F(es) = es, F(es) = eg and all other F(e;) = 0.
That is, F' is the matrix
0 1
0 O

o O
S =

0
which is seen to be of type (2,2,2,1) after performing a few Jordan moves.
Returning to the general case, consider for all € € C the n X n matrix :
F.=(1—-¢)F 4 €A.

We claim that for all but finitely many values of € we have F. € O(A). Indeed, we have seen that
F(V;) C Vi—1 where V; is defined as the subspace such that A*(V;) = 0. Hence, F (V1) = 0 and
therefore

F(Vi)=(1—-¢e)F+eA(V1)=0.

Assume by induction that FZ(V;) = 0 holds for all ¢ < I, then we have that
Fi(Vi) = FTH((1-oF +eA)(W)
c F7'(Vii)=0
because A(V;) C Vi—1 and F(V;) C Vi_1. But then we have for all [ that

rkFelSdimVl:nf(a*{Jr...Jraf):rkAldéfm.
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Then for at least one r; x 7; submatrix of F! its determinant considered it as a polynomial of degree
r; in € is not identically zero (as it is nonzero for € = 1). But then this determinant is non-zero for
all but finitely many e. Hence, rk F! = rk A' for all [ for all but finitely many e. As these numbers
determine the dual partition p* of the type of A, F¢ is a nilpotent n X n matrix of type p for all
but finitely many values of €, proving the claim. But then, Fy = F which we have proved to be a
nilpotent matrix of type ¢ belongs to the closure of the orbit O(A). That is, we have proved the
difficult part of the Gerstenhaber-Hesselink theorem .

Theorem 2.8 Let A be a nilpotent n X n matriz of type p = (a1, ...,an) and B nilpotent of type
q= (b1,...,bn). Then, B belongs to the closure of the orbit O(A), that is,

BeO(A) ifandonlyif p>gq
in the domination order on partitions of n.

To prove the theorem we only have to observe that if B is contained in the closure of A, then
B! is contained in the closure of A' and hence 7k A' > rk B (because Tk Al < ks equivalent to
vanishing of all determinants of k x k minors which is a closed condition). But then,

! !
n— E al >n— E b}
i=1 =1

for all [, that is, ¢* > p* and hence p > ¢q. The other implication was proved above if we remember
that the domination order was induced by the Young moves and clearly we have that if B € O(C)

and C' € O(A) then also B € O(A).

Example 2.12 (Nilpotent matrices for small n) We will apply theorem 2.8 to describe the
orbit-closures of nilpotent matrices of 8 x 8 matrices. The following table lists all partitions (and
their dual in the other column)

The partitions of 8.

a  (8) v oo(1,1,1,1,1,1,1,1)
b (7)1) u o (2,1,1,1,1,1,1)
c (6,2 0 (2,2,1,1,1,1)
d (6,11 s (31,1,1,1,1)
e (5,3) r (2,2,2,1,1)

f (5,2,1) q (3,2,1,1,1)

g (5,1,1,1) P (4,1,1,1,1)

L (4.4) o (2.2,2,2)

i (4,3,1) n (3,2,2,1)
io@22) | mo (3311
k(33,2 kK (3,3,2)

1 (4211 | 1 (4,2,1,1)




2.7. The Gerstenhaber-Hesselink theorem

97

The domination order between these partitions can be depicted as follows where all the Young
moves are from left to right

Of course, from this graph we can read off the dominance order graphs for partitions of n < 8.
The trick is to identify a partition of n with that of 8 by throwing in a tail of ones and to look at
the relative position of both partitions in the above picture. Using these conventions we get the
following graph for partitions of 7

The dominance order on partitions of n < 5 is a total ordering.

The Gerstenhaber-Hesselink theorem can be applied to describe the module varieties of the
algebras Clz]/(z").

Example 2.13 (The representation variety repn%) Any algebra morphism from C[z] to
M, is determined by the image of z, whence rep,(Clz]) = M,. We have seen that conjugacy
classes in M, are classified by the Jordan normalform. Let A is conjugated to a matrix in normal-
form

J1

J2
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where J; is a Jordan block of size d;, hence n = di1 + d2 + ... + ds. Then, the n-dimensional
C[z]-module M determined by A can be decomposed uniquely as

M:Ml@M2®@Ms

where M; is a C[z]-module of dimension d; which is indecomposable , that is, cannot be decomposed
as a direct sum of proper submodules.

Now, consider the quotient algebra R = Clz]/(z"), then the ideal Ir(n) of Clz1i1,Z12,. .., ZTnn]
is generated by the n? entries of the matrix

r
11 Tin

Tpl ... Tnn
For example if » = m = 2, then the ideal is generated by the entries of the matrix
[961 962] 2 _ [ 96% + zox3 xa(z1 + 284)}
T3 Ta x3(z1 +24) 25+ Toxs
That is, the ideal with generators
Ir = (27 + zoxs, zo(x1 + 24), T3 (21 4 24), (T1 — T4) (@1 + T4))

The variety V(Ir) —— Ma consists of all matrices A such that A> = 0. Conjugating A to an
upper triangular form we see that the eigenvalues of A must be zero, hence

0 1 0 0
rem €lal/a) = 0([g gpuocfy o)
and we have seen that this variety is a cone with top the zero matrix and defining equations
V(z1 + 24, x% + x213)
and we see that I is properly contained in this ideal. Still, we have that

rad(Ir) = (z1 + x47xf + x3%4)

for an easy computation shows that 71 + 24> = 0 € C[z1,x2, s, 24]/Ir. Therefore, even in the
easiest of examples, the representation variety does not have to be reduced.

For the general case, observe that when J is a Jordan block of size d with eigenvalue zero an
easy calculation shows that

0 ... 0 d-1 0 ... ... 0

0

Jét = and J? =
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Therefore, we see that the representation variety rep, C[z]/(z") is the union of all conjugacy classes
of matrices having 0 as only eigenvalue and all of which Jordan blocks have size < r. Expressed
in module theoretic terms, any n-dimensional R = C[z]/(z")-module M is isomorphic to a direct
sum of indecomposables

M=IP"@I$?e... eI

where I; is the unique indecomposable j-dimensional R-module (corresponding to the Jordan block
of size 7). Of course, the multiplicities e; of the factors must satisfy the equation

e1+2e2+3e3+...+re.=n
In M we can consider the subspaces for all 1 <i<r —1
M;={me M |z'm=0}

the dimension of which can be computed knowing the powers of Jordan blocks (observe that the
dimension of M; is equal to n — rank(A"))

t; = dimc Mi:e1+262+...(i—1)€i+i(€i+€i+1+...+€T)

Observe that giving n and the r — 1-tuple (¢1,%2,...,tn—1) is the same as giving the multiplicities
e; because

2t1 =12+ e
2t2 =t3+ti+e2
2t3 =ts+1t2+e3

Ztn72 =tn-1+tn_3+en_-2
2tn—1 =n+th—2+en-1
n = tn—l + en

Let n-dimensional C[z]/(z")-modules M and M’ (or associated matrices A and A’) be determined
by the r — 1-tuples (t1,...,t.—1) respectively (¢,...,t._;) then we have that

O(A") — O(A) ifand only if ¢ <ty,to <th,...,tr_1 <ty

Therefore, we have an inverse order isomorphism between the orbits in rep,(Clz]/(z")) and the
r — 1-tuples of natural numbers (t1,...,t-—1) satisfying the following linear inequalities (which
follow from the above system)

2t1 > 12,2ty > t3 +t1,2t3 > ta+to,.. ., 2tp_1 >N+ th_2,n > th_2.

Let us apply this general result in a few easy cases. First, consider » = 2, then the orbits in
rep, Clz]/(2z?) are parameterized by a natural number t; satisfying the inequalities n > ¢; and
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2t1 > n, the multiplicities are given by e; = 2t; — n and es = n — t;. Moreover, the orbit of the
module M (t}) lies in the closure of the orbit of M(t1) whenever t; < t].

That is, if n = 2k + 6 with § = 0 or 1, then rep,, C[z]/(x?) is the union of k 4 1 orbits and the
orbitclosures form a linear order as follows (from big to small)

RoIdr — &2t [on

If 7 = 3, orbits in rep, Clz]/(x*) are determined by couples of natural numbers (t1, t2) satisfying
the following three linear inequalities

2t1 > 12
2t >n—+t
n Z tz

For example, for n = 8 we obtain the following situation

2t1 = to
: 2ty =8+t

- —@

ty =8

Therefore, reps Clx]/(x*) consists of 10 orbits with orbit closure diagram as in figure 2.2 (the nodes
represent the multiplicities [e;ezes)).

Here we used the equalities e; = 2t; — t2, ea = 2ta —n —t; and e3 = n — t2. For general n and r
this result shows that rep,, C[z]/(z") is the closure of the orbit of the module with decomposition

Myen =I° @I, if n=er+s

We are now in a position to give the promised examples of affine GL,-schemes having the same
witness algebra.
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[012]

[202]

[121]

RN

[040] 311]

N4

[501] [230]
N S
[420]

[610]

[800]

Figure 2.2: Orbit closures in reps C[z]/(z%).

Example 2.14 Consider the action of GL, on M, by conjugation and take a nilpotent matrix A.
All eigenvalues of A are zero, so the conjugacy class of A is fully determined by the sizes of its Jordan
blocks. These sizes determine a partition AM(A) = (A1, A2,...,Ax) of n with A1 > Ao > ... > Ak
Moreover, we have given an algorithm to determine whether an orbit O(B) of another nilpotent
matrix B is contained in the orbit closure O(A), the criterium being that

O(B) € O(A) <= A\(B)* > \(A)".

where A* denotes the dual partition. We see that the witness algebra of O(A) is equal to
M, (C[O(A)) " = C[X]/(x")
where k is the number of columns of the Young diagram A(A).

Hence, the orbit closures of nilpotent matrices such that their associated Young diagrams have
equal number of columns have the same witness algebras. For example, if n = 4 then the closures
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of the orbits corresponding to

and

have the same witness algebra, although the closure of the second is a proper closed subscheme of
the closure of the first.

Recall the orbitclosure diagram of conjugacy classes of nilpotent 8 x 8 matrices given by the
Gerstenhaber-Hesselink theorem. In the picture below, the closures of orbits corresponding to
connected nodes of the same color have the same witness algebra.

oO—e&—o0 L] o [ ] [¢] [e] O—O0—e

2.8 The real moment map

In this section we will give another interpretation of the algebraic quotient variety triss, A with
methods coming from symplectic geometry. We have an involution

GL, —» GL,  definedby g —» (g°)""
where A is the adjoint matriz of g, that is, the conjugate transpose
mi1 ... Min mi1 ... Mnpi
M=| | M= .
Mp1 ... Mnn Min ... Mpn
The real points of this involution, that is
(GLy) ={9g€GLy | g=(¢") "} =Un={u€GL, | wu* =T}
is the unitary group . On the level of Lie algebras, the involution 4 gives rise to the linear map
Mo, %+ M,  defnedby M —» —M"

corresponding to the fact that the Lie algebra of the unitary group, that is, the kernel of di, is the
space of skew-Hermitian matrices

LieU,={MeM, | M=—-M"} =iHerm,
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Consider the standard Hermitian inproduct on M, defined by

(A,B) =tr(A*B) which satisfies (A,eB) =c(A,B)

As a subgroup of GL,, U, acts on M, by conjugation and because (uvAu*,uBu*) =
tr(uA*u*uBu*) = tr(A*B), the inproduct is invariant under the U,-action. The action of U,
on M, induces an action of Lie U, on M, given for all h € Lie U,, and M € M,

h.M =hM + MK =hM — Mh

Using this action, we define the real moment map p for the action of U,, on M,, as the map from
M, to the linear dual of the Lie algebra

M, -2~ (iLie U,)* M — (h+si(h.M,M))
We will identify the inverse image of the zero map 0 : Lie U, — 0 under u. Because

(h.-M,M) = tr((h.M — M.h)"M)

=tr(M*h*"M — h*M*M)

=tr(h"(MM" — M™M))
and using the nondegeneracy of the Killing form on Lie U, we have the identification

p 0 ={MeM, | MM* = M*M} = Nor,
the space of normal matrices . Alternatively, we can define the real moment map to be determined
by
M, 25 LieU, M — i(MM* — M*M) =i[M, M~

Recall that a matrix M € M,,(C) is said to be normal if its commutes with its adjoint. For example,
diagonal matrices are normal as are unitary matrices. Further, it is clear that if M is normal and
w unitary, then the conjugated matrix uMu ™' = uMu* is again a normal matrix, that is we have

an action of the compact Lie group U, on the subset Nor, —— M,(C) of normal matrices. We
recall the proof of the following classical result

Theorem 2.9 Fvery U, orbit in Nory, contains a diagonal matriz. This gives a natural one-to-one
correspondence
1 (0)/Un = Norp /Uy «—— My, /GLy,

between the U, -orbits in Nor, and the closed G L, -orbits in M, .
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Proof. Equip C" with the standard Hermitian form, that is,
(v,w) =0 W =TVrwW1 + ...+ Tpawy

Take a non-zero eigenvector v of M € Nor, and normalize it such that (v,v) = 1. Extend v = v;
to an orthonormal basis {v1,...,v,} of C" and let u be the basechange matrix from the standard
basis. With respect to the new basis, the linear map determined by M and M™ are represented by
the normal matrices

ail a1 P A1n ail 0 . O
. 0 as2 a2 . . aiz Q22 an2
M, =uMu” = . . . M{ =uM"u" =
0 an2 ... Qnpn Gln G2n ... Gnn

Because M is normal, so is M;. The left hand corner of My M; is a11a11 whereas that of My M7 is
a11011 + 12612 + . .. + @1nG1pn, Whence

a12a12 + ... + a1nG1n, =0

but as all a1;a1; =|| a1 ||> 0, this implies that all a1; = 0, whence
a1 0 o 0
0 azz ... G2n
M =
0 an2 e Ann

and induction finishes the claim. Because permutation matrices are unitary we see that the diagonal
entries are determined up to permutation, so every Uy,-orbit determines a unique conjugacy class
of semi-simple matrices, that is, a closed GLy-orbit in M,.

We will generalize this classical result to m-tuples of n x n matrices, M,;", and then by restriction
to trace preserving representation varieties. Take A = (A1,...,An) and B = (Bi,..., Bwy) in M
and define an Hermitian inproduct on M, by

(A,B) =tr(A1B1 + ...+ A},Bn)

which is again invariant under the action of U,, by simultaneous conjugation on M,". The induced
action of Lie U, on M," is given by

hA= (hA1 = Aih,... hAn — Anh)

This allows us to define the real moment map p for the action of U,, on M, to be the assignment

M s (iLie U,)* A — (hi(h.A, A))
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and again using the nondegeneracy of the Killing form on Lie U,, we have the identification

m

pHO) ={Ae M | D (AA] — AjAi) =0}

i=1

Again, the real moment map is determined by

M 5 LieU, A= (A,...,An) — i[A, AY] ZAJ,A

We will show that there is a natural one-to-one correspondence between Uy,-orbits in the set 1~ *(0)
and closed GLn,-orbits in M,". We first consider the properties of the real valued function pa
defined as the norm on the orbit of any A € M*

GL, 24 R, g —> ||g.AH2

Because the Hermitian inproduct is invariant under U,, we have pa(ug) = pa(g) for any u € U,.
If Stab(A) denotes the stabilizer subgroup of A € GL,, then for any s € Stab(A) we also have
pa(gs) = pa(g) hence py4 is constant along U, gStab(A)-cosets. We aim to prove that the critical
points of p4 are minima and that the minimum is attained if and only if O(A) is a closed G Lp-orbit.

Consider the restriction of p4 to the maximal torus T;, > GL,, of invertible diagonal matrices.

Then, T,, NU, = K =U; X ... x U; is the subgroup
k1 0
K=/{ | Vi : |kil=1}
0 kn

The action by conjugation of T,, on M, decomposes this space into weight spaces

M, = M (0) & @D M, (mi — )

i,j=1

where M (m; — ;) = {A € M | diag(ti,...,tn). A= titjflA}. It follows from the definition of
the Hermitian inproduct on M, that the different weightspaces are orthogonal to each other. We
decompose A € M, into eigenvectors for the T),-action as

" o . A(0) e M(0)
©)+ Z A3, ) with {A(i,j) € MM (m; — 75)

4,j=1



106

Reconstructing Algebras

With this convention we have for t = diag(t1,...,tn) € T, that

pa(t) =[|A(0 ZttlAzj

i,j=1

=140 Ztt 1AG, 7)1

i,j=1

where the last equality follows from the orthogonality of the different weight spaces. Further,
remark that the stabilizer subgroup Stabr(A) of A in T can be identified with

Stabr(A) = {t = diag(t1,...,tn) | t: =t; if A(4,5) # 0}.

As before, pa induces a function on double cosets K\T,/Stabr(A), in particular pp; de-
termines a real valued function on K\7, =~ R" (the isomorphism is given by the map

diag(ts, ..., tn) -2 (log |t1],...,log |tn])). That is,

Ty

K\T, ~ R"

P
A é?‘

Ry = K\T, /Stabr(A)
A
where the function p), is the special function

n
2log Al + § : e2log 1A |I+22; 225

4,5 A(4,4) 20

Pa(re,...,tn) =e

and where K\T,/Stabr(A) is the quotient space of R™ by the subspace V4 which is the image of

Stabr (A) under log
Va = Z Re; + Z R(e; —e;)
:FA(4,5)#0 4,5:A(4,5)#0
where e; are the standard basis vectors of R™. Let {i1,...,ix} be the minimal elements of the

non-empty equivalence classes induced by the relation ¢ ~ j iff A(¢,7) # 0, then

K\T,,/Stabr(A) ~ 3%_| Re;;
pA” (Y1, Yk) = Co + Z?:l(Zl(j) Cl(j)eal(j)yj)



2.8. The real moment map

107

for certain positive real numbers co, ¢;(;) and real numbers a;(;y. But then, elementary calculus
shows that the k& x k matrix

92p 47 92p 47
aylpaAyl (m) T Byf(';;;k (m)
o P

By:éqyl ( ) T Gy:BAyk ( )

is a positive definite diagonal matrix in every point m € R¥. That is, pa” is a strictly convex

Morse function and if it has a critical point mo (that is, if all Bg—;”(mo) = 0), it must be a unique
minimum. Lifting this information from the double coset space K\T/Stabr(A) to T;, we have
proved

Proposition 2.15 Let T, be the maximal torus of invertible diagonal matrices in G L., and consider
the restriction of the function GL, 2~ Ry to Ty, for A € M™, then

1. Any critical point of pa is a point where pa obtains its minimal value.
2. If pa obtains a minimal value, then

e the set V where pa obtains this minimum consists of a single K — Stabr(A) coset in Ty,
and is connected.

e the second order variation of pa at a point of V in any direction not tangent to V 1is
positive.

The same proof applies to all maximal tori T'" of GL,, which are defined over R. Recall the
Cartan decomposition of GL, which we proved before theorem 2.4 : any g € GL,, can be written
as g = udu’ where u,u’ € U, and d is a diagonal matrix with positive real entries. Using this fact
we can now extend the above proposition to GL,.

Theorem 2.10 Consider the function GL, —2» Ry for A € M™.
1. Any critical point of pa is a point where pa obtains its minimal value.
2. If pa obtains its minimal value, it does so on a single U, — Stab(A)-coset.

Proof. (1) : Because for any h € GL, we have that p,.a(g) = pa(gh) we may assume that
T, is the critical point of pa. We have to prove that pa(g) > pa(T,) for all g € GL,. By the
Cartan decomposition ¢ = udu’ whence ¢ = u”’t where v’ = uu’ € U, and t = v/ 'du’ € T a
maximal torus of GL,, defined over R. Because the Hermitian inproduct is invariant under U,, we
have that pa(g) = pa(t). Because 1, is a critical point for the restriction of pa to T we have by
proposition 2.15 that pa(t) > pa(T,), proving the claim.

(2) : Because for any h € GLy, pn.a(g) = pa(gh) and Stab(h.A) = hStab(A)h™" we may
assume that p4 obtains its minimal value at ,. If V denotes the subset of GL, where pa obtains
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its minimal value we then have that U,Stab(A) C V and we have to prove the reverse inclusion.
Assume g € V' and write as before g = v”t with v” € U,, and ¢t € T' a maximal torus defined over
R. Then, by unitary invariance of the inproduct, ¢ is a point of 1" where the restriction of pa to
T obtains its minimal value pa(T,). By proposition 2.15 we conclude that ¢ € KrStabr(A) where
Kr =U,NT. But then,

V C Un({ KrStabr(A)) C U, Stab(A)
T

where T runs over all maximal tori of GL,, which are defined over R, finishing the proof. O

Proposition 2.16 The function pa : GL, — Ry obtains a minimal value if and only if O(A)
is a closed orbit in M,", that is, determines a semi-simple representation.

Proof. 1If O(A) is closed then pa clearly obtains a minimal value. Conversely, assume that O(A)
is not closed, that is, A does not determine a semi-simple n-dimensional representation M of
C(z1,...,Zm). By choosing a basis in M (that is, possibly going to another point in the orbit
O(A)) we have a one-parameter subgroup C* <2, T, < GL, corresponding to the Jordan-
Holder filtration of M with img A(t)A = B with B corresponding to the semi-simplification of M.

Now consider the restriction of p/4 to U1\C* ~ R, then as before we can write it uniquely in the
form

p%(m):Zaieliz a; >0, h<la<...<l,

for some real numbers [; and some z. Because the above limit exists, the limit

lim pj(z) €R

and hence none of the [; are negative. Further, because O(A) # O(B) at least one of the I; must

be positive. Therefore, p;y is a strictly increasing function on R whence never obtains a minimal
value, whence neither does pa. O

Finally, we have to clarify the connection between the function p4 and the real moment map

M s (Lie Uy,)* A —— (h (h.A, A))
MP 2 Lie Uy A —— i[A, A"

Assume A € M, is such that p4 has a critical point, which we may assume to be 1, by an argument
as in the proof of theorem 2.10. Then, the differential in ,

(dpA)’Un : M, = Tﬂn GL, — R satisfies (dpA)’[]n(h) =0 VheM,
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Let us work out this differential
pa(lh) + e(dpA)/Un (h) =tr((A" + e(A"h" — h"A™)(A + e(hA — Ah))
=tr(A"A) +etr(A"hA — A"Ah + Ah"A — h" A" A)
=tr(A*A) + etr((AA" — A*A)(h — h"))

But then, vanishing of the differential for all h € M, is equivalent by the nondegeneracy of the
Killing form on Lie U, to

AA - A"A = AA] — AjA; =0

i=1
that is, to A € ugz'(0). This concludes the proof of the main result on the real moment map for
M.
Theorem 2.11 There are natural one-to-one correspondences between

1. isomorphism classes of semi-simple n-dimensional representations of C{(x1,...,Tm),

2. closed GLy,-orbits in M,

3. Un-orbits in the subset pug'(0) = {A € M" | S [Ai, A7] = 0}.

Let A € alg@n be an affine Cayley-Hamilton algebra of degree n, then we can embed the reduced
variety of trep, A in M;" and obtain as a consequence :

Theorem 2.12 For A € alg@n, there are natural one-to-one correspondences between
1. isomorphism classes of semi-simple n-dimensional trace preserving representations of A,
2. closed GLn-orbits in the representation variety trep, A,

8. Un-orbits in the intersection trep, AN puz'(0).

References.

The generalization of the Hilbert criterium, theorem 2.2 is due to D. Birkes [8]. The connection
between semi-simple representations and closed orbits is due to M. Artin [2] . The geometric
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real moment map are due to G. Kempf and L. Ness [42] . The treatment of the Hilbert criterium
and invariant theory follows the textbook of H-P. Kraft [51] , that of the Gerstenhaber-Hesselink
result owes to the exposition of M. Hazewinkel in [34].






3 — Etale Technology

Etale topology was introduced in algebraic geometry to bypass the coarseness of the Zariski topology
in classification problems. Let us give an elementary example : the local classification of smooth
varieties in the Zariski topology is a hopeless task, whereas in the étale topology there is just one
local type of smooth variety in each dimension d, namely affine d-space A%. A major theme of this
book is to generalize this result to noncommutative geometry@n.

Etale cohomology groups are used to classify central simple algebras over function fields of
varieties. Orders in such central simple algebras (over the central structure sheaf) are an important
class of Cayley-Hamilton algebras.

Over the years, one has tried to construct a suitable class of smooth orders which allows an étale
local description. But, except in the case of curves and surfaces, no such classification is known
say for orders of finite global dimension. In this book we introduce the class of Cayley-smooth
orders which does allow an étale local description in arbitrary dimensions. In this chapter we will
lay the foundations for this classification by investigating étale slices of representation varieties
in semi-simple representations. In the next chapter we will then show that this local structure is
determined by a combinatorial gadget : a quiver setting.

3.1 Etale topology

A closed subvariety X —— C™ can be equipped with the Zariski topology or with the much finer
analytic topology . A major disadvantage of the coarseness of the Zariski topology is the failure
to have an implicit function theorem in algebraic geometry. Etale morphisms are introduced to
bypass this problem.

We will define étale morphisms which determine the étale topology . This is no longer a usual
topology determined by subsets, but rather a Grothendieck topology determined by covers .

Definition 3.1 A finite morphism A > of commutative C-algebras is said to be étale if and
only if B= Alt1,...,tx]/(f1,..., fx) such that the Jacobian matrix

of1 of1
oty T Oty
Ofk 9k
ot, T Oty

has a determinant which is a unit in B.
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Recall that by spec A we denote the prime ideal spectrum or the affine scheme of a commutative
C-algebra A (even when A is not affine as a C-algebra). That is, spec A is the set of all prime
ideals of A equipped with the Zariski topology , that is the open subset are of the form

X(I)={Pespec A | I ¢ P}

for some ideal I < A. If A is an affine C-algebra, the points of the corresponding affine variety
correspond to the mazimal ideals of A and the induced Zariski topology coincides with the one
introduced before. In this chapter, however, not all C-algebras will be affine.

Example 3.1 Consider the morphism C[z,z~'] “— C[z,2~"][{/x] and the induced map on the
affine schemes

spec Clz, z™'][ ¥x] Y. spec Clz,z” '] = C — {0}.

Clearly, every point A € C — {0} has exactly n preimages \; = ¢* ¥/X. Moreover, in a neighborhood
of \;, the map v is a diffeomorphism. Still, we do not have an inverse map in algebraic geometry
as {/z is not a polynomial map. However, C[z, z™'][ {/x] is an étale extension of C[z,z~']. In this
way étale morphisms can be seen as an algebraic substitute for the failure of an inverse function
theorem in algebraic geometry.

Proposition 3.1 FEtale morphisms satisfy ’sorite’, that is, they satisfy the commutative diagrams of
figure 3.1. In these diagrams, et denotes an étale morphism, f.f. denotes a faithfully flat morphism
and the dashed arrow is the étale morphism implied by ’sorite’.

With these properties we can define a Grothendieck topology on the collection of all étale
morphisms.

Definition 3.2 The étale site of A, which we will denote by Aet is the category with

e objects : the étale extensions A Ry of A

e morphisms : compatible A-algebra morphisms

A
/ \
B: ¢

> B,

By proposition 3.1 all morphisms in Aey are étale. We can turn Aey into a Grothendieck topology by
defining
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A e » A ®4 B B
e e
e et
A—= . B A - C
(basechange) (composition)

A — % A e4B

A
" / \
et et B’

P - B B

A—alg

(descent) (morphisms)

Figure 3.1: Sorite for étale morphisms

e cover : a collection C = {B e, B;} in Aey such that
spec B =U; I'm (spec B; L. spec B)
Definition 3.3 An étale presheaf of groups on Aex is a functor
G : Ay — groups
In analogy with usual (pre)sheaf notation we denote for each
e object B € Ao the global sections I'(B,G) = G(B)

e morphism B — %+ C in Ae the restriction map Resé = G(¢) : G(B) —— G(C) and
91C=G(2)(9).

An étale presheaf G 1is an étale sheaf provided for every B € Aey and every cover {B — B;} we
have exactness of the equalizer diagram

0 — G(B) — [[cB:) —= [[Cc(Bi@s B))

4,3
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Example 3.2 (Constant sheaf ) If G is a group, then
G : Aoy —> groups B — GO (B)

is a sheaf where mo(B) is the number of connected components of spec B.

Example 3.3 (Multiplicative group G,, ) The functor

G, : Aey — groups B +— B*
is a sheaf on Ae.

A sequence of sheaves of Abelian groups on A is said to be exact
¢ —Is -t @

if for every B € At and s € G(B) such that g(s) = 0 € G”(B) there is a cover {B — B;} in Ae
and sections t; € G'(B;) such that f(t;) = s | B;.
Example 3.4 (Roots of unity p,) We have a sheaf morphism

G, =5 G,

and we denote the kernel with p,,. As A is a C-algebra we can identify p,, with the constant sheaf
Zn = 7Z/nZ via the isomorphism ¢* — ¢ after choosing a primitive n-th root of unity ¢ € C.

Lemma 3.1 The Kummer sequence of sheaves of Abelian groups

="

04’/1714’@7714’@!7714’0
is exact on Aey (but not necessarily on spec A with the Zariski topology).

Proof. We only need to verify surjectivity. Let B € Aoy and b € G,,,(B) = B*. Consider the
étale extension B’ = BJt]/(t" —b) of B, then b has an n-th root over in G,,(B’). Observe that this
n-th root does not have to belong to G.,(B). O

If p is a prime ideal of A we will denote with k, the algebraic closure of the field of fractions of
A/p. An étale neighborhood of p is an étale extension B € Ae such that the diagram below is
commutative
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The analogue of the localization A, for the étale topology is the strict Henselization
A= lim B
—

where the limit is taken over all étale neighborhoods of p.

Recall that a local algebra L with maximal ideal m and residue map = : L — L/m = k is said
to be Henselian if the following condition holds. Let f € L[t] be a monic polynomial such that
m(f) factors as go.ho in k[t], then f factors as g.h with 7(g) = go and w(h) = ho. If L is Henselian
then tensoring with k induces an equivalence of categories between the étale A-algebras and the
étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if its residue field is
algebraically closed. Thus, a strict Henselian ring has no proper finite étale extensions and can be
viewed as a local algebra for the étale topology.

Example 3.5 (The algebraic functions C{z1,...,z4}) Consider the local algebra of
Clz1,...,2q] in the maximal ideal (x1,...,24), then the Henselization and strict Henseliza-
tion are both equal to

(C{Zl‘l, . ,xd}
the ring of algebraic functions . That is, the subalgebra of C[[z1,...,zq]] of formal power-
series consisting of those series ¢(z1,...,xq) which are algebraically dependent on the coordi-

nate functions x; over C. In other words, those ¢ for which there exists a non-zero polynomial
f(zi,y) € Clzn,...,zq,y] with f(z1,...,za,¢(z1,...,2q4)) = 0.
These algebraic functions may be defined implicitly by polynomial equations. Consider a system
of equations
fi(z1, ..., za;y1,. -, ym) =0 for f; € Clas,y;] and 1 < i <m

Suppose there is a solution in C with
z; =0and y; = y;
such that the Jacobian matrix is non-zero

afi
0y,

det( (O,"'7O;yi)7"'7y'9n))#0

Then, the system can be solved uniquely for power series y;(x1,...,zq) with y;(0,...,0) = y5 by
solving inductively for the coefficients of the series. One can show that such implicitly defined series
y;j(z1,...,zq) are algebraic functions and that, conversely, any algebraic function can be obtained
in this way.

If G is a sheaf on Ae; and p is a prime ideal of A, we define the stalk of G in p to be

Gy = lim G(B)
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where the limit is taken over all étale neighborhoods of p. One can verify mono- epi- or isomor-
phisms of sheaves by checking it in all the stalks.

If A is an affine algebra defined over an algebraically closed field, then it suffices to verify it in
the maximal ideals of A.

Before we define cohomology of sheaves on Ae¢ let us recall the definition of derived functors .
Let A be an Abelian category . An object I of A is said to be injective if the functor

A —— abelian M — Homa(M,I)

is exact. We say that A has enough injectives if, for every object M in A, there is a monomorphism
M < [ into an injective object.

If A has enough injectives and f : A —— B is a left exact functor from A into a second Abelian
category B, then there is an essentially unique sequence of functors

R f:A—>B i>0
called the right derived functors of f satisfying the following properties
« R f=f
e R I =0 for I injective and i > 0
e For every short exact sequence in A
00— M — M — M” — 0

there are connecting morphisms 6° : R f(M”?) — R*™' f(M’) for i > 0 such that we have
a long exact sequence

. — R J(M) — R f(M7) < R F(M) — R F(M) — ..

e For any morphism M —— N there are morphisms R* f(M) — R' f(N) fori >0

In order to compute the objects R* f(M) define an object N in A to be f-acyclic if R f(M) =0
for all ¢ > 0. If we have an acyclic resolution of M

00— M — Ng —> Ny —> Ny — ...

by f-acyclic object N;, then the objects R* f(M) are canonically isomorphic to the cohomology
objects of the complex

0 — f(No) —> f(N1) —> f(N2) — ...

One can show that all injectives are f-acyclic and hence that derived objects of M can be computed
from an injective resolution of M.



3.1. Etale topology

117

Now, let S“b(Aet) be the category of all sheaves of Abelian groups on Ae;. This is an Abelian
category having enough injectives whence we can form right derived functors of left exact functors.
In particular, consider the global section functor

r: Sab(Aet) — abelian G — G(A)

which is left exact. The right derived functors of I' will be called the étale cohomology functors
and we denote _ _
R'T(G) = H,(A,G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 —> G —> G —> G” — 0, then we have a long exact cohomology sequence

T H;t(A7G) - Hzt(AvG”) - Heijl(AaGl) - .

If G is a sheaf of non-Abelian groups (written multiplicatively), we cannot define cohomology
groups. Still, one can define a pointed set HY, (A, G) as follows. Take an étale cover C = {A —» A;}
of A and define a 1-cocycle for C with values in G to be a family

gij € G(AZ]) with Aij =A;, Qa4 Aj
satisfying the cocycle condition
(9i3 | Aige)(gir | Aijr) = (gik | Aijk)

where Aijk =A;, Qa4 A]' Qa4 Ag.
Two cocycles g and g’ for C are said to be cohomologous if there is a family h; € G(A;) such
that for all 4,5 € I we have )
9ij = (hi | Aij)gij(hj | Aij)

This is an equivalence relation and the set of cohomology classes is written as Helt(C7 G). Itis a
pointed set having as its distinguished element the cohomology class of g;; = 1 € G(A;;) for all
i,jel.

We then define the non-Abelian first cohomology pointed set as

H!(A,G)= lim H5(C,G)

where the limit is taken over all étale coverings of A. It coincides with the previous definition in
case G is Abelian.

A sequence ] —» G’ —> G —— G” —— 1 of sheaves of groups on A is said to be exact if
for every B € Aoy we have

o G'(B) = Ker G(B) —» G’ (B)

e For every g” € G”(B) there is a cover {B —— B;} in A and sections ¢g; € G(B;) such that
gi; maps to g” | B.
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Proposition 3.2 For an exact sequence of groups on A
1— G — G — G — 1
there is associated an exact sequence of pointed sets
1 —> G'(A) —> G(A) — G"(A) —>» HL(A,G') —

- elt(AaG) - Helt(A7G”) """" - gt(A7Gl)
where the last map exists when G’ is contained in the center of G (and therefore is Abelian whence
H? is defined).

Proof. The connecting map ¢ is defined as follows. Let g” € G"(A) and let C = {A —— A;}
be an étale covering of A such that there are g; € G(A;) that map to g | A; under the map
G(A;) — G”(A;). Then, 6(g) is the class determined by the one cocycle

gi5 = (gi | Aij) (g5 | Aij)

with values in G’. The last map can be defined in a similar manner, the other maps are natural
and one verifies exactness. 0

The main applications of this non-Abelian cohomology to non-commutative algebra is as follows.
Let A be a not necessarily commutative A-algebra and M an A-module. Consider the sheaves of
groups Aut(A) resp. Aut(M) on Ae: associated to the presheaves

B — Autp_qig(A ®4 B) resp. B — Autp_mod(M ®4 B)

for all B € Aee. A twisted form of A (resp. M) is an A-algebra A’ (resp. an A-module M') such
that there is an étale cover C = {A —— A;} of A such that there are isomorphisms

A®aAi 2 N @4 A;
M ®a A; _vi, M ®@a A;

of Aj-algebras (resp. A;-modules). The set of A-algebra isomorphism classes (resp. A-module
isomorphism classes) of twisted forms of A (resp. M) is denoted by Twa(A) (resp. Twa(M)). To
a twisted form A’ one associates a cocycle on C

-1
ap =6 = ¢ 0P

with values in Aut(A). Moreover, one verifies that two twisted forms are isomorphic as A-algebras
if their cocycles are cohomologous. That is, there are embeddings

Twa(A) — H;t(A,Aut(A))
Twa(M) — H (A, Aut(M))
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In favorable situations one can even show bijectivity. In particular, this is the case if the automor-
phisms group is a smooth affine algebraic group-scheme.

Example 3.6 (Azumaya algebras) Consider A = M, (A), then the automorphism group is PGL,,
and twisted forms of A are classified by elements of the cohomology group

He,(A,PGLy)
These twisted forms are precisely the Azumaya algebras of rank n? with center A. When A is an
affine commutative C-algebra and A is an A-algebra with center A, then A is an Azumaya algebra
of rank n? if and only if
A
—— ~ M, (C
AmA n(©)

for every maximal ideal m of A.

Azumaya algebras arise in representation theory as follows. Let A be this time a noncommutative
affine C-algebra and assume that the following two conditions are satisfied

e A has a simple representation of dimension n,

e rep, A is an irreducible variety.

Then §, A = C[rep, A]“"" is a domain (whence iss, A is irreducible) and we have an onto trace
preserving algebra map corresponding to the simple representation

/ A = M, (Clrep, A)*" —%» M, (C)

Lift the standard basis e;; of M, (C) to elements ai; € [ A and consider the determinant d of the

n? x n? matrix (tr(aijar))ijx with values in ¢ A. Then d # 0 and consider the Zariski open affine
subset of iss, A

X(d) = {/ A2 M, (C) | + semisimple and det(tr(v(ai;)(ar))) # 0}

If ¢ € X(d), then ¢ : [ A —— M,(C) is onto as the 9 (ai;) form a basis of M,(C) whence ¢

determines a simple n-dimensional representation.

Proposition 3.3 With notations as above,

1. The localization of an at the central multiplicative set {1,d,d>,...} is an affine Azumaya
algebra with center C[X(d)] which is the localization of § A at this multiplicative set.
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2. The restriction of the quotient map rep, A — "o iss, A to the open set 7 Y (X(d)) is a
principal PG L, -fibration and determines an element in

H.,(C[X(d)], PGL)
giving the class of the Azumaya algebra.

Proof. (1) : If m = Ker 1 is the maximal ideal of C[X(d)] corresponding to the semisimple
representation v : fn A —— M, (C), then we have seen that the quotient

[, A

T Am A = M(©)

whence [ A®g 4 C[X(d)] is an Azumaya algebra. (2) will follow from the theory of Knop-Luna
slices and will be proved in chapter 5. 0

An Azumaya algebra over a field is a central simple algebra. Under the above conditions we
have that

/A@an C(issy, A)

is a central simple algebra over the functionfield of iss, A and hence determines a class in its
Brauer group, which is an important birational invariant. In the following section we recall the
cohomological description of Brauer groups of fields.

3.2 Central simple algebras
Let K be a field of characteristic zero, choose an algebraic closure K with absolute Galois group
Gk = Gal(K/K).
Lemma 3.2 The following are equivalent
1. K —— A is étale
2. AQk K~K x ... xK
3. A=1]]L: where L;/K is a finite field extension

Proof. Assume (1), then A = K{z1,...,za]/(f1,..., fn) where f; have invertible Jacobian matrix.
Then A ® K is a smooth commutative algebra (hence reduced) of dimension 0 so (2) holds.
Assume (2), then
HomK_alg (A, K) ~ HomK_alg (A R K, K)
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has dimg (A @ K) elements. On the other hand we have by the Chinese remainder theorem that

AfJac A = HLi

with L; a finite field extension of K. However,

dimx(A®@K) = dimi (L) = dimix (A/Jac A) < dim(A)

and as both ends are equal A is reduced and hence A =[], L; whence (3).
Assume (3), then each L; = Klz;]/(f;) with 0f;/0x; invertible in L;. But then A = [[ L; is
étale over K whence (1). O

To every finite étale extension A = [[L; we can associate the finite set rts(A) =
Homg —aig(A,K) on which the Galois group Gk acts via a finite quotient group. If we write
A = K|[t]/(f), then rts(A) is the set of roots in K of the polynomial f with obvious action by Gx.
Galois theory, in the interpretation of Grothendieck, can now be stated as

Proposition 3.4 The functor

t —_
Ket il finite Gk — sets

is an anti-equivalence of categories.

We will now give a similar interpretation of the Abelian sheaves on Ket. Let G be a presheaf on
Ket. Define
Mg = lim G(L)
—_—

where the limit is taken over all subfields L —— K which are finite over K. The Galois group Gk
acts on G(L) on the left through its action on L whenever L/K is Galois. Hence, Gk acts an Mg

and Mg = UME where H runs through the open subgroups (that is, containing a normal subgroup
having a finite quotient) of Gx. That is, Mg is a continuous Gk -module .
Conversely, given a continuous G g-module M we can define a presheaf Gys on Ketr such that

e Gy (L) = M* where H = G = Gal(K/L).
o Gu(ITL:) =I1Gam(Li).
One verifies that G, is a sheaf of Abelian groups on Ket.
Theorem 3.1 There is an equivalence of categories
S(Ket) =— Gk —mod

induced by the correspondences G — Mg and M +— Gpr. Here, Gk — mod is the category of
continuous G -modules.
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Proof. A Gr-morphism M —— M’ induces a morphism of sheaves Gy; — Gj;/. Conversely,
if H is an open subgroup of Gx with L = K, then if G _®. G’ is a sheafmorphism, ¢(L) :
G(L) — G'(L) commutes with the action of Gx by functoriality of ¢. Therefore, lim ¢(L) is
a Gg-morphism Mg — Mg/.

One verifies easily that Homg, (M, M') — Hom(Gar,Gy) is an isomorphism and that the
canonical map G — Gay, is an isomorphism. 0

In particular, we have that G(K) = G(K)“% for every sheaf G of Abelian groups on Ke; and
where G(K) = Mg. Hence, the right derived functors of I" and (—)¢ coincide for Abelian sheaves.
The category Gk —mod of continuous Gx-modules is Abelian having enough injectives. There-
fore, the left exact functor
(=)¢ : Gx —mod — abelian

admits right derived functors. They are called the Galois cohomology groups and denoted
R' M€ = H'(Gk, M)

Therefore, we have.

Proposition 3.5 For any sheaf of Abelian groups G on Key we have a group isomorphism
(K, G) ~ H'(Gk, G(K))

Therefore, étale cohomology is a natural extension of Galois cohomology to arbitrary commu-
tative algebras. The following definition-characterization of central simple algebras is classical, see
for example [66].

Proposition 3.6 Let A be a finite dimensional K -algebra. The following are equivalent :
1. A has no proper twosided ideals and the center of A is K.
2. Ax = A®k K~ M,(K) for some n.
3. A, = A®k L~ M,(L) for some n and some finite Galois extension L/ K.
4. A~ My(D) for some k where D is a division algebra of dimension 1> with center K.

The last part of this result suggests the following definition. Call two central simple algebras A
and A’ equivalent if and only if A ~ My (A) and A" ~ M;(A) with A a division algebra. From the
second characterization it follows that the tensorproduct of two central simple K-algebras is again
central simple. Therefore, we can equip the set of equivalence classes of central simple algebras
with a product induced from the tensorproduct. This product has the class [K] as unit element and
[A]7! = [A°PP], the opposite algebra as A ®x A°PP ~ Endyx(A) = M;2(K). This group is called
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the Brauer group and is denoted Br(K). We will quickly recall its cohomological description, all
of which is classical.

GL, is an affine smooth algebraic group defined over K and is the automorphism group of a
vectorspace of dimension r. It defines a sheaf of groups on Ke: that we will denote by GL,. Using
the fact that the first cohomology classifies twisted forms of vectorspaces of dimension r we have

Lemma 3.3
H(K,GL,) = H' (Gk,GL(K)) =0

In particular, we have ’Hilbert’s theorem 90’
Hey(K,Gm) = H'(Gx, K) =0
Proof. The cohomology group classifies K-module isomorphism classes of twisted forms of -

dimensional vectorspaces over K. There is just one such class. ]

PGL, is an affine smooth algebraic group defined over K and it is the automorphism group of
the K-algebra M, (K). It defines a sheaf of groups on Ke¢ denoted by PGL,. By proposition 3.6 we
know that any central simple K-algebra A of dimension n? is a twisted form of M, (K). Therefore,

Lemma 3.4 The pointed set of K -algebra isomorphism classes of central simple algebras of dimen-
sion n? over K coincides with the cohomology set

H!(K,PGL,) = H' (Gx, PGL,(K))
Theorem 3.2 There is a natural inclusion
H!,(K,PGL,) > HZ,(K,un) = Bra(K)
where Bry(K) is the n-torsion part of the Brauer group of K. Moreover,
Br(K) = H:,(K,Gm)
s a torsion group.

Proof. Consider the exact commutative diagram of sheaves of groups on K of figure 3.2. Taking
cohomology of the second exact sequence we obtain

GL.(K) 2% K* —+ H}\(K,SL,) —» H5(K,GLn)
where the first map is surjective and the last term is zero, whence

Helt(K7 SL”I) =0
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1 1
Y (=)™
1 - tin . Gm > Gm .1
I
Y Y det
1 >~ SL, » GL, < e G -1
Y
PGL, = PGL,
Y
1 1

Figure 3.2: Brauer group diagram.

Taking cohomology of the first vertical exact sequence we get
Helt(K7 SLn) — Helt(K:PGLn) - ezt(KHun)

from which the first claim follows.
As for the second assertion, taking cohomology of the first exact sequence we get

Helt(KaGm) - e2t(KHu7’b) - gt(K’Gm) o Hth(KaGm)
By Hilbert 90, the first term vanishes and hence Hft(K , in) is equal to the n-torsion of the group
H2(K,Gn) = H*(Gx,K") = Br(K)

where the last equality follows from the crossed product result, see for example [66]. O
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—>0—>0—>0— > 00—

——>0—>0—>0—>0— >

¢ —>0—>0—>0—>0—— >

—>0—>0— > 00— >0——— >

Ef’q = *——o —0 — 06— 0 —»
p
Figure 3.3: level 1

So far, the field K was arbitrary. If K is of transcendence degree d, this will put restrictions
on the ’size’ of the Galois group G'k. In particular this will enable us to show in section 3.4 that
H'(Gg,pun) =0 for i > d. But first, we need to recall the definition of spectral sequences.

3.3 Spectral sequences

Let A, B and C be Abelian categories such that .4 and B have enough injectives and consider left
exact functors
A-LeB2c

Let the functors be such that f maps injectives of A to g-acyclic objects in B, that is R* g(f I) =0
for all 4 > 0. Then, there are connections between the objects

RP g(R? f(A)) and R" gf(A)
for all objects A € A. These connections can be summarized by giving a spectral sequence

Theorem 3.3 Let A, B,C be Abelian categories with A,B having enough injectives and left exact
functors

AL _2.¢

such that f takes injectives to g-acyclics.
Then, for any object A € A there is a spectral sequence

E;" = R” g(R f(A)) = R" gf(A)
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Figure 3.4: level 2

In particular, there is an exact sequence
0 —= R' g(f(A)) —= R gf(A) — g(R' f(A)) — R® g(f(A)) —= ...
Moreover, if f is an exact functor, then we have
RP gf(A) =~ RP g(f(A))
A spectral sequence EY? = E" (or EY"" = E") consists of the following data

1. A family of objects EZ'? in an Abelian category for p,q,r € Z such that p,q > 0 and r > 2
(or r > 1).

2. A family of morphisms in the Abelian category
Jrq . gpa Ep+r,qfr+1
satisfying the complex condition
dPTma—rtl o gra —
and where we assume that d2'¢ = 0 if any of the numbers p,q,p+r or ¢g—r+11is < 1. At
level one we have the situation of figure 3.3. At level two we have the situation of figure 3.4

3. The objects E?}% on level r + 1 are derived from those on level r by taking the cohomology
objects of the complexes, that is,

P D,q p—7,q+r—1
EY,, = Ker d?? [ Im d}
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At each place (p,q) this process converges as there is an integer r¢ depending on (p, ¢) such
that for all » > ro we have d2? = 0 = d2~ 97"~ We then define

B0 = ER(= B, = ..)

Observe that there are injective maps E%¢ —» Eg 4,

4. A family of objects E™ for integers n > 0 and for each we have a filtration
OCE,CE, ,C...CElCE}=E"

such that the successive quotients are given by
Ey | By = BT

That is, the terms E%? are the composition terms of the limiting terms EPT9. Pictorially,

NN
NN
ANENENENAN
NN

For small n one can make the relation between E™ and the terms E2'? explicit. First note that

0,0 _ 0,0 _ 10
Ey"=E) =FE
1,0 0,1 ..
Also, E} = EL? = E5" and E'/E! = E%' = Ker dy". This gives an exact sequence
0,1
d2

0— BV —+ E' —» B 2, E2°

Further, E? D E? D E2 where
E3 =EX =E3° ) Im dy'
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and Fi/F3 = EL' = Ker dé’l whence we can extend the above sequence to

0,1 1,1
dy’ ds’

0,1 2 2,0 2 1,1 2 3,0
I 5 T A o S ) L B 5

as E?/E} = E%? —— Eg’2 we have that E? = Ker (E* —— Eg’2). If we specialize to the
spectral sequence E5'? = RP g(R? f(A)) = R" gf(A) we obtain the exact sequence

0 — R' g(f(4)) — R’ gf(A) — g(R' f(4)) — R’ g(f(4)) —

— Ef —= R' g(R' f(A)) — R’ g(f(A))

where Ef = Ker (R? gf(A) — g(R? f(A))).
An important example of a spectral sequence is the Leray spectral sequence . Assume we have

an algebra morphism A L+ A" and a sheaf of groups G on AL,. We define the direct image of G
under f to be the sheaf of groups f. G on Ae: defined by

fu G(B) = G(B®a A')

for all B € Ae, (recall that B ®4 A’ € AL, so the right hand side is well defined).
This gives us a left exact functor

fu i S™(AL) — S"(Ar)

and therefore we have right derived functors of it R' f.. If G is an Abelian sheaf on A.,, then
R" f.G is a sheaf on Ae;. One verifies that its stalk in a prime ideal p is equal to

(R f.G)p, = HL (A @4 A, G)

where the right hand side is the direct limit of cohomology groups taken over all étale neighborhoods
of p. We can relate cohomology of G and f.G by the following

Theorem 3.4 (Leray spectral sequence) If G is a sheaf of Abelian groups on AL, and A Ry
an algebra morphism, then there is a spectral sequence

EP? = H{ (AR f.G) = H(A,G)
In particular, if R? f.G =0 for all j > 0, then for all i > 0 we have isomorphisms

H (A, £.G) = H,(A',G)
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3.4 Tsen and Tate fields

In this section we will use spectral sequences to control the size of the Brauer group of a function
field in terms of its transcendence degree.

Definition 3.4 A field K is said to be a Tsen®-field if every homogeneous form of degree deg with
coefficients in K and n > deg® variables has a non-trivial zero in K.

For example, an algebraically closed field K is a T'sen®-field as any form in n-variables defines a
hypersurface in P%fl‘ In fact, algebraic geometry tells us a stronger story

Lemma 3.5 Let K be algebraically closed. If f1,..., fr are forms in n variables over K andn > r,
then these forms have a common non-trivial zero in K.

Proof. Each f; defines a hypersurface V(f;) —— Pﬂz_l. The intersection of r hypersurfaces has
dimension > n — 1 — r from which the claim follows. O

We want to extend this fact to higher Tsen-fields. The proof of the following result is technical
unenlightening inequality manipulation, see for example [77].

Proposition 3.7 Let K be a Tsen®-field and fi,...,fr forms in n variables of degree deg. If
n > rdeg?, then they have a non-trivial common zero in K.

For our purposes the main interest in Tsen-fields comes from :

Theorem 3.5 Let K be of transcendence degree d over an algebraically closed field C, then K is a
Tsen?-field.

Proof. First we claim that the purely transcendental field C(ty,...,tq) is a Tsen’-field. By
induction we have to show that if L is T'sen”, then L(t) is T'sen**+1.
By homogeneity we may assume that f(z1,...,z,) is a form of degree deg with coefficients in

L[t] and n > deg"*t!. For fixed s we introduce new variables yE? with ¢ < n and 0 < j < s such
that
zi= ) Ayt YD

If r is the maximal degree of the coefficients occurring in f, then we can write

@) = fo)) + L)+ oA faeg.oer(y) )t

where each f; is a form of degree deg in n(s + 1)-variables. By the proposition above, these forms
have a common zero in L provided

n(s+1) > deg”(ds 4+ r +1) <= (n — deg'™")s > deg'(r + 1) = n
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which can be satisfied by taking s large enough. the common non-trivial zero in L of the f;, gives
a non-trivial zero of f in L[t].

By assumption, K is an algebraic extension of C(¢1,...,tq) which by the above argument is
Tsen®. As the coefficients of any form over K lie in a finite extension E of C(t1,...,tq) it suffices
to prove that E is T'sen.

Let f(x1,...,2n) be a form of degree deg in E with n > deg?. Introduce new variables yi; with

T; = Yiie1 + ... Yikek
where e; is a basis of E over C(t1,...,tq). Then,

(i) = filyii)er + ...+ fulyis)ex

where the f; are forms of degree deg in k.n variables over C(t1,...,tq). Because C(t1,...,tq) is
Tsen?, these forms have a common zero as k.n > k.deg?. Finding a non-trivial zero of f in E is
equivalent to finding a common non-trivial zero to the fi,..., fr in C(t1,...,tq), done. O

A direct application of this result is Tsen’s theorem :

Theorem 3.6 Let K be the functionfield of a curve C' defined over an algebraically closed field.
Then, the only central simple K -algebras are My (K). That is, Br(K) = 1.

Proof. Assume there exists a central division algebra A of dimension n? over K. There is a finite
Galois extension L/K such that AQ L = My (L). If z1,..., 2,2 is a K-basis for A, then the reduced
norm of any x € A,

N(z) =det(z®1)

is a form in n? variables of degree n. Moreover, as * ® 1 is invariant under the action of Gal(L/K)
the coefficients of this form actually lie in K.

By the main result, K is a T'sen'-field and N(z) has a non-trivial zero whenever n*> > n. As
the reduced norm is multiplicative, this contradicts N(z)N(z~') = 1. Hence, n = 1 and the only
central division algebra is K itself. O

If K is the functionfield of a surface, we also have an immediate application :

Proposition 3.8 Let K be the functionfield of a surface defined over an algebraically closed field.
If A is a central simple K -algebra of dimension n?, then the reduced norm map

N : A—K

18 surjective.
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Proof. Let ei,...,e,2 be a K-basis of A and k € K, then
N(Z zie;) — ko

is a form of degree n in n? + 1 variables. Since K is a T'sen? field, it has a non-trivial solution (z?),
but then, 6 = (> m?ei)mgzlﬂ has reduced norm equal to k. a

From the cohomological description of the Brauer group it is clear that we need to have some
control on the absolute Galois group Gx = Gal(K/K). We will see that finite transcendence degree
forces some cohomology groups to vanish.

Definition 3.5 The cohomological dimension of a group G, cd(G) < d if and only if H" (G, A) =0
for all r > d and all torsion modules A € G-mod.

Definition 3.6 A field K is said to be a Tate?-field if the absolute Galois group Gx = Gal(K/K)
satisfies cd(G) < d.

First, we will reduce the condition ¢d(G) < d to a more manageable one. To start, one can show
that a profinite group G (that is, a projective limit of finite groups, see [77] for more details) has
cd(G) < d if and only if

H* (G, A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we can decompose the
cohomology in its p-primary parts and relate their vanishing to the cohomological dimension of
the p-Sylow subgroups G, of G. This problem can then be verified by computing cohomology of
finite simple Gp-modules of p-power order, but for a profinite p-group there is just one such module
namely Z/pZ with the trivial action.

Combining these facts we have the following manageable criterium on cohomological dimension.

Proposition 3.9 cd(G) < d if H**(G,Z/pZ) = 0 for the simple G-modules with trivial action
Z/pZ.

We will need the following spectral sequence in Galois cohomology

Proposition 3.10 (Hochschild-Serre spectral sequence) If N is a closed normal subgroup of a profi-
nite group G, then
B} = HP(G/N, H(N, A)) = H™(G, A)

holds for every continuous G-module A.

Now, we are in a position to state and prove Tate’s theorem
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Theorem 3.7 Let K be of transcendence degree d over an algebraically closed field, then K is a
Tate?-field.

Proof. Let C denote the algebraically closed basefield, then K is algebraic over C(t1,...,tqs) and
therefore
Gr — Gep,...ty)

Thus, K is Tate® if C(t1,...,tq) is Tate?. By induction it suffices to prove
If cd(Gr) < k then cd(Grp)) <k+1

Let L be the algebraic closure of L and M the algebraic closure of L(t). As L(t) and L are linearly
disjoint over L we have the following diagram of extensions and Galois groups

G
L < - L(t) — s M
GL{ G, O\’@
L L(t)

where GL(t)/G]L(t) ~ (Gp.
We claim that cd(GL«)) < 1. Consider the exact sequence of G ,(;)-modules

0 M* (_)p M*
— ppy —> - — 0

where (1, is the subgroup (of C*) of p-roots of unity. As G ) acts trivially on p, it is after a choice
of primitive p-th root of one isomorphic to Z/pZ. Taking cohomology with respect to the subgroup
Gr(r) we obtain

0= H"(Gru),M*) — H*(Gr), Z/pZ) — H?(Gr),M*) = Br(L(t))

But the last term vanishes by Tsen’s theorem as L(t) is the functionfield of a curve defined over the
algebraically closed field L. Therefore, H Q(G]L(t), Z/pZ) = 0 for all simple modules Z/pZ, whence
Cd(G]L(t)) S 1.
By the inductive assumption we have cd(Gr) < k and now we are going to use exactness of the
sequence
0— G — Grwpy — Gy — 0

to prove that cd(Gr@)) < k+ 1. For, let A be a torsion G',(;)-module and consider the Hochschild-
Serre spectral sequence

B = H?(Gr, H(GL), A) = H" (G, A)
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By the restrictions on the cohomological dimensions of G, and G the level two term has following
shape

, 4
s .
2@ °
s °
EDT = . . . . Vp
k k+1 k42

where the only non-zero groups are lying in the lower rectangular region. Therefore, all E£? = 0
for p+q > k+ 1. Now, all the composition factors of Hk+2(GL(t), A) are lying on the indicated

diagonal line and hence are zero. Thus, HIH'Q(GL(t), A) = 0 for all torsion G p(;-modules A and
hence cd(Grw)) <k +1. O

Theorem 3.8 If A is a constant sheaf of an Abelian torsion group A on Ket, then
Hét (Ka A) =0

whenever i > trdege(K).

3.5 Coniveau spectral sequence

In this section we will describe a particularly useful spectral sequence. Consider the setting

k «<—— A~ » K where A is a discrete valuation ring in K with residue field A/m = k. As
always, we will assume that A is a C-algebra. By now we have a grip on the Galois cohomology
groups _ _

e (K, ') and Hy(k, pir)')

and we will use this information to compute the étale cohomology groups
i 1
et(Aau?; )

Here, uf?l = ln ® ... R p, where the tensorproduct is as sheafs of invertible Z, = Z/nZ-modules.
—_———

1
We will consider the Leray spectral sequence for ¢ and hence have to compute the derived sheaves

of the direct image
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HO(k, =Y | H (ko p 1) | H? (ko pi ™)

HY(A,p") | HY(Apg) | H?(A, 3"

Figure 3.5: Second term of Leray sequence

Lemma 3.6 1. R® i,p® ~ u® on Aes.
2. R i.pu2' ~ u®' =1 concentrated in m.
3. R 4. u® ~ 0 whenever j > 2.
Proof. The strict Henselizations of A at the two primes {0, m} are resp.
A ~ K and ASY ~ k{t}
where K (resp. k) is the algebraic closure of K (resp. k). Therefore,
(R i-pi)o = HL(K, ")

which is zero for i > 1 and p%' for j = 0. Further, AS" ®4 K is the field of fractions of k{t} and
hence is of transcendence degree one over the algebraically closed field k, whence

(R b )m = HL (L, ")

which is zero for j > 2 because L is Tate'.
For the field-tower K C L C K we have that G, = Z = lﬂ m because the only Galois

extensions of L are the Kummer extensions obtained by adjoining %/t. But then,
He(L, ') = H' (Z, 13 (K)) = Hom(Z, i7" (K)) = py' ™

from which the claims follow. O
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Theorem 3.9 We have a long exact sequence
0 — H'(A,pg") — H' (K, p3') —> H(k, ' ™") —

H2(A7M;8;l) - HQ(K7N‘§Z) - Hl(kvlj‘%lil) ..

Proof. By the foregoing lemma, the second term of the Leray spectral sequence for 4, u®! is depicted

in figure 3.5 with connecting morphisms
a;

Hey Mk ™) = HoM (A )

The spectral sequences converges to its limiting term which looks like

Ker aq Ker as Ker as

HO(A, u®) | HY(A, u®") | Coker ay

and the Leray sequence gives the short exact sequences
0 — He(A,pug') —> HLY(K, py') — Ker an — 0
0 — Coker ay — Hft(K,,u;?l) — Kerag — 0

0 — Coker aj—1 — Hét(K,u;?l) — Ker a; — 0

and gluing these sequences gives us the required result.

d

In particular, if A is a discrete valuation ring of K with residue field k£ we have for each i a

connecting morphism
i iy %4 i -1
et(KaM%)) - Het (k,,u% )

Like any other topology, the étale topology can be defined locally on any scheme X. That is,

we call a morphism of schemes
y Lo x
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an étale extension (resp. cover) if locally f has the form
f4\ Uit Ay =T(Ui, Ox) — By =T(f'(U:), Oy)

with A; —— B; an étale extension (resp. cover) of algebras.

Again, we can construct the étale site of X locally and denote it with X.;. Presheaves and
sheaves of groups on X.: are defined similarly and the right derived functors of the left exact global
sections functor

T: Sab(Xet) — abelian

will be called the cohomology functors and we denote
R'T'(G) = H,,(X,G)

From now on we restrict to the case when X is a smooth, irreducible projective variety of
dimension d over C. In this case, we can initiate the computation of the cohomology groups

ot (X, ug?l) via Galois cohomology of functionfields of subvarieties using the coniveau spectral
sequence

Theorem 3.10 Let X be a smooth irreducible variety over C. Let X denote the set of irreducible
subvarieties © of X of codimension p with functionfield C(z), then there exists a coniveau spectral
sequence
BV = @@ HLP(Clx),ps' ") = HE(X, py)')
zeX(P)

In contrast to the spectral sequences used before, the existence of the coniveau spectral sequence
by no means follows from general principles. In it, a lot of heavy machinery on étale cohomology
of schemes is encoded. In particular,

e cohomology groups with support of a closed subscheme, see for example [64, p. 91-94], and
e cohomological purity and duality, see [64, p. 241-252]
a detailed exposition of which would take us too far afield. For more details we refer the reader to
18].
| ]Using the results on cohomological dimension and vanishing of Galois cohomology of u%k when
the index is larger than the transcendence degree, we see that the coniveau spectral sequence has

shape as in figure 3.6 where the only non-zero terms are in the indicated region.
Let us understand the connecting morphisms at the first level, a typical instance of which is

D H(C@)pu™") — D H(CH "

zeXx(P) yex (p+1)



3.6. The Artin-Mumford exact sequence 137

1 4
>0 >0 - 0— ro— »
de—>o—»eo - 0—»0 .
o— ro— »0 S 0— ro—»
Y o - 0— r0—»
EPT = o >0— >0 - 0— rO—»

p
Figure 3.6: Coniveau spectral sequence

and consider one of the closed irreducible subvarieties x of X of codimension p and one of those y
of codimension p + 1. Then, either y is not contained in x in which case the component map

HY(C(a), ') —> ' (Cly), )

is the zero map. Or, y is contained in x and hence defines a codimension one subvariety of . That
is, y defines a discrete valuation on C(x) with residue field C(y). In this case, the above component
map is the connecting morphism defined above.
In particular, let K be the functionfield of X. Then we can define the unramified cohomology
groups
. . @ai i _
FYYK/C) = Ker H (K, u2") =% @ H' ™ (ka, p2'")
where the sum is taken over all discrete valuation rings A of K (or equivalently, the irreducible
codimension one subvarieties of X) with residue field k4. By definition, this is a (stable) birational
invariant of X. In particular, if X is (stably) rational over C, then

FYY(K/C) =0 for all 4,1 >0

3.6 The Artin-Mumford exact sequence

The coniveau spectral sequence allows us to control the Brauer group of function fields of surfaces.
This result, due to Michael Artin and David Mumford, was used by them to construct unirational
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0 0 0 0
H2(C(S), un) | ®cH(C(S),Zn) op npt 0
HY(C(S), un) Dc In 0 0

Hn 0 0 0

Figure 3.7: First term of coniveau spectral sequence for S

non-rational varieties. Our main application of the description is to classify in chapter 5 the
Brauer classes which do admit a Cayley-smooth noncommutative model. It will turn out that
even in the case of surfaces, not every central simple algebra over the function field allows such a
noncommutative model. Let S be a smooth irreducible projective surface.

Definition 3.7 S is called simply connected if every étale cover Y — S is trivial, that is, Y
is isomorphic to a finite disjoint union of copies of S.

The first term of the coniveau spectral sequence of S has the shape of figure 3.7 where C' runs
over all irreducible curves on S and P over all points of S.

Lemma 3.7 For any smooth S we have H(C(S), un) — @c Zn. If S is simply connected,
Helt(sv /“L”) = 0
Proof. Using the Kummer sequence 1 —— pu, — G, =, Gy, — 1 and Hilbert 90 we
obtain that .

Hey (C(S), n) = C(S)"/C(S)™

The first claim follows from the exact diagram describing divisors of rational functions given in
figure 3.8 By the coniveau spectral sequence we have that H2,(S, i) is equal to the kernel of the
morphism

H:(C(S), pin) —> @ Zn
and in particular, H'(S, i) — H'(C(S), fin)-
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Hn = Hn 0
4 Y .
0 - C* - C(S)" —2s @z - 0
)" n
v Y i \
0 -~ C* - C(9)" > @cZ — 0
Y Y Y
0 @CZTL >~ @C'Zn

Figure 3.8: Divisors of rational functions on S.

n

As for the second claim, an element in H'(S, u,) determines a cyclic extension L = C(S) ¥/f
with f € C(S)*/C(S)*™ such that in each fieldcomponent L; of L there is an étale cover T; — S
with C(T;) = L;. By assumption no non-trivial étale covers exist whence f =1 € C(S)*/C(S)*".

a

If we invoke another major tool in étale cohomology of schemes, Poincaré duality , see for
example [64, VI,§11], we obtain the following information on the cohomology groups for S.

Proposition 3.11 (Poincaré duality for S) If S is simply connected, then

1. Hgt(S, Pn) = fn
2. HY(S, pun) =0

3. Hft(S, fn) =

4o HE(S pn) = pg !

Proof. The third claim follows from the second as both groups are dual to each other. The last
claim follows from the fact that for any smooth irreducible projective variety X of dimension d one
has that

HEH(X, ) ~ it
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We are now in a position to state and prove the important

Theorem 3.11 (Artin-Mumford exact sequence) If S is a simply connected smooth projective sur-
face, then the sequence
0 — Br,(S) — Br,(C(S)) — ®c C(C)*/C(C)"" —

1

— @P#f"#g —0

is exact.
Proof. The top complex in the first term of the coniveau spectral sequence for S was
H*(C(S), pa) =" @c H'(C(C), Zs) > @p pa

The second term of the spectral sequence (which is also the limiting term) has the following form

0 9 0 0
Ker o Ker B/Im Coker 0
Ker ~ Coker v 0 0

Hn 0 0 0

By the foregoing lemma we know that C'oker v = 0. By Poincare duality we know that Ker 8 =
Im o and Coker § = p,'. Hence, the top complex was exact in its middle term and can be
extended to an exact sequence

0 — H*(S,1n) —> H*(C(S), ) —> @c H'(C(C),Z,) —>

1

@Pﬂ;l — pp, —0

As Zpn ~ pn the third term is equal to §cC(C)*/C(C)*™ by the argument given before and the
second term we remember to be Br,(C(S). The identification of Br,(S) with H?(S, ut,) will be
explained below. O
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Some immediate consequences can be drawn from this : For a smooth simply connected surface
S, Br,(S) is a birational invariant (it is the birational invariant F2'(C(S)/C) of the foregoing
section. In particular, if S = P? we have that Brn(]lﬂ) =0 and as
0 —» Bra Cla,y) — ®c C(C)/CC)™ — @ppn' —> pin — 0
we obtain a description of Br, C(z,y) by a certain geo-combinatorial package which we call a
T -wrinkle over P2. A Z,-wrinkle is determined by

e A finite collection C = {Ch4,...,Cx} of irreducible curves in P2, that is, C; = V(F;) for an
irreducible form in C[X,Y, Z] of degree d;.

e A finite collection P = {Py,..., P} of points of P* where each P; is either an intersection
point of two or more C; or a singular point of some C;.

e For each P € P the branch-data bp = (b1,...,b;,) with b; € Z,, = Z/nZ and {1,...,ip} the
different branches of C in P. These numbers must satisfy the admissibility condition

> bi=0€Zn

i
for every P € P
e for each C € C we fix a cyclic Z,-cover of smooth curves
D—C

of the desingularization C of C which is compatible with the branch-data. That is, if Q € c
corresponds to a C-branch b; in P, then D is ramified in @ with stabilizer subgroup

Stabg = (bi) C Zn

For example, a portion of a Zjs-wrinkle can have the following picture
0
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It is clear that the cover-data is the most intractable part of a Z,-wrinkle, so we want to have
some control on the covers D — C. Let {Q1,...,Q:} be the points of C' where the cover ramifies
with branch numbers {b1,...,b.}, then D is determined by a continuous module structure (that
is, a cofinite subgroup acts trivially) of

m(é— {Q1,...,Q:}) on Zn

where the fundamental group of the Riemann surface C' with z punctures is known (topologically)
to be equal to the group

(U1, 01y ..y Ug, Vg, @1, - o, X2) [ ([ur,v1] - . [ug, vg]T1 ... T2)

where ¢ is the genus of C. The action of x; on Zy is determined by multiplication with b;. In fact,
we need to use the étale fundamental group, see [64], but this group has the same finite continuous
modules as the topological fundamental group.

Example 3.7 (Covers of P! and elliptic curves) 1.If ¢ = P then ¢ = 0 and hence
m (P — {Q1,...,Q.} is zero if z < 1 (whence no covers exist) and is Z if z = 2. Hence,
there exists a unique cover D —» P! with branch-data (1, —1) in say (0, c0) namely with D
the normalization of P! in C({/x).

2. If C = E an elliptic curve, then g = 1. Hence, m (C) = Z ® Z and there exist unramified
Zn-covers. They are given by the isogenies

E — E
where E’ is another elliptic curve and E = E’/{(7) where 7 is an n-torsion point on E’.

Any n-fold cover D —»» C'is determined by a function f € C(C)*/C(C)*". This allows us to
put a group-structure on the equivalence classes of Z,-wrinkles. In particular, we call a wrinkle
trivial provided all coverings D; —» C~’Z are trivial (that is, D; is the disjoint union of n copies of
C‘Z) The Artin-Mumford theorem for P? can now be stated as
Theorem 3.12 If A is a central simple C(x,vy)-algebra of dimension n?, then A determines
uniquely a Zn-wrinkle on P?.  Conversely, any Z,-wrinkle on P? determines a unique division
C(z,y)- algebra whose class in the Brauer group has order n.

Example 3.8 If S is not necessarily simply connected, any class in Br(C(S)),, still determines a
Zn-wrinkle.

Example 3.9 If X is a smooth irreducible rational projective variety of dimension d, the obstruc-
tion to classifying Br(C(X)), by Z,-wrinkles is given by H2, (X, fin).
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We will give a ringtheoretical interpretation of the maps in the Artin-Mumford sequence. Ob-
serve that nearly all maps are those of the top complex of the first term in the coniveau spectral
sequence for S. We gave an explicit description of them using discrete valuation rings. The state-
ments below follow from this description.

Let us consider a discrete valuation ring A with field of fractions K and residue field k. Let A
be a central simple K-algebra of dimension n?.

Definition 3.8 An A-subalgebra A of A will be called an A-order if it is a free A-module of rank
n? with A.K = A. An A-order is said to be maximal if it is not properly contained in any other
order.

In order to study maximal orders in A (they will turn out to be all conjugated), we consider the
completion A with respect to the m-adic filtration where m = At with ¢ a uniformizing parameter

of A. K will denote the field of fractions of Aand A=A ® x K.
Because A is a central simple K- algebra of dimension n? it is of the form

A = M, (D)

where D is a division algebra with center K of dimension s? and hence n = s.t. We call ¢ the
capacity of A at A.

In D we can construct a unique maximal A-order T, namely the integral closure of Ain D.
We can view I' as a discrete valuation ring extending the valuation v defined by A on K. If
vi K —» Z, then this extended valuation

w:D — n %Z is defined as w(a) = (K (a) : k)_lv(NR<a)/K(a))

for every a € D where K (a) is the subfield generated by a and N is the norm map of fields.
The image of w is a subgroup of the form e 'Z —— n~2.Z. The number ¢ = ¢(D/K) is called
the ramification index of D over K. We can use it to normalize the valuation w to

vp : D —— Z defined by vp(a) = %’U(ND/R—(G,))

With these conventions we have that vp(t) = e.
The maximal order I' is then the subalgebra of all elements a € D with vp(a) > 0. It has a
unique maximal ideal generated by a prime element 7" and we have that ' = Lr is a division
algebra finite dimensional over A / tA = k (but not necessarily having k as its center).
T:

The inertial degree of D over K is defined to be the number f = f(D/K) = (
shows that

k) and one

s’ =e.fand e|s whence s | f

After this detour, we can now take A = M,(I") as a maximal A-order in A. One shows that all
other maximal A-orders are conjugated to A. A has a unique maximal ideal M with A = M; (T).
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Definition 3.9 With notations as above, we call the numbers e = e(D/K), f = f(D/K) and t

resp. the ramification, inertia and capacity of the central simple algebra A at A. If e =1 we call

A an Azumaya algebra over A, or equivalently, if AJtA is a central simple k-algebra of dimension
2

n-.

Now let us consider the case of a discrete valuation ring A in K such that the residue field  is
Tsen'. The center of the division algebra T is a finite dimensional field extension of k and hence
is also T'sen' whence has trivial Brauer group and therefore must coincide with I'. Hence,

T = k(a)

a commutative field, for some a € I'. But then, f < s and we have e = f = s and k(@) is a cyclic
degree s field extension of k.
Because s | n, the cyclic extension k(@) determines an element of HE, (k,Zy).

Definition 3.10 Let Z be a normal domain with field of fractions K and let A be a central simple
K -algebra of dimension n?. A Z-order B is a subalgebra which is a finitely generated Z-module.
It is called mazimal if it is not properly contained in any other order. One can show that B is a
mazimal Z-order if and only if A = By, is a mazimal order over the discrete valuation ring A = Z,
for every height one prime ideal p of Z.

Return to the situation of an irreducible smooth projective surface S. If A is a central simple
C(S)-algebra of dimension n?, we define a maximal order as a sheaf A of Og-orders in A which for
an open affine cover U; —— S is such that

A; =T'(U;, A) is a maximal Z; = I'(U;, Og) order in A

Any irreducible curve C' on S defines a discrete valuation ring on C(S) with residue field C(C)
which is T'sen'. Hence, the above argument can be applied to obtain from A a cyclic extension of
C(C), that is, an element of C(C)*/C(C)*".

Definition 3.11 We call the union of the curves C such that A determines a non-trivial cyclic
extension of C(C) the ramification divisor of A (or of A).

The map in the Artin-Mumford exact sequence

Bra(C(S)) —» EPH:H(T(C), 1)
C

assigns to the class of A the cyclic extensions introduced above.

Definition 3.12 An S-Azumaya algebra (of index n) is a sheaf of maximal orders in a central
simple C(S)-algebra A of dimension n® such that it is Azumaya at each curve C, that is, such that
[A] lies in the kernel of the above map.
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Observe that this definition of Azumaya algebra coincides with the one given in the discussion
of twisted forms of matrices. One can show that if A and A" are S-Azumaya algebras of index n
resp. n’, then A®o4 A’ is an Azumaya algebra of index n.n’. We call an Azumaya algebra trivial if
it is of the form End(P) where P is a vectorbundle over S. The equivalence classes of S-Azumaya
algebras can be given a group-structure called the Brauer-group Br(S) of the surface S.

Let us briefly sketch how Michael Artin and David Mumford used their sequence to construct
unirational non-rational threefolds via Brauer-Severi varieties. Let K be a field and A = (a,b)x
the quaternion algebra determined by a,b € K*. That is,

A=Kl1aKi®Kj®Kij with i=a j°=0b and ji=—ij
The norm map on A defines a conic in P% called the Brauer-Severi variety of A
BS(A) = V(2 — ay® — bz®) —» Pk = proj K|z, y, z].

Its characteristic property is that a fieldextension L of K admits an L-rational point on BS(A) if
and only if A ® x L admits zero-divisors and hence is isomorphic to Ma(L).
In general, let K be the algebraic closure of K, then we have seen that the Galois cohomology
pointed set
H'(Gal(K/K), PGL,(K))

classifies at the same time the isomorphism classes of the following geometric and algebraic objects

e Brauer-Severi K-varieties BS, which are smooth projective K-varieties such that BSkx ~
PRt

1R

e Central simple K-algebras A, which are K-algebras of dimension n? such that A @ x K

The one-to-one correspondence between these two sets is given by associating to a central simple
K-algebra A its Brauer-Severi variety B.S(A) which represents the functor associating to a fieldex-
tension L of K the set of left ideals of A ® x L which have L-dimension equal to n. In particular,
BS(A) has an L-rational point if and only if A ® x L ~ M, (L) and hence the geometric object
BS(A) encodes the algebraic splitting behavior of A.

Now restrict to the case when K is the functionfield C(X) of a projective variety X and let A
be a central simple C(X)-algebra of dimension n?. Let A be a sheaf of Ox-orders in A then we
one can show that there is a Brauer-Severi scheme BS(A) which is a projective space bundle over

X with general fiber isomorphic to P"~*(C) embedded in P¥(C) where N = ("+,’§ - 1) — 1. Over

an arbitrary point of x the fiber may degenerate.

For example if n = 2 the P'(C) embedded as a conic in P?(C) can degenerate into a pair of
P!(C)’s. Now, let us specialize further and consider the case when X = P?. Consider E; and E»
two elliptic curves in P? and take C = {E1, F2} and P = {Py,... Py} the intersection points and all
the branch data zero. Let E; be a twofold unramified cover of E; , by the Artin-Mumford result
there is a quaternion algebra A corresponding to this Zz-wrinkle.
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Next, blow up the intersection points to get a surface S with disjoint elliptic curves C; and Cs.
Now take a maximal Og order in A then the relevance of the curves C; is that they are the locus
of the points s € S where As % M>(C), the so called ramification locus of the order A. The local
structure of A in a point s € S is

e when s ¢ C1 UCy, then A is an Azumaya Og s-algebra in A,
e when s € C;, then A; = Og,5.1 ® Os5,5.i ® Os,5.5 ® Os,s.ij with

-2

7 =a
j2 =bt
Ji = -—ij

where t = 0 is a local equation for C; and a and b are units in Og ;.

In chapter 5 we will see that this is the local description of a Cayley-smooth order over a smooth
surface in a quaternion algebra. Artin and Mumford then define the Brauer-Severi scheme of A as
representing the functor which assigns to an S-scheme S’ the set of left ideals of A ®oy Os: which
are locally free of rank 2. Using the local description of A they show that BS(A) is a projective
space bundle over S as in figure 3.9 with the properties that BS(A) is a smooth variety and the

projection morphism BS(A) —5+ S is flat, all of the geometric fibers being isomorphic to P* (resp.
to P! v P') whenever s ¢ C1 U Cy (resp. s € C1 UC?).

Finally, for specific starting configurations F1 and E3, they prove that the obtained Brauer-Severi
variety BS(A) cannot be rational because there is torsion in H*(BS(A), Z2), whereas BS(A) can
be shown to be unirational.

3.7 Normal spaces

In the next section we will see that in the étale topology we can describe the local structure of
representation varieties in the neighborhood of a closed orbit in terms of the normal space to this
orbit. In this section we will give a representation theoretic description of this normal space.

We recall some standard facts about tangent spaces first. Let X be a not necessarily reduced
affine variety with coordinate ring C[X] = C[z1,...,z,]/I. If the origin o = (0,...,0) € V(I),
elements of I have no constant terms and we can write any p € I as

p= me with p(i> homogeneous of degree 1.

The order ord(p) is the least integer 7 > 1 such that p(™ # 0. Define the following two ideals in
Clz1,...,zn]
L={p" |pel} andI,={p" |pel andord(p)=r}.
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Figure 3.9: The Artin-Mumford bundle

The subscripts [ (respectively m) stand for linear terms (respectively, terms of minimal degree).

The tangent space to X in o , To(X) is by definition the subscheme of C" determined by I;.
Observe that

[l = (allazl —|— e —|— A1nTny ..., A11T1 —|— e + alnxn)
for some ! x n matrix A = (ai;)i,; of rank I. That is, we can express all zj as linear combinations
of some {z;,,...,xs, ,}, but then clearly

ClTo(X)] = Clzi, ..., zn)/L = Claiy, - - -y @i, )

In particular, T,(X) is reduced and is a linear subspace of dimension n — [ in C™ through the point
0.

Next, consider an arbitrary geometric point  of X with coordinates (a1,...,a,). We can trans-
late x to the origin o and the translate of X is then the scheme defined by the ideal

(filzr +a1,...,zn+an),..., fu(z1+a1,...,2n + an))
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Now, the linear term of the translated polynomial f;(z1 + a1,...,zn + ay) is equal to

(93:1 axn

(a1, an)z1 4+ ... + (a1y...,an)Tn

and hence the tangent space to X in z , T(X) is the linear subspace of C" defined by the set of
zeroes of the linear terms

"~ of

j=1 Oz;

T (X) = V(
= 8333'

({E)ij, .

(z)z;) — C".

In particular, the dimension of this linear subspace can be computed from the Jacobian matriz in
z associated with the polynomials (f1,..., fx)

oo (2) ors (@)
dim T,(X) =n —rk
@ o gk@

Let C[e] be the algebra of dual numbers , that is, Cle] ~ C[y]/(y*). Consider a C-algebra morphism

Clz1, .-+, xn] ¢, Cle] defined by x; — a; + c;e.

Because €% = 0 it is easy to verify that the image of a polynomial f(x1,...,,) under ¢ is of the
form

O (1, ) = flar, o) + D0 (e, an)ese
j=1 7

Therefore, ¢ factors through I, that is ¢(f;) = 0 for all 1 <3 < k, if and only if (c1,...,cn) € Tx(X).

Hence, we can also identify the tangent space to X in z with the algebra morphisms C[X] 2. Cle]
whose composition with the projection 7 : Cle] — C (sending € to zero) is the evaluation in
z = (a1,...,an). That is, let ev, € X(C) be the point corresponding to evaluation in z, then

T (X) = {¢ € X(Cle]) | X(7)(¢) = evz}.
The following two examples compute the tangent spaces to the (trace preserving) representation

varieties.

Example 3.10 (Tangent space to rep,) Let A be an affine C-algebra generated by {a1,...am}
and p : A —— M,(C) an algebra morphism, that is, p € rep, A. We call a linear map

AL, M, (C) a p-derivation if and only if for all a,a’ € A we have that
D(aa’) = D(a).p(a’) + p(a).D(a’).
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We denote the vectorspace of all p-derivations of A by Der,(A). Observe that any p-derivation is
determined by its image on the generators a;, hence Der,(A) C M;". We claim that

T,(rep,, A) = Der,(A).
Indeed, we know that rep,, A(Cle]) is the set of algebra morphisms
A —2+ M, (C[e])
By the functorial characterization of tangentspaces we have that T, (rep, A) is equal to
{D: A —— M,(C) linear | p+ De: A — M, (C]e]) is an algebra map}.
Because p is an algebra morphism, the algebra map condition
plaa’) + D(ad’)e = (p(a) + D(a)e).(p(a') + D(a')e)

is equivalent to D being a p-derivation.

Example 3.11 (Tangent space to trep,) Let A be a Cayley-Hamilton algebra of degree n with
trace map tra and trace generated by {a1,...,am}. Let p € trep, A, thatis, p: A — M,(C)
is a trace preserving algebra morphism. Because trep, A(Cle]) is the set of all trace preserving
algebra morphisms A — M, (Cle]) (with the usual trace map tr on M, (C[e])) and the previous

example one verifies that
T,(trep, A) = Der, (A) C Der,(A)

the subset of trace preserving p-derivations D, that is, those satisfying

D

A M, (C)
Dotra=troD tra tr
A— "4 M (0)
Again, using this property and the fact that A is trace generated by {a1,...,am} a trace preserving

p-derivation is determined by its image on the a; so is a subspace of M,".

The tangent cone to X in o , TC,(X), is by definition the subscheme of C™ determined by I,
that is,
C[TCo(X)] = Clz1, ..., zn]/Im.

It is called a cone because if ¢ is a point of the underlying variety of TC,(X), then the line I = o¢ is
contained in this variety because I, is a graded ideal. Further, observe that as I; C I, the tangent
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cone is a closed subscheme of the tangent space at X in o. Again, if x is an arbitrary geometric
point of X we define the tangent cone to X in x , TC,(X) as the tangent cone T'C,(X') where X' is
the translated scheme of X under the translation taking = to o. Both the tangent space and tangent
cone contain local information of the scheme X in a neighborhood of x.

Let m, be the maximal ideal of C[X] corresponding to z (that is, the ideal of polynomial functions
vanishing in z). Then, its complement S, = C[X] — m, is a multiplicatively closed subset and the
local algebra Oy (X) is the corresponding localization C[X]s,. It has a unique maximal ideal m, with
residue field O, (X)/m; = C. We equip the local algebra O, = O(X) with the m-adic filtration
that is the increasing Z-filtration

1

Fu: wCcmcm ™ Cc...CcmCO0, =0, =...=0, = ...
with associated graded algebra
i i—1
my m;, My
gr(0.) = ”'@m;“@ p_ @.,,®m—%@6@0@...®0@...

Proposition 3.12 If x is a geometric point of the affine scheme X, then

m,_v}
— |-
m(l‘/

1. C[T:(X)] 4s isomorphic to the polynomial algebra C|

2. C[T'Cx(X)] is isomorphic to the associated graded algebra gr(O4(X)).
Proof. After translating we may assume that x = o lies in V(I) —— C". That is,
CX] =Clz1,...,za]/I and my = (z1,...,20)/1.

(1) : Under these identifications we have

my 2

w2 ~ mg/m;
~ (21, x0)/ (@1, ... z0)? + 1)
~ (21, xn)/ (1, zn)? + 1)

my
m2
to the quotient algebra C[z1,...,x,]/I; which is by definition the coordinate ring of the tangent
space.

(2) : Again using the above identifications we have

and as I; is generated by linear terms it follows that the polynomial algebra on is isomorphic

g7(0s) =~ @2 gml, /mit!
~ &2 omy /mytt
~ @0 (1, ) (@1, xn) T (TN (21, 20)Y))

~ dR0(x1, .. xn) (21, zn) T 4 L (0)
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where I,,(¢) is the homogeneous part of I, of degree i. On the other hand, the i-th homogeneous
part of Clx1,...,xn]/Im is equal to

(z1,...,20)"
(1, yxn) T + I (4)

we obtain the required isomorphism. a

This gives a third interpretation of the tangent space as

To(X) = Homc(%,()) = Homc(%,(C).

x x

Hence, we can also view the tangent space T,(X) as the space of point derivations Der;(O5) on
O (X) (or of the point derivations Der,(C[X]) on C[X]). That is, C-linear maps D : O, — C (or
D : C[X] — C) such that for all functions f, g we have

D(fg) = D(f)g(x) + f(z)D(g)-

If we define the local dimension of an affine scheme X in a geometric point x dim, X to be the
maximal dimension of irreducible components of the reduced variety X passing through z, then

dimg X = dimo TCy(X).

We say that X is nonsingular at x (or equivalently, that x is a nonsingular point of X) if the
tangent cone to X in x coincides with the tangent space to X in z. An immediate consequence is

Proposition 3.13 If X is nonsingular at =, then Ox(X) is a domain. That is, in a Zariski neigh-
borhood of x , X is an irreducible variety.

Proof. If X is nonsingular at x, then
gr(0z) ~ C[T'C,(X)] = C[T%(X)]

the latter one being a polynomial algebra whence a domain. Now, let 0 # a,b € O, then there
exist k, ! such that a € m* — m**! and b € m' — m!*!, that is @ is a nonzero homogeneous element
of gr(0,) of degree —k and b one of degree —I. But then, @.b € m*™ — m**'=! hence certainly
a.b#0in O,.

Now, consider the natural map ¢ : C[X] — O,. Let {P1,..., P} be the minimal prime ideals
of C[X]. All but one of them, say P, = ¢ '(0), extend to the whole ring O,. Taking the product
of f functions f; € P; nonvanishing in x for 2 <4 <[ gives the Zariski open set X(f) containing =
and whose coordinate ring is a domain, whence X(f) is an affine irreducible variety.
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When restricting to nonsingular points we reduce to irreducible affine varieties. From the Jaco-
bian condition it follows that nonsingularity is a Zariski open condition on X and by the implicit
function theorem, X is a complex manifold in a neighborhood of a nonsingular point.

Let X —2» Y be a morphism of affine varieties corresponding to the algebra morphism

C[yY] o, C[X]. Let = be a geometric point of X and y = ¢(x). As ¢"(my) C mg, ¢ induces

a linear map % — 7% and taking the dual map gives the differential of ¢ in x which is a linear
Yy x

map

d(f)x : Tx(X) — T¢(z) (Y)

Assume X a closed subscheme of C" and Y a closed subscheme of C™ and let ¢ be determined by

the m polynomials {f1,..., fm} in C[x1,...,2n]. Then, the Jacobian matrix in x
S . Y@
@)= ;
@) ... S

defines a linear map from C" to C™ and the differential d¢, is the induced linear map from
T, (X) C C" to Ty(q)(Y) C C™. Let D € T(X) = Der,(C[X]) and zp the corresponding element of
X(C[e]) defined by zp(f) = f(x) + D(f)e, then zp o ¢* € Y(C[e]) is defined by
zp o ¢"(g) = g(¢(x)) + (Do ¢")e = g(¢(x)) + dd(D)e
giving us the e-interpretation of the differential
Pz + ve) = ¢(x) + dos(v)e
for all v € Ty (X).

Proposition 3.14 Let X — %+ Y be a dominant morphism between irreducible affine varieties.
There is a Zariski open dense subset U —— X such that do, is surjective for all x € U.

Proof. We may assume that ¢ factorizes into

X e Y x C¢

with ¢ a finite and surjective morphism. Because the tangent space of a product is the sum of the
tangent spaces of the components we have that d(prw). is surjective for all z € Y x C?, hence it
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suffices to verify the claim for a finite morphism ¢. That is, we may assume that S = C[Y] is a
finite module over R = C[X] and let L/K be the corresponding extension of the function fields. By
the principal element theorem we know that L = K[s] for an element s € L which is integral over
R with minimal polynomial

F=t"+4g, 1t" ' +...+qt+g0 withg;eR

Consider the ring S’ = RJ[t]/(F) then there is an element r € R such that the localizations S, and
S, are isomorphic. By restricting we may assume that X = V(F') —— Y x C and that

X=V(F) > Y xC
pTyYy

Y

Let z = (y,c¢) € X then we have (again using the identification of the tangent space of a product
with the sum of the tangent spaces of the components) that

oF e
T.(X)={(v,a) e T,(Y)® C| ca(x) +vgn1c¢" "+ .. Fougic+vgo = 0}.

But then, d¢, i surjective whenever %—Iz(:ﬂ) # 0. This condition determines a non-empty open subset

of X as otherwise ZE would belong to the defining ideal of X in C[Y" x C] (which is the principal
ideal generated by F') which is impossible by a degree argument O

Example 3.12 (Differential of orbit map) Let X be a closed G'L,-stable subscheme of a GL-

representation V and z a geometric point of X. Consider the orbitclosure O(z) of z in V. Because
the orbit map

w: GL, — GLp.x — O(x)

is dominant we have that C[O(z)] —— C[GLy] and therefore a domain, so O(z) is an irreducible
affine variety. We define the stabilizer subgroup Stab(x) to be the fiber u~'(z), then Stab(z) is a
closed subgroup of GL,. We claim that the differential of the orbit map in the identity matrix
e="T.

dpie : gl,, — Tu(X)

satisfies the following properties

Ker dpe = stab(z) and  Im dpe = T (0(z)).

By the proposition we know that there is a dense open subset U of GL,, such that dug is surjective
for all ¢ € U. By GLy-equivariance of y it follows that dug is surjective for all ¢ € GL,, in
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particular due : gl,, — T»(O(x)) is surjective. Further, all fibers of p over O(z) have the same
dimension. But then it follows from the dimension formula of proposition that

dim GLy = dim Stab(x) 4+ dim O(x)

(which, incidentally gives us an algorithm to compute the dimensions of orbitclosures). Combining
this with the above surjectivity, a dimension count proves that Ker du. = stab(x), the Lie algebra
of Stab(x).

Let A be a C-algebra and let M and N be two A-representations of dimensions say m and n.
An A-representation P of dimension m + n is said to be an extension of N by M if there exists a
short exact sequence of left A-modules

e: 0O—M —P —N—0
We define an equivalence relation on extensions (P,e) of N by M : (P,e) 2 (P',€') if and only if
there is an isomorphism P %+ P’ of left A-modules such that the diagram below is commutative

e: 0 - M - P - N > 0
idar ¢ idn
e 0 - M > P’ - N > 0

The set of equivalence classes of extensions of N by M will be denoted by Extl (N, M).

An alternative description of Extl (N, M) is as follows. Let p: A —> M,, and o : A —» M,
be the representations defining M and N. For an extension (P, e) we can identify the C-vectorspace
with M @ N and the A-module structure on P gives a algebra map pu: A — My,4+, and we can
represent the action of a on P by left multiplication of the block-matrix

_ [p(a)  Ala)
wta =) 200

where A(a) is an m X n matrix and hence defines a linear map

A: A —— Homc(N,M).
The condition that p is an algebra morphism is equivalent to the condition

Maa') = p(a)Ma') + A(a)o(a")

and we denote the set of all liner maps A : A —— Homgc (N, M) by Z(N, M) and call it the space
of cycle . The extensions of N by M corresponding to two cycles A and A’ from Z(N, M) are
equivalent if and only if we have an A-module isomorphism in block form

id .
{Z o gN} with 8 € Home(N, M)
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between them. A-linearity of this map translates into the matrix relation

S B ] et B A BT

or equivalently, that A(a) — X' (a) = p(a)B — Bo(a) for all a € A. We will now define the subspace
of Z(N, M) of boundaries B(N, M)

{6 € Homc(N,M) |38 € Homc(N, M) :Va € A:6(a) = p(a)B — Bo(a)}.

We then have the description Ext (N, M) = g%x%;

Example 3.13 (Normal space to rep, ) Let A be an affine C-algebra generated by {a1,...,am}
and p: A — M,(C) an algebra morphism, that is, p € rep, A determines an n-dimensional A-
representation M. We claim to have the following description of the normal space to the orbitclosure
Cp = 0(p) of p

ef Tp(rep, A)
N,(rep, A) % 22\ 18Py 7)
P( pn ) Tp (Cp)

We have already seen that the space of cycles Z(M, M) is the space of p-derivations of A in
M, (C), Der,(A), which we know to be the tangent space T,(rep,, A). Moreover, we know that

the differential due of the orbit map GL, L C, — M;"

= Exty (M, M).

dpe = gl, = Mn — T,(C))

is surjective. Now, p = (p(a1),...,p(am)) € M;" and the action of action of GL, is given by
simultaneous conjugation. But then we have for any A € gl,, = M,, that

(I + Ae).p(ar)-(In — Ae) = pla) + (Ap(as) — plas) Ae.
Therefore, by definition of the differential we have that
dpe(A)(a) = Ap(a) — p(a)A  for all a € A.

that is, due(A) € B(M, M) and as the differential map is surjective we have T,(C,) = B(M, M)
from which the claim follows.

Example 3.14 (Normal space to trep,) Let A be a Cayley-Hamilton algebra with trace map
tra and trace generated by {ai,...,am}. Let p € trep, A, that is, p: A — M, (C) is a trace
preserving algebra morphism. Any cycle A\ : A — M, (C) in Z(M, M) = Der,(A) determines an
algebra morphism

p+re: A — M,(Cl])
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We know that the tangent space T,(trep, A) is the subspace Derff(A) of trace preserving p-
derivations, that is, those satisfying

Aitra(a)) =tr(A(a)) forallac A

Observe that for all boundaries § € B(M, M), that is, such that there is an m € M, (C) with
d(a) = p(a).m — m.p(a) are trace preserving as

S(tra(a)) =

p(tra(a)).m —m.p(tra(a)) = tr(p(a)).m — m.tr(p(a))
0 = tr(m.p(a) — p(a).m) = tr(d(a))

Hence, we can define the space of trace preserving self-extensions

o B DerZT(A)
Bxt' (M, M) = B3

and obtain as before that the normal space to the orbit closure C, = O(p) is equal to

des Tp(trep, A)

= Exty (M, M
T,(C,) A (M. M)

N,(trep, A)

3.8 Knop-Luna slices

Let A be an affine C-algebra and ¢ € iss, A a point in the quotient space corresponding to
an n-dimensional semi-simple representation Mg of A. In the next chapter we will present a
method to study the étale local structure of iss, A near ¢ and the étale local GL,-structure of
the representation variety rep, A near the closed orbit O(M¢) = GL,.M¢. First, we will outline
the main idea in the setting of differential geometry.

Let M be a compact C*°-manifold on which a compact Lie group G acts differentially. By a
usual averaging process we can define a G-invariant Riemannian metric on M. For a point m € M
we define

e The G-orbit O(m) = G.m of m in M,
e the stabilizer subgroup H = Stabg(m) ={g € G | g.m = m} and

e the normal space INV,,, defined to be the orthogonal complement to the tangent space in m to
the orbit in the tangent space to M. That is, we have a decomposition of H-vectorspaces

T M =T, O(m)® N,

The normal spaces N, when z varies over the points of the orbit O(m) define a vectorbundle
N B O(m) over the orbit. We can identify the bundle with the associated fiber bundle

N ~GxT N,
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Any point n € A in the normal bundle determines a geodesic

dm () =n

Yn : R —— M defined by {Yn(o) =p(n)
dt

Using this geodesic we can define a G-equivariant exponential map from the normal bundle N to
the manifold M via

N 5 M where exp(n) = v, (1)

: \ O(m)

mo e

Now, take £ > 0 and define the C* slice S: to be
Se={neN, | |In|<e}

then G x™ S. is a G-stable neighborhood of the zero section in the normal bundle N’ = G x N,,.
But then we have a G-equivariant exponential

Gx"s. “hoMm
which for small enough € gives a diffeomorphism with a G-stable tubular neighborhood U of the
orbit O(m) in M as in figure 3.10 If we assume moreover that the action of G on M and the
action of H on N, are such that the orbit-spaces are manifolds M/G and N,,/H, then we have
the situation

Gx"s. 2 U - M

S./H —— U/G — M/G

giving a local diffeomorphism between a neighborhood of 0 in N,,/H and a neighborhood of the
point m in M /G corresponding to the orbit O(m).
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Nm

0 exp
R
G/H

o(m)

Figure 3.10: Tubular neighborhood of the orbit.

Returning to the setting of the orbit O(M¢) in rep,, A we would equally like to define a GLy-
equivariant morphism from an associated fiber bundle

GL,, x“H N¢ - rep, A

where GL(&) is the stabilizer subgroup of M, and N¢ is a normal space to the orbit O(M¢). Because
we do not have an exponential-map in the setting of algebraic geometry, the map e will have to be
an étale map. Such a map does exist and is usually called a Luna slice in case of a smooth point
on rep, A. Later, F. Knop extended this result to allow singular points, or even points in which
the scheme is not reduced.

Although the result holds for any reductive algebraic group G, we will apply them only in the
case G = GL, or GL(a) = GLqa, X ... X GLg,, so restrict to the case of GL,. We fix the setting :
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X and Y are (not necessarily reduced) affine GL,-varieties, 1 is a G L,-equivariant map

r=1¢(y) F X v

Y - Y

X Ty

X/GL, Y/GL,
and we assume the following restrictions :
e 1) is étale in y,

e the GL,-orbits O(y) in Y and O(z) in X are closed. For example, in representation varieties,
we restrict to semi-simple representations,

e the stabilizer subgroups are equal Stab(xz) = Stab(y). In the case of representation varieties,
for a semi-simple n-dimensional representation with decomposition

M=S8%"0o.. 08>
into distinct simple components, this stabilizer subgroup is

GLBl ((C ®/Ud1)
GL., (C®Ta,)

where d; = dim S;. In particular, the stabilizer subgroup is again reductive.

In algebraic terms : consider the coordinate rings R = C[X] and S = C[Y] and the dual morphism
R -+ S. Let I <R be the ideal describing O(z) and J < S the ideal describing O(y). With R we

will denote the [-adic completion lim I% of R and with S the J-adic completion of S.

Lemma 3.8 The morphism ¥ induces for all n an isomorphism

R 4 S

In Jn

In particular, R~G&S.
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Proof. Let Z be the closed GL,-stable subvariety of Y where v is not étale. By the separation
property, there is an invariant function f € S vanishing on Z such that f (y) = 1 because the
two closed GLy-subschemes Z and O(y) are disjoint. Replacing S by Sy we may assume that ¢*
is an étale morphism. Because O(z) is smooth, ™' O(x) is the disjoint union of its irreducible

components and restricting Y if necessary we may assume that ~' O(z) = O(y). But then
J=9*(I)S and as O(y) —» O(x) we have £ ~ 5 50 the result holds for n = 1.
Because étale maps are flat, we have ¢*(I")S = I" ®r S = J" and an exact sequence

n

n n 1
0—I""®rS —> ["®rS —> 7 @rS —>0

But then we have
oI S_I" g "
In+1 - In+l ®R/I j - [n+1 ®R - Jn+l

and the result follows from induction on n and the commuting diagram

I R R
0 > I+l > I+l > In -0
v
J" S S
0 Jn+1 - Jn+1 g Jn -0

O

For an irreducible GL,, -representation s and a locally finite GL,-module X we denote its s-
isotypical component by X(,).

Lemma 3.9 Let s be an irreducible GLy-representation. There are natural numbers m > 1 (inde-
pendent of s) and n > 0 such that for all k € N we have

I'mk+n N R(s) [ (IGLn)kR(S) c Ik N R(s)

Proof. Consider A = ®2,I"t" —— RJ[t], then A9 is affine so certainly finitely generated as
R%Ln_algebra say by
{rit™, ..., r,t"*} withr; € R and m; > 1.

Further, A, is a finitely generated A% _module, say generated by

{s1t™, ..., syt™} with s; € R(5) and n; > 0.
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Take m = maz m; and n = maz n; and r € I'"™*t" N Rsy, then rgmktn Ay and

rt"h T = ij(rltml yeeey Tt )8t
J

with p; a homogeneous polynomial of ¢-degree mk + n — n; > mk. But then each monomial in p;

occurs at least with ordinary degree %’“ = k and therefore is contained in (IGL“)kR(S)tmk+". O

Let RGLn be the I8P -adic completion of the invariant ring REL» and let SGL» be the JE7-adic
completion of §GEn .

Lemma 3.10 The morphism ¥ induces an isomorphism
R®pcr, RGEn —~» §@ §9LnGGL,

Proof. Let s be an irreducible GL,-module, then the I¢*n-adic completion of R, is equal to

ﬁ(?) = R(s) ®rcLn RGLn. Moreover,

- R ) R
Ry = l@(ﬁ)(s) = l@m

which is the I-adic completion of R(). By the foregoing lemma both topologies coincide on Ry
and therefore

E(?) = ]/-"E(S) and similarly §(S\) = §(S)

Because R ~ S it follows that ﬁ(s) o~ §(5) from which the result follows as the foregoing holds for
all s. 0

Theorem 3.13 Consider a GLy,-equivariant map Y ¥, X,y €Y, z=1¢(y) and ¢ étale in y.
Assume that the orbits O(x) and O(y) are closed and that v is injective on O(y). Then, there is
an affine open subset U —— Y containing y such that

1. U =ny' (ny(U)) and 7y (U) = U/G L.

2. 1 is étale on U with affine image.

3. The induced morphism U/G Ly, v, X/GLy is étale.
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4. The diagram below is commutative

U X
v
U/GLn —2+ X/GLn

Proof. By the foregoing lemma we have RGLn ~ SGLu which means that 1 is étale in my (y). As
étaleness is an open condition, there is an open affine neighborhood V' of 7y (y) on which 1 is étale.
If R=R®gcL, SYLn then the above lemma implies that

JE— —_— —_—
R®gcL, SCn ~ S ®gaL, SGLn

Let SEX" be the local ring of S¢» in JELn | then as the morphism SC5" —+ SGLu i faithfully
flat we deduce that .
R®gcry, §GLn ~ g RgGLn SGLn

loc loc

but then there is an f € SLn — J%En such that R; ~ S;. Now, intersect V with the open affine
subset where f # 0 and let U’ be the inverse image under 7y of this set. Remains to prove that the

image of v is affine. As U’ Y Xis étale, its image is open and G L,-stable. By the separation
property we can find an invariant h € RS such that h is zero on the complement of the image
and h(z) = 1. But then we take U to be the subset of U’ of points u such that h(u) # 0. O

Theorem 3.14 (Slice theorem) Let X be an affine GLyp-variety with quotient map

X — > X/GL,. Let x € X be such that its orbit O(x) is closed and its stabilizer subgroup
Stab(z) = H is reductive. Then, there is a locally closed affine subscheme S —— X containing x
with the following properties

1. S is an affine H-variety,

2. the action map GLn, xS — X induces an étale G L, -equivariant morphism GL, xH8 x
with affine image,

3. the induced quotient map ¥ /G L, is étale

(GLn x™ 8)/GL, ~s/H */°™% x/GL,

and the right hand side of figure 3.11 is commutative.
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GLn,x"¢

GLn, x" N, GL, x"s v - X

N,/H < o/n s/H GG X/GLn

Figure 3.11: Etale slice diagram

If we assume moreover that X is smooth in x, then we can choose the slice S such that also the
following properties are satisfied

1. S is smooth,

2. there is an H -equivariant morphism S 2, T, S = N, with ¢(x) = 0 having an affine image,

3. the induced morphism is étale
s/H 2% N,/H
and the left hand side of figure 3.11 is commutative.

Proof. Choose a finite dimensional G'Ly-subrepresentation V' of C[X] that generates the coordinate
ring as algebra. This gives a G Ly-equivariant embedding

X e W=V*

Choose in the vectorspace W an H-stable complement So of gl,.i(x) = T;,) O(x) and denote
S1=1i(x) + So and Sz = fl(Sl).Then, the diagram below is commutative

GL, xfggc—  + GL, x¥ 8

P Yo

X © - W

By construction we have that 1o induces an isomorphism between the tangent spaces in (1,i(x)) €
GL, x™ Sy and i(x) € W which means that ¢y is étale in i(x), whence ¢ is étale in (1,z) €
GL, x¥ 8y. By the fundamental lemma we get an affine neighborhood U which must be of the
form U = GL,, x™ 8 giving a slice S with the required properties.
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Assume that X is smooth in z, then S is transversal to X in i(x) as
T’L(z) ’L(X) +So =W

Therefore, S is smooth in 2. Again using the separation property we can find an invariant f € C[s]7
such that f is zero on the singularities of S (which is a H-stable closed subscheme) and f(z) = 1.
Then replace S with its affine reduced subvariety of points s such that f(s) # 0. Let m be the
maximal ideal of C[S] in z, then we have an exact sequence of H-modules

2 «@
00— m°" — m — N, — 0

Choose a H-equivariant section ¢* : N —— m < CIS] of « then this gives an H-equivariant

morphism S _*. N, which is étale in . Applying again the fundamental lemma to this setting
finishes the proof. 0

References.

More details on étale cohomology can be found in the textbook of J.S. Milne [64] . The material
of Tsen and Tate fields is based on the lecture notes of S. Shatz [77]. For more details on the
coniveau spectral sequence we refer to the paper [18]. The description of the Brauer group of the
functionfield of a surface is due to M. Artin and D. Mumford [6] . The étale slices are due to D.
Luna [63] and in the form presented here to F. Knop [45] . For more details we refer to the lecture
notes of P. Slodowy [79].
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Having generalized the classical anti-equivalence between commutative algebra and (affine) alge-
braic geometry to the pair of functors

trep,
>
algtn_ ~~ GL(n)-affine
e

where )" is a left-inverse for trep,,, we will define Cayley-smooth algebras A € alg@n which are
analogous to smooth commutative algebras. The definition is in terms of a lifting property with
respect to nilpotent ideals, following Grothendieck’s characterization of regular algebras. We will
prove Procesi’s result that a degree n Cayley-Hamilton algebra A is Cayley-smooth if and only if
trep, A is a smooth (commutative) affine variety.

This result allows us, via the theory of Knop-Luna slices, to describe the étale local structure
of Cayley-smooth algebras. We will prove that the local structure of A in a point £ € triss, A is
determined by a combinatorial gadget : a (marked) quiver @ (given by the simple components of
the semi-simple n-dimensional representation M corresponding to £ and their (self)extensions)and
a dimension vector a (given by the multiplicities of the simple factors in My;).

In the second part of this book we will use this description to classify Cayley-smooth orders (as
well as their central singularities) in low dimensions. In this study we will need standard results
on the representation theory of quivers : the description of the simple (resp. indecomposable)
dimension vectors, the canonical decomposition and the notion of semistable representations.

4.1 Smoothness

In this section we will introduce smoothness relative to a category of C-algebras. For commalg this
notion is equivalent to the usual geometric smoothness and we will show that for alg@n smoothness
of a Cayley-Hamilton algebra A is equivalent to trep, A being a smooth affine variety. Examples
of such Cayley-smooth algebras arise as level n approximations of smooth algebras in alg, called
Quillen smooth algebras.

Definition 4.1 Let cat be a category of C-algebras. An object A € Ob(cat) is said to be cat-
smooth if it satisfies the following lifting property. For B € Ob(cat), a nilpotent ideal I < B such



166 Quiver Representations

that B/I € Ob(cat) and a C-algebra morphism A —— B/I in Mor(cat), there exist a lifting
A

B

» B
1

with A\ € Mor(cat) making the diagram commutative. An alg-smooth algebra is called Quillen-
smooth , comm-smooth algebras are called Grothendieck-smooth and alg@n-smooth algebras Cayley-
smooth .

To motivate these definitions, we will show that the categorical notion of comm-smoothness
coincides with geometric smoothness. Let X be a possibly non-reduced affine variety and x a
geometric point of X. As we are interested in local properties of X near x, we may assume (after
translation) that z = o in C™ and that we have a presentation

CX] =Clz1,...,zn)/I with I = (f1,..., fm) and my = (21,...,25)/1.
Denote the polynomial algebra P = C[z1,...,z,] and consider the map
d :I— (Pdr1®...® Pdzy,) @p C[X] = C[X]dz1 @ ... ® C[X]dzn
where the dx; are a formal basis of the free module of rank n and the map is defined by

of of
8z1""’8xn)m0d1'

d(f) = (
This gives a C[X]-linear mapping 77 s C[X]dz1®...®C[X]dz,. Extending to the local algebra O,

at z and then quotient out the maximal ideal m, we get a C = Oy /mg- linear map ;—2 d—(zl Cdx1 ®

...® Cdz, Clearly, x is a nonsingular point of X if and only if the C-linear map d(z) is injective.
This is equivalent to the existence of a C-section and by the Nakayama lemma also to the existence
of a O-linear splitting s, of the induced O.-linear map d,.

dm
% T Oudz B ... D Oydas,

satisfying s, od, = zdj%v

A C-algebra epimorphism (between commutative algebras) R — T S with square zero kernel
is called an infinitesimal extension of S . It is called a trivial infinitesimal extension if m has an
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algebra section ¢ : § ©—— R satisfying 7 o ¢ = ids. An infinitesimal extension R —»» S of S

is said to be versal if for any other infinitesimal extension R’ — s S of S there is a C-algebra

morphism
™

- S

R.

making the diagram commute. From this universal property it is clear that versal infinitesimal
extensions are uniquely determined up to isomorphism. Moreover, if a versal infinitesimal extension
is trivial, then so is any infinitesimal extension. By iterating, S is Grothendieck-smooth if and only
if it has the lifting property with respect to nilpotent ideals I with square zero. Therefore, assume
we have a test object (T, I) with I? = 0, then we have a commuting diagram

SXT/]T P S

T

T/I

where we define the pull-back algebra S xr,; T = {(s,t) € S x T | r(s) = p(t)}. Observe that
pr1: S Xy T —= S is a C-algebra epimorphism with kernel 0 x¢,; I having square zero, that
is, it is an infinitesimal extension of S. Moreover, the existence of a lifting A of k is equivalent to
the existence of a C-algebra section

0:8 — Sxp;; T defined by s+ (s, A(s)).

Hence, S is Grothendieck-smooth if and only if a versal infinitesimal extension of S is trivial.

Returning to the situation of interest to us, we claim that the algebra epimorphism
OI(C")/IQ% — % O, is a versal infinitesimal extension of O,. Indeed, consider any other in-
finitesimal extension R — > O, then we define a C-algebra morphism O,(C")/I? — R as
follows : let 7; € R such that 7 (r;) = cz(x;) and define an algebra morphism Clz1,...,zn] —> R
by sending the variable z; to ;. As the image of any polynomial non-vanishing in z is a unit in
R, this algebra map extends to one from the local algebra O,(C™) and it factors over O, (C")/I?
as the image of I lies in the kernel of = which has square zero, proving the claim. Hence, O, is
Grothendieck-smooth if and only if there is a C-algebra section

0.(C/I2 7% O,

Tx
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satisfying c; o o = ido, .

Proposition 4.1 The affine scheme X is non-singular at the geometric point x if and only if the
local algebra O (X) is Grothendieck-smooth.

Proof. The result will follow once we prove that there is a natural one-to-one correspondence
between Ogz-module splittings s, of d; and C-algebra sections 7, of ¢;. This correspondence is
given by assigning to an algebra section r, the map s, defined by

Sz(dxi) = (X3 — 1z 0 co(x5)) mod Ifc

O

If X is an affine scheme which is smooth in all of its geometric points, then we have seen before
that X = X must be reduced, that is, an affine variety. Restricting to its disjoint irreducible
components we may assume that

Clearly, if C[X] is Grothendieck-smooth, so is any of the local algebras O,. Conversely, if all O, are
Grothendieck-smooth and C[X] = C[z1,...,x»]/I one knows that the algebra epimorphism

Clz1,...,za)/I° —> C[X]

has local sections in every x, but then there is an algebra section. Because c is clearly a versal
infinitesimal deformation of C[X], it follows that C[X] is Grothendieck-smooth.

Proposition 4.2 Let X be an affine scheme. Then, C[X] is Grothendieck-smooth if and only if X is
non-singular in all of its geometric points. In this case, X is a reduced affine variety.

However, Grothendieck-smooth algebras do not have to be cat-smooth for more general cate-
gories of C-algebras.

Example 4.1 Consider the polynomial algebra C[xz1, ..., z4] and the 4-dimensional noncommuta-
tive local algebra
Clz, y)

T=——+—"2———=CpCzapCyapCx
(22,92, 2y + yx) Y Y
Consider the one-dimensional nilpotent ideal I = C(zy — yz) of T, then the 3-dimensional quotient

. . . ¢
% is commutative and we have a morphism Clz1,...,zq] —> % by 1 +— x,22 — y and x; — 0

for ¢ > 2. This morphism admits no lift to T" as for any potential lift the commutator

[¢(z),d(y)] #0 inT.

Therefore, Clz1,...,zq4] can only be Quillen smooth if d = 1.
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Because comm = alg®1, it is natural to generalize the foregoing to Cayley-smooth algebras. Let
B be a Cayley-Hamilton algebra of degree n with trace map trp and trace generated by m elements
say {b1,...,bm}. Then, we can write

B = 'IFZL/TB with Ts closed under traces.
Now, consider the extended ideal
Ep = M, (C[M;']). Ts.-M,(C[M,']) = Mn(NB)
and we have seen that C[trep, B] = C[M;']/Np. We need the following technical result.
Lemma 4.1 With notations as above, we have for all k that
EF” N1 C Th.

Proof. Let T;' be the trace algebra on the generic n x n matrices {Xi,...,Xmn} and TH™ the
trace algebra on the generic matrices {Y1,...,Y;, X1,..., Xm}. Let {Un,...,U;} be elements of T}’

and consider the trace preserving map T4H™ —“» T™ induced by the map defined by sending Y;
to U;. Then, by the universal property we have a commutative diagram of Reynold operators

o

Mo (C[M™]) = M (C[M;])
R R
Tl+m u Tm
Now, let Ai,...,Ai+1 be elements from M,(C[M]]), then we can -calculate

R(A1U1 AUz A3 ... AiUA141) by first computing
r= R(A1Y1A2Y2A3 N ALY}A1+1)

and then substituting the Y; with U;. The Reynolds operator preserves the degree in each of the
generic matrices, therefore r will be linear in each of the Y; and is a sum of trace algebra elements.
By our knowledge of the generators of necklaces and the trace algebra we can write each term of
the sum as an expression

t’f‘(Ml)tT’(Mz) e tT(Mz)MZ+1

where each of the M; is a monomial of degree < n? in the generic matrices {Y1,..., Y}, X1,..., Xm}.
Now, look at how the generic matrices Y; are distributed among the monomials M;. Each M;
contains at most n? of the Y:’s, hence the monomial M, contains at least | — wn? of the Y; where
v < z is the number of M; with ¢ < z containing at least one Yj.
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Now, assume all the U; are taken from the ideal T < T;' which is closed under taking traces,
then it follows that

R(AUy AsUs As . .. AL ULA vH(—vn®) -k
(A U1 AU As ... AlUL A1) € Ty CcTg

if we take I = kn? as v + (k — v)n? > k. But this finishes the proof of the required inclusion. O

Let B be a Cayley-Hamilton algebra of degree n with trace map trp and I a twosided ideal of
B which is closed under taking traces. We will denote by E(I) the extended ideal with respect to
the universal embedding, that is,

E(I) = Mn(C[trep,, B])IM,(C[trep, B]).

Then, for all powers k we have the inclusion E(I)knz nBclI.

Theorem 4.1 Let A be a Cayley-Hamilton algebra of degree n with trace map tra. Then, A is
Cayley-smooth if and only if the trace preserving representation variety trep, A is non-singular in
all points (in particular, trep, A is reduced).

Proof. Let A be Cayley-smooth, then we have to show that C[trep, A] is Grothendieck-
smooth. Take a commutative test-object (T,I) with I nilpotent and an algebra map
C[trep, A] —— T/I. Composing with the universal embedding i4 we obtain a trace preserv-
ing morphism po

I

A M, (T)

LA 4,

M, (C[trep,, A])

YT M, (T/T)
Because M, (T) with the usual trace is a Cayley-Hamilton algebra of degree n and M, (I) a trace
stable ideal and A is Cayley-smooth there is a trace preserving algebra map pi1. But then, by the
universal property of the embedding i4 there exists a C-algebra morphism

A:Cltrep, A] — T

such that M, (\) completes the diagram. The morphism A is the required lift.

Conversely, assume that C[trep, A] is Grothendieck-smooth. Assume we have a Cayley-
Hamilton algebra of degree n with trace map trr and a trace-stable nilpotent ideal I of T" and
a trace preserving C-algebra map x : A — T/I. If we combine this test-data with the universal
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embeddings we obtain a diagram

T <« T+ M,(Cltrep, T))

T/1 <% M, (Cltrep, T/I])=M,(Cltrep, T]/J)

»

K

M., (C[trep,, A])

Here, J = M, (Cltrep, T])IM,(Cltrep, T]) and we know already that JNT = I. By the universal
property of the embedding i4 we obtain a C-algebra map

Cltrep, A] — Cltrep, T]/J
which we would like to lift to C[trep, T']. This does not follow from Grothendieck-smoothness of

C[trep,, A] as J is usually not nilpotent. However, as I is a nilpotent ideal of T there is some h
such that I" = 0. As I is closed under taking traces we know by the remark preceding the theorem
that

ED)™ nTc I =0
Now, by definition E(I) = M,(C[trep,, T])IM,(C[trep, T]) which is equal to M,(J). That is,
the inclusion can be rephrased as M, (J)"™ NT = 0, whence there is a trace preserving embedding

T —— My,(Cltrep, T]/Jhnz). Now, we are in the situation of figure 4.1 This time we can lift «
to a C-algebra morphism

C[trep,, A] — Cltrep, T}/Jhnz.
This in turn gives us a trace preserving morphism
A 2+ M, (Cltrep, T]/J"")
the image of which is contained in the algebra of GL,-invariants. Because

T ——— M,(C[trep,, T]/Jh"Q) and by surjectivity of invariants under surjective maps, the
G Ly -equivariants are equal to T, giving the required lift A.

For an affine C-algebra A recall the construction of its level n approximation

_ [ e e
/nA B (tr(1) = n, x" (a) Va € A) = Mn(Clrep, 4)
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T ——— M,(Cl[trep, T]/Jan)
R4

."

K T

M, (Cltrep, T)/J)

> T /[

Figure 4.1:

In general, it may happen that fn A = 0 for example if A has no n-dimensional representations.
The characteristic feature of fn A is that any C-algebra map A —— B with B a Cayley-Hamilton
algebra of degree n factors through fn A

with ¢, a trace preserving algebra morphism. From this universal property we deduce

Proposition 4.3 If A is Quillen-smooth, then for every integer n, the Cayley-Hamilton algebra of
degree n, fn A, is Cayley-smooth. Moreover,

rep, A~ trep, /A

is a smooth affine G L, -variety.

This result allows us to study a Quillen-smooth algebra locally in the étale topology. We know
that the algebra fn A is given by the G L,-equivariant maps from rep,, A = trep,, fn A to M, (C).
As this representation variety is smooth we can apply the full strength of the slice theorem to
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determine the local structure of the G L,-variety trep, fn A and hence of fn A. In the next section
we will prove that this local structure is fully determined by a quiver setting.

Therefore, let us recall the definition of quivers and their path algebras and show that these
algebras are all Quillen-smooth.

Definition 4.2 A quiver Q is a directed graph determined by
e a finite set Q, = {v1,...,vr} of vertices , and

e a finite set Qo = {a1,...,ai} of arrows where we allow multiple arrows between vertices and
loops in vertices.

Every arrow has a starting vertex s(a) = i and a terminating vertex t(a) = j. Mul-
tiplication in the path algebra CQ is induced by (left) concatenation of paths. More precisely,
1=wvi+...4vk is a decomposition of 1 into mutually orthogonal idempotents and further we define

. a . . . .
o v;.a is always zero unless (<———O in which case it is the path a,
. a . . . .
o a.v; is always zero unless (O<———G) in which case it is the path a,
ag aj

o a;.a; is always zero unless O<——O<——) in which case it is the path a;a;.

Consider the commutative C-algebra

k
Cr =Clex, ..., ex]/(e] — ei,eiej,Zei -1).
i=1

Cy is the universal C-algebra in which 1 is decomposed into k orthogonal idempotents, that is, if
R is any C-algebra such that 1 =71 + ... 4+ 7, with 7; € R idempotents satisfying r;r; = 0, then
there is an embedding Cx < R sending e; to 7;.

Proposition 4.4 Cy is Quillen smooth. That is, if I be a nilpotent ideal of a C-algebra T and if
1==¢ +...+ € is a decomposition of 1 into orthogonal idempotents €; € T/I. Then, we can lift
this decomposition to 1 = e1 +. ..+ ey for orthogonal idempotents e; € T' such that w(e;) = €; where

T o T/1 is the canonical projection.
Proof. Assume that I' = 0, clearly any element 1 — ¢ with ¢ € I is invertible in T as
A—i)(A+i+i®+... +i"H=1-4"=1.

If € is an idempotent of T/ and = € T such that w(z) = €. Then, x — 2 € I whence

0=(z—2°) =2' 1! + (é) - (=)
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and therefore ' = az'™! where a = 1 — (é) z+ ...+ (=127 and so ax = za. If we take
e = (ax)', then e is an idempotent in T as
e’ = (ax)” = d'(ds®) =d'a' =e

the next to last equality follows from ! = az!t! = o222 = ... = a'z?". Moreover,

n(e) = m(a)\n(2)! = n(a)'n(@)" = n(a's*) = n(2)' =,

If f is another idempotent in 7'/I such that ef = 0 = fe then as above we can lift f to an
idempotent f’ of T. As f’e € I we can form the element

f=1-e)1—fe)  f (1~ fe).

Because f'(1 — f'e) = f'(1 — e) one verifies that f is idempotent, 7(f) = f and e.f = 0 = f.e.
Assume by induction that we have already lifted the pairwise orthogonal idempotents €1, ..., €5_1
to pairwise orthogonal idempotents e1,...,ex—1 of R, then e = e; 4+ ...+ ex_1 is an idempotent of
T such that eéex = 0 = eie. Hence, we can lift e; to an idempotent e € T such that ee, = 0 = ege.
But then also

eier, = (eie)er, =0 = ex(ee;) = exe;.

Finally, as e1 4+ ...+ ex — 1 =i € I we have that
e1d...+en—l=(e1+...+ex—1) =i =0
finishing the proof. 0

Proposition 4.5 For any quiver Q, the path algebra CQ is Quillen smooth.

Proof. Take an algebra T with a nilpotent twosided ideal I <7 and consider

T

T "-' 7
o s
o

The decomposition 1 = ¢(v1) + ... + ¢(vk) into mutually orthogonal idempotents in % can be

lifted up the nilpotent ideal I to a decomposition 1 = qz~5(v1) + ...+ qg(vk) into mutually orthogonal
idempotents in 7. But then, taking for every arrow a

an arbitrary element ¢(a) € ¢(v;)(d(a) + I)d(v;)
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gives a required lifted algebra morphism CQ Ly |

Recall that a representation V' of the quiver @ is given by

e a finite dimensional C-vector space V; for each vertex v; € @,, and
. Va .

e a linear map V; <—— V; for every arrow in Qq.

If dim V; = d; we call the integral vector o = (di,...,d;) € NP the dimension vector of V and

denote it with dim V. A morphism V — %+ W between two representations V and W of Q is
determined by a set of linear maps

Vi %, W,  for all vertices v; € Q.

satisfying the following compatibility conditions for every arrow in Qq

Va

Vi Vj

i Pj

w, —Y W,

Clearly, composition of morphisms V/ ew Y X s given by the rule that (¢ o ¢); = ¥; o );
and one readily verifies that this is again a morphism of representations of Q). In this way we form
a category rep @ of all finite dimensional representations of the quiver Q.

Proposition 4.6 The category rep Q) is equivalent to the category of finite dimensional CQ-
representations CQ — mod.

Proof. Let M be an n-dimensional CQ-representation. Then, we construct a representation V' of
Q by taking

e V;, =wv; M, and for any arrow in Q. define
o V,:V; — Vj by Vu(z) = vjax.

Observe that the dimension vector dim(V) = (di,...,dy) satisfies Y d; =n. If ¢ : M —— N

is CQ-linear, then we have a linear map V; = v;M %, W; = v; N which clearly satisfies the

compatibility condition.
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Conversely, let V be a representation of @ with dimension vector dim(V) = (du,...,dx). Then,
consider the n = ) d;-dimensional space M = @;V; which we turn into a CQ-representation as

follows. Consider the canonical injection and projection maps V; SRRV i Vj. Then, define
the action of CQ by fixing the action of the algebra generators v; and a; to be

{wjm = i;(m;(m))

am = ij (Va('frz(m)))

a
for all arrows . A computation verifies that these two operations are inverse to each
other and induce an equivalence of categories. O

4.2 Local structure

In this section we give some applications of the slice theorem to the local structure of quotient
varieties of representation spaces. We will first handle the case of an affine C-algebra A leading to
a local description of fn A. Next, we will refine this slightly to prove similar results for an arbitrary
affine C-algebra B in alg@n.

When A is an affine C-algebra generated by m elements {ai,...,am}, its level n approximation
fn A is trace generated by m determining a trace preserving epimorphism T," — fn A. Thus we
have a GL,-equivariant closed embedding of affine schemes

rep, A = trep, / A, trep, T, = M,

n

Take a point & of the quotient scheme iss, A = trep,, fn A/GL,. We know that £ determines the
isomorphism class of a semi-simple n-dimensional representation of A, say

Me=S%1g...082%

where the S; are distinct simple A-representations, say of dimension d; and occurring in M with
multiplicity e;. These numbers determine the representation type 7(§) of £ (or of the semi-simple
representation Me), that is

T(§) = (e1,d1se2,dz2;. . . s ex, di)

Choosing a basis of M¢ adapted to this decomposition gives us a point z = (Xi,...,Xm) in the
orbit O(M¢) such that each n x n matrix X; is of the form

m? @1, 0 0
0 my) ey .- 0

0 0 oomi e,
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where each my) € Mgy, (C). Using this description we can compute the stabilizer subgroup Stab(z)
of GL,, consisting of those invertible matrices g € GL, commuting with every X;. That is, Stab(x)
is the multiplicative group of units of the centralizer of the algebra generated by the X;. It is easy
to verify that this group is isomorphic to

Stab(z) ~ GLey X GLey X ... X GLe, = GL(a¢)

for the dimension vector ag = (e1,...,er) determined by the multiplicities and with embedding
Stab(z) — GL, given by

GLe, (C®TMy) 0 0
0 GLey (C®Myy) ... 0
0 0 oo GLe (C®Tay)

A different choice of point in the orbit O(M¢) gives a subgroup of GL, conjugated to Stab(x).

We know that the normal space N:™ can be identified with the self-extensions Exth (M, M)
and we will give a quiver-description of this space. The idea is to describe first the GL(a)-module
structure of N2, the normal space to the orbit O(M¢) in M (see figure 4.2) and then to identify
the direct summand N:™. The description of N2 follow from a book-keeping operation involving
GL(a)-representations. For z = (X1,...,X), the tangent space T, O(My;) in M, to the orbit
is equal to the image of the linear map

A — (A, X1, [A; Xom])

Observe that the kernel of this map is the centralizer of the subalgebra generated by the X;, so we
have an exact sequence of Stab(z) = GL(a)-modules

0 — gl(a) = Lie GL(a) —> gl, = M, — T, O(z) — 0

Because GL(«) is a reductive group every G L(a)-module is completely reducible and so the sequence
splits. But then, the normal space in M;* = T, M, to the orbit is isomorphic as GL(a)-module
to }
N =M, &®...® M, ®gl(a)
—_——
m—1
with the action of GL(«) (embedded as above in GL,) is given by simultaneous conjugation. If

we consider the GL(«)-action on M,, depicted in figure 4.2 we see that it decomposes into a direct
sum of subrepresentations

e for each 1 < i < k we have d copies of the GL(a)-module M., on which GL., acts by
conjugation and the other factors of GL(«) act trivially,
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Nbig

M@)

sm
Ny

T, rep, A
- T O(M)

m
<]N£ig _ Tz Mn

NS™ — —
‘ Tw O(Me)

Figure 4.2: Big and small normal spaces to the orbit.

e for all 1 <14,j < k we have d;d; copies of the GL(«)-module Me;xe; on which GLe; x GL,
acts via g.m = gimgj_1 and the other factors of GL(«a) act trivially.

These GL(a) components are precisely the modules appearing in representation spaces of quivers.

Theorem 4.2 Let & be of representation type T = (e1,di;...;ex,dr) and let a = (e1,...,ex).
Then, the GL(a)-module structure of the normal space NY9 in M™ to the orbit of the semi-simple
n-dimensional representation O(Me) is isomorphic to

b
rep, Q¢

where the gquiver Qgig has k wvertices (the number of distinct simple summands of M¢) and the
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d

T

dy da

Figure 4.3: The GL(a)-action on M,
subquiver on any two vertices v;,v; for 1 <i# j <k has the following shape

so-llinn-o»

That is, in each vertex v; there are (m—1)ds + 1-loops and there are (m —1)d;d; arrows from vertex
v; to vertex v; for all1 <i#j<k.

Example 4.2 If m = 2 and n = 3 and the representation type is 7 = (1,1;1,1;1,1) (that is, M,
is the direct sum of three distinct one-dimensional simple representations) then the quiver Q¢ is
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We have GLy-equivariant embeddings O(Mg) — trep, [ A —— M;" and corresponding
embeddings of the tangent spaces in x

T, O(M¢) — T, trep, /A < T, M

n

Because GL(«) is reductive we then obtain that the normal spaces to the orbit is a direct summand
of GL(a))-modules.
N T, trep, an o N T, M
T, O(Me) Tz O(Me)

As we know the isotypical decomposition of N29 as the GL(a)-module rep, Q¢ this allows us to
control N;™. We only have to observe that arrows in Q¢ correspond to simple GL(a)-modules,
whereas a loop at vertex v; decomposes as GL(a)-module into the simples

Mei = Mgl ©® (Ctriv

where Ciriv is the one-dimensional simple with trivial GL(a)-action and M{. is the space of trace
zero matrices in M,,. Any GL(a)-submodule of N2 can be represented by a marked quiver using
the dictionary

e a loop at vertex v; corresponds to the GL(«a)-module M., on which GL., acts by conjugation
and the other factors act trivially,

e a marked loop at vertex v; corresponds to the simple G L(a)-module Mgi on which GLe,; acts
by conjugation and the other factors act trivially,

e an arrow from vertex v; to vertex v; corresponds to the simple GL(a)-module M, x.; on
which GLe, X GL.; acts via g.m = gimgj_1 and the other factors act trivially,

Combining this with the calculation that the normalspace is the space of self-extensions
Eathy (Mg, M¢) or the trace preserving self-extensions Ext% (Mg, My;) (in case B € Ob(algen))
we have.

Theorem 4.3 Consider the marked quiver on k wvertices such that the full marked subquiver on
any two vertices v; # vj has the form

0 ; M

where these numbers satisfy a;; < (m — 1)d;d; and ai; +my; < (m — 1)d12 + 1. Then,
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GL(a)

GL, xGL@) nsm X0 L, O g, rep, A
NS™/GL(a) ¢/GLe) Sp/GL(a) — Y/GH) | s, A

Figure 4.4: Slice diagram for representation space.

1. Let A be an affine C-algebra generated by m elements, let M¢ be an n-dimensional semisimple
A-module of representation-type 7 = (e1,d1;...;ex,dg) and let a« = (e1,...,er). Then, the
normal space N;™ in a point x € O(My) to the orbit with respect to the representation space
rep, A is isomorphic to the GL(a)-module of quiver-representations rep, Qe of above type
with

e a;; = dimc Exti,(Si, Si) and mi; =0 for all 1 <i < k.
o a;; = dimc Exth (S, S;) for all 1 <i#j <n.

2. Let B be a Cayley-Hamilton algebra of degree n, trace generated by m elements, let
M be a trace preserving n-dimensional semisimple B-module of representation type T =
(e1,d1;...;ex,di) and let o = (e1,...,ex). Then, the normal space NX" in a point x € O(M¢)
to the orbit with respect to the trace preserving representation space trep, B is isomorphic
to the GL(a)-module of marked quiver-representations rep, Qg of above type with

o a;; = dimc Exty(S:,S;) for all1 <i#j <k.
and the (marked) vertez loops further determine the structure of Extt (Mg, M¢).

By a marked quiver-representation we mean a representation of the underlying quiver (that is,
forgetting the marks) subject to the condition that the matrices corresponding to marked loops
have trace zero.

Consider the slice diagram of figure 4.4 for the representation space rep,, A. The left hand side
exists when z is a smooth point of rep,, A, the right hand side exists always. The horizontal maps
are étale and the upper ones GL,-equivariant.

Definition 4.3 A point £ € iss, A is said to belong to the n-smooth locus of A iff the repre-

sentation space rep, A is smooth in x € O(M¢). The n-smooth locus of A will be denoted by
Smy(A).

To determine the étale local structure of Cayley-Hamilton algebras in their n-smooth locus, we
need to investigate the special case of quiver orders. We will do this in the next section and, at its
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end, draw some consequences about the étale local structure. We end this section by explaining
the remarkable success of these local quiver settings and suggest that one can extend this using the
theory of A.o-algebras.

The category alg has a topological origin. Consider the tiny interval operad D1, that is, let
D1(n) be the collection of all configurations

®—0 O 00— —20 0-®

0 1

consisting of the unit interval with n closed intervals removed, each gap given a label i; where
(i1,%2,...,1n) is a permutation of (1,2,...,n). Clearly, D1(n) is a real 2n-dimensional C*°-manifold
having n! connected components, each of which is a contractible space. The operad structure comes
from the collection of composition maps

Dl(n)X(Dl(ml)X...Dl(mn)) Dl(ml—l——i—mn)

defined by resizing the configuration in the D;(m;)-component such that it fits precisely in the
i-th gap of the configuration of the Di(n)-component, see figure 4.5. We obtain a unit interval
having m1 + ...+ m, gaps which are labeled in the natural way, that is the first m; labels are for
the gaps in the D;(m;1)-configuration fitted in gap 1, the next mo labels are for the gaps in the
D1 (m2)-configuration fitted in gap 2 and so on. The tiny interval operad D consists of

e a collection of topological spaces Di(n) for n > 0,
e a continuous action of S, on D1(n) by relabeling, for every n,
e an identity element id € D;(1),

e the continuous composition maps M, m,,...,m,) Which satisfy associativity and equivariance
with respect to the symmetric group actions.

By taking the homology groups of these manifolds D1(n) we obtain a linear operad assoc. Because
Dy (n) has n! contractible components we can identify assoc(n) with the subspace of the free
algebra C(z1,...,z,) spanned by the multilinear monomials. assoc(n) has dimension n! with
basis (1) . .. To(n) for o € S,. Bach assoc(n) has a natural action of S, and as S,-representation
it is isomorphic to the regular representation. The composition maps Mmn,m,,...,m,) induce on the
homology level linear composition maps

Y(n,mq,....,mn)
My Mng

assoc(n) ® assoc(m1) ® ... ® assoc(Mmy) assoc(mi + ...+ my)

obtained by substituting the multilinear monomials ¢; € assoc(m;) in the place of the variable x;
into the multilinear monomial ¢ € assoc(n).
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C:)—O”O OQQ e O . C}C:)
@—OO—OC} H}WO@
o0"00"0— ~—0""0s
(:)—QMO—OLZC%”' H)ZMHO{:)

Figure 4.5: The tiny interval operad.

In general, a C-linear operad P consists of a family of vectorspaces P(n) each equipped with an
Snp-action, P(1) contains an identity element and there are composition linear morphisms

P(n) @ P(m1) ® ... ® P(my,) : P(mi+ ...+ my)

satisfying the same compatibility relations as the maps Y(n,m,,...,
endomorphism operad endy for a vectorspace V' defined by taking

endy (n) = Home(VE™, V)

my,) above. An example is the

with compositions and S,-action defined in the obvious way and unit element Ty € endy (1) =

End(V). A morphism of linear operads P I+ P’ is a collection of linear maps which are equivariant
with respect to the S,-action, commute with the composition maps and take the identity element
of P to the identity element of P’.

Definition 4.4 Let P be a C-linear operad. A P-algebra is a vectorspace A equipped with a mor-

phism of operads P 4. endy.
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For example, assoc-algebras are just associative C-algebras, explaining the topological origin of
alg. Instead of considering the homology operad assoc of the tiny intervals D; we can consider
its chain operad chain. For a topological space X, let chains(X) be the complex concentrated
in non-positive degrees, whose —k-component consists of the finite formal additive combinations
S ci.fi where ¢; € C and f; : [0,1]¥ — X is a continuous map (a singular cube in X ) modulo
the following relations

e For any o € Sy, acting on [0,1]* by permutation, we have f o o = sg(o)f.
e For prf_, : [0,1]" F5 the projection on the first kK — 1 coordinates and any continuous map
[0, 171 L+ X we have floprk_ =0.

Then, chain is the collection of complexes chains(D;(n)) and is an operad in the category of
complexes of vectorspaces with cohomology the homology operad assoc. Again, we can consider
chain-algebras, this time as complexes of vectorspaces. These are the Asc-algebras.

Definition 4.5 An A -algebra is a Z-graded complex vectorspace
B = G%EZBP
endowed with homogeneous C-linear maps
mn : B®" —» B
of degree 2 —n for all n > 1, satisfying the following relations
e We have my omy = 0, that is (B, m1) is a differential complex

my my m1 my
. —> Bi_1 —> B;, —» B¢+1 —_— ...

o We have the equality of maps B B — B
myome =m0 (m @ T+ T®m1)

where 1 is the identity map on the vectorspace B. That is, m1 is a derivation with respect to
the multiplication B ® B 2 B.

e We have the equality of maps B& B B — B

ma o (1® ma — ma ®1)
=miomz+mzo(m @TRT+Tom @1+ TR T® m1)

where the right second expression is the associator for the multiplication ms and the first is a
boundary of ms, implying that me is associative up to homology.
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Figure 4.6: Aoo-identities.

e More generally, for n > 1 we have the relations
S (1m0 (17 @ my @ T7%) = 0

where the sum runs over all decompositions n = i+ j + k and where l = i+ 1+ k. These
identities are pictorially represented in figure 4.6.

Observe that an A.-algebra B is in general not associative for the multiplication mg, but its
homology
H* B= H"(B,m2)

is an associative graded algebra for the multiplication induced by mg. Further, if m,, = 0 for all
n > 3, then B is an associative differentially graded algebra and conversely every differentially
graded algebra yields an A-algebra with m,, = 0 for all n > 3.
Let A be an associative C-algebra and M a left A-module. Choose an injective resolution of M
00— M — 1" — 1" — .
with the I* injective left A-modules and denote by I® the complex

I 0 — 1° ot 4

Let B = HOM3(I°®,1°) be the morphism complex. That is, its n-th component are the graded

A-linear maps I®* — I°® of degree n. This space can be equipped with a differential

d(fy=dof—(—=1)"fod for f in the n-th part
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Then, B is a differentially graded algebra where the multiplication is the natural composition of
graded maps. The homology algebra

H* B = Ext’y (M, M)

is the extension algebra of M. Generalizing the description of Extl (M, M) given in section 4.3,
an element of Ext (M, M) is an equivalence class of exact sequences of A-modules

0—>M—>P —»P—> ... —+» P —>M—»0

and the algebra structure on the extension algebra is induced by concatenation of such sequences.
This extension algebra has a canonical structure of Ao.-algebra with m; = 0 and m2 he usual
multiplication.

Now, let M, ..., My be A-modules (for example, finite dimensional representations) and with
filt(M, ..., My) we denote the full subcategory of all A-modules whose objects admit finite filtra-
tions with subquotients among the M;. We have the following result, for a proof and more details
we refer to the excellent notes by B. Keller [40, §6].

Theorem 4.4 Let M = My & ... D M. The canonical A -structure on the extension algebra
Exty (M, M) contains enough information to reconstruct the category filt(Ma, ..., My).

If we specialize to the case when M is a semi-simple n-dimensional representation of A of
representation type 7 = (e1,ds;...; ek, di) say with decomposition

Me=SPo... 082
Then, the first two terms of the extension algebra Ext’ (Me, M) are
o Ext) (M, Me)

Homa(S;, S;) =
a = (61,...,ek).

= Enda(M¢) = M., (C) @ ... & M., (C) because by Schur’s lemma
0i;C. Hence, the 0-th part of Ext} (M, M) determine the dimension vector

° El‘tk(Mg,Mg) = @?,jﬂMerei (Emt}‘\(Sth)) and we have seen that dimc Emt}A(Sth) is
the number of arrows from vertex v; to v; in the local quiver Q.

Summarizing the results of the previous section, we have :

Proposition 4.7 Let £ € Smy,(A), then the first two terms of the extension algebra Ext’y (M, M)
contain enough information to determine the étale local structure of rep,, A and iss, A near M.

If one wants to extend this result to noncommutative singular points £ ¢ Sm,(A), one will have
to consider the canonical As-structure on the full extension algebra Ext) (Me, Me).
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4.3 Quiver orders
In this section and the next we will construct a large class of central simple algebras controlled by
combinatorial data, using the setting of proposition 3.3.

The description of the quiver ) can be encoded in an integral k£ x k matrix

X11 “ee X1k
xQ=|: : with  xi; = i —# { O~—O }
Xk1 “ee Xkk

Example 4.3 Consider the quiver @

2 3

Then, with the indicated ordering of the vertices we have that the integral matrix is

1 0 0
Yo=|-2 1 -1
0 0 0

and the path algebra of @ is isomorphic to the block-matrix algebra

C CeC o0
cQ' ~lo cC 0
0 Clz] Clz]

where x is the loop in vertex vs.

The subspace CQu; has as basis the paths starting in vertex v; and because CQ = ®;CQu;,
CQu; is a projective left ideal of CQ. Similarly, v;CQ has as basis the paths ending at v; and is a
projective right ideal of CQ). The subspace v;CQu; has as basis the paths starting at v; and ending
at v; and CQu;CQ is the twosided ideal of CQ having as basis all paths passing through v;. If
0# f € CQu;, and 0 # g € v;CQ, then f.g # 0 for let p be a longest path occurring in f and ¢q a
longest path in g, then the coefficient of p.q in f.g cannot be zero. As a consequence we have

Lemma 4.2 The projective left ideals CQu; are indecomposable and pairwise non-isomorphic.



188

Quiver Representations

Proof.

If CQu; is not indecomposable, then there exists a projection idempotent f €

Homcg(CQui, CQu;) ~ v;CQu;. But then, f2 = f = fw; whence f.(f — v;) = 0, contradict-
ing the remark above. Further, for any left CQ-module M we have that Homcg(CQui, M) ~ v; M.
So, if CQu; ~ CQu; then the isomorphism gives elements f € v;CQv; and g € v;CQuv; such that
f.g =wv; and g.f = v;. But then, v; € CQu;CQ), a contradiction unless ¢ = j as this space has basis
all paths passing through v;. O

Example 4.4 Let QQ be a quiver, then the following properties hold :

1.

2.

CQ is finite dimensional if and only if @ has no oriented cycles.

CQ is prime (that is, I.J # 0 for all twosided ideals I,J # 0) if and only if Q is strongly
connected, that is, for all vertices v; and v; there is a path from v; to v;.

. CQ is Noetherian (that is, satisfies the ascending chain condition on left (or right) ideals) if

and only if for every vertex v; belonging to an oriented cycle there is only one arrow starting
at v; and only one arrow terminating at v;.

. The radical of CQ has as basis all paths from v; to v; for which there is no path from v; to

Vj.

. The center of CQ is of the form Cx...xCxC[z] x...x C[z] with one factor for each connected

component C of @ (that is, connected component for the underlying graph forgetting the
orientation) and this factor is isomorphic to C[z] if and only if C' is one oriented cycle.

The Euler form of the quiver Q is the bilinear form on Z*

xa(,.) 1 ZF x 7F —~ 7 defined by xo(a,B) = a.xq.8"

for all row vectors a, 3 € ZF.

Theorem 4.5 Let V and W be two representations of Q, then

dimec Homeq(V, W) — dimc Exteq(V, W) = xq(dim(V), dim(W))

Proof. We claim that there exists an exact sequence of C-vectorspaces

v
00— Hoch(V, W) T, Dv;eqQ. HomC(Via Wl) w,

\4

ﬂ Dacq, Homc(VS<a),Wt<a)) s ExtéQ(V, W) — 0
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Here, v(¢) = (¢1,...,¢x) and dYy; maps a family of linear maps (fi,..., fi) to the linear maps
ta = fr(a)Va — Wafs(a) for any arrow a in Q, that is, to the obstruction of the following diagram
to be commutative

Va

Via) Vi)

o
Fs(a) Fi(a)

o

Wa
Wsa) — Wi

By the definition of morphisms between representations of @ it is clear that the kernel of dyy
coincides with Homcg (V, W).

Further, the map ¢ is defined by sending a family of maps (g1,...,9s) = (ga)acq, to the
equivalence class of the exact sequence

0—> W —“+E-L22vV_—»0

where for all v; € @, we have E; = W; & V; and the inclusion ¢ and projection map p are the
obvious ones and for each generator a € (), the action of a on E is defined by the matrix

Wa  ga
E, = |: 0 Va:| : Es(a) = We(a) 3] Vs(a) - Wt(a) @ ‘/t(a) = Et(a)

Clearly, this makes F into a C@Q-module and one verifies that the above short exact sequence is one
of CQ-modules. Remains to prove that the cokernel of d}y; can be identified with Ext%;Q(V, w).

A set of algebra generators of CQ is given by {v1,...,vg,a1,...,a;}. A cycle is given by a linear
map A : CQ — Homc(V, W) such that for all f, f' € CQ we have the condition

ML) = p(DAS) +M(He ()

where p determines the action on W and o that on V. First, consider v; then the condition says
A3 = Avi) = pY Mwi)+A(vi)pY whence A(v;) : Vi — W, but then applying again the condition
we see that A(v;) = 2A(vi) so A(v;) = 0. Similarly, using the condition on a = vy(qya = av,(q) we
deduce that A(a) : V@) —> Wy). That is, we can identify ®.cq,Homc(Vi(a), Wi(a)) With
Z(V,W) under the map e. Moreover, the image of § gives rise to a family of morphisms A(a) =
fra)Va — Wa fs(ay for a linear map f = (fi) : V. —— W so this image coincides precisely to the
subspace of boundaries B(V, W) proving that indeed the cokernel of dy is Ea:téQ(V, W) finishing
the proof of exactness of the long sequence of vectorspaces. But then, if dim(V') = (r1,...,rx) and
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dim(W) = (s1,...,sx), we have that dim Hom(V, W) — dim Ext'(V,W) is equal to

> dim Home(Vi,Wi) — Y dim Home(Va(a), Wica))

Vi €Qu a€Qq
= Z TiSi — Z Ts(a)St(a)
v €EQu a€Qq

=(ri,...,m6)Mg(s1,..-,81)" = xo(dim(V),dim(W))
finishing the proof. O

Fix a dimension vector a = (d1,...,dg) € N* and consider the set rep, @ of all representations
V of @ such that dim (V) = a. Because V is completely determined by the linear maps

Va: ‘/S(a) = Cds(a) s (Cdt(a) — ‘/t(a)

we see that rep, @ is the affine space

rep, Q = EB Mg, xa;(C) ~C"
where r = ZaEQa ds(a)di(a)- On this affine space we have an action of the algebraic group GL(a) =
GLg, X ...x GLg, by conjugation. That is, if g = (g1,...,9x) € GL(e) and if V = (V4)aeq, then
g.V is determined by the matrices
(g'v)a - gt(a)vag;(i)'

If V.and W in rep, @ are isomorphic as representations of @, such an isomorphism is determined
by invertible matrices g; : Vi —— W; € G'Lg, such that for every arrow we have a

commutative diagram

Vi

w, —Ye W,

or equivalently, g; Vo = Weag;. That is, two representations are isomorphic if and only if they belong
to the same orbit under GL(«). In particular, we see that

StabGL(a) V ~ A'LLtCQ 14
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and the latter is an open subvariety of the affine space Endco(V) = Homcg(V,V) whence they
have the same dimension. The dimension of the orbit O(V') of V in rep, @ is equal to

dim O(V) = dim GL(a) — dim Stabgr(a) V-

But then we have a geometric reformulation of the above theorem.

Lemma 4.3 Let V € rep, Q, then
dim rep, Q — dim O(V) = dim Endco(V) — xq(o, a) = dim Exteo(V,V)

Proof. We have seen that dim rep, Q — dim O(V) is equal to

> duaydiay — (O dF — dim Endeq(V)) = dim Endeq(V) — xa (o, @)
and the foregoing theorem asserts that the latter term is equal to dim E(L'tql:Q(‘/, V). 0

In particular it follows that the orbit O(V) is open in rep, Q if and only if V' has no self-
extensions. Moreover, as rep, @ is irreducible there can be at most one isomorphism class of a
representation without self-extensions.

For every dimension vector o = (d1,...,d;) we will construct a quiver order T,Q which is a
Cayley-Hamilton algebra of degree n where n = di + ...+ dy. First, we describe the n-dimensional
representations of the Quillen-smooth algebra Cj.

Proposition 4.8 Let Cix = Cley,. .., ek}/(ef — €, €i€j, ZLI e; — 1), then rep,, Cy is reduced and
is the disjoint union of the homogeneous varieties

rep, Cx = | JGL./(GLa, % ... x GLa,)

where the union is taken over all « = (di,...,dx) such that n =", d;.

Proof. As Cj is Quillen smooth we will see in section 4.1 that all its representation spaces rep,, Ck
are smooth varieties hence in particular reduced. Therefore, it suffices to describe the points. For
any n-dimensional representation

Cr —2+ M, (C)

the image is a commutative semi-simple algebra with orthogonal idempotents f; = ¢(e;) of rank d;.
Because >, e; =T, we must have that >, d; = n. Alternatively, the corresponding n-dimensional
representation M = @; M; where M; = e¢;C"™ has dimension d;. The stabilizer subgroup of M is
equal to GL(a) = GLg4, X ... x GLg, , proving the claim. O
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The algebra embedding Cj, _*. CQ obtained by ¢(e;) = v; determines a morphism

rep, CQ —— rep, Cr = UsO(a) = UaGL,/GL(cx)

where the disjoint union is taken over all the dimension vectors « = (d1, ..., dy) such that n = >_ d;.
Consider the point po € O(a) determined by sending the idempotents e; to the canonical diagonal
idempotents
Ef:l d;
> e € Mo(C)
J=E1 ditl

We denote by Ci(«) this semi-simple commutative subalgebra of M,(C). As rep, @ can be
identified with the variety of m-dimensional representations of C@Q in block form determined by
these idempotents we see that rep, Q = 7" (p).

We define the quiver trace algebra TQ to be the path algebra of @) over the polynomial algebra
R in the variables t, where p is a word in the arrows a; € (), and is determined only up to cyclic
permutation. As a consequence we only retain the variables ¢, where p is an oriented cycle in @
(as all the others have a cyclic permutation which is the zero element in CQ). We define a formal
trace map ¢r on TQ by tr(p) = tp if p is an oriented cycle in @ and tr(p) = 0 otherwise.

For a fixed dimension vector o = (di, . ..,dx) with >, d; = n we define T, @ to be the quotient

TQ
(x5 (@), tr(v:) — di)
by dividing out the substitution invariant twosided ideal generated by all the evaluations of the
formal Cayley-Hamilton algebras of degree n, X(n>( ) for a € TQ together with the additional
relations that tr(v;) = d;. To @ is a Cayley-Hamilton algebra of degree n with a decomposition
1=-e1 + ...+ ek into orthogonal idempotents such that tr(e;) = d;.

More generally, let A be a Cayley-Hamilton algebra of degree n with decomposition 1 = a1 +
.+ a, into orthogonal idempotents such that tr(a;) = d; € Ny and > d; = n. Then, we have

TaQ =

a trace preserving embedding Cj(a) “—— A making A into a Cx(a) = xF_,C-algebra. We have
a trace preserving embedding Cj () s M, (C) by sending the idempotent e; to the diagonal
idempotent E; € M, (C) with ones on the diagonal from position Z;;ll dj—1to > %_, di. This calls
for the introduction of a restricted representation space of all trace preserving algebra morphisms
x such that the diagram below is commutative

A X+ M,(C)

Cr(a)
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that is, such that x(a;) = F;. This again determines an affine scheme rep)*® A which is in fact
a closed subscheme of trep, A. The functorial description of the restricted module scheme is as
follows. Let C be any commutative C-algebra, then M, (C) is a Cj(«)-algebra and the idempotents
FE; allow for a block decomposition

EiM,(C)E1 ... FE1M,(C)E}\

M, (C) =& ; E:M,(C)E; = : :

ExMn(C)E: ... EnMn(C)Ex

The scheme rep.“® A assigns to the algebra C' the set of all trace preserving algebra maps

A%+ M,(B) such that ¢(a;) = E;.

Equivalently, the idempotents a; decompose A into block form A = @; ja; Aa; and then rep.®® A(C)
are the trace preserving algebra morphisms A — M, (B) compatible with the block decomposi-
tions.

Still another description of the restricted representation scheme is therefore that rep.*® A is the
scheme theoretic fiber 7! (py) of the point p, under the G'L,-equivariant morphism

trep, A —— trep, Ci(a).

Hence, the stabilizer subgroup of p acts on rep.”® A. This stabilizer is the subgroup GL(a) =
GLm, X ... %X GLy, embedded in GL, along the diagonal
GLm,
GL(a) = —— GLn.
GLm,

Clearly, GL(«) acts via this embedding by conjugation on M, (C).

Theorem 4.6 Let A be a Cayley-Hamilton algebra of degree n such that 1 = a1 + ...+ ak is a
decomposition into orthogonal idempotents with tr(a;) = m; € N4y. Then, A is isomorphic to the
ring of GL(«)-equivariant maps

rep.”® A — M,.

Proof. We know that A is the ring of GLy-equivariant maps trep, A — M,. Further, we have
a G Ln-equivariant map

trep, A —— rep,tr Cy(a) = GLn.p ~ GL,/GL(c)

Thus, the GLy-equivariant maps from trep, A to M, coincide with the Stab(p) = GL(«)-
equivariant maps from the fiber 77! (p) = rep.*® A to M,. a
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That is, we have a block matrix decomposition for A. Indeed, we have
A~ (Clrepl®® A]® M, (€)M

and this isomorphism is clearly compatible with the block decomposition and thus we have for all
i, J that
a;Aa; >~ (Clrep,” Al @ Mm,xm; (C))CL

where M, xm; (C) is the space of rectangular m; x m; matrices M with coefficients in C on which
GL(a) acts via
g.M = gngfl where g = (g1,...,9x) € GL(a).

If we specialize this result to the case of quiver orders we have
rep.” Ta@ ~ rep, Q

as GL(«a)-varieties and we deduce

Theorem 4.7 With notations as before,

1. To Q is the algebra of GL(a)-equivariant maps from rep, Q to My, that is,
Toa Q = M, (C[rep, Q])GL(Q)

2. The quiver necklace algebra
No @ = Clrep, Q]GL(Q)
is generated by traces along oriented cycles in the quiver Q of length bounded by n® + 1.
A concrete realization of these algebras is as follows. To an arrow corresponds a

d; x d; matrix of variables from Clrep, Q]

z11(a) ... ... mgq,(a)

[ -

zg;1(a) ... xdjcéi(a)

where x;;(a) are the coordinate functions of the entries of V; of a representation V' € rep, Q. Let
p = aiaz...a, be an oriented cycle in @, then we can compute the following matrix

My = M,, ... M, M,,

over C[rep, Q]. As we have that s(a,) = t(a1) = v;, this is a square d; X d; matrix with coefficients
in C[rep, Q] and we can take its ordinary trace

Tr(M,) € Clrep, Q]
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Then, N, Q is the C-subalgebra of Clrep, Q] generated by these elements. Consider the block
structure of M, (C[rep, Q]) with respect to the idempotents e;

Mg, (S) oo Mg, xa, (S)

Mdj xd; (S)

Maya; (S) Ma, (S)

where S = Clrep,, @Q]. Then, we can also view the matrix M, for an arrow as a block

matrix in M, (Clrep, Q])
0 ... ... 0

o ... ... 0

Then, To @ is the Ci(a)-subalgebra of M, (C[rep, Q]) generated by N, @ and these block matrices
for all arrows a € Q4. T, @ itself has a block decomposition

P11 oo ... Py

Py T

where P;; is the N, Q-module spanned by all matrices M, where p is a path from v; to v; of length
bounded by n?.

Example 4.5 Consider the path algebra M of the quiver which we will encounter in chapter 8 in
connection with the Hilbert scheme of points in the plane and with the Calogero-Moser system

x y

\:“/



196 Quiver Representations

and take as dimension vector a = (n,1). The total dimension is in this case @ = n + 1 and we
fix the embedding C2 = C x C —— M given by the decomposition 1 = e 4+ f. Then, the above
realization of T, M consists in taking the following 7 X 7 matrices

1 O 0 0 0 11 Tin 0
en = o= R RS Lo
1 0 0O ... 0 0 Tni ... Tpn O
0 0 0 0 0 1 0 0 0
Y11 Yin O 0 0 wu 0 0 0
Yo = | : o w = | I v = | N
Ynl -+ Ynn O 0 ... 0 un o ... 0 O
0 0 0 o ... 0 O v ... vp, O

In order to determine the ring of GL(«)-polynomial invariants of rep, M we have to consider the
traces along oriented cycles in the quiver. Any nontrivial such cycle must pass through the vertex
e and then we can decompose the cycle into factors z, y and uv (observe that if we wanted to
describe circuits based at the vertex f they are of the form ¢ = vc’u with ¢’ a circuit based at e
and we can use the cyclic property of traces to bring it into the claimed form). That is, all relevant
oriented cycles in the quiver can be represented by a necklace word w

-0

U -0

O N
/ O
O \
| w O
O /
\ O

O /

D\D/D

where each bead is one of the elements
o]— 2 @zy and V] =uv

In calculating the trace, we first have to replace each occurrence of x,y,u or v by the relevant
m X m-matrix above. This results in replacing each of the beads in the necklace by one of the
following n X n matrices

11 . Tin Y11 e Yin U1vV1 e U1Un
o)1 SCESE | -

Tpl ... Tnpn Ynl --- Ynn UpV1 ... UpUn
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and taking the trace of the n x n matrix obtained after multiplying these bead-matrices cyclically
in the indicated orientation. This concludes the description of the invariant ring N, Q. The algebra
To M of GL(«)-equivariant maps from rep, M to Mz is then the subalgebra of Mz (Clrep, M])
generated as Ca(a)-algebra (using the idempotent @ X 7 matrices corresponding to e and f) by
N, M and the 7 X m-matrices corresponding to x,y,u and v.

After these preliminaries, let us return to the local quiver setting (Qg¢, ) associated to a point
& € Smy(A) as described in the previous section. Above, we have seen that quiver necklace algebra
No Q¢ is the coordinate ring of N,/GL(«). No Q¢ is a graded algebra and is generated by all
traces along oriented cycles in the quiver Q¢. Let mo be the graded maximal ideal of N, Q¢, that
is corresponding to the closed orbit of the trivial representation. With 'I/FE (respectively I\/I;) we will
denote the mg-adic filtration of the quiver-order T, Q¢ (respectively of the quiver necklace algebra
No Q¢). Recall that the quiver-order To Q¢ has a block-decomposition determined by oriented
paths in the quiver Q¢. A consequence of the slice theorem and the description of Cayley-Hamilton
algebras and their algebra of traces by geometric data we deduce.

Theorem 4.8 Let £ € Smyp(A). Let N = tr fn A, let m be the maximal ideal of N corresponding
to £ and denote T = fn A, then we have the isomorphism and Morita equivalence

— ~ ~

Nao ~Na and To ~ Tqo

Morita

We have an explicit description of the algebras on the right in terms of the quiver setting (Qe, )
and the Morita equivalence is determined by the embedding GL(a) —— GL,,.

Let Q® be a marked quiver with underlying quiver @ and let a = (da,...,dr) be a dimension
vector. We define the marked quiver-necklace algebra N, Q° to be the ring of GL(«)-polynomial
invariants on the representation space rep, Q°, that is, N, Q° is the coordinate ring of the quotient
variety rep, Q°/GL(«). The marked quiver-order T Q° is defined to be the algebra of GL(«)-
equivariant polynomial maps from rep, Q° to My(C) where d = 3. d;. Because we can separate
traces, it follows that

Na @
(tr(ma), ... tr(m))

To Q

No Q° = (tr(ma), ..., tr(m;))

and To Q° =

where {m1,...,m;} is the set of all marked loops in Q°.

Let B be a Cayley-Hamilton algebra of degree n and let M be a trace preserving semi-simple
B-representation of type 7 = (e1, d1;. .. ; e, di) corresponding to the point £ in the quotient variety
. tr
iss;, B.

Definition 4.6 A point & € iss’" B is said to belong to the smooth locus of B iff the trace
preserving representation space trep, B is smooth in x € O(M¢). The smooth locus of the Cayley-
Hamilton algebra B of degree n will be denotes by Smy,(B).
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Applying the slice theorem to the trace preserving representation space, we obtain with the
obvious modifications in notation.

Theorem 4.9 Let £ € Smy(B) and N = tr B. Let m be the mazimal ideal of N corresponding to
&, then we have the isomorphism and Morita equivalence

—~ —~ ~ ~
N ~ N8, and Bnw ~ T
Morita

where we have an explicit description of the algebras on the right in terms of the quiver setting
(Qe, @) and where the Morita equivalence is determined by the embedding GL(ct) — GL(n).

Even if the left hand sides of the slice diagrams are not defined when £ is not contained in the
smooth locus, the dimension of the normal spaces (that is, the (trace preserving) self-extensions of
M) allow us to have a numerical measure of the 'badness’ of this noncommutative singularity.

Definition 4.7 Let A be an affine C-algebra and & € iss, A of type 7 = (e1,d1;...;ex,dr). The
measure of singularity in £ is given by the non-negative number

ms(&) =n® + dime Extly(Me, M) —ef — ... — e} — dimar, rep, A

Let B be a Cayley-Hamilton algebra of degree n and & € issl B of type T = (e1,da;. .. ; ek, dy).
The measure of singularity in £ is given by the non-negative number

ms(&) =n® + dime Extl (Mg, M¢) —el — ... — e} — dimur, trep, A
Clearly, £ € Smyn(A) (respectively, & € Smyr(B)) if and only if ms(€) = 0.
As an application to the slice theorem, let us prove the connection between Azumaya algebras

and principal fibrations. The Azumaya locus of an algebra A will be the open subset U4, of iss,, A

consisting of the points ¢ of type (1,n). Let rep, A —»» iss, A be the quotient map.

Proposition 4.9 The quotient 7= (Ua,) — Ua. is a principal PGL,-fibration in the étale
topology, that is determines an element in Hy(Ua,, PGL,,).

Proof. Let £ € Ua. and x = M¢ a corresponding simple representation. Let S, be the slice in
x for the PGLy-action on rep, A. By taking traces of products of a lifted basis from M, (C) we
find a PGLy-affine open neighborhood U of £ contained in U4, and hence by the slice result a
commuting diagram

PGLy, x Sy —2— 77 (Ue)

Sz /PGLy, Ue
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where ¢ and ¢/PGL,, are étale maps. That is, 1)/PGL, is an étale neighborhood of & over which
m is trivialized. As this holds for all points £ € Ua, the result follows. O

4.4 Simple roots

In this section we will use proposition 3.3 to construct quiver orders T, @ which determine central
simple algebras over the functionfield of the quotient variety iss. @ = rep, Q/GL(«). With
PGL(a) we denote the groupscheme corresponding to the algebraic group

PGL(a) = GL(a)/C* (Tay, - - -, Ta,,)

If C is a commutative C-algebra, then using the embedding PGL(a) > PGL,, the pointed
cohomology set
H.,(C,PGL(et)) — H/,(C,PGL,)

classifies Azumaya algebras A over C with a distinguished embedding Cx, —— A that are split by
an étale cover such that on this cover the embedding of C in matrices is conjugate to the standard
embedding Cx(a). Modifying the argument of proposition 3.3 we have

Proposition 4.10 If « is the dimension vector of a simple representation of Q, then

TaQ ®n, C(issa Q)
is a central simple algebra over the function field of the quotient variety isso Q.

Remains to classify the simple roots o, that is, the dimension vectors of simple representations
of the quiver Q. Consider the vertex set Qv = {v1,...,vx}. To a subset S —— @, we associate
the full subquiver Qs of @, that is, Qs has as set of vertices the subset S and as set of arrows

all arrows in Qq such that v; and v; belong to S. A full subquiver Qs is said to be
strongly connected if and only if for all v;,v; € V there is an oriented cycle in Qs passing through
v; and v;. We can partition

Q,=51U...U8;

such that the s, are maximal strongly connected components of Q. Clearly, the direction of
arrows in () between vertices in S; and S; is the same by the maximality assumption and can be
used to define an orientation between S; and S;. The strongly connected component quiver SC(Q)
is then the quiver on s vertices {wi1,...,ws} with w; corresponding to S; and there is one arrow
from w; to wj if and only if there is an arrow in @ from a vertex in S; to a vertex in S;. Observe
that when the underlying graph of @ is connected, then so is the underlying graph of SC(Q) and
SC(Q) is a quiver without oriented cycles.

Vertices with specific in- and out-going arrows are given names as in figure 4.7 If « = (d1, ..., dx)
is a dimension vector, we define the support of a to be supp(a) = {vi € Qv | di # 0}.
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N

source >k
prism E ; focus

Figure 4.7: Vertex terminology

//K\

Lemma 4.4 If « is the dimension vector of a simple representation of Q, then Qsuppa) 5 @
strongly connected subquiver.

Proof. 1f not, we consider the strongly connected component quiver SC(Qsupp(a)) and by assump-

tion there must be a sink in it corresponding to a proper subset S <z, Qv. If V € rep, Q we can
then construct a representation W by

e W, =V, forvieSand W; =0ifv; ¢ S,
e W, =V, for an arrow a in Qs and W, = 0 otherwise.

One verifies that W is a proper subrepresentation of V', so V' cannot be simple, a contradiction. [J

The second necessary condition involves the Euler form of Q). With ¢; be denote the dimension
vector of the simple representation having a one-dimensional space at vertex v; and zero elsewhere
and all arrows zero matrices.

Lemma 4.5 If a is the dimension vector of a simple representation of Q, then

{xcz(a,e» <0

xq(ena) <0
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for all v; € supp(a).

Proof. Let V be a simple representation of @ with dimension vector o = (d1,...,d). One verifies
that
xole,a)=di— > d
O O)

Assume that xq(€;, &) > 0, then the natural linear map

S viov—- @ v

has a nontrivial kernel, say K. But then we consider the representation W of ) determined by
o W; =K and W; =0 for all j # 1,
e W, =0forall a € Q,.

It is clear that W is a proper subrepresentation of V', a contradiction.
Similarly, assume that xo(«,€) = d; — ZC ® d; > 0, then the linear map

O v @ vi—v

has an image I which is a proper subspace of V;. The representation W of @) determined by
o Wi =1and W; =V, for j #1,
o W, =V, for all a € Q.

is a proper subrepresentation of V', a contradiction finishing the proof. 0

Example 4.6 The necessary conditions of the foregoing two lemmas are not sufficient. Consider
the extended Dynkin quiver of type Ax with cyclic orientation.

fo=o
: o
| o
BN

O~
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and dimension vector @ = (a,...,a). For a simple representation all arrow matrices must be
invertible but then, under the action of GL(«), they can be diagonalized. Hence, the only simple
representations (which are not the trivial simples concentrated in a vertex) have dimension vector

1,...,1).

Nevertheless, we will show that these are the only exceptions. A vertex v; is said to be large with
respect to a dimension vector o = (d1,...,d;) whenever d; is maximal among the d;. The vertex
v; is said to be good if v; is large and has no direct successor which is a large prism nor a direct
predecessor which is a large focus.

Lemma 4.6 Let Q be a strongly connected quiver, not of type Ax, then one of the following hold
1. Q has a good vertex, or,
2. @ has a large prism having no direct large prism successors, or

3. Q has a large focus having no direct large focus predecessors.

Proof. If neither of the cases hold, we would have an oriented cycle in @ consisting of prisms (or
consisting of focusses). Assume (v;,, ..., ;) is a cycle of prisms, then the unique incoming arrow of

v;; belongs to the cycle. As Q # Ay, there is at least one extra vertex v, not belonging to the cycle.
But then, there can be no oriented path from v, to any of the v;;, contradicting the assumption
that @ is strongly connected. O

If we are in one of the two last cases, let a be the maximum among the components of the
dimension vector « and assume that o satisfies xg(a,€) < 0 and xo(e;, @) <0 for all 1 < <k,

then we have the following subquiver in @

® ®

arge focus large prism

W

We can reduce to a quiver situation with strictly less vertices.

Lemma 4.7 Assume Q is strongly connected and we have a vertex v; which is a prism with unique
predecessor the vertex v;, which is a focus. Consider the dimension vector a = (du,...,dr) with
di =dj =a #0. Then, « is the dimension of a simple representation of Q if and only if

o =(di,...,di1,diy1,...,dp) e NF7!
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is the dimension vector of a simple representation of the quiver Q' on k — 1 wvertices, obtained from
Q by identifying the vertices v; and vj, that is, the above subquiver in Q is simplified to the one

below in Q'

<

Proof. If b is the unique arrow from v; to v; and if V' € rep_, @ is a simple representation then V; is
an isomorphism, so we can identify V; with V; and obtain a simple representation of )’. Conversely,
if V! € rep,, Q' is a simple representation, define V € rep, Q by V; = Vj and V, =V for z # 1,
Vyr =V}, for all arrows b’ # b and Vi, = 1,. Clearly, V is a simple representation of Q. O

N4

Theorem 4.10 a = (di,...,dx) is the dimension vector of a simple representation of Q if and
only if one of the following two cases holds

1. supp(a) = Ay, the extended Dynkin quiver on k wvertices with cyclic orientation and d; = 1

foralll1<i<k
(O—(Q
' O

) (D
A
O—)

2. supp(a) # Ay,. Then, supp(«) is strongly connected and for all 1 < i < k we have

{xcz(a»ez')

<0
xq(ei,a) <0

Proof. 'We will use induction, both on the number of vertices k in supp(a) and on the total
dimension n = >, d; of the representation. If supp(a) does not possess a good vertex, then the
above lemma finishes the proof by induction on k. Observe that the Euler-form conditions are
preserved in passing from Q to Q’ as d; = d;.
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Hence, assume v; is a good vertex in supp(a). If d; = 1 then all d; = 1 for v; € supp(a) and
we can construct a simple representation by taking V, = 1 for all arrows b in supp(«). Simplicity
follows from the fact that supp(«) is strongly connected.

If di > 1, consider the dimension vector o' = (di,...,di—1,di — 1,dit+1,...,dx). Clearly,
supp(a’) = supp(a) is strongly connected and we claim that the Euler-form conditions still hold
for o’. the only vertices v; where things might go wrong are direct predecessors or direct successors
of v;. Assume for one of them x¢ (e, @) > 0 holds, then

di=d> Y d,>di=di—1
@<

But then, d; = d; whence v; is a large vertex of « and has to be also a focus with end vertex v; (if
not, d; > d;), contradicting goodness of v;.

Hence, by induction on n we may assume that there is a simple representation W € rep_, Q.
Consider the space repy, of representations V € rep, @ such that V | o' = W. That is, for every
arrow

a Wa
Va=
V1 e 'Udj
U1
Vo = W, .
Udj

Hence, repy, is an affine space consisting of all representations degenerating to W & S; where S; is
the simple one-dimensional representation concentrated in v;. As xg(a',€) <0 and xg(ei,a’) <0
we have that Ext!'(W,S;) # 0 # Ext*(S;, W) so there is an open subset of representations which
are not isomorphic to W & S;.

As there are simple representations of ) having a one-dimensional component at each vertex in
supp(a) and as the subset of simple representations in rep ., @ is open, we can choose W such that
repy, contains representations V' such that a trace of an oriented cycle differs from that of W & S.
Hence, by the description of the invariant ring Clrep,, Q]GL(O‘) as being generated by traces along
oriented cycles and by the identification of points in the quotient variety as isomorphism classes
of semi-simple representations, it follows that the Jordan-Hoélder factors of V' are different from W
and S;. In view of the definition of repy,, this can only happen if V is a simple representation,
finishing the proof of the theorem. 0

Still, the central simple algebras constructed from quivers are very special examples as we will
see in section 4.6.
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4.5 Indecomposable roots

Throughout, @ will be a quiver on k vertices {v1,...,vx} with Euler form x¢. For a dimension
vector o = (di,...,dx), any V € rep, () decomposes uniquely into

V=weg.  ewd

where the W; are indecomposable representations . This follows from the fact that End(V) is finite
dimensional. Recall also that a representation W of @ is indecomposable if and only if End(W) is
a local algebra , that is, the nilpotent endomorphisms in Endcg (W) form an ideal of codimension
one. Equivalently, the maximal torus of the stabilizer subgroup Stabgr(a)(W) = Autcq(W) is
one-dimensional, which means that every semisimple element of Autcg (W) lies in C* (1, , - - ., Ty, )-
More generally, decomposing a representation V into indecomposables corresponds to choosing a
maximal torus in the stabilizer subgroup Autco(V). Let T' be such a maximal torus, we define a
decomposition of the vertexspaces

Vi = &, Vi(x) where Vilx) ={veV: | to=x{t)vVteT}

where x runs over all characters of T'. One verifies that each V(x) = ®;Vi(x) is a subrepresentation
of V giving a decomposition V = @&,V (x). Because T acts by scalar multiplication on each compo-
nent V(x), we have that C* is the maximal torus of Autcq(V (x)), whence V(x) is indecomposable.
Conversely, if V = W1 &...8& W, is a decomposition with the W; indecomposable, then the product
of all the one-dimensional maximal tori in Autco(W;) is a maximal torus of Autcgo (V).

In this section we will give a classification of the indecomposable roots , that is, the dimension
vectors of indecomposable representations. As the name suggests, these dimension vectors will form
a root system .

The Tits form of a quiver @) is the symmetrization of its Euler form, that is,

To(a, B) = xq(a, 8) + x@(8, a)

This symmetric bilinear form is described by the Cartan matriz

C11 e Clk
Co= withe;; = 26:; — # { }
Ck1 . Ckk

where we count all arrows connecting v; with v; forgetting the orientation. The corresponding
quadratic form qq(c) = 3xq(, ) on QF is defined to be

k
aQ(1,. .. k) = fo - Z Tt(a)Th(a)
i=1

a€Qq

Hence, gg(«) = dim GL(a) — dim rep, Q. With I'¢ we denote the underlying graph of Q, that
is, forgetting the orientation of the arrows. The following classification result is classical, see for
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Es o—o

o—0—60—0

Figure 4.8: The Dynkin diagrams.

example [14]. A quadratic form ¢ on Z* is said to be positive definite if 0 # o € Z* implies
qg(a) > 0. It is called positive semi-definite if g(a) > 0 for all a € ZF. The radical of q is
rad(q) = {a € Z* | T(a,—) = 0}. Recall that when @ is a connected and « > 0 is a non-zero
radical vector, then « is sincere (that is, all components of a are non-zero) and gq is positive semi-
definite. There exist a minimal dg > 0 with the property that gg(a) = 0 if and only if o € Qdgq if
and only if « € rad(qg). If the quadratic form g is neither positive definite nor semi-definite, it is
called indefinite.

Theorem 4.11 Let Q) be a connected quiver with Tits form qq, Cartan matriz Cgo and underlying
graph I'q. Then,

1. qq 1is positive definite if and only if I'qg is a Dynkin diagram , that is one of the graphs of
figure 4.8. The number of vertices is m.

2. qq is semidefinite if and only if I'q is an extended Dynkin diagram, that is one of the graphs
of figure 4.9 and d¢q is the indicated dimension vector. The number of vertices is m + 1.

Let V € rep, @ be decomposed into indecomposables
V=wleg.  owd-
If dim(W;) = v; we say that V is of type (fi,71;-.-; f2,72)-

Proposition 4.11 For any dimension vector o, there exists a unique type Tean = (€1, 01;...5¢€1, 51)
with « =Y, e3; such that the set rep, (Tcan) =

{Verep, Q | VWP a...a W, dim(W;) = i, Wi is indecomposable }
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®
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Figure 4.9: The extended Dynkin diagrams.

contains a dense open set of rep, Q.

Proof. Recall from example 2.4 that for any dimension vector 3 the subset repg"d Q of indecom-

posable representations of dimension £ is constructible. Consider for a type 7 = (f1,71,;---; f=,7=)
the subset rep, (1) =

€ re ~ D...o W2 dim(W;) = v:, W; indecomposable

V € rep, vV~ W W= dim(W;) = v, W; ind bl

then rep, (7) is a constructible subset of rep, @ as it is the image of the constructible set
GL(a) x repiﬁd QX ...x repzd Q

under the map sending (g, Wi, ..., Ws) to g.(WP" @ ... @ WP/*). Because of the uniqueness of
the decomposition into indecomposables we have a finite disjoint decomposition

rep, Q = |_| rep, (T)

and by irreducibility of rep, @ precisely one of the rep_(7) contains a dense open set of rep, Q.
O
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We call 7con the canonical decomposition of a. In the next section we will give an al-
gorithm to compute the canonical decomposition. Consider the action morphisms GL(a) X

rep, @ . rep, @. By Chevalley’s theorem 2.1 we know that the function
V — dim Stabgra)(V)

is upper semi-continuous. Because dim GL(a) = dim Stabgpa)(V) + dim O(V) we conclude that
for all m, the subset

rep,(m) ={V €rep, Q | dim O(V) > m}

is Zariski open. In particular, rep  (max) the union of all orbits of maximal dimension is open and
dense in rep, Q. A representation V € rep, @ lying in the intersection

rep,, (Tean) Nrep, (max)

is called a generic representation of dimension a.

Assume that @ is a connected quiver of finite representation type , that is, there are only a finite
number of isomorphism classes of indecomposable representations. Let a be an arbitrary dimension
vector. Since any representation of @) can be decomposed into a direct sum of indecomposables,
rep,, @ contains only finitely many orbits. Hence, one orbit O(V) must be dense and have th same
dimension as rep, @, but then

dim rep, Q =dim O(V) < dim GL(«) — 1

as any representation has C*(Ta,, ..., T, ) in its stabilizer subgroup. That is, for every a € N
we have go(a) > 1. Because all off-diagonal entries of the Cartan matrix Co are non-positive, it
follows that gg is positive definite on Z* whence I'q must be a Dynkin diagram. It is well known
that to a Dynkin diagram one associates a simple Lie algebra and a corresponding root system .
We will generalize the notion of a root system to an arbitrary quiver Q.

Let €; = (014,...,0k:) be the standard basis of QF. The Sfundamental set of roots is defined to
be the following set of dimension vectors

Fo={aeN'—0 | To(a,e) <0 and supp(a) is connected }

Recall that it follows from the description of dimension vectors of simple representations given in
section 4.4 that any simple root lies in the fundamental set.

Lemma 4.8 Let « = 1 + ...+ 3s € Fo with Bi € N* —0 for 1 < i < s > 2. If goa) >
qo(B1) + ...+ qo(Bs), then supp(c) is a tame quiver (that is, its underlying graph is an extended
Dynkin diagram) and o € Nosyupp(a)-
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Proof. Let s =2, 1 = (c1,...,ck) and B2 = (di,...,dr) and we may assume that supp(a) = Q.
By assumption T (01, 02) = qo(a) — go(B1) — qo(B2) > 0. Using that Cg is symmetric and
a = 31 + B2 we have

0<To(br,B2) = Zcijcidi
0

cid; 1 ci cj

7% 4 J\2

= E - E Cijai + - E cij(— — —%) aia;
- a; . 2 a; aj
J 1

i#j
and because Tg(a, €;) < 0 and ¢;; <0 for all ¢ # j, we deduce that
G_9 for all ¢ # j such that ¢;; # 0
a; aj
Because Q is connected, o and 31 are proportional. But then, Tg(a,€;) = 0 and hence Cga = 0.
By the classification result, gg is semidefinite whence I'g is an extended Dynkin diagram and
a € Nig. Finally, if s > 2, then

To(a,a) = ZTQ(a,ﬂi) > ZTQ(&»&')

whence T (o — 35, 3;) > 0 for some 7 and then we can apply the foregoing argument to 3; and
o — ﬁz O

Definition 4.8 If G is an algebraic group acting on a variety Y and if X —— Y is a G-stable
subset, then we can decompose X = |J, X(q) where X q4) is the union of all orbits O(x) of dimension
d. The number of parameters of X is

wX) = maz (dim X(q) — d)

where dim X(q) denotes the dimension of the Zariski closure of X(q).

In the special case of GL(a) acting on rep, @, we denote p(rep,(maz)) = po(a) and call it
the number of parameters of a. For example, if a is a Schur root, then p(o) = dim rep, Q —
(dim GL(a) — 1) =1 — go(a).

Recall that a matrix m € M, (C) is unipotent if some power m* = ,. It follows from the Jordan
normal form that GL(a) and PGL(a) = GL(a)/C”* contain only finitely many conjugacy classes
of unipotent matrices.

Theorem 4.12 If o lies in the fundamental set and supp(a) is not tame, then

po(a) = p(rep, (maz)) = p(repy™ Q) =1 —qq(a) > u(rep,(d))

ind
«a

for all d > 1 where rep.*®(d) is the union of all indecomposable orbits of dimension d.
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Proof. A representation V € rep, @ is indecomposable if and only if its stabilizer subgroup
Stabgr(ay(V) is a unipotent group , that is all its elements are unipotent elements. By proposi-

tion 4.14 we know that rep_ (maz) — rep™ Q and that pg(a) = p(rep, (maz)) = 1 — gg(a).
Denote rep,, (sub) = rep,, Q —rep,(maz). We claim that for any unipotent element u # ] we have
that

dim rep, (sub)(u) — dim cengray(u) +1 <1 —qg(a)

where rep,, (sub)(g) denotes the representations in rep, (sub) having g in their stabilizer subgroup.
In fact, for any g € GL(a) — C* we have
dim cengr(a)(g) — dim rep,(g) > qq()

Indeed, we may reduce to g being a semisimple element, see [49, lemma 3.4]. then, if « = a1+...4as
is the decomposition of a obtained from the eigenspace decompositions of g (we have s > 2 as
g ¢ C*), then

cencria)(g) = H GL(ai) and rep,(g) = H rep, (9)

whence dim cengr(a)(9) — dim rep,(g9) = Y, q9q(a:) > qq(a), proving the claim. Further, we
claim that
w(rep, (sub)) < max (dim rep, (sub)(u) — dim cengr(a)(w) + 1)

Let Z = rep, (sub) and consider the closed subvariety of PGL(a) x Z
L={(g,2) | gz=2}

Stabpgr(a)(#) X {#} and if z is indecomposable with orbit dimension
dim PGL(c) — d, whence

For z € Z we have pr;*(z)
d then dim Stabpgr(a)(2)

dim pri ' (vep"®) ) = dim (rep ™) (qy + dim PGL() —d
But then,
po(e) = max(dim (repy™)(a) — d)
= —dim PGL(a) + maz dim pri ' ((rep" ) (a))
= —dim PGL(a) + dim pri *(rep Q)

By the characterization of indecomposables, we have pr ' (rep™ Q) C pry ' (U) where U consists
of the (finitely many) conjugacy classes C, of conjugacy classes of unipotent v € PGL(«). But
then,

po(a) < —dim PGL(a) + maz dim pry *(C,)
= —dim PGL(a) 4+ mazxdim rep, (sub)(u) + dim PGL(a) — dim cenpgr(a)(w)
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proving the claim. Finally, as dim rep, (sub) — dim PGL(a) < dim rep, @ —dim GL(a) +1 <
1 — gg(c), we are done. O

We will now extend this result to arbitrary roots using reflection functors . Let v; be a source
vertez of @ and let o = (a1,...,ax) be a dimension vector such that 3, ), an() = ai, then we
can consider the subset

mono

rep, *"(i) ={V €rep, Q | ®Va:Vi —> ®¢a)=v; Vs(a) Is injective }

Clearly, all indecomposable representations are contained in repl °"°(i). Construct the reflected
quiver R;(Q obtained from ) by reversing the direction of all arrows with tail v;. The reflected

dimension vector Ryao = (r1,...,7)) is defined to be

a; if j £
ri = e - .
’ Dt(ay=i @s(a) — @i ifj =1

then clearly we have in the reflected quiver R;Q that Zh(a):i Ti(a) > Ti and we define the subset

epi

repy., (1) ={V €repp., RiQ | ®Va:®sa)=iVi(a) — Vi is surjective }

Before stating the main result on reflection functors, we need to recall the definition of the Grass-
mann manifolds.

Let k <l be integers, then the points of the Grassmannian Grassi(l) are in one-to-one corre-
spondence with k-dimensional subspaces of C'. For example, if k = 1 then Grassi(l) = Pt We
know that projective space can be covered by affine spaces defining a manifold structure on it. Also
Grassmannians admit a cover by affine spaces.

Let W be a k-dimensional subspace of C! then fixing a basis {w1,...,wg} of W determines an
k x | matrix M having as i-th row the coordinates of w; with respect to the standard basis of C'.
Linear independence of the vectors w; means that there is a barcode design I on M

wy
w
i1 ig

where [ =1 < i1 <12 < ... < i, <!such that the corresponding k X k minor My of M is invertible.
Observe that M can have several such designs.

Conversely, given a k X [ matrix M of rank k determines a k-dimensional subspace of | spanned
by the transposed rows. Two k x I M and M’ matrices of rank k determine the same subspace

=

ik



212

Quiver Representations

provided there is a basechange matrix ¢ € GLj such that gM = M’. That is, we can identify
Grassk(l) with the orbit space of the linear action of GLy by left multiplication on the open set
MF(C) of Mixi(C) of matrices of maximal rank. Let I be a barcode design and consider the
subset of Grass(l)(I) of subspaces having a matrix representation M having I as barcode design.
Multiplying on the left with MI_1 the G Ly-orbit Ops has a unique representant N with Ny = .
Conversely, any matrix N with N; = T, determines a point in Grassk(I)(I). Thus, Grass(l)(I)
depends on k(I — k) free parameters (the entries of the negative of the barcode)

wy

wp,

i1 ig e i

and we have an identification Grassy(I)(I) —— C*!=®)_ For a different barcode design I’ the
image 77 (Grassi(1)(I) N Grass(1)(I')) is an open subset of C*'~*) (one extra nonsingular minor
condition) and 7/ o 71';1 is a diffeomorphism on this set. That is, the maps 7; provide us with an
atlas and determine a manifold structure on Grassi(l).

Theorem 4.13 For the quotient Zariski topology, we have an homeomorphism
rep,, " (i)/GL(c) — repih, (i)/GL(Rr)

such that corresponding representations have isomorphic endomorphism rings.

In particular, the number of parameters as well as the number of irreducible components of
mazimal dimension coincide for (rep™ Q) and repﬁ%‘i RiQ)ay for all dimensions d.
Proof.  Let m = 37, ,\_, @i, T€p = ®i(ayziMa,(,)xa,,, (C) and GL = [1,i GLa;. We have the
following isomorphisms

rep” " (i)/GLa; — Tep X Gassa, (m)

defined by sending a representation V' to its restriction to 7ep and im @®(4)=: Va. In a similar way,
sending a representation V' to its restriction and ker ®s)=: Va we have

rep;iia (Z)/GLH i’ @ X GTG/SSCH (m)

But then, the first claim follows from the diagram of figure 4.10. If V € rep, Q and V' €
repr,, [iQ with images respectively v and v' in Tep x Grass,,;(m), we have isomorphisms

Stabarer, (V) — Stabgr(v)
Stabar g, (V') —» Stabgr(v')
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rep, (i) repiy, (i)
rep.*"’(i)/GL() rep‘;‘%pla )/GL(R;)
/GL 7ep X Grassa; (m)
/ \ |
repr"O( LT A R — > repil” (i)/GL(Ri)

Figure 4.10: Reflection functor diagram.

from which the claim about endomorphisms follows. a

A similar results holds for sink vertices, hence we can apply these Bernstein-Gelfand- Ponomarev
reflection functors iteratively using a sequence of admissible vertices (that is, either a source or a
sink).

To a vertex v; in which Q has no loop, we define a reflection Z* ozk by
ri(a) =a—To(a, &)

The Weyl group of the quiver @ Weylg is the subgroup of GLk(Z) generated by all reflections r;.
A root of the quiver Q is a dimension vector o € N*¥ such that rep,  contains indecomposable
representations. All roots have connected support. A root is said to be

real if M(repmd Q)=0
imaginary  if p(rep™ Q) > 1

For a fixed quiver @ we will denote the set of all roots, real roots and imaginary roots respectively
by A, Aye and A;,,. With IT we denote the set {¢; | wv; has noloops }. the main result on
indecomposable representations is due to V. Kac .
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Theorem 4.14 With notations as before, we have

1. Ave =Weylg IIN N* and if a € Aye, then repi"d Q is one orbit.
2. Ny, = Weyl.Fg N N* and if @ € Ajp, then
ind

pe(a) = p(repy Q) =1 — qo(a)

For a sketch of the proof we refer to [28, §7], full details can be found in the lecture notes [49].

4.6 Canonical decomposition

In this section we will determine the canonical decomposition. We need a technical result.

Lemma 4.9 Let W —= W' be an epimorphism of CQ-representations. Then, for any CQ-
representation V. we have that the canonical map

Extiq(V,W) —» Extio(V,W')

is surjective. If W —— W' is a monomorphism of CQ-representations, then the canonical map
Exttq(W', V) —s» Extio(W,V)

18 surjective.

Proof. From the proof of theorem 4.5 we have the exact diagram

\%4
&  Home(Vi,Wi) % &  Home(Vi(ay, Wea)) — Batio(V,W)

0
v; €EQu a€Qa .
v v
® Homc(Vi,W)) % @ Home(Viay, Witay) — Eateo(V,W') —— 0
v; €EQu a€Qq
and applying the snake lemma gives the result. The second part is proved similarly. 0

Lemma 4.10 If V =V'@® V" € rep,(maz), then Extio(V', V") = 0.

Proof. Assume Ext'(V',V?”) # 0, that is, there is a non-split exact sequence

0— V' — W — V' —» 0

then it follows from section 2.3 that O(V) C O(W) — O(W), whence dim O(W) > dim O(V)
contradicting the assumption that V € rep_(mazx). O
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Lemma 4.11 If W, W’ are indecomposable representation with E:ctéQ(VV, W’) =0, then any non-

zero map W' s Wisan epimorphism or a monomorphism. In particular, if W is indecomposable
with Exttq(W, W) =0, then Endco(W) ~ C.

Proof. Assume ¢ is neither mono- nor epimorphism then decompose ¢ into
W 5 Ut W
As € is epi, we get a surjection from lemma 4.9
Exttq(W/U,W') —s» Eaxtto(W/U,U)

giving a representation V fitting into the exact diagram of extensions

’

0 N /N, Ve - WU 0
€ e id
0 - U W - WU 0

from which we construct an exact sequence of representations

B

0— W =—53UosV

n €]

W —20

This sequence cannot split as otherwise we would have W & W' ~ U @ V contradicting uniqueness
of decompositions, whence E:ctéQ (W,W') # 0, a contradiction.

For the second part, as W is finite dimensional it follows that Endco (W) is a (finite dimensional)
division algebra whence it must be C. |

Definition 4.9 A representation V € rep, Q is said to be a Schur representation if Endcg (V) =
C. The dimension vector a of a Schur representation is said to be a Schur root .

Theorem 4.15 « is a Schur root if and only if there is a Zariski open subset of rep, @Q consisting
of indecomposable representations.

Proof. If V € rep, Q is a Schur representation, V' € rep, (max) and therefore all representations
in the dense open subset rep, (maz) have endomorphism ring C and are therefore indecomposable.
Conversely, let Ind — rep,, @) be an open subset of indecomposable representations and assume
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that for V' € Ind we have Stabgr(a)(V) # C* and consider ¢o € Stabgr(a)(V) — C*. For any
g € GL(«) we define the set of fized elements

rep, (9) ={W €rep, Q | gW =W}
Define the subset of GL(a)
S ={g9g€GL(a) | dim rep,(g9) = dim rep,_ (¢o)

which has no intersection with C* (T4, , . .. /ﬂdk) as ¢o ¢ C*. Consider the subbundle of the trivial
vectorbundle over S

B={(s,W)€Sxrep, Q | sW=W} > Sxrep, Q —> S

As all fibers have equal dimension, the restriction of p to B is a flat morphism whence open . In
particular, the image of the open subset BN S x Ind

S'={gesS | Welnd : gW =W}

is an open subset of S. Now, S contains a dense set of semisimple elements, see for example [49,
(2.5)], whence so does S" = UwernaEndeco(W) N S. But then one of the W € Ind must have a
torus of rank greater than one in its stabilizer subgroup contradicting indecomposability. O

Schur roots give rise to principal PGL(a) = GL(«)/C*-fibrations, and hence to quiver orders
and division algebras.

Proposition 4.12 If a = (a1,...,ax) is a Schur root, then there is a GL(«a)-stable affine open
subvariety Uy of rep, Q such that generic orbits are closed in U.

Proof. Let Ty = C* x...xC”" the k-dimensional torus in GL(«). Consider the semisimple subgroup
SL(a) = SLay X ... x SLq, and consider the corresponding quotient map

rep, @ e rep, Q/SL(a)

As GL(a) = Tk SL(e), Tk acts on rep, Q/SL(«) and the generic stabilizer subgroup is trivial by
the Schurian condition. Hence, there is a Tj-invariant open subset Uy of rep, @/SL(«a) such that
Ty-orbits are closed. But then, according to [41, §2, Thm.5] there is a Ty-invariant affine open Us
in U;. Because the quotient map 15 is an affine map, U = v; *(Uz) is an affine GL(«a)-stable open
subvariety of rep, Q. Let = be a generic point in U, then its orbit

O(e) = GL(a).x = TuSL(a).x = Ti(6  (4a(2))) = 05 (Thbu ()

is the inverse image under the quotient map of a closed set, hence is itself closed. O
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If we define T, @ to be the ring of GL(a)-equivariant maps from U, to M,(C), then this
Schurian quiver order has simple a-dimensional representations. Then, extending the argument
of proposition 4.9 we have that the quotient map rep, @ — iss, @ is a principal PGL(«)-
fibration in the étale topology over the Azumaya locus of the Schurian quiver order T}, Q. Recall
that H., (X, PGL(«a)) classifies twisted forms of M, (C) (where n =", a;) as Ci-algebra. That is,
Azumaya algebras over X with a distinguished embedding of Cj that are split by an étale cover
on which this embedding is conjugate to the standard a-embedding of Cj in M, (C). The class in
the Brauer group of the functionfield of iss, T;, @ determined by the quiver order T, @ is rather
special.

Proposition 4.13 If a« = (a1,...,ax) is a Schur root of Q such that ged(ai,...,ar) = 1, then
TZ Q determines the trivial class in the Brauer group.

Proof. Let A be an Azumaya localization of T;, Q. By assumption, the natural map between the
K-groups Ko(Cr) — Ko(My(C)) is surjective, whence the same is true for A proving that the
class of A is split by a Zariski cover, that is rep, Q ~ X x PGL(«) where X = iss, A. O

Proposition 4.14 If a lies in the fundamental region Fgo and supp(a) is not a tame quiver. then,
« is a Schur root.

Proof. Let o = 1 + ...+ Bs be the canonical decomposition of « (some 3; may occur with higher
multiplicity) and assume that s > 2. By definition, the image of

GL(a) x (repg, Q@ X ... x repy Q) _®. rep, Q

is dense and ¢ is constant on orbits of the free action of GL(a) on the left hand side given by
h.(g,V) = (gh~ ', h.V). But then,

dim GL(o) + Z dim repg, Q — Z dim GL(B;) > dim rep, Q
whence qg(a) > >, 9@ (8:) and lemma 4.8 finishes the proof. O
Next, we want to describe morphisms between quiver-representations. Let o = (a1, ..., ax) and
B =(b1,...,bx) and V € rep, Q, W € rep; Q. Consider the closed subvariety
Homg(a, ) &> Ma;xb;y @ ... ® Mayxp, ®rep, Q ®reps Q
consisting of the triples (¢, V, W) where ¢ = (¢1,...,¢r) is a morphism of quiver-representations

V. —— W. Projecting to the two last components we have an onto morphism between affine
varieties

Homg(a, B) L rep, Q G rep; Q
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In theorem 2.1 we have proved that the dimension of fibers is an upper-semicontinuous function.
That is, for every natural number d, the set

{® € Homg(o, B) | dimae h™ " (h(®)) < d}

is a Zariski open subset of Homg(a, 8). As the target space rep, Q & rep; Q is irreducible, it
contains a non-empty open subset hommi, where the dimension of the fibers attains a minimal
value. This minimal fiber dimension will be denoted by hom(a, 3).

Similarly, we could have defined an affine variety Eztg(a,3) where the fiber over a point
(V,W) € rep, Q @ repy Q is given by the extensions Extio(V,W). If xq is the Euler-form
of @ we recall that for all V' € rep, Q and W € rep; ) we have

dimec Homeg(V, W) — dimc Emtb(V, W) = xo(a, )

Hence, there is also an open set extmin of rep, @ @ reps; () where the dimension of Ext'(V,W)
attains a minimum. This minimal value we denote by ext(c, 3). As homminNeTtmin is a non-empty
open subset we have the numerical equality

hom(a, B) — ext(a, B) = xq(a, B).

In particular, if hom(a, a+ 3) > 0, there will be an open subset where the morphism V' e Wis
a monomorphism. Hence, there will be an open subset of rep,, ) @ consisting of representations
containing a subrepresentation of dimension vector a. We say that « is a general subrepresentation
of a+ (8 and denote this with a < a+ 3. We want to characterize this property. To do this, we
introduce the quiver-Grassmannians

k
Grassa(a+ ) = H Grassa, (a; + b;)

=1

which is a projective manifold.
Consider the following diagram of morphisms of reduced varieties

rep, 5 @

A

pr1

repi”’ Q —— rep,, 5 Q@ X Grassa (a+B)

Y

Grasso(a+ )
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with the following properties

e rep, 5 QX Grassa (a4 B) is the trivial vectorbundle with fiber rep, 5 ( over the projective
smooth variety Grassqs(a + 3) with structural morphism prs.

. repg‘+ﬂ Q is the subvariety of rep,, 5 @ X Grassa(a+ 3) consisting of couples (W, V) where
V is a subrepresentation of W (observe that this is for fixed W a linear condition). Be-
cause GL(a + (3) acts transitively on the Grassmannian Grassa(a + ) (by multiplication on
the right) we see that rep®™ @ is a sub-vectorbundle over Grasss(a + () with structural
morphism p. In particular, repi“’ Q is a reduced variety.

e The morphism s is a projective morphism, that is, can be factored via the natural projection

rep, 5 @ X PV

S
repZ'w Q ——>rep,.;5 @

where f is the composition of the inclusion repi*ﬁ Q — rep,, 45 Q x Grasso(a+ () with
the natural inclusion of Grassmannians in projective spaces recalled in the previous section
Grassa(a+ B8) — HLI P™ with the Segre embedding Hle P* —— P¥. In particular,
s is proper by [33, Thm. I1.4.9], that is, maps closed subsets to closed subsets.

We are interested in the scheme-theoretic fibers of s. If W € rep,, 5 @ lies in the image of s, we

denote the fiber s~ (W) by Grass.(W). Its geometric points are couples (W, V) where V is an
a-dimensional subrepresentation of W. Whereas Grass. (W) is a projective scheme, it is in general
neither smooth, nor irreducible nor even reduced. Therefore, in order to compute the tangent
space in a point (W, V) of Grass.(W) we have to clarify the functor it represents on the category
commalg of commutative C-algebras.

Let C be a commutative C-algebra, a representation R of the quiver ) over C' consists of a
collection R; = P; of projective C-modules of finite rank and a collection of C-module morphisms
for every arrow a in @

Re p =R,

Rj = Pj
The dimension vector of the representation R is given by the k-tuple (rkc Ri,...,7kc Ri). A
subrepresentation S of R is determined by a collection of projective sub-summands (and not merely
sub-modules) S; <R;. In particular, for W € rep, s @ we define the representation We of @ over
the commutative ring C by

We)i =C&cW;
(WC)a =idc ®c W,
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With these definitions, we can now define the functor represented by Grass.(W) as the functor
assigning to a commutative C-algebra C' the set of all subrepresentations of dimension vector a of
the representation We.

Lemma 4.12 Let z = (W, V) be a geometric point of Grass. (W), then

T, Grassq (W) = Homeg(V, 7)

Proof. The tangent space in = (W, V') are the Cle]-points of Grass, (W) lying over (W, V). To
start, let V . % be a homomorphism of representations of () and consider a C-linear lift of this

map ¢ : V. —— W. Consider the C-linear subspace of Weig = Cle] ® W spanned by the sets

{v+e@y@W) | veV} and e®V

This determines a Cle]-subrepresentation of dimension vector a of Wg( lying over (W, V) and is

independent of the chosen linear lift 1.

Conversely, if S is a C[e]-subrepresentation of W lying over (W, V), then = =V < W. But
then, a C-linear complement of €S is spanned by elements of the form v+e(v) where ¥(v) € W and
€ ® 1 is determined modulo an element of e ® V. But then, we have a C-linear map 1[1 'V

- v
and as S is a Cle]-subrepresentation, ¢ must be a homomorphism of representations of Q. 0

Theorem 4.16 The following are equivalent
1. a & a+ 0.
2. Ewvery representation W € rep, . 5 Q has a subrepresentation V of dimension a.

3. ext(a, B) = 0.

Proof. Assume 1. , then the image of the proper map s : repi*ﬁ Q — rep,,; ( contains
a Zariski open subset. As properness implies that the image of s must also be a closed subset of
rep, s @ it follows that Im s = rep,,; @, that is 2. holds. Conversely, 2. clearly implies 1. so
they are equivalent.

We compute the dimension of the vectorbundle rep?™ Q over Grassa(a + 3). Using that the
dimension of a Grassmannians Grass (1) is k(I —k) we know that the base has dimension 3% | a;b;.
Now, fix a point V & W in Grass.(a + 3), then the fiber over it determines all possible ways
in which this inclusion is a subrepresentation of quivers. That is, for every arrow in @ of the form
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we need to have a commuting diagram
Vi

Wi

W;

Here, the vertical maps are fixed. If we turn V' € rep, @, this gives us the a;a; entries of the
upper horizontal map as degrees of freedom, leaving only freedom for the lower horizontal map

determined by a linear map % —— W;, that is, having b;(a; + b;) degrees of freedom. Hence,

the dimension of the vectorspace-fibers is

> (aia; +bi(a; +b;))

giving the total dimension of the reduced variety rep§+ﬁ Q. But then,

k
dim rep® ™ Q — dim Tep, 5 Q@ = Zaibi + Z (aiaj + bi(aj +b;))
i=1

= > (ai+bi)(a;+by)
,
=Y aibi— Y aibj=xo(af)
i=1

Assume that 2. holds, then the proper map repi*ﬁ O TeP, g Q is onto and as both varieties
are reduced, the general fiber is a reduced variety of dimension x¢q(a, 3), whence the general fiber
contains points such that their tangentspaces have dimension xg(«,3). By the foregoing lemma
we can compute the dimension of this tangentspace as dim Homcq(V, ¥ ). But then, as

xq(a, B) = dimc Homeg(V, %) — dime¢ Extig(V, %)
it follows that Ext!(V,
vector 3. But then, ext

<=

) = 0 for some representation V' of dimension vector o and ¥ of dimension
a,3) = 0, that is, 3. holds.

A~
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Conversely, assume that ext(a, ) = 0. Then, for a general point W € rep,, s @ in the image
of s and for a general point in its fiber (W, V) € rep®™ @ we have dimc Exttq(V, ) = 0 whence

dimc Homeq(V, %) = xq(c, B). But then, the general fiber of s has dimension xq (e, 8) and as
this is the difference in dimension between the two irreducible varieties, the map is generically onto.
Finally, properness of s then implies that it is onto, giving 2. and finishing the proof. O

Proposition 4.15 Let o be a Schur root such that xo(a,a) < 0, then for any integer n we have
that na is a Schur root.

Proof. There are infinitely many non-isomorphic Schur representations of dimension vector a. Pick
n of them {W1,...,W,} and from xq(a, ) < 0 we deduce

Hom(cQ(Wi, WJ) = 5”(: and E.’Et(lcQ (Wz, Wj) 7é 0

By lemma 4.9 we can construct a representation V,, having a filtration

o=VycCcWVicC...CcV, with Vi ~ W;
Vi1

and such that the short exact sequences 0 — V;_1 —— V; —— W; —— 0 do not split. By
induction on n we may assume that Endcg(Vs—1) = C and we have that Homcg(Vo—1, W) = 0.
But then, the restriction of any endomorphism ¢ of V,, to V,,—1 must be an endomorphism of V,,_1
and therefore a scalar 1. Hence, ¢—XT € Endcg(Vy) is trivial on V,—1. As Homeg(Wa, Vim1) = 0,
Endcgo(Wy,) = C and non-splitness of the sequence 0 —— Vj,oq —— V, —— W, —— 0 we
must have ¢ — X = 0 whence Endcg(V,) = C, that is, na is a Schur root. O

We say that a dimension vector « is left orthogonal to 8 if hom(a, 3) = 0 and ext(«, 8) = 0.

Definition 4.10 An ordered sequence C = (B1,...,08s) of dimension vectors is said to be a com-
partment for @ if and only if

1. for all i, B; is a Schur root,

2. for ali < j, B is left orthogonal to (;,

3. for all i < j we have xq(B;,3:) > 0.
Theorem 4.17 Suppose that C = (B1,...,Bs) is a compartment for Q and that there are non-
negative integers ei,...,es such that o = ei1f51 + ... + esfBs. Assume that e, = 1 whenever

XxQ(Bi, Bi) < 0. Then,
Tean = (61,ﬂ1; R esaﬁs)

is the canonical decomposition of the dimension vector c.
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Proof. Let V be a generic representation of dimension vector o with decomposition into indecom-
posables
V=W&"q...eoWws>  with dim(W;) =0

we will show that (after possibly renumbering the factors (51, ..., 8s) is a compartment for Q. To
start, it follows from lemma 4.10 that for all i # j we have Ext{o (Wi, W;) = 0. From lemma 4.11
we deduce a partial ordering ¢ — j on the indices whenever Homcg(W;, W;) # 0. Indeed, any
non-zero morphism W; —— W; is either a mono- or an epimorphism, assume W; —» W, then
there can be no monomorphism W; —— W}, as the composition W; —— W} would be neither
mono nor epi. That is, all non-zero morphisms from W; to factors must be (proper) epi and we
cannot obtain cycles in this way by counting dimensions. If W; —— W}, a similar argument
proves the claim. From now on we assume that the chosen index-ordering of the factors is (reverse)
compatible with the partial ordering ¢ — j, that is Hom(W;, W;) = 0 whenever i < j, that is, §;
is left orthogonal to 3; whenever i < j. As Extto(W;, W;) = 0, it follows that xo(8;, 3:;) > 0. As
generic representations are open it follows that all rep;. @ have an open subset of indecomposables,
proving that the (; are Schur roots. Finally, it follows from proposition 4.15 that a Schur root (;
with xq (08, 8;) can occur only with multiplicity one in any canonical decomposition.

Conversely, assume that (81,...,08s) is a compartment for @, o = Y, e;3; satisfying the re-
quirements on multiplicities. Choose Schur representations W; € repg, Q, then we have to prove
that

V=wPrg. owd

is a generic representation of dimension vector a. In view of the properties of the compartment we
already know that Extto (Wi, W;) =0 for all i < j and we need to show that Extt (W, W;) = 0.
Indeed, if this condition is satisfied we have

dim rep, Q — dim O(V) = dimcExt"(V,V)
= Ze?dimcExt (W;, Ws) Zel (1 —qq(B:)

We know that the Schur representations of dimension vector 3; depend on 1—qg(0;) parameters by
Kac s theorem 4.14 and e; = 1 unless g (8;) = 1. Therefore, the union of all orbits of representations
with the same Schur-decomposition type as V' contain a dense open set of rep, @ and so this must
be the canonical decomposition.

If this extension space is nonzero, Homco(Wj, W;) # 0 as xq@(B;,08:;) > 0. But then by
lemma 4.11 any non-zero homomorphism from Wj; to W; must be either a mono or an epi. As-
sume it is a mono, so B; < (i, so in particular a general representation of dimension 3; contains
a subrepresentation of dimension 3; and hence by theorem 4.16 we have ext(3;,3; — 8;) = 0.
Suppose that 3; is a real Schur root, then Ewzttg(W;, W;) = 0 and therefore also ext(S3;, 3;) = 0
as Extlo(W;, W; @ (W;/W;)) = 0. If B8 is not a real root, then for a general representation
S e repg, Q take a representation R € reps @ in the open set where Extto(S,R) = 0, then

there is a monomorphism S & R. Because Ext{q(S,S) # 0 we deduce from lemma 4.9 that
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Extto(R,S) # 0 contradicting the fact that ext(8;, 3;) = 0. If the nonzero morphism W; — W;
is epi one has a similar argument. O

This result can be used to obtain a fairly efficient algorithm to compute the canonical decomposi-
tion in case the quiver @ has no oriented cycles. Fortunately, one can reduce the general problem to
that of quiver without oriented cycles using the bipartite double Q° of Q. We double the vertex-set
of @ in a left and right set of vertices, that is

b l !
Qv = {’Ul,...,'Uk,’U;,...,’UZ}

To every arrow a € Qq from v; to v; we assign an arrow a € Q" from v! to v;. In addition, we have
for each 1 < i < k one extra arrow ¢ in Q% from v} to v]. If & = (a1, ..., ax) is a dimension vector
for Q, the associated dimension vector & for Q° has components

d:(al,...,ak,al,...,ak).

Example 4.7 Consider the quiver @ and dimension vector o = (a,b) on the left hand side, then

x y

/} ) /N
o —
the bipartite quiver situation Q° and & is depicted on the right hand side.

If the canonical decomposition of « for Q is Tecan = (€1, 01;...;€s,0s), then the canonical de-
composition of & for Q° is (e1,B1;-..;es,0s) as for a general representation of Q" of dimension
vector & the morphisms corresponding to 7 for 1 < i < k are all invertible matrices and can be
used to identify the left and right vertex sets, that is, there is an equivalence of categories between
representations of Q” where all the maps 7 are invertible and representations of the quiver Q. That
is, the algorithm below can be applied to (Qb @) to obtain the canonical decomposition of a for an
arbitrary quiver Q.

Let Q be a quiver without oriented cycles then we can order the vertices {v1,..., v} such that
there are no oriented paths from v; to v; whenever ¢ < j (start with a sink of @, drop it and
continue recursively). For example, for the bipartite quiver Q° we first take all the right vertices
and then the left ones.
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input : quiver @, ordered set of vertices as above, dimension vector @ = (a1,...,ax) and type
7= (a1,V1;...;ak, Vi) where v; = (§;5); = dim v; is the canonical basis. By the assumption on the
ordering of vertices we have that 7 is a good type for a. We say that a type (f1,71;...; fs,7s) Is a
good type for a if & =", fiyi and the following properties are satisfies

1. f; >0 for all 4,

2. ~y; is a Schur root,

3. for each i < j, 7; is left orthogonal to v;,
4. f; = 1 whenever x¢(7vi,7:) < 0.

A type is said to be excellent provided that, in addition to the above, we also have that for all
1 < 7, xo(aj,a;) > 0. In view of theorem 4.17 the purpose of the algorithm is to transform the
good type 7 into the excellent type Teqn. We will describe the main loop of the algorithm on a
good type (fi,71;- .- fs,Vs)-

step 1 : Omit all couples (fi,7;) with f; = 0 and verify whether the remaining type is excellent. If
it is, stop and output this type. If not, proceed.

step 2 : Reorder the type as follows, choose ¢ and j such that 7 — 4 is minimal and x¢(8;, 58:;) < 0.
Partition the intermediate entries {i + 1,...,j — 1} into the sets

o {ki,...,kq} such that xo(vj, Vk..) =0,
e {l1,...,lp} such that xo(v5,Vi,,) > 0.
Reorder the couples in the type in the sequence
(1,0 — 1 k1, .oy kayty gy b1y oo sl +1,..0,8)

define u =i, v ="y, p= fi, ¢ = f;, ( = pp + qv and t = —xq (v, p), then proceed.
step 3 : Change the part (p, u; q,v) of the type according to the following scheme

e If 11 and v are real Schur roots, consider the subcases

1. x@(¢,¢) > 0, replace (p, u,q,v) by (p',1';¢';v") where v/ and v/ are non-negative com-
binations of v and p such that p’ is left orthogonal to v/, xqo(v/,/) = t > 0 and
¢ =p'p + q'v' for non-negative integers p’, ¢’

2. xq(¢,¢) = 0, replace (p, u;q,v) by (k,(’) with ¢ = k¢', k positive integer, and ¢’ an
indivisible root.

3. xa(¢,¢) <0, replace (p, u; q,v) by (1,¢).

e If i is a real root and v is imaginary, consider the subcases

L. If p+qxq(v, 1) > 0, replace (p, pu;q,v) by (q,v — xQ (v, )10 + qxq (v, 1), 11).
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2. If p+ gxq(v,n) <0, replace (p, u;q,v) by (1,Q).

e If 11 is an imaginary root and v is real, consider the subcases

1. If ¢+ pxq(v, 1) > 0, replace (p, u; q,v) by (¢4 pxe W, 1), v; v, 1t — xQ (v, w)v).
2. If g+ pxq(v, 1) <0, replace (p, p; q,v) by (1,0).

e If 4 and v are imaginary roots, replace (p, u; q,v) by (1,().
then go to step 1.

One can show that in every loop of the algorithm the number ), f; decreases, so the algorithm
must stop, giving the canonical decomposition of a. A consequence of this algorithm is that r(a) +
2i(a) < k where () is the number of real Schur roots occurring in the canonical decomposition of
a, i(a) the number of imaginary Schur roots and k the number of vertices of Q. For more details
we refer to [24].

4.7 General subrepresentations

Often, we will need to determine the dimension vectors of general subrepresentations . It follows
from theorem 4.16 that this problem is equivalent to the calculation of ext(c,3). An inductive
algorithm to do this was discovered by A. Schofield [73].

Recall that o —— (3 iff a general representation W € repg; @ contains a subrepresentation
S —— W of dimension vector a. Similarly, we denote 3 — ~ if and only if a general repre-
sentation W € rep; @ has a quotient-representation W —s T of dimension vector 7. As before,
Q@ will be a quiver on k-vertices {vi,...,v;x} and we denote dimension vectors a = (a1, ...,ax),
B=(bi,...,br) and v = (c1,...,ck). We will first determine the rank of a general homomorphism
V' —— W between representations V € rep, ) and W € rep; (). We denote

Hom(a, B) = @f:leixai and Hom(V,3) = Hom(a, 8) = Hom(a, W)
for any representations V' and W as above. With these conventions we have
Lemma 4.13 There is an open subset Homy, (c, 3) — rep,, @ xrep; Q and a dimension vector
5y ©ork hom(a, B) such that for all (V,W) € Hommin(c, 3)
o dimc Homcg(V, W) is minimal, and

e {¢p € Homeq(V,W) | rk ¢ =~} is a non-empty Zariski open subset of Homcg(V,W).
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Proof. Consider the subvariety Homg/(a, 3) of the trivial vectorbundle

Homg(a, ) > Hom(a,§) x rep, Q x rep, Q

rep, @ X repg Q

of triples (¢, V,W) such that V' e Wisa morphism of representations of ). The fiber
O~ (V,W) = Homcg(V,W). As the fiber dimension is upper semi-continuous, there is an open
subset Hommin(a, B) of rep, @ X repy Q consisting of points (V, W) where dimc¢ Homcq(V, W)
is minimal. For given dimension vector § = (d1, ..., dr) we consider the subset

Homg(a, 8,6) = {(¢,V,W) € Homq(a,3) | rk ¢ =} — Homg(a, )

This is a constructible subset of Homg(«, ) and hence there is a dimension vector v such that
Homg (o, B,7) N O (Hommin(a, B)) is constructible and dense in &~ (Hommin(c, 3)). But then,

d(Homg(a, B,7) N® " (Hommin(a, B)))

is constructible and dense in Homumin(V, W). Therefore it contains an open subset Hom, (V, W)
satisfying the requirements of the lemma. a

Lemma 4.14 Assume we have short exact sequences of representations of Q

O—Y —> W —T—0

{ 0O—S—>V —>X —0

then there is a natural onto map
Extiq(V,W) —» Extio(S,T)
Proof. By lemma 4.9 we have surjective maps
Extto(V,W) —= Extio(V,T) —= Exttqg(S,T)

from which the assertion follows. |

Theorem 4.18 Let v = rk hom(a, 3) (with notations as in lemma 4.13), then

La-y~—>a—=>7~—>f3—>fF—1vy
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2. ext(a,B) = —xqla—~,8—7) =ext(a—~,8—7)

Proof. The first statement is obvious from the definitions, for if v = rk hom(a, 3), then a general
representation of dimension a will have a quotient-representation of dimension 7 (and hence a
subrepresentation of dimension a — ) and a general representation of dimension 3 will have a
subrepresentation of dimension v (and hence a quotient-representation of dimension 3 — ~.

The strategy of the proof of the second statement is to compute the dimension of the subvariety
of Hom(c, B) x rep, x repy X rep,, defined by

%4 - W

HTetr = {(¢,V, W, X)) | factors as representations }

X=1Imé¢

in two different ways. Consider the intersection of the open set Homm(a,3) determined by
lemma 4.13 with the open set of couples (V,W) such that dim Ext(V,W) = ext(a, ) and let
(V, W) lie in this intersection. In the previous section we have proved that

dim Grassy(W) = xq(7.6 —7)
Let H be the subbundle of the trivial vectorbundle over Grass, (W)

H <~ Hom(a, W) x Grass. (W)

Grass. (W)

consisting of triples (¢, W, U) with ¢ : ®;C®* —— W a linear map such that Im(¢) is contained
in the subrepresentation U —— W of dimension 7. That is, the fiber over (W,U) is Hom(c,U)

and therefore has dimension Zi;l aic;. With Hf* we consider the open subvariety of H of triples
(¢, W, U) such that Im ¢ = U. We have

k
dim H™" = Zai&; +xo(v,8—7)

=1
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But then, H7?¢*" is the subbundle of the trivial vectorbundle over H/*!

Hfacto'r c rep, Q % Hfull

il

consisting of quadruples (V, ¢, W, X) such that V' . W is a morphism of representations, with
image the subrepresentation X of dimension . The fiber of 7 over a triple (¢, W, X) is determined

by the property that for each arrow the following diagram must be commutative,
where we decompose the vertex spaces V; = X; @ K; for K = Ker ¢

o )

X; 0 K,

X

where A is fixed, giving the condition B = 0 and hence the fiber has dimension equal to

D ai—c)la—e)+ Y clag—e)= Y aila; —c)

This gives our first formula for the dimension of Hfector

k
HI* =N "aiei+ xo(n, 8-+ >, aila; —c)
i=1
On the other hand, we can consider the natural map H¥acto" 2, rep, @ defined by sending

a quadruple (V,¢, W, X) to V. the fiber in V is given by all quadruples (V,®, W, X) such that

1% 2. W is a morphism of representations with Im ¢ = X a representation of dimension vector
v, or equivalently

V) ={V 2o W | rk ¢ =~}
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Now, recall our restriction on the couple (V, W) giving at the beginning of the proof. There is an
open subset max of rep, @ of such V and by construction mazx —— Im @, <I>71(max) is open
and dense in Hf%“*°" and the fiber ®~!(V) is open and dense in Homcg(V, W). This provides us
with the second formula for the dimension of HYacto"

dim H?*"" = dim rep, Q + hom(a,W) = Z aja; + hom(a, 3)

Equating both formulas we obtain the equality

k
xo(v,8—7)+ Z aiCi — Z aic; = hom(a, B)
=1 a
which is equivalent to

xe(: 8 =) +xe(a,7) — xa(a, B) = ext(a, )

Now, for our (V, W) we have that Ext(V,W) = ext(a, §) and we have exact sequences of represen-
tations

00— S —>V — X —0 0O— X —> W —T —0
and using lemma 4.14 this gives a surjection Ext(V,W) —» Ezt(S,T). On the other hand we
always have from the homological interpretation of the Euler form the first inequality

dime Ext(S,T) 2 —=xq(a—7,8—7) =xe(v,8 =) — xa(a, B) + xo(a,7)
— eat(a, B)
As the last term is dimc Ext(V, W), this implies that the above surjection must be an isomorphism
and that
dimc Ext(S,T) = —xo(a —~v,8—7) whence dimc Hom(S,T)=0
But this implies that hom(a — 7, 8 —v) = 0 and therefore ext(a — v, 8 —v) = —xqo(a — 7,8 — 7).
Finally,
ext(a —, 3 — ) = dim Ext(S,T) = dim Ext(V,W) = ext(a, 3)

finishing the proof. O

Theorem 4.19 For all dimension vectors o and 3 we have

ext(a = max — o, G
()= mar —xolaf)
g — g/

= maz = —xq(af7)

B —>> p”

=  max — o”
. R CICETE)
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Proof. Let V and W be representation of dimension vector o and (3 such that dim Ext(V,W) =
ext(a,3). Let S &= V be a subrepresentation of dimension o’ and W ——s= T a quotient
representation of dimension vector 3’. Then, we have

ext(a, B) = dime Ext(V,W) > dime Ext(S,T) > —xq(c’,8")

where the first inequality is lemma 4.14 and the second follows from the interpretation of the
Euler form. Therefore, ext(a, 3) is greater or equal than all the terms in the statement of the
theorem. The foregoing theorem asserts the first equality, as for rk hom(a, ) = v we do have that

emt(a,ﬁ) = _XQ(a - 775 - ’7)
In the proof of the above theorem, we have found for sufficiently general V' and W an exact
sequence of representations

0O—S—>V —->WwW —T—20

where S is of dimension « — 7 and T of dimension 8 — . Moreover, we have a commuting diagram
of surjections
Ext(V,W) - Ext(V,T)

o

Ext(S,W) - Ext(S,T)

and the dashed map is an isomorphism, hence so are all the epimorphisms. Therefore, we have

ext(a, B —v) < dim Ext(V,T) = dim Ext(V,W) = ext(a, 3)
ext(a —~,B) < dim Ext(S,W) = dim Ext(V,W) = ext(a, 3)

Further, let T be a sufficiently general representation of dimension 3 — v, then it follows from
Ezt(V,T') — Ext(S,T) that
ext(a — 7,8 —v) < dim Ext(S,T") < dim Ext(V,T') = ext(a, B — )

but the left term is equal to ext(a,3) by the above theorem. But then, we have ext(a,3) =
ext(e, B — 7). Now, we may assume by induction that the theorem holds for 5 — +. That is,

there exists 8 — v — 7 such that ext(a,3 —v) = —xo(a,B”). Whence, 8 — 3”7 and
ext(a, B) = —xo(a, 57) and the middle equality of the theorem holds. By a dual argument so does
the last. 0

This gives us the following inductive algorithm to find all the dimension vectors of general
subrepresentations. Take a dimension vector « and assume by induction we know for all 5 < « the
set of general subrepresentations 3 —— 3. Then, 3 —— « if and only if

O:emt(ﬂ,a—ﬂ)zﬁlw . —xo(8,a—f)
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where the first equality comes from theorem 4.16 and the last from the above theorem.

4.8 Semistable representations

Let @ be a quiver on k vertices {v1,...,vx} and fix a dimension vector a.. So far, we have considered
the algebraic quotient map

rep, @ — iss, Q

classifying closed GL(«)-orbits in rep, @, that is, isomorphism classes of semi-simple representa-
tions of dimension a. We have seen that the invariant polynomial maps are generated by traces
along oriented cycles in the quiver. Hence, if Q has no oriented cycles, the quotient variety iss, Q
is reduced to one point corresponding to the semi-simple

S .. @8

where S; is the trivial one-dimensional simple concentrated in vertex v;. Still, in these cases one
can often classify nice families of representations.

Example 4.8 Consider the quiver setting

©)

Then, rep, Q = C* and the action of GL(a) = C* x C* is given by (\, p).(z,y,2) = (%x, %y, %z)
The only closed GL(a)-orbit in C? is (0,0, 0) as the one-parameter subgroup A(t) = (t,1) has the

property
lim A(t).(z,y, 2) = (0,0,0)

t—0

0 (0,0,0) € O(z, y, z) for any representation (z,y, z). Still, if we trow away the zero-representation,
then we have a nice quotient map

(33,{(0’070)} A (z,y,2) — [z :y: 2]

and as O(z,y,z) = C*(x,y, z) we see that every GL(«)-orbit is closed in this complement C* —
{(0,0,0)}. We will generalize such settings to arbitrary quivers.

A character of GL(«) is an algebraic group morphism x : GL(a) — C*. They are fully
determined by an integral k-tuple 6 = (¢1,...,tx) € ZF where

GL(a) =% C* (g1,...,9k) — det(g1)"™. ... .det(gx)™
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For a fixed 6 we can extend the GL(«a)-action to the space rep, @ C by

GL(a) x rep, QB C — rep, QBT g.(V,c) = (9.V, x5 ' (9)c)

The coordinate ring C[rep, @ @ C] = C|rep,][t] can be given a Z-gradation by defining deg(t) =1
and deg(f) = 0 for all f € C[rep, Q]. The induced action of GL(c) on Clrep, Q ® C] preserves
this gradation. Therefore, the ring of invariant polynomial maps

Clrep, Q & C]?"™) = Clrep, Q][t]*"'~

is also graded with homogeneous part of degree zero the ring of invariants (C[repa]GL(a). An
invariant of degree n, say ft" with f € C[rep, @] has the characteristic property that

flgV)=xs(9)f(V)

that is, f is a semi-invariant of weight xy. That is, the graded decomposition of the invariant ring
is

Clrep, Q& C]°“®) = Ry® R & ... with R; = Clrep, Q] (*)x"?

Definition 4.11 With notations as above, the moduli space of semi-stable quiver representations
of dimension « is the projective variety

M3 (Q,0) = proj Clrep, Q& C|“"*) = proj @2, Clrep, Q)" (*)X"*

Recall that for a positively graded affine commutative C-algebra R = @;2¢R;, the geometric
points of the projective scheme proj R correspond to graded-maximal ideals m not containing the
positive part Ry = @72, R;. Intersecting m with the part of degree zero Ry determines a point of
spec Ry, the affine variety with coordinate ring Ry and defines a structural morphism

proj R —— spec Ry
The Zariski closed subsets of proj R are of the form
V(I)={meproj R | I Cm}

for a homogeneous ideal I < R. Further, recall that proj R can be covered by affine varieties of the
form X(f) with f a homogeneous element in Ry. The coordinate ring of this affine variety is the
part of degree zero of the graded localization Rfc. We refer to [33, 11.2] for more details.

Example 4.9 Consider again the quiver-situation
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v

® vy V(t)

Figure 4.11:

and character § = (—1,1), then the three coordinate functions z,y and z of Clrep, @] are semi-
invariants of weight x¢. It is clear that the invariant ring is equal to

Clrep, Q ® C)“*®) = Clat, yt, 2]
where the three generators all have degree one. That is,
MZ2°(Q,0) = proj Clzt, yt, 2t] = P?
as desired.
We will now investigate which orbits in rep,, () are parameterized by the moduli space M5°(Q, 6).

Definition 4.12 We say that a representation V € rep, Q is x¢-semistable if and only if there is

a semi-invariant f € Clrep, QIEH X" for some n > 1 such that f(V) # 0.
The subset of rep, Q consisting of all xg-semistable representations will be denoted by

rep,’(Q, 0).

Observe that rep:’(Q, 0) is Zariski open (but it may be empty for certain («,#)). We can lift
a representation V' € rep, @ to points V. = (V,¢) € rep, @ @ C and use GL(«)-invariant theory
on this larger GL(«)-module see figure 4.8 Let ¢ # 0 and assume that the orbit closure O(V;) does
not intersect V(¢) = rep, @ x {0}. As both are GL(«)-stable closed subsets of rep, @ & C we
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know from the separation property of invariant theory, proposition 2.10, that this is equivalent to
the existence of a G'L(a)-invariant function g € Clrep, Q @ C]“(®) such that g(O(V.)) # 0 but
g(V(t)) = 0.

We have seen that the invariant ring is graded, hence we may assume g to be homogeneous, that
is, of the form g = ft"™ for some n. But then, f is a semi-invariant on rep, @ of weight xy and

we see that V' must be xs-semistable. Moreover, we must have that 6(a) = Ele tia; = 0, for the
one-dimensional central torus of GL(«)

u(t) = (tlay, - .., tlhey,) = GL(a)

acts trivially on rep, @ but acts on C via multiplication with []%_, =% hence if f(a) # 0 then
O(V.)NV(t) # 0.
More generally, we have from the strong form of the Hilbert criterium proved in theorem 2.2

that O(V.) NV (t) = 0 if and only if for every one-parameter subgroup A(¢) of GL(«) we must have
that izrrg A(t).Ve ¢ V(t). We can also formulate this in terms of the GL(«a)-action on rep, Q. The

composition of a one-parameter subgroup A(t) of GL(«) with the character

c* 2% @L(a) 2%

is an algebraic group morphism and is therefore of the form ¢ — t™ for some m € Z and we denote
this integer by 8(X) = m. Assume that A(¢) is a one-parameter subgroup such that img A@).V =V’
exists in rep, @, then as

A(H).(V,) = ().t ™0)

we must have that 6(\) > 0 for the orbitclosure O(V.) not to intersect V(t).
That is, we have the following characterization of yp-semistable representations.

Proposition 4.16 The following are equivalent

1. V € rep,, Q is xg-semistable.

2. For c# 0, we have O(V.) NV (t) = 0.

3. For every one-parameter subgroup A(t) of GL(«) we have izn% A(t).Ve ¢ V(t) =rep, Q x{0}.

4. For every one-parameter subgroup A(t) of GL(«) such that {m& A(t).V ewists in rep, Q we
have 6(X\) > 0.

Moreover, these cases can only occur if 0(a) = 0.
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Assume that g = ft" is a homogeneous invariant function for the GL(a)-action on rep, Q @ C
and consider the affine open GL(«a)-stable subset X(g). The construction of the algebraic quotient
and the fact that the invariant rings here are graded asserts that the closed GL(a)-orbits in X(g)
are classified by the points of the graded localization at g which is of the form

(Clrep, Q& C)" ™), = Ry[h,h 7]

for some homogeneous invariant h and where Ry is the coordinate ring of the affine open subset
X(f) in M3*(Q,0) determined by the semi-invariant f of weight xj. Because the moduli space is
covered by such open subsets we have

Proposition 4.17 The moduli space of 6-semistable representations of rep, @
M (Q,0)

classifies closed GL()-orbits in the open subset rep.’(Q,0) of all xg-semistable representations of
Q of dimension vector a.

Example 4.10 In the foregoing example rep*(Q, ) = C* — {(0,0,0)} as for all these points one
of the semi-invariant coordinate functions is non-zero. For § = (—1,1) the lifted GL(a)) = C* x C*-
action to rep, Q@ ®C = C* is given by

(B By A
(A,N’)'(m7y7z7t) - (Ax7 /\.% >\Z7 Ht)

We have seen that the ring of invariants is C[xt, yt, zt]. Consider the affine open set X(xt) of C*,
then the closed orbits in X(zt) are classified by

z 1
Clat, yt, 27, = C[¥, Z[zt, —
fat,yt, 202 = 1%, Z)far, -]
and the part of degree zero C[¥, Z] is the coordinate ring of the open set X(z) in P?.

We have seen that closed GLy-orbits in rep,, A correspond to semi-simple n-dimensional rep-
resentations. We will now give a representation theoretic interpretation of closed GL(«)-orbits in
rep’*(Q.6).

Again, the starting point is that one-parameter subgroups A(t) of GL(«) correspond to filtrations
of representations. Let us go through the motions one more time. For A : C* —— GL(«) a one-
parameter subgroup and V' € rep, @ we can decompose for every vertex v; the vertex-space in

weight spaces .
Vi= @nGZ‘/i "

where A(t) acts on the weight space Vf") as multiplication by ¢t". This decomposition allows us to
define a filtration -
V(_") — @mzn‘/;(m)

k3
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For every arrow (<———0®), A(t) acts on the components of the arrow maps

m,n
) Ve,

V(" V(m)

by multiplication with t™~"™. That is, a limit izrré V. exists if and only if V™ = 0 for all m < n,

that is, if V, induces linear maps
V(>n) V(>n)

Hence, a limiting representation exists if and only if the vertex-filtration spaces Vi(Zn) determine a
subrepresentation V;, & V for all n. That is, a one-parameter subgroup A such that ltim A(t).V

exists determines a decreasing filtration of V' by subrepresentations
LV, 2 Vg —

Further, the limiting representation is then the associated graded representation

Va
i'ﬁn At).V = Bnez Vs

where of course only finitely many of these quotients can be nonzero. For the given character
0 = (t1,...,t;) and a representation W € rep; @ we denote

Q(W) =t1by +... +trby where (= (blw ,bk)

Assume that 6(V) = 0, then with the above notations, we have an interpretation of 8(\) as

k
i=1

nez nez nez

n+1

Definition 4.13 A representation V € rep, Q is said to be
e O-semistable if (V) = 0 and for all subrepresentations W —— V we have (W) > 0.

e O-stable if V is 0-semistable and if the only subrepresentations W —— V such that (W) =0
are V and 0.

Proposition 4.18 For V € rep, Q the following are equivalent
1. 'V is xe-semistable.

2. V is 0-semistable.
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Proof. (1) = (2) : Let W be a subrepresentation of V' and let A be the one-parameter subgroup
associated to the filtration V. «— W <«— 0, then izrrg A(t).V exists whence by proposition 4.16.4

we have 6(A) > 0, but we have
ON) =0(V)+0(W) =06(IW)

(2) = (1) : Let X be a one-parameter subgroup of GL(«) such that izng A(t).V exists and consider
the induced filtration by subrepresentations V,, defined above. By assumption all 8(V,,) > 0, whence

O(N) = 0(Va) >0

nez

and again proposition 4.16.4 finishes the proof. O

Lemma 4.15 Let V € rep, Q and W € rep; Q be both §-semistable and
v-Ltew
a morphism of representations. Then, Ker f, Im f and Coker f are 0-semistable representations.

Proof. Consider the two short exact sequences of representations of Q@

00— Kerf—>V —Imf—0
00— Imf—>W — Coker f — 0

As 0(—) is additive, we have 0 = (V) = 8(Ker f)+6(Im f) and as both are subrepresentations of
0-semistable representations V resp. W, the right-hand terms are > 0 whence are zero. But then,
from the second sequence also 8(Coker f) = 0. Being submodules of #-semistable representations,
Ker f and Im f also satisfy 0(S) > 0 for all their subrepresentations U. Finally, a subrepresentation
T —— Coker f can be lifted to a subrepresentation 7" = W and 6(T) > 0 follows from the
short exact sequence 0 — Im f — T/ —> T —— 0. O

That is, the full subcategory rep®(Q,0) of rep @ consisting of all #-semistable representations
is an Abelian subcategory and clearly the simple objects in rep®*(Q, 6) are precisely the 6-stable
representations. As this Abelian subcategory has the necessary finiteness conditions, one can prove
a version of the Jordan-Holder theorem. That is, every f-semistable representation V' has a finite
filtration

V=V <+—2>V] <« ... <2V, =0

of subrepresentation such that every factor Vﬁl is f-stable. Moreover, the unordered set of these

f-stable factors are uniquely determined by V.
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Theorem 4.20 For a 0-semistable representation V € rep, Q the following are equivalent
1. The orbit O(V) is closed in rep.’ (Q, o).

2.V~ W1eael ... Wleae,, with every W, a 0-stable representation.

That is, the geometric points of the moduli space M3’ (Q,0) are in natural one-to-one correspon-
dence with isomorphism classes of a-dimensional representations which are direct sums of 0-stable
subrepresentations. The quotient map

rePZS (Q7 0) — M(if(Q? 9)

maps a 0-semistable representation V' to the direct sum of its Jordan-Holder factors in the Abelian
category rep®®(Q, 0).

Proof.  Assume that O(V) is closed in rep.’(Q,0) and consider the #-semistable representation
W = gres V, the direct sum of the Jordan-Holder factors in rep®®(Q,0). As W is the associated
graded representation of a filtration on V, there is a one-parameter subgroup A of GL(«) such that

iing A(t).V ~ W, that is O(W) C O(V) = O(V), whence W ~ V and 2. holds.

Conversely, assume that V' is as in 2. and let O(W) be a closed orbit contained in O(V') (one of
minimal dimension). By the Hilbert criterium there is a one-parameter subgroup A in GL(«) such
that izng A(t).V ~ W. Hence, there is a finite filtration of V with associated graded #-semistable

representation W. As none of the 6-stable components of V' admits a proper quotient which is

f-semistable (being a direct summand of W), this shows that V ~ W and so O(V) = O(W) is
closed. The other statements are clear from this. d

Remains to determine the situations («, #) such that the corresponding moduli space M3°(Q,0)
is non-empty, or equivalently, such that the Zariski open subset rep’°(Q,0) —— rep, Q is non-
empty.

Theorem 4.21 Let a be a dimension vector such that 6(a) = 0. Then,

1. rep’’(Q, o) is a non-empty Zariski open subset of rep, Q if and only if for every B — o
we have that 6(5) > 0.

2. The 0-stable representations rep. (Q, o) are a non-empty Zariski open subset of rep, Q if
and only if for every 0 #  — « we have that 6(3) > 0

The algorithm at the end of the last section gives an inductive procedure to calculate these
conditions.

The graded algebra C[rep, @ (C]GL(O‘) of all semi-invariants on rep, @ of weight xy for some
n > 0 has as degree zero part the ring of polynomial invariants Clrep,, Q]GL(O‘). This embedding
determines a proper morphism

M (Q,0) —— issa Q
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which is onto whenever rep;’(Q, ) is non-empty. In particular, if @ is a quiver without oriented
cycles, then the moduli space of §-semistable representations of dimension vector o, M3°(Q,0), is
a projective variety.
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