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Introduction

A crucial result in (commutative) algebraic geometry is the anti-equivalence of categories

commalg

spec
,,
affine

C[−]

mm

between the category commalg of all affine commutative C-algebras and the category affine of all
affine schemes, determined by associating to an affine commutative C-algebra C its affine scheme
spec C and to an affine scheme X its coordinate ring C[X].

The points of spec C correspond to the maximal ideals m of C, or equivalently, to the one-
dimensional representations of C (that is, to the algebra morphisms C - C). We will see that
the set of all one-dimensional representations of C can be given the structure of an affine scheme,
rep1 C, such that there is an isomorphism of affine schemes spec C ' rep1 C. Hence, the above
anti-equivalence can be rephrased as

commalg

rep1 ,,
affine

C[−]

mm

In this book we will prove a natural extension of this anti-equivalence to the category alg
of all affine C-algebras. For a non-commutative algebra A, it is not natural to restrict to one-
dimensional representations so we will define an affine scheme repn A whose points are precisely
the n-dimensional representations of A, that is, the C-algebra morphisms A - Mn(C). We will
view repn A as a level n approximation of a non-commutative affine scheme associated to A. Hence,
we can define a functor

alg
repn // affine

but this can never be close to an anti-equivalence.

To begin, the map is not surjective as the affine scheme repn A has some additional structure.
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For example, we can conjugate an algebra morphism φ

A
φ- Mn(C)

Mn(C)

g.g−1

?

φ
g

-

by any invertible n × n matrix g ∈ GLn to obtain another algebra morphism φg. This defines an
action of the linear reductive group GLn on the affine scheme repn A. Therefore, the image of
the above functor must be contained in GL(n)-affine, the category of all affine schemes with a
GLn-action. Remark that in the special case of one-dimensional representations (that is n = 1) we
considered before, we didn’t spot this extra structure as the natural C∗-action on rep1 A is trivial.
So, for fixed n, we’d better consider the functor

alg
repn // GL(n)-affine

Still, this cannot be an anti-equivalence because the map is not injective. There may be non-
isomorphic affine C-algebras A and B with repn A ' repn B. For example, assume that A does
not satisfy all the polynomial identities of n × n matrices and let In be the twosided ideal of A
generated by all evaluations pn(a1, . . . , ak) of polynomial identities pnof Mn(C) in elements ai ∈ A,

then it follows that every C-algebra morphism A - Mn(C) factors through A = A/In whence

repn A ' repn A. So, we better restrict to algebras satisfying all polynomial identities of n × n
matrices.

In fact, we will consider a slightly different category, alg@n, the category of all affine Cayley-
Hamilton algebras of degree n. Consider the category alg@ of affine algebras A with a trace map
trA : A - A and with trace preserving algebra maps as morphisms. There is a functorR

: alg // alg@ which assigns to an affine C-algebra A the algebra
R
A obtained by

tensoring A with the symmetric algebra on the vector-space quotient A/[A,A]v and equipped with
the trace map which sends a ∈ A to its image a in the space A/[A,A]v. Factor

R
A by the two-sided

ideal of all trace identities holding in n× n matrices to obtain an (affine) algebra
R
n
A. We have a

commuting triangle of functors

alg@n

trepn

&&NNNNNNNNNNN

alg

R
n

;;xxxxxxxx repn // GL(n)-affine

The functor trepn (which assigns to A ∈ alg@n the affine scheme trepn A of trace preserving n-
dimensional representations of A) is our best hope to extend the classical anti-equivalence between
commutative affine algebras and affine schemes to level n, that is to noncommutative geometry@n.
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For X ∈ GL(n)-affine, a natural substitute for the coordinate ring C[X] of polynomial functions
is the algebra ⇑n [X] of all GLn-equivariant polynomial maps X - Mn(C). It turns out that this
witness algebra ⇑n [X] is indeed a Cayley-Hamilton algebra of degree n and so we do have functors

alg@n

trepn --
GL(n)-affine

⇑n

mm

The desired extension of the anti-equivalence to level n noncommutative geometry is the following
result, due to Claudio Procesi [68]

Theorem 0.1 (Procesi) The witness functor ⇑n is a left inverse to the functor trepn associating
to a Cayley-Hamilton algebra A ∈ alg@n the affine GLn-scheme of trace preserving n-dimensional
representations.

Hence, we can recover the Cayley-Hamilton algebra A ∈ alg@n from the GLn-geometry of the
affine scheme trepn A. However, we will give examples that these functors do not determine an
anti-equivalence of categories. In fact, it is a major open problem to identify among all GLn-affine
varieties the representation schemes of algebras.

We can connect this near miss anti-equivalence at level n to the anti-equivalence of commutative
algebraic geometry. We associate to an A ∈ alg@n the commutative subalgebra

H
n
A = trA(A).

Conversely, geometric invariant theory associates to an affine GLn-scheme trepn A the quotient
scheme

trepn A/GLn ' trissn A

whose points classify the closed orbits. We will see that GLn-closed orbits correspond to the
isomorphism classes of n-dimensional semi-simple representations of A. We obtain a commuting
diagram of functors

alg@n

trepn --

H
n

��

GL(n)-affine

⇑n

mm

/GLn

��
commalg

spec

--
affine

C[−]

mm

Hence, in particular, we recover the central subalgebra
H
n
A as the coordinate algebra of the scheme

trissn A classifying isomorphism classes of n-dimensional semi-simple representations.
Having generalized the classical anti-equivalence of categories commalg ' affineo to level n,

we turn to defining and classifying smooth objects in alg@n. These Cayley-smooth algebras are
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defined in terms of a lifting property with respect to nilpotent ideals, motivated by Grothendieck’s
characterization of commutative regular algebras. We will prove Procesi’s result that A ∈ alg@n is
Cayley-smooth if and only if the corresponding representation scheme trepn A is a smooth affine
variety. An important source of examples of Cayley-smooth algebras is the level n approximationsR
n
A of Quillen-smooth algebras A, that is, quasi-free algebras in the terminology of J. Cuntz and

D. Quillen [23] or formally smooth algebras in the terminology of M. Kontsevich [46].
A commutative smooth variety is locally diffeomorphic to affine space. Rephrased in algebraic

terms, for every maximal ideal m of C, the coordinate ring of an affine variety X of dimension d,
we have that the m-adic completion

Ĉm ' C[[x1, . . . , xd]]

is isomorphic to the algebra of formal power series in d variables. In this book we will be able to
extend this étale local classification to Cayley-smooth algebras. It is no longer true that there is
just one local type for every central dimension d, but the different types can be classified, up to
Morita equivalence, by a combinatorial gadget : a marked quiver Q• and a dimension vector α.

Let A ∈ alg@n and consider a maximal ideal m of the central subalgebra trA(A). As this is the
coordinate ring of the quotient variety trissn A, the ideal m determines the isomorphism class of
an n-dimensional semi-simple representation

M = S⊕e11 ⊕ . . .⊕ S⊕ek
k

where the Si are simple representations of A of dimension di and occurring in M with multiplicity
ei (so n =

P
diei). We associate to M a quiver Q on k vertices (where vertex i corresponds to the

simple factor Si) and where the number of arrows in Q between vertices is given by the formula

# { ��������i // ��������j } = dimC Ext
1
A(Si, Sj)

Remark that taking the multiplicities ei to be the components of the dimension vector α =
(e1, . . . , ek), then the affine space of α-dimensional quiver representations repα Q can be identified
with the space

repα Q ' Ext1A(M,M)

of self-extensions of M . A self-extension e ∈ Ext1A(M,M) defines an algebra morphism

φe : A - Mn(C[ε])

to n × n-matrices over the dual numbers C[ε] = C[x]/(x2), so we can look at the subspace
ExttA(M,M) of trace-preserving self-extensions. We will see that this subspace can be identi-
fied with the representation space repα Q

•, this time of a marked quiver Q• which is obtained from
Q by removing certain loops and possibly marking others. We call the pair (Q•, α) the local quiver
setting of the Cayley-Hamilton algebra A in m. The desired étale local characterization was proved
in [58].
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Theorem 0.2 If A ∈ alg@n is Cayley-smooth and m is a maximal ideal of the central subalge-

bra trA(A), then the m-adic completion Âm can be reconstructed from the local quiver setting of
A in m together with knowledge of the dimensions of the simple components of the semi-simple
representation M determined by m.





1 — Cayley-Hamilton Algebras

In this chapter we will define the category alg@n of Cayley-Hamilton algebras of degree n. These
are affine C-algebras A equipped with a trace map trA such that all trace identities holding in n×n
matrices also hold in A. Hence, we have to study trace identities and, closely related to them,
necklace relations.This requires the description of the generic algebrasZ

n

C〈x1, . . . , xm〉 = Tmn and

I
n

C〈x1, . . . , xm〉 = Nmn

called the trace algebra of m generic n×n matrices, respectively the necklace algebra of m generic
n× n matrices. For every A ∈ alg@n there are epimorphisms Tmn -- A and Nmn -- trA(A) for
some m.

In chapter 2 we will reconstruct the Cayley-Hamilton algebra A (and its central subalgebra
trA(A)) as the ring of GLn-equivariant polynomial functions (resp. invariant polynomials) on the
representation scheme repn A. Using the Reynolds operator in geometric invariant theory, it suffices
to prove these results for the generic algebras mentioned above. An n-dimensional representation
of the free algebra C〈x1, . . . , xm〉 is determined by the images of the generators xi in Mn(C) whence

repn C〈x1, . . . , xm〉 'Mn(C)⊕ . . .⊕Mn(C)| {z }
m

and the GLn-action on it is that of simultaneous conjugation. For this reason we have to understand
the fundamental results on the invariant theory ofm-tuples on n×nmatrices, due to Claudio Procesi
[67].

1.1 Conjugacy classes of matrices

In this section we recall the standard results in the case when m = 1, that is, the study of conjugacy
classes of n×nmatrices. Clearly, the conjugacy classes are determined by matrices in Jordan normal
form. Though this gives a complete set-theoretic solution to the orbit problem in this case, there
cannot be an orbit variety due to the existence of non-closed orbits. Hence, the geometric study
of the conjugacy classes splits up into a quotient problem (the polynomial invariants determine an
affine variety whose points correspond to the closed orbits) and a nullcone problem (the study of
the orbits having a given closed orbit in their closures). In this section we will solve the first part
in full detail, the second part will be solved in section 2.7. A recurrent theme of this book will be
to generalize this two part approach to the orbit-space problem to other representation varieties.
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We denote by Mn the space of all n× n matrices Mn(C) and by GLn the general linear group
GLn(C). A matrix A ∈Mn determines by left multiplication a linear operator on the n-dimensional
vectorspace Vn = Cn of column vectors . If g ∈ GLn is the matrix describing the base change from
the canonical basis of Vn to a new basis, then the linear operator expressed in this new basis is
represented by the matrix gAg−1. For a given matrix A we want to find a suitable basis such that
the conjugated matrix gAg−1 has a simple form.

Consider the linear action of GLn on the n2-dimensional vectorspace Mn

GLn ×Mn
- Mn (g,A) 7→ g.A = gAg−1.

The orbit O(A) = {gAg−1 | g ∈ GLn } of A under this action is called the conjugacy class of
A. We look for a particularly nice representative in a given conjugacy class. The answer to this
problem is, of course, given by the Jordan normal form of the matrix.

With eij we denote the matrix whose unique non-zero entry is 1 at entry (i, j). Recall that the
group GLn is generated by the following three classes of matrices :

• the permutation matrices pij = rr
n + eij + eji − eii − ejj for all i 6= j,

• the addition matrices aij(λ) = rr
n + λeij for all i 6= j and 0 6= λ, and

• the multiplication matrices mi(λ) = rr
n + (λ− 1)eii for all i and 0 6= λ.

Conjugation by these matrices determine the three types of Jordan moves on n × n matrices, as
depicted below, where the altered rows and columns are indicated.

i j

i

type p

j

����

cc

{{

i j

i

type a

j

−λ.

��

+λ.

cc

i

type m

i

λ−1.

��

λ.__

Therefore, it suffices to consider sequences of these moves on a given n × n matrix A ∈ Mn. The
characteristic polynomial of A is defined to be the polynomial of degree n in the variable t

χA(t) = det(trrn −A) ∈ C[t].
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As C is algebraically closed, χA(t) decomposes as a product of linear terms

eY
i=1

(t− λi)di

Here, the {λ1, . . . , λe} are called the eigenvalues of the matrix A. Observe that λi is an eigenvalue
of A if and only if there is a non-zero eigenvector v ∈ Vn = Cn with eigenvalue λi, that is, A.v = λiv.
In particular, the rank ri of the matrix Ai = λi

rr
n − A satisfies n − di ≤ ri < n. A nice inductive

procedure using only Jordan moves is given in [28] and proves the Jordan-Weierstrass theorem .

Theorem 1.1 (Jordan-Weierstrass) Let A ∈ Mn with characteristic polynomial χA(t) =Qe
i=1(t− λi)

di . Then, A determines unique partitions

pi = (ai1, ai2, . . . , aimi) of di

associated to the eigenvalues λi of A such that A is conjugated to a unique (up to permutation of
the blocks) block-diagonal matrix

J(p1,...,pe) =

26664
B1 0 . . . 0
0 B2 0
...

. . .
...

0 0 . . . Bm

37775
with m = m1 + . . . + me and exactly one block Bl of the form Jaij (λi) for all 1 ≤ i ≤ e and
1 ≤ j ≤ mi where

Jaij (λi) =

266664
λi 1

λi
. . .

. . . 1
λi

377775 ∈Maij (C)

Let us prove uniqueness of the partitions pi of di corresponding to the eigenvalue λi of A.
Assume A is conjugated to another Jordan block matrix J(q1,...,qe), necessarily with partitions
qi = (bi1, . . . , bim′i) of di. To begin, observe that for a Jordan block of size k we have that

rk Jk(0)l = k − l for all l ≤ k and if µ 6= 0 then rk Jk(µ)l = k

for all l. As J(p1,...,pe) is conjugated to J(q1,...,qe) we have for all λ ∈ C and all l

rk (λrr
n − J(p1,...,pe))

l = rk (λrr
n − J(q1,...,qe))

l
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Now, take λ = λi then only the Jordan blocks with eigenvalue λi are important in the calculation
and one obtains for the ranks

n−
lX

h=1

#{j | aij ≥ h} respectively n−
lX

h=1

#{j | bij ≥ h}.

Now, for any partition p = (c1, . . . , cu) and any natural number h we see that the number z =
#{j | cj ≥ h}

c1

c2

cz

cz+1

cu
h

is the number of blocks in the h-th row of the dual partition p∗ which is defined to be the partition
obtained by interchanging rows and columns in the Young diagram of p (see section 1.5 for the
definition). Therefore, the above rank equality implies that p∗i = q∗i and hence that pi = qi. As we
can repeat this argument for the other eigenvalues we have the required uniqueness.

Hence, the Jordan normal form shows that the classification of GLn-orbits in Mn consists of
two parts : a discrete part choosing

• a partition p = (d1, d2, . . . , de) of n, and for each di,

• a partition pi = (ai1, ai2, . . . , aimi) of di,

determining the sizes of the Jordan blocks and a continuous part choosing

• an e-tuple of distinct complex numbers (λ1, λ2, . . . , λe).

fixing the eigenvalues. Moreover, this e-tuple (λ1, . . . , λe) is determined only up to permutations of
the subgroup of all permutations π in the symmetric group Se such that pi = pπ(i) for all 1 ≤ i ≤ e.

Whereas this gives a satisfactory set-theoretical description of the orbits we cannot put an
Hausdorff topology on this set due to the existence of non-closed orbits in Mn. For example, if
n = 2, consider the matrices

A =

»
λ 1
0 λ

–
and B =

»
λ 0
0 λ

–
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Figure 1.1: Orbit closure for 2× 2 matrices

which are in different normal form so correspond to distinct orbits. For any ε 6= 0 we have that»
ε 0
0 1

–
.

»
λ 1
0 λ

–
.

»
ε−1 0
0 1

–
=

»
λ ε
0 λ

–
belongs to the orbit of A. Hence if ε - 0, we see that B lies in the closure of O(A). As any
matrix in O(A) has trace 2λ, the orbit is contained in the 3-dimensional subspace»

λ+ x y
z λ− x

–
⊂ - M2

In this space, the orbit-closure O(A) is the set of points satisfying x2 + yz = 0 (the determinant
has to be λ2), which is a cone having the origin as its top : The orbit O(B) is the top of the cone
and the orbit O(A) is the complement, see figure 1.1.

Still, for general n we can try to find the best separated topological quotient space for the action
of GLn on Mn. We will prove that this space coincide with the quotient variety determined by the
invariant polynomial functions.

If two matrices are conjugated A ∼ B, then A and B have the same unordered n-tuple of
eigenvalues {λ1, . . . , λn} (occurring with multiplicities). Hence any symmetric function in the λi
will have the same values in A as in B. In particular this is the case for the elementary symmetric
functions σl

σl(λ1, . . . , λl) =
X

i1<i2<...<il

λi1λi2 . . . λil .

Observe that for every A ∈Mn with eigenvalues {λ1, . . . , λn} we have

nY
j=1

(t− λj) = χA(t) = det(trrn −A) = tn +

nX
i=1

(−1)iσi(A)tn−i
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Developing the determinant det(trrn − A) we see that each of the coefficients σi(A) is in fact a
polynomial function in the entries of A. A fortiori, σi(A) is a complex valued continuous function
on Mn. The above equality also implies that the functions σi : Mn

- C are constant along
orbits. We now construct the continuous map

Mn
π- Cn

sending a matrix A ∈Mn to the point (σ1(A), . . . , σn(A)) in Cn. Clearly, if A ∼ B then they map
to the same point in Cn. We claim that π is surjective. Take any point (a1, . . . , an) ∈ Cn and
consider the matrix A ∈Mn

A =

266664
0 an
−1 0 an−1

. . .
. . .

...
−1 0 a2

−1 a1

377775 (1.1)

then we will show that π(A) = (a1, . . . , an), that is,

det(trrn −A) = tn − a1t
n−1 + a2t

n−2 − . . .+ (−1)nan.

Indeed, developing the determinant of trrn −A along the first column we obtain

0

...

0

0

0

t

1

0

0

0

0

t

. . .

. . .

. . .

1

0

0

0

...

t

1

−an

−an-1

−an-2

...

−a2

t− a1

1

−

t07162534

0

...

0

0

0

t

1

0

0

0

0

t

. . .

. . .

. . .

1

0

0

0

...

t

1

−an

−an-1

−an-2

...

−a2

t− a1

t

107162534

Here, the second determinant is equal to (−1)n−1an and by induction on n the first determinant is
equal to t.(tn−1 − a1t

n−2 + . . .+ (−1)n−1an−1), proving the claim.
Next, we will determine which n × n matrices can be conjugated to a matrix in the canonical

form A as above. We call a matrix B ∈Mn cyclic if there is a (column) vector v ∈ Cn such that Cn
is spanned by the vectors {v,B.v,B2.v, . . . , Bn−1.v}. Let g ∈ GLn be the basechange transforming
the standard basis to the ordered basis

(v,−B.v,B2.v,−B3.v, . . . , (−1)n−1Bn−1.v).
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In this new basis, the linear map determined by B (or equivalently, g.B.g−1) is equal to the matrix
in canonical form 266664

0 bn
−1 0 bn−1

. . .
. . .

...
−1 0 b2

−1 b1

377775
where Bn.v has coordinates (bn, . . . , b2, b1) in the new basis. Conversely, any matrix in this form
is a cyclic matrix.

We claim that the set of all cyclic matrices in Mn is a dense open subset. To see this take
v = (x1, . . . , xn)τ ∈ Cn and compute the determinant of the n× n matrix

v Bv . . .
B
n-1

v

This gives a polynomial of total degree n in the xi with all its coefficients polynomial functions cj
in the entries bkl of B. Now, B is a cyclic matrix if and only if at least one of these coefficients
is non-zero. That is, the set of non-cyclic matrices is exactly the intersection of the finitely many
hypersurfaces

Vj = {B = (bkl)k,l ∈Mn | cj(b11, b12, . . . , bnn) = 0}

in the vectorspace Mn.

Theorem 1.2 The best continuous approximation to the orbit space is given by the surjection

Mn
π -- Cn

mapping a matrix A ∈Mn(C) to the n-tuple (σ1(A), . . . , σn(A)).

Let f : Mn
- C be a continuous function which is constant along conjugacy classes. We will

show that f factors through π, that is, f is really a continuous function in the σi(A). Consider the
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diagram

Mn
f - C

Cn

s

6

π

?....
....
....
....
....
....
....
..

f
′ =
f
◦s

-

where s is the section of π (that is, π ◦ s = idCn) determined by sending a point (a1, . . . , an) to
the cyclic matrix in canonical form A as in equation (1.1). Clearly, s is continuous, hence so is
f ′ = f ◦s. The approximation property follows if we prove that f = f ′ ◦π. By continuity, it suffices
to check equality on the dense open set of cyclic matrices in Mn.

There it is a consequence of the following three facts we have proved before : (1) : any cyclic
matrix lies in the same orbit as one in standard form, (2) : s is a section of π and (3) : f is constant
along orbits.

Example 1.1 (Orbits in M2) A 2×2 matrix A can be conjugated to an upper triangular matrix
with diagonal entries the eigenvalues λ1, λ2 of A. As the trace and determinant of both matrices
are equal we have

σ1(A) = tr(A) and σ2(A) = det(A).

The best approximation to the orbitspace is therefore given by the surjective map

M2
π-- C2

»
a b
c d

–
7→ (a+ d, ad− bc)

The matrix A has two equal eigenvalues if and only if the discriminant of the characteristic poly-
nomial t2 − σ1(A)t+ σ2(A) is zero, that is when σ1(A)2 − 4σ2(A) = 0. This condition determines
a closed curve C in C2 where

C = {(x, y) ∈ C2 | x2 − 4y = 0}.

C
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•2

•

•2

0

Figure 1.2: Orbit closures of 2× 2 matrices

Observe that C is a smooth 1-dimensional submanifold of C2. We will describe the fibers (that is,
the inverse images of points) of the surjective map π.

If p = (x, y) ∈ C2 − C, then π−1(p) consists of precisely one orbit (which is then necessarily
closed in M2) namely that of the diagonal matrix»

λ1 0
0 λ2

–
where λ1,2 =

−x±
p
x2 − 4y

2

If p = (x, y) ∈ C then π−1(p) consists of two orbits,

O24λ 1
0 λ

35 and O24λ 0
0 λ

35
where λ = 1

2
x. We have seen that the second orbit lies in the closure of the first. Observe that the

second orbit reduces to one point in M2 and hence is closed. Hence, also π−1(p) contains a unique
closed orbit.

To describe the fibers of π as closed subsets of M2 it is convenient to write any matrix A as a
linear combination

A = u(A)

»
1
2

0
0 1

2

–
+ v(A)

»
1
2

0
0 − 1

2

–
+ w(A)

»
0 1
0 0

–
+ z(A)

»
0 0
1 0

–
.

Expressed in the coordinate functions u, v, w and z the fibers π−1(p) of a point p = (x, y) ∈ C2 are
the common zeroes of (

u = x

v2 + 4wz = x2 − 4y
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Figure 1.3: Representation strata for 3× 3 matrices.

The first equation determines a three dimensional affine subspace of M2 in which the second equa-
tion determines a quadric. If p /∈ C this quadric is non-degenerate and thus π−1(p) is a smooth
2-dimensional submanifold of M2. If p ∈ C, the quadric is a cone with top lying in the point
x
2

rr
2. Under the GL2-action, the unique singular point of the cone must be clearly fixed giving

us the closed orbit of dimension 0 corresponding to the diagonal matrix. The other orbit is the
complement of the top and hence is a smooth 2-dimensional (non-closed) submanifold of M2. The
graphs in figure 1.2 represent the orbit-closures and the dimensions of the orbits.

Example 1.2 (Orbits in M3) We will describe the fibers of the surjective map M3
π-- C3. If

a 3× 3 matrix has multiple eigenvalues then the discriminant d = (λ1−λ2)
2(λ2−λ3)

2(λ3−λ1)
2 is

zero. Clearly, d is a symmetric polynomial and hence can be expressed in terms of σ1, σ2 and σ3.
More precisely,

d = 4σ3
1σ3 + 4σ3

2 + 27σ2
3 − σ2

1σ
2
2 − 18σ1σ2σ3

The set of points in C3 where d vanishes is a surface S with singularities. These singularities are
the common zeroes of the ∂d

∂σi
for 1 ≤ i ≤ 3. One computes that these singularities form a twisted

cubic curve C in C3, that is,

C = {(3c, 3c2, c3) | c ∈ C}.

The description of the fibers π−1(p) for p = (x, y, z) ∈ C3 is as follows. When p /∈ S, then π−1(p)
consists of a unique orbit (which is therefore closed in M3), the conjugacy class of a matrix with
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paired distinct eigenvalues. If p ∈ S − C, then π−1(p) consists of the orbits of

A1 =

24λ 1 0
0 λ 0
0 0 µ

35 and A2 =

24λ 0 0
0 λ 0
0 0 µ

35
Finally, if p ∈ C, then the matrices in the fiber π−1(p) have a single eigenvalue λ = 1

3
x and the

fiber consists of the orbits of the matrices

B1 =

24λ 1 0
0 λ 1
0 0 λ

35 B2 =

24λ 1 0
0 λ 0
0 0 λ

35 B3 =

24λ 0 0
0 λ 0
0 0 λ

35
We observe that the strata with distinct fiber behavior (that is, C3 − S, S − C and C) are all
submanifolds of C3, see figure 1.3.

The dimension of an orbit O(A) in Mn is computed as follows. Let CA be the subspace of all
matrices in Mn commuting with A. Then, the stabilizer subgroup of A is a dense open subset of
CA whence the dimension of O(A) is equal to n2 − dim CA.

Performing these calculations for the matrices given above, we obtain the following graphs
representing orbit-closures and the dimensions of orbits

C3 − S

• 6

•

•

• 6

4

0

OB1

OB2

OB3

•

• 6

4

OA1

OA2

S − C C

Returning to Mn, the set of cyclic matrices is a Zariski open subset of Mn. For, consider the
generic matrix of coordinate functions and generic column vector

X =

264x11 . . . x1n

...
...

xn1 . . . xnn

375 and v =

264v1...
vn

375
and form the square matrixˆ

v X.v X2.v . . . Xn−1.v
˜
∈Mn(C[x11, x12, . . . , xnn, v1, . . . , vn])



18 Cayley-Hamilton Algebras

Then its determinant can be written as
Pz
l=1 pl(xij)ql(vk) where the ql are polynomials in the vk

and the pl polynomials in the xij . Let A ∈Mn be such that at least one of the pl(A) 6= 0, then the
polynomial d =

P
l pl(A)ql(vk) ∈ C[v1, . . . , vk] is non-zero. But then there is a c = (c1, . . . , cn) ∈ Cn

such that d(c) 6= 0 and hence cτ is a cyclic vector for A. The converse implication is obvious.

Theorem 1.3 Let f : Mn
- C is a regular (that is, polynomial) function on Mn which is

constant along conjugacy classes, then

f ∈ C[σ1(X), . . . , σn(X)]

Proof. Consider again the diagram

Mn
f - C

Cn

s

6

π

?....
....
....
....
....
....
....
..

f
′ =
f
◦s

-

The function f ′ = f ◦ s is a regular function on Cn whence is a polynomial in the coordinate
functions of Cm (which are the σi(X)), so

f ′ ∈ C[σ1(X), . . . , σn(X)] ⊂ - C[Mn].

Moreover, f and f ′ are equal on a Zariski open (dense) subset of Mn whence they are equal as
polynomials in C[Mn]. �

The ring of polynomial functions on Mn which are constant along conjugacy classes can also be
viewed as a ring of invariants. The group GLn acts as algebra automorphisms on the polynomial
ring C[Mn]. The automorphism φg determined by g ∈ GLn sends the variable xij to the (i, j)-entry
of the matrix g−1.X.g which is a linear form in C[Mn]. This action is determined by the property
that for all g ∈ GLn, A ∈ A and f ∈ C[Mn] we have that

φg(f)(A) = f(g.A.g−1)

The ring of polynomial invariants is the algebra of polynomials left invariant under this action

C[Mn]GLn = {f ∈ C[Mn] | φg(f) = f for all g ∈ GLn}

and hence is the ring of polynomial functions on Mn which are constant along orbits. The foregoing
theorem determines the ring of polynomials invariants

C[Mn]GLn = C[σ1(X), . . . , σn(X)]



1.1. Conjugacy classes of matrices 19

We will give an equivalent description of this ring below.
Consider the variables λ1, . . . , λn and consider the polynomial

fn(t) =

nY
i=1

(t− λi) = tn +

nX
i=1

(−1)iσit
n−i

then σi is the i-th elementary symmetric polynomial in the λj . We know that these polynomials
are algebraically independent and generate the ring of symmetric polynomials in the λj , that is,

C[σ1, . . . , σn] = C[λ1, . . . , λn]Sn

where Sn is the symmetric group on n letters acting by automorphisms on the polynomial ring
C[λ1, . . . , λn] via π(λi) = λπ(i) and the algebra of polynomials which are fixed under these auto-
morphisms are precisely the symmetric polynomials in the λj .

Consider the symmetric Newton functions si = λi1 + . . .+λin, then we claim that this is another
generating set of symmetric polynomials, that is,

C[σ1, . . . , σn] = C[s1, . . . , sn].

To prove this it suffices to express each σi as a polynomial in the sj . More precisely, we claim that
the following identities hold for all 1 ≤ j ≤ n

sj − σ1sj−1 + σ2sj−2 − . . .+ (−1)j−1σj−1s1 + (−1)jσj .j = 0 (1.2)

For j = n this identity holds because we have

0 =

nX
i=1

fn(λi) = sn +

nX
i=1

(−1)iσisn−i

if we take s0 = n. Assume now j < n then the left hand side of equation 1.2 is a symmetric
function in the λi of degree ≤ j and is therefore a polynomial p(σ1, . . . , σj) in the first j elementary
symmetric polynomials. Let φ be the algebra epimorphism

C[λ1, . . . , λn]
φ-- C[λ1, . . . , λj ]

defined by mapping λj+1, . . . , λj to zero. Clearly, φ(σi) is the i-th elementary symmetric polynomial
in {λ1, . . . , λj} and φ(si) = λi1 + . . .+ λij . Repeating the above j = n argument (replacing n by j)
we have

0 =

jX
i=1

fj(λi) = φ(sj) +

jX
i=1

(−1)iφ(σi)φ(sn−i)

(this time with s0 = j). But then, p(φ(σ1), . . . , φ(σj)) = 0 and as the φ(σk) for 1 ≤ k ≤ j are
algebraically independent we must have that p is the zero polynomial finishing the proof of the
claimed identity.
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If λ1, . . . , λn are the eigenvalues of an n × n matrix A, then A can be conjugated to an upper
triangular matrix B with diagonal entries (λ1, . . . , λ1). Hence, the trace tr(A) = tr(B) = λ1 + . . .+
λn = s1. In general, Ai can be conjugated to Bi which is an upper triangular matrix with diagonal
entries (λi1, . . . , λ

i
n) and hence the traces of Ai and Bi are equal to λi1 + . . .+λin = si. Concluding,

we have

Theorem 1.4 Consider the action of conjugation by GLn on Mn. Let X be the generic matrix of
coordinate functions on Mn

X =

264x11 . . . xnn
...

...
xn1 . . . xnn

375
Then, the ring of polynomial invariants is generated by the traces of powers of X, that is,

C[Mn]GLn = C[tr(X), tr(X2), . . . , tr(Xn)]

Proof. The result follows from theorem 1.3 and the fact that

C[σ1(X), . . . , σn(X)] = C[tr(X), . . . , tr(Xn)]

�

1.2 Simultaneous conjugacy classes

As mentioned in the introduction, we need to extend what we have done for conjugacy classes of
matrices to simultaneous conjugacy classes of m-tuples of matrices . Consider the mn2-dimensional
complex vectorspace

Mm
n = Mn ⊕ . . .⊕Mn| {z }

m

of m-tuples (A1, . . . , Am) of n× n-matrices Ai ∈ Mn. On this space we let the group GLn act by
simultaneous conjugation, that is

g.(A1, . . . , Am) = (g.A1.g
−1, . . . , g.Am.g

−1)

for all g ∈ GLn and all m-tuples (A1, . . . , Am). Unfortunately, there is no substitute for the Jordan
normalform result in this more general setting.

Still, for small m and n one can work out the GLn-orbits by brute force methods. In this section
we will give the details for the first non-trivial case, that of couples of 2×2 matrices. These explicit
calculations will already exhibit some of the general features we will prove later. For example, that
all subvarieties of the quotient variety determined by points of the same representation type are
smooth and that the fiber structure depends only on the representation type.
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Example 1.3 (Orbits in M2
2 = M2 ⊕M2) We can try to mimic the geometric approach to the

conjugacy class problem, that is, we will try to approximate the orbitspace via polynomial functions
on M2

2 which are constant along orbits. For (A,B) ∈ M2
2 = M2 ⊕ M2 clearly the polynomial

functions we have encountered before tr(A), det(A) and tr(B), det(B) are constant along orbits.
However, there are more : for example tr(AB). In the next section, we will show that these five
functions generate all polynomials functions which are constant along orbits. Here, we will show

that the map M2
2 = M2 ⊕M2

π- C5 defined by

(A,B) 7→ (tr(A), det(A), tr(B), det(B), tr(AB))

is surjective such that each fiber contains precisely one closed orbit. In the next chapter, we will
see that this property characterizes the best polynomial approximation to the (non-existent) orbit
space.

First, we will show surjectivity of π, that is, for every (x1, . . . , x5) ∈ C5 we will construct a
couple of 2× 2 matrices (A,B) (or rather its orbit) such that π(A,B) = (x1, . . . , x5). Consider the
open set where x2

1 6= 4x2. We have seen that this property characterizes those A ∈M2 such that A
has distinct eigenvalues and hence diagonalizable. Hence, we can take a representative of the orbit
O(A,B) to be a couple

(

»
λ 0
0 µ

–
,

»
c1 c2
c3 c4

–
)

with λ 6= µ. We need a solution to the set of equations8><>:
x3 = c1 + c4
x4 = c1c4 − c2c3
x5 = λc1 + µc4

Because λ 6= µ the first and last equation uniquely determine c1, c4 and substitution in the second
gives us c2c3. Analogously, points of C5 lying in the open set x2

3 6= x4 lie in the image of π. Finally,
for a point in the complement of these open sets, that is when x2

1 = x2 and x2
3 = 4x4 we can

consider a couple (A,B)

(

»
λ 1
0 λ

–
,

»
µ 0
c µ

–
)

where λ = 1
2
x1 and µ = 1

2
x3. Observe that the remaining equation x5 = tr(AB) = 2λµ + c has a

solution in c.
Now, we will describe the fibers of π. Assume (A,B) is such that A and B have a common

eigenvector v. Simultaneous conjugation with a g ∈ GLn expressing a basechange from the standard
basis to {v, w} for some w shows that the orbit O(A,B) contains a couple of upper-triangular
matrices. We want to describe the image of these matrices under π. Take an upper triangular
representative in O(A,B)

(

»
a1 a2

0 a3

–
,

»
b1 b2
0 b3

–
).
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with π-image (x1, . . . , x5). The coordinates x1, x2 determine the eigenvalues a1, a3 of A only as an
unordered set (similarly, x3, x4 only determine the set of eigenvalues {b1, b3} of B). Hence, tr(AB)
is one of the following two expressions

a1b1 + a3b3 or a1b3 + a3b1

and therefore satisfies the equation

(tr(AB)− a1b1 − a3b3)(tr(AB)− a1b3 − a3b1) = 0.

Recall that x1 = a1 + a3, x2 = a1a3, x3 = b1 + b3, x4 = b1b3 and x5 = tr(AB) we can express this
equation as

x2
5 − x1x3x5 + x2

1x4 + x2
3x2 − 4x2x4 = 0.

This determines an hypersurface H ⊂ - C5. If we view the left-hand side as a polynomial f in
the coordinate functions of C5 we see that H is a four dimensional subset of C5 with singularities
the common zeroes of the partial derivatives

∂f

∂xi
for 1 ≤ i ≤ 5

These singularities for the 2-dimensional submanifold S of points of the form (2a, a2, 2b, b2, 2ab).
We now claim that the smooth submanifolds C5−H, H−S and S of C5 describe the different types
of fiber behavior. In chapter 6 we will see that the subsets of points with different fiber behavior
(actually, of different representation type) are manifolds for m-tuples of n× n matrices.

If p /∈ H we claim that π−1(p) is a unique orbit, which is therefore closed inM2
2 . Let (A,B) ∈ π−1

and assume first that x2
1 6= 4x2 then there is a representative in O(A,B) of the form

(

»
λ 0
0 µ

–
,

»
c1 c2
c3 c4

–
)

with λ 6= µ. Moreover, c2c3 6= 0 (for otherwise A and B would have a common eigenvector whence
p ∈ H) hence we may assume that c2 = 1 (eventually after simultaneous conjugation with a suitable
diagonal matrix diag(t, t−1)). The value of λ, µ is determined by x1, x2. Moreover, c1, c3, c4 are
also completely determined by the system of equations8><>:

x3 = c1 + c4
x4 = c1c4 − c3
x5 = λc1 + µc4

and hence the point p = (x1, . . . , x5) completely determines the orbit O(A,B). Remains to consider
the case when x2

1 = 4x2 (that is, when A has a single eigenvalue). Consider the couple (uA+vB,B)
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for u, v ∈ C∗. To begin, uA+ vB and B do not have a common eigenvalue. Moreover, p = π(A,B)
determines π(uA+ vB,B) as8><>:

tr(uA+ vB) = utr(A) + vtr(B)

det(uA+ vB) = u2det(A) + v2det(B) + uv(tr(A)tr(B)− tr(AB))

tr((uA+ vB)B) = utr(AB) + v(tr(B)2 − 2det(B))

Assume that for all u, v ∈ C∗ we have the equality tr(uA+ vB)2 = 4det(uA+ vB) then comparing
coefficients of this equation expressed as a polynomial in u and v we obtain the conditions x2

1 = 4x2,
x2

3 = 4x4 and 2x5 = x1x3 whence p ∈ S ⊂ - H, a contradiction. So, fix u, v such that uA + vB
has distinct eigenvalues. By the above argument O(uA + vB,B) is the unique orbit lying over
π(uA+ vB,B), but then O(A,B) must be the unique orbit lying over p.

Let p ∈ H − S and (A,B) ∈ π−1(p), then A and B are simultaneous upper triangularizable,
with eigenvalues a1, a2 respectively b1, b2. Either a1 6= a2 or b1 6= b2 for otherwise p ∈ S. Assume
a1 6= a2, then there is a representative in the orbit O(A,B) of the form

(

»
ai 0
0 aj

–
,

»
bk b
0 bl

–
)

for {i, j} = {1, 2} = {k, l}. If b 6= 0 we can conjugate with a suitable diagonal matrix to get b = 1
hence we get at most 9 possible orbits. Checking all possibilities we see that only three of them
are distinct, those corresponding to the couples

(

»
a1 0
0 a2

–
,

»
b1 1
0 b2

–
) (

»
a1 0
0 a2

–
,

»
b1 0
0 b2

–
) (

»
a2 0
0 a1

–
,

»
b1 1
0 b2

–
)

Clearly, the first and last orbit have the middle one lying in its closure. Observe that the case
assuming that b1 6= b2 is handled similarly. Hence, if p ∈ H−S then π−1(p) consists of three orbits,
two of dimension three whose closures intersect in a (closed) orbit of dimension two.

Finally, consider the case when p ∈ S and (A,B) ∈ π−1(p). Then, both A and B have a single
eigenvalue and the orbit O(A,B) has a representative of the form

(

»
a x
0 a

–
,

»
b y
0 b

–
)

for certain x, y ∈ C. If either x or y are non-zero, then the subgroup of GL2 fixing this matrix
consists of the matrices of the form

Stab

»
c 1
0 c

–
= {

»
u v
0 u

–
| u ∈ C∗, v ∈ C}

but these matrices also fix the second component. Therefore, if either x or y is nonzero, the orbit is
fully determined by [x : y] ∈ P1. That is, for p ∈ S, the fiber π−1(p) consists of an infinite family of
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orbits of dimension 2 parameterized by the points of the projective line P1 together with the orbit
of

(

»
a 0
0 a

–
,

»
b 0
0 b

–
)

which consists of one point (hence is closed inM2
2 ) and lies in the closure of each of the 2-dimensional

orbits.
Concluding, we see that each fiber π−1(p) contains a unique closed orbit (that of minimal

dimension). The orbitclosure and dimension diagrams have the following shapes

C5 −H

• 3 //////////

����������•

• •3 3

2

H − S

•

• •77777777777

�����������0

2 2
P1

S

The reader is invited to try to extend this to the case of three 2× 2 matrices (relatively easy) or
to two 3× 3 matrices (substantially harder). By the end of this book you will have learned enough
techniques to solve the general case, at least in principle. As this problem is the archetypical
example of a wild representation problem it is customary to view it as ’hopeless’. Hence, sooner or
later we will hit the wall, but what this book will show you is that you can push the wall a bit
further than was generally expected.

1.3 Matrix invariants and necklaces

In this section we will determine the ring of all polynomial maps

Mm
n = Mn ⊕ . . .⊕Mn| {z }

m

f- C

which are constant along orbits under the action of GLn on Mm
n by simultaneous conjugation. The

strategy we will use is classical in invariant theory.

• First, we will determine the multilinear maps which are constant along orbits, equivalently,
the linear maps

M⊗mn = Mn ⊗ . . .⊗Mn| {z }
m

- C
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which are constant along GLn-orbits where GLn acts by the diagonal action, that is,

g.(A1 ⊗ . . .⊗Am) = gA1g
−1 ⊗ . . .⊗ gAmg−1.

• Afterwards, we will be able to obtain from them all polynomial invariant maps by using
polarization and restitution operations.

First, we will translate our problem into one studied in classical invariant theory of GLn.
Let Vn ' Cn be the n-dimensional vectorspace of column vectors on which GLn acts naturally

by left multiplication

Vn =

26664
C
C
...
C

37775 with action g.

26664
ν1
ν2
...
νn

37775
In order to define an action on the dual space V ∗n = Hom(Vn,C) ' Cn of covectors (or, row vectors)
we have to use the contragradient action

V ∗n =
ˆ
C C . . . C

˜
with action

ˆ
φ1 φ2 . . . φn

˜
.g−1

Observe, that we have an evaluation map V ∗n × Vn - C which is given by the scalar product
f(v) for all f ∈ V ∗n and v ∈ Vn

ˆ
φ1 φ2 . . . φn

˜
.

26664
ν1
ν2
...
νn

37775 = φ1ν1 + φ2ν2 + . . .+ φnνn

which is invariant under the diagonal action of GLn on V ∗n × Vn. Further, we have the natural
identification

Mn = Vn ⊗ V ∗n =

26664
C
C
...
C

37775⊗ ˆ
C C . . . C

˜
.

Under this identification, a pure tensor v ⊗ f corresponds to the rank one matrix (or rank one
endomorphism of Vn) defined by

v ⊗ f : Vn - Vn with w 7→ f(w)v

and we observe that the rank one matrices span Mn. The diagonal action of GLn on Vn ⊗ V ∗n is
then determined by its action on the pure tensors where it is equal to

g.

264ν1ν2· · ·
νn

375⊗ ˆ
φ1 φ2 . . . φn

˜
.g−1
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and therefore coincides with the action of conjugation onMn. Now, let us consider the identification

(V ∗⊗mn ⊗ V ⊗mn )∗ ' End(V ⊗mn )

obtained from the nondegenerate pairing

End(V ⊗mn )× (V ∗⊗mn ⊗ V ⊗mn ) - C

given by the formula

〈λ, f1 ⊗ . . .⊗ fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(λ(v1 ⊗ . . .⊗ vm))

GLn acts diagonally on V ⊗mn and hence again by conjugation on End(V ⊗mn ) after embedding
GLn ⊂ - GL(V ⊗mn ) = GLmn. Thus, the above identifications are isomorphism as vectorspaces
with GLn-action. But then, the space of GLn-invariant linear maps

V ∗⊗mn ⊗ V ⊗mn
- C

can be identified with the space EndGLn(V ⊗mn ) of GLn-linear endomorphisms of V ⊗mn . We will
now give a different presentation of this vectorspace relating it to the symmetric group.

Apart from the diagonal action of GLn on V ⊗mn given by

g.(v1 ⊗ . . .⊗ vm) = g.v1 ⊗ . . .⊗ g.vm

we have an action of the symmetric group Sm on m letters on V ⊗mn given by

σ.(v1 ⊗ . . .⊗ vm) = vσ(1) ⊗ . . .⊗ vσ(m)

These two actions commute with each other and give embeddings of GLn and Sm in End(V ⊗mn ).
The subspace of V ⊗mn spanned by the image of GLn will be denoted by 〈GLn〉. Similarly, with
〈Sm〉 we denote the subspace spanned by the image of Sm.

Theorem 1.5 With notations as above we have :

1. 〈GLn〉 = EndSm(V ⊗mn )

2. 〈Sm〉 = EndGLn(V ⊗mn )

Proof. (1) : Under the identification End(V ⊗mn ) = End(Vn)⊗m an element g ∈ GLn is mapped to
the symmetric tensor g⊗ . . .⊗ g. On the other hand, the image of EndSm(V ⊗mn ) in End(Vn)⊗m is
the subspace of all symmetric tensors in End(V )⊗m. We can give a basis of this subspace as follows.
Let {e1, . . . , en2} be a basis of End(Vn), then the vectors ei1⊗ . . .⊗eim form a basis of End(Vn)⊗m

which is stable under the Sm-action. Further, any Sm-orbit contains a unique representative of the
form

e⊗h1
1 ⊗ . . .⊗ e⊗hn2

n2
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with h1+ . . .+hn2 = m. If we denote by r(h1, . . . , hn2) the sum of all elements in the corresponding
Sm-orbit then these vectors are a basis of the symmetric tensors in End(Vn)⊗m.

The claim follows if we can show that every linear map λ on the symmetric tensors which is zero
on all g ⊗ . . .⊗ g with g ∈ GLn is the zero map. Write e =

P
xiei, then

λ(e⊗ . . .⊗ e) =
X

xh1
1 . . . x

h
n2

n2 λ(r(h1, . . . , hn2))

is a polynomial function on End(Vn). As GLn is a Zariski open subset of End(V ) on which by as-
sumption this polynomial vanishes, it must be the zero polynomial. Therefore, λ(r(h1, . . . , hn2)) = 0
for all (h1, . . . , hn2) finishing the proof.

(2) : Recall that the groupalgebra CSm of Sm is a semisimple algebra . Any epimorphic image of
a semisimple algebra is semisimple. Therefore, 〈Sm〉 is a semisimple subalgebra of the matrixalgebra
End(V ⊗mn ) ' Mnm. By the double centralizer theorem (see for example [66]), it is therefore equal
to the centralizer of EndSm(V ⊗mm ). By the first part, it is the centralizer of 〈GLn〉 in End(V ⊗mn )
and therefore equal to EndGLn(V ⊗mn ). �

Because EndGLn(V ⊗mn ) = 〈Sm〉, every GLn-endomorphism of V ⊗mn can be written as a linear
combination of the morphisms λσ describing the action of σ ∈ Sm on V ⊗mn . Our next job is to
trace back these morphisms λσ through the canonical identifications until we can express them in
terms of matrices.

To start let us compute the linear invariant

µσ : V ∗⊗mn ⊗ V ⊗mn
- C

corresponding to λσ under the identification (V ∗⊗mn ⊗ V ⊗mn )∗ ' End(V ⊗mn ). By the identification
we know that µσ(f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm) is equal to

〈λσ, f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(vσ(1) ⊗ . . . vσ(m))

=
Q
i fi(vσ(i))

That is, we have proved

Proposition 1.1 Any multilinear GLn-invariant map

γ : V ∗⊗mn ⊗ V ⊗mn
- C

is a linear combination of the invariants

µσ(f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm) =
Y
i

fi(vσ(i))

for σ ∈ Sm.
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Using the identification Mn(C) = Vn ⊗ V ∗n a multilinear GLn-invariant map

(V ∗n ⊗ Vn)⊗m = V ∗⊗mn ⊗ V ⊗mn
- C

corresponds to a multilinear GLn-invariant map

Mn(C)⊗ . . .⊗Mn(C) - C

We will now give a description of the generating maps µσ in terms of matrices. Under the identifi-
cation, matrix multiplication is induced by composition on rank one endomorphisms and here the
rule is given by

v ⊗ f.v′ ⊗ f ′ = f(v′)v ⊗ f ′264ν1...
νn

375⊗ ˆ
φ1 . . . φn

˜
.

264ν
′
1

...
ν′n

375⊗ ˆ
φ′1 . . . φ′n

˜
=

264ν1...
νn

375 f(v′)⊗
ˆ
φ′1 . . . φ′n

˜
.

Moreover, the trace map on Mn is induced by that on rank one endomorphisms where it is given
by the rule

tr(v ⊗ f) = f(v)

tr(

264ν1...
νn

375⊗ ˆ
φ1 . . . φn

˜
) = tr(

264ν1φ1 . . . ν1φn
...

. . .
...

νnφ1 . . . νnφn

375) =
X
i

νiφi = f(v)

With these rules we can now give a matrix-interpretation of the GLn-invariant maps µσ.

Proposition 1.2 Let σ = (i1i2 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ) be a decomposition of σ ∈ Sm into
cycles (including those of length one). Then, under the above identification we have

µσ(A1 ⊗ . . .⊗Am) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ )

Proof. Both sides are multilinear hence it suffices to verify the equality for rank one matrices.
Write Ai = vi ⊗ fi, then we have that

µσ(A1 ⊗ . . .⊗Am) = µσ(v1 ⊗ . . . vm ⊗ f1 ⊗ . . .⊗ fm)

=
Q
i fi(vσ(i))

Consider the subproduct
fi1(vi2)fi2(vi3) . . . fiα−1(viα) = S

Now, look at the matrixproduct

vi1 ⊗ fi1 .vi2 ⊗ fi2 . . . . .viα ⊗ fiα
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which is by the product rule equal to

fi1(vi2)fi2(vi3) . . . fiα−1(viα)vi1 ⊗ fiα

Hence, by the trace rule we have that

tr(Ai1Ai2 . . . Aiα) =

αY
j=1

fij (vσ(ij)) = S

�

Having found a description of the multilinear invariant polynomial maps

Mm
n = Mn ⊕ . . .⊕Mn| {z }

m

- C

we will now describe all polynomial maps which are constant along orbits by polarization. The
coordinate algebra C[Mm

n ] is the polynomial ring in mn2 variables xij(k) where 1 ≤ k ≤ m and
1 ≤ i, j ≤ n. Consider the m generic n× n matrices

k = Xk =

264x11(k) . . . x1n(k)
...

...
xn1(k) . . . xnn(k)

375 ∈Mn(C[Mm
n ]).

The action of GLn on polynomial maps f ∈ C[Mm
n ] is fully determined by the action on the

coordinate functions xij(k). As in the case of one n× n matrix we see that this action is given by

g.xij(k) = (g−1.Xk.g)ij .

We see that this action preserves the subspaces spanned by the entries of any of the generic matrices.
Hence, we can define a gradation on C[Mm

n ] by deg(xij(k)) = (0, . . . , 0, 1, 0, . . . , 0) (with 1 at place
k) and decompose

C[Mm
n ] =

M
(d1,...,dm)∈Nm

C[Mm
n ](d1,...,dm)

where C[Mm
n ](d1,...,dm) is the subspace of all multihomogeneous forms f in the xij(k) of degree

(d1, . . . , dm), that is, in each monomial term of f there are exactly dk factors coming from the
entries of the generic matrix Xk for all 1 ≤ k ≤ m. The action of GLn stabilizes each of these
subspaces, that is,

if f ∈ C[Mm
n ](d1,...,dm) then g.f ∈ C[Mm

n ](d1,...,dm) for all g ∈ GLn.
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In particular, if f determines a polynomial map on Mm
n which is constant along orbits, that is, if f

belongs to the ring of invariants C[Mm
n ]GLn then each of its multihomogeneous components is also

an invariant and therefore it suffices to determine all multihomogeneous invariants.
Let f ∈ C[Mm

n ](d1,...,dm) and take for each 1 ≤ k ≤ m dk new variables t1(k), . . . , tdk (k). Expand

f(t1(1)A1(1) + . . .+ td1Ad1(1), . . . , t1(m)A1(m) + . . .+ tdm(m)Adm(m))

as a polynomial in the variables ti(k), then we get an expression

X
t1(1)s1(1) . . . t

sd1 (1)

d1
. . . t1(m)s1(m) . . . tdm(m)sdm (m).

f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m))(A1(1), . . . , Ad1(1), . . . , A1(m), . . . , Adm(m))

such that for all 1 ≤ k ≤ m we have
Pdk
i=1 si(k) = dk. Moreover, each of the

f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m)) is a multi-homogeneous polynomial function on

Mn ⊕ . . .⊕Mn| {z }
d1

⊕Mn ⊕ . . .⊕Mn| {z }
d2

⊕ . . .⊕Mn ⊕ . . .⊕Mn| {z }
dm

of multi-degree (s1(1), . . . , sd1(1), . . . , s1(m), . . . , sdm(m)). Observe that if f is an invariant poly-
nomial function on Mm

n , then each of these multi homogeneous functions is an invariant polynomial
function on MD

n where D = d1 + . . .+ dm.
In particular, we consider the multi-linear function

f1,...,1 : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C

which we call the polarization of the polynomial f and denote with Pol(f). Observe that Pol(f)

in symmetric in each of the entries belonging to a block M
dk
n for every 1 ≤ k ≤ m. If f is invariant

under GLn, then so is the multilinear function Pol(f) and we know the form of all such functions
by the results given before (replacing Mm

n by MD
n ).

Finally, we want to recover f back from its polarization. We claim to have the equality

Pol(f)(A1, . . . , A1| {z }
d1

, . . . , Am, . . . , Am| {z }
dm

) = d1! . . . dm!f(A1, . . . , Am)

and hence we recover f . This process is called restitution . The claim follows from the observation
that

f(t1(1)A1 + . . .+ td1(1)A1, . . . , t1(m)Am + . . .+ tdm(m)Am) =

f((t1(1) + . . .+ td1(1))A1, . . . , (t1(m) + . . .+ tdm(m))Am) =

(t1(1) + . . .+ td1(1))d1 . . . (t1(m) + . . .+ tdm(m))dmf(A1, . . . , Am)



1.3. Matrix invariants and necklaces 31

and the definition of Pol(f). Hence we have proved that any multi-homogeneous invariant polyno-
mial function f on Mm

n of multidegree (d1, . . . , dm) can be obtained by restitution of a multilinear
invariant function

Pol(f) : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C

If we combine this fact with our description of all multilinear invariant functions on Mn⊕ . . .⊕Mn

we finally obtain :

Theorem 1.6 (First fundamental theorem of matrix invariants) Any polynomial function

Mm
n

f- C which is constant along orbits under the action of GLn by simultaneous conjugation
is a polynomial in the invariants

tr(Xi1 . . .Xil)

where Xi1 . . .Xil run over all possible noncommutative polynomials in the generic matrices
{X1, . . . , Xm}.

We will call the algebra C[Mm
n ] generated by these invariants the necklace algebra Nmn =

C[Mm
n ]GLn . The terminology is justified by the observation that the generators

tr(Xi1Xi2 . . .Xil)

are only determined up to cyclic permutation of the factors Xj . They correspond to a necklace
word w

�

�)))))

� HHHHH
�

�
vvvvv

�
��
��
�

�

))
))

)

�
HHHHH

�

�vvvvv

�����

x
w

where each i-colored bead i corresponds to a generic matrix Xi. To obtain an invariant, these
bead-matrices are cyclically multiplied to obtain an n× n matrix with coefficients in Mn(C[Mm

n ]).
The trace of this matrix is called tr(w) and theorem 1.6 asserts that these elements generate the
ring of polynomial invariants.
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1.4 The trace algebra

In this section we will prove that there is a bound on the length of the necklace words w necessary
for the tr(w) to generate Nmn . Later, after we have determined the relations between these necklaces
tr(w), we will be able to improve this bound.

First, we will characterize all GLn-equivariant maps from Mm
n to Mn, that is all polynomial

maps Mm
n

f- Mn such that for all g ∈ GLn the diagram below is commutative

Mm
n

f - Mn

Mm
n

g.g−1

?
f - Mn

g.g−1

?

With pointwise addition and multiplication in the target algebra Mn, these polynomial maps form
a noncommutative algebra Tmn called the trace algebra. Obviously, the trace algebra is a subalgebra
of the algebra of all polynomial maps from Mm

n to Mn, that is,

Tmn ⊂ - Mn(C[Mm
n ])

Clearly, using the diagonal embedding of C in Mn any invariant polynomial on Mm
n determines a

GLn-equivariant map. Equivalently, using the diagonal embedding of C[Mm
n ] in Mn(C[Mm

n ]) we
can embed the necklace algebra

Nmn = C[Mm
n ]GLn ⊂ - Tmn

Another source of GLn-equivariant maps are the coordinate maps

Xi : Mm
n = Mn ⊕ . . .⊕Mm

n
- Mn (A1, . . . , Am) 7→ Ai

Observe that the coordinate map Xi is represented by the generic matrix i = Xi in Mn(C[Mm
n ]).

Proposition 1.3 As an algebra over the necklace algebra Nmn , the trace algebra Tmn is generated
by the elements {X1, . . . , Xm}.

Proof. Consider a GLn-equivariant map Mm
n

f- Mn and associate to it the polynomial map

Mm+1
n = Mm

n ⊕Mn
tr(fXm+1) - C

defined by sending (A1, . . . , Am, Am+1) to tr(f(A1, . . . , Am).Am+1). For all g ∈ GLn we have that
f(g.A1.g

−1, . . . , g.Am.g
−1) is equal to g.f(A1, . . . , Am).g−1 and hence

tr(f(g.A1.g
−1, . . . , g.Am.g

−1).g.Am+1.g
−1) = tr(g.f(A1, . . . , Am).g−1.g.Am+1.g

−1)

= tr(g.f(A1, . . . , Am).Am+1.g
−1)

= tr(f(A1, . . . , Am).Am+1)
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so tr(fXm+1) is an invariant polynomial function onMm+1
n which is linear inXm+1. By theorem 1.6

we can therefore write
tr(fXm+1) =

X
gi1...il| {z }
∈Nm

n

tr(Xi1 . . .XilXm+1)

Here, we used the necklace property allowing to permute cyclically the trace terms in which Xm+1

occurs such that Xm+1 occurs as the last factor. But then, tr(fXm+1) = tr(gXm+1) where

g =
X

gi1...ilXi1 . . .Xil .

Finally, using the nondegeneracy of the trace map on Mn (that is, if A,B ∈Mn such that tr(AC) =
tr(BC) for all C ∈Mn, then A = B) it follows that f = g. �

If we give each of the generic matrices Xi degree one, we see that the trace algebra Tmn is a
connected positively graded algebra

Tmn = T0 ⊕ T1 ⊕ T2 ⊕ . . . with T0 = C.

Our aim is to bound the length of the monomials in the Xi necessary to generate Tmn as a module
over the necklace algebra Nmn . Before we can do this we need to make a small detour in one of the
more exotic realms of noncommutative algebra : the Nagata-Higman problem .

Theorem 1.7 (Nagata-Higman) Let R be an associative algebra without a unit element. As-

sume there is a fixed natural number n such that xn = 0 for all x ∈ R. Then, R2n−1 = 0, that
is

x1.x2. . . . x2n−1 = 0

for all xj ∈ R.

Proof. We use induction on n, the case n = 1 being obvious. Consider for all x, y ∈ R

f(x, y) = yxn−1 + xyxn−2 + x2yxn−3 + . . .+ xn−2yx+ xn−1y.

Because for all c ∈ C we must have that

0 = (y + cx)n = xncn + f(x, y)cn−1 + . . .+ yn

it follows that all the coefficients of the ci with 1 ≤ i < n must be zero, in particular f(x, y) = 0.
But then we have for all x, y, z ∈ R that

0 = f(x, z)yn−1 + f(x, zy)yn−2 + f(x, zy2)yn−3 + . . .+ f(x, zyn−1)

= nxn−1zyn−1 + zf(y, xn−1) + xzf(y, xn−2) + x2zf(y, xn−3) + . . .+ xn−2zf(y, x)
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and therefore xn−1zyn−1 = 0. Let I /R be the twosided ideal of R generated by all elements xn−1,
then we have that I.R.I = 0. In the quotient algebra R = R/I every element x satisfies xn−1 = 0.

By induction we may assume that R
2n−1−1

= 0, or equivalently that R2n−1−1 is contained in I.
But then,

R2n−1 = R2(2n−1−1)+1 = R2n−1−1.R.R2n−1−1 ⊂ - I.R.I = 0

finishing the proof. �

Proposition 1.4 The trace algebra Tmn is spanned as a module over the necklace algebra Nmn by
all monomials in the generic matrices

Xi1Xi2 . . .Xil

of degree l ≤ 2n − 1.

Proof. By the diagonal embedding of Nmn in Mn(C[Mm
n ]) it is clear that Nmn commutes with any of

the Xi. Let T+ and N+ be the strict positive degrees of Tmn and Nmn and form the graded associative
algebra (without unit element)

R = T+/N+.T+

Observe that any element t ∈ T+ satisfies an equation of the form

tn + c1t
n−1 + c2t

n−2 + . . .+ cn = 0

with all of the ci ∈ N+. Indeed we have seen that all the coefficients of the characteristic polynomial
of a matrix can be expressed as polynomials in the traces of powers of the matrix. But then, for
any x ∈ R we have that xn = 0.

By the Nagata-Higman theorem we know that R2n−1 = (R1)
2n−1 = 0. Let T′ be the graded

Nmn -submodule of Tmn spanned by all monomials in the generic matrices Xi of degree at most 2n−1,
then the above can be reformulated as

Tmn = T′ + N+.Tmn .

We claim that Tnm = T′. Assume not, then there is a homogeneous t ∈ Tmn of minimal degree d not
contained in T′ but still we have a description

t = t′ + c1.t1 + . . .+ cs.ts

with t′ and all ci, ti homogeneous elements. As deg(ti) < d, ti ∈ T′ for all i but then is t ∈ T′ a
contradiction. �

Finally we are in a position to bound the length of the necklaces generating Nmn as an algebra.
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Theorem 1.8 The necklace algebra Nmn is generated by all necklaces tr(w) where w is a necklace
word in the bead-matrices {X1, . . . , Xm} of length l ≤ 2n.

Proof. Let T′ be the C-subalgebra of Tmn generated by the generic matrices Xi. Then, tr(T′+)
generates the ideal N+. Let S be the set of all monomials in the Xi of degree at most 2n − 1. By
the foregoing proposition we know that T′ ⊂ - Nmn .S. The trace map

tr : Tmn - Nmn

is Nmn -linear and therefore, because T′+ ⊂ T′.(CX1 + . . .+ CXm) we have

tr(T′+) ⊂ tr(Nmn .S.(CX1 + . . .+ CXm)) ⊂ Nmn .tr(S′)

where S′ is the set of monomials in the Xi of degree at most 2n. If N′ is the C-subalgebra of Nmn
generated by all tr(S′), then we have tr(T′+) ⊂ Nmn .N′+. But then, we have

N+ = Nmn tr(T+) ⊂ Nmn N′+ and thus Nmn = N′ + Nmn N′+

from which it follows that Nmn = N′ by a similar argument as in the foregoing proof. �

Example 1.4 (The algebras N2
2 and T2

2) When working with 2×2 matrices, the following iden-
tities are often helpful

0 = A2 − tr(A)A+ det(A)

A.B +B.A = tr(AB)− tr(A)tr(B) + tr(A)B + tr(B)A

for all A,B ∈ M2. Let N′ be the subalgebra of N2
2 generated by tr(X1), tr(X2), det(X1), det(X2)

and tr(X1X2). Using the two formulas above and N2
2-linearity of the trace on T2

2 we see that the
trace of any monomial in X1 and X2 of degree d ≥ 3 can be expressed in elements of N′ and traces
of monomials of degree ≤ d− 1. Hence, we have

N2
2 = C[tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)].

Observe that there can be no algebraic relations between these generators as we have seen that the
induced map π : M2

2
- C5 is surjective. Another consequence of the above identities is that

over N2
2 any monomial in the X1, X2 of degree d ≥ 3 can be expressed as a linear combination of

1, X1, X2 and X1X2 and so these elements generate T2
2 as a N2

2-module. In fact, they are a basis of
T2

2 over N2
2. Assume otherwise, there would be a relation say

X1X2 = αI2 + βX1 + γX2

with α, β, γ ∈ C(tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)). Then this relation has to hold for all
matrix couples (A,B) ∈M2

2 and we obtain a contradiction if we take the couple

A =

»
0 1
0 0

–
B =

»
0 0
1 0

–
whence AB =

»
1 0
0 0

–
.
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Concluding, we have the following description of N2
2 and T2

2 as a subalgebra of C[M2
2 ] respectively

M2(C[M2
2 ]) (

N2
2 = C[tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)]

T2
2 = N2

2.I2 ⊕ N2
2.X1 ⊕ N2

2.X2 ⊕ N2
2.X1X2

Observe that we might have taken the generators tr(X2
i ) rather than det(Xi) because det(Xi) =

1
2
(tr(Xi)

2 − tr(Xi)2) as follows from taking the trace of characteristic polynomial of Xi.

1.5 The symmetric group

Let Sd be the symmetric group of all permutations on d letters. The group algebra C Sd is a
semisimple algebra. In particular, any simple Sd-representation is isomorphic to a minimal left
ideal of C Sd which is generated by an idempotent . We will now determine these idempotents.

To start, conjugacy classes in Sd correspond naturally to partitions λ = (λ1, . . . , λk) of d, that
is, decompositions in natural numbers

d = λ1 + . . .+ λk with λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1

The correspondence associates to a partition λ = (λ1, . . . , λk) the conjugacy class of a permutation
consisting of disjoint cycles of lengths λ1, . . . , λk. It is traditional to assign to a partition λ =
(λ1, . . . , λk) a Young diagram with λi boxes in the i-th row, the rows of boxes lined up to the left.
The dual partition λ∗ = (λ∗1, . . . , λ

∗
r) to λ is defined by interchanging rows and columns in the

Young diagram of λ .
For example, to the partition λ = (3, 2, 1, 1) of 7 we assign the Young diagram

λ = λ∗ =

with dual partition λ∗ = (4, 2, 1). A Young tableau is a numbering of the boxes of a Young diagram
by the integers {1, 2, . . . , d}. For example, two distinct Young tableaux of type λ are

1 2 3
4 5
6
7

1 3 5
2 4
6
7

Now, fix a Young tableau T of type λ and define subgroups of Sd by

Pλ = {σ ∈ Sd | σ preserves each row }

Qλ = {σ ∈ Sd | σ preserves each column }
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For example, for the second Young tableaux given above we have that(
Pλ = S{1,3,5} × S{2,4} × {(6)} × {(7)}
Qλ = S{1,2,6,7} × S{3,4} × {(5)}

Observe that different Young tableaux for the same λ define different subgroups and different
elements to be defined below. Still, the simple representations we will construct from them turn
out to be isomorphic.

Using these subgroups, we define the following elements in the groupalgebra CSd

aλ =
X
σ∈Pλ

eσ , bλ =
X
σ∈Qλ

sgn(σ)eσ and cλ = aλ.bσ

The element cλ is called a Young symmetrizer . The next result gives an explicit one-to-one
correspondence between the simple representations of CSd and the conjugacy classes in Sd (or,
equivalently, Young diagrams).

Theorem 1.9 For every partition λ of d the left ideal CSd.cλ = Vλ is a simple Sd-representations
and, conversely, any simple Sd-representation is isomorphic to Vλ for a unique partition λ.

Proof. (sketch) Observe that Pλ ∩Qλ = {e} (any permutation preserving rows as well as columns
preserves all boxes) and so any element of Sd can be written in at most one way as a product p.q
with p ∈ Pλ and q ∈ Qλ. In particular, the Young symmetrizer can be written as cλ =

P
±eσ with

σ = p.q for unique p and q and the coefficient ±1 = sgn(q). From this it follows that for all p ∈ Pλ
and q ∈ Qλ we have

p.aλ = aλ.p = aλ , sgn(q)q.bλ = bλ.sgn(q)q = bλ , p.cλ.sgn(q)q = cλ

Moreover, we claim that cλ is the unique element in CSd (up to a scalar factor) satisfying the last
property. This requires a few preparations.

Assume σ /∈ Pλ.Qλ and consider the tableaux T ′ = σT , that is, replacing the label i of each box
in T by σ(i). We claim that there are two distinct numbers which belong to the same row in T
and to the same column in T ′. If this were not the case, then all the distinct numbers in the first
row of T appear in different columns of T ′. But then we can find an element q′1 in the subgroup
σ.Qλ.σ

−1 preserving the columns of T ′ to take all these elements to the first row of T ′. But then,
there is an element p1 ∈ Tλ such that p1T and q′1T

′ have the same first row. We can proceed to
the second row and so on and obtain elements p ∈ Pλ and q′ ∈ σ.Qλ, σ−1 such that the tableaux
pT and q′T ′ are equal. Hence, pT = q′σT entailing that p = q′σ. Further, q′ = σ.q.σ−1 but then
p = q′σ = σq whence σ = p.q−1 ∈ Pλ.Qλ, a contradiction. Therefore, to σ /∈ Pλ.Qλ we can assign
a transposition τ = (ij) (replacing the two distinct numbers belonging to the same row in T and
to the same column in T ′) for which p = τ ∈ Pλ and q = σ−1.τ.σ ∈ Qλ.

After these preliminaries, assume that c′ =
P
aσeσ is an element such that

p.c′.sgn(q)q = c′ for all p ∈ Pλ, q ∈ Qλ
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We claim that aσ = 0 whenever σ /∈ Pλ.Qλ. For take the transposition τ found above and p = τ ,
q = σ−1.τ.σ, then p.σ.q = τ.σ.σ−1.τ.σ = σ. However, the coefficient of σ in c′ is aσ and that of
p.c′.q is −aσ proving the claim. That is,

c′ =
X
p,q

apqep.q

but then by the property of c′ we must have that apq = sgn(q)ae whence c′ = aecλ finishing the
proof of the claimed uniqueness of the element cλ.

As a consequence we have for all elements x ∈ CSd that cλ.x, cλ = αxcλ for some scalar αx ∈ C
and in particular that c2λ = nλcλ, for,

p.(cλ.x.cλ).sgn(q)q = p.aλ.bλ.x.aλ.bλ.sgn(q)q

= aλ.bλ.x.aλ.bλ = cλ.x.cλ

and the statement follows from the uniqueness result for cλ.
Define Vλ = CSd.cλ then we have cλ.Vλ ⊂ Ccλ. We claim that Vλ is a simple Sd-representation.

Let W ⊂ Vλ be a simple subrepresentation, then being a left ideal of CSd we can write W = CSd.x
with x2 = x (note that W is a direct summand). Assume that cλ.W = 0, then W.W ⊂ CSd.cλ.W =
0 implying that x = 0 whence W = 0, a contradiction. Hence, cλ.W = Ccλ ⊂W , but then

Vλ = CSd.cλ ⊂W whenceVλ = W

is simple. Remains to show that for different partitions, the corresponding simple representations
cannot be isomorphic.

We put a lexicographic ordering on the partitions by the rule that

λ > µ if the first nonvanishing λi − µi is positive

We claim that if λ > µ then aλ.CSd.bµ = 0. It suffices to check that aλ.σ.bµ = 0 for σ ∈ Sd. As
σ.bµ.σ

−1 is the ”b-element” constructed from the tableau b.T ′ where T ′ is the tableaux fixed for µ,
it is sufficient to check that aλ.bµ = 0. As λ > µ there are distinct numbers i and j belonging to
the same row in T and to the same column in T ′. If not, the distinct numbers in any fixed row of T
must belong to different columns of T ′, but this can only happen for all rows if µ ≥ λ. So consider
τ = (ij) which belongs to Pλ and to Qµ, whence aλ.τ = aλ and τ.bµ = −bµ. But then,

aλ.bµ = aλ.τ, τ, bµ = −aλ.bµ
proving the claim.

If λ 6= µ we claim that Vλ is not isomorphic to Vµ. Assume that λ > µ and φ a CSd-isomorphism
with φ(Vλ) = Vµ, then

φ(cλVλ) = cλφ(Vλ) = cλVµ = cλCSdcµ = 0

Hence, cλVλ = Ccλ 6= 0 lies in the kernel of an isomorphism which is clearly absurd.
Summarizing, we have constructed to distinct partitions of d, λ and µ nonisomorphic simple

CSd-representations Vλ and Vµ. As we know that there are as many isomorphism classes of simples
as there are conjugacy classes in Sd (or partitions), the Vλ form a complete set of isomorphism
classes of simple Sd-representations, finishing the proof of the theorem. �
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1.6 Necklace relations

In this section we will prove that all the relations holding among the elements of the necklace
algebra Nmn are formal consequences of the Cayley-Hamilton theorem. First, we will have to set up
some notation to clarify what we mean by this.

For technical reasons it is sometimes convenient to have an infinite supply of noncommutative
variables {x1, x2, . . . , xi, . . .}. Two monomials of the same degree d in these variables

M = xi1xi2 . . . xid and M ′ = xj1xj2 . . . xjd

are said to be equivalent if M ′ is obtained from M by a cyclic permutation, that is, there is a k
such that i1 = jk and all ia = jb with b = k + a − 1 mod d. That is, if they determine the same
necklace word
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with each of the beads one of the noncommuting variables i = xi. To each equivalence class we
assign a formal variable that we denote by

t(xi1xi2 . . . xid).

The formal necklace algebra N∞ is then the polynomial algebra on all these (infinitely many)
letters. Similarly, we define the formal trace algebra T∞ to be the algebra

T∞ = N∞ ⊗C C〈x1, x2, . . . , xi, . . .〉

that is, the free associative algebra on the noncommuting variables xi with coefficients in the
polynomial algebra N∞.

Crucial for our purposes is the existence of an N∞-linear formal trace map

t : T∞ -- N∞

defined by the formula

t(
X

ai1...ikxi1 . . . xik ) =
X

ai1...ik t(xi1 . . . xik )
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where ai1...ik ∈ N∞.
In an analogous manner we will define infinite versions of the necklace and trace algebras. Let

M∞n be the space of all ordered sequences (A1, A2, . . . , Ai, . . .) with Ai ∈ Mn and all but finitely
many of the Ai are the zero matrix. Again, GLn acts on M∞n by simultaneous conjugation and we
denote the infinite necklace algebra N∞n to be the algebra of polynomial functions f

M∞n
f- C

which are constant along orbits. Clearly, N∞n is generated as C-algebra by the invariants tr(M)
where M runs over all monomials in the coordinate generic matrices Xk = (xij(k))i,j belonging to
the k-th factor of M∞n . Similarly, the infinite trace algebra T∞n is the algebra of GLn-equivariant
polynomial maps

M∞n - Mn.

Clearly, T∞n is the C-algebra generated by N∞n and the generic matrices Xk for 1 ≤ k <∞. Observe
that T∞n is a subalgebra of the matrixring

T∞n ⊂ - Mn(C[M∞n ])

and as such has a trace map tr defined on it and from our knowledge of the generators of N∞n we
know that tr(T∞n ) = N∞n .

Now, there are natural algebra epimorphisms

T∞ τ-- T∞n and N∞ ν-- N∞n

defined by τ(t(xi1 . . . xik )) = ν(t(xi1 . . . xik )) = tr(Xi1 . . .Xik ) and τ(xi) = Xi. That is, ν and τ
are compatible with the trace maps

T∞ τ-- T∞n

N∞

t

??
ν-- N∞n

tr

??

We are interested in describing the necklace relations , that is, the kernel of ν. In the next section
we will describe the trace relations which is the kernel of τ . Note that we obtain the relations
holding among the necklaces in Nmn by setting all xi = 0 with i > m and all t(xi1 . . . xik ) = 0
containing a variable with ij > m.

In the description a map T : CSd - N∞ will be important. Let Sd be the symmetric group
of permutations on {1, . . . , d} and let

σ = (i1i1 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ)
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be a decomposition of σ ∈ Sd into cycles including those of length one. The map T assigns to σ a
formal necklace Tσ(x1, . . . , xd) defined by

Tσ(x1, . . . , xd) = t(xi1xi2 . . . xiα)t(xj1xj2 . . . xjβ ) . . . t(xz1xz2 . . . xzζ )

Let V = Vn be again the n-dimensional vectorspace of column vectors, then Sd acts naturally on
V ⊗d via

σ.(v1 ⊗ . . .⊗ vd) = vσ(1) ⊗ . . .⊗ vσ(d)

hence determines a linear map λσ ∈ End(V ⊗d). Recall from section 3 that under the natural
identifications

(M⊗dn )∗ ' (V ∗⊗d ⊗ V ⊗d)∗ ' End(V ⊗d)

the map λσ defines the multilinear map

µσ : Mn ⊗ . . .⊗Mn| {z }
d

- C

defined by (using the cycle decomposition of σ as before)

µσ(A1 ⊗ . . .⊗Ad) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ ) .

Therefore, a linear combination
P
aσTσ(x1, . . . , xd) is a necklace relation (that is, belongs toKer ν)

if and only if the multilinear map
P
aσµσ : M⊗dn - C is zero. This, in turn, is equivalent to the

endomorphism
P
aσλσ ∈ End(V ⊗m), induced by the action of the element

P
aσeσ ∈ CSd on V ⊗d,

being zero. In order to answer the latter problem we have to understand the action of a Young
symmetrizer cλ ∈ CSd on V ⊗d.

Let λ = (λ1, λ2, . . . , λk) be a partition of d and equip the corresponding Young diagram with the
standard tableau (that is, order first the boxes in the first row from left to right, then the second
row from left to right and so on).

1

d

//
//

//

The subgroup Pλ of Sd which preserves each row then becomes

Pλ = Sλ1 × Sλ2 × . . .× Sλk
⊂ - Sd.
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As aλ =
P
p∈Pλ

ep we see that the image of the action of aλ on V ⊗d is the subspace

Im(aλ) = Symλ1 V ⊗ Symλ2 V ⊗ . . .⊗ Symλk V ⊂ - V ⊗d .

Here, Symi V denotes the subspace of symmetric tensors in V ⊗i.
Similarly, equip the Young diagram of λ with the tableau by ordering first the boxes in the first

column from top to bottom, then those of the second column from top to bottom and so on.

1 d

��

�� ��

Equivalently, give the Young diagram corresponding to the dual partition of λ

λ∗ = (µ1, µ2, . . . , µl)

the standard tableau. Then, the subgroup Qλ of Sd which preserves each row of λ (or equivalently,
each column of λ∗) is

Qλ = Sµ1 × Sµ2 × . . .× Sµl
⊂ - Sd

As bλ =
P
q∈Qλ

sgn(q)eq we see that the image of bλ on V ⊗d is the subspace

Im(bλ) =

µ1̂

V ⊗
µ2̂

V ⊗ . . .⊗
µl̂

V ⊂ - V ⊗d .

Here,
Vi V is the subspace of all anti-symmetric tensors in V ⊗i. Note that

Vi V = 0 whenever
i is greater than the dimension dim V = n. That is, the image of the action of bλ on V ⊗d is zero
whenever the dual partition λ∗ contains a row of length ≥ n + 1, or equivalently, whenever λ has
≥ n + 1 rows. Because the Young symmetrizer cλ = aλ.bλ ∈ C Sd we have proved the first result
on necklace relations.

Theorem 1.10 (Second fundamental theorem of matrix invariants) A formal necklaceX
σ∈Sd

aσTσ(x1, . . . , xd)

is a necklace relation (for n× n matrices) if and only if the elementX
aσeσ ∈ CSd
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belongs to the ideal of CSd spanned by the Young symmetrizers cλ relative to partitions λ =
(λ1, . . . , λk)

n

with a least n+ 1 rows, that is, k ≥ n+ 1.

Example 1.5 (Fundamental necklace and trace relation.) Consider the partition λ = (1, 1, . . . , 1)
of n+ 1, with corresponding Young tableau

n+1

...

2
1

Then, Pλ = {e}, Qλ = Sn+1 and we have the Young symmetrizer

aλ = 1 bλ = cλ =
X

σ∈Sn+1

sgn(σ)eσ.

The corresponding element is called the fundamental necklace relation

fundn(x1, . . . , xn+1) =
X

σ∈Sn+1

sgn(σ)Tσ(x1, . . . , xn+1).

Clearly, fundn(x1, . . . , xn+1) is multilinear of degree n + 1 in the variables {x1, . . . , xn+1}.
Conversely, any multilinear necklace relation of degree n + 1 must be a scalar multiple of
fundn(x1, . . . , xn+1). This follows from the proposition as the ideal described there is for d = n+1
just the scalar multiples of

P
σ∈Sn+1

sgn(σ)eσ.

Because fundn(x1, . . . , xn+1) is multilinear in the variables xi we can use the cyclic permutation
property of the formal trace t to write it in the form

fundn(x1, . . . , xn+1) = t(chan(x1, . . . , xn)xn+1) with chan(x1, . . . , xn) ∈ T∞

Observe that chan(x1, . . . , xn) is multilinear in the variables xi. Moreover, by the nondegeneracy
of the trace map tr and the fact that fundn(x1, . . . , xn+1) is a necklace relation, it follows that
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chan(x1, . . . , xn) is a trace relation. Again, any multilinear trace relation of degree n in the variables
{x1, . . . , xn} is a scalar multiple of chan(x1, . . . , xn). This follows from the corresponding uniqueness
result for fundn(x1, . . . , xn+1).

We can give an explicit expression of this fundamental trace relation

chan(x1, . . . , xn) =

nX
k=0

(−1)k
X

i1 6=i2 6=...6=ik

xi1xi2 . . . xik
X
σ∈SJ

sgn(σ)Tσ(xj1 , . . . , xjn−k )

where J = {1, . . . , n} − {i1, . . . , ik}. In a moment we will see that chan(x1, . . . , xn) and hence also
fundn(x1, . . . , xn+1) is obtained by polarization of the Cayley-Hamilton identity for n×n matrices.

We will explain what we mean by the Cayley-Hamilton polynomial for an element of T∞. Recall
that when X ∈Mn(A) is a matrix with coefficients in a commutative C-algebra A its characteristic
polynomial is defined to be

χX(t) = det(trrn −X) ∈ A[t]

and by the Cayley-Hamilton theorem we have the basic relation that χX(X) = 0. We have seen
that the coefficients of the characteristic polynomial can be expressed as polynomial functions in
the tr(Xi) for 1 ≤ i ≤ n.

For example if n = 2, then the characteristic polynomial can we written as

χX(t) = t2 − tr(X)t+
1

2
(tr(X)2 − tr(X2)).

For general n the method for finding these polynomial functions is based on the formal recursive al-
gorithm expressing elementary symmetric functions in term of Newton functions , usually expressed
by the formulae

f(t) =

nY
i=1

(t− λi),

f ′(t)

f(t)
=
d log f(t)

dt
=

nX
i=1

1

t− λi
=

∞X
k=0

1

tk+1
(

nX
i=1

λki )

Note, if λi are the eigenvalues of X ∈ Mn, then f(t) = χX(t) and
Pn
i=1 λ

k
i = tr(Xk). Therefore,

one can use the formulae to express f(t) in terms of the elements
Pn
i=1 λ

k
i . To get the required

expression for the characteristic polynomial of X one only has to substitute
Pn
i=1 λ

k
i with tr(Xk).

This allows us to construct a formal Cayley-Hamilton polynomial χx(x) ∈ T∞ of an element
x ∈ T∞ by replacing in the above characteristic polynomial the term tr(Xk) with t(xk) and tl

with xl. If x is one of the variables xi then χx(x) is an element of T∞ homogeneous of degree n.
Moreover, by the Cayley-Hamilton theorem it follows immediately that χx(x) is a trace relation.
Hence, if we fully polarize χx(x) (say, using the variables {x1, . . . , xn}) we obtain a multilinear
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trace relation of degree n. By the argument given in the example above we know that this element
must be a scalar multiple of chan(x1, . . . , xn). In fact, one can see that this scale factor must be
(−1)n as the leading term of the multilinearization is

P
σ∈Sn

xσ(1) . . . xσ(n) and compare this with

the explicit form of chan(x1, . . . , xn).

Example 1.6 Consider the case n = 2. The formal Cayley-Hamilton polynomial of an element
x ∈ T∞ is

χx(x) = x2 − t(x)x+
1

2
(t(x)2 − t(x2)) .

Polarization with respect to the variables x1 and x2 gives the expression

x1x2 + x2x1 − t(x1)x2 − t(x2)x1 + t(x1)t(x2)− t(x1x2)

which is cha2(x1, x2). Indeed, multiplying it on the right with x3 and applying the formal trace t
to it we obtain

t(x1x2x3) + t(x2x1x3)− t(x1)t(x2x3)− t(x2)t(x1x3)

+t(x1)t(x2)t(x3)− t(x1x2)t(x3)

= T(123)(x1, x2, x3) + T(213)(x1, x2, x3)− T(1)(23)(x1, x2, x3)− T(2)(13)(x1, x2, x3)

+T(1)(2)(3)(x1, x2, x3)− T(12)(3)(x1, x2, x3)

=
P
σ∈S3

Tσ(x1, x2, x3) = fund2(x1, x2, x3)

as required.

Theorem 1.11 The necklace relations Ker ν is the ideal of N∞ generated by all the elements

fundn(m1, . . . ,mn+1)

where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}.

Proof. Take a homogeneous necklace relation f ∈ Ker ν of degree d and polarize it to get a
multilinear element f ′ ∈ N∞. Clearly, f ′ is also a necklace relation and if we can show that f ′

belongs to the described ideal, then so does f as the process of restitution maps this ideal into
itself.

Therefore, we may assume that f is multilinear of degree d. A priori f may depend on more
than d variables xk, but we can separate f as a sum of multilinear polynomials fi each depending
on precisely d variables such that for i 6= j fi and fj do not depend on the same variables. Setting
some of the variables equal to zero, we see that each of the fi is again a necklace relation.

Thus, we may assume that f is a multilinear necklace identity of degree d depending on the
variables {x1, . . . , xd}. But then we know from theorem 1.10 that we can write

f =
X
τ∈Sd

aτTτ (x1, . . . , xd)
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where
P
aτeτ ∈ CSd belongs to the ideal spanned by the Young symmetrizers of Young diagrams

λ having at least n+ 1 rows.
We claim that this ideal is generated by the Young symmetrizer of the partition (1, . . . , 1) of

n+ 1 under the natural embedding of Sn+1 into Sd. Let λ be a Young diagram having k ≥ n+ 1
boxes and let cλ be a Young symmetrizer with respect to a tableau where the boxes in the first
column are labeled by the numbers I = {i1, . . . , ik} and let SI be the obvious subgroup of Sd. As
Qλ = SI × Q′ we see that bλ = (

P
σ∈SI

sgn(σ)eσ).b
′ with b′ ∈ CQ′. Hence, cλ belongs to the

twosided ideal generated by cI =
P
σ∈SI

sgn(σ)eσ but this is also the twosided ideal generated

by ck =
P
σ∈Sk

sgn(σ)eσ as one verifies by conjugation with a partition sending I to {1, . . . , k}.
Moreover, by induction one shows that the twosided ideal generated by ck belongs to the twosided
ideal generated by cd =

P
σ∈Sd

sgn(σ)eσ, finishing the proof of the claim.

From this claim, we can writeX
τ∈Sd

aτeτ =
X

τi,τj∈Sd

aijeτi .(
X

σ∈Sn+1

sgn(σ)eσ).eτj

and therefore it suffices to analyze the form of the necklace identity associated to an element of the
form

eτ .(
X

σ∈Sn+1

sgn(σ)eσ).eτ ′ with τ, τ ′ ∈ Sd

Now, if a groupelement
P
µ∈Sd

bµeµ corresponds to the formal necklace polynomial g(x1, . . . , xd),

then the element eτ .(
P
µ∈Sd

bµeµ).eτ−1 corresponds to the formal necklace polynomial

g(xτ(1), . . . , xτ(d)).
Therefore, we may replace the element eτ .(

P
σ∈Sn+1

sgn(σ)eσ).eτ ′ by the element

(
X

σ∈Sn+1

sgn(σ)eσ).eη with η = τ ′.τ ∈ Sd

We claim that we can write η = σ′.θ with σ′ ∈ Sn+1 and θ ∈ Sd such that each cycle of θ contains
at most one of the elements from {1, 2, . . . , n+1}. Indeed assume that η contains a cycle containing
more than one element from {1, . . . , n+ 1}, say 1 and 2, that is

η = (1i1i2 . . . ir2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

then we can express the product (12).η in cycles as

(1i1i2 . . . ir)(2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

Continuing in this manner we reduce the number of elements from {1. . . . , n+ 1} in every cycle to
at most one.
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But then as σ′ ∈ Sn+1 we have seen that (
P
sgn(σ)eσ).eσ′ = sgn(σ′)(

P
sgn(σ)eσ) and conse-

quently

(
X

σ∈Sn+1

sgn(σ)eσ).eη = ±(
X

σ∈Sn+1

sgn(σ)eσ).eθ

where each cycle of θ contains at most one of {1, . . . , n+ 1}. Let us write

θ = (1i1 . . . iα)(2j1 . . . jβ) . . . (n+ 1s1 . . . sκ)(t1 . . . tλ) . . . (z1 . . . zζ)

Now, let σ ∈ Sn+1 then the cycle decomposition of σ.θ is obtained as follows : substitute in each
cycle of σ the element 1 formally by the string 1i1 . . . iα, the element 2 by the string 2j1 . . . jβ , and
so on until the element n+ 1 by the string n+ 1s1 . . . sκ and finally adjoin the cycles of θ in which
no elements from {1, . . . , n+ 1} appear.

Finally, we can write out the formal necklace element corresponding to the element
(
P
σ∈Sn+1

sgn(σ)eσ).eθ as

fundn(x1xi1 . . . xiα , x2xj1 . . . xjβ , . . . , xn+1xs1 . . . xsκ)t(xt1 . . . xtλ) . . . t(xz1 . . . xzζ )

finishing the proof of the theorem. �

1.7 Trace relations

We will again use the non-degeneracy of the trace map to deduce the trace relations. That is, we
will describe the kernel of the epimorphism

τ :

Z
C〈x1, x2, . . .〉 = T∞ -- T∞n =

Z
n

C〈x1, x2, . . .〉

from the description of the necklace relations.

Theorem 1.12 The trace relations Ker τ is the twosided ideal of the formal trace algebra T∞
generated by all elements

fundn(m1, . . . ,mn+1) and chan(m1, . . . ,mn)

where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}.

Proof. Consider a trace relation h(x1, . . . , xd) ∈ Ker τ . Then, we have a necklace relation of the
form

t(h(x1, . . . , xd)xd+1) ∈ Ker ν
By theorem 1.11 we know that this element must be of the formX

ni1...in+1fundn(mi1 , . . . ,min+1)
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where the mi are monomials, the ni1...in+1 ∈ N∞ and the expression must be linear in the variable
xd+1. That is, xd+1 appears linearly in each of the terms

nfundn(m1, . . . ,mn+1)

so appears linearly in n or in precisely one of the monomials mi. If xd+1 appears linearly in n we
can write

n = t(n′.xd+1) where n′ ∈ T∞.
If xd+1 appears linearly in one of the monomials mi we may assume that it does so in mn+1,
permuting the monomials if necessary. That is, we may assume mn+1 = m′n+1.xd+1.m”n+1 with
m,m′ monomials. But then, we can write

nfundn(m1, . . . ,mn+1) = nt(chan(m1, . . . ,mn).m′n+1.xd+1.m”n+1)

= t(n.m”n+1.chan(m1, . . . ,mn).m′n+1.xd+1)

using N∞-linearity and the cyclic permutation property of the formal trace t. But then, separating
the two cases, one can write the total expression

t(h(x1, . . . , xd)xd+1) = t([
X
i

n′i1...in+1fundn(mi1 , . . . ,min+1)

+
X
j

nj1...jn+1 .m”jn+1 .chan(mj1 , . . . ,mjn).m′jn+1 ] xd+1)

Finally, observe that two formal trace elements h(x1, . . . , xd) and k(x1, . . . , xd) are equal if the
formal necklaces

t(h(x1, . . . , xd)xd+1) = t(k(x1, . . . , xd)xd+1)

are equal, finishing the proof. �

We will give another description of the necklace relations Ker τ which is better suited for the
categorical interpretation of T∞n to be given in the next chapter. Consider formal trace elements
m1,m2, . . . ,mi, . . . with mj ∈ T∞. The formal substitution

f 7→ f(m1,m2, . . . ,mi, . . .)

is the uniquely determined algebra endomorphism of T∞ which maps the variable xi to mi and is
compatible with the formal trace t. That is, the substitution sends a monomial xi1xi1 . . . xik to the
element gi1gi2 . . . gik and an element t(xi1xi2 . . . xik ) to the element t(gi1gi2 . . . gik ). A substitution
invariant ideal of T∞ is a twosided ideal of T∞ that is closed under all possible substitutions as well
as under the formal trace t. For any subset of elements E ⊂ T∞ there is a minimal substitution
invariant ideal containing E. This is the ideal generated by all elements obtained from E by
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making all possible substitutions and taking all their formal traces. We will refer to this ideal as
the substitution invariant ideal generated by E.

Recall the definition of the formal Cayley-Hamilton polynomial χx(x) of an element x ∈ T∞
given in the previous section.

Theorem 1.13 The trace relations Ker τ is the substitution invariant ideal of T∞ generated by
the formal Cayley-Hamilton polynomials

χx(x) for all x ∈ T∞

Proof. The result follows from theorem 1.12 and the definition of a substitution invariant ideal
once we can show that the full polarization of χx(x), which we have seen is chan(x1, . . . , xn), lies
in the substitution invariant ideal generated by the χx(x).

This is true since we may replace the process of polarization with the process of multilineariza-
tion, whose first step is to replace, for instance

χx(x) by χx+y(x+ y)− χx(x)− χy(y).

The final result of multilinearization is the same as of full polarization and the claim follows as
multilinearizing a polynomial in a substitution invariant ideal, we remain in the same ideal. �

We will use our knowledge on the necklace and trace relations to improve the bound of 2n − 1
in the Nagata-Higman problem to n2. Recall that this problem asks for a number N(n) with the
property that if R is an associative C-algebra without unit such that rn = 0 for all r ∈ R, then we
must have for all ri ∈ R the identity

r1r2 . . . rN(n) = 0 in R.

We start by reformulating the problem. Consider the positive part F+ of the free C-algebra gener-
ated by the variables {x1, x2, . . . , xi, . . .}

F+ = C〈x1, x2, . . . , xi, . . .〉+

which is an associative C-algebra without unit. Let T (n) be the twosided ideal of F+ generated by
all n-powers fn with f ∈ F+. Note that the ideal T (n) is invariant under all substitutions of F+.
The Nagata-Higman problem then asks for a number N(n) such that the product

x1x2 . . . xN(n) ∈ T (n).

We will now give an alternative description of the quotient algebra F+/T (n). Let N+ be the positive
part of the infinite necklace algebra N∞n and T+ the positive part of the infinite trace algebra T∞n .
Consider the quotient associative C-algebra without unit

T+ = T+/(N+T∞n ).
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Observe the following facts about T+ : as a C-algebra it is generated by the variables X1, X2, . . . as
all the other algebra generators of the form t(xi1 . . . xir ) of T∞ are mapped to zero in T+. Further,

from the form of the Cayley-Hamilton polynomial it follows that every t ∈ T+ satisfies tn = 0.
That is, we have an algebra epimorphism

F+/T (n) -- T+

and we claim that it is also injective. To see this, observe that the quotient T∞/N∞+ T∞ is just

the free C-algebra on the variables {x1, x2, . . .}. To obtain T+ we have to factor out the ideal of
trace relations. Now, a formal Cayley-Hamilton polynomial χx(x) is mapped to xn in T∞/N∞+ T∞.

That is, to obtain T+ we factor out the substitution invariant ideal (observe that t is zero here)
generated by the elements xn, but this is just the definition of F+/T (n).

Therefore, a reformulation of the Nagata-Higman problem is to find a number N = N(n) such
that the product of the first N generic matrices

X1X2 . . .XN ∈ N∞+ T∞n or, equivalently that tr(X1X2 . . .XNXN+1)

can be expressed as a linear combination of products of traces of lower degree. Using the description
of the necklace relations given in theorem 1.10 we can reformulate this conditions in terms of the
group algebra CSN+1. Let us introduce the following subspaces of the groupalgebra :

• A will be the subspace spanned by all N + 1 cycles in SN+1,

• B will be the subspace spanned by all elements except N + 1 cycles,

• L(n) will be the ideal of CSN+1 spanned by the Young symmetrizers associated to partitions

n

L(n)

with ≤ n rows, and

• M(n) will be the ideal of CSN+1 spanned by the Young symmetrizers associated to partitions

n

M(n)

having more than n rows.
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With these notations, we can reformulate the above condition as

(12 . . . NN + 1) ∈ B +M(n) and consequently CSN+1 = B +M(n)

Define an inner product on the groupalgebra CSN+1 such that the groupelements form an orthonor-
mal basis, then A and B are orthogonal complements and also L(n) and M(n) are orthogonal
complements. But then, taking orthogonal complements the condition can be rephrased as

(B +M(n))⊥ = A ∩ L(n) = 0.

Finally, let us define an automorphism τ on CSN+1 induced by sending eσ to sgn(σ)eσ. Clearly, τ
is just multiplication by (−1)N on A and therefore the above condition is equivalent to

A ∩ L(n) ∩ τL(n) = 0.

Moreover, for any Young tableau λ we have that τ(aλ) = bλ∗ and τ(bλ) = aλ∗ . Hence, the
automorphism τ sends the Young symmetrizer associated to a partition to the Young symmetrizer
of the dual partition. This gives the following characterization

• τL(n) is the ideal of CSN+1 spanned by the Young symmetrizers associated to partitions

n

τL(n)

with ≤ n columns.

Now, specialize to the case N = n2. Clearly, any Young diagram having n2 + 1 boxes must have
either more than n columns or more than n rows

n

and consequently we indeed have for N = n2 that

A ∩ L(n) ∩ τL(n) = 0

finishing the proof of the promised refinement of the Nagata-Higman bound
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Theorem 1.14 Let R be an associative C-algebra without unit element. Assume that rn = 0 for
all r ∈ R. Then, for all ri ∈ R we have

r1r2 . . . rn2 = 0

Theorem 1.15 The necklace algebra Nmn is generated as a C-algebra by all elements of the form

tr(Xi1Xi2 . . .Xil)

with l ≤ n2 + 1. The trace algebra Tmn is spanned as a module over the necklace algebra Nmn by all
monomials in the generic matrices

Xi1Xi2 . . .Xil

of degree l ≤ n2.

1.8 Cayley-Hamilton algebras

In this section we define the category alg@n of Cayley-Hamilton algebras of degree n.

Definition 1.1 A trace map on an (affine) C-algebra A is a C-linear map

tr : A - A

satisfying the following three properties for all a, b ∈ A :

1. tr(a)b = btr(a),

2. tr(ab) = tr(ba) and

3. tr(tr(a)b) = tr(a)tr(b).

Note that it follows from the first property that the image tr(A) of the trace map is contained in
the center of A. Consider two algebras A and B equipped with a trace map which we will denote
by trA respectively trB . A trace morphism φ : A - B will be a C-algebra morphism which is
compatible with the trace maps, that is, the following diagram commutes

A
φ - B

A

trA

?
φ - B

trB

?

This definition turns algebras with a trace map into a category, denoted by alg@. We will say that
an algebra A with trace map tr is trace generated by a subset of elements I ⊂ A if the C-algebra
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generated by B and tr(B) is equal to A where B is the C-subalgebra generated by the elements of
I. Note that A does not have to be generated as a C-algebra by the elements from I.

Observe that for T∞ the formal trace t : T∞ -- N∞ ⊂ - T∞ is a trace map. Property
(1) follows because N∞ commutes with all elements of T∞, property (2) is the cyclic permutation
property for t and property (3) is the fact that t is a N∞-linear map. The formal trace algebra T∞
is trace generated by the variables {x1, x2, . . . , xi, . . .} but not as a C-algebra.

Actually, T∞ is the free algebra in the generators {x1, x2, . . . , xi, . . .} in the category of algebras
with a trace map, alg@. That is, if A is an algebra with trace tr which is trace generated by
{a1, a2, . . .}, then there is a trace preserving algebra epimorphism

T∞ π-- A .

For example, define π(xi) = ai and π(t(xi1 . . . xil)) = tr(π(xi1) . . . π(xil)). Also, the formal trace
algebra Tm, that is the subalgebra of T∞ trace generated by {x1, . . . , xm}, is the free algebra in
the category of algebras with trace that are trace generated by at most m elements.

Given a trace map tr on A, we can define for any a ∈ A a formal Cayley-Hamilton polynomial
of degree n . Indeed, express

f(t) =

nY
i=1

(t− λi)

as a polynomial in t with coefficients polynomial functions in the Newton functions
Pn
i=1 λ

k
i . Re-

placing the Newton function
P
λki by tr(ak) we obtain the Cayley-Hamilton polynomial of degree

n
χ(n)
a (t) ∈ A[t] .

Definition 1.2 An (affine) C-algebra A with trace map tr : A - A is said to be a Cayley-
Hamilton algebra of degree n if the following two properties are satisfied :

1. tr(1) = n, and

2. For all a ∈ A we have χ
(n)
a (a) = 0 in A.

alg@n is the category of Cayley-Hamilton algebras of degree n with trace preserving morphisms.

Observe that if R is a commutative C-algebra, then Mn(R) is a Cayley-Hamilton algebra of
degree n. The corresponding trace map is the composition of the usual trace with the inclusion of
R -- Mn(R) via scalar matrices. As a consequence, the infinite trace algebra T∞n has a trace
map induced by the natural inclusion

T∞n ⊂ - Mn(C[M∞n ])

N∞n

tr

?

................
⊂ - C[M∞n ]

tr

?
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which has image tr(T∞n ) the infinite necklace algebra N∞n . Clearly, being a trace preserving inclu-
sion, T∞n is a Cayley-Hamilton algebra of degree n. With this definition, we have the following
categorical description of the trace algebra T∞n .

Theorem 1.16 The trace algebra T∞n is the free algebra in the generic matrix generators
{X1, X2, . . . , Xi, . . .} in the category of Cayley-Hamilton algebras of degree n.

For any m, the trace algebra Tmn is the free algebra in the generic matrix generators {X1, . . . , Xm}
in the category alg@n of Cayley-Hamilton algebras of degree n which are trace generated by at most
m elements.

Proof. Let Fn be the free algebra in the generators {y1, y2, . . .} in the category alg@n, then by
freeness of T∞ there is a trace preserving algebra epimorphism

T∞ π- Fn with π(xi) = yi.

By the universal property of Fn, the ideal Ker π is the minimal ideal I of T∞ such that T∞/I is
Cayley-Hamilton of degree n.

We claim that Ker π is substitution invariant. Consider a substitution endomorphism φ of T∞
and consider the diagram

T∞ φ - T∞

T∞/Ker χ
?

.................
⊂ - Fn

π

??

.................................

χ

-

then Ker χ is an ideal closed under traces such that T∞/Ker χ is a Cayley-Hamilton algebra of
degree n (being a subalgebra of Fn). But then Ker π ⊂ Ker χ (by minimality of Ker π) and
therefore χ factors over Fn, that is, the substitution endomorphism φ descends to an endomorphism
φ : Fn - Fn meaning that Ker π is left invariant under φ, proving the claim. Further, any

formal Cayley-Hamilton polynomial χ
(n)
x (x) of degree n of x ∈ T∞ maps to zero under π. By

substitution invariance it follows that the ideal of trace relations Ker τ ⊂ Ker π. We have seen
that T∞/Ker τ = T∞n is the infinite trace algebra which is a Cayley-Hamilton algebra of degree
n. Thus, by minimality of Ker π we must have Ker τ = Ker π and hence Fn ' T∞n . The second
assertion follows immediately. �
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Let A be a Cayley-Hamilton algebra of degree n which is trace generated by the elements
{a1, . . . , am}. We have a trace preserving algebra epimorphism pA defined by p(Xi) = ai

Tmn
pa -- A

Tmn

tr

?
pa -- A

trA

?

and hence a presentation A ' Tmn /TA where TA/Tmn is the ideal of trace relations holding among the

generators ai. We recall that Tmn is the ring of GLn-equivariant polynomial maps Mm
n

f- Mn,
that is,

Mn(C[Mm
n ])GLn = Tmn

where the action of GLn is the diagonal action on Mn(C[Mm
n ]) = Mn ⊗ C[Mm

n ].
Observe that if R is a commutative algebra, then any twosided ideal I / Mn(R) is of the form

Mn(J) for an ideal J / R. Indeed, the subsets Jij of (i, j) entries of elements of I is an ideal of R
as can be seen by multiplication with scalar matrices. Moreover, by multiplying on both sides with
permutation matrices one verifies that Jij = Jkl for all i, j, k, l proving the claim.

Applying this to the induced ideal Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) / Mn(C[Mm
n ]) we find an ideal

NA / C[Mm
n ] such that

Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) = Mn(NA)

Observe that both the induced ideal and NA are stable under the respective GLn-actions.
Assume that V and W are two (not necessarily finite dimensional) C-vectorspaces with a locally

finite GLn-action (that is, every finite dimensional subspace is contained in a finite dimensional

GLn-stable subspace) and that V
f- W is a linear map commuting with the GLn-action. In

section 2.5 we will see that we can decompose V and W uniquely in direct sums of simple repre-
sentations and in their isotypical components (that is, collecting all factors isomorphic to a given
simple GLn-representation) and prove that V(0) = V GLn respectively W(0) = WGLn where (0)
denotes the trivial GLn-representation. We obtain a commutative diagram

V
f - W

V GLn

R

??
f0 - WG

R

??

where R is the Reynolds operator , that is, the canonical projection to the isotypical component of
the trivial representation. Clearly, the Reynolds operator commutes with the GLn-action. More-
over, using complete decomposability we see that f0 is surjective (resp. injective) if f is surjective
(resp. injective).
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Because NA is a GLn-stable ideal of C[Mm
n ] we can apply the above in the situation

Mn(C[Mm
n ])

π -- Mn(C[Mm
n ]/NA)

Tmn

R

??
π0 -- Mn(C[Mm

n ]/NA)GLn

R

??

and the bottom map factorizes through A = Tmn /TA giving a surjection

A -- Mn(C[Mm
n ]/NA)GLn .

In order to verify that this map is injective (and hence an isomorphism) it suffices to check that

Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) ∩ Tmn = TA.

Using the functoriality of the Reynolds operator with respect to multiplication in Mn(C[M∞n ]) with
an element x ∈ Tmn or with respect to the trace map (both commuting with the GLn-action) we
deduce the following relations :

• For all x ∈ Tmn and all z ∈Mn(C[M∞n ]) we have R(xz) = xR(z) and R(zx) = R(z)x.

• For all z ∈Mn(C[M∞n ]) we have R(tr(z)) = tr(R(z)).

Assume that z =
P
i tixini ∈ Mn(C[Mm

n ]) TA Mn(C[Mm
n ]) ∩ Tmn with mi, ni ∈ Mn(C[Mm

n ]) and
ti ∈ TA. Now, consider Xm+1 ∈ T∞n . Using the cyclic property of traces we have

tr(zXm+1) =
X
i

tr(mitiniXm+1) =
X
i

tr(niXm+1miti)

and if we apply the Reynolds operator to it we obtain the equality

tr(zXm+1) = tr(
X
i

R(niXm+1mi)ti)

For any i, the term R(niXm+1mi) is invariant so belongs to Tm+1
n and is linear in Xm+1. Knowing

the generating elements of Tm+1
n we can write

R(niXm+1mi) =
X
j

sijXm+1tij +
X
k

tr(uikXm+1)vik

with all of the elements sij , tij , uik and vik in Tmn . Substituting this information and again using
the cyclic property of traces we obtain

tr(zXm+1) = tr((
X
i,j,k

sijtijti + tr(vikti))Xm+1)
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and by the nondegeneracy of the trace map we again deduce from this the equality

z =
X
i,j,k

sijtijti + tr(vikti)

Because ti ∈ TA and TA is stable under taking traces we deduce from this that z ∈ TA as required.
Because A = Mn(C[Mm

n ]/NA)GLn we can apply functoriality of the Reynolds operator to the
setting

Mn(C[Mm
n ]/NA)

tr --
� ⊃ C[Mn]/NA

A

R

?? trA --
� ⊃ (C[Mn]/NA)GLn

R

??

Concluding we also have the equality

trA(A) = (C[Mm
n ]/JA)GLn .

Summarizing, we have proved the following invariant theoretic reconstruction result for Cayley-
Hamilton algebras.

Theorem 1.17 Let A be a Cayley-Hamilton algebra of degree n, with trace map trA, which is trace
generated by at most m elements. Then , there is a canonical ideal NA /C[Mm

n ] from which we can
reconstruct the algebras A and trA(A) as invariant algebras

A = Mn(C[Mm
n ]/NA)GLn and trA(A) = (C[Mm

n ]/NA)GLn

A direct consequence of the above proof is the following universal property of the embedding

A ⊂iA- Mn(C[Mm
n ]/NA).

Let R be a commutative C-algebra, then Mn(R) with the usual trace is a Cayley-Hamilton algebra
of degree n. If f : A - Mn(R) is a trace preserving morphism, we claim that there exists a

natural algebra morphism f : C[Mm
n ]/NA - R such that the diagram

A
f- Mn(R)

Mn(C[Mm
n ]/NA)

iA

?

∩

....
....
....
....
....
....
....
....
..

M
n
(f

)
-
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where Mn(f) is the algebra morphism defined entrywise. To see this, consider the composed trace

preserving morphism φ : Tmn -- A
f- Mn(R). Its image is fully determined by the images

of the trace generators Xk of Tmn which are say mk = (mij(k))i,j . But then we have an algebra

morphism C[Mm
n ]

g- R defined by sending the variable xij(k) to mij(k). Clearly, TA ⊂ Ker φ
and after inducing to Mn(C[Mm

n ]) it follows that NA ⊂ Ker g proving that g factors through
C[Mm

n ]/JA - R. This morphism has the required universal property.
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2 — Reconstructing Algebras

We will associate to an affine C-algebra A its affine scheme of n-dimensional representations repn A.
There is a basechange action by GLn on this scheme and its orbits are exactly the isomorphism
classes of n-dimensional representations. We will prove the Hilbert criterium which describes the
nullcone via one-parameter subgroups and apply it to prove Michael Artin’s result that the closed
orbits in repn A correspond to semi-simple representations.

We recall the basic results on algebraic quotient varieties in geometric invariant theory and apply
them to prove Procesi’s reconstruction result. If A ∈ alg@n, then we can recover A as

A '⇑n [trepn A]

the ring of GLn-equivariant polynomial maps from the trace preserving representation scheme
trepn A to Mn(C). However, the functors

alg@n

trepn ..
GL(n)-affine

⇑n

ll

do not determine an anti-equivalence of categories (as they do in commutative algebraic geometry,
which is the special case n = 1). We will illustrate this by calculating the rings of equivariant maps
of orbit-closures of nilpotent matrices. These orbit-closures are described by the Gerstenhaber-
Hesselink theorem. Later, we will be able to extend this result and study the nullcones of more
general representation varieties.

2.1 Representation schemes

For a noncommutative affine algebra A with generating set {a1, . . . , am}, there is an epimorphism

C〈x1, . . . , xm〉
φ-- A

defined by φ(xi) = ai. That is, a presentation of A as

A ' C〈x1, . . . , xm〉/IA

where IA is the twosided ideal of relations holding among the ai. For example, if A = C[x1, . . . , xm],
then IA is the twosided ideal of C〈x1, . . . , xm〉 generated by the elements xixj − xjxi for all 1 ≤
i, j ≤ m.
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An n-dimensional representation of A is an algebra morphism

A
ψ- Mn

from A to the algebra of n× n matrices over C. If A is generated by {a1, . . . , am}, then ψ is fully
determined by the point

(ψ(a1), ψ(a2), . . . , ψ(am)) ∈Mm
n = Mn ⊕ . . .⊕Mn| {z }

m

.

We claim that repn(A), the set of all n-dimensional representations of A, forms a Zariski closed
subset of Mm

n . To begin, observe that

repn(C〈x1, . . . , xm〉) = Mm
n

as any m-tuple of n × n matrices (A1, . . . , Am) ∈ Mm
n determines an algebra morphism

C〈x1, . . . , xm〉
ψ- Mn by taking ψ(xi) = Ai.

Given a presentation A = C〈x1, . . . , xm〉/IA an m-tuple (A1, . . . , Am) ∈ Mm
n determines

an n-dimensional representation of A if (and only if) for every noncommutative polynomial
r(x1, . . . , xm) ∈ IA / C〈x1, . . . , xm〉 we have that

r(A1, . . . , Am) =

2640 . . . 0
...

...
0 . . . 0

375 ∈Mn.

Hence, consider the ideal IA(n) of C[Mm
n ] = C[xij(k) | 1 ≤ i, j ≤ n, 1 ≤ k ≤ m] generated by all

the entries of the matrices in Mn(C[Mm
n ]) of the form

r(X1, . . . , Xm) for all r(x1, . . . , xm) ∈ IA.

We see that the reduced representation variety repn A is the set of simultaneous zeroes of the ideal
IA(n), that is,

repn A = V(IA(n)) ⊂ - Mm
n

proving the claim. Here, V denotes the closed set in the Zariski topology determined by an ideal. The
complement of V(I) we will denote with X(I)). Observe that, even when A is not finitely presented,
the ideal IA(n) is finitely generated as an ideal of the commutative (Noetherian) polynomial algebra
C[Mm

n ].

Example 2.1 It may happen that repn A = ∅. For example, consider the Weyl algebra

A1(C) = C〈x, y〉/(xy − yx− 1)

If a couple of n× n-matrices (A,B) ∈ repn A1(C) then we must have

A.B −B.A = rr
n ∈Mn

However, taking traces on both sides gives a contradiction as tr(AB) = tr(BA) and tr(rrn) = n 6= 0.
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Often, the ideal IA(n) contains more information than the closed subset repn(A) = V(IA(n))
which, using the Hilbert Nullstellensatz, only determines the radical ideal of IA(n). This fact forces
us to consider the representation variety (or scheme) repn A.

In the foregoing chapter we studied the action of GLn by simultaneous conjugation on Mm
n . We

claim that repn A ⊂ - Mm
n is stable under this action, that is, if (A1, . . . , Am) ∈ repn A, then

also (gA1g
−1, . . . , gAmg

−1) ∈ repn A. This is clear by composing the n-dimensional representation
ψ of A determined by (A1, . . . , Am) with the algebra automorphism of Mn given by conjugation
with g ∈ GLn,

A
ψ - Mn

Mn

g.g−1

?

...............................

g.ψ

-

Therefore, repn A is a GLn-variety . We will give an interpretation of the orbits under this action.

Recall that a left A-module M is a vectorspace on which elements of A act on the left as linear
operators satisfying the conditions

1.m = m and a.(b.m) = (ab).m

for all a, b ∈ A and all m ∈M . An A-module morphism M
f- N between two left A-modules is

a linear map such that f(a.m) = a.f(m) for all a ∈ A and all m ∈M . An A-module automorphism

is an A-module morphism M
f- N such that there is an A-module morphism N

g- M such
that f ◦ g = idM and g ◦ f = idN .

Assume the A-module M has dimension n, then after fixing a basis we can identify M with Cn
(column vectors). For any a ∈ A we can represent the linear action of a on M by an n× n matrix
ψ(a) ∈Mn. The condition that a.(b.m) = (ab).m for all m ∈M asserts that ψ(ab) = ψ(a)ψ(b) for

all a, b ∈ A, that is, ψ is an algebra morphism A
ψ- Mn and henceM determines an n-dimensional

representation of A. Conversely, an n-dimensional representation A
ψ- Mn determines an A-

module structure on Cn by the rule

a.v = ψ(a)v for all v ∈ Cn.

Hence, there is a one-to-one correspondence between the n-dimensional representations of A and
the A-module structures on Cn. If two n-dimensional A-module structures M and N on Cn are
isomorphic (determined by a linear invertible map g ∈ GLn) then for all a ∈ A we have the
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commutative diagram

M
g - N

M

a.

?
g - N

a.

?

Hence, if the action of a on M is represented by the matrix A, then the action of a on M is
represented by the matrix g.A.g−1. Therefore, two A-module structures on Cn are isomorphic if
and only if the points of repn A corresponding to them lie in the same GLn-orbit. Concluding,
studying n-dimensional A-modules up to isomorphism is the same as studying the GLn-orbits in
the reduced representation variety repn A.

If the defining ideal IA(n) is a radical ideal, the above suffices. In general, the scheme structure
of the representation variety repn A will be important. By definition, the scheme repn A is the
functor assigning to any (affine) commutative C-algebra R, the set

repn A(R) = AlgC(C[Mm
n ]/IA(n), R)

of C-algebra morphisms
C[Mm

n ]

IA(n)

ψ- R. Such a map ψ is determined by the image ψ(xij(k)) =

rij(k) ∈ R. That is, ψ ∈ repn A(R) determines an m-tuple of n×n matrices with coefficients in R

(r1, . . . , rm) ∈Mn(R)⊕ . . .⊕Mn(R)| {z }
m

where rk =

264r11(k) . . . r1n(k)
...

...
rn1(k) . . . rnn(k)

375 .
Clearly, for any r(x1, . . . , xm) ∈ IA we must have that r(r1, . . . , rm) is the zero matrix in Mn(R).
That is, ψ determines uniquely an R-algebra morphism

ψ : R⊗C A - Mn(R) by mapping xk 7→ rk.

Alternatively, we can identify the set repn(R) with the set of left R⊗A-module structures on the
free R-module R⊕n of rank n.

2.2 Some algebraic geometry

Throughout this book we assume that the reader has some familiarity with algebraic geometry, as
contained in the first two chapters of the textbook [33]. In this section we restrict to the dimension
formulas and the relation between Zariski and analytic closures. We will illustrate these results by
examples from representation varieties. We will consider only the reduced varieties in this section.

A morphism X
φ- Y between two affine irreducible varieties (that is, the coordinate rings

C[X] and C[Y ] are domains) is said to be dominant if the image φ(X) is Zariski dense in Y . On
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the level of the coordinate algebras dominance is equivalent to φ∗ : C[Y ] - C[X] being injective
and hence inducing a fieldextension φ∗ : C(Y ) ⊂ - C(X) between the functionfields. Indeed, for
f ∈ C[Y ] the function φ∗(f) is by definition the composition

X
φ- Y

f- C

and therefore φ∗(f) = 0 iff f(φ(X)) = 0 iff f(φ(X)) = 0.

A morphism X
φ- Y between two affine varieties is said to be finite if under the algebra

morphism φ∗ the coordinate algebra C[X] is a finite C[Y ]-module. An important property of finite
morphisms is that they are closed , that is the image of a closed subset is closed. Indeed, we

can replace without loss of generality Y by the closed subset φ(X) = VY (Ker φ∗) and hence
assume that φ∗ is an inclusion C[Y ] ⊂ - C[X]. The claim then follows from the fact that in a
finite extension there exists for any maximal ideal N / C[Y ] a maximal ideal M / C[X] such that
M ∩ C[Y ] = C[X].

Example 2.2 Let X be an irreducible affine variety of dimension d. By the Noether normalization
result C[X] is a finite module over a polynomial subalgebra C[f1, . . . , fd]. But then, the finite
inclusion C[f1, . . . , fd] ⊂ - C[X] determines a finite surjective morphism

X
φ-- Cd

An important source of finite morphisms is given by integral extensions. Recall that, if R ⊂ - S
is an inclusion of domains we call S integral over R if every s ∈ S satisfies an equation

sn =

n−1X
i=0

ris
i with ri ∈ R.

A normal domain R has the property that any element of its field of fractions which is integral

over R belongs already to R. If X
φ- Y is a dominant morphism between two irreducible affine

varieties, then φ is finite if and only if C[X] in integral over C[Y ] for the embedding coming from
φ∗.

Proposition 2.1 Let X
φ- Y be a dominant morphism between irreducible affine varieties.

Then, for any x ∈ X and any irreducible component C of the fiber φ−1(φ(z)) we have

dim C ≥ dim X − dim Y.

Moreover, there is a nonempty open subset U of Y contained in the image φ(X) such that for all
u ∈ U we have

dim φ−1(u) = dim X − dim Y.
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Proof. Let d = dim X − dim Y and apply the Noether normalization result to the affine C(Y )-
algebra C(Y )C[X]. Then, we can find a function g ∈ C[Y ] and algebraic independent functions
f1, . . . , fd ∈ C[X]g (g clears away any denominators that occur after applying the normalization
result) such that C[X]g is integral over C[Y ]g[f1, . . . , fd]. That is, we have the commutative diagram

XX(g)
ρ -- XY (g)× Cd

X
?

∩

φ - Y � ⊃ XY (g)

pr1

??

where we know that ρ is finite and surjective. But then we have that the open subset XY (g) lies in
the image of φ and in XY (g) all fibers of φ have dimension d. For the first part of the statement
we have to recall the statement of Krull’s Hauptideal result : if X is an irreducible affine variety
and g1, . . . , gr ∈ C[X] with (g1, . . . , gr) 6= C[X], then any component C of VX(g1, . . . , gr) satisfies
the inequality

dim C ≥ dim X − r.

If dim Y = r apply this result to the gi determining the morphism

X
φ- Y -- Cr

where the latter morphism is the one from example 2.2. �

In fact, a stronger result holds. Chevalley’s theorem asserts the following.

Theorem 2.1 Let X
φ- Y be a morphism between affine varieties, the function

X - N defined by x 7→ dimx φ
−1(φ(x))

is upper-semicontinuous. That is, for all n ∈ N, the set

{x ∈ X | dimx φ
−1(φ(x)) ≤ n}

is Zariski open in X.

Proof. Let Z(φ, n) be the set {x ∈ X | dimx φ
−1(φ(x)) ≥ n}. We will prove that Z(φ, n) is

closed by induction on the dimension of X. We first make some reductions. We may assume that
X is irreducible. For, let X = ∪iXi be the decomposition of X into irreducible components, then

Z(φ, n) = ∪Z(φ | Xi, n). Next, we may assume that Y = φ(X) whence Y is also irreducible and φ
is a dominant map. Now, we are in the setting of proposition 2.1. Therefore, if n ≤ dim X−dim Y
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we have Z(φ, n) = X by that proposition, so it is closed. If n > dim X − dim Y consider the
open set U in Y of proposition 2.1. Then, Z(φ, n) = Z(φ | (X − φ−1(U)), n). the dimension of the
closed subvariety X − φ−1(U) is strictly smaller that dim X hence by induction we may assume
that Z(φ | (X − φ−1(U)), n) is closed in X − φ−1(U) whence closed in X. �

An immediate consequence of the foregoing proposition is that for any morphism X
φ- Y

between affine varieties, the image φ(X) contains an open dense subset of φ(Z) (reduce to irreducible
components and apply the proposition).

Example 2.3 Let A be an affine C-algebra and M ∈ repn A. We claim that the orbit

O(M) = GLn.M is Zariski open in its closure O(M).

Consider the ’orbit-map’ GLn
φ- repn A defined by g 7→ g.M . Then, by the above remark

O(M) = φ(GLn) contains a Zariski open subset U of O(M) contained in the image of φ which is
O(M). But then,

O(M) = GLn.M = ∪g∈GLng.U

is also open in O(M). Next, we claim that O(M) contains a closed orbit. Indeed, assume O(M)

is not closed, then the complement CM = O(M)−O(M) is a proper Zariski closed subset whence

dim C < dim O(M). But, C is the union of GLn-orbits O(Mi) with dim O(Mi) < dim O(M).
Repeating the argument with the Mi and induction on the dimension we will obtain a closed orbit

in O(M).

Next, we want to relate the Zariski closure with the C-closure (that is, closure in the usual
complex or analytic topology). Whereas they are usually not equal (for example, the unit circle in
C1), we will show that they coincide for the important class of constructible subsets. A subset Z

of an affine variety X is said to be locally closed if Z is open in its Zariski closure Z. A subset Z
is said to be constructible if Z is the union of finitely many locally closed subsets. Clearly, finite
unions, finite intersections and complements of constructible subsets are again constructible. The
importance of constructible sets for algebraic geometry is clear from the following result.

Proposition 2.2 Let X
φ- Y be a morphism between affine varieties. If Z is a constructible

subset of X, then φ(Z) is a constructible subset of Y .

Proof. Because every open subset of X is a finite union of special open sets which are themselves

affine varieties, it suffices to show that φ(X) is constructible. We will use induction on dim φ(X).

There exists an open subset U ⊂ φ(X) which is contained in φ(X). Consider the closed complement

W = φ(X)−U and its inverse image X ′ = φ−1(W ). Then, X ′ is an affine variety and by induction
we may assume that φ(X ′) is constructible. But then, φ(X) = U ∪φ(X ′) is also constructible. �
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Example 2.4 Let A be an affine C-algebra. The subset indn A ⊂ - repn A of the indecomposable
n-dimensional A-modules is constructible. Indeed, define for any pair k, l such that k + l = n the
morphism

GLn × repk A× repl A - repn A

by sending a triple (g,M,N) to g.(M ⊕ N). By the foregoing result the image of this map is
constructible. The decomposable n-dimensional A-modules belong to one of these finitely many
sets whence are constructible, but then so is its complement which in indn A.

Apart from being closed, finite morphisms often satisfy the going-down property . That is,
consider a finite and surjective morphism

X
φ- Y

where X is irreducible and Y is normal (that is, C[Y ] is a normal domain). Let Y ′ ⊂ - Y an
irreducible Zariski closed subvariety and x ∈ X with image φ(x) = y′ ∈ Y ′. Then, the going-down
property asserts the existence of an irreducible Zariski closed subvariety X ′ ⊂ - X such that

x ∈ X ′ and φ(X ′) = Y ′. In particular, the morphism X ′
φ- Y ′ is again finite and surjective and

in particular dim X ′ = dim Y ′.

Lemma 2.1 Let x ∈ X an irreducible affine variety and U a Zariski open subset. Then, there is
an irreducible curve C ⊂ - X through x and intersecting U .

Proof. If d = dim X consider the finite surjective morphism X
φ- Cd of example 2.2. Let

y ∈ Cd − φ(X − U) and consider the line L through y and φ(x). By the going-down property
there is an irreducible curve C ⊂ - X containing x such that φ(C) = L and by construction
C ∩ U 6= ∅. �

Proposition 2.3 Let X
φ- Y be a dominant morphism between irreducible affine varieties any

y ∈ Y . Then, there is an irreducible curve C ⊂ - X such that y ∈ φ(C).

Proof. Consider an open dense subset U ⊂ - Y contained in the image φ(X). By the lemma
there is a curve C′ ⊂ - Y containing y and such that C′ ∩ U 6= ∅. Then, again applying the
lemma to an irreducible component of φ−1(C′) not contained in a fiber, we obtain an irreducible

curve C ⊂ - X with φ(C) = C′. �

Any affine variety X ⊂ - Ck can also be equipped with the induced C-topology (or analytic
topology) from Ck which is much finer than the Zariski topology . Usually there is no relation

between the closure Z
C

of a subset Z ⊂ - X in the C-topology and the Zariski closure Z.
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Lemma 2.2 Let U ⊂ Ck containing a subset V which is Zariski open and dense in U . Then,

U
C

= U

Proof. By reducing to irreducible components, we may assume that U is irreducible. Assume first
that dim U = 1, that is, U is an irreducible curve in Ck. Let Us be the subset of points where U
is a complex manifold, then U − Us is finite and by the implicit function theorem in analysis every
u ∈ Us has a C-open neighborhood which is C-homeomorphic to the complex line C1, whence the
result holds in this case.

If U is general and x ∈ U we can take by the lemma above an irreducible curve C ⊂ - U
containing z and such that C ∩ V 6= ∅. Then, C ∩ V is Zariski open and dense in C and by the

curve argument above x ∈ (C ∩ V )
C
⊂ UC

. We can do this for any x ∈ U finishing the proof. �

Consider the embedding of an affine variety X ⊂ - Ck, proposition 2.2 and the fact that any
constructible set Z contains a subset U which is open and dense in Z we deduce from the lemma
at once the next result.

Proposition 2.4 If Z is a constructible subset of an affine variety X, then

Z
C

= Z

Example 2.5 Let A be an affine C-algebra and M ∈ repn A. We have proved in example 2.3 that

the orbit O(M) = GLn.M is Zariski open in its closure O(M). Therefore, the orbit O(M) is a

constructible subset of repn A. By the proposition above, the Zariski closure O(M) of the orbit
coincides with the closure of O(M) in the C-topology.

2.3 The Hilbert criterium

A one parameter subgroup of a linear algebraic group G is a morphism

λ : C∗ - G

of affine algebraic groups. That is, λ is both a groupmorphism and a morphism of affine varieties.
The set of all one parameter subgroup of G will be denoted by Y (G).

If G is commutative algebraic group, then Y (G) is an Abelian group with additive notation

λ1 + λ2 : C∗ - G with (λ1 + λ2)(t) = λ1(t).λ2(t)

Recall that an n-dimensional torus is an affine algebraic group isomorphic to

C∗ × . . .× C∗| {z }
n

= Tn

the closed subgroup of invertible diagonal matrices in GLn.
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Lemma 2.3 Y (Tn) ' Zn. The correspondence is given by assigning to (r1, . . . , rn) ∈ Zn the
one-parameter subgroup

λ : C∗ - Tn given by t 7→ (tr1 , . . . , trn)

Proof. For any two affine algebraic groups G and H there is a canonical bijection Y (G × H) =
Y (G)× Y (H) so it suffices to verify that Y (C∗) ' Z with any λ : C∗ - C∗ given by t 7→ tr for
some r ∈ Z. This is obvious as λ induces the algebra morphism

C[C∗] = C[x, x−1]
λ∗- C[x, x−1] = C[C∗]

which is fully determined by the image of x which must be an invertible element. Now, any invertible
element in C[x, x−1] is homogeneous of the form cxr for some r ∈ Z and c ∈ C∗. The corresponding
morphism maps t to ctr which is only a groupmorphism if it maps the identity element 1 to 1 so
c = 1, finishing the proof. �

Proposition 2.5 Any one-parameter subgroup λ : C∗ - GLn is of the form

t 7→ g−1.

264t
r1 0

. . .
0 trn

375 .g
for some g ∈ GLn and some n-tuple (r1, . . . , rn) ∈ Zn.

Proof. Let H be the image under λ of the subgroup µ∞ of roots of unity in C∗. We claim that
there is a basechange matrix g ∈ GLn such that

g.H.g−1 ⊂ -

264C∗ 0
. . .

0 C∗

375
Assume h ∈ H not a scalar matrix, then h has a proper eigenspace decomposition V ⊕W = Cn.
We use that hl = rr

n and hence all its Jordan blocks must have size one as for any λ 6= 0 we have266664
λ 1 0

. . .
. . .

. . . 1
λ

377775
l

=

266664
λl lλl−1 ∗

. . .
. . .

. . . lλl−1

λl

377775 6= rr
n

Because H is commutative, both V and W are stable under H. By induction on n we may assume
that the images of H in GL(V ) and GL(W ) are diagonalizable, but then the same holds in GLn.
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As µ∞ is infinite, it is Zariski dense in C∗ and because the diagonal matrices are Zariski closed
in GLn we have

g.λ(C∗).g−1 = g.H.g−1 ⊂ - Tn

and the result follows from the lemma above �

Let V be a general GLn-representation considered as an affine space with GLn-action, let X be a

GLn-stable closed subvariety and consider a point x ∈ X. A one-parameter subgroup C∗ λ- GLn
determines a morphism

C∗ λx- X defined by t 7→ λ(t).x

Observe that the image λx(C∗) lies in the orbit GLn.x of x. Assume there is a continuous extension
of this map to the whole of C. We claim that this extension must then be a morphism. If not, the
induced algebra morphism

C[X]
λ∗x- C[t, t−1]

does not have its image in C[t], so for some f ∈ C[Z] we have that

λ∗x(f) =
a0 + a1t+ . . .+ azt

z

ts
with a0 6= 0 and s > 0

But then λ∗x(f)(t) - ±∞ when t goes to zero, that is, λ∗x cannot have a continuous extension,
a contradiction.

So, if a continuous extension exists there is morphism λx : C - X. Then, λx(0) = y and we
denote this by

lim
t→0

λ(t).x = y

Clearly, the point y ∈ X must belong to the orbitclosure GLn.x in the Zariski topology (or in the

C-topology as orbits are constructible). Conversely, one might ask whether if y ∈ GLn.x we can
always approach y via a one-parameter subgroup. The Hilbert criterium gives situations when this
is indeed possible.

The only ideals of the formal power series C[[t]] are principal and generated by tr for some
r ∈ N+. With C((t)) we will denote the field of fractions of the domain C((t)).

Lemma 2.4 Let V be a GLn-representation, v ∈ V and a point w ∈ V lying in the orbitclosure
GLn.v. Then, there exists a matrix g with coefficients in the field C((t)) and det(g) 6= 0 such that

(g.v)t=0 is well defined and is equal to w
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Proof. Note that g.v is a vector with coordinates in the field C((t)). If all coordinates belong to
C[[t]] we can set t = 0 in this vector and obtain a vector in V . It is this vector that we denote with
(g.v)t=0.

Consider the orbit map µ : GLn - V defined by g′ 7→ g′.v. As w ∈ GLn.v we have seen that

there is an irreducible curve C ⊂ - GLn such that w ∈ µ(C). We obtain a diagram of C-algebras

C[GLn] - C[C] ⊂ - C(C)

C[V ]

µ∗

6

- C[µ(C)]

µ∗

∪

6

⊂ - C[C′]

∪

6

Here, C[C] is defined to be the integral closure of C[µ(C)] in the functionfield C(C) of C. Two

things are important to note here : C′ - µ(C) is finite, so surjective and take c ∈ C′ be a

point lying over w ∈ µ(C). Further, C′ having an integrally closed coordinate ring is a complex
manifold. Hence, by the implicit function theorem polynomial functions on C can be expressed in
a neighborhood of c as power series in one variable, giving an embedding C[C′] ⊂ - C[[t]] with
(t)∩C[C′] = Mc. This inclusion extends to one on the level of their fields of fractions. That is, we
have a diagram of C-algebra morphisms

C[GLn] - C(C) = C(C′) ⊂ - C((t))

C[V ]

µ∗

6

- C[µ(C)]

∪

6

⊂ - C[C′]

∪

6

⊂ - C[[t]]
∪

6

The upper composition defines an invertible matrix g(t) with coefficients in C((t)), its (i, j)-entry
being the image of the coordinate function xij ∈ C[GLn]. Moreover, the inverse image of the
maximal ideal (t) / C[[t]] under the lower composition gives the maximal ideal Mw / C[V ]. This
proves the claim. �

Lemma 2.5 Let g be an n × n matrix with coefficients in C((t)) and det g 6= 0. Then there exist
u1, u2 ∈ GLn(C[[t]]) such that

g = u1.

264t
r1 0

. . .
0 trn

375 .u2

with ri ∈ Z and r1 ≤ r2 ≤ . . . ≤ rn.
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Proof. By multiplying g with a suitable power of t we may assume that g = (gij(t))i,j ∈Mn(C[[t]]).
If f(t) =

P∞
i=0 fit

i ∈ C[[t]] define v(f(t)) to be the minimal i such that ai 6= 0. Let (i0, j0) be an
entry where v(gij(t)) attains a minimum, say r1. That is, for all (i, j) we have gij(t) = tr1trf(t)
with r ≥ 0 and f(t) an invertible element of C[[t]].

By suitable row and column interchanges we can take the entry (i0, j0) to the (1, 1)-position.
Then, multiplying with a unit we can replace it by tr1 and by elementary row and column operations
all the remaining entries in the first row and column can be made zero. That is, we have invertible
matrices a1, a2 ∈ GLn(C[[t]]) such that

g = a1.

26664
tr1 0 . . . 0
0
... g1
0

37775 .a2

Repeating the same idea on the submatrix g1 and continuing gives the result. �

We can now state and prove the Hilbert criterium which allows us to study orbit-closures by one
parameter subgroups.

Theorem 2.2 Let V be a GLn-representation and X ⊂ - V a closed GLn-stable subvariety. Let

O(x) = GLn.x be the orbit of a point x ∈ X. Let Y ⊂ - O(x) be a closed GLn-stable subset.
Then, there exists a one-parameter subgroup λ : C∗ - GLn such that

lim
t→0

λ(t).x ∈ Y

Proof. It suffices to prove the result for X = V . By lemma 2.4 there is an invertible matrix
g ∈Mn(C((t))) such that

(g.x)t=0 = y ∈ Y
By lemma 2.5 we can find u1, u2 ∈ GLn(C[[t]]) such that

g = u1.λ
′(t).u2 with λ′(t) =

264t
r1 0

. . .
0 trn

375
a one-parameter subgroup. There exist xi ∈ V such that u2.x =

P∞
i=0 zit

i in particular u2(0).x =
x0. But then,

(λ′(t).u2.x)t=0 =

∞X
i=0

(λ′(t).xit
i)t=0

= (λ′(t).x0)t=0 + (λ′(t).x1t)t=0 + . . .
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But one easily verifies (using a basis of eigenvectors of λ′(t)) that

lim
s→0

λ
′−1(s).(λ′(t)xit

i)t=0 =

(
(λ′(t).x0)t=0 if i = 0,

0 if i 6= 0

As (λ′(t).u2.x)t=0 ∈ Y and Y is a closed GLn-stable subset, we also have that

lim
s→0

λ
′−1(s).(λ′(t).u2.x)t=0 ∈ Y that is, (λ′(t).x0)t=0 ∈ Y

But then, we have for the one-parameter subgroup λ(t) = u2(0)−1.λ′(t).u2(0) that

lim
t→0

λ(t).x ∈ Y

finishing the proof. �

An important special case occurs when x ∈ V belongs to the nullcone , that is, when the orbit

closure O(x) contains the fixed point 0 ∈ V . The original Hilbert criterium asserts the following.

Proposition 2.6 Let V be a GLn-representation and x ∈ V in the nullcone. Then, there is a

one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).x = 0

In the statement of theorem 2.2 it is important that Y is closed. In particular, it does not follow

that any orbit O(y) ⊂ - O(x) can be reached via one-parameter subgroups, see example 2.7 below.

2.4 Semisimple modules

In this section we will characterize the closed GLn-orbits in the representation variety repn A
for an affine C-algebra A. We have seen that any point ψ ∈ repn A (that is any n-dimensional

representation A
ψ- Mn) determines an n-dimensional A-module which we will denote with Mψ.

A finite filtration F on an n-dimensional module M is a sequence of A-submodules

F : 0 = Mt+1 ⊂Mt ⊂ . . . ⊂M1 ⊂M0 = M.

The associated graded A-module is the n-dimensional module

grF M = ⊕ti=0Mi/Mi+1.

We have the following ringtheoretical interpretation of the action of one-parameter subgroups of
GLn on the representation variety repn A.
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Lemma 2.6 Let ψ, ρ ∈ repn A. Equivalent are,

1. There is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).ψ = ρ

2. There is a finite filtration F on the A-module Mψ such that

grF Mψ 'Mρ

as A-modules.

Proof. (1) ⇒ (2) : If V is any GLn-representation and C∗ λ- GLn a one-parameter subgroup,
we have an induced weight space decomposition of V

V = ⊕iVλ,i where Vλ,i = {v ∈ V | λ(t).v = tiv,∀t ∈ C∗}.

In particular, we apply this to the underlying vectorspace of Mψ which is V = Cn (column vectors)
on which GLn acts by left multiplication. We define

Mj = ⊕i>jVλ,i

and claim that this defines a finite filtration on Mψ with associated graded A-module Mρ. For any
a ∈ A (it suffices to vary a over the generators of A) we can consider the linear maps

φij(a) : Vλ,i ⊂ - V = Mψ
a.- Mψ = V -- Vλ,j

(that is, we express the action of a in a blockmatrix Φa with respect to the decomposition of
V ). Then, the action of a on the module corresponding to λ(t).ψ is given by the matrix Φ′a =
λ(t).Φa.λ(t)−1 with corresponding blocks

Vλ,i
φij(a)- Vλ,j

Vλ,i

λ(t)−1

6

φ′ij(a)
- Vλ,j

λ(t)

?

that is φ′ij(a) = tj−iφij(a). Therefore, if limt→0λ(t).ψ exists we must have that

φij(a) = 0 for all j < i.
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But then, the action by a sends any Mk = ⊕i>kVλ,i to itself, that is, the Mk are A-submodules of
Mψ. Moreover, for j > i we have

lim
t→0

φ′ij(a) = lim
t→0

tj−iφij(a) = 0

Consequently, the action of a on ρ is given by the diagonal blockmatrix with blocks φii(a), but
this is precisely the action of a on Vi = Mi−1/Mi, that is, ρ corresponds to the associated graded
module.

(2)⇒ (1) : Given a finite filtration on Mψ

F : 0 = Mt+1 ⊂ . . . ⊂M1 ⊂M0 = Mψ

we have to find a one-parameter subgroup C∗ λ- GLn which induces the filtration F as in the
first part of the proof. Clearly, there exist subspaces Vi for 0 ≤ i ≤ t such that

V = ⊕ti=0Vi and Mj = ⊕tj=iVi.

Then we take λ to be defined by λ(t) = tiIdVi for all i and it verifies the claims. �

Example 2.6 Let Mψ we the 2-dimensional C[x]-module determined by the Jordan block and
consider the canonical basevectors»

λ 1
0 λ

–
e1 =

»
1
0

–
e2 =

»
0
1

–
Then, Ce1 is a C[x]-submodule of Mψ and we have a filtration

0 = M2 ⊂ Ce1 = M1 ⊂ Ce1 ⊕ Ce2 = M0 = Mψ

Using the conventions of the second part of the above proof we then have

V1 = Ce1 V2 = Ce2 hence λ(t) =

»
t 0
0 1

–
Indeed, we then obtain that »

t 0
0 1

–
.

»
λ 1
0 λ

–
.

»
t−1 0
0 1

–
=

»
λ t
0 λ

–
and the limit t - 0 exists and is the associated graded module grF Mψ = Mρ determined by
the diagonal matrix.
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Figure 2.1: Kraft’s diamond describing the nullcone of M2
3 .

Consider two modules Mψ,Mψ ∈ repn A. Assume that O(Mρ) ⊂ - O(Mψ) and that we
can reach the orbit of Mρ via a one-parameter subgroup. Then, lemma 2.6 asserts that Mρ must
be decomposable as it is the associated graded of a nontrivial filtration on Mψ. This gives us
a criterium to construct examples showing that the closedness assumption in the formulation of
Hilbert’s criterium is essential.

Example 2.7 (Nullcone of M2
3 = M3 ⊕M3) In chapter 6 we will describe a method to deter-

mine the nullcones of m-tuples of n× n matrices. The special case of two 3× 3 matrices has been
worked out by H.P. Kraft in [50, p.202]. The orbits are depicted in figure 2.1 In this picture, each
node corresponds to a torus. The right hand number is the dimension of the torus and the left
hand number is the dimension of the orbit represented by a point in the torus. The solid or dashed
lines indicate orbitclosures. For example, the dashed line corresponds to the following two points
in M2

3 = M3 ⊕M3

ψ = (

240 0 1
0 0 1
0 0 0

35 ,
240 1 0

0 0 0
0 0 0

35) ρ = (

240 0 1
0 0 0
0 0 0

35 ,
240 1 0

0 0 0
0 0 0

35)

We claim that Mρ is an indecomposable 3-dimensional module of C〈x, y〉. Indeed, the only subspace
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of the column vectors C3 left invariant under both x and y is equal to24C
0
0

35
hence Mρ cannot have a direct sum decomposition of two or more modules. Next, we claim that

O(Mρ) ⊂ - O(Mψ). Indeed, simultaneous conjugating ψ with the invertible matrix241 ε−1 − 1 0
0 1 0
0 0 ε−1

35 we obtain the couple (

240 0 1
0 0 ε
0 0 0

35 ,
240 1 0

0 0 0
0 0 0

35)

and letting ε - 0 we see that the limiting point is ρ.

The Jordan-Hölder theorem , see for example [66, 2.6] asserts that any finite dimensional A-
module M has a composition series , that is, M has a finite filtration

F : 0 = Mt+1 ⊂Mt ⊂ . . . ⊂M1 ⊂M0 = M

such that the successive quotients Si = Mi/Mi+1 are all simple A-modules for 0 ≤ i ≤ t. Moreover,
these composition factors S and their multiplicities are independent of the chosen composition
series, that is, the set {S0, . . . , St} is the same for every composition series. In particular, the
associated graded module for a composition series is determined only up to isomorphism and is the
semisimple n-dimensional module

gr M = ⊕ti=0Si

Theorem 2.3 Let A be an affine C-algebra and M ∈ repn A.

1. The orbit O(M) is closed in repn A if and only if M is an n-dimensional semisimple A-
module.

2. The orbitclosure O(M) contains exactly one closed orbit, corresponding to the direct sum of
the composition factors of M .

3. The points of the quotient variety of repn A under GLn classify the isomorphism classes of
n-dimensional semisimple A-modules. We will denote the quotient variety by issn A.

Proof. (1) : Assume that the orbit O(M) is Zariski closed. Let gr M be the associated graded
module for a composition series of M . From lemma 2.6 we know that O(gr M) is contained in

O(M) = O(M). But then gr M 'M whence M is semisimple.

Conversely, assume M is semisimple. We know that the orbitclosure O(M) contains a closed

orbit, say O(N). By the Hilbert criterium we have a one-parameter subgroup C∗ λ- GLn such
that

lim
t→0

λ(t).M = N ′ ' N.
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By lemma 2.6 this means that there is a finite filtration F on M with associated graded module
grF M ' N . For the semisimple module M the only possible finite filtrations are such that each of
the submodules is a direct sum of simple components, so grF M 'M , whence M ' N and hence
the orbit O(M) is closed.

(2) : Remains only to prove uniqueness of the closed orbit in O(M). This either follows from
the Jordan-Hölder theorem or, alternatively, from the separation property of the quotient map to
be proved in the next section.

(3) : We will prove in the next section that the points of a quotient variety parameterize the
closed orbits. �

Example 2.8 Recall the description of the orbits in M2
2 = M2⊕M2 given in the previous chapter.

C5 −H

•3 ////////

��������•

• •3 3

2

H − S

•

• •777777777

���������0

2 2
P1

S

and each fiber contains a unique closed orbit. The one over a point in H − S corresponding to the
matrix couple

(

»
a1 0
0 a2

–
,

»
b1 0
0 b2

–
)

which is indeed a semi-simple module of C〈x, y〉 (the direct sum of the two 1-dimensional simple
representations determined by x 7→ ai and y 7→ bi). In case a1 = a2 and b1 = b2 these two simples
coincide and the semi-simple module having this factor with multiplicity two is the unique closed
orbit in the fiber of a point in S.

Example 2.9 Assume A is a finite dimensional C-algebra. Then, there are only a finite number,
say k, of nonisomorphic n-dimensional semisimple A-modules. Hence issn A is a finite number of
k points, whence repn A is the disjoint union of k connected components, each consisting of all
n-dimensional A-modules with the same composition factors. Connectivity follows from the fact
that the orbit of the sum of the composition factors lies in the closure of each orbit.

Example 2.10 Let A be an affine commutative algebra with presentation A = C[x1, . . . , xm]/IA
and let X be the affine variety V(IA). Observe that any simple A-module is one-dimensional hence
corresponds to a point in X. (Indeed, for any algebra A a simple k-dimensional module determines
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an epimorphism A -- Mk and Mk is only commutative if k = 1). Applying the Jordan-Hölder
theorem we see that

issn A ' X(n) = X × . . .×X| {z }
n

/Sn

the n-th symmetric product of X.

2.5 Some invariant theory

The results in this section hold for arbitrary reductive algebraic groups. Because we will only work
with GLn (or later with products GL(α) = GLa1× . . .×GLak ) we include a proof in this case. Our
first aim is to prove that GLn is a reductive group , that is, all GLn-representations are completely
reducible. Consider the unitary group

Un = {A ∈ GLn | A.A∗ = rr
n}

where A∗ is the Hermitian transpose of A. Clearly, Un is a compact Lie group. Any compact
Lie group has a so called Haar measure which allows one to integrate continuous complex valued
functions over the group in an invariant way. That is, there is a linear function assigning to every
continuous function f : Un - C its integral

f 7→
Z
Un

f(g)dg ∈ C

which is normalized such that
R
Un
dg = 1 and is left and right invariant, which means that for all

u ∈ Un we have the equalitiesZ
Un

f(gu)dg =

Z
Un

f(g)dg =

Z
Un

f(ug)dg.

This integral replaces the classical idea in representation theory of averaging functions over a finite
group.

Proposition 2.7 Every Un-representation is completely reducible.

Proof. Take a finite dimensional complex vectorspace V with a Un-action and assume that W is
a subspace of V left invariant under this action. Extending a basis of W to V we get a linear map

V
φ-- W which is the identity on W . For any v ∈ V we have a continuous map

Un - W g 7→ g.φ(g−1.v)

(use that W is left invariant) and hence we can integrate it over Un (integrate the coordinate
functions). Hence we can define a map φ0 : V - W by

φ0(v) =

Z
Un

g.φ(g−1.v)dg.
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Clearly, φ0 is linear and is the identity on W . Moreover,

φ0(u.v) =

Z
Un

g.φ(g−1u.v)dg = u.

Z
Un

u−1g.φ(g−1u.v)dg

∗
=u.

Z
Un

gφ(g−1.v)dg = u.φ0(v)

where the starred equality uses the invariance of the Haar measure. Hence, V = W ⊕Ker φ0 is a
decomposition as Un-representations. Continuing whenever one of the components has a nontrivial
subrepresentation we arrive at a decomposition of V into simple Un-representations. �

We claim that for any n, Un is Zariski dense in GLn. Let Dn be the group of all diagonal
matrices in GLn. The Cartan decomposition for GLn asserts that

GLn = Un.Dn.Un

For, take g ∈ GLn then g.g∗ is an Hermitian matrix and hence diagonalizable by unitary matrices.
So, there is a u ∈ Un such that

u−1.g.g∗.u =

264α1

. . .
αn

375 = s−1.g.s| {z }
p

. s−1.g∗.s| {z }
p∗

Then, each αi > 0 ∈ R as αi =
Pn
j=1 ‖ pij ‖

2. Let βi =
√
αi and let d the diagonal matrix

diag(β1, . . . , βn). Clearly,

g = u.d.(d−1.u−1.g) and we claim v = d−1.u−1.g ∈ Un.

Indeed, we have

v.v∗ =(d−1.u−1.g).(g∗.u.d−1) = d−1.(u−1.g.g∗.u).d−1

=d−1.d2.d−1 = rr
n

proving the Cartan decomposition. Now, Dn = C∗ × . . . × C∗ and Dn ∩ Un = U1 × . . . × U1 and
because U1 = µ is Zariski dense (being infinite) in D1 = C∗, we have that Dn is contained in the
Zariski closure of Un. By the Cartan decomposition we then have that the Zariski closure of Un is
GLn.

Theorem 2.4 GLn is a reductive group. That is, all GLn-representations are completely reducible.
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Proof. Let V be a GLn-representation having a subrepresentation W . In particular, V and W
are Un-representations, so by the foregoing proposition we have a decomposition V = W ⊕W ′ as
Un-representations. Consider the subgroup

N = NGLn(W ′) = {g ∈ GLn | g.W ′ ⊂W ′}

then N is a Zariski closed subgroup of GLn containing Un. As the Zariski closure of Un is GLn we
have N = GLn and hence that W ′ is a representation of GLn. Continuing gives a decomposition
of V in simple GLn-representations. �

Let S = SGLn be the set of isomorphism classes of simple GLn-representations. If W is a simple
GLn-representation belonging to the isomorphism class s ∈ S, we say that W is of type s and denote
this by W ∈ s. Let X be a complex vectorspace (not necessarily finite dimensional) with a linear
action of GLn. We say that the action is locally finite on X if, for any finite dimensional subspace
Y of X, there exists a finite dimensional subspace Y ⊂ Y ′ ⊂ X which is a GLn-representation.
The isotypical component of X of type s ∈ S is defined to be the subspace

X(s) =
X
{W |W ⊂ X,W ∈ s}.

If V is a GLn-representation, we have seen that V is completely reducible. Then, V = ⊕V(s) and

every isotypical component V(s) ' W⊕es for W ∈ s and some number es. Clearly, es 6= 0 for only
finitely many classes s ∈ S. We call the decomposition V = ⊕s∈SV(s) the isotypical decomposition
of V and we say that the simple representation W ∈ s occurs with multiplicity es in V .

If V ′ is another GLn-representation and if V
φ- V ′ is a morphism of GLn-representations

(that is, a linear map commuting with the action), then for any s ∈ S we have that φ(V(s)) ⊂ V ′(s). If
the action of GLn on X is locally finite, we can reduce to finite dimensional GLn-subrepresentation
and obtain a decomposition

X = ⊕s∈SX(s),

which is again called the isotypical decomposition of X.
Let V be a GLn-representation of some dimension m. Then, we can view V as an affine space

Cm and we have an induced action of GLn on the polynomial functions f ∈ C[V ] by the rule

V
f - C

V

g.

?....
....
....
....
....
....
....
...

g.
f

-

that is (g.f)(v) = f(g−1.v) for all g ∈ GLn and all v ∈ V . If C[V ] = C[x1, . . . , xm] is graded
by giving all the xi degree one, then each of the homogeneous components of C[V ] is a finite
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dimensional GLn-representation. Hence, the action of GLn on C[V ] is locally finite. Indeed, let
{y1, . . . , yl} be a basis of a finite dimensional subspace Y ⊂ C[V ] and let d be the maximum of the
deg(yi). Then Y ′ = ⊕di=0C[V ]i is a GLn-representation containing Y .

Therefore, we have an isotypical decomposition C[V ] = ⊕s∈SC[V ](s). In particular, if 0 ∈ S
denotes the isomorphism class of the trivial GLn-representation (Ctriv = Cx with g.x = x for every
g ∈ GLn) then we have

C[V ](0) = {f ∈ C[V ] | g.f = f,∀g ∈ GLn} = C[V ]GLn

the ring of polynomial invariants , that is, of polynomial functions which are constant along orbits
in V .

Lemma 2.7 Let V be a GLn-representation.

1. Let I / C[V ] be a GLn-stable ideal, that is, g.I ⊂ I for all g ∈ GLn, then

(C[V ]/I)GLn ' C[V ]GLn/(I ∩ C[V ]GLn).

2. Let J / C[V ]GLn be an ideal, then we have a lying-over property

J = JC[V ] ∩ C[V ]GLn .

Hence, C[V ]GLn is Noetherian, that is, every increasing chain of ideals stabilizes.

3. Let Ij be a family of GLn-stable ideals of C[V ], then

(
X
j

Ij) ∩ C[V ]GLn =
X
j

(Ij ∩ C[V ]GLn).

Proof. (1) : As I has the induced GLn-action which is locally finite we have the isotypical
decomposition I = ⊕I(s) and clearly I(s) = C[V ](s) ∩ I. But then also, taking quotients we have

⊕s(C[V ]/I)(s) = C[V ]/I = ⊕sC[V ](s)/I(s).

Therefore, (C[V ]/I)(s) = C[V ](s)/I(s) and taking the special case s = 0 is the statement.

(2) : For any f ∈ C[V ]GLn left-multiplication by f in C[V ] commutes with the GLn-action,
whence f.C[V ](s) ⊂ C[V ](s). That is, C[V ](s) is a C[V ]GLn -module. But then, as J ⊂ C[V ]GLn we
have

⊕s(JC[V ])(s) = JC[V ] = ⊕sJC[V ](s).

Therefore, (JC[V ])(s) = JC[V ](s) and again taking the special value s = 0 we obtain JC[V ] ∩
C[V ]GLn = (JC[V ])(0) = J . The Noetherian statement follows from the fact that C[V ] is Noetherian
(the Hilbert basis theorem).
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(3) : For any j we have the decomposition Ij = ⊕s(Ij)(s). But then, we have

⊕s(
X
j

Ij)(s) =
X
j

Ij =
X
j

⊕s(Ij)(s) = ⊕s
X
j

(Ij)(s).

Therefore, (
P
j Ij)(s) =

P
j(Ij)(s) and taking s = 0 gives the required statement. �

Theorem 2.5 Let V be a GLn-representation. Then, the ring of polynomial invariants C[V ]GLn

is an affine C-algebra.

Proof. Because the action of GLn on C[V ] preserves the gradation, the ring of invariants is also
graded

C[V ]GLn = R = C⊕R1 ⊕R2 ⊕ . . . .

From lemma 2.7(2) we know that C[V ]GLn is Noetherian and hence the ideal R+ = R1 ⊕R2 ⊕ . . .
is finitely generated R+ = Rf1 + . . .+ Rfl by homogeneous elements f1, . . . , fl. We claim that as

a C-algebra C[V ]GLn is generated by the fi. Indeed, we have R+ =
Pl
i=1 Cfi +R2

+ and then also

R2
+ =

lX
i,j=1

Cfifj +R3
+

and iterating this procedure we obtain for all powers m that

Rm+ =
X

P
mi=m

Cfm1
1 . . . f

ml
l +Rm+1

+ .

Now, consider the subalgebra C[f1, . . . , fl] of R = C[V ]GLn , then we obtain for any power d > 0
that

C[V ]GLn = C[f1, . . . , fl] +Rd+.

For any i we then have for the homogeneous components of degree i

Ri = C[f1, . . . , fl]i + (Rd+)i.

Now, if d > i we have that (Rd+)i = 0 and hence that Ri = C[f1, . . . , fl]i. As this holds for all i we
proved the claim. �

Choose generating invariants f1, . . . , fl of C[V ]GLn , consider the morphism

V
φ- Cl defined by v 7→ (f1(v), . . . , fl(v))
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and define W to be the Zariski closure φ(V ) in Cl. Then, we have a diagram

V
φ - Cl

W
∪

6

π

-

and an isomorphism C[W ]
π∗- C[V ]GLn . More general, let X be a closed GLn-stable subvariety

of V , then X = VV (I) for some GLn-stable ideal I of C[V ]. From lemma 2.7(1) we obtain

C[X]GLn = (C[V ]/I)GLn = C[V ]GLn/(I ∩ C[V ]GLn)

whence C[X]GLn is also an affine algebra (and generated by the images of the fi). Define Y to be
the Zariski closure of φ(X) in Cl, then we have a diagram

X
φ - Cl

Y
∪

6

π

-

and an isomorphism C[Y ]
π- C[X]GLn . We call the morphism X

π- Y an algebraic quotient
of X under GLn. We will now prove some important properties of this quotient.

Proposition 2.8 (universal property) If X
µ- Z is a morphism which is constant along

GLn-orbits in X, then there exists a unique factoring morphism µ

X
π - Y

Z
�..
....
....
....
....
....
....
....
.

µ
µ

-
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Proof. As µ is constant along GLn-orbits in X, we have an inclusion µ∗(C[Z]) ⊂ C[X]GLn . We
have the commutative diagram

C[X]

C[X]GLn

∪

6

C[Z] ...........................................
µ∗

-

µ
∗

-

-

C[Y ]

�

π ∗

�

'

from which the existence and uniqueness of µ follows. �

As a consequence, an algebraic quotient is uniquely determined up to isomorphism (that is, we
might have started from other generating invariants and still obtain the same quotient variety up
to isomorphism).

Proposition 2.9 (onto property) The algebraic quotient X
π- Y is surjective. Moreover, if

Z ⊂ - X is a closed GLn-stable subset, then π(Z) is closed in Y and the morphism

πX | Z : Z - π(Z)

is an algebraic quotient, that is, C[π(Z)] ' C[Z]GLn .

Proof. Let y ∈ Y with maximal ideal My / C[Y ]. By lemma 2.7(2) we have MyC[X] 6= C[X] and
hence there is a maximal ideal Mx of C[X] containing MyC[X], but then π(x) = y. Let Z = VX(I)

for a G-stable ideal I of C[X], then π(Z) = VY (I ∩ C[Y ]). That is, C[π(Z)] = C[Y ]/(I ∩ C[Y ]).
However, we have from lemma 2.7(1) that

C[Y ]/(C[Y ] ∩ I) ' (C[X]/I)GLn = C[Z]GLn

and hence C[π(Z)] = C[Z]GLn . Finally, surjectivity of π | Z is proved as above. �

An immediate consequence is that the Zariski topology on Y is the quotient topology of that
on X. For, take U ⊂ Y with π−1(U) Zariski open in X. Then, X − π−1(U) is a GLn-stable closed
subset of X. Then, π(X − π−1(U)) = Y − U is Zariski closed in Y .
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Proposition 2.10 (separation property) The quotient X
π- Y separates disjoint closed

GLn-stable subvarieties of X.

Proof. Let Zj be closed GLn-stable subvarieties of X with defining ideals Zj = VX(Ij). Then,
∩jZj = VX(

P
j Ij). Applying lemma 2.7(3) we obtain

π(∩jZj) = VY ((
X
j

Ij) ∩ C[Y ]) = VY (
X
j

(Ij ∩ C[Y ]))

= ∩jVY (Ij ∩ C[Y ]) = ∩jπ(Zj)

The onto property implies that π(Zj) = π(Zj) from which the statement follows. �

It follows from the universal property that the quotient variety Y determined by the ring of
polynomial invariants C[Y ]GLn is the best algebraic approximation to the orbit space problem.
From the separation property a stronger fact follows.

Proposition 2.11 The algebraic quotient X
π- Y is the best continuous approximation to the

orbit space. That is, points of Y parameterize the closed GLn-orbits in X. In fact, every fiber
π−1(y) contains exactly one closed orbit C and we have

π−1(y) = {x ∈ X | C ⊂ GLn.x}

Proof. The fiber F = π−1(y) is a GLn-stable closed subvariety of X. Take any orbit GLn.x ⊂ F
then either it is closed or contains in its closure an orbit of strictly smaller dimension. Induction on
the dimension then shows that G.x contains a closed orbit C. On the other hand, assume that F
contains two closed orbits, then they have to be disjoint contradicting the separation property. �

2.6 Geometric reconstruction

In this section we will give a geometric interpretation of the reconstruction result of theorem 1.17.
Let A be a Cayley-Hamilton algebra of degree n, with trace map trA, which is generated by at most
m elements a1, . . . , am. We will give a functorial interpretation to the affine scheme determined
by the canonical ideal NA / C[Mm

n ] in the formulation of theorem 1.17. First, let us identify the
reduced affine variety V(NA). A point m = (m1, . . . ,mm) ∈ V(NA) determines an algebra map
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fm : C[Mm
n ]/NA - C and hence an algebra map φm

A .......................
φm- Mn(C)

Mn(C[Mm
n ]/NA)
?

∩

M
n
(f

m
)

-

which is trace preserving. Conversely, from the universal property it follows that any trace preserv-
ing algebra morphismA - Mn(C) is of this form by considering the images of the trace generators
a1, . . . , am of A. Alternatively, the points of V(NA) classify n-dimensional trace preserving repre-
sentations of A. That is, n-dimensional representations for which the morphism A - Mn(C)
describing the action is trace preserving. For this reason we will denote the variety V(NA) by
trepn A and call it the trace preserving reduced representation variety of A.

Assume that A is generated as a C-algebra by a1, . . . , am (observe that this is no restriction as
trace affine algebras are affine) then clearly IA(n) ⊂ NA. That is,

Lemma 2.8 For A a Cayley-Hamilton algebra of degree n generated by {a1, . . . , am}, the reduced
trace preserving representation variety

trepn A ⊂ - repn A

is a closed subvariety of the reduced representation variety.

It is easy to determine the additional defining equations. Write any trace monomial out in the
generators

trA(ai1 . . . aik ) =
X

αj1...jlaj1 . . . ajl

then for a point m = (m1, . . . ,mm) ∈ repn A to belong to trepn A, it must satisfy all the relations
of the form

tr(mi1 . . .mik ) =
X

αj1...jlmj1 . . .mjl

with tr the usual trace on Mn(C). These relations define the closed subvariety trepn(A). Usually,
this is a proper subvariety.

Example 2.11 Let A be a finite dimensional semi-simple algebra A = Md1(C)⊕. . .⊕Mdk (C), then
A has precisely k distinct simple modules {M1, . . . ,Mk} of dimensions {d1, . . . , dk}. Here, Mi can
be viewed as column vectors of size di on which the component Mdi(C) acts by left multiplication
and the other factors act as zero. Because A is semi-simple every n-dimensional A-representation
M is isomorphic to

M = M⊕e11 ⊕ . . .⊕M⊕ek
k



2.6. Geometric reconstruction 87

for certain multiplicities ei satisfying the numerical condition

n = e1d1 + . . .+ ekdk

That is, repn A is the disjoint union of a finite number of (closed) orbits each determined by an
integral vector (e1, . . . , ek) satisfying the condition called the dimension vector of M .

repn A '
G

(e1,...,ek)

GLn/(GLe1 × . . . GLek )

Let fi ≥ 1 be natural numbers such that n = f1d1 + . . . + fkdk and consider the embedding of A
into Mn(C) defined by

(a1, . . . , ak) ∈ A -

266666666666666664

264a1 0
. . .

0 a1

375
| {z }

f1

. . .
fkz }| {264ak 0
. . .

0 ak

375

377777777777777775
∈Mn(C)

Via this embedding, A becomes a Cayley-Hamilton algebra of degree n when equipped with the
induced trace tr from Mn(C).

Let M be the n-dimensional A-representation with dimension vector (e1, . . . , ek) and choose a
basis compatible with this decomposition. Let Ei be the idempotent of A corresponding to the
identity matrix Idi of the i-th factor. Then, the trace of the matrix defining the action of Ei on M is
clearly eidi.In. On the other hand, tr(Ei) = fidi.In, hence the only trace preserving n-dimensional
A-representation is that of dimension vector (f1, . . . , fk). Therefore, trepn A consists of the single
closed orbit determined by the integral vector (f1, . . . , fk).

trepn A ' GLn/(GLf1 × . . .×GLfk )

Consider the scheme structure of the trace preserving representation variety trepn A. The
corresponding functor assigns to a commutative affine C-algebra R

trepn(R) = AlgC(C[Mm
n ]/NA, R).

An algebra morphism ψ : C[Mm
n ]/NA - R determines uniquely an m-tuple of n × n matrices

with coefficients in R by

rk =

264ψ(x11(k)) . . . ψ(x1n(k))
...

...
ψ(xn1(k)) . . . ψ(xnn(k))

375
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Composing with the canonical embedding

A ......................
φ
- Mn(R)

Mn(C[Mm
n ]/NA)
?

∩

M
n
(ψ

)

-

determines the trace preserving algebra morphism φ : A - Mn(R) where the trace map on
Mn(R) is the usual trace. By the universal property any trace preserving map A - Mn(R) is
also of this form.

Lemma 2.9 Let A be a Cayley-Hamilton algebra of degree n which is generated by {a1, . . . , am}.
The trace preserving representation variety trepn A represents the functor

trepn A(R) = {A φ- Mn(R) | φ is trace preserving }

Moreover, trepn A is a closed subscheme of repn A.

Recall that there is an action of GLn on C[Mm
n ] and from the definition of the ideals IA(n)

and NA it is clear that they are stable under the GLn-action. That is, there is an action by
automorphisms on the quotient algebras C[Mm

n ]/IA(n) and C[Mm
n ]/NA. But then, their algebras

of invariants are equal to(
C[repn A]GLn = (C[Mm

n ]/IA(n))GLn = Nmn /(IA(n) ∩ Nmn )

C[trepn A]GLn = (C[Mm
n ]/NA)GLn = Nmn /(NA ∩ Nmn )

That is, these rings of invariants define closed subschemes of the affine (reduced) variety associated
to the necklace algebra Nmn . We will call these schemes the quotient schemes for the action of GLn
and denote them respectively by

issn A = repn A/GLn and trissn A = trepn A/GLn.

We have seen that the geometric points of the reduced variety issn A of the affine quotient scheme
issn A parameterize the isomorphism classes of n-dimensional semisimple A-representations. Sim-
ilarly, the geometric points of the reduced variety trissn A of the quotient scheme trissn A
parameterize isomorphism classes of trace preserving n-dimensional semisimple A-representations.

Proposition 2.12 Let A be a Cayley-Hamilton algebra of degree n with trace map trA. Then, we
have that

trA(A) = C[trissn A],

the coordinate ring of the quotient scheme trissn A. In particular, maximal ideals of trA(A) param-
eterize the isomorphism classes of trace preserving n-dimensional semi-simple A-representations.



2.6. Geometric reconstruction 89

By definition, a GLn-equivariant map between the affine GLn-schemes

trepn A
f- Mn = Mn

means that for any commutative affine C-algebra R the corresponding map

trepn A(R)
f(R)- Mn(R)

commutes with the action of GLn(R). Alternatively, the ring of all morphisms trepn A
- Mn

is the matrixalgebra Mn(C[Mm
n ]/NA) and those that commute with the GLn action are precisely

the invariants. That is, we have the following description of A.

Theorem 2.6 Let A be a Cayley-Hamilton algebra of degree n with trace map trA. Then, we can
recover A as the ring of GLn-equivariant maps

A = {f : trepn A
- Mn GLn-equivariant }

Summarizing the results of this and the previous section we have

Theorem 2.7 The functor

alg@n
trepn- GL(n)-affine

which assigns to a Cayley-Hamilton algebra A of degree n the GLn-affine scheme trepn A of trace
preserving n-dimensional representations has a left inverse. This left inverse functor

GL(n)-affine
⇑n
- alg@n

assigns to a GLn-affine scheme X its witness algebra ⇑n [X] = Mn(C[X])GLn which is a Cayley-
Hamilton algebra of degree n.

Note however that this functor is not an equivalence of categories. For, there are many affine
GLn-schemes having the same witness algebra as we will see in the next section.

We will give an application of the algebraic reconstruction result, theorem 1.17, to finite dimen-
sional algebras.

Let A be a Cayley-Hamilton algebra of degree n wit trace map tr, then we can define a norm
map on A by

N(a) = σn(a) for all a ∈ A.

Recall that the elementary symmetric function σn is a polynomial function f(t1, t2, . . . , tn) in the
Newton functions ti =

Pn
j=1 x

i
j . Then, σ(a) = f(tr(a), tr(a2), . . . , tr(an)). Because, we have a

trace preserving embedding A ⊂ - Mn(C[trepn A]) and the norm map N coincides with the
determinant in this matrix-algebra, we have that

N(1) = 1 and ∀a, b ∈ A N(ab) = N(a)N(b).
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Furthermore, the norm map extends to a polynomial map on A[t] and we have that χ
(n)
a (t) =

N(t− a). In particular we can obtain the trace by polarization of the norm map. Consider a finite
dimensional semi-simple C-algebra

A = Md1(C)⊕ . . .⊕Mdk (C),

then all the Cayley-Hamilton structures of degree n on A with trace values in C are given by the
following result.

Lemma 2.10 Let A be a semi-simple algebra as above and tr a trace map on A making it into a
Cayley-Hamilton algebra of degree n with tr(A) = C. Then, there exist a dimension vector α =

(m1, . . . ,mk) ∈ Nk+ such that n =
Pk
i=1midi and for any a = (A1, . . . , Ak) ∈ A with Ai ∈Mdi(C)

we have that
tr(a) = m1Tr(A1) + . . .+mkTr(Ak)

where Tr are the usual trace maps on matrices.

Proof. The norm-map N on A defined by the trace map tr induces a group morphism on the
invertible elements of A

N : A∗ = GLd1(C)× . . .×GLdk (C) - C∗

that is, a character. Now, any character is of the following form, let Ai ∈ GLdi(C), then for
a = (A1, . . . , Ak) we must have

N(a) = det(A1)
m1det(A2)

m2 . . . det(Ak)
mk

for certain integers mi ∈ Z. Since N extends to a polynomial map on the whole of A we must have
that all mi ≥ 0. By polarization it then follows that

tr(a) = m1Tr(A1) + . . .+mkTr(Ak)

and it remains to show that no mi = 0. Indeed, if mi = 0 then tr would be the zero map on
Mdi(C), but then we would have for any a = (0, . . . , 0, A, 0, . . . , 0) with A ∈Mdi(C) that

χ(n)
a (t) = tn

whence χ
(n)
a (a) 6= 0 whenever A is not nilpotent. This contradiction finishes the proof. �

We can extend this to all finite dimensional C-algebras. Let A be a finite dimensional algebra
with radical J and assume there is a trace map tr on A making A into a Cayley-Hamilton algebra
of degree n and such that tr(A) = C. We claim that the norm map N : A - C is zero on J .
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Indeed, any j ∈ J satisfies jl = 0 for some l whence N(j)l = 0. But then, polarization gives that
tr(J) = 0 and we have that the semisimple algebra

Ass = A/J = Md1(C)⊕ . . .⊕Mdk (C)

is a semisimple Cayley-hamilton algebra of degree n on which we can apply the foregoing lemma.
Finally, note that A ' Ass ⊕ J as C-vectorspaces. This concludes the proof of

Proposition 2.13 Let A be a finite dimensional C-algebra with radical J and semisimple part

Ass = A/J = Md1(C)⊕ . . .⊕Mdk (C).

Let tr : A - C ⊂ - A be a trace map such that A is a Cayley-Hamilton algebra of degree n.
Then, there exists a dimension vector α = (m1, . . . ,mk) ∈ Nk+ such that for all a = (A1, . . . , Ak, j)
with Ai ∈Mdi(C) and j ∈ J we have

tr(a) = m1Tr(A1) + . . .+mkTr(Ak)

with Tr the usual traces on Mdi(C) and
P
imidi = n.

Fix a trace map tr on A determined by a dimension vector α = (m1, . . . ,mk) ∈ Nk. Then, the
trace preserving variety trepn A is the scheme of A-modules of dimension vector α, that is, those
A-modules M such that

Mss = S⊕m1
1 ⊕ . . .⊕ S⊕mk

k

where Si is the simple A-module of dimension di determined by the i-th factor in Ass. An immediate
consequence of the reconstruction theorem 2.6 is

Proposition 2.14 Let A be a finite dimensional algebra with trace map tr : A - C determined
by a dimension vector α = (m1, . . . ,mk) as before with all mi > 0. Then, A can be recovered from
the GLn-structure of the affine scheme trepn A of all A-modules of dimension vector α.

Still, there can be other trace maps on A making A into a Cayley-Hamilton algebra of degree n.
For example let C be a finite dimensional commutative C-algebra with radical N , then A = Mn(C)
is finite dimensional with radical J = Mn(N) and the usual trace map tr : Mn(C) - C makes A
into a Cayley-Hamilton algebra of degree n such that tr(J) = N 6= 0. Still, if A is semi-simple, the
center Z(A) = C⊕ . . .⊕ C (as many terms as there are matrix components in A) and any subring
of Z(A) is of the form C⊕ . . .⊕C. In particular, tr(A) has this form and composing the trace map
with projection on the j-th component we have a trace map trj on which we can apply lemma 2.10.
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2.7 The Gerstenhaber-Hesselink theorem

In this section we will give examples of distinct GLn-affine schemes having the same witness algebra,
proving that the left inverse of theorem 2.7 is not an equivalence of categories. We will study the
orbits in repn C[x] or, equivalent, conjugacy classes of n× n matrices.

It is sometimes convenient to relax our definition of partitions to include zeroes at its tail.
That is, a partition p of n is an integral n-tuple (a1, a2, . . . , an) with a1 ≥ a2 ≥ . . . ≥ an ≥ 0
with

Pn
i=1 ai = n. As before, we represent a partition by a Young diagram by omitting rows

corresponding to zeroes.
If q = (b1, . . . , bn) is another partition of n we say that p dominates q and write

p > q if and only if

rX
i=1

ai ≥
rX
i=1

bi for all 1 ≤ r ≤ n.

For example, the partitions of 4 are ordered as indicated below

> > > >

Note however that the dominance relation is not a total ordering whenever n ≥ 6. For example,
the following two partition of 6

are not comparable. The dominance order is induced by the Young move of throwing a row-ending
box down the diagram. Indeed, let p and q be partitions of n such that p > q and assume there is
no partition r such that p > r and r > q. Let i be the minimal number such that ai > bi. Then
by the assumption ai = bi + 1. Let j > i be minimal such that aj 6= bj , then we have bj = aj + 1
because p dominates q. But then, the remaining rows of p and q must be equal. That is, a Young
move can be depicted as

p =

i

j

−→ q =

i

j
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For example, the Young moves between the partitions of 4 given above are as indicated

.
→

.
→

.

→

.

→

A Young p-tableau is the Young diagram of p with the boxes labeled by integers from {1, 2, . . . , s}
for some s such that each label appears at least ones. A Young p-tableau is said to be of type q for
some partition q = (b1, . . . , bn) of n if the following conditions are met :

• the labels are non-decreasing along rows,

• the labels are strictly increasing along columns, and

• the label i appears exactly bi times.

For example, if p = (3, 2, 1, 1) and q = (2, 2, 2, 1) then the p-tableau below

4

3

2

1 1 3

2

is of type q (observe that p > q and even p→ q). In general, let p = (a1, . . . , an) and q = (b1, . . . , bn)
be partitions of n and assume that p→ q. Then, there is a Young p-tableau of type q. For, fill the
Young diagram of q by putting 1’s in the first row, 2’s in the second and so on. Then, upgrade the
fallen box together with its label to get a Young p-tableau of type q. In the example above

4

3
=⇒

2

1 1

2

3'&%$ !"#

•OO

4

3

2

1 1 3

2

Conversely, assume there is a Young p-tableau of type q. The number of boxes labeled with a
number ≤ i is equal to b1 + . . . + bi. Further, any box with label ≤ i must lie in the first i rows
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(because the labels strictly increase along a column). There are a1 + . . .+ ai boxes available in the
first i rows whence

iX
j=1

bi ≤
iX

j=1

ai for all 1 ≤ i ≤ n

and therefore p > q. After these preliminaries on partitions, let us return to nilpotent matrices.

Let A be a nilpotent matrix of type p = (a1, . . . , an), that is, conjugated to a matrix with Jordan
blocks (all with eigenvalue zero) of sizes ai. We have seen before that the subspace Vl of column
vectors v ∈ Cn such that Al.v = 0 has dimension

lX
h=1

#{j | aj ≥ h} =

lX
h=1

a∗h

where p∗ = (a∗1, . . . , a
∗
n) is the dual partition of p. Choose a basis {v1, . . . , vn} of Cn such that for

all l the first a∗1 + . . .+a∗l base vectors span the subspace Vl. For example, if A is in Jordan normal
form of type p = (3, 2, 1, 1) 266666664

0 1 0
0 0 1
0 0 0

0 1
0 0

0
0

377777775
then p∗ = (4, 2, 1) and we can choose the standard base vectors ordered as follows

{e1, e4, e6, e7| {z }
4

, e2, e5| {z }
2

, e3|{z}
1

}.

Take a partition q = (b1, . . . , bn) with p→ q (in particular, p > q), then for the dual partitions we
have q∗ → p∗ (and thus q∗ > p∗). But then there is a Young q∗-tableau of type p∗. In the example
with q = (2, 2, 2, 1) we have q∗ = (4, 3) and p∗ = (4, 2, 1) and we can take the Young q∗-tableau of
type p∗

2 2 3

1 1 1 1

Now label the boxes of this tableau by the base vectors {v1, . . . , vn} such that the boxes labeled i
in the Young q∗-tableau of type p∗ are filled with the base vectors from Vi−Vi−1. Call this tableau
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T . In the example, we can take

T = e2 e5 e3

e1 e4 e6 e7

Define a linear operator F on Cn by the rule that F (vi) = vj if vj is the label of the box in T just
above the box labeled vi. In case vi is a label of a box in the first row of T we take F (vi) = 0.
Obviously, F is a nilpotent n× n matrix and by construction we have that

rk F l = n− (b∗1 + . . .+ b∗l )

That is, F is nilpotent of type q = (b1, . . . , bn). Moreover, F satisfies F (Vi) ⊂ Vi−1 for all i by the
way we have labeled the tableau T and defined F .

In the example above, we have F (e2) = e1, F (e5) = e4, F (e3) = e6 and all other F (ei) = 0.
That is, F is the matrix 266666664

0 1
0 0

0 0
0 1
0 0

1 0
0

377777775
which is seen to be of type (2, 2, 2, 1) after performing a few Jordan moves.

Returning to the general case, consider for all ε ∈ C the n× n matrix :

Fε = (1− ε)F + εA.

We claim that for all but finitely many values of ε we have Fε ∈ O(A). Indeed, we have seen that
F (Vi) ⊂ Vi−1 where Vi is defined as the subspace such that Ai(Vi) = 0. Hence, F (V1) = 0 and
therefore

Fε(V1) = (1− ε)F + εA(V1) = 0.

Assume by induction that F iε (Vi) = 0 holds for all i < l, then we have that

F lε(Vl) = F l−1
ε ((1− ε)F + εA)(Vl)

⊂ F l−1
ε (Vl−1) = 0

because A(Vl) ⊂ Vl−1 and F (Vl) ⊂ Vl−1. But then we have for all l that

rk F lε ≤ dim Vl = n− (a∗1 + . . .+ a∗l ) = rk Al
def
= rl.
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Then for at least one rl×rl submatrix of F lε its determinant considered it as a polynomial of degree
rl in ε is not identically zero (as it is nonzero for ε = 1). But then this determinant is non-zero for
all but finitely many ε. Hence, rk F lε = rk Al for all l for all but finitely many ε. As these numbers
determine the dual partition p∗ of the type of A, Fε is a nilpotent n × n matrix of type p for all
but finitely many values of ε, proving the claim. But then, F0 = F which we have proved to be a
nilpotent matrix of type q belongs to the closure of the orbit O(A). That is, we have proved the
difficult part of the Gerstenhaber-Hesselink theorem .

Theorem 2.8 Let A be a nilpotent n × n matrix of type p = (a1, . . . , an) and B nilpotent of type
q = (b1, . . . , bn). Then, B belongs to the closure of the orbit O(A), that is,

B ∈ O(A) if and only if p > q

in the domination order on partitions of n.

To prove the theorem we only have to observe that if B is contained in the closure of A, then
Bl is contained in the closure of Al and hence rk Al ≥ rk Bl (because rk Al < k is equivalent to
vanishing of all determinants of k × k minors which is a closed condition). But then,

n−
lX
i=1

a∗i ≥ n−
lX
i=1

b∗i

for all l, that is, q∗ > p∗ and hence p > q. The other implication was proved above if we remember

that the domination order was induced by the Young moves and clearly we have that if B ∈ O(C)

and C ∈ O(A) then also B ∈ O(A).

Example 2.12 (Nilpotent matrices for small n) We will apply theorem 2.8 to describe the
orbit-closures of nilpotent matrices of 8 × 8 matrices. The following table lists all partitions (and
their dual in the other column)

The partitions of 8.

a (8) v (1,1,1,1,1,1,1,1)
b (7,1) u (2,1,1,1,1,1,1)
c (6,2) t (2,2,1,1,1,1)
d (6,1,1) s (3,1,1,1,1,1)
e (5,3) r (2,2,2,1,1)
f (5,2,1) q (3,2,1,1,1)
g (5,1,1,1) p (4,1,1,1,1)
h (4,4) o (2,2,2,2)
i (4,3,1) n (3,2,2,1)
j (4,2,2) m (3,3,1,1)
k (3,3,2) k (3,3,2)
l (4,2,1,1) l (4,2,1,1)
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The domination order between these partitions can be depicted as follows where all the Young
moves are from left to right

a�������� b�������� c��������
d��������

e��������
f��������

g��������

h��������
i�������� j��������

k��������

l��������
m�������� n��������

o��������

p��������
q��������

r��������
s��������

t�������� u�������� v��������
??

?? ���� ??
??

??
??

??
?? ����

??
??

??
??

����

����
����

����
����

Of course, from this graph we can read off the dominance order graphs for partitions of n ≤ 8.
The trick is to identify a partition of n with that of 8 by throwing in a tail of ones and to look at
the relative position of both partitions in the above picture. Using these conventions we get the
following graph for partitions of 7
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and for partitions of 6 the dominance order is depicted as follows

c�������� g�������� l��������
p��������

m��������
q��������

s��������
r��������

t�������� u�������� v��������
??

??
??

??
??

?? ������

������

The dominance order on partitions of n ≤ 5 is a total ordering.

The Gerstenhaber-Hesselink theorem can be applied to describe the module varieties of the
algebras C[x]/(xr).

Example 2.13 (The representation variety repn
C[x]
(xr)

) Any algebra morphism from C[x] to

Mn is determined by the image of x, whence repn(C[x]) = Mn. We have seen that conjugacy
classes in Mn are classified by the Jordan normalform. Let A is conjugated to a matrix in normal-
form 2666666664

J1

J2

. . .

Js

3777777775
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where Ji is a Jordan block of size di, hence n = d1 + d2 + . . . + ds. Then, the n-dimensional
C[x]-module M determined by A can be decomposed uniquely as

M = M1 ⊕M2 ⊕ . . .⊕Ms

where Mi is a C[x]-module of dimension di which is indecomposable , that is, cannot be decomposed
as a direct sum of proper submodules.

Now, consider the quotient algebra R = C[x]/(xr), then the ideal IR(n) of C[x11, x12, . . . , xnn]
is generated by the n2 entries of the matrix264x11 . . . x1n

...
...

xn1 . . . xnn

375
r

.

For example if r = m = 2, then the ideal is generated by the entries of the matrix»
x1 x2

x3 x4

–2

=

»
x2

1 + x2x3 x2(x1 + x4)
x3(x1 + x4) x2

4 + x2x3

–
That is, the ideal with generators

IR = (x2
1 + x2x3, x2(x1 + x4), x3(x1 + x4), (x1 − x4)(x1 + x4))

The variety V(IR) ⊂ - M2 consists of all matrices A such that A2 = 0. Conjugating A to an
upper triangular form we see that the eigenvalues of A must be zero, hence

rep2 C[x]/(x2) = O(

»
0 1
0 0

–
) ∪ O(

»
0 0
0 0

–
)

and we have seen that this variety is a cone with top the zero matrix and defining equations

V(x1 + x4, x
2
1 + x2x3)

and we see that IR is properly contained in this ideal. Still, we have that

rad(IR) = (x1 + x4, x
2
1 + x3x4)

for an easy computation shows that x1 + x4
3

= 0 ∈ C[x1, x2, x3, x4]/IR. Therefore, even in the
easiest of examples, the representation variety does not have to be reduced.

For the general case, observe that when J is a Jordan block of size d with eigenvalue zero an
easy calculation shows that

Jd−1 =

266664
0 . . . 0 d− 1

. . . 0
. . .

...
0

377775 and Jd =

266664
0 . . . . . . 0
...

...
...

...
0 . . . . . . 0

377775
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Therefore, we see that the representation variety repn C[x]/(xr) is the union of all conjugacy classes
of matrices having 0 as only eigenvalue and all of which Jordan blocks have size ≤ r. Expressed
in module theoretic terms, any n-dimensional R = C[x]/(xr)-module M is isomorphic to a direct
sum of indecomposables

M = I⊕e11 ⊕ I⊕e22 ⊕ . . .⊕ I⊕er
r

where Ij is the unique indecomposable j-dimensional R-module (corresponding to the Jordan block
of size j). Of course, the multiplicities ei of the factors must satisfy the equation

e1 + 2e2 + 3e3 + . . .+ rer = n

In M we can consider the subspaces for all 1 ≤ i ≤ r − 1

Mi = {m ∈M | xi.m = 0}

the dimension of which can be computed knowing the powers of Jordan blocks (observe that the
dimension of Mi is equal to n− rank(Ai))

ti = dimC Mi = e1 + 2e2 + . . . (i− 1)ei + i(ei + ei+1 + . . .+ er)

Observe that giving n and the r − 1-tuple (t1, t2, . . . , tn−1) is the same as giving the multiplicities
ei because 8>>>>>>>>>><>>>>>>>>>>:

2t1 = t2 + e1
2t2 = t3 + t1 + e2
2t3 = t4 + t2 + e3

...

2tn−2 = tn−1 + tn−3 + en−2

2tn−1 = n+ tn−2 + en−1

n = tn−1 + en

Let n-dimensional C[x]/(xr)-modules M and M ′ (or associated matrices A and A′) be determined
by the r − 1-tuples (t1, . . . , tr−1) respectively (t′1, . . . , t

′
r−1) then we have that

O(A′) ⊂ - O(A) if and only if t1 ≤ t′1, t2 ≤ t′2, . . . , tr−1 ≤ t′r−1

Therefore, we have an inverse order isomorphism between the orbits in repn(C[x]/(xr)) and the
r − 1-tuples of natural numbers (t1, . . . , tr−1) satisfying the following linear inequalities (which
follow from the above system)

2t1 ≥ t2, 2t2 ≥ t3 + t1, 2t3 ≥ t4 + t2, . . . , 2tn−1 ≥ n+ tn−2, n ≥ tn−2.

Let us apply this general result in a few easy cases. First, consider r = 2, then the orbits in
repn C[x]/(x2) are parameterized by a natural number t1 satisfying the inequalities n ≥ t1 and
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2t1 ≥ n, the multiplicities are given by e1 = 2t1 − n and e2 = n − t1. Moreover, the orbit of the
module M(t′1) lies in the closure of the orbit of M(t1) whenever t1 ≤ t′1.

That is, if n = 2k + δ with δ = 0 or 1, then repn C[x]/(x2) is the union of k + 1 orbits and the
orbitclosures form a linear order as follows (from big to small)

Iδ1 ⊕ I⊕k2 I⊕δ+2
1 ⊕ I⊕k−1

2 . . . I⊕n1

If r = 3, orbits in repn C[x]/(x3) are determined by couples of natural numbers (t1, t2) satisfying
the following three linear inequalities 8><>:

2t1 ≥ t2
2t2 ≥ n+ t1
n ≥ t2

For example, for n = 8 we obtain the following situation

2t1 = t2
2t2 = 8 + t1

t2 = 8

• •

• • •

• • •• •

Therefore, rep8 C[x]/(x3) consists of 10 orbits with orbit closure diagram as in figure 2.2 (the nodes
represent the multiplicities [e1e2e3]).

Here we used the equalities e1 = 2t1− t2, e2 = 2t2−n− t1 and e3 = n− t2. For general n and r
this result shows that repn C[x]/(xr) is the closure of the orbit of the module with decomposition

Mgen = I⊕er ⊕ Is if n = er + s

We are now in a position to give the promised examples of affine GLn-schemes having the same
witness algebra.
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[800]

[610]

[420]

[501]
?????

[040]
�����

[121]
�����

[202]

[012]

[420]

[230]
�����

[311]
�����

[121]
?????

[230]

[040]
?????

Figure 2.2: Orbit closures in rep8 C[x]/(x3).

Example 2.14 Consider the action of GLn on Mn by conjugation and take a nilpotent matrix A.
All eigenvalues of A are zero, so the conjugacy class of A is fully determined by the sizes of its Jordan
blocks. These sizes determine a partition λ(A) = (λ1, λ2, . . . , λk) of n with λ1 ≥ λ2 ≥ . . . ≥ λk.
Moreover, we have given an algorithm to determine whether an orbit O(B) of another nilpotent

matrix B is contained in the orbit closure O(A), the criterium being that

O(B) ⊂ O(A)⇐⇒ λ(B)∗ ≥ λ(A)∗.

where λ∗ denotes the dual partition. We see that the witness algebra of O(A) is equal to

Mn(C[O(A)])GLn = C[X]/(Xk)

where k is the number of columns of the Young diagram λ(A).
Hence, the orbit closures of nilpotent matrices such that their associated Young diagrams have

equal number of columns have the same witness algebras. For example, if n = 4 then the closures
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of the orbits corresponding to

and

have the same witness algebra, although the closure of the second is a proper closed subscheme of
the closure of the first.

Recall the orbitclosure diagram of conjugacy classes of nilpotent 8 × 8 matrices given by the
Gerstenhaber-Hesselink theorem. In the picture below, the closures of orbits corresponding to
connected nodes of the same color have the same witness algebra.

◦ • ◦

◦

•

•

•

◦

◦ ◦

•

◦

• •

◦

◦

•

◦

•

◦ ◦ •
?? �� ??

??

?? ��

??

??

��

��

��

�� ��

2.8 The real moment map

In this section we will give another interpretation of the algebraic quotient variety trissn A with
methods coming from symplectic geometry. We have an involution

GLn
i- GLn defined by g - (g∗)−1

where A∗ is the adjoint matrix of g, that is, the conjugate transpose

M =

264m11 . . . m1n

...
...

mn1 . . . mnn

375 M∗ =

264m11 . . . mn1

...
...

m1n . . . mnn

375
The real points of this involution, that is

(GLn)i = {g ∈ GLn | g = (g∗)−1} = Un = {u ∈ GLn | uu∗ = rr
n}

is the unitary group . On the level of Lie algebras, the involution i gives rise to the linear map

Mn
di- Mn defined by M - −M∗

corresponding to the fact that the Lie algebra of the unitary group, that is, the kernel of di, is the
space of skew-Hermitian matrices

Lie Un = {M ∈Mn | M = −M∗} = iHermn
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Consider the standard Hermitian inproduct on Mn defined by

(A,B) = tr(A∗B) which satisfies

8><>:
(cA,B) = c(A,B)

(A, cB) = c(A,B)

(B,A) = (A,B)

As a subgroup of GLn, Un acts on Mn by conjugation and because (uAu∗, uBu∗) =
tr(uA∗u∗uBu∗) = tr(A∗B), the inproduct is invariant under the Un-action. The action of Un
on Mn induces an action of Lie Un on Mn given for all h ∈ Lie Un and M ∈Mn

h.M = hM +Mh∗ = hM −Mh

Using this action, we define the real moment map µ for the action of Un on Mn as the map from
Mn to the linear dual of the Lie algebra

Mn
µ- (iLie Un)∗ M - (h 7→ i(h.M,M))

We will identify the inverse image of the zero map 0 : Lie Un - 0 under µ. Because

(h.M,M) = tr((h.M −M.h)∗M)

= tr(M∗h∗M − h∗M∗M)

= tr(h∗(MM∗ −M∗M))

and using the nondegeneracy of the Killing form on Lie Un we have the identification

µ−1(0) = {M ∈Mn | MM∗ = M∗M} = Norn

the space of normal matrices . Alternatively, we can define the real moment map to be determined
by

Mn
µR- Lie Un M - i(MM∗ −M∗M) = i[M,M∗]

Recall that a matrix M ∈Mn(C) is said to be normal if its commutes with its adjoint. For example,
diagonal matrices are normal as are unitary matrices. Further, it is clear that if M is normal and
u unitary, then the conjugated matrix uMu−1 = uMu∗ is again a normal matrix, that is we have
an action of the compact Lie group Un on the subset Norn ⊂ - Mn(C) of normal matrices. We
recall the proof of the following classical result

Theorem 2.9 Every Un orbit in Norn contains a diagonal matrix. This gives a natural one-to-one
correspondence

µ−1(0)/Un = Norn/Un ←→Mn/GLn

between the Un-orbits in Norn and the closed GLn-orbits in Mn.
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Proof. Equip Cn with the standard Hermitian form, that is,

〈v, w〉 = vτ .w = v1w1 + . . .+ vnwn

Take a non-zero eigenvector v of M ∈ Norn and normalize it such that 〈v, v〉 = 1. Extend v = v1
to an orthonormal basis {v1, . . . , vn} of Cn and let u be the basechange matrix from the standard
basis. With respect to the new basis, the linear map determined by M and M∗ are represented by
the normal matrices

M1 = uMu∗ =

26664
a11 a12 . . . a1n

0 a22 . . . a2n

...
...

...
0 an2 . . . ann

37775 M∗1 = uM∗u∗ =

26664
a11 0 . . . 0
a12 a22 . . . an2

...
...

...
a1n a2n . . . ann

37775
Because M is normal, so is M1. The left hand corner of M∗1M1 is a11a11 whereas that of M1M

∗
1 is

a11a11 + a12a12 + . . .+ a1na1n, whence

a12a12 + . . .+ a1na1n = 0

but as all a1ia1i =‖ a1i ‖≥ 0, this implies that all a1i = 0, whence

M1 =

26664
a11 0 . . . 0
0 a22 . . . a2n

...
...

...
0 an2 . . . ann

37775
and induction finishes the claim. Because permutation matrices are unitary we see that the diagonal
entries are determined up to permutation, so every Un-orbit determines a unique conjugacy class
of semi-simple matrices, that is, a closed GLn-orbit in Mn. �

We will generalize this classical result to m-tuples of n×n matrices, Mm
n , and then by restriction

to trace preserving representation varieties. Take A = (A1, . . . , Am) and B = (B1, . . . , Bm) in Mm
n

and define an Hermitian inproduct on Mm
n by

(A,B) = tr(A∗1B1 + . . .+A∗mBm)

which is again invariant under the action of Un by simultaneous conjugation on Mm
n . The induced

action of Lie Un on Mm
n is given by

h.A = (hA1 −A1h, . . . , hAm −Amh)

This allows us to define the real moment map µ for the action of Un on Mm
n to be the assignment

Mm
n

µ- (iLie Un)∗ A - (h 7→ i(h.A,A))
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and again using the nondegeneracy of the Killing form on Lie Un we have the identification

µ−1(0) = {A ∈Mm
n |

mX
i=1

(AiA
∗
i −A∗iAi) = 0}

Again, the real moment map is determined by

Mm
n

µR- Lie Un A = (A1, . . . , Am) 7→ i[A,A∗] = i

mX
j=1

[Aj , A
∗
j ]

We will show that there is a natural one-to-one correspondence between Un-orbits in the set µ−1(0)
and closed GLn-orbits in Mm

n . We first consider the properties of the real valued function pA
defined as the norm on the orbit of any A ∈Mm

n

GLn
pA- R+ g - ‖g.A‖2

Because the Hermitian inproduct is invariant under Un we have pA(ug) = pA(g) for any u ∈ Un.
If Stab(A) denotes the stabilizer subgroup of A ∈ GLn, then for any s ∈ Stab(A) we also have
pA(gs) = pA(g) hence pA is constant along UngStab(A)-cosets. We aim to prove that the critical
points of pA are minima and that the minimum is attained if and only if O(A) is a closed GLn-orbit.

Consider the restriction of pA to the maximal torus Tn ⊂ - GLn of invertible diagonal matrices.
Then, Tn ∩ Un = K = U1 × . . .× U1 is the subgroup

K = {

264k1 0
. . .

0 kn

375 | ∀i : |ki| = 1 }

The action by conjugation of Tn on Mm
n decomposes this space into weight spaces

Mm
n = Mm

n (0)⊕
nM

i,j=1

Mm
n (πi − πj)

where Mm
n (πi − πj) = {A ∈ Mm

n | diag(t1, . . . , tn).A = tit
−1
j A}. It follows from the definition of

the Hermitian inproduct on Mm
n that the different weightspaces are orthogonal to each other. We

decompose A ∈Mm
n into eigenvectors for the Tn-action as

A = A(0) +

nX
i,j=1

A(i, j) with

(
A(0) ∈Mm

n (0)

A(i, j) ∈Mm
n (πi − πj)
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With this convention we have for t = diag(t1, . . . , tn) ∈ Tn that

pA(t) = ‖A(0) +

nX
i,j=1

tit
−1
j A(i, j)‖2

= ‖A(0)‖2 +

nX
i,j=1

t2i t
−2
j ‖A(i, j)‖2

where the last equality follows from the orthogonality of the different weight spaces. Further,
remark that the stabilizer subgroup StabT (A) of A in T can be identified with

StabT (A) = {t = diag(t1, . . . , tn) | ti = tj if A(i, j) 6= 0}.

As before, pA induces a function on double cosets K\Tn/StabT (A), in particular pM de-
termines a real valued function on K\Tn ' Rn (the isomorphism is given by the map

diag(t1, . . . , tn)
log- (log |t1|, . . . , log |tn|)). That is,

Tn
log-- K\Tn ' Rn

R+

pA

?
�

pA”

�
p
′
A

K\Tn/StabT (A)

??

where the function p′M is the special function

p′A(r1, . . . , rn) = e2log ‖A(0)‖ +

nX
i,j:A(i,j) 6=0

e2log ‖A(i,j)‖+2xi−2xj

and where K\Tn/StabT (A) is the quotient space of Rn by the subspace VA which is the image of
StabT (A) under log

VA =
X

i:6∃A(i,j) 6=0

Rei +
X

i,j:A(i,j) 6=0

R(ei − ej)

where ei are the standard basis vectors of Rn. Let {i1, . . . , ik} be the minimal elements of the
non-empty equivalence classes induced by the relation i ∼ j iff A(i, j) 6= 0, then(

K\Tn/StabT (A) '
Pk
j=1 Reij

pA”(y1, . . . , yk) = c0 +
Pk
j=1(

P
l(j) cl(j)e

al(j)yj )
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for certain positive real numbers c0, cl(j) and real numbers al(j). But then, elementary calculus
shows that the k × k matrix 2664

∂2pA”
∂y1∂y1

(m) . . . ∂2pA”
∂y1∂yk

(m)

...
...

∂2pA”
∂yk∂y1

(m) . . . ∂2pA”
∂yk∂yk

(m)

3775
is a positive definite diagonal matrix in every point m ∈ Rk. That is, pA” is a strictly convex
Morse function and if it has a critical point m0 (that is, if all ∂pA”

∂yi
(m0) = 0), it must be a unique

minimum. Lifting this information from the double coset space K\Tn/StabT (A) to Tn we have
proved

Proposition 2.15 Let Tn be the maximal torus of invertible diagonal matrices in GLn and consider

the restriction of the function GLn
pA- R+ to Tn for A ∈Mm

n , then

1. Any critical point of pA is a point where pA obtains its minimal value.

2. If pA obtains a minimal value, then

• the set V where pA obtains this minimum consists of a single K −StabT (A) coset in Tn
and is connected.

• the second order variation of pA at a point of V in any direction not tangent to V is
positive.

The same proof applies to all maximal tori T of GLn which are defined over R. Recall the
Cartan decomposition of GLn which we proved before theorem 2.4 : any g ∈ GLn can be written
as g = udu′ where u, u′ ∈ Un and d is a diagonal matrix with positive real entries. Using this fact
we can now extend the above proposition to GLn.

Theorem 2.10 Consider the function GLn
pA- R+ for A ∈Mm

n .

1. Any critical point of pA is a point where pA obtains its minimal value.

2. If pA obtains its minimal value, it does so on a single Un − Stab(A)-coset.

Proof. (1) : Because for any h ∈ GLn we have that ph.A(g) = pA(gh) we may assume that
rr
n is the critical point of pA. We have to prove that pA(g) ≥ pA(rrn) for all g ∈ GLn. By the

Cartan decomposition g = udu′ whence g = u”t where u” = uu′ ∈ Un and t = u′−1du′ ∈ T a
maximal torus of GLn defined over R. Because the Hermitian inproduct is invariant under Un we
have that pA(g) = pA(t). Because rr

n is a critical point for the restriction of pA to T we have by
proposition 2.15 that pA(t) ≥ pA(rrn), proving the claim.

(2) : Because for any h ∈ GLn, ph.A(g) = pA(gh) and Stab(h.A) = hStab(A)h−1 we may
assume that pA obtains its minimal value at rr

n. If V denotes the subset of GLn where pA obtains
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its minimal value we then have that UnStab(A) ⊂ V and we have to prove the reverse inclusion.
Assume g ∈ V and write as before g = u”t with u” ∈ Un and t ∈ T a maximal torus defined over
R. Then, by unitary invariance of the inproduct, t is a point of T where the restriction of pA to
T obtains its minimal value pA(rrn). By proposition 2.15 we conclude that t ∈ KTStabT (A) where
KT = Un ∩ T . But then,

V ⊂ Un(
[
T

KTStabT (A)) ⊂ UnStab(A)

where T runs over all maximal tori of GLn which are defined over R, finishing the proof. �

Proposition 2.16 The function pA : GLn - R+ obtains a minimal value if and only if O(A)
is a closed orbit in Mm

n , that is, determines a semi-simple representation.

Proof. If O(A) is closed then pA clearly obtains a minimal value. Conversely, assume that O(A)
is not closed, that is, A does not determine a semi-simple n-dimensional representation M of
C〈x1, . . . , xm〉. By choosing a basis in M (that is, possibly going to another point in the orbit

O(A)) we have a one-parameter subgroup C∗ ⊂ λ- Tn ⊂ - GLn corresponding to the Jordan-
Hölder filtration of M with lim

t→0
λ(t)A = B with B corresponding to the semi-simplification of M .

Now consider the restriction of p′A to U1\C∗ ' R, then as before we can write it uniquely in the
form

p′A(x) =
X
i

aie
lix ai > 0, l1 < l2 < . . . < lz

for some real numbers li and some z. Because the above limit exists, the limit

lim
x→−∞

p′A(x) ∈ R

and hence none of the li are negative. Further, because O(A) 6= O(B) at least one of the li must
be positive. Therefore, p′A is a strictly increasing function on R whence never obtains a minimal
value, whence neither does pA. �

Finally, we have to clarify the connection between the function pA and the real moment map(
Mm
n

µ- (Lie Un)∗ A - (h 7→ (h.A,A))

Mn
n

µR- Lie Un A - i[A,A∗]

Assume A ∈Mm
n is such that pA has a critical point, which we may assume to be rr

n by an argument
as in the proof of theorem 2.10. Then, the differential in rr

n

(dpA)rr
n

: Mn = Trr
n
GLn - R satisfies (dpA)rr

n
(h) = 0 ∀h ∈Mn
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Let us work out this differential

pA(rrn) + ε(dpA)rr
n
(h) = tr((A∗ + ε(A∗h∗ − h∗A∗)(A+ ε(hA−Ah))

= tr(A∗A) + εtr(A∗hA−A∗Ah+A∗h∗A− h∗A∗A)

= tr(A∗A) + εtr((AA∗ −A∗A)(h− h∗))

But then, vanishing of the differential for all h ∈ Mn is equivalent by the nondegeneracy of the
Killing form on Lie Un to

AA∗ −A∗A =

mX
i=1

AiA
∗
i −A∗iAi = 0

that is, to A ∈ µ−1
R (0). This concludes the proof of the main result on the real moment map for

Mm
n .

Theorem 2.11 There are natural one-to-one correspondences between

1. isomorphism classes of semi-simple n-dimensional representations of C〈x1, . . . , xm〉,

2. closed GLn-orbits in Mm
n ,

3. Un-orbits in the subset µ−1
R (0) = {A ∈Mm

n |
Pm
i=1[Ai, A

∗
i ] = 0}.

Let A ∈ alg@n be an affine Cayley-Hamilton algebra of degree n, then we can embed the reduced
variety of trepn A in Mm

n and obtain as a consequence :

Theorem 2.12 For A ∈ alg@n, there are natural one-to-one correspondences between

1. isomorphism classes of semi-simple n-dimensional trace preserving representations of A,

2. closed GLn-orbits in the representation variety trepn A,

3. Un-orbits in the intersection trepn A ∩ µ
−1
R (0).
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3 — Etale Technology

Etale topology was introduced in algebraic geometry to bypass the coarseness of the Zariski topology
in classification problems. Let us give an elementary example : the local classification of smooth
varieties in the Zariski topology is a hopeless task, whereas in the étale topology there is just one
local type of smooth variety in each dimension d, namely affine d-space Ad. A major theme of this
book is to generalize this result to noncommutative geometry@n.

Etale cohomology groups are used to classify central simple algebras over function fields of
varieties. Orders in such central simple algebras (over the central structure sheaf) are an important
class of Cayley-Hamilton algebras.

Over the years, one has tried to construct a suitable class of smooth orders which allows an étale
local description. But, except in the case of curves and surfaces, no such classification is known
say for orders of finite global dimension. In this book we introduce the class of Cayley-smooth
orders which does allow an étale local description in arbitrary dimensions. In this chapter we will
lay the foundations for this classification by investigating étale slices of representation varieties
in semi-simple representations. In the next chapter we will then show that this local structure is
determined by a combinatorial gadget : a quiver setting.

3.1 Etale topology

A closed subvariety X ⊂ - Cm can be equipped with the Zariski topology or with the much finer
analytic topology . A major disadvantage of the coarseness of the Zariski topology is the failure
to have an implicit function theorem in algebraic geometry. Etale morphisms are introduced to
bypass this problem.

We will define étale morphisms which determine the étale topology . This is no longer a usual
topology determined by subsets, but rather a Grothendieck topology determined by covers .

Definition 3.1 A finite morphism A
f- B of commutative C-algebras is said to be étale if and

only if B = A[t1, . . . , tk]/(f1, . . . , fk) such that the Jacobian matrix2664
∂f1
∂t1

. . . ∂f1
∂tk

...
...

∂fk
∂t1

. . . ∂fk
∂tk

3775
has a determinant which is a unit in B.
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Recall that by spec A we denote the prime ideal spectrum or the affine scheme of a commutative
C-algebra A (even when A is not affine as a C-algebra). That is, spec A is the set of all prime
ideals of A equipped with the Zariski topology , that is the open subset are of the form

X(I) = {P ∈ spec A | I 6⊂ P}

for some ideal I / A. If A is an affine C-algebra, the points of the corresponding affine variety
correspond to the maximal ideals of A and the induced Zariski topology coincides with the one
introduced before. In this chapter, however, not all C-algebras will be affine.

Example 3.1 Consider the morphism C[x, x−1] ⊂ - C[x, x−1][ n
√
x] and the induced map on the

affine schemes

spec C[x, x−1][ n
√
x]

ψ- spec C[x, x−1] = C− {0}.

Clearly, every point λ ∈ C−{0} has exactly n preimages λi = ζi n
√
λ. Moreover, in a neighborhood

of λi, the map ψ is a diffeomorphism. Still, we do not have an inverse map in algebraic geometry
as n
√
x is not a polynomial map. However, C[x, x−1][ n

√
x] is an étale extension of C[x, x−1]. In this

way étale morphisms can be seen as an algebraic substitute for the failure of an inverse function
theorem in algebraic geometry.

Proposition 3.1 Etale morphisms satisfy ’sorite’, that is, they satisfy the commutative diagrams of
figure 3.1. In these diagrams, et denotes an étale morphism, f.f. denotes a faithfully flat morphism
and the dashed arrow is the étale morphism implied by ’sorite’.

With these properties we can define a Grothendieck topology on the collection of all étale
morphisms.

Definition 3.2 The étale site of A, which we will denote by Aet is the category with

• objects : the étale extensions A
f- B of A

• morphisms : compatible A-algebra morphisms

A

B1
φ -

�

f 1

B2

f
2

-

By proposition 3.1 all morphisms in Aet are étale. We can turn Aet into a Grothendieck topology by
defining
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A′ ...........
et
- A′ ⊗A B

A

6

et - B

6

B

A .................................................
et

-

et

-

C

et

-

(basechange) (composition)

A′
et- A′ ⊗A B

A

f.f.

6

...................
et

- B

6

A

B .................................................
et

A−alg
-

�

et

B′

et

-

(descent) (morphisms)

Figure 3.1: Sorite for étale morphisms

• cover : a collection C = {B fi- Bi} in Aet such that

spec B = ∪i Im (spec Bi
f- spec B )

Definition 3.3 An étale presheaf of groups on Aet is a functor

G : Aet - groups

In analogy with usual (pre)sheaf notation we denote for each

• object B ∈ Aet the global sections Γ(B,G) = G(B)

• morphism B
φ- C in Aet the restriction map ResBC = G(φ) : G(B) - G(C) and

g | C = G(φ)(g).

An étale presheaf G is an étale sheaf provided for every B ∈ Aet and every cover {B - Bi} we
have exactness of the equalizer diagram

0 - G(B) -
Y
i

G(Bi)
--

Y
i,j

G(Bi ⊗B Bj)
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Example 3.2 (Constant sheaf ) If G is a group, then

G : Aet - groups B 7→ G⊕π0(B)

is a sheaf where π0(B) is the number of connected components of spec B.

Example 3.3 (Multiplicative group Gm ) The functor

Gm : Aet - groups B 7→ B∗

is a sheaf on Aet.

A sequence of sheaves of Abelian groups on Aet is said to be exact

G′ f- G g- G”

if for every B ∈ Aet and s ∈ G(B) such that g(s) = 0 ∈ G”(B) there is a cover {B - Bi} in Aet
and sections ti ∈ G′(Bi) such that f(ti) = s | Bi.

Example 3.4 (Roots of unity µn) We have a sheaf morphism

Gm
(−)n

- Gm

and we denote the kernel with µn. As A is a C-algebra we can identify µn with the constant sheaf
Zn = Z/nZ via the isomorphism ζi 7→ i after choosing a primitive n-th root of unity ζ ∈ C.

Lemma 3.1 The Kummer sequence of sheaves of Abelian groups

0 - µn - Gm
(−)n

- Gm
- 0

is exact on Aet (but not necessarily on spec A with the Zariski topology).

Proof. We only need to verify surjectivity. Let B ∈ Aet and b ∈ Gm(B) = B∗. Consider the
étale extension B′ = B[t]/(tn− b) of B, then b has an n-th root over in Gm(B′). Observe that this
n-th root does not have to belong to Gm(B). �

If p is a prime ideal of A we will denote with kp the algebraic closure of the field of fractions of
A/p. An étale neighborhood of p is an étale extension B ∈ Aet such that the diagram below is
commutative

A
nat - kp

B

et

?

-
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The analogue of the localization Ap for the étale topology is the strict Henselization

Ashp = lim- B

where the limit is taken over all étale neighborhoods of p.
Recall that a local algebra L with maximal ideal m and residue map π : L -- L/m = k is said

to be Henselian if the following condition holds. Let f ∈ L[t] be a monic polynomial such that
π(f) factors as g0.h0 in k[t], then f factors as g.h with π(g) = g0 and π(h) = h0. If L is Henselian
then tensoring with k induces an equivalence of categories between the étale A-algebras and the
étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if its residue field is
algebraically closed. Thus, a strict Henselian ring has no proper finite étale extensions and can be
viewed as a local algebra for the étale topology.

Example 3.5 (The algebraic functions C{x1, . . . , xd}) Consider the local algebra of
C[x1, . . . , xd] in the maximal ideal (x1, . . . , xd), then the Henselization and strict Henseliza-
tion are both equal to

C{x1, . . . , xd}

the ring of algebraic functions . That is, the subalgebra of C[[x1, . . . , xd]] of formal power-
series consisting of those series φ(x1, . . . , xd) which are algebraically dependent on the coordi-
nate functions xi over C. In other words, those φ for which there exists a non-zero polynomial
f(xi, y) ∈ C[x1, . . . , xd, y] with f(x1, . . . , xd, φ(x1, . . . , xd)) = 0.

These algebraic functions may be defined implicitly by polynomial equations. Consider a system
of equations

fi(x1, . . . , xd; y1, . . . , ym) = 0 for fi ∈ C[xi, yj ] and 1 ≤ i ≤ m

Suppose there is a solution in C with

xi = 0 and yj = yoj

such that the Jacobian matrix is non-zero

det (
∂fi
∂yj

(0, . . . , 0; yo1 , . . . , y
0
m)) 6= 0

Then, the system can be solved uniquely for power series yj(x1, . . . , xd) with yj(0, . . . , 0) = yoj by
solving inductively for the coefficients of the series. One can show that such implicitly defined series
yj(x1, . . . , xd) are algebraic functions and that, conversely, any algebraic function can be obtained
in this way.

If G is a sheaf on Aet and p is a prime ideal of A, we define the stalk of G in p to be

Gp = lim- G(B)
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where the limit is taken over all étale neighborhoods of p. One can verify mono- epi- or isomor-
phisms of sheaves by checking it in all the stalks.

If A is an affine algebra defined over an algebraically closed field, then it suffices to verify it in
the maximal ideals of A.

Before we define cohomology of sheaves on Aet let us recall the definition of derived functors .
Let A be an Abelian category . An object I of A is said to be injective if the functor

A - abelian M 7→ HomA(M, I)

is exact. We say that A has enough injectives if, for every object M in A, there is a monomorphism
M ⊂ - I into an injective object.

If A has enough injectives and f : A - B is a left exact functor from A into a second Abelian
category B, then there is an essentially unique sequence of functors

Ri f : A - B i ≥ 0

called the right derived functors of f satisfying the following properties

• R0 f = f

• Ri I = 0 for I injective and i > 0

• For every short exact sequence in A

0 - M ′ - M - M” - 0

there are connecting morphisms δi : Ri f(M”) - Ri+1 f(M ′) for i ≥ 0 such that we have
a long exact sequence

. . . - Ri f(M) - Ri f(M”)
δi
- Ri+1 f(M ′) - Ri+1 f(M) - . . .

• For any morphism M - N there are morphisms Ri f(M) - Ri f(N) for i ≥ 0

In order to compute the objects Ri f(M) define an object N in A to be f -acyclic if Ri f(M) = 0
for all i > 0. If we have an acyclic resolution of M

0 - M - N0
- N1

- N2
- . . .

by f -acyclic object Ni, then the objects Ri f(M) are canonically isomorphic to the cohomology
objects of the complex

0 - f(N0) - f(N1) - f(N2) - . . .

One can show that all injectives are f -acyclic and hence that derived objects of M can be computed
from an injective resolution of M .
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Now, let Sab(Aet) be the category of all sheaves of Abelian groups on Aet. This is an Abelian
category having enough injectives whence we can form right derived functors of left exact functors.
In particular, consider the global section functor

Γ : Sab(Aet) - abelian G 7→ G(A)

which is left exact. The right derived functors of Γ will be called the étale cohomology functors
and we denote

Ri Γ(G) = Hi
et(A,G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 - G′ - G - G” - 0, then we have a long exact cohomology sequence

. . . - Hi
et(A,G) - Hi

et(A,G”) - Hi+1
et (A,G′) - . . .

If G is a sheaf of non-Abelian groups (written multiplicatively), we cannot define cohomology
groups. Still, one can define a pointed setH1

et(A,G) as follows. Take an étale cover C = {A - Ai}
of A and define a 1-cocycle for C with values in G to be a family

gij ∈ G(Aij) with Aij = Ai ⊗A Aj

satisfying the cocycle condition

(gij | Aijk)(gjk | Aijk) = (gik | Aijk)

where Aijk = Ai ⊗A Aj ⊗A Ak.
Two cocycles g and g′ for C are said to be cohomologous if there is a family hi ∈ G(Ai) such

that for all i, j ∈ I we have
g′ij = (hi | Aij)gij(hj | Aij)−1

This is an equivalence relation and the set of cohomology classes is written as H1
et(C,G). It is a

pointed set having as its distinguished element the cohomology class of gij = 1 ∈ G(Aij) for all
i, j ∈ I.

We then define the non-Abelian first cohomology pointed set as

H1
et(A,G) = lim- H1

et(C,G)

where the limit is taken over all étale coverings of A. It coincides with the previous definition in
case G is Abelian.

A sequence 1 - G′ - G - G” - 1 of sheaves of groups on Aet is said to be exact if
for every B ∈ Aet we have

• G′(B) = Ker G(B) - G”(B)

• For every g” ∈ G”(B) there is a cover {B - Bi} in Aet and sections gi ∈ G(Bi) such that
gi maps to g” | B.
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Proposition 3.2 For an exact sequence of groups on Aet

1 - G′ - G - G” - 1

there is associated an exact sequence of pointed sets

1 - G′(A) - G(A) - G”(A)
δ- H1

et(A,G′) -

- H1
et(A,G) - H1

et(A,G”) ........- H2
et(A,G′)

where the last map exists when G′ is contained in the center of G (and therefore is Abelian whence
H2 is defined).

Proof. The connecting map δ is defined as follows. Let g” ∈ G”(A) and let C = {A - Ai}
be an étale covering of A such that there are gi ∈ G(Ai) that map to g | Ai under the map
G(Ai) - G”(Ai). Then, δ(g) is the class determined by the one cocycle

gij = (gi | Aij)−1(gj | Aij)

with values in G′. The last map can be defined in a similar manner, the other maps are natural
and one verifies exactness. �

The main applications of this non-Abelian cohomology to non-commutative algebra is as follows.
Let Λ be a not necessarily commutative A-algebra and M an A-module. Consider the sheaves of
groups Aut(Λ) resp. Aut(M) on Aet associated to the presheaves

B 7→ AutB−alg(Λ⊗A B) resp. B 7→ AutB−mod(M ⊗A B)

for all B ∈ Aet. A twisted form of Λ (resp. M) is an A-algebra Λ′ (resp. an A-module M ′) such
that there is an étale cover C = {A - Ai} of A such that there are isomorphisms(

Λ⊗A Ai
φi- Λ′ ⊗A Ai

M ⊗A Ai
ψi- M ′ ⊗A Ai

of Ai-algebras (resp. Ai-modules). The set of A-algebra isomorphism classes (resp. A-module
isomorphism classes) of twisted forms of Λ (resp. M) is denoted by TwA(Λ) (resp. TwA(M)). To
a twisted form Λ′ one associates a cocycle on C

αΛ′ = αij = φ−1
i ◦ φj

with values in Aut(Λ). Moreover, one verifies that two twisted forms are isomorphic as A-algebras
if their cocycles are cohomologous. That is, there are embeddings(

TwA(Λ) ⊂ - H1
et(A, Aut(Λ))

TwA(M) ⊂ - H1
et(A, Aut(M))
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In favorable situations one can even show bijectivity. In particular, this is the case if the automor-
phisms group is a smooth affine algebraic group-scheme.

Example 3.6 (Azumaya algebras) Consider Λ = Mn(A), then the automorphism group is PGLn
and twisted forms of Λ are classified by elements of the cohomology group

H1
et(A, PGLn)

These twisted forms are precisely the Azumaya algebras of rank n2 with center A. When A is an
affine commutative C-algebra and Λ is an A-algebra with center A, then Λ is an Azumaya algebra
of rank n2 if and only if

Λ

ΛmΛ
'Mn(C)

for every maximal ideal m of A.

Azumaya algebras arise in representation theory as follows. Let A be this time a noncommutative
affine C-algebra and assume that the following two conditions are satisfied

• A has a simple representation of dimension n,

• repn A is an irreducible variety.

Then
H
n
A = C[repn A]GLn is a domain (whence issn A is irreducible) and we have an onto trace

preserving algebra map corresponding to the simple representationZ
n

A = Mn(C[repnA])GLn φ-- Mn(C)

Lift the standard basis eij of Mn(C) to elements aij ∈
R
n
A and consider the determinant d of the

n2×n2 matrix (tr(aijakl))ij,kl with values in
H
n
A. Then d 6= 0 and consider the Zariski open affine

subset of issn A

X(d) = {
Z
n

A
ψ- Mn(C) | ψ semisimple and det(tr(ψ(aij)ψ(akl))) 6= 0}

If ψ ∈ X(d), then ψ :
R
n
A - Mn(C) is onto as the ψ(aij) form a basis of Mn(C) whence ψ

determines a simple n-dimensional representation.

Proposition 3.3 With notations as above,

1. The localization of
R
n
A at the central multiplicative set {1, d, d2, . . .} is an affine Azumaya

algebra with center C[X(d)] which is the localization of
H
n
A at this multiplicative set.
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2. The restriction of the quotient map repn A
π-- issn A to the open set π−1(X(d)) is a

principal PGLn-fibration and determines an element in

H1
et(C[X(d)], PGLn)

giving the class of the Azumaya algebra.

Proof. (1) : If m = Ker ψ is the maximal ideal of C[X(d)] corresponding to the semisimple
representation ψ :

R
n
A - Mn(C), then we have seen that the quotientR

n
AR

n
Am

R
n
A
'Mn(C)

whence
R
n
A ⊗H

n A
C[X(d)] is an Azumaya algebra. (2) will follow from the theory of Knop-Luna

slices and will be proved in chapter 5. �

An Azumaya algebra over a field is a central simple algebra. Under the above conditions we
have that Z

n

A⊗H
n A

C(issn A)

is a central simple algebra over the functionfield of issn A and hence determines a class in its
Brauer group, which is an important birational invariant. In the following section we recall the
cohomological description of Brauer groups of fields.

3.2 Central simple algebras

Let K be a field of characteristic zero, choose an algebraic closure K with absolute Galois group
GK = Gal(K/K).

Lemma 3.2 The following are equivalent

1. K - A is étale

2. A⊗K K ' K× . . .×K

3. A =
Q
Li where Li/K is a finite field extension

Proof. Assume (1), then A = K[x1, . . . , xn]/(f1, . . . , fn) where fi have invertible Jacobian matrix.
Then A⊗K is a smooth commutative algebra (hence reduced) of dimension 0 so (2) holds.

Assume (2), then
HomK−alg(A,K) ' HomK−alg(A⊗K,K)



3.2. Central simple algebras 121

has dimK(A⊗K) elements. On the other hand we have by the Chinese remainder theorem that

A/Jac A =
Y
i

Li

with Li a finite field extension of K. However,

dimK(A⊗K) =
X
i

dimK(Li) = dimK(A/Jac A) ≤ dimK(A)

and as both ends are equal A is reduced and hence A =
Q
i Li whence (3).

Assume (3), then each Li = K[xi]/(fi) with ∂fi/∂xi invertible in Li. But then A =
Q
Li is

étale over K whence (1). �

To every finite étale extension A =
Q
Li we can associate the finite set rts(A) =

HomK−alg(A,K) on which the Galois group GK acts via a finite quotient group. If we write
A = K[t]/(f), then rts(A) is the set of roots in K of the polynomial f with obvious action by GK .
Galois theory, in the interpretation of Grothendieck, can now be stated as

Proposition 3.4 The functor

Ket
rts(−)- finite GK − sets

is an anti-equivalence of categories.

We will now give a similar interpretation of the Abelian sheaves on Ket. Let G be a presheaf on
Ket. Define

MG = lim- G(L)

where the limit is taken over all subfields L ⊂ - K which are finite over K. The Galois group GK
acts on G(L) on the left through its action on L whenever L/K is Galois. Hence, GK acts an MG
and MG = ∪MH

G where H runs through the open subgroups (that is, containing a normal subgroup
having a finite quotient) of GK . That is, MG is a continuous GK-module .

Conversely, given a continuous GK-module M we can define a presheaf GM on Ket such that

• GM (L) = MH where H = GL = Gal(K/L).

• GM (
Q
Li) =

Q
GM (Li).

One verifies that GM is a sheaf of Abelian groups on Ket.

Theorem 3.1 There is an equivalence of categories

S(Ket)
-� GK − mod

induced by the correspondences G 7→ MG and M 7→ GM . Here, GK − mod is the category of
continuous GK-modules.



122 Etale Technology

Proof. A GK-morphism M - M ′ induces a morphism of sheaves GM
- GM′ . Conversely,

if H is an open subgroup of GK with L = KH , then if G φ- G′ is a sheafmorphism, φ(L) :
G(L) - G′(L) commutes with the action of GK by functoriality of φ. Therefore, lim- φ(L) is

a GK-morphism MG - MG′ .
One verifies easily that HomGK (M,M ′) - Hom(GM ,GM′) is an isomorphism and that the

canonical map G - GMG is an isomorphism. �

In particular, we have that G(K) = G(K)GK for every sheaf G of Abelian groups on Ket and
where G(K) = MG. Hence, the right derived functors of Γ and (−)G coincide for Abelian sheaves.

The category GK − mod of continuous GK-modules is Abelian having enough injectives. There-
fore, the left exact functor

(−)G : GK − mod - abelian

admits right derived functors. They are called the Galois cohomology groups and denoted

Ri MG = Hi(GK ,M)

Therefore, we have.

Proposition 3.5 For any sheaf of Abelian groups G on Ket we have a group isomorphism

Hi
et(K,G) ' Hi(GK ,G(K))

Therefore, étale cohomology is a natural extension of Galois cohomology to arbitrary commu-
tative algebras. The following definition-characterization of central simple algebras is classical, see
for example [66].

Proposition 3.6 Let A be a finite dimensional K-algebra. The following are equivalent :

1. A has no proper twosided ideals and the center of A is K.

2. AK = A⊗K K 'Mn(K) for some n.

3. AL = A⊗K L 'Mn(L) for some n and some finite Galois extension L/K.

4. A 'Mk(D) for some k where D is a division algebra of dimension l2 with center K.

The last part of this result suggests the following definition. Call two central simple algebras A
and A′ equivalent if and only if A 'Mk(∆) and A′ 'Ml(∆) with ∆ a division algebra. From the
second characterization it follows that the tensorproduct of two central simple K-algebras is again
central simple. Therefore, we can equip the set of equivalence classes of central simple algebras
with a product induced from the tensorproduct. This product has the class [K] as unit element and
[∆]−1 = [∆opp], the opposite algebra as ∆ ⊗K ∆opp ' EndK(∆) = Ml2(K). This group is called
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the Brauer group and is denoted Br(K). We will quickly recall its cohomological description, all
of which is classical.
GLr is an affine smooth algebraic group defined over K and is the automorphism group of a

vectorspace of dimension r. It defines a sheaf of groups on Ket that we will denote by GLr. Using
the fact that the first cohomology classifies twisted forms of vectorspaces of dimension r we have

Lemma 3.3
H1
et(K, GLr) = H1(GK , GLr(K)) = 0

In particular, we have ’Hilbert’s theorem 90’

H1
et(K,Gm) = H1(GK ,K∗) = 0

Proof. The cohomology group classifies K-module isomorphism classes of twisted forms of r-
dimensional vectorspaces over K. There is just one such class. �

PGLn is an affine smooth algebraic group defined over K and it is the automorphism group of
the K-algebra Mn(K). It defines a sheaf of groups on Ket denoted by PGLn. By proposition 3.6 we
know that any central simple K-algebra ∆ of dimension n2 is a twisted form of Mn(K). Therefore,

Lemma 3.4 The pointed set of K-algebra isomorphism classes of central simple algebras of dimen-
sion n2 over K coincides with the cohomology set

H1
et(K, PGLn) = H1(GK , PGLn(K))

Theorem 3.2 There is a natural inclusion

H1
et(K, PGLn) ⊂ - H2

et(K,µn) = Brn(K)

where Brn(K) is the n-torsion part of the Brauer group of K. Moreover,

Br(K) = H2
et(K,Gm)

is a torsion group.

Proof. Consider the exact commutative diagram of sheaves of groups on Ket of figure 3.2. Taking
cohomology of the second exact sequence we obtain

GLn(K)
det- K∗ - H1

et(K, SLn) - H1
et(K, GLn)

where the first map is surjective and the last term is zero, whence

H1
et(K, SLn) = 0
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1 1

1 - µn
?

- Gm

?
(−)n

- Gm
- 1

||

1 - SLn

?
- GLn

?
det- Gm

- 1

PGLn

?
= PGLn

?

1
?

1
?

Figure 3.2: Brauer group diagram.

Taking cohomology of the first vertical exact sequence we get

H1
et(K, SLn) - H1

et(K, PGLn) - H2
et(K,µn)

from which the first claim follows.
As for the second assertion, taking cohomology of the first exact sequence we get

H1
et(K,Gm) - H2

et(K,µn) - H2
et(K,Gm)

n.- H2
et(K,Gm)

By Hilbert 90, the first term vanishes and hence H2
et(K,µn) is equal to the n-torsion of the group

H2
et(K,Gm) = H2(GK ,K∗) = Br(K)

where the last equality follows from the crossed product result, see for example [66]. �
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Ep,q1 =
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Figure 3.3: level 1

So far, the field K was arbitrary. If K is of transcendence degree d, this will put restrictions
on the ’size’ of the Galois group GK . In particular this will enable us to show in section 3.4 that
Hi(GK , µn) = 0 for i > d. But first, we need to recall the definition of spectral sequences.

3.3 Spectral sequences

Let A,B and C be Abelian categories such that A and B have enough injectives and consider left
exact functors

A f- B g- C
Let the functors be such that f maps injectives of A to g-acyclic objects in B, that is Ri g(f I) = 0
for all i > 0. Then, there are connections between the objects

Rp g(Rq f(A)) and Rn gf(A)

for all objects A ∈ A. These connections can be summarized by giving a spectral sequence

Theorem 3.3 Let A,B, C be Abelian categories with A,B having enough injectives and left exact
functors

A f- B g- C
such that f takes injectives to g-acyclics.

Then, for any object A ∈ A there is a spectral sequence

Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A)
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Ep,q2 =
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Figure 3.4: level 2

In particular, there is an exact sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) - . . .

Moreover, if f is an exact functor, then we have

Rp gf(A) ' Rp g(f(A))

A spectral sequence Ep.q2 =⇒ En (or Ep,q1 =⇒ En) consists of the following data

1. A family of objects Ep,qr in an Abelian category for p, q, r ∈ Z such that p, q ≥ 0 and r ≥ 2
(or r ≥ 1).

2. A family of morphisms in the Abelian category

dp.qr : Ep.qr - Ep+r,q−r+1
r

satisfying the complex condition

dp+r,q−r+1
r ◦ dp,qr = 0

and where we assume that dp.qr = 0 if any of the numbers p, q, p + r or q − r + 1 is < 1. At
level one we have the situation of figure 3.3. At level two we have the situation of figure 3.4

3. The objects Ep,qr+1 on level r + 1 are derived from those on level r by taking the cohomology
objects of the complexes, that is,

Epr+1 = Ker dp,qr / Im dp−r,q+r−1
r
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At each place (p, q) this process converges as there is an integer r0 depending on (p, q) such
that for all r ≥ r0 we have dp.qr = 0 = dp−r,q+r−1

r . We then define

Ep,q∞ = Ep,qr0 (= Ep,qr0+1 = . . .)

Observe that there are injective maps E0,q
∞

⊂ - E0,q
2 .

4. A family of objects En for integers n ≥ 0 and for each we have a filtration

0 ⊂ Enn ⊂ Enn−1 ⊂ . . . ⊂ En1 ⊂ En0 = En

such that the successive quotients are given by

Enp / E
n
p+1 = Ep,n−p∞

That is, the terms Ep,q∞ are the composition terms of the limiting terms Ep+q. Pictorially,

Ep,q∞ =
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For small n one can make the relation between En and the terms Ep,q2 explicit. First note that

E0,0
2 = E0,0

∞ = E0

Also, E1
1 = E1,0

∞ = E1,0
2 and E1/E1

1 = E0,1
∞ = Ker d0,1

2 . This gives an exact sequence

0 - E1,0
2

- E1 - E0,1
2

d
0,1
2- E2,0

2

Further, E2 ⊃ E2
1 ⊃ E2

2 where
E2

2 = E2,0
∞ = E2,0

2 / Im d0,1
2
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and E2
1/E

2
2 = E1,1

∞ = Ker d1,1
2 whence we can extend the above sequence to

. . . - E0,1
2

d
0,1
2- E2,0

2
- E2

1
- E1,1

2

d
1,1
2- E3,0

2

as E2/E2
1 = E0,2

∞
⊂ - E0,2

2 we have that E2
1 = Ker (E2 - E0,2

2 ). If we specialize to the
spectral sequence Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A) we obtain the exact sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) -

- E2
1

- R1 g(R1 f(A)) - R3 g(f(A))

where E2
1 = Ker (R2 gf(A) - g(R2 f(A))).

An important example of a spectral sequence is the Leray spectral sequence . Assume we have

an algebra morphism A
f- A′ and a sheaf of groups G on A′et. We define the direct image of G

under f to be the sheaf of groups f∗ G on Aet defined by

f∗ G(B) = G(B ⊗A A′)

for all B ∈ Aet (recall that B ⊗A A′ ∈ A′et so the right hand side is well defined).
This gives us a left exact functor

f∗ : Sab(A′et) - Sab(Aet)

and therefore we have right derived functors of it Ri f∗. If G is an Abelian sheaf on A′et, then
Ri f∗G is a sheaf on Aet. One verifies that its stalk in a prime ideal p is equal to

(Ri f∗G)p = Hi
et(A

sh
p ⊗A A′,G)

where the right hand side is the direct limit of cohomology groups taken over all étale neighborhoods
of p. We can relate cohomology of G and f∗G by the following

Theorem 3.4 (Leray spectral sequence) If G is a sheaf of Abelian groups on A′et and A
f- A′

an algebra morphism, then there is a spectral sequence

Ep,q2 = Hp
et(A,R

q f∗G) =⇒ Hn
et(A,G)

In particular, if Rj f∗G = 0 for all j > 0, then for all i ≥ 0 we have isomorphisms

Hi
et(A, f∗G) ' Hi

et(A
′,G)
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3.4 Tsen and Tate fields

In this section we will use spectral sequences to control the size of the Brauer group of a function
field in terms of its transcendence degree.

Definition 3.4 A field K is said to be a Tsend-field if every homogeneous form of degree deg with
coefficients in K and n > degd variables has a non-trivial zero in K.

For example, an algebraically closed field K is a Tsen0-field as any form in n-variables defines a
hypersurface in Pn−1

K . In fact, algebraic geometry tells us a stronger story

Lemma 3.5 Let K be algebraically closed. If f1, . . . , fr are forms in n variables over K and n > r,
then these forms have a common non-trivial zero in K.

Proof. Each fi defines a hypersurface V (fi) ⊂ - Pn−1
K . The intersection of r hypersurfaces has

dimension ≥ n− 1− r from which the claim follows. �

We want to extend this fact to higher Tsen-fields. The proof of the following result is technical
unenlightening inequality manipulation, see for example [77].

Proposition 3.7 Let K be a Tsend-field and f1, . . . , fr forms in n variables of degree deg. If
n > rdegd, then they have a non-trivial common zero in K.

For our purposes the main interest in Tsen-fields comes from :

Theorem 3.5 Let K be of transcendence degree d over an algebraically closed field C, then K is a
Tsend-field.

Proof. First we claim that the purely transcendental field C(t1, . . . , td) is a Tsend-field. By
induction we have to show that if L is Tsenk, then L(t) is Tsenk+1.

By homogeneity we may assume that f(x1, . . . , xn) is a form of degree deg with coefficients in

L[t] and n > degk+1. For fixed s we introduce new variables y
(s)
ij with i ≤ n and 0 ≤ j ≤ s such

that
xi = y

(s)
i0 + y

(s)
i1 t+ . . .+ y

(s)
is t

s

If r is the maximal degree of the coefficients occurring in f , then we can write

f(xi) = f0(y
(s)
ij ) + f1(y

(s)
ij )t+ . . .+ fdeg.s+r(y

(s)
ij )tdeg.s+r

where each fj is a form of degree deg in n(s+ 1)-variables. By the proposition above, these forms
have a common zero in L provided

n(s+ 1) > degk(ds+ r + 1)⇐⇒ (n− degi+1)s > degi(r + 1)− n
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which can be satisfied by taking s large enough. the common non-trivial zero in L of the fj , gives
a non-trivial zero of f in L[t].

By assumption, K is an algebraic extension of C(t1, . . . , td) which by the above argument is
Tsend. As the coefficients of any form over K lie in a finite extension E of C(t1, . . . , td) it suffices
to prove that E is Tsend.

Let f(x1, . . . , xn) be a form of degree deg in E with n > degd. Introduce new variables yij with

xi = yi1e1 + . . . yikek

where ei is a basis of E over C(t1, . . . , td). Then,

f(xi) = f1(yij)e1 + . . .+ fk(yij)ek

where the fi are forms of degree deg in k.n variables over C(t1, . . . , td). Because C(t1, . . . , td) is
Tsend, these forms have a common zero as k.n > k.degd. Finding a non-trivial zero of f in E is
equivalent to finding a common non-trivial zero to the f1, . . . , fk in C(t1, . . . , td), done. �

A direct application of this result is Tsen’s theorem :

Theorem 3.6 Let K be the functionfield of a curve C defined over an algebraically closed field.
Then, the only central simple K-algebras are Mn(K). That is, Br(K) = 1.

Proof. Assume there exists a central division algebra ∆ of dimension n2 over K. There is a finite
Galois extension L/K such that ∆⊗L = Mn(L). If x1, . . . , xn2 is a K-basis for ∆, then the reduced
norm of any x ∈ ∆,

N(x) = det(x⊗ 1)

is a form in n2 variables of degree n. Moreover, as x⊗ 1 is invariant under the action of Gal(L/K)
the coefficients of this form actually lie in K.

By the main result, K is a Tsen1-field and N(x) has a non-trivial zero whenever n2 > n. As
the reduced norm is multiplicative, this contradicts N(x)N(x−1) = 1. Hence, n = 1 and the only
central division algebra is K itself. �

If K is the functionfield of a surface, we also have an immediate application :

Proposition 3.8 Let K be the functionfield of a surface defined over an algebraically closed field.
If ∆ is a central simple K-algebra of dimension n2, then the reduced norm map

N : ∆ - K

is surjective.
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Proof. Let e1, . . . , en2 be a K-basis of ∆ and k ∈ K, then

N(
X

xiei)− kxnn2+1

is a form of degree n in n2 +1 variables. Since K is a Tsen2 field, it has a non-trivial solution (x0
i ),

but then, δ = (
P
x0
i ei)x

−1
n2+1

has reduced norm equal to k. �

From the cohomological description of the Brauer group it is clear that we need to have some
control on the absolute Galois group GK = Gal(K/K). We will see that finite transcendence degree
forces some cohomology groups to vanish.

Definition 3.5 The cohomological dimension of a group G, cd(G) ≤ d if and only if Hr(G,A) = 0
for all r > d and all torsion modules A ∈ G-mod.

Definition 3.6 A field K is said to be a Tated-field if the absolute Galois group GK = Gal(K/K)
satisfies cd(G) ≤ d.

First, we will reduce the condition cd(G) ≤ d to a more manageable one. To start, one can show
that a profinite group G (that is, a projective limit of finite groups, see [77] for more details) has
cd(G) ≤ d if and only if

Hd+1(G,A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we can decompose the
cohomology in its p-primary parts and relate their vanishing to the cohomological dimension of
the p-Sylow subgroups Gp of G. This problem can then be verified by computing cohomology of
finite simple Gp-modules of p-power order, but for a profinite p-group there is just one such module
namely Z/pZ with the trivial action.

Combining these facts we have the following manageable criterium on cohomological dimension.

Proposition 3.9 cd(G) ≤ d if Hd+1(G,Z/pZ) = 0 for the simple G-modules with trivial action
Z/pZ.

We will need the following spectral sequence in Galois cohomology

Proposition 3.10 (Hochschild-Serre spectral sequence) If N is a closed normal subgroup of a profi-
nite group G, then

Ep,q2 = Hp(G/N,Hq(N,A)) =⇒ Hn(G,A)

holds for every continuous G-module A.

Now, we are in a position to state and prove Tate’s theorem
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Theorem 3.7 Let K be of transcendence degree d over an algebraically closed field, then K is a
Tated-field.

Proof. Let C denote the algebraically closed basefield, then K is algebraic over C(t1, . . . , td) and
therefore

GK ⊂ - GC(t1,...,td)

Thus, K is Tated if C(t1, . . . , td) is Tated. By induction it suffices to prove

If cd(GL) ≤ k then cd(GL(t)) ≤ k + 1

Let L be the algebraic closure of L and M the algebraic closure of L(t). As L(t) and L are linearly
disjoint over L we have the following diagram of extensions and Galois groups

L ⊂ - L(t) ⊂
GL(t)- M

L

GL

∪

6

⊂ - L(t)

GL

∪

6

⊂

G L
(t
)

-

where GL(t)/GL(t) ' GL.
We claim that cd(GL(t)) ≤ 1. Consider the exact sequence of GL(t)-modules

0 - µp - M∗ (−)p
- M∗ - 0

where µp is the subgroup (of C∗) of p-roots of unity. As GL(t) acts trivially on µp it is after a choice
of primitive p-th root of one isomorphic to Z/pZ. Taking cohomology with respect to the subgroup
GL(t) we obtain

0 = H1(GL(t),M∗) - H2(GL(t),Z/pZ) - H2(GL(t),M∗) = Br(L(t))

But the last term vanishes by Tsen’s theorem as L(t) is the functionfield of a curve defined over the
algebraically closed field L. Therefore, H2(GL(t),Z/pZ) = 0 for all simple modules Z/pZ, whence
cd(GL(t)) ≤ 1.

By the inductive assumption we have cd(GL) ≤ k and now we are going to use exactness of the
sequence

0 - GL - GL(t)
- GL(t)

- 0

to prove that cd(GL(t)) ≤ k+1. For, let A be a torsion GL(t)-module and consider the Hochschild-
Serre spectral sequence

Ep,q2 = Hp(GL, H
q(GL(t), A)) =⇒ Hn(GL(t), A)
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By the restrictions on the cohomological dimensions of GL and GL(t) the level two term has following
shape

Ep,q2 =
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q

k k + 1 k + 2
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where the only non-zero groups are lying in the lower rectangular region. Therefore, all Ep,q∞ = 0
for p + q > k + 1. Now, all the composition factors of Hk+2(GL(t), A) are lying on the indicated

diagonal line and hence are zero. Thus, Hk+2(GL(t), A) = 0 for all torsion GL(t)-modules A and
hence cd(GL(t)) ≤ k + 1. �

Theorem 3.8 If A is a constant sheaf of an Abelian torsion group A on Ket, then

Hi
et(K,A) = 0

whenever i > trdegC(K).

3.5 Coniveau spectral sequence

In this section we will describe a particularly useful spectral sequence. Consider the setting

k ��π A ⊂ i- K where A is a discrete valuation ring in K with residue field A/m = k. As
always, we will assume that A is a C-algebra. By now we have a grip on the Galois cohomology
groups

Hi
et(K,µ

⊗l
n ) and Hi

et(k, µ
⊗l
n )

and we will use this information to compute the étale cohomology groups

Hi
et(A,µ

⊗l
n )

Here, µ⊗ln = µn ⊗ . . .⊗ µn| {z }
l

where the tensorproduct is as sheafs of invertible Zn = Z/nZ-modules.

We will consider the Leray spectral sequence for i and hence have to compute the derived sheaves
of the direct image
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0 0 0 . . .

H0(k, µ⊗l−1
n ) H1(k, µ⊗l−1

n ) H2(k, µ⊗l−1
n ) . . .

H0(A,µ⊗ln ) H1(A,µ⊗ln ) H2(A,µ⊗ln ) . . .

Figure 3.5: Second term of Leray sequence

Lemma 3.6 1. R0 i∗µ
⊗l
n ' µ⊗ln on Aet.

2. R1 i∗µ
⊗l
n ' µ⊗l−1

n concentrated in m.

3. Rj i∗µ
⊗l
n ' 0 whenever j ≥ 2.

Proof. The strict Henselizations of A at the two primes {0,m} are resp.

Ash0 ' K and Ashm ' k{t}

where K (resp. k) is the algebraic closure of K (resp. k). Therefore,

(Rj i∗µ
⊗l
n )0 = Hj

et(K, µ
⊗l
n )

which is zero for i ≥ 1 and µ⊗ln for j = 0. Further, Ashm ⊗A K is the field of fractions of k{t} and
hence is of transcendence degree one over the algebraically closed field k, whence

(Rj i∗µ
⊗l
n )m = Hj

et(L, µ
⊗l
n )

which is zero for j ≥ 2 because L is Tate1.

For the field-tower K ⊂ L ⊂ K we have that GL = Ẑ = lim� µm because the only Galois

extensions of L are the Kummer extensions obtained by adjoining m
√
t. But then,

H1
et(L, µ

⊗l
n ) = H1(Ẑ, µ⊗ln (K)) = Hom(Ẑ, µ⊗ln (K)) = µ⊗l−1

n

from which the claims follow. �
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Theorem 3.9 We have a long exact sequence

0 - H1(A,µ⊗ln ) - H1(K,µ⊗ln ) - H0(k, µ⊗l−1
n ) -

H2(A,µ⊗ln ) - H2(K,µ⊗ln ) - H1(k, µ⊗l−1
n ) - . . .

Proof. By the foregoing lemma, the second term of the Leray spectral sequence for i∗µ
⊗l
n is depicted

in figure 3.5 with connecting morphisms

Hi−1
et (k, µ⊗l−1

n )
αi- Hi+1

et (A,µ⊗ln )

The spectral sequences converges to its limiting term which looks like

0 0 0 . . .

Ker α1 Ker α2 Ker α3 . . .

H0(A,µ⊗ln ) H1(A,µ⊗ln ) Coker α1 . . .

and the Leray sequence gives the short exact sequences

0 - H1
et(A,µ

⊗l
n ) - H1

et(K,µ
⊗l
n ) - Ker α1

- 0

0 - Coker α1
- H2

et(K,µ
⊗l
n ) - Ker α2

- 0

0 - Coker αi−1
- Hi

et(K,µ
⊗l
n ) - Ker αi - 0

and gluing these sequences gives us the required result. �

In particular, if A is a discrete valuation ring of K with residue field k we have for each i a
connecting morphism

Hi
et(K,µ

⊗l
n )

∂i,A- Hi−1
et (k, µ⊗l−1

n )

Like any other topology, the étale topology can be defined locally on any scheme X. That is,
we call a morphism of schemes

Y
f- X
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an étale extension (resp. cover) if locally f has the form

fa | Ui : Ai = Γ(Ui,OX) - Bi = Γ(f−1(Ui),OY )

with Ai - Bi an étale extension (resp. cover) of algebras.
Again, we can construct the étale site of X locally and denote it with Xet. Presheaves and

sheaves of groups on Xet are defined similarly and the right derived functors of the left exact global
sections functor

Γ : Sab(Xet) - abelian

will be called the cohomology functors and we denote

Ri Γ(G) = Hi
et(X,G)

From now on we restrict to the case when X is a smooth, irreducible projective variety of
dimension d over C. In this case, we can initiate the computation of the cohomology groups
Hi
et(X,µ

⊗l
n ) via Galois cohomology of functionfields of subvarieties using the coniveau spectral

sequence

Theorem 3.10 Let X be a smooth irreducible variety over C. Let X(p) denote the set of irreducible
subvarieties x of X of codimension p with functionfield C(x), then there exists a coniveau spectral
sequence

Ep.q1 =
M

x∈X(p)

Hq−p
et (C(x), µ⊗l−pn ) =⇒ Hp+q

et (X,µ⊗ln )

In contrast to the spectral sequences used before, the existence of the coniveau spectral sequence
by no means follows from general principles. In it, a lot of heavy machinery on étale cohomology
of schemes is encoded. In particular,

• cohomology groups with support of a closed subscheme, see for example [64, p. 91-94], and

• cohomological purity and duality, see [64, p. 241-252]

a detailed exposition of which would take us too far afield. For more details we refer the reader to
[18].

Using the results on cohomological dimension and vanishing of Galois cohomology of µ⊗kn when
the index is larger than the transcendence degree, we see that the coniveau spectral sequence has
shape as in figure 3.6 where the only non-zero terms are in the indicated region.

Let us understand the connecting morphisms at the first level, a typical instance of which isM
x∈X(p)

Hi(C(x), µ⊕l−pn ) -
M

y∈X(p+1)

Hi−1(C(y), µ⊕l−p−1
n )
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Ep,q1 =
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Figure 3.6: Coniveau spectral sequence

and consider one of the closed irreducible subvarieties x of X of codimension p and one of those y
of codimension p+ 1. Then, either y is not contained in x in which case the component map

Hi(C(x), µ⊕l−pn ) - Hi−1(C(y), µ⊕l−p−1
n )

is the zero map. Or, y is contained in x and hence defines a codimension one subvariety of x. That
is, y defines a discrete valuation on C(x) with residue field C(y). In this case, the above component
map is the connecting morphism defined above.

In particular, let K be the functionfield of X. Then we can define the unramified cohomology
groups

F i,ln (K/C) = Ker Hi(K,µ⊗ln )
⊕∂i,A- ⊕Hi−1(kA, µ

⊗l−1
n )

where the sum is taken over all discrete valuation rings A of K (or equivalently, the irreducible
codimension one subvarieties of X) with residue field kA. By definition, this is a (stable) birational
invariant of X. In particular, if X is (stably) rational over C, then

F i,ln (K/C) = 0 for all i, l ≥ 0

3.6 The Artin-Mumford exact sequence

The coniveau spectral sequence allows us to control the Brauer group of function fields of surfaces.
This result, due to Michael Artin and David Mumford, was used by them to construct unirational
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µn 0 0 0

0 0

0

00 0 0

H1(C(S), µn) ⊕C Zn

H2(C(S), µn) ⊕P µ−1
n⊕C H1(C(S), Zn)

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

Figure 3.7: First term of coniveau spectral sequence for S

non-rational varieties. Our main application of the description is to classify in chapter 5 the
Brauer classes which do admit a Cayley-smooth noncommutative model. It will turn out that
even in the case of surfaces, not every central simple algebra over the function field allows such a
noncommutative model. Let S be a smooth irreducible projective surface.

Definition 3.7 S is called simply connected if every étale cover Y - S is trivial, that is, Y
is isomorphic to a finite disjoint union of copies of S.

The first term of the coniveau spectral sequence of S has the shape of figure 3.7 where C runs
over all irreducible curves on S and P over all points of S.

Lemma 3.7 For any smooth S we have H1(C(S), µn) -- ⊕C Zn. If S is simply connected,
H1
et(S, µn) = 0.

Proof. Using the Kummer sequence 1 - µn - Gm
(−)- Gm

- 1 and Hilbert 90 we
obtain that

H1
et(C(S), µn) = C(S)∗/C(S)∗n

The first claim follows from the exact diagram describing divisors of rational functions given in
figure 3.8 By the coniveau spectral sequence we have that H1

et(S, µn) is equal to the kernel of the
morphism

H1
et(C(S), µn)

γ- ⊕C Zn
and in particular, H1(S, µn) ⊂ - H1(C(S), µn).
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µn ' µn 0

0 - C∗
?

- C(S)∗
?

div- ⊕CZ
?

- 0

0 - C∗
?

- C(S)∗

(−)n

?
div- ⊕CZ

n.

?
- 0

0
?

⊕CZn
?

' ⊕CZn
?

Figure 3.8: Divisors of rational functions on S.

As for the second claim, an element in H1(S, µn) determines a cyclic extension L = C(S) n
√
f

with f ∈ C(S)∗/C(S)∗n such that in each fieldcomponent Li of L there is an étale cover Ti - S
with C(Ti) = Li. By assumption no non-trivial étale covers exist whence f = 1 ∈ C(S)∗/C(S)∗n.

�

If we invoke another major tool in étale cohomology of schemes, Poincaré duality , see for
example [64, VI,§11], we obtain the following information on the cohomology groups for S.

Proposition 3.11 (Poincaré duality for S) If S is simply connected, then

1. H0
et(S, µn) = µn

2. H1
et(S, µn) = 0

3. H3
et(S, µn) = 0

4. H4
et(S, µn) = µ−1

n

Proof. The third claim follows from the second as both groups are dual to each other. The last
claim follows from the fact that for any smooth irreducible projective variety X of dimension d one
has that

H2d
et (X,µn) ' µ⊗1−d

n
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�

We are now in a position to state and prove the important

Theorem 3.11 (Artin-Mumford exact sequence) If S is a simply connected smooth projective sur-
face, then the sequence

0 - Brn(S) - Brn(C(S)) - ⊕C C(C)∗/C(C)∗n -

- ⊕P µ−1
n

- µ−1
n

- 0

is exact.

Proof. The top complex in the first term of the coniveau spectral sequence for S was

H2(C(S), µn)
α- ⊕C H1(C(C),Zn)

β- ⊕P µn

The second term of the spectral sequence (which is also the limiting term) has the following form

µn 0 0 0

0 0

0

00 0 0

Ker γ Coker γ

Ker α Coker βKer β/Im α

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

By the foregoing lemma we know that Coker γ = 0. By Poincare duality we know that Ker β =
Im α and Coker β = µ−1

n . Hence, the top complex was exact in its middle term and can be
extended to an exact sequence

0 - H2(S, µn) - H2(C(S), µn) - ⊕C H1(C(C),Zn) -

⊕Pµ−1
n

- µ−1
n

- 0

As Zn ' µn the third term is equal to ⊕CC(C)∗/C(C)∗n by the argument given before and the
second term we remember to be Brn(C(S). The identification of Brn(S) with H2(S, µn) will be
explained below. �
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Some immediate consequences can be drawn from this : For a smooth simply connected surface
S, Brn(S) is a birational invariant (it is the birational invariant F 2,1

n (C(S)/C) of the foregoing
section. In particular, if S = P2 we have that Brn(P2) = 0 and as

0 - Brn C(x, y) - ⊕C C(C)∗/C(C)∗n - ⊕P µ−1
n

- µn - 0

we obtain a description of Brn C(x, y) by a certain geo-combinatorial package which we call a
Zn-wrinkle over P2. A Zn-wrinkle is determined by

• A finite collection C = {C1, . . . , Ck} of irreducible curves in P2, that is, Ci = V (Fi) for an
irreducible form in C[X,Y, Z] of degree di.

• A finite collection P = {P1, . . . , Pl} of points of P2 where each Pi is either an intersection
point of two or more Ci or a singular point of some Ci.

• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ and {1, . . . , iP } the
different branches of C in P . These numbers must satisfy the admissibility conditionX

i

bi = 0 ∈ Zn

for every P ∈ P

• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C which is compatible with the branch-data. That is, if Q ∈ C̃
corresponds to a C-branch bi in P , then D is ramified in Q with stabilizer subgroup

StabQ = 〈bi〉 ⊂ Zn

For example, a portion of a Z4-wrinkle can have the following picture

@@�� B
B
B
B
B�
�
�
�
�

��@@
@@��

@@��
��@@

��@@ �
�
�
�
�B
B
B
B
B

0

2

1

3

D

C̃
0 2 1
• • •



142 Etale Technology

It is clear that the cover-data is the most intractable part of a Zn-wrinkle, so we want to have
some control on the covers D -- C̃. Let {Q1, . . . , Qz} be the points of C̃ where the cover ramifies
with branch numbers {b1, . . . , bz}, then D is determined by a continuous module structure (that
is, a cofinite subgroup acts trivially) of

π1(C̃ − {Q1, . . . , Qz}) on Zn

where the fundamental group of the Riemann surface C̃ with z punctures is known (topologically)
to be equal to the group

〈u1, v1, . . . , ug, vg, x1, . . . , xz〉/([u1, v1] . . . [ug, vg]x1 . . . xz)

where g is the genus of C̃. The action of xi on Zn is determined by multiplication with bi. In fact,
we need to use the étale fundamental group, see [64], but this group has the same finite continuous
modules as the topological fundamental group.

Example 3.7 (Covers of P1 and elliptic curves) 1. If C̃ = P1 then g = 0 and hence
π1(P1 − {Q1, . . . , Qz} is zero if z ≤ 1 (whence no covers exist) and is Z if z = 2. Hence,
there exists a unique cover D -- P1 with branch-data (1,−1) in say (0,∞) namely with D
the normalization of P1 in C( n

√
x).

2. If C̃ = E an elliptic curve, then g = 1. Hence, π1(C) = Z ⊕ Z and there exist unramified
Zn-covers. They are given by the isogenies

E′ -- E

where E′ is another elliptic curve and E = E′/〈τ〉 where τ is an n-torsion point on E′.

Any n-fold cover D -- C̃ is determined by a function f ∈ C(C)∗/C(C)∗n. This allows us to
put a group-structure on the equivalence classes of Zn-wrinkles. In particular, we call a wrinkle
trivial provided all coverings Di -- C̃i are trivial (that is, Di is the disjoint union of n copies of

C̃i). The Artin-Mumford theorem for P2 can now be stated as

Theorem 3.12 If ∆ is a central simple C(x, y)-algebra of dimension n2, then ∆ determines
uniquely a Zn-wrinkle on P2. Conversely, any Zn-wrinkle on P2 determines a unique division
C(x, y)- algebra whose class in the Brauer group has order n.

Example 3.8 If S is not necessarily simply connected, any class in Br(C(S))n still determines a
Zn-wrinkle.

Example 3.9 If X is a smooth irreducible rational projective variety of dimension d, the obstruc-
tion to classifying Br(C(X))n by Zn-wrinkles is given by H3

et(X,µn).
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We will give a ringtheoretical interpretation of the maps in the Artin-Mumford sequence. Ob-
serve that nearly all maps are those of the top complex of the first term in the coniveau spectral
sequence for S. We gave an explicit description of them using discrete valuation rings. The state-
ments below follow from this description.

Let us consider a discrete valuation ring A with field of fractions K and residue field k. Let ∆
be a central simple K-algebra of dimension n2.

Definition 3.8 An A-subalgebra Λ of ∆ will be called an A-order if it is a free A-module of rank
n2 with Λ.K = ∆. An A-order is said to be maximal if it is not properly contained in any other
order.

In order to study maximal orders in ∆ (they will turn out to be all conjugated), we consider the

completion Â with respect to the m-adic filtration where m = At with t a uniformizing parameter

of A. K̂ will denote the field of fractions of Â and ∆̂ = ∆⊗K K̂.
Because ∆̂ is a central simple K̂-algebra of dimension n2 it is of the form

∆̂ = Mt(D)

where D is a division algebra with center K̂ of dimension s2 and hence n = s.t. We call t the
capacity of ∆ at A.

In D we can construct a unique maximal Â-order Γ, namely the integral closure of Â in D.
We can view Γ as a discrete valuation ring extending the valuation v defined by A on K. If

v : K̂ - Z, then this extended valuation

w : D - n−2Z is defined as w(a) = (K̂(a) : K̂)−1v(NK̂(a)/K̂(a))

for every a ∈ D where K̂(a) is the subfield generated by a and N is the norm map of fields.

The image of w is a subgroup of the form e−1Z ⊂ - n−2.Z. The number e = e(D/K̂) is called

the ramification index of D over K̂. We can use it to normalize the valuation w to

vD : D - Z defined by vD(a) =
e

n2
v(ND/K̂(a))

With these conventions we have that vD(t) = e.
The maximal order Γ is then the subalgebra of all elements a ∈ D with vD(a) ≥ 0. It has a

unique maximal ideal generated by a prime element T and we have that Γ = Γ
T Γ

is a division

algebra finite dimensional over Â/tÂ = k (but not necessarily having k as its center).

The inertial degree of D over K̂ is defined to be the number f = f(D/K̂) = (Γ : k) and one
shows that

s2 = e.f and e | s whence s | f

After this detour, we can now take Λ = Mt(Γ) as a maximal Â-order in ∆̂. One shows that all

other maximal Â-orders are conjugated to Λ. Λ has a unique maximal ideal M with Λ = Mt(Γ).
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Definition 3.9 With notations as above, we call the numbers e = e(D/K̂), f = f(D/K̂) and t
resp. the ramification, inertia and capacity of the central simple algebra ∆ at A. If e = 1 we call
Λ an Azumaya algebra over A, or equivalently, if Λ/tΛ is a central simple k-algebra of dimension
n2.

Now let us consider the case of a discrete valuation ring A in K such that the residue field k is
Tsen1. The center of the division algebra Γ is a finite dimensional field extension of k and hence
is also Tsen1 whence has trivial Brauer group and therefore must coincide with Γ. Hence,

Γ = k(a)

a commutative field, for some a ∈ Γ. But then, f ≤ s and we have e = f = s and k(a) is a cyclic
degree s field extension of k.

Because s | n, the cyclic extension k(a) determines an element of H1
et(k,Zn).

Definition 3.10 Let Z be a normal domain with field of fractions K and let ∆ be a central simple
K-algebra of dimension n2. A Z-order B is a subalgebra which is a finitely generated Z-module.
It is called maximal if it is not properly contained in any other order. One can show that B is a
maximal Z-order if and only if Λ = Bp is a maximal order over the discrete valuation ring A = Zp
for every height one prime ideal p of Z.

Return to the situation of an irreducible smooth projective surface S. If ∆ is a central simple
C(S)-algebra of dimension n2, we define a maximal order as a sheaf A of OS-orders in ∆ which for
an open affine cover Ui ⊂ - S is such that

Ai = Γ(Ui,A) is a maximal Zi = Γ(Ui,OS) order in ∆

Any irreducible curve C on S defines a discrete valuation ring on C(S) with residue field C(C)
which is Tsen1. Hence, the above argument can be applied to obtain from A a cyclic extension of
C(C), that is, an element of C(C)∗/C(C)∗n.

Definition 3.11 We call the union of the curves C such that A determines a non-trivial cyclic
extension of C(C) the ramification divisor of ∆ (or of A).

The map in the Artin-Mumford exact sequence

Brn(C(S)) -
M
C

H1
et(C(C), µn)

assigns to the class of ∆ the cyclic extensions introduced above.

Definition 3.12 An S-Azumaya algebra (of index n) is a sheaf of maximal orders in a central
simple C(S)-algebra ∆ of dimension n2 such that it is Azumaya at each curve C, that is, such that
[∆] lies in the kernel of the above map.
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Observe that this definition of Azumaya algebra coincides with the one given in the discussion
of twisted forms of matrices. One can show that if A and A′ are S-Azumaya algebras of index n
resp. n′, then A⊗OS A

′ is an Azumaya algebra of index n.n′. We call an Azumaya algebra trivial if
it is of the form End(P) where P is a vectorbundle over S. The equivalence classes of S-Azumaya
algebras can be given a group-structure called the Brauer-group Br(S) of the surface S.

Let us briefly sketch how Michael Artin and David Mumford used their sequence to construct
unirational non-rational threefolds via Brauer-Severi varieties. Let K be a field and ∆ = (a, b)K
the quaternion algebra determined by a, b ∈ K∗. That is,

∆ = K.1⊕K.i⊕K.j ⊕K.ij with i2 = a j2 = b and ji = −ij

The norm map on ∆ defines a conic in P2
K called the Brauer-Severi variety of ∆

BS(∆) = V(x2 − ay2 − bz2) ⊂ - P2
K = proj K[x, y, z].

Its characteristic property is that a fieldextension L of K admits an L-rational point on BS(∆) if
and only if ∆⊗K L admits zero-divisors and hence is isomorphic to M2(L).

In general, let K be the algebraic closure of K, then we have seen that the Galois cohomology
pointed set

H1(Gal(K/K), PGLn(K))

classifies at the same time the isomorphism classes of the following geometric and algebraic objects

• Brauer-Severi K-varieties BS, which are smooth projective K-varieties such that BSK '
Pn−1

K .

• Central simple K-algebras ∆, which are K-algebras of dimension n2 such that ∆ ⊗K K '
Mn(K).

The one-to-one correspondence between these two sets is given by associating to a central simple
K-algebra ∆ its Brauer-Severi variety BS(∆) which represents the functor associating to a fieldex-
tension L of K the set of left ideals of ∆⊗K L which have L-dimension equal to n. In particular,
BS(∆) has an L-rational point if and only if ∆ ⊗K L ' Mn(L) and hence the geometric object
BS(∆) encodes the algebraic splitting behavior of ∆.

Now restrict to the case when K is the functionfield C(X) of a projective variety X and let ∆
be a central simple C(X)-algebra of dimension n2. Let A be a sheaf of OX -orders in ∆ then we
one can show that there is a Brauer-Severi scheme BS(A) which is a projective space bundle over

X with general fiber isomorphic to Pn−1(C) embedded in PN (C) where N =
“

n + k − 1
k

”
− 1. Over

an arbitrary point of x the fiber may degenerate.
For example if n = 2 the P1(C) embedded as a conic in P2(C) can degenerate into a pair of

P1(C)’s. Now, let us specialize further and consider the case when X = P2. Consider E1 and E2

two elliptic curves in P2 and take C = {E1, E2} and P = {P1, . . . P9} the intersection points and all
the branch data zero. Let E′i be a twofold unramified cover of Ei , by the Artin-Mumford result
there is a quaternion algebra ∆ corresponding to this Z2-wrinkle.
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Next, blow up the intersection points to get a surface S with disjoint elliptic curves C1 and C2.
Now take a maximal OS order in ∆ then the relevance of the curves Ci is that they are the locus
of the points s ∈ S where As 6' M2(C), the so called ramification locus of the order A. The local
structure of A in a point s ∈ S is

• when s /∈ C1 ∪ C2, then As is an Azumaya OS,s-algebra in ∆,

• when s ∈ Ci, then As = OS,s.1⊕OS,s.i⊕OS,s.j ⊕OS,s.ij with8><>:
i2 = a

j2 = bt

ji = −ij

where t = 0 is a local equation for Ci and a and b are units in OS,s.

In chapter 5 we will see that this is the local description of a Cayley-smooth order over a smooth
surface in a quaternion algebra. Artin and Mumford then define the Brauer-Severi scheme of A as
representing the functor which assigns to an S-scheme S′ the set of left ideals of A⊗OS OS′ which
are locally free of rank 2. Using the local description of A they show that BS(A) is a projective
space bundle over S as in figure 3.9 with the properties that BS(A) is a smooth variety and the

projection morphism BS(A)
π-- S is flat, all of the geometric fibers being isomorphic to P1 (resp.

to P1 ∨ P1) whenever s /∈ C1 ∪ C2 (resp. s ∈ C1 ∪ C2).
Finally, for specific starting configurations E1 and E2, they prove that the obtained Brauer-Severi

variety BS(A) cannot be rational because there is torsion in H4(BS(A),Z2), whereas BS(A) can
be shown to be unirational.

3.7 Normal spaces

In the next section we will see that in the étale topology we can describe the local structure of
representation varieties in the neighborhood of a closed orbit in terms of the normal space to this
orbit. In this section we will give a representation theoretic description of this normal space.

We recall some standard facts about tangent spaces first. Let X be a not necessarily reduced
affine variety with coordinate ring C[X] = C[x1, . . . , xn]/I. If the origin o = (0, . . . , 0) ∈ V(I),
elements of I have no constant terms and we can write any p ∈ I as

p =

∞X
i=1

p(i) with p(i) homogeneous of degree i.

The order ord(p) is the least integer r ≥ 1 such that p(r) 6= 0. Define the following two ideals in
C[x1, . . . , xn]

Il = {p(1) | p ∈ I} and Im = {p(r) | p ∈ I and ord(p) = r}.



3.7. Normal spaces 147

















 



























•

•

''
''
''
''
''
''
''
''
''

��
��
��
��
��
��
��
��
��

Figure 3.9: The Artin-Mumford bundle

The subscripts l (respectively m) stand for linear terms (respectively, terms of minimal degree).
The tangent space to X in o , To(X) is by definition the subscheme of Cn determined by Il.

Observe that
Il = (a11x1 + . . .+ a1nxn, . . . , al1x1 + . . .+ alnxn)

for some l × n matrix A = (aij)i,j of rank l. That is, we can express all xk as linear combinations
of some {xi1 , . . . , xin−l}, but then clearly

C[To(X)] = C[x1, . . . , xn]/Il = C[xi1 , . . . , xin−l ]

In particular, To(X) is reduced and is a linear subspace of dimension n− l in Cn through the point
o.

Next, consider an arbitrary geometric point x of X with coordinates (a1, . . . , an). We can trans-
late x to the origin o and the translate of X is then the scheme defined by the ideal

(f1(x1 + a1, . . . , xn + an), . . . , fk(x1 + a1, . . . , xn + an))
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Now, the linear term of the translated polynomial fi(x1 + a1, . . . , xn + an) is equal to

∂fi
∂x1

(a1, . . . , an)x1 + . . .+
∂fi
∂xn

(a1, . . . , an)xn

and hence the tangent space to X in x , Tx(X) is the linear subspace of Cn defined by the set of
zeroes of the linear terms

Tx(X) = V(

nX
j=1

∂f1
∂xj

(x)xj , . . . ,

nX
j=1

∂fk
∂xj

(x)xj) ⊂ - Cn.

In particular, the dimension of this linear subspace can be computed from the Jacobian matrix in
x associated with the polynomials (f1, . . . , fk)

dim Tx(X) = n− rk

2664
∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

...
∂fk
∂x1

(x) . . . ∂fk
∂xn

(x)

3775 .
Let C[ε] be the algebra of dual numbers , that is, C[ε] ' C[y]/(y2). Consider a C-algebra morphism

C[x1, . . . , xn]
φ- C[ε] defined by xi 7→ ai + ciε.

Because ε2 = 0 it is easy to verify that the image of a polynomial f(x1, . . . , xn) under φ is of the
form

φ(f(x1, . . . , xn)) = f(a1, . . . , an) +

nX
j=1

∂f

∂xj
(a1, . . . , an)cjε

Therefore, φ factors through I, that is φ(fi) = 0 for all 1 ≤ i ≤ k, if and only if (c1, . . . , cn) ∈ Tx(X).
Hence, we can also identify the tangent space to X in x with the algebra morphisms C[X]

φ- C[ε]
whose composition with the projection π : C[ε] -- C (sending ε to zero) is the evaluation in
x = (a1, . . . , an). That is, let evx ∈ X(C) be the point corresponding to evaluation in x, then

Tx(X) = {φ ∈ X(C[ε]) | X(π)(φ) = evx}.

The following two examples compute the tangent spaces to the (trace preserving) representation
varieties.

Example 3.10 (Tangent space to repn) Let A be an affine C-algebra generated by {a1, . . . am}
and ρ : A - Mn(C) an algebra morphism, that is, ρ ∈ repn A. We call a linear map

A
D- Mn(C) a ρ-derivation if and only if for all a, a′ ∈ A we have that

D(aa′) = D(a).ρ(a′) + ρ(a).D(a′).
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We denote the vectorspace of all ρ-derivations of A by Derρ(A). Observe that any ρ-derivation is
determined by its image on the generators ai, hence Derρ(A) ⊂Mm

n . We claim that

Tρ(repn A) = Derρ(A).

Indeed, we know that repn A(C[ε]) is the set of algebra morphisms

A
φ- Mn(C[ε])

By the functorial characterization of tangentspaces we have that Tρ(repn A) is equal to

{D : A - Mn(C) linear | ρ+Dε : A - Mn(C[ε]) is an algebra map}.

Because ρ is an algebra morphism, the algebra map condition

ρ(aa′) +D(aa′)ε = (ρ(a) +D(a)ε).(ρ(a′) +D(a′)ε)

is equivalent to D being a ρ-derivation.

Example 3.11 (Tangent space to trepn) Let A be a Cayley-Hamilton algebra of degree n with
trace map trA and trace generated by {a1, . . . , am}. Let ρ ∈ trepn A, that is, ρ : A - Mn(C)
is a trace preserving algebra morphism. Because trepn A(C[ε]) is the set of all trace preserving
algebra morphisms A - Mn(C[ε]) (with the usual trace map tr on Mn(C[ε])) and the previous
example one verifies that

Tρ(trepn A) = Dertrρ (A) ⊂ Derρ(A)

the subset of trace preserving ρ-derivations D, that is, those satisfying

D ◦ trA = tr ◦D

A
D- Mn(C)

A

trA

?
D- Mn(C)

tr

?

Again, using this property and the fact that A is trace generated by {a1, . . . , am} a trace preserving
ρ-derivation is determined by its image on the ai so is a subspace of Mm

n .

The tangent cone to X in o , TCo(X), is by definition the subscheme of Cn determined by Im,
that is,

C[TCo(X)] = C[x1, . . . , xn]/Im.

It is called a cone because if c is a point of the underlying variety of TCo(X), then the line l = −→oc is
contained in this variety because Im is a graded ideal. Further, observe that as Il ⊂ Im, the tangent
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cone is a closed subscheme of the tangent space at X in o. Again, if x is an arbitrary geometric
point of X we define the tangent cone to X in x , TCx(X) as the tangent cone TCo(X

′) where X ′ is
the translated scheme of X under the translation taking x to o. Both the tangent space and tangent
cone contain local information of the scheme X in a neighborhood of x.

Letmx be the maximal ideal of C[X] corresponding to x (that is, the ideal of polynomial functions
vanishing in x). Then, its complement Sx = C[X]−mx is a multiplicatively closed subset and the
local algebra Ox(X) is the corresponding localization C[X]Sx . It has a unique maximal ideal mx with
residue field Ox(X)/mx = C. We equip the local algebra Ox = Ox(X) with the mx-adic filtration
that is the increasing Z-filtration

Fx : ... ⊂ mi ⊂ mi−1 ⊂ . . . ⊂ m ⊂ Ox = Ox = . . . = Ox = . . .

with associated graded algebra

gr(Ox) = . . .⊕ mi
x

mi+1
x

⊕ mi−1
x

mi
x

⊕ . . .⊕ mx

m2
x

⊕ C⊕ 0⊕ . . .⊕ 0⊕ . . .

Proposition 3.12 If x is a geometric point of the affine scheme X, then

1. C[Tx(X)] is isomorphic to the polynomial algebra C[mx
m2

x
].

2. C[TCx(X)] is isomorphic to the associated graded algebra gr(Ox(X)).

Proof. After translating we may assume that x = o lies in V(I) ⊂ - Cn. That is,

C[X] = C[x1, . . . , xn]/I and mx = (x1, . . . , xn)/I.

(1) : Under these identifications we have

mx

m2
x

' mx/m
2
x

' (x1, . . . , xn)/((x1, . . . , xn)2 + I)

' (x1, . . . , xn)/((x1, . . . , xn)2 + Il)

and as Il is generated by linear terms it follows that the polynomial algebra on mx
m2

x
is isomorphic

to the quotient algebra C[x1, . . . , xn]/Il which is by definition the coordinate ring of the tangent
space.
(2) : Again using the above identifications we have

gr(Ox) ' ⊕∞i=0m
i
x/m

i+1
x

' ⊕∞i=0m
i
x/m

i+1
x

' ⊕∞i=0(x1, . . . , xn)i/((x1, . . . , xn)i+1 + (I ∩ (x1, . . . , xn)i))

' ⊕∞i=0(x1, . . . , xn)i/((x1, . . . , xn)i+1 + Im(i))
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where Im(i) is the homogeneous part of Im of degree i. On the other hand, the i-th homogeneous
part of C[x1, . . . , xn]/Im is equal to

(x1, . . . , xn)i

(x1, . . . , xn)i+1 + Im(i)

we obtain the required isomorphism. �

This gives a third interpretation of the tangent space as

Tx(X) = HomC(
mx

m2
x

,C) = HomC(
mx

m2
x

,C).

Hence, we can also view the tangent space Tx(X) as the space of point derivations Derx(Ox) on
Ox(X) (or of the point derivations Derx(C[X]) on C[X]). That is, C-linear maps D : Ox - C (or
D : C[X] - C) such that for all functions f, g we have

D(fg) = D(f)g(x) + f(x)D(g).

If we define the local dimension of an affine scheme X in a geometric point x dimx X to be the
maximal dimension of irreducible components of the reduced variety X passing through x, then

dimx X = dimo TCx(X).

We say that X is nonsingular at x (or equivalently, that x is a nonsingular point of X) if the
tangent cone to X in x coincides with the tangent space to X in x. An immediate consequence is

Proposition 3.13 If X is nonsingular at x, then Ox(X) is a domain. That is, in a Zariski neigh-
borhood of x , X is an irreducible variety.

Proof. If X is nonsingular at x, then

gr(Ox) ' C[TCx(X)] = C[Tx(X)]

the latter one being a polynomial algebra whence a domain. Now, let 0 6= a, b ∈ Ox then there
exist k, l such that a ∈ mk −mk+1 and b ∈ ml −ml+1, that is a is a nonzero homogeneous element
of gr(Ox) of degree −k and b one of degree −l. But then, a.b ∈ mk+l − mk+l−1 hence certainly
a.b 6= 0 in Ox.

Now, consider the natural map φ : C[X] - Ox. Let {P1, . . . , Pl} be the minimal prime ideals
of C[X]. All but one of them, say P1 = φ−1(0), extend to the whole ring Ox. Taking the product
of f functions fi ∈ Pi nonvanishing in x for 2 ≤ i ≤ l gives the Zariski open set X(f) containing x
and whose coordinate ring is a domain, whence X(f) is an affine irreducible variety. �
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When restricting to nonsingular points we reduce to irreducible affine varieties. From the Jaco-
bian condition it follows that nonsingularity is a Zariski open condition on X and by the implicit
function theorem, X is a complex manifold in a neighborhood of a nonsingular point.

Let X
φ- Y be a morphism of affine varieties corresponding to the algebra morphism

C[Y]
φ∗- C[X]. Let x be a geometric point of X and y = φ(x). As φ∗(my) ⊂ mx, φ induces

a linear map
my

m2
y

- mx
m2

x
and taking the dual map gives the differential of φ in x which is a linear

map
dφx : Tx(X) - Tφ(x)(Y).

Assume X a closed subscheme of Cn and Y a closed subscheme of Cm and let φ be determined by
the m polynomials {f1, . . . , fm} in C[x1, . . . , xn]. Then, the Jacobian matrix in x

Jx(φ) =

2664
∂f1
∂x1

(x) . . . ∂fm
∂x1

(x)
...

...
∂f1
∂xn

(x) . . . ∂fm
∂xn

(x)

3775
defines a linear map from Cn to Cm and the differential dφx is the induced linear map from
Tx(X) ⊂ Cn to Tφ(x)(Y) ⊂ Cm. Let D ∈ Tx(X) = Derx(C[X]) and xD the corresponding element of
X(C[ε]) defined by xD(f) = f(x) +D(f)ε, then xD ◦ φ∗ ∈ Y(C[ε]) is defined by

xD ◦ φ∗(g) = g(φ(x)) + (D ◦ φ∗)ε = g(φ(x)) + dφx(D)ε

giving us the ε-interpretation of the differential

φ(x+ vε) = φ(x) + dφx(v)ε

for all v ∈ Tx(X).

Proposition 3.14 Let X
φ- Y be a dominant morphism between irreducible affine varieties.

There is a Zariski open dense subset U ⊂ - X such that dφx is surjective for all x ∈ U .

Proof. We may assume that φ factorizes into

X
ρ-- Y × Cd

Y

prY

?

φ

-

with φ a finite and surjective morphism. Because the tangent space of a product is the sum of the
tangent spaces of the components we have that d(prW )z is surjective for all z ∈ Y × Cd, hence it



3.7. Normal spaces 153

suffices to verify the claim for a finite morphism φ. That is, we may assume that S = C[Y ] is a
finite module over R = C[X] and let L/K be the corresponding extension of the function fields. By
the principal element theorem we know that L = K[s] for an element s ∈ L which is integral over
R with minimal polynomial

F = tn + gn−1t
n−1 + . . .+ g1t+ g0 with gi ∈ R

Consider the ring S′ = R[t]/(F ) then there is an element r ∈ R such that the localizations S′r and
Sr are isomorphic. By restricting we may assume that X = V(F ) ⊂ - Y × C and that

X = V(F ) ⊂ - Y × C

Y

prY

?

φ

-

Let x = (y, c) ∈ X then we have (again using the identification of the tangent space of a product
with the sum of the tangent spaces of the components) that

Tx(X) = {(v, a) ∈ Ty(Y )⊕ C | c∂F
∂t

(x) + vgn−1c
n−1 + . . .+ vg1c+ vg0 = 0}.

But then, dφx i surjective whenever ∂F
∂t

(x) 6= 0. This condition determines a non-empty open subset

of X as otherwise ∂F
∂t

would belong to the defining ideal of X in C[Y × C] (which is the principal
ideal generated by F ) which is impossible by a degree argument �

Example 3.12 (Differential of orbit map) Let X be a closed GLn-stable subscheme of a GLn-

representation V and x a geometric point of X. Consider the orbitclosure O(x) of x in V . Because
the orbit map

µ : GLn -- GLn.x ⊂ - O(x)

is dominant we have that C[O(x)] ⊂ - C[GLn] and therefore a domain, so O(x) is an irreducible
affine variety. We define the stabilizer subgroup Stab(x) to be the fiber µ−1(x), then Stab(x) is a
closed subgroup of GLn. We claim that the differential of the orbit map in the identity matrix
e = rr

n

dµe : gln
- Tx(X)

satisfies the following properties

Ker dµe = stab(x) and Im dµe = Tx(O(x)).

By the proposition we know that there is a dense open subset U of GLn such that dµg is surjective
for all g ∈ U . By GLn-equivariance of µ it follows that dµg is surjective for all g ∈ GLn, in
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particular dµe : gln
- Tx(O(x)) is surjective. Further, all fibers of µ over O(x) have the same

dimension. But then it follows from the dimension formula of proposition that

dim GLn = dim Stab(x) + dim O(x)

(which, incidentally gives us an algorithm to compute the dimensions of orbitclosures). Combining
this with the above surjectivity, a dimension count proves that Ker dµe = stab(x), the Lie algebra
of Stab(x).

Let A be a C-algebra and let M and N be two A-representations of dimensions say m and n.
An A-representation P of dimension m+ n is said to be an extension of N by M if there exists a
short exact sequence of left A-modules

e : 0 - M - P - N - 0

We define an equivalence relation on extensions (P, e) of N by M : (P, e) ∼= (P ′, e′) if and only if

there is an isomorphism P
φ- P ′ of left A-modules such that the diagram below is commutative

e : 0 - M - P - N - 0

e′ : 0 - M

idM

?
- P ′

φ

?
- N

idN

?
- 0

The set of equivalence classes of extensions of N by M will be denoted by Ext1A(N,M).
An alternative description of Ext1A(N,M) is as follows. Let ρ : A - Mm and σ : A - Mn

be the representations defining M and N . For an extension (P, e) we can identify the C-vectorspace
with M ⊕N and the A-module structure on P gives a algebra map µ : A - Mm+n and we can
represent the action of a on P by left multiplication of the block-matrix

µ(a) =

»
ρ(a) λ(a)
0 σ(a)

–
,

where λ(a) is an m× n matrix and hence defines a linear map

λ : A - HomC(N,M).

The condition that µ is an algebra morphism is equivalent to the condition

λ(aa′) = ρ(a)λ(a′) + λ(a)σ(a′)

and we denote the set of all liner maps λ : A - HomC(N,M) by Z(N,M) and call it the space
of cycle . The extensions of N by M corresponding to two cycles λ and λ′ from Z(N,M) are
equivalent if and only if we have an A-module isomorphism in block form»

idM β
0 idN

–
with β ∈ HomC(N,M)
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between them. A-linearity of this map translates into the matrix relation»
idM β
0 idN

–
.

»
ρ(a) λ(a)
0 σ(a)

–
=

»
ρ(a) λ′(a)
0 σ(a)

–
.

»
idM β
0 idN

–
for all a ∈ A

or equivalently, that λ(a)− λ′(a) = ρ(a)β − βσ(a) for all a ∈ A. We will now define the subspace
of Z(N,M) of boundaries B(N,M)

{δ ∈ HomC(N,M) | ∃β ∈ HomC(N,M) : ∀a ∈ A : δ(a) = ρ(a)β − βσ(a)}.

We then have the description Ext1A(N,M) = Z(N,M)
B(N,M)

.

Example 3.13 (Normal space to repn) Let A be an affine C-algebra generated by {a1, . . . , am}
and ρ : A - Mn(C) an algebra morphism, that is, ρ ∈ repn A determines an n-dimensional A-
representationM . We claim to have the following description of the normal space to the orbitclosure

Cρ = O(ρ) of ρ

Nρ(repn A)
def
=

Tρ(repn A)

Tρ(Cρ)
= Ext1A(M,M).

We have already seen that the space of cycles Z(M,M) is the space of ρ-derivations of A in
Mn(C), Derρ(A), which we know to be the tangent space Tρ(repn A). Moreover, we know that

the differential dµe of the orbit map GLn
µ- Cρ ⊂ - Mm

n

dµe : gln = Mn
- Tρ(Cρ)

is surjective. Now, ρ = (ρ(a1), . . . , ρ(am)) ∈ Mm
n and the action of action of GLn is given by

simultaneous conjugation. But then we have for any A ∈ gln = Mn that

(In +Aε).ρ(ai).(In −Aε) = ρ(ai) + (Aρ(ai)− ρ(ai)A)ε.

Therefore, by definition of the differential we have that

dµe(A)(a) = Aρ(a)− ρ(a)A for all a ∈ A.

that is, dµe(A) ∈ B(M,M) and as the differential map is surjective we have Tρ(Cρ) = B(M,M)
from which the claim follows.

Example 3.14 (Normal space to trepn) Let A be a Cayley-Hamilton algebra with trace map
trA and trace generated by {a1, . . . , am}. Let ρ ∈ trepn A, that is, ρ : A - Mn(C) is a trace
preserving algebra morphism. Any cycle λ : A - Mn(C) in Z(M,M) = Derρ(A) determines an
algebra morphism

ρ+ λε : A - Mn(C[ε])
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We know that the tangent space Tρ(trepn A) is the subspace Dertrρ (A) of trace preserving ρ-
derivations, that is, those satisfying

λ(trA(a)) = tr(λ(a)) for all a ∈ A

Observe that for all boundaries δ ∈ B(M,M), that is, such that there is an m ∈ Mn(C) with
δ(a) = ρ(a).m−m.ρ(a) are trace preserving as

δ(trA(a)) = ρ(trA(a)).m−m.ρ(trA(a)) = tr(ρ(a)).m−m.tr(ρ(a))
= 0 = tr(m.ρ(a)− ρ(a).m) = tr(δ(a))

Hence, we can define the space of trace preserving self-extensions

ExttrA (M,M) =
Dertrρ (A)

B(M,M)

and obtain as before that the normal space to the orbit closure Cρ = O(ρ) is equal to

Nρ(trepn A)
def
=

Tρ(trepn A)

Tρ(Cρ)
= ExttrA (M,M)

3.8 Knop-Luna slices

Let A be an affine C-algebra and ξ ∈ issn A a point in the quotient space corresponding to
an n-dimensional semi-simple representation Mξ of A. In the next chapter we will present a
method to study the étale local structure of issn A near ξ and the étale local GLn-structure of
the representation variety repn A near the closed orbit O(Mξ) = GLn.Mξ. First, we will outline
the main idea in the setting of differential geometry.

Let M be a compact C∞-manifold on which a compact Lie group G acts differentially. By a
usual averaging process we can define a G-invariant Riemannian metric on M . For a point m ∈M
we define

• The G-orbit O(m) = G.m of m in M ,

• the stabilizer subgroup H = StabG(m) = {g ∈ G | g.m = m} and

• the normal space Nm defined to be the orthogonal complement to the tangent space in m to
the orbit in the tangent space to M . That is, we have a decomposition of H-vectorspaces

Tm M = Tm O(m)⊕Nm

The normal spaces Nx when x varies over the points of the orbit O(m) define a vectorbundle

N p-- O(m) over the orbit. We can identify the bundle with the associated fiber bundle

N ' G×H Nm
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Any point n ∈ N in the normal bundle determines a geodesic

γn : R - M defined by

(
γn(0) = p(n)
dγn
dt

(0) = n

Using this geodesic we can define a G-equivariant exponential map from the normal bundle N to
the manifold M via

N exp- M where exp(n) = γn(1)

•

YY222222

n

x

γn

O(m)

Nx

M

Now, take ε > 0 and define the C∞ slice Sε to be

Sε = {n ∈ Nm | ‖ n ‖< ε }

then G×H Sε is a G-stable neighborhood of the zero section in the normal bundle N = G×H Nm.
But then we have a G-equivariant exponential

G×H Sε
exp- M

which for small enough ε gives a diffeomorphism with a G-stable tubular neighborhood U of the
orbit O(m) in M as in figure 3.10 If we assume moreover that the action of G on M and the
action of H on Nm are such that the orbit-spaces are manifolds M/G and Nm/H, then we have
the situation

G×H Sε
exp

'
- U ⊂ - M

Sε/H

??

'
- U/G

??
⊂ - M/G

??

giving a local diffeomorphism between a neighborhood of 0 in Nm/H and a neighborhood of the
point m in M/G corresponding to the orbit O(m).
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Nm

0•

ε

−ε

G/H

exp-

•
m

O(m)

U

Nx

M

Figure 3.10: Tubular neighborhood of the orbit.

Returning to the setting of the orbit O(Mξ) in repn A we would equally like to define a GLn-
equivariant morphism from an associated fiber bundle

GLn ×GL(α) Nξ
e- repn A

where GL(ξ) is the stabilizer subgroup of Mξ and Nξ is a normal space to the orbit O(Mξ). Because
we do not have an exponential-map in the setting of algebraic geometry, the map e will have to be
an étale map. Such a map does exist and is usually called a Luna slice in case of a smooth point
on repn A. Later, F. Knop extended this result to allow singular points, or even points in which
the scheme is not reduced.

Although the result holds for any reductive algebraic group G, we will apply them only in the
case G = GLn or GL(α) = GLa1 × . . .×GLak , so restrict to the case of GLn. We fix the setting :
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X and Y are (not necessarily reduced) affine GLn-varieties, ψ is a GLn-equivariant map

x = ψ(y) ` X � ψ
Y a y

X/GLn

πX

??
Y/GLn

πY

??

and we assume the following restrictions :

• ψ is étale in y,

• the GLn-orbits O(y) in Y and O(x) in X are closed. For example, in representation varieties,
we restrict to semi-simple representations,

• the stabilizer subgroups are equal Stab(x) = Stab(y). In the case of representation varieties,
for a semi-simple n-dimensional representation with decomposition

M = S⊕e11 ⊕ . . .⊕ S⊕ek
k

into distinct simple components, this stabilizer subgroup is

GL(α) =

264GLe1(C⊗
rr
d1)

. . .
GLek (C⊗ rr

dk
)

375 ⊂ - GLn

where di = dim Si. In particular, the stabilizer subgroup is again reductive.

In algebraic terms : consider the coordinate rings R = C[X] and S = C[Y] and the dual morphism

R
ψ∗- S. Let I / R be the ideal describing O(x) and J / S the ideal describing O(y). With bR we

will denote the I-adic completion lim
←

R
In of R and with bS the J-adic completion of S.

Lemma 3.8 The morphism ψ∗ induces for all n an isomorphism

R

In
ψ∗- S

Jn

In particular, bR ' bS.
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Proof. Let Z be the closed GLn-stable subvariety of Y where ψ is not étale. By the separation
property, there is an invariant function f ∈ SGLn vanishing on Z such that f(y) = 1 because the
two closed GLn-subschemes Z and O(y) are disjoint. Replacing S by Sf we may assume that ψ∗

is an étale morphism. Because O(x) is smooth, ψ−1 O(x) is the disjoint union of its irreducible
components and restricting Y if necessary we may assume that ψ−1 O(x) = O(y). But then

J = ψ∗(I)S and as O(y)
'- O(x) we have R

I
' S

J
so the result holds for n = 1.

Because étale maps are flat, we have ψ∗(In)S = In ⊗R S = Jn and an exact sequence

0 - In+1 ⊗R S - In ⊗R S - In

In+1
⊗R S - 0

But then we have
In

In+1
=

In

In+1
⊗R/I

S

J
=

In

In+1
⊗R S '

Jn

Jn+1

and the result follows from induction on n and the commuting diagram

0 - In

In+1
- R

In+1
- R

In
- 0

0 - Jn

Jn+1

'

?

- S

Jn+1

?

............

- S

Jn

'

?

- 0

�

For an irreducible GLn-representation s and a locally finite GLn-module X we denote its s-
isotypical component by X(s).

Lemma 3.9 Let s be an irreducible GLn-representation. There are natural numbers m ≥ 1 (inde-
pendent of s) and n ≥ 0 such that for all k ∈ N we have

Imk+n ∩R(s)
⊂ - (IGLn)kR(s)

⊂ - Ik ∩R(s)

Proof. Consider A = ⊕∞i=0I
ntn ⊂ - R[t], then AGLn is affine so certainly finitely generated as

RGLn -algebra say by
{r1tm1 , . . . , rzt

mz} with ri ∈ R and mi ≥ 1.

Further, A(s) is a finitely generated AGLn -module, say generated by

{s1tn1 , . . . , syt
ny} with si ∈ R(s) and ni ≥ 0.
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Take m = max mi and n = max ni and r ∈ Imk+n ∩R(s), then rtmk+n ∈ A(s) and

rtmk+n =
X
j

pj(r1t
m1 , . . . , rzt

mz )sjt
nj

with pj a homogeneous polynomial of t-degree mk + n− nj ≥ mk. But then each monomial in pj
occurs at least with ordinary degree mk

m
= k and therefore is contained in (IGLn)kR(s)t

mk+n. �

Let R̂GLn be the IGLn -adic completion of the invariant ring RGLn and let ŜGLn be the JGLn -adic
completion of SGLn .

Lemma 3.10 The morphism ψ∗ induces an isomorphism

R⊗RGLn R̂GLn
'- S ⊗ SGLn ŜGLn

Proof. Let s be an irreducible GLn-module, then the IGLn -adic completion of R(s) is equal todR(s) = R(s) ⊗RGLn R̂GLn . Moreover,

bR(s) = lim
←

(
R

Ik
)(s) = lim

←

R(s)

(Ik ∩R(s))

which is the I-adic completion of R(s). By the foregoing lemma both topologies coincide on R(s)

and therefore dR(s) = bR(s) and similarly dS(s) = bS(s)

Because bR ' bS it follows that bR(s) ' bS(s) from which the result follows as the foregoing holds for
all s. �

Theorem 3.13 Consider a GLn-equivariant map Y
ψ- X, y ∈ Y, x = ψ(y) and ψ étale in y.

Assume that the orbits O(x) and O(y) are closed and that ψ is injective on O(y). Then, there is
an affine open subset U ⊂ - Y containing y such that

1. U = π−1
Y (πY (U)) and πY (U) = U/GLn.

2. ψ is étale on U with affine image.

3. The induced morphism U/GLn
ψ- X/GLn is étale.
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4. The diagram below is commutative

U
ψ - X

U/GLn

πU

??
ψ- X/GLn

πX

??

Proof. By the foregoing lemma we have R̂GLn ' ŜGLn which means that ψ is étale in πY (y). As

étaleness is an open condition, there is an open affine neighborhood V of πY (y) on which ψ is étale.

If R = R⊗RGLn S
GLn then the above lemma implies that

R⊗SGLn ŜGLn ' S ⊗SGLn ŜGLn

Let SGLn
loc be the local ring of SGLn in JGLn , then as the morphism SGLn

loc
- ŜGLn is faithfully

flat we deduce that
R⊗SGLn S

GLn
loc ' S ⊗SGLn S

GLn
loc

but then there is an f ∈ SGLn − JGLn such that Rf ' Sf . Now, intersect V with the open affine
subset where f 6= 0 and let U ′ be the inverse image under πY of this set. Remains to prove that the

image of ψ is affine. As U ′
ψ- X is étale, its image is open and GLn-stable. By the separation

property we can find an invariant h ∈ RGLn such that h is zero on the complement of the image
and h(x) = 1. But then we take U to be the subset of U ′ of points u such that h(u) 6= 0. �

Theorem 3.14 (Slice theorem) Let X be an affine GLn-variety with quotient map

X
π-- X/GLn. Let x ∈ X be such that its orbit O(x) is closed and its stabilizer subgroup

Stab(x) = H is reductive. Then, there is a locally closed affine subscheme S ⊂ - X containing x
with the following properties

1. S is an affine H-variety,

2. the action map GLn×S - X induces an étale GLn-equivariant morphism GLn×H S
ψ- X

with affine image,

3. the induced quotient map ψ/GLn is étale

(GLn ×H S)/GLn ' S/H
ψ/GLn- X/GLn

and the right hand side of figure 3.11 is commutative.
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GLn ×H Nx �GLn×Hφ
GLn ×H S

ψ - X

Nx/H

??
� φ/H

S/H

??
ψ/GLn - X/GLn

π

??

Figure 3.11: Etale slice diagram

If we assume moreover that X is smooth in x, then we can choose the slice S such that also the
following properties are satisfied

1. S is smooth,

2. there is an H-equivariant morphism S
φ- Tx S = Nx with φ(x) = 0 having an affine image,

3. the induced morphism is étale

S/H
φ/H- Nx/H

and the left hand side of figure 3.11 is commutative.

Proof. Choose a finite dimensional GLn-subrepresentation V of C[X] that generates the coordinate
ring as algebra. This gives a GLn-equivariant embedding

X ⊂ i- W = V ∗

Choose in the vectorspace W an H-stable complement S0 of gln.i(x) = Ti(x) O(x) and denote

S1 = i(x) + S0 and S2 = i−1(S1).Then, the diagram below is commutative

GLn ×H S2
⊂ - GLn ×H S1

X

ψ

?
⊂ i - W

ψ0

?

By construction we have that ψ0 induces an isomorphism between the tangent spaces in (1, i(x)) ∈
GLn ×H S0 and i(x) ∈ W which means that ψ0 is étale in i(x), whence ψ is étale in (1, x) ∈
GLn ×H S2. By the fundamental lemma we get an affine neighborhood U which must be of the
form U = GLn ×H S giving a slice S with the required properties.
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Assume that X is smooth in x, then S1 is transversal to X in i(x) as

Ti(x) i(X) + S0 = W

Therefore, S is smooth in x. Again using the separation property we can find an invariant f ∈ C[S]H

such that f is zero on the singularities of S (which is a H-stable closed subscheme) and f(x) = 1.
Then replace S with its affine reduced subvariety of points s such that f(s) 6= 0. Let m be the
maximal ideal of C[S] in x, then we have an exact sequence of H-modules

0 - m2 - m
α- N∗x - 0

Choose a H-equivariant section φ∗ : N∗x - m ⊂ - C[S] of α then this gives an H-equivariant

morphism S
φ- Nx which is étale in x. Applying again the fundamental lemma to this setting

finishes the proof. �

References.

More details on étale cohomology can be found in the textbook of J.S. Milne [64] . The material
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coniveau spectral sequence we refer to the paper [18]. The description of the Brauer group of the
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Luna [63] and in the form presented here to F. Knop [45] . For more details we refer to the lecture
notes of P. Slodowy [79].



4 — Quiver Representations

Having generalized the classical anti-equivalence between commutative algebra and (affine) alge-
braic geometry to the pair of functors

alg@n

trepn ..
GL(n)-affine

⇑n

ll

where ⇑n is a left-inverse for trepn, we will define Cayley-smooth algebras A ∈ alg@n which are
analogous to smooth commutative algebras. The definition is in terms of a lifting property with
respect to nilpotent ideals, following Grothendieck’s characterization of regular algebras. We will
prove Procesi’s result that a degree n Cayley-Hamilton algebra A is Cayley-smooth if and only if
trepn A is a smooth (commutative) affine variety.

This result allows us, via the theory of Knop-Luna slices, to describe the étale local structure
of Cayley-smooth algebras. We will prove that the local structure of A in a point ξ ∈ trissn A is
determined by a combinatorial gadget : a (marked) quiver Q (given by the simple components of
the semi-simple n-dimensional representation Mξ corresponding to ξ and their (self)extensions)and
a dimension vector α (given by the multiplicities of the simple factors in Mxi).

In the second part of this book we will use this description to classify Cayley-smooth orders (as
well as their central singularities) in low dimensions. In this study we will need standard results
on the representation theory of quivers : the description of the simple (resp. indecomposable)
dimension vectors, the canonical decomposition and the notion of semistable representations.

4.1 Smoothness

In this section we will introduce smoothness relative to a category of C-algebras. For commalg this
notion is equivalent to the usual geometric smoothness and we will show that for alg@n smoothness
of a Cayley-Hamilton algebra A is equivalent to trepn A being a smooth affine variety. Examples
of such Cayley-smooth algebras arise as level n approximations of smooth algebras in alg, called
Quillen smooth algebras.

Definition 4.1 Let cat be a category of C-algebras. An object A ∈ Ob(cat) is said to be cat-
smooth if it satisfies the following lifting property. For B ∈ Ob(cat), a nilpotent ideal I / B such
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that B/I ∈ Ob(cat) and a C-algebra morphism A
κ- B/I in Mor(cat), there exist a lifting

A

B ��
�..
....
....
....
....
....
....
....
.

∃
λ

B

I

κ

?

with λ ∈ Mor(cat) making the diagram commutative. An alg-smooth algebra is called Quillen-
smooth , comm-smooth algebras are called Grothendieck-smooth and alg@n-smooth algebras Cayley-
smooth .

To motivate these definitions, we will show that the categorical notion of comm-smoothness
coincides with geometric smoothness. Let X be a possibly non-reduced affine variety and x a
geometric point of X. As we are interested in local properties of X near x, we may assume (after
translation) that x = o in Cn and that we have a presentation

C[X] = C[x1, . . . , xn]/I with I = (f1, . . . , fm) and mx = (x1, . . . , xn)/I.

Denote the polynomial algebra P = C[x1, . . . , xn] and consider the map

d : I - (Pdx1 ⊕ . . .⊕ Pdxn)⊗P C[X] = C[X]dx1 ⊕ . . .⊕ C[X]dxn

where the dxi are a formal basis of the free module of rank n and the map is defined by

d(f) = (
∂f

∂x1
, . . . ,

∂f

∂xn
) mod I.

This gives a C[X]-linear mapping I
I2

d- C[X]dx1⊕. . .⊕C[X]dxn. Extending to the local algebra Ox
at x and then quotient out the maximal ideal mx we get a C = Ox/mx- linear map I

I2
d(x)- Cdx1⊕

. . . ⊕ Cdxn Clearly, x is a nonsingular point of X if and only if the C-linear map d(x) is injective.
This is equivalent to the existence of a C-section and by the Nakayama lemma also to the existence
of a Ox-linear splitting sx of the induced Ox-linear map dx

I

I2

⊂ dx-��
sx

Oxdx1 ⊕ . . .⊕Oxdxn

satisfying sx ◦ dx = id I
I2

A C-algebra epimorphism (between commutative algebras) R
π-- S with square zero kernel

is called an infinitesimal extension of S . It is called a trivial infinitesimal extension if π has an
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algebra section σ : S ⊂ - R satisfying π ◦ σ = idS . An infinitesimal extension R
π-- S of S

is said to be versal if for any other infinitesimal extension R′
π′-- S of S there is a C-algebra

morphism

R
π -- S

R′

π
′

--
..............................

∃
g

-

making the diagram commute. From this universal property it is clear that versal infinitesimal
extensions are uniquely determined up to isomorphism. Moreover, if a versal infinitesimal extension
is trivial, then so is any infinitesimal extension. By iterating, S is Grothendieck-smooth if and only
if it has the lifting property with respect to nilpotent ideals I with square zero. Therefore, assume
we have a test object (T, I) with I2 = 0, then we have a commuting diagram

S ×T/I T
pr1 -- S

T

pr2

??

p
-- T/I

κ

?

where we define the pull-back algebra S ×T/I T = {(s, t) ∈ S × T | κ(s) = p(t)}. Observe that
pr1 : S ×T/I T -- S is a C-algebra epimorphism with kernel 0 ×T/I I having square zero, that
is, it is an infinitesimal extension of S. Moreover, the existence of a lifting λ of κ is equivalent to
the existence of a C-algebra section

σ : S - S ×T/I T defined by s 7→ (s, λ(s)).

Hence, S is Grothendieck-smooth if and only if a versal infinitesimal extension of S is trivial.
Returning to the situation of interest to us, we claim that the algebra epimorphism

Ox(Cn)/I2
x

cx-- Ox is a versal infinitesimal extension of Ox. Indeed, consider any other in-

finitesimal extension R
π-- Ox then we define a C-algebra morphism Ox(Cn)/I2

x
- R as

follows : let ri ∈ R such that π(ri) = cx(xi) and define an algebra morphism C[x1, . . . , xn] - R
by sending the variable xi to ri. As the image of any polynomial non-vanishing in x is a unit in
R, this algebra map extends to one from the local algebra Ox(Cn) and it factors over Ox(Cn)/I2

x

as the image of Ix lies in the kernel of π which has square zero, proving the claim. Hence, Ox is
Grothendieck-smooth if and only if there is a C-algebra section

Ox(Cn)/I2
x

cx--
�
rx

⊃ Ox
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satisfying cx ◦ rx = idOx .

Proposition 4.1 The affine scheme X is non-singular at the geometric point x if and only if the
local algebra Ox(X) is Grothendieck-smooth.

Proof. The result will follow once we prove that there is a natural one-to-one correspondence
between Ox-module splittings sx of dx and C-algebra sections rx of cx. This correspondence is
given by assigning to an algebra section rx the map sx defined by

sx(dxi) = (xi − rx ◦ cx(xi)) mod I2
x

�

If X is an affine scheme which is smooth in all of its geometric points, then we have seen before
that X = X must be reduced, that is, an affine variety. Restricting to its disjoint irreducible
components we may assume that

C[X] = ∩x∈XOx.
Clearly, if C[X] is Grothendieck-smooth, so is any of the local algebras Ox. Conversely, if all Ox are
Grothendieck-smooth and C[X] = C[x1, . . . , xn]/I one knows that the algebra epimorphism

C[x1, . . . , xn]/I2 c-- C[X]

has local sections in every x, but then there is an algebra section. Because c is clearly a versal
infinitesimal deformation of C[X], it follows that C[X] is Grothendieck-smooth.

Proposition 4.2 Let X be an affine scheme. Then, C[X] is Grothendieck-smooth if and only if X is
non-singular in all of its geometric points. In this case, X is a reduced affine variety.

However, Grothendieck-smooth algebras do not have to be cat-smooth for more general cate-
gories of C-algebras.

Example 4.1 Consider the polynomial algebra C[x1, . . . , xd] and the 4-dimensional noncommuta-
tive local algebra

T =
C〈x, y〉

(x2, y2, xy + yx)
= C⊕ Cx⊕ Cy ⊕ Cxy

Consider the one-dimensional nilpotent ideal I = C(xy− yx) of T , then the 3-dimensional quotient
T
I

is commutative and we have a morphism C[x1, . . . , xd]
φ- T

I
by x1 7→ x, x2 7→ y and xi 7→ 0

for i ≥ 2. This morphism admits no lift to T as for any potential lift the commutator

[φ̃(x), φ̃(y)] 6= 0 in T .

Therefore, C[x1, . . . , xd] can only be Quillen smooth if d = 1.
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Because comm = alg@1, it is natural to generalize the foregoing to Cayley-smooth algebras. Let
B be a Cayley-Hamilton algebra of degree n with trace map trB and trace generated by m elements
say {b1, . . . , bm}. Then, we can write

B = Tmn /TB with TB closed under traces.

Now, consider the extended ideal

EB = Mn(C[Mm
n ]).TB .Mn(C[Mm

n ]) = Mn(NB)

and we have seen that C[trepn B] = C[Mm
n ]/NB . We need the following technical result.

Lemma 4.1 With notations as above, we have for all k that

Ekn
2

B ∩ Tmn ⊂ T kB .

Proof. Let Tmn be the trace algebra on the generic n × n matrices {X1, . . . , Xm} and Tl+mn the
trace algebra on the generic matrices {Y1, . . . , Yl, X1, . . . , Xm}. Let {U1, . . . , Ul} be elements of Tmn
and consider the trace preserving map Tl+mn

u- Tmn induced by the map defined by sending Yi
to Ui. Then, by the universal property we have a commutative diagram of Reynold operators

Mn(C[M l+m
n ])

ũ- Mn(C[Mm
n ])

Tl+mn

R

?
u - Tmn

R

?

.

Now, let A1, . . . , Al+1 be elements from Mn(C[Mm
n ]), then we can calculate

R(A1U1A2U2A3 . . . AlUlAl+1) by first computing

r = R(A1Y1A2Y2A3 . . . AlYlAl+1)

and then substituting the Yi with Ui. The Reynolds operator preserves the degree in each of the
generic matrices, therefore r will be linear in each of the Yi and is a sum of trace algebra elements.
By our knowledge of the generators of necklaces and the trace algebra we can write each term of
the sum as an expression

tr(M1)tr(M2) . . . tr(Mz)Mz+1

where each of the Mi is a monomial of degree ≤ n2 in the generic matrices {Y1, . . . , Yl, X1, . . . , Xm}.
Now, look at how the generic matrices Yi are distributed among the monomials Mj . Each Mj

contains at most n2 of the Yi’s, hence the monomial Mz+1 contains at least l− vn2 of the Yi where
v ≤ z is the number of Mi with i ≤ z containing at least one Yj .
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Now, assume all the Ui are taken from the ideal TB / Tmn which is closed under taking traces,
then it follows that

R(A1U1A2U2A3 . . . AlUlAl+1) ∈ T v+(l−vn2)
B ⊂ T kB

if we take l = kn2 as v + (k − v)n2 ≥ k. But this finishes the proof of the required inclusion. �

Let B be a Cayley-Hamilton algebra of degree n with trace map trB and I a twosided ideal of
B which is closed under taking traces. We will denote by E(I) the extended ideal with respect to
the universal embedding, that is,

E(I) = Mn(C[trepn B])IMn(C[trepn B]).

Then, for all powers k we have the inclusion E(I)kn
2
∩B ⊂ Ik.

Theorem 4.1 Let A be a Cayley-Hamilton algebra of degree n with trace map trA. Then, A is
Cayley-smooth if and only if the trace preserving representation variety trepn A is non-singular in
all points (in particular, trepn A is reduced).

Proof. Let A be Cayley-smooth, then we have to show that C[trepn A] is Grothendieck-
smooth. Take a commutative test-object (T, I) with I nilpotent and an algebra map κ :
C[trepn A] - T/I. Composing with the universal embedding iA we obtain a trace preserv-
ing morphism µ0

A ...............................................
µ1 - Mn(T )

Mn(C[trepn A])

iA

?

∩

Mn(κ)
- Mn(T/I)

??

µ0

-

Because Mn(T ) with the usual trace is a Cayley-Hamilton algebra of degree n and Mn(I) a trace
stable ideal and A is Cayley-smooth there is a trace preserving algebra map µ1. But then, by the
universal property of the embedding iA there exists a C-algebra morphism

λ : C[trepn A] - T

such that Mn(λ) completes the diagram. The morphism λ is the required lift.
Conversely, assume that C[trepn A] is Grothendieck-smooth. Assume we have a Cayley-

Hamilton algebra of degree n with trace map trT and a trace-stable nilpotent ideal I of T and
a trace preserving C-algebra map κ : A - T/I. If we combine this test-data with the universal



4.1. Smoothness 171

embeddings we obtain a diagram

T ⊂ iT- Mn(C[trepn T ])

A
κ -....

....
....
....
....
....
....
....
....
..

?∃
λ

-

T/I

??
⊂
iT/I- Mn(C[trepn T/I])

??
=Mn(C[trepn T ]/J)

Mn(C[trepn A])

iA

?

∩

.......
.......

.......
.......

.......
.......

.......
.......

.......
..

Mn
(α)

-

Here, J = Mn(C[trepn T ])IMn(C[trepn T ]) and we know already that J∩T = I. By the universal
property of the embedding iA we obtain a C-algebra map

C[trepn A]
α- C[trepn T ]/J

which we would like to lift to C[trepn T ]. This does not follow from Grothendieck-smoothness of
C[trepn A] as J is usually not nilpotent. However, as I is a nilpotent ideal of T there is some h

such that Ih = 0. As I is closed under taking traces we know by the remark preceding the theorem
that

E(I)hn
2
∩ T ⊂ Ih = 0.

Now, by definition E(I) = Mn(C[trepn T ])IMn(C[trepn T ]) which is equal to Mn(J). That is,

the inclusion can be rephrased as Mn(J)hn
2
∩T = 0, whence there is a trace preserving embedding

T ⊂ - Mn(C[trepn T ]/Jhn
2
). Now, we are in the situation of figure 4.1 This time we can lift α

to a C-algebra morphism

C[trepn A] - C[trepn T ]/Jhn
2
.

This in turn gives us a trace preserving morphism

A
λ- Mn(C[trepn T ]/Jhn

2
)

the image of which is contained in the algebra of GLn-invariants. Because

T ⊂ - Mn(C[trepn T ]/Jhn
2
) and by surjectivity of invariants under surjective maps, the

GLn-equivariants are equal to T , giving the required lift λ. �

For an affine C-algebra A recall the construction of its level n approximationZ
n

A =

R
A

(tr(1)− n, χ(n)
a (a) ∀a ∈ A)

= Mn(C[repn A])GLn
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T ⊂ - Mn(C[trepn T ]/Jkn
2
)

A
κ -....

....
....
....
....
....
....
....
....
..

λ

-

T/I

??
⊂
iT/I- Mn(C[trepn T ]/J)

??

Mn(C[trepn A])

iA

?

∩

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
...-

Mn
(α)

-

Figure 4.1:

In general, it may happen that
R
n
A = 0 for example if A has no n-dimensional representations.

The characteristic feature of
R
n
A is that any C-algebra map A - B with B a Cayley-Hamilton

algebra of degree n factors through
R
n
A

A
φ - B

Z
n

A

....
....
....
....
....
....
...

∃φ
n

-
can

-

with φn a trace preserving algebra morphism. From this universal property we deduce

Proposition 4.3 If A is Quillen-smooth, then for every integer n, the Cayley-Hamilton algebra of
degree n,

R
n
A, is Cayley-smooth. Moreover,

repn A ' trepn

Z
n

A

is a smooth affine GLn-variety.

This result allows us to study a Quillen-smooth algebra locally in the étale topology. We know
that the algebra

R
n
A is given by the GLn-equivariant maps from repn A = trepn

R
n
A to Mn(C).

As this representation variety is smooth we can apply the full strength of the slice theorem to
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determine the local structure of the GLn-variety trepn
R
n
A and hence of

R
n
A. In the next section

we will prove that this local structure is fully determined by a quiver setting.
Therefore, let us recall the definition of quivers and their path algebras and show that these

algebras are all Quillen-smooth.

Definition 4.2 A quiver Q is a directed graph determined by

• a finite set Qv = {v1, . . . , vk} of vertices , and

• a finite set Qa = {a1, . . . , al} of arrows where we allow multiple arrows between vertices and
loops in vertices.

Every arrow ��������i��������j
aoo has a starting vertex s(a) = i and a terminating vertex t(a) = j. Mul-

tiplication in the path algebra CQ is induced by (left) concatenation of paths. More precisely,
1 = v1 + . . .+vk is a decomposition of 1 into mutually orthogonal idempotents and further we define

• vj .a is always zero unless ��������j ��������aoo in which case it is the path a,

• a.vi is always zero unless ��������i�������� aoo in which case it is the path a,

• ai.aj is always zero unless ���������������� ��������aioo ajoo in which case it is the path aiaj.

Consider the commutative C-algebra

Ck = C[e1, . . . , ek]/(e
2
i − ei, eiej ,

kX
i=1

ei − 1).

Ck is the universal C-algebra in which 1 is decomposed into k orthogonal idempotents, that is, if
R is any C-algebra such that 1 = r1 + . . . + rk with ri ∈ R idempotents satisfying rirj = 0, then
there is an embedding Ck ⊂ - R sending ei to ri.

Proposition 4.4 Ck is Quillen smooth. That is, if I be a nilpotent ideal of a C-algebra T and if
1 = e1 + . . . + ek is a decomposition of 1 into orthogonal idempotents ei ∈ T/I. Then, we can lift
this decomposition to 1 = e1 + . . .+ek for orthogonal idempotents ei ∈ T such that π(ei) = ei where

T
π-- T/I is the canonical projection.

Proof. Assume that Il = 0, clearly any element 1− i with i ∈ I is invertible in T as

(1− i)(1 + i+ i2 + . . .+ il−1) = 1− il = 1.

If e is an idempotent of T/I and x ∈ T such that π(x) = e. Then, x− x2 ∈ I whence

0 = (x− x2)l = xl − lxl+1 +

„
l
2

«
xl+2 − . . .+ (−1)lx2l
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and therefore xl = axl+1 where a = l −
„
l
2

«
x + . . . + (−1)l−1xl−1 and so ax = xa. If we take

e = (ax)l, then e is an idempotent in T as

e2 = (ax)2l = al(alx2l) = alxl = e

the next to last equality follows from xl = axl+1 = a2xl+2 = . . . = alx2l. Moreover,

π(e) = π(a)lπ(x)l = π(a)lπ(x)2l = π(alx2l) = π(x)l = e.

If f is another idempotent in T/I such that ef = 0 = fe then as above we can lift f to an
idempotent f ′ of T . As f ′e ∈ I we can form the element

f = (1− e)(1− f ′e)−1f ′(1− f ′e).

Because f ′(1 − f ′e) = f ′(1 − e) one verifies that f is idempotent, π(f) = f and e.f = 0 = f.e.
Assume by induction that we have already lifted the pairwise orthogonal idempotents e1, . . . , ek−1

to pairwise orthogonal idempotents e1, . . . , ek−1 of R, then e = e1 + . . .+ ek−1 is an idempotent of
T such that eek = 0 = eke. Hence, we can lift ek to an idempotent ek ∈ T such that eek = 0 = eke.
But then also

eiek = (eie)ek = 0 = ek(eei) = ekei.

Finally, as e1 + . . .+ ek − 1 = i ∈ I we have that

e1 + . . .+ ek − 1 = (e1 + . . .+ ek − 1)l = il = 0

finishing the proof. �

Proposition 4.5 For any quiver Q, the path algebra CQ is Quillen smooth.

Proof. Take an algebra T with a nilpotent twosided ideal I / T and consider

T -- T

I

CQ

φ

6

�...............................

?φ̃

The decomposition 1 = φ(v1) + . . . + φ(vk) into mutually orthogonal idempotents in T
I

can be

lifted up the nilpotent ideal I to a decomposition 1 = φ̃(v1) + . . .+ φ̃(vk) into mutually orthogonal
idempotents in T . But then, taking for every arrow a

��������j ��������i
aoo an arbitrary element φ̃(a) ∈ φ̃(vj)(φ(a) + I)φ̃(vi)
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gives a required lifted algebra morphism CQ φ̃- T . �

Recall that a representation V of the quiver Q is given by

• a finite dimensional C-vector space Vi for each vertex vi ∈ Qv, and

• a linear map Vj �Va
Vi for every arrow ��������i��������j

aoo in Qa.

If dim Vi = di we call the integral vector α = (d1, . . . , dk) ∈ Nk the dimension vector of V and

denote it with dim V . A morphism V
φ- W between two representations V and W of Q is

determined by a set of linear maps

Vi
φi- Wi for all vertices vi ∈ Qv

satisfying the following compatibility conditions for every arrow ��������i��������j
aoo in Qa

Vi
Va - Vj

Wi

φi

?
Wa - Wj

φj

?

Clearly, composition of morphisms V
φ- W

ψ- X is given by the rule that (ψ ◦ φ)i = ψi ◦ ψi
and one readily verifies that this is again a morphism of representations of Q. In this way we form
a category rep Q of all finite dimensional representations of the quiver Q.

Proposition 4.6 The category rep Q is equivalent to the category of finite dimensional CQ-
representations CQ− mod.

Proof. Let M be an n-dimensional CQ-representation. Then, we construct a representation V of
Q by taking

• Vi = viM , and for any arrow ��������i��������j
aoo in Qa define

• Va : Vi - Vj by Va(x) = vjax.

Observe that the dimension vector dim(V ) = (d1, . . . , dk) satisfies
P
di = n. If φ : M - N

is CQ-linear, then we have a linear map Vi = viM
φi- Wi = viN which clearly satisfies the

compatibility condition.



176 Quiver Representations

Conversely, let V be a representation of Q with dimension vector dim(V ) = (d1, . . . , dk). Then,
consider the n =

P
di-dimensional space M = ⊕iVi which we turn into a CQ-representation as

follows. Consider the canonical injection and projection maps Vj ⊂
ij- M

πj-- Vj . Then, define
the action of CQ by fixing the action of the algebra generators vj and al to be(

vjm = ij(πj(m))

alm = ij(Va(πi(m)))

for all arrows ��������i��������j
aloo . A computation verifies that these two operations are inverse to each

other and induce an equivalence of categories. �

4.2 Local structure

In this section we give some applications of the slice theorem to the local structure of quotient
varieties of representation spaces. We will first handle the case of an affine C-algebra A leading to
a local description of

R
n
A. Next, we will refine this slightly to prove similar results for an arbitrary

affine C-algebra B in alg@n.
When A is an affine C-algebra generated by m elements {a1, . . . , am}, its level n approximationR

n
A is trace generated by m determining a trace preserving epimorphism Tmn -- R

n
A. Thus we

have a GLn-equivariant closed embedding of affine schemes

repn A = trepn

Z
n

A ⊂ ψ- trepn Tmn = Mm
n

Take a point ξ of the quotient scheme issn A = trepn
R
n
A/GLn. We know that ξ determines the

isomorphism class of a semi-simple n-dimensional representation of A, say

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek
k

where the Si are distinct simple A-representations, say of dimension di and occurring in Mξ with
multiplicity ei. These numbers determine the representation type τ(ξ) of ξ (or of the semi-simple
representation Mξ), that is

τ(ξ) = (e1, d1; e2, d2; . . . ; ek, dk)

Choosing a basis of Mξ adapted to this decomposition gives us a point x = (X1, . . . , Xm) in the
orbit O(Mξ) such that each n× n matrix Xi is of the form

Xi =

266664
m

(i)
1 ⊗

rr
e1 0 . . . 0

0 m
(i)
2 ⊗

rr
e2 . . . 0

...
...

. . .
...

0 0 . . . m
(i)
k ⊗

rr
ek

377775
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where each m
(i)
j ∈Mdj (C). Using this description we can compute the stabilizer subgroup Stab(x)

of GLn consisting of those invertible matrices g ∈ GLn commuting with every Xi. That is, Stab(x)
is the multiplicative group of units of the centralizer of the algebra generated by the Xi. It is easy
to verify that this group is isomorphic to

Stab(x) ' GLe1 ×GLe2 × . . .×GLek = GL(αξ)

for the dimension vector αξ = (e1, . . . , ek) determined by the multiplicities and with embedding
Stab(x) ⊂ - GLn given by26664

GLe1(C⊗
rr
d1) 0 . . . 0

0 GLe2(C⊗
rr
d2) . . . 0

...
...

. . .
...

0 0 . . . GLek (C⊗ rr
dk

)

37775
A different choice of point in the orbit O(Mξ) gives a subgroup of GLn conjugated to Stab(x).

We know that the normal space Nsm
x can be identified with the self-extensions Ext1A(M,M)

and we will give a quiver-description of this space. The idea is to describe first the GL(α)-module
structure of Nbig

x , the normal space to the orbit O(Mξ) in Mm
n (see figure 4.2) and then to identify

the direct summand Nsm
x . The description of Nbig

x follow from a book-keeping operation involving
GL(α)-representations. For x = (X1, . . . , Xm), the tangent space Tx O(Mxi) in Mm

n to the orbit
is equal to the image of the linear map

gln = Mn
- Mn ⊕ . . .⊕Mn = Tx M

m
n

A 7→ ([A,X1], . . . , [A,Xm])

Observe that the kernel of this map is the centralizer of the subalgebra generated by the Xi, so we
have an exact sequence of Stab(x) = GL(α)-modules

0 - gl(α) = Lie GL(α) - gln = Mn
- Tx O(x) - 0

BecauseGL(α) is a reductive group everyGL(α)-module is completely reducible and so the sequence
splits. But then, the normal space in Mm

n = Tx M
m
n to the orbit is isomorphic as GL(α)-module

to
Nbig
x = Mn ⊕ . . .⊕Mn| {z }

m−1

⊕gl(α)

with the action of GL(α) (embedded as above in GLn) is given by simultaneous conjugation. If
we consider the GL(α)-action on Mn depicted in figure 4.2 we see that it decomposes into a direct
sum of subrepresentations

• for each 1 ≤ i ≤ k we have d2
i copies of the GL(α)-module Mei on which GLei acts by

conjugation and the other factors of GL(α) act trivially,
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22
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22
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2

x

O(Mξ)

Nsm
x

N
big
x

repn A

Nsm
x =

Tx repn A

Tx O(Mξ)
/ Nbig

x =
Tx M

m
n

Tx O(Mξ)

Figure 4.2: Big and small normal spaces to the orbit.

• for all 1 ≤ i, j ≤ k we have didj copies of the GL(α)-module Mei×ej on which GLei ×GLej

acts via g.m = gimg
−1
j and the other factors of GL(α) act trivially.

These GL(α) components are precisely the modules appearing in representation spaces of quivers.

Theorem 4.2 Let ξ be of representation type τ = (e1, d1; . . . ; ek, dk) and let α = (e1, . . . , ek).
Then, the GL(α)-module structure of the normal space Nbig

x in Mm
n to the orbit of the semi-simple

n-dimensional representation O(Mξ) is isomorphic to

repα Q
big
ξ

where the quiver Qbigξ has k vertices (the number of distinct simple summands of Mξ) and the
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8><>:d18<:d2

| {z }
d1

| {z }
d2

Figure 4.3: The GL(α)-action on Mn

subquiver on any two vertices vi, vj for 1 ≤ i 6= j ≤ k has the following shape

ei8?9>:=;< ej8?9>:=;< (m − 1)d
2
j + 1(m − 1)d

2
i + 1

(m − 1)didj

**

(m − 1)didj

jj77 gg

That is, in each vertex vi there are (m−1)d2
i +1-loops and there are (m−1)didj arrows from vertex

vi to vertex vj for all 1 ≤ i 6= j ≤ k.

Example 4.2 If m = 2 and n = 3 and the representation type is τ = (1, 1; 1, 1; 1, 1) (that is, Mξ

is the direct sum of three distinct one-dimensional simple representations) then the quiver Qξ is

18?9>:=;< 18?9>:=;<

18?9>:=;<

**
jj

;;

{{

SS

��
--
MM

qq
QQ

qq--
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We have GLn-equivariant embeddings O(Mξ) ⊂ - trepn
R
n
A ⊂ - Mm

n and corresponding
embeddings of the tangent spaces in x

Tx O(Mξ) ⊂ - Tx trepn

Z
n

A ⊂ - Tx M
m
n

Because GL(α) is reductive we then obtain that the normal spaces to the orbit is a direct summand
of GL(α)-modules.

Nsm
x =

Tx trepn
R
n
A

Tx O(Mξ)
/ Nbig

x =
Tx M

m
n

Tx O(Mξ)

As we know the isotypical decomposition of Nbig
x as the GL(α)-module repα Qξ this allows us to

control Nsm
x . We only have to observe that arrows in Qξ correspond to simple GL(α)-modules,

whereas a loop at vertex vi decomposes as GL(α)-module into the simples

Mei = M0
ei
⊕ Ctriv

where Ctriv is the one-dimensional simple with trivial GL(α)-action and M0
ei

is the space of trace

zero matrices in Mei . Any GL(α)-submodule of Nbig
x can be represented by a marked quiver using

the dictionary

• a loop at vertex vi corresponds to the GL(α)-module Mei on which GLei acts by conjugation
and the other factors act trivially,

• a marked loop at vertex vi corresponds to the simple GL(α)-module M0
ei

on which GLei acts
by conjugation and the other factors act trivially,

• an arrow from vertex vi to vertex vj corresponds to the simple GL(α)-module Mei×ej on

which GLei ×GLej acts via g.m = gimg
−1
j and the other factors act trivially,

Combining this with the calculation that the normalspace is the space of self-extensions
Ext1A(Mξ,Mξ) or the trace preserving self-extensions ExttrB (Mξ,Mxi) (in case B ∈ Ob(alg@n))
we have.

Theorem 4.3 Consider the marked quiver on k vertices such that the full marked subquiver on
any two vertices vi 6= vj has the form

ei8?9>:=;< ej8?9>:=;<
ajjaii

mjjmii

aij

**

aji

jj
��

•

DD

��

•

ZZ

where these numbers satisfy aij ≤ (m− 1)didj and aii +mii ≤ (m− 1)d2
i + 1. Then,
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GLn ×GL(α) Nsm
x

�GLn×GL(α)φ
GLn ×GL(α) Sx

ψ - repn A

Nsm
x /GL(α)

??
� φ/GL(α)

Sx/GL(α)

??
ψ/GL(α) - issn A

??

Figure 4.4: Slice diagram for representation space.

1. Let A be an affine C-algebra generated by m elements, let Mξ be an n-dimensional semisimple
A-module of representation-type τ = (e1, d1; . . . ; ek, dk) and let α = (e1, . . . , ek). Then, the
normal space Nsm

x in a point x ∈ O(Mξ) to the orbit with respect to the representation space
repn A is isomorphic to the GL(α)-module of quiver-representations repα Qξ of above type
with

• aii = dimC Ext1A(Si, Si) and mii = 0 for all 1 ≤ i ≤ k.
• aij = dimC Ext1A(Si, Sj) for all 1 ≤ i 6= j ≤ n.

2. Let B be a Cayley-Hamilton algebra of degree n, trace generated by m elements, let
Mξ be a trace preserving n-dimensional semisimple B-module of representation type τ =
(e1, d1; . . . ; ek, dk) and let α = (e1, . . . , ek). Then, the normal space N tr

x in a point x ∈ O(Mξ)
to the orbit with respect to the trace preserving representation space trepn B is isomorphic
to the GL(α)-module of marked quiver-representations repα Q

•
ξ of above type with

• aij = dimC Ext1B(Si, Sj) for all 1 ≤ i 6= j ≤ k.

and the (marked) vertex loops further determine the structure of ExttrB (Mξ,Mξ).

By a marked quiver-representation we mean a representation of the underlying quiver (that is,
forgetting the marks) subject to the condition that the matrices corresponding to marked loops
have trace zero.

Consider the slice diagram of figure 4.4 for the representation space repn A. The left hand side
exists when x is a smooth point of repn A, the right hand side exists always. The horizontal maps
are étale and the upper ones GLn-equivariant.

Definition 4.3 A point ξ ∈ issn A is said to belong to the n-smooth locus of A iff the repre-
sentation space repn A is smooth in x ∈ O(Mξ). The n-smooth locus of A will be denoted by
Smn(A).

To determine the étale local structure of Cayley-Hamilton algebras in their n-smooth locus, we
need to investigate the special case of quiver orders. We will do this in the next section and, at its
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end, draw some consequences about the étale local structure. We end this section by explaining
the remarkable success of these local quiver settings and suggest that one can extend this using the
theory of A∞-algebras.

The category alg has a topological origin. Consider the tiny interval operad D1, that is, let
D1(n) be the collection of all configurations

i1 i2 in

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

consisting of the unit interval with n closed intervals removed, each gap given a label ij where
(i1, i2, . . . , in) is a permutation of (1, 2, . . . , n). Clearly, D1(n) is a real 2n-dimensional C∞-manifold
having n! connected components, each of which is a contractible space. The operad structure comes
from the collection of composition maps

D1(n)× (D1(m1)× . . .D1(mn))
m(n,m1,...,mn)- D1(m1 + . . .+mn)

defined by resizing the configuration in the D1(mi)-component such that it fits precisely in the
i-th gap of the configuration of the D1(n)-component, see figure 4.5. We obtain a unit interval
having m1 + . . .+mn gaps which are labeled in the natural way, that is the first m1 labels are for
the gaps in the D1(m1)-configuration fitted in gap 1, the next m2 labels are for the gaps in the
D1(m2)-configuration fitted in gap 2 and so on. The tiny interval operad D1 consists of

• a collection of topological spaces D1(n) for n ≥ 0,

• a continuous action of Sn on D1(n) by relabeling, for every n,

• an identity element id ∈ D1(1),

• the continuous composition maps m(n,m1,...,mn) which satisfy associativity and equivariance
with respect to the symmetric group actions.

By taking the homology groups of these manifolds D1(n) we obtain a linear operad assoc. Because
D1(n) has n! contractible components we can identify assoc(n) with the subspace of the free
algebra C〈x1, . . . , xn〉 spanned by the multilinear monomials. assoc(n) has dimension n! with
basis xσ(1) . . . xσ(n) for σ ∈ Sn. Each assoc(n) has a natural action of Sn and as Sn-representation
it is isomorphic to the regular representation. The composition maps m(n,m1,...,mn) induce on the
homology level linear composition maps

assoc(n)⊗ assoc(m1)⊗ . . .⊗ assoc(mn)
γ(n,m1,...,mn)- assoc(m1 + . . .+mn)

obtained by substituting the multilinear monomials φi ∈ assoc(mi) in the place of the variable xi
into the multilinear monomial ψ ∈ assoc(n).



4.2. Local structure 183

i1

j1 j2 jmi1

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

k1 k2 kmi2

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

l1 l2 lmin

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

i2 in

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

Figure 4.5: The tiny interval operad.

In general, a C-linear operad P consists of a family of vectorspaces P(n) each equipped with an
Sn-action, P(1) contains an identity element and there are composition linear morphisms

P(n)⊗ P(m1)⊗ . . .⊗ P(mn)
c(n,m1,...,mn)- P(m1 + . . .+mn)

satisfying the same compatibility relations as the maps γ(n,m1,...,mn) above. An example is the
endomorphism operad endV for a vectorspace V defined by taking

endV (n) = HomC(V ⊗n, V )

with compositions and Sn-action defined in the obvious way and unit element rr
V ∈ endV (1) =

End(V ). A morphism of linear operads P
f- P′ is a collection of linear maps which are equivariant

with respect to the Sn-action, commute with the composition maps and take the identity element
of P to the identity element of P′.

Definition 4.4 Let P be a C-linear operad. A P-algebra is a vectorspace A equipped with a mor-

phism of operads P
f- endA.
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For example, assoc-algebras are just associative C-algebras, explaining the topological origin of
alg. Instead of considering the homology operad assoc of the tiny intervals D1 we can consider
its chain operad chain. For a topological space X, let chains(X) be the complex concentrated
in non-positive degrees, whose −k-component consists of the finite formal additive combinationsP
ci.fi where ci ∈ C and fi : [0, 1]k - X is a continuous map (a singular cube in X ) modulo

the following relations

• For any σ ∈ Sk acting on [0, 1]k by permutation, we have f ◦ σ = sg(σ)f .

• For prkk−1 : [0, 1]k
k−1-- the projection on the first k−1 coordinates and any continuous map

[0, 1]k−1 f ′- X we have f ′ ◦ prkk−1 = 0.

Then, chain is the collection of complexes chains(D1(n)) and is an operad in the category of
complexes of vectorspaces with cohomology the homology operad assoc. Again, we can consider
chain-algebras, this time as complexes of vectorspaces. These are the A∞-algebras.

Definition 4.5 An A∞-algebra is a Z-graded complex vectorspace

B = ⊕p∈ZBp

endowed with homogeneous C-linear maps

mn : B⊗n - B

of degree 2− n for all n ≥ 1, satisfying the following relations

• We have m1 ◦m1 = 0, that is (B,m1) is a differential complex

. . .
m1- Bi−1

m1- Bi
m1- Bi+1

m1- . . .

• We have the equality of maps B ⊗B - B

m1 ◦m2 = m2 ◦ (m1 ⊗ rr+ rr⊗m1)

where rr is the identity map on the vectorspace B. That is, m1 is a derivation with respect to

the multiplication B ⊗B m2- B.

• We have the equality of maps B ⊗B ⊗B - B

m2 ◦ (rr⊗m2 −m2 ⊗ rr)

= m1 ◦m3 +m3 ◦ (m1 ⊗ rr⊗ rr+ rr⊗m1 ⊗ 1 + rr⊗ rr⊗m1)

where the right second expression is the associator for the multiplication m2 and the first is a
boundary of m3, implying that m2 is associative up to homology.
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P
± = 0

��������
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��������
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//

/
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ml

Figure 4.6: A∞-identities.

• More generally, for n ≥ 1 we have the relationsX
(−1)i+j+kml ◦ (rr⊗i ⊗mj ⊗ rr⊗k) = 0

where the sum runs over all decompositions n = i + j + k and where l = i + 1 + k. These
identities are pictorially represented in figure 4.6.

Observe that an A∞-algebra B is in general not associative for the multiplication m2, but its
homology

H∗ B = H∗(B,m2)

is an associative graded algebra for the multiplication induced by m2. Further, if mn = 0 for all
n ≥ 3, then B is an associative differentially graded algebra and conversely every differentially
graded algebra yields an A∞-algebra with mn = 0 for all n ≥ 3.

Let A be an associative C-algebra and M a left A-module. Choose an injective resolution of M

0 - M - I0 - I1 - . . .

with the Ik injective left A-modules and denote by I• the complex

I• : 0 - I0 d- I1 d- . . .

Let B = HOM•A(I•, I•) be the morphism complex. That is, its n-th component are the graded
A-linear maps I• - I• of degree n. This space can be equipped with a differential

d(f) = d ◦ f − (−1)nf ◦ d for f in the n-th part
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Then, B is a differentially graded algebra where the multiplication is the natural composition of
graded maps. The homology algebra

H∗ B = Ext∗A(M,M)

is the extension algebra of M . Generalizing the description of Ext1A(M,M) given in section 4.3,
an element of ExtkA(M,M) is an equivalence class of exact sequences of A-modules

0 - M - P1
- P2

- . . . - Pk - M - 0

and the algebra structure on the extension algebra is induced by concatenation of such sequences.
This extension algebra has a canonical structure of A∞-algebra with m1 = 0 and m2 he usual
multiplication.

Now, let M1, . . . ,Mk be A-modules (for example, finite dimensional representations) and with
filt(M1, . . . ,Mk) we denote the full subcategory of all A-modules whose objects admit finite filtra-
tions with subquotients among the Mi. We have the following result, for a proof and more details
we refer to the excellent notes by B. Keller [40, §6].

Theorem 4.4 Let M = M1 ⊕ . . . ⊕ Mk. The canonical A∞-structure on the extension algebra
Ext∗A(M,M) contains enough information to reconstruct the category filt(M1, . . . ,Mk).

If we specialize to the case when M is a semi-simple n-dimensional representation of A of
representation type τ = (e1, d1; . . . ; ek, dk) say with decomposition

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek
k

Then, the first two terms of the extension algebra Ext∗A(Mξ,Mξ) are

• Ext0A(Mξ,Mξ) = EndA(Mξ) = Me1(C) ⊕ . . . ⊕ Mek (C) because by Schur’s lemma
HomA(Si, Sj) = δijC. Hence, the 0-th part of Ext∗A(Mξ,Mξ) determine the dimension vector
α = (e1, . . . , ek).

• Ext1A(Mξ,Mξ) = ⊕ki,j=1Mej×ei(Ext
1
A(Si, Sj)) and we have seen that dimC Ext1A(Si, Sj) is

the number of arrows from vertex vi to vj in the local quiver Qξ.

Summarizing the results of the previous section, we have :

Proposition 4.7 Let ξ ∈ Smn(A), then the first two terms of the extension algebra Ext∗A(Mξ,Mξ)
contain enough information to determine the étale local structure of repn A and issn A near Mξ.

If one wants to extend this result to noncommutative singular points ξ /∈ Smn(A), one will have
to consider the canonical A∞-structure on the full extension algebra Ext∗A(Mξ,Mξ).
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4.3 Quiver orders

In this section and the next we will construct a large class of central simple algebras controlled by
combinatorial data, using the setting of proposition 3.3.

The description of the quiver Q can be encoded in an integral k × k matrix

χQ =

264χ11 . . . χ1k

...
...

χk1 . . . χkk

375 with χij = δij −# { ��������i��������j oo }

Example 4.3 Consider the quiver Q

�������� ��������
��������

// ��

88 FF

2 3

1

Then, with the indicated ordering of the vertices we have that the integral matrix is

χQ =

24 1 0 0
−2 1 −1
0 0 0

35
and the path algebra of Q is isomorphic to the block-matrix algebra

CQ′ '

24C C⊕ C 0
0 C 0
0 C[x] C[x]

35
where x is the loop in vertex v3.

The subspace CQvi has as basis the paths starting in vertex vi and because CQ = ⊕iCQvi,
CQvi is a projective left ideal of CQ. Similarly, viCQ has as basis the paths ending at vi and is a
projective right ideal of CQ. The subspace viCQvj has as basis the paths starting at vj and ending
at vi and CQviCQ is the twosided ideal of CQ having as basis all paths passing through vi. If
0 6= f ∈ CQvi and 0 6= g ∈ viCQ, then f.g 6= 0 for let p be a longest path occurring in f and q a
longest path in g, then the coefficient of p.q in f.g cannot be zero. As a consequence we have

Lemma 4.2 The projective left ideals CQvi are indecomposable and pairwise non-isomorphic.
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Proof. If CQvi is not indecomposable, then there exists a projection idempotent f ∈
HomCQ(CQvi,CQvi) ' viCQvi. But then, f2 = f = f.vi whence f.(f − vi) = 0, contradict-
ing the remark above. Further, for any left CQ-module M we have that HomCQ(CQvi,M) ' viM .
So, if CQvi ' CQvj then the isomorphism gives elements f ∈ viCQvj and g ∈ vjCQvi such that
f.g = vi and g.f = vj . But then, vi ∈ CQvjCQ, a contradiction unless i = j as this space has basis
all paths passing through vj . �

Example 4.4 Let Q be a quiver, then the following properties hold :

1. CQ is finite dimensional if and only if Q has no oriented cycles.

2. CQ is prime (that is, I.J 6= 0 for all twosided ideals I, J 6= 0) if and only if Q is strongly
connected, that is, for all vertices vi and vj there is a path from vi to vj .

3. CQ is Noetherian (that is, satisfies the ascending chain condition on left (or right) ideals) if
and only if for every vertex vi belonging to an oriented cycle there is only one arrow starting
at vi and only one arrow terminating at vi.

4. The radical of CQ has as basis all paths from vi to vj for which there is no path from vj to
vi.

5. The center of CQ is of the form C×. . .×C×C[x]×. . .×C[x] with one factor for each connected
component C of Q (that is, connected component for the underlying graph forgetting the
orientation) and this factor is isomorphic to C[x] if and only if C is one oriented cycle.

The Euler form of the quiver Q is the bilinear form on Zk

χQ(., .) : Zk × Zk - Z defined by χQ(α, β) = α.χQ.β
τ

for all row vectors α, β ∈ Zk.

Theorem 4.5 Let V and W be two representations of Q, then

dimC HomCQ(V,W )− dimC Ext1CQ(V,W ) = χQ(dim(V ), dim(W ))

Proof. We claim that there exists an exact sequence of C-vectorspaces

0 - HomCQ(V,W )
γ- ⊕vi∈Qv HomC(Vi,Wi)

dV
W-

dV
W- ⊕a∈Qa HomC(Vs(a),Wt(a))

ε- Ext1CQ(V,W ) - 0
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Here, γ(φ) = (φ1, . . . , φk) and dVW maps a family of linear maps (f1, . . . , fk) to the linear maps
µa = ft(a)Va −Wafs(a) for any arrow a in Q, that is, to the obstruction of the following diagram
to be commutative

Vs(a)
Va- Vt(a)

Ws(a)

fs(a)

?
Wa- Wt(a)

ft(a)

?

.............................

µ
a

-

By the definition of morphisms between representations of Q it is clear that the kernel of dVW
coincides with HomCQ(V,W ).

Further, the map ε is defined by sending a family of maps (g1, . . . , gs) = (ga)a∈Qa to the
equivalence class of the exact sequence

0 - W
i- E

p- V - 0

where for all vi ∈ Qv we have Ei = Wi ⊕ Vi and the inclusion i and projection map p are the
obvious ones and for each generator a ∈ Qa the action of a on E is defined by the matrix

Ea =

»
Wa ga
0 Va

–
: Es(a) = Ws(a) ⊕ Vs(a) - Wt(a) ⊕ Vt(a) = Et(a)

Clearly, this makes E into a CQ-module and one verifies that the above short exact sequence is one
of CQ-modules. Remains to prove that the cokernel of dVW can be identified with Ext1CQ(V,W ).

A set of algebra generators of CQ is given by {v1, . . . , vk, a1, . . . , al}. A cycle is given by a linear
map λ : CQ - HomC(V,W ) such that for all f, f ′ ∈ CQ we have the condition

λ(ff ′) = ρ(f)λ(f ′) + λ(f)σ(f ′)

where ρ determines the action on W and σ that on V . First, consider vi then the condition says
λ(v2

i ) = λ(vi) = pWi λ(vi)+λ(vi)p
V
i whence λ(vi) : Vi - Wi but then applying again the condition

we see that λ(vi) = 2λ(vi) so λ(vi) = 0. Similarly, using the condition on a = vt(a)a = avs(a) we
deduce that λ(a) : Vs(a) - Wt(a). That is, we can identify ⊕a∈QaHomC(Vs(a),Wt(a)) with
Z(V,W ) under the map ε. Moreover, the image of δ gives rise to a family of morphisms λ(a) =
ft(a)Va −Wafs(a) for a linear map f = (fi) : V - W so this image coincides precisely to the

subspace of boundaries B(V,W ) proving that indeed the cokernel of dVW is Ext1CQ(V,W ) finishing
the proof of exactness of the long sequence of vectorspaces. But then, if dim(V ) = (r1, . . . , rk) and
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dim(W ) = (s1, . . . , sk), we have that dim Hom(V,W )− dim Ext1(V,W ) is equal toX
vi∈Qv

dim HomC(Vi,Wi)−
X
a∈Qa

dim HomC(Vs(a),Wt(a))

=
X
vi∈Qv

risi −
X
a∈Qa

rs(a)st(a)

= (r1, . . . , rk)MQ(s1, . . . , sk)
τ = χQ(dim(V ), dim(W ))

finishing the proof. �

Fix a dimension vector α = (d1, . . . , dk) ∈ Nk and consider the set repα Q of all representations
V of Q such that dim(V ) = α. Because V is completely determined by the linear maps

Va : Vs(a) = Cds(a) - Cdt(a) = Vt(a)

we see that repα Q is the affine space

repα Q =
M

��������i��������j
aoo

Mdj×di(C) ' Cr

where r =
P
a∈Qa

ds(a)dt(a). On this affine space we have an action of the algebraic group GL(α) =

GLd1 × . . .×GLdk by conjugation. That is, if g = (g1, . . . , gk) ∈ GL(α) and if V = (Va)a∈Qa then
g.V is determined by the matrices

(g.V )a = gt(a)Vag
−1
s(a).

If V and W in repα Q are isomorphic as representations of Q, such an isomorphism is determined

by invertible matrices gi : Vi - Wi ∈ GLdi such that for every arrow ��������i��������j
aoo we have a

commutative diagram

Vi
Va - Vj

Wi

gi

?
Wa - Wj

gj

?

or equivalently, gjVa = Wagi. That is, two representations are isomorphic if and only if they belong
to the same orbit under GL(α). In particular, we see that

StabGL(α) V ' AutCQ V
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and the latter is an open subvariety of the affine space EndCQ(V ) = HomCQ(V, V ) whence they
have the same dimension. The dimension of the orbit O(V ) of V in repα Q is equal to

dim O(V ) = dim GL(α)− dim StabGL(α) V.

But then we have a geometric reformulation of the above theorem.

Lemma 4.3 Let V ∈ repα Q, then

dim repα Q− dim O(V ) = dim EndCQ(V )− χQ(α, α) = dim Ext1CQ(V, V )

Proof. We have seen that dim repα Q− dim O(V ) is equal toX
a

ds(a)dt(a) − (
X
i

d2
i − dim EndCQ(V )) = dim EndCQ(V )− χQ(α, α)

and the foregoing theorem asserts that the latter term is equal to dim Ext1CQ(V, V ). �

In particular it follows that the orbit O(V ) is open in repα Q if and only if V has no self-
extensions. Moreover, as repα Q is irreducible there can be at most one isomorphism class of a
representation without self-extensions.

For every dimension vector α = (d1, . . . , dk) we will construct a quiver order TαQ which is a
Cayley-Hamilton algebra of degree n where n = d1 + . . .+ dk. First, we describe the n-dimensional
representations of the Quillen-smooth algebra Ck.

Proposition 4.8 Let Ck = C[e1, . . . , ek]/(e
2
i − ei, eiej ,

Pk
i=1 ei − 1), then repn Ck is reduced and

is the disjoint union of the homogeneous varieties

repn Ck =
[
α

GLn/(GLd1 × . . .×GLdk )

where the union is taken over all α = (d1, . . . , dk) such that n =
P
i di.

Proof. As Ck is Quillen smooth we will see in section 4.1 that all its representation spaces repn Ck
are smooth varieties hence in particular reduced. Therefore, it suffices to describe the points. For
any n-dimensional representation

Ck
φ- Mn(C)

the image is a commutative semi-simple algebra with orthogonal idempotents fi = φ(ei) of rank di.
Because

P
i ei = rr

n we must have that
P
i di = n. Alternatively, the corresponding n-dimensional

representation M = ⊕iMi where Mi = eiCn has dimension di. The stabilizer subgroup of M is
equal to GL(α) = GLd1 × . . .×GLdk , proving the claim. �
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The algebra embedding Ck
φ- CQ obtained by φ(ei) = vi determines a morphism

repn CQ π- repn Ck = ∪αO(α) = ∪αGLn/GL(α)

where the disjoint union is taken over all the dimension vectors α = (d1, . . . , dk) such that n =
P
di.

Consider the point pα ∈ O(α) determined by sending the idempotents ei to the canonical diagonal
idempotents Pi

l=1 diX
j=

Pi−1
l=1 dl+1

ejj ∈Mn(C)

We denote by Ck(α) this semi-simple commutative subalgebra of Mn(C). As repα Q can be
identified with the variety of n-dimensional representations of CQ in block form determined by
these idempotents we see that repα Q = π−1(p).

We define the quiver trace algebra TQ to be the path algebra of Q over the polynomial algebra
R in the variables tp where p is a word in the arrows aj ∈ Qa and is determined only up to cyclic
permutation. As a consequence we only retain the variables tp where p is an oriented cycle in Q
(as all the others have a cyclic permutation which is the zero element in CQ). We define a formal
trace map tr on TQ by tr(p) = tp if p is an oriented cycle in Q and tr(p) = 0 otherwise.

For a fixed dimension vector α = (d1, . . . , dk) with
P
i di = n we define Tα Q to be the quotient

TαQ =
TQ

(χ
(n)
a (a), tr(vi)− di)

by dividing out the substitution invariant twosided ideal generated by all the evaluations of the

formal Cayley-Hamilton algebras of degree n, χ
(n)
a (a) for a ∈ TQ together with the additional

relations that tr(vi) = di. Tα Q is a Cayley-Hamilton algebra of degree n with a decomposition
1 = e1 + . . .+ ek into orthogonal idempotents such that tr(ei) = di.

More generally, let A be a Cayley-Hamilton algebra of degree n with decomposition 1 = a1 +
. . . + an into orthogonal idempotents such that tr(ai) = di ∈ N+ and

P
di = n. Then, we have

a trace preserving embedding Ck(α) ⊂ i- A making A into a Ck(α) = ×ki=1C-algebra. We have

a trace preserving embedding Ck(α) ⊂ i′- Mn(C) by sending the idempotent ei to the diagonal

idempotent Ei ∈Mn(C) with ones on the diagonal from position
Pi−1
j=1 dj−1 to

Pi
j=1 di. This calls

for the introduction of a restricted representation space of all trace preserving algebra morphisms
χ such that the diagram below is commutative

A
χ- Mn(C)

Ck(α)

i

∪

6

⊂

i
′

-
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that is, such that χ(ai) = Ei. This again determines an affine scheme represα A which is in fact
a closed subscheme of trepn A. The functorial description of the restricted module scheme is as
follows. Let C be any commutative C-algebra, then Mn(C) is a Ck(α)-algebra and the idempotents
Ei allow for a block decomposition

Mn(C) = ⊕i,jEiMn(C)Ej =

264E1Mn(C)E1 . . . E1Mn(C)Ek
...

...
EkMn(C)E1 . . . EkMn(C)Ek

375 .
The scheme represα A assigns to the algebra C the set of all trace preserving algebra maps

A
φ- Mn(B) such that φ(ai) = Ei.

Equivalently, the idempotents ai decompose A into block form A = ⊕i,jaiAaj and then represα A(C)
are the trace preserving algebra morphisms A - Mn(B) compatible with the block decomposi-
tions.

Still another description of the restricted representation scheme is therefore that represα A is the
scheme theoretic fiber π−1(pα) of the point pα under the GLn-equivariant morphism

trepn A
π- trepn Ck(α).

Hence, the stabilizer subgroup of p acts on represα A. This stabilizer is the subgroup GL(α) =
GLm1 × . . .×GLmk embedded in GLn along the diagonal

GL(α) =

264GLm1

. . .
GLmk

375 ⊂ - GLn.

Clearly, GL(α) acts via this embedding by conjugation on Mn(C).

Theorem 4.6 Let A be a Cayley-Hamilton algebra of degree n such that 1 = a1 + . . . + ak is a
decomposition into orthogonal idempotents with tr(ai) = mi ∈ N+. Then, A is isomorphic to the
ring of GL(α)-equivariant maps

rep
res
α A - Mn.

Proof. We know that A is the ring of GLn-equivariant maps trepn A
- Mn. Further, we have

a GLn-equivariant map

trepn A
π- repntr Ck(α) = GLn.p ' GLn/GL(α)

Thus, the GLn-equivariant maps from trepn A to Mn coincide with the Stab(p) = GL(α)-
equivariant maps from the fiber π−1(p) = represα A to Mn. �
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That is, we have a block matrix decomposition for A. Indeed, we have

A ' (C[represα A]⊗Mn(C))GL(α)

and this isomorphism is clearly compatible with the block decomposition and thus we have for all
i, j that

aiAaj ' (C[represα A]⊗Mmi×mj (C))GL(α)

where Mmi×mj (C) is the space of rectangular mi ×mj matrices M with coefficients in C on which
GL(α) acts via

g.M = giMg−1
j where g = (g1, . . . , gk) ∈ GL(α).

If we specialize this result to the case of quiver orders we have

rep
res
α TαQ ' repα Q

as GL(α)-varieties and we deduce

Theorem 4.7 With notations as before,

1. Tα Q is the algebra of GL(α)-equivariant maps from repα Q to Mn, that is,

Tα Q = Mn(C[repα Q])GL(α)

2. The quiver necklace algebra

Nα Q = C[repα Q]GL(α)

is generated by traces along oriented cycles in the quiver Q of length bounded by n2 + 1.

A concrete realization of these algebras is as follows. To an arrow ��������j ��������i
a

oo corresponds a

dj × di matrix of variables from C[repα Q]

Ma =

264 x11(a) . . . . . . x1di(a)
...

...
xdj1(a) . . . . . . xdjdi(a)

375
where xij(a) are the coordinate functions of the entries of Va of a representation V ∈ repα Q. Let
p = a1a2 . . . ar be an oriented cycle in Q, then we can compute the following matrix

Mp = Mar . . .Ma2Ma1

over C[repα Q]. As we have that s(ar) = t(a1) = vi, this is a square di×di matrix with coefficients
in C[repα Q] and we can take its ordinary trace

Tr(Mp) ∈ C[repα Q].
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Then, Nα Q is the C-subalgebra of C[repα Q] generated by these elements. Consider the block
structure of Mn(C[repα Q]) with respect to the idempotents ei266664

Md1(S) . . . . . . Md1×dk (S)
...

...
... Mdj×di(S)

...
Mdk×di(S) . . . . . . Mdk (S)

377775
where S = C[repα Q]. Then, we can also view the matrix Ma for an arrow ��������j ��������i

a
oo as a block

matrix in Mn(C[repα Q]) 266664
0 . . . . . . 0
...

...
... Ma

...

0 . . . . . . 0

377775
Then, Tα Q is the Ck(α)-subalgebra of Mn(C[repα Q]) generated by Nα Q and these block matrices
for all arrows a ∈ Qa. Tα Q itself has a block decomposition

Tα Q =

266664
P11 . . . . . . P1k

...
...

... Pij
...

Pk1 . . . . . . Pkk

377775
where Pij is the Nα Q-module spanned by all matrices Mp where p is a path from vi to vj of length
bounded by n2.

Example 4.5 Consider the path algebra M of the quiver which we will encounter in chapter 8 in
connection with the Hilbert scheme of points in the plane and with the Calogero-Moser system

e(/).*-+,

f(/).*-+,

y

qq

x

--

u

DD

v

��



196 Quiver Representations

and take as dimension vector α = (n, 1). The total dimension is in this case n = n + 1 and we
fix the embedding C2 = C × C ⊂ - M given by the decomposition 1 = e + f . Then, the above
realization of Tα M consists in taking the following n× n matrices

en =

26664
1 0

. . .
...

1 0
0 . . . 0 0

37775 fn =

26664
0 . . . 0 0
...

...
...

0 . . . 0 0
0 . . . 0 1

37775 xn =

26664
x11 . . . x1n 0
...

...
...

xn1 . . . xnn 0
0 . . . 0 0

37775

yn =

26664
y11 . . . y1n 0
...

...
...

yn1 . . . ynn 0
0 . . . 0 0

37775 un =

26664
0 . . . 0 u1

...
...

...
0 . . . 0 un
0 . . . 0 0

37775 vn =

26664
0 . . . 0 0
...

...
...

0 . . . 0 0
v1 . . . vn 0

37775
In order to determine the ring of GL(α)-polynomial invariants of repα M we have to consider the
traces along oriented cycles in the quiver. Any nontrivial such cycle must pass through the vertex
e and then we can decompose the cycle into factors x, y and uv (observe that if we wanted to
describe circuits based at the vertex f they are of the form c = vc′u with c′ a circuit based at e
and we can use the cyclic property of traces to bring it into the claimed form). That is, all relevant
oriented cycles in the quiver can be represented by a necklace word w

�

�''

�;;
� SS� cc

�
uu

�
��

�

�

00

�
II

�[[ �kk

�
��

��

x
w

where each bead is one of the elementst = x d = y and H = uv

In calculating the trace, we first have to replace each occurrence of x, y, u or v by the relevant
n × n-matrix above. This results in replacing each of the beads in the necklace by one of the
following n× n matrices

t =

264x11 . . . x1n

...
...

xn1 . . . xnn

375 d =

264y11 . . . y1n
...

...
yn1 . . . ynn

375 H =

264u1v1 . . . u1vn
...

...
unv1 . . . unvn

375
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and taking the trace of the n× n matrix obtained after multiplying these bead-matrices cyclically
in the indicated orientation. This concludes the description of the invariant ring Nα Q. The algebra
Tα M of GL(α)-equivariant maps from repα M to Mn is then the subalgebra of Mn(C[repα M])
generated as C2(α)-algebra (using the idempotent n × n matrices corresponding to e and f) by
Nα M and the n× n-matrices corresponding to x, y, u and v.

After these preliminaries, let us return to the local quiver setting (Qξ, α) associated to a point
ξ ∈ Smn(A) as described in the previous section. Above, we have seen that quiver necklace algebra
Nα Qξ is the coordinate ring of Nx/GL(α). Nα Qξ is a graded algebra and is generated by all
traces along oriented cycles in the quiver Qξ. Let m0 be the graded maximal ideal of Nα Qξ, that

is corresponding to the closed orbit of the trivial representation. With cTξ (respectively cNα) we will
denote the m0-adic filtration of the quiver-order Tα Qξ (respectively of the quiver necklace algebra
Nα Qξ). Recall that the quiver-order Tα Qξ has a block-decomposition determined by oriented
paths in the quiver Qξ. A consequence of the slice theorem and the description of Cayley-Hamilton
algebras and their algebra of traces by geometric data we deduce.

Theorem 4.8 Let ξ ∈ Smn(A). Let N = tr
R
n
A, let m be the maximal ideal of N corresponding

to ξ and denote T =
R
n
A, then we have the isomorphism and Morita equivalence

bNm ' cNα and bTm ∼
Morita

cTα
We have an explicit description of the algebras on the right in terms of the quiver setting (Qξ, α)
and the Morita equivalence is determined by the embedding GL(α) ⊂ - GLn.

Let Q• be a marked quiver with underlying quiver Q and let α = (d1, . . . , dk) be a dimension
vector. We define the marked quiver-necklace algebra Nα Q• to be the ring of GL(α)-polynomial
invariants on the representation space repα Q

•, that is, Nα Q• is the coordinate ring of the quotient
variety repα Q

•/GL(α). The marked quiver-order Tα Q• is defined to be the algebra of GL(α)-
equivariant polynomial maps from repα Q

• to Md(C) where d =
P
i di. Because we can separate

traces, it follows that

Nα Q• =
Nα Q

(tr(m1), . . . , tr(ml))
and Tα Q• =

Tα Q
(tr(m1), . . . , tr(ml))

where {m1, . . . ,ml} is the set of all marked loops in Q•.
Let B be a Cayley-Hamilton algebra of degree n and let Mξ be a trace preserving semi-simple

B-representation of type τ = (e1, d1; . . . ; ek, dk) corresponding to the point ξ in the quotient variety
isstrn B.

Definition 4.6 A point ξ ∈ isstrn B is said to belong to the smooth locus of B iff the trace
preserving representation space trepn B is smooth in x ∈ O(Mξ). The smooth locus of the Cayley-
Hamilton algebra B of degree n will be denotes by Smtr(B).
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Applying the slice theorem to the trace preserving representation space, we obtain with the
obvious modifications in notation.

Theorem 4.9 Let ξ ∈ Smtr(B) and N = tr B. Let m be the maximal ideal of N corresponding to
ξ, then we have the isomorphism and Morita equivalencebNm ' cN•α and bBm ∼

Morita

cT•α
where we have an explicit description of the algebras on the right in terms of the quiver setting
(Qξ, α) and where the Morita equivalence is determined by the embedding GL(α) ⊂ - GL(n).

Even if the left hand sides of the slice diagrams are not defined when ξ is not contained in the
smooth locus, the dimension of the normal spaces (that is, the (trace preserving) self-extensions of
Mξ) allow us to have a numerical measure of the ’badness’ of this noncommutative singularity.

Definition 4.7 Let A be an affine C-algebra and ξ ∈ issn A of type τ = (e1, d1; . . . ; ek, dk). The
measure of singularity in ξ is given by the non-negative number

ms(ξ) = n2 + dimC Ext1A(Mξ,Mξ)− e21 − . . .− e2k − dimMξ repn A

Let B be a Cayley-Hamilton algebra of degree n and ξ ∈ isstrn B of type τ = (e1, d1; . . . ; ek, dk).
The measure of singularity in ξ is given by the non-negative number

ms(ξ) = n2 + dimC ExttrB (Mξ,Mξ)− e21 − . . .− e2k − dimMξ trepn A

Clearly, ξ ∈ Smn(A) (respectively, ξ ∈ Smtr(B)) if and only if ms(ξ) = 0.

As an application to the slice theorem, let us prove the connection between Azumaya algebras
and principal fibrations. The Azumaya locus of an algebra A will be the open subset UAz of issn A

consisting of the points ξ of type (1, n). Let repn A
π-- issn A be the quotient map.

Proposition 4.9 The quotient π−1(UAz) -- UAz is a principal PGLn-fibration in the étale
topology, that is determines an element in H1

et(UAz, PGLn).

Proof. Let ξ ∈ UAz and x = Mξ a corresponding simple representation. Let Sx be the slice in
x for the PGLn-action on repn A. By taking traces of products of a lifted basis from Mn(C) we
find a PGLn-affine open neighborhood Uξ of ξ contained in UAz and hence by the slice result a
commuting diagram

PGLn × Sx
ψ - π−1(Uξ)

Sx

??

ψ/PGLn

- Uξ

π

??
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where ψ and ψ/PGLn are étale maps. That is, ψ/PGLn is an étale neighborhood of ξ over which
π is trivialized. As this holds for all points ξ ∈ UAz the result follows. �

4.4 Simple roots

In this section we will use proposition 3.3 to construct quiver orders TαQ which determine central
simple algebras over the functionfield of the quotient variety issα Q = repα Q/GL(α). With
PGL(α) we denote the groupscheme corresponding to the algebraic group

PGL(α) = GL(α)/C∗(rrd1 , . . . ,
rr
dk

)

If C is a commutative C-algebra, then using the embedding PGL(α) ⊂ - PGLn, the pointed
cohomology set

H1
et(C, PGL(α)) ⊂ - H1

et(C, PGLn)

classifies Azumaya algebras A over C with a distinguished embedding Ck ⊂ - A that are split by
an étale cover such that on this cover the embedding of Ck in matrices is conjugate to the standard
embedding Ck(α). Modifying the argument of proposition 3.3 we have

Proposition 4.10 If α is the dimension vector of a simple representation of Q, then

TαQ⊗NαQ C(issα Q)

is a central simple algebra over the function field of the quotient variety issα Q.

Remains to classify the simple roots α, that is, the dimension vectors of simple representations
of the quiver Q. Consider the vertex set Qv = {v1, . . . , vk}. To a subset S ⊂ - Qv we associate
the full subquiver QS of Q, that is, QS has as set of vertices the subset S and as set of arrows

all arrows ��������i��������j
aoo in Qa such that vi and vj belong to S. A full subquiver QS is said to be

strongly connected if and only if for all vi, vj ∈ V there is an oriented cycle in QS passing through
vi and vj . We can partition

Qv = S1 t . . . t Ss
such that the QSi are maximal strongly connected components of Q. Clearly, the direction of
arrows in Q between vertices in Si and Sj is the same by the maximality assumption and can be
used to define an orientation between Si and Sj . The strongly connected component quiver SC(Q)
is then the quiver on s vertices {w1, . . . , ws} with wi corresponding to Si and there is one arrow
from wi to wj if and only if there is an arrow in Q from a vertex in Si to a vertex in Sj . Observe
that when the underlying graph of Q is connected, then so is the underlying graph of SC(Q) and
SC(Q) is a quiver without oriented cycles.

Vertices with specific in- and out-going arrows are given names as in figure 4.7 If α = (d1, . . . , dk)
is a dimension vector, we define the support of α to be supp(α) = {vi ∈ Qv | di 6= 0}.
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��������
source

;;wwwwwwwwwwwwww
33gggggggggggg

++WWWWWWWWWWWW

##G
GGGGGGGGGGGGG ��������

sink

##GGGGGGGGGGGGGG

++WWWWWWWWWWWW

33gggggggggggg

;;
wwwwwwwwwwwwww

��������
prism

;;wwwwwwwwwwwwww
33gggggggggggg

++WWWWWWWWWWWW

##G
GGGGGGGGGGGGG// ��������

focus

##GGGGGGGGGGGGGG

++WWWWWWWWWWWW

33gggggggggggg

;;
wwwwwwwwwwwwww

//

Figure 4.7: Vertex terminology

Lemma 4.4 If α is the dimension vector of a simple representation of Q, then Qsupp(α) is a
strongly connected subquiver.

Proof. If not, we consider the strongly connected component quiver SC(Qsupp(α)) and by assump-

tion there must be a sink in it corresponding to a proper subset S ⊂ 6=- Qv. If V ∈ repα Q we can
then construct a representation W by

• Wi = Vi for vi ∈ S and Wi = 0 if vi /∈ S,

• Wa = Va for an arrow a in QS and Wa = 0 otherwise.

One verifies that W is a proper subrepresentation of V , so V cannot be simple, a contradiction. �

The second necessary condition involves the Euler form of Q. With εi be denote the dimension
vector of the simple representation having a one-dimensional space at vertex vi and zero elsewhere
and all arrows zero matrices.

Lemma 4.5 If α is the dimension vector of a simple representation of Q, then(
χQ(α, εi) ≤ 0

χQ(εi, α) ≤ 0
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for all vi ∈ supp(α).

Proof. Let V be a simple representation of Q with dimension vector α = (d1, . . . , dk). One verifies
that

χQ(εi, α) = di −
X

��������j ��������ioo
dj

Assume that χQ(εi, α) > 0, then the natural linear mapM
��������j ��������i

a
oo

Va : Vi -
M

��������j ��������i
a
oo

Vj

has a nontrivial kernel, say K. But then we consider the representation W of Q determined by

• Wi = K and Wj = 0 for all j 6= i,

• Wa = 0 for all a ∈ Qa.

It is clear that W is a proper subrepresentation of V , a contradiction.
Similarly, assume that χQ(α, εi) = di −

P��������i ��������joo dj > 0, then the linear map

M
��������i ��������j

a
oo

Va :
M

��������i ��������j
a

oo
Vj - Vi

has an image I which is a proper subspace of Vi. The representation W of Q determined by

• Wi = I and Wj = Vj for j 6= i,

• Wa = Va for all a ∈ Qa.

is a proper subrepresentation of V , a contradiction finishing the proof. �

Example 4.6 The necessary conditions of the foregoing two lemmas are not sufficient. Consider
the extended Dynkin quiver of type Ãk with cyclic orientation.

a(/).*-+, a(/).*-+,
a(/).*-+,
a(/).*-+,

a(/).*-+,a(/).*-+,

//
??���

OO

__???
oo

!!
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and dimension vector α = (a, . . . , a). For a simple representation all arrow matrices must be
invertible but then, under the action of GL(α), they can be diagonalized. Hence, the only simple
representations (which are not the trivial simples concentrated in a vertex) have dimension vector
(1, . . . , 1).

Nevertheless, we will show that these are the only exceptions. A vertex vi is said to be large with
respect to a dimension vector α = (d1, . . . , dk) whenever di is maximal among the dj . The vertex
vi is said to be good if vi is large and has no direct successor which is a large prism nor a direct
predecessor which is a large focus.

Lemma 4.6 Let Q be a strongly connected quiver, not of type Ãk, then one of the following hold

1. Q has a good vertex, or,

2. Q has a large prism having no direct large prism successors, or

3. Q has a large focus having no direct large focus predecessors.

Proof. If neither of the cases hold, we would have an oriented cycle in Q consisting of prisms (or
consisting of focusses). Assume (vi1 , . . . , vil) is a cycle of prisms, then the unique incoming arrow of

vij belongs to the cycle. As Q 6= Ãk there is at least one extra vertex va not belonging to the cycle.
But then, there can be no oriented path from va to any of the vij , contradicting the assumption
that Q is strongly connected. �

If we are in one of the two last cases, let a be the maximum among the components of the
dimension vector α and assume that α satisfies χQ(α, εi) ≤ 0 and χQ(εi, α) ≤ 0 for all 1 ≤ i ≤ k,
then we have the following subquiver in Q

��������a ��������a

large focus large prism

##G
GG

GG
GG

GG
GG

GG
G

++WWWWWWWWWWW

33ggggggggggg
;;wwwwwwwwwwwwww

//

77oooooooooooo //

''OOOOOOOOOOOO

We can reduce to a quiver situation with strictly less vertices.

Lemma 4.7 Assume Q is strongly connected and we have a vertex vi which is a prism with unique
predecessor the vertex vj, which is a focus. Consider the dimension vector α = (d1, . . . , dk) with
di = dj = a 6= 0. Then, α is the dimension of a simple representation of Q if and only if

α′ = (d1, . . . , di−1, di+1, . . . , dk) ∈ Nk−1
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is the dimension vector of a simple representation of the quiver Q′ on k− 1 vertices, obtained from
Q by identifying the vertices vi and vj, that is, the above subquiver in Q is simplified to the one
below in Q′

��������a
##G

GG
GG

GG
GG

GG
GG

G

++WWWWWWWWWWW

33ggggggggggg
;;wwwwwwwwwwwwww

77oooooooooooo //

''OOOOOOOOOOOO

Proof. If b is the unique arrow from vj to vi and if V ∈ repα Q is a simple representation then Vb is
an isomorphism, so we can identify Vi with Vj and obtain a simple representation of Q′. Conversely,
if V ′ ∈ repα′ Q

′ is a simple representation, define V ∈ repα Q by Vi = V ′j and Vz = V ′z for z 6= i,
Vb′ = V ′b′ for all arrows b′ 6= b and Vb = rr

a. Clearly, V is a simple representation of Q. �

Theorem 4.10 α = (d1, . . . , dk) is the dimension vector of a simple representation of Q if and
only if one of the following two cases holds

1. supp(α) = Ãk, the extended Dynkin quiver on k vertices with cyclic orientation and di = 1
for all 1 ≤ i ≤ k

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

!!

2. supp(α) 6= Ãk. Then, supp(α) is strongly connected and for all 1 ≤ i ≤ k we have(
χQ(α, εi) ≤ 0

χQ(εi, α) ≤ 0

Proof. We will use induction, both on the number of vertices k in supp(α) and on the total
dimension n =

P
i di of the representation. If supp(α) does not possess a good vertex, then the

above lemma finishes the proof by induction on k. Observe that the Euler-form conditions are
preserved in passing from Q to Q′ as di = dj .
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Hence, assume vi is a good vertex in supp(α). If di = 1 then all dj = 1 for vj ∈ supp(α) and
we can construct a simple representation by taking Vb = 1 for all arrows b in supp(α). Simplicity
follows from the fact that supp(α) is strongly connected.

If di > 1, consider the dimension vector α′ = (d1, . . . , di−1, di − 1, di+1, . . . , dk). Clearly,
supp(α′) = supp(α) is strongly connected and we claim that the Euler-form conditions still hold
for α′. the only vertices vl where things might go wrong are direct predecessors or direct successors
of vi. Assume for one of them χQ(εl, α) > 0 holds, then

dl = d′l >
X

��������l��������m
aoo

d′m ≥ d′i = di − 1

But then, dl = di whence vl is a large vertex of α and has to be also a focus with end vertex vi (if
not, dl > di), contradicting goodness of vi.

Hence, by induction on n we may assume that there is a simple representation W ∈ repα′ Q.
Consider the space repW of representations V ∈ repα Q such that V | α′ = W . That is, for every
arrow

��������i��������j
aoo Va =

Wa

v1 . . . vdj

��������j��������i
aoo Va =

v1

Wa

...
vdj

Hence, repW is an affine space consisting of all representations degenerating to W ⊕Si where Si is
the simple one-dimensional representation concentrated in vi. As χQ(α′, εi) < 0 and χQ(εi, α

′) < 0
we have that Ext1(W,Si) 6= 0 6= Ext1(Si,W ) so there is an open subset of representations which
are not isomorphic to W ⊕ Si.

As there are simple representations of Q having a one-dimensional component at each vertex in
supp(α) and as the subset of simple representations in repα′ Q is open, we can choose W such that
repW contains representations V such that a trace of an oriented cycle differs from that of W ⊕Si.
Hence, by the description of the invariant ring C[repα Q]GL(α) as being generated by traces along
oriented cycles and by the identification of points in the quotient variety as isomorphism classes
of semi-simple representations, it follows that the Jordan-Hölder factors of V are different from W
and Si. In view of the definition of repW , this can only happen if V is a simple representation,
finishing the proof of the theorem. �

Still, the central simple algebras constructed from quivers are very special examples as we will
see in section 4.6.
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4.5 Indecomposable roots

Throughout, Q will be a quiver on k vertices {v1, . . . , vk} with Euler form χQ. For a dimension
vector α = (d1, . . . , dk), any V ∈ repα Q decomposes uniquely into

V = W⊕f11 ⊕ . . .⊕W⊕fz
z

where the Wi are indecomposable representations . This follows from the fact that End(V ) is finite
dimensional. Recall also that a representation W of Q is indecomposable if and only if End(W ) is
a local algebra , that is, the nilpotent endomorphisms in EndCQ(W ) form an ideal of codimension
one. Equivalently, the maximal torus of the stabilizer subgroup StabGL(α)(W ) = AutCQ(W ) is
one-dimensional, which means that every semisimple element of AutCQ(W ) lies in C∗(rrd1 , . . . ,

rr
dk

).
More generally, decomposing a representation V into indecomposables corresponds to choosing a
maximal torus in the stabilizer subgroup AutCQ(V ). Let T be such a maximal torus, we define a
decomposition of the vertexspaces

Vi = ⊕χVi(χ) where Vi(χ) = {v ∈ Vi | t.v = χ(t)v ∀t ∈ T}

where χ runs over all characters of T . One verifies that each V (χ) = ⊕iVi(χ) is a subrepresentation
of V giving a decomposition V = ⊕χV (χ). Because T acts by scalar multiplication on each compo-
nent V (χ), we have that C∗ is the maximal torus of AutCQ(V (χ)), whence V (χ) is indecomposable.
Conversely, if V = W1⊕ . . .⊕Wr is a decomposition with the Wi indecomposable, then the product
of all the one-dimensional maximal tori in AutCQ(Wi) is a maximal torus of AutCQ(V ).

In this section we will give a classification of the indecomposable roots , that is, the dimension
vectors of indecomposable representations. As the name suggests, these dimension vectors will form
a root system .

The Tits form of a quiver Q is the symmetrization of its Euler form, that is,

TQ(α, β) = χQ(α, β) + χQ(β, α)

This symmetric bilinear form is described by the Cartan matrix

CQ =

264c11 . . . c1k
...

...
ck1 . . . ckk

375 withcij = 2δij −# { ��������i��������j }

where we count all arrows connecting vi with vj forgetting the orientation. The corresponding
quadratic form qQ(α) = 1

2
χQ(α, α) on Qk is defined to be

qQ(x1, . . . , xk) =

kX
i=1

x2
i −

X
a∈Qa

xt(a)xh(a)

Hence, qQ(α) = dim GL(α) − dim repα Q. With ΓQ we denote the underlying graph of Q, that
is, forgetting the orientation of the arrows. The following classification result is classical, see for
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Am , m ≥ 1 �������� �������� �������� �������� �������� ��������

Dm , m ≥ 4 �������� �������� �������� �������� �������� ��������
��������

E6 �������� �������� �������� �������� ��������
��������

E7 �������� �������� �������� �������� �������� ��������
��������

E8 �������� �������� �������� �������� �������� �������� ��������
��������

Figure 4.8: The Dynkin diagrams.

example [14]. A quadratic form q on Zk is said to be positive definite if 0 6= α ∈ Zk implies
q(α) > 0. It is called positive semi-definite if q(α) ≥ 0 for all α ∈ Zk. The radical of q is
rad(q) = {α ∈ Zk | T (α,−) = 0}. Recall that when Q is a connected and α ≥ 0 is a non-zero
radical vector, then α is sincere (that is, all components of α are non-zero) and qQ is positive semi-
definite. There exist a minimal δQ ≥ 0 with the property that qQ(α) = 0 if and only if α ∈ QδQ if
and only if α ∈ rad(qQ). If the quadratic form q is neither positive definite nor semi-definite, it is
called indefinite.

Theorem 4.11 Let Q be a connected quiver with Tits form qQ, Cartan matrix CQ and underlying
graph ΓQ. Then,

1. qQ is positive definite if and only if ΓQ is a Dynkin diagram , that is one of the graphs of
figure 4.8. The number of vertices is m.

2. qQ is semidefinite if and only if ΓQ is an extended Dynkin diagram, that is one of the graphs
of figure 4.9 and δQ is the indicated dimension vector. The number of vertices is m+ 1.

Let V ∈ repα Q be decomposed into indecomposables

V = W⊕f11 ⊕ . . .⊕W⊕fz
z

If dim(Wi) = γi we say that V is of type (f1, γ1; . . . ; fz, γz).

Proposition 4.11 For any dimension vector α, there exists a unique type τcan = (e1, β1; . . . ; el, βl)
with α =

P
i eiβi such that the set repα(τcan) =

{V ∈ repα Q | V 'W⊕e11 ⊕ . . .⊕W⊕el
l , dim(Wi) = βi, Wi is indecomposable }
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Ãm , m ≥ 1 ��������
��������

�������� �������� �������� �������� ��������oooooooooo

OOOOOOOOOO

��������1

��������1

��������1 ��������1 ��������1 ��������1 ��������1
oooooooooo

OOOOOOOOOO

D̃m , m ≥ 4 ��������
�������� �������� �������� �������� �������� ��������

��������
ooo
OOO

OOO
ooo ��������1

��������1 ��������2 ��������2 ��������2 ��������2 ��������1

��������1

oo
OO

OO
oo

Ẽ6 �������� �������� �������� �������� ��������
��������
��������

��������1 ��������2 ��������3 ��������2 ��������1

��������2

��������1

Ẽ7 �������� �������� �������� �������� �������� �������� ��������
��������

��������1 ��������2 ��������3 ��������4 ��������3 ��������2 ��������1

��������2

Ẽ8 �������� �������� �������� �������� �������� �������� �������� ��������
��������

��������2 ��������4 ��������6 ��������5 ��������4 ��������3 ��������2 ��������1

��������3

Figure 4.9: The extended Dynkin diagrams.

contains a dense open set of repα Q.

Proof. Recall from example 2.4 that for any dimension vector β the subset repindβ Q of indecom-

posable representations of dimension β is constructible. Consider for a type τ = (f1, γ1, ; . . . ; fz, γz)
the subset repα(τ) =

{V ∈ repα Q | V 'W
⊕f1
1 ⊕ . . .⊕W⊕fz

z , dim(Wi) = γi,Wi indecomposable }

then repα(τ) is a constructible subset of repα Q as it is the image of the constructible set

GL(α)× rep
ind
γ1

Q× . . .× rep
ind
γz

Q

under the map sending (g,W1, . . . ,Wz) to g.(W⊕f11 ⊕ . . . ⊕W⊕fz
z ). Because of the uniqueness of

the decomposition into indecomposables we have a finite disjoint decomposition

repα Q =
G
τ

repα(τ)

and by irreducibility of repα Q precisely one of the repα(τ) contains a dense open set of repα Q.
�
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We call τcan the canonical decomposition of α. In the next section we will give an al-
gorithm to compute the canonical decomposition. Consider the action morphisms GL(α) ×
repα Q

φ- repα Q. By Chevalley’s theorem 2.1 we know that the function

V 7→ dim StabGL(α)(V )

is upper semi-continuous. Because dim GL(α) = dim StabGL(α)(V ) + dim O(V ) we conclude that
for all m, the subset

repα(m) = {V ∈ repα Q | dim O(V ) ≥ m}

is Zariski open. In particular, repα(max) the union of all orbits of maximal dimension is open and
dense in repα Q. A representation V ∈ repα Q lying in the intersection

repα(τcan) ∩ repα(max)

is called a generic representation of dimension α.
Assume that Q is a connected quiver of finite representation type , that is, there are only a finite

number of isomorphism classes of indecomposable representations. Let α be an arbitrary dimension
vector. Since any representation of Q can be decomposed into a direct sum of indecomposables,
repα Q contains only finitely many orbits. Hence, one orbit O(V ) must be dense and have th same
dimension as repα Q, but then

dim repα Q = dim O(V ) ≤ dim GL(α)− 1

as any representation has C∗(rra1 , . . . ,
rr
ak

) in its stabilizer subgroup. That is, for every α ∈ Nk
we have qQ(α) ≥ 1. Because all off-diagonal entries of the Cartan matrix CQ are non-positive, it
follows that qQ is positive definite on Zk whence ΓQ must be a Dynkin diagram. It is well known
that to a Dynkin diagram one associates a simple Lie algebra and a corresponding root system .
We will generalize the notion of a root system to an arbitrary quiver Q.

Let εi = (δ1i, . . . , δki) be the standard basis of Qk. The fundamental set of roots is defined to
be the following set of dimension vectors

FQ = {α ∈ Nk − 0 | TQ(α, εi) ≤ 0 and supp(α) is connected }

Recall that it follows from the description of dimension vectors of simple representations given in
section 4.4 that any simple root lies in the fundamental set.

Lemma 4.8 Let α = β1 + . . . + βs ∈ FQ with βi ∈ Nk − 0 for 1 ≤ i ≤ s ≥ 2. If qQ(α) ≥
qQ(β1) + . . .+ qQ(βs), then supp(α) is a tame quiver (that is, its underlying graph is an extended
Dynkin diagram) and α ∈ Nδsupp(α).
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Proof. Let s = 2, β1 = (c1, . . . , ck) and β2 = (d1, . . . , dk) and we may assume that supp(α) = Q.
By assumption TQ(β1, β2) = qQ(α) − qQ(β1) − qQ(β2) ≥ 0. Using that CQ is symmetric and
α = β1 + β2 we have

0 ≤ TQ(β1, β2) =
X
i,j

cijcidi

=
X
j

cjdj
aj

X
i

cijai +
1

2

X
i6=j

cij(
ci
ai
− cj
aj

)2aiaj

and because TQ(α, εi) ≤ 0 and cij ≤ 0 for all i 6= j, we deduce that

ci
ai

=
cj
aj

for all i 6= j such that cij 6= 0

Because Q is connected, α and β1 are proportional. But then, TQ(α, εi) = 0 and hence CQα = 0.
By the classification result, qQ is semidefinite whence ΓQ is an extended Dynkin diagram and
α ∈ NδQ. Finally, if s > 2, then

TQ(α, α) =
X
i

TQ(α, βi) ≥
X
i

TQ(βi, βi)

whence TQ(α − βi, βi) ≥ 0 for some i and then we can apply the foregoing argument to βi and
α− βi. �

Definition 4.8 If G is an algebraic group acting on a variety Y and if X ⊂ - Y is a G-stable
subset, then we can decompose X =

S
dX(d) where X(d) is the union of all orbits O(x) of dimension

d. The number of parameters of X is

µ(X) = max
d

(dim X(d) − d)

where dim X(d) denotes the dimension of the Zariski closure of X(d).
In the special case of GL(α) acting on repα Q, we denote µ(repα(max)) = pQ(α) and call it

the number of parameters of α. For example, if α is a Schur root, then p(α) = dim repα Q −
(dim GL(α)− 1) = 1− qQ(α).

Recall that a matrix m ∈Mn(C) is unipotent if some power mk = rr
n. It follows from the Jordan

normal form that GL(α) and PGL(α) = GL(α)/C∗ contain only finitely many conjugacy classes
of unipotent matrices.

Theorem 4.12 If α lies in the fundamental set and supp(α) is not tame, then

pQ(α) = µ(repα(max)) = µ(repindα Q) = 1− qQ(α) > µ(repindα (d))

for all d > 1 where repindα (d) is the union of all indecomposable orbits of dimension d.
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Proof. A representation V ∈ repα Q is indecomposable if and only if its stabilizer subgroup
StabGL(α)(V ) is a unipotent group , that is all its elements are unipotent elements. By proposi-

tion 4.14 we know that repα(max) ⊂ - repindα Q and that pQ(α) = µ(repα(max)) = 1 − qQ(α).
Denote repα(sub) = repα Q−repα(max). We claim that for any unipotent element u 6= rr we have
that

dim repα(sub)(u)− dim cenGL(α)(u) + 1 < 1− qQ(α)

where repα(sub)(g) denotes the representations in repα(sub) having g in their stabilizer subgroup.
In fact, for any g ∈ GL(α)− C∗ we have

dim cenGL(α)(g)− dim repα(g) > qQ(α)

Indeed, we may reduce to g being a semisimple element, see [49, lemma 3.4]. then, if α = α1+. . .+αs
is the decomposition of α obtained from the eigenspace decompositions of g (we have s ≥ 2 as
g /∈ C∗), then

cenGL(α)(g) =
Y
i

GL(αi) and repα(g) =
Y
i

repαi
(g)

whence dim cenGL(α)(g) − dim repα(g) =
P
i qQ(αi) > qQ(α), proving the claim. Further, we

claim that
µ(repα(sub)) ≤ max

u
(dim repα(sub)(u)− dim cenGL(α)(u) + 1)

Let Z = repα(sub) and consider the closed subvariety of PGL(α)× Z

L = {(g, z) | g.z = z}

For z ∈ Z we have pr−1
1 (z) = StabPGL(α)(z)×{z} and if z is indecomposable with orbit dimension

d then dim StabPGL(α)(z) = dim PGL(α)− d, whence

dim pr−1
1 (repindα )(d) = dim (repindα )(d) + dim PGL(α)− d

But then,

pQ(α) = max
d

(dim (repindα )(d) − d)

= −dim PGL(α) +max
d

dim pr−1
1 ((repindα )(d))

= −dim PGL(α) + dim pr−1
1 (repindα Q)

By the characterization of indecomposables, we have pr−1
1 (repindα Q) ⊂ pr−1

2 (U) where U consists
of the (finitely many) conjugacy classes Cu of conjugacy classes of unipotent u ∈ PGL(α). But
then,

pQ(α) ≤ −dim PGL(α) +max
u

dim pr−1
2 (Cu)

= −dim PGL(α) +max
u
dim repα(sub)(u) + dim PGL(α)− dim cenPGL(α)(u)
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proving the claim. Finally, as dim repα(sub) − dim PGL(α) < dim repα Q − dim GL(α) + 1 <
1− qQ(α), we are done. �

We will now extend this result to arbitrary roots using reflection functors . Let vi be a source
vertex of Q and let α = (a1, . . . , ak) be a dimension vector such that

P
t(a)=vi

ah(a) ≥ ai, then we

can consider the subset

rep
mono
α (i) = {V ∈ repα Q | ⊕ Va : Vi - ⊕t(a)=vi

Vs(a) is injective }

Clearly, all indecomposable representations are contained in repmonoα (i). Construct the reflected
quiver RiQ obtained from Q by reversing the direction of all arrows with tail vi. The reflected
dimension vector Riα = (r1, . . . , rk) is defined to be

rj =

(
aj if j 6= iP
t(a)=i as(a) − ai if j = i

then clearly we have in the reflected quiver RiQ that
P
h(a)=i rt(a) ≥ ri and we define the subset

rep
epi
Riα

(i) = {V ∈ repRiα
RiQ | ⊕ Va : ⊕s(a)=iVt(a) - Vi is surjective }

Before stating the main result on reflection functors, we need to recall the definition of the Grass-
mann manifolds.

Let k ≤ l be integers, then the points of the Grassmannian Grassk(l) are in one-to-one corre-
spondence with k-dimensional subspaces of Cl. For example, if k = 1 then Grass1(l) = Pl−1. We
know that projective space can be covered by affine spaces defining a manifold structure on it. Also
Grassmannians admit a cover by affine spaces.

Let W be a k-dimensional subspace of Cl then fixing a basis {w1, . . . , wk} of W determines an
k × l matrix M having as i-th row the coordinates of wi with respect to the standard basis of Cl.
Linear independence of the vectors wi means that there is a barcode design I on M

w1

...
wk

i1 i2 . . . ik

where I = 1 ≤ i1 < i2 < . . . < ik ≤ l such that the corresponding k×k minor MI of M is invertible.
Observe that M can have several such designs.

Conversely, given a k× l matrix M of rank k determines a k-dimensional subspace of l spanned
by the transposed rows. Two k × l M and M ′ matrices of rank k determine the same subspace
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provided there is a basechange matrix g ∈ GLk such that gM = M ′. That is, we can identify
Grassk(l) with the orbit space of the linear action of GLk by left multiplication on the open set
Mmax
k×l (C) of Mk×l(C) of matrices of maximal rank. Let I be a barcode design and consider the

subset of Grassk(l)(I) of subspaces having a matrix representation M having I as barcode design.
Multiplying on the left with M−1

I the GLk-orbit OM has a unique representant N with NI = rr
k.

Conversely, any matrix N with NI = rr
k determines a point in Grassk(l)(I). Thus, Grassk(l)(I)

depends on k(l − k) free parameters (the entries of the negative of the barcode)

w1

...
wk

i1 i2 . . . ik

and we have an identification Grassk(l)(I)
πI- Ck(l−k). For a different barcode design I ′ the

image πI(Grassk(l)(I) ∩Grassk(l)(I ′)) is an open subset of Ck(l−k) (one extra nonsingular minor
condition) and πI′ ◦ π−1

I is a diffeomorphism on this set. That is, the maps πI provide us with an
atlas and determine a manifold structure on Grassk(l).

Theorem 4.13 For the quotient Zariski topology, we have an homeomorphism

rep
mono
α (i)/GL(α)

'- rep
epi
Riα

(i)/GL(Riα)

such that corresponding representations have isomorphic endomorphism rings.
In particular, the number of parameters as well as the number of irreducible components of

maximal dimension coincide for (repindα Q)(d) and repindRiα
RiQ)(d) for all dimensions d.

Proof. Let m =
P
t(a)=i ai, rep = ⊕t(a) 6=iMas(a)×at(a)(C) and GL =

Q
j 6=iGLaj . We have the

following isomorphisms

rep
mono
α (i)/GLai

'- rep×Gassai(m)

defined by sending a representation V to its restriction to rep and im ⊕t(a)=i Va. In a similar way,
sending a representation V to its restriction and ker ⊕s(a)=i Va we have

rep
epi
Riα

(i)/GLri

'- rep×Grassai(m)

But then, the first claim follows from the diagram of figure 4.10. If V ∈ repα Q and V ′ ∈
repRiα

RiQ with images respectively v and v′ in rep×Grassai(m), we have isomorphisms8<:StabGL×GLai
(V )

'- StabGL(v)

StabGL×GLri
(V ′)

'- StabGL(v′)
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rep
mono
α (i) rep

epi
Riα

(i)

rep
mono
α (i)/GL(α)

??
rep

epi
Riα

(i)/GL(Riα)

??

rep×Grassai(m)
�

'
'

-

rep
mono
α (i)/GL(α)

/GL

??
.................................-

�
rep

epi
Riα

(i)/GL(Riα)

/GL

??-

Figure 4.10: Reflection functor diagram.

from which the claim about endomorphisms follows. �

A similar results holds for sink vertices, hence we can apply these Bernstein-Gelfand- Ponomarev
reflection functors iteratively using a sequence of admissible vertices (that is, either a source or a
sink).

To a vertex vi in which Q has no loop, we define a reflection Zk ri- Zk by

ri(α) = α− TQ(α, εi)

The Weyl group of the quiver Q WeylQ is the subgroup of GLk(Z) generated by all reflections ri.

A root of the quiver Q is a dimension vector α ∈ Nk such that repα Q contains indecomposable
representations. All roots have connected support. A root is said to be(

real if µ(repindα Q) = 0

imaginary if µ(repindα Q) ≥ 1

For a fixed quiver Q we will denote the set of all roots, real roots and imaginary roots respectively
by ∆,∆re and ∆im. With Π we denote the set {εi | vi has no loops }. the main result on
indecomposable representations is due to V. Kac .
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Theorem 4.14 With notations as before, we have

1. ∆re = WeylQ.Π ∩ Nk and if α ∈ ∆re, then repindα Q is one orbit.

2. ∆im = Weyl.FQ ∩ Nk and if α ∈ ∆im then

pQ(α) = µ(repindα Q) = 1− qQ(α)

For a sketch of the proof we refer to [28, §7], full details can be found in the lecture notes [49].

4.6 Canonical decomposition

In this section we will determine the canonical decomposition. We need a technical result.

Lemma 4.9 Let W -- W ′ be an epimorphism of CQ-representations. Then, for any CQ-
representation V we have that the canonical map

Ext1CQ(V,W ) -- Ext1CQ(V,W ′)

is surjective. If W ⊂ - W ′ is a monomorphism of CQ-representations, then the canonical map

Ext1CQ(W ′, V ) -- Ext1CQ(W,V )

is surjective.

Proof. From the proof of theorem 4.5 we have the exact diagram

⊕
vi∈Qv

HomC(Vi,Wi)
dV

W- ⊕
a∈Qa

HomC(Vs(a),Wt(a)) - Ext1CQ(V,W ) - 0

⊕
vi∈Qv

HomC(Vi,W
′
i )

??
dV

W ′- ⊕
a∈Qa

HomC(Vs(a),W
′
t(a))

??
- Ext1CQ(V,W ′)

?

...............
- 0

and applying the snake lemma gives the result. The second part is proved similarly. �

Lemma 4.10 If V = V ′ ⊕ V ” ∈ repα(max), then Ext1CQ(V ′, V ”) = 0.

Proof. Assume Ext1(V ′, V ”) 6= 0, that is, there is a non-split exact sequence

0 - V ” - W - V ′ - 0

then it follows from section 2.3 that O(V ) ⊂ O(W ) − O(W ), whence dim O(W ) > dim O(V )
contradicting the assumption that V ∈ repα(max). �
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Lemma 4.11 If W,W ′ are indecomposable representation with Ext1CQ(W,W ′) = 0, then any non-

zero map W ′
φ- W is an epimorphism or a monomorphism. In particular, if W is indecomposable

with Ext1CQ(W,W ) = 0, then EndCQ(W ) ' C.

Proof. Assume φ is neither mono- nor epimorphism then decompose φ into

W ′
ε-- U ⊂ µ- W

As ε is epi, we get a surjection from lemma 4.9

Ext1CQ(W/U,W ′) -- Ext1CQ(W/U,U)

giving a representation V fitting into the exact diagram of extensions

0 - W ′
µ′ - V - W ′/U - 0

0 - U

ε

??
µ - W

ε′

?
- W ′/U

id

?
- 0

from which we construct an exact sequence of representations

0 - W ′

24 ε
−µ′

35
- U ⊕ V

h
µ ε′

i
- W - 0

This sequence cannot split as otherwise we would have W ⊕W ′ ' U ⊕ V contradicting uniqueness
of decompositions, whence Ext1CQ(W,W ′) 6= 0, a contradiction.

For the second part, as W is finite dimensional it follows that EndCQ(W ) is a (finite dimensional)
division algebra whence it must be C. �

Definition 4.9 A representation V ∈ repα Q is said to be a Schur representation if EndCQ(V ) =
C. The dimension vector α of a Schur representation is said to be a Schur root .

Theorem 4.15 α is a Schur root if and only if there is a Zariski open subset of repα Q consisting
of indecomposable representations.

Proof. If V ∈ repα Q is a Schur representation, V ∈ repα(max) and therefore all representations
in the dense open subset repα(max) have endomorphism ring C and are therefore indecomposable.
Conversely, let Ind ⊂ - repα Q be an open subset of indecomposable representations and assume
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that for V ∈ Ind we have StabGL(α)(V ) 6= C∗ and consider φ0 ∈ StabGL(α)(V ) − C∗. For any
g ∈ GL(α) we define the set of fixed elements

repα(g) = {W ∈ repα Q | g.W = W}

Define the subset of GL(α)

S = {g ∈ GL(α) | dim repα(g) = dim repα(φ0)

which has no intersection with C∗(rrd1 , . . . ,
rr
dk

) as φ0 /∈ C∗. Consider the subbundle of the trivial
vectorbundle over S

B = {(s,W ) ∈ S × repα Q | s.W = W} ⊂ - S × repα Q
p-- S

As all fibers have equal dimension, the restriction of p to B is a flat morphism whence open . In
particular, the image of the open subset B ∩ S × Ind

S′ = {g ∈ S | ∃W ∈ Ind : g.W = W}

is an open subset of S. Now, S contains a dense set of semisimple elements, see for example [49,
(2.5)], whence so does S′ = ∪W∈IndEndCQ(W ) ∩ S. But then one of the W ∈ Ind must have a
torus of rank greater than one in its stabilizer subgroup contradicting indecomposability. �

Schur roots give rise to principal PGL(α) = GL(α)/C∗-fibrations, and hence to quiver orders
and division algebras.

Proposition 4.12 If α = (a1, . . . , ak) is a Schur root, then there is a GL(α)-stable affine open
subvariety Uα of repα Q such that generic orbits are closed in U .

Proof. Let Tk = C∗×. . .×C∗ the k-dimensional torus in GL(α). Consider the semisimple subgroup
SL(α) = SLa1 × . . .× SLak and consider the corresponding quotient map

repα Q
πs-- repα Q/SL(α)

As GL(α) = TkSL(α), Tk acts on repα Q/SL(α) and the generic stabilizer subgroup is trivial by
the Schurian condition. Hence, there is a Tk-invariant open subset U1 of repα Q/SL(α) such that
Tk-orbits are closed. But then, according to [41, §2, Thm.5] there is a Tk-invariant affine open U2

in U1. Because the quotient map ψs is an affine map, U = ψ−1
s (U2) is an affine GL(α)-stable open

subvariety of repα Q. Let x be a generic point in U , then its orbit

O(x) = GL(α).x = TkSL(α).x = Tk(ψ
−1
s (ψs(x))) = ψ−1

s (Tk.ψs(x))

is the inverse image under the quotient map of a closed set, hence is itself closed. �
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If we define Tsα Q to be the ring of GL(α)-equivariant maps from Uα to Mn(C), then this
Schurian quiver order has simple α-dimensional representations. Then, extending the argument
of proposition 4.9 we have that the quotient map repα Q -- issα Q is a principal PGL(α)-
fibration in the étale topology over the Azumaya locus of the Schurian quiver order Tsα Q. Recall
that H1

et(X,PGL(α)) classifies twisted forms of Mn(C) (where n =
P
a ai) as Ck-algebra. That is,

Azumaya algebras over X with a distinguished embedding of Ck that are split by an étale cover
on which this embedding is conjugate to the standard α-embedding of Ck in Mn(C). The class in
the Brauer group of the functionfield of issα Tsα Q determined by the quiver order Tsα Q is rather
special.

Proposition 4.13 If α = (a1, . . . , ak) is a Schur root of Q such that gcd(a1, . . . , ak) = 1, then
Tsα Q determines the trivial class in the Brauer group.

Proof. Let A be an Azumaya localization of Tsα Q. By assumption, the natural map between the
K-groups K0(Ck) - K0(Mn(C)) is surjective, whence the same is true for A proving that the
class of A is split by a Zariski cover, that is repα Q ' X × PGL(α) where X = issα A. �

Proposition 4.14 If α lies in the fundamental region FQ and supp(α) is not a tame quiver. then,
α is a Schur root.

Proof. Let α = β1 + . . .+ βs be the canonical decomposition of α (some βi may occur with higher
multiplicity) and assume that s ≥ 2. By definition, the image of

GL(α)× (repβ1
Q× . . .× repβs

Q)
φ- repα Q

is dense and φ is constant on orbits of the free action of GL(α) on the left hand side given by
h.(g, V ) = (gh−1, h.V ). But then,

dim GL(α) +
X
i

dim repβi
Q−

X
i

dim GL(βi) ≥ dim repα Q

whence qQ(α) ≥
P
i qQ(βi) and lemma 4.8 finishes the proof. �

Next, we want to describe morphisms between quiver-representations. Let α = (a1, . . . , ak) and
β = (b1, . . . , bk) and V ∈ repα Q, W ∈ repβ Q. Consider the closed subvariety

HomQ(α, β) ⊂ - Ma1×b1 ⊕ . . .⊕Mak×bk ⊕ repα Q⊕ repβ Q

consisting of the triples (φ, V,W ) where φ = (φ1, . . . , φk) is a morphism of quiver-representations
V - W . Projecting to the two last components we have an onto morphism between affine
varieties

HomQ(α, β)
h-- repα Q⊕ repβ Q
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In theorem 2.1 we have proved that the dimension of fibers is an upper-semicontinuous function.
That is, for every natural number d, the set

{Φ ∈ HomQ(α, β) | dimΦ h−1(h(Φ)) ≤ d}

is a Zariski open subset of HomQ(α, β). As the target space repα Q ⊕ repβ Q is irreducible, it
contains a non-empty open subset hommin where the dimension of the fibers attains a minimal
value. This minimal fiber dimension will be denoted by hom(α, β).

Similarly, we could have defined an affine variety ExtQ(α, β) where the fiber over a point
(V,W ) ∈ repα Q ⊕ repβ Q is given by the extensions Ext1CQ(V,W ). If χQ is the Euler-form
of Q we recall that for all V ∈ repα Q and W ∈ repβ Q we have

dimC HomCQ(V,W )− dimC Ext
1

Q̧(V,W ) = χQ(α, β)

Hence, there is also an open set extmin of repα Q ⊕ repβ Q where the dimension of Ext1(V,W )

attains a minimum. This minimal value we denote by ext(α, β). As hommin∩extmin is a non-empty
open subset we have the numerical equality

hom(α, β)− ext(α, β) = χQ(α, β).

In particular, if hom(α, α+β) > 0, there will be an open subset where the morphism V
φ- W is

a monomorphism. Hence, there will be an open subset of repα+β Q consisting of representations
containing a subrepresentation of dimension vector α. We say that α is a general subrepresentation
of α+ β and denote this with α ⊂ - α+ β. We want to characterize this property. To do this, we
introduce the quiver-Grassmannians

Grassα(α+ β) =

kY
i=1

Grassai(ai + bi)

which is a projective manifold.
Consider the following diagram of morphisms of reduced varieties

repα+β Q

rep
α+β
α Q ⊂ -

s

-

repα+β Q×Grassα(α+ β)

pr1

66

Grassα(α+ β)

pr2

??

p

--
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with the following properties

• repα+β Q×Grassα(α+β) is the trivial vectorbundle with fiber repα+β Q over the projective

smooth variety Grassα(α+ β) with structural morphism pr2.

• repα+β
α Q is the subvariety of repα+β Q×Grassα(α+ β) consisting of couples (W,V ) where

V is a subrepresentation of W (observe that this is for fixed W a linear condition). Be-
cause GL(α+ β) acts transitively on the Grassmannian Grassα(α+ β) (by multiplication on
the right) we see that repα+β

α Q is a sub-vectorbundle over Grassα(α + β) with structural

morphism p. In particular, repα+β
α Q is a reduced variety.

• The morphism s is a projective morphism, that is, can be factored via the natural projection

repα+β Q× PN

rep
α+β
α Q

s -

f

-

repα+β Q

π2

??

where f is the composition of the inclusion repα+β
α Q ⊂ - repα+β Q×Grassα(α+ β) with

the natural inclusion of Grassmannians in projective spaces recalled in the previous section
Grassα(α+ β) ⊂ - Qk

i=1 Pni with the Segre embedding
Qk
i=1 Pni ⊂ - PN . In particular,

s is proper by [33, Thm. II.4.9], that is, maps closed subsets to closed subsets.

We are interested in the scheme-theoretic fibers of s. If W ∈ repα+β Q lies in the image of s, we

denote the fiber s−1(W ) by Grassα(W ). Its geometric points are couples (W,V ) where V is an
α-dimensional subrepresentation of W . Whereas Grassα(W ) is a projective scheme, it is in general
neither smooth, nor irreducible nor even reduced. Therefore, in order to compute the tangent
space in a point (W,V ) of Grassα(W ) we have to clarify the functor it represents on the category
commalg of commutative C-algebras.

Let C be a commutative C-algebra, a representation R of the quiver Q over C consists of a
collection Ri = Pi of projective C-modules of finite rank and a collection of C-module morphisms
for every arrow a in Q

��������i��������j
aoo Rj = Pj �Ra

Pi = Ri

The dimension vector of the representation R is given by the k-tuple (rkC R1, . . . , rkC Rk). A
subrepresentation S of R is determined by a collection of projective sub-summands (and not merely
sub-modules) Si /Ri. In particular, for W ∈ repα+β Q we define the representation WC of Q over
the commutative ring C by (

(WC)i = C ⊗C Wi

(WC)a = idC ⊗C Wa
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With these definitions, we can now define the functor represented by Grassα(W ) as the functor
assigning to a commutative C-algebra C the set of all subrepresentations of dimension vector α of
the representation WC .

Lemma 4.12 Let x = (W,V ) be a geometric point of Grassα(W ), then

Tx Grassα(W ) = HomCQ(V,
W

V
)

Proof. The tangent space in x = (W,V ) are the C[ε]-points of Grassα(W ) lying over (W,V ). To

start, let V
ψ- W

V
be a homomorphism of representations of Q and consider a C-linear lift of this

map ψ̃ : V - W . Consider the C-linear subspace of WC[ε] = C[ε]⊗W spanned by the sets

{v + ε⊗ ψ̃(v) | v ∈ V } and ε⊗ V

This determines a C[ε]-subrepresentation of dimension vector α of WC[ε] lying over (W,V ) and is

independent of the chosen linear lift ψ̃.
Conversely, if S is a C[ε]-subrepresentation ofWC[ε] lying over (W,V ), then S

εS = V ⊂ - W . But
then, a C-linear complement of εS is spanned by elements of the form v+εψ(v) where ψ(v) ∈W and

ε⊗ψ is determined modulo an element of ε⊗ V . But then, we have a C-linear map ψ̃ : V - W
V

and as S is a C[ε]-subrepresentation, ψ̃ must be a homomorphism of representations of Q. �

Theorem 4.16 The following are equivalent

1. α ⊂ - α+ β.

2. Every representation W ∈ repα+β Q has a subrepresentation V of dimension α.

3. ext(α, β) = 0.

Proof. Assume 1. , then the image of the proper map s : repα+β
α Q - repα+β Q contains

a Zariski open subset. As properness implies that the image of s must also be a closed subset of
repα+β Q it follows that Im s = repα+β Q, that is 2. holds. Conversely, 2. clearly implies 1. so
they are equivalent.

We compute the dimension of the vectorbundle repα+β
α Q over Grassα(α+ β). Using that the

dimension of a Grassmannians Grassk(l) is k(l−k) we know that the base has dimension
Pk
i=1 aibi.

Now, fix a point V ⊂ - W in Grassα(α + β), then the fiber over it determines all possible ways
in which this inclusion is a subrepresentation of quivers. That is, for every arrow in Q of the form
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��������i��������j
aoo we need to have a commuting diagram

Vi - Vj

Wi

?

∩

- Wj

?

∩

Here, the vertical maps are fixed. If we turn V ∈ repα Q, this gives us the aiaj entries of the
upper horizontal map as degrees of freedom, leaving only freedom for the lower horizontal map
determined by a linear map Wi

Vi

- Wj , that is, having bi(aj + bj) degrees of freedom. Hence,

the dimension of the vectorspace-fibers isX
��������i��������j

aoo

(aiaj + bi(aj + bj))

giving the total dimension of the reduced variety repα+β
α Q. But then,

dim rep
α+β
α Q− dim repα+β Q =

kX
i=1

aibi +
X

��������i��������j
aoo

(aiaj + bi(aj + bj))

−
X

��������i��������j
aoo

(ai + bi)(aj + bj)

=

kX
i=1

aibi −
X

��������i��������j
aoo

aibj = χQ(α, β)

Assume that 2. holds, then the proper map repα+β
α

s-- repα+β Q is onto and as both varieties

are reduced, the general fiber is a reduced variety of dimension χQ(α, β), whence the general fiber
contains points such that their tangentspaces have dimension χQ(α, β). By the foregoing lemma
we can compute the dimension of this tangentspace as dim HomCQ(V, W

V
). But then, as

χQ(α, β) = dimC HomCQ(V,
W

V
)− dimC Ext

1
CQ(V,

W

V
)

it follows that Ext1(V, W
V

) = 0 for some representation V of dimension vector α and W
V

of dimension
vector β. But then, ext(α, β) = 0, that is, 3. holds.
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Conversely, assume that ext(α, β) = 0. Then, for a general point W ∈ repα+β Q in the image

of s and for a general point in its fiber (W,V ) ∈ repα+β
α Q we have dimC Ext

1
CQ(V, W

V
) = 0 whence

dimC HomCQ(V, W
V

) = χQ(α, β). But then, the general fiber of s has dimension χQ(α, β) and as
this is the difference in dimension between the two irreducible varieties, the map is generically onto.
Finally, properness of s then implies that it is onto, giving 2. and finishing the proof. �

Proposition 4.15 Let α be a Schur root such that χQ(α, α) < 0, then for any integer n we have
that nα is a Schur root.

Proof. There are infinitely many non-isomorphic Schur representations of dimension vector α. Pick
n of them {W1, . . . ,Wn} and from χQ(α, α) < 0 we deduce

HomCQ(Wi,Wj) = δijC and Ext1CQ(Wi,Wj) 6= 0

By lemma 4.9 we can construct a representation Vn having a filtration

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn with
Vj
Vj−1

'Wj

and such that the short exact sequences 0 - Vj−1
- Vj - Wj

- 0 do not split. By
induction on n we may assume that EndCQ(Vn−1) = C and we have that HomCQ(Vn−1,Wn) = 0.
But then, the restriction of any endomorphism φ of Vn to Vn−1 must be an endomorphism of Vn−1

and therefore a scalar λrr. Hence, φ−λrr ∈ EndCQ(Vn) is trivial on Vn−1. AsHomCQ(Wn, Vn−1) = 0,
EndCQ(Wn) = C and non-splitness of the sequence 0 - Vn−1

- Vn - Wn
- 0 we

must have φ− λrr = 0 whence EndCQ(Vn) = C, that is, nα is a Schur root. �

We say that a dimension vector α is left orthogonal to β if hom(α, β) = 0 and ext(α, β) = 0.

Definition 4.10 An ordered sequence C = (β1, . . . , βs) of dimension vectors is said to be a com-
partment for Q if and only if

1. for all i, βi is a Schur root,

2. for al i < j, βi is left orthogonal to βj,

3. for all i < j we have χQ(βj , βi) ≥ 0.

Theorem 4.17 Suppose that C = (β1, . . . , βs) is a compartment for Q and that there are non-
negative integers e1, . . . , es such that α = e1β1 + . . . + esβs. Assume that ei = 1 whenever
χQ(βi, βi) < 0. Then,

τcan = (e1, β1; . . . ; es, βs)

is the canonical decomposition of the dimension vector α.
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Proof. Let V be a generic representation of dimension vector α with decomposition into indecom-
posables

V = W⊕e11 ⊕ . . .⊕W⊕es
s with dim(Wi) = βi

we will show that (after possibly renumbering the factors (β1, . . . , βs) is a compartment for Q. To
start, it follows from lemma 4.10 that for all i 6= j we have Ext1CQ(Wi,Wj) = 0. From lemma 4.11
we deduce a partial ordering i → j on the indices whenever HomCQ(Wi,Wj) 6= 0. Indeed, any
non-zero morphism Wi

- Wj is either a mono- or an epimorphism, assume Wi
-- Wj then

there can be no monomorphism Wj
⊂ - Wk as the composition Wi

- Wk would be neither
mono nor epi. That is, all non-zero morphisms from Wj to factors must be (proper) epi and we
cannot obtain cycles in this way by counting dimensions. If Wi

⊂ - Wj , a similar argument
proves the claim. From now on we assume that the chosen index-ordering of the factors is (reverse)
compatible with the partial ordering i → j, that is Hom(Wi,Wj) = 0 whenever i < j, that is, βi
is left orthogonal to βj whenever i < j. As Ext1CQ(Wj ,Wi) = 0, it follows that χQ(βj , βi) ≥ 0. As
generic representations are open it follows that all repβi

Q have an open subset of indecomposables,
proving that the βi are Schur roots. Finally, it follows from proposition 4.15 that a Schur root βi
with χQ(βi, βi) can occur only with multiplicity one in any canonical decomposition.

Conversely, assume that (β1, . . . , βs) is a compartment for Q, α =
P
i eiβi satisfying the re-

quirements on multiplicities. Choose Schur representations Wi ∈ repβi
Q, then we have to prove

that
V = W⊕e11 ⊕ . . .⊕W⊕es

s

is a generic representation of dimension vector α. In view of the properties of the compartment we
already know that Ext1CQ(Wi,Wj) = 0 for all i < j and we need to show that Ext1CQ(Wj ,Wi) = 0.
Indeed, if this condition is satisfied we have

dim repα Q− dim O(V ) = dimCExt
1(V, V )

=
X
i

e2i dimCExt
1(Wi,Wi) =

X
i

e2i (1− qQ(βi)

We know that the Schur representations of dimension vector βi depend on 1−qQ(βi) parameters by
Kac s theorem 4.14 and ei = 1 unless qQ(βi) = 1. Therefore, the union of all orbits of representations
with the same Schur-decomposition type as V contain a dense open set of repα Q and so this must
be the canonical decomposition.

If this extension space is nonzero, HomCQ(Wj ,Wi) 6= 0 as χQ(βj , βi) ≥ 0. But then by
lemma 4.11 any non-zero homomorphism from Wj to Wi must be either a mono or an epi. As-
sume it is a mono, so βj < βi, so in particular a general representation of dimension βi contains
a subrepresentation of dimension βj and hence by theorem 4.16 we have ext(βj , βi − βj) = 0.
Suppose that βj is a real Schur root, then Ext1CQ(Wj ,Wj) = 0 and therefore also ext(βj , βi) = 0

as Ext1CQ(Wj ,Wj ⊕ (Wj/Wi)) = 0. If β is not a real root, then for a general representation

S ∈ repβj
Q take a representation R ∈ repβi

Q in the open set where Ext1CQ(S,R) = 0, then

there is a monomorphism S ⊂ - R. Because Ext1CQ(S, S) 6= 0 we deduce from lemma 4.9 that
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Ext1CQ(R,S) 6= 0 contradicting the fact that ext(βi, βj) = 0. If the nonzero morphism Wj
- Wi

is epi one has a similar argument. �

This result can be used to obtain a fairly efficient algorithm to compute the canonical decomposi-
tion in case the quiver Q has no oriented cycles. Fortunately, one can reduce the general problem to
that of quiver without oriented cycles using the bipartite double Qb of Q. We double the vertex-set
of Q in a left and right set of vertices, that is

Qbv = {vl1, . . . , vlk, vr1 , . . . , vrk}

To every arrow a ∈ Qa from vi to vj we assign an arrow ã ∈ Qba from vli to vrj . In addition, we have

for each 1 ≤ i ≤ k one extra arrow ĩ in Qba from vli to vri . If α = (a1, . . . , ak) is a dimension vector
for Q, the associated dimension vector α̃ for Qb has components

α̃ = (a1, . . . , ak, a1, . . . , ak).

Example 4.7 Consider the quiver Q and dimension vector α = (a, b) on the left hand side, then
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a(/).*-+,

y

qq

x
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u
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v
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b(/).*-+,
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2̃ //
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ṽ

��

x̃

%%
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the bipartite quiver situation Qb and α̃ is depicted on the right hand side.

If the canonical decomposition of α for Q is τcan = (e1, β1; . . . ; es, βs), then the canonical de-

composition of α̃ for Qb is (e1, β̃1; . . . ; es, β̃s) as for a general representation of Qb of dimension

vector α̃ the morphisms corresponding to ĩ for 1 ≤ i ≤ k are all invertible matrices and can be
used to identify the left and right vertex sets, that is, there is an equivalence of categories between
representations of Qb where all the maps ĩ are invertible and representations of the quiver Q. That
is, the algorithm below can be applied to (Qb, α̃) to obtain the canonical decomposition of α for an
arbitrary quiver Q.

Let Q be a quiver without oriented cycles then we can order the vertices {v1, . . . , vk} such that
there are no oriented paths from vi to vj whenever i < j (start with a sink of Q, drop it and
continue recursively). For example, for the bipartite quiver Qb we first take all the right vertices
and then the left ones.
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input : quiver Q, ordered set of vertices as above, dimension vector α = (a1, . . . , ak) and type
τ = (a1, ~v1; . . . ; ak, ~vk) where ~vi = (δij)j = dim vi is the canonical basis. By the assumption on the
ordering of vertices we have that τ is a good type for α. We say that a type (f1, γ1; . . . ; fs, γs) is a
good type for α if α =

P
i fiγi and the following properties are satisfies

1. fi ≥ 0 for all i,

2. γi is a Schur root,

3. for each i < j, γi is left orthogonal to γj ,

4. fi = 1 whenever χQ(γi, γi) < 0.

A type is said to be excellent provided that, in addition to the above, we also have that for all
i < j, χQ(αj , αi) ≥ 0. In view of theorem 4.17 the purpose of the algorithm is to transform the
good type τ into the excellent type τcan. We will describe the main loop of the algorithm on a
good type (f1, γ1; . . . ; fs, γs).

step 1 : Omit all couples (fi, γi) with fi = 0 and verify whether the remaining type is excellent. If
it is, stop and output this type. If not, proceed.
step 2 : Reorder the type as follows, choose i and j such that j − i is minimal and χQ(βj , βi) < 0.
Partition the intermediate entries {i+ 1, . . . , j − 1} into the sets

• {k1, . . . , ka} such that χQ(γj , γkm) = 0,

• {l1, . . . , lb} such that χQ(γj , γlm) > 0.

Reorder the couples in the type in the sequence

(1, . . . , i− 1, k1, . . . , ka, i, j, l1, . . . , lb, j + 1, . . . , s)

define µ = γi, ν = γj , p = fi, q = fj , ζ = pµ+ qν and t = −χQ(ν, µ), then proceed.
step 3 : Change the part (p, µ; q, ν) of the type according to the following scheme

• If µ and ν are real Schur roots, consider the subcases

1. χQ(ζ, ζ) > 0, replace (p, µ, q, ν) by (p′, µ′; q′; ν′) where ν′ and ν′ are non-negative com-
binations of ν and µ such that µ′ is left orthogonal to ν′, χQ(ν′, µ′) = t ≥ 0 and
ζ = p′µ′ + q′ν′ for non-negative integers p′, q′.

2. χQ(ζ, ζ) = 0, replace (p, µ; q, ν) by (k, ζ′) with ζ = kζ′, k positive integer, and ζ′ an
indivisible root.

3. χQ(ζ, ζ) < 0, replace (p, µ; q, ν) by (1, ζ).

• If µ is a real root and ν is imaginary, consider the subcases

1. If p+ qχQ(ν, µ) ≥ 0, replace (p, µ; q, ν) by (q, ν − χQ(ν, µ)µ; p+ qχQ(ν, µ), µ).
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2. If p+ qχQ(ν, µ) < 0, replace (p, µ; q, ν) by (1, ζ).

• If µ is an imaginary root and ν is real, consider the subcases

1. If q + pχQ(ν, µ) ≥ 0, replace (p, µ; q, ν) by (q + pχQ(ν, µ), ν; p, µ− χQ(ν, µ)ν).

2. If q + pχQ(ν, µ) < 0, replace (p, µ; q, ν) by (1, ζ).

• If µ and ν are imaginary roots, replace (p, µ; q, ν) by (1, ζ).

then go to step 1.

One can show that in every loop of the algorithm the number
P
i fi decreases, so the algorithm

must stop, giving the canonical decomposition of α. A consequence of this algorithm is that r(α)+
2i(α) ≤ k where r(α) is the number of real Schur roots occurring in the canonical decomposition of
α, i(α) the number of imaginary Schur roots and k the number of vertices of Q. For more details
we refer to [24].

4.7 General subrepresentations

Often, we will need to determine the dimension vectors of general subrepresentations . It follows
from theorem 4.16 that this problem is equivalent to the calculation of ext(α, β). An inductive
algorithm to do this was discovered by A. Schofield [73].

Recall that α ⊂ - β iff a general representation W ∈ repβ Q contains a subrepresentation
S ⊂ - W of dimension vector α. Similarly, we denote β -- γ if and only if a general repre-
sentation W ∈ repβ Q has a quotient-representation W -- T of dimension vector γ. As before,

Q will be a quiver on k-vertices {v1, . . . , vk} and we denote dimension vectors α = (a1, . . . , ak),
β = (b1, . . . , bk) and γ = (c1, . . . , ck). We will first determine the rank of a general homomorphism
V - W between representations V ∈ repα Q and W ∈ repβ Q. We denote

Hom(α, β) = ⊕ki=1Mbi×ai and Hom(V, β) = Hom(α, β) = Hom(α,W )

for any representations V and W as above. With these conventions we have

Lemma 4.13 There is an open subset Homm(α, β) ⊂ - repα Q×repβ Q and a dimension vector

γ
def
= rk hom(α, β) such that for all (V,W ) ∈ Hommin(α, β)

• dimC HomCQ(V,W ) is minimal, and

• {φ ∈ HomCQ(V,W ) | rk φ = γ} is a non-empty Zariski open subset of HomCQ(V,W ).
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Proof. Consider the subvariety HomQ(α, β) of the trivial vectorbundle

HomQ(α, β) ⊂- Hom(α, β)× repα Q× repβ Q

repα Q× repβ Q

pr

??

Φ

-

of triples (φ, V,W ) such that V
φ- W is a morphism of representations of Q. The fiber

Φ−1(V,W ) = HomCQ(V,W ). As the fiber dimension is upper semi-continuous, there is an open
subset Hommin(α, β) of repα Q× repβ Q consisting of points (V,W ) where dimC HomCQ(V,W )

is minimal. For given dimension vector δ = (d1, . . . , dk) we consider the subset

HomQ(α, β, δ) = {(φ, V,W ) ∈ HomQ(α, β) | rk φ = δ} ⊂ - HomQ(α, β)

This is a constructible subset of HomQ(α, β) and hence there is a dimension vector γ such that
HomQ(α, β, γ)∩Φ−1(Hommin(α, β)) is constructible and dense in Φ−1(Hommin(α, β)). But then,

Φ(HomQ(α, β, γ) ∩ Φ−1(Hommin(α, β)))

is constructible and dense in Hommin(V,W ). Therefore it contains an open subset Homm(V,W )
satisfying the requirements of the lemma. �

Lemma 4.14 Assume we have short exact sequences of representations of Q(
0 - S - V - X - 0

0 - Y - W - T - 0

then there is a natural onto map

Ext1CQ(V,W ) -- Ext1CQ(S, T )

Proof. By lemma 4.9 we have surjective maps

Ext1CQ(V,W ) -- Ext1CQ(V, T ) -- Ext1CQ(S, T )

from which the assertion follows. �

Theorem 4.18 Let γ = rk hom(α, β) (with notations as in lemma 4.13), then

1. α− γ ⊂ - α -- γ ⊂ - β -- β − γ
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2. ext(α, β) = −χQ(α− γ, β − γ) = ext(α− γ, β − γ)

Proof. The first statement is obvious from the definitions, for if γ = rk hom(α, β), then a general
representation of dimension α will have a quotient-representation of dimension γ (and hence a
subrepresentation of dimension α − γ) and a general representation of dimension β will have a
subrepresentation of dimension γ (and hence a quotient-representation of dimension β − γ.

The strategy of the proof of the second statement is to compute the dimension of the subvariety
of Hom(α, β)× repα × repβ × repγ defined by

Hfactor = {(φ, V,W,X) |

V
φ - W

X = Im φ
⊂

-

--
factors as representations }

in two different ways. Consider the intersection of the open set Homm(α, β) determined by
lemma 4.13 with the open set of couples (V,W ) such that dim Ext(V,W ) = ext(α, β) and let
(V,W ) lie in this intersection. In the previous section we have proved that

dim Grassγ(W ) = χQ(γ, β − γ)

Let H be the subbundle of the trivial vectorbundle over Grassγ(W )

H ⊂ - Hom(α,W )× Grassγ(W )

Grassγ(W )

??
--

consisting of triples (φ,W,U) with φ : ⊕iC⊕ai - W a linear map such that Im(φ) is contained
in the subrepresentation U ⊂ - W of dimension γ. That is, the fiber over (W,U) is Hom(α,U)

and therefore has dimension
Pk
i=1 aici. With Hfull we consider the open subvariety of H of triples

(φ,W,U) such that Im φ = U . We have

dim Hfull =

kX
i=1

aici + χQ(γ, β − γ)
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But then, Hfactor is the subbundle of the trivial vectorbundle over Hfull

Hfactor ⊂- repα Q×H
full

Hfull

??

π

--

consisting of quadruples (V, φ,W,X) such that V
φ- W is a morphism of representations, with

image the subrepresentation X of dimension γ. The fiber of π over a triple (φ,W,X) is determined

by the property that for each arrow ��������i��������j
aoo the following diagram must be commutative,

where we decompose the vertex spaces Vi = Xi ⊕Ki for K = Ker φ

Xi ⊕Ki

24A B
C D

35
- Xj ⊕Kj

Xi

hrr
ci 0

i
??

A
- Xj

hrr
cj 0

i
??

where A is fixed, giving the condition B = 0 and hence the fiber has dimension equal toX
��������i��������j

aoo

(ai − ci)(aj − cj) +
X

��������i��������j
aoo

ci(aj − cj) =
X

��������i��������j
aoo

ai(aj − cj)

This gives our first formula for the dimension of Hfactor

Hfactor =

kX
i=1

aici + χQ(γ, β − γ) +
X

��������i��������j
aoo

ai(aj − cj)

On the other hand, we can consider the natural map Hfactor Φ- repα Q defined by sending
a quadruple (V, φ,W,X) to V . the fiber in V is given by all quadruples (V, φ,W,X) such that

V
φ- W is a morphism of representations with Im φ = X a representation of dimension vector

γ, or equivalently

Φ−1(V ) = {V φ- W | rk φ = γ}
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Now, recall our restriction on the couple (V,W ) giving at the beginning of the proof. There is an
open subset max of repα Q of such V and by construction max ⊂ - Im Φ, Φ−1(max) is open

and dense in Hfactor and the fiber Φ−1(V ) is open and dense in HomCQ(V,W ). This provides us
with the second formula for the dimension of Hfactor

dim Hfactor = dim repα Q+ hom(α,W ) =
X

��������i��������j
aoo

aiaj + hom(α, β)

Equating both formulas we obtain the equality

χQ(γ, β − γ) +

kX
i=1

aici −
X

��������i��������j
aoo

aicj = hom(α, β)

which is equivalent to

χQ(γ, β − γ) + χQ(α, γ)− χQ(α, β) = ext(α, β)

Now, for our (V,W ) we have that Ext(V,W ) = ext(α, β) and we have exact sequences of represen-
tations

0 - S - V - X - 0 0 - X - W - T - 0

and using lemma 4.14 this gives a surjection Ext(V,W ) -- Ext(S, T ). On the other hand we
always have from the homological interpretation of the Euler form the first inequality

dimC Ext(S, T ) ≥ −χQ(α− γ, β − γ) = χQ(γ, β − γ)− χQ(α, β) + χQ(α, γ)

= ext(α, β)

As the last term is dimC Ext(V,W ), this implies that the above surjection must be an isomorphism
and that

dimC Ext(S, T ) = −χQ(α− γ, β − γ) whence dimC Hom(S, T ) = 0

But this implies that hom(α− γ, β − γ) = 0 and therefore ext(α− γ, β − γ) = −χQ(α− γ, β − γ).
Finally,

ext(α− γ, β − γ) = dim Ext(S, T ) = dim Ext(V,W ) = ext(α, β)

finishing the proof. �

Theorem 4.19 For all dimension vectors α and β we have

ext(α, β) = max
α′ ⊂ - α
β -- β′

− χQ(α′, β′)

= max
β -- β”

− χQ(α, β”)

= max
α” ⊂ - α

− χQ(α”, β)
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Proof. Let V and W be representation of dimension vector α and β such that dim Ext(V,W ) =
ext(α, β). Let S ⊂ - V be a subrepresentation of dimension α′ and W -- T a quotient
representation of dimension vector β′. Then, we have

ext(α, β) = dimC Ext(V,W ) ≥ dimC Ext(S, T ) ≥ −χQ(α′, β′)

where the first inequality is lemma 4.14 and the second follows from the interpretation of the
Euler form. Therefore, ext(α, β) is greater or equal than all the terms in the statement of the
theorem. The foregoing theorem asserts the first equality, as for rk hom(α, β) = γ we do have that
ext(α, β) = −χQ(α− γ, β − γ).

In the proof of the above theorem, we have found for sufficiently general V and W an exact
sequence of representations

0 - S - V - W - T - 0

where S is of dimension α− γ and T of dimension β− γ. Moreover, we have a commuting diagram
of surjections

Ext(V,W ) -- Ext(V, T )

Ext(S,W )

??
-- Ext(S, T )

??

...............................-

and the dashed map is an isomorphism, hence so are all the epimorphisms. Therefore, we have(
ext(α, β − γ) ≤ dim Ext(V, T ) = dim Ext(V,W ) = ext(α, β)

ext(α− γ, β) ≤ dim Ext(S,W ) = dim Ext(V,W ) = ext(α, β)

Further, let T ′ be a sufficiently general representation of dimension β − γ, then it follows from
Ext(V, T ′) -- Ext(S, T ) that

ext(α− γ, β − γ) ≤ dim Ext(S, T ′) ≤ dim Ext(V, T ′) = ext(α, β − γ)

but the left term is equal to ext(α, β) by the above theorem. But then, we have ext(α, β) =
ext(α, β − γ). Now, we may assume by induction that the theorem holds for β − γ. That is,
there exists β − γ -- β” such that ext(α, β − γ) = −χQ(α, β”). Whence, β -- β” and
ext(α, β) = −χQ(α, β”) and the middle equality of the theorem holds. By a dual argument so does
the last. �

This gives us the following inductive algorithm to find all the dimension vectors of general
subrepresentations. Take a dimension vector α and assume by induction we know for all β < α the
set of general subrepresentations β′ ⊂ - β. Then, β ⊂ - α if and only if

0 = ext(β, α− β) = max
β′ ⊂ - β

− χQ(β′, α− β)
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where the first equality comes from theorem 4.16 and the last from the above theorem.

4.8 Semistable representations

Let Q be a quiver on k vertices {v1, . . . , vk} and fix a dimension vector α. So far, we have considered
the algebraic quotient map

repα Q
-- issα Q

classifying closed GL(α)-orbits in repα Q, that is, isomorphism classes of semi-simple representa-
tions of dimension α. We have seen that the invariant polynomial maps are generated by traces
along oriented cycles in the quiver. Hence, if Q has no oriented cycles, the quotient variety issα Q
is reduced to one point corresponding to the semi-simple

S⊕a11 ⊕ . . .⊕ S⊕ak
k

where Si is the trivial one-dimensional simple concentrated in vertex vi. Still, in these cases one
can often classify nice families of representations.

Example 4.8 Consider the quiver setting

��������1��������1

x

##y //

z

;;

Then, repα Q = C3 and the action of GL(α) = C∗ × C∗ is given by (λ, µ).(x, y, z) = (λ
µ
x, λ

µ
y, λ

µ
z).

The only closed GL(α)-orbit in C3 is (0, 0, 0) as the one-parameter subgroup λ(t) = (t, 1) has the
property

lim
t→0

λ(t).(x, y, z) = (0, 0, 0)

so (0, 0, 0) ∈ O(x, y, z) for any representation (x, y, z). Still, if we trow away the zero-representation,
then we have a nice quotient map

C3 − {(0, 0, 0)} π-- P2 (x, y, z) 7→ [x : y : z]

and as O(x, y, z) = C∗(x, y, z) we see that every GL(α)-orbit is closed in this complement C3 −
{(0, 0, 0)}. We will generalize such settings to arbitrary quivers.

A character of GL(α) is an algebraic group morphism χ : GL(α) - C∗. They are fully
determined by an integral k-tuple θ = (t1, . . . , tk) ∈ Zk where

GL(α)
χθ- C∗ (g1, . . . , gk) 7→ det(g1)

t1 . . . . .det(gk)
tk
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For a fixed θ we can extend the GL(α)-action to the space repα ⊕ C by

GL(α)× repα Q⊕ C - repα Q⊕ C g.(V, c) = (g.V, χ−1
θ (g)c)

The coordinate ring C[repα Q⊕C] = C[repα][t] can be given a Z-gradation by defining deg(t) = 1
and deg(f) = 0 for all f ∈ C[repα Q]. The induced action of GL(α) on C[repα Q ⊕ C] preserves
this gradation. Therefore, the ring of invariant polynomial maps

C[repα Q⊕ C]GL(α) = C[repα Q][t]GL(α)

is also graded with homogeneous part of degree zero the ring of invariants C[repα]GL(α). An
invariant of degree n, say ftn with f ∈ C[repα Q] has the characteristic property that

f(g.V ) = χnθ (g)f(V )

that is, f is a semi-invariant of weight χnθ . That is, the graded decomposition of the invariant ring
is

C[repα Q⊕ C]GL(α) = R0 ⊕R1 ⊕ . . . with Ri = C[repα Q]GL(α),χnθ

Definition 4.11 With notations as above, the moduli space of semi-stable quiver representations
of dimension α is the projective variety

Mss
α (Q, θ) = proj C[repα Q⊕ C]GL(α) = proj ⊕∞n=0 C[repα Q]GL(α),χnθ

Recall that for a positively graded affine commutative C-algebra R = ⊕∞i=0Ri, the geometric
points of the projective scheme proj R correspond to graded-maximal ideals m not containing the
positive part R+ = ⊕∞i=1Ri. Intersecting m with the part of degree zero R0 determines a point of
spec R0, the affine variety with coordinate ring R0 and defines a structural morphism

proj R - spec R0

The Zariski closed subsets of proj R are of the form

V(I) = {m ∈ proj R | I ⊂ m}

for a homogeneous ideal I /R. Further, recall that proj R can be covered by affine varieties of the
form X(f) with f a homogeneous element in R+. The coordinate ring of this affine variety is the
part of degree zero of the graded localization Rgf . We refer to [33, II.2] for more details.

Example 4.9 Consider again the quiver-situation

��������1��������1

x

##y //

z

;;
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Vc

V(t)

Figure 4.11:

and character θ = (−1, 1), then the three coordinate functions x, y and z of C[repα Q] are semi-
invariants of weight χθ. It is clear that the invariant ring is equal to

C[repα Q⊕ C]GL(α) = C[xt, yt, zt]

where the three generators all have degree one. That is,

Mss
α (Q, θ) = proj C[xt, yt, zt] = P2

as desired.

We will now investigate which orbits in repα Q are parameterized by the moduli spaceMss
α (Q, θ).

Definition 4.12 We say that a representation V ∈ repα Q is χθ-semistable if and only if there is

a semi-invariant f ∈ C[repα Q]GL(α),χnθ for some n ≥ 1 such that f(V ) 6= 0.
The subset of repα Q consisting of all χθ-semistable representations will be denoted by

repssα (Q, θ).

Observe that repssα (Q, θ) is Zariski open (but it may be empty for certain (α, θ)). We can lift
a representation V ∈ repα Q to points Vc = (V, c) ∈ repα Q ⊕ C and use GL(α)-invariant theory

on this larger GL(α)-module see figure 4.8 Let c 6= 0 and assume that the orbit closure O(Vc) does
not intersect V(t) = repα Q × {0}. As both are GL(α)-stable closed subsets of repα Q ⊕ C we
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know from the separation property of invariant theory, proposition 2.10, that this is equivalent to

the existence of a GL(α)-invariant function g ∈ C[repα Q ⊕ C]GL(α) such that g(O(Vc)) 6= 0 but
g(V(t)) = 0.

We have seen that the invariant ring is graded, hence we may assume g to be homogeneous, that
is, of the form g = ftn for some n. But then, f is a semi-invariant on repα Q of weight χnθ and

we see that V must be χθ-semistable. Moreover, we must have that θ(α) =
Pk
i=1 tiai = 0, for the

one-dimensional central torus of GL(α)

µ(t) = (trra1 , . . . , t
rr
ak

) ⊂ - GL(α)

acts trivially on repα Q but acts on C via multiplication with
Qk
i=1 t

−aiti hence if θ(α) 6= 0 then

O(Vc) ∩ V(t) 6= ∅.
More generally, we have from the strong form of the Hilbert criterium proved in theorem 2.2

that O(Vc)∩V(t) = ∅ if and only if for every one-parameter subgroup λ(t) of GL(α) we must have
that lim

t→0
λ(t).Vc /∈ V(t). We can also formulate this in terms of the GL(α)-action on repα Q. The

composition of a one-parameter subgroup λ(t) of GL(α) with the character

C∗ λ(t)- GL(α)
χθ- C∗

is an algebraic group morphism and is therefore of the form t - tm for somem ∈ Z and we denote
this integer by θ(λ) = m. Assume that λ(t) is a one-parameter subgroup such that lim

t→0
λ(t).V = V ′

exists in repα Q, then as

λ(t).(V, c) = (λ(t).V, t−mc)

we must have that θ(λ) ≥ 0 for the orbitclosure O(Vc) not to intersect V(t).
That is, we have the following characterization of χθ-semistable representations.

Proposition 4.16 The following are equivalent

1. V ∈ repα Q is χθ-semistable.

2. For c 6= 0, we have O(Vc) ∩ V(t) = ∅.

3. For every one-parameter subgroup λ(t) of GL(α) we have lim
t→0

λ(t).Vc /∈ V(t) = repα Q×{0}.

4. For every one-parameter subgroup λ(t) of GL(α) such that lim
t→0

λ(t).V exists in repα Q we

have θ(λ) ≥ 0.

Moreover, these cases can only occur if θ(α) = 0.
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Assume that g = ftn is a homogeneous invariant function for the GL(α)-action on repα Q⊕ C
and consider the affine open GL(α)-stable subset X(g). The construction of the algebraic quotient
and the fact that the invariant rings here are graded asserts that the closed GL(α)-orbits in X(g)
are classified by the points of the graded localization at g which is of the form

(C[repα Q⊕ C]GL(α))g = Rf [h, h
−1]

for some homogeneous invariant h and where Rf is the coordinate ring of the affine open subset
X(f) in Mss

α (Q, θ) determined by the semi-invariant f of weight χnθ . Because the moduli space is
covered by such open subsets we have

Proposition 4.17 The moduli space of θ-semistable representations of repα Q

Mss
α (Q, θ)

classifies closed GL(α)-orbits in the open subset repssα (Q, θ) of all χθ-semistable representations of
Q of dimension vector α.

Example 4.10 In the foregoing example repssα (Q, θ) = C3 − {(0, 0, 0)} as for all these points one
of the semi-invariant coordinate functions is non-zero. For θ = (−1, 1) the lifted GL(α) = C∗×C∗-
action to repα Q⊕ C = C4 is given by

(λ, µ).(x, y, z, t) = (
µ

λ
x,
µ

λ
y,
µ

λ
z,
λ

µ
t)

We have seen that the ring of invariants is C[xt, yt, zt]. Consider the affine open set X(xt) of C4,
then the closed orbits in X(xt) are classified by

C[xt, yt, zt]gxt = C[
y

x
,
z

x
][xt,

1

xt
]

and the part of degree zero C[ y
x
, z
x
] is the coordinate ring of the open set X(x) in P2.

We have seen that closed GLn-orbits in repn A correspond to semi-simple n-dimensional rep-
resentations. We will now give a representation theoretic interpretation of closed GL(α)-orbits in
repssα (Q, θ).

Again, the starting point is that one-parameter subgroups λ(t) of GL(α) correspond to filtrations
of representations. Let us go through the motions one more time. For λ : C∗ - GL(α) a one-
parameter subgroup and V ∈ repα Q we can decompose for every vertex vi the vertex-space in
weight spaces

Vi = ⊕n∈ZV
(n)
i

where λ(t) acts on the weight space V
(n)
i as multiplication by tn. This decomposition allows us to

define a filtration
V

(≥n)
i = ⊕m≥nV (m)

i
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For every arrow ��������i��������j
aoo , λ(t) acts on the components of the arrow maps

V
(n)
i

Vm,n
a - V

(m)
j

by multiplication with tm−n. That is, a limit lim
t→0

Va exists if and only if V m,na = 0 for all m < n,

that is, if Va induces linear maps

V
(≥n)
i

Va- V
(≥n)
j

Hence, a limiting representation exists if and only if the vertex-filtration spaces V
(≥n)
i determine a

subrepresentation Vn ⊂ - V for all n. That is, a one-parameter subgroup λ such that lim
t→

λ(t).V

exists determines a decreasing filtration of V by subrepresentations

. . . � ⊃ Vn � ⊃ Vn+1
� ⊃ . . .

Further, the limiting representation is then the associated graded representation

lim
t→0

λ(t).V = ⊕n∈Z
Vn
Vn+1

where of course only finitely many of these quotients can be nonzero. For the given character
θ = (t1, . . . , tk) and a representation W ∈ repβ Q we denote

θ(W ) = t1b1 + . . .+ tkbk where β = (b1, . . . , bk)

Assume that θ(V ) = 0, then with the above notations, we have an interpretation of θ(λ) as

θ(λ) =

kX
i=1

ti
X
n∈Z

ndimC V
(n)
i =

X
n∈Z

nθ(
Vn
Vn+1

) =
X
n∈Z

θ(Vn)

Definition 4.13 A representation V ∈ repα Q is said to be

• θ-semistable if θ(V ) = 0 and for all subrepresentations W ⊂ - V we have θ(W ) ≥ 0.

• θ-stable if V is θ-semistable and if the only subrepresentations W ⊂ - V such that θ(W ) = 0
are V and 0.

Proposition 4.18 For V ∈ repα Q the following are equivalent

1. V is χθ-semistable.

2. V is θ-semistable.
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Proof. (1) ⇒ (2) : Let W be a subrepresentation of V and let λ be the one-parameter subgroup
associated to the filtration V � ⊃ W � ⊃ 0, then lim

t→0
λ(t).V exists whence by proposition 4.16.4

we have θ(λ) ≥ 0, but we have

θ(λ) = θ(V ) + θ(W ) = θ(W )

(2)⇒ (1) : Let λ be a one-parameter subgroup of GL(α) such that lim
t→0

λ(t).V exists and consider

the induced filtration by subrepresentations Vn defined above. By assumption all θ(Vn) ≥ 0, whence

θ(λ) =
X
n∈Z

θ(Vn) ≥ 0

and again proposition 4.16.4 finishes the proof. �

Lemma 4.15 Let V ∈ repα Q and W ∈ repβ Q be both θ-semistable and

V
f- W

a morphism of representations. Then, Ker f , Im f and Coker f are θ-semistable representations.

Proof. Consider the two short exact sequences of representations of Q(
0 - Ker f - V - Im f - 0

0 - Im f - W - Coker f - 0

As θ(−) is additive, we have 0 = θ(V ) = θ(Ker f)+θ(Im f) and as both are subrepresentations of
θ-semistable representations V resp. W , the right-hand terms are ≥ 0 whence are zero. But then,
from the second sequence also θ(Coker f) = 0. Being submodules of θ-semistable representations,
Ker f and Im f also satisfy θ(S) ≥ 0 for all their subrepresentations U . Finally, a subrepresentation
T ⊂ - Coker f can be lifted to a subrepresentation T ′ ⊂ - W and θ(T ) ≥ 0 follows from the
short exact sequence 0 - Im f - T ′ - T - 0. �

That is, the full subcategory repss(Q, θ) of rep Q consisting of all θ-semistable representations
is an Abelian subcategory and clearly the simple objects in repss(Q, θ) are precisely the θ-stable
representations. As this Abelian subcategory has the necessary finiteness conditions, one can prove
a version of the Jordan-Hölder theorem. That is, every θ-semistable representation V has a finite
filtration

V = V0
� ⊃ V1

� ⊃ . . . � ⊃ Vz = 0

of subrepresentation such that every factor Vi
Vi+1

is θ-stable. Moreover, the unordered set of these

θ-stable factors are uniquely determined by V .
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Theorem 4.20 For a θ-semistable representation V ∈ repα Q the following are equivalent

1. The orbit O(V ) is closed in repssα (Q,α).

2. V 'W⊕e11 ⊕ . . .⊕W⊕el
l with every Wi a θ-stable representation.

That is, the geometric points of the moduli space Mss
α (Q, θ) are in natural one-to-one correspon-

dence with isomorphism classes of α-dimensional representations which are direct sums of θ-stable
subrepresentations. The quotient map

rep
ss
α (Q, θ) -- Mss

α (Q, θ)

maps a θ-semistable representation V to the direct sum of its Jordan-Hölder factors in the Abelian
category repss(Q, θ).

Proof. Assume that O(V ) is closed in repssα (Q, θ) and consider the θ-semistable representation
W = grss V , the direct sum of the Jordan-Hölder factors in repss(Q, θ). As W is the associated
graded representation of a filtration on V , there is a one-parameter subgroup λ of GL(α) such that

lim
t→0

λ(t).V 'W , that is O(W ) ⊂ O(V ) = O(V ), whence W ' V and 2. holds.

Conversely, assume that V is as in 2. and let O(W ) be a closed orbit contained in O(V ) (one of
minimal dimension). By the Hilbert criterium there is a one-parameter subgroup λ in GL(α) such
that lim

t→0
λ(t).V ' W . Hence, there is a finite filtration of V with associated graded θ-semistable

representation W . As none of the θ-stable components of V admits a proper quotient which is
θ-semistable (being a direct summand of W ), this shows that V ' W and so O(V ) = O(W ) is
closed. The other statements are clear from this. �

Remains to determine the situations (α, θ) such that the corresponding moduli space Mss
α (Q, θ)

is non-empty, or equivalently, such that the Zariski open subset repssα (Q, θ) ⊂ - repα Q is non-
empty.

Theorem 4.21 Let α be a dimension vector such that θ(α) = 0. Then,

1. repssα (Q,α) is a non-empty Zariski open subset of repα Q if and only if for every β ⊂ - α
we have that θ(β) ≥ 0.

2. The θ-stable representations repsα(Q,α) are a non-empty Zariski open subset of repα Q if
and only if for every 0 6= β ⊂ - α we have that θ(β) > 0

The algorithm at the end of the last section gives an inductive procedure to calculate these
conditions.

The graded algebra C[repα ⊕ C]GL(α) of all semi-invariants on repα Q of weight χnθ for some

n ≥ 0 has as degree zero part the ring of polynomial invariants C[repα Q]GL(α). This embedding
determines a proper morphism

Mss
α (Q, θ)

π- issα Q
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which is onto whenever repssα (Q,α) is non-empty. In particular, if Q is a quiver without oriented
cycles, then the moduli space of θ-semistable representations of dimension vector α, Mss

α (Q, θ), is
a projective variety.
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