
5 — Semi-Simple Representations

For a Cayley-Hamilton algebra A ∈ alg@n we have seen in the first volume that the quotient scheme

trissn A = trepn A/GLn

classifies isomorphism classes of (trace preserving) semi-simple n-dimensional representations. A
point ξ ∈ trissn A is said to lie in the Cayley-smooth locus of A if trepn A is a smooth variety
in the semi-simple module Mξ determined by ξ. In this case, the étale local structure of A and its
central subalgebra tr(A) are determined by a marked quiver setting.

We will extend some results on quotient varieties of representations of quivers to the setting of
marked quivers. We will give a computational method to verify whether ξ belongs to the Cayley-
smooth locus of A and develop reduction steps for the corresponding marked quiver setting which
preserve geometric information, such as the type of singularity.

In low dimensions we can give a complete classification of all marked quiver settings which can
arise for a Cayley-smooth order, allowing us to determine the classes in the Brauer group of the
function field of a projective smooth surface which allow a noncommutative smooth model.

In arbitrary (central) dimension we are able to determine the smooth locus of the center as well
as to classify the occurring singularities up to smooth equivalence.

5.1 Representation types

In this section we will determine the étale local structure of quotient varieties of marked quivers,
characterize their dimension vectors of simples and introduce the representation type of a represen-
tation.

We fix a quiver Q and dimension vector α. Closed GL(α)-orbits is repα Q correspond to
isomorphism classes of semi-simple representations of Q of dimension vector α. We have a quotient
map

repα Q
π-- repα Q/GL(α) = issα Q

and we know that the coordinate ring C[issα Q] is generated by traces along oriented cycles
in the quiver Q. Consider a point ξ ∈ issα Q and assume that the corresponding semi-simple
representation Vξ has a decomposition

Vξ = V ⊕e11 ⊕ . . .⊕ V ⊕ez
z
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into distinct simple representations Vi of dimension vector say αi and occurring in Vξ with multi-
plicity ei. We then say that ξ is a point of representation-type

τ = t(ξ) = (e1, α1; . . . , ez, αz) with α =

zX
i=1

eiαi

We want to apply the slice theorem to obtain the étale GL(α)-local structure of the representation
space repα Q in a neighborhood of Vξ and the étale local structure of the quotient variety issα Q in a
neighborhood of ξ. We have to calculate the normal space Nξ to the orbit O(Vξ) as a representation
over the stabilizer subgroup GL(α)ξ = StabGL(α)(Vξ).

Denote ai =
Pk
j=1 aij where αi = (ai1, . . . , aik), that is, ai = dim Vi. We will choose a basis of

the underlying vectorspace

⊕vi∈Qv C⊕eiai of Vξ = V ⊕e11 ⊕ . . .⊕ V ⊕ez
z

as follows : the first e1a1 vectors give a basis of the vertex spaces of all simple components of type
V1, the next e2a2 vectors give a basis of the vertex spaces of all simple components of type V2, and
so on. If n =

Pk
i=1 eidi is the total dimension of Vξ, then with respect to this basis, the subalgebra

of Mn(C) generated by the representation Vξ has the following block-decomposition26664
Ma1(C)⊗ rr

e1 0 . . . 0
0 Ma2(C)⊗ rr

e2 0
...

. . .
...

0 0 . . . Maz (C)⊗ rr
ez

37775
But then, the stabilizer subgroup

StabGL(α)(Vξ) ' GLe1 × . . .×GLez

embedded in GL(α) with respect to this particular basis as26664
GLe1(C⊗

rr
a1) 0 . . . 0

0 GLe2(C⊗
rr
a2) 0

...
. . .

...
0 0 . . . GLez (C⊗ rr

az )

37775
The tangentspace to the GL(α)-orbit in Vξ is equal to the image of the natural linear map

Lie GL(α) - repα Q

sending a matrix m ∈ Lie GL(α) ' Me1 ⊕ . . . ⊕Mek to the representation determined by the
commutator [m,Vξ] = mVξ − Vξm. By this we mean that the matrix [m,Vξ]a corresponding to an



5.1. Representation types 243

arrow a is obtained as the commutator in Mn(C) using the canonical embedding with respect to
the above choice of basis. The kernel of this linear map is the centralizer subalgebra. That is, we
have an exact sequence of GL(α)ξ-modules

0 - CMn(C)(Vξ) - Lie GL(α) - TVξ O(Vξ) - 0

where

CMn(C)(Vξ) =

26664
Me1(C⊗

rr
a1) 0 . . . 0

0 Me2(C⊗
rr
a2) 0

...
. . .

...
0 0 . . . Mez (C⊗ rr

az )

37775
and the action of GL(α)Vξ is given by conjugation on Mn(C) via the above embedding. We will
now engage in a book-keeping operation counting the factors of the relevant GL(α)ξ-spaces. We
identify the factors by the action of the GLei -components of GL(α)ξ

1. The centralizer CMn(C)(Vξ) decomposes as a GL(α)ξ-module into

• one factor Mei on which GLe1 acts via conjugation and the other factors act trivially,

...

• one factor Mez on which GLez acts via conjugation and the other factors act trivially.

2. Recall the notation αi = (ai1, . . . , aik),then the Lie algebra Lie GL(α) decomposes as a
GL(α)ξ-module into

•
Pk
j=1 a

2
1j factors Me1 on which GLe1 acts via conjugation and the other factors act

trivially,
...

•
Pk
j=1 a

2
zj factors Mez on which GLez acts via conjugation and the other factors act

trivially,

•
Pk
j=1 a1ja2j factors Me1×e2 on which GLe1 × GLe2 acts via γ1.m.γ

−1
2 and the other

factors act trivially,
...

•
Pk
j=1 azjaz−1 j factors Mez×ez−1 on which GLez ×GLez−1 acts via γz.m.γ

−1
z−1 and the

other factors act trivially.
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3. The representation space repα Q decomposes as a GL(α)ξ-modulo into the following factors,

for every arrow ��������i��������j
aoo in Q (or every loop in vi by setting i = j in the expressions

below) we have

• a1ia1j factors Me1 on which GLe1 acts via conjugation and the other factors act trivially,

• a1ia2j factors Me1×e2 on which GLe1 × GLe2 acts via γ1.m.γ
−1
2 and the other factors

act trivially,
...

• aziaz−1 j factors Mez×ez−1 on which GLez × GLez−1 act via γz.m.γ
−1
z−1 and the other

factors act trivially,

• aziazj factors Mez on which GLez acts via conjugation and the other factors act trivially.

Removing the factors of 1. from those of 2. we obtain a description of the tangentspace to the
orbit TVξ O(Vξ). But then, removing these factors from those of 3. we obtain the description of
the normal space NVξ as a GL(α)ξ-module as there is an exact sequence of GL(α)ξ-modules

0 - TVξ O(Vξ) - repα Q
- NVξ

- 0

This proves that the normal space to the orbit in Vξ depends only on the representation type
τ = t(ξ) of the point ξ and can be identified with the representation space of a local quiver Qτ .

Theorem 5.1 Let ξ ∈ issα Q be a point of representation type

τ = t(ξ) = (e1, α1; . . . , ez, αz)

Then, the normal space NVξ to the orbit, as a module over the stabilizer subgroup, is identical to
the representation space of a local quiver situation

NVξ ' repατ
Qτ

where Qτ is the quiver on z vertices (the number of distinct simple components of Vξ) say
{w1, . . . , wz} such that in Qτ

# ��������i��������j
aoo = −χQ(αi, αj) for i 6= j, and

# ��������i
��

= 1− χQ(αi, αi)

and such that the dimension vector ατ = (e1, . . . , ez) (the multiplicities of the simple components
in Vξ).
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We can repeat this argument in the case of a marked quiver Q•. The only difference is the
description of the factors of repα Q

• where we need to replace the factors Mej in the description of

a loop in vi by M0
ei

(trace zero matrices) in case the loop gets a mark in Q•. We define the Euler
form of the marked quiver Q•

χ1
Q• =

26664
1− a11 χ12 . . . χ1k

χ21 1− a22 . . . χ2k

...
...

. . .
...

χk1 χk2 . . . 1− akk

37775 χ2
Q• =

26664
−m11

−m22

. . .
−mkk

37775
such that χQ = χ1

Q• + χ2
Q• where Q is the underlying quiver of Q•.

Theorem 5.2 Let ξ ∈ issα Q
• be a point of representation type

τ = t(ξ) = (e1, α1; . . . , ez, αz)

Then, the normal space NVξ to the orbit, as a module over the stabilizer subgroup, is identical to
the representation space of a local marked quiver situation

NVξ ' repατ
Q•τ

where Q•τ is the quiver on z vertices (the number of distinct simple components of Vξ) say
{w1, . . . , wz} such that in Q•τ

# ��������i��������j
aoo = −χQ(αi, αj) for i 6= j, and

# ��������i
��

= 1− χ1
Q•(αi, αi)

# ��������i

•

��
= −χ2

Q•(αi, αi)

and such that the dimension vector ατ = (e1, . . . , ez) (the multiplicities of the simple components
in Vξ).

Proposition 5.1 If α = (d1, . . . , dk) is the dimension vector of a simple representation of Q•, then
the dimension of the quotient variety issα Q

• is equal to

1− χ1
Q•(α, α)
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Proof. There is a Zariski open subset of issα Q
• consisting of points ξ such that the corresponding

semi-simple module Vξ is simple, that is, ξ has representation type τ = (1, α). But then the local
quiver setting (Qτ , ατ ) is

��������1 • bcca ;;

where a = 1− χ1
Q•(α, α) and b = −χ2

Q•(α, α). The corresponding representation space has coordi-
nate ring

C[repατ
Q•τ ] = C[x1, . . . , xa]

on which GL(ατ ) = C∗ acts trivially. That is, the quotient variety is

repατ
Q•τ/GL(ατ ) = repατ

Q•τ ' Ca

By the slice theorem, issα Q
• has the same local structure near ξ as this quotient space near the

origin and the result follows. �

We can extend the classifications of simple roots of a quiver to the setting of marked quivers.
Let Q be the underlying quiver of a marked quiver Q•. If α = (a1, . . . , ak) is a simple root of
Q and if l is a marked loop in a vertex vi with ai > 1, then we can replace the matrix Vl of a
simple representation V ∈ repα Q by V ′l = Vl − 1

di

rr
di and retain the property that V ′ is a simple

representation. Things are different, however, for a marked loop in a vertex vi with ai = 1 as
this 1 × 1-matrix factor is removed from the representation space. That is, we have the following
characterization result.

Theorem 5.3 α = (a1, . . . , ak) is the dimension vector of a simple representation of a marked
quiver Q• if and only if α = (a1, . . . , ak) is the dimension vector of a simple representation of the
quiver Q′ obtained from the underlying quiver Q of Q• after removing the loops in Q which are
marked in Q• in all vertices vi where ai = 1.

We draw some consequences from the description of the local quiver. We state all results in
the setting of marked quivers. Often, the quotient varieties issα Q

• = repα Q
•/GL(α) classifying

isomorphism classes of semi-simple α-dimensional representations have singularities. Still, we can
decompose these quotient varieties in smooth pieces according to representation types.

Proposition 5.2 Let issα Q
•(τ) be the set of points ξ ∈ issα Q

• of representation type

τ = (e1, α1; . . . ; ez, αz)

Then, issα Q
•(τ) is a locally closed smooth subvariety of issα Q

• and

issα Q
• =

G
τ

issα Q
•(τ)

is a finite smooth stratification of the quotient variety.
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Proof. Let Q•τ be the local marked quiver in ξ. Consider a nearby point ξ′. If some trace of an
oriented cycles of length > 1 in Q•τ is non-zero in ξ′, then ξ′ cannot be of representation type τ as
it contains a simple factor composed of vertices of that cycle. That is, locally in ξ the subvariety
issα Q

•(τ) is determined by the traces of unmarked loops in vertices of the local quiver Q•τ and
hence is locally in the étale topology an affine space whence smooth. All other statements are
direct. �

Given a stratification of a topological space , one wants to determine which strata make up the
boundary of a given stratum. For the above stratification of issα Q• we have a combinatorial
solution to this problem. Two representation types

τ = (e1, α1; . . . ; ez, αz) and τ ′ = (e′1, α
′
1; . . . ; e

′
z′ , α

′
z′)

are said to be direct successors τ < τ ′ if and only if one of the following two cases occurs

• (splitting of one simple) : z′ = z + 1 and for all but one 1 ≤ i ≤ z we have that (ei, αi) =
(e′j , α

′
j) for a uniquely determined j and for the remaining i0 we have that the remaining

couples of τ ′ are
(ei, α

′
u; ei, α

′
v) with αi = α′u + α′v

• (combining two simple types) : z′ = z − 1 and for all but one 1 ≤ i ≤ z′ we have that
(e′i, α

′
i) = (ej , αj) for a uniquely determined j and for the remaining i we have that the

remaining couples of τ are

(eu, α
′
i; ev, α

′
i) with eu + ev = e′i

This direct successor relation < induces an ordering which we will denote with <<. Observe that
τ << τ ′ if and only if the stabilizer subgroup GL(α)τ is conjugated to a subgroup of GL(α)τ ′ .
The following result either follows from general theory, see for example [76, lemma 5.5], or from
the description of the local marked quivers.

Proposition 5.3 The stratum issα Q
•(τ ′) lies in the closure of the stratum issα Q

• if and only
if τ << τ ′.

Proposition 5.1 gives us the dimensions of the different strata issα Q
•(τ).

Proposition 5.4 Let τ = (e1, α1; . . . ; ez, αz) a representation type of α. Then,

dim issα Q
•(τ) =

zX
j=1

(1− χ1
Q•(αj , αj))
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Because repα Q
• and hence issα Q

• is an irreducible variety, there is a unique representation
type τssgen such that issα Q•(τssgen) is Zariski open in the quotient variety issα Q•. We call τssgen
the generic semi-simple representation type for α. The generic semi-simple representation type can
be determined by the following algorithm.

input : A quiver Q, a dimension vector α = (a1, . . . , ak) and a semi-simple representation type

τ = (e1, α1; . . . ; el, αl)

with α =
P

+i = 1leiαi and all αi simple roots for Q. For example, ne can always start with the
type (a1, ~v1; . . . ; ak, ~vk).

step 1 : Compute the local quiver Qτ on l vertices and the dimension vector ατ . If the only oriented
cycles in Qτ are vertex-loops, stop and output this type. If not, proceed.
step 2 : Take a proper oriented cycle C = (j1, . . . , jr) with r ≥ 2 in Qτ where js is the vertex in
Qτ determined by the dimension vector αjs . Set β = αj1 + . . .+ αjr , e′i = ei − δiC where δiC = 1
if i ∈ C and is 0 otherwise. replace τ by the new semi-simple representation type

τ ′ = (e′1, α1; . . . ; e
′
l, αl; 1, β)

delete the terms (e′i, αi) with e′i = 0 and set τ to be the resulting type. goto step 1.

The same algorithm extends to marked quivers with the modified construction of the local
marked quiver Q•τ in that case. We can give an A∞-interpretation of the characterization of the
canonical decomposition and the generic semi-simple representation type . Let

τ = (e1, α1; . . . ; ez, αz) α =

zX
i=1

eiαi

be a decomposition of α with all the αi roots. We define ατ = (e1, . . . , ez) and construct two quivers
Q0
τ and Q1

τ on z vertices determined by the rules

in Q0
τ : # ��������i��������j

aoo = dimC HomCQ(Vi, Vj)

in Q1
τ : # ��������i��������j

aoo = dimC Ext
1
CQ(Vi, Vj)

where Vi is a general representation of Q of dimension vector αi.

Theorem 5.4 With notations as above, we have :

1. The canonical decomposition τcan is the unique type τ = (e1, α1; . . . ; ez, αz) such that all αi
are Schur roots, Q0

τ has no (non-loop) oriented cycles and Q1
τ has no arrows and loops only

in vertices where ei = 1.

2. The generic semi-simple representation type τssgen is the unique type τ = (e1, α1; . . . ; ez, αz)

such that all αi are simple roots, Q0
τ has only loops and Q1

τ has no (non-loop) oriented cycles.
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5.2 Cayley-smooth locus

Let A be a Cayley-Hamilton algebra of degree n equipped with a trace map A
tr- A and consider

the quotient map

trepn A
π-- trissn A

Let ξ be a geometric point of he quotient scheme trissn A with corresponding n-dimensional trace
preserving semi-simple representation Vξ with decomposition

Vξ = S⊕e11 ⊕ . . .⊕ S⊕ek
k

where the Si are distinct simple representations of A of dimension di such that n =
Pk
i=1 diei.

Definition 5.1 The Cayley-smooth locus of A is the subset of trissn A

Smtr A = {ξ ∈ trissn A | trissn A is smooth along π−1(ξ) }

As the singular locus of trissn A is a GLn-stable closed subscheme of trissn A this is equivalent
to

Smtr A = {ξ ∈ trissn A | trissn A is smooth in Vξ }

We will give some numerical conditions on ξ to be in the smooth locus Smtr A. To start,
trepn A is smooth in Vξ if and only if the dimension of the tangent space in Vξ is equal to the local
dimension of trepn A in Vξ. From example 3.11 we know that the tangent space is the set of trace

preserving derivations A
D- Mn(C) satisfying

D(aa′) = D(a)ρ(a′) + ρ(a)D(a′)

where A
ρ- Mn(C) is the C-algebra morphism determined by the action of A on Vξ. The

C-vectorspace of such derivations is denoted by Dertρ A. Therefore,

ξ ∈ Smtr A⇐⇒ dimC Der
t
ρ A = dimVξ trepn A

Next, if ξ ∈ Smtr A, then we know from the slice theorem that the local GLn-structure of trepn A
near Vξ is determined by a local marked quiver setting (Q•ξ , αξ) as defined in theorem 4.3. We have
local étale isomorphisms between the varieties

GLn ×GL(αξ)
repαξ

Q•ξ
et←→ trepn A and repαξ

Q•ξ/GL(αξ)
et←→ trissn A

Which gives us the following numerical restrictions on ξ ∈ Smtr A :
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Proposition 5.5 ξ ∈ Smtr A if and only if the following two equalities hold(
dimVξ trepn A = n2 − (e21 + . . .+ e2k) + dimC ExttrA (Vξ, Vξ)

dimξ trissn A = dim0 repαξ
Q•ξ/GL(αξ) = dim0 issαξQ

•
ξ

Moreover, if ξ ∈ Smtr A, then trepn A is a normal variety (that is, the coordinate ring is integrally
closed) in a neighborhood of ξ

Proof. The last statement follows from the fact that C[repαξ
Q•ξ ]

GL(αξ) is integrally closed and

this property is preserved under the étale map. �

In general, the difference between these numbers gives a measure for the noncommutative sin-
gularity of A in ξ.

Example 5.1 (Quantum plane of order 2) Consider the affine C-algebra A = C〈x,y〉
(xy+yx)

then

u = x2 and v = y2 are central elements of A and A is a free module of rank 4 over C[u, v]. In fact,
A is a C[u, v]-order in the quaternion division algebra

∆ =

„
u v

C(u, v)

«
and the reduced trace map on ∆ makes A into a Cayley-Hamilton algebra of degree 2. More
precisely, tr is the linear map on A such that(

tr(xiyj) = 0 if either i or j are odd, and

tr(xiyj) = 2xiyj if i and j are even.

In particular, a trace preserving 2-dimensional representation is determined by a couple of 2 × 2
matrices

ρ = (

»
x1 x2

x3 −x1

–
,

»
x4 x5

x6 −x4

–
) with tr(

»
x1 x2

x3 −x1

–
.

»
x4 x5

x6 −x4

–
) = 0

That is,trep2 A is the hypersurface in C6 determined by the equation

trep2 A = V(2x1x4 + x2x6 + x3x5) ⊂ - C6

and is therefore irreducible of dimension 5 with an isolated singularity at p = (0, . . . , 0). The image
of the trace map is equal to the center of A which is C[u, v] and the quotient map

trep2 A
π-- triss2 A = C2 π(x1, . . . , x6) = (x2

1 + x2x3, x
2
4 + x5x6)
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There are three different representation types to consider. Let ξ = (a, b) ∈ C2 = triss2 A with
ab 6= 0, then π−1(ξ) is a closed GL2-orbit and a corresponding simple A-module is given by the
matrixcouple

(

»
i
√
a 0

0 −i
√
a

–
,

»
0

√
b

−
√
b 0

–
)

That is, ξ is of type (1, 2) and the stabilizer subgroup are the scalar matrixes C∗rr2
⊂ - GL2. So,

the action on both the tangentspace to trep2 A and the tangent space to the orbit are trivial. As
they have respectively dimension 5 and 3, the normalspace corresponds to the quiver setting

Nξ = ��������1
## {{

which is compatible with the numerical restrictions. Next, consider a point ξ = (0, b) (or similarly,
(a, 0)), then ξ is of type (1, 1; 1, 1) and the corresponding semi-simple representation is given by the
matrices

(

»
0 0
0 0

–
,

»
i
√
b 0

0 −i
√
b

–
)

The stabilizer subgroup is in this case the maximal torus of diagonal matrices C∗ ×C∗ ⊂ - GL2.
The tangent space in this point to trep2 A are the 6-tuples (a1, . . . , a6) such that

tr (

»
0 0
0 0

–
+ ε

»
a1 a2

a3 −a1

–
).(

»
i
√
b 0

0 −i
√
b

–
+ ε

»
b4 b5
b6 −b4

–
) = 0 where ε2 = 0

This leads to the condition a1 = 0, so the tangentspace are the matrix couples

(

»
0 a2

a3 0

–
,

»
a4 a5

a6 −a4

–
) on which the stabilizer

»
λ 0
0 µ

–
acts via conjugation. That is, the tangentspace corresponds to the quiver setting

��������1 ��������1
&& ��

\\ ff cc

Moreover, the tangentspace to the orbit is the image of the linear map

(rr2 + ε

»
m1 m2

m3 m4

–
).(

»
0 0
0 0

–
,

»√
b 0

0 −
√
b

–
), (rr2 −

»
m1 m2

m3 m4

–
)

which is equal to

(

»
0 0
0 0

–
,

»√
b 0

0 −
√
b

–
+ ε

»
0 −2m2

√
b

2m3

√
b 0

–
)
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on which the stabilizer acts again via conjugation giving the quiver setting

��������1 ��������1
&&

ff

Therefore, the normal space to the orbit corresponds to the quiver setting

��������1 ��������1
��

\\ cc

which is again compatible with the numerical restrictions. Finally, consider ξ = (0, 0) which is
of type (2, 1) and whose semi-simple representation corresponds to the zero matrix-couple. The
action fixes this point, so the stabilizer is GL2 and the tangent space to the orbit is the trivial
space. Hence, the tangent space to trep2 A coincides with the normalspace to the orbit and both
spaces are acted on by GL2 via simultaneous conjugation leading to the quiver setting

Nξ = ��������2

•

��

•

[[

This time, the data is not compatible with the numerical restriction as

5 = dim trep2 A 6= n2 − e2 + dim repα Q
• = 4− 4 + 6

consistent with the fact that the zero matrix-couple is a (in fact, the only) singularity on trep2 A.

We will put additional conditions on the Cayley-Hamilton algebra A. Let X be a normal affine
variety with coordinate ring C[X] and functionfield C(X). Let ∆ be a central simple C(X)-algebra
of dimension n2 which is a Cayley-Hamilton algebra of degree n using the reduced trace map tr.
Let A be a C[X]-order in ∆, that is, the center of A is C[X] and A⊗C[X] C(X) ' ∆. Because C[X]
is integrally closed, the restriction of the reduced trace tr to A has its image in C[X], that is, A is
a Cayley-Hamilton algebra of degree n and

tr(A) = C[X]

Consider the quotient morphism for the representation variety

trepn A
π-- trissn A

then the above argument shows that X ' trissn A and in particular the quotient scheme is
reduced.
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Proposition 5.6 Let A be a Cayley-Hamilton order of degree n over C[X]. Then, its smooth locus
Smtr A is a nonempty Zariski open subset of X. In particular, the set Xaz of Azumaya points, that
is, of points x ∈ X = trissn A of representation type (1, n) is a non-empty Zariski open subset of
X and its intersection with the Zariski open subset Xreg of smooth points of X satisfies

Xaz ∩Xreg ⊂ - Smtr A

Proof. Because AC(X) = ∆, there is an f ∈ C[X] such that Af = A ⊗C[X] C[X]f is a free

C[X]f -module of rank n2 say with basis {a1, . . . , an2}. Consider the n2×n2 matrix with entries in
C[X]f

R =

264 tr(a1a1) . . . tr(a1an2)
...

...
tr(an2a1) . . . tr(an2an2)

375
The determinant d = det R is nonzero in C[X]f . For, let K be the algebraic closure of C(X) then
Af ⊗C[X]f K ' Mn(K) and for any K-basis of Mn(K) the corresponding matrix is invertible (for

example, verify this on the matrixes eij). As {a1, . . . , an2} is such a basis, d 6= 0. Next, consider
the Zariski open subset U = X(f) ∩ X(d) ⊂ - X. For any x ∈ X with maximal ideal mx / C[X]
we claim that

A

AmxA
'Mn(C)

Indeed, the images of the ai give a C-basis in the quotient such that the n2 × n2-matrix of their
product-traces is invertible. This property is equivalent to the quotient being Mn(C). The corre-
sponding semi-simple representation of A is simple, proving that Xaz is a non-empty Zariski open
subset of X. But then, over U the restriction of the quotient map

trepn A | π
−1(U) -- U

is a principal PGLn-fibration. In fact, this restricted quotient map determines an element in
H1
et(U,PGLn) determining the class of the central simple C(X)-algebra ∆ in H1

et(C(X), PGLn).
Restrict this quotient map further to U ∩Xreg, then the PGLn-fibration

trepn A | π
−1(U ∩Xreg) -- U ∩Xreg

has a smooth base and therefore also the total space is smooth. But then, U ∩Xreg is a non-empty
Zariski open subset of Smtr A. �

Observe that the normality assumption on X is no restriction as the quotient scheme is locally
normal in a point of Smtr A. Our next result limits the local dimension vectors αξ.

Proposition 5.7 Let A be a Cayley-Hamilton order and ξ ∈ Smtr A such that the normal space
to the orbit of the corresponding semi-simple n-dimensional representation is

Nξ = repαξ
Q•ξ
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Then, αξ is the dimension vector of a simple representation of Q•ξ .

Proof. Let Vξ be the semi-simple representation of A determined by ξ. Let Sξ be the slice variety
in Vξ then by the slice theorem we have the following diagram of étale GLn-equivariant maps

GLn ×GL(αξ) Sξ

GLn ×GL(αξ)
repαξ

Q•ξ

�

et

trepn A

et

-

linking a neighborhood of Vξ with one of (rrn, 0). Because A is an order, every Zariski neighborhood
of Vξ in trepn A contains simple n-dimensional representations, that is, closed GLn-orbits with
stabilizer subgroup isomorphic to C∗. Transporting this property via the GLn-equivariant étale

maps, every Zariski neighborhood of (rrn, 0) contains closed GLn-orbits with stabilizer C∗. By
the correspondence of orbits is associated fiber bundles, every Zariski neighborhood of the trivial
representation 0 ∈ repαξ

Q•ξ contains closed GL(αξ)-orbits with stabilizer subgroup C∗. We have

seen that closed GL(αξ)-orbits correspond to semi-simple representations of Q•ξ . However, if the
stabilizer subgroup of a semi-simple representation is C∗ this representation must be simple. �

Theorem 5.5 Let A be a Cayley-Hamilton order of degree n with center C[X], X a normal variety
of dimension d. For ξ ∈ X = trissn A with corresponding semi-simple representation

Vξ = S⊕e11 ⊕ . . .⊕ S⊕ek
k

and normal space to the orbit O(Vξ) isomorphic to repαξ
Q•ξ as GL(αξ)-modules where αξ =

(e1, . . . , ek). Then, ξ ∈ Smtr A if and only if the following two conditions are met(
αξ is the dimension vector of a simple representation of Q•, and

d = 1− χQ(αξ, αξ)−
Pk
i=1mii

where Q is the underlying quiver of Q•ξ and mii is the number of marked loops in Q•ξ in vertex vi.

Proof. By the slice theorem we have étale maps

repαξ
Q•ξ/GL(αξ) �et Sξ/GL(αξ)

et- trissn A = X

connecting a neighborhood of ξ ∈ X with one of the trivial semi-simple representation 0. By
definition of the Euler-form of Q we have that

χQ(αξ, αξ) = −
X
i6=j

eiejχij +
X
i

e2i (1− aii −mii)
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1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

%%

qq

YY YY

mm

����

Figure 5.1: Ext-quiver of quantum plane

On the other hand we have

dim repα Q
•
αξ

=
X
i6=j

eiejχij +
X
i

e2i (aii +mii)−
X
i

mii

dim GL(αξ) =
X
i

e2i

As any Zariski open neighborhood of ξ contains an open set where the quotient map is a PGL(αξ) =
GL(αξ)

C∗ -fibration we see that the quotient variety repαξ
Q•ξ has dimension equal to

dim repαξ
Q•ξ − dim GL(αξ) + 1

and plugging in the above information we see that this is equal to 1− χQ(αξ, αξ)−
P
imii. �

Example 5.2 (Quantum plane) We will generalize the discussion of example 5.1 to the algebra

A =
C〈x, y〉

(yx− qxy)

where q is a primitive n-th root of unity. Let u = xn and v = yn then it is easy to see that A is
a free module of rank n2 over its center C[u, v] and is a Cayley-Hamilton algebra of degree n with
the trace determined on the basis

tr(xiyj) =

(
0 when either i or j is not a multiple of n,

nxiyj when i and j are multiples of n,
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Let ξ ∈ issn A = C2 be a point (an, b) with a.b 6= 0, then ξ is of representation type (1, n) as the
corresponding (semi)simple representation Vξ is determined by (if m is odd, for even n we replace
a by ia and b by −b)

ρ(x) =

26664
a

qa
. . .

qn−1a

37775 and ρ(y) =

266664
0 1 0 . . . 0
0 0 1 0
...

...
. . .

0 0 0 . . . 1
b 0 0 . . . 0

377775
One computes that Ext1A(Vξ, Vξ) = C2 where the algebra map A

φ- Mn(C[ε]) corresponding to
(α, β) is given by (

φ(x) = ρ(x) + ε αrr
n

φ(y) = ρ(y) + ε βrr
n

and all these algebra maps are trace preserving. That is, Ext1A(Vξ, Vξ) = ExttrA (Vξ, Vξ) and as the
stabilizer subgroup is C∗ the marked quiver-setting (Q•ξ , αξ) is

��������1
"" pp

and d = 1−χQ(α, α)−
P
imii as 2 = 1− (−1)+0, compatible with the fact that over these points

the quotient map is a principal PGLn-fibration.

Next, let ξ = (an, 0) with a 6= 0 (or, by a similar argument (0, bn) with b 6= 0). Then, the
representation type of ξ is (1, 1; . . . ; 1, 1) because

Vξ = S1 ⊕ . . .⊕ Sn

where the simple one-dimensional representation Si is given by(
ρ(x) = qia

ρ(y) = 0

One verifies that

Ext1A(Si, Si) = C and Ext1A(Si, Sj) = δi+1,j C

and as the stabilizer subgroup is C∗× . . .×C∗, the Ext-quiver setting is depicted in figure 5.1. The

algebra map A
φ- Mn(C[ε]) corresponding to the extension (α1, β1, . . . , αn, βn) ∈ Ext1A(Vξ, Vξ)
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is given by 8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

φ(x) =

266664
a+ ε α1

qa+ ε α2

. . .

qn−1a+ ε αn

377775

φ(y) = ε

26666664
0 β1 0 . . . 0

0 0 β2 0
...

...
. . .

...

0 0 0 βn−1

βn 0 0 . . . 0

37777775
The conditions tr(xj) = 0 for 1 ≤ i < n impose n− 1 linear conditions among the αj , whence the
space of trace preserving extensions ExttrA (Vξ, Vξ) corresponds to the quiver setting

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

%%

qq

The Euler-form of this quiver Q• is given by the n× n matrix266664
0 −1 0 . . . 0

1 −1 0
. . .

. . .
1 −1

−1 1

377775
giving the numerical restriction as αξ = (1, . . . , 1)

1− χQ(α, α)−
X
i

mii = 1− (−1)− 0 = 2 = dim trissn A

so ξ ∈ Smtr A. Finally, the only remaining point is ξ = (0, 0). This has representation type (n, 1)
as the corresponding semi-simple representation Vξ is the trivial one. The stabilizer subgroup is
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GLn and the (trace preserving) extensions are given by

Ext1A(Vξ, Vξ) = Mn ⊕Mn and ExttrA (Vξ, Vξ) = M0
n ⊕M0

n

determined by the algebra maps A
φ- Mn(C[ε]) given by(

φ(x) = ε m1

φ(y) = ε m2

That is, the relevant quiver setting (Q•ξ , αξ) is in this point

��������n

• "" •
pp

This time, ξ /∈ Smtr A as the numerical condition fails

1− χQ(α, α)−
X
i

mii = 1− (−n2)− 0 6= 2 = dim trissn A

unless n = 1. That is, Smtr A = C2 − {(0, 0)}.

5.3 Reduction steps

If we want to study the local structure of Cayley-Hamilton orders A of degree n over a central
normal variety X of dimension d, we have to compile a list of admissible marked quiver settings,
that is couples (Q•, α) satisfying the two properties(

α is the dimension vector of a simple representation of Q•, and

d = 1− χQ(α, α)−
P
imi

In this section, we will give two methods to start this classification project.
The first idea is to shrink a marked quiver-setting to its simplest form and classify these simplest

forms for given d. By shrinking we mean the following process. Assume α = (e1, . . . , ek) is the
dimension vector of a simple representation of Q• and let vi and vj be two vertices connected with
an arrow such that ei = ej = e. That is, locally we have the following situation

e8?9>:=;< e8?9>:=;<
χij

))

χji

ii

aii

��

•
mii

WW

ajj

��

•
mjj

WW

χpi
WWWWW

++WWWWW

χiq
ggggg

ssggggg

χrj
ggggg

ssggggg

χjs
WWWWW

++WWWWW
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We will use one of the arrows connecting vi with vj to identify the two vertices. That is, we
form the shrinked marked quiver-setting (Q•s , αs) where Q•s is the marked quiver on k − 1 vertices
{v1, . . . , v̂i, . . . , vk} and αs is the dimension vector with ei removed. Q•s has the following form in
a neighborhood of the contracted vertex

e8?9>:=;<
aii + ajj + χij + χji − 1

��

•
mii + mjj

WW

χpi + χpj
\\\\\\\\\\\\\\

--\\\\\\\\\\\\\\

χiq + χjq
bbbbbbbbbbbbbb

qqbbbbbbbbbbbbbb

χrj + χri
bbbbbbbbbbbbbb

qqbbbbbbbbbbbbbb

χjs + χis
\\\\\\\\\\\\\\

--\\\\\\\\\\\\\\

In Q•s we have for all k, l 6= i, j that χskl = χkl, a
s
kk = akk, m

s
kk = mkk and the number of arrows

and (marked) loops connected to vj are determined as follows

• χsjk = χik + χjk

• χskj = χki + χkj

• asjj = aii + ajj + χij + χji − 1

• ms
jj = mii +mjj

Lemma 5.1 α is the dimension vector of a simple representation of Q• if and only if αs is the
dimension vector of a simple representation of Q•s. Moreover,

dim repα Q
•/GL(α) = dim repαs

Q•s/GL(αs)

Proof. Fix an arrow ��������i��������j
aoo . As ei = ej = e there is a Zariski open subset U ⊂ - repα Q

• of
points V such that Va is invertible. By basechange in either vi or vj we can find a pointW in its orbit
such that Wa = rr

e. If we think of Wa as identifying Cei with Cej we can view the remaining maps of
W as a representation in repαs

Q•s and denote it by W s. The map U - repαs
Q•s is well-defined

and maps GL(α)-orbits to GL(αs)-orbits. Conversely, given a representation W ′ ∈ repαs
Q•s we

can uniquely determine a representation W ∈ U mapping to W ′. Both claims follow immediately
from this observation. �

A marked quiver-setting can uniquely be shrinked to its simplified form , which has the char-
acteristic property that no arrow-connected vertices can have the same dimension. The shrinking
process has a converse operation which we will call splitting of a vertex . However, this splitting
operation is usually not uniquely determined.

Before compiling a lists of marked-quiver settings in simplified form for a specific base-dimension
d, we bound the components of α.
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Proposition 5.8 Let α = (e1, . . . , ek) be the dimension vector of a simple representation of Q and
let 1− χQ(α, α) = d = dim repα Q/GL(α). Then, if e = max ei, we have that d ≥ e+ 1.

Proof. By lemma 5.1 we may assume that (Q,α) is brought in its simplified form, that is, no two
arrow-connected vertices have the same dimension. Let χii denote the number of loops in a vertex
vi, then

−χQ(α, α) =

(P
i ei (

P
j χijej − ei)P

i ei (
P
j χjiej − ei)

and observe that the bracketed terms are positive by the requirement that α is the dimension vector
of a simple representation. We call them the incoming ini, respectively outgoing outi, contribution
of the vertex vi to d. Let vm be a vertex with maximal vertex-dimension e.

inm = e(
X
j 6=m

χjmej + (χii − 1)e) and outm = e(
X
j 6=m

χijej + (χii − 1)e)

If there are loops in vm, then inm ≥ 2 or outm ≥ 2 unless the local structure of Q is

��������1 ��������e ��������1// //��

in which case inm = e = outm. Let vi be the unique incoming vertex of vm, then we have
outi ≥ e− 1. But then,

d = 1− χQ(α, α) = 1 +
X
j

outj ≥ 2e

If vm has no loops, consider the incoming vertices {vi1 , . . . , vis}, then

inm = e(

sX
j=1

χijmeij − e)

which is ≥ e unless
P
χijmeij = e, but in that case we have

sX
j=1

outij ≥ e
2 −

sX
j=1

e2ij ≥ e

the last inequality because all eij < e. In either case we have that d = 1−χQ(α, α) = 1+
P
i outi =

1 +
P
i ini ≥ e+ 1. �
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Example 5.3 In a list of simplified marked quivers we are only interested in repα Q
• as GL(α)-

module and we call two setting equivalent if they determine the same GL(α)-module. For example,
the marked quiver-settings

��������1 ��������2
''gg

•

����
and ��������1 ��������2

''gg
��

determine the same C∗ ×GL2-module, hence are equivalent.

Theorem 5.6 Let A be a Cayley-Hamilton order of degree n over a central normal variety X of
degree d. Then, the local quiver of A in a point ξ ∈ X = trissn A belonging to the smooth locus
Smtr A can be shrinked to one of a finite list of equivalence classes of simplified marked quiver-
settings. For d ≤ 4, the complete list is given in figure 5.2 where the boxed value is the dimension
d of X.

An immediate consequence is a noncommutative analog of the fact that commutative smooth
varieties have only one type of analytic (or étale) local behavior.

Theorem 5.7 There are only finitely many types of étale local behavior of smooth Cayley-Hamilton
orders of degree n over a central variety of dimension d.

Proof. The foregoing reduction shows that for fixed d there are only a finite number of marked
quiver-settings shrinked to their simplified form. As

P
ei ≤ n, we can apply the splitting operations

on vertices only a finite number of times. �

The second set of reduction steps is due to Raf Bocklandt who found them to prove his theorem,
see section 5.7, which is crucial to study the smooth locus and the singularities of trissn A. In
essence the reduction steps relate quiver settings which have invariants rings which are isomorphic
(up to adding variables).

Theorem 5.8 We have the following reductions :

1. b1 : Let (Q,α) be a quiver setting and v a vertex without loops such that

χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0.

Define the quiver setting (Q′, α′) by composing arrows through v :2664
'&%$ !"#u1 · · · /.-,()*+uk

/.-,()*+αv
b1

ccGGGG
bk

;;wwww

'&%$ !"#i1

a1 ;;xxxx · · · '&%$ !"#il

al
ccFFFF

3775 −→
2664

'&%$ !"#u1 · · · /.-,()*+uk

'&%$ !"#i1

c11

OO

c1k

::uuuuuuuuuu · · · '&%$ !"#il

clk

OO

cl1

ddIIIIIIIIII

3775 .
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��������1
��

1

��������1
## {{

2

��������1
"" ||
[[

3

��������2•
##

•
{{

3

��������1 ��������2
''gg

•

��

3

��������1 ��������2 ��������1
''gg gg ''

3

��������1
�� qqQQ11

4

��������2•
## {{

4

��������1 ��������2
''gg
��

4

��������1 ��������2
**jj %%

ee

4

��������1 ��������2 ��������1
''gg gg ''��

4

Figure 5.2: The simplified local quivers for d ≤ 4

(some of the vertices may be the same). Then,

C[issα Q] ' C[issα′ Q
′]

2. b2 : Let (Q,α) be a quiver setting and v a vertex with k loops such that αv = 1. Let (Q′, α)
be the quiver setting where Q′ is the quiver obtained by removing the loops in v, then

C[issα Q] ' C[issα Q
′]⊗ C[X1, · · · , Xk]

3. b3 : Let (Q,α) be a quiver setting and v a vertex with one loop such that αv = k ≥ 2 and

χQ(α, εv) = −1 or χQ(εv, α) = −1.
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Define the quiver setting (Q′, α) by changing the quiver as below :

" ��������k

�� ))SSSSSSSS
��

��������1

==|||| '&%$ !"#u1 · · · /.-,()*+uk

#
−→

" ��������k

�� ))SSSSSSSS

��������1

k 9A||||
|||| '&%$ !"#u1 · · · /.-,()*+uk

#
,

" ��������k

}}||
||
��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSS

#
−→

" ��������k
k

y� ||
|||||
|

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSS

#
.

Then,

C[issα Q] ' C[issαQ
′]⊗ C[X1, . . . , Xk]

Proof. (1) : repα Q can be decomposed as

repα Q =
M

a, s(a)=v

Mαt(a)×αs(a)(C)

| {z }
arrows starting in v

⊕
M

a, t(a)=v

Mαt(a)×αs(a)(C)

| {z }
arrows terminating in v

⊕rest

= MP
s(a)=v αt(a)×αv (C)⊕Mαv×

P
t(a)=v αs(a)

(C)⊕ rest

= Mαv−χ(α,εv)×αv (C)⊕Mαv×αv−χ(εv,α)(C)⊕ rest

GLαv (C) only acts on the first two terms and not on rest. Taking the quotient corresponding to
GLαv (C) involves only the first two terms.

We recall the first fundamental theorem for GLn-invariants , see for example [51, II.4.1]. The
quotient variety

(Ml×n(C)⊕Mn×m)/GLn

where GLn acts in the natural way, is for all l, n,m ∈ N isomorphic to the space of all l×m matrices
of rank ≤ n. The projection map is induced by multiplication

Ml×n(C)⊕Mn×m(C)
π- Ml×m(C) (A,B) 7→ A.B

In particular, if n ≥ l and n ≥ m then π is surjective and the quotient variety is isomorphic to
Ml×m(C).

By this fundamental theorem and the fact that either χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0, the above
quotient variety is isomorphic to

Mαv−χ(α,εv)×αv−χ(εv,α)(C)⊕ rest
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This space can be decomposed asM
a, t(a)=vb, s(b)=v

Mαt(b)×αs(a)(C)⊕ rest = repα′ Q
′

Taking quotients for GL(α′) then proves the claim.
(2) : Trivial as GL(α) acts trivially on the loop-representations in v.
(3) : We only prove this for the first case. Call the loop in the first quiver ` and the incoming

arrow a. Call the incoming arrows in the second quiver ci, i = 0, . . . , k − 1.
There is a map

π : repα Q→ repα′ Q
′ × Ck : V 7→ (V ′, T r(V`), . . . , T r(V`k )) with V ′ci

:= V i` Va

Suppose (V ′, x1, . . . , xk) ∈ repα′Q
′×Ck ∈ such that (x1, . . . , xk) correspond to the traces of powers

of an invertible diagonal matrix D with k different eigenvalues (λi, i = 1, . . . , k) and the matrix A
made of the columns (Vci , i = 0, . . . , k − 1) is invertible. The image of the representation

V ∈ repα Q : Va = V ′c0 , V` = A

0@ λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

1A−1

D

0@ λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

1AA−1

under π is (V ′, x1, . . . , xk) because

V i` Va = A

0@ λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

1A−1

Di

0@ λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

1AA−1V ′c0

= A

0@ λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

1A−1 0@ λi
1

...
λi

k

1A
= Vci

and the traces of V` are the same as those of D. The conditions on (V ′, x1, . . . , xk), imply that the
image of π, U , is dense, and hence π is a dominant map.

There is a bijection between the generators of C[issαQ] and C[issα′Q
′] ⊗ C[X1, . . . , Xk] by

identifying
f`i 7→ Xi, i = 1, . . . , k , f···a`i··· 7→ f···ci···, i = 0, . . . , k − 1
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Notice that higher orders of ` don’t occur by the Caley Hamilton identity on V`. If n is the number
of generators of C[issαQ], we have two maps

φ : C[Y1, · · ·Yn]→ C[issαQ] ⊂ C[repαQ],

φ′ : C[Y1, · · ·Yn]→ C[issα′Q
′]⊗ C[X1, . . . , Xk] ⊂ C[repα′Q

′ × Ck].

Note that φ′(f) ◦ π ≡ φ(f) and φ(f) ◦ π−1|U ≡ φ′(f)|U . So if φ(f) = 0 then also φ′(f)|U = 0.
Because U is zariski-open and dense in repα′Q

′ × C2, φ′(f) ≡ 0. A similar argument holds for the
inverse implication whence Ker(φ) = Ker(φ′). �

We have to work with marked quiver settings and therefore we need slightly more general reduc-
tion steps. The proofs of the claims below follow immediately from the above theorem by separating
traces.

With εv we denote the basevector concentrated in vertex v and αv will denote the vertex dimen-
sion component of α in vertex v. There are three types of reduction moves, each with their own
condition and effect on the ring of invariants.

Vertex removal (b1) : Let (Q•, α) be a marked quiver setting and v a vertex satisfying the
condition CvV , that is, v is without (marked) loops and satisfies

χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0

Define the new quiver setting (Q•
′
, α′) obtained by the operation RvV which removes the vertex v

and composes all arrows through v, the dimensions of the other vertices are unchanged :266666666664

'&%$ !"#u1 · · · /.-,()*+uk

/.-,()*+αv

b1

aaCCCCCCCCCC bk

=={{{{{{{{{{

'&%$ !"#i1

a1

=={{{{{{{{{{ · · · '&%$ !"#il

al

aaCCCCCCCCCC

377777777775
Rv

V-

26666666664

'&%$ !"#u1 · · · /.-,()*+uk

'&%$ !"#i1

c11

OO

c1k

<<zzzzzzzzzzzzzzzzzzzzz · · · '&%$ !"#il

clk

OO

cl1

bbDDDDDDDDDDDDDDDDDDDDD

37777777775
.

where cij = aibj (observe that some of the incoming and outgoing vertices may be the same so that
one obtains loops in the corresponding vertex). In this case we have

C[repα Q
•]GL(α) ' C[repα′ Q

•′ ]GL(α′)

loop removal (b2) : Let (Q•, α) be a marked quiver setting and v a vertex satisfying the

condition Cvl that the vertex-dimension αv = 1 and there are k ≥ 1 loops in v. Let (Q•
′
, α) be the
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quiver setting obtained by the loop removal operation Rvl24 ��������1

k

��

35 Rv
l-

24
��������1

k−1

��

35 .
removing one loop in v and keeping the dimension vector the same, then

C[repα Q
•]GL(α) ' C[repα Q

•′ ]GL(α)[x]

Loop removal (b3) : Let (Q•, α) be a marked quiver setting and v a vertex satisfying
condition CvL, that is, the vertex dimension αv ≥ 2, v has precisely one (marked) loop in v and

χQ(εv, α) = −1 or χQ(α, εv) = −1

(that is, there is exactly one other incoming or outgoing arrow from/to a vertex with dimension

1). Let (Q•
′
, α) be the marked quiver setting obtained by changing the quiver as indicated below

(depending on whether the incoming or outgoing condition is satisfied and whether there is a loop
or a marked loop in v)
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and the dimension vector is left unchanged, then we have

C[repα Q
•]GL(α) =

(
C[repα Q

•′ ]GL(α)[x1, . . . , xk] (loop)

C[repα Q
•′ ]GL(α)[x1, . . . , xk−1] (marked loop)

Definition 5.2 A marked quiver Q• is said to be strongly connected if for every pair of vertices
{v, w} there is an oriented path from v to w and an oriented path from w to v.

A marked quiver setting (Q•, α) is said to be reduced if and only if there is no vertex v such that
one of the conditions CvV , Cvl or CvL is satisfied.

Lemma 5.2 Every marked quiver setting (Q•1, α1) can be reduced by a sequence of operations
RvV , R

v
l and RvL to a reduced quiver setting (Q•2, α2) such that

C[repα1
Q•1]

GL(α1) ' C[repα2
Q•2]

GL(α2)[x1, . . . , xz]

Moreover, the number z of extra variables is determined by the reduction sequence

(Q•2, α2) = R
viu
Xu
◦ . . . ◦Rvi1

X1
(Q•1, α1)

where for every 1 ≤ j ≤ u, Xj ∈ {V, l, L}. More precisely,

z =
X
Xj=l

1 +

(unmarked)X
Xj=L

αvij
+

(marked)X
Xj=L

(αvij
− 1)

Proof. As any reduction step removes a (marked) loop or a vertex, any sequence of reduction steps
starting with (Q•1, α1) must eventually end in a reduced marked quiver setting. The statement then
follows from the discussion above. �

As the reduction steps have no uniquely determined inverse, there is no a priori reason why the
reduced quiver setting of the previous lemma should be unique. Nevertheless this is true.

We will say that a vertex v is reducible if one of the conditions CvV (vertex removal), Cvl (loop
removal in vertex dimension one) or CvL (one (marked) loop removal) is satisfied. If we let the
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specific condition unspecified we will say that v satisfies CvX and denote RvX for the corresponding
marked quiver setting reduction. The resulting marked quiver setting will be denoted by

RvX(Q•, α)

If w 6= v is another vertex in Q• we will denote the corresponding vertex in RvX(Q•) also with w.
The proof of the uniqueness result relies on three claims :

1. If w 6= v satisfies RwY in (Q•, α), then w virtually always satisfies RwY in RvX(Q•, α).

2. If v satisfies RvX and w satisfies RwY , then RvX(RwY (Q•, α)) = RwY (RvX(Q•, α)).

3. The previous two facts can be used to prove the result by induction on the minimal length of
the reduction chain.

By the neighborhood of a vertex v in Q• we mean the (marked) subquiver on the vertices connected
to v. A neighborhood of a set of vertices is the union of the vertex-neighborhoods. Incoming resp.
outgoing neighborhoods are defined in the natural manner.

Lemma 5.3 Let v 6= w be vertices in (Q•, α).

1. If v satisfies CvV in (Q•, α) and w satisfies CwX , then v satisfies CwV in RwX(Q•, α) unless the
neighborhood of {v, w} looks like

'&%$ !"#i1

��:
::

::
: '&%$ !"#u1

...
��������v // ��������w

AA�������

��;
;;

;;
;;

...

/.-,()*+ik

AA������ '&%$ !"#ul

or

'&%$ !"#i1

��;
;;

;;
; '&%$ !"#u1

...
��������w // ��������v

AA�������

��;
;;

;;
;;

...

/.-,()*+ik

AA������ '&%$ !"#ul

and αv = αw. Observe that in this case RvV (Q•, α) = RwV (Q•, α).

2. If v satisfies Cvl and w satisfies CwX then then v satisfies Cvl in RwX(Q•, α).

3. If v satisfies CvV and w satisfies CwX then then v satisfies CvV in RwX(Q•, α).

Proof. (1) : If X = l then RwX does not change the neighborhood of v so CvV holds in Rwl (Q•, α).
If X = L then RwX does not change the neighborhood of v unless αv = 1 and χQ(εw, εv) = −1
(resp. χQ(εv, εw) = −1) depending on whether w satisfies the in- or outgoing condition CwL . We
only consider the first case, the latter is similar. Then v cannot satisfy the outgoing form of CvV in
(Q•, α) so the incoming condition is satisfied. Because the RwL -move does not change the incoming
neighborhood of v, CvV still holds for v in RwL(Q•, α).

If X = V and v and w have disjoint neighborhoods then CvV trivially remains true in RwV (Q•, α).
Hence assume that there is at least one arrow from v to w (the case where there are only arrows from
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w to v is similar). If αv < αw then the incoming condition CvV must hold (outgoing is impossible)
and hence w does not appear in the incoming neighborhood of v. But then RwV preserves the
incoming neighborhood of v and CvV remains true in the reduction. If αv > αw then the outgoing
condition CwV must hold and hence w does not appear in the incoming neighborhood of v. So if the
incoming condition CvV holds in (Q•, α) it will still hold after the application of RwV . If the outgoing
condition CvV holds, the neighborhoods of v and w in (Q•, α) and v in RwV (Q•, α) are depicted in
figure 5.3. Let A be the set of arrows in Q• and A′ the set of arrows in the reduction, then becauseP
a∈A,s(a)=w αt(a) ≤ αw (the incoming condition for w) we have

X
a∈A′,s(a)=v

α′t(a) =
X
a∈A,

s(a)=v,t(a)6=w

αt(a) +
X
a∈A

t(a)=w,s(a)=v

X
a∈A,s(a)=w

αt(a)

≤
X
a∈A,

s(a)=v,t(a)6=w

αt(a) +
X
a∈A

t(a)=w,s(a)=w

αw

=
X

a∈A,s(a)=v

αt(a) ≤ αv

and therefore the outgoing condition CvV also holds in RwV (Q•, α). Finally if αv = αw, it may be
that CvV does not hold in RwV (Q•, α). In this case χ(εv, α) < 0 and χ(α, εw) < 0 (CvV is false in
RwV (Q•, α)). Also χ(α, εv) ≥ 0 and χ(εw, α) ≥ 0 (otherwise CV does not hold for v or w in (Q•, α)).
This implies that we are in the situation described in the lemma and the conclusion follows.
(2) : None of the RwX -moves removes a loop in v nor changes αv = 1.
(3) : Assume that the incoming condition CvL holds in (Q•, α) but not in RwX(Q•, α), then w must
be the unique vertex which has an arrow to v and X = V . Because αw = 1 < αv, the incoming
condition CwV holds. This means that there is also only one arrow arriving in w and this arrow is
coming from a vertex with dimension 1. Therefore after applying RwV , v will still have only one
incoming arrow starting in a vertex with dimension 1. A similar argument holds for the outgoing
condition CvL. �

Lemma 5.4 Suppose that v 6= w are vertices in (Q•, α) and that CvX and CwY are satisfied. If CvX
holds in RwY (Q•, α) and CwY holds in RvX(Q•, α) then

RvXR
w
Y (Q•, α) = RwYR

v
X(Q•, α)

Proof. If X,Y ∈ {l, L} this is obvious, so let us assume that X = V . If Y = V as well, we can
calculate the Euler form χRw

V
Rv

V
Q(εx, εy). Because

χRv
V
Q(εx, εy) = χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)
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Figure 5.3: Neighborhoods of v and w

it follows that

χRw
V
Rv

V
Q(εx, εy) = χRv

V
Q(εx, εy)− χRv

V
Q(εx, εw)χRv

V
Q(εv, εy)

= χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)

− (χQ(εx, εw)− χQ(εx, εv)χQ(εv, εw)) (χQ(εw, εy)− χQ(εw, εv)χQ(εv, εy))

= χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)− χQ(εx, εw)χQ(εw, εy)

− χQ(εx, εv)χQ(εv, εw)χQ(εw, εv)χQ(εv, εy)

+ χQ(εx, εw)χQ(εw, εv)χQ(εv, εy) + χQ(εx, εv)χQ(εv, εw)χQ(εw, εy)

This is symmetric in v and w and therefore the ordering of RvV and RwV is irrelevant.
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If Y = l we have the following equalities

χRw
l
Rv

V
Q(εx, εy) = χRv

V
Q(εx, εy)− δwxδwy

= χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)− δwxδwy
= χQ(εx, εy)− δwxδwy − (χQ(εx, εv)− δwxδwv)(χQ(εv, εy)− δwvδwy)
= χRw

l
Q(εx, εy)− χRw

l
Q(εx, εv)χRw

l
Q(εv, εy)

= χRv
V
Rw

l
Q.

If Y = L, an RwL -move commutes with the RvV move because it does not change the neighborhood of
v except when v is the unique vertex of dimension 1 connected to w. In this case the neighborhood
of v looks like

��������w
��

~~~~
~~

~~
~~

1

��

. . .

aaCCCCCCCCC

��������1

or ��������w
��

!!C
CC

CC
CC

CC

1

>>~~~~~~~~
. . .

��������1

OO

In this case the reduction at v is equivalent to a reduction at v′ (i.e. the lower vertex) which
certainly commutes with RwL . �

We are now in a position to prove the claimed uniqueness result.

Theorem 5.9 If (Q•, α) is a strongly connected marked quiver setting and (Q•1, α1) and (Q•2, α2)
are two reduced marked quiver setting obtained by applying reduction moves to (Q•, α) then

(Q•1, α1) = (Q•2, α2)

Proof. We do induction on the length l1 of the reduction chain R1 reducing (Q•, α) to (Q•1, α1). If
l1 = 0, then (Q•, α) has no reducible vertices so the result holds trivially. Assume the result holds
for all lengths < l1. There are two cases to consider.

There exists a vertex v satisfying a loop removal condition CvX , X = l or L. Then, there is a
RvX -move in both reduction chains R1 and R2. This follows from lemma 5.3 and the fact that none
of the vertices in (Q•1, α1) and (Q•2, α2) are reducible. By the commutation relations from lemma
5.4, we can bring this reduction to the first position in both chains and use induction.

If there is a vertex v satisfying condition CvV , either both chains will contain an RvV -move or the
neighborhood of v looks like the figure in lemma 5.3 (1). Then, R1 can contain an RvV -move and
R2 an RwV -move. But then we change the RwV move into a RvV move, because they have the same
effect. The concluding argument is similar to that above. �
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1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

//
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__?????????

oo

  

...

Figure 5.4: Cayley-smooth curve types.

5.4 Curves and surfaces

W. Schelter has proved in [71] that in dimension one, Cayley-smooth orders are hereditary. We give
an alternative proof of this result using the étale local classification. The next result follows also by
splitting the dimension 1 case in figure 5.2. We give a direct proof illustrating the type-stratification
result of section 5.1.

Theorem 5.10 Let A be a Cayley-Hamilton order of degree n over an affine curve X = trissn A.
If ξ ∈ Smtr A, then the étale local structure of A in ξ is determined by a marked quiver-setting
which is an oriented cycle on k vertices with k ≤ n and an unordered partition p = (d1, . . . , dk)
having precisely k parts such that

P
i di = n determining the dimensions of the simple components

of Vξ, see figure 5.4.

Proof. Let (Q•, α) be the corresponding local marked quiver-setting. Because Q• is strongly
connected, there exist oriented cycles in Q•. Fix one such cycle of length s ≤ k and renumber the
vertices of Q• such that the first s vertices make up the cycle. If α = (e1, . . . , ek), then there exist
semi-simple representations in repα Q

• with composition

α1 = (1, . . . , 1| {z }
s

, 0, . . . , 0| {z }
k−s

)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕es−1

s ⊕ ε⊕es+1
s+1 ⊕ . . .⊕ ε⊕ek

k

where εi stands for the simple one-dimensional representation concentrated in vertex vi. There
is a one-dimensional family of simple representations of dimension vector α1, hence the stratum
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of semi-simple representations in issα Q• of representation type τ = (1, α1; e1 − 1, ε1; . . . ; es −
1, εs; es+1, εs+1; ek, εk) is at least one-dimensional. However, as dim issα Q• = 1 this can only
happen if this semi-simple representation is actually simple. That is, when α = α1 and k = s. �

If Vξ is the semi-simple n-dimensional representation of A corresponding to ξ, then

Vξ = S1 ⊕ . . .⊕ Sk with dim Si = di

and the stabilizer subgroup is GL(α) = C∗× . . .×C∗ embedded in GLn via the diagonal embedding

(λ1, . . . , λk) - diag(λ1, . . . , λ1| {z }
d1

, . . . , λk, . . . , λk| {z }
dk

)

Further, using basechange in repα Q
• we can bring every simple α-dimensional representation of

Qα in standard form

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

1 //

1
??������

x

OO
1

__??????
1

oo

  

where x ∈ C∗ is the arrow from vk to v1. That is, C[repα Q
•]GL(α) ' C[x] proving that the quotient

(or central) variety X must be smooth in ξ by the slice result. Moreover, as cAξ ' cTα we have,
using the numbering conventions of the vertices) the following block decomposition

cAξ '

2666666666666664

Md1(C[[x]]) Md1×d2(C[[x]]) . . . Md1×dk (C[[x]])

Md2×d1(xC[[x]]) Md2(C[[x]]) . . . Md2×dk (C[[x]])

...
...

. . .
...

Mdk×d1(xC[[x]]) Mdk×d2(xC[[x]]) . . . Mdk (C[[x]])

3777777777777775
From the local description of hereditary orders given in [70, Thm. 39.14] we deduce that Aξ is an
hereditary order. That is, we have the following characterization of the smooth locus
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??������

OO

OO

__??????

oo

//

oo

OO

  

{{

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

...

Figure 5.5: Cayley-smooth surface types.

Proposition 5.9 Let A be a Cayley-Hamilton order of degree n over a central affine curve X.
Then, Smtr A is the locus of points ξ ∈ X such that Aξ is an hereditary order (in particular, ξ
must be a smooth point of X).

Theorem 5.11 Let A be a Cayley-Hamilton central OX-order of degree n where X is a projective
curve. Equivalent are

1. A is a sheaf of Cayley-smooth orders

2. X is smooth and A is a sheaf of hereditary OX-orders

We now turn to orders over surfaces. The next result can equally be proved using splitting and
the classification of figure 5.2.

Theorem 5.12 Let A be a Cayley-Hamilton order of degree n over an affine surface X = trissn A.
If ξ ∈ Smtr A, then the étale local structure of A in ξ is determined by a marked local quiver-setting
Aklm on k+ l+m ≤ n vertices and an unordered partition p = (d1, . . . , dk+l+m) of n with k+ l+m
non-zero parts determined by the dimensions of the simple components of Vξ as in figure 5.5.
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Proof. Let (Q•, α) be the marked quiver-setting on r vertices with α = (e1, . . . , er) corresponding
to ξ. As Q• is strongly connected and the quotient variety is two-dimensional, Q• must contain
more than one oriented cycle, hence it contains a sub-quiver of type Aklm, possibly degenerated
with k or l equal to zero. Order the first k + l +m vertices of Q• as indicated. One verifies that
Aklm has simple representations of dimension vector (1, . . . , 1). Assume that Aklm is a proper
subquiver and denote s = k + l +m+ 1 then Q• has semi-simple representations in repα Q

• with
dimension-vector decomposition

α1 = (1, . . . , 1| {z }
k+l+m

, 0, . . . , 0)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕ek+l+m−1

k+l+m ⊕ ε⊕es
s ⊕ . . .⊕ ε⊕er

r

Applying the formula for the dimension of the quotient variety shows that iss(1,...,1) Aklm has
dimension 2 so there is a two-dimensional family of such semi-simple representation in the two-
dimensional quotient variety issα Q•. This is only possible if this semi-simple representation is
actually simple, whence r = k + l +m, Q• = Aklm and α = (1, . . . , 1). �

If Vξ is the semi-simple n-dimensional representation of A corresponding to ξ, then

Vξ = S1 ⊕ . . .⊕ Sr with dim Si = di

and the stabilizer subgroup GL(α) = C∗ × . . .× C∗ embedded diagonally in GLn

(λ1, . . . , λr) 7→ diag(λ1, . . . , λ1| {z }
d1

, . . . , λr, . . . , λr| {z }
dr

)

By basechange in repα Aklm we can bring every simple α-dimensional representation in the following
standard form

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
1 //

1
??�����

1

OO

1

OO
x

__?????
1
oo

y //

1
oo

OO

��

}}
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with x, y ∈ C∗ and as C[issα Aklm] = C[repα Aklm]GL(α) is the ring generated by traces along
oriented cycles in Aklm, it is isomorphic to C[x, y]. From the slice result one deduces that ξ must be a

smooth point of X and because cAξ ' cTα we deduce it must have the following block-decomposition

Âξ '

@
@

@
@

@
@

@
@

@
@

@
@

@
@

(x)

(x)

(y)

(y)

(1)

(1)

(1)

(1)

(1)

(x)

(y)

(x, y)| {z }
k

| {z }
l

| {z }
m

⊂ - Mn(C[[x, y]])

where at spot (i, j) with 1 ≤ i, j ≤ k + l+m there is a block of dimension di × dj with entries the
indicated ideal of C[[x, y]].

Definition 5.3 Let A be a Cayley-Hamilton central C[X]-order of degree n in a central simple
C(X)- algebra ∆ of dimension n2.

1. A is said to be étale locally split in ξ if and only if cAξ is a central ÔX,x-order in

Mn(ÔX,x ⊗OX,x C(X)).

2. The ramification locus ramA of A is the locus of points ξ ∈ X such that

A

mξAmξ
6'Mn(C)

The complement X − ramA is the Azumaya locus Xaz of A.

Theorem 5.13 Let A be a Cayley-smooth central OX-order of degree n over a projective surface
X. Then,

1. X is smooth.

2. A is étale locally split in all points of X.
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Figure 5.6: Proper semi-simples of Aklm.

3. The ramification divisor ramA ⊂ - X is either empty or consists of a finite number of
isolated (possibly embedded) points and a reduced divisor having as its worst singularities
normal crossings.

Proof. (1) and (2) follow from the above local description of A. As for (3) we have to compute
the local quiver-settings in proper semi-simple representations of repα Aklm. As simples have a
strongly connected support, the decomposition types of these proper semi-simples are depicted in
figure 5.6. with x, y ∈ C∗. By the description of local quivers given in section 3 we see that
they are respectively of the forms in figure 5.7. The associated unordered partitions are defined
in the obvious way, that is, to the looped vertex one assigns the sum of the di belonging to the
loop-contracted circuit and the other components of the partition are preserved. Using the étale
local isomorphism between X in a neighborhood of ξ and of issα Aklm in a neighborhood of the
trivial representation, we see that the local picture of quiver-settings of A in a neighborhood of ξ
is described in figure 5.8. The Azumaya points are the points in which the quiver-setting is A001

(the two-loop quiver). From this local description the result follows if we take care of possibly
degenerated cases. �

An isolated point in ξ can occur if the quiver-setting in ξ is of type A00m with m ≥ 2. In the
case of curves and surfaces, the central variety X of a Cayley-smooth model A had to be smooth
and that A is étale locally split in every point ξ ∈ X. Both of these properties are no longer valid
in higher dimensions.
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Figure 5.7: Local quivers for Aklm.

Lemma 5.5 For dimension d ≥ 3, the center Z of a Cayley-smooth order of degree n can have
singularities.

Proof. Consider the marked quiver-setting of figure 5.9 which is allowed for dimension d = 3 and
degree n = 2. The quiver-invariants are generated by the traces along oriented cycles, that is by
ac, ad, bc and bd. The coordinate ring is

C[issα Q] ' C[x, y, z, v]

(xv − yz)

having a singularity in the origin. This example can be extended to dimensions d ≥ 3 by adding
loops in one of the vertices.

1(/).*-+, 1(/).*-+,a

((

b

!!

c

hh

d

aad − 3 99

�

Lemma 5.6 For dimension d ≥ 3, a Cayley-smooth algebra does not have to be locally étale split
in every point of its central variety.
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Figure 5.8: Local picture for Aklm.
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Figure 5.9: Central singularities can arise.

Proof. Consider the following allowable quiver-setting for d = 3 and n = 2

2(/).*-+,•
%%

•
yy

The corresponding Cayley-smooth algebra A is generated by two generic 2× 2 trace zero matrices,
say A and B. From the description of the trace algebra T2

2 we see that its center is generated by
A2 = x, B2 = z and AB+BA = z. Alternatively, we can identify A with the Clifford-algebra over
C[x, y, z] of the non-degenerate quadratic form»

x y
y z

–
This is a noncommutative domain and remains to be so over the formal power series C[[x, y, z]].
That is, A cannot be split by an étale extension in the origin. More generally, whenever the local
marked quiver contains vertices with dimension ≥ 2, the corresponding Cayley-smooth algebra
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cannot be split by an étale extension as the local quiver-setting does not change and for a split
algebra all vertex-dimensions have to be equal to 1. In particular, the Cayley-smooth algebra of
degree 2 corresponding to the quiver-setting

2(/).*-+,•k

%%
l

yy

cannot be split by an étale extension in the origin. Its corresponding dimension is

d = 3k + 4l − 3

whenever k + l ≥ 2 and all dimensions d ≥ 3 are obtained. �

Let X be a projective surface. We will characterize the central simple C(X)-algebras ∆ allowing
a Cayley-smooth model . We first need to perform a local calculation. Consider the ring of algebraic
functions in two variables C{x, y} and let Xloc = Spec C{x, y}. There is only one codimension two
subvariety : m = (x, y). Let us compute the coniveau spectral sequence for Xloc. If K is the field of
fractions of C{x, y} and if we denote with kp the field of fractions of C{x, y}/p where p is a height
one prime, we have as its first term

0 0 0 0 . . .

H2(K,µn) ⊕p H1(kp,Zn) µ−1
n 0 . . .

H1(K,µn) ⊕pZn 0 0 . . .

µn 0 0 0 . . .

Because C{x, y} is a unique factorization domain, we see that the map

H1
et(K,µn) = K∗/(K∗)n

γ- ⊕p Zn

is surjective. Moreover, all fields kp are isomorphic to the field of fractions of C{z} whose only
cyclic extensions are given by adjoining a root of z and hence they are all ramified in m. Therefore,
the component maps

Zn = H1
et(kp,Zn)

βL- µ−1
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are isomorphisms. But then, the second (and limiting) term of the spectral sequence has the form

0 0 0 0 . . .

Ker α Ker β/Im α 0 0 . . .

Ker γ 0 0 0 . . .

µn 0 0 0 . . .

Finally, we use the fact that C{x, y} is strict Henselian whence has no proper étale extensions.
But then,

Hi
et(Xloc, µn) = 0 for i ≥ 1

and substituting this information in the spectral sequence we obtain that the top sequence of the
coniveau spectral sequence

0 - Brn K
α- ⊕p Zn - Zn - 0

is exact. From this sequence we immediately obtain the following

Lemma 5.7 With notations as before, we have

1. Let U = Xloc − V (x), then Brn U = 0

2. Let U = Xloc − V (xy), then Brn U = Zn with generator the quantum-plane algebra

Cζ [u, v] =
C〈u, v〉

(vu− ζuv)

where ζ is a primitive n-th root of one

Let ∆ be a central simple algebra of dimension n2 over a field L of transcendence degree 2. We
want to determine when ∆ admits a Cayley-smooth model A, that is, a sheaf of Cayley-smooth OX -
algebras where X is a projective surface with functionfield C(X) = L. It follows from theorem 5.13
that, if such a model exists, X must be a smooth projective surface. We may assume that X is a
(commutative) smooth model for L. By the Artin-Mumford exact sequence 3.11 the class of ∆ in
Brn C(X) is determined by the following geo-combinatorial data
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• A finite collection C = {C1, . . . , Ck} of irreducible curves in X.

• A finite collection P = {P1, . . . , Pl} of points of X where each Pi is either an intersection
point of two or more Ci or a singular point of some Ci.

• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ and {1, . . . , iP } the
different branches of C in P . These numbers must satisfy the admissibility conditionX

i

bi = 0 ∈ Zn

for every P ∈ P

• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C which is compatible with the branch-data.

If A is a maximal OX -order in ∆, then the ramification locus ramA coincides with the collection
of curves C. We fix such a maximal OX -order A and investigate its Cayley-smooth locus.

Proposition 5.10 Let A be a maximal OX-order in ∆ with X a projective smooth surface and
with geo-combinatorial data (C,P, b,D) determining the class of ∆ in Brn C(X).

If ξ ∈ X lies in X − C or if ξ is a non-singular point of C, then A is Cayley-smooth in ξ.

Proof. If ξ /∈ C, then Aξ is an Azumaya algebra over OX,x. As X is smooth in ξ, A is Cayley-
smooth in ξ. Alternatively, we know that Azumaya algebras are split by étale extensions, whence

Âξ 'Mn(C[[x, y]]) which shows that the behavior of A near ξ is controlled by the local data

1(/).*-+,%% yy . . .| {z }
n

and hence ξ ∈ Smtr A. Next, assume that ξ is a nonsingular point of the ramification divisor
C. Consider the pointed spectrum Xξ = Spec OX,ξ − {mξ}. The only prime ideals are of height
one, corresponding to the curves on X passing through ξ and hence this pointed spectrum is a
Dedekind scheme. Further, A determines a maximal order over Xξ. But then, tensoring A with
the strict henselization OshX,ξ ' C{x, y} determines a sheaf of hereditary orders on the pointed

spectrum X̂ξ = Spec C{x, y} − {(x, y)} and we may choose the local variable x such that x is a
local parameter of the ramification divisor C near ξ.

Using the characterization result for hereditary orders over discrete valuation rings, given in
[70, Thm. 39.14] we know the structure of this extended sheaf of hereditary orders over any

height one prime of X̂ξ. Because Aξ is a reflexive (even a projective) OX,ξ-module, this height
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one information determines Ashξ or bAξ. This proves that Ashξ must be isomorphic to the following
blockdecomposition

2666666666666664

Md1(C{x, y}) Md1×d2(C{x, y}) . . . Md1×dk (C{x, y})

Md2×d1(xC{x, y}) Md2(C{x, y}) . . . Md2×dk (C{x, y})

...
...

. . .
...

Mdk×d1(xC{x, y}) Mdk×d2(xC{x, y}) . . . Mdk (C{x, y})

3777777777777775
for a certain partition p = (d1, . . . , dk) of n having k parts. In fact, as we started out with a maximal
order A one can even show that all these integers di must be equal. This local form corresponds
to the following quiver-setting

1(/).*-+, 1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

Ak01

WW///////

KK��������������

ee

//

oo

""
p = (d1, . . . , dk)

whence ξ ∈ Smtr A as this is one of the allowed surface settings. �

A maximal OX -order in ∆ can have at worst noncommutative singularities in the singular
points of the ramification divisor C. Theorem 5.13 a Cayley-smooth order over a surface has
as ramification-singularities at worst normal crossings. We are always able to reduce to normal
crossings by the following classical result on commutative surfaces, see for example [33, V.3.8].
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Theorem 5.14 (Embedded resolution of curves in surfaces) Let C be any curve on the sur-
face X. Then, there exists a finite sequence of blow-ups

X ′ = Xs - Xs−1
- . . . - X0 = X

and, if f : X ′ -- X is their composition, then the total inverse image f−1(C) is a divisor with
normal crossings.

Fix a series of blow-ups X ′
f-- X such that the inverse image f−1(C) is a divisor on X ′

having as worst singularities normal crossings. We will replace the Cayley-Hamilton OX -order A
by a Cayley-Hamilton OX′ -order A′ where A′ is a sheaf of OX′ -maximal orders in ∆. In order
to determine the ramification divisor of A′ we need to be able to keep track how the ramification
divisor C of ∆ changes if we blow up a singular point p ∈ P.

Lemma 5.8 Let X̃ -- X be the blow-up of X at a singular point p of C, the ramification divisor
of ∆ on X. Let C̃ be the strict transform of C and E the exceptional line on X̃. Let C′ be the
ramification divisor of ∆ on the smooth model X̃. Then,

1. Assume the local branch data at p distribute in an admissible way on C̃, that is,X
i at q

bi,p = 0 for all q ∈ E ∩ C̃

where the sum is taken only over the branches at q. Then, C′ = C̃.

2. Assume the local branch data at p do not distribute in an admissible way, then C′ = C̃ ∪ E.

Proof. Clearly, C̃ ⊂ - C′ ⊂ - C̃ ∪ E. By the Artin-Mumford sequence applied to X ′ we know
that the branch data of C′ must add up to zero at all points q of C̃ ∩ E. We investigate the two
cases

1. : Assume E ⊂ C′. Then, the E-branch number at q must be zero for all q ∈ C̃ ∩E. But there
are no non-trivial étale covers of P1 = E so ram(∆) gives the trivial element in H1

et(C(E), µn), a

contradiction. Hence C′ = C̃.

??
??

??
??

??
??

??
??

? �����������������

•

p

a −a

E
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2. : If at some q ∈ C̃ ∩E the branch numbers do not add up to zero, the only remedy is to include
E in the ramification divisor and let the E-branch number be such that the total sum is zero in
Zn. �

Theorem 5.15 Let ∆ be a central simple algebra of dimension n2 over a field L of transcendence
degree two. Then, there exists a smooth projective surface S with functionfield C(S) = L such
that any maximal OS-order AS in ∆ has at worst a finite number of isolated noncommutative
singularities. Each of these singularities is locally étale of quantum-plane type.

Proof. We take any projective smooth surface X with functionfield C(X) = L. By the Artin-
Mumford exact sequence, the class of ∆ determines a geo-combinatorial set of data

(C,P, b,D)

as before. In particular, C is the ramification divisor ram(∆) and P is the set of singular points of
C. We can separate P in two subsets

• Punr = {P ∈ P where all the branch-data bP = (b1, . . . , biP ) are trivial, that is, all bi = 0 in
Zn}

• Pram = {P ∈ P where some of the branch-data bP = (b1, . . . , biP ) are non-trivial, that is,
some bi 6= 0 in Zn}

After a finite number of blow-ups we get a birational morphism S1
π-- X such that π−1(C) has

as its worst singularities normal crossings and all branches in points of P are separated in S. Let
C1 be the ramification divisor of ∆ in S1. By the foregoing argument we have

• If P ∈ Punr, then we have that C′ ∩ π−1(P ) consists of smooth points of C1,

• If P ∈ Pram, then π−1(P ) contains at least one singular points Q of C1 with branch data
bQ = (a,−a) for some a 6= 0 in Zn.

In fact, after blowing-up singular points Q′ in π−1(P ) with trivial branch-data we obtain a smooth
surface S -- S1

-- X such that the only singular points of the ramification divisor C′ of ∆
have non-trivial branch-data (a,−a) for some a ∈ Zn. Then, take a maximal OS-order A in ∆. By
the local calculation of Brn C{x, y} performed in the last section we know that locally étale A is
of quantum-plane type in these remaining singularities. As the quantum-plane is not étale locally
split, A is not Cayley-smooth in these finite number of singularities. �

In fact, the above proof gives a complete classification of the central simple algebras admitting
a Cayley-smooth model.

Theorem 5.16 Let ∆ be a central simple C(X)-algebra of dimension n2 determined by the geo-
combinatorial data (C,P, b,D) given by the Artin-Mumford sequence. Then, ∆ admits a Cayley-
smooth model if and only if all branch-data are trivial.
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Proof. If all branch-data are trivial, the foregoing proof constructs a Cayley-smooth model of ∆.
Conversely, if A is a Cayley-smooth OS-order in ∆ with S a smooth projective model of C(X),
then A is locally étale split in every point s ∈ S. But then, so is any maximal OS-order Amax
containing A. By the foregoing arguments this can only happen if all branch-data are trivial. �

5.5 Complex moment map

We fix a quiver Q on k vertices {v1, . . . , vk} and define the opposite quiver Qo the quiver on

{v1, . . . , vk} obtained by reversing all arrows in Q. That is, there is an arrow ��������i��������j
a∗ // in Qo

for each arrow ��������i��������j
aoo in the quiver Q. Fix a dimension vector α = (a1, . . . , ak), using the

trace pairings
Mai×aj ×Maj×ai

- C (Va∗ , Va) 7→ tr(Va∗Va)

we can identify the representation space repα Qo with the dual space (repα Q)∗ =
HomC(repα Q,C). Observe that the base change action of GL(α) on repα Qo coincides with
the action dual to that of GL(α) on repα Q.

The dual quiver Qd is the superposition of the quivers Q and Qo. Clearly, for an dimension
vector α we have

repα Q
d = repα Q⊕ repα Q

o = repα Q⊕ (repα Q)∗

whence repα Qd can be viewed as the cotangent bundle T ∗repα Q on repα Q with structural
morphism projection on the first factor. Cotangent bundles are equipped with a canonical symplectic
structure, see [17, Example 1.1.3] or chapter 8 for more details. The natural action of GL(α) on
repα Q extends to an action of GL(α) on T ∗repα Q preserving the symplectic structure and it

coincides with the basechange action of GL(α) on repα Q
d. Such an action on the cotangent bundle

gives rise to a complex moment map

T ∗repα Q
µC- (Lie GL(α))∗

Recall that Lie GL(α) = Mα(C) = Ma1(C)⊕ . . .⊕Mak (C). Using the trace pairings on both sides,
the complex moment map is the mapping

repα Q
d µC- Mα(C)

defined by

µC(V )i =
X
a∈Qa
t(a)=i

VaVa∗ −
X
a∈Qa
s(a)=i

Va∗Va

Observe that the image of the complex moment map is contained in M0
α(C) where

M0
α(C) = {(M1, . . . ,Mk) ∈Mα(C) |

X
i

tr(Mi) = 0} = Lie PGL(α)
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corresponding to the fact that the action of GL(α) on T ∗repα Q is really a PGL(α) = GL(α)/C∗

action.

Definition 5.4 Elements of Ck = CQv are called weights . If λ is a weight, one defines the
deformed preprojective algebra of the quiver Q to be

Πλ(Q)
dfn
= Πλ =

CQd

c− λ

where c is the commutator element
c =

X
a∈Qa

[a, a∗]

in CQd and where λ = (λ1, . . . , λk) is identified with the element
P
i λivi ∈ CQd.

the algebra Π(Q) = Π is known as the preprojective algebra of the quiver Q.

Lemma 5.9 The ideal (c− λ) / CQd is the same as the ideal with a generatorX
a∈Qa
t(a)=i

aa∗ −
X
a∈Qa
s(a)=i

a∗a− λivi

for each vertex vi ∈ Qv.

Proof. These elements are of the form vj(c− λ)vi, so they belong to the ideal (c− λ). As c− λ is
also the sum of them, the ideal they generate contains c− λ. �

That is, α-dimensional representations of the deformed preprojective algebra Πλ coincide with
representations V ∈ repα Q

d which satisfyX
a∈Qa
t(a)=i

VaVa∗ −
X
a∈Qa
s(a)=i

Va∗Va = λi
rr
ai

for each vertex vi. That is, we have an isomorphism between the scheme theoretic fiber of the
complex moment map and the representation space

repα Πλ = µ−1
C (λ)

As the image of µC is contained in M0
α(C) we have in particular

Lemma 5.10 If λ.α =
P
i λiai 6= 0, then there are no α-dimensional representations of Πλ.
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Because we have an embedding Ck ⊂ - Πλ, the n-dimensional representations of the deformed
preprojective algebra decompose into disjoint subvarieties

repn Πλ =
G

α:
P

i ai=n

GLn ×GL(α)
repα Πλ

Hence, in studying Cayley-smoothness of Πλ we may reduce to the distinct components and hence
to the study of α-Cayley-smoothness , that is, smoothness in the category of Ck(α)-algebras which
are Cayley-Hamilton algebras of degree n =

P
i ai. Again, one can characterize this smoothness

condition in a geometric way by the property that the restricted representation scheme repα is
smooth. In the next section we will investigate this property for the preprojective algebra Π0, in
chapter 8 we will be able to extend these results to arbitrary Πλ. In this section we will compute
the dimension of these representation schemes. First, we will investigate the fibers of the structural
map of the cotangent bundle, that is, the projection

T ∗repα Q ' repα Q
d - repα Q

Proposition 5.11 If V ∈ repα Q, then there is an exact sequence

0 - Ext1CQ(V, V )∗ - repα Q
o c- Mα(C)

t- HomCQ(V, V )∗ - 0

where c maps W = (Wa∗)a∗ ∈ repα Qo to
P
a∈Qa

[Va,Wa∗ ] and t maps M = (Mi)i ∈ M|alpha(C)

to the linear map HomCQ(V, V ) - C sending a morphism N = (Ni)i to
P
i tr(MiNi).

Proof. There is an exact sequence

0 - HomCQ(V, V ) - Mα(C)
f- repα Q

- Ext1CQ(V, V ) - 0

where f sends M = (Mi)i ∈ Mα(C) to V ′ = (V ′a)a with V ′a = Mt(a)Va − VaMs(a). By definition,
the kernel of f is HomCQ(V, V ) and by the Euler form interpretation of theorem 4.5 we have

dimC HomCQ(V, V )− dimC Ext
1
CQ(V, V ) = χQ(α, α) = dimC Mα(C)− dimC repα Q

so the cokernel of f has the same dimension as Ext1CQ(V, V ) and using the standard projective
resolution of V one can show that it is naturally isomorphic to it. The required exact sequence
follows by dualizing, using the trace pairing to identify repα Q

o with (repα Q)∗ and Mα(C) with
its dual. �

This result allows us to give a characterization of the dimension vectors α such that repα Q 6= ∅.

Theorem 5.17 For a weight λ ∈ Ck and a representation V ∈ repα Q the following are equivalent
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1. V extends to an α-dimensional representation of the deformed preprojective algebra Πλ.

2. For all dimension vectors β of direct summands W of V we have λ.β = 0.

Moreover, if V ∈ repα Q does lift, then π−1(V ) ' (Ext1CQ(V, V ))∗.

Proof. If V lifts to a representation of Πλ, then there is a representation W ∈ repα Q
o mapping

under c of proposition 5.11 to λ. But then, by exactness of the sequence in proposition 5.11 λ
must be in the kernel of t. In particular, for any morphism N = (Ni)i ∈ HomCQ(V, V ) we have
that

P
i λitr(Ni) = 0. In particular, let W be a direct summand of V (as Q-representation) and

let N = (Ni)i be the projection morphism V -- W ⊂ - V , then
P
i λitr(Ni) =

P
i λibi where

β = (b1, . . . , bk) is the dimension vector of W .
Conversely, it suffices to prove the lifting of any indecomposable representation W having a

dimension vector β satisfying λ.β = 0. Because the endomorphism ring of W is a local algebra,
any endomorphism N = (Ni)i of W is the sum of a nilpotent matrix and a scalar matrix whenceP
i λitr(Ni) = 0. But then considering the sequence of proposition 5.11 for β and considering λ as

an element of M|β|(C), it lies in the kernel of t whence in the image of c and therefore W can be
extended to a representation of Πλ.

The last statement follows again from the exact sequence of proposition 5.11. �

In particular, if α is a root for Q satisfying λ.α = 0, then there are α-dimensional representations
of Πλ. Recall the definition of the number of parameters given in definition 4.8

µ(X) = max
d

(dim X(d) − d)

where X(d) is the union of all orbits of dimension d. We denote µ(repindα Q) for the GL(α)-action
on the indecomposables of repα Q by pQ(α). Recall that part of Kac’s theorem 4.14 asserts that

pQ(α) = 1− χQ(α, α)

We will apply these facts to the determination of the dimension of the fibers of the complex moment
map.

Lemma 5.11 Let U be a GL(α)-stable constructible subset of repα Q contained in the image of

the projection map repα Q
d π-- repα Q. Then,

dim π−1(U) = µ(U) + α.α− χQ(α, α)

If in addition U = O(V ) is a single orbit, then π−1(U) is irreducible of dimension α.α− χQ(α, α).
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Proof. Let V ∈ U(d), then by theorem 5.17, the fiber π−1(V ) is isomorphic to (Ext1CQ(V, V ))∗ and
has dimension dimCEnd(V )− χQ(α, α) by theorem 4.5 and

dimC End(V ) = dim GL(α)− dim O(V ) = α.α− d.

Hence, dim π−1(U(d)) = (dim U(d) − d) + α.α− χQ(α, α). If we now vary d, the result follows.

For the second assertion, suppose that π−1(U) � ⊃ Z1tZ2 with Zi a GL(α)-stable open subset,
but then π−1(V ) ∩ Zi are non-empty disjoint open subsets of the irreducible variety π−1(V ), a
contradiction. �

Theorem 5.18 Let λ be a weight and α a dimension vector such that λ.α = 0. Then,

dim repα Πλ = dim µ−1
C (λ) = α.α− χQ(α, α) +m

where m is the maximum number among all

pQ(β1) + . . .+ pQ(βr)

with r ≥ 1, all βi are (positive) roots such that λ.βi = 0 and α = β1 + . . .+ βr.

Proof. Decompose repα Q =
F
τ repα(τ) where repα(τ) are the representations decomposing as

a direct sum of indecomposables of dimension vector τ = (β1, . . . , βr). By Kac’s theorem 4.14 we
have that

µ(repα(τ)) = pQ(β1) + . . .+ pQ(βr)

If some of the βi are such that λ.βi 6= 0, and µ−1
C (λ)

π- repα Q is the projection then
π−1(repα(τ)) = ∅ by lemma 5.10. Combining this with lemma 5.11 the result follows. �

Definition 5.5 The set of λ-Schur roots Sλ is defined to be the set of α ∈ Nk such that pQ(α) ≥
pQ(β1) + . . . + pQ(βr) for all decompositions α = β1 + . . . + βr with βi positive roots satisfying
λ.βi = 0.

S0 is the set of α ∈ Nk such that pQ(α) ≥ pQ(β1) + . . . + pQ(βr) for all decompositions α =

β1 + . . .+ βr with βi ∈ Nk

Observe that S0 consists of Schur roots for Q, for if

τcan = (e1, β1; . . . ; es, βs) = (γ1, . . . , γt)
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(the γj possibly occurring with multiplicities) is the canonical decomposition of α with t ≥ 2 we
have

pQ(α) = 1− χQ(α, α)

= 1−
X
i,j

χQ(γi, γj)

=
X
i

(1− χQ(γi, γi))−
X
i6=j

χQ(γi, γj)− (t− 1)

>
X
i

pQ(γi)

whence α /∈ S0. This argument also shows that in the definition of S0 we could have taken all
decompositions in positive roots, replacing the components βi by their canonical decompositions.

Theorem 5.19 For α ∈ Nk, the following are equivalent :

1. The complex moment map repα Q
d µC- repα Q is flat.

2. repα Π0 = µ−1
C (0) has dimension α.α− 1 + 2pQ(α).

3. α ∈ S0.

Proof. The dimensions of the relevant representation spaces are8><>:
dim repα Q = α.α− χQ(α, α) = α.α− 1 + pQ(α)

dim repα Q
d = 2α.α− 2χQ(α, α) = 2α.α− 2 + 2pQ(α)

dim M0
α(C) = α.α− 1

so the relative dimension of the complex moment map is d = α.α− 1 + 2pQ(α).
(1)⇒ (2) : Because µC os flat, its image U is an open subset of M0

α(C) which obviously contains
0, but then the dimension of µ−1

C (0) is equal to the relative dimension d.

(2)⇒ (3) : Assume pQ(α) <
P
i pQ(βi) for some decomposition α = β1 + . . .+ βs with βi ∈ Nk.

Replacing each βi by its canonical decomposition, we may assume that the βi are actually positive
roots. But then, theorem 5.18 implies that µ−1

C (0) has dimension greater than d.

(3)⇒ (1) : We have that α is a Schur root. We claim that repα Q
d µC- M0

α(C) is surjective.
Let V ∈ repα Q be a general representation, then HomCQ(V, V ) = C. But then, the map c in
proposition 5.11 has a one-dimensional cokernel. But as the image of c is contained in M0

α(C), this
shows that

repα Q
0 c-- M0

α(C)
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is surjective from which the claim follows. Let M = (Mi)i ∈M0
α(C) and consider the projection

µ−1
C (M)

π̃- repα Q

If U is a constructible GL(α)-stable subset of repα Q, then by an argument as in lemma 5.11 we
have that

dim π̃−1(U) ≤ µ(U) + α.α− χQ(α, α)

But then, decomposing repα Q into types τ of direct sums of indecomposables, it follows from the

assumption that µ−1
C (M) has dimension at most d. But then by the dimension formula it must be

equidimensional of dimension d whence flat. �

5.6 Preprojective algebras

In this section we will determine the n-smooth locus of the preprojective algebra Π0. By the étale
local description of section 4.2 it is clear that we need to control the Ext1-spaces of representations
of Π0.

Proposition 5.12 Let V and W be representations of Π0 of dimension vectors α and β, then we
have

dimC Ext1Π0(V,W ) = dimC HomΠ0(V,W ) + dimC HomΠ0(W,V )− TQ(α, β)

Proof. It is easy to verify by direct computation that V has a projective resolution as Π0-module
which starts as

. . . -
M
i∈Qv

Π0vi ⊗ viV
f-

M
��������i��������j

a
oo

a∈Qd
a

Π0vj ⊗ viV
g-

M
i∈Qv

Π0vi ⊗ viV
h- V - 0

where f is defined by

f(
X
i

pi ⊗mi) =
X

��������i��������j
a
oo

a∈Qa

(pia
∗ ⊗mi − pj ⊗ a∗mj)a − (pja⊗mj − pi ⊗ ami)a∗

where pi ∈ Π0vi and mi ∈ viV . The map g is defined on the summand corresponding to an arrow��������i��������j
a

oo in Qd by

g(pa⊗m) = (pa⊗m)i − (p⊗ am)j

for p ∈ Π0vj and m ∈ viV . the map h is the multiplication map. If we compute homomorphisms
to W and use the identification

HomΠ0(Π0vj ⊗ viV,W ) = HomC(viV, vjW )
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we obtain a complex

0 -
M
i∈Qv

HomC(viV, viW ) -
M

��������i��������j
a
oo

a∈Qd
a

HomC(viV, vjW ) -
M
i∈Qv

HomC(viV, viW )

in which the left hand cohomology is HomΠ0(V,W ) and the middle cohomology is Ext1Π0(V,W ).
Moreover, the alternating sum of the dimensions of the terms is TQ(α, β). It remains to prove that
the cokernel of the right hand side map has the same dimension as HomΠ0(W,V ). But using the
trace pairing to identify

HomC(M,N)∗ = HomC(N,M)

we obtain that the dual of this complex isM
i∈Qv

HomC(viW, viV ) -
M

��������i��������j
a
oo

a∈Qd
a

HomC(viW, vjV ) -
M
i∈Qv

HomC(viW, viV ) - 0

and, up to changing the sign of components in the second direct sum corresponding to arrows which
are not in Q, this is the same complex as the complex arising with V and W interchanged. From
this the result follows. �

In order to determine the n-smooth locus we observe that the representation space decomposes
into a disjoint union and we have quotient morphisms

repn Π0
=-

G
α=(a1,...,ak)
a1+...+ak=n

GLn ×GL(α)
repα Π0

issn Π0

πn

??
= -

G
α=(a1,...,ak)
a1+...+ak=n

issα Π0

tπα

??

Hence if ξ ∈ issα Π0 for ξ ∈ Smtr Π0 it is necessary and sufficient that repα Π0 is smooth along
O(Mξ) whereMξ is the semi-simple α-dimensional representation of Π0 corresponding to ξ. Assume
that ξ is of type τ = (e1, α1; . . . ; ez, αz), that is,

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ez
z

with Si a simple Π0-representation of dimension vector αi. Again, the normal space to the orbit
O(Mξ) is determined by Ext1Πo

(Mξ,Mξ) and can be depicted by a local quiver setting (Qξ, αξ)
where Qξ is a quiver on z vertices and where αξ = ατ = (e1, . . . , ez). Repeating the arguments of
section 4.2 we have
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Lemma 5.12 With notations as above, ξ ∈ Smn Π0 if and only if

dim GL(α)×GL(αξ) Ext1Π0(Mξ,Mξ) = dimMξ repα Π0

As we have enough information to compute both sides, we can prove :

Theorem 5.20 If ξ ∈ issα Π0 with α = (a1, . . . , ak) ∈ S0 and
P
i ai = n, then ξ ∈ Smn Π0 if

and only if Mξ is a simple n-dimensional representation of Π0.

Proof. Assume that ξ is a point of semi-simple representation type τ = (e1, α1; . . . ; ez, αz), that is,

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ez
z with dim(Si) = αi

and Si a simple Π0-representation. Then, by proposition 5.12 we have(
dimC Ext

1
Π0(Si, Sj) = −TQ(αi, αj) i 6= j

dimC Ext
1
Π0(Si, Si) = 2− TQ(αi, αi)

But then, the dimension of Ext1Π0(Mξ,Mξ) is equal to

zX
i=1

(2− TQ(αi, αi))e
2
i +

X
i6=j

eiej(−TQ(αi, αj) = 2

zX
i=1

ei − TQ(α, α)

from which it follows immediately that

dim GL(α)×GL(αξ) Ext1Π0(Mξ,Mξ) = α.α+

zX
i=1

e2i − TQ(α, α)

On the other hand, as α ∈ S0 we know from theorem 5.19 that

dim repα Π0 = α.α− 1 + 2pQ(α) = α.α− 1 + 2 + 2χQ(α, α) = α.α+ 1− TQ(α, α)

But then, equality occurs if and only if
P
i e

2
i = 1, that is, τ = (1, α) orMξ is a simple n-dimensional

representation of Π0. �

In particular it follows that the preprojective algebra Π0 is never Quillen-smooth. Further, as
~vi = (0, . . . , 1, 0, . . . , 0) are dimension vectors of simple representations of Π0 it follows that Π0 is
α-smooth if and only if α = ~vi for some i. In chapter 8 we will determine the dimension vectors of
simple representations of the (deformed) preprojective algebras.
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Example 5.4 Let Q be an extended Dynkin diagram and δQ the corresponding dimension vector.
Then, we will show that δQ is the dimension vector of a simple representation and δQ ∈ S0. Then,
the dimension of the quotient variety

dim issδQ Π0 = dim repδQ
Π0 − δQ.δQ + 1

= 2pQ(δQ) = 2

so it is a surface. The only other semi-simple δQ-dimensional representation of Π0 is the trivial
representation. By the theorem, this must be an isolated singular point of issδQ Q. In fact, one
can show that issδQ Π0 is the Kleinian singularity corresponding to the extended Dynkin diagram
Q.

5.7 Central smooth locus

In this section we will prove the characterization, due to Raf Bocklandt, of (marked) quiver settings
such that the ring of invariants is smooth. Remark that as the ring of invariants is a positively
graded algebra, this is equivalent to being a polynomial algebra.

Definition 5.6 A quiver setting (Q,α) is said to be final iff none of the reduction steps b1, b2 or
b3 of theorem 5.8 can be applied. Every quiver setting can be reduced to a final quiver setting which
we denote (Q,α) (Qf , αf ).

Theorem 5.21 For a quiver setting (Q,α) with Q = suppα strongly connected, the following are
equivalent :

1. C[issα Q] = C[repα Q]GL(α) is commalg-smooth.

2. (Qf , αf ) (Qf , αf ) with (Qf , αf ) one of the following quiver settings

��������k ��������k

�� ��������2
��
[[.

Proof. (2) ⇒ (1) : Follows from the foregoing theorem and the fact that the rings
of invariants of the three quiver settings are resp. C, C[tr(X), tr(X2), . . . , tr(Xk)] and
C[tr(X), tr(Y ), tr(X2), tr(Y 2), tr(XY )].

(1)⇒ (2) : Take a final reduction (Q,α) (Qf , αf ) and to avoid subscripts rename (Qf , αf ) =
(Q,α) (observe that the condition of the theorem as well as (1) is preserved under the reduction
steps by the foregoing theorem). That is, we will assume that (Q,α) is final whence, in particular
as b1 cannot be applied,

χQ(α, εv) < 0 χQ(εv, α) < 0
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for all vertices v of Q. With 1 we denote the dimension vector (1, . . . , 1).

claim 1 : Either (Q,α) = ��������k or Q has loops. Assume neither, then if α 6= 1 we can choose a
vertex v with maximal αv. By the above inequalities and theorem 4.10 we have that

τ = (1, α− εv; 1, εv) ∈ typesαQ

As there are no loops in v, we have(
χQ(α− εv, εv) = χ(α, εv)− 1 < −1

χQ(εv, α− εv) = χ(εv, α)− 1 < −1

and the local quiver setting (Qτ , ατ ) contains the subquiver

��������1

k
"* ��������1

l

bj with k, l ≥ 2

The invariant ring of the local quiver setting cannot be a polynomial ring as it contains the subal-
gebra

C[a, b, c, d]

(ab− cd)

where a = x1y1, b = x2y2, c = x1y2 and d = x2y1 are necklaces of length 2 with xi arrows from w1

to w2 and yi arrows from w2 to w1. This contradicts the assumption (1) by the étale local structure
result.

Hence, α = 1 and because (Q,α) is final, every vertex must have least have two incoming and
two outgoing arrows. Because Q has no loops,

dim iss1 Q = 1− χQ(1, 1) = #arrows−#vertices + 1

On the other hand, a minimal generating set for C[iss1 Q] is the set of Eulerian necklaces , that
is, those necklaces in Q not re-entering any vertex. By (1) both numbers must be equal, so we will
reach a contradiction by showing that #euler, the number of Eulerian necklaces is strictly larger
than χ(Q) = #arrows−#vertices + 1. We will do this by induction on the number of vertices.

If #vertices = 2, the statement is true because

Q := ��������1

k
"* ��������1

l

bj whence #euler = kl > χ(Q) = k + l − 1

as both k and l are at least 2.
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Assume #vertices > 2 and that there is a subquiver of the form

basic = ��������1

k
"* ��������1

l

bj

If k > 1 and l > 1 we have seen before that this subquiver and hence Q cannot have a polynomial
ring of invariants.

If k = 1 and l = 1 then substitute this subquiver by one vertex.26664 ...
��������1
&&

\\8888 ��������1ff

BB���� ...BB����

\\8888

37775 −→
26664 ...

��������1

\\8888
BB���� ...BB����

\\8888

37775
The new quiver Q′ is again final without loops because there are at least four incoming arrows in
the vertices of the subquiver and we only deleted two (the same holds for the outgoing arrows). Q′

has one Eulerian necklace less than Q. By induction, we have that

#euler = #euler
′ + 1

> χ(Q′) + 1

= χ(Q).

If k > 1 then one can look at the subquiver Q′ of Q obtained by deleting k − 1 of these arrows. If
Q′ is final, we are in the previous situation and obtain the inequality as before. If Q′ is not final,
then Q contains a subquiver of the form

��������1

k
"* ��������1ff

��?
??

??
??

?

��������1

??�������� ��������1oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

,

which cannot have a polynomial ring of invariants, as it is reducible to basic with both k and l at
least equal to 2.

Finally, if #vertices > 2 and there is no basic-subquiver, take an arbitrary vertex v. Construct
a new quiver Q′ bypassing v 266666664

l arrowsz }| {��������1 · · · ��������1

��������1

bbDDDD
<<zzzz

��������1

<<zzzz · · · ��������1

bbDDDD| {z }
k arrows

377777775
−→

266666664
��������1 · · · ��������1

��������1

OO ;;xxxxxxxxxx · · · ��������1

OOccGGGGGGGGG| {z }
kl arrows

377777775
.
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Q′ is again final without loops and has the same number of Eulerian necklaces. By induction

#euler = #euler
′

> #arrows
′ −#vertices

′ + 1

= #arrows + (kl − k − l)−#vertices + 1 + 1

> #arrows−#vertices + 1.

In all cases, we obtain a contradiction with (1) and hence have proved claim 1. So we may assume
from now on that Q has loops.

claim 2 : If Q has loops in v, then there is at most one loop in v or (Q,α) is

2twobytwo = ��������2
��
[[

Because (Q,α) is final, we have αv ≥ 2. If αv = a ≥ 3 then there is only one loop in v. If not,
there is a subquiver of the form

��������a
��
[[

and its ring of invariants cannot be a polynomial algebra. Indeed, consider its representation type
τ = (1, k − 1; 1, 1) then the local quiver is of type basic with k = l = a − 1 ≥ 2 and we know
already that this cannot have a polynomial algebra as invariant ring. If αv = 2 then either we are
in the 2twobytwo case or there is at most one loop in v. If not, we either have at least three loops
in v or two loops and a cyclic path through v, but then we can use the reductions

��������2 qq-- [[
b1−1

−→

��������2

��
��������2

rr��������2

22RR

����������k

EE
b1,b1−1

←−
��������2

  B
BB

Bqq--

'&%$ !"#i1

>>}}}} '&%$ !"#u1oo o/ o/ o/

The middle quiver cannot have a polynomial ring as invariants because we consider the type0BBBB@
��������1

��
��������0

pp��������2

VV 00

����������1

FF

1CCCCA⊕
0BBBB@

��������0

��
��������1

pp��������0

VV 00

����������0

FF

1CCCCA⊕ · · ·
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The number of arrows between the first and the second simple component equals

−
`
2 1 1 0

´ 0B@ 1 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

1CA
0B@0

0
0
1

1CA = 2

whence the corresponding local quiver contains basic with k = l = 2 as subquiver. This proves
claim 2. From now on we will assume that the quiver setting (Q,α) is such that there is precisely
one loop in v and that k = αv ≥ 2. Let

τ = (1, 1; 1, εv;αv1 − 1, εv1 ; . . . ; . . . ;αv − 2, εv; . . . ;αvl − 1, εvl) ∈ typesαQ

Here, the second simple representation, concentrated in v has non-zero trace in the loop whereas
the remaining αv−2 simple representations concentrated in v have zero trace. Further, 1 ∈ simpCQ
as Q is strongly connected by theorem 4.10. We work out the local quiver setting (Qτ , ατ ). The
number of arrows between the vertices in Qτ corresponding to simple components concentrated in
a vertex is equal to the number of arrows in Q between these vertices. We will denote the vertex
(and multiplicity) in Qτ corresponding to the simple component of dimension vector 1 by 1 .

The number of arrows between the vertex in Qτ corresponding to a simple concentrated in vertex
w in Q to 1 is −χQ(εw, 1) and hence is one less than the number of outgoing arrows from w in
Q. Similarly, the number of arrows from the vertex 1 to that of the simple concentrated in w is
−χQ(1, εw) and is equal to one less than the number of incoming arrows in w in Q. But then we
must have for all vertices w in Q that

χQ(εw, 1) = −1 or χQ(1, εw) = −1

Indeed, because (Q,α) is final we know that these numbers must be strictly negative, but they
cannot be both ≤ −2 for then the local quiver Qτ will contain a subquiver of type

��������1
#+
1ck

contradicting that the ring of invariants is a polynomial ring. Similarly, we must have

χQ(εw, εv) ≥ −1 or χQ(εv, εv)

for all vertices w in Q for which αw ≥ 2. Let us assume that χQ(εv, 1) = −1.

claim 3 : If w1 is the unique vertex in Q such that χQ(εv, εw1) = −1, then αw1 = 1. If this was
not the case there is a vertex corresponding to a simple representation concentrated in w1 in the
local quiver Qτ . If χQ(1, εw1) = 0 then the dimension of the unique vertex w2 with an arrow to
w1 has strictly bigger dimension than w1, otherwise χQ(α, εw1) ≥ 0 contradicting finality of (Q,α).
The vertex w2 corresponds again to a vertex in the local quiver. If χQ(1, εw2) = 0, the unique
vertex w3 with an arrow to w2 has strictly bigger dimension than w2. Proceeding this way one
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can find a sequence of vertices with increasing dimension, which attains a maximum in vertex wk.
Therefore χQ(1, εwk ) ≤ −1. This last vertex is in the local quiver connected with W , so one has a
path from 1 to εv.

��������k

��

�'F
FFF

FF

FFF
FFF

/.-,()*+w1

<<xxxxxx . . .

/.-,()*+wk

OO
O�
O�

. . .

;;wwwwww . . .

ccGGGGGG

local−→

��������1
��

��

/.-,()*+w1

=={{{{{{

/.-,()*+wk

OO
O�
O�

1

aaBBBBB

JJ

The subquiver of the local quiver Qτ consisting of the vertices corresponding to the simple repre-
sentation of dimension vector 1 and the simples concentrated in vertex v resp. wk is reducible via
b1 to ��������1

#+
1ck , at least if χQ(1, εv) ≤ −2, a contradiction finishing the proof of the claim. But

then, the quiver setting (Q,α) has the following shape in the neighborhood of v

��������k

�� ))SSSSSSSS
��

��������1

==|||| '&%$ !"#u1 · · · /.-,()*+uk

contradicting finality of (Q,α) for we can apply b3. In a similar way one proves that the quiver
setting (Q,α) has the form

��������k

}}||
||
��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSS

in a neighborhood of v if χQ(1, εv) = −1 and χQ(εv, 1) ≤ −2, again contradicting finality.
There remains one case to consider : χQ(1, εv) = −1 and χQ(εv, 1) = −1. Suppose w1 is

the unique vertex in Q such that χQ(εv, εw1) = −1 and wk is the unique vertex in Q such that
χQ(εwk , εv) = −1, then we claim :

claim 4 : Either αw1 = 1 or αwk = 1. If not, consider the path connecting wk and w1 and
call the intermediate vertices wi, 1 < i < k. Starting from w1 we go back the path until αwi

reaches a maximum. at that point we know that χQ(1, εwk ) ≤ −1, otherwise χQ(α, εwk ) ≥ 0. In
the local quiver there is a path from the vertex corresponding to the 1-dimensional simple over
the ones corresponding to the simples concentrated in wi to v. Repeating the argument, starting
from wk we also have a path from the vertex of the simple v-representation over the vertices of the
wj-simples to the vertex of the 1-dimensional simple.
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��������2
��

!!B
BB

BB
B

/.-,()*+w1

==|||||| /.-,()*+wk

���O
�O

'&%$ !"#wi

OO
O�
O� /.-,()*+wj

##G
GGG

GGjj

##G
GGG

GG

. . .

;;xxxxxx . . .

local−→

��������1
��

��

!!B
BB

BB
B

/.-,()*+w1

==|||||| /.-,()*+wk

���O
�O

'&%$ !"#wi

OO
O�
O� /.-,()*+wj

~~}}
}}

}

1

``AAAAA

JJ

The subquiver consisting of 1, εv and the two paths through the εwi is reducible to ��������1
#+
1ck and

we again obtain a contradiction.

The only way out of these dilemmas is that the final quiver setting (Q,α) is of the form

��������k

��

finishing the proof. �

Definition 5.7 Let (Q,α) and (Q′, α′) be two quiver settings such that there is a vertex v in Q
and a vertex v′ in Q′ with αv = 1 = α′v′ . We define the connected sum of the two settings to be
the quiver setting

( Q
v

#
v′
Q′ , α

v

#
v′
α′ )

where Q
v

#
v′
Q is the quiver obtained by identifying the two vertices v and v′

. . .

  B
BB

BB
BB

BB
. . .

~~||
||

||
||

|

Q1
��������1

  B
BB

BB
BB

BB

~~||
||

||
||

| Q2

. . . . . .

and where α
v

#
v′
α′ is the dimension vector which restricts to α (resp. α′) on Q (resp. Q′).

Example 5.5 With this notation we have

C[iss
α

v
#
v′
α′
Q
v

#
v′
Q′] ' C[issαQ]⊗ C[issα′Q

′]
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Because traces of a necklaces passing more than once through a vertex where the dimension vector
is equal to 1 can be split as a product of traces of necklaces which pass through this vertex only
one time, we see that the invariant ring of the connected sum is generated by Eulerian necklaces
fully contained in Q or in Q′.

Theorem 5.21 gives a procedure to decide whether a given quiver setting (Q,α) has a regular ring
of invariants. However, is is not feasible to give a graphtheoretic description of all such settings in
general. Still, in the special (but important) case of symmetric quivers, there is a nice graphtheoretic
characterization.

Theorem 5.22 Let (Q,α) be a symmetric quiver setting such that Q is connected and has no loops.
Then, the ring of polynomial invariants

C[issαQ] = C[repαQ]GL(α)

is a polynomial ring if and only if the following conditions are satisfied

1. Q is tree-like, that is, if we draw an edge between vertices of Q whenever there is at least one
arrow between them in Q, the graph obtained in a tree.

2. α is such that in every branching vertex v of the tree we have αv = 1.

3. The quiver subsetting corresponding to branches of the tree are connected sums of the following
atomic pieces :

I ��������n
&& '&%$ !"#mff

II ��������1

k "* ��������n

k

ai , k ≤ n

III ��������1
&& ��������nee

&& '&%$ !"#mff

IV ��������n
%% ��������2ff

&&'&%$ !"#mee ,

Proof. Using theorem 5.21 any of the atomic quiver settings has a polynomial ring of invariants.
Type I reduces via b1 to

��������k

��

where k = min(m,n), type II reduces via b1 and b2 to ��������1 , type III reduces via b1, b3, b1 and b2
to ��������1 and finally, type IV reduces via b1 to
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��������2
��
[[

By the previous example, any connected sum constructed out of these atomic quiver settings has
a regular ring of invariants. Observe that such connected sums satisfy the first two requirements.
Therefore, any quiver setting satisfying the requirements has indeed a polynomial ring of invariants.

Conversely, assume that the ring of invariants C[issαQ] is a polynomial ring, then there can be
no quiver subsetting of the form

�������� ,,

tt

��������kk

����������
44

��

#vertices ≥ 3 ��������
QQ

tt��������
QQ

��������
44

For we could look at a semisimple representation type τ with decomposition0BBBB@
��������0

((

tt

��������0hh

����������1

44

��

��������0

TT

tt��������0

TT

��������0

44

1CCCCA⊕
0BBBB@

��������1
((

tt

��������1hh

����������0

44

��

��������1

TT

tt��������1

TT

��������1

44

1CCCCA⊕ · · ·

The local quiver contains a subquiver (corresponding to the first two components) of type basic
with k and l ≥ 2 whence cannot give a polynomial ring. That is, Q is tree-like.

Further, the dimension vector α cannot have components ≥ 2 at a branching vertex v. For we
could consider the semisimple representation type with decomposition0BBBB@

��������1

��
��������0

pp��������2

VV 00

����������1

FF

1CCCCA⊕
0BBBB@

��������0

��
��������1

pp��������0

VV 00

����������0

FF

1CCCCA⊕ · · ·

and again the local quiver contains a subquiver setting of type basic with k = 2 = l (the one
corresponding to the first two components). Hence, α satisfies the second requirement.

Remains to show that the branches do not contain other subquiver settings than those made of
the atomic components. That is, we have to rule out the following subquiver settings :

'&%$ !"#a1
(( '&%$ !"#a2hh

(( '&%$ !"#a3hh
(( '&%$ !"#a4hh
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with a2 ≥ 2 and a3 ≥ 2, '&%$ !"#a1
(( '&%$ !"#a2hh

(( '&%$ !"#a3hh
with a2 ≥ 3 and a1 ≥ 2, a3 ≥ 2 and '&%$ !"#a1

(( '&%$ !"#a2hh
$, '&%$ !"#a3dl

whenever a2 ≥ 2. These situations are easily ruled out by theorem 5.21 and we leave this as a
pleasant exercise. �

Example 5.6 The quiver setting

��������3
%% ��������2ee

��

��������k

px��������1

TT

tt

%% ��������1

08

��

ee

��������1
%% ��������3ee

44

��������4

TT

has a polynomial ring of invariants if and only if k ≥ 2.

Example 5.7 Let (Q•, α) be a marked quiver setting and assume that {l1, . . . , lu} are the marked
loops in Q•. If Q is the underlying quiver forgetting the markings we have by separating traces
that

C[issαQ] ' C[issαQ
•][tr(l1), . . . , tr(lu)]

Hence, we do not have to do extra work in the case of marked quivers :

A marked quiver setting (Q•, α) has a regular ring of invariants if and only if (Q,α) can be reduced
to a one of the three final quiver settings of theorem 5.21.

5.8 Central singularities

Surprisingly, the reduction steps of section 5.3 allow us to classify all central singularities of a
Cayley-smooth algebra A ∈ alg@n up to smooth equivalence. Recall that two commutative local
rings Cm and Dn are said to ne smooth equivalent if there are numbers k and l such that

Ĉm[[x1, . . . , xk]] ' D̂n[[y1, . . . , yl]]

By theorem 5.8 (and its extension to marked quivers) and the étale local classification of Cayley-
smooth orders it is enough to classify the rings of invariants of reduced marked quiver settings up
to smooth equivalence. We can always assume that the quiver Q is strongly connected (if not, the
ring of invariants is the tensor product of the rings of invariants of the maximal strongly connected
subquivers). Our aim is to classify the reduced quiver singularities up to equivalence, so we need
to determine the Krull dimension of the rings of invariants.
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Lemma 5.13 Let (Q•, α) be a reduced marked quiver setting and Q strongly connected. Then,

dim issα Q
• = 1− χQ(α, α)−m

where m is the total number of marked loops in Q•.

Proof. Because (Q•, α) is reduced, none of the vertices satisfies condition CvV , whence

χQ(εv, α) ≤ −1 and χQ(α, εv) ≤ −1

for all vertices v. In particular it follows (because Q is strongly connected) from section 4.3 that
α is the dimension vector of a simple representation of Q and that the dimension of the quotient
variety

dim issα Q = 1− χQ(α, α)

Finally, separating traces of the loops to be marked gives the required formula. �

Extending theorem 5.21 to the setting of marked quivers, we can classify all smooth points of
trissn A for a Cayley-smooth order A.

Theorem 5.23 Let (Q•, α) be a marked quiver setting such that Q is strongly connected. Then
issα Q

• is smooth if and only if the unique reduced marked quiver setting to which (Q•, α) can be
reduced is one of the following five types

��������k ��������k:: ��������2;; cc ��������2;; •cc ��������2• ;; •cc

The next step is to classify for a given dimension d all reduced marked quiver settings (Q•, α)
such that dim issα Q• = d. The following result limits the possible cases drastically in low
dimensions.

Lemma 5.14 Let (Q•, α) be a reduced marked quiver setting on k ≥ 2 vertices. Then,

dim issα Q
• ≥ 1 +

a≥1X
��������a

a+

a>1X
��������a• ;;

(2a− 1) +

a>1X
��������a;;

(2a) +

a>1X
��������a• ;; •cc

(a2 + a− 2)+

a>1X
��������a• ;; cc

(a2 + a− 1) +

a>1X
��������a;; cc

(a2 + a) + . . .+

a>1X
��������a•k ;; lcc

((k + l − 1)a2 + a− k) + . . .

In this sum the contribution of a vertex v with αv = a is determined by the number of (marked)
loops in v. By the reduction steps (marked) loops only occur at vertices where αv > 1.
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Proof. We know that the dimension of issα Q
• is equal to

1− χQ(α, α)−m = 1−
X
v

χQ(εv, α)αv −m

If there are no (marked) loops at v, then χQ(εv, α) ≤ −1 (if not we would reduce further) which
explains the first sum. If there is exactly one (marked) loop at v then χQ(εv, α) ≤ −2 for if
χQ(εv, α) = −1 then there is just one outgoing arrow to a vertex w with αw = 1 but then we can
reduce the quiver setting further. This explains the second and third sums. If there are k marked
loops and l ordinary loops in v (and Q has at least two vertices) , then

−χQ(εv, α)αv − k ≥ ((k + l)αv − αv + 1)αv − k

which explains all other sums. �

Observe that the dimension of the quotient variety of the one vertex marked quivers

��������a•k ;; lcc

is equal to (k+ l− 1)a2 +1−k and is singular (for a ≥ 2) unless k+ l = 2. We will now classify the
reduced singular settings when there are at least two vertices in low dimensions. By the previous
lemma it follows immediately that

1. the maximal number of vertices in a reduced marked quiver setting (Q•, α) of dimension d is
d− 1 (in which case all vertex dimensions must be equal to one)

2. if a vertex dimension in a reduced marked quiver setting is a ≥ 2, then the dimension d ≥ 2a.

Lemma 5.15 Let (Q•, α) be a reduced marked quiver setting such that issα Q• is singular of
dimension d ≤ 5, then α = (1, . . . , 1). Moreover, each vertex must have at least two incoming and
two outgoing arrows and no loops.

Proof. From the lower bound of the sum formula it follows that if some αv > 1 it must be equal
to 2 and must have a unique marked loop and there can only be one other vertex w with αw = 1.
If there are x arrows from w to v and y arrows from v to w, then

dim issα Q
• = 2(x+ y)− 1

whence x or y must be equal to 1 contradicting reducedness. The second statement follows as
otherwise we could perform extra reductions. �

Proposition 5.13 The only reduced marked quiver singularity in dimension 3 is

3con : ��������1
&. ��������1fn
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The reduced marked quiver singularities in dimension 4 are

43a :

��������1
**

��

��������1jj

vv��������1

66VV

43b :

��������1
&. ��������1

rz��������1

RZ

42 : ��������1
&. ��������1Udo

Proof. All one vertex marked quiver settings with quotient dimension ≤ 5 are smooth, so we are in
the situation of lemma 5.15. If the dimension is 3 there must be two vertices each having exactly
two incoming and two outgoing arrows, whence the indicated type is the only one. The resulting
singularity is the conifold singularity

C[[x, y, u, v]]

(xy − uv)
In dimension 4 we can have three or two vertices. In the first case, each vertex must have exactly
two incoming and two outgoing arrows whence the first two cases. If there are two vertices, then
just one of them has three incoming arrows and one has three outgoing arrows. �

Assume that all vertex dimensions are equal to one, then one can write any (trace of an) oriented
cycle as a product of (traces of) primitive oriented cycles (that is, those that cannot be decomposed
further). From this one deduces immediately :

Lemma 5.16 Let (Q•, α) be a reduced marked quiver setting such that all αv = 1. Let m be the

maximal graded ideal of C[repα Q
•]GL(α), then a vectorspace basis of

mi

mi+1

is given by the oriented cycles in Q which can be written as a product of i primitive cycles but not
as a product of i+ 1 such cycles.

Clearly, the dimensions of the quotients mi/mi+1 are (étale) isomorphism invariants. Recall
that the first of these numbers m/m2 is the embedding dimension of the singularity. Hence, for
d ≤ 5 this simple minded counting method can be used to separate quiver singularities.

Theorem 5.24 There are precisely three reduced quiver singularities in dimension d = 4.

Proof. The number of primitive oriented cycles of the three types of reduced marked quiver settings
in dimension four

43a :

��������1
**

��

��������1jj

vv��������1

66VV

43b :

��������1
&. ��������1

rz��������1

RZ

42 : ��������1
&. ��������1Udo

is 5, respectively 8 and 6. Hence, they give nonisomorphic rings of invariants. �
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If some of the vertex dimensions are ≥ 2 we have no easy description of the vectorspacesmi/mi+1

and we need a more refined argument. The idea is to answer the question ”what other singularities
can the reduced singularity see ?” An α-representation type is a datum

τ = (e1, β1; . . . ; el, βl)

where the ei are natural numbers ≥ 1, the βi are dimension vectors of simple representations of
Q such that α =

P
i eiβi. Any neighborhood of the trivial representation contains semi-simple

representations of Q of type τ for any α-representation type. Let (Q•τ , ατ ) be the associated
(marked) local quiver setting. Assume that issατ Qτ has a singularity, then the couple

(dimension of strata, type of singularity)

is a characteristic feature of the singularity of issα Q• and one can often distinguish types by
these couples. The fingerprint of a reduced quiver singularity will be the Hasse diagram of those
α-representation types τ such that the local marked quiver setting (Q•τ , ατ ) can be reduced to a
reduced quiver singularity (necessarily occurring in lower dimension and the difference between the
two dimensions gives the dimension of the stratum). Clearly, this method fails in case the marked
quiver singularity is an isolated singularity. Fortunately, we have a complete characterization of
these.

Theorem 5.25 [12] The only reduced marked quiver settings (Q•, α) such that the quotient variety
is an isolated singularity are of the form

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

kl +3

k1
;C����

����

k2

KS
k3

[c????
????

k4

ks

##

where Q has l vertices and all ki ≥ 2. The dimension of the corresponding quotient is

d =
X
i

ki + l − 1

and the unordered l-tuple {k1, . . . , kl} is an (étale) isomorphism invariant of the ring of invariants.

Not only does this result distinguish among isolated reduced quiver singularities, but it also
shows that in all other marked quiver settings we will have additional families of singularities.
We will illustrate the method in some detail to separate the reduced marked quiver settings in
dimension 6 having one vertex of dimension two.
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Proposition 5.14 The reduced singularities of dimension 6 such that α contains a component
equal to 2 are pairwise non-equivalent.

Proof. One can show that the reduced marked quiver setting for d = 6 with at least one component
≥ 2 are ��������1

����������1
'' ��������2gg

''

FF

��������1gg

type A

��������1
'' ��������2gg

''

•

�� ��������1gg

type B

��������1
'' ��������2gg

•

��

•

\\

type C

��������2 •cc• ;;

•

��

type D

We will order the vertices such that α1 = 2.

type A : There are three different representation types τ1 = (1, (2; 1, 1, 0); 1, (0; 0, 0, 1)) (and
permutations of the 1-vertices). The local quiver setting has the form

��������1
&.��

;; [[ ��������1fn

because for β1 = (2; 1, 1, 0) and β2 = (0; 0, 0, 1) we have that χQ(β1, β1) = −2, χQ(β1, β2) = −2,
χQ(β2, β1) = −2 and χ(β2, β2) = 1. These three representation types each give a three dimensional
family of conifold (type 3con) singularities.

Further, there are three different representation types τ2 = (1, (1; 1, 1, 0); 1, (1; 0, 0, 1)) (and
permutations) of which the local quiver setting is of the form

��������1
&.-- MM ��������1fn cc

as with β1 = (1; 1, 1, 0) and β2 = (1; 0, 0, 1) we have χQ(β1, β1) = −1, χQ(β1, β2) = −2,
χQ(β2, β1) = −2 and χQ(β2, β2) = 0. These three representation types each give a three di-
mensional family of conifold singularities.

Finally, there are the three representation types

τ3 = (1, (1; 1, 0, 0); 1, (1; 0, 1, 0); 1, (0; 0, 0, 1))

(and permutations) with local quiver setting
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��������1
**

��

-- ��������1jj

vv

qq

��������1

66VV

These three types each give a two dimensional family of reduced singularities of type 43a.
The degeneration order on representation types gives τ1 < τ3 and τ2 < τ3 (but for different

permutations) and the fingerprint of this reduced singularity can be depicted as

3con

E�)
EEEEEEE

EEEEEEE

EEEEEEE 3con

yu� yyyyyyy

yyyyyyy

yyyyyyy

43a

�
�
•

type B : There is one representation type τ1 = (1, (1; 1, 0); 1, (1; 0, 1)) giving as above a three
dimensional family of conifold singularities, one representation type τ2 = (1, (1; 1, 1); 1, (1; 0, 0))
giving a three dimensional family of conifolds and finally one representation type

τ3 = (1, (1; 0, 0); 1, (1; 0, 0); 1, (0; 1, 1); 1, (0; 0, 1))

of which the local quiver setting has the form

��������1
**

��

-- ��������1jj

����������1
**

FF

��������1jj

FF

(the loop in the downright corner is removed to compensate for the marking) giving rise to a
one-dimensional family of five-dimensional singularities of type 54a. This gives the fingerprint

3con

""E
EE

EE
EE

E 3con

||yy
yy

yy
yy

54a

��
•
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type C : We have a three dimensional family of conifold singularities coming from the represen-
tation type (1, (1; 1); 1, (1; 0)) and a two-dimensional family of type 43a singularities corresponding
to the representation type (1, (1; 0); 1, (1, 0); 1, (0; 1)). Therefore, the fingerprint is depicted as

3con - 43a
- •

type D : We have just one three-dimensional family of conifold singularities determined by the
representation type (1, (1); 1, (1)) so the fingerprint is 3con - •. As fingerprints are isomorphism
invariants of the singularity, this finishes the proof.

We claim that the minimal number of generators for these invariant rings is 7. The structure
of the invariant ring of three 2× 2 matrices upto simultaneous conjugation was determined by Ed
Formanek [27] who showed that it is generated by 10 elements

{tr(X1), tr(X2), tr(X3), det(X1), det(X2), det(X3), tr(X1X2), tr(X1X3), tr(X2X3), tr(X1X2X3)}

and even gave the explicit quadratic polynomial satisfied by tr(X1X2X3) with coefficients in the
remaining generators. The rings of invariants of the four cases of interest to us are quotients of this
algebra by the ideal generated by three of its generators : for typeA it is (det(X1), det(X2), det(X3)),
for type B : (det(X1), tr(X2), det(X3)), for type C : (det(X1), tr(X2), tr(X3)) and for type D :
(tr(X1), tr(X2), tr(X3)). �

These two tricks (counting cycles and fingerprinting) are sufficient to classify all central singu-
larities of Cayley-smooth orders for central dimension d ≤ 6. We will give the details for d = 5, the
remaining cases for d = 6 can be found in the paper [13].

Proposition 5.15 The reduced marked quiver settings for d = 5 are

52a :
��������1

&. ��������1

4

fn
52b : ��������1

U$/ ��������1Udo

53a :

��������1
**

��

��������1

rz��������1

66RZ

53b :

��������1
&.

��

��������1jj

vv��������1

66VV

53c :

��������1
U$/ ��������1

rz��������1

RZ

53d :

��������1
&. ��������1

rz

jj

��������1

RZ

54a :

��������1
**

��

��������1jj

����������1
**

FF

��������1jj

FF

54b :

��������1
**

��

��������1jj

����������1
**

77ppppppppppppp ��������1jj

ggNNNNNNNNNNNNN
54c :

��������1
&. ��������1

wwppppppppppppp

����������1
**

OO

��������1jj

ggNNNNNNNNNNNNN
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54d :

��������1
&. ��������1

�
��������1

BJ

��������1fn

54e :

��������1
&. ��������1jj

����������1
**

OO

��������1fn

Proof. We are in the situation of lemma 5.15 and hence know that all vertex-dimensions are equal
to one, every vertex has at least two incoming and two outgoing arrows and the total number of
arrows is equal to 5− 1 + k where k is the number of arrows which can be at most 4.

k = 2 : There are 6 arrows and as there must be at least two incoming arrows in each vertex,
the only possibilities are types 52a and 52b.

k = 3 : There are seven arrows. Hence every two vertices are connected, otherwise one needs at
least 8 arrows: ��������1

"* ��������1
"*

bj ��������1bj .

There is one vertex with 3 incoming arrows and one vertex with 3 outgoing arrows. If these vertices
are equal (= v), there are no triple arrows. Call x the vertex with 2 arrows coming from v and
y the other one. Because there are already two incoming arrows in x, χQ(εy, εx) = 0. This also
implies that χQ(εy, εv) = −2 and χQ(εx, εv) = χQ(εx, εy) = −1. This gives us setting 53a. If the
two vertices are different, we can delete one arrow between them, which leaves us with a singularity
of dimension d = 4 (because now all vertices have 2 incoming and 2 outgoing vertices). So starting
from the types 43a−b and adding one extra arrow we obtain three new types 53b−d.

k = 4 : There are 8 arrows so each vertex must have exactly two incoming and two outgoing
arrows. First consider the cases having no double arrows. Fix a vertex v, there is at least one
vertex connected to v in both directions. This is because there are 3 remaining vertices and four
arrows connected to v (two incoming and two outgoing). If there are two such vertices, w1 and w2,
the remaining vertex w3 is not connected to v. Because there are no double arrows we must be in
case 54a. If there is only one such vertex, the quiver contains two disjoint cycles of length 2. This
leads to type 54b.

If there is precisely one double arrow (from v to w), the two remaining vertices must be contained
in a cycle of length 2 (if not, there would be 3 arrows leaving v). This leads to type 54c.

If there are two double arrows, they can be consecutive or disjoint. In the first case, all arrows
must be double (if not, there are three arrows leaving one vertex), so this is type 54d. In the latter
case, let v1 and v2 be the starting vertices of the double arrows and w1 and w2 the end points. As
there are no consecutive double arrows, the two arrows leaving w1 must go to different vertices not
equal to w2. An analogous condition holds for the arrows leaving w2 and therefore we are in type
54e. �

Next, we have to separate the corresponding rings of invariants up to isomorphism.

Theorem 5.26 There are exactly ten reduced marked quiver singularities in dimension d = 5.
Only the types 53a and 54e have an isomorphic ring of invariants.
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Proof. Recall that the dimension of m/m2 is given by the number of primitive cycles in Q. These
numbers are

type dim m/m2 type dim m/m2

52a 8 54a 6
52b 9 54b 6
53a 8 54c 9
53b 7 54d 16
53c 12 54e 8
53d 10

Type 54a can be separated from type 54b because 54a contains 2 + 4 twodimensional families of
conifold singularities corresponding to representation types of the form(

1 1
0 0 ⊕ 0 0

1 1
1 0
1 0 ⊕ 0 1

0 1

and 4× 1 1
1 0 ⊕ 0 0

0 1 .

whereas type 54b has only 1 + 4 such families as the decomposition

0 1
0 1 ⊕ 1 0

1 0

is not a valid representation type.
Type 52a and 52b are both isolated singularities because we have no non- trivial representation

types, whereas types 54c, and 54e are not as they have representation types of the form

0 1
0 0 ⊕ 1 0

0 0 ⊕ 0 0
1 1

giving local quivers smooth equivalent to type 43b (in the case of type 54c) and to type 3a (in the
case of 53e).

Finally, as we know the algebra generators of the rings of invariants (the primitive cycles) it
is not difficult to compute these rings explicitly. Type 53a and type 54e have a ring of invariants
isomorphic to

C[Xi,Yi,Zij :1≤i,j≤2]

(Z11Z22=Z12Z21,X1Y1Z22=X1Y2Z21=X2Y1Z12=X2Y2Z11)

�
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6 — Nilpotent Representations

Having obtained some control over the quotient variety trissn A of a Cayley-smooth algebra A
we turn to the study of the fibers of the quotient map

trepn A
π-- trissn A

If (Q•, α) is the local marked quiver setting of a point ξ ∈ trissn A then the GLn-structure
of the fiber π−1(ξ) is isomorphic to the GL(α)-structure of the nullcone Nullα Q• consisting of
all nilpotent α-dimensional representations of Q•. In geometric invariant theory, nullcones are
investigated by a refinement of the Hilbert criterium : Hesselink’s stratification.

The main aim of the present chapter is to prove that the different strata in the Hesselink
stratification of the nullcone of quiver-representations can be studied via moduli spaces of semi-
stable quiver-representations. We will illustrate the method first by considering nilpotent m-tuples
of n×n matrices and generalize the results later to quivers and Cayley-smooth orders. The methods
allow us to begin to attack the ’hopeless’ problem of studying simultaneous conjugacy classes of
matrices. We then turn to the description of representation fibers, which can be studied quite
explicitly for low-dimensional Cayley-smooth orders, and investigate the fibers of the Brauer-Severi
fibration. Before reading the last two sections on Brauer-Severi varieties, it may be helpful to glance
through the final chapter where similar, but easier, constructions are studied.

6.1 Cornering matrices

In this section we will outline the main idea of the Hesselink stratification of the nullcone [35] in
the generic case, that is, the action of GLn by simultaneous conjugation on m-tuples of matrices
Mm
n = Mn ⊕ . . .⊕Mn. With Nullmn we denote the nullcone of this action

Nullmn = {x = (A1, . . . , Am) ∈Mm
n | 0 = (0, . . . , 0) ∈ O(x)}

It follows from the Hilbert criterium 2.2 that x = (A1, . . . , Am) belongs to the nullcone if and only

if there is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).(A1, . . . , Am) = (0, . . . , 0).
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We recall from proposition 2.5 that any one-parameter subgroup of GLn is conjugated to one
determined by an integral n-tuple (r1, . . . , rn) ∈ Zn by

λ(t) =

264t
r1 0

. . .
0 trn

375
Moreover, permuting the basis if necessary, we can conjugate this λ to one where the n-tuple if
dominant , that is, r1 ≥ r2 ≥ . . . ≥ rn. By applying permutation Jordan-moves , that is, by
simultaneously interchanging certain rows and columns in all Ai, we may therefore assume that the
limit-formula holds for a dominant one-parameter subgroup λ of the maximal torus

Tn ' C∗ × . . .× C∗| {z }
n

= {

264c1 0
. . .

0 cn

375 | ci ∈ C∗ } ⊂ - GLn

of GLn. Computing its action on an n× n matrix A we obtain264t
r1 0

. . .
0 trn

375
264a11 . . . a1n

...
...

an1 . . . ann

375
264t
−r1 0

. . .

0 r−rn

375 =

264t
r1−r1a11 . . . tr1−rna1n

...
...

trn−r1an1 . . . trn−rnann

375
But then, using dominance ri ≤ rj for i ≥ j, we see that the limit is only defined if aij = 0 for
i ≥ j, that is, when A is a strictly upper triangular matrix. We have proved the first ’cornering’
result.

Lemma 6.1 Any m-tuple x = (A1, . . . , Am) ∈ Nullmn has a point in its orbit O(x) under si-
multaneous conjugation x′ = (A′1, . . . , A

′
m) with all A′i strictly upper triangular matrices. In fact

permutation Jordan-moves suffice to arrive at x′.

For specific m-tuples x = (A1, . . . , Am) it might be possible to improve on this result. That is,
we want to determine the smallest ’corner’ C in the upper right hand corner of the matrix, such
that all the component matrices Ai can be conjugated simultaneously to matrices A′i having only
non-zero entries in the corner C

C =
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and no strictly smaller corner C′ can be found with this property. Our first task will be to compile
a list of the relevant corners and to define an order relation on this set. Consider the weight space
decomposition of Mm

n for the action by simultaneous conjugation of the maximal torus Tn,

Mm
n = ⊕1≤i,j≤nM

m
n (πi − πj) = ⊕1≤i,j≤nC⊕mπi−πj

where c = diag(c1, . . . , cn) ∈ Tm acts on any element of Mm
n (πi − πj) by multiplication with cic

−1
j ,

that is, the eigenspace Mm
n (πi − πj) is the space of the (i, j)-entries of the m-matrices. We call

W = {πi − πj | 1 ≤ i, j ≤ n}

the set of Tn-weights of Mm
n . Let x = (A1, . . . , Am) ∈ Nullmn and consider the subset Ex ⊂ W

consisting of the elements πi−πj such that for at least one of the matrix components Ak the (i, j)-
entry is non-zero. Repeating the argument above, we see that if λ is a one-parameter subgroup of
Tn determined by the integral n-tuple (r1, . . . , rn) ∈ Zn such that lim λ(t).x = 0 we have

∀ πi − πj ∈ Ex we have ri − rj ≥ 1

Conversely, let E ⊂ W be a subset of weights, we want to determine the subset

{s = (s1, . . . , sn) ∈ Rn | si − sj ≥ 1 ∀ πi − πj ∈ E }

and determine a point in this set, minimal with respect to the usual norm

‖ s ‖=
q
s21 + . . .+ s2n

Let s = (s1, . . . , sn) attain such a minimum. We can partition the entries of s in a disjoint union
of strings

{pi, pi + 1, . . . , pi + ki}

with ki ∈ N and subject to the condition that all the numbers pij
def
= pi + j with 0 ≤ j ≤ ki

occur as components of s, possibly with a multiplicity that we denote by aij . We call a string
stringi = {pi, pi + 1, . . . , pi + ki} of s balanced if and only if

X
sk∈stringi

sj =

kiX
j=0

aij(pi + j) = 0

In particular, all balanced strings consists entirely of rational numbers. We have

Lemma 6.2 Let E ⊂ W, then the subset of Rn determined by

RnE = { (r1, . . . , rn) | ri − rj ≥ 1 ∀ πi − πj ∈ E}

has a unique point sE = (s1, . . . , sn) of minimal norm ‖ sE ‖. This point is determined by the
characteristic feature that all its strings are balanced. In particular, sE ∈ Qn.
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Proof. Let s be a minimal point for the norm in RnE and consider a string of s and denote with S
the indices k ∈ {1, . . . , n} such that sk ∈ string. Let πi− πj ∈ E, then if only one of i or j belongs
to S we have a strictly positive number aij

si − sj = 1 + rij with rij > 0

Take ε0 > 0 smaller than all rij and consider the n-tuple

sε = s+ ε(δ1S , . . . , δnS) with δkS = 1 if k ∈ S and 0 otherwise

with | ε |≤ ε0. Then, sε ∈ RnE for if πi−πj ∈ E and i and j both belong to S or both do not belong
to S then (sε)i − (sε)j = si − sj ≥ 1 and if one of i or j belong to S, then

(sε)i − (sε)j = 1 + rij ± ε ≥ 1

by the choice of ε0. However, the norm of sε is

‖ sε ‖=
s
‖ s ‖ +2ε

X
k∈S

sk + ε2#S

Hence, if the string would not be balanced,
P
k∈S sk 6= 0 and we can choose ε small enough such

that ‖ sε ‖<‖ s ‖, contradicting minimality of s. �

For given n we have the following algorithm to compile the list Sn of all dominant n-tuples
(s1, . . . , sn) (that is, si ≤ sj whenever i ≥ j) having all its strings balanced.

• List all Young-diagrams Yn = {Y1, . . .} having ≤ n boxes.

• For every diagram Yl fill the boxes with strictly positive integers subject to the rules

1. the total sum is equal to n

2. no two rows are filled identically

3. at most one row has length 1

This gives a list Tn = {T1, . . .} of tableaux.

• For every tableau Tl ∈ Tn, for each of its rows (a1, a2, . . . , ak) find a solution p to the linear
equation

a1x+ a2(x+ 1) + . . .+ ak(x+ k) = 0

and define the
P
ai-tuple of rational numbers

(p, . . . , p| {z }
a1

, p+ 1, . . . , p+ 1| {z }
a2

, . . . p+ k, . . . , p+ k| {z }
ak

)

Repeating this process for every row of Tl we obtain an n-tuple, which we then order.
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The list Sn will be the combinatorial object underlying the relevant corners and the stratification
of the nullcone.

Example 6.1 (Sn for small n) For n = 2, we have 1 1 giving ( 1
2
,− 1

2
) and 2 giving (0, 0).

For n = 3 we have five types

S3 =

tableau s1 s2 s3 ‖ s ‖2

1 1 1 1 0 −1 2
1 2 1

3
1
3
− 2

3
2
3

2 1 2
3
− 1

3
− 1

3
2
3

1 1
1 1

2
0 − 1

2
1
2

3 0 0 0 0

S4 has eleven types

S4 =

tableau s1 s2 s3 s4 ‖ s ‖2

1 1 1 1 3
2

1
2
− 1

2
− 3

2
5

2 1 1 5
4

1
4
− 3

4
− 3

4
11
4

1 1 2 3
4

3
4
− 1

4
− 5

4
11
4

1 2 1 1 0 0 −1 2
2 2 1

2
1
2
− 1

2
− 1

2
1

3 1 3
4
− 1

4
− 1

4
− 1

4
3
4

1 3 1
4

1
4

1
4
− 3

4
3
4

1 2
1 1

3
1
3

0 − 2
3

2
3

2 1
1 2

3
0 − 1

3
− 1

3
2
3

1 1
2 1

2
0 0 − 1

2
1
2

4 0 0 0 0 0

Observe that we ordered the elements in Sn according to ‖ s ‖. The reader is invited to verify that
S5 has 28 different types.

To every s = (s1, . . . , sn) ∈ Sn we associate the following data
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• the corner Cs is the subspace of Mm
n consisting of those m tuples of n×n matrices with zero

entries except perhaps at position (i, j) where si − sj ≥ 1. A partial ordering is defined on
these corners by the rule

Cs′ < Cs ⇔ ‖ s′ ‖ < ‖ s ‖

• the parabolic subgroup Ps which is the subgroup of GLn consisting of matrices with zero
entries except perhaps at entry (i, j) when si − sj ≥ 0.

• the Levi subgroup Ls which is the subgroup of GLn consisting of matrices with zero entries
except perhaps at entry (i, j) when si − sj = 0. Observe that Ls =

Q
GLaij where the aij

are the multiplicities of pi + j.

Example 6.2 Using the sequence of types in the previous example, we have that the relevant
corners and subgroup for 3× 3 matrices are

Cs

Ps

t t tt tt
t t tt t tt

t t tt tt t
t t tt tt

t t tt t tt t t
Ls

t t t
t tt t t

t t tt t
t t t

t t tt t tt t t
For 4× 4 matrices the relevant corners are

Returning to the corner-type of an m-tuple x = (A1, . . . , Am) ∈ Nullmn , we have seen that Ex ⊂ W
determines a unique sEx ∈ Qn which up to permuting the entries an element s of Sn. As permuting
the entries of s translates into permuting rows and columns in Mn(C) we have
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Theorem 6.1 Every x = (A1, . . . , Am) ∈ Nullmn can be brought by permutation Jordan-moves to
an m-tuple x′ = (A′1, . . . , A

′
m) ∈ Cs. Here, s is the dominant reordering of sEx with Ex ⊂ W the

subset πi − πj determined by the non-zero entries at place (i, j) of one of the components Ak. The
permutation of rows and columns is determined by the dominant reordering.

The m-tuple s (or sEx) determines a one-parameter subgroup λs of Tn where λ corresponds to
the unique n-tuple of integers

(r1, . . . , rn) ∈ N+s ∩ Zn with gcd(ri) = 1

For any one-parameter subgroup µ of Tn determined by an integral n-tuple µ = (a1, . . . , an) ∈ Zn
and any x = (A1, . . . , An) ∈ Nullmn we define the integer

m(x, µ) = min {ai − aj | x contains a non-zero entry in Mm
n (πi − πj) }

From the definition of RnE it follows that the minimal value sE and λsE is

sEx =
λsEx

m(x, λsEx
)

and s =
λs

m(x, λs)

We can now state to what extend λs is an optimal one-parameter subgroup of Tn.

Theorem 6.2 Let x = (A1, . . . , Am) ∈ Nullmn and let µ be a one-parameter subgroup contained in
Tn such that lim

t→0
λ(t).x = 0, then

‖ λsEx
‖

m(x, λsEx
)
≤ ‖ µ ‖
m(x, µ)

The proof follows immediately from the observation that µ
m(x,µ)

∈ RnEx
and the minimality of

sEx . Phrased differently, there is no simultaneous reordering of rows and columns that admit an
m-tuple x” = (A”1, . . . , A”m) ∈ Cs′ for a corner Cs′ < Cs. In the next section we will improve on
this result.

6.2 Optimal corners

We have seen that one can transform an m-tuple x = (A1, . . . , Am) ∈ Nullmn by interchanging rows
and columns to an m-tuple in corner-form Cs. However, it is possible that another point in the
orbit O(x) say y = g.x = (B1, . . . , Bm) can be transformed by permutation Jordan moves in a
strictly smaller corner.
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Example 6.3 Consider one 3× 3 nilpotent matrix of the form

x =

240 a b
0 0 0
0 0 0

35 with ab 6= 0

Then, Ex = {π1 − π2, π1 − π3} and the corresponding s = sEx = ( 2
3
,− 1

3
,− 1

3
) so x is clearly of

corner type

Cs =

However, x is a nilpotent matrix of rank 1 and by the Jordan-normalform we can conjugate it in
standard form, that is, there is some g ∈ GL3 such that

y = g.x = gxg−1 =

240 1 0
0 0 0
0 0 0

35
For this y we have Ey = {π1 − π2} and the corresponding sEy = ( 1

2
,− 1

2
, 0), which can be brought

into standard dominant form s′ = ( 1
2
, 0,− 1

2
) by interchanging the two last entries. Hence, by

interchanging the last two rows and columns, y is indeed of corner type

Cs′ =

and we have that Cs′ < Cs.

We have used the Jordan-normalform to produce this example. As there are no known canonical
forms for m tuples of n× n matrices, it is a difficult problem to determine the optimal corner type
in general.

Definition 6.1 We say that x = (A1, . . . , Am) ∈ Nullmn is of optimal corner type Cs if after
reordering rows and columns, x is of corner type Cs and there is no point y = g.x in the orbit which
is of corner type Cs′ with Cs′ < Cs.

We can give an elegant solution to the problem of determining the optimal corner type of an m-
tuple in Nullmn by using results on θ-semistable representations. We assume that x = (A1, . . . , Am)
is brought into corner type Cs with s = (s1, . . . , sn) ∈ Sn. We will associate a quiver-representation
to x. As we are interested in checking whether we can transform x to a smaller corner-type, it is
intuitively clear that the border region of Cs will be important.
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• the border Bs is the subspace of Cs consisting of those m-tuples of n× n matrices with zero
entries except perhaps at entries (i, j) where si − sj = 1.

Example 6.4 For 3× 3 matrices we have the following corner-types Cs having border-regions Bs
and associated Levi-subgroups Ls

Cs

Bs

d

Ls

t t t
t tt t t

t t tt t
t t t

t t tt t tt t t
For 4× 4 matrices the relevant data are given in figure 6.1

From these examples, it is clear that the action of the Levi-subgroup Ls on the border Bs is a quiver-
setting. In general, let s ∈ Sn be determined by the tableau Ts, then the associated quiver-setting
(Qs, αs) is

• Qs is the quiver having as many connected components as there are rows in the tableau Ts.
If the i-th row in Ts is

(ai0, ai1, . . . , aiki)

then the corresponding string of entries in s is of the form

{pi, . . . , pi| {z }
ai0

, pi + 1, . . . , pi + 1| {z }
ai1

, . . . , pi + ki, . . . , pi + ki| {z }
aiki

}

and the i-th component of Qs is defined to be the quiver Qi on ki + 1 vertices having m
arrows between the consecutive vertices, that is Qi is

��������0 m +3 ��������1 m +3 ��������2 m +3 . . . m +3/.-,()*+ki

• the dimension vector αi for the i-th component quiver Qi is equal to the i-th row of the
tableau Ts, that is

αi = (ai0, ai1, . . . , aiki)

and the total dimension vector αs is the collection of these component dimension vectors.
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Cs =

Bs =

d dd d d dd d

Ls =

t t t t
t t t tt t

t tt t t t
t t tt t t

t tt t t tt t
t t t tt t tt t t

Cs =

Bs =

Ls =

t t tt t tt t t t
t tt t t t

t t t tt t
t t tt t t

t t t tt t t tt t t tt t t t
Figure 6.1: Corners and borders for 4× 4 matrices.
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• the character GL(αs)
χs- C∗ is determined by the integral n-tuple θs = (t1, . . . , tn) ∈ Zn

where if entry k corresponds to the j-th vertex of the i-th component of Qs we have

tk = nij
def
= d.(pi + j)

where d is the least common multiple of the numerators of the pi’s for all i. Equivalently,
the nij are the integers appearing in the description of the one-parameter subgroup λs =
(r1, . . . , rn) grouped together according to the ordering of vertices in the quiver Qs. Recall
that the character χs is then defined to be

χs(g1. . . . , gn) =

nY
i=1

det(gi)
ti

or in terms of GL(αs) it sends an element gij ∈ GL(αs) to
Q
i,j det(gij)

nij .

Proposition 6.1 The action of the Levi-subgroup Ls =
Q
i,j GLaij on the border Bs coincides with

the base-change action of GL(αs) on the representation space repαs
Qs. The isomorphism

Bs - repαs
Qs

is given by sending an m-tuple of border Bs-matrices (A1, . . . , Am) to the representation in repαs
Qs

where the j-th arrow between the vertices va and va+1 of the i-th component quiver Qi is given by
the relevant block in the matrix Aj.

Example 6.5 We illustrate these definitions with a few examples for 4× 4 matrices

tableau Ls Bs θs (Qs, αs, θs)

2 1 1

t t t tt t
d d

(5, 1,−3,−3)

5 1 −3��������1 ��������1 ��������2moo moo

1 2 1

t t tt t t
d

(1, 0, 0,−1)

1 0 −1��������1 ��������2 ��������1moo moo

1 2
1

t tt t t t (1, 1, 0,−2)

1 −2

0

��������2 ��������1

��������1

moo
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Using these conventions we can now state the main result of this section, giving a solution to
the problem of optimal corners.

Theorem 6.3 Let x = (A1, . . . , Am) ∈ Nullmn be of corner type Cs. Then, x is of optimal corner
type Cs if and only if under the natural maps

Cs -- Bs
'- repαs

Qs

(the first map forgets the non-border entries) x is mapped to a θs-semistable representation in
repαs

Qs.

6.3 Hesselink stratification

Every orbit in Nullmn has a representative x = (A1, . . . , Am) with all Ai strictly upper triangular
matrices. That is, if N ⊂Mn is the subspace of strictly upper triangular matrices, then the action
map determines a surjection

GLn ×Nm ac-- Nullmn

Recall that the standard Borel subgroup B is the subgroup of GLn consisting of all upper triangular
matrices and consider the action of B on GLn ×Mm

n determined by

b.(g, x) = (gb−1, b.x)

Then, B-orbits in GLn×Nm are mapped under the action map ac to the same point in the nullcone
Nullmn . Consider the morphisms

GLn ×Mm
n

π-- GLn/B ×Mm
n

which sends a point (g, x) to (gB, g.x). The quotient GLn/B is called a flag variety and is a
projective manifold. Its points are easily seen to correspond to complete flags

F : 0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn = Cn with dimC Fi = i

of subspaces of Cn. For example, if n = 2 then GL2/B ' P1. Consider the fiber π−1 of a point
(g, (B1, . . . , Bm)) ∈ GLn/B ×Mm

n . These are the points

(h, (A1, . . . , Am)) such that

(
g−1h = b ∈ B
bAib

−1 = g−1Big for all 1 ≤ i ≤ m.

Therefore, the fibers of π are precisely the B-orbits in GLn ×Mm
n . That is, there exists a quotient

variety for the B-action on GLn ×Mm
n which is the trivial vectorbundle of rank mn2

T = GLn/B ×Mm
n

p-- GLn/B
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GLn ×B U
' - GLn.U

GLn ×B Nm

?

∩

ac - Nullmn

?

∩

Figure 6.2: Resolution of the nullcone.

over the flag varietyGLn/B. We will denote withGLn×BNm the image of the subvarietyGLn×Nm

of GLn ×Mm
n under this quotient map. That is, we have a commuting diagram

GLn ×Nm ⊂ - GLn ×Mm
n

GLn ×B Nm

??
⊂- GLn/B ×Mm

n

??

Hence, V = GLn ×B Nm is a sub-bundle of rank m.n(n−1)
2

of the trivial bundle T over the flag
variety. Note however that V itself is not trivial as the action of GLn does not map Nm to itself.

Theorem 6.4 Let U be the open subvariety of m-tuples of strictly upper triangular matrices Nm

consisting of those tuples such that one of the component matrices has rank n− 1. The action map
ac induces the commuting diagram of figure 6.2. The upper map is an isomorphism of GLn-varieties
for the action on fiber bundles to be left multiplication in the first component.

Therefore, there is a natural one-to-one correspondence between GLn-orbits in GLn.U and B-
orbits in U . Further, ac is a desingularization of the nullcone and Nullmn is irreducible of dimension

(m+ 1)
n(n− 1)

2
.

Proof. Let A ∈ N be a strictly upper triangular matrix of rank n − 1 and g ∈ GLn such that
gAg−1 ∈ N , then g ∈ B as one verifies by first bringing A into Jordan-normal form Jn(0). This
implies that over a point x = (A1, . . . , Am) ∈ U the fiber of the action map

GLn ×Nm ac-- Nullmn

has dimension n(n−1)
2

= dim B. Over all other points the fiber has at least dimension n(n−1)
2

.But
then, by the dimension formula we have

dim Nullmn = dim GLn + dim Nm − dim B = (m+ 1)
n(n− 1)

2
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Figure 6.3: Resolution of Null12.

Over GLn.U this map is an isomorphism of GLn-varieties. Irreducibility of Nullmn follows from
surjectivity of ac as C[Nullmn ] ⊂ - C[GLn]⊗C[Nm] and the latter is a domain. These facts imply
that the induced action map

GLn ×B Nm ac- Nullmn

is birational and as the former is a smooth variety (being a vectorbundle over the flag manifold),
this is a desingularization. �

Example 6.6 Let n = 2 and m = 1. We have seen in chapter 3 that Null12 is a cone in 3-space
with the singular top the orbit of the zero-matrix and the open complement the orbit of»

0 1
0 0

–
In this case the flag variety is P1 and the fiber bundle GL2 ×B N has rank one. The action map

is depicted in figure 6.3 and is a GL2-isomorphism over the complement of the fiber of the top.

Theorem 6.4 gives us a complexity-reduction, both in the dimension of the acting group and in
the dimension of the space acted upon, from

• GLn-orbits in the nullcone Nullmn , to

• B-orbits in Nm.
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at least on the stratum GLn.U described before. The aim of the Hesselink stratification of the
nullcone is to extend this reduction also to the complement.

Let s ∈ Sn and let Cs be the vectorspace of all m-tuples in Mm
n which are of corner-type Cs. We

have seen that there is a Zariski open subset (but, possibly empty) Us of Cs consisting of m-tuples
of optimal corner type Cs. Observe that the action of conjugation of GLn on Mm

n induces an action
of the associated parabolic subgroup Ps on Cs.

Definition 6.2 The Hesselink stratum Ss associated to s is the subvariety GLn.Us where Us is the
open subset of Cs consisting of the optimal Cs-type tuples.

Theorem 6.5 With notations as before we have a commuting diagram

GLn ×Ps Us
' - Ss

GLn ×Ps Cs

?

∩

ac - Ss

?

∩

where ac is the action map, Ss is the Zariski closure of Ss in Nullmn and the upper map is an
isomorphism of GLn-varieties.

Here, GLn/Ps is the flag variety associated to the parabolic subgroup Ps and is a projective
manifold. The variety GLn×PsCs is a vectorbundle over the flag variety GLn/Ps and is a subbundle
of the trivial bundle GLn ×Ps Mm

n .
Therefore, the Hesselink stratum Ss is an irreducible smooth variety of dimension

dim Ss = dim GLn/Ps + rk GLn ×Ps Cs

= n2 − dim Ps + dimC Cs

and there is a natural one-to-one correspondence between the GLn-orbits in Ss and the Ps-orbits
in Us.

Moreover, the vectorbundle GLn ×Ps Cs is a desingularization of Ss hence ’feels’ the gluing of
Ss to the remaining strata. Finally, the ordering of corners has the geometric interpretation

Ss ⊂
[

‖s′‖≤‖s‖

Ss′

We have seen that Us = p−1 repssαs
(Qs, θs) where Cs

p-- Bs is the canonical projection
forgetting the non-border entries. As the action of the parabolic subgroup Ps restricts to the action
of its Levi-part Ls on Bs = repαs

Q we have a canonical projection

Us/Ps
p-- Mss

αs
(Qs, θs)
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to the moduli space of θs-semistable representations in repαs
Qs. As none of the components of

Qs admits cycles, these moduli spaces are projective varieties. For small values of m and n these
moduli spaces give good approximations to the study of the orbits in the nullcone.

Example 6.7 (Nullcone of m-tuples of 2× 2 matrices) In the first volume we have seen by a
brute force method that the orbits inNull22 correspond to points on P1 together with one extra orbit,
the zero representation. For arbitrary m, the relevant strata-information for Nullm2 is contained in
the following table

tableau s Bs = Cs Ps (Qs, αs, θs)

1 1 ( 1
2
,− 1

2
)

t tt 1 −1��������1 ��������1moo

2 (0, 0)

t tt t 0��������2

Because Bs = Cs we have that the orbit space Us/Ps ' Mss
αs

(Qs, θs). For the first stratum,
every representation in repαs

Qs is θs-semistable except the zero-representation (as it contains a

subrepresentation of dimension β = (1, 0) and θs(β) = −1 < 0. The action of Ls = C∗ × C∗ on
Cm−0 has as orbit space Pm−1, classifying the orbits in the maximal stratum. The second stratum
consists of one point, the zero representation.

Example 6.8 A more interesting application, illustrating all of the general phenomena, is the
description of orbits in the nullcone of two 3× 3 matrices. H. Kraft described them in [50, p. 202]
by brute force. The orbit space decomposes as a disjoint union of tori and can be represented by
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Here, each node corresponds to a torus of dimension the right-hand side number in the bottom
row. A point in this torus represents an orbit with dimension the left-hand side number. The top
letter is included for classification purposes. That is, every orbit has a unique representant in the
following list of couples of 3 × 3 matrices (A,B). The top letter gives the torus, the first 2 rows
give the first two rows of A and the last two rows give the first two rows of B, x, y ∈ C∗

a
0 1 0
0 0 1
0 x 0
0 0 y

b
0 1 0
0 0 1
0 0 0
0 0 x

c
0 1 0
0 0 1
0 x 0
0 0 0

d
0 1 0
0 0 1
0 x y
0 0 x

e
0 1 0
0 0 1
0 x 0
0 0 0

f
0 0 0
0 0 1
0 1 0
0 0 x

g
0 1 0
0 0 0
0 0 0
0 0 1

h
0 1 0
0 0 1
0 0 x
0 0 0

i
0 0 x
0 0 0
0 1 0
0 0 1

j
0 0 0
0 0 1
0 1 0
0 0 0

k
0 0 1
0 0 0
0 1 0
0 0 0

l
0 0 0
0 0 1
0 0 1
0 0 0

m
0 0 1
0 0 0
0 1 0
0 0 0

n
0 0 0
0 0 0
0 1 0
0 0 1

o
0 1 0
0 0 0
0 x 0
0 0 0

p
0 1 0
0 0 0
0 0 0
0 0 0

q
0 0 0
0 0 0
0 1 0
0 0 0

r
0 0 0
0 0 0
0 0 0
0 0 0

We will now derive this result from the above description of the Hesselink stratification. To begin,
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the relevant data concerning S3 is summarized in the following table

tableau s Bs, Cs Ps (Qs, αs, θs)

1 1 1 (1, 0,−1)

t t t tt tt 1 0 −1��������1 ��������1 ��������1ee
yy

ee
yy

1 2 ( 1
3
, 1

3
,− 2

3
)

t t tt t tt 1 −2��������2 ��������1ee
yy

2 1 ( 2
3
,− 1

3
,− 1

3
)

t t tt tt t 2 −1��������1 ��������2ee
yy

1 1
1 ( 1

2
, 0,− 1

2
)

t t tt tt
1 −1

0

��������1 ��������1

��������1

ee
yy

3 (0, 0, 0, )

t t tt t tt t t 0��������3

For the last four corner types, Bs = Cs whence the orbit space Us/Ps is isomorphic to the moduli
space Mss

αs
(Qs, θs). Consider the quiver-setting

1 −2

��������2 ��������1hh vv

If the two arrows are not linearly independent, then the representation contains a proper sub-
representation of dimension-vector β = (1, 1) or (1, 0) and in both cases θs(β) < 0 whence the
representation is not θs-semistable. If the two arrows are linearly independent, we can use the

GL2-component to bring them in the form (

»
0
1

–
,

»
1
0

–
), whence Mss

αs
(Qs, αs) is reduced to one

point, corresponding to the matrix-couple of type l

(

240 0 0
0 0 1
0 0 0

35 ,

240 0 1
0 0 0
0 0 0

35 )
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A similar argument, replacing linear independence by common zero-vector shows that also the

quiver-setting corresponding to the tableau 2 1 has one point as its moduli space, the matrix-

tuple of type k. Incidentally, this shows that the corners corresponding to the tableaux 2 1 or
1 2 cannot be optimal when m = 1 as then the row or column vector always has a kernel or

cokernel whence cannot be θs-semistable. This of course corresponds to the fact that the only
orbits in Null13 are those corresponding to the Jordan-matrixes240 1 0

0 0 1
0 0 0

35 240 1 0
0 0 0
0 0 0

35 240 0 0
0 0 0
0 0 0

35

which are respectively of corner type 1 1 1 ,

1 1
1 and 3 , whence the two other types do not

occur. Next, consider the quiver setting

1 −1

0

��������1 ��������1

��������1

hh vv

A representation in repαs
Qs is θs-semistable if and only if the two maps are not both zero (oth-

erwise, there is a subrepresentation of dimension β = (1, 0) with θs(β) < 0). The action of
GL(αs) = C∗ × C∗ on C2 − 0 has a s orbit space P1 and they are represented by matrix-couples

(

240 0 a
0 0 0
0 0 0

35 ,

240 0 b
0 0 0
0 0 0

35 )

with [a : b] ∈ P1 giving the types o,p and q. Clearly, the stratum 3 consists just of the zero-matrix,
which is type r. Remains to investigate the quiver-setting

1 0 −1

��������1 ��������1 ��������1

b

hh
a

vv

d

hh
c

vv

Again, one easily verifies that a representation in repαs
Qs is θs-semistable if and only if (a, b) 6=

(0, 0) 6= (c, d) (for otherwise one would have subrepresentations of dimensions (1, 1, 0) or (1, 0, 0)).
The corresponding GL(αs)-orbits are classified by

Mss
αs

(Qs.θs) ' P1 × P1
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corresponding to the matrix-couples of types a, b, c, e, f, g, j, k and n

(

240 c 0
0 0 a
0 0 0

35 ,

240 d 0
0 0 b
0 0 0

35 )

where [a : b] and [c : d] are points in P1. In this case, however, Cs 6= Bs and we need to investigate
the fibers of the projection

Us/Ps
p-- Mss

αs
(Qs, αs)

Now, Ps is the Borel subgroup of upper triangular matrices and one verifies that the following two
couples

(

240 c 0
0 0 a
0 0 0

35 ,

240 d 0
0 0 b
0 0 0

35 ) and (

240 c x
0 0 a
0 0 0

35 ,

240 d y
0 0 b
0 0 0

35 )

lie in the same B-orbit if and only if det

»
a c
b d

–
6= 0, that is, if and only if [a : b] 6= [c : d] in

P1. Hence, away from the diagonal p is an isomorphism. On the diagonal one can again verify by
direct computation that the fibers of p are isomorphic to C, giving rise to the cases d, h and i in
the classification.

The connection between this approach and Kraft’s result is depicted in figure 6.4. The picture on
the left is Kraft’s toric degeneration picture where we enclosed all orbits belonging to the same
Hesselink strata, that is, having the same optimal corner type. The dashed region enclosed the
orbits which do not come from the moduli spaces Mss

αs
(Qs, θs), that is, those coming from the

projection Us/Ps -- Mss
αs

(Qs, θs)). The picture on the right gives the ordering of the relevant
corners.

Example 6.9 We see that we get most orbits in the nullcone from the moduli spaces Mss
αs

(Qs, θs).

The reader is invited to work out the orbits in Null24. We list here the moduli spaces of the relevant
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Figure 6.4: Nullcone of couples of 3× 3 matrices.

corners

corner Mss
αs

(Qs, θs) corner Mss
αs

(Qs, θs) corner Mss
αs

(Qs, θs)

P1 × P1 × P1 P1 P1

P3 t P1 × P1 t P1 × P1 P1 t S2(P1) P0

P1 P1 P0



336 Nilpotent Representations

Observe that two potential corners are missing in this list. This is because we have the following
quiver setting for the corner

3 −1

��������1 ��������3

d

hh
c

vv

and there are no θs-semistable representations as the two maps have a common kernel, whence a
subrepresentation of dimension β = (1, 0) and θs(β) < 0. A similar argument holds for the other
missing corner and quiver setting

1 −3

��������3 ��������1

d

hh
c

vv

For general n, a similar argument proves that the corners associated to the tableaux 1 n and
n 1 are not optimal for tuples in Nullmn+1 unless m ≥ n. It is also easy to see that with m ≥ n
all relevant corners appear in Nullmn+1, that is all potential Hesselink strata are non-empty.

6.4 Cornering quiver representations

In this section we generalize the results on matrices to representation of arbitrary quivers. Let
Q be a quiver on k vertices {v1, . . . , vk} and fix a dimension vector α = (a1, . . . , ak) and denote

the total dimension
Pk
i=1 ai by a. A representation V ∈ repα Q is said to belong to the nullcone

Nullα Q if the trivial representation 0 ∈ O(V ). Equivalently, all polynomial invariants are zero
when evaluated in V , that is, the traces of all oriented cycles in Q are zero in V . By the Hilbert
criterium 2.2 for GL(α), V ∈ Nullα Q if and only if there is a one-parameter subgroup

C∗ λ- GL(α) =

264GLa1 . . .
GLak

375 ⊂ - GLa

such that lim
→

λ(t).V = 0. Up to conjugation in GL(α), or equivalently, replacing V by another

point in the orbit O(V ), we may assume that λ lies in the maximal torus Ta of GL(α) (and of GLa)
and can be represented by an integral a-tuple (r1, . . . , ra) ∈ Za such that

λ(t) =

264t
r1

. . .
tra

375
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We have to take the vertices into account, so we decompose the integer interval [1, 2, . . . , a] into
vertex intervals Ivi such that

[1, 2, . . . , a] = tki=1 Ivi with Ivi = [

i−1X
j=1

aj + 1, . . . ,

iX
j=1

aj ]

If we recall that the weights of Ta are isomorphic to Za having canonical generators πp for 1 ≤ p ≤ a
we can decompose the representation space into weight spaces

repα Q =
M

πpq=πq−πp

repα Q(πpq)

where the eigenspace of πpq is non-zero if and only if for p ∈ Ivi and q ∈ Ivj , there is an arrow

��������i��������j oo

in the quiver Q. Call πα Q the set of weights πpq which have non-zero eigenspace in repα Q. Using
this weight space decomposition we can write every representation as V =

P
p,q Vpq where Vpq is a

vector of the (p, q)-entries of the maps V (a) for all arrows a in Q from vi to vj . Using the fact that
the action of Ta on repα Q is induced by conjugation, we deduce as before that for λ determined
by (r1, . . . , ra)

lim
t→0

λ(t).V = 0 ⇔ rq − rp ≥ 1 whenever Vpq 6= 0

Again, we define the corner type C of the representation V by defining the subset of real a-tuples

EV = {(x1, . . . , xa) ∈ Ra | xq − xp ≥ 1 ∀ Vpq 6= 0}

and determine a minimal element sV in it, minimal with respect to the usual norm on Ra. Similar
to the case of matrices considered before, it follows that sV is a uniquely determined point in Qa,
having the characteristic property that its entries can be partitioned into strings

{pl, . . . , pl| {z }
al0

, pl + 1, . . . , pl + 1| {z }
al1

, . . . , pl + kl, . . . , pl + kl| {z }
alkl

} with all alm ≥ 1

which are balanced, that is
Pkl
m=0 alm(pl +m) = 0.

Note however that this time we are not allowed to bring sV into dominant form, as we can
only permute base-vectors of the vertex-spaces. That is, we can only use the action of the vertex-
symmetric groups

Sa1 × . . .× Sak
⊂ - Sa

to bring sV into vertex dominant form , that is if sV = (s1, . . . , sa) then

sq ≤ sp whenever p, q ∈ Ivi for some i and p < q

We compile a list Sα of such rational a-tuples by the following algorithm
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• Start with the list Sa of matrix corner types.

• For every s ∈ Sa consider all permutations σ ∈ Sa/(Sa1 × . . . × Sak ) such that σ.s =
(sσ(1), . . . , sσ(a)) is vertex dominant.

• Take Hα to be the list of the distinct a-tuples σ.s which are vertex dominant.

• Remove s ∈ Hα whenever there is an s′ ∈ Hα such that

πs Q = {πpq ∈ πα Q | sq − sp ≥ 1} ⊂ πs′ Q = {πpq ∈ πα Q | s′q − s′p ≥ 1}

and ‖ s ‖>‖ s′ ‖.

• The list Sα are the remaining entries s from Hα.

For s ∈ Sα, we define associated data similar to the case of matrices

• The corner Cs is the subspace of repα Q such that all arrow matrices Vb, when viewed as
a×a matrices using the partitioning in vertex-entries, have only non-zero entries at spot (p, q)
when sq − sp ≥ 1.

• The border Bs is the subspace of repα Q such that all arrow matrices Vb, when viewed as
a×a matrices using the partitioning in vertex-entries, have only non-zero entries at spot (p, q)
when sq − sp = 1.

• The parabolic subgroup Ps(α) is the intersection of Ps ⊂ GLa with GL(α) embedded along
the diagonal. Ps(α) is a parabolic subgroup of GL(α), that is, contains the product of the
Borels B(α) = Ba1 × . . .×Bak .

• The Levi-subgroup Ls(α) is the intersection of Ls ⊂ GLa with GL(α) embedded along the
diagonal.

We say that a representation V ∈ repα Q is of corner type Cs whenever V ∈ Cs.

Theorem 6.6 By permuting the vertex-bases, every representation V ∈ repα Q can be brought to
a corner type Cs for a uniquely determined s which is a vertex-dominant reordering of sV .

Example 6.10 Consider the following quiver setting

2(/).*-+,

1(/).*-+,

y

qq

x

--

u

DD

v

��
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Then, the relevant corners have the following block decomposition

(1, 0,−1) (0,−1, 1) (1,−1, 0) ( 1
3 , 1

3 ,− 2
3 ) ( 1

3 ,− 2
3 , 1

3 ) ( 2
3 ,− 1

3 ,− 1
3 )

(− 1
3 ,− 1

3 , 2
3 ) ( 1

2 , 0,− 1
2 ) (0,− 1

2 , 1
2 ) ( 1

2 ,− 1
2 , 0) (0, 0, 0)

Again, we solve the problem of optimal corner representations by introducing a new quiver
setting.

Fix a type s ∈ Sα Q and let J1, . . . , Ju be the distinct strings partitioning the entries of s, say
with

Jl = {pl, . . . , pl| {z }Pk
i=1 bi,l0

, pl + 1, . . . , pl + 1| {z }Pk
i=1 bi,l1

, . . . , pl + kl, . . . , pl + kl| {z }Pk
i=1 bi,lkl

}

where bi,lm is the number of entries p ∈ Ivi such that sp = pl + m. To every string l we will
associate a quiver Qs,l and dimension vector αs,l as follows

• Qs,l has k.(kl + 1) vertices labeled (vi,m) with 1 ≤ i ≤ k and 0 ≤ m ≤ kl.

• In Qs,l there are as many arrows from vertex (vi,m) to vertex (vj ,m+1) as there are arrows in
Q from vertex vi to vertex vj . There are no arrows between (vi,m) and (vj ,m

′) if m′−m 6= 1.

• The dimension-component of αs,l in vertex (vi,m) is equal to bi,lm.

Example 6.11 For the above quiver, all component quivers Qs,l are pieces of the quiver below

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,
. . .

,,22 ,,22 ,, 22 ++ 33??�������������� ��?
??

??
??

??
??

??
? ??�������������� ��?

??
??

??
??

??
??

? ??�������������� ��?
??

??
??

??
??

??
? ??��������������� ��?

??
??

??
??

??
??

??

Clearly, we only need to consider that part of the quiver Qs,l where the dimensions of the vertex
spaces are non-zero.
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The quiver-setting (Qs, αs) associated to a type s ∈ Sα Q will be the disjoint union of the string
quiver-settings (Qs,l, αs,l) for 1 ≤ l ≤ u.

Theorem 6.7 With notations as before, for s ∈ Sα Q we have isomorphisms(
Bs ' repαs

Qs
Ls(α) ' GL(αs)

Moreover, the base-change action of GL(αs) on repαs
Qs coincides under the isomorphisms with

the action of the Levi-subgroup Ls(α) on the border Bs.

In order to determine the representations in repαs
Qs which have optimal corner type Cs we

define the following character on the Levi-subgroup

Ls(α) =

uY
l=1

×ki=1 ×kl
m=0 GLbi,lm

χθs- C∗

determined by sending a tuple (gi,lm)ilm - Q
ilm det g

mi,lm

i,lm where the exponents are determined
by

θs = (mi,lm)ilm where mi,lm = d(pl +m)

with d the least common multiple of the numerators of the rational numbers pl for all 1 ≤ l ≤ u.

Theorem 6.8 Consider a representation V ∈ Nullα Q of corner type Cs. Then, V is of optimal
corner type Cs if and only if under the natural maps

Cs
π-- Bs

'- repαs
Qs

V is mapped to a θs-semistable representation in repαs
Qs. If Us is the open subvariety of Cs

consisting of all representations of optimal corner type Cs, then

Us = π−1
rep

ss
αs

(Qs, θs)

For the corresponding Hesselink stratum Ss = GL(α).Us we have the commuting diagram

GL(α)×Ps(α) Us
' - Ss

GL(α)×Ps(α) Cs

?

∩

ac - Ss

?

∩
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where ac is the action map, Ss is the Zariski closure of Ss in Nullα Q and the upper map is an
isomorphism as GL(α)-varieties.

Here, GL(α)/Ps(α) is the flag variety associated to the parabolic subgroup Ps(α) and is a pro-

jective manifold. The variety GL(α)×Ps(α)Cs is a vectorbundle over the flag variety GL(α)/Ps(α)

and is a subbundle of the trivial bundle GL(α)×Ps(α) repα Q.

Hence, the Hesselink stratum Ss is an irreducible smooth variety of dimension

dim Ss = dim GL(α)/Ps(α) + rk GL(α)×Ps(α) Cs

=

kX
i=1

a2
i − dim Ps(α) + dimC Cs

and there is a natural one-to-one correspondence between the GL(α)-orbits in Ss and the Ps(α)-
orbits in Us.

Moreover, the vectorbundle GL(α)×Ps(α) Cs is a desingularization of Ss hence ’feels’ the gluing
of Ss to the remaining strata. The ordering of corners has the geometric interpretation

Ss ⊂
[

‖s′‖≤‖s‖

Ss′

Finally, because Ps(α) acts on Bs by the restriction to its subgroup Ls(α) = GL(αs) we have a
projection from the orbit space

Us/Ps
p-- Mss

αs
(Qs, θs)

to the moduli space of θs-semistable quiver representations.

Example 6.12 Above we have listed the relevant corner-types for the nullcone of the quiver-setting

2(/).*-+,

1(/).*-+,

y

qq

x

--

u

DD

v

��
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In the table below we list the data of the three irreducible components of Nullα Q/GL(α) corre-
sponding to the three maximal Hesselink strata :

Cs, Bs Ls (Qs, αs, θs) Mss
αs

(Qs, θs)

t
(1, 0,−1)

t t t −1

0 1

1��������

0��������

0��������

1��������

0��������

1��������))55??�������� P1

t
(0,−1, 1)

t t t
−1 0

1

0��������

1��������

0��������

1��������

1��������

0��������))55

��?
??

??
??

?

P1

t
(1,−1, 0)

t t t
−1

0

1

0��������

1��������

1��������

0��������

0��������

1��������

��?
??

??
??

? ??�������� P0

There are 6 other Hesselink strata consisting of precisely one orbit. Finally, two possible corner-
types do not appear as there are no θs-semistable representations for the corresponding quiver
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setting

Cs, Bs Ls (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
3 , 1

3 ,− 2
3 )

t tt t t −2

1

1��������

0��������

0��������

2��������??�������� ∅

(− 1
3 ,− 1

3 , 2
3 )

t tt t t
−1

2

0��������

2��������

1��������

0��������

��?
??

??
??

?

∅

6.5 Simultaneous conjugacy classes

We have come a long way from our bare hands description of the simultaneous conjugacy classes
of couples of 2 × 2 matrices in the first chapter of volume 1. In this section we will summarize
what we have learned so far to approach the hopeless problem of classifying conjugacy classes of m
tuples of n× n matrices.

First, we show how one can reduce the study of representations of a Quillen-smooth algebra
to that of studying nullcones of quiver representations. Let A be an affine C-algebra and Mξ is
a semi-simple n-dimensional module such that the representation variety repn

R
n
A is smooth in

Mξ, that is ξ ∈ Smn A. Let Mξ be of representation type τ = (e1, d1; . . . ; ek, dk), that is,

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek
k

with distinct simple components Si of dimension di and occurring in Mξ with multiplicity ei, then
the GL(α) = Stab Mξ-structure on the normal space Nξ to the orbit O(Mξ) is isomorphic to that
of the representation space

repα Q
•

of a certain marked quiver on k vertices. The slice theorem asserts the existence of a slice Sξ
φ- Nξ
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and a commuting diagram

GLn ×GL(α) Sξ

GLn ×GL(α) Nξ

�

GL
n
×

GL(α
) φ

repn

Z
n

A

ψ

-

Sξ/GL(α)

??

Nξ/GL(α)

π2

?? �
φ/
GL

(α
)

issn

Z
n

A

π1
??

ψ/GL
n

-

in a neighborhood of ξ ∈ issn
R
n
A on the right and a neighborhood of the image 0 of the trivial

representation in Nξ/GL(α) on the left. In this diagram, the vertical maps are the quotient maps,
all diagonal maps are étale and the upper ones are GLn-equivariant. In particular, there is a
GLn-isomorphism between the fibers

π−1
2 (0) ' π−1

1 (ξ)

Because π−1
2 (0) ' GLn ×GL(α) π−1(0) with π is the quotient morphism for the marked quiver

representations Nξ = repα Q
• π-- issα Q

• = Nx/GL(α) we have a GLn-isomorphism

π−1
1 (ξ) ' GLn ×GL(α) π−1(0)

That is, there is a natural one-to-one correspondence between

• GLn-orbits in the fiber π−1
1 (ζ), that is, isomorphism classes of n-dimensional representations

of A with Jordan-Hölder decomposition Mξ, and

• GL(α)-orbits in π−1(0), that is, the nullcone of the marked quiver Nullα Q
•.

Summarizing we have the following

Theorem 6.9 Let A be an affine Quillen-smooth C-algebra and Mξ a semi-simple n-dimensional
representation of A. Then, the isomorphism classes of n-dimensional representations of A with
Jordan-Hölder decomposition isomorphic to Mξ are given by the GL(α)-orbits in the nullcone
Nullα Q

• of the local marked quiver setting.
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The problem of classifying simultaneous conjugacy classes of m-tuples of n × n matrices, is
the same as n-dimensional representations of the Quillen-smooth algebra C〈x1, . . . , xm〉. To study
semi-simple representations, one considers the quotient map

Mm
n = repnC〈x1, . . . , xm〉

π-- issn C〈x1, . . . , xm〉 = iss
m
n

Fix a point ξ ∈ issmn and assume that the corresponding semi-simple n-dimensional representation
Mξ is of representation type τ = (e1, d1; . . . ; ek, dk).

We have shown that the coordinate ring C[issmn ] = Nmn is the necklace algebra , that is, is
generated by traces of monomials in the generic n× n matrices X1, . . . , Xm of length bounded by
n2 + 1. Further, if we collect all Mξ with representation type τ in the subset issmn (τ), then

issn =
G
τ

iss
m
n (τ)

is a finite stratification of issmn into locally closed smooth algebraic subvarieties.
We have an ordering on the representation types τ ′ < τ indicating that the stratum issmn (τ ′) is

contained in the Zariski closure of issmn (τ). This order relation is induced by the direct ordering

τ ′ = (e′1, d
′
1; . . . ; e

′
k′ , d

′
k′) <

dir τ = (e1, d1; . . . ; ek, dk)

if there is a permutation σ of [1, 2, . . . , k′] and there are numbers

1 = j0 < j1 < j2 . . . < jk = k′

such that for every 1 ≤ i ≤ k we have the following relations(
eidi =

Pji
j=ji−1+1 e

′
σ(j)d

′
σ(j)

ei ≤ e′σ(j) for all ji−1 < j ≤ ji

Example 6.13 The order relation on the representation types of dimension n = 4 has the following
Hasse diagram.

4 1

1 1 3 1 2 1 2 1

1 1 1 1 2 1

1 1 1 1 1 1 1 1 1 2 2 1 2 2

1 2 1 1 1 1

1 3 1 1 1 2 1 2

1 4

oooo OOOO

OOO
O

ooo
o

??
??

??
??

ooo
o OOO

O

OOO
O

ooo
o

ooo
o OOO

O
��

��
��

��

OOOO
oooo
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Because issmn is irreducible, there is an open stratum corresponding to the simple representa-
tions, that is type (1, n). The sub-generic strata are all of the form

τ = (1,m1; 1,m2) with m1 +m2 = n.

The (in)equalities describing the locally closed subvarieties issmn (τ) can (in principle) be deduced
from the theory of trace identities. Remains to study the local structure of the quotient variety
issmn near ξ and the description of the fibers π−1(ξ).

Both problems can be tackled by studying the local quiver setting (Qξ, αξ) corresponding to
ξ which describes the GL(αξ) = Stab(Mξ)-module structure of the normal space to the orbit of
Mξ. If ξ is of representation type τ = (e1, d1; . . . ; ek, dk) then the local quiver Qξ has k-vertices
{v1, . . . , vk} corresponding the the k distinct simple components S1, . . . , Sk of Mξ and the number
of arrows (resp. loops) from vi to vj (resp. in vi) are given by the dimensions

dimCExt
1(Si, Sj) resp. dimCExt

1(Si, Si)

and these numbers can be computed from the dimensions of the simple components,8>><>>:
# ��������i��������j

aoo = (m− 1)didj

# ��������i
��

= (m− 1)d2
i + 1

Further, the local dimension vector αξ is given by the multiplicities (e1, . . . , ek). The étale local
structure of issmn in a neighborhood of ξ is the same as that of the quotient variety issαξ Qξ in a
neighborhood of 0. The local algebra of the latter is generated by traces along oriented cycles in
the quiver Qξ. A direct application is

Proposition 6.2 For m ≥ 2, ξ is a smooth point of issmn if and only if Mξ is a simple represen-
tation, unless (m,n) = (2, 2) in which case iss2

2 ' C5 is a smooth variety.

Proof. If ξ is of representation type (1, n), the local quiver setting (Qξ, αξ) is

��������1

d

��

where d = (m − 1)n2 + 1, whence the local algebra is the formal power series ring in d variables
and so issmn is smooth in ξ. Because the singularities form a Zariski closed subvariety of issmn , the
result follows if we prove that all points ξ lying in sub-generic strata, say of type (1,m1; 1,m2) are
singular. In this case the local quiver setting is equal to

��������1 ��������1

a

''

a

ggl1 ;; l2cc
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where a = (m − 1)m1m2 and li = (m − 1)m2
i + 1. Let us denote the arrows from v1 to v2 by

x1, . . . , xa and those from v2 to v1 by y1, . . . , ya. If (m,n) 6= (2, 2) then a ≥ 2, but then we have
traces along cycles

{xiyj | 1 ≤ i, j ≤ a}
that is, the polynomial ring of invariants is the polynomial algebra in l1 + l2 variables (the traces
of the loops) over the homogeneous coordinate ring of the Segre embedding

Pa−1 × Pa−1 ⊂ - Pa
2−1

which has a singularity at the top (for example we have equations of the form (x1y2)(x2y1) −
(x1y1)(x2y2)). Thus, the local algebra of issmn cannot be a formal power series ring in ξ whence
issmn is singular in ξ. We have seen in section 1.2 that for the exceptional case iss2

2 ' C5. �

To determine the fibers of the quotient map Mm
n

π-- issmn we have to study the nullcone of
this local quiver setting, Nullαξ Qξ. Observe that the quiver Qξ has loops in every vertex and
arrows connecting each ordered pair of vertices, whence we do not have to worry about potential
corner-type removals. Denote

P
ei = z ≤ n and let Cz be the set of all s = (s1, . . . , sz) ∈ Qz which

are disjoint unions of strings of the form

{pi, pi + 1, . . . , pi + ki}

where li ∈ N, all intermediate numbers pi + j with j ≤ ki do occur as components in s with
multiplicity aij ≥ 1 and pi satisfies the balance-condition

kiX
j=0

aij(pi + j) = 0

for every string in s. For fixed s ∈ Cz we can distribute the components si over the vertices
of Qξ (ej of them to vertex vj) in all possible ways modulo the action of the small Weyl group
Se1 × . . . Sek

⊂ - Sz. That is, we can rearrange the si’s belonging to a fixed vertex such that they
are in decreasing order. This gives us the list Sαξ or Sτ of all corner-types in Nullαξ Qξ. For each
s ∈ Sαξ we then construct the corner-quiver setting

(Qξ s, αξ s, θξ s)

and study the Hesselink strata Ss which actually do appear, which is equivalent to verifying whether
there are θξ s-semistable representations in repαξ s

Qξ s. We have given a purely combinatorial

way to settle this (in general quite hard) problem of optimal corner-types.
That is, we can determine which Hesselink strata Ss actually occur in π−1(ξ) ' Nullαxi Qξ.

The GL(αξ s)-orbits in the stratum Ss are in natural one-to-one correspondence with the orbits
under the associated parabolic subgroup Ps acting on the semistable representations

Us = π−1
rep

ss
αξ s

(Qξ s, θξ s)
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type τ (Qτ , ατ )

2a (1, 2) ��������1

4m − 3

��

2b (1, 1; 1, 1) ��������1 ��������1

m − 1

''

m − 1

ggm ;; mcc

2c (2, 1) ��������2

m

��

Figure 6.5: Local quiver settings for 2× 2 matrices.

and there is a natural projection morphism from the corresponding orbit-space

Us/Ps
ps-- Mss

αξ s
(Qξ s, θξ s)

to the moduli space of θξ s-semistable representations. The remaining (hard) problem in the clas-
sification of m-tuples of n × n matrices under simultaneous conjugation is the description of the
fibers of this projection map ps.

Example 6.14 (m-tuples of 2× 2 matrices) There are three different representation types τ of
2-dimensional representations of C〈x1, . . . , xm〉 with corresponding local quiver settings (Qτ , ατ )
given in figure 6.5 The defining (in)equalities of the strata issm2 (τ) are given by k×k minors (with
k ≤ 4 of the symmetric m×m matrix264 tr(x

0
1x

0
1) . . . tr(x0

1x
0
m)

...
...

tr(x0
mx

0
1) . . . tr(x0

mx
0
m)

375
where x0

i = xi − 1
2
tr(xi) is the generic trace zero matrix. These facts follow from the description

of the trace algebras Tm2 as polynomial algebras over the generic Clifford algebras of rank ≤ 4
(determined by the above symmetric matrix) and the classical matrix decomposition of Clifford
algebras over C. For more details we refer to [53].
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s Bs, Cs (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
2
,− 1

2
)

−1

1

1��������

0��������

0��������

1��������
m − 1

���

??���

Pm−2

(− 1
2
, 1

2
)

−1

1

0��������

1��������

1��������

0��������
m − 1

??

��?
???

Pm−2

(0, 0)

0

0

1��������

1��������

P0

Figure 6.6: Moduli spaces for type 2b.

To study the fibers Mm
2

-- issm2 we need to investigate the different Hesselink strata in the
nullcones of these local quiver settings. Type 2a has just one potential corner type corresponding
to s = (0) ∈ S1 and with corresponding corner-quiver setting

0

��������1

which obviously has P0 (one point) as corresponding moduli (and orbit) space. This corresponds
to the fact that for ξ ∈ issm2 (1, 2), Mξ is simple and hence the fiber π−1(ξ) consists of the closed
orbit O(Mξ).

For type 2b the list of figure 6.6 gives the potential corner-types Cs together with their associated
corner-quiver settings and moduli spaces (note that as Bs = Cs in all cases, these moduli spaces
describe the full fiber) That is, for ξ ∈ issm2 (1, 1; 1, 1), the fiber π−1(ξ) consists of the unique closed
orbit O(Mξ) (corresponding to the P0) and two families Pm−2 of non-closed orbits. Observe that
in the special case m = 2 we recover the two non-closed orbits found in section 1.2.

Finally, for type 2c, the fibers are isomorphic to the nullcones of m-tuples of 2× 2 matrices. We
have the following list of corner-types, corner-quiver settings and moduli spaces. Again, as Bs = Cs
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in all cases, these moduli spaces describe the full fiber.

s Bs, Cs (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
2
,− 1

2
)

−1 1

1�������� 0��������m // Pm−1

(0, 0)

0

2�������� P0

whence the fiber π−1(ξ) consists of the closed orbit, together wit a Pm−1-family of non-closed orbits.
Again, in the special case m = 2, we recover the P1-family found in section 1.2.

Example 6.15 (m-tuples of 3× 3 matrices) There are 5 different representation-types for 3-
dimensional representations. Their associated local quiver settings are given in figure 6.7 For each
of these types we can perform an analysis of the nullcones as before. We leave the details to the
interested reader and mention only the end-result

• For type 3a the fiber is one closed orbit.

• For type 3b the fiber consists of the closed orbit together with two P2m−3-families of non-closed
orbits.

• For type 3c the fiber consists of the closed orbit together with twelve Pm−2 × Pm−2-families
and one Pm−2-family of non-closed orbits.

• For type 3d the fiber consists of the closed orbit together with four Pm−1×Pm−2-families, one
Pm−2 × Pm−2-family, two Pm−2-families, one Pm−1-family and two M -families of non-closed
orbits determined by moduli spaces of quivers, where M is the moduli space of the following
quiver setting

−1 2

��������2 ��������1m − 1 //

together with some additional orbits coming from the projection maps ps.

• For type 3e we have to study the nullcone of m-tuples of 3 × 3 matrices, which can be done
as in the case of couples but for m ≥ 3 the two extra strata do occur.

We see that in this case the only representation-types where the fiber is not fully determined by
moduli spaces of quivers are 3d and 3e.
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type τ (Qτ , ατ )

3a (1, 3) ��������1

9m − 8

��

3b (1, 2; 1, 1) ��������1 ��������1

2m − 2

''

2m − 2

gg4m − 3 ;; mcc

3c (1, 1; 1, 1; 1, 1) ��������1 ��������1

��������1

m − 1

''

m − 1

gg

m − 1

66

m − 1

vv

m − 1

��

m − 1

QQ

m

MM

m

QQ

m

��

3d (2, 1; 1, 1) ��������2 ��������1

m − 1

''

m − 1

ggm ;; mcc

3e (3, 1) ��������3

m

��

Figure 6.7: Local quiver settings for 3× 3 matrices.
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6.6 Representation fibers

Let A be a Cayley-Hamilton algebra of degree n and consider the algebraic quotient map

trepn A
π-- trissn A

from the variety of n-dimensional trace preserving representations to the variety classifying iso-
morphism classes of trace preserving n-dimensional semi-simple representations. Assume ξ ∈
Smtr A ⊂ - trissn A. That is, the representation variety trepn A is smooth along the GLn-orbit
of Mξ where Mξ is the semi-simple representation determined by ξ ∈ trissn A. We have seen that
the local structure of A and trepn A near ξ is fully determined by a local marked quiver setting
(Q•ξ , αξ). That is, we have a GLn-isomorphism between the fiber of the quotient map, that is, the
n-dimensional trace preserving representation degenerating to Mξ

π−1(ξ) ' GLn ×GL(αξ) Nullαξ Qξ

and the nullcone of the marked quiver-setting. In this section we will apply the results on nullcones
to the study of these representation fibers π−1(ξ).

Observe that all the facts on nullcones of quivers extend verbatim to marked quivers Q• using
the underlying quiver Q with the proviso that we drop all loops in vertices with vertex-dimension
1 which get a marking in Q•. This is clear as nilpotent quiver representations obviously have zero
trace along each oriented cycle, in particular in each loop.

The examples given before illustrate that a complete description of the nullcone is rather cumber-
some. For this reason we restrict here to the determination of the number of irreducible components
and their dimensions in the representation fibers. Modulo the GLn-isomorphism above this study
amounts to describing the irreducible components of Nullαξ Qξ which are determined by the maxi-
mal corner-types Cs, that is such that the set of weights in Cs is maximal among subsets of παxi Qξ
(and hence ‖ s ‖ is maximal among Sαξ Qξ).

To illustrate our strategy, consider the case of curve orders. In section 5.4 we proved that if
A is a Cayley-Hamilton order of degree n over an affine curve X = trissn A and if ξ ∈ Smn A,
then the local quiver setting (Q,α) is determined by an oriented cycle Q on k vertices with k ≤ n
being the number of distinct simple components of Mξ, the dimension vector α = (1, . . . , 1) as in
figure 6.8 and an unordered partition p = (d1, . . . , dk) having precisely k parts such that

P
i di = n,

determining the dimensions of the simple components of Mξ. Fixing a cyclic ordering of the k-
vertices {v1, . . . , vk} we have that the set of weights of the maximal torus Tk = C∗×. . .×C∗ = GL(α)
occurring in repα Q is the set

πα Q = {πk1, π12, π23, . . . , πk−1k}

Denote K =
Pk−1
i=0 i = k(k−1)

2
and consider the one string vector

s = ( . . . , k − 2− K

k
, k − 1− K

k
,−K

k|{z}
i

, 1− K

k
, 2− K

k
, . . . )
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1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

%%

...

Figure 6.8: Local quiver settings for curve orders.

then s is balanced and vertex-dominant, s ∈ Sα Q and πs Q = Π. To check whether the corre-
sponding Hesselink strata in Nullα Q is nonempty we have to consider the associated quiver-setting
(Qs, αs, θs) which is

−K −K + k −K + 2k −K + k2 − 2k −K + k2 − k

vi vi+1 vi+2 vi−2 vi−1

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .// // // // //

It is well known and easy to verify that repαs
Qs has an open orbit with representative all ar-

rows equal to 1. For this representation all proper subrepresentations have dimension vector
β = (0, . . . , 0, 1, . . . , 1) and hence θs(β) > 0. That is, the representation is θs-stable and hence
the corresponding Hesselink stratum Ss 6= ∅. Finally, because the dimension of repαs

Qs is k − 1

we have that the dimension of this component in the representation fiber π−1(x) is equal to

dim GLn − dim GL(α) + dim repαs
Qs = n2 − k + k − 1 = n2 − 1

which completes the proof of the following

Theorem 6.10 Let A be a Cayley-Hamilton order of degree n over an affine curve X such that A
is smooth in ξ ∈ X. Then, the representation fiber π−1(ξ) has exactly k irreducible components of
dimension n2 − 1, each the closure of one orbit. In particular, if A is Cayley-smooth over X, then
the quotient map

trepn A
π-- trissn A = X

is flat, that is, all fibers have the same dimension n2 − 1.
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1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//

??�����

OO

OO

__?????

oo

//

oo

OO

""

zz

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

...

Figure 6.9: Local quiver settings for surface orders.

For Cayley-Hamilton orders over surfaces, the situation is slightly more complicated. From
section 5.4 we recall that if A is a Cayley-Hamilton order of degree n over an affine surface S =
trissn A and if A is smooth in ξ ∈ X, then the local structure of A is determined by a quiver
setting (Q,α) where α = (1, . . . , 1) and Q is a two-circuit quiver on k + l + m ≤ n vertices,
corresponding to the distinct simple components of Mξ as in figure 6.9 and an unordered partition
p = (d1, . . . , dk+l+m) of n with k+ l+m non-zero parts determined by the dimensions of the simple
components of Mξ. With the indicated ordering of the vertices we have that

πα Q = {πi i+1 |

8><>:
1 ≤ i ≤ k − 1

k + 1 ≤ i ≤ k + l − 1

k + l + 1 ≤ i ≤ k + l +m− 1

}

∪ {πk k+l+1, πk+l k+l+1, πk+l+m 1, πk+l+m k+1}

As the weights of a corner cannot contain all weights of an oriented cycle in Q we have to consider
the following two types of potential corner-weights Π of maximal cardinality

• (outer type) : Π = πα Q− {πa, πb} where a is an edge in the interval [v1, . . . , vk] and b is an
edge in the interval [vk+1, . . . , vk+l].

• (inner type) : Π = πα Q− {πc} where c is an edge in the interval [vk+l+1, vk+l+m].
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Qs1
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1(/).*-+,

1(/).*-+,
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OO

OO
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k+l

k+l+1

k+l+m

Qs1

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//
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2
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k+l

k+l+1

k+l+m

Figure 6.10: Border quiver settings.

There are 2 + (k − 1)(l − 1) different subsets Π of outer type, each occurring as the set of weights
of a corner Cs, that is Π = πs Q for some s ∈ Sα Q. The two exceptional cases correspond to(

Π1 = πα Q− {πk+l+m 1, πk+l k+l+1}
Π2 = πα Q− {πk+l+m k+1, πk k+l+1}

which are of the form πsi Q with associated border quiver-setting (Qsi , αsi , θsi) where αsi =
(1, . . . , 1), Qsi are the full line subquivers of Q given in figure 6.10 with starting point v1 (resp.
vk+1). The corresponding si ∈ Sα Q is a single string with minimal entry

−
Pk+l+m−1
i=0 i

k + l +m
= −k + l +m− 1

2
at place

(
1

k + 1

and going with increments equal to one along the unique path. Again, one verifies that repαs
Qs

has a unique open and θs-stable orbit, whence these Hesselink strata do occur and the border Bs
is the full corner Cs. The corresponding irreducible component in π−1(ξ) has therefore dimension
equal to n2− 1 and is the closure of a unique orbit. The remaining (k− 1)(l− 1) subsets Π of outer
type are of the form

Πij = πα Q− {πi i+1, πj j+1}
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with 1 ≤ i ≤ k − 1 and k + 1 ≤ j ≤ k + l− 1. We will see in a moment that they are again of type
πs Q for some s ∈ Sα Q with associated border quiver-setting (Qs, αs, θs) where αs = (1, . . . , 1)
and Qs is the full subquiver of Q

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

i+1

i

j+1

j

//

??�������

OO

OO

__???????

oo

//

oo

OO��

  

yy

��

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

If we denote with Al the directed line quiver on l+ 1 vertices, then Qs can be decomposes into full
line subquivers

(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,

(/).*-+,
(/).*-+,

Aa
OOOOOO

Ab
OOOOOO

Ab oooooo

Ac
Ad oooooo
Ad

OOOOOO

Ae
OOOOOO

but then we consider the one string s ∈ Sα Q with minimal entry equal to − x
k+l+m

where with
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notations as above

x =

aX
i=1

i+ 2

bX
i=1

(a+ i) +

cX
i=1

(a+ b+ i)

+ 2

dX
i=1

(a+ b+ c+ i) +

eX
i=1

(a+ b+ c+ d+ i)

where the components of s are given to the relevant vertex-indices. Again, there is a unique open
orbit in repαs

Qs which is a θs-stable representation and the border Bs coincides with the corner

Cs. That is, the corresponding Hesselink stratum occurs and the irreducible component of π−1(ξ)
it determines had dimension equal to

dim GLn − dim GL(α) + dim repαs
Qs = n2 − (k + l +m) + (k + l +m− 1)

= n2 − 1

There are m− 1 different subsets Πu of inner type, where for k + l + 1 ≤ u < k + l +m we define
Πu = πα Q− {πu u+1}, that is dropping an edge in the middle

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,
1(/).*-+,

//

??�������

OO

OO

__???????

oo

//

oo

OO

OO

vu

vu+1

��

}}

1

kk-1

2

k+1

k+l

k+l+1

k+l+m
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First assume that k = l. In this case we can walk through the quiver (with notations as before)

(/).*-+, (/).*-+, (/).*-+, (/).*-+,Aa

Ab

Ab

Ac

and hence the full subquiver of Q is part of a corner quiver-setting (Qs, αs, θs) where α = (1, . . . , 1)
and where s has as its minimal entry − x

k+l+m
where

x =

aX
i=1

i+ 2

bX
i=1

(a+ i) +

cX
i=1

(a+ b+ i)

In this case we see that repαs
Qs has θs-stable representations, in fact, there is a P1-family of such

orbits. The corresponding Hesselink stratum is nonempty and the irreducible component of π−1(ξ)
determined by it has dimension

dim GLn − dim GL(α) + dim repαs
Qs = n2 − (k + l +m) + (k + l +m) = n2

If l < k, then Πu = πs Q for some s ∈ Sα Q but this time the border quiver-setting (Qs, αs, θs)
is determined by αs = (1, . . . , 1) and Qs the full subquiver of Q by also dropping the arrow
corresponding to πk+l+1 k+l, that is

(/).*-+, (/).*-+,
(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

Aa

Ab oooooooo
Ab

OOOOOOOO

AcOOO
AdOOO
��

vu+1 vk+l+m

vk+l

vk+l+1

vu

If Qs is this quiver (without the dashed arrow) then Bs = repαs
Qs and it contains an open orbit

of a θs-stable representation. Observe that s is determines as the one string vector with minimal
entry − x

k+l+m
where

x =

aX
i=1

i+ 2

bX
i=1

(a+ i) +

cX
i=1

(a+ b+ i) +

dX
i=1

(a+ b+ c+ i)
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However, in this case Bs 6= Cs and we can identify Cs with repαs
Q′s where Q′s is Qs together with

the dashed arrow. There is an A1-family of orbits in Cs mapping to the θs-stable representation.
In particular, the Hesselink stratum exists and the corresponding irreducible component in π−1(ξ)
has dimension equal to

dim GLn − dim GL(α) + dim Cs = n2 − (k + l +m) + (k + l +m) = n2.

This concludes the proof of the description of the representation fibers of smooth orders over
surfaces, summarized in the following result.

Theorem 6.11 Let A be a Cayley-Hamilton order of degree n over an affine surface X = trissn A
and assume that A is smooth in ξ ∈ X of local type (Aklm, α). Then, the representation fiber π−1(ξ)
has exactly 2 + (k − 1)(l − 1) + (m − 1) irreducible components of which 2 + (k − 1)(l − 1) are of
dimension n2 − 1 and are closure of one orbit and the remaining m − 1 have dimension n2 and
are closures of a one-dimensional family of orbits. In particular, if A is Cayley-smooth, then the
algebraic quotient map

trepn A
π-- trissn A = X

is flat if and only if all local quiver settings of A have quiver Aklm with m = 1.

The final example will determine the fibers over smooth points in the quotient varieties (or
moduli spaces) provided the local quiver is symmetric. This computation is due to Geert Van de
Weyer.

Example 6.16 (Smooth symmetric settings) Recall from theorem 5.22 that a smooth sym-
metric quiver setting (sss) if and only if it is a tree constructed as a connected sum of three different
types of quivers:

• '&%$ !"#m
'' ��������nhh

• ��������1

m
#+ ��������n

m

ck , with m ≤ n

• ��������1
(( '&%$ !"#mgg

'' ��������nhh

• '&%$ !"#m
'' ��������2hh

'' ��������ngg

where the connected sum is taken in the vertex with dimension 1. We call the vertices where the
connected sum is taken connecting vertices and depict them by a square vertex �. We want to
study the nullcone of connected sums composed of more than one of these quivers so we will focus
on instances of these four quivers having at least one vertex with dimension 1:
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I ��������1

m
#+ ��������n

m

ck , with m ≤ n

II(1) ��������1
(( '&%$ !"#mgg

'' ��������1hh

II(2) ��������1
(( '&%$ !"#mgg

'' ��������nhh

We will call the quiver settings of type I and II forming an sss (Q,α) the terms of Q.

claim 1 : Let (Q,α) be an sss and Qµ a type quiver for Q, then any string quiver of Qµ is either
a connected sum of string quivers of type quivers for terms of Q or a string quiver of type quivers
of '&%$ !"#m

""��������nbb ,��������n .

Consider a string quiver Qµ(i) of Qµ. By definition vertices in a type quiver are only connected
if they originate from the same term in Q. This means we may divide the string quiver Qµ(i)

into segments, each segment either a string quiver of a type quiver of a term of Q (if it contains
the connecting vertex) or a level quiver of a type quiver of the quivers listed above (if it does not
contain the connecting vertex).

The only vertices these segments may have in common are instances of the connecting vertices.
Now note that there is only one instance of each connecting vertex in Qµ because the dimension of
each connecting vertex is 1. Moreover, two segments cannot have more than one connecting vertex
in common as this would mean that in the original quiver there is a cycle, proving the claim.

Hence, constructing a type quiver for an sss boils down to patching together string quivers of
its terms. These string quivers are subquivers of the following two quivers:

I:
1

�%
BBBB�������� 9A|||| ��������

II:
1

  AA
A

. . . ��������
!!C

CC ��������
!!C

CC �������� >>}}}
!!D

DD ��������
!!D

DD ��������
!!C

CC ��������
!!C

CC �������� . . .

. . . �������� =={{{ �������� =={{{ �������� ==zzz �������� ==zzz �������� =={{{ �������� =={{{ �������� . . .

Observe that the second quiver has two components. So a string quiver will either be a tree
(possible from all components) or a quiver containing a square. We will distinguish two different
types of squares; S1 corresponding to a term of type II(1) and S2 corresponding to a term of type
II(2).
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S1 S2

1

!!BB
B�������� ==|||
!!BB

B ��������
1

==|||

1

  AA
A

. . .
$$JJ

J �������� >>}}}
""E

EE ��������
""E

EE . . .�������� <<zzz �������� <<yyy �������� ::ttt

These squares are the only polygons that can appear in our type quiver. Indeed, consider a possible
polygon

vp
...

��������

��%
%%
%%
%%
%%
%%
%%
%%
%%

vi ��������
AA

vj ��������
AA����

��;
;;

;

vk
...

��������
��vq ��������
��;

;;
;

vr ��������
This polygon corresponds to the following subquiver of Q:

vi oo // vp aa
!!CC

C
vj
}}
=={{{
aa
!!CC

C vr

vk oo // vq
}}
=={{{

But Q is a tree, so this is only a subquiver if it collapses to vi oo // vj oo // vk .

claim 2 : Let (Q,α) be an sss and Qµ a type quiver containing (connected) squares. If Qµ
determines a non-empty Hesselink stratum then

(i) the 0-axis in Qµ lies between the axes containing the outer vertices of the squares of type S1;

(ii) squares of type S1 are connected through paths of maximum length 2;

(iii) squares of type S1 that are connected through a path of length 2 are connected to other quivers
in top and bottom vertex (and hence originate from type II(1) terms that are connected to
other terms in both their connecting vertices);

(iv) the string µ(i) containing squares of type S1 connected through a path of length two equals
(. . . ,−2,−1, 0, 1, 2, . . . ).
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(v) for a square of type S2:

µi

��������1

""F
FF

. . .
%%JJ

J �������� <<xxx
$$I

II ��������
""E

EE . . .�������� <<yyy �������� ::uuu �������� 99ttt

with p vertices on its left branch and q vertices on its right branch we have

− q
2
≤ µi ≤

p

2

Let us call the string quiver of Qµ containing the squares Qµ(i) and let θ ∈ µ(i)N0 be the character
determining this string quiver. Consider the subrepresentation

θi θi+1 θi+2

��������•
''OOOOO

��������0

99ssss

%%KKKK ��������•
��������•

77ppppp

This subrepresentation has character θ(αµ(i))−αµ(i)(v)θi ≥ 0 where v is the vertex which dimension
we reduced to 0, so θi ≤ 0. But then the subrepresentation

θi θi+1 θi+2

��������0

''NNNNN
��������0

99ssss

%%KKKK ��������•
��������0

77ppppp

gives θi+2 ≥ 0, whence (i). Note that the left vertex of one square can never lie on an axis right
of the right vertex of another square. At most it can lie on the same axis as the right vertex, in
which case this axis is the 0-axis and the squares are connected by a path of length 2. In order to
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prove (iii) look at the subrepresentation

−2 −1 0 1 2

��������0

  B
BB��������0

>>|||

!!B
BB

��������•
��������•
==|||

��������•
=={{{

��������•
$$HH

HH

::vvvv

��������•
99rrrr

%%LLLL ��������•
��������•

::vvvv

This subrepresentation has negative character and hence the original representation was not
semistable. Finally, for (v) we look at the subrepresentation obtained by reducing the dimension
of all dotted vertices by 1:

µi

��������1

""E
EE

. . .
##G

GG
��������•
<<yyy

""F
FF

��������
  @

@@ . . .

��������•
;;www ��������•

>>}}} ��������•
<<yyy �������� ;;www

having character −((p+ 1)µi −
Pp
j=1 j) ≥ 0. So µi ≤ p

2
. Mirroring this argument yields the other

inequality µi ≥ − q2 .

claim 3 : Let (Q,α) be an sss and Qµ be a type quiver determining a non-empty stratum and
let Qµ(i) be a string quiver determined by a segment µ(i) not containing 0. Then the only possible
dimension vectors for squares of type S1 in Qµ(i) are those of figure 6.11.

Top and bottom vertex of the square are constructed from the connecting vertices so can only be
one-dimensional. Left and right vertex of the square are constructed from a vertex of dimension n.
Claim 2 asserts that the leftmost vertex lies on a negative axis while the rightmost vertex lies on a
positive axis. If the left dimension is > 2 then the representation splits

��������1

��?
??

?

V1
��������2

??����

��?
???

��������
��������1

??����

⊕

V2
��������r
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α1 =

0@ 1
1 1

1

1A
α2 =

0@ 1
1 2

1

1A
α3 =

0@ 1
2 2

1

1A
Figure 6.11: Possible dimension vectors for squares.

with r = m− 2. By semistability the character of V2 must be zero. A similar argument applies to
the right vertex.

claim 4 : Let µ be a type determining a non-empty stratum.

(i) When a vertex (v, i) in Qµ determined by a term of type II(1) has α(v, i) > 2 then µi = 0.

(ii) When a vertex (v, i) in Qµ determined by a term of type I with m arrows has α(v, i) > m
then µi = 0.

Suppose we have a vertex v with dimension αµ(i)(v) > 2, then the number of paths running through
this vertex is at most 2: would there be at least three paths arriving or departing in the vertex, it
would be a connecting vertex which is not possible because of its dimension. Are there two paths
arriving and at least one path departing, it must be a central vertex of a type II(2) term. But
then the only possible subtrees generated from type II(1) terms with vertices of dimension at least
three are (modulo reversing all arrows)

θi

1

""D
DD ��������n

""D
DD

1

θi

1

""D
DD ��������n

1

<<zzz

θi

1

""D
DD ��������n

In the last tree there are no other arrows from the vertex with dimension n. For each of these trees
we have a subrepresentation

θi

��������1
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whence θi ≥ 0. But if θi > 0, reducing the dimension of the vertex with dimension ≥ 3 gives a
subrepresentation with negative character, so θi = 0. The second part is proved similarly.

Summarizing these results we obtain the description of the nullcone of a smooth symmetric quiver-
setting.

Let (Q,α) be an sss and µ a type determining a non-empty stratum in nullα Q. Let Qµ be the
corresponding type quiver and αµ the corresponding dimension vector, then

(i) every connected component Qµ(i) of Qµ is a connected sum of string quivers of either terms
of Q or quivers generated from terms of Q by removing the connecting vertex. The connected
sum is taken in the instances of the connecting vertices and results in a connected sum of trees
and quivers of the form

µ(i)j

''NN
NN

. . .
%%

�������� 77pppp
''NNNN ��������

""
. . .�������� << �������� 77pppp �������� 99

(ii) For a square of type S1 we have µ(i)j−1 ≤ 0 ≤ µ(i)j+1. Moreover, such squares cannot be
connected by paths longer than two arrows and can only be connected by paths of this length
if µ(i)j+1 = 0.

(iii) For vertices (v, j) constructed from type II(1) terms we have αµi(v, j) ≤ 2 when µi 6= 0.

(iv) For a vertex (v, j) constructed from a type I term with m arrows we have αµi(v, j) ≤ m when
µi 6= 0.

6.7 Brauer-Severi varieties

In this section we will reconsider the Brauer-Severi scheme BSn(A) of an algebra A. In the generic
case, that is when A is the free algebra C〈x1, . . . , xm〉, we will show that it is a moduli space of a
certain quiver situation. This then allows us to give the étale local description of BSn(A) whenever
A is a Cayley-smooth algebra. Again, this local description will be a moduli space.

The generic Brauer-Severi scheme of degree n for m-generators, BSmn (gen) is defined as fol-
lows. Consider the free algebra on m generators C〈x1, . . . , xm〉 and consider the GLn-action on
repn C〈x1, . . . , xm〉 × Cn = Mm

n ⊕ Cn given by

g.(A1, . . . , Am, v) = (gA1g
−1, . . . , gAmg

−1, gv)

and consider the open subset Brauers(gen) consisting of those points (A1, . . . , Am, v) where v is
a cyclic vector, that is, there is no proper subspace of Cn containing v and invariant under left
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multiplication by the matrices Ai. The GLn-stabilizer is trivial in every point of Brauers(gen)
whence we can define the orbit space

BSmn (gen) = Brauers(gen)/GLn

Consider the following quiver situation

��������1 ��������n//

m

��

on two vertices {v1, v2} such that there are m loops in v2 and consider the dimension vector
α = (1, n). Then, clearly

repα Q = Cn ⊕Mm
n ' repn C〈x1, . . . , xm〉 ⊕ Cn

where the isomorphism is as GLn-module. On repα Q we consider the action of the larger group
GL(α) = C∗ ×GLn acting as

(λ, g).(v,A1, . . . , Am) = (gvλ−1, gA1g
−1, . . . , gAmg

−1)

Consider the character χθ where θ = (−n, 1), then θ(α) = 0 and consider the open subset of
θ-semistable representations in repα Q.

Lemma 6.3 The following are equivalent for V = (v,A1, . . . , Am) ∈ repα Q

1. V is θ-semistable.

2. V is θ-stable.

3. V ∈ Brauers(gen).

Consequently,
Mss
α (Q,α) ' BSmn (gen)

Proof. 1. ⇒ 2. : If V is θ-semistable it must contain a largest θ-stable subrepresentation W (the
first term in the Jordan-Hölder filtration for θ-semistables). In particular, if the dimension vector
of W is β = (a, b) < (1, n), then θ(β) = 0 which is impossible unless β = α whence W = V is
θ-stable.

2. ⇒ 3. : Observe that v 6= 0, for otherwise V would contain a subrepresentation of dimension
vector β = (1, 0) but θ(β) = −n is impossible. Assume that v is non-cyclic and let U ⊂ - Cn be
a proper subspace say of dimension l < n containing v and stable under left multiplication by the
Ai, then V has a subrepresentation of dimension vector β′ = (1, l) and again θ(β′) = l − n < 0 is
impossible.
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3. ⇒ 1. : By cyclicity of v, the only proper subrepresentations of V have dimension vector
β = (0, l) for some 0 < l ≤ n, but they satisfy θ(β) > 0, whence V is θ-(semi)stable.

As for the last statement, recall that geometric points of Mss
α (Q,α) classify isomorphism classes

of direct sums of θ-stable representations. As there are no proper θ-stable subrepresentations,
Mss
α (Q,α) classifies the GL(α)-orbits in Brauers(gen). Finally, as in chapter 1, there is a one-to-

one orbits between the GLn-orbits as described in the definition of the Brauer-Severi variety and
the GL(α)-orbits on repα Q. �

By definition, Mss
α (Q, θ) = proj ⊕∞n=0 C[repα Q]GL(α),χnθ and we can either use the results of

section 3 or the previous section to show that these semi-invariants f are generated by brackets,
that is,

f(V ) = det
ˆ
w1(A1, . . . , Am)v . . . wn(A1, . . . , Am)v

˜
where the wi are words in the noncommuting variables x1, . . . , xm. As in section I.3 we can restrict
these n-tuples of words {w1, . . . , wn} to sequences arising from multicolored Hilbert n-stairs. That
is, the lower triangular part of a square n× n array

1

n

1 n

this time filled with colored stones ��������i where 1 ≤ i ≤ m subject to the two coloring rules

• each row contains exactly one stone

• each column contains at most one stone of each color

The relevant sequences W (σ) = {1, w2, . . . , wn} of words are then constructed by placing the
identity element 1 at the top of the stair, and descend according to the rule
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• Every go-stone has a top word T which we may assume we have constructed before and a side
word S and they are related as indicated below

T

S

1

T

xiT

1

��������i

In a similar way to the argument in chapter 1 we can cover Mss
α (Q,α) = BSmn (gen) by open

sets determined by Hilbert stairs and find representatives of the orbits in σ-standard form, that is
replacing every i-colored stone in σ by a 1 at the same spot in Ai and fill the remaining spots in
the same column of Ai by zeroes

i

j

1

n

1 n

��������i

Ai =

1i

j

0

0

.

.

.

0

0

.

.

.

As this fixes (n − 1)n entries of the mn2 + n entries of V , one recovers the following result of M.
Van den Bergh [81]

Theorem 6.12 The generic Brauer-Severi variety BSmn (gen) of degree n in m generators is a

smooth variety which can be covered by affine open subsets each isomorphic to C(m−1)n2+n.

For an arbitrary affine C-algebra A, one defines the Brauer stable points to be the open subset
of repn A× Cn

Brauersn(A) = {(φ, v) ∈ repn A× Cn | φ(A)v = Cn}
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As Brauer stable points have trivial stabilizer in GLn all orbits are closed and we can define the
Brauer-Severi variety of A of degree n to be the orbit space

BSn(A) = Brauersn(A)/GLn

We claim that Quillen-smooth algebras have smooth Brauer-Severi varieties. Indeed, as the quotient
morphism

Brauersn(A) -- BSn(A)

is a principal GLn-fibration, the base is smooth whenever the total space is smooth. The total
space is an open subvariety of repnA× Cn which is smooth whenever A is Quillen-smooth.

Proposition 6.3 If A is Quillen-smooth, then for every n we have that the Brauer-Severi variety
of A at degree n is smooth.

Next, we bring in the approximation at level n. Observe that for every affine C-algebra A we
have a GLn-equivariant isomorphism

repn A ' trepn

Z
n

A

More generally, we can define for every Cayley-Hamilton algebra A of degree n the trace preserving
Brauer-Severi variety to be the orbit space of the Brauer stable points in trepn A×Cn. We denote
this variety with BStrn (A). Again, the same argument applies

Proposition 6.4 If A is Cayley-smooth of degree n , then the trace preserving Brauer-Severi va-
riety BStrn (A) is smooth.

We have seen that the moduli spaces are projective fiber bundles over the variety determined
by the invariants,

Mss
α (Q, θ) -- issα Q

Similarly, the (trace preserving) Brauer-Severi variety is a projective fiber bundle over the quotient
variety of repn A, that is, there is a proper map

BSn(A)
π-- issn A

and we would like to study the fibers of this map. Recall that when A is an order in a central simple
algebra of degree n, then the general fiber will be isomorphic to the projective space Pn−1 embedded
in a higher dimensional PN . Over non-Azumaya points we expect this Pn−1 to degenerate to more
complex projective varieties which we would like to describe. To perform this study we need to
control the étale local structure of the fiber bundle π in a neighborhood of ξ ∈ issn A. Again, it is
helpful to consider first the generic case, that is when A = C〈x1, . . . , xm〉 or Tmn . In this case, we
have seen that the following two fiber bundles are isomorphic

BSmn (gen) -- issn Tmn and Mss
α (Q, θ) -- issα Q
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where α = (1, n), θ = (−n, 1) and the quiver

��������1 ��������n//

m

��
has Euler form χQ =

»
1 −1
0 1−m

–
A semi-simple α-dimensional representation Vζ of Q has representation type

(1, 0)⊕ (0, d1)
⊕e1 ⊕ . . .⊕ (0, dk)

⊕ek with
X
i

diei = n

and hence corresponds uniquely to a point ξ ∈ issn Tmn of representation type τ =
(e1, d1; . . . ; ek, dk). The étale local structure of repα Q and of issα Q near ζ is determined by
the local quiver Qζ on k+1-vertices, say {v0, v1, . . . , vk} with dimension vector αζ = (1, e1, . . . , ek)
and where Qζ has the following local form for every triple (v0, vi, vj) as can be verified from the
Euler-form

(/).*-+,1

(/).*-+,ei

(/).*-+,ej

di

OOOOOOOOO

OOOOOOOOO

#+OOOOOOOOOOOOO

OOOOOOOOOOOOO

djooooooooo

ooooooooo

3;ooooooooooooo

ooooooooooooo

aij

CK

aji

��

aj

��

ai

@H

where aij = (m− 1)didj = aji and ai = (m− 1)d2
i + 1, aj = (m− 1)d2

j + 1. The dashed part of Qζ
is the same as the local quiver Qξ describing the étale local structure of issn Tmn near ξ. Hence,
we see that the fibration BSmn (gen) -- issn Tmn is étale isomorphic in a neighborhood of ξ to
the fibration of the moduli space

Mss
αζ

(Qζ , θζ) -- issαζ Qζ ' issαξ Qξ

in a neighborhood of the trivial representation and where θζ = (−n, d1, . . . , dk). Another application
of the Luna slice results gives the following
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Theorem 6.13 Let A be a Cayley-smooth algebra of degree n. Let ξ ∈ trissn A correspond to the
trace preserving n-dimensional semi-simple representation

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek
k

where the Si are distinct simple representations of dimension di and occurring with multiplicity ei.
Then, the projective fibration

BStrn (A)
π-- trissn A

is étale isomorphic in a neighborhood of ξ to the fibration of the moduli space

Mss
αζ

(Q•ζ , θζ) -- issαζ Q
•
ζ ' issαξ Q

•
ξ

in a neighborhood of the trivial representation. Here, Q•ξ is the local marked quiver describing the
étale local structure of trepn A near ξ, where Q•ζ is the extended marked quiver situation, which
locally for every triple (v0, vi, vj) has the following shape where the dashed region is the local marked
quiver Q•ξ describing ExttrA (Mξ,Mξ) and where αζ = (1, e1, . . . , ek) and θζ = (−n, d1, . . . , dk).

(/).*-+,1

(/).*-+,ei

(/).*-+,ej

di

OOOOOOOOO

OOOOOOOOO

#+OOOOOOOOOOOOO

OOOOOOOOOOOOO

djooooooooo

ooooooooo

3;ooooooooooooo

ooooooooooooo

aij

CK

aji

��

uj


�
•

mj

� 

ui

LT

•
mi

>F

6.8 Brauer-Severi fibers

In the foregoing section we have given a description of the generic Brauer-Severi variety BSmn (gen)
as a moduli space of quiver representation as well as a local description of the fibration

BSmn (gen)
ψ-- iss

m
n
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in an étale neighborhood of a point ξ ∈ issmn of representation type τ = (e1, d1; . . . ; ek, dk). We
proved that it is étale locally isomorphic to the fibration

Mss
αζ

(Qζ , θζ) -- issαζ Qζ

in a neighborhood of the trivial representation. That is, we can obtain the generic Brauer-Severi
fiber ψ−1(ξ) from the description of the nullcone Nullαζ Qζ provided we can keep track of θζ-
semistable representations. Let us briefly recall the description of the quiver-setting (Qζ , αζ , θζ).

• The quiver Qζ has k + 1 vertices {v0, v1, . . . , vk} such that there are di arrows from v0 to vi
for 1 ≤ i ≤ k. For 1 ≤ i, j ≤ k there are aij = (m− 1)didj + δij directed arrows from vi to vj .

• The dimension vector αζ = (1, e1, . . . , ek).

• The character θζ is determined by the integral k + 1-tuple (−n, d1, . . . , dk).

That is, for any triple (v0, vi, vj) of vertices, the full subquiver of Qζ on these three vertices has
the following form

1(/).*-+,

ei(/).*-+,

ej(/).*-+,

−n

di

dj

diooooooooo

ooooooooo

3;ooooooooooooo

ooooooooooooo

dj

OOOOOOOOO

OOOOOOOOO

#+OOOOOOOOOOOOO

OOOOOOOOOOOOO

aii

�	

ajj

U]

aij

��

aji

CK

Let E =
Pk
i=1 ei and T the usual (diagonal) maximal torus of dimension 1+E in GL(αζ) ⊂ - GLE

and let {π0, π1, . . . , πE} be the obvious basis for the weights of T .. As there are loops in every vi for
i ≥ 1 and there are arrows from vi to vj for all i, j ≥ 1 we see that the set of weights of repαζ

Qζ is

παζ Qζ = {πij = πj − πi | 0 ≤ i ≤ E, 1 ≤ j ≤ E}

The maximal sets πs Qζ for s ∈ Sαζ Qζ are of the form

πs Qζ
dfn
= πσ = {πij | i = 0 or σ(i) < σ(j)}
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for some fixed permutation σ ∈ SE of the last E entries. To begin, there can be no larger subset
as this would imply that for some 1 ≤ i, j ≤ E both πij and πji would belong to it which cannot
be the case for a subset πs′ Qζ . Next, πσ = πs Qζ where

s = (p, p+ σ(1), p+ σ(2), . . . , p+ σ(E)) where p = −E
2

If we now make s vertex-dominant, or equivalently if we only take a σ in the factor SE/(Se1 ×
Se2 × . . . × Sek ), then s belongs to Sαζ Qζ . For example, if E = 3 and σ = id ∈ S3, then the
corresponding border and corner regions for πs are

Cs = and Bs =

t tt
We have to show that the corresponding Hesselink stratum is non-empty in Nullαζ Qζ and that

it contains θζ-semistable representations. For s corresponding to a fixed σ ∈ SE the border quiver-
setting (Qs, αs, θs) is equal to

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .z0 +3 z1 +3 z2 +3 zE−1 +3 zE +3
−E −E + 2 −E + 4 E − 2 E

where the number of arrows zi are determined by(
z0 = pu if σ(1) ∈ Ivu

zi = auv if σ(i) ∈ Ivu and σ(i+ 1) ∈ Ivv

where we recall that Ivi is the interval of entries in [1, . . . , E] belonging to vertex vi. As all the
zi ≥ 1 it follows that repαs

Qs contains θs-stable representations, so the stratum in Nullαζ Qζ
determined by the corner-type Cs is non-empty. We can depict the Ls = T -action on the corner as
a representation space of the extended quiver-setting

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .z0 +3 z1 +3 z2 +3 zE +3

v02

�'

v0E

�$

v1E

�'

Translating representations of this extended quiver back to the original quiver-setting (Qζ , αζ) we
see that the corner Cs indeed contains θζ-semistable representations and hence that this stratum
in the nullcone determines an irreducible component in the Brauer-Severi fiber ψ(ξ) of the generic
Brauer-Severi variety.
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Theorem 6.14 Let ξ ∈ issmn be of representation type τ = (e1, d1; . . . ; ek, dk) and let E =
Pk
i=1 ei.

Then, the fiber π−1(ξ) of the Brauer-Severi fibration

Brauers(gen)

BSmn (gen)

??

π
-- iss

m
n

ψ

-

has exactly E!
e1!e2!...ek!

irreducible components, all of dimension

n+ (m− 1)
X
i<j

eiejdidj + (m− 1)
X
i

ei(ei − 1)

2
−

X
i

ei

Proof. In view of the foregoing remarks we only have to compute the dimension of the irreducible
components. For a corner type Cs as above we have that the corresponding irreducible component
in Nullαζ Qζ has dimension

dim GL(αζ)− dim Ps + dim Cs

and from the foregoing description of Cs as a quiver-representation space we see that

• dim Ps = 1 + ei(ei+1)
2

.

• dim Cs = n+
P
i
ei(ei−1)

2
((m− 1)d2

i + 1) +
P
i<j(m− 1)eiejdidj .

as we can identify Ps ' C∗ × Be1 × . . . × Bek where Be is the Borel subgroup of GLe. Moreover,
as ψ−1(ξ) is a Zariski open subset of

(C∗ ×GLn)×GL(αζ) Nullαζ Qζ

we see that the corresponding irreducible component of ψ−1(ξ) has dimension

1 + dim GLn − dim Ps + dim Cs

As the quotient morphism ψ−1(ξ) -- π−1(ξ) is surjective, we have that the Brauer-Severi fiber
π−1(ξ) has the same number of irreducible components of ψ−1(ξ). As the quotient

ψ−1(ξ) -- π−1(ξ)

is by Brauer-stability of all point a principal PGL(1, n)-fibration, substituting the obtained dimen-
sions finishes the proof. �
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In particular, we deduce that the Brauer-Severi fibration BSmn (gen)
π-- issmn is a flat morphism

if and only if (m,n) = (2, 2) in which case all Brauer-Severi fibers have dimension one.

As a final application, let us compute the Brauer-Severi fibers in a point ξ ∈ X = trissn A of the
smooth locus Smn A of a Cayley-Hamilton order of degree n which is of local quiver type (Q,α)
where α = (1, . . . , 1) and Q is the quiver

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

//

??���������

OO

__?????????

oo

  

qq

...

where the cycle has k vertices and p = (p1, . . . , pk) is an unordered partition of n having exactly k
parts. That is, A is a local Cayley-smooth order over a surface of type Ak−101. These are the only
types that can occur for smooth surface orders which are maximal orders and have a non-singular
ramification divisor. Observe also that in the description of nullcones, the extra loop will play
no role, so the discussion below also gives the Brauer-Severi fibers of smooth curve orders. The
Brauer-Severi fibration is étale locally isomorphic to the fibration

Mss
α′ (Q

′, θ′)
π-- issα Q = issα′ Q

′
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in a neighborhood of the trivial representation. Here, Q′ is the extended quiver by one vertex v0

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

//

??���������

OO
qq

__?????????

oo

  

p1cccccccccccccccc
cccccccccccccccc

-5ccccccccccccccccccccccc
ccccccccccccccccccccccc

p2lllllllllllll

lllllllllllll

19llllllllllllllllllll

llllllllllllllllllllp3rrrrrrrrr

rrrrrrrrr

5=rrrrrrrrrrrrrr

rrrrrrrrrrrrrr

pk−2
LLLLLLL

LLLLLLL

!)LLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLL

pk−1
RRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRR

%-RRRRRRRRRRRRR

RRRRRRRRRRRRR

pk
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

)1[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[[[[[[[[[[[[[[[[[[

the extended dimension vector is α′ = (1, 1, . . . , 1) and the character is determined by the integral
k + 1-tuple (−n, p1, p2, . . . , pk). The weights of the maximal torus T = GL(α′) of dimension k + 1
that occur in representations in the nullcone are

πα′ Q
′ = {π0 i, πi i+1, 1 ≤ i ≤ k}

Therefore, maximal corners Cs are associated to s ∈ Sα′ Q′ where

πs Q
′ = {π0 j , 1 ≤ j ≤ k} ∪ {πi i+1, πi+1 i+2, . . . , πi−2 i−1}

for some fixed i. For such a subset the corresponding s is a one string k+1-tuple having as minimal
value − k

2
at entry 0, − k

2
+1 at entry i, − k

2
+2 at entry i+1 and so on. To verify that this corner-

type occurs in Nullα′ Q
′ we have to consider the corresponding border quiver-setting (Q′s, α

′
s, θ
′
s)

which is

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .pi +3 // // // //
−k −k + 2 −k + 4 k − 2 k

which clearly has θ′s-semistable representations, in fact, the corresponding moduli space
Mss
α′s

(Q′s, θ
′
s) ' Pp1−1. In this case we have that Ls = Ps = GL(α′s) and therefore we can also

interpret the corner as an open subset of the representation space

Cs ⊂ - repα′s
Q”s
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where the embedding is Ps = GL(α′s)-equivariant and the extended quiver Q”s is

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .pi +3 // // //

pi+1

�'

pi−1

�$

Translating corner representations back to repα′ Q
′ we see that Cs contains θ′-semistable repre-

sentations, so will determine an irreducible component in the Brauer-Severi fiber π−1(ξ). Let us
calculate its dimension. The irreducible component Ns of Nullα′ Q

′ determined by the corner Cs
has dimension

dim GL(α′)− dim Ps + dim Cs = (k + 1)− (k + 1) +
X
i

pi + (k − 1)

= n+ k − 1

But then, the corresponding component in the Brauer-stable is an open subvariety of (C∗ ×
GLn)×GL(α′) Ns and therefore has dimension

dim C∗ ×GLn − dim GL(α′) + dim Ns = 1 + n2 − (k + 1) + n+ k − 1

= n2 + n− 1

But then, as the stabilizer subgroup of all Brauer-stable points is one dimensional in C∗×GLn the
corresponding irreducible component in the Brauer-Severi fiber π−1(ξ) has dimension n− 1. This
completes the proof of the

Theorem 6.15 Let A be a Cayley-Hamilton order of degree n over a surface X = trissn A and
let A be Cayley-smooth in ξ ∈ X of type Ak−101 and p as before. Then,the fiber of the Brauer-Severi
fibration

BStn(A) -- X

in ξ has exactly k irreducible components, each of dimension n− 1. In particular, if A is a Cayley-
smooth order over the surface X such that all local types are (Ak−101.p) for some k ≥ 1 and partition
p of n in having k-parts, then the Brauer-Severi fibration is a flat morphism.

In fact, one can give a nice geometric interpretation to the different components. Consider the
component corresponding to the corner Cs with notations as before. Consider the sequence of k−1
rational maps

Pn−1 -- Pn−1−pi−1 -- Pn−1−pi−1−pi−2 -- . . . -- Ppi−1
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defined by killing the right hand coordinates

[x1 : . . . : xn] 7→ [x1 : . . . : xn−pi−1 : 0 : . . . : 0| {z }
pi−1

] 7→ . . . 7→ [x1 : . . . : xpi : 0 : . . . : 0| {z }
n−pi

]

that is in the extended corner-quiver setting

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .pi +3 // // //

pi+1

�!

pi−1

��

we subsequently set all entries of the arrows from v0 to vi−j zero for j ≥ 1, the extreme projection
Pn−1 -- Ppi−1 corresponds to the projection Cs/Ps -- Bs/Ls = Mss

α′s
(Q′s, θ

′
s). Let Vi be

the subvariety in ×kj=1 Pn−1 be the closure of the graph of this sequence of rational maps. If we

label the coordinates in the k − j-th component Pn−1 as x(j) = [x1(j) : . . . : xn(j)], then the
multi-homogeneous equations defining Vi are(

xa(j) = 0 if a > pi + pi+1 + . . .+ pi+j
xa(j)xb(j − 1) = xb(j)xa(j − 1) if 1 ≤ a < b ≤ pi + . . .+ pi+l−1

One verifies that Vi is a smooth variety of dimension n−1. If we would have the patience to work out
the whole nullcone (restricting to the θ′-semistable representations) rather than just the irreducible
components, we would see that the Brauer-Severi fiber π−1(ξ) consists of the varieties V1, . . . , Vk
intersecting transversally. The reader is invited to compare our description of the Brauer-Severi
fibers with that of M. Artin [3] in the case of Cayley-smooth maximal curve orders.
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7 — Noncommutative Manifolds

By now we have developed enough machinery to study the representation varieties trepn A and
trissn A of a Cayley-smooth algebra A ∈ alg@n. In particular, we now understand the varieties

repn A = trepn

Z
n

A and issn A = trissn

Z
n

A

for the level n approximation
R
n
A of a Quillen-smooth algebra A, for all n. In this chapter we

begin to study noncommutative manifolds, that is, families (Xn)n of commutative varieties which
are locally controlled by Quillen-smooth algebras. Observe that for every C-algebra A, the direct
sum of representations induces sum maps

repn A× repm A - repn+m A and issn A× issm A - issn+m A

The characteristic feature of a family (Xn)n of varieties defining a noncommutative variety is that
they are connected by sum-maps

Xn ×Xm - Xn+m

and that these morphisms are locally of the form issn A× issm A - issn+m A for a Quillen-
smooth algebra A. An important class of examples of such noncommutative manifolds is given by
moduli spaces of quiver representations. In order to prove that they are indeed of the above type,
we have to recall results on semi-invariants of quiver representations and on universal localization.

Next, we turn to the study of noncommutative differential forms. The idea being that noncom-
mutative functions,vectorfields and differential forms on an algebra A induce ordinary functions,
vectorfields and differential forms on all of the representation varieties repn A and issn A. This
approach is especially important in case A is a symplectic algebra, for example the path algebra of a
double quiver. In this case we will define an infinite dimensional Lie algebra, the necklace Lie alge-
bra, which induces flows on all the varieties issn A providing a dynamic aspect to noncommutative
geometry.

7.1 Formal structure

Objects in noncommutative geometry@n are families of varieties (Xi)i which are locally controlled
by a set of noncommutative algebras A. That is, Xi is locally the quotient variety of a representa-
tion variety repn A for some n and some C-algebra A ∈ A. In section 2.7 we have seen that the
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representation varieties form a somewhat mysterious subclass of the category of all (affine) GLn-
varieties. For this reason it is important to equip them with additional structures that may make
them stand out among the GLn-varieties. In this section we define the formal structure on repre-
sentation varieties, extending in a natural way the formal structure introduced by M. Kapranov on
smooth affine varieties. Let us give an illustrative example of this structure.

Example 7.1 (Formal structure on Ad) Consider the affine space Ad with coordinate ring
C[x1, . . . , xd] and order the coordinate functions x1 < x2 < . . . < xd. Let fd be the free Lie
algebra on Cx1⊕ . . .⊕Cxd which has an ordered basis B = ∪k≥1Bk defined as follows. B1 is the or-
dered set {x1, . . . , xd} and B2 = {[xi, xj ] | j < i}, ordered such that B1 < B2 and [xi, xj ] < [xk, xl]
iff j < l or j = l and i < k. Having constructed the ordered sets Bl for l < k we define

Bk = {[t, w] | t = [u, v] ∈ Bl, w ∈ Bk−l such that v ≤ w < t for l < k}.

For l < k we let Bl < Bk and Bk is ordered by [t, w] < [t′.w′] iff w < w′ or w = w′ and t < t′.
It is well known that B is an ordered C-basis of the Lie algebra fd and that its enveloping algebra

U(fd) = C〈x1, . . . , xd〉

is the free associative algebra on the xi. We number the elements of ∪k≥2Bk according to the
order {b1, b2, . . .} and for bi ∈ Bk we define ord(bi) = k − 1 (the number of brackets needed to
define bi). Let Λ be the set of all functions with finite support λ : ∪k≥2Bk - N and define
ord(λ) =

P
λ(bi)ord(bi). Rephrasing the Poincaré-Birkhoff-Witt result for U(fd) we have that any

noncommutative polynomial p ∈ C〈x1, . . . , xd〉 can be written uniquely as a finite sum

p =
X
λ∈Λ

[[fλ]] Mλ

where [[fλ]] ∈ C[x1, . . . , xd] = S(B1) and Mλ =
Q
i b
λ(bi)
i . In particular, for every λ, µ, ν ∈ Λ, there

is a unique bilinear differential operator with polynomial coefficients

Cνλµ : C[x1, . . . , xd]⊗C C[x1, . . . , xd] - C[x1, . . . , xd]

defined by expressing the product [[f ]] Mλ. [[g]] Mµ in C〈x1, . . . , xd〉 uniquely as
P
ν∈Λ[[Cνλµ(f, g)]] Mν .

By associativity of C〈x1, . . . , xd〉 the Cνλµ satisfy the associativity constraint , that is, we have
equality of the trilinear differential operatorsX

µ1

Cνµ1λ3 ◦ (Cµ1
λ1λ2

⊗ id) =
X
µ2

Cνλ1µ2 ◦ (id⊗ Cµ2
λ2λ3

)

for all λ1, λ2, λ3, ν ∈ Λ. That is, one can define the algebra C〈x1, . . . , xd〉[[ab]] to be the C-vectorspace
of possibly infinite formal sums

P
λ∈Λ[[fλ]] Mλ with multiplication defined by the operators Cνλµ.

Let Ad(C) be the d-th Weyl algebra , that is, the ring of differential operators with polynomial
coefficients on Ad. Let OAd be the structure sheaf on Ad then it is well-known that the ring of
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sections OAd(U) on any Zariski open subset U ⊂ - Ad is a left Ad(C)-module. Define a sheaf OfAd

of noncommutative algebras on Ad by taking as its sections over U the algebra

OfAd(U) = C〈x1, . . . , xd〉[[ab]] ⊗
C[x1,...,xd]

OAd(U)

that is the C-vectorspace of possibly infinite formal sums
P
λ∈Λ[[fλ]] Mλ with fλ ∈ OAd(U) and the

multiplication is given as before by the action of the bilinear differential operators Cνλµ on the left
Ad(C)-module OAd(U), that is, for all f, g ∈ OAd(U) we have

[[f ]] Mλ.[[g]] Mµ =
X
ν

[[Cνλµ(f, g)]] Mν

This sheaf of noncommutative algebras OfAd is called the formal structure on Ad.

We will now define formal structures on arbitrary affine smooth varieties. Let R be an as-
sociative C-algebra, RLie its Lie structure and RLiem the subspace spanned by the expressions
[r1, [r2, . . . , [rm−1, rm] . . .] containing m− 1 instances of Lie brackets. The commutator filtration of
R is the (increasing) filtration by ideals (F k R)k∈Z with F k R = R for d ∈ N and

F−k R =
X
m

X
i1+...+im=k

RRLiei1 R . . . RRLieim R

Observe that all C-algebra morphisms preserve the commutator filtration. The associated graded
algebra grF R is a (negatively) graded commutative Poisson algebra with part of degree zero, the
abelianization Rab = R

[R,R]
. If R = C〈x1, . . . , xd〉, then the commutator filtration has components

F−k C〈x1, . . . , xd〉 = {
X
λ

[[fλ]] Mλ,∀λ : ord(λ) ≥ k}

Definition 7.1 Denote with nilk the category of associative C-algebras R such that F−kR = 0 (in
particular, nil1 = commalg the category of commutative C-algebras). An algebra A ∈ Ob(nilk) is
said to be k-smooth if and only if for all T ∈ Ob(nilk), all nilpotent twosided ideals I / T and all

C-algebra morphisms A
φ- T

I
there exist a lifted C-algebra morphism

T -- T

I

A

φ

6

�...............................

∃φ̃

making the diagram commutative. Alternatively, an algebra is k-smooth if and only if it is nilk-
smooth.
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For example, the quotient C〈x1,...,xd〉
F−k C〈x1,...,xd〉

is k-smooth using the lifting property of free algebras

and the fact that algebra morphisms preserve the commutator filtration. Generalizing this, if A is
Quillen-smooth then the quotient

A(k) =
A

F−k A

is k-smooth.
Kapranov proves [39, Thm 1.6.1] that an affine commutative Grothendieck-smooth algebra C has

a unique (upto C-algebra isomorphism identical on C) k-smooth thickening C(k) with C
(k)
ab ' C.

The inverse limit (connecting morphisms are given by the unicity result)

Cf = lim
←

C(k)

is then called the formal completion of C. Clearly, one has Cfab = C. For example,

C[x1, . . . , xd]
f = lim

←

C〈x1, . . . , xd〉
F−k C〈x1, . . . , xd〉

' C〈x1, . . . , xd〉[[ab]].

If X is an affine smooth (commutative) variety, one can use the formal completion C[X]f to define

a sheaf of noncommutative algebras OfX defining the formal structure on X.
The fact that C is Grothendieck-smooth is essential to construct and prove uniqueness of the

formal completion. At present, no sufficiently functorial extension of formal completion is known
for arbitrary commutative C-algebras. It is not true that any (non affine) smooth variety can be
equipped with a formal structure. In fact, the obstruction gives important new invariants of a
smooth variety related to Atiyah classes . We refer to [39, §4] for more details.

We recall briefly the algebraic construction of microlocalization. Let R be a filtered algebra with
a separated filtration {Fn}n∈Z and let S be a multiplicatively closed subset of R containing 1 but
not 0. For any r ∈ Fn − Fn−1 we denote its principal character σ(r) to be the image of r in the
associated graded algebra gr(R). We assume that the set σ(S) is a multiplicatively closed subset

of gr(R). We define the Rees ring R̃ to be the graded algebra

R̃ = ⊕n∈ZFntn ⊂ - R[t, t−1]

where t is an extra central variable. If σ(s) ∈ gr(R)n then we define the element s̃ = stn ∈ R̃n.

The set S̃ = {s̃, s ∈ S} is a multiplicatively closed subset of homogeneous elements in R̃.

Assume that σ(S) is an Ore set in gr(R) = R̃
(t)

, then for every n ∈ N0 the image πn(S̃) is an

Ore set in R̃
(tn)

where R̃ -- R̃
(tn)

is the quotient morphism. Hence, we have an inverse system of

graded localizations and can form the inverse limit in the graded sense

Qµ
S̃
(R̃) = lim

←
g πn(S̃)−1 R̃

(tn)
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The element t acts torsionfree on this limit and hence we can form the filtered algebra

QµS(R) =
Qµ
S̃
(R̃)

(t− 1)Qµ
S̃
(R̃)

which is the micro-localization of R at the multiplicatively closed subset S. We recall that the
associated graded algebra of the microlocalization can be identified with the graded localization

gr(QµS(R)) = σ(S)−1gr(R).

Let R be a C-algebra with Rab = R
[R,R]

= C. We assume that the commutator filtration (F k)k∈Z

is a separated filtration on R. Observe that this is not always the case (for example consider U(g)
for g a semi-simple Lie algebra) but often one can repeat the argument below replacing R with
R
∩Fn .

Observe that gr(R) is a negatively graded commutative algebra with part of degree zero C. Take
a multiplicatively closed subset Sc of C, then S = Sc + [R,R] is a multiplicatively closed subset

of R with the property that σ(S) = Sc and clearly Sc is an Ore set in gr(R). Therefore, S̃ is a

multiplicatively closed set of the Rees ring R̃ consisting of homogeneous elements of degree zero.
Observing that (tn)0 = F−ntn for all n ∈ N0 we see that

QµS(R) = lim
←

πn(S)−1 R

F−n

where R
πn-- R

Fn is the quotient morphism and QµS is filtered again by the commutator filtration
and has as associated graded algebra

gr(QµS(R)) = S−1
c gr(R).

One can define a microstructure sheaf OµR on the affine scheme X of C by taking as its sections
over the affine Zariski open set X(f)

Γ(X(f),OµR) = QµSf
(R)

where S = {1, f, f2, . . .} + [R,R]. For C a Grothendieck-smooth affine commutative algebra this
sheaf of noncommutative algebras is the formal structure on X introduced by M. Kapranov.

An important remark to make is that one really needs microlocalization to construct a sheaf of
noncommutative algebras on X. If by some fluke we would have that all the Sf are already Ore
sets in R, we might optimistically assume that taking as sections over X(f) the Ore localization
S−1
f R we would define a sheaf OR over X. This is in general not the case as the Ore set Sg need

no longer be Ore in a localization S−1
f R !

Still one can remedy this by defining a noncommutative Zariski topology on X using words in
the Ore sets Sf , see [82, §1.3]. Whereas we do not need this to define formal structures it seems to
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me inevitable that at a later stage in the development of noncommutative geometry we will need
to resort to such noncommutative Grothendieck topologies on usual commutative schemes.

Having define a formal structure on affine smooth varieties, we will now extend it to arbitrary
representation varieties. The starting point is that for every associative algebra A the functor

alg
Homalg(A,Mn(−)) - sets

is representable in alg. That is, there exists an associative C-algebra n
√
A such that there is a

natural equivalence between the functors

Homalg(A,Mn(−)) ∼
n.e.

Homalg(
n
√
A,−).

In other words, for every associative C-algebra B, there is a functorial one-to-one correspondence
between the sets (

algebra maps A - Mn(B)

algebra maps n
√
A - B

We call n
√
A the n-th root algebra of A .

Example 7.2 If A = C〈x1, . . . , xd〉, then it is easy to see that n
√
A is the free algebra

C〈x11,1, . . . , xnn,d〉 on dn2 variables. For, given an algebra map A
φ- Mn(B) we obtain an algebra

map n
√
A - B by sending the free variable xij,k to the (i, j)-entry of the matrix φ(xk) ∈Mn(B).

Conversely, to an algebra map n
√
A

ψ- B we assign the algebra map A - Mn(B) by sending
xk to the matrix (ψ(xij,k))i,j ∈Mn(B). Clearly, these operations are each others inverses.

To define n
√
A in general, consider the free algebra product A∗Mn(C) and consider the subalgebra

n
√
A = A ∗Mn(C)Mn(C) = {p ∈ A ∗Mn(C) | p.(1 ∗m) = (1 ∗m).p ∀m ∈Mn(C)}

Before we can prove the universal property of n
√
A we need to recall a property that Mn(C) shares

with any Azumaya algebra : if Mn(C)
φ- R is an algebra morphism and if RMn(C) = {r ∈ R |

r.φ(m) = φ(m).r ∀m ∈Mn(C)}, then we have R 'Mn(C)⊗C R
Mn(C).

In particular, if we apply this to R = A∗Mn(C) and the canonical map Mn(C)
φ- A∗Mn(C)

where φ(m) = 1 ∗m we obtain that Mn( n
√
A) = Mn(C)⊗C

n
√
A = A ∗Mn(C).

Hence, if n
√
A

f- B is an algebra map we can consider the composition

A
idA∗1- A ∗Mn(C) 'Mn(

n
√
A)

Mn(f)- Mn(B)

to obtain an algebra map A - Mn(B). Conversely, consider an algebra map A
g- Mn(B)

and the canonical map Mn(C)
i- Mn(B) which centralizes B in Mn(B). Then, by the universal
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property of free algebra products we have an algebra map A ∗Mn(C)
g∗i- Mn(B) and restricting

to n
√
A we see that this maps factors

A ∗Mn(C)
g∗i- Mn(B)

n
√
A

∪

6

...................- B
∪

6

and one verifies that these two operations are each others inverses.
It follows from the functoriality of the n

√
. construction that C〈x1, . . . , xd〉 -- A implies that

n
p

C〈x1, . . . , xd〉 -- n
√
A. Therefore, if A is affine and generated by ≤ d elements, then n

√
A is

also affine and generated by ≤ dn2 elements.
These properties allow us define a formal completion of C[repn A] in a functorial way for any

associative algebra A. Equip n
√
A with the commutator filtration

. . . ⊂ - F−2
n
√
A ⊂- F−1

n
√
A ⊂ - n

√
A =

n
√
A = . . .

Because algebra morphisms are commutator filtration preserving, it follows from the universal

property of n
√
A that

n√
A

F−k
n√
A

is the object in nilk representing the functor

nilk
Homalg(A,Mn(−)) - sets.

In particular, because the categories commalg and nil1 are naturally equivalent, we deduce that

n
√
Aab =

n
√
A

[ n
√
A, n
√
A]

=
n
√
A

F−1
n
√
A
' C[repn A]

because both algebras represent the same functor. We now define

n
√
A[[ab]] = lim

←

n
√
A

F−k
n
√
A
.

Assume that A is Quillen-smooth, then so is n
√
A because we have seen before that

Mn(
n
√
A) ' A ∗Mn(C)

and the class of Quillen-smooth algebras is easily seen to be closed under free products and matrix
algebras.
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As a consequence, we have for every k ∈ N that the quotient
n√
A

F−k
n√
A

is k-smooth. Moreover, we

have that

(
n
√
A

F−k
n
√
A

)ab '
n
√
A

[ n
√
A, n
√
A]
' C[repn A].

Because C[repn A] is an affine commutative Grothendieck-smooth algebra, we deduce from the
uniqueness of k-smooth thickenings that

C[repn A](k) '
n
√
A

F−k
n
√
A

and consequently that the formal completion of C[repn A] can be identified with

C[repn A]f ' n
√
A[[ab]].

Therefore, if we define for an arbitrary C-algebra A the formal completion of C[repn A] to be
n
√
A[[ab]] we have a canonical extension of the formal structure on affine Grothendieck-smooth com-

mutative algebras to the class of coordinate rings of representation spaces on which it is functorial
in the algebras.

There is a natural action of GLn by algebra automorphisms on n
√
A. Let uA denote the universal

morphism A
uA- Mn( n

√
A) corresponding to the identity map on n

√
A. For g ∈ GLn we can

consider the composed algebra map

A
uA- Mn(

n
√
A)

Mn(
n
√
A)

g.g−1

?

ψ
g

-

Then g acts on n
√
A via the automorphism n

√
A

φg- n
√
A corresponding the the composition ψg.

It is easy to verify that this defines indeed a GLn-action on n
√
A.

The formal structure sheaf Ofrepn A defined over repn A constructed from n
√
A will be denoted

by Ofn√
A
. We see that it actually has a GLn-structure which is compatible with the GLn-action on

repn A.

7.2 Semi invariants

An important class of examples of noncommutative varieties are moduli spaces of θ-semistable
representations of quivers. Because the moduli space Mss

α (Q, θ) is by definition the projective
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scheme of the graded algebra of semi-invariants of weight χnθ for some n

Mss
α (Q, θ) = proj ⊕∞n=0 C[repα Q]GL(α),χnθ

we need some control on these semi-invariants of quivers.
In this section we will give a generating set of semi-invariants. The strategy of proof should be

clear by now. First, we will describe a large set of semi-invariants. Then we use classical invariant
theory to describe all multilinear semi-invariants of GL(α), or equivalently, all multilinear invariants
of SL(α) = SLa1 × . . .× SLak and describe them in terms of these determinantal semi-invariants.
Finally, we show by polarization and restitution that these semi-invariants do indeed generate all
semi-invariants.

Let Q be a quiver on k vertices {v1, . . . , vk}. We introduce the additive C-category add Q
generated by the quiver. For every vertex vi we introduce an indecomposable object which we

denote by  '!&"%#$07162534i . An arbitrary object in add Q is then a sum of these

 '!&"%#$071625341
⊕e1 ⊕ . . .⊕  '!&"%#$07162534k

⊕ek

That is we can identify add Q with Nk. Morphisms in the category add Q are defined by the rules8>>><>>>:
Homadd Q(  '!&"%#$07162534i ,  '!&"%#$07162534j ) = ��������i��������j

}}

Homadd Q(  '!&"%#$07162534i ,  '!&"%#$07162534i ) = ��������i
��

where the right hand sides are the C-vectorspaces spanned by all oriented paths from vi to vj in
the quiver Q, including the idempotent (trivial) path ei when i = j.

Clearly, for any k-tuples of positive integers α = (u1, . . . , uk) and β = (v1, . . . , vk)

Homadd Q(  '!&"%#$071625341
⊕u1 ⊕ . . .⊕  '!&"%#$07162534k

⊕uk
,  '!&"%#$071625341

⊕v1 ⊕ . . .⊕  '!&"%#$07162534k

⊕vk
)

is defined by matrices and composition arises via matrix multiplication2666666666666664

Mv1×u1( ��������1
��

) . . . Mv1×uk ( ��������k��������1
}}

)

...
. . .

...

Mvk×u1( ��������1��������k
||

) . . . Mvk×uk ( ��������k
��

)

3777777777777775
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Fix a dimension vector α = (a1, . . . , ak) and a morphism φ in add Q

 '!&"%#$071625341
⊕u1 ⊕ . . .⊕  '!&"%#$07162534k

⊕uk φ-  '!&"%#$071625341
⊕v1 ⊕ . . .⊕  '!&"%#$07162534k

⊕vk

For any representation V ∈ repα Q we can replace each occurrence of an arrow ��������i��������j
aoo of Q

in φ by the aj × ai-matrix Va. This way we obtain a rectangular matrix

V (φ) ∈MPk
i=1 aivi×

Pk
i=1 aiui

(C)

If we are in a situation where
P
aivi =

P
aiui, then we can define a semi-invariant polynomial

function on repα Q by
Pα,φ(V ) = det V (φ)

We call such semi-invariants determinantal semi-invariants . One verifies that Pφ,α is a semi-
invariant of weight χθ where θ = (u1 − v1, . . . , uk − vk). We will show that such determinantal
semi-invariant together with traces along oriented cycles in the quiverQ generate all semi-invariants.

Because semi-invariants for the GL(α)-action on repα Q are the same as invariants for the
restricted action of SL(α) = SLa1 × . . .× SLak , we will describe the multilinear SL(α)-invariants
from classical invariant theory. Because

repα Q =
M

��������i��������j
aoo

Maj×ai(C)

=
M

��������i��������j
aoo

Cai ⊗ C∗aj

we have to consider multilinear SL(α)-invariants ofO
��������i��������j oo

Cai ⊗ C∗aj =
O

��������i

[
O

��������i��������oo Cai ⊗
O

����������������i oo
C∗ai ]

Hence, any multilinear SL(α)-invariant can be written as f =
Qk
i=1 fi where fi is a SLai -invariant

of O
��������i��������oo Cai ⊗

O
����������������i oo

C∗ai

To increase our cultural luggage let us recall the classical description of multilinear SLn-
invariants on M⊕in ⊕ V ⊕jn ⊕ V ∗⊕zn , that is, the SLn-invariant linear maps

Mn ⊗ . . .⊗Mn| {z }
i

⊗Vn ⊗ . . .⊗ Vn| {z }
j

⊗V ∗n ⊗ . . .⊗ V ∗n| {z }
z

f- C
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By the identification Mn = Vn ⊗ V ∗n we have to determine the SLn-invariant linear maps

V ⊗i+jn ⊗ V ∗⊗i+zn
f- C

The description of such invariants is given by classical invariant theory, see [84, II.5,Thm. 2.5.A].

Theorem 7.1 The multilinear SLn-invariants f are linear combinations of invariants of one of
the following two types

1. For (i1, . . . , in, h1, . . . , hn, . . . , t1, . . . , tn, s1, . . . , sr) a permutation of the i + j vector indices
and (u1, . . . , ur) a permutation of the i+ z covector indices, consider the SLn-invariant

[vi1 , . . . , vin ] [vh1 , . . . , vhn ] . . . [vt1 , . . . , vtn ] φu1(vs1) . . . φur (vsr )

where the brackets are the determinantal invariants

[va1 , . . . , van ] = det
ˆ
va1 va2 . . . van

˜
2. For (i1, . . . , in, h1, . . . , hn, . . . , t1, . . . , tn, s1, . . . , sr) a permutation of the i+z covector indices

and (u1, . . . , ur) a permutation of the i+ j vector indices, consider the SLn-invariant

[φi1 , . . . , φin ]∗ [φh1 , . . . , φhn ]∗ . . . [φt1 , . . . , φtn ]∗ φu1(vs1) . . . φur (vsr )

where the cobrackets are the determinantal invariants

[φa1 , . . . , φan ]∗ = det

264φa1...
φan

375
Observe that we do not have at the same time brackets and cobrackets, due to the relation

[v1, . . . , vn] [φ1, . . . , φn] = det

264φ1(v1) . . . φ1(vn)
...

...
φn(v1) . . . φn(vn)

375
We can give a matrix-interpretation of these basic invariants. Let us consider the case of a bracket
of vectors (the case of cobrackets is similar)

[vi1 , . . . , vin ]

If all the indices {i1, . . . , in} are original vector-indices (and so do not come from the matrix-terms)
we save this term and go to the next factor. Otherwise, if say i1 is one of the matrix indices,
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Ai1 = φi1 ⊗ vi1 , then the covector φi1 must be paired up in a scalar product φi1(vu1) with a vector
vu1 . Again, two cases can occur. If u1 is a vector index, we have that

φi1(vu1)[vi1 , . . . , vin ] = [Ai1vu1 , vi2 , . . . , vin ] = [v′i1 , vi2 , . . . , vin ]

Otherwise, we can keep on matching the matrix indices and get an expression

φi1(vu1) φu1(vu2) φu2(vu3) . . .

until we finally hit again a vector index, say ul, but then we have the expression

φi1(vu1) φu1(vz1) . . . φul−1(vul) [vi1 , . . . , vin ] = [Mvul , vi2 , . . . , vin ]

where M = Ai1Au1 . . . Aul−1 . One repeats the same argument for all vectors in the brackets. As
for the remaining scalar product terms, we have a similar procedure of matching up the matrix
indices and one verifies that in doing so one obtains factors of the type

φ(Mv) and tr(M)

where M is a monomial in the matrices. As we mentioned, the case of covector-brackets is similar
except that in matching the matrix indices with a covector φ, one obtains a monomial in the
transposed matrices.

Having found these interpretations of the basic SLn-invariant linear terms, we can proceed by
polarization and restitution processes to prove

Theorem 7.2 The SLn-invariants of W = repα Q
′ where Q′ is the quiver

n(/).*-+,m(/).*-+, p(/).*-+,
k

��
// //

are generated by the following four types of functions, where we write a typical element in W as

(A1, . . . , Ak| {z }
k

, v1, . . . , vm| {z }
m

, φ1, . . . , φp| {z }
p

)

with the Ai the matrices corresponding to the loops, the vj making up the rows of the n×m matrix
and the φj the columns of the p× n matrix.

• tr(M) where M is a monomial in the matrices Ai,

• scalar products φj(Mvi) where M is a monomial in the matrices Ai,

• brackets [M1vi1 ,M2vi2 , . . . ,Mnvin ] where the Mj are monomials in the matrices Ai,
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• cobrackets [M1φ
τ
i1 , . . . ,Mnφ

τ
in ] where the Mj are monomials in the matrices Ai,

Returning to the special case under consideration, that is, of SLm-invariants on ⊗BCm⊗⊗CC∗m,
it follows from this that the linear SLm-invariants are determined by the following three sets

• traces, that is, for each pair (b, c) we have Cm ⊗ C∗m = Mm(C)
Tr- C.

• brackets, that is, for each m-tuple (b1, . . . , bm) we have an invariant ⊗bj Cm - C defined
by

vb1 ⊗ . . .⊗ vbm 7→ det
ˆ
vb1 . . . vbm

˜
• cobrackets, that is, for each m-tuple (c1, . . . , cm) we have an invariant ⊗ciC

∗m - C defined
by

φc1 ⊗ . . .⊗ φcm 7→ det

264φc1...
φcm

375
Multilinear SLm-invariants of ⊗BCm ⊗ ⊗CC∗m are then spanned by invariants constructed from
the following data. Take three disjoint index-sets I, J and K and consider surjective maps(

B
µ-- I tK

C
ν-- J tK

subject to the following conditions(
# µ−1(k) = 1 = # ν−1(k) for all k ∈ K.

# µ−1(i) = m = # ν−1(j) for all i ∈ I and j ∈ J .

To this data γ = (µ, ν, I, J,K) we can associate a multilinear SLm-invariant fγ(⊗Bvb ⊗ ⊗Cφc)
defined by Y

k∈K

φν−1(k)(vµ−1(k))
Y
i∈I

det
ˆ
vb1 . . . vbm

˜ Y
j∈J

det

264φc1...
φcm

375
where µ−1(i) = {b1, . . . , bm} and ν−1(j) = {c1, . . . , cm}. Observe that fγ is determined only up to
a sign by the data γ.

But then, we also have a spanning set for the multilinear SL(α)-invariants on

repα Q =
O

��������v

[
O

��������v��������oo Cav ⊗
O

����������������v oo
C∗av ]
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determined by quintuples Γ = (µ, ν, I, J,K) where we have disjoint index-sets partitioned over the
vertices v ∈ {v1, . . . , vk} of Q 8><>:

I =
F
v Iv

J =
F
v Jv

K =
F
v Kv

together with surjective maps from the set of all arrows A of Q(
A

µ-- I tK
A

ν-- J tK

where we have for every arrow ��������v��������w
aoo that(

µ(a) ∈ Iv tKv

ν(a) ∈ Jw tKw

and these maps µ and ν are subject to the numerical restrictions(
# µ−1(k) = 1 = # ν−1(k) for all k ∈ K.

# µ−1(i) = av = # ν−1(j) for all i ∈ Iv and all j ∈ Jv.

Such a quintuple Γ = (µ, ν, I, J,K) determines for every vertex v a quintuple

γv = (µv = µ | { ��������v�������� aoo }, νv = ν | { ����������������v
aoo }, Iv, Jv,Kv)

satisfying the necessary numerical restrictions to define the SLav -invariant fγv described before.
Then, the multilinear SL(α)-invariant on repα Q determined by Γ is defined to be

fγ =
Y
v

fγv

and we have to show that these semi-invariants lie in the linear span of the determinantal semi-
invariants.

First, consider the case where the index set K is empty. If we denote the total number of arrows
in Q by n, then the numerical restrictions imposed give us two expressions for nX

v

av.# Iv = n =
X
v

av.# Jv
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Every arrow ��������v��������w
aoo determines a pair of indices µ(a) ∈ Iv and ν(a) ∈ Jw. To the quintuple

Γ we assign a map ΦΓ in add Q

 '!&"%#$071625341
⊕I1 ⊕ . . .⊕  '!&"%#$07162534k

⊕Ik ΦΓ-  '!&"%#$071625341
⊕J1 ⊕ . . .⊕  '!&"%#$07162534k

⊕Jk

which decomposes as a block-matrix in blocks Mv,w ∈ Hom(  '!&"%#$07162534v
⊕Iv

,  '!&"%#$07162534w
⊕Jw

) of which the (i, j)

entry is given by the sum of arrows X
µ(a)=i
ν(a)=j

��������v��������w
aoo

For a representation V ∈ repα Q, V (ΦΓ) is an n × n matrix and the determinant defines the
determinantal semi-invariant PΦα,Γ which we claim to be equal to the basic invariant fΓ possibly
up to a sign.

We introduce a new quiver situation. Let Q′ be the quiver with vertices the elements of I t J
and with arrows the set A of arrows of Q, but this time w take the starting point of the arrow���������������� aoo in Q to be µ(a) ∈ I and the terminating vertex to be ν(a) ∈ J . That is, Q′ is a
bipartite quiver

I J

8?9>:=;<µ(a)

8?9>:=;<ν(a)

a

77ooooooooooooooo

On Q′ we have the quintuple Γ′ = (µ′, ν′, I ′, J ′,K′) where K′ = ∅,

I ′ =
G
i∈I

I ′i =
G
i∈I

{i} J ′ =
G
j∈J

J ′j =
G
j∈J

{j}

and µ′ = µ, ν′ = ν. We define an additive functor add Q′
s- add Q by

 '!&"%#$07162534i
s-  '!&"%#$07162534v  '!&"%#$07162534j

s-  '!&"%#$07162534w ���������������� aoo s- ���������������� aoo
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for all i ∈ Iv and all j ∈ Jw. The functor s induces a functor rep Q
s- rep Q′ defined by

V
s- V ◦ s. If V ∈ repα Q then s(V ) ∈ repα′ Q

′ where

α′ = (c1, . . . , cp| {z }
# I

, d1, . . . , dq| {z }
# J

) with

(
ci = av if i ∈ Iv
dj = aw if j ∈ Jw

That is, the characteristic feature of Q′ is that every vertex i ∈ I is the source of exactly ci arrows
(follows from the numerical condition on µ) and that every vertex j ∈ J is the sink of exactly dj
arrows in Q′. That is, locally Q′ has the following form

��������c c // or ��������dd //

There are induced maps

repα Q
s- repα′ Q

′ GL(α)
s- GL(α′)

where the latter follows from functoriality by considering GL(α) as the automorphism group of the
trivial representation in repα Q. These maps are compatible with the actions as one checks that

s(g.V ) = s(g).s(V ). Also s induces a map on the coordinate rings C[repα Q]
s- C[repα′ Q

′] by
s(f) = f ◦ s. In particular, for the determinantal semi-invariants we have

s(Pα′,φ′) = Pα,s(φ′)

and from the compatibility of the action it follows that when f is a semi-invariant the GL(α′)
action on repα′ Q

′ with character χ′, then s(f) is a semi-invariant for the GL(α)-action on repα Q
with character s(χ) = χ′ ◦ s. In particular we have that

s(Pα′,ΦΓ′
) = Pα,s(ΦΓ′ )

= Pα,ΦΓ and s(fΓ′) = fΓ

Hence in order to prove our claim, we may replace the triple (Q,α,Γ) by the triple (Q′, α′,Γ′). We
will do this and forget the dashes from here on.

In order to verify that fΓ = ±Pα,ΦΓ it suffices to check this equality on the image of

W =
M

��������j��������i
a //

Cci ⊕ C∗dj in
O

��������j��������i
a //

Cci ⊗ C∗dj

One verifies that both fΓ and Pα,ΦΓ are GL(α)-semi-invariants on W of weight χθ where

θ = (1, . . . , 1| {z }
# I

,−1, . . . ,−1| {z }
# J

)
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Using the characteristic local form of Q = Q′, we see that W is isomorphic to the GL(α)- module

W '
M
i∈I

(Cci ⊕ . . .⊕ Cci| {z }
ci

)⊕
M
j∈J

(C∗dj ⊕ . . .⊕ C∗dj| {z }
dj

) '
M
i∈I

Mci(C)⊕
M
j∈J

Mdj (C)

and the i factors of GL(α) act by inverse right-multiplication on the component Mci (and trivially
on all others) and the j factors act by left-multiplication on the component Mdj (and trivially on
the others). That is, GL(α) acts on W with an open orbit, say that of the element

w = (rrc1 , . . . ,
rr
cp ,

rr
d1 , . . . ,

rr
dq ) ∈W

One verifies immediately from the definitions that that both fΓ and Pα,ΦΓ evaluate to ±1 in w.
Hence, indeed, fΓ can be expressed as a determinantal semi-invariant.

Remains to consider the case when K is non-empty. For k ∈ K two situations can occur

• µ−1(k) = a and ν−1(k) = b are distinct, then k corresponds to replacing the arrows a and b
by their concatenation ��������k�������� ��������

b
oo

a
oo

• µ−1(k) = a = ν−1(k) then a is a loop in Q and k corresponds

��������k

a

��

to taking the trace of a.

This time we construct a new quiver Q” with vertices {w1, . . . , wn} corresponding to the set A of
arrows in Q. The arrows in Q” will correspond to elements of K, that is if k ∈ K we have the
arrow (or loop) in Q” with notations as before

��������a��������b
koo or ��������a

k

��

We consider the connected components of Q”. They are of the following three types

• (oriented cycle) : To an oriented cycle C in Q” corresponds an oriented cycle C′C in the
original quiver Q. We associate to it the trace tr(C′C) of this cycle.

• (open paths) : An open path P in Q” corresponds to an oriented path P ′P in Q which may
be a cycle. To P we associate the corresponding path P ′P in Q.
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• (isolated points) : They correspond to arrows in Q.

We will now construct a new quiver Q′ having the same vertex set {v1, . . . , vk} as Q but with
arrows corresponding to the set of paths P ′P described above. The starting and ending vertex of
the arrow corresponding to P ′P are of course the starting and ending vertex of the path PP in Q.

Again, we define an additive functor add Q′
s- add Q by the rules

 '!&"%#$07162534v
s-  '!&"%#$07162534v and ��������i��������j

P ′Poo s- ��������i��������j

P ′P

}}

If the path P ′P is the concatenation of the arrows ad ◦ . . . ◦ a1 in Q, we define the maps(
µ′(P ′P ) = µ(a1)

ν′(P ′P ) = ν(ad)
whence

(
{P ′P }

µ-- I ′

{P ′P }
ν-- J ′

that is, a quintuple Γ′ = (µ′, ν′, I ′, J ′,K′ = ∅) for the quiver Q′. One then verifies that

fΓ = s(fΓ′)
Y
C

tr(C′C) = s(Pα,ΦΓ′ )
Y
C

tr(C′C)

= Pα,s(ΦΓ′ )

Y
C

tr(C′C)

finishing the proof of the fact that multilinear semi-invariants lie in the linear span of determinantal
semi-invariants (and traces of oriented cycles).

The arguments above can be reformulated in a more combinatorial form which is often useful in
constructing semi-invariants of a specific weight, as is necessary in the study of the moduli spaces
Mss
α (Q, θ). Let Q be a quiver on the vertices {v1, . . . , vk}, fix a dimension vector α = (a1, . . . , ak)

and a character χθ where θ = (t1, . . . , tk) such that θ(α) = 0. We will call a bipartite quiver Q′ as in
figure 7.1 on left vertex-set L = {l1, . . . , lp} and right vertex-set R = {r1, . . . , rq} and a dimension
vector β = (c1, . . . , cp; d1, . . . , dq) to be of type (Q,α, θ) if the following conditions are met

• All left and right vertices correspond to vertices of Q, that is, there are maps(
L

l- {v1, . . . , vk}
R

r- {v1, . . . , vk}

possibly occurring with multiplicities, that is there is a map

L ∪R m- N+

such that ci = m(li)az if l(li) = vz and dj = m(rj)az if r(rj) = vz.
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L R

8?9>:=;<li

8?9>:=;<rj

22eeeeeeeeeeeeeeee //

,,YYYYYYYYYYYYYYYY

,,YYYYYYYYYYYYYYY

//

Figure 7.1: Left-right bipartite quiver.

• There can only be an arrow (/).*-+,rj(/).*-+,li
// if for vk = l(li) and vl = r(ri) there is an oriented

path

(/).*-+,vl(/).*-+,vk

""

in Q allowing the trivial path and loops if vk = vl.

• Every left vertex li is the source of exactly ci arrows in Q′ and every right-vertex rj is the
sink of precisely dj arrows in Q′.

• Consider the u × u matrix where u =
P
i ci =

P
j dj (both numbers are equal to the total

number of arrows in Q′) where the i-th row contains the entries of the i-th arrow in Q′ with
respect to the obvious left and right bases. Observe that this is a GL(β) semi-invariant on
repβ Q

′ with weight determined by the integral k + l-tuple (−1, . . . ,−1; 1, . . . , 1). If we fix

for every arrow a from li to rj in Q′ an m(rj) ×m(li) matrix pa of linear combinations of
paths in Q from l(li) to r(rj), we obtain a morphism

repα Q
- repβ Q

′

sending a representation V ∈ repα Q to the representation W of Q′ defined by Wa = pa(V ).
Composing this map with the above semi-invariant we obtain a GL(α) semi-invariant of
repα Q with weight determined by the k-tuple θ = (t1, . . . , tk) where

ti =
X

j∈r−1(vi)

m(rj)−
X

j∈l−1(vi)

m(lj)

.
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We call such semi-invariants standard determinantal . Summarizing the arguments of this section
we have proved after applying polarization and restitution processes

Theorem 7.3 The semi-invariants of the GL(α)-action on repα Q are generated by traces of
oriented cycles and by standard determinantal semi-invariants.

7.3 Universal localization

In order to prove that the moduli spaces Mss
α (Q, θ) are locally controlled by Quillen-smooth al-

gebras, we need to recall the notion of universal localization . We refer to the monograph by A.
Schofield [72] for full details.

Let A be a C-algebra and projmod A the category of finitely generated projective left A-modules.
Let Σ be some class of maps in this category (that is some left A-module morphisms between certain

projective modules). Then, there exists an algebra map A
jΣ- AΣ with the universal property

that the maps AΣ ⊗A σ have an inverse for all σ ∈ Σ. AΣ is called the universal localization of A
with respect to the set of maps Σ.

Proposition 7.1 When A is Quillen-smooth, then so is AΣ.

Proof. Consider a test-object (T, I) in alg, then we have the following diagram

T -- T

I

A

ψ

6
.................

jΣ

- AΣ

φ

6

�...............................

φ̃

where ψ exists by Quillen-smoothness of A. By Nakayama’s lemma all maps σ ∈ Σ become
isomorphisms under tensoring with ψ. Then, φ̃ exists by the universal property of AΣ. �

Consider the special case when A is the path algebra CQ of a quiver on k vertices. Then, we can
identify the isomorphism classes in projmod CQ with the opposite category of add Q introduced
in the foregoing section. To each vertex vi corresponds an indecomposable projective left CQ-ideal
Pi = CQei having as C-vectorspace basis all paths in Q starting at vi. For the homomorphisms we
have

HomCQ(Pi, Pj) =
M

��������i ��������j
poo o/ o/ o/ o/

Cp = Homadd Q(  '!&"%#$07162534j ,  '!&"%#$07162534i )
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where p is an oriented path in Q starting at vj and ending at vi. Therefore, any A-module morphism
σ between two projective left modules

Pi1 ⊕ . . .⊕ Piu
σ- Pj1 ⊕ . . .⊕ Pjv

can be represented by an u×v matrix Mσ whose (p, q)-entry mpq is a linear combination of oriented
paths in Q starting at vjq and ending at vip .

Now, form an v × u matrix Nσ of free variables ypq and consider the algebra CQσ which is the
quotient of the free product CQ ∗ C〈y11, . . . , yuv〉 modulo the ideal of relations determined by the
matrix equations

Mσ.Nσ =

264vi1 0
. . .

0 viu

375 Nσ.Mσ =

264vj1 0
. . .

0 vjv

375
Equivalently, CQσ is the path algebra of a quiver with relations where the quiver is Q extended
with arrows ypq from vip to vjq for all 1 ≤ p ≤ u and 1 ≤ q ≤ v and the relations are the above
matrix entry relations.

Repeating this procedure for every σ ∈ Σ we obtain the universal localization CQΣ. This proves

Proposition 7.2 If Σ is a finite set of maps, then the universal localization CQΣ is an affine
C-algebra.

It is easy to verify that the representation space repn CQσ is an affine Zariski open subscheme
(but possibly empty) of repn CQ. Indeed, if V = (Va)a ∈ repα Q, then V determines a point in
repn CQΣ if and only if the matrices Mσ(V ) in which the arrows are all replaced by the matrices
Va are invertible for all σ ∈ Σ.

In particular, this induces numerical conditions on the dimension vectors α such that repα QΣ 6=
∅. Let α = (a1, . . . , ak) be a dimension vector such that

P
ai = n then every σ ∈ Σ say with

P⊕e11 ⊕ . . .⊕ P⊕ek
k

σ- P⊕f11 ⊕ . . .⊕ P⊕fk
k

gives the numerical condition

e1a1 + . . .+ ekak = f1a1 + . . .+ fkak.

These numerical restrictions will be used to relate θ-stable representations of Q to simple represen-
tations of universal localizations of CQ.

Fix a character θ = (t1, . . . , tk) ∈ Zk and divide the set of indices 1 ≤ i ≤ k into the left set
L = {i1, . . . , iu} consisting of those i such that ti ≤ 0 and the right set R = {j1, . . . , jv} consisting
of those j such that tj ≥ 0. Consider a dimension vector α such that θ.α = 0, then θ determines
the character

GL(α)
χθ- C∗ (g1, . . . , gk) 7→

Y
i

det(gi)
ti
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Next, consider the sets of morphisms

Σθ =
\
z∈N+

Σθ(z)

where Σθ(z) is the set of all morphisms

P
⊕−zti1
i1

⊕ . . .⊕ P⊕−ztiu
iu

σ- P
⊕ztj1
j1

⊕ . . .⊕ P⊕ztjv
jv

With notation as before, it follows that

dσ(V ) = det Mσ(V ) V ∈ repα Q

is a semi-invariant on repα Q of weight zχθ. This semi-invariant determines the Zariski open subset
of repα Q

Xσ(α) = {V ∈ repα Q | dσ(V ) 6= 0}

It is clear from the results of section 4.8 that Xσ(α) consists of θ-semistable representations. We
can characterize the θ-stable representations in this open set.

Lemma 7.1 For V ∈ Xσ(α) the following are equivalent

1. V is a θ-stable representation.

2. V is a simple α-dimensional representation of the universal localization CQσ.

Proof. Let W be a β-dimensional subrepresentation of V with β = (b1, . . . , bk), then for W to
be a β-dimensional representation of the universal localization CQσ it must satisfy the numerical
restriction

−ti1bi1 − . . .− tiubiu = tj1bj1 + . . .+ tjvbjv that is θ.β = 0

Hence, if V is θ-stable, there are no proper subrepresentations of V as a CQσ-representation.
Conversely, if V is an α-dimensional subrepresentation of CQσ we must have that dσ(V ) 6= 0. But
then, if W is a β-dimensional Q-subrepresentation of V we must have that

P
a−tiabia ≤

P
b tjbbib

(if not, σ(V ) would have a kernel) whence θ.β ≥ 0. If W is a subrepresentation such that θ.β = 0,
then W would be a proper CQσ subrepresentation of V , a contradiction. Therefore, V is θ-stable.

�

Theorem 7.4 The moduli space of θ-semistable representations of the quiver Q

Mss
α (Q, θ)

is locally controlled by the set of Quillen-smooth algebras {CQσ | σ ∈ Σθ }.
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Proof. By the results of the foregoing section we know that the quotient varieties of the Zariski
open affine subsets Xσ(α) cover the moduli space Mss

α (Q, θ). Further, by lemma 7.1 we have a
canonical isomorphism

Xσ(α)/GL(α) ' issα CQσ

Finally, because

repn CQσ = tαGLn ×GL(α)
repα CQσ

where the disjoint union is taken over all α = (a1, . . . , ak) such that
P
i ai = n, we have that

issα CQσ is an irreducible component of issn CQσ finishing the proof. �

Lemma 7.1 also allows us to study the moduli spacesMss
α (Q, θ) locally by the local quiver settings

associated to semi-simple representations. That is, let ξ ∈Mss
α (Q, θ) be the point corresponding to

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ez
z

where Si is a θ-stable representation of dimension vector βi occurring in Mξ with multiplicity ei.

Theorem 7.5 With notations as above, the étale local structure of the moduli space Mss
α (Q, θ)

near ξ is that of the quotient variety issβ Qξ where β = (e1, . . . , ez) and Qξ is the quiver on z
vertices such that 8>><>>:

# ��������i��������j
aoo = − χQ(βi, βj)

# ��������i
��

= 1− χQ(βi, βi)

near the trivial representation.

Proof. In view of the above results and the slice theorems, we only have to compute the ext-
spaces Ext1CQσ

(Si, Sj). From [72, Thm. 4.7] we recall that the category of CQσ representations
is closed under extensions in the category of representations of Q. Therefore, we have for all
CQσ-representations V and W that

Ext1CQ(V,W ) ' Ext1CQσ
(V,W )

from which the result follows using theorem 4.5. �

In the following section we will give some applications of this result. Universal localizations can
also be used to determine the formal structure on representation spaces of quivers.
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Let Q be a quiver on k vertices and consider the extended quiver Q(n)

Q

��������1

��������i

��������k

��������0

n

zzzzz

<<zzzzz

ndddd
22dddd

n

DD
DD

D

""D
DD

DD

That is, we add to the vertices and arrows of Q one extra vertex v0 and for every vertex vi in Q we
add n directed arrows from v0 to vi. We will denote the j-th arrow 1 ≤ j ≤ n from v0 to vi by xij .

Consider the morphism between projective left CQ(n)-modules

P1 ⊕ P2 ⊕ . . .⊕ Pk
σ- P0 ⊕ . . .⊕ P0| {z }

n

determined by the matrix

Mσ =

264x11 . . . . . . x1n

...
...

xk1 . . . . . . xkn

375 .
We consider the universal localization CQ(n)

σ , that is, we add for each vertex vi in Q another n
arrows yij with 1 ≤ j ≤ n from vi to v0.

With these arrows yij one forms the n× k matrix

Nσ =

266664
y11 . . . yk1
...

...
...

...
y1n . . . ykn

377775
and the universal localization CQ(n)

σ is described by the relations

Mσ.Nσ =

264v1 0
. . .

0 vk

375 and Nσ.Mσ =

266664
v0 0

. . .

. . .
0 v1

377775 .



7.3. Universal localization 403

We will depict this quiver with relations by the picture Q
(n)
σ

Q

��������1

��������i

��������k

��������0
||

n

zzzzz

<<zzzzz

rr ndddd
22dddd

bb

n

DD
DD

D

""D
DD

DD

From the discussion above it follows that there is a canonical isomorphism

repm
n
p

CQ ' repm CQ(n)
σ .

In fact we can even identify
n
p

CQ = v0 CQ(n)
σ v0.

Indeed, the right hand side is generated by all the oriented cycles in Q
(n)
σ starting and ending at

v0 and is therefore generated by the yipxiq and the yipaxjq where a is an arrow in Q starting in vj
and ending in vi. If we have an algebra morphism

CQ φ- Mn(B)

then we have an associated algebra morphism

v0 CQ(n)
σ v0

ψ- B

defined by sending yipaxjq to the (p, q)-entry of the n×n matrix φ(a) and yipxiq to the (p, q)-entry
of φ(vi). The defining relations among the xip and yiq introduced before imply that ψ is indeed an
algebra morphism.

Example 7.3 Let A = C〈a, b〉, that is A is the path algebra of the quiver

��������1

a

��

b

[[
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In order to describe n
√
A we consider the quiver with relations

��������0
n

x

** ��������1
n

y

jj

a

��

b

[[ : yixj = δijv0,
X
i

xiyi = v1.

We see that the algebra of oriented cycles in v0 in this quiver with relations is isomorphic to the
free algebra in 2n2 free variables

C〈y1ax1, . . . , ynaxn, y1bx1, . . . , ynbxn〉

which coincides with our knowledge of n
p

C〈a, b〉.

There is some elementary calculus among the n-th roots of algebras. For example, it follows
from the universal property of n

√
A that there is a natural morphism

k1

r
k2

q
. . .

kz
√
A � k

√
A

where k =
Q
ki. When A = CQ we can represent this morphism graphically by the picture

Q

��������1

��������i

��������k

����������������0 �������� . . . ||

kz

zzzzz

<<zzzzz

rr kzdddd
22dddd

bb

kz

DD
DD

D

""D
DDD

D

oo k1 // oo k2 // oo kz−1 // -

Q

��������1

��������i

��������k

��������0
||

k
zzzzz

<<zzzzz

rr kdddd
22dddd

bb

k

DD
DD

D

""D
DD

DD

where the map is given by composing paths from v0 to vi. Also observe that we used the isomor-
phisms in the rightmost part of the left quiver to remove additional arrows from the extra vertices
to vi at each stage.

Probably more important are the connecting morphisms

k1
√
A ∗ k2

√
A ∗ . . . ∗ kz

√
A �

c(k1,...,kz) k
√
A
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Q1

Q2

��������1

��������k

��������1

��������i

��������p

33ggggggggggggg

++WWWWWWWWWWWWWW

��?
??
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?

??������������������
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Figure 7.2: Free product of quivers.

with k =
P
ki obtained from the universal property of n

√
A by composing algebra morphisms

A
φi- Mki(B) to an algebra morphism

A

266664
φ1 0

. . .
0 φz

377775
- Mk(B).

Observing that the ordering of the factors is important (but only up to isomorphism of the repre-
sentations).

We need to have a quiver interpretation of the free product CQ1 ∗CQ2 of two path algebras (at
least as far as finite dimensional representations are concerned). Let Q1 be a quiver on k vertices
{v1, . . . , vk} and Q2 a quiver on p vertices {w1, . . . , wp} and consider the extended quiver Q1 ∗Q2

of figure 7.2. That is, we add one extra arrow from each vertex of Q1 to each arrow of Q2.
Let {P1, . . . , Pk} be the projective left CQ1 ∗ Q2-modules corresponding to the vertices of Q1

and {P ′1, . . . , P ′p} those corresponding to the vertices of Q2 and consider the morphism

P ′1 ⊕ . . .⊕ P ′p
σ- P1 ⊕ . . .⊕ Pk

determined by the p× k matrix

Mσ =

264x11 . . . x1k

...
...

xp1 . . . xpk

375
where xij denotes the extra arrow from vertex vj to vertex wi.
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Let Q1 ∗Q2σ denote the quiver with relations one obtains by inverting this map (as above).
Then, it is fairly easy to see that

repn CQ1 ∗Q2 ' repn Q1 ∗Q2σ

where the right-hand side denote the subscheme of n-dimensional representations of the quiver Q1

times the n-dimensional representations of Q2 where the extra arrows determine an isomorphism
of the representations.

Using this interpretation of the free product one can now give a graphical interpretation of the
connecting morphisms in the case of the two loop quiver (the general case is similar).

�������� �������� ��������

�������� �������� ��������

. . .��
k1

OO

��
k2

OO

��
kz

OO

// // //

## {{ ## {{ ## {{

- ��������

��������

��
k

OO
## {{

obtained by ’grafting’ the bottom tree. Observe that again we used the isomorphisms given by the
ki bundles to eliminate adding extra arrows in the free products.

7.4 Compact manifolds

noncommutative geometry@n is the study of families of algebraic varieties (with specified connecting
morphisms) which are local controlled by a set of noncommutative algebras. If this set of algebras
consists of Quillen-smooth algebras we say that the family of varieties is a noncommutative manifold
. If all varieties in the family are in addition projective (possibly with singularities) we say that
the family is a compact noncommutative manifold .

So far, we have mot specified the properties of the connecting morphisms. In this section we
present a first class of examples, the sum families. In the next chapter we will encounter another
possibility coming from the theory of completely integrable dynamical systems.

Definition 7.2 A sum family is an object (Xn)n in noncommutative geometry@n indexed over the
positive integers such that for each n there is a GLn-variety Yn and a quotient morphism

Yn -- Yn/GLn ' Xn

and Yn is locally of the form repn A for an affine C-algebra A belonging to a set A of algebras.
Moreover, there are equivariant connecting sum-maps

Ym × Yn
⊕- Ym+n

for all m,n ∈ N+ where equivariance means with respect to the group GLm × GLn embedded
diagonally in GLm+n. If the set A consists of Quillen-smooth algebras, we call (Xn)n a sum
manifold .
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Theorem 7.6 For a quiver Q on k vertices and a fixed character θ ∈ Zk, the family of varieties

(
G

α=(a1,...,ak)P
i ai=n

Mss
α (Q, θ) )n

is a sum manifold in noncommutative geometry@n. If Q has no oriented cycles, then this family is
a compact sum manifold.

Proof. In view of theorem 7.5 we only need to construct equivariant-sum maps. They are induced
from the direct sums of representations

repα Q× repβ Q
⊕- repα+β Q (V,W ) 7→ V ⊕W

and the required properties are clearly satisfied. �

Example 7.4 Let MP2(n; 0, n) be the moduli space of semi-stable vectorbundles of rank n over
the projective plane P2 with Chern numbers c1 = 0 and c2 = n. Using results of K. Hulek [36] one
can identify this moduli space with

MP2(n; 0, n) 'Mss
(n,n)(Q, θ)

where Q and θ are the following quiver-setting

����������������
−1 1

"" //<<

Therefore, the family of moduli spaces (MP2(n; 0, n))n is a compact sum manifold in geo @n.
Let C be a smooth projective curve of genus g and let MC(n, 0) be the moduli space of semi-

stable vectorbundles of rank n and degree 0 over C. We expect that the family of moduli spaces
(MC(n, 0))n is a compact sum manifold.

In this section we will investigate another class of examples : representations of the torus knot
groups . Consider a slid cylinder C with m line segments on its curved face, equally spaced and
parallel to the axis. If the ends of C are identified with a twist of 2π n

m
where n is an integer

relatively prime to m, we obtain a single curve Km,n on the surface of a solid torus T . If we assume
that the torus T lies in R3 in the standard way, the curve Km,n is called the (m,n) torus knot .

Computing the fundamental group of the complement R3 −Km,n one obtains the (m,n)-torus
knot group

π1(R3 −Km,n) = Gm,n ' 〈 a, b | am = bn 〉
An important example is the three string braid group.
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Example 7.5 Consider Artin’s braid group B3 on three strings. B3 has the presentation

B3 ' 〈L,R | LR−1L = R−1LR−1〉

where L and R are the fundamental 3-braids

L R

If we let S = LR−1L and T = R−1L, an algebraic manipulation shows that

B3 = 〈S, T | T 3 = S2〉

is an equivalent presentation for B3. The center of B3 is the infinite cyclic group generated by the
braid

Z = S2 = (LR−1L)2 = (R−1L)3 = T 3

It follows from the second presentation of B3 that the quotient group modulo the center is isomor-
phic to

B3

〈Z〉 ' 〈s, t | s
2 = 1 = t3〉 ' Z2 ∗ Z3

the free product of the cyclic group of order 2 (with generator s) and the cyclic group of order 3
(with generator t). This group is isomorphic to the modular group PSL2(Z) via

L -
»
1 1
0 1

–
and R -

»
1 0
1 1

–

It is well known that the modular group PSL2(Z) acts on the upper half-plane H2 by left multi-
plication in the usual way, that is»

a b
c d

–
: H2 - H2 given by z - az + b

cz + d
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The fundamental domain H2/PSL2(Z) for this action is the hyperbolic triangle

and the action defines a quilt-tiling on the hyperbolic plane, indexed by elements of PSL2(Z) =
Z2 ∗ Z3

We want to study the irreducible representations of the torus knot group Gm,n. We recall that
the center of Gm,n is generated by am and that the quotient group is the free product group

Gm,n =
Gm,n
〈 am 〉 = 〈 x, y | xm = 1 = yn 〉 = Zm ∗ Zn

of the cyclic groups of order m and n. As the center acts by scalar multiplication on an irreducible
representation by Schur’s lemma the representation theory of Gm,n essentially reduces to that of
the quotient Gm,n. The latter can be studied b noncommutative geometry as the group algebra
CGm,n is Quillen-smooth. This follows from

CGm,n = CZm ∗ Zn ' CZm ∗ CZn ' C× . . .× C| {z }
m

∗C× . . .× C| {z }
n
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and as both factors of the free algebra product on the right are Quillen-smooth (in fact, semisimple)
so is the product by the universal property. Further, as both factors are the path algebras of quivers
on m resp. n vertices without arrows, we know that the representation theory of the free algebra
product, and hence of CGm,n can be reduced to θ-semistable representations the quiver Qm,n

��������1

��������m

��������1

��������i

��������n

33ggggggggggggg
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??������������������

77oooooooooooooo

++WWWWWWWWWWWWW

where θ = (−1, . . . ,−1| {z }
m

, 1, . . . , 1| {z }
n

), by the results of the foregoing section. The left vertex spaces Si,

1 ≤ i ≤ m for a Gm,n-representation are the eigenspaces for the restricted Zm-action and the left
vertex spaces Tj , 1 ≤ j ≤ n are the eigenspaces for the restricted Zn-action.

Example 7.6 Consider the modular group PSL2(Z) ' Z2∗Z3, the free product of the cyclic groups
of order two and three with generators σ resp. τ . Let S be an n-dimensional simple representation
of PSL2(Z). Let ξ be a 3-rd root of unity, then restricting S to these finite Abelian subgroups we
have

(
S ↓Z2 ' S⊕a11 ⊕ S⊕a2−1

S ↓Z3 ' T⊕b11 ⊕ T⊕b2ξ ⊕ T⊕b3
ξ2

where Sx resp. Tx are the one-dimensional representations on which σ resp. τ acts via multiplication
with x. Observe that a1 + a2 = b1 + b2 + b3 = n and we associate to S a representation V of the
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quiver situation
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with V1i = S⊕ai
i and V2j = T

⊕bj
j and where the linear map corresponding to an arrow (/).*-+,ai(/).*-+,bj

aij //
is the composition of

Vaij : S⊕ai
i

⊂ - S ↓Z2= V ↓Z3
-- T

⊕bj
j

of the canonical injections and projections. If α = (a1, a2, b1, b2, b3) then we take as θ =
(−1,−1,+1,+1,+1). Observe that ⊕i,jVaij : Cn - Cn is a linear isomorphism. If W ⊂ - V is
a subrepresentation, then θ(W ) ≥ 0. Indeed, if the dimension vector of W is β = (c1, c2, d1, d2, d3)
and assume that θ(W ) < 0, then k = c1 + c2 > l = d1 + d2 + d3, but then the restriction of
⊕Vaij to W gives a linear map Ck -- Cl having a kernel which is impossible. Hence, V is a θ-
semistable representation of the quiver. In fact, V is even θ-stable, for consider a subrepresentation
W ⊂ - V with dimension vector β as before and θ(W ) = 0, that is, c1 + c2 = d1 + d2 + d3 = m,
then the isomorphism ⊕i,jVaij | W and the decomposition into eigenspaces of Cm with respect
to the Z2 and Z3-action, makes Cm into an m-dimensional representation of PSL2(Z) which is a
subrepresentation of S. S being simple then implies that W = V or W = 0, whence V is θ-stable.
The underlying reason is that the group algebra CPSL2(Z) is a universal localization of the path
algebra CQ of the above quiver.

As irreducible Gm,n-representations correspond to θ-stable representations of the quiver Qm,n
we need to determine the dimension vectors α of θ-stables. In section 4.8 we have given an inductive
algorithm to determine them. However, using the fact that the moduli spaces are locally controlled
and hence are determined locally by local quivers we can apply the easier classification of simple
roots given in section 4.4 so solve this problem.

Example 7.7 With Sij we denote the simple 1-dimensional representation of PSL2(Z) determined
by

Sij ↓Z2= Si and Sij ↓Z3
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Let n = x1 + . . .+x6 and we aim to study the local structure of repn CPSL2(Z) in a neighborhood
of the semi-simple n-dimensional representation

Vξ = S⊕x1
11 ⊕ S⊕x2

12 ⊕ S⊕x3
13 ⊕ S⊕x4

21 ⊕ S⊕x5
22 ⊕ S⊕x6

23

To determine the structure of Qξ we have to compute dim Ext1(Sij , Skl). To do this we view the Sij
as representations of the quiver Q2,3 in the example above. For example S12 is the representation

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

1

''OOOOOO

of dimension vector (1, 0; 0, 1, 0).For representations of Q2,3, the dimensions ofHom and Ext-groups
are determined by the bilinear form

χQ =

26664
1 0 −1 −1 −1
0 1 −1 −1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

37775
If V ∈ repα Q and W ∈ repβ Q where α = (a1, a2; b1, b2, b3) with a1 + a2 = b1 + b2 + b3 = k and

β = (c1, c2; d1, d2, d3) with c1 + c2 = d1 + d2 + d3 = l we have

dim Hom(V,W )− dim Ext1(V,W ) = χQ(α, β) = kl − (a1c1 + a2c2 + b1d1 + b2d2 + b3d3)

As Hom(Sij , Skl) = C⊕δikδjl we have that

dim Ext1(Sij , Skl) =

(
1 if i 6= k and j 6= l

0 otherwise
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But then, the local quiver setting (Qξ, αξ) is

(/).*-+,x1

(/).*-+,x6(/).*-+,x5

(/).*-+,x2(/).*-+,x3

(/).*-+,x4

66

vv

��

HH

UU

��vv

66

��

HH

UU

��

We want to determine whether the irreducible component of repn CPSL2(Z) containing Vξ contains
simple PSL2(Z)-representations, or equivalently, whether αξ is the dimension vector of a simple
representation of Qξ, that is,

χQξ (αξ, εj) ≤ 0 and χQξ (εj , αξ) for all 1 ≤ j ≤ 6

The Euler-form of Qξ is determined by the matrix where we number the vertices cyclically

χQ•
ξ

=

2666664
1 −1 0 0 0 −1
−1 1 −1 0 0 0
0 −1 1 −1 0 0
0 0 −1 1 −1 0
0 0 0 −1 1 −1
−1 0 0 0 −1 1

3777775
leading to the following set of inequalities8><>:

x1 ≤ x5 + x6

x2 ≤ x4 + x6

x3 ≤ x4 + x5

8><>:
x4 ≤ x2 + x3

x5 ≤ x1 + x3

x6 ≤ x1 + x2

Finally, observe that Vξ corresponds to a Q2,3-representation of dimension vector (x1 +x2 +x3, x4 +
x5 + x6;x1 + x4, x2 + x5, x3 + x6). If we write this dimension vector as (a1, a2; b1, b2, b3) then the
inequalities are equivalent to the conditions

ai ≥ bj for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3
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which gives us the desired restriction on the quintuples

(/).*-+,a2

(/).*-+,a1

(/).*-+,b3

(/).*-+,b2

(/).*-+,b1

at least when ai ≥ 3 and bj ≥ 2. The remaining cases are handled similarly.

Observe that we can use a similar strategy to determine the restrictions on irreducible repre-
sentations of any torus knot group quotient Gm,n ' Zm ∗ Zn. Having the classification of the
dimension vectors α of θ-semistable representations of Qm,n we can use the local quiver settings
to study these projective varieties Mss

α (Qm,n, θ), in particular to determine the α for which this
moduli space is a projective smooth variety.

Example 7.8 For example, iss4 PSL2(Z) has several components of dimension 3 and 2. For one of
the three 3-dimensional components, the one corresponding to α = (2, 2; 2, 1, 1), the different types
of semi-simples Mξ and corresponding local quivers Qξ are listed in figure 7.3. To verify whether
issn PSL2(Z) is smooth in ξ it suffices to prove that the traces along oriented cycle for the quiver-
setting (Qξ, αξ) generate a polynomial algebra. For example, consider a point ξ ∈ iss4 PSL2(Z)
of type

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1

(/).*-+,0

⊕ (/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1
⊕2

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

��������1 ��������2 ��������1

»
a
b

–
$$

ˆ
c d

˜
dd

ˆ
e f

˜
$$

»
g
h

–
dd

Then, the traces along oriented cycles in Qξ are generated by the following three algebraic inde-
pendent polynomials 8><>:

x = ac+ bd

y = eg + fh

z = (cg + dh)(ea+ fb)

and hence iss4 PSL2(Z) is smooth in ξ. The other cases being easier, we see that this component
of iss4 PSL2(Z) is a smooth compact manifold.

A further application of our local quiver-settings (Qξ, αξ) is that one can often describe large
families of irreducible Gm,n-representations, starting from knowing only rather trivial ones.
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(/).*-+,2

(/).*-+,2

(/).*-+,1

(/).*-+,1

(/).*-+,2

��������1
"" ||
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(/).*-+,1

(/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,1

⊕ (/).*-+,1

(/).*-+,1

(/).*-+,1

(/).*-+,0

(/).*-+,1

��������1 ��������1;; cc
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dd

(/).*-+,1

(/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,1

⊕ (/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

��������1 ��������1 ��������1;;
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dd
$$
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(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

⊕ (/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,0

(/).*-+,1

��������1 ��������1 ��������1 ��������1
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aa
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!!

aa

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1

(/).*-+,0

⊕ (/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1
⊕2

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

��������1 ��������2 ��������1
$$

dd
$$

dd

Figure 7.3: Local quiver settings for Mss
α (Q2,3, θ) for α = (2, 2; 2, 1, 1).
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Example 7.9 Consider the semisimple PSL2(Z)-representation ξ of type

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

⊕ (/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,0

(/).*-+,1

��������1 ��������1 ��������1 ��������1

a

!!

b

aa

c

!!

d

aa

e

!!

f

aa

Then, Mξ is determined by the following matrices

(

2641 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

375 ,

2641 0 0 0
0 ζ2 0 0
0 0 ζ 0
0 0 0 1

375)

The quiver-setting (Qξ, αξ) implies that any nearby orbit is determined by a matrix-couple

(

264 1 b1 0 0
a1 −1 d1 0
0 c1 1 f1
0 0 e1 −1

375 ,

264 1 b2 0 0
a2 ζ2 d2 0
0 c2 ζ f2
0 0 e2 1

375)

and as there is just one arrow in each direction these entries must satisfy

0 = a1a2 = b1b2 = c1c2 = d1d2 = e1e2 = f1f2

As the square of the first matrix must be the identity matrix rr
4, we have in addition that

0 = a1b1 = c1d1 = e1f1

Hence, we get several sheets of 3-dimensional families of representations (possibly, matrix-couples
lying on different sheets give isomorphic PSL2(Z)-representations, as the isomorphism holds in the
étale topology and not necessarily in the Zariski topology). One of the sheets has representatives

(

2641 0 0 0
a −1 d 0
0 0 1 0
0 0 e −1

375 ,

2641 b 0 0
0 ζ2 0 0
0 c ζ f
0 0 0 1

375)

From the description of dimension vectors of semi-simple quiver representations it follows that such
a representation is simple if and only if

ab 6= 0 cd 6= 0 and ef 6= 0

Moreover, these simples are not-isomorphic unless their traces ab, cd and ef evaluate to the same
numbers.
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Finally, one can use the local quiver-settings (Qξ, αξ) to determine the isomorphism classes of
Gm,n-representations having a specified Jordan-Hölder sequence. For this we apply the theory on
nullcones developed in the foregoing chapter.

Example 7.10 In the above example, this nullcone problem is quite trivial. A representation has
Mξ as Jordan-Hölder sum if and only if all traces vanish, that is,

ab = cd = ef = 0

Under the action of the group GL(αξ) = C∗ × C∗ × C∗ × C∗, these orbits are easily seen to be
classified by the arrays

a c e
b d f

filled with zeroes and ones subject to the rule that no column can have two 1’s, giving 27 = 33-orbits.

7.5 Differential forms

In this section we will define the complex of noncommutative differential forms of an arbitrary C-
algebra A and deduce some extra features in case A is Quillen-smooth. In the following section we
will compute the noncommutative deRham cohomology spaces which will be of crucial importance
in the final chapter.

Let us recall briefly the classical (commutative) case. When A is a commutative C-algebra, the
A-module of Kähler differentials Ω1

A is generated by the C-linear symbols da for a ∈ A satisfying
the relations

d(ab) = adb+ bda ∀a, b ∈ A

and the map A
d- Ω1

A is the universal derivation. By convention we define(
Ω0
A = A

ΩnA = ∧nA Ω1
A

where the exterior product is taken over A (not over C). Observe that it is spanned by the elements
a0da1 ∧ . . . ∧ dan that we usually write a0da1 . . . dan.

The exterior differential operator

ΩnA
d- Ωn+1

A

is defined by
d(a0da1 . . . dan) = da0da1 . . . dan

and gives rise to a sequence

A = Ω0
A

d- Ω1
A

d- . . .
d- ΩnA

d- Ωn+1
A

d- . . .
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which is a complex (that is, d ◦ d = 0) called the deRham complex . The homology groups of this
complex

H
n
dR A =

Ker ΩnA
d- Ωn+1

A

Im Ωn−1
A

d- ΩnA

are called the de Rham cohomology groups of A (over C).
We will extend this to noncommutative C-algebras. We denote by dgalg the category of differ-

ential graded C-algebras , that is, an object R ∈ dgalg is a Z-graded C-algebra

R = ⊕i∈ZRi

endowed with a differential d of degree one

. . .
d- Ri−1

d- Ri
d- Ri+1

d- . . .

such that d ◦ d = 0 and for all r ∈ Ri and s ∈ R we have

d(rs) = (dr)s+ (−1)ir(ds).

Clearly, morphisms in dgalg are C-algebra morphisms R
φ- S which are graded and commute

with the differentials.
To a C-algebra A we will now associate the differential graded algebra Ω A of noncommutative

differential forms . Denote the quotient vector space A/C.1 with A and define

Ωn A = A⊗A⊗ . . .⊗A| {z }
n

for n ≥ 0 and Ωn A = 0 for n < 0. For ai ∈ A we denote the image of a0⊗a1⊗ . . .⊗an in Ωn A by

(a0, . . . , an).

Consider the vectorspace Ω A = ⊕n∈Z Ωn A and define a product on it by

(a0, . . . , an)(an+1, . . . , am) =

nX
i=0

(−1)n−i(a0, . . . , ai−1, aiai+1, ai+2, . . . , am).

Further, define an operator d of degree one

. . .
d- Ωn−1 A

d- Ωn A
d- Ωn+1 A

d- . . .

by the rule
d(a0, . . . , an) = (1, a0, . . . , an).
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Theorem 7.7 These formulas define the unique dgalg structure on Ω A such that

a0da1 . . . dan = (a0, a1, . . . , an).

Proof. In any R = ⊕iRi ∈ dgalg containing A as an even degree subalgebra we have the following
identities

d(a0da1 . . . dan) = da0da1 . . . dan

(a0da1 . . . dan)(an+1dan+2 . . . dam) = (−1)na0a1da2 . . . dam

+
Pn
i=1(−1)n−ia0da1 . . . d(aiai+1) . . . dam

which proves uniqueness.
To prove existence, we define d on Ω A as above making the Z-graded C-vectorspace Ω A into

a complex as d ◦ d = 0. Consider the graded endomorphism ring of the complex

End = ⊕n∈ZEndn = ⊕n∈ZHomcomplex(Ω
• A,Ω•+n A).

With the composition as multiplication, End is a Z-graded C-algebra and we make it into an object
in dgalg by defining a differential

. . .
D- Endn−1

D- Endn
D- Endn+1

D- . . .

by the formula on any homogeneous φ

Dφ = d ◦ φ− (−1)deg φφ ◦ d.

Now define the morphism A
l- End0 which assigns to a ∈ A the left multiplication operator

la(a0, . . . , an) = (aa0, . . . , an)

and extend it to a map

Ω A
l∗- End by l∗(a0, . . . , an) = la0 ◦D la1 ◦ . . . ◦D lan.

Applying the general formulae given at the beginning of the proof to the subalgebra l(A) ⊂ - End
we see that the image of l∗ is a differential graded subalgebra of End and is the differential graded
subalgebra generated by l(A).

Define an evaluation map End
ev- Ω A by ev(φ) = φ(1). Because

D lai(1, ai+1, . . . , an) = d(ai, ai−1, . . . , an)− laid(1, ai+1, . . . , an)

= (1, ai, . . . , an)

we have that
ev(la0 ◦D la1 ◦ . . . ◦D lan) = (a0, . . . , an)

showing that ev is a left inverse for l∗ whence l∗ in injective.
Hence we can use the isomorphism Ω A ' Im(l∗) to transport the dgalg structure to Ω A

finishing the proof. �



420 Noncommutative Manifolds

Example 7.11 (Noncommutative differential forms of C× C) Let A = C × C and e and f

the idempotents corresponding to the two factors. The quotient space A = A/C1 can be identified
with Ce and therefore

Ωn C× C = (C× C)⊗ Ce⊗n = (C× C)den.

The differential d is defined by the formula

d((αe+ βf)den) = (α− β)den+1

and the product of Ω C× C is defined by the rule

(αe+ βf)den(γe+ δf)dem =

(
(αγe+ βδf)den+m when n is even

(αδe+ βγf)den+m when n is odd

We will relate the algebra structure of Ω A to that of A. The trick is to define another mul-
tiplication on Ω A making it only into a filtered algebra. We then prove that this filtered algebra
is isomorphic to the I-adic filtration of an algebra constructed from A and we recover the dgalg
multiplication on Ω A by taking the associated graded algebra.

We introduce the universal algebra LA with respect to based linear maps from A to C-algebras.
A based linear map is a C-linear map

A
ρ- R

where R is a C-algebra and ρ(1) = 1. The curvature of ρ is then defined to be the bilinear map

A×A ω- R defined by
ω(a, a′) = ρ(aa′)− ρ(a)ρ(a′)

that is, it is a measure for the failure of ρ to be an algebra map. Observe that ω vanishes if either
a or a′ is 1 so it can be viewed as a linear map

A⊗A ω- R.

Let T (A) = ⊕n≥0A
⊗n be the tensor algebra of the vectorspace A and define

LA =
T (A)

T (A)(1− 1A)T (A)

where 1A is the identity of A consider as a 1-tensor in T (A), then we have a based linear map

A
ρun
- LA a 7→ a

where a is the image in LA of the 1-tensor a in T (A). The map ρun is universal for based linear

maps A
ρ- R, that is, there is a unique algebra morphism LA

φρ- R making the diagram
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commute
LA

A
ρ -

ρ
u
n

-

R

∃φρ

?

In particular, there is a canonical algebra map LA
φid-- A corresponding to the identity map on

A. We define
IA = Ker φid / LA

and equip LA with the IA-adic filtration.
For an arbitrary R ∈ dgalg we define the Fedosov product on R to be the one induced by defining

on homogeneous r, s ∈ R the product

r.s = rs− (−1)deg rdrds

One easily checks that the Fedosov product is associative. Observe that if we decompose R = Rev⊕
Rodd into its homogeneous components of even (resp. odd) degree, then this new multiplication is
compatible with this decomposition and makes R into a Z/2Z-graded algebra.

We will now investigate the Fedosov product on Ω A. Let ωun be the curvature of the universal

based linear map A
ρun
- LA.

Theorem 7.8 There is an isomorphism of algebras

LA ' (Ωev A , . )

between LA and the even forms Ωev A equipped with the Fedosov product given by

ρun(a0)ω
un(a1, a2) . . . ω

un(a2n−1, a2n) - a0da1 . . . da2n

Under this isomorphism we have the correspondence

InA ' ⊕k≥nΩ2k A

The associated graded algebra gives an isomorphism

grIA LA = ⊕ InA
In+1
A

' Ωev A

with even forms equipped with the dgalg structure.
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Proof. Consider the based linear map A
ρ- Ωev A given by inclusion, then its curvature is given

by
ω(a, a′) = aa′ − a.a′ = dada′.

By the universal property of LA there is an algebra morphism

LA
φ- (Ωev A , . )

such that φ(ρun(a)) = a and φ(ωun(a, a′)) = dada′. Observe that the Fedosov product coincides
with the usual dgalg product when one of the terms is closed , that is d r = 0. Therefore, we have

φ(ρun(a0)ω
un(a1, a2) . . . ω

un(a2n−1, a2n)) = a0da1 . . . da2n

On the other hand, as Ω2n A = A⊗A⊗2n
we have a well defined map Ωev A

ψ- LA given by

ψ(a0da1 . . . da2n) = ρun(a0)ω
un(a1, a2) . . . ρ

un(a2n−1, a2n)

and it remains to prove that this map is surjective. The image of ψ is closed under left multiplication
as it is closed under left multiplication by elements ρun(a) (and they generate LA) as

ρun(a).ρun(a0)ω
un(a1, a2) . . . ω

un(a2n−1, a2n)

= ρun(aa0)ω
un(a1, a2) . . . ω

un(a2n−1, a2n)− ωun(a, a0)ω
un(a1, a2) . . . ω

un(a2n−1, a2n)

Because the image contains 1 this proves the claim and the isomorphism.
Identify via this isomorphism LA with Ωev A. Because dada′ ∈ IA we have Ω2k A ⊂ - InA for

all k ≥ n. Thus, Fn = ⊕k≥nΩ2k A ⊂ - IA. Conversely, IA = F1 and hence

InA = (F1)
n ⊂ - Fn

by the definition of the Fedosov product. Therefore, InA = Fn and the claim over the associated
graded follows. �

Example 7.12 (Even differential forms of C× C) As before, let e and f be the idempotents
of A = C× C corresponding to the two components. By definition,

LC×C =
T (Ce+ Cf)

(1− e− f)
=

C〈E,F 〉
(1− E − F )

' C[E]

The universal based linear map is given by

C× C ρun
- C[E]

(
e 7→ E

f 7→ 1− E
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and the curvature on A = Ce is given by

ωun(e, e) = E − E2

Therefore the isomorphism between Ωev A and LA = C[E] is given by

(αe+ βf)de2n
ψ- (αE + β(1− E))(E − E2)n.

The Fedosov product on Ωev A is given by the formula (using the multiplication formulas we found
above)

(αe+ βf)de2n.(γe+ δf)de2m = (αγe+ βδf)de2n+2m − (α− β)(γ − δ)de2n+2m+2

In order to check that ψ is indeed an algebra morphism we need to verify that in C[E] we have the
equality

(αE + β(1− E))(E − E2)n(γE + δ(1− E))(E − E2)m

= (αγE + βδ(1− E))(E − E2)n+m − (α− β)(γ − δ)(E − E2)n+m+1

which is indeed the case.
Further, IA = C[E](E −E2) and indeed C[E]

(E−E2)
' C×C. Finally, under the identification ψ we

obtain the usual multiplication of noncommutative differential forms from

Ω2n A× Ω2m A =
(E − E2)n

(E − E2)n+1
× (E − E2)m

(E − E2)m+1
- (E − E2)n+m

(E − E2)n+m+1
= Ω2n+2m A.

We now turn to all noncommutative differential forms Ω A. Observe that this algebra has an
involution σ which is the identity on even forms and is minus the identity on odd forms. σ is
an algebra automorphism both for the usual dgalg-algebra structure as for the Fedosov product.
Algebras with an involution are called super-algebras .

We want to construct an algebra universal for algebra morphisms from A to a super-algebra.
Consider the free product A ∗ A which is defined as follows. Let B1 be a vectorspace basis for
A− C.1 and B2 a duplicate of it. As a C-vectorspace A ∗A has a basis consisting of words

w = a1b1a2b2 . . . akbk or w = a1b1a2b2 . . . ak

for some k where the ai’s all belong to B1 or all to B2 and the bj ’s all belong to the other base set.
On this vectorspace one defines a C-algebra structure in the obvious way, that is by concatenating
words and if necessary (if the end term of the first word lies in the same base-set as the beginning
term of the second) use the multiplication table in A to reduce to a linear combination of allowed
words.
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The algebra A ∗ A is universal with respect to pairs of algebra maps A
f-
g
- R from A to R.

That is, there is a unique algebra map γ

R

A ∗A

∃γ

6

A
f

-

i 1

-

A

�

g

�

i2

making the diagram commute. Here, i1 is the inclusion of A in A ∗ A using only syllables in B1

and i2 is defined similarly. The construction of γ clearly is induced by sending a ∈ B1 to f(a) and
b ∈ B2 to g(b).

Further, interchanging the bases B1
τ- B2 equips A ∗ A with an involution, or if you prefer,

makes A ∗ A a super-algebra. Now, let S be a super-algebra with involution σS and let A
f- S

be an algebra morphism, then there is a unique morphism of super-algebras ψ making the diagram
commute

A ∗A

A
f -

i 1

-

S

∃ψ

?

ψ is the universal map corresponding to the pair of algebra maps A
f-

σS◦f
- S.

For any a ∈ A we define the elements in A ∗A :(
p(a) = 1

2
(i1(a) + i2(a))

q(a) = 1
2
(i1(a)− i2(a))

and we define QA / A ∗ A to be the ideal of A ∗ A generated by the elements q(a) for a ∈ A, then
clearly

A ' A ∗A
QA

We now have an analog of the previous theorem for all differential forms.
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Theorem 7.9 There is an isomorphism of super-algebras

A ∗A ' (Ω A , . )

between A ∗ A and the noncommutative differential forms Ω A equipped with the Fedosov product
given by

p(a0)q(a1) . . . q(an) - a0da1 . . . dan

Under this isomorphism we have the correspondence

Qn
A ' ⊕k≥nΩn A

and the associated graded algebra is isomorphic to Ω A with the usual dgalg structure.

Proof. We have an algebra map A
u- Ω A equipped with the Fedosov product given by a 7→ a+da

because

(a+ da).(a′ + da′) = aa′ − dada′ + ada′ + daa′ + dada′

= aa′ + d(aa′)

By the universal property of A ∗A there is a super-algebra morphism

A ∗A ψ- Ω A ψ(p(a)) = a and ψ(q(a)) = da

But then using that the Fedosov product coincides with the usual product when one of the forms
is closed we have

ψ(p(a0)q(a1) . . . q(an)) = a0da1 . . . dan

Conversely, we have a section to ψ defined by

Ω A
φ- A ∗A a0da1 . . . dan 7→ p(a0)q(a1) . . . q(an)

and we only have to prove that φ is surjective. The image Im φ is closed under left multiplication
by p(a) and q(a) as p(1) = 1 and(

p(a)p(a0)q(a1) . . . q(an) = p(aa0)q(a1) . . . q(an)− q(a)q(a0)q(a1) . . . q(an)

q(a)p(a0)q(a1) . . . q(an) = q(aa0)q(a1) . . . q(an)− p(a)q(a0)q(a1) . . . q(an)

Because the elements p(a) and q(a) generate A ∗ A, the image Im φ is a left ideal containing 1,
whence ψ is surjective.

The claims about the ideals Qn
A and about the associated graded algebra follow as in the proof

for even forms. �
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Example 7.13 (Noncommutative differential forms of C〈x, y〉) The noncommutative free
algebra in two variables C〈x, y〉 is the path algebra of the quiver

(/).*-+,
y

qq

x

--

Clearly we have C〈x, y〉 ∗ C〈x, y〉 = C〈x1, y1, x2, y2〉 and the maps(
p(x) = 1

2
(x1 + x2) q(x) = 1

2
(x1 − x2)

p(y) = 1
2
(y1 + y2) q(y) = 1

2
(y1 − y2)

It is easy to compute the maps p and q on any monomial in x and y using the formulae holding in
any A ∗A (

p(aa′) = p(a)p(a′) + q(a)q(a′)

q(aa′) = p(a)q(a′) + q(a)p(a′)

Further note that it follows from this that QC〈x,y〉 = (x1−x2, y1− y2) and we have all the required
tools to calculate (in principle) with Ω C〈x, y〉.

Example 7.14 (Noncommutative differential forms of C× C) The infinite dihedral group
D∞ is the group with presentation

D∞ = 〈a, b | a2 = 1 = b2〉

that is, an arbitrary element in D∞ is a word of the form

aibabab . . . ababj

where i, j = 0 or 1. Multiplication is given by concatenation of words, using the relations a2 = 1 =
b2 when necessary.

The group algebra C[D∞] is the vectorspace with basis D∞ and with multiplication induced by
the groupmultiplication in D∞. We now claim that

(C× C) ∗ (C× C) ' C[D∞]

Indeed, C×C ' C[Z2] the group algebra of the cyclic group of order two, that is C[Z2] = C[x]/(x2−
1), the isomorphism being given by

e - 1

2
(1 + x) f - 1

2
(1− x)

One also has the obvious notion of a free product in the category of groups and from the definition
it is clear that

Z2 ∗ Z2 ' D∞
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and therefore also on the level of group algebras

C[Z2] ∗ C[Z2] ' C[D∞]

The relevant maps C× C
p-
q
- C[D∞] are given by

(
p(e) = 1

2
+ 1

4
(a+ b) q(e) = 1

4
(a− b)

p(f) = 1
2
− 1

4
(a+ b) q(f) = − 1

4
(a− b)

and so QC×C = (a − b) / C[D∞]. Again, this information allows us to calculate with Ω C × C by
referring all computations to the more familiar group algebra C[D∞].

The above definitions and results are valid for every C-algebra A. We will indicate a few extra
properties provided the algebra A is Quillen-smooth.

We have the universal lifting algebra LA for based linear maps from A to C-algebras and the
ideal IA such that

A �φid

'
LA
IA
.

The IA-adic completion of LA is by definition the inverse limit

L̂A = lim�
n

LA
IA

Assume that A is formally smooth, then for every k we have an algebra map lifting φid
−1

LA
IkA

A
φid

−1
-

φ k

-

LA
IA

??

These compatible lifts define an algebra lift A
lun
- L̂A. This map can be used to construct algebra

lifts modulo nilpotent ideals in a systematic way. Assume I / R is such that Ik = 0 and there is

an algebra map A
µ- R

I
. We can lift µ to R as a based linear map, say ρ. Now we have the
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following situation

LA
can - L̂A

R

φ̂ρ

?

φ
ρ

-

A

ρun

6

µ -

l
u
n

-

ρ

-

R

I

??

Here, φρ is the algebra map coming from the universal lifting property of LA and φ̂ρ is its extension

to the completion. But then, µ̃ = φ̂ρ ◦ lun is an algebra lift of µ. That is,

Proposition 7.3 A is formally smooth if and only if there is an algebra section A - L̂A to the

projection L̂A -- A defined by mapping out IA.

We will give an explicit construction of the embedding A
lun
- L̂A. By formal smoothness we

have an algebra lift

A⊕ Ω2 A =
LA
I2A

A
id

-

l 2

-

A =
LA
IA

??

which is of the form l2(a) = a− φ(a) for a linear map A
φ- Ω2 A. As LA is freely generated by

the a ∈ A− C1, we can define a derivation on LA defined by

LA
D- LA D(a) = φ(a) ∀a ∈ A.

This derivation is called the Yang-Mills derivation of A.
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Clearly D(LA) ⊂ - IA and we have

D(dada′) = D(aa′ − a.a′)
= D(aa′)−D(a).a′ − a.D(a′)

= φ(aa′)− φ(a).a′ − a.φ(a′)

≡ aa′ − a.a′ mod I2A
≡ dada′ mod I2A

the next to last equality coming from the fact that l2 is an algebra map. Hence, D = id on
IA
I2
A

= Ω2 A.

Further, D(InA) ⊂ - InA and so D induces a derivation on the associated graded grIA LA. As

this derivation is zero on A = LA
IA

and one on IA
I2
A

it is n on
InA

In+1
A

. But then we have by induction

(D − n)...(D − 1)D(LA) ⊂ - In+1
A

Therefore, LA

In+1
A

decomposes into eigenspaces of D corresponding to the eigenvalues 0, 1, . . . , n and

because D is a derivation this decomposition defines a grading compatible with the product.

Hence, we obtain an isomorphism of LA

In+1
A

with its associated graded algebra by lifting
IkA

Ik+1
A

to

the eigenspace of D on
IkA

In+1
A

corresponding to the eigenvalue k.

Taking the inverse limit as n - ∞ we obtain an algebra isomorphism of L̂A with the com-
pletion of its associated graded algebra, that is,

Ω̂ev A =
Y
n

Ω2n A ' L̂A

In particular, the kernel of D is a subalgebra of L̂A mapped isomorphically onto A by the canonical

surjection L̂A -- A. Hence, this subalgebra gives the desired universal lift A ⊂l
un
- L̂A.

We can even give an explicit formula for lun. Let L be the degree two operator on Ωev A defined
by

L(a0da1 . . . da2n) = φ(a0)da1 . . . da2n +

2nX
j=1

a0da1 . . . daj−1dφ(aj)daj+1 . . . da2n

and let H denote the degree zero operator on even forms which is multiplication by n on Ω2n A.
Then, we have the relations

[H,L] = L and D = H + L
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whence we have on Ω̂ev A that

e−LHeL = H + e−L[H, eL] = H +

Z 1

0

e−tL[H,L]etLdt = D

Therefore, the universal lift for all a ∈ A is given by

lun(a) = e−La = a− φ(a) +
1

2
Lφ(a)− . . .

Example 7.15 (The universal lift for C× C) Recall the correspondence between Ωev C × C
and LC×C = C[E] given by

(αe+ βf)de2n - (αE + β(1− E))(E − E2)n

Lifting e to L
I2 we have to compute

(2− E)2E2 = E + (2E − 1)(E − E2) + (E − E2)2

whence φ(e) = (1−2E)(E−E2) and as f = 1−e we have φ(f) = (2E−1)(E−E2). The Yang-Mills
derivation D on C[E] is hence the one determined by

C[E]
D- C[E] D(E) = (1− 2E)(E − E2).

To determine the universal lift of e we have to compute

lun(e) = e− Le+
1

2
L2e− 1

6
L3e+ . . .

and we have

L(e) = φ(e) = (f − e)de2

L2(e) = L(f − e)de2 = −6(f − e)de4

L3(e) = −6L(f − e)de4 = 60(f − e)de6

L4(e) = ...

and therefore

lun(e) = E + (2E − 1)(E − E2) + 3(2E − 1)(E − E2)2 + 10(2E − 1)(E − E2)3 + . . .

Another characteristic feature of formally smooth algebras is the existence of connections on
Ω1 A. If E is an A-bimodule, then a connection on E consists of two operators
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• A right connection : E
∇r- E ⊗A Ω1 A satisfying

∇r(aea′) = a(∇re)a′ + aeda′,

• A left connection : E
∇l- Ω1 A⊗A E satisfying

∇l(aea′) = a(∇le)a′ + daea′

Given a right connection ∇r there is a bimodule splitting sr of the right multiplication map mr

E ⊗A A
mr-

�
sr

E

given by the formula

sr(e) = e⊗ 1− j(∇re) where j(e⊗ da) = ea⊗ 1− e⊗ a

Similarly, a left connection gives a bimodule splitting sl to the left multiplication map. Conse-
quently, if a connection exists on E, then E must be a projective bimodule.

Consider the special bimodule of noncommutative 1-forms Ω1 A, then as Ω1 A⊗AΩ1 A = Ω2 A
a connection on Ω1 A is the datum of three maps

Ω1 A

∇l-
d-
∇r-

Ω2 A

satisfying the following properties

∇l(aea′) = a∇l(e)a′ +(da)ea′

d(aea′) = a(de)a′ +(da)ea′ −ae(da′)
∇r(aea′) = a∇r(e)a′ +ae(da′)

Hence, if ∇r is a right connection then d + ∇r is a left connection and if ∇l is a left connection
then ∇l − d is a right connection. Therefore, onesided connections exist on Ω1 A if and only if
connections exist and hence if and only if Ω1 A is a projective bimodule.

But then we have an A-bimodule splitting of the exact sequence

0 - Ω2 A
j- Ω1 A⊗ A

m- Ω1 A - 0

where j(ωda) = ωa⊗ 1− ω ⊗ a and m(ω ⊗ a) = ωa.

Proposition 7.4 A connection exists on Ω1 A if and only if A is formally smooth.
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Proof. A bimodule splitting of the above map is determined by a retraction bimodule map p for
j. As Ω1 A⊗A ' A⊗A⊗A, a bimodule map p

Ω‘ A⊗ A
p- Ω2 A

is equivalent to a map A
φ- Ω2 A via p(a0da1 ⊗ a2) = a0φ(a1a2). But then we have

pj(da1da2) =p((da1)a2 ⊗ 1− da1 ⊗ da2)

=p(d(a1a2)⊗ 1− a1(da2)⊗ 1− da1 ⊗ a2)

=φ(a1a2)− a1φ(a2)− φ(a1)a2)

and splitting of the map means pj = id that is that φ satisfies

φ(aa′) = aφ(a′) + φ(a)a′ + dada′

which is equivalent to an algebra lift

A
φ∗- LA

IA
= A⊕ Ω2 A

Now, assume we have an algebra morphism

A
f- R

I
with I2 = 0

and lift f to a based linear map A
ρ- R. By the universal property of LA we have an algebra lift

LA
ρ∗- R

living over f . Therefore ρ∗(IA) ⊂ I and therefore ρ∗ is zero on I2A giving an algebra morphism

LA
I2A

f∗- R

living over f . But then the existence of an algebra map φ∗ as above gives a desired lifting f∗ ◦ φ∗
of f , finishing the proof. �

For a map A
φ- Ω2 A as above, a connection is given by the formulae

∇r(ada′) = aφ(a′) and ∇r(ada′) = aφ(a′) + dada′
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Example 7.16 (Connection on C〈x, y〉) Clearly we have Ω1 C〈x, y〉 = C〈x, y〉⊗Cx+Cy⊗C〈x, y〉
which is the free bimodule generated by dx and dy. There is a canonical connection with(

φ(x) = 0 and ∇l(dx) = ∇r(dx) = 0

φ(y) = 0 and ∇l(dy) = ∇r(dy) = 0

The image of φ on any word z1 . . . zn with zi = x or y is given by the formula

φ(z1 . . . zn) =∇rd(z1 . . . zn)

=∇r(
nX
i=1

z1 . . . zi−1(dzi)zi+1 . . . zn)

=

n−1X
i=1

z1 . . . zi−1(dzi)d(zi+1 . . . zn)

Example 7.17 (Connection on C× C) We have calculated above that the lifting map φ is de-
termined by

φ(e) = (1− 2E)(E − E2) = (f − e)de2

Therefore the corresponding left and right connections are given by(
∇r((αe+ βf)de) = (βf − αe)de2

∇l((αe+ βf)de) = (αf − βe)de2

7.6 deRham cohomology

In this section we will compute various sorts of noncommutative deRham cohomology . We have for
an arbitrary C-algebra A the complex of noncommutative differential forms

A = Ω0 A
d- Ω1 A

d- . . .
d- Ωn A

d- Ωn+1 A
d- . . .

A first attempt to define noncommutative de Rham cohomology is to take the homology groups of
this complex, we call these the big noncommutative de Rham cohomology

Hn
big A =

Ker Ωn A
d- Ωn+1 A

Im Ωn−1 A
d- Ωn A
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Example 7.18 (Big de Rham cohomology of C× C) We have seen before that Ωn C × C =
(C× C)den and that the differential is given by

Ωn C× C d- Ωn+1 C× C
(αe+ βf)den 7→ (α− β)den+1

From which it is immediately clear that(
H0
big C× C = C

Hn
big C× C = 0

for all n ≥ 1. This is not quite the answer H0 C×C = C⊕C we would expect from the commutative
case.

For a general C-algebra A it is usually very difficult to compute these cohomology groups. In case
of free algebras we can use the graded structure of the complex together with the Euler derivation
to compute them, a trick we will use later in greater generality.

Example 7.19 (Big de Rham cohomology of C〈x, y〉) Define the Euler derivation E on
C〈x, y〉 by

E(x) = x and E(y) = y

Observe that if w is a word in x and y of degree k, then we have the Eulerian property that

E(w) = kw

as one easily verifies.
We can define a degree preserving derivation LE on the differentially graded algebra Ω C〈x, y〉

by the rules
LE(a) = E(a) and LE(da) = dE(a) ∀a ∈ C〈x, y〉

Further we introduce the degree −1 contraction operator iE which is the super-derivation on
Ω C〈x, y〉 , that is,

iE(ωω′) = iE(ω)ω′ + (−1)iωiE(ω′) for ω ∈ Ωi C〈x, y〉

defined by the rules
iE(a) = 0 iE(da) = E(a) ∀a ∈ C〈x, y〉.

That is, we have the following situation

Ωn−1 Ωn Ωn+1

LE

XX

LE

YY

LE

XX

d

&&

iE

ff

d

&&

iE

ff
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These operators satisfy the equation

LE = iE ◦ d+ d ◦ iE

as both sides are derivations on Ω C〈x, y〉 and coincide on the generators a and da for a ∈ C〈x, y〉
of this differentially graded algebra.

We claim that LE is a total degree preserving linear automorphism on

Ωn C〈x, y〉 for n ≥ 1.

For if wi for 0 ≤ i ≤ n are words in x and y of degree ki with ki ≥ 1 for i ≥ 1, then we have

LE(w0dw1 . . . dwn) = (k0 + . . .+ kn)w0dw1 . . . dwn.

Using the words in x and y as a basis for A we see that the kernel and image of the differential d
must be homogeneous. But then, if ω is a multi-homogeneous element in Ωn C〈x, y〉 and in Ker d
we have for some integer k 6= 0 that

kω = LE(ω) = (iE ◦ d+ d ◦ iE)ω = d(iE ω)

and hence ω lies in Im d. Therefore, we have proved(
H0
big C〈x, y〉 = C

Hn
big C〈x, y〉 = 0

for all n ≥ 1.

The examples show that the differentially graded algebra Ω A is formal for A = C×C or C〈x, y〉.
Recall that for an arbitrary A∞-algebra Ω (in particular for Ω ∈ dgalg), the homology algebraH∗ Ω
has a canonical A∞-structure . That is, we have m1 = 0, m2 is induced by the ’multiplication’ m2

on Ω and there is a quasi-isomorphism of A∞-algebras H∗ Ω - Ω lifting the identity of H∗ Ω.
The A∞-algebra Ω is said to be formal if the canonical structure makes H∗ Ω into an ordinary

associative graded algebra (that is, such that all mn = 0 for n ≥ 3). In particular, if Ω = Ω A and
if the big deRham cohomology is concentrated in degree zero, then the degree properties of mn

imply that mn = 0 for n ≥ 3 and hence that Ω A is formal.
Let A be an arbitrary C-algebra and θ ∈ DerC A, the Lie algebra of C-algebra derivations of A,

then we define a degree preserving derivation Lθ and a degree −1 super-derivation iθ on Ω A

Ωn−1 A Ωn A Ωn+1 A

Lθ

XX

Lθ

YY

Lθ

XX

d

&&

iθ

ff

d

&&

iθ

ff
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defined by the rules (
Lθ(a) = θ(a) Lθ(da) = d θ(a)

iθ(a) = 0 iθ(da) = θ(a)

for all a ∈ A. In this generality we again have the fundamental identity

Lθ = iθ ◦ d+ d ◦ iθ

as both sides are degree preserving derivations on Ω A and they agree on all the generators a and
da for a ∈ A.

Lemma 7.2 Let θ, γ ∈ DerC A, then we have on Ω A the following identities of operators(
Lθ ◦ iγ − iγ ◦ Lθ = [Lθ, iγ ] = i[θ,γ] = iθ◦γ−γ◦θ
Lθ ◦ Lγ − Lγ ◦ Lθ = [Lθ, Lγ ] = L[θ,γ] = Lθ◦γ−γ◦θ

Proof. Consider the first identity. By definition both sides are degree −1 super-derivations on Ω A
so it suffices to check that they agree on generators. Clearly, both sides give 0 when evaluated on
a ∈ A and for da we have

(Lθ ◦ iγ − iγ ◦ Lθ)da = Lθ γ(a)− iγ d θ(a) = θ γ(a)− γ θ(a) = i[θ,γ](da)

A similar argument proves the second identity. �

Let Q be a quiver on k vertices {v1, . . . , vk}, then we can define an Euler derivation E on CQ
by the rules that

E(vi) = 0 ∀1 ≤ i ≤ k and E(a) = a ∀a ∈ Qa
By induction on the length l(p) of an oriented path p in the quiver Q one easily verifies that
E(p) = l(p)p. By the lemma above we have all the necessary ingredients to redo the argument in
example 7.19.

Theorem 7.10 For a quiver Q on k vertices, the noncommutative differential forms Ω CQ is
formal. In fact, we have for the big deRham cohomology(

H0
big CQ ' C× . . .× C (k factors)

Hn
big CQ ' 0 ∀n ≥ 1

For ω ∈ Ωi A and ω′ ∈ Ωj A we define the super-commutator to be

[ω, ω′] = ωω′ − (−1)ijω′ω
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That is, it is the usual commutator unless both i and j are odd in which case it is the sum ωω′+ω′ω.
As the differential d is a super-derivation on Ω A we have that

d([ω, ω′]) = [dω, ω′] + (−1)i[ω, dω′]

and therefore the differential maps the subspaces of super-commutators to subspaces of super-
commutators. Therefore, if we define

DR
n A =

Ωn APn
i=0[Ω

i A,Ωn−i A]

Then the dgalg-structure on Ω A induces one on the complex

DR
0
A

d- DR
1
A

d- DR
2
A

d- . . .

which is called the Karoubi complex of A.
We define the noncommutative de Rham cohomology groups of A to be the homology of the

Karoubi complex, that is

Hn
dR A =

Ker DRn A
d- DRn+1 A

Im DRn−1 A
d- DRn A

Example 7.20 (Noncommutative de Rham cohomology of C× C) Recall that the product
on Ω C× C is given by the formula

(αe+ βf)den(γe+ δf)dem =

(
(αγe+ βδf)den+m when n is even

(αδe+ βγf)den+m when n is odd

If m is odd, then we deduce from this that the commutator

[αe+ βf, (γe+ δf)dem] = (α− β)(γe− δf)dem

and hence we can write any element of Ωm C×C = (C×C)dem as a (super) commutator, whence

DR
m C× C = 0 when m is odd.

On the other hand, if m is even then any commutator with k even

[(αe+ βf)dek, (γe+ δf)dem−k] = 0

whereas if k is odd we have

[(αe+ βf)dek, (γe+ δf)dem−k] = (αδ + βγ)dem
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As a consequence the space of super-commutators in Ωm C× C is one dimensional and therefore

DR
m C× C = C when m is even and > 0.

Thus, the Karoubi complex of C× C has the following form

C× C d- 0
d- C d- 0

d- C d- 0
d- . . .

and therefore we have for the noncommutative de Rham cohomology groups

H
n
dR C× C =

8><>:
C× C when n = 0

0 when n is odd

C when n is even and > 0.

Example 7.21 (Noncommutative de Rham cohomology of C〈x, y〉) Consider again the
Eulerian derivation E on C〈x, y〉 and the operators LE and iE on Ω C〈x, y〉. Repeating the above
argument that d is compatible with the subspaces of super-commutators for iE and LE we see
that we have induced operations

DRn−1 DRn DRn+1

LE

XX

LE

YY

LE

XX

d

&&

iE

ff

d

&&

iE

ff

We have again that LE is an isomorphism on DRn C〈x, y〉 whenever n ≥ 1 and again we deduce
from the equality LE = iE ◦ d+ d ◦ iE that

H
n
dR C〈x, y〉 =

(
C when n = 0 ,

0 when n ≥ 1.

Theorem 7.11 Let Q be a quiver on k vertices, then the Karoubi complex of CQ is acyclic. In
particular, (

H0
dR CQ ' C× . . .× C (k factors)

Hn
dR CQ ' 0 ∀n ≥ 1

So far we have considered differential forms with respect to the basefield C. Sometimes it is
useful to consider only the relative differential forms on A with respect to a subalgebra B. These
can be defined as follows.
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Let AB be the cokernel of the inclusion B ⊂ - A in the category B − bimod of bimodules over
B. We define the space of relative differential forms of degree n with respect to B to be

ΩnB A = A⊗B AB ⊗B . . .⊗B AB| {z }
n

By definition ΩnB A is the quotient space of Ωn A by the relations

(a0, . . . , ai−1b, ai, . . . , an) =(a0, . . . , ai−1, bai, . . . , an)

(a0, . . . , ai−1, s, ai+1, . . . , an) =0

for all b ∈ B and 1 ≤ i ≤ n. One verifies that the multiplication and differential defined on Ω A are
compatible with these relations, making ΩB A an object in dgalg. Moreover, there is a canonical
epimorphism

Ω A -- ΩB A in dgalg.

We will now determine the kernel. First we give the universal property for ΩB A. Given Γ = ⊕Γn

in dgalg and an algebra map A
f- Γ0 such that d(f B) = 0, then there is a unique morphism

in dgalg making the diagram commute

ΩB A ................
∃f∗ - Γ

A
∪

6

f - Γ0

∪

6

Indeed, by the universal property of Ω A there is a unique morphism Ω A
f∗- Γ in dgalg extending

f given by
f∗(a0da1 . . . dan) = f(a0)d(f(a1)) . . . d(f(an)).

If d(f B) = 0 then one verifies that f∗ is compatible with the relations defining ΩB A, proving the
universal property.

Proposition 7.5 For a subalgebra B of A we have an isomorphism in dgalg

ΩB A =
Ω A

Ω A d(B) Ω A

Proof. The ideal generated by d(B) is closed under d and therefore the quotient is an object in
dgalg with the same universal property as ΩB A. �
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An important special case is when B = C × . . . × C is the subalgebra of CQ generated by the
vertex-idempotents. In this case we will denote

Ωrel CQ = ΩB CQ

and call it the relative differential forms on Q.

Lemma 7.3 Let Q be a quiver on k vertices, then a basis for Ωnrel CQ is given by the elements

p0dp1 . . . dpn

where pi is an oriented path in the quiver such that length p0 ≥ 0 and length pi ≥ 1 for 1 ≤ i ≤ n
and such that the starting point of pi is the endpoint of pi+1 for all 1 ≤ i ≤ n− 1.

Proof. Clearly l(pi) ≥ 1 when i ≥ 1 or pi would be a vertex-idempotent whence in B. Let v be
the starting point of pi and w the end point of pi+1 and assume that v 6= w, then

pi ⊗B pi+1 = piv ⊗B wpi+1 = pivw ⊗B pi+1 = 0

from which the assertion follows. �

We define the big relative de Rham cohomology groups of A with respect to B to be the coho-
mology of the complex

Ω0
B A

d- Ω1
B A

d- Ω2
B A

d- . . .

that is,

Hn
B A =

Ker Ωn A
d- Ωn+1 A

Im Ωn−1 A
d- Ωn A

In the case of path algebras of quivers, we can use the grading by length op paths and the Eulerian
derivation to compute these relative de Rham groups.

Example 7.22 (Big relative de Rham cohomology) Let M (resp. C×C) be the path algebras
of the quivers

e(/).*-+,

f(/).*-+,

y

qq

x

--

u

DD

v

��
resp.

e(/).*-+,

f(/).*-+,
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The Eulerian derivation E on M is defined by

E(e) = E(f) = 0 E(x) = x E(y) = y E(u) = u and E(v) = v.

Observe that E respects all relation holding in M and so is indeed a C× C- derivation of M.
As before we define a degree preserving derivation LE and a degree −1 super-derivation iE on

Ωrel M = ΩC×C M by the rules(
LE(a) = E(a) LE(da) = dE(a)

iE(a) = 0 iE(da) = E(a)

for all a ∈ M. We have the equality

LE = iE ◦ d+ d ◦ iE

and arguing as before we obtain that

H
n
rel M =

(
C× C when n = 0,

0 when n ≥ 1.

Theorem 7.12 Let Q be a quiver on k vertices, then the relative differential forms Ωrel CQ is a
formal differentially graded algebra. In fact,(

H0
rel CQ ' C× . . .× C (k factors)

Hn
rel CQ ' 0 ∀n ≥ 1

We can repeat the construction of the Karoubi complex verbatim for relative differential opera-
tors and define a relative Karoubi complex

DR
0
B A

d- DR
1
B A

d- DR
2
B A

d- . . .

where

DR
n
B A =

ΩnB APn
i=0 [ ΩiB A,Ωn−iB A ]

Clearly , we then define the noncommutative relative de Rham cohomology groups of A with respect
to B to be the homology of this complex

H
n
B,dR A =

Ker DRnB A
d- DRn+1

B A

Im DRn−1
B A

d- DRnB A
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Let θ ∈ DerB A, that is θ is a C-derivation on A such that θ(b) = 0 for every b ∈ B. Then, as

Lθ(db) = d θ(b) = 0 and iθ(db) = θ(b) = 0

we see that the operators Lθ and iθ can be defined on the relative forms

ΩB A =
Ω A

Ω A dB Ω A

and also on the relative Karoubi complex. Again, these induced operators satisfy the identities of
lemma 7.2. In the special case of the Eulerian derivation E on the path algebra CQ we see that
E ∈ DerB CQ and hence we have the following result.

Theorem 7.13 Let Q be a quiver on k vertices. Then, the relative Karoubi complex is acyclic.
That is, (

H0
rel,dR CQ ' C× . . .× C (k factors)

Hn
rel,dR CQ ' 0 ∀n ≥ 1

7.7 Symplectic structure

Let Q be a quiver on k vertices {v1, . . . , vk}. We will determine the first terms in the relative
Karoubi complex. Define

dR
n
rel CQ =

Ωnrel CQPn
i=0[ Ωirel CQ,Ωn−i CQ ]

In the commutative case, dR0 are the functions on the manifold and dR1 the 1-forms. We will
characterize the noncommutative functions and noncommutative 1-forms in the case of quivers.

Recall that a necklace word w in the quiver Q is an equivalence class of an oriented cycle
c = a1 . . . al of length l ≥ 0 in Q, where c ∼ c′ if c′ is obtained from c by cyclically permuting the
composing arrows ai.

Lemma 7.4 A C-basis for the noncommutative functions

dR
0
rel CQ ' CQ

[ CQ,CQ ]

are the necklace words in the quiver Q.
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Proof. Let W be the C-space spanned by all necklace words w in Q and define a linear map

CQ n-- W

(
p 7→ wp if p is a cycle

p 7→ 0 if p is not

for all oriented paths p in the quiver Q, where wp is the necklace word in Q determined by the
oriented cycle p. Because wp1p2 = wp2p1 it follows that the commutator subspace [CQ,CQ] belongs
to the kernel of this map. Conversely, let

x = x0 + x1 + . . .+ xm

be in the kernel where x0 is a linear combination of non-cyclic paths and xi for 1 ≤ i ≤ m is a
linear combination of cyclic paths mapping to the same necklace word wi, then n(xi) = 0 for all
i ≥ 0. Clearly, x0 ∈ [CQ,CQ] as we can write every noncyclic path p = a.p′ = a.p′ − p′.a as a
commutator. If xi = a1p1 +a2p2 + . . .+alpl with n(pi) = wi, then p1 = q.q′ and p2 = q′.q for some
paths q, q′ whence p1 − p2 is a commutator. But then, xi = a1(p1 − p2) + (a2 − a1)p2 + . . .+ alpl
is a sum of a commutator and a linear combination of strictly fewer elements. By induction, this
shows that xi ∈ [CQ,CQ]. �

If we fix a dimension vector α, then taking traces defines a map

dR0 CQ tr- C[repα Q]

whence noncommutative functions determine GL(α)-invariant commutative functions on the rep-
resentation space repα Q and hence commutative functions on the quotient varieties issα Q.
In fact, we have seen that the image tr(dR0 CQ) generates the ring of polynomial invariants

C[repα Q]GL(α) = C[issα Q].

Lemma 7.5 dR1
rel CQ is isomorphic as C-space to

M
j(/).*-+, i(/).*-+,aoo

vi.CQ.vj da =
M

j(/).*-+, i(/).*-+,aoo

i(/).*-+, j(/).*-+,��
d j(/).*-+, i(/).*-+,aoo

Proof. If p.q is not a cycle, then pdq = [p, dq] and so vanishes in dR1
rel CQ so we only have to

consider terms pdq with p.q an oriented cycle in Q. For any three paths p, q and r in Q we have
the equality

[p.qdr] = pqdr − qd(rp) + qrdp

whence in dR1
rel CQ we have relations allowing to reduce the length of the differential part

qd(rp) = pqdr + qrdp
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so dR1
rel CQ is spanned by terms of the form pda with a ∈ Qa and p.a an oriented cycle in Q.

Therefore, we have a surjection

Ω1
rel CQ --

M
j(/).*-+, i(/).*-+,aoo

vi.CQ.vj da

By construction, it is clear that [Ω0
rel CQ,Ω1

rel CQ] lies in the kernel of this map and using an
argument as in the lemma above one shows also the converse inclusion. �

Example 7.23 (dRirel M) Take the path algebra M of the quiver of example 7.22. Noncommuta-
tive functions on M are the 0-forms, which is by definition the quotient space

dR0
rel M =

M
[ M,M ]

If p is an oriented path of length ≥ 1 in the quiver with different begin- and endpoint, then we can
write p as a concatenation p = p1p2 with pi an oriented path of length ≥ 0 such that p2p1 = 0 in
M. As [p1, p2] = p1p2−p2p1 = 0 in dR0

rel M we deduce that the space of noncommutative functions
on M has as C-basis the necklace words w

�

�''''

�;;;;

� SSSS� cccc

�
uuu

u

�
��
��

�

�

00
00

�
III

I

�[[[[
�kkkk

�
����

����

x
w

where each bead is this time one of the elementst = x d = y and H = uv

together with the necklace words of length zero e and f . Each necklace word w corresponds to the
equivalence class of the words in M obtained from multiplying the beads in the indicated orientation
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and and two words in {x, y, u, v} in M are said to be equivalent if they are identical up to cyclic
permutation of the terms.

Substituting each bead with the n× n matrices specified before and taking traces we get a map

dR0
rel M =

M
[ M,M ]

tr- C[repα M]

Hence, noncommutative functions on M induce ordinary functions on all the representation spaces
repα M and these functions are GL(α)-invariant. Moreover, the image of this map generates the
ring of polynomial invariants as we mentioned before.

Next, we consider noncommutative 1-forms on M which are by definition elements of the space

dR1
rel M =

Ω1
rel M

[ M,Ω1
rel M ]

Recall that Ω1
rel M is spanned by the expressions p0dp1 with p0 resp. p1 oriented paths in the

quiver of length ≥ 0 resp. ≥ 1 and such that the starting point of p0 is the end point of p1. To
form dR1

rel M we have to divide out expressions such as

[ p, p0dp1 ] = pp0dp1 + p0p1dp− p0d(p1p)

That is, if we have connecting oriented paths p2 and p1 both of length ≥ 1 we have in dR1
rel M

p0d(p1p2) = p2p0dp1 + p0p1dp2

and by iterating this procedure whenever the differential term is a path of length ≥ 2 we can
represent each class in dR1

rel M as a combination from

Me dx+ Me dy + Me du+ Mf dv

Now, Me = eMe+ fMe and let p ∈ fMe. Then, we have in dR1
rel M

d(xp) = p dx+ x dp

but by our description of Ω1 M the left hand term is zero as is the second term on the right, whence
p dx = 0. A similar argument holds replacing x by y. As for u, let p ∈ eMe, then we have in
dR1

rel M
d(up) = p du+ u dp

and again the left-hand and the second term on the right are zero whence p du = 0. An analogous
result holds for v and p ∈ fMf . Therefore, we have the description of noncommutative 1-forms on
M

dR1
rel M = eMe dx+ eMe dy + fMe du+ eMf dv
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That is, in graphical terms

dR1
rel M = e(/).*-+,�� d e(/).*-+,

x

��
+ e(/).*-+,�� d e(/).*-+,

y

��
+

f(/).*-+, e(/).*-+,��
d e(/).*-+, f(/).*-+,uoo + e(/).*-+, f(/).*-+,��

d f(/).*-+, e(/).*-+,voo

Using the above descriptions of dRirel CQ for i = 0, 1 and the differential dR0
rel CQ d- dR1

rel CQ
we can define partial differential operators associated to any arrow j(/).*-+, i(/).*-+,aoo in Q.

∂

∂a
: dR

0
rel CQ - viCQvj by df =

X
a∈Qa

∂f

∂a
da

To take the partial derivative of a necklace word w with respect to an arrow a, we run through
w and each time we encounter a we open the necklace by removing that occurrence of a and then
take the sum of all the paths obtained.

Example 7.24 For the path algebra M we have the partial differential operators

∂w

∂x
=

X
•

�

�))

� HH�

�
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�
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Recall that a symplectic structure on a (commutative) manifoldM is given by a closed differential
2-form. The non-degenerate 2-form ω gives a canonical isomorphism

T M ' T ∗ M

that is, between vector fields on M and differential 1-forms. Further, there is a unique C-linear
map from functions f on M to vectorfields ξf by the requirement that −df = iξfω where iξ is the
contraction of n-forms to n − 1-forms using the vectorfield ξ. We can make the functions on M
into a Poisson algebra by defining

{f, g} = ω(ξf , ξg)

and one verifies that this bracket satisfies the Jacobi and Leibnitz identities.
The Lie derivative Lξ with respect to ξ is defined by the Cartan homotopy formula

Lξ ϕ = iξdϕ+ diξϕ

for any differential form ϕ. A vectorfield ξ is said to be symplectic if it preserves the symplectic
form, that is, Lξω = 0. In particular, for any function f on M we have that ξf is symplectic.
Moreover the assignment

f - ξf

defines a Lie algebra morphism from the functions O(M) on M equipped with the Poisson bracket
to the Lie algebra of symplectic vectorfields, V ectω M . Moreover, this map fits into the exact
sequence

0 - C - O(M) - V ectω M - H1
dR M - 0

Recall the definition of the double quiver Qd of a quiver Q given in section 5.5 by assigning to
every arrow a ∈ Qa an arrow a∗ in Qd in the opposite direction.

Definition 7.3 The canonical noncommutative symplectic structure on the double quiver Qd is
given by the element

ω =
X
a∈Qa

dada∗ ∈ dR
2
rel CQd

We will use ω to define a correspondence between the noncommutative 1-forms dR1
rel CQd and

the noncommutative vectorfields which are define to be B = CQv -derivations of the path algebra
CQd. Recall that if θ ∈ DerB CQd we define operators Lθ and iθ on Ω CQd and on dR CQd by the
rules (

Lθ(a) = θ(a) Lθ(da) = dθ(a)

iθ(a) = 0 iθ(da) = θ(a)

and that the following identities are satisfied for all θ, γ ∈ DerB CQd

[Lθ, Lγ ] = L[θ,γ] and [iθ, iγ ] = i[θ,γ]
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These operators allow us to define a linear map

DerB CQ τ- dR
1
rel CQ by τ(θ) = iθ(ω)

We claim that this is an isomorphism. Indeed, every B-derivation θ on CQd is fully determined by

its image on the arrows in Qd which satisfy if a = j(/).*-+, i(/).*-+,aoo

θ(a) = θ(vjavi) = vjθ(a)vi ∈ vjCQdvi

so determines an element θ(a)da∗ ∈ dR1
rel CQd. Further, we compute

iθ(ω) =
X
a∈Qa

iθ(da)da
∗ − iθ(da∗)da

=
X
a∈Qa

θ(a)da∗ − θ(a∗)da

which lies in dR1
rel CQd. As both B-derivations and 1-forms are determined by their coefficients, τ

is indeed bijective.

Example 7.25 For the path algebra of the double quiver M,the analog of the classical isomorphism
T M ' T ∗ M is the isomorphism

DerC×C M i.ω- dR1
rel M

as for any C× C-derivation θ we have

iθ ω = iθ(dx)dy − dxiθ(dy) + iθ(du)dv − duiθ(dv)
= θ(x)dy − dxθ(y) + θ(u)dv − duθ(v)
≡ θ(x)dy − θ(y)dx+ θ(u)dv − θ(v)du

and using the relations in M we can easily prove that any C× C derivation on M must satisfy

θ(x) ∈ eMe θ(y) ∈ eMe θ(u) ∈ eMf θ(v) ∈ fMe

so the above expression belongs to dR1
rel M. Conversely, any θ defined by its images on the

generators x, y, u and v by

−θ(y)dx+ θ(x)dy − θ(v)du+ θ(u)dv ∈ dR1
rel M

induces a derivation on M.
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In analogy with the commutative case we define a derivation θ ∈ DerB CQd to be symplectic
if and only if Lθω = 0 ∈ dR2

rel CQd. We will denote the subspace of symplectic derivations by
Derω CQ. It follows from the noncommutative analog of the Cartan homotopy equality

Lθ = iθ ◦ d+ d ◦ iθ

and the fact that ω is a closed form, that θ ∈ Derω CQd implies

Lθω = diθω = τ(θ) = 0

That is, τ(θ) is a closed form which by the acyclicity of the Karoubi complex shows that it must
be an exact form. That is we have an isomorphism of exact sequences of C-vectorspaces

0 - B - dR
0
rel CQd d- (dR1

rel CQ)exact - 0

0 - B

=

?
- CQd

[CQd,CQd]

'
?

- Derω CQd

τ−1

?
- 0

n the next section we will show that this is in fact an exact sequence of Lie algebras.

7.8 Necklace Lie algebras

Let Q be a quiver on k vertices, Qd its double and ω =
P
a∈Qa

dada∗ the canonical symplectic form

on CQd. Recall from last section the definition of the partial differential operators ∂
∂a

for an arrow

a in Qd.

Definition 7.4 The Kontsevich bracket on the necklace words in Qd, dR0
rel CQd is defined to be

{w1, w2}K =
X
a∈Qa

(
∂w1

∂a

∂w2

∂a∗
− ∂w1

∂a∗
∂w2

∂a
) mod [CQd,CQd]

That is, to compute {w1, w2}K we consider for every arrow a ∈ Qa all occurrences of a in w1 and
a∗ in w2. We then open up the necklaces removing these factors and gluing the open ends together
to form a new necklace word. We then replace the roles of a∗ and a and redo this operation (with
a minus sign), see figure 7.4. Finally, we add all the obtained necklace words.
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Figure 7.4: Kontsevich bracket {w1, w2}K .

Example 7.26 For the path algebra M the canonical symplectic form is ω = dxdy + dudv. Using
the above graphical description we have that the Kontsevich bracket {w1, w2}K is equal to
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Using this graphical description of the Kontsevich bracket, it is an enjoyable exercise to verify
that the bracket turns dR0

rel CQd into a Lie algebra. That is, for all necklace words wi, the bracket
satisfies the Jacobi identity

{{w1, w2}K , w3}K + {{w2, w3}K , w1}K + {{w3, w1}K , w2}K = 0
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Term 1a vanishes against 2c, term 1b against 3d, 1c against 3a, 1d against 2b, 2a against 3c and 2d
against 3b.
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Recall the exact commutative diagram from last section

0 - B - dR
0
rel CQd d- (dR1

rel CQ)exact - 0

0 - B

=

?
- CQd

[CQd,CQd]

'
?

- Derω CQd

τ−1

?
- 0

Clearly, the symplectic derivationsDerω CQd are equipped with a Lie algebra structure via [θ1, θ2] =
θ1 ◦ θ2 − θ2 ◦ θ1.

For every necklace word w we have a derivation θw = τ−1dw which is defined by(
θw(a) = ∂w

∂a∗

θw(a∗) = − ∂w
∂a

With this notation we get the following interpretations of the Kontsevich bracket

{w1, w2}K = iθw1
(iθw2

ω) = Lθw1
(w2) = −Lθw2

(w1)

where the next to last equality follows because iθw2
ω = dw2 and the fact that iθw1

(dw) = Lθw1
(w)

for any w. More generally, for any B-derivation θ and any necklace word w we have the equation

iθ(iθwω) = Lθ(w)

By the commutation relations for the operators Lθ and iθ we have for all B-derivations θi the
equalities

Lθ1 iθ2 iθ3ω − iθ2 iθ3Lθ1ω = [Lθ1 , iθ2 ]iθ3ω + iθ2Lθ1 iθ3ω

− iθ2Lθ1 iθ3ω + iθ2 [Lθ1 , iθ3 ]ω

= i[θ1,θ2]iθ3ω + iθ2 i[θ1,θ3]ω

By the homotopy formula we have Lθwω = 0 for every necklace word w, whence we get

Lθw1
iθ2 iθ3ω = i[θw1 ,θ2]iθ3ω + iθ2 i[θw1 ,θ3]ω

Take θ2 = θw2 , then the left hand side is equal to

Lθw1
iθw2

iθ3ω = −Lθw1
iθ3 iθw2

ω

= −Lθw1
Lθ3w2
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whereas the last term on the right equals

iθw2
i[θw1 ,θ3]ω = −i[θw1 ,θ3]iθw2

ω

= −L[θw1 ,θ3]w2 = −Lthetaw1
Lθ3w2 + Lθ3Lθw1

w2

and substituting this we obtain that

i[θw1 ,θw2 ]iθ3ω = −Lθw1
Lθ3w2 + Lθw1

Lθ3w2 − Lθ3Lθw1
w2

= −Lθ3Lθw1
w2 = −Lθ3{w1, w2}K

= −iθ3 iθ{w1,w2}K
ω = iθ{w1,w2}K

iθ3ω

Finally, if we take θ = [θw1 , θw2 ]− θ{w1,w2}K we have that iθω is a closed 1-form and that iθiθ3ω =
−iθ3 iθω = 0 for all θ3. But then by the homotopy formula Lθ3 iθω = 0 whence iθω = 0, which
finally implies that θ = 0. This concludes the proof of :

Theorem 7.14 With notations as before, the necklace words dR0
rel CQd is a Lie algebra for the

Kontsevich bracket, and the sequence

0 - B - dR
0
rel CQd τ−1d- Derω CQd - 0

is an exact sequence (hence a central extension) of Lie algebras.

This result will be crucial in the study of coadjoint orbits in the final chapter.
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So far, the more interesting applications of the theory developed in the previous chapter have not
been to noncommutative manifolds but to families (Yn)n of varieties in which the role of Quillen-
smooth algebras is replaced by Cayley-smooth algebras and where the sum-maps are replaced by
gluing into a larger space. In this chapter we give the details of Ginzburg’s coadjoint-orbit result
for Calogero-Moser phase space which was the first instance of such a situation.

Hilbn C2

Sn C2 ........................................-
��

π

Calon

H

-

Here, Hilbn C2 is the Hilbert scheme of n points in the complex plane C2 which is a desingularization
of the symmetric power Sn C2. On the other hand, Sn C2 can be viewed as the special fiber of
a family of which the general fiber is isomorphic to Calon, the phase space of Calogero-Moser
particles. Calon is a smooth affine variety and we will see that it is isomorphic to trissn An for
some Cayley-smooth order An ∈ alg@n. Surprisingly, forgetting the complex structure, Calon itself
is diffeomorphic (as a C∞-manifold) to Hilbn C2 via rotations of hyper-Kähler structures.

George Wilson has shown that the varieties Calon can be glued together to form an infinite
dimensional manifold, the adelic GrassmannianG

n

Calon = Grad

The adelic Grassmannian can be identified with the isomorphism classes of right ideals in the first
Weyl algebra A1(C) and as the automorphism group of the Weyl algebra acts on this set with
countably many orbits it was conjectured that every Calon might be a coadjoint orbit. This fact
was proved by Victor Ginzburg who showed that, indeed,

Calon ⊂ - g∗

for some infinite dimensional Lie algebra g which is nothing but the necklace Lie algebra of the
path algebra of a double quiver naturally associated to the situation. After reading through this
chapter, the reader will have no problem to prove for herself that every quiver variety, in the sense
of Nakajima, is diffeomorphic to a coadjoint orbit of a necklace Lie algebra.
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8.1 Moment maps

In section 2.8 we have studied in some detail the real moment map of m-tuples of n×n matrices. In
this section we will first describe the obvious extension to representation spaces of quivers and then
to prove the properties of the real moment map for moduli spaces of θ-semistable representations.

We fix a quiver Q on k vertices {v1, . . . , vk} and a dimension vector α = (a1, . . . , ak) ∈ Nk.
We take the standard Hermitian inproduct on each of the vertex spaces C⊕ai and this induces the
standard operator inner product on every arrow-component of repα Q. That is, for every arrow

��������i��������j
aoo we define (Va,Wa) = tr(VaW

∗
a )

on the component HomC(C⊕ai ,C⊕aj ) for all V,W ∈ repα and where W ∗a is the adjoint matrix
(wji)i,j of Wa = (wij)i,j . The Hermitian inproduct on repα Q is defined to be

(V,W ) =
X
a∈Qa

tr(VaW
∗
a )

The maximal compact subgroup of the basechange group GL(α) =
Qk
i=1GLai is the multiple unitary

group

U(α) =

kY
i=1

Uai

which preserves the Hermitian inproduct under the basechange action as subgroup of GL(α). The
Lie algebra Lie U(α) is the algebra of multiple skew-Hermitian matrices

Lie U(α) =

kM
j=1

iHermaj = { h = (h1, . . . , hk) | hj = −h∗j }

and the induced action of Lie U(α) on repα Q is given by the rule

(h.V )a = hjVa − Vahi for ��������i��������j
aoo

for all V ∈ repα Q. This action allows us to define the real moment map µ for the action of U(α)
on the representation space repα Q by the assignment

repα Q
µ- (iLie U(α))∗ V - (h 7→ i(h.V, V ))

That is, the moment map is determined by

(h.V, V ) =
X

��������i��������j
aoo

tr(hjVaV
∗
a − VahiV ∗a )

=
X
vi∈Qv

tr(hi(
X

����������������i
aoo

VaV
∗
a −

X
��������i�������� aoo
V ∗a Va ))
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Using the nondegeneracy of the Killing form on Lie U(α) we have the identification

µ−1(0) = {V ∈ repα Q |
X

����������������i
aoo

VaV
∗
a =

X
��������i�������� aoo
V ∗a Va ∀vi ∈ Qv}

The real moment map µR is then defined to be

repα Q
µR- Lie U(α) V 7→ i[V, V ∗] = i(

X
����������������j

aoo

VaV
∗
a −

X
��������j�������� aoo
V ∗a Va)j

Reasoning as in section 2.8 we can prove the following moment map description of the isomorphism
classes of semi-simple α-dimensional representations of Q.

Theorem 8.1 There are natural one-to-one correspondences between

1. points of issα Q, and

2. U(α)-orbits in µ−1
R (0).

Next, we will prove a similar result to describe the points of Mss
α (Q, θ), the moduli space of

θ-semistable α-dimensional representations of Q, introduced and studied in section 4.8. Fix, an
integral k-tuple θ = (t1, . . . , tk) ∈ Zk with associated character

GL(α)
χθ- C∗ g = (g1, . . . , gk) 7→

kY
i=1

det(gi)
ti

We have seen in section 4.8 that in order to describe Mss
α (Q, θ) we consider the extended represen-

tation space repα Q⊕C. We introduce a function N on this extended space replacing the norm in
the above discussion.

repα Q⊕ C N- R+ (V, z) 7→ |z|e
1
2
‖V ‖2

where ‖V ‖ is the norm coming from the Hermitian inproduct on repα Q. Sometimes, the function
N is called the Kähler potential for the inproduct on repα Q. We will investigate the properties of
N .

Lemma 8.1 Let X be a closed subvariety of repα Q ⊕ C disjoint from rep′α Q = {(V, 0) | V ∈
repα Q} ⊂ - repα Q ⊕ C. Then, the restriction of N to X is proper and therefore achieves its
minimum.
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Proof. Because X and rep′α Q are disjoint closed subvarieties of repα Q⊕C, there is a polynomial
f ∈ C[repα Q ⊕ C] = C[repα Q][z] such that f | X = 1 and f | rep′α Q = 0. That is, X is
contained in the hypersurface

V(f − 1) = V(zP1(V ) + . . .+ znPn(V )− 1) ⊂ - repα Q⊕ C

where the Pi ∈ C[repα Q].

Now, N is proper if the inverse images N−1([0, r]) are compact for all r ∈ R+, that is, there
exist constants r1 and r2 depending on X and r such that

N(z, V ) ≤ r implies |z| ≤ r1 and ‖V ‖ ≤ r2.

We can always take r1 = r so we only need to bound ‖V ‖. If |z| ≤ re−
1
2
‖V ‖2 , then we have that

|zP1(V ) + . . .+ znPn(V )| ≤ r|P1(V )|e−
1
2
‖V ‖2 + . . .+ rn|Pn(V )|e−

n
2
‖V ‖2

Choose r2, depending on r and Pi such that the condition

‖V ‖ > r2 implies that |Pi(V )| < 1
n
r−ie

i
2
‖V ‖2 ∀1 ≤ i ≤ n

But then if ‖V ‖ > r2, we have |zP1(V ) + . . . + znPn(V )| < 1 and so (V, z) does not belong to
X. �

Recall that GL(α) acts on the extended representation space repα Q⊕ C via

g.(V, z) = (g.V, χ−1
θ (g)z)

Lemma 8.2 Let O be a GL(α)-orbit in the extended representation space repα Q ⊕ C which is
disjoint from rep′α Q. Then, if the restriction of N to O achieves its minimum, then O is a closed
orbit.

Proof. Assume that N achieves its minimum in the point Vz = (V, z) ∈ O. If O is not a closed
orbit we can by the Hilbert criterium find a one-parameter subgroup λ of GL(α) such that

lim
t7→0

λ(t).Vz /∈ O

and the limit exists in repα Q⊕ C. Decompose the representation V =
P
n∈Z Vn into eigenspaces

with respect to the one-parameter subgroup λ, that is,

λ(t).V =
X
n∈Z

tnVn
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Because the limit exists, we have that Vn = 0 whenever n < 0 and θ(λ) ≤ 0. Because the limit is
not contained in O we have that Vn 6= 0 for some n > 0. Further, by conjugating λ if necessary
we may assume that the weightspace decomposition V =

P
n Vn is orthogonal with respect to the

inproduct in repα Q.
Using these properties we then have that

N(λ(t).(V, z)) = |z|e
1
2
|V0|2 |t|−θ(λ)e

1
2

P
n>0|t|

n‖Vn‖2

This expression will decrease when t approaches zero, contradicting the assumption that the mini-
mum of N | O was achieved in (V, z). This contradiction implies that O must be a closed orbit.

�

Recall from section 4.8 that an orbit O(V, z) is closed and disjoint from rep′α Q for some z ∈ C∗
if and only if V is the direct sum of θ-stable representations of Q. Recall the real moment map

repα Q
µ- (iLie U(α))∗

And consider the special real valued function dχθ on Lie U(α) which is the restriction to Lie U(α)

of the differential of GL(α)
χθ- C∗ at the identity element (which takes real values). In fact, for

any m = (m1, . . . ,mk) ∈ Lie GL(α) = Mα(C) we have that

dχθ(m) =
X
vj∈Qv

tjtr(mj) =
X
vj∈Qv

tr(mjtj
rr
aj )

With these notations we have the promised extension to moduli spaces of θ-semistable representa-
tions.

Theorem 8.2 There are natural one-to-one correspondences between

1. points of Mss
α (Q, θ), and

2. U(α)-orbits in µ−1(dχθ).

Proof. Let Vz = (V, z) ∈ repα Q⊕ C with z 6= 0. For any h = (h1, . . . , hk) in iLie U(α) we define
the functions

mV (h) =
d

dt
|t=0 log N(eth.Vz)

= (h.V, V )− dχθ(h)

m
(2)
V (h) =

d

dt
|t=0 log N(eth.Vz)

= 2‖h.V ‖2
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The function mV is the zero map if and only if the restriction of N to the orbit O(Vz) has a
critical point at Vz. As the basechange action of U(α) on the extended representation space
repα Q⊕ C preserves the Kähler potential N , N induces a function on the quotient O(Vz)/U(α).

The formula for m
(2)
V shows that this function is strictly convex (except in directions along the

fibers {(V, c) | c ∈ C} where it is linear). Hence, a critical point is a minimum and there can be
at most one such critical point. From the lemmas above we have that N has a minimum on O(Vz)
if and only if O(Vz) is a closed orbit, which in its turn is equivalent to V being the direct sum of
θ-stable representations, whence determining a point of Mss

α (Q, θ). �

Finally, for any h ∈ iLie U(α) we have the formulas

µ(V )(h) = i
X
vi∈Qv

tr(hi(
X

����������������i
aoo

VaV
∗
a −

X
��������i�������� aoo
V ∗a Va ))

dχθ(h) =
X
vi∈Qv

tr(hiti
rr
ai)

whence by nondegeneracy of the Killing form, the equality µ(V ) = dχθ is equivalent to the condi-
tions X

����������������j
aoo

VaV
∗
a −

X
��������j�������� aoo
V ∗a Va = itj

rr
aj ∀vj ∈ Qv

We can assign to θ = (t1, . . . , tk) ∈ Zk the element iθrrα = (it1
rr
a1 , . . . , itk

rr
ak

) ∈ Lie U(α). We
then can rephrase the results of this section as

Theorem 8.3 There are natural identification between the spaces

issα Q←→ µ−1
R (0)/U(α)

and between the spaces
Mss
α (Q, θ)←→ µ−1

R (iθrrα)/U(α)

8.2 Dynamical systems

In this chapter we will illustrate what we have learned on the simplest wild quiver Q which is neither
Dynkin nor extended Dynkin

(/).*-+, (/).*-+, bee
a //

In this section we will show that the representation theory of this quiver is of importance in system
theory.
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A linear time invariant dynamical system Σ is determined by the following system of differential
equations 8<:

dx

dt
= Bx+Au

y = Cx.
(8.1)

Here, u(t) ∈ Cm is the input or control of the system at tome t, x(t) ∈ Cn the state of the system and
y(t) ∈ Cp the output of the system Σ. Time invariance of Σ means that the matrices A ∈Mn×m(C),
B ∈Mn(C) and C ∈Mp×n(C) are constant, that is Σ = (A,B,C) is a representation of the quiver

Q̃

(/).*-+, (/).*-+, (/).*-+,
b

��a // c //

of dimension vector α = (m,n, p). The system Σ can be represented as a black box

u(t) y(t)

x(t)

• •// //

which is in a certain state x(t) that we can try to change by using the input controls u(t). By
reading the output signals y(t) we can try to determine the state of the system.

Recall that the matrix exponential eB of any n× n matrix B is defined by the infinite series

eB = rr
n +B +

B2

2!
+ . . .+

Bm

m!
+ . . .

The importance of this construction is clear from the fact that eBt is the fundamental matrix for
the homogeneous differential equation dx

dt
= Bx. That is, the columns of eBt are a basis for the

n-dimensional space of solutions of the equation dx
dt

= Bx.

Motivated by this, we look for a solution to equation (8.1) as the form x(t) = eBtg(t) for some
function g(t). Substitution gives the condition

dg

dt
= e−BtAu whence g(τ) = g(τ0) +

Z τ

τ0

e−BtAu(t)dt.

Observe that x(τ0) = eBτ0g(τ0) and we obtain the solution of the linear dynamical system Σ =
(A,B,C) : (

x(τ) = e(τ−τ0)Bx(τ0) +
R τ
τ0
e(τ−t)BAu(t)dt

y(τ) = CeB(τ−τ0)x(τ0) +
R τ
τ0
Ce(τ−t)BAu(t)dt.
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Differentiating we see that this is indeed a solution and it is the unique one having a prescribed
starting state x(τ0). Indeed, given another solution x1(τ) we have that x1(τ) − x(τ) is a solution
to the homogeneous system dx

dt
= Bt, but then

x1(τ) = x(τ) + eτBe−τ0B(x1(τ0)− x(τ0)).

We call the system Σ completely controllable if we can steer any starting state x(τ0) to the zero
state by some control function u(t) in a finite time span [τ0, τ ]. That is, the equation

0 = x(τ0) +

Z τ

τ0

e(τ0−t)BAu(t)dt

has a solution in τ and u(t). As the system is time-invariant we may always assume that τ0 = 0
and have to satisfy the equation

0 = x0 +

Z τ

0

etBAu(t)dt for every x0 ∈ Cn (8.2)

Consider the control matrix c(Σ) which is the n×mn matrix

c(Σ) = A BA B2A Bn-1A. . .

Assume that rk c(Σ) < n then there is a non-zero state s ∈ Cn such that strc(Σ) = 0, where
str denotes the transpose (row column) of s. Because B satisfies the characteristic polynomial
χB(t), Bn and all higher powers Bm are linear combinations of {rrn, B,B2, . . . , Bn−1}. Hence,
strBmA = 0 for all m. Writing out the power series expansion of etB in equation (8.2) this leads to
the contradiction that 0 = strx0 for all x0 ∈ Cn. Hence, if rk c(Σ) < n, then Σ is not completely
controllable.

Conversely, let rk c(Σ) = n and assume that Σ is not completely controllable. That is, the space
of all states

s(τ, u) =

Z τ

0

e−tBAu(t)dt

is a proper subspace of Cn. But then, there is a non-zero state s ∈ Cn such that strs(τ, u) = 0 for
all τ and all functions u(t). Differentiating this with respect to τ we obtain

stre−τBAu(τ) = 0 whence stre−τBA = 0 (8.3)

for any τ as u(τ) can take on any vector. For τ = 0 this gives strA = 0. If we differentiate (8.3)
with respect to τ we get strBe−τBA = 0 for all τ and for τ = 0 this gives strBA = 0. Iterating
this process we show that strBmA = 0 for any m, whence

str
ˆ
A BA B2A . . . Bn−1A

˜
= 0

contradicting the assumption that rk c(Σ) = n. That is, we have proved :
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Proposition 8.1 A linear time-invariant dynamical system Σ determined by the matrices (A,B,C)
is completely controllable if and only if rk c(Σ) is maximal.

We say that a state x(τ) at time τ is unobservable if Ce(τ−t)Bx(τ) = 0 for all t. Intuitively this
means that the state x(τ) cannot be detected uniquely from the output of the system Σ. Again, if
we differentiate this condition a number of times and evaluate at t = τ we obtain the conditions

Cx(τ) = CBx(τ) = . . . = CBn−1x(τ) = 0.

We say that Σ is completely observable if the zero state is the only unobservable state at any
time τ . Consider the observation matrix o(Σ) of the system Σ which is the pn× n matrix

o(Σ) =
ˆ
Ctr (CB)tr . . . (CBn−1)tr

˜tr
An analogous argument as in the proof of proposition 8.1 gives us that a linear time-invariant
dynamical system Σ determined by the matrices (A,B,C) is completely observable if and only if
rk o(Σ) is maximal.

Assume we have two systems Σ and Σ′, determined by matrix triples from repα Q = Mn×m(C)×
Mn(C)×Mp×n(C) producing the same output y(t) when given the same input u(t), for all possible
input functions u(t). We recall that the output function y for a system Σ = (A,B,C) is determined
by

y(τ) = CeB(τ−τ0)x(τ0) +

Z τ

τ0

Ce(τ−t)BAu(t)dt.

Differentiating this a number of times and evaluating at τ = τ0 as in the proof of proposition 8.1
equality of input/output for Σ and Σ′ gives the conditions

CBiA = C′B
′iA′ for all i.

But then, we have for any v ∈ Cmn that c(Σ)(v) = 0 ⇔ c(Σ′)(v) = 0 and we can decompose
Cpn = V ⊕W such that the restriction of c(Σ) and c(Σ′) to V are the zero map and the restrictions to
W give isomorphisms with Cn. Hence, there is an invertible matrix g ∈ GLn such that c(Σ′) = gc(Σ)
and from the commutative diagram

Cmn c(Σ)-- Cn ⊂ o(Σ)- Cpn

‖ ‖

Cmn c(Σ′)-- Cn

g

?
⊂ o(Σ′)- Cpn

we obtain that also o(Σ′) = o(Σ)g−1.
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Consider the system Σ1 = (A1, B1, C1) equivalent with Σ under the base-change matrix g. That
is, Σ1 = g.Σ = (gA, gBg−1, Cg−1). Then,

ˆ
A1, B1A1, . . . , B

n−1
1 A1

˜
= gc(Σ) = c(Σ′) =

h
A′, B′A′, . . . , B

′n−1A′
i

and so A1 = A′. Further, as Bi+1
1 A1 = B

′i+1A′ we have by induction on i that the restriction

of B1 on the subspace of B
′iIm(A′) is equal to the restriction of B′ on this space. Moreover, asPn−1

i=0 B
′iIm(A′) = Cn it follows that B1 = B′. Because o(Σ′) = o(Σ)g−1 we also have C1 = C′.

This finishes the proof of :

Proposition 8.2 Let Σ = (A,B,C) and Σ′ = (A′, B′, C′) be two completely controllable and
completely observable dynamical systems. The following are equivalent

1. The input/output behavior of Σ and Σ′ are equal.

2. The systems Σ and Σ′ are equivalent, that is, there exists an invertible matrix g ∈ GLn such
that

A′ = gA, B′ = gBg−1 and C′ = Cg−1.

Hence, in system identification it is important to classify completely controllable and observable
systems Σ ∈ repα Q̃ under this restricted basechange action. We will concentrate on the input part
and consider completely controllable minisystems, that is, representations Σ = (A,B) ∈ repα Q
where α = (m,n) such that c(Σ) is of maximal rank. First, we relate the system theoretic notion
to that of θ-semistability for θ = (−n,m) (observe that θ(α) = 0).

Lemma 8.3 If Σ = (A,B) ∈ repα Q is θ-semistable, then Σ is completely controllable and m ≤ n.

Proof. If m > n then (Ker A, 0) is a proper subrepresentation of Σ of dimension vector β =
(dim Im A−m, 0) with θ(β) < 0 so Σ cannot be θ-semistable. If Σ is not completely controllable
then the subspaceW of C⊕n spanned by the images of A,BA, . . . , Bn−1A has dimension k < n. But
then, Σ has a proper subrepresentation of dimension vector β = (m, k) with θ(β) < 0, contradicting
the θ-semistability assumption. �

We introduce a combinatorial gadget : the Kalman code . It is an array consisting of (n+1)×m
boxes each having a position label (i, j) where 0 ≤ i ≤ n and 1 ≤ j ≤ m. These boxes are ordered
lexicographically that is (i′, j′) < (i, j) if and only if either i′ < i or i′ = i and j′ < j. Exactly n of
these boxes are painted black subject to the rule that if box (i, j) is black, then so is box (i′, j) for
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all i′ < i. That is, a Kalman code looks like

0

n

1 m

We assign to a completely controllable couple Σ = (A,B) its Kalman code K(Σ) as follows : let
A =

ˆ
A1 A2 . . . Am

˜
, that is Ai is the i-th column of A. Paint the box (i, j) black if and only

if the column vector BiAj is linearly independent of the column vectors BkAl for all (k, l) < (i, j).
The painted array K(Σ) is indeed a Kalman code. Assume that box (i, j) is black but box (i′, j)

white for i′ < i, then

Bi
′
Aj =

X
(k,l)<(i′,j)

αklB
kAl but then, BiAj =

X
(k,l)<(i′,j)

αklB
k+i−i′Al

and all (k + i − i′, l) < (i, l), a contradiction. Moreover, K(Σ) has exactly n black boxes as there
are n linearly independent columns of the control matrix c(Σ) when Σ is completely controllable.

The Kalman code is a discrete invariant of the orbit O(Σ) under the restricted basechange
action by GLn. This follows from the fact that BiAj is linearly independent of the BkAl for all
(k, l) < (i, j) if and only if gBiAj is linearly independent of the gBkAl for any g ∈ GLn and the
observation that gBkAl = (gBg−1)k(gA)l.

With repcα Q we will denote the open subset of repα Q of all completely controllable couples
(A,B). We consider the map

repα Q
ψ - Mn×(n+1)m(C)

(A,B) 7→
ˆ
A BA B2A . . . Bn−1A BnA

˜
The matrix ψ(A,B) determines a linear map ψ(A,B) : C(n+1)m - Cn and (A,B) is a completely
controllable couple if and only if the corresponding linear map ψ(A,B) is surjective. Moreover, there
is a linear action of GLn on Mn×(n+1)m(C) by left multiplication and the map ψ is GLn-equivariant.
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ψ(A,B)

Figure 8.1: Kalman code and barcode.

The Kalman code induces a barcode on ψ(A,B), that is the n× n minor of ψ(A,B) determined
by the columns corresponding to black boxes in the Kalman code, see figure 8.1 By construction
this minor is an invertible matrix g−1 ∈ GLn. We can choose a canonical point in the orbit O(Σ)
: g.(A,B). It does have the characteristic property that the n × n minor of its image under ψ,
determined by the Kalman code is the identity matrix rr

n. The matrix ψ(g.(A,B)) will be denoted
by b(A,B) and is called barcode of the completely controllable pair Σ = (A,B). We claim that the
barcode determines the orbit uniquely.

The map ψ is injective on the open set repcα Q. Indeed, ifˆ
A BA . . . BnA

˜
=

h
A′ B′A′ . . . B

′nA′
i

then A = A′, B | Im(A) = B′ | Im(A) and hence by induction also

B | BiIm(A) = B′ | B
′iIm(A′) for all i ≤ n− 1.

But then, B = B′ as both couples (A,B) and (A′, B′) are completely controllable. Hence, the
barcode b(A,B) determines the orbit O(Σ) and is a point in the Grassmannian Grassn(m(n+1)).
We have

Vc ⊂ ψ- Mmax
n×m(n+1)(C)

Grassn(m(n+ 1))

χ

??

b(.)

-

where ψ is a GLn-equivariant embedding and χ the orbit map. Observe that the barcode matrix
b(A,B) shows that the stabilizer of (A,B) is trivial. Indeed, the minor of g.b(A,B) determined by
the Kalman code is equal to g. Moreover, continuity of b implies that the orbit O(Σ) is closed in
repcα Q.
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Consider the differential of ψ. For all (A,B) ∈ repα Q and (X,Y ) ∈ T(A,B) repα Q ' repα Q
we have

(B + εY )j(A+ εX) = BnA+ ε (BnX +

j−1X
i=0

BiY Bn−1−iA).

Therefore the differential of ψ in (A,B) ∈ repα Q, dψ(A,B)(X,Y ) is equal toˆ
X BX + Y A B2X +BY A+ Y BA . . . BnX +

Pn−1
i=0 B

iY Bn−1−iA
˜
.

Assume dψ(A,B)(X,Y ) is the zero matrix, then X = 0 and substituting in the next term also

Y A = 0. Substituting in the third gives Y BA = 0, then in the fourth Y B2A = 0 and so on until
Y Bn−1A = 0. But then,

Y
ˆ
A BA B2A . . . Bn−1A

˜
= 0.

If (A,B) is a completely controllable pair, this implies that Y = 0 and hence shows that dψ(A,B) is
injective for all (A,B) ∈ repcα Q. By the implicit function theorem, ψ induces a GLn-equivariant
diffeomorphism between repcα Q and a locally closed submanifold of Mmax

n×(n+1)m(C). The image of
this submanifold under the orbit map χ is again a manifold as all fibers are equal to GLn. This
concludes the difficult part of the Kalman theorem :

Theorem 8.4 The orbit space Oc = repcα Q/GLn of equivalence classes of completely controllable
couples is a locally closed submanifold of dimension m.n of the Grassmannian Grassn(m(n+ 1)).

In fact repcα Q
b-- Oc is a principal GLn-bundle.

To prove the dimension statement, consider repcα(K) the set of completely controllable pairs
(A,B) having Kalman code K and let Oc(K) be the image under the orbit map. After identifying

repcα(K) with its image under ψ, the barcode matrix b(A,B) gives a section Oc(K) ⊂ s- repcα(K).
In fact,

GLn ×Oc(K) - Vc(K) (g, x) 7→ g.s(x)

is a GLn-equivariant diffeomorphism because the n × n minor determined by K of g.b(A,B) is g.
Consider the generic Kalman code Kg of figure 8.2 obtained by painting the top boxes black from
left to right until one has n black boxes. Clearly repcα(Kg) is open in repcα and one deduces

dim Oc = dim Oc(K
g) = dim Vc(K

g)− dim GLn = mn+ n2 − n2 = mn.

The Kalman orbit space also naturally defines an order over the moduli space Mss
α (Q, θ). First,

observe that whenever m ≤ n we have θ-stable representations of dimension vector α = (m,n) for
θ = (−n,m). Then,

dim Mss
α (Q, θ) = dim repα Q− dim GL(α) + 1 = n2 +mn− n2 −m2 + 1 = m(n−m) + 1
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0

n

1 m

Figure 8.2: Generic Kalman code.

By the lemma we have that repssα Q is an open subset of repcα Q and let Oss be the open subset
of Oc it determines. Then, the natural quotient map

Oss -- Mss
α (Q, θ)

is generically a principal PGLm-fibration, so determines a central simple algebra over the function
field of Mss

α (Q, θ).
In particular, if m = 1 then Oss 'Mss

α (Q, θ) and both are isomorphic to An and the orbits are
parametrized by an old acquaintance, the companion matrix and its canonical cyclic vector

A =

26664
1
0
. . .
0
0

37775 B =

266664
0 xn
−1 0 xn−1

. . .
. . .

...
−1 0 x2

−1 x1

377775
Trivial as this case seems, we will see that it soon gets interesting if we consider its extension to
the double quiver Qd and to deformed preprojective algebras.

8.3 Deformed preprojective algebras

Recall the construction of deformed preprojective algebras given in section 5.5. Let Q be a quiver
on k vertices and Qd its double quiver , that is to each arrow a ∈ Qa we add an arrow a∗ with the
reverse orientation in Qda and define the commutator element c =

P
a∈Qa

[a, a∗] in the path algebra
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CQd. For a weight λ = (λ1, . . . , λk) ∈ Ck we define the deformed preprojective algebra

Πλ =
CQd

c− λ

In this section we will give an outline of the determination of the dimension vectors of simple
Πλ-representations due to W. Crawley-Boevey [21].

We know already that a dimension vector α = (a1, . . . , ak) can be the dimension vector of a
Πλ-representation only if λ.α = 0, so we will denote this subset of Nk by Nkλ. With ∆+

λ we will

denote the subset of positive roots α of Q lying in Nkλ and with N∆+
λ the additive semigroup they

generate.

If vi is a loop-free vertex of Q we have defined the reflexion Zk ri- Zk by

ri(α) = α− TQ(α, εi)

and we define its dual reflexion Ck si- Ck by the formula

si(λ)j = λj − TQ(εi, εj)λi

Clearly, we have si(λ).α = λ.ri(α). We say that a loop-free vertex vi in Q is admissible for (λ, α)
(or for λ) if λi 6= 0. We define an equivalence relation ∼ on pairs (λ, α) ∈ Ck × Zk induced
by (λ, α) ∼ (si(λ), ri(α)) whenever vi is an admissible vertex for (λ, α). We want to relate the
representation theory of Πλ to that of Πsi(λ).

Theorem 8.5 If vi is an admissible vertex for λ, then there is an equivalence of categories

Πλ − rep
Ei- Πsi(λ) − rep

that acts as the reflection ri on the dimension vectors.

Proof. Because the definition of Πλ does not depend on the orientation of the quiver Q we may
assume that there are no arrows in Q having starting vertex vi. Let V ∈ repα Πλ and consider V

as a representation of the double quiver Qd. Consider the vectorspace

V⊕ =
M

��������j��������i
aoo

Vj

where the sum is taken over all arrows a ∈ Qa terminating in vi. Let µa and πa be the inclusion

and projection between Vj and V⊕ and define maps Vi
µ- V⊕ and V⊕

π- Vi by the formulas

π =
1

λi

X
����������������i

aoo

Va ◦ πa and µ =
X

����������������i
aoo

µa ◦ Va
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then π ◦ µ = rr
Vi whence µ ◦ π is an idempotent endomorphism on V⊕.

We define the representation V ′ of Qd by the following data : V ′j = Vj for j 6= i, V ′a = Va and
V ′a∗ = Va∗ whenever the terminating vertex of a is not vi. Further,

V ′i = Im rr− µ ◦ π = Ker π

and for an arrow ��������j��������i
aoo in Q we define(

V ′a = −λi(rr− µ ◦ π) ◦ µa : V ′j - V ′i
V ′a∗ = πa | V ′i : V ′i - V ′j

We claim that V ′ is a representation of Πsi(λ). Indeed, for a vertex vi we haveX
����������������i

aoo

V ′aV
′
a∗ =

X
����������������i

aoo

− λi(rr− µ ◦ π) ◦ µa ◦ πa | V ′i = −λi(rr− µ ◦ π) | V ′i = −λirrV ′i

and (siλ)i = −λi. Further, for an arrow ��������j��������i
aoo in Q then

V ′a∗V
′
a = πa ◦ (−λi(rr− µ ◦ π) ◦ µa) = −λiπa ◦ µa + λiπa ◦ µ ◦ π ◦ µa = −λirrVj + Va∗Va

but then, whenever j 6= i we have the equalityX
����������������j

aoo

V ′aV
′
a∗ −

X
��������j�������� aoo
V ′a∗V

′
a =

X
����������������j

aoo

VaVa∗ −
X

��������j�������� aoo
Va∗Va − TQ(εj , εi)λi

rr
Vj

because there are −TQ(εj , εi) arrows from vj to vi. Then, this reduces to

λj
rr
Vj − TQ(εj , εi)λi

rr
Vi = (siλ)j

rr
Vj

The assignment V 7→ V ′ extends to a functor Ei and the exact sequence

0 - V ′i - V⊕
π- Vi - 0

shows that it acts as ri on the dimension vectors. Finally, the reflection also defines a functor
E′i : Πsi(λ)−rep - Πλ−rep and one shows that there is a natural equivalence V - E′i(Ei(V ))
finishing the proof. �

Recall from section 5.5 that for a fixed dimension vector α we have the complex moment map

repα Q
d µα- Mα µα(V )i =

X
��������i�������� aoo
VaVa∗ −

X
����������������i

aoo

Va∗Va
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and that we have the identification rep
α

Πλ = µ−1
α (λ). A geometric interpretation of the proof of

the foregoing theorem tells us that the schemes µ−1
α (λ) and µ−1

ri(α)(si(λ)) have the same number of

irreducible components and that

dim µ−1
α (λ)− α.α = dim µ−1

ri(α)(si(λ))− ri(α).ri(α)

see [21, lemma 1.2] for full details. The set of λ-Schur roots Sλ was defined to be the set of α ∈ Nk
such that

pQ(α) ≥ pQ(β1) + . . .+ pQ(βr)

for all decompositions α = β1 + . . . + βr with the βi ∈ ∆+
λ . If we demand a proper inequality >

for all decompositions we get a subset Σλ and call it the set of λ-simple roots . Recall that Sλ and
hence Σλ consists of Schur roots of Q.

As in the case of Kac’s theorem where one obtains the set of all roots from the subsets Π =
{εi | vi has no looops} and the fundamental set of roots FQ = {α ∈ Nk − 0 | TQ(α, εi) ≤ 0 and
supp(α) is connected }, we can use the above reflection functors Ei to reduce pairs (λ, α) under
the equivalence relation ∼ to a particularly nice form, see [21, Thm. 4.8].

Theorem 8.6 If α ∈ Σλ, then (λ, α) ∼ (λ′, α′) with(
α′ ∈ Π if α is a real root,

α′ ∈ FQ if α is an imaginary root.

Proposition 8.3 If (λ, α) is such that α ∈ Σλ, then rep
α

Πλ = µ−1
α (λ) is irreducible and

dim µ−1
α (λ) = α.α− 1 + 2pQ(α)

In particular, µ−1
α (λ) is a complete intersection.

Proof. If α ∈ Σλ, then we know by theorem 5.18 that

dim µ−1
α (λ) = α.α− χQ(α, α) + pQ(α) = α.α− 1 + 2pQ(α)

as pQ(α) = 1 − χQ(α, α). Moreover, this number is also the relative dimension of the complex
moment map µα. Therefore, µ−1

α (λ) is equidimensional and we only have to prove that it is
irreducible.

By theorem 8.6 and the geometric interpretation of the reflexion functor equivalence we may
reduce to the case where α is either a coordinate vector or lies in the fundamental region. The
former case being trivial, we assume α ∈ FQ. Consider the projection map

µ−1
α (λ)

π- repα Q
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then the image of π is described in theorem 5.17 and any non-empty fiber π−1(V ) ' (Ext1CQ(V, V ))∗

is irreducible. As in the proof of theorem 5.18 we can decompose repα Q according to representation
types in repα(τ). Because α ∈ Σλ we have that dim π−1(repα(τ)) < d = α.α− 1 + 2pQ(α). for all
τ 6= (1, α).

Because α is a Schur root, repα(1, α) is an open set and π−1(repα Q−repα(1, α)) has dimension
less than d, whence it is sufficient to prove that π−1(repα(1, α)) is irreducible. Because it is an
open subset of µ−1

α (λ) it is equidimensional of dimension d and every fiber is irreducible. But, if
X - Y is a dominant map with Y irreducible and all fibers irreducible of the same dimension,
then X is irreducible, finishing the proof. �

The term λ-simple roots for Σλ is justified by the following result.

Theorem 8.7 Let (λ, α) be such that α ∈ Σλ. Then, rep
α

Πλ = µ−1
α (λ) is a reduced and irreducible

complete intersection of dimension d = α.α − 1 + 2pQ(α) and the general element of µ−1
α (λ) is a

simple representation of Πλ.
In particular, issα Πλ s an irreducible variety of dimension 2pQ(α).

Proof. We know that µ−1
|alpha(λ) is irreducible of dimension d. By the type stratification, it is

enough to prove the existence of one simple representation of dimension vector α. The reflection
functors being equivalences of categories, we may assume that α is either in Π or in FQ. Clearly,
for α a dimension vector, there is a simple representation, whence assume α ∈ FQ.

Assume there is no simple α-dimensional representation of Πλ. Because rep
α

Πλ is irreducible,

there is a dimension vector β < α and an open subset of representations containing a subrepresen-
tation of dimension vector β. As the latter condition is closed, every α-dimensional representation
of Πλ contains a β-dimensional subrepresentation.

Because α is a Schur root for Q, the general α-dimensional representation of Q extends to Πλ

and hence contains a subrepresentation of dimension vector β, that is β ⊂ Q- α. Applying the

same argument to the quiver Qo we also have β ⊂Q
o
- α.

If we now consider duals,this implies that the general α-dimensional representation of Q has
a subrepresentation of dimension vector α − β. But then, by the results of section 4.7 we have
ext(β, α− β) = 0 = ext(α− β, β) whence a general α-dimensional representation of Q decomposes
as a direct sum of representations of dimension β and α−β, contradicting the fact that α is a Schur
root. Hence, there are α-dimensional simple representations of Πλ.

Let V be a simple representation in µ−1
α (λ), then computing differentials it follows that µα is

smooth at V , whence µ−1
α (λ) is generically reduced. But then, being a complete intersection, it is

Cohen-Macaulay and therefore reduced. �

This finishes the proof of the easy part of the characterization of simple roots for Πλ due to W.
Crawley-Boevey, [21].
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Theorem 8.8 The following are equivalent

1. Πλ has α-dimensional simple representations.

2. α ∈ Σλ.

The proof of [21] involves a lengthy case-by-case study and awaits a more transparent argument,
perhaps along the lines of hyper-Kähler reduction as in section 8.5.

If α ∈ Σλ, then Πλ(α) is an order in a central simple algebra over the functionfield of issα Πλ.

8.4 Hilbert schemes

In this section we will illustrate some of the foregoing results in the special case of the quiver Q
coming from the study of linear dynamical systems, and its double quiver Qd

(/).*-+, (/).*-+, bee
a // and (/).*-+, (/).*-+,

b

qq

b∗

QQ

a

$$

a∗

dd

In order to avoid heavy use of stars, we denote as in the previous chapters, a = u, a∗ = v, b = x
and b∗ = y, so the path algebra of the double Qd

(/).*-+, (/).*-+,
x

qq

y

QQ

u

$$

v

dd

is the algebra M considered before. We fix the dimension vector α = (1, n) and the character
θ = (−n, 1) and recall from section 8.2 that the moduli space Mss

α (Q, θ) ' Cn.
We say that u is a cyclic vector for the matrix-couple (X,Y ) ∈ Mn(C) ⊕Mn(C) if there is no

proper subspace of Cn containing u which is stable under left multiplication by X and Y .

Lemma 8.4 A representation V = (X,Y, u, v) ∈ repα M is θ-semistable if and only if u is a cyclic
vector for (X,Y ). Moreover, in this case V is even θ-stable.

Proof. If there is a proper subspace of Cn of dimension k containing u and stable under the
multiplication with X and Y then V contains a subrepresentation of dimension β = (1, k) and
θ(β) < 0. If u is cyclic for (X,Y ) then the only proper subrepresentations of V are of dimension
(0, k) for some k, but for those θ(β) > 0 whence V is θ-stable. �



474 Moduli Spaces

The complex moment map µ = µα for this situation is

repα Q
d = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗ µ - C⊕Mn(C)

(X,Y, u, v) 7→ (−v.u, [Y,X] + u.v)

Observe that the image is contained in M0
α(C) = {(c,M) | c+ tr(M) = 0}. The differential dµ in

the point (X,Y, u, v) is equal to

dµ(X,Y,u,v) (A,B, c, d) = (−v.c− d.u, [B,X] + [Y,A] + u.d+ c.v).

Lemma 8.5 The second component of the differential dµ is surjective in (X,Y, u, v) if u is a cyclic
vector for (X,Y ).

Proof. Consider the nondegenerate symmetric bilinear form tr(MN) onMn(C) With respect to this
inproduct on Mn(C) the space orthogonal to the image of (the second component of) dµ(X,Y,u,v)

is equal to

{M ∈Mn(C) | tr([B,X]M + [Y,A]M + u.dM + c.vM) = 0,∀(A,B, c, d)}

Because the trace does not change under cyclic permutations and is nondegenerate we see that this
space is equal to

{M ∈Mn(C) | [M,X] = 0 [Y,M ] = 0 Mu = 0 and vM = 0}

But then, the kernel ker M is a subspace of Cn containing u and stable under left multiplication by
X and Y . By the cyclicity assumption this implies that ker M = Cn or equivalently that M = 0.
As dµ⊥(X,Y,u,v) = 0 and tr is nondegenerate, this implies that the differential is surjective. �

Let repssα Qd = repsα Q
d = repsα M be the open variety of θ-(semi)stable representations.

Proposition 8.4 For every matrix (c,M) ∈M0
α(C) in the image of the map

rep
s
α M µ- M0

α(C)

the inverse image µ−1(M) is a submanifold of repα M of dimension n2 + 2n.

This is a special case of theorem 5.19. Observe that for the quiver Q we have pQ(m,n) =
mn+ 1−m2. As any decomposition of α = (1, n) is of the form

(1, n) = (1, a1) + (0, a2) + . . .+ (0, ak) with
X
i

ai = n
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we have that pQ(α) = n ≥
P
i pQ(βi) = a1 +1+ . . .+1 and equality only occurs for (1, 1)+(0, 1)+

. . .+ (0, 1). Therefore α ∈ S0.

We now turn to the description of the moduli space Mss
α (Qd, θ). In this particular case we

clearly have.

Lemma 8.6 For α = (1, n) and θ = (−n, 1) there is a natural one-to-one correspondence between

1. GL(α)-orbits in repsα M, and

2. GLn-orbits in repsα M under the induced action.

For the investigation of the GLn(C)-orbits on repsα M we introduce a combinatorial gadget :
the Hilbert n-stair. This is the lower triangular part of a square n× n array of boxes

1

n

1 n

filled with go-stones according to the following two rules :

• each row contains exactly one stone, and

• each column contains at most one stone of each color.

For example, the set of all possible Hilbert 3-stairs is given below.ue u u u e eu e e e u
To every Hilbert stair σ we will associate a sequence of monomialsW (σ) in the free noncommutative
algebra C〈x, y〉, that is W (σ) is a sequence of words in x and y.

At the top of the stairs we place the identity element 1. Then, we descend the stairs according
to the following rule.
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• Every go-stone has a top word T which we may assume we have constructed before and a side
word S and they are related as indicated below

T

S

1

T

xT

1

•

T

yT

1

◦

For example, for the Hilbert 3-stairs we have the following sequences of non-commutative words

ue
1

x

y

u u
1

x

x2

u e
1

x

yx

eu
1

y

x

e e
1

y

y2

e u
1

y

xy

We will evaluate a Hilbert n-stair σ with associated sequence of non-commutative words W (σ) =
{1, w2(x, y), . . . , wn(x, y)} on

repα M = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗

For a quadruple (X,Y, u, v) we replace every occurrence of x in the word wi(x, y) by X and every
occurrence of y by Y to obtain an n× n matrix wi = wi(X,Y ) ∈Mn(C) and by left multiplication
on u a column vector wi.v. The evaluation of σ on (X,Y, u, v) is the determinant of the n × n
matrix

σ(X,Y, u, v) = det u w2.u w3.u wn.u. . .

For a fixed Hilbert n-stair σ we denote with rep(σ) the subset of quadruples (X,Y, u, v) in repα M
such that the evaluation σ(v,X, Y ) 6= 0.

Theorem 8.9 For every Hilbert n-stair, rep (σ) 6= ∅
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Proof. Let u be the basic column vector

e1 =

26664
1
0
...
0

37775
Let every black stone in the Hilbert stair σ fix a column of X by the rule

i

j

1

n

1 n

•

X =

1i

j

0

0

.

.

.

0

0

.

.

.

That is, one replaces every black stone in σ by 1 at the same spot in X and fills the remaining
spots in the same column by zeroes. The same rule applies to Y for white stones. We say that such
a quadruple (X,Y, u, v) is in σ-standard form.

With these conventions one easily verifies by induction that

wi(X,Y )e1 = ei for all 2 ≤ i ≤ n.

Hence, filling up the remaining spots in X and Y arbitrarily one has that σ(X,Y, u, v) 6= 0 proving
the claim. �

Hence, rep (σ) is an open subset of repα M (and even of repsα M) for every Hilbert n-stair σ.
Further, for every word (monomial) w(x, y) and every g ∈ GLn(C) we have that

w(gXg−1, gY g−1)gv = gw(X,Y )v

and therefore the open sets rep (σ) are stable under the GLn(C)-action on repα M. We will give
representatives of the orbits in rep (σ).

Let Wn = {1, x, . . . , xn, xy, . . . , yn} be the set of all words in the non-commuting variables x
and y of length ≤ n, ordered lexicographically.

For every quadruple (X,Y, u, v) ∈ repα M consider the n×m matrix

ψ(X,Y, u, v) =
ˆ
u Xu X2u . . . Y nu

˜
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where m = 2n+1−1 and the j-th column is the column vector w(X,Y )v with w(x, y) the j-th word
in Wn.

Hence, (X,Y, u, v) ∈ rep (σ) if and only if the n × n minor of ψ(X,Y, u, v) determined by the
word-sequence {1, w2, . . . , wn} of σ is invertible. Moreover, as

ψ(gXg−1, gY g−1, gu, vg−1) = gψ(v,X, Y )

we deduce that the GLn(C)-orbit of (X,Y, u, v) ∈ repα M contains a unique quadruple
(X1, Y1, u1, v1) such that the corresponding minor of ψ(X1, Y1, u1, v1) = rr

n.
Hence, each GLn(C)-orbit in rep (σ) contains a unique representant in σ-standard form. There-

fore,

Proposition 8.5 The action of GLn(C) on rep (σ) is free and the orbit space

rep (σ)/GLn(C)

is an affine space of dimension n2 + 2n.

Proof. The dimension is equal to the number of non-forced entries in X, Y and v. As we fixed
n− 1 columns in X or Y this dimension is equal to

k = 2n2 − (n− 1)n+ n = n2 + 2n.

The argument above shows that every GLn(C)-orbit contains a unique quadruple in σ-standard
form so the orbit space is an affine space. �

Theorem 8.10 For α = (1, n) and θ = (−n, 1), the moduli space

Mss
α (Qd, θ) = Mss

α (M, θ)

is a complex manifold of dimension n2 + 2n and is covered by the affine spaces rep (σ).

Proof. Recall that repsα M is the open submanifold consisting of quadruples (x, Y, u, v) such that
u is a cyclic vector of (X,Y ) or equivalently such that

C〈X,Y 〉u = Cn

where C〈X,Y 〉 is the not necessarily commutative subalgebra of Mn(C) generated by the matrices
X and Y .

Hence, clearly rep (σ) ⊂ repn M for any Hilbert n-stair σ. Conversely, we claim that a quadruple
(X,Y, u, v) ∈ repsα M belongs to at least one of the open subsets rep (σ).

Indeed, either Xu /∈ Cu or Y u /∈ Cu as otherwise the subspace W = Cu would contradict the
cyclicity assumption. Fill the top box of the stairs with the corresponding stone and define the 2-
dimensional subspace V2 = Cu1+Cu2 where u1 = u and u2 = w2(X,Y )u with w2 the corresponding
word (either x or y).
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Assume by induction we have been able to fill the first i rows of the stairs with stones leading
to the sequence of words {1, w2(x, y), . . . , wi(x, y)} such that the subspace Vi = Cu1 + . . . + Cui
with ui = wi(X,Y )v has dimension i.

Then, either Xuj /∈ Vi for some j or Y uj /∈ Vi (if not, Vi would contradict cyclicity). Then, fill
the j-th box in the i + 1-th row of the stairs with the corresponding stone. Then, the top i + 1
rows of the stairs form a Hilbert i + 1-stair as there can be no stone of the same color lying in
the same column. Define wi+1(x, y) = xwi(x, y) (or ywi(x, y)) and ui+1 = wi+1(X,Y )u. Then,
Vi+1 = Cu1 + . . .+ Cui+1 has dimension i+ 1.

Continuing we end up with a Hilbert n-stair σ such that (X,Y, u, v) ∈ rep (σ). This concludes
the proof. �

Example 8.1 (The moduli space Mss
α (Qd, θ) when n = 3) Representatives for the GL3(C)-

orbits in rep (σ) are given by the following quadruples for σ a Hilbert 3-stair :

td t t t d dt d d d t
X

240 a b
1 c d
0 e f

35 240 0 a
1 0 b
0 1 c

35 240 a b
1 c d
0 e f

35 240 a b
0 c d
1 e f

35 24a b c
d e f
g h i

35 24a 0 b
c 0 d
e 1 f

35

Y

240 g h
0 i j
1 k l

35 24d e f
g h i
j k l

35 24g 0 h
i 0 j
k 1 l

35 240 g h
1 i j
0 k l

35 240 0 j
1 0 k
0 1 l

35 240 g h
1 i j
0 k l

35

u

241
0
0

35 241
0
0

35 241
0
0

35 241
0
0

35 241
0
0

35 241
0
0

35
v

ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜
We now turn to the deformed preprojective algebras. Let λ = (−nλ, λrr

n) ∈ M0
α(C) for λ ∈ C.

Then,

Πλ =
M

(v.u+ λv1, [Y,X] + u.v − λv2)

then if we denote by Mss
α (Πλ, θ) the moduli space of θ-semistable representations of Πλ, then we
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have the following situation

µ−1(λ) ∩ rep
s
α M ⊂ - rep

s
α M

Mss
α (Πλ, θ)

??
⊂ - Mss

α (M, θ)

??

and from the theorem above we obtain :

Theorem 8.11 For a λ ∈ M0
α(C), the orbit space of θ-semistable representations of the deformed

preprojective algebra
Mss
α (Πλ, θ)

is a submanifold of Mss
α (M, θ) of dimension 2n.

We will identify the special case of the preprojective algebra (that is λ = 0 with the Hilbert
scheme of n points in the plane .

Consider a codimension n ideal i / C[x, y] and fix a basis {v1, . . . , vn} of the quotient space

Vi =
C[x, y]

i
= Cv1 + . . .+ Cvn.

Multiplication by x on C[x, y] induces a linear operator on the quotient Vi and hence determines
a matrix Xi ∈Mn(C) with respect to the chosen basis {v1, . . . , vn}. Similarly, multiplication by y
determines a matrix Yi ∈Mn(C).

Moreover, the image of the unit element 1 ∈ C[x, y] in Vi determines with respect to the basis
{v1, . . . , vn} a column vector u ∈ Cn = Vi. Clearly, this vector and matrices satisfy :

[Xi, Yi] = 0 and C[Xi, Yi]u = Cn.

Here, C[Xi, Yi] is the n-dimensional subalgebra of Mn(C) generated by the two matrices Xi and
Yi. In particular, u is a cyclic vector for the matrix-couple (X,Y ).

Conversely, if (X,Y, u) ∈ Mn(C) ⊕Mn(C) ⊕ Cn is a cyclic triple such that [X,Y ] = 0, then
C〈X,Y 〉 = C[X,Y ] is an n-dimensional commutative subalgebra of Mn(C), then the kernel of the
natural epimorphism

C[x, y] -- C[X,Y ] x 7→ X y 7→ Y

is a codimension n ideal i of C[x, y].
However, there is some redundancy in the assignment i - (Xi, Yi, ui) as it depends on the

choice of basis of Vi. If we choose a different basis {v′1, . . . , v′n} with basechange matrix g ∈ GLn(C),
then the corresponding triple is

(X ′i , Y
′

i , u
′
i) = (g.Xi.g

−1, g.Yi.g
−1, gui)

The above discussion shows that there is a one-to-one correspondence between
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• codimension n ideals i of C[x, y], and

• GLn(C)-orbits of cyclic triples (X,Y, u) in Mn(C)⊕Mn(C)⊕ Cn such that [X,Y ] = 0.

Example 8.2 (The Hilbert scheme Hilb2) Consider a triple (X,Y, u) ∈ M2(C)⊕M2(C)⊕ C2

and assume that either X or Y has distinct eigenvalues (type a). As

[

»
ν1 0
0 ν2

–
,

»
a b
c d

–
] =

»
0 (ν1 − ν2)b

(ν2 − ν1)c 0

–
we have a representant in the orbit of the form

(

»
λ1 0
0 λ2

–
,

»
µ1 0
0 µ2

–
,

»
u1

u2

–
)

where cyclicity of the column vector implies that u1u2 6= 0.
The stabilizer subgroup of the matrix-pair is the group of diagonal matrices C∗ ×

C∗ ⊂ - GL2(C), hence the orbit has a unique representant of the form

(

»
λ1 0
0 λ2

–
,

»
µ1 0
0 µ2

–
,

»
1
1

–
)

The corresponding ideal i / C[x, y] is then

i = {f(x, y) ∈ C[x, y] | f(λ1, µ1) = 0 = f(λ2, µ2)}

hence these orbits correspond to sets of two distinct points in C2.
The situation is slightly more complicated when X and Y have only one eigenvalue (type b). If

(X,Y, u) is a cyclic commuting triple, then either X or Y is not diagonalizable. But then, as

[

»
ν 1
0 ν

–
,

»
a b
c d

–
] =

»
c d− a
0 c

–
we have a representant in the orbit of the form

(

»
λ α
0 λ

–
,

»
µ β
0 µ

–
,

»
u1

u2

–
)

with [α : β] ∈ P1 and u2 6= 0. The stabilizer of the matrixpair is the subgroup

{
»
c d
0 c

–
| c 6= 0} ⊂ - GL2(C)
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and hence we have a unique representant of the form

(

»
λ α
0 λ

–
,

»
µ β
0 µ

–
,

»
0
1

–
)

The corresponding ideal i / C[x, y] is

i = {f(x, y) ∈ C[x, y] | f(λ, µ) = 0 and α
∂f

∂x
(λ, µ) + β

∂f

∂y
(λ, µ) = 0}

as one proves by verification on monomials because»
λ α
0 λ

–k »
µ β
0 µ

–l »
0
1

–
=

»
kαλk−1µl + lβλkµl−1

λkµl

–
Therefore, i corresponds to the set of two points at (λ, µ) ∈ C2 infinitesimally attached to each
other in the direction α ∂

∂x
+ β ∂

∂y
. For each point in C2 there is a P1 family of such fat points.

Thus, points of Hilb2 correspond to either of the following two situations :

type a

C2

•

•

p

p’

type b

C2

p
•��

The Hilbert-Chow map Hilb2
π- S2 C2 (where S2 C2 is the symmetric power of C2, that is

S2 = Z/2Z orbits of couples of points from C2) sends a point of type a to the formal sum [p] + [p′]
and a point of type b to 2[p]. Over the complement of (the image of) the diagonal, this map is a
one-to-one correspondence.

However, over points on the diagonal the fibers are P1 corresponding to the directions in which
two points can approach each other in C2. As a matter of fact, the symmetric power S2 C2 has

singularities and the Hilbert-Chow map Hilb2
π-- S2 C2 is a resolution of singularities.

Theorem 8.12 Let repα M µ- M0
α(C) be the complex moment map, then

Hilbn 'Mss
α (Π0, θ)

and is therefore a complex manifold of dimension 2n.
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Proof. We identify the triples (X,Y, u) ∈ Mn(C) ⊕Mn(C) ⊕ Cn such that u is a cyclic vector of
(X,Y ) and [X,Y ] = 0 with the subspace

{(X,Y, u, 0) | [X,Y ] = 0 and u is cyclic } ⊂ - rep
s
α M

which is clearly contained in µ−1(0). To prove the converse inclusion assume that (X,Y, u, v) is a
cyclic quadruple such that

[X,Y ] + uv = 0.

Let m(x, y) be any word in the noncommuting variables x and y. We claim that

v.m(X,Y ).u = 0.

We will prove this by induction on the length l(m) of the word m(x, y). When l(m) = 0 then
l(x, y) = 1 and we have

v.l(X,Y ).u = v.u = tr(u.v) = tr([X,Y ]) = 0.

Assume we proved the claim for all words of length < l and take a word of the form m(x, y) =
m1(x, y)yxm2(x, y) with l(m1) + l(m2) + 2 = l. Then, we have

wm(X,Y ) = wm1(X,Y )Y Xm2(X,Y )

= wm1(X,Y )([Y,X] +XY )m2(X,Y )

= (wm1(X,Y )v).wm2(X,Y ) + wm1(X,Y )XYm2(X,Y )

= wm1(X,Y )XYm2(X,Y )

where we used the induction hypotheses in the last equality (the bracketed term vanishes).

Hence we can reorder the terms in m(x, y) if necessary and have that wm(X,Y ) = wXl1Y l2

with l1 + l2 = l and l1 the number of occurrences of x in m(x, y). Hence, we have to prove the
claim for Xl1Y l2 .

wXl1Y l2v = tr(Xl1Y l2vw)

= −tr(Xl1Y l2 [X,Y ])

= −tr([Xl1Y l2 , X]Y )

= −tr(Xl1 [Y l2 , X]Y )

= −
Pl2−1
i=0 tr(Xl1Y i[Y,X]Y l2−i)

= −
Pl2−1
i=0 tr(Y l2−iXl1Y i[Y,X]

= −
Pl2−1
i=0 tr(Y l2−iXl1Y iv.w

= −
Pl2−1
i=0 wY m2−iXl1Y iv
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But we have seen that wY l2−iXl1Y i = wXl1Y l2 hence the above implies that wXl1Y l2v =
−l2wXl1Y l2v. But then wXl1Y l2v = 0, proving the claim.

Consequently, w.C〈X,Y 〉.v = 0 and by the cyclicity condition we have w.Cn = 0 hence w = 0.
Finally, as v.w + [X,Y ] = 0 this implies that [X,Y ] = 0 and we can identify the fiber µ−1(0) with
the indicated subspace. From this the result follows. �

We can use the affine covering of Mss
α (M, θ) by Hilbert stairs, to cover the Hilbert scheme Hilbn

by the intersections Hilb(σ) = rep(σ) ∩Hilbn.

Example 8.3 (The Hilbert scheme Hilb2) Consider Hilb2 ( t ). Because

[

»
0 a
1 b

–
,

»
c d
e f

–
] =

»
ae− d af − ac− bd

c+ be− f d− ae

–
this subset can be identified with C4 using the equalities

d = ar and f = c+ be.

Similarly, Hilb2 ( d ) ' C4.

Example 8.4 (The Hilbert scheme Hilb3) Up to change of colors there are three 3-stairs to
consider td t t t d.
We claim that

Hilb3 (

td ) ' C6.

For consider the commutator

[

240 a b
1 c d
0 e f

35 ,
240 g h

0 i j
1 k k

35 ] =

24b− g ai+ bk − cg − eh aj + bl − dg − fh
d− i g + dk − ej h+ cj + dl − di− fj
f − k −a− ck − el + ei+ fk −b− dk + ej

35
Taking the Groebner basis of these relations one finds the following relations8>>>>>>><>>>>>>>:

f = k

g = ej − ik
d = i

h = i2 − cj + jk − il
b = g

a = ei− ck + k2 − el
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from which the claim follows. In a similar manner one proves that

Hilb3 (

t t ) ' C6.

However, the situation for

Hilb3 (

t d )

is more complicated.

Theorem 8.13 The Hilbert scheme Hilbn of n points in C2 is a complex connected manifold of
dimension 2n.

Proof. The symmetric power Sn C1 parametrizes sets of n-points on the line C1 and can be
identified with Cn. Consider the map

Hilbn
π-- Sn C1

defined by mapping a cyclic triple (X,Y, u) with [X,Y ] = 0 in the orbit corresponding to the point
of Hilbn to the set {λ1, . . . , λn} of eigenvalues of X. Observe that this map does not depend on
the point chosen in the orbit.

Let ∆ be the big diagonal in Sn C1, that is, Sn C1−∆ is the space of all sets of n distinct points
from C1. Clearly, Sn C1 −∆ is a connected n-dimensional manifold. We claim that

π−1(Sn C1 −∆) ' (Sn C1 −∆)× Cn

and hence is connected.
Indeed, take a matrix X with n distinct eigenvalues {λ1, . . . , λn}. We may diagonalize X. But

then, as

[

264λ1

. . .
λn

375 ,
264y11 . . . y1n

...
...

yn1 . . . ynn

375] =

264(λ1 − λ1)y11 . . . (λ1 − λn)y1n
...

...
(λn − λ1)yn1 . . . (λn − λn)ynn

375
we see that also Y must be a diagonal matrix with entries (µ1, . . . , µn) ∈ Cn where µi = yii. But
then the cyclicity condition implies that all coordinates of v must be non-zero.

Now, the stabilizer subgroup of the commuting (diagonal) matrix-pair (X,Y ) is the maximal
torus Tn = C∗ × . . . × C∗ of diagonal invertible n × n matrices. Using its action we may assume
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that all coordinates of v are equal to 1. That is, the points in π−1({λ1, . . . , λn}) with λi 6= λj have
unique (up to permutation as before) representatives of the form

(

26664
λ1

λ2

. . .
λn

37775 ,
26664
µ1

µ2

. . .
µn

37775 ,
26664

1
1
...
1

37775)

that is π−1({λ1, . . . , λn} can be identified with Cn, proving the claim.
Next, we claim that all the fibers of π have dimension at most n. Let {λ1, . . . , λn} ∈ Sn C1

then there are only finitely many X in Jordan normalform with eigenvalues {λ1, . . . , λn}. Fix such
an X, then the subset T (X) of cyclic triples (X,Y, u) with [X,Y ] = 0 has dimension at most
n+ dim C(X) where C(X) is the centralizer of X in Mn(C), that is,

C(X) = {Y ∈Mn(C) | XY = Y X}.

The stabilizer subgroup Stab(X) = {g ∈ GLn(C) | gXg−1 = X} is an open subset of the vec-
torspace C(X) and acts freely on the subset T (X) because the action of GLn(C) on µ−1(0)∩repsα M
has trivial stabilizers.

But then, the orbitspace for the Stab(X)-action on T (X) has dimension at most

n+ dim C(X)− dim Stab(X) = n.

As we only have to consider finitely many X this proves the claim. The diagonal ∆ has dimension
n−1 in Sn C1 and hence by the foregoing we know that the dimension of π−1(∆) is at most 2n−1.
Let H be the connected component of Hilbn containing the connected subset π−1(Sn C1 −∆). If
π−1(∆) were not entirely contained in H, then Hilbn would have a component of dimension less
than 2n, which we proved not to be the case. This finishes the proof. �

We can give a representation theoretic interpretation of the resolution of singularities Hilbert-
Chow morphism

Hilbn
π-- Sn C2

Σ0 = {(1, 0), (0, 1)}, that is the only simple Π0-representations are one-dimensional. Any semi-

simple representation of Π0 of dimension vector α = (1, n) therefore decomposes as T0 ⊕ S⊕e11 ⊕
. . . ⊕ S⊕er

r with T0 the unique simple (1, 0)-dimensional representation and the Si in the two-
dimensional family of (0, 1)-simple representations of Π0 (corresponding to couples (λi, µi) ∈ C2).
Therefore we have the projective bundle morphism

Hilbn = Mss
α (Π0, θ)

π′- issα Π0 = Sn C2

where the mapping sends a point of Hilbn determined by a cyclic triple (X,Y, u) to the n-tuple of
eigenvalues (λi, µi) of X and Y .
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8.5 Hyper Kähler structure

Again, Q is a quiver on k vertices and Qd its double. We fix a dimension vector α = (a1, . . . , ak) ∈
Nk and a character θ = (t1, . . . , tk) ∈ Zk and a weight λ = (λ1, . . . , λk) ∈ Ck such that the numerical
conditions

θ(α) =

kX
i=1

tiai = 0 and λ(α) =

nX
i=1

λiai = 0

are satisfied. The first is required to have θ-semistable representations, the second for λ to lie in
the image of the complex moment map

repα Q
d µC- M0

α(C) V 7→
X

���������������� aoo
a∈Qa

[Va, Va∗ ]

where a∗ is the arrow in Qda corresponding to a ∈ Qa (that is with the opposite direction).
Recall that the quaternion algebra H is the 4-dimensional division algebra over R defined by

H = R.1⊕ R.i⊕ R.j ⊕ R.k i2 = j2 = k2 = −1 k = ij = −ji

Definition 8.1 A C∞ (real) manifold M is said to be a hyper-Kähler manifold if H acts on H by
diffeomorphisms.

Lemma 8.7 For any quiver Q, the representation space repα Q
d is a hyper-Kähler manifold.

Proof. We have to specify the actions. They are defined as follows, for V ∈ repα Q
d for all arrows

b ∈ Qda and all arrows a ∈ Qa
(i.V )b = iVb

(j.V )a = −V †a∗ (j.V )a∗ = V †a

(k.V )a = −iV †a∗ (k.V )a∗ = iV †a

where this time we denote the Hermitian adjoint of a matrix M by M† to distinguish it from the
star-operation on the arrows of Qd. A calculation shows that these operations satisfy the required
relations. �

In section 8.1 we introduced the real moment map for quiver representations. If we apply this
to the double quiver Qd we can take

repα Q
d µR- Lie U(α) V 7→

X
���������������� boo

b∈Qd
a

i

2
[Vb, V

†
b ]
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We will use the action by non-zero elements of H to obtain C∞-diffeomorphisms between certain
subsets of repα Q

d. Let h = i−k√
2

then we have

µC(h.V ) =
1

2

X
a∈Qa

[iVa + iV †a∗ , iVa∗ − iV
†
a ]

=
1

2

X
a∈Qa

( − [Va, Va∗ ] + [Va, V
†
a ]− [V †a∗ , Va∗ ] + [V †a∗ , V

†
a ] )

=
1

2

X
a∈Qa

( [Va, Va∗ ]
† − [Va, Va∗ ] ) +

1

2

X
a∈Qa

( [Va, V
†
a ] + [Va∗ , V

†
a∗ ] )

=
1

2
(µC(V )† − µC(V ))− iµR(V )

and

µR(h.V ) =
i

4
(

X
a∈Qa

[iVa + iV †a∗ ,−iV
†
a − iVa∗ ] +

X
a∈Qa

[iVa∗ − iV †a ,−iV †a∗ + iVa] )

=
i

4

X
a∈Qa

( [Va, V
†
a ] + [Va, Va∗ ] + [V †a∗ , V

†
a ] + [V †a∗ , Va∗ ]

+ [Va∗ , V
†
a∗ ]− [Va∗ , Va]− [V †a , V

†
a∗ ] + [V †a , Va] )

=
i

4
(2µC(V ) + 2µC(V )†)

In particular we have

Proposition 8.6 If λ ∈ Rk, then we have a homeomorphism between the real varieties

µ−1
C (λrr

α) ∩ µ−1
R (0)

h.- µ−1
C (0) ∩ µ−1

R (iλrr
α)

Moreover, the hyper-Kähler structure commutes with the base-change action of U(α), whence we
have a natural one-to-one correspondence between the quotient spaces

(µ−1
C (λrr

α) ∩ µ−1
R (0))/U(α)

h.- (µ−1
C (0) ∩ µ−1

R (iλrr
α))/U(α)

By the results of section 8.1 we can identify both sides. To begin, by definition of the complex
moment map µC we have that

µ−1
C (0) = rep

α
Π0 and µ−1

C (λrr
α) = rep

α
Πλ

Moreover, applying theorem 8.3 to the double quiver Qd we have

issα Q
d ' µ−1

R (0)/U(α) and Mss
α (Qd, λ) ' µ−1

R (iλrr
α)/U(α)

when λ ∈ Zk. This concludes the proof of
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Theorem 8.14 For a character θ = (t1, . . . , tk) ∈ Zk such that θ(α) = 0, there is a natural
one-to-one correspondence between

issα Πθ
h.- Mss

α (Π0, θ)

which is an homeomorphism in the (induced) real topology.

Note however that this bijection does not respect the complex structures of these varieties.
This is already clear from the fact that issα Πθ is an affine complex variety and Mss

α (Π0, θ) is a
projective bundle over issα Π0.

If V ∈ repα Q
d belongs to µ−1

R (0) we know that V is a semisimple representation, that is,

V = S⊕e11 ⊕ . . .⊕ S⊕er
r

with the Si simple representations of dimension vector βi. Further, if W ∈ rep−1
α (iθrrα), then W is

a direct sum of θ-stable representations, that is,

W = T⊕f11 ⊕ . . .⊕ T⊕fs
s

with the Ti θ-stable representations of dimension vector γi. By the explicit form of the map, we
have that if W = h.V that r = s, ei = fi and βi = γi. That is,

Proposition 8.7 Let θ be a character such that θ(α) = 0, then the deformed preprojective
algebra Πθ has semi-simple representations of dimension vector α of representation type τ =
(e1, β1; . . . ; er, βr) if and only if the preprojective algebra Π0 has θ-stable representations of di-
mension vectors βi for all 1 ≤ i ≤ r.

In particular, Πθ has a simple representation of dimension vector α if and only if Π0 has a
θ-stable representation of dimension vector α.

The variety Mss
α (Π0, θ) is locally controlled by noncommutative algebras. Indeed, as in the case

of moduli spaces of θ-semistable quiver-representations, it is locally isomorphic to issα (Π0)Σ for
some universal localization of Π0. We can determine the α-smooth locus of the corresponding sheaf
of Cayley-Hamilton algebras.

Proposition 8.8 Let α ∈ Σθ, then the α-smooth locus of Mss
α (Π0, θ) is the open subvariety

Ms
α(Π0, θ) of θ-stable representations of Π0.
In particular, if the sheaf of Cayley-Hamilton algebras over Mss

α (Π0, θ) is a sheaf of α-smooth
algebras if and only if α is a minimal dimension vector in Σθ.

Proof. As α ∈ Σθ we know that issα Πθ has dimension 2pQ(α) = 2−TQ(α, α). By the hyper-Kähler
correspondence so is the dimension of Mss

α (Π0, θ), whence the open subset of µ−1
C (0) consisting of

θ-semistable representations has dimension

α.α− 1 + 2pQ(α)
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as there are θ-stable representations in it. Take a GL(α)-closed orbit O(V ) in this open set. That
is, V is the direct sum of θ-stable subrepresentations

V = S⊕e11 ⊕ . . .⊕ S⊕er
r

with Si a θ-stable representation of Π0 of dimension vector βi occurring in V with multiplicity ei
whence α =

P
i eiβi.

As all Si are Π0-representations we can determine the local quiver QV by the knowledge of all
Ext1Π0(Si, Sj) from proposition 5.12

Ext1Π0(Si, Sj) = 2δij − TQ(βi, βj)

But then the dimension of the normal space to the orbit is

dim Ext1Π0(V, V ) = 2

rX
i=1

ei − TQ(α, α)

whence the étale local structure in an n-smooth point is of the form GL(α) ×G L(τ)Ext1(V, V )
where τ = (e1, . . . , er) and is therefore of dimension

α.α+

2X
i=1

e2i − TQ(α, α)

This number is equal to the dimension of the subvariety of θ-semistable representations of Π0 which
has dimension α.α− 1 + 2− TQ(α, α) if and only if r = 1 and e1 = 1, that is if V is θ-stable. �

Even in points of Mss
α (Π0, θ) which are not in the α-smooth locus we can use the local quiver to

deduce combinatorial properties of the set of dimension vectors Σθ of simple representations of Πθ.

Proposition 8.9 Let α, β ∈ Σθ, then

1. If T (α, β) ≤ −2 then α+ β ∈ Σθ,

2. If T (α, β) ≥ −1 then α+ β /∈ Σθ.

Proof. The property that α and β are Schur roots of Q such that TQ(α, β) ≤ −2 ensures that
γ = α + β is a Schur root of Q and hence that µ−1

C (θrrγ has dimension γ.γ − 1 + 2pQ(γ), whence
so is the subvariety of θ-semistable γ-dimensional representations of Π0. We have to prove that Π0

has a θ-stable γ-dimensional representation.
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Let V = S ⊕ T with S resp. T a θ-stable representation of Π0 of dimension vector α resp. β
(they exist by the hyper-Kähler correspondence). But then the local quiver QV has the following
form

18?9>:=;< 18?9>:=;<
−TQ(α, β)

))

−TQ(α, β)

ii2pQ(α)
77

2pQ(β)
gg

and by a calculation similar to the one in the foregoing proof we see that the image of the slice

morphism in the space GL(γ)×C∗×C∗ rep(1,1) QV has codimension 1. However, as TQ(α, β) ≤ −2

there are at least 3 algebraically independent new invariants coming from the non-loop cycles in
QV , so they cannot all vanish on the image. This means that (1, α; 1, β) cannot be the generic
type for θ-semistables of dimension γ, so by the stratification result, there must exist θ-stables of
dimension γ.

For the second assertion, assume that γ = α+β is the dimension vector of a simple representation
of Πθ, then issγ Πθ has dimension 2pQ(γ) = 2 − TQ(α, β, α + β) = 2pQ(α) + 2pQ(β) whence
so is the dimension of Mss

γ (Π0, θ). By assumption (1, α; 1, β) cannot be the generic type for θ-
semistable representations, but the stratum consisting of direct sums S ⊕ T with S ∈ Ms

α(Π0, θ)
and T ∈Ms

β(Q, θ) has the same dimension as the total space, a contradiction. �

The first part of the foregoing proof can also be used to show that usually the moduli spaces
Mss
α (Π), θ) and the quotient varieties issα Πθ have lots of singularities.

Proposition 8.10 Let α ∈ |sigmaθ such that α = β + γ with β, γ ∈ Σθ. Then,

Mss
α (Π0, θ) and issα Πθ

is singular along the stratum of points of type (1, β; 1, γ).

Proof. The quotient space of the local quiver situation (as in the foregoing proof) contains singu-
larities at the trivial representations which remain singularities in any codimension one subvariety.

�

Still, if α is a minimal dimension vector in Σθ, the varieties Mss
α (Π0, θ) and issα Πθ are smooth.

In fact, we will show in section 8.7 that the affine smooth variety issα Πθ is in fact a coadjoint
orbit.
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8.6 Calogero particles

The Calogero system is a classical particle system of n particles on the real line with inverse square
potential.

• • •
x1 x2 xn

That is, if the i-th particle has position xi and velocity (momentum) yi, then the Hamiltonian is
equal to

H =
1

2

nX
i=1

y2
i +

X
i<j

1

(xi − xj)2

The Hamiltonian equations of motions is the system of 2n differential equations8>>><>>>:
dxi
dt

=
∂H

∂yi

dyi
dt

= −∂H
∂xi

This defines a dynamical system which is integrable .
A convenient way to study this system is as follows. Assign to a position defined by the 2n

vector (x1, y1; . . . , xn, yn) the couple of Hermitian n× n matrices

X =

266664
x1

. . .

xn

377775 and Y =

26666666664

y1
i

x1−x2
. . . . . . i

x1−xn

i
x2−x1

y2
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . i
xn−1−xn

i
xn−x1

. . . . . . i
xn−xn−1

yn

37777777775
Physical quantities are given by invariant polynomial functions under the action of the unitary
group Un(C) under simultaneous conjugation. In particular one considers the functions

Fj = tr
Y j

j

For example, (
tr(Y ) =

P
yi the total momentum

1
2
tr(Y 2) = 1

2

P
y2
i −

P
i<j

1
(xi−xj)2

the Hamiltonian
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We can now consider the Un(C)-translates of these matrix couples. This is shown to be a manifold
with a free action of Un(C) such that the orbits are in one-to-one correspondence with points
(x1, y1; . . . ;xn, yn) in the phase space (that is, we agree that two such 2n tuples are determined
only up to permuting the couples (xi, yi). The n-functions Fj give a completely integrable system
on the phase space via Liouville’s theorem , see for example [1].

In the classical case, all points are assumed to lie on the real axis and the potential is repulsive so
that collisions do not appear. G. Wilson [85] considered an alternative where the points are assumed
to lie in the complex numbers and such that the potential is attractive (to allow for collisions), that
is, the Hamiltonian is of the form

H =
1

2

X
i

y2
i −

X
i<j

1

(xi − xj)2

giving again rise to a dynamical system via the equations of motion. One recovers the classical
situation back if the particles are assumed only to move on the imaginary axis.

•
•

•

x1

x2

xn

In general, we want to extend the phase space of n distinct points analytically to allow for collisions.
When all the points are distinct, that is, if all eigenvalues of X are distinct we will see in a

moment that there is a unique GLn(C)-orbit of couples of n× n matrices (up to permuting the n
couples (xi, yi)).

X =

264x1

. . .
xn

375 and Y =

26666666664

y1
1

x1−x2
. . . . . . 1

x1−xn

1
x2−x1

y2
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 1
xn−1−xn

1
xn−x1

. . . . . . 1
xn−xn−1

yn

37777777775
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For matrix couples in this standard form one verifies that

[Y,X] +

2641 . . . 1
...

. . .
...

1 . . . 1

375 = rr
n

This equality suggests an approach to extend the phase space of n distinct complex Calogero
particles to allow for collisions.

Assign the representation (X,Y, u, v) ∈ repα M where α = (1, n) and M is the path algebra of

the quiver Qd is

(/).*-+, (/).*-+,
x

qq

y

QQ

u

$$

v

dd

where X and Y are the matrices above and where

u =

26664
1
1
...
1

37775 v =
ˆ
1 1 . . . 1

˜

Recall that the complex moment map for this quiver-setting is defined to be

repα Q
d = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗ µ - C⊕Mn(C)

(X,Y, u, v) 7→ (−v.u, [Y,X] + u.v)

Therefore, the above equation entails that (X,Y, u, v) ∈ µ−1
C (θrrα) where θ = (−n, 1), that is

(X,Y, u, v) ∈ repα Πθ. Observe that α = (1, n) ∈ Σθ (in fact, α is a minimal element in Σθ),
whence theorem 8.7, repα Πθ is an irreducible complete intersection of dimension d = n2 + 2n
and there are α-dimensional simple representations of Πθ. In particular, issα Πθ is an irreducible
variety of dimension 2n.

We can define the phase space for Calogero collisions of n particles to be the quotient space

Calon = issα Πθ

In a moment we will show that this is actually an orbit-space and :

Theorem 8.15 The phase space Calon of Calogero collisions of n-particles is a connected complex
manifold of dimension 2n.
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Theorem 8.16 Let repα M µC- M0
α(C) be the complex moment map, then any V = (X,Y, u, v) ∈

repα Πθ is a θ-stable representation. Therefore,

Calon = µ−1
C (θrrα)/GL(α) = issα Πθ ' (µ−1

C (θrrα) ∩ rep
s
α M)/GL(α) = Ms

α(Πθ, θ)

and is therefore a complex manifold of dimension 2n, which is connected by theorem 8.7.

Proof. The result will follow if we can prove that any Calogero quadruple (X,Y, u, v) has the
property that u is a cyclic vector, that is, lies in repsα M.

Assume that U is a subspace of Cn stable under X and Y and containing u. U is then also
stable under left multiplication with the matrix

A = [X,Y ] + rr
n

and we have that tr(A | U) = tr(rrn | U) = dim U . On the other hand, A = u.v and therefore

A.

264c1...
cn

375 =

264u1

...
un

375 . ˆv1 . . . vn
˜
.

264c1...
cn

375 = (

nX
i=1

vici)

264u1

...
un

375
Hence, if we take a basis for U containing u, then we have that

tr(A | U) = a

where A.u = au, that is a =
P
uivi.

But then, tr(A | U) = dim U is independent of the choice of U . Now, Cn is clearly a subspace
stable under X and Y and containing u, so we must have that a = n and so the only subspace U
possible is Cn proving cyclicity of u with respect to the matrix-couple (X,Y ). �

Again, it follows that we can cover the phase space Calon by open subsets

Calon (σ) = {(X,Y, u, v) in σ-standard form such that [Y,X] + u.v = rr
n }

where σ runs over the Hilbert n-stairs.

Example 8.5 (The phase space Calo2) Consider Calo2 ( d ). Because

[

»
0 a
1 b

–
,

»
c d
e f

–
] +

»
1
0

–
.
ˆ
g h

˜
− rr

2 =

»
g − d+ ae− 1 h+ af − ac− bd
c− f + be d− ae− 1

–
We obtain after taking Groebner bases that the defining equations are8>>><>>>:

g = 2

h = b

f = c+ eh

d = 1 + ae
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In particular we find

Calo2 ( d ) = {(
»
0 a
1 b

–
,

»
c 1 + ae
e c+ be

–
,

»
1
0

–
,
ˆ
2 b

˜
) | a, b, c, e ∈ C} ' C4

and a similar description holds for Calo2 ( t ).

Example 8.6 (The phase space Calo3) We claim that

Calo3 (

dt ) ' C6

For, if we compute the 3× 3 matrix

[

240 a b
1 c d
0 e f

35 ,
240 g h

0 i j
1 k l

35] +

241
0
0

35 . ˆm n o
˜
− rr

3

then the Groebner basis for its entries gives the following defining equations8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

m = 3

n = c+ k

o = i+ l

f = k

d = o− l
g = 2 + b

l = g − ej − kl + ko

h = 2jk + 2l2 − jn− 3lo+ o2

a = 2k2 − 2el − kn+ eo

In a similar manner one can show that

Calo3 (

d d ) ' C6 but Calo3 (

d t )

is again more difficult to describe.

We can identify the classical Calogero situations as an open subset of Calon.

Proposition 8.11 Let (X,Y, u, v) ∈ repα Πθ and suppose that X is diagonalizable. Then
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1. all eigenvalues of X are distinct, and

2. the GL(α)-orbit contains a representative such that

X =

264λ1

. . .
λn

375 Y =

26666666664

α1
1

λ1−λ2
. . . . . . 1

λ1−λn

1
λ2−λ1

α2

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 1

λn−1−λn
1

λn−λ1
. . . . . . 1

λn−λn−1
αn

37777777775

u =

26664
1
1
...
1

37775 v =
ˆ
1 1 . . . 1

˜

and this representative is unique up to permutation of the n couples (λi, αi).

Proof. Choose a representative with X a diagonal matrix as indicated. Equating the diagonal
entries in [Y,X] + u.v = rr

n we obtain that for all 1 ≤ i ≤ n we have uivi = 1. Hence, none of the
entries of

[X,Y ] + rr
n = u.v

is zero. Consequently, by equating the (i, j)-entry it follows that λi 6= λj for i 6= j.
The representative with X a diagonal matrix is therefore unique up to the action of a diagonal

matrix D and of a permutation. The freedom in D allows us to normalize u and v as indicated,
the effect of the permutation is described in the last sentence.

Finally, the precise form of Y can be calculated from the normalized forms of X, u and v and
the equation [Y,X] + u.v = rr

n. �

Invoking the hyper-Kähler structure on repα M we have by theorem 8.14an homeomorphism, in
fact in this case a C∞-diffeomorphism between the Calogero phase-space and the Hilbert scheme

Calon = issα Πθ
h.- Mss

α (Π0, θ) = Hilbn

8.7 Coadjoint orbits

In this section we will give an important application of noncommutative geometry@n developed in
the foregoing chapter. If α is a minimal dimension vector in Σθ we will prove that the quotient
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variety issα Πθ is smooth and a coadjoint orbit for the dual of the necklace algebra. In particular,
the phase space of Calogero particles is a coadjoint orbit.

We fix a quiver Q on k vertices, a dimension vector α ∈ Nk and a character θ ∈ Zk such that
θ(α) = 0 with corresponding weight θrrα. Recall that Σθ is the subset of dimension vectors α such
that

pQ(α) > pQ(β1) + . . .+ pQ(βr)

for all decompositions α = β1 + . . . + βr with the βi ∈ ∆+θ, that is, βi is a positive root for the
quiver Q and θ(βi) = 0. With Σminθ we will denote the subset of minimal dimension vectors in Σθ,
that is, such that for all β < α we have β /∈ Σθ.

Proposition 8.12 If α ∈ Σminθ , then the deformed preprojective algebra Πθ is α-smooth, that is
repα Πθ is a smooth GL(α)-variety of dimension d = α.α− 1 + 2pQ(α).

Moreover, the quotient variety issα Πθ is a smooth variety of dimension 2pQ(α), and the quotient
map

repα Πθ
-- issα Πθ

is a principal PGL(α)-fibration, so determines a central simple algebra.

Proof. Let V ∈ repα Πθ and let V ss be its semisimplification. As Σθ is the set of simple dimension
vectors of Πθ by theorem 8.8 and α is a minimal dimension vector in this set, V ss must be simple. As
V ss is the direct sum of the Jordan-Hölder components of V , it follows that V ' V ss is simple and
hence its orbit O(V ) is closed. As the stabilizer subgroup of V is C∗rrα computing the differential
of the complex moment map shows that V is a smooth point of µ−1

C (θrrα = repα Πθ.
Therefore, repα Πθ is a smooth GL(α)-variety whence Πθ is α-smooth. Because each α-

dimensional representation is simple, the quotient map

repα Πθ
π-- issα Πθ

is a principal PGL(α)-fibration in the étale topology. The total space being smooth, so is the
basespace issα Πθ. �

The trace pairing identifies repα Q
d with the cotangent bundle T ∗ repα Q and as such it comes

equipped with a canonical symplectic structure . More explicit, for every arrow ��������i��������j
aoo in Q

we have an aj × ai matrix of coordinate functions Auv with 1 ≤ u ≤ aj and 1 ≤ v ≤ ai and for the
adjoined arrow ��������i��������j

a∗
// in Qd an ai × aj matrix of coordinate functions A∗vu. The canonical

symplectic structure on repα Q
d is then induced by the closed 2-form

ω =

1≤v≤ai
1≤u≤ajX

��������i��������j
aoo

dAuv ∧ dA∗vu
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This symplectic structure induces a Poisson bracket on the coordinate ring C[repα Qd] by the
formula

{f, g} =

1≤v≤ai
1≤u≤ajX

��������i��������j
aoo

(
∂f

∂Auv

∂g

∂A∗vu
− ∂f

∂A∗vu

∂g

∂Auv
)

The basechange action of GL(α) on the representation space repα Qd is symplectic which means

that for all tangentvectors t, t′ ∈ T repα Q
d we have for the induced GL(α) action that

ω(t, t′) = ω(g.t, g.t′)

for all g ∈ GL(α).
The infinitesimal GL(α) action gives a Lie algebra homomorphism

Lie PGL(α) - V ectω repα Q
d

which factorizes through a Lie algebra morphism H to the coordinate ring making the diagram
below commute

Lie PGL(α)

C[repα Q
d]

f 7→ξf

-
�

H
=
µ
∗C

V ectω repα Q
d

-

where µC is the complex moment map introduced before. We say that the action of GL(α) on
repα M is Hamiltonian .

This makes the ring of polynomial invariants C[repα Qd]GL(α) into a Poisson algebra and we
will write

lie = (C[repα Q
d]GL(α), {−,−})

for the corresponding abstract infinite dimensional Lie algebra.
The dual space of this Lie algebra lie∗ is then a Poisson manifold equipped with the Kirillov-

Kostant bracket .
Evaluation at a point in the quotient variety issα Q

d defines a linear function on lie and therefore
evaluation gives an embedding

issα Q
d ⊂ - lie∗

as Poisson varieties. That is, the induced map on the polynomial functions is a morphism of Poisson
algebras.

Let us return to the setting of deformed preprojective algebras. So let θ be a character with
θ(α) = 0 and corresponding weight θrrα ∈ Lie PGL(α).
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Theorem 8.17 Let α ∈ Σminθ , then issα Πθ is an affine symplectic manifold and the Poisson
embeddings

issα Πθ
⊂ - issα Q

d ⊂ - lie∗

make issα Πθ into a closed coadjoint orbit of the infinite dimensional Lie algebra lie∗.

Proof. We know from proposition 8.12 that issα Πθ is a smooth affine variety and that PGL(α)
acts freely on µ−1

C (θrrα) = repα Πθ. Moreover, the infinitesimal coadjoint action of lie on lie∗

preserves issα Πθ and therefore C[issα Πθ] is a quotient Lie lie algebra (for the induced bracket)
of lie.

In general, if X is a smooth affine variety, then the differentials of polynomial functions on
X span the tangent spaces at all points x of X. Therefore, if X is in addition symplectic, the
infinitesimal Hamiltonian action of the Lie algebra C[X] (with the natural Poisson bracket) on X
is infinitesimally transitive. But then, the evaluation map makes X a coadjoint orbit of the dual
Lie algebra C[X]∗.

Hence, the quotient variety ossα Πθ is a coadjoint orbit in lie
∗
. Therefore, the infinite dimensional

group Ham generated by all Hamiltonian flows on issα Πθ acts with open orbits.
By proposition 8.12 issα Πθ is an irreducible variety, whence is a single Ham-orbit, finishing

the proof. �

The Lie algebra lie depends on the dimension vector α. By the general principle of
noncommutative geometry@n we would like to construct a noncommutative variety from a fam-
ily of coadjoint quotient spaces of deformed preprojective algebras. For this reason we need a
larger Lie algebra, the necklace Lie algebra.

Recall that the necklace Lie algebra introduced in section 7.8

neck = dR
0
rel CQd =

CQd

[CQd,CQd]

is the vectorspace with basis all the necklace words w in the quiver Qd, that is, all equivalence
classes of oriented cycles in the quiver Qd, equipped with the Kontsevich bracket

{w1, w2}K =
X
a∈Qa

(
∂w1

∂a

∂w2

∂a∗
− ∂w1

∂a∗
∂w2

∂a
) mod [CQd,CQd]

We recall that the algebra of polynomial quiver invariants C[issα Q
d] = C[repα Q

d]GL(α) is gen-
erated by traces of necklace words. That is, we have a map

neck =
CQd

[CQd,CQd]
tr- lie = C[issα Q

d]
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Recalling the definition of the Lie bracket on lie we see that this map is actually a Lie algebra map,
that is, for all necklace words w1 and w2 in Qd we have the identity

tr {w1, w2}K = {tr(w1), tr(w2)}

Now, the image of tr contains a set of algebra generators of C[issα Qd], so the elements tr neck

are enough to separate points in issα Qd and in the closed subvariety issα Πθ. That is, the
composition

issα Πθ
⊂ - issα Q

d tr∗- neck∗

is injective. Again, the differentials of functions on issα Πθ obtained by restricting traces of
necklace words span the tangent spaces at all points if the affine variety issα Πθ is smooth. That
is, we have :

Theorem 8.18 Let α ∈ Σminθ . Then, the quotient variety of the preprojective algebra issα Πθ is
an affine smooth manifold and the embeddings

issα Πθ
⊂ - issα Q

d ⊂ - lie∗ ⊂ - neck∗

make issα Πθ into a closed coadjoint orbit in the dual of the necklace Lie algebra neck.

We have proved in section 7.8 that there is an exact sequence of Lie algebras

0 - C⊕ . . .⊕ C| {z }
k

- neck - Derω CQd - 0

That is, the necklace Lie algebra neck is a central extension of the Lie algebra of symplectic deriva-
tions of CQd. This Lie algebra corresponds to the automorphism group of all B = C × . . . × C-
automorphisms of the path algebra CQd preserving the moment map element, the commutator

c =
X
a∈Qa

[a, a∗]

That is, we expect a transitive action of an extension of this automorphism group on the quotient
varieties of deformed preprojective algebras issα Πθ when α ∈ Σminθ . Further, it should be observed
that these coadjoint cases are precisely the situations were the preprojective algebra Πθ is α-
smooth. That is, whereas the Lie algebra of vectorfields of the smooth noncommutative variety
corresponding to CQd has rather unpredictable behavior on the singular noncommutative closed
subvariety corresponding to the quotient algebra Πθ, it behaves as expected on those α-dimensional
components where Πθ is α-smooth.
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8.8 Adelic Grassmannian

At the moment of writing it is unclear which coadjoint orbits issα Πθ should be taken together
to form an object in noncommutative geometry@n, for a general quiver Q. In this section we will
briefly recall how the phase spaces Calon of Calogero particles can be assembled together to form
an infinite dimensional cellular complex, the adelic Grassmannian Grad.

Let λ ∈ C, a subset V ⊂ C[x] is said to be λ-primary if there is some power r ∈ N+ such that

(x− λ)rC[x] ⊂ V ⊂ C[x]

A subset V ⊂ C[x] is said to be primary decomposable if it is the finite intersection

V = Vλ1 ∩ . . . ∩ Vλr

with λi 6= λj if i 6= j and Vλi is a λi-primary subset. Let kλi be the codimension of Vλi in C[x] and
consider the polynomial

pV (x) =

rY
i=1

(x− λi)kλi

Finally, take W = pV (x)−1V , then W is a vectorsubspace of the rational functionfield C(x) in one
variable.

Definition 8.2 The adelic Grassmannian Grad is the se of subspaces W ⊂ C(x) that arise in this
way.

We can decompose Grad in affine cells as follows. For a fixed λ ∈ C we define

Grλ = {W ∈ Grad | ∃k, l ∈ N : (x− λ)kC[x] ⊂W ⊂ (x− λ)−lC[x]}

Then, we can write every element w ∈W as a Laurent series

w = αs(x− λ)s + higher terms

Consider the increasing set of integers S = {s0 < s1 < . . .} consisting of all degrees s of elements
w ∈W . Now, define natural numbers

vi = i− si then v0 ≥ v1 ≥ . . . ≥ vz = 0 = vz+1 = . . .

That is, to W ∈ Grλ we can associate a partition

p(W ) = (v0, v1, . . . , vz−1)

Conversely, if p is a partition of some n, then the set of all W ∈ Grλ with associated partition
pW = p form an affine space An of dimension n. Hence, Grλ has a cellular structure indexed by
the set of all partitions.



8.8. Adelic Grassmannian 503

As Grad =
Q′
λ∈C Grλ because for any W ∈ Grad there are uniquely determined W (λi) ∈

Grλi such that W = W (λ1) ∩ . . . ∩W (λr), there is a natural number n associated to W where

n = |pi| where pi = p(W (λi)) is the partition determined by W (λi). Again, all W ∈ Grad

with corresponding (λ1, p1; . . . ;λr, pr) for an affine cell An of dimension n. In his way, the adelic
Grassmannian Grad becomes an infinite cellular space with the cells indexed by r-tuples of complex
numbers and partitions for all r ≥ 0. The adelic Grassmannian is an important object in the theory
of dynamical systems as it parametrizes rational solutions of the KP hierarchy . A surprising
connection between Grad and the Calogero system was discovered by G. Wilson in [85].

Theorem 8.19 Let Grad(n) be the collection of all cells of dimension n in grad, then there is a
set-theoretic bijection

Grad(n)←→ Calon

between Grad(n) and the phase space of n Calogero particles.

The adelic Grassmannian also appears in the study of right ideals of the first Weyl algebra

A1(C) =
C〈x, y〉

(xy − yx− 1)

which is an infinite dimensional simple C-algebra, having no finite dimensional representations.
Consider right ideals of A1(C) under isomorphism, that is

p ' p′ iff f.p = g.p′ for some f, g ∈ A1(C).

If we denote with D1(C) the Weyl skewfield , that is, the field of fractions of A1(C), then the
foregoing can also be expressed as

p ' p′ iff p = h.p′ for some h ∈ D1(C).

The set of isomorphism classes will be denoted by Weyl.
The connection between right ideals of A1(C) and grad is contained (in disguise) in the paper

of R. Cannings and M. Holland [16]. A1(C) acts as differential operators on C[x] and for every
right ideal I of A1(C) they show that I.C[x] is primary decomposable. Conversely, if V ⊂ C[x] is
primary decomposable, they associate the right ideal

IV = {θ ∈ A1(C) | θ.C[x] ⊂ V }

of A1(C) to it. Moreover, isomorphism classes of right ideals correspond to studying primary
decomposable subspaces under multiplication with polynomials. Hence,

Grad 'Weyl
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The group Aut A1(C) of C-algebra automorphisms of A1(C) acts on the set of right ideals of A1(C)
and respects the notion of isomorphism whence acts on Weyl. The group Aut A1(C) is generated

by automorphisms σfi defined by(
σf1 (x) = x+ f(y)

σf1 (y) = y
with f ∈ C[y],

(
σf2 (x) = x

σf2 (y) = y + f(x)
with f ∈ C[x]

We claim that for any polynomial in one variable f(z) ∈ C[z] we have that

f(xy).xn = xn.f(xy − n) and f(xy).yn = yn.f(xy + n)

Indeed, we have (xy).x = x.(yx) = x.(xy − 1) and therefore

f(xy).x = x.f(xy − 1)

from which the claim follows by recursion. In particular, as xn.yn = xn−1(xy)yn−1 =
xn−1yn−1(xy + n− 1) we get by recurrence that

xnyn = xy(xy + 1)(xy + 2) . . . (xy + n− 1)

In calculations with the Weyl algebra it is often useful to decompose A1(C) in weight spaces. For
t ∈ Z let us define

A1(C)(t) = { f ∈ A1(C) | [xy, f ] = tf }

then the foregoing asserts that A1(C) = ⊕t∈ZA1(C)(t) where A1(C)(t) is equal to(
ytC[xy] = C[xy]yt for t ≥ 0

x−tC[xy] = C[xy]x−t for t < 0.

For a natural number n ≥ 1 we define the n-th canonical right ideal of A1(C) to be

pn = xn+1A1(C) + (xy + n)A1(C).

Lemma 8.8 The weight space decomposition of pn is given for t ∈ Z

pn(t) = xn+1A1(C)(t+ n+ 1) + (xy + n)A1(C)(t)

which is equal to 8><>:
(xy + n)C[xy]yt for t ≥ 0,

(xy + n)C[xy]x−t for −n ≤ t < 0,

C[xy]x−t for t < −n.
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Proof. Let t = −1, then pn(−1) is equal to

xn+1C[xy]yn + (xy + n)C[xy]x

Using xn+1yn+1 = xy(xy + 1) . . . (xy + n) this is equal to

xy(xy + 1) . . . (xy + n)C[xy]y−1 + (xy + n)C[xy]x

The first factor is (xy + 1) . . . (xy + n)C[xy]x from which the claim follows. For all other t the
calculations are similar. �

One can show that pn 6' pm whenever n 6= m so the isomorphism classes [pn] are distinct points
in Weyl for all n. We define

Weyln = Aut A1(C).[pn] = { [σ(pn)] ∀σ ∈ Aut A1(C)}

the orbit in Weyl of the point [pn] under the action of the automorphism group.

Example 8.7 (The Weyl right ideals Weyl1) For a point (a, b) ∈ C2 we define a right ideal of
A1(C) by

pa,b = (x+ a)2A1(C) + ((x+ a)(y + b) + 1)A1(C).

Observe that p1 = p0,0. Consider the action of the automorphism σf2 on these right ideals. As
f ∈ C[x] we can write

f = f(−a) + (x+ a)f1 with f1 ∈ C[x].

Then, recalling the definition of σf2 we have

σf2 (pa,b) = (x+ a)2A1(C) + ((x+ a)(y + b+ f(−a) + (x+ a)f1) + 1)A1(C)

= (x+ a)2A1(C) + ((x+ a)(y + b+ f(−a)) + 1)A1(C) = pa,b+f(−a)

Now, consider the action of an automorphism σf1 . We claim that

pa,b = A1(C) ∩ (y + b)−1(x+ a)A1(C)

This is easily verified on the special case p1 using the above lemma, the arbitrary case follows by
changing variables. We have

pa,b = A1(C) ∩ (y + b)−1(x+ a)A1(C)

' (x+ a)−1(y + b)A1(C) ∩A1(C) (multiply with h = (x+ a)−1(y + b))

= (y + b)2A1(C) + ((y + b)(x+ a)− 1)A1(C)
def
= qb,a
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Writing f = f(−b) + (y + b)f1 with f1 ∈ C[y] we then obtain by mimicking the foregoing

σf1 (pa,b) ' σf1 (qb,a)

= qb,a+f(−b)

' pa+f(−b),b

and therefore there is an h ∈ D1(C) such that σf1 (pa,b) = hpa+f(−b),b.

As the group Aut A1(C) is generated by the automorphisms σf1 and σf2 we see that

Weyl1 = Aut A1(C).[p1] ⊂ - { [pa,b | a, b ∈ C }

Moreover, this inclusion is clearly surjective by the above arguments. Finally, we claim that
Weyl1 ' C2. That is we have to prove that if

pa,b = h.pa′,b′ ⇒ (a, b) = (a′, b′).

Observe that A1(C) ⊂ - C(x)[y, δ] where this algebra is the differential polynomial algebra over
the field C(x) and is hence a right principal ideal domain. That is, we may assume that the element
h ∈ D1(C) actually lies in C(x)[y, δ]. Now, induce the filtration by y-degree on C(x)[y, δ] to the
subalgebra A1(C). This is usually called the Bernstein filtration . Because A1(C) and C(x)[y, δ]
are domains we have for all f ∈ A1(C) that

deg(h.f) = deg(h) + deg(f).

Now, as both pa,b and pa′.b′ contain elements of degree zero x2 + a resp. x2 + a′ we must have that
h ∈ C(x).

View y as the differential operator − ∂
∂x

on C[x] and define for every right ideal p of A1(C) its
evaluation to be the subspace of polynomials

ev(p) = { D.f | D ∈ p , f ∈ C[x] }

where D.f is the evaluation of the differential operator on f . One calculates that

ev(pa,b) = C(1 + b(x+ a)) + (x+ a)2C[x]

and as from pa,b = h.pa′,b′ and h ∈ C(x) follows that

ev(pa,b) = hev(pa′,b′)

we deduce that h ∈ C∗ and hence that pa,b = pa′,b′ and (a, b) = (a′, b′).

Yu. Berest and G. Wilson proved in [7] that the Cannings-Holland correspondence respects the
automorphism orbit decomposition.
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Theorem 8.20 We have Weyl =
F
n Weyln and there are set-theoretic bijections

Weyln ←→ Grad(n)

whence also with Calon.

Example 8.8 Consider the special case n = 1. As is the only partition of 1, for every λ ∈ C,
grλ is a one-dimensional cell A1, whence Grad(1) ' A2. In fact we have

•

•
Grλ

pλ,µ

p1

where the origin corresponds to the canonical right ideal p1 and the right ideal corresponding to
(λ, µ) is pλ,µ = (x− λ)2A1(C) + ((x− λ)(y − µ) + 1)A1(C).

Finally, let us verify that pn should correspond to a point in Grad(n). As pn = xn+1A1(C) +
(xy + n)A1(C) we have that

pn.C[x] = C + Cx+ . . .+ Cxn−1 + (xn+1)C[x]

whence (xn+1)C[x] ⊂ pn.C[x] ⊂ C[x] and converting this to Grad the corresponding subspace is

(xn)C[x] ⊂ x−1pn.C[x] ⊂ x−1C[x]

The associated sequence of degrees is (−1, 0, 1, . . . , n − 2, n, . . .) giving rise to the partition p =
(1, 1, . . . , 1| {z }

n

) proving the claim.

If we trace the action of Aut A1(C) on Weyln through all the identifications, we get a transitive
action of Aut A1(C) on Calon. However, this action is non-differentiable hence highly non-algebraic.
Berest and Wilson asked whether it is possible to identify Calon with a coadjoint orbit in some
infinite dimensional Lie algebra. We have seen before that this is indeed the case if we consider the
necklace Lie algebra.

It is our hope that similar results are true for more general quivers and certain families of
coadjoint orbits coming from quotient varieties of deformed preprojective algebras.
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MR1044584

[53] Lieven Le Bruyn, Trace rings of generic 2 by 2 matrices, Mem. Amer. Math. Soc. 66 (1987),
no. 363, vi+100. MR MR878906 (88b:16032)

[54] , Moduli spaces for right ideals of the Weyl algebra, J. Algebra 172 (1995), no. 1, 32–48.
MR MR1320617 (96b:16025)



Bibliography 513

[55] , Nilpotent representations, J. Algebra 197 (1997), no. 1, 153–177. MR MR1480781
(98k:14070)
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