5 — Semi-Simple Representations

For a Cayley-Hamilton algebra A € alg@n we have seen in the first volume that the quotient scheme
triss, A =trep, A/GL,

classifies isomorphism classes of (trace preserving) semi-simple n-dimensional representations. A
point £ € triss, A is said to lie in the Cayley-smooth locus of A if trep, A is a smooth variety
in the semi-simple module M, determined by &£. In this case, the étale local structure of A and its
central subalgebra tr(A) are determined by a marked quiver setting.

We will extend some results on quotient varieties of representations of quivers to the setting of
marked quivers. We will give a computational method to verify whether ¢ belongs to the Cayley-
smooth locus of A and develop reduction steps for the corresponding marked quiver setting which
preserve geometric information, such as the type of singularity.

In low dimensions we can give a complete classification of all marked quiver settings which can
arise for a Cayley-smooth order, allowing us to determine the classes in the Brauer group of the
function field of a projective smooth surface which allow a noncommutative smooth model.

In arbitrary (central) dimension we are able to determine the smooth locus of the center as well
as to classify the occurring singularities up to smooth equivalence.

5.1 Representation types

In this section we will determine the étale local structure of quotient varieties of marked quivers,
characterize their dimension vectors of simples and introduce the representation type of a represen-
tation.

We fix a quiver @) and dimension vector a. Closed GL(«)-orbits is rep, @ correspond to
isomorphism classes of semi-simple representations of () of dimension vector a. We have a quotient
map

rep, Q —» rep, Q/GL(a) = iss, Q

and we know that the coordinate ring Cliss, @] is generated by traces along oriented cycles
in the quiver Q. Consider a point £ € iss, @ and assume that the corresponding semi-simple
representation V¢ has a decomposition

‘/5:‘/16961@“.@‘/;9%
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into distinct simple representations V; of dimension vector say «; and occurring in Ve with multi-
plicity e;. We then say that & is a point of representation-type

T=t¢) = (e1,1;...,€:,0;) with a= Zeiai
i—1

We want to apply the slice theorem to obtain the étale GL(a)-local structure of the representation
space rep,, ) in a neighborhood of V¢ and the étale local structure of the quotient variety iss, @ in a
neighborhood of . We have to calculate the normal space N¢ to the orbit O(Ve) as a representation
over the stabilizer subgroup GL(a)¢ = Stabgra)(Ve)-

Denote a; = 25:1 aij where a; = (a1, ..., ai), that is, a; = dim V;. We will choose a basis of
the underlying vectorspace

Bo;e,CE % of Ve=VE10.. @VE:

as follows : the first eja1 vectors give a basis of the vertex spaces of all simple components of type
Vi1, the next esas vectors give a basis of the vertex spaces of all simple components of type V2, and
soon. If n = Zle e;d; is the total dimension of V¢, then with respect to this basis, the subalgebra
of M, (C) generated by the representation V; has the following block-decomposition

M, (C) T, 0 ... 0
0 My (C) @ Ty 0
0 0 . Mo (C) @,

But then, the stabilizer subgroup
StabGL(a)(va) ~ CTVLE1 X ... X GLez

embedded in GL(a) with respect to this particular basis as

GLe, (C®TMay) 0 0
0 GLey (C®Tay) 0
0 0 . GL..(C®1.)

The tangentspace to the GL(«)-orbit in V¢ is equal to the image of the natural linear map
Lie GL(a) — rep, Q

sending a matrix m € Lie GL(o) ~ Me, & ... & M., to the representation determined by the
commutator [m, Ve] = mVe — Vem. By this we mean that the matrix [m, V¢]q corresponding to an
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arrow a is obtained as the commutator in M, (C) using the canonical embedding with respect to
the above choice of basis. The kernel of this linear map is the centralizer subalgebra. That is, we
have an exact sequence of GL(a)¢-modules

0 — Cu,(c)(Ve) — Lie GL(a) — Ty, O(Ve) —> 0

where
M., (C®T,) 0 0
0 Me, (C ®Tay) 0
Cmn(e)(Ve) = : . :
0 0 . M. (C®T.)

and the action of GL(a)v, is given by conjugation on M, (C) via the above embedding. We will
now engage in a book-keeping operation counting the factors of the relevant GL(«a)¢-spaces. We
identify the factors by the action of the GL.,-components of GL(«)¢

1. The centralizer Cy, (cy(Ve) decomposes as a GL(a)e-module into

e one factor M., on which GLe, acts via conjugation and the other factors act trivially,

e one factor M., on which GL., acts via conjugation and the other factors act trivially.

2. Recall the notation a; = (as1,...,a:x),then the Lie algebra Lie GL(«) decomposes as a
GL(a)¢-module into

° Z?:l afj factors M., on which GL., acts via conjugation and the other factors act
trivially,

. Z?Zl a2; factors M., on which GL., acts via conjugation and the other factors act
trivially,

° Z?zl aijaz; factors Me, xe, on which GLe, X GL., acts via yl.m.'ygl and the other
factors act trivially,

° 25:1 a-ja.—1 j factors Me, xe, , on which GL., x GL., , acts via fyz.m.fy;ll and the
other factors act trivially.
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3. The representation space rep, @ decomposes as a GL(«a)e-modulo into the following factors,

for every arrow in @ (or every loop in v; by setting ¢ = j in the expressions
below) we have

® ay;a1; factors M., on which GLe, acts via conjugation and the other factors act trivially,

® ai;az; factors M, xe, on which GL., X GL., acts via 71.m.'y;1 and the other factors
act trivially,

® a,ia,—1 ; factors M, xe._, on which GL., x GL.__, act via v,.m.y; ', and the other
factors act trivially,

® a.;a.; factors M., on which GL., acts via conjugation and the other factors act trivially.

Removing the factors of 1. from those of 2. we obtain a description of the tangentspace to the
orbit Tv, O(V¢). But then, removing these factors from those of 3. we obtain the description of
the normal space Ny, as a GL(a)¢-module as there is an exact sequence of G'L(a)¢-modules

0 — TV5 O(‘/g) — rep, Q—> st — 0

This proves that the normal space to the orbit in V¢ depends only on the representation type
7 = t(&£) of the point £ and can be identified with the representation space of a local quiver Q.

Theorem 5.1 Let £ € isso Q be a point of representation type
T=t¢) = (er,1;...,€:,z)

Then, the normal space Ny, to the orbit, as a module over the stabilizer subgroup, is identical to
the representation space of a local quiver situation

Nvé >~ rep, Q-

where Q- is the quiver on z wvertices (the number of distinct simple components of Ve¢) say
{wi,...,w:} such that in Q-

# =  —xqlos,05) fori#j, and
\
# @ = 1- XQ (ai7 ai)
and such that the dimension vector ar = (e1,...,e;) (the multiplicities of the simple components
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We can repeat this argument in the case of a marked quiver Q°®. The only difference is the
description of the factors of rep, Q° where we need to replace the factors M.; in the description of

a loop in v; by Mgi (trace zero matrices) in case the loop gets a mark in Q°®. We define the FEuler
form of the marked quiver Q°®

1—an X12 .. X1k —mi1
1 X21 1-— a2 P X2k ) —mao
X = . XQe =
Xk1 Xk2 oo 1T—agk —Mk

such that xo = xb. + Xé- where Q is the underlying quiver of Q°.

Theorem 5.2 Let € € iss, Q° be a point of representation type
T=1(¢) = (e1,1;...,€:, )

Then, the normal space Ny, to the orbit, as a module over the stabilizer subgroup, is identical to
the representation space of a local marked quiver situation

Ny, >~ rep,, Qr

where Q3 is the quiver on z wvertices (the number of distinct simple components of Vi) say
{wi,...,w;} such that in Q%

# =  —xq(oi, ) fori#j, and
# O = 1-xge(a,a)
)
’ 2
# @ = —Xx0e (@i, qs)
and such that the dimension vector ar = (e1,...,e.) (the multiplicities of the simple components
Proposition 5.1 If a = (di,...,dk) is the dimension vector of a simple representation of Q°, then

the dimension of the quotient variety iss. Q° is equal to

1- XlQ’ (a7 a)
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Proof. There is a Zariski open subset of iss, Q° consisting of points £ such that the corresponding
semi-simple module V¢ is simple, that is, £ has representation type 7 = (1, ). But then the local
quiver setting (Q-, a-) is

[@(Co_ 3]

where a = 1 — xge (o, @) and b = —x5e (a, @). The corresponding representation space has coordi-
nate ring
Clrep,,. Q7] =Clz1, ..., zd]

on which GL(a;) = C* acts trivially. That is, the quotient variety is
rep, Q3/GL(a;)=rep, QF~C*

By the slice theorem, iss, Q° has the same local structure near £ as this quotient space near the
origin and the result follows. O

We can extend the classifications of simple roots of a quiver to the setting of marked quivers.
Let @ be the underlying quiver of a marked quiver Q*. If « = (a1,...,ax) is a simple root of
Q@ and if | is a marked loop in a vertex v; with a; > 1, then we can replace the matrix V; of a
simple representation V € rep, @ by V' =V, — d%_’ﬂdi and retain the property that V' is a simple
representation. Things are different, however, for a marked loop in a vertex v; with a; = 1 as
this 1 x 1-matrix factor is removed from the representation space. That is, we have the following
characterization result.

Theorem 5.3 o = (a1,...,ax) is the dimension vector of a simple representation of a marked
quiver Q° if and only if a = (a1,...,axr) is the dimension vector of a simple representation of the
quiver Q' obtained from the underlying quiver Q of Q° after removing the loops in Q which are
marked in Q°® in all vertices v; where a; = 1.

We draw some consequences from the description of the local quiver. We state all results in
the setting of marked quivers. Often, the quotient varieties isso Q°® = rep, Q*/GL(c) classifying
isomorphism classes of semi-simple a-dimensional representations have singularities. Still, we can
decompose these quotient varieties in smooth pieces according to representation types.

Proposition 5.2 Let issq Q°(7) be the set of points £ € issa Q° of representation type
T=(e1,a1;...;€z,Qz)

Then, issa Q°(7) is a locally closed smooth subvariety of isso Q° and
iss, Q° = |_| issa Q°(7)

is a finite smooth stratification of the quotient variety.
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Proof. Let Q2 be the local marked quiver in £. Consider a nearby point £. If some trace of an
oriented cycles of length > 1 in Q2 is non-zero in &', then ¢’ cannot be of representation type 7 as
it contains a simple factor composed of vertices of that cycle. That is, locally in £ the subvariety
issq Q°(7) is determined by the traces of unmarked loops in vertices of the local quiver Q3 and
hence is locally in the étale topology an affine space whence smooth. All other statements are
direct. |

Given a stratification of a topological space , one wants to determine which strata make up the
boundary of a given stratum. For the above stratification of iss, Q°® we have a combinatorial
solution to this problem. Two representation types

/ / / ! !/
T=(e1,a1;...;€z,a;) and T = (€l,00;...;€,00,)
are said to be direct successors T < 7’ if and only if one of the following two cases occurs

o (splitting of one simple) : 2’ = 2z + 1 and for all but one 1 < i < z we have that (e;, ;) =
(e;-,a;-) for a uniquely determined j and for the remaining ip we have that the remaining
couples of 7/ are

(ei, s ei,0) with a; = ay, + o,

e (combining two simple types) : 2’ = 2z — 1 and for all but one 1 < i < 2’ we have that
(ef,a}) = (ej,a;) for a uniquely determined j and for the remaining i we have that the
remaining couples of T are

! / . !
(ew, 5 €0, 05)  With ey + ey = €}

This direct successor relation < induces an ordering which we will denote with <<. Observe that
7 << 7' if and only if the stabilizer subgroup GL(«), is conjugated to a subgroup of GL(a),.
The following result either follows from general theory, see for example [76, lemma 5.5], or from
the description of the local marked quivers.

Proposition 5.3 The stratum iss, Q°(7') lies in the closure of the stratum iss., Q° if and only
if T << 7.

Proposition 5.1 gives us the dimensions of the different strata iss, Q°®(7).

Proposition 5.4 Let 7 = (e1,au1;...;€5, ) a representation type of a. Then,

z

dim iss, Q°(1) = Z(l - Xéz- (aj,a;))

j=1
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Because rep, Q°® and hence iss, Q° is an irreducible variety, there is a unique representation
type Tgen such that iss. Q®(7,c,) is Zariski open in the quotient variety iss. Q°. We call 7,7,
the generic semi-simple representation type for a. The generic semi-simple representation type can

be determined by the following algorithm.

input : A quiver @, a dimension vector « = (a1,...,ax) and a semi-simple representation type
7= (e1,a1;5...;€1,00)

with a =3 +i = 1'e;a; and all a; simple roots for Q. For example, ne can always start with the
type (a1,91;...;ak, Vk).

step 1 : Compute the local quiver @), on [ vertices and the dimension vector . If the only oriented
cycles in Q. are vertex-loops, stop and output this type. If not, proceed.

step 2 : Take a proper oriented cycle C = (j1,...,jr) with » > 2 in Q, where js is the vertex in
Q@+ determined by the dimension vector a;,. Set 8 = oy, + ... + o, e; = e; — §;c where §;c = 1
if i € C' and is 0 otherwise. replace 7 by the new semi-simple representation type

T = (e, 15 e, 0051, 6)
delete the terms (e}, ;) with e; = 0 and set 7 to be the resulting type. goto step 1.

The same algorithm extends to marked quivers with the modified construction of the local
marked quiver Q% in that case. We can give an Ao-interpretation of the characterization of the
canonical decomposition and the generic semi-simple representation type . Let

z
T=(e1,a1;...;€z,Qz) a:Zeioa'
=1
be a decomposition of o with all the a; roots. We define o = (eq, ..., e.) and construct two quivers

Q2 and Q% on z vertices determined by the rules
in Q2 : # = dimc Homeo(Vi,V;)
inQL: # = dimc Exteg(Vi,V;)

where V; is a general representation of @ of dimension vector «;.

Theorem 5.4 With notations as above, we have :

1. The canonical decomposition 7can @s the unique type 7 = (e1,0a;...;€z,a) such that all «;
are Schur roots, Q% has no (non-loop) oriented cycles and Q% has no arrows and loops only
in vertices where e; = 1.

2. The generic semi-simple representation type 7,2, is the unique type 7 = (e1,a1;...5ez,az)
such that all o; are simple roots, Q2 has only loops and QL has no (non-loop) oriented cycles.
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5.2 Cayley-smooth locus

Let A be a Cayley-Hamilton algebra of degree n equipped with a trace map A "+ A and consider
the quotient map

trep, A T triss, A

Let £ be a geometric point of he quotient scheme triss, A with corresponding n-dimensional trace
preserving semi-simple representation Ve with decomposition

Ve=8Pq . @S2k

where the S; are distinct simple representations of A of dimension d; such that n = Zle d;e;.

Definition 5.1 The Cayley-smooth locus of A is the subset of triss, A
Smy. A= {€ € triss, A | triss, A is smooth along 7 '(€) }

As the singular locus of triss, A is a GLy-stable closed subscheme of triss, A this is equivalent
to

Smir A ={£ € triss, A | triss, A is smooth in Vg }
We will give some numerical conditions on £ to be in the smooth locus Sm:. A. To start,

trep,, A is smooth in V¢ if and only if the dimension of the tangent space in V¢ is equal to the local
dimension of trep, A in V¢. From example 3.11 we know that the tangent space is the set of trace

preserving derivations A L, M, (C) satisfying
D(ad') = D(@)p(a) + pla) Di(a)

where A —“—~ M,,(C) is the C-algebra morphism determined by the action of A on Vi. The
C-vectorspace of such derivations is denoted by Der}, A. Therefore,

& € Smy A <= dimc Der; A= dimy, trep, A
Next, if £ € Smyr A, then we know from the slice theorem that the local GL,-structure of trep, A
near V¢ is determined by a local marked quiver setting (Qf, a¢) as defined in theorem 4.3. We have
local étale isomorphisms between the varieties

GL, x“H e rep,, Qt <<% trep, A and rep,, Qt/GL(ag) << triss, A

Which gives us the following numerical restrictions on £ € Smy, A :
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Proposition 5.5 £ € Smy, A if and only if the following two equalities hold

dimy, trep, A = n? —(ef +...+ei) +dimc Exty (Ve, Vi)
dimg¢ triss, A =dimg rep,, Q¢/GL(ag) = dimg issa Q¢

Moreover, if £ € Smy, A, then trep, A is a normal variety (that is, the coordinate ring is integrally
closed) in a neighborhood of &

Proof. The last statement follows from the fact that (C[repa{ Qg]GL(“f ) is integrally closed and
this property is preserved under the étale map. O

In general, the difference between these numbers gives a measure for the noncommutative sin-
gularity of A in &.

Example 5.1 (Quantum plane of order 2) Consider the affine C-algebra A = (f;j_’;’;) then

u=z? and v = y? are central elements of A and A is a free module of rank 4 over Clu,v]. In fact,
A is a Clu, v]-order in the quaternion division algebra

A:(u C(u,v) v)

and the reduced trace map on A makes A into a Cayley-Hamilton algebra of degree 2. More
precisely, tr is the linear map on A such that

tr(z'y?) =0 if either ¢ or j are odd, and
tr(z'y?) = 2x'y? if ¢ and j are even.

In particular, a trace preserving 2-dimensional representation is determined by a couple of 2 x 2

matrices
1 i) T4 Is5 . 1 i) T4 x5
p=( |:$3 7m1] , |:9U6 7x4:| ) with  #r( |:x3 7m1] . |:376 7m4]) =0
That is,trep, A is the hypersurface in C® determined by the equation

trep, A =V (2z124 + 226 + T3T5) —> ok

and is therefore irreducible of dimension 5 with an isolated singularity at p = (0,...,0). The image
of the trace map is equal to the center of A which is C[u,v] and the quotient map

trep, A —» trissy A = C? m(x1,...,x6) = (@] + zow3, T3 + T576)
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There are three different representation types to consider. Let £ = (a,b) € C? = trisss A with
ab # 0, then 771(¢) is a closed GLs-orbit and a corresponding simple A-module is given by the

matrixcouple .
(1 2 L 2D

That is, £ is of type (1,2) and the stabilizer subgroup are the scalar matrixes C*fp —— GLs. So,
the action on both the tangentspace to trep, A and the tangent space to the orbit are trivial. As
they have respectively dimension 5 and 3, the normalspace corresponds to the quiver setting

%= CoD

which is compatible with the numerical restrictions. Next, consider a point & = (0,b) (or similarly,
(a,0)), then & is of type (1,1;1, 1) and the corresponding semi-simple representation is given by the

matrices
(oo ivb 0 )
0 0l | 0o —ivb
The stabilizer subgroup is in this case the maximal torus of diagonal matrices C* x C* —— GLa.
The tangent space in this point to trep, A are the 6-tuples (a1, ..., as) such that

0 0 a1 a2 ivb 0 bi bs ], .
tr ({0 0} te |:a,3 7a1:|).(|: 0 71\/5] +e€ [be be) =0 wheree” =0
This leads to the condition a; = 0, so the tangentspace are the matrix couples

( 0 a2 , a4 a5 ) on which the stabilizer A0
as 0 as —a4 0 pu

acts via conjugation. That is, the tangentspace corresponds to the quiver setting

S0

Moreover, the tangentspace to the orbit is the image of the linear map

@re [ mpc ) [8 re-fm w)

which is equal to
(0 o] [vb 0 e 0 —2maVb )
0 0’0o —vb 2msvb 0
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on which the stabilizer acts again via conjugation giving the quiver setting

TN
"

® ®

Therefore, the normal space to the orbit corresponds to the quiver setting
/\ .
®\/®V

which is again compatible with the numerical restrictions. Finally, consider £ = (0,0) which is
of type (2,1) and whose semi-simple representation corresponds to the zero matrix-couple. The
action fixes this point, so the stabilizer is GL2 and the tangent space to the orbit is the trivial
space. Hence, the tangent space to trep, A coincides with the normalspace to the orbit and both
spaces are acted on by G Ly via simultaneous conjugation leading to the quiver setting

e
8

This time, the data is not compatible with the numerical restriction as

Ne¢

5=dim trep, A#n> —e’ +dimrep, Q" =4—4+6
consistent with the fact that the zero matrix-couple is a (in fact, the only) singularity on trep, A.

We will put additional conditions on the Cayley-Hamilton algebra A. Let X be a normal affine
variety with coordinate ring C[X] and functionfield C(X). Let A be a central simple C(X)-algebra
of dimension n? which is a Cayley-Hamilton algebra of degree n using the reduced trace map tr.
Let A be a C[X]-order in A, that is, the center of A is C[X] and A ®¢[x] C(X) ~ A. Because C[X]
is integrally closed, the restriction of the reduced trace tr to A has its image in C[X], that is, A is
a Cayley-Hamilton algebra of degree n and

Consider the quotient morphism for the representation variety

trep, A T triss, A

then the above argument shows that X ~ triss, A and in particular the quotient scheme is
reduced.
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Proposition 5.6 Let A be a Cayley-Hamilton order of degree n over C[X]. Then, its smooth locus
Smy, A is a nonempty Zariski open subset of X. In particular, the set X, of Azumaya points, that
is, of points x € X = triss, A of representation type (1,n) is a non-empty Zariski open subset of
X and its intersection with the Zariski open subset Xyeq of smooth points of X satisfies

Xaz mX'reg — Smtr A
Proof. Because AC(X) = A, there is an f € C[X] such that Ay = A ®¢|x] C[X]; is a free

C[X]s-module of rank n? say with basis {a1,...,a,2}. Consider the n? x n? matrix with entries in
CIXly
tr(aiar) ... tr(aia,2)
R = . .
tr(apzai) ... tr(ap2a,2)

The determinant d = det R is nonzero in C[X];. For, let K be the algebraic closure of C(X) then
Af ®cix); K ~ M, (K) and for any K-basis of M,(K) the corresponding matrix is invertible (for
example, verify this on the matrixes e;;). As {ai1,...,a,2} is such a basis, d # 0. Next, consider
the Zariski open subset U = X(f) N X(d) —— X. For any € X with maximal ideal m, < C[X]
we claim that 4

Am, A

Indeed, the images of the a; give a C-basis in the quotient such that the n? x n?-matrix of their
product-traces is invertible. This property is equivalent to the quotient being M, (C). The corre-
sponding semi-simple representation of A is simple, proving that X,. is a non-empty Zariski open
subset of X. But then, over U the restriction of the quotient map

trep, A | 7' (U) —= U

M, (C)

is a principal PGL,-fibration. In fact, this restricted quotient map determines an element in
H}, (U, PGL,) determining the class of the central simple C(X)-algebra A in H%(C(X), PGL,).
Restrict this quotient map further to U N X,¢g4, then the PG L, -fibration

trep, A | 7 (U N Xpeg) —> UN Xyeg

has a smooth base and therefore also the total space is smooth. But then, U N X4 is a non-empty
Zariski open subset of Smy, A. O

Observe that the normality assumption on X is no restriction as the quotient scheme is locally

normal in a point of Smy, A. Our next result limits the local dimension vectors o.

Proposition 5.7 Let A be a Cayley-Hamilton order and § € Smy, A such that the normal space
to the orbit of the corresponding semi-simple n-dimensional representation is
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Then, ag is the dimension vector of a simple representation of Qg.

Proof. Let V¢ be the semi-simple representation of A determined by £. Let S¢ be the slice variety
in V¢ then by the slice theorem we have the following diagram of étale G Ly-equivariant maps

GL, x GL(ag) Se

GL, xCtee) rep,, Q¢ trep, A

lmkmg a neighborhood of Vg with one of (1,,0). Because A is an order, every Zariski neighborhood
of V¢ in trep, A contains simple n-dimensional representations, that is, closed G L,-orbits with
stabilizer subgroup isomorphic to C*. Transporting this property via the GL,-equivariant étale
maps, every Zariski neighborhood of ({,,0) contains closed GLy,-orbits with stabilizer C*. By
the correspondence of orbits is associated fiber bundles, every Zariski neighborhood of the trivial
representation 0 € rep,, Q¢ contains closed G'L(cg)-orbits with stabilizer subgroup C*. We have

seen that closed G'L(ag)-orbits correspond to semi-simple representations of Qf. However, if the
stabilizer subgroup of a semi-simple representation is C* this representation must be simple. O

Theorem 5.5 Let A be a Cayley-Hamilton order of degree n with center C[X], X a normal variety
of dimension d. For £ € X = triss,, A with corresponding semi-simple representation

Ve=8Pr@. . @ 8P

and normal space to the orbit O(Ve) isomorphic to rep,, Q¢ as GL(ag)-modules where ag =
(e1,...,ex). Then, & € Smy A if and only if the following two conditions are met

ag  1s the dimension vector of a simple representation of Q°, and

k
d =1-xqlog, ag) — X7, mii

where @Q is the underlying quiver of Qg and my; is the number of marked loops in Qg in vertex v;.

Proof. By the slice theorem we have étale maps
rep,, Q¢ /GL(a) S Se/GL(ag) ' triss, A=X

connecting a neighborhood of ¢ € X with one of the trivial semi-simple representation 0. By
definition of the Euler-form of () we have that

xe(ag, ag) Zezegxzﬂrzez — Qi — Mis)

i#A]
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Figure 5.1: Ext-quiver of quantum plane

On the other hand we have

dim rep, Qa, = Z eiejXij + Z e (ass + mas) Z mi;

i#£]

dim GL(a) Zel

As any Zariski open neighborhood of £ contains an open set where the quotient map is a PGL(ae) =
%—ﬁbmtion we see that the quotient variety rep,, Q¢ has dimension equal to

dim rep,,, Q¢ —dim GL(ag) +1

and plugging in the above information we see that this is equal to 1 — xg(ae, ag) — >, M. O

Example 5.2 (Quantum plane) We will generalize the discussion of example 5.1 to the algebra
_ _Clzy)
(yz — qzy)

where ¢ is a primitive n-th root of unity. Let ©v = 2™ and v = y™ then it is easy to see that A is
a free module of rank n? over its center C[u,v] and is a Cayley-Hamilton algebra of degree n with
the trace determined on the basis

tr(mi j) _J0 when either ¢ or j is not a multiple of n,
vy= naz'y’  when i and j are multiples of n,
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Let ¢ € iss, A = C? be a point (a™,b) with a.b # 0, then ¢ is of representation type (1,n) as the
corresponding (semi)simple representation Vg is determined by (if m is odd, for even n we replace
a by ia and b by —b)

" 01 0 0
0 0 1 0
qa
plx) = . and  p(y) = |:
T 00 0 1
o b 0 0 0

One computes that Extl (Ve, Vz) = C? where the algebra map A 2 M, (Cle]) corresponding to
(a, B) is given by
¢(z) =px)+e ol
p(y) +e BT

<

=

N
I

and all these algebra maps are trace preserving. That is, Extl (Ve, Vi) = Ext’y (Ve, Ve) and as the
stabilizer subgroup is C* the marked quiver-setting (Qg, o) is

2

and d =1—xq(o, a) — >, my as 2 =1 —(—1) +0, compatible with the fact that over these points
the quotient map is a principal PG Ly-fibration.

Next, let £ = (a™,0) with a # 0 (or, by a similar argument (0,b") with b # 0). Then, the
representation type of € is (1,1;...;1,1) because

where the simple one-dimensional representation S; is given by
p(r) =dq'a
ply) =0

Exty(S:,8;) =C and Ext'y(Si,S;) = ir1,; C

One verifies that

and as the stabilizer subgroup is C* x ... x C*, the Ext-quiver setting is depicted in figure 5.1. The
algebra map A M, (Cle]) corresponding to the extension (a1, B1,...,an, On) € Bxty (Ve, Vi)



5.2. Cayley-smooth locus 257

is given by
at+e o
qa + € a2
p(x) =
" latea,
0 /1 O 0
0 0 pBa 0
ply) =¢e |+ L
0 0 O Bn-1
Gn 0O 0 ... 0

The conditions tr(z?) = 0 for 1 < i < n impose n — 1 linear conditions among the «;, whence the
space of trace preserving extensions Ext{ (Ve, Vi) corresponds to the quiver setting

N
O—)

The Euler-form of this quiver Q°® is given by the n X n matrix

o -1 0o ... O
1 -1 0
1 -1
—1 1
giving the numerical restriction as ae = (1,...,1)

l—xQ(a,a)—Zmii =1—-(-1)—-0=2=dim triss, A

s0 £ € Smy, A. Finally, the only remaining point is £ = (0,0). This has representation type (n,1)
as the corresponding semi-simple representation V¢ is the trivial one. The stabilizer subgroup is
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GL,, and the (trace preserving) extensions are given by
Exty(Ve,Ve) = M, & M,y and Eatj (Ve,Ve) = My, & M,
determined by the algebra maps A —» M, (Cle]) given by

plz) =em

Py) =em2
That is, the relevant quiver setting (Qg, ae) is in this point

N
This time, £ ¢ Smy, A as the numerical condition fails

1 —xq(a,a) — Zmii =1- (—n2) —0#2=dim triss,, A
unless n = 1. That is, Smy- A = C? — {(0,0)}.

5.3 Reduction steps

If we want to study the local structure of Cayley-Hamilton orders A of degree n over a central
normal variety X of dimension d, we have to compile a list of admissible marked quiver settings,
that is couples (Q°, ) satisfying the two properties

«a is the dimension vector of a simple representation of Q°®, and
d :1_XQ(a7a)_Zimi

In this section, we will give two methods to start this classification project.

The first idea is to shrink a marked quiver-setting to its simplest form and classify these simplest
forms for given d. By shrinking we mean the following process. Assume o = (e1,...,ex) is the
dimension vector of a simple representation of @Q°® and let v; and v; be two vertices connected with
an arrow such that e; = e; = e. That is, locally we have the following situation




5.3. Reduction steps 259

We will use one of the arrows connecting v; with v; to identify the two vertices. That is, we
form the shrinked marked quiver-setting (Q%, as) where Q$ is the marked quiver on k — 1 vertices
{v1,...,0i,...,vr} and as is the dimension vector with e; removed. Q3 has the following form in
a neighborhood of the contracted vertex

agi +ajj+xig g -1 ‘

In Q% we have for all k,l # i, j that x3; = Xki, anp = akk, My, = Mk and the number of arrows
and (marked) loops connected to v; are determined as follows

° X;k = Xik + Xjk
® Xij = Xki t Xkj
® ai; = ai +aj; + Xij + x50 — 1

R .. ..
] m“ = M4 +m]]

Lemma 5.1 « is the dimension vector of a simple representation of Q° if and only if as is the
dimension vector of a simple representation of Qs. Moreover,

dim rep, Q°/GL(a) = dim rep, Q:/GL(as)

Proof. Fix an arrow Q<———Q). As e; = e; = e there is a Zariski open subset U —— rep, Q° of
points V such that Vj is invertible. By basechange in either v; or v; we can find a point W in its orbit
such that W, = .. If we think of W, as identifying C* with C% we can view the remaining maps of
W as a representation in rep, Q% and denote it by W*. The map U — rep,_ Q3 is well-defined
and maps GL(a)-orbits to GL(cas)-orbits. Conversely, given a representation W' & rep, QF we
can uniquely determine a representation W € U mapping to W’. Both claims follow immediately
from this observation. |

A marked quiver-setting can uniquely be shrinked to its simplified form , which has the char-
acteristic property that no arrow-connected vertices can have the same dimension. The shrinking
process has a converse operation which we will call splitting of a vertex . However, this splitting
operation is usually not uniquely determined.

Before compiling a lists of marked-quiver settings in simplified form for a specific base-dimension
d, we bound the components of .
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Proposition 5.8 Let a = (ex,...,ex) be the dimension vector of a simple representation of Q and
let 1 — xqg(a, ) =d = dim rep, Q/GL(c). Then, if e = max e;, we have that d > e+ 1.

Proof. By lemma 5.1 we may assume that (Q, «) is brought in its simplified form, that is, no two
arrow-connected vertices have the same dimension. Let y;; denote the number of loops in a vertex
v;, then

2o i (32 xijej —ei)
> e (225 xyiej —ei)
and observe that the bracketed terms are positive by the requirement that « is the dimension vector

of a simple representation. We call them the incoming in;, respectively outgoing out;, contribution
of the vertex v; to d. Let v,, be a vertex with maximal vertex-dimension e.

—XQ (av a) = {

inm =e(d_ xjme; + (i — De) and  outm = e(D_ xije; + (i — De)
j#m j#m

If there are loops in v, then in., > 2 or out,, > 2 unless the local structure of @ is
()
® © ®

in which case in,, = e = out,,. Let v; be the unique incoming vertex of v,,, then we have
out; > e — 1. But then,

dzl—XQ(a,a)zl—i—Zoutj > 2e
J

If v, has no loops, consider the incoming vertices {v;,,...,v;,}, then
S
nm = e E Xijm€i; — e)
=1
which is > e unless Y xi;mei; = e, but in that case we have
S S
2 2
E outijZefE eijze
j=1 j=1

the last inequality because all e;; < e. In either case we have that d = 1 —xq(a, ) = 143, out; =
14>, ini > e+ 1. O
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Example 5.3 In a list of simplified marked quivers we are only interested in rep, Q° as GL(«)-
module and we call two setting equivalent if they determine the same G L(«)-module. For example,
the marked quiver-settings

OG0 o0
\/ \w/

determine the same C* x G L2-module, hence are equivalent.

and (@

Theorem 5.6 Let A be a Cayley-Hamilton order of degree n over a central normal variety X of
degree d. Then, the local quiver of A in a point € € X = triss, A belonging to the smooth locus
Smyr A can be shrinked to one of a finite list of equivalence classes of simplified marked quiver-
settings. For d < 4, the complete list is given in figure 5.2 where the boxed value is the dimension
dof X.

An immediate consequence is a noncommutative analog of the fact that commutative smooth
varieties have only one type of analytic (or étale) local behavior.
Theorem 5.7 There are only finitely many types of étale local behavior of smooth Cayley-Hamilton

orders of degree n over a central variety of dimension d.

Proof. The foregoing reduction shows that for fixed d there are only a finite number of marked
quiver-settings shrinked to their simplified form. As > e; < n, we can apply the splitting operations
on vertices only a finite number of times. a

The second set of reduction steps is due to Raf Bocklandt who found them to prove his theorem,
see section 5.7, which is crucial to study the smooth locus and the singularities of triss, A. In
essence the reduction steps relate quiver settings which have invariants rings which are isomorphic
(up to adding variables).

Theorem 5.8 We have the following reductions :
1. bl : Let (Q, ) be a quiver setting and v a vertex without loops such that

xa(a, ) >0 or xo(ew, o) > 0.

Define the quiver setting (Q’,a’) by composing arrows through v :
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d oD P o

®/’N‘~\<®> ®/MM\@/M\@

Figure 5.2: The simplified local quivers for d < 4

(some of the vertices may be the same). Then,

Clissa Q] ~ Clissy Q')

2. b2 : Let (Q, ) be a quiver setting and v a vertex with k loops such that a, = 1. Let (Q’, @)
be the quiver setting where Q' is the quiver obtained by removing the loops in v, then

Clissa Q] ~ Clisse Q1 ®C[X1, -+, Xi&]
3. b3 : Let (Q,a) be a quiver setting and v a vertex with one loop such that o, = k > 2 and

xa(a, ) = =1 or xq(ev, o) = —1.
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Define the quiver setting (Q', ) by changing the quiver as below :

o
G Tl TS el
o
FE el TS el

Clissa Q] ~ Clissa Q'] ® C[X1, ..., Xk]

Then,

Proof. (1) : rep, @ can be decomposed as

rep, Q@ = @ Mat(a)xas(a)((:)@ @ Mat(a)xas(a)(c)@reSt

a, s(a)=v a, t(a)=v
arrows starting in v arrows terminating in v
= MZS(Q):’U Qy(a) Xy (C) & M,, X t(a)y=v ¥s(a) (C) @ rest

= Mo, —x(a,en)xay (C) ® Mo, xa,—x(ey,a)(C) @ rest

GLq,(C) only acts on the first two terms and not on rest. Taking the quotient corresponding to
GL,, (C) involves only the first two terms.

We recall the first fundamental theorem for GLy-invariants , see for example [51, I1.4.1]. The
quotient variety

(Mlxn((C) &) Mnxm)/GLn

where G L,, acts in the natural way, is for all I, n, m € N isomorphic to the space of all [ x m matrices
of rank < n. The projection map is induced by multiplication

Mixn(C) ® Mypsm(C) —> Mixm(C) (A, B)— A.B

In particular, if n > [ and n > m then 7 is surjective and the quotient variety is isomorphic to
Ml><m(©)~

By this fundamental theorem and the fact that either xq(a,€,) > 0 or xg(€v, @) > 0, the above
quotient variety is isomorphic to

M, —x(a,en) xan—x(en,a) (C) ® rest
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This space can be decomposed as

@ Mat(b) XAs(a) (C) Drest = rep, Q/

a, t(a)=vb, s(b)=v

Taking quotients for GL(a/) then proves the claim.

(2) : Trivial as GL(«a) acts trivially on the loop-representations in v.

(3) : We only prove this for the first case. Call the loop in the first quiver £ and the incoming
arrow a. Call the incoming arrows in the second quiver ¢;,i =0,...,k — 1.

There is a map

m:rep, Q — rep, Q' x CF: Vs (V, Tr(Ve),..., Tr(Vy)) with Vo= ViV,

Suppose (V', z1,...,zx) € rep,, Q' x C* € such that (z1,...,zx) correspond to the traces of powers
of an invertible diagonal matrix D with k different eigenvalues (A\;,7 = 1,...,k) and the matrix A
made of the columns (V,;,i =0, ...,k — 1) is invertible. The image of the representation
A A’l"*l -1 A9 A;Cfl
VErepaQ:Va:Vc'O,Vg:A : : Dy : : A™!
AQ - /\2*1 AQ . )\2*1
under 7 is (V',z1,...,zr) because
A9 )\’16*1 -1 A9 )\’1“*1
ViVeo=A| - : D | - : ATV
AD AZ*l AQ - )\’]z*I
Akt g
=A
AQ o ARl AL
= Vci
and the traces of V; are the same as those of D. The conditions on (V’',x1,..., ), imply that the

image of m, U, is dense, and hence 7 is a dominant map.
There is a bijection between the generators of Cliss,Q] and C[iss. Q'] ® C[Xq,...,Xx] by
identifying
fo—Xi=1,...,k,fo.qi.— foc,.,i=0,...,k—1
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Notice that higher orders of £ don’t occur by the Caley Hamilton identity on V;. If n is the number
of generators of C[iss.Q)], we have two maps

6 C[Vi, -+ Ya] — ClissaQ] C Clrep, @],
¢ :ClYi,---Y,] — Clissa Q] ® C[X1, ..., Xi] C Clrep,, Q" x C].

Note that ¢/(f) o m = ¢(f) and ¢(f) o7~y E ( ) So if ¢(f) = 0 then also ¢'(f)[v = 0.

|u.
Because U is zariski-open and dense in repa Q' x o'(f ) = 0. A similar argument holds for the
inverse implication whence Ker(¢) = Ker(¢'). O

We have to work with marked quiver settings and therefore we need slightly more general reduc-
tion steps. The proofs of the claims below follow immediately from the above theorem by separating
traces.

With ¢, we denote the basevector concentrated in vertex v and «, will denote the vertex dimen-
sion component of « in vertex v. There are three types of reduction moves, each with their own
condition and effect on the ring of invariants.

Vertex removal (bl) : Let (Q°,«) be a marked quiver setting and v a vertex satisfying the
condition CY;, that is, v is without (marked) loops and satisfies

xo(o,e) 20 or xg(ew,a) >0

Define the new quiver setting (Q'/, o) obtained by the operation R}, which removes the vertex v
and composes all arrows through v, the dimensions of the other vertices are unchanged :

Ry

@) | L

where ¢;; = a;b; (observe that some of the incoming and outgoing vertices may be the same so that
one obtains loops in the corresponding vertex). In this case we have

(C[rep& Qc]GL(a) ~ (C[repa, Q.’]GL(QI)

loop removal (b2) : Let (Q°, a) be a marked quiver setting and v a vertex satisfying the
condition C} that the vertex-dimension «, = 1 and there are k > 1 loops in v. Let (Q'/7 a) be the
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quiver setting obtained by the loop removal operation R}

k i {k/—_<
Q@ Qo

removing one loop in v and keeping the dimension vector the same, then
Clrep, Q°)9 @) ~ Clrep,, Q'/]GL(O‘) [z]

Loop removal (b3) : Let (Q° &) be a marked quiver setting and v a vertex satisfying
condition C7, that is, the vertex dimension o, > 2, v has precisely one (marked) loop in v and

xQ(ew,a) = =1 or xq(a,e) =—1

(that is, there is exactly one other incoming or outgoing arrow from/to a vertex with dimension

1). Let (Q',7 «) be the marked quiver setting obtained by changing the quiver as indicated below
(depending on whether the incoming or outgoing condition is satisfied and whether there is a loop

or a marked loop in v)

(&),
Ry \ \
ST

().
ST

o . A
e Bl P B

—4)
i

N
~/

O]

)
~-/
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e NP7

and the dimension vector is left unchanged, then we have

Clrep, Q*1°*@[zy,...,2x]  (loop)

C ¢ 1GL(x) — ,
[rep, Q°] Clrep, Q° ]GL(O‘)[xl, ...yxr—1] (marked loop)

Definition 5.2 A marked quiver Q° is said to be strongly connected if for every pair of vertices
{v,w} there is an oriented path from v to w and an oriented path from w to v.

A marked quiver setting (Q°, o) is said to be reduced if and only if there is no verter v such that
one of the conditions Cy;, C} or C7 is satisfied.

Lemma 5.2 Every marked quiver setting (Q1,c1) can be reduced by a sequence of operations
v, R{ and R}, to a reduced quiver setting (Q3, az) such that

Clrep,, Q}C (@) ~ Clrep,, Q3CE e gy L x]
Moreover, the number z of extra variables is determined by the reduction sequence
(Q%,a2) = R¥" o...0 RYM(QF, )

where for every 1 < j <wu, X; € {V,l,L}. More precisely,

(unmarked) (marked)
z = Z 1 + Z avi]. + Z (011)1;]. - 1)
X;=1 X;=L X;=L

Proof. As any reduction step removes a (marked) loop or a vertex, any sequence of reduction steps
starting with (Q7, a1) must eventually end in a reduced marked quiver setting. The statement then
follows from the discussion above. a

As the reduction steps have no uniquely determined inverse, there is no a priori reason why the
reduced quiver setting of the previous lemma should be unique. Nevertheless this is true.

We will say that a vertex v is reducible if one of the conditions Cy, (vertex removal), C7 (loop
removal in vertex dimension one) or C7 (one (marked) loop removal) is satisfied. If we let the
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specific condition unspecified we will say that v satisfies C% and denote R% for the corresponding
marked quiver setting reduction. The resulting marked quiver setting will be denoted by

R%(Q*, )

If w # v is another vertex in Q° we will denote the corresponding vertex in R% (Q°) also with w.
The proof of the uniqueness result relies on three claims :

1. If w # v satisfies Ry in (Q°, a), then w virtually always satisfies Ry in R%(Q°, @).
2. If v satisfies R% and w satisfies Ry, then R% (Ry(Q®,a)) = Ry (R%(Q®, )).

3. The previous two facts can be used to prove the result by induction on the minimal length of
the reduction chain.

By the neighborhood of a vertex v in @Q* we mean the (marked) subquiver on the vertices connected
to v. A neighborhood of a set of vertices is the union of the vertex-neighborhoods. Incoming resp.
outgoing neighborhoods are defined in the natural manner.

Lemma 5.3 Let v # w be vertices in (Q°, ).

1. If v satisfies Cy in (Q°, ) and w satisfies Cy%, then v satisfies Cy in R%(Q®, ) unless the
neighborhood of {v,w} looks like

and o, = ay. Observe that in this case Ry (Q°, o) = Ry (Q°, ).
2. If v satisfies C} and w satisfies C then then v satisfies C7 in R%(Q°, ).
3. If v satisfies Cy and w satisfies CY then then v satisfies Cyr in R% (Q°, ).

Proof. (1) : If X =1 then RY% does not change the neighborhood of v so Cy, holds in R}"(Q°, a).
If X = L then RY does not change the neighborhood of v unless o, = 1 and xg(€w,€s) = —1
(resp. x@(€v,€w) = —1) depending on whether w satisfies the in- or outgoing condition Cy. We
only consider the first case, the latter is similar. Then v cannot satisfy the outgoing form of CY; in
(Q®, @) so the incoming condition is satisfied. Because the R}-move does not change the incoming
neighborhood of v, CY, still holds for v in R¥(Q°, «).

If X =V and v and w have disjoint neighborhoods then Cy trivially remains true in Ry (Q°, «).
Hence assume that there is at least one arrow from v to w (the case where there are only arrows from
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w to v is similar). If o, < @y then the incoming condition Cf, must hold (outgoing is impossible)
and hence w does not appear in the incoming neighborhood of v. But then R§; preserves the
incoming neighborhood of v and C%, remains true in the reduction. If o, > au, then the outgoing
condition Cy/ must hold and hence w does not appear in the incoming neighborhood of v. So if the
incoming condition CY, holds in (Q°, «) it will still hold after the application of Ri7. If the outgoing
condition Cy, holds, the neighborhoods of v and w in (Q°®, @) and v in Ry (Q®, o) are depicted in
figure 5.3. Let A be the set of arrows in Q°® and A’ the set of arrows in the reduction, then because
2 ac A, s(a)y—w ¥(a) < 0w (the incoming condition for w) we have

Z Qi(a) Z Qi(a) + Z Z Qi(a)

acA’ s(a)=v a€A, acA a€A,s(a)=w
s(a)=v,t(a)F#w t(a)=w,s(a)=v
< D> wmmt Y
acA, a€A
s(a)=v,t(a)#w t(a)=w,s(a)=w
= Z Qi(a) < Oy
a€A,s(a)=v

and therefore the outgoing condition C% also holds in Ry (Q°,«). Finally if oy, = aw, it may be
that CY, does not hold in R (Q®,a). In this case x(€y,a) < 0 and x(a, €w) < 0 (Cy is false in
Ry (Q®, @)). Also x(a, €y) > 0 and x(€w, ) > 0 (otherwise Cy does not hold for v or w in (Q°, @)).
This implies that we are in the situation described in the lemma and the conclusion follows.

(2) : None of the R%-moves removes a loop in v nor changes o, = 1.

(3) : Assume that the incoming condition C7 holds in (Q°, @) but not in R%(Q°, «), then w must
be the unique vertex which has an arrow to v and X = V. Because o, = 1 < aw, the incoming
condition CV/ holds. This means that there is also only one arrow arriving in w and this arrow is
coming from a vertex with dimension 1. Therefore after applying Ry, v will still have only one
incoming arrow starting in a vertex with dimension 1. A similar argument holds for the outgoing
condition C7. |

Lemma 5.4 Suppose that v # w are vertices in (Q°, ) and that C% and CYy are satisfied. If C%
holds in Ry (Q°,a) and CY holds in R%(Q°,a) then

RYRY(Q*,a) = RyR%(Q", a)

Proof. 1t X,Y € {l,L} this is obvious, so let us assume that X = V. If Y = V as well, we can
calculate the Euler form xrw ry, @ (€z,€y). Because

XRryQ (€, €y) = XQ(€x, €y) — XQ(€x, €0)XQ (€0, €y)
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Figure 5.3: Neighborhoods of v and w

it follows that

Xre R Q(€x, €y) = XRY, Q(€xs €y) — XRY, Q(€x; €w)XRY, Q (v, €y)
= Xq (€, €y) — XQ(€xs €0)XQ (€v; €y)
— (x@ (€, €w) — XQ(€xs €0)XQ €y €w)) (XQ(€w, €y) — XQ(€ws €v)XQ (€v, €y))
= Xq (€, €y) — XQ(€xs €0)XQ(€vs €y) — XQ(€x, €w)XQ (€w, €y)
= XQ(€xs €0)XQ(€vs €w)XQ (€ws €0)XQ (€v; €y)
+ XQ(€xs €w)XQ (€w; €0)XQ(€v, €y) + XQ(€x, €v)XQ (€v, €w)XQ (€w, €y)

This is symmetric in v and w and therefore the ordering of Ry, and Ry is irrelevant.
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If Y = [ we have the following equalities
XRy Ry, Q(€xs €y) = XRy Q(€x, €y) — Swaluy
= xq(€x, €y) — XQ(€x, E’U)XQ(ELH 6y) — dwabuwy
= xq(€x, ey) — Owadwy — (xq(€x, Ev) - 5wx5wv)(XQ(€v» €y) - 6wv5wy)
= Xrpq(ea, €y) — XrrQ(€a, €0)XRpQ(€v, €y)
= XRyRYQ-

IfY = L, an RY-move commutes with the R}, move because it does not change the neighborhood of
v except when v is the unique vertex of dimension 1 connected to w. In this case the neighborhood

of v looks like

In this case the reductlon at v is equivalent to a reductlon at v' (i.e. the lower vertex) which
certainly commutes with Ry . a

We are now in a position to prove the claimed uniqueness result.

Theorem 5.9 If (Q°,a) is a strongly connected marked quiver setting and (Q1, 1) and (Q3, a2)
are two reduced marked quiver setting obtained by applying reduction moves to (Q°, «) then

(QI:al) = (Q;,O@)

Proof. We do induction on the length {1 of the reduction chain R; reducing (Q°,a) to (Q1, a1). If
l1 =0, then (Q°®, @) has no reducible vertices so the result holds trivially. Assume the result holds
for all lengths < [1. There are two cases to consider.

There exists a vertex v satisfying a loop removal condition C%,X = [ or L. Then, there is a
R%-move in both reduction chains R; and R2. This follows from lemma 5.3 and the fact that none
of the vertices in (Q1,a1) and (Q3, a2) are reducible. By the commutation relations from lemma
5.4, we can bring this reduction to the first position in both chains and use induction.

If there is a vertex v satisfying condition CY, either both chains will contain an Rj,-move or the
neighborhood of v looks like the figure in lemma 5.3 (1). Then, R; can contain an Rj,-move and
Ry an Ry-move. But then we change the Ry move into a Ry, move, because they have the same
effect. The concluding argument is similar to that above. O
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Figure 5.4: Cayley-smooth curve types.

5.4 Curves and surfaces

W. Schelter has proved in [71] that in dimension one, Cayley-smooth orders are hereditary. We give
an alternative proof of this result using the étale local classification. The next result follows also by
splitting the dimension 1 case in figure 5.2. We give a direct proof illustrating the type-stratification
result of section 5.1.

Theorem 5.10 Let A be a Cayley-Hamilton order of degree n over an affine curve X = triss, A.
If £ € Smyr A, then the étale local structure of A in £ is determined by a marked quiver-setting
which is an oriented cycle on k vertices with k < n and an unordered partition p = (di,...,dx)
having precisely k parts such that Y, di = n determining the dimensions of the simple components
of Ve, see figure 5.4.

Proof. Let (Q°®,a) be the corresponding local marked quiver-setting. Because Q° is strongly
connected, there exist oriented cycles in Q°®. Fix one such cycle of length s < k and renumber the
vertices of Q°® such that the first s vertices make up the cycle. If & = (ex, ..., ex), then there exist
semi-simple representations in rep, Q° with composition

ar=(1,...,1,0,...,00 @ @, 0T @l L @ e
——— ——

s k—s

where €; stands for the simple one-dimensional representation concentrated in vertex v;. There
is a one-dimensional family of simple representations of dimension vector «y, hence the stratum
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of semi-simple representations in iss, @° of representation type 7 = (1,a1;e1 — 1,€15...;e5 —
1, €s; €541, €s+1; €k, €k) s at least one-dimensional. However, as dim iss, @Q° = 1 this can only
happen if this semi-simple representation is actually simple. That is, when « = a1 and k =s. O

If Vg is the semi-simple n-dimensional representation of A corresponding to &, then
Ve=51®...8S with dim S; =d;
and the stabilizer subgroup is GL(a) = C* x...x C* embedded in GL,, via the diagonal embedding
Aty ey de) — diag( A1, oo, A, ooy Ay e e vy AR)
dq dp,

Further, using basechange in rep, Q°® we can bring every simple a-dimensional representation of
Q% in standard form

where z € C* is the arrow from vy, to v1. That is, Clrep, Q*]¢(®) ~ C[z] proving that the quotient

(or central) variety X must be smooth in & by the slice result. Moreover, as A¢ ~ T, we have,
using the numbering conventions of the vertices) the following block decomposition

My, (Cll)) | Maywar (@[l | o | My, (Cll]) T
Mipea, @Cllal]) | Map(Cllal) | .o | My (Clla])
T~
| My oCl[a]]) | Muywar eCl)) | - | Ma(Clla))

From the local description of hereditary orders given in [70, Thm. 39.14] we deduce that A¢ is an
hereditary order. That is, we have the following characterization of the smooth locus
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Figure 5.5: Cayley-smooth surface types.

Proposition 5.9 Let A be a Cayley-Hamilton order of degree n over a central affine curve X.
Then, Sm A is the locus of points &€ € X such that A¢ is an hereditary order (in particular, &
must be a smooth point of X ).

Theorem 5.11 Let A be a Cayley-Hamilton central Ox -order of degree n where X is a projective
curve. Equivalent are

1. A is a sheaf of Cayley-smooth orders
2. X is smooth and A is a sheaf of hereditary Ox -orders

We now turn to orders over surfaces. The next result can equally be proved using splitting and
the classification of figure 5.2.

Theorem 5.12 Let A be a Cayley-Hamilton order of degree n over an affine surface X = triss, A.
If € € Smy, A, then the étale local structure of A in £ is determined by a marked local quiver-setting
Agim on k+1+m < n vertices and an unordered partition p = (di,...,dk+14m) of n with k+1+m
non-zero parts determined by the dimensions of the simple components of Ve as in figure 5.5.
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Proof. Let (Q°, ) be the marked quiver-setting on r vertices with a = (eq,...,e,) corresponding
to & As Q° is strongly connected and the quotient variety is two-dimensional, @Q°® must contain
more than one oriented cycle, hence it contains a sub-quiver of type Agim, possibly degenerated
with k or [ equal to zero. Order the first k + [ + m vertices of Q°® as indicated. One verifies that
Apgim has simple representations of dimension vector (1,...,1). Assume that Ak, is a proper
subquiver and denote s = k + 1+ m + 1 then Q° has semi-simple representations in rep, Q° with
dimension-vector decomposition

—1 Bey, -1 s ”

ar=(1,...,1,0,...,0) BT B . @e i @D e
——
k+l+m

Applying the formula for the dimension of the quotient variety shows that iss(; .. 1) Amm has
dimension 2 so there is a two-dimensional family of such semi-simple representation in the two-
dimensional quotient variety iss, Q°. This is only possible if this semi-simple representation is
actually simple, whence r =k + 1+ m, Q° = Agim and a = (1,...,1). a

If Vg is the semi-simple n-dimensional representation of A corresponding to &, then

and the stabilizer subgroup GL(a) = C* x ... x C* embedded diagonally in GL,
(}\1,...,)\,«) r—>diag(/\l,...,/\1,...,/\“...,/\,«)
——— S———

dq dy

By basechange in rep,, Axim We can bring every simple a-dimensional representation in the following
standard form




276 Semi-Simple Representations

with z,y € C* and as Clissy Arim] = Clrep,, Aklm}cL(o‘> is the ring generated by traces along
oriented cycles in Agim, it is isomorphic to C[z, y]. From the slice result one deduces that £ must be a

smooth point of X and because ;l\g ~ ﬁ we deduce it must have the following block-decomposition

() (1)

> My (C[[z,y]])

N
™
1
—
8
~
—
=
—

(1)
(z) (y)
(z,9)
Hk,_/ \T/ N——

where at spot (i,7) with 1 < 4,5 < k+ 1+ m there is a block of dimension d; x d; with entries the
indicated ideal of C[[z, y]].

Definition 5.3 Let A be a Cayley-Hamilton central C[X]-order of degree n in a central simple
C(X)- algebra A of dimension n?.

1. A is said to be étale locally split in & if and only if ;1\5 is a central (’jx,x—order n
Mo (Ox. o, C(X)).

2. The ramification locus rama of A is the locus of points £ € X such that

A
mgAmg

# M, (C)
The complement X — rama is the Azumaya locus Xa, of A.

Theorem 5.13 Let A be a Cayley-smooth central Ox-order of degree n over a projective surface
X. Then,

1. X is smooth.

2. A is étale locally split in all points of X.
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[

—

ONO)
O 0JO

Figure 5.6: Proper semi-simples of Agip,.

3. The ramification divisor rama — X 1is either empty or consists of a finite number of
isolated (possibly embedded) points and a reduced divisor having as its worst singularities
normal crossings.

Proof. (1) and (2) follow from the above local description of A. As for (3) we have to compute
the local quiver-settings in proper semi-simple representations of rep, Aim. As simples have a
strongly connected support, the decomposition types of these proper semi-simples are depicted in
figure 5.6. with z,y € C*. By the description of local quivers given in section 3 we see that
they are respectively of the forms in figure 5.7. The associated unordered partitions are defined
in the obvious way, that is, to the looped vertex one assigns the sum of the d; belonging to the
loop-contracted circuit and the other components of the partition are preserved. Using the étale
local isomorphism between X in a neighborhood of ¢ and of issy Akim in a neighborhood of the
trivial representation, we see that the local picture of quiver-settings of A in a neighborhood of &
is described in figure 5.8. The Azumaya points are the points in which the quiver-setting is Aogo1
(the two-loop quiver). From this local description the result follows if we take care of possibly
degenerated cases. O

An isolated point in £ can occur if the quiver-setting in £ is of type Aoom with m > 2. In the
case of curves and surfaces, the central variety X of a Cayley-smooth model A had to be smooth
and that A is étale locally split in every point £ € X. Both of these properties are no longer valid
in higher dimensions.
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O,

N

AOll AkOl

Figure 5.7: Local quivers for Agim.

Lemma 5.5 For dimension d > 3, the center Z of a Cayley-smooth order of degree n can have
stngularities.

Proof. Consider the marked quiver-setting of figure 5.9 which is allowed for dimension d = 3 and
degree n = 2. The quiver-invariants are generated by the traces along oriented cycles, that is by
ac, ad, bc and bd. The coordinate ring is

(C[x7 y7 Z? v]

Clissa Q] ~ @ —2)

having a singularity in the origin. This example can be extended to dimensions d > 3 by adding

loops in one of the vertices.
b
a
C
d

Lemma 5.6 For dimension d > 3, a Cayley-smooth algebra does not have to be locally étale split
in every point of its central variety.
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Aklm

N

Ao01

Figure 5.8: Local picture for Agim.

“ J

S

Figure 5.9: Central singularities can arise.

Proof. Consider the following allowable quiver-setting for d =3 and n = 2

808 —

The corresponding Cayley-smooth algebra A is generated by two generic 2 X 2 trace zero matrices,
say A and B. From the description of the trace algebra T35 we see that its center is generated by
A? =z, B> = 7z and AB+ BA = z. Alternatively, we can identify A with the Clifford-algebra over
C[z, y, 2] of the non-degenerate quadratic form

Ty
y oz
This is a noncommutative domain and remains to be so over the formal power series C[[z,y, z]].

That is, A cannot be split by an étale extension in the origin. More generally, whenever the local
marked quiver contains vertices with dimension > 2, the corresponding Cayley-smooth algebra
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cannot be split by an étale extension as the local quiver-setting does not change and for a split
algebra all vertex-dimensions have to be equal to 1. In particular, the Cayley-smooth algebra of
degree 2 corresponding to the quiver-setting

HCEOM ]

cannot be split by an étale extension in the origin. Its corresponding dimension is
d=3k+4 -3

whenever k + [ > 2 and all dimensions d > 3 are obtained. O

Let X be a projective surface. We will characterize the central simple C(X)-algebras A allowing
a Cayley-smooth model . We first need to perform a local calculation. Consider the ring of algebraic
functions in two variables C{x, y} and let X;o. = Spec C{x,y}. There is only one codimension two
subvariety : m = (z,y). Let us compute the coniveau spectral sequence for Xjoc. If K is the field of
fractions of C{z,y} and if we denote with k, the field of fractions of C{z,y}/p where p is a height
one prime, we have as its first term

HQ(K:IML) Dp Hl(kpvzn) M;l 0

HY(K, pin) DpZn 0 0

fn 0 0 0

Because C{z, y} is a unique factorization domain, we see that the map

Hey (K pn) = K /(K™)" —+ @, Ln

is surjective. Moreover, all fields k, are isomorphic to the field of fractions of C{z} whose only
cyclic extensions are given by adjoining a root of z and hence they are all ramified in m. Therefore,
the component maps

8 _
Ly = Helt(kpazn) — p '
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are isomorphisms. But then, the second (and limiting) term of the spectral sequence has the form

Ker a | Ker /Im a | 0 0

Ker vy 0 0 0

n 0 0 0

Finally, we use the fact that C{z,y} is strict Henselian whence has no proper étale extensions.
But then, _

H(Xioe, pn) =0 for i > 1
and substituting this information in the spectral sequence we obtain that the top sequence of the
coniveau spectral sequence

0 —> Brn K —+» &, %, —> Zyp — 0

is exact. From this sequence we immediately obtain the following

Lemma 5.7 With notations as before, we have
1. Let U = Xjoc — V(x), then Br, U =0
2. Let U = Xjoc — V(2y), then Bry, U = Z,, with generator the quantum-plane algebra

 Clu,v)
Cefu,v] = (vu — Cuw)

where ¢ is a primitive n-th root of one

Let A be a central simple algebra of dimension n? over a field L of transcendence degree 2. We
want to determine when A admits a Cayley-smooth model A, that is, a sheaf of Cayley-smooth Ox-
algebras where X is a projective surface with functionfield C(X) = L. It follows from theorem 5.13
that, if such a model exists, X must be a smooth projective surface. We may assume that X is a
(commutative) smooth model for L. By the Artin-Mumford exact sequence 3.11 the class of A in
Bry, C(X) is determined by the following geo-combinatorial data
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e A finite collection C = {Ch,...,Ck} of irreducible curves in X.

A finite collection P = {Pi,..., P} of points of X where each P; is either an intersection
point of two or more C; or a singular point of some C;.

For each P € P the branch-data bp = (b1, ...,b;,) with b; € Z, = Z/nZ and {1,...,ip} the
different branches of C in P. These numbers must satisfy the admissibility condition

> bi=0€Z,

for every P € P

for each C' € C we fix a cyclic Z,-cover of smooth curves
D —» C

of the desingularization C' of C' which is compatible with the branch-data.

If A is a maximal Ox-order in A, then the ramification locus ram .4 coincides with the collection
of curves C. We fix such a maximal Ox-order A and investigate its Cayley-smooth locus.

Proposition 5.10 Let A be a maximal Ox-order in A with X a projective smooth surface and
with geo-combinatorial data (C,P,b, D) determining the class of A in Br, C(X).
If € € X lies in X — C or if € is a non-singular point of C, then A is Cayley-smooth in &.

Proof. 1f & ¢ C, then A¢ is an Azumaya algebra over Ox . As X is smooth in £, A is Cayley-
smooth in £. Alternatively, we know that Azumaya algebras are split by étale extensions, whence

A¢ ~ M, (C[[x,y]]) which shows that the behavior of A near ¢ is controlled by the local data

S0 0.0

n

and hence £ € Smy, A. Next, assume that £ is a nonsingular point of the ramification divisor
C. Consider the pointed spectrum X¢ = Spec Ox ¢ — {m¢}. The only prime ideals are of height
one, corresponding to the curves on X passing through ¢ and hence this pointed spectrum is a
Dedekind scheme. Further, A determines a maximal order over X¢. But then, tensoring A with
the strict henselization (’)ﬁ(}fg ~ C{z,y} determines a sheaf of hereditary orders on the pointed

spectrum X = Spec C{x,y} — {(z,y)} and we may choose the local variable # such that z is a
local parameter of the ramification divisor C near &.

Using the characterization result for hereditary orders over discrete valuation rings, given in
[70, Thm. 39.14] we know the structure of this extended sheaf of hereditary orders over any

height one prime of X¢. Because Ag is a reflexive (even a projective) Ox e-module, this height
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one information determines Agh or ,21\5. This proves that Agh must be isomorphic to the following
blockdecomposition

Ma, (C{z,y}) Ma, xa, (C{z, y}) Ma, xdy, (C{z,y}) T
M, xa, (xC{z, y}) Mg, (C{z, y}) May xa, (C{z,y})
L My xa, (C{z,y}) | Mayxa,(C{a,p}) | ... Ma, (C{z,y})
for a certain partition p = (d1, ..., dk) of n having k parts. In fact, as we started out with a maximal

order A one can even show that all these integers d; must be equal. This local form corresponds
to the following quiver-setting

N

° ° p:(d1,...,dk)

AkOl

whence £ € Smy, A as this is one of the allowed surface settings. O

A maximal Ox-order in A can have at worst noncommutative singularities in the singular
points of the ramification divisor C. Theorem 5.13 a Cayley-smooth order over a surface has
as ramification-singularities at worst normal crossings. We are always able to reduce to normal
crossings by the following classical result on commutative surfaces, see for example [33, V.3.8].
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Theorem 5.14 (Embedded resolution of curves in surfaces) Let C be any curve on the sur-
face X. Then, there exists a finite sequence of blow-ups

X =X, — Xy4 —>» ... —» X9 =X

and, if f: X' —= X is their composition, then the total inverse image f~*(C) is a divisor with
normal crossings.

Fix a series of blow-ups X’ — s» X such that the inverse image f'(C) is a divisor on X’
having as worst singularities normal crossings. We will replace the Cayley-Hamilton Ox-order A
by a Cayley-Hamilton Ox/-order A’ where A’ is a sheaf of Ox/-maximal orders in A. In order
to determine the ramification divisor of A’ we need to be able to keep track how the ramification
divisor C of A changes if we blow up a singular point p € P.

Lemma 5.8 Let ):( — X be the blow-up of X at a singular point p of C, the ramification divisor
of A on X. Let C be the strict transform of C and E the exceptional line on X. Let C' be the
ramification divisor of A on the smooth model X. Then,

1. Assume the local branch data at p distribute in an admissible way on C~, that is,

z:bi,p:OforallquﬂC~

1 at q
where the sum is taken only over the branches at q. Then, C' = C.
2. Assume the local branch data at p do not distribute in an admissible way, then C' =C U E.

Proof. Clearly, C——»C —» CUE. By the Artin-Mumford sequence applied to X " we know
that the branch data of C’ must add up to zero at all points ¢ of C N E. We investigate the two
cases

1.: Assume E C C'. Then, the E-branch number at ¢ must be zero for all ¢ € CN E. But there
are no non-trivial étale covers of P! = E so ram(A) gives the trivial element in H(C(E), uy), a

contradiction. Hence C' =C.
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2. : If at some g € C N E the branch numbers do not add up to zero, the only remedy is to include
FE in the ramification divisor and let the E-branch number be such that the total sum is zero in
/. O

Theorem 5.15 Let A be a central simple algebra of dimension n? over a field L of transcendence
degree two. Then, there exists a smooth projective surface S with functionfield C(S) = L such
that any maximal Og-order Ag in A has at worst a finite number of isolated noncommutative
singularities. Each of these singularities is locally étale of quantum-plane type.

Proof. We take any projective smooth surface X with functionfield C(X) = L. By the Artin-
Mumford exact sequence, the class of A determines a geo-combinatorial set of data

(C7 7)7 b7 D)

as before. In particular, C is the ramification divisor ram(A) and P is the set of singular points of
C. We can separate P in two subsets

® Punr = {P € P where all the branch-data bp = (b1, ...,b;,) are trivial, that is, all b; = 0 in
Zn}

® Pram = {P € P where some of the branch-data bp = (b1,...,b;,) are non-trivial, that is,
some b; # 0 in Zy}

After a finite number of blow-ups we get a birational morphism S; —» X such that 7*(C) has
as its worst singularities normal crossings and all branches in points of P are separated in S. Let
C1 be the ramification divisor of A in S;. By the foregoing argument we have

e If P € Punr, then we have that C' N 7r71(P) consists of smooth points of C1,

e If P € Pram, then 7r71(P) contains at least one singular points @ of C; with branch data
bg = (a, —a) for some a # 0 in Z,,.

In fact, after blowing-up singular points Q" in =~ *(P) with trivial branch-data we obtain a smooth
surface S —» S; —> X such that the only singular points of the ramification divisor C’ of A
have non-trivial branch-data (a, —a) for some a € Z,. Then, take a maximal Og-order A in A. By
the local calculation of Br, C{z,y} performed in the last section we know that locally étale A is
of quantum-plane type in these remaining singularities. As the quantum-plane is not étale locally
split, A is not Cayley-smooth in these finite number of singularities. a

In fact, the above proof gives a complete classification of the central simple algebras admitting
a Cayley-smooth model.

Theorem 5.16 Let A be a central simple C(X)-algebra of dimension n? determined by the geo-
combinatorial data (C,P,b, D) given by the Artin-Mumford sequence. Then, A admits a Cayley-
smooth model if and only if all branch-data are trivial.
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Proof. If all branch-data are trivial, the foregoing proof constructs a Cayley-smooth model of A.
Conversely, if A is a Cayley-smooth Og-order in A with S a smooth projective model of C(X),
then A is locally étale split in every point s € S. But then, so is any maximal Og-order Amaz
containing A. By the foregoing arguments this can only happen if all branch-data are trivial. O

5.5 Complex moment map

We fix a quiver @ on k vertices {vi,...,vx} and define the opposite quiver Q° the quiver on
{v1,..., v} obtained by reversing all arrows in Q. That is, there is an arrow in Q°

for each arrow in the quiver Q. Fix a dimension vector o = (au,...,ax), using the
trace pairings

Maixaj X Mﬂ.j Xa; ——* (C (Va* ; Va) = tT’(Va* Va)
we can identify the representation space rep, Q° with the dual space (rep, Q)" =

Homc(rep, Q,C). Observe that the base change action of GL(«) on rep, Q° coincides with
the action dual to that of GL(a) on rep, Q.

The dual quiver Q¢ is the superposition of the quivers Q and Q°. Clearly, for an dimension
vector a we have

rep, Q =rep, Q ®rep, Q° =rep, Q ® (rep, Q)"

whence rep,, Q¢ can be viewed as the cotangent bundle T*rep, @ on rep, @ with structural
morphism projection on the first factor. Cotangent bundles are equipped with a canonical symplectic
structure, see [17, Example 1.1.3] or chapter 8 for more details. The natural action of GL(a) on
rep, @ extends to an action of GL(a) on T"rep, @ preserving the symplectic structure and it

coincides with the basechange action of GL() on rep,, Q@?. Such an action on the cotangent bundle
gives rise to a complex moment map

T*rep, Q —“» (Lie GL(a))*
Recall that Lie GL(a) = Mo (C) = Mq, (C)®...® M,, (C). Using the trace pairings on both sides,
the complex moment map is the mapping
rep, Q* L& M. (C)

defined by
pe(V)i= D" VaVar — > VarVa

a€Qq a€Qq
t(a)=i s(a)=i

Observe that the image of the complex moment map is contained in M2(C) where

MQ(C) = {(M,...,My) € Mo(C) | > tr(M;) =0} = Lie PGL(a)
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corresponding to the fact that the action of GL(a) on T*rep,, @ is really a PGL(«) = GL(a)/C”
action.

Definition 5.4 Elements of C¥ = C® are called weights . If X is a weight, one defines the
deformed preprojective algebra of the quiver @ to be

dfn cQR?
II =1II, =
A(@Q) Ny
where ¢ is the commutator element
c= g [a,a”]

a€Qa

in CQ? and where X\ = (A1, ..., ) is identified with the element Do Aivi € cQe.
the algebra I11(Q) = II is known as the preprojective algebra of the quiver Q.

Lemma 5.9 The ideal (c — \) < CQ? is the same as the ideal with a generator

E aa*fE a“a — \v;

a€Qq a€Qq
t(a)=i s(a)=i

for each vertex v; € Q.
Proof. These elements are of the form v;(c — A)v;, so they belong to the ideal (¢ — A). As c— A is

also the sum of them, the ideal they generate contains ¢ — A. O

That is, a-dimensional representations of the deformed preprojective algebra II, coincide with
representations V' € rep, Q% which satisfy

S VaVar = > VarVa = A,

a€Qq a€Qq
t(a)=i s(a)=i

for each vertex v;. That is, we have an isomorphism between the scheme theoretic fiber of the
complex moment map and the representation space

rep, T = pg' (V)

As the image of pc is contained in M2(C) we have in particular

Lemma 5.10 If .o =}, Mia; # 0, then there are no a-dimensional representations of IL.
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Because we have an embedding C, < II,, the n-dimensional representations of the deformed
preprojective algebra decompose into disjoint subvarieties

rep, Il = |_| GL,, xCG® rep, I

) a;=n

Hence, in studying Cayley-smoothness of IIx we may reduce to the distinct components and hence
to the study of a-Cayley-smoothness , that is, smoothness in the category of C(«)-algebras which
are Cayley-Hamilton algebras of degree n = Y. a;. Again, one can characterize this smoothness
condition in a geometric way by the property that the restricted representation scheme rep, is
smooth. In the next section we will investigate this property for the preprojective algebra Ilo, in
chapter 8 we will be able to extend these results to arbitrary IIy. In this section we will compute
the dimension of these representation schemes. First, we will investigate the fibers of the structural
map of the cotangent bundle, that is, the projection

Proposition 5.11 IfV € rep, Q, then there is an exact sequence
0 — Eatlo(V,V)" — rep, Q° ——> M. (C) —— Homco(V,V)" —> 0

where ¢ maps W = (Wax )= € Tep, Q° to ZaeQa [Va, Wax] and t maps M = (M;)i € Maipna(C)
to the linear map Homcq(V,V) — C sending a morphism N = (N;); to >, tr(M;N;).

Proof. There is an exact sequence
0 —> Homcg(V,V) —» Mo(C) —1» rep, Q —> Eatiq(V,V) — 0

where f sends M = (M;); € Ma(C) to V' = (V;)q with V] = My(4)Va — VaM(4). By definition,
the kernel of f is Homcg(V, V) and by the Euler form interpretation of theorem 4.5 we have

dimc Homeq(V,V) — dime Extig(V,V) = xq(a, @) = dime Ma(C) — dime rep, Q
so the cokernel of f has the same dimension as Emt}CQ(V, V) and using the standard projective
resolution of V one can show that it is naturally isomorphic to it. The required exact sequence

follows by dualizing, using the trace pairing to identify rep, Q° with (rep, Q)" and M (C) with
its dual. O

This result allows us to give a characterization of the dimension vectors « such that rep,, @ # 0.

Theorem 5.17 For a weight A € C* and a representation V € rep,, Q the following are equivalent
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1. 'V extends to an a-dimensional representation of the deformed preprojective algebra Il .
2. For all dimension vectors B of direct summands W of V' we have A\.3 = 0.
Moreover, if V € rep, Q does lift, then n=* (V) ~ (Extto(V,V))*.

Proof. 1f V lifts to a representation of I, then there is a representation W € rep, Q° mapping
under ¢ of proposition 5.11 to A. But then, by exactness of the sequence in proposition 5.11 A
must be in the kernel of ¢. In particular, for any morphism N = (N;); € Homcg(V,V) we have
that >, Astr(N;) = 0. In particular, let W be a direct summand of V' (as Q-representation) and
let N = (N;); be the projection morphism V. —s» W —— V, then Y, X\itr(N;) = >, Aib; where
B = (b1,...,bx) is the dimension vector of W.

Conversely, it suffices to prove the lifting of any indecomposable representation W having a
dimension vector [ satisfying A\.3 = 0. Because the endomorphism ring of W is a local algebra,
any endomorphism N = (N;); of W is the sum of a nilpotent matrix and a scalar matrix whence
>, Aitr(N;) = 0. But then considering the sequence of proposition 5.11 for 3 and considering X as
an element of Mg (C), it lies in the kernel of ¢ whence in the image of ¢ and therefore W can be
extended to a representation of IIy.

The last statement follows again from the exact sequence of proposition 5.11. O

In particular, if « is a root for @) satisfying A.a = 0, then there are a-dimensional representations
of IIx. Recall the definition of the number of parameters given in definition 4.8

w(X) = mazx (dim X(q) — d)

where X (4) is the union of all orbits of dimension d. We denote (rep"® Q) for the G L(«)-action
on the indecomposables of rep, @ by po(c). Recall that part of Kac’s theorem 4.14 asserts that

pe(a) =1—xq(a, @)

‘We will apply these facts to the determination of the dimension of the fibers of the complex moment
map.

Lemma 5.11 Let U be a GL(a)-stable constructible subset of rep, Q contained in the image of
the projection map rep, Q¢ S rep, Q. Then,
dim 7~ (U) = p(U) + a.a — xo(a, @)

If in addition U = O(V) is a single orbit, then n~1(U) is irreducible of dimension a.cc — xq(a, ).
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Proof. Let V € Uy, then by theorem 5.17, the fiber 7' (V) is isomorphic to (Exttg(V, V))* and
has dimension dimcEnd(V) — xo (o, &) by theorem 4.5 and

dimc End(V) = dim GL(a) — dim O(V) = a.av — d.

Hence, dim =" (Uay) = (dim Uy — d) + .o — x@ (o, ). If we now vary d, the result follows.

For the second assertion, suppose that 7= (U) <—— Z;Z> with Z; a G L(«)-stable open subset,
but then 77'(V) N Z; are non-empty disjoint open subsets of the irreducible variety =—*(V), a
contradiction. O

Theorem 5.18 Let A be a weight and o a dimension vector such that A.ao = 0. Then,
dim rep,, 1\ = dim uz'(\) = a.a — xo(a,a) +m
where m is the maximum number among all

pQ(B1) + .. +pe(Br)

with r > 1, all B; are (positive) roots such that A\.; =0 and o« = B1 + ... + Sr.

Proof. Decompose rep, @ = || _rep,(7) where rep_(7) are the representations decomposing as
a direct sum of indecomposables of dimension vector T = (81, ...,08r). By Kac’s theorem 4.14 we
have that

p(rep, (1)) = pa(B1) + .. + pa(Br)

If some of the (3; are such that A\.3; # 0, and u(gl()\) LN rep, Q is the projection then
77 (rep, (7)) = 0 by lemma 5.10. Combining this with lemma 5.11 the result follows. O

Definition 5.5 The set of A-Schur roots Sy is defined to be the set of o € N¥ such that pg () >
pQ(B1) + ... + po(Br) for all decompositions a = 1 + ... + Br with B; positive roots satisfying
ABi=0

Sy is the set of a € N* such that po(a) > po(f1) + ... + po(Br) for all decompositions o =
B1+ ...+ B with 3; € N*

Observe that Sy consists of Schur roots for @, for if

Tean = (€1,015...5€5,0s) = (71, .,7t)
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(the 7, possibly occurring with multiplicities) is the canonical decomposition of o with ¢ > 2 we
have

pe(a) =1-xq(a, @)
=1-2_ (%)
=D _(1=x0(7)) = o xe(i %) = (t=1)

oy
> Z pQ (Vi)

whence o ¢ Sp. This argument also shows that in the definition of Sy we could have taken all
decompositions in positive roots, replacing the components 3; by their canonical decompositions.

Theorem 5.19 For o € N*, the following are equivalent :

1. The complex moment map rep,, Q¢ ey rep, Q is flat.

2. rep,, Mo = pug"(0) has dimension a.a — 1 + 2pg(a).
3. a€Sy.

Proof. The dimensions of the relevant representation spaces are

dimrep, Q@ =a.a—xg(a,a)=aa—1+po(a)
dim rep, Q% =20c.a —2xq(a,a) = 2c.a — 2 + 2pg(a)
dim M2(C) =aa-—1

so the relative dimension of the complex moment map is d = a.a — 1 4 2pg («).

(1) = (2) : Because juc os flat, its image U is an open subset of M3 (C) which obviously contains
0, but then the dimension of p 1(0) is equal to the relative dimension d.

(2) = (3) : Assume pg(a) < 3, po(B;) for some decomposition a = 31 + ...+ Bs with 8; € N,
Replacing each (3; by its canonical decomposition, we may assume that the (3; are actually positive
roots. But then, theorem 5.18 implies that %1(9) has dimension greater than d.

(3) = (1) : We have that « is a Schur root. We claim that rep, Q¢ —“5» M2 (C) is surjective.

Let V € rep, @ be a general representation, then Homcg(V,V) = C. But then, the map ¢ in
proposition 5.11 has a one-dimensional cokernel. But as the image of ¢ is contained in M2 (C), this
shows that

rep,, QY —S5» Mao((C)
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is surjective from which the claim follows. Let M = (M;); € M$(C) and consider the projection

pe' (M) —— rep, Q

If U is a constructible GL(c)-stable subset of rep, @, then by an argument as in lemma 5.11 we
have that
dim 7' (U) < w(U) + .o — xo (o, @)

But then, decomposing rep, @ into types 7 of direct sums of indecomposables, it follows from the
assumption that pc !(M) has dimension at most d. But then by the dimension formula it must be
equidimensional of dimension d whence flat. 0

5.6 Preprojective algebras

In this section we will determine the n-smooth locus of the preprojective algebra Ily. By the étale
local description of section 4.2 it is clear that we need to control the Ext!-spaces of representations
of HO.

Proposition 5.12 Let V and W be representations of Iy of dimension vectors o and (3, then we

have
dimc E;ctll-lo(V, W) = dimec Hommn,(V,W) + dimc Homm,(W,V) — T (e, B)

Proof. 1t is easy to verify by direct computation that V has a projective resolution as Ilp-module
which starts as
. @HQU¢®UiV—f> @Hovj(@vﬁ/—g» @Hovz(}@le—h»V—»O
1€Qu 1€Qu

acQd

where f is defined by

f(zpi ®m;) = Z (pia® @ m; — p; @ a*m;j)a — (pja @ m;j — p; @ amy;)q»
‘
a€Qq

where p; € [lpv; and m; € v;V. The map g is defined on the summand corresponding to an arrow
in Q by
g(pa®@m) = (pa®@m); — (p® am);

for p € Ilpv; and m € v;V. the map h is the multiplication map. If we compute homomorphisms
to W and use the identification

Hommn, (Ilov; @ v;V, W) = Homc(v;V,v;W)



5.6. Preprojective algebras

293

we obtain a complex
00— @ Homge(v;V,v;W) —> @ Homge (v;iV,0;W) — @ Homgc(v;V,v;W)
i€Qy 1€Qy
acQd

in which the left hand cohomology is Homu,(V, W) and the middle cohomology is Extfy, (V, W).
Moreover, the alternating sum of the dimensions of the terms is Tg(a, 8). It remains to prove that
the cokernel of the right hand side map has the same dimension as Homi, (W, V). But using the
trace pairing to identify

Home (M, N)* = Homc(N, M)

we obtain that the dual of this complex is
@ Homge (v;W,v;V) — @ Homge(v;W,v;V) — @ Homc(viW,v;V) — 0
1€Qy 1€Qy
acQd

and, up to changing the sign of components in the second direct sum corresponding to arrows which
are not in @, this is the same complex as the complex arising with V' and W interchanged. From
this the result follows. a

In order to determine the n-smooth locus we observe that the representation space decomposes
into a disjoint union and we have quotient morphisms

rep, 1o = |_| GL,, xCGk@ rep, 1o

a=(ay,...,ar)
a1+...4ap=n

Tn U %

iss, IIg — |_| issqa I

a=(ay,...,ar)
aj+...tap=n

Hence if £ € issq Ilp for § € Smy, Ig it is necessary and sufficient that rep, Ily is smooth along
O(M¢) where M is the semi-simple a-dimensional representation of Il corresponding to €. Assume
that £ is of type 7 = (e1, a1;...; €2, ), that is,

Me=58%1q .. @S&

with S; a simple Ilp-representation of dimension vector «;. Again, the normal space to the orbit
O(M) is determined by Ewtf (Me, M¢) and can be depicted by a local quiver setting (Qe, ce)
where Q¢ is a quiver on z vertices and where ae = > = (e1,...,e;). Repeating the arguments of
section 4.2 we have
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Lemma 5.12 With notations as above, £ € Sm,, Il if and only if
dim GL(c) xCFee) Exthy, (Mg, Me) = dima, rep, Io

As we have enough information to compute both sides, we can prove :

Theorem 5.20 If £ € issq Ilp with a = (a1,...,ax) € So and ), a; = n, then £ € Smy, o if
and only if Me is a simple n-dimensional representation of Ilg.

Proof. Assume that & is a point of semi-simple representation type 7 = (e1, a1;...; ez, @), that is,
Mg = S?el b...H0 SEDEZ with dzm(Sl) =

and S; a simple Ilp-representation. Then, by proposition 5.12 we have

dimg¢ Ewtll—IO (Si,S;) =—-To(a,ay) i ]
dimc Ea:tll—lo (Ss, Si) =2 TQ(O@'7 Ozi)

But then, the dimension of Exty, (Me, Me) is equal to

z

Z(Q — To(as,ai))el + Z eiej(—Tq(au, o) =2 Zei —To(a, @)

i=1 i) i=1
from which it follows immediately that
z
dim GL(a) x M) Batty (Mg, M) = oo+ Y e} — To(a, a)
=1
On the other hand, as a € Sy we know from theorem 5.19 that
dim rep, Ilo = a.a — 1+ 2pg(a) =a.a—1+2+4+2xg(a,a) = ac.a+1—-To(a, a)

But then, equality occurs if and only if 3, e? = 1, that is, 7 = (1, @) or M is a simple n-dimensional

representation of Ilp. O

In particular it follows that the preprojective algebra Iy is never Quillen-smooth. Further, as
v; = (0,...,1,0,...,0) are dimension vectors of simple representations of Il it follows that Iy is
a-smooth if and only if a = v; for some i. In chapter 8 we will determine the dimension vectors of
simple representations of the (deformed) preprojective algebras.
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Example 5.4 Let @ be an extended Dynkin diagram and J¢ the corresponding dimension vector.
Then, we will show that dq is the dimension vector of a simple representation and dg € Sp. Then,
the dimension of the quotient variety

dim isss, Io = dim rep;,, ITp — dg.0g + 1
=2pq(dq) =2

so it is a surface. The only other semi-simple dg-dimensional representation of Ily is the trivial
representation. By the theorem, this must be an isolated singular point of isss, Q. In fact, one
can show that isss, Ilo is the Kleinian singularity corresponding to the extended Dynkin diagram

Q.

5.7 Central smooth locus

In this section we will prove the characterization, due to Raf Bocklandt, of (marked) quiver settings
such that the ring of invariants is smooth. Remark that as the ring of invariants is a positively
graded algebra, this is equivalent to being a polynomial algebra.

Definition 5.6 A quiver setting (Q, «) is said to be final iff none of the reduction steps bl, b2 or
b3 of theorem 5.8 can be applied. Every quiver setting can be reduced to a final quiver setting which
we denote (Q,a) ~ (Qf,ay).

Theorem 5.21 For a quiver setting (Q, ) with Q = suppa strongly connected, the following are
equivalent :

1. Clissa Q] = Clrep, Q]“**) is commalg-smooth.

2. (Qp,ay) ~ (Qy,ay) with (Qf,af) one of the following quiver settings

o 0

® ® ®@.
O
Proof. (2) = (1) : Follows from the foregoing theorem and the fact that the rings
of invariants of the three quiver settings are resp. C, C[tr(X),tr(X?),...,tr(X")] and
Cltr(X), tr(Y), tr(X?), tr(Y?), tr(XY))].

(1) = (2) : Take a final reduction (Q, @) ~ (Qf, ) and to avoid subscripts rename (Qf, ay) =
(Q, ) (observe that the condition of the theorem as well as (1) is preserved under the reduction
steps by the foregoing theorem). That is, we will assume that (Q, «) is final whence, in particular
as bl cannot be applied,

xQ(aen) <0 xqlew, ) <0
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for all vertices v of Q. With 1 we denote the dimension vector (1,...,1).

claim 1 : Either (Q,a) = ® or Q has loops. Assume neither, then if a # 1 we can choose a
vertex v with maximal a,. By the above inequalities and theorem 4.10 we have that

T=(l,a—€v;1,€) € types, Q

As there are no loops in v, we have

{m(a—emev)

=x(a,6,)—1< -1
xq(ev, a0 —e) = x(e,

a)—1< -1

and the local quiver setting (Q-, a-) contains the subquiver

k
N .
@ml///@ with k,1 > 2

The invariant ring of the local quiver setting cannot be a polynomial ring as it contains the subal-
gebra

Cla, b, ¢, d]

(ab — cd)

where a = z1y1, b = x2y2, ¢ = r1y2 and d = x2y1 are necklaces of length 2 with x; arrows from w1
to wo and y; arrows from ws to wi. This contradicts the assumption (1) by the étale local structure
result.

Hence, o = 1 and because (Q, «) is final, every vertex must have least have two incoming and
two outgoing arrows. Because @ has no loops,

dim iss1 @ =1 — xo(1,1) = #arrows — #vertices + 1

On the other hand, a minimal generating set for C[iss; Q)] is the set of Eulerian necklaces , that

is, those necklaces in @ not re-entering any vertex. By (1) both numbers must be equal, so we will

reach a contradiction by showing that #euler, the number of Eulerian necklaces is strictly larger

than x(Q) = #arrows — #vertices + 1. We will do this by induction on the number of vertices.
If #vertices = 2, the statement is true because

k
Q= @@@ whence #euler =kl > x(Q) =k +1—-1
!

as both k and [ are at least 2.
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Assume #vertices > 2 and that there is a subquiver of the form

k
basic = @@@
1

If £ > 1 and [ > 1 we have seen before that this subquiver and hence @) cannot have a polynomial
ring of invariants.
If K =1 and | = 1 then substitute this subquiver by one vertex.

S|~ |

The new quiver Q' is again final without loops because there are at least four incoming arrows in
the vertices of the subquiver and we only deleted two (the same holds for the outgoing arrows). Q’
has one Eulerian necklace less than (). By induction, we have that

#euler = #euler’ +1
>x(Q)+1
=x(Q).

If k > 1 then one can look at the subquiver Q" of Q obtained by deleting k — 1 of these arrows. If
Q' is final, we are in the previous situation and obtain the inequality as before. If Q’ is not final,
then @ contains a subquiver of the form

k
0@ :
Mx’\xw}\,S@

which cannot have a polynomial ring of invariants, as it is reducible to basic with both k and [ at
least equal to 2.

Finally, if #vertices > 2 and there is no basic-subquiver, take an arbitrary vertex v. Construct
a new quiver Q' bypassing v

I arrows
@\@/@ @ - O
oo

———

k arrows kl arrows
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Q' is again final without loops and has the same number of Eulerian necklaces. By induction

#euler = #euler’
> #arrows’ — #vertices’ + 1
= #arrows + (kl —k — ) — #vertices+1+1
> #arrows — #vertices + 1.

In all cases, we obtain a contradiction with (1) and hence have proved claim 1. So we may assume
from now on that @ has loops.

claim 2 : If @ has loops in v, then there is at most one loop in v or (@, «) is

2twobytwo = (2)

Because (Q, ) is final, we have a, > 2. If o, = @ > 3 then there is only one loop in v. If not,
there is a subquiver of the form

Q

and its ring of invariants cannot be a polynomial algebra. Indeed, consider its representation type
7 = (1,k — 1;1,1) then the local quiver is of type basic with k = = a — 1 > 2 and we know
already that this cannot have a polynomial algebra as invariant ring. If a, = 2 then either we are
in the 2twobytwo case or there is at most one loop in v. If not, we either have at least three loops
in v or two loops and a cyclic path through v, but then we can use the reductions

O~ ~@ Q
wr AY
% %C SANS

The middle quiver cannot have a polynomial ring as invariants because we consider the type
@ © © O
) (N

e

®
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The number of arrows between the first and the second simple component equals

1 -1 1 1

-1 - 0
1 0 0 0l _ 9
-1 0 1 0 0]
0 0 1 1
whence the corresponding local quiver contains basic with k = [ = 2 as subquiver. This proves
claim 2. From now on we will assume that the quiver setting (Q, ) is such that there is precisely
one loop in v and that k£ = a,, > 2. Let

T=(1L1;1,€e0;00, — 1, €0} . 5.0 ;00 —2,€;...5a0, — 1,6,;) € types, Q

Here, the second simple representation, concentrated in v has non-zero trace in the loop whereas
the remaining o, — 2 simple representations concentrated in v have zero trace. Further, 1 € simpCQ
as @ is strongly connected by theorem 4.10. We work out the local quiver setting (Q-, ). The
number of arrows between the vertices in Q- corresponding to simple components concentrated in
a vertex is equal to the number of arrows in Q between these vertices. We will denote the vertex
(and multiplicity) in Q- corresponding to the simple component of dimension vector 1 by [1]

The number of arrows between the vertex in @), corresponding to a simple concentrated in vertex
w in Q to is —x¢(€éw,1) and hence is one less than the number of outgoing arrows from w in
Q. Similarly, the number of arrows from the vertex to that of the simple concentrated in w is
—x@(1, €w) and is equal to one less than the number of incoming arrows in w in Q. But then we
must have for all vertices w in ) that

XQ(GHH]'):_l or XQ(]-)EW):_l

Indeed, because (@, ) is final we know that these numbers must be strictly negative, but they
cannot be both < —2 for then the local quiver ), will contain a subquiver of type

11

contradicting that the ring of invariants is a polynomial ring. Similarly, we must have

XQ(€w,€0) > =1 or  xq(ev,€v)
for all vertices w in @ for which «,, > 2. Let us assume that x¢o (e, 1) = —1.

claim 38 : If w; is the unique vertex in @ such that xg(€y, €w;) = —1, then au,, = 1. If this was
not the case there is a vertex corresponding to a simple representation concentrated in w; in the
local quiver Q-. If xg(1,€w,) = 0 then the dimension of the unique vertex ws with an arrow to
w1 has strictly bigger dimension than w1, otherwise x¢ (@, €w, ) > 0 contradicting finality of (Q, ).
The vertex wsy corresponds again to a vertex in the local quiver. If xo(1,€w,) = 0, the unique
vertex ws with an arrow to ws has strictly bigger dimension than ws. Proceeding this way one
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can find a sequence of vertices with increasing dimension, which attains a maximum in vertex wy.
Therefore xq(1, €w, ) < —1. This last vertex is in the local quiver connected with W, so one has a
path from 1 to e,.

: |

) ool T
|

\

The subquiver of the local quiver ), consisting of the vertices corresponding to the simple repre-
sentation of dimension vector 1 and the simples concentrated in vertex v resp. wy is reducible via
bl to @1 1] at least if xq(1,€y) < —2, a contradiction finishing the proof of the claim. But
then, the quiver setting (Q, @) has the following shape in the neighborhood of v

>

b T

contradicting finality of (@, «) for we can apply b3. In a similar way one proves that the quiver

setting (@, ) has the form
)

76 e

in a neighborhood of v if xo(1,¢6,) = —1 and x@(€v,1) < —2, again contradicting finality.

There remains one case to consider : xg(l,ey) = —1 and xqg(ev,1) = —1. Suppose w; is
the unique vertex in @ such that xg(€y,€w,) = —1 and wy is the unique vertex in @ such that
XQ (€wy, €v) = —1, then we claim :
claim 4 : Either aw, = 1 or aw, = 1. If not, consider the path connecting wy and w: and

call the intermediate vertices w;, 1 < ¢ < k. Starting from w; we go back the path until a.,
reaches a maximum. at that point we know that xo(1,€w,) < —1, otherwise xg(a, €w,) > 0. In
the local quiver there is a path from the vertex corresponding to the 1-dimensional simple over
the ones corresponding to the simples concentrated in w; to v. Repeating the argument, starting
from wy, we also have a path from the vertex of the simple v-representation over the vertices of the
wj-simples to the vertex of the 1-dimensional simple.
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/
@ @ local @ \
- |
@

The subquiver consisting of 1, €, and the two paths through the €., is reducible to @) and
we again obtain a contradiction.

The only way out of these dilemmas is that the final quiver setting (Q, ) is of the form

A

®
finishing the proof. a

Definition 5.7 Let (Q,a) and (Q',a’) be two quiver settings such that there is a vertex v in Q
and a verter v' in Q" with o, = 1 = o,. We define the connected sum of the two settings to be
the quiver setting

(Q#Q', adka’ )

v
where Q#Q is the quiver obtained by identifying the two vertices v and v’

and where afta’ is the dimension vector which restricts to a (resp. o’) on Q (resp. Q').

Example 5.5 With this notation we have

C[issa#a,Q%Q'] ~ Cliss.Q] ® Cliss./ Q']
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Because traces of a necklaces passing more than once through a vertex where the dimension vector
is equal to 1 can be split as a product of traces of necklaces which pass through this vertex only
one time, we see that the invariant ring of the connected sum is generated by Eulerian necklaces
fully contained in Q or in Q’.

Theorem 5.21 gives a procedure to decide whether a given quiver setting (Q, «) has a regular ring
of invariants. However, is is not feasible to give a graphtheoretic description of all such settings in
general. Still, in the special (but important) case of symmetric quivers, there is a nice graphtheoretic
characterization.

Theorem 5.22 Let (Q, &) be a symmetric quiver setting such that Q is connected and has no loops.
Then, the ring of polynomial invariants

ClissaQ] = (C[repaQ]GL(o‘)

is a polynomial Ting if and only if the following conditions are satisfied

1. Q is tree-like, that is, if we draw an edge between vertices of () whenever there is at least one
arrow between them in Q, the graph obtained in a tree.

2. a is such that in every branching vertex v of the tree we have o, = 1.

8. The quiver subsetting corresponding to branches of the tree are connected sums of the following
atomic pieces :

I @ij@
K
I v:k%® k<n
jii} @i/“@ii@
v g oo,

Proof. Using theorem 5.21 any of the atomic quiver settings has a polynomial ring of invariants.
Type I reduces via bl to
C)

®

where k = min(m,n), type II reduces via bl and b2 to (O, type III reduces via b1, b3, bl and b2
to @ and finally, type IV reduces via bl to
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8
By the previous example, any connected sum constructed out of these atomic quiver settings has
a regular ring of invariants. Observe that such connected sums satisfy the first two requirements.
Therefore, any quiver setting satisfying the requirements has indeed a polynomial ring of invariants.

Conversely, assume that the ring of invariants C[iss. Q)] is a polynomial ring, then there can be
no quiver subsetting of the form

#vertices > 3

For we could look at a semisimple representation type 7 with decomposition

& I8 28

The local quiver contains a subquiver (corresponding to the first two components) of type basic
with £ and [ > 2 whence cannot give a polynomial ring. That is, @ is tree-like.

Further, the dimension vector a cannot have components > 2 at a branching vertex v. For we
could consider the semisimple representation type with decomposition

@Q@ Q@ @\

- Q

and again the local quiver contains a subquiver setting of type basic with & = 2 = [ (the one
corresponding to the first two components). Hence, « satisfies the second requirement.

Remains to show that the branches do not contain other subquiver settings than those made of
the atomic components. That is, we have to rule out the following subquiver settings :

O_@_@_@®
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with az > 2 and as > 2,

A
CECEe
P T
OIS

whenever az > 2. These situations are easily ruled out by theorem 5.21 and we leave this as a
pleasant exercise. O

@C@% ®
@:jg/ N Q@

has a polynomial ring of invariants if and only if £ > 2.

with a2 > 3 and a1 > 2, az > 2 and

Example 5.6 The quiver setting

Example 5.7 Let (Q°®, ) be a marked quiver setting and assume that {l1,...,l,} are the marked
loops in Q°. If @Q is the underlying quiver forgetting the markings we have by separating traces
that

ClissaQ] =~ ClissaQ®[tr(l1),. .., tr(ly)]

Hence, we do not have to do extra work in the case of marked quivers :

A marked quiver setting (Q®, ) has a regular ring of invariants if and only if (Q, ) can be reduced
to a one of the three final quiver settings of theorem 5.21.

5.8 Central singularities

Surprisingly, the reduction steps of section 5.3 allow us to classify all central singularities of a
Cayley-smooth algebra A € alg@n up to smooth equivalence. Recall that two commutative local
rings Cin and D, are said to ne smooth equivalent if there are numbers k£ and [ such that

Cullz, ..., z1]] =~ Dullys, . .., u]

By theorem 5.8 (and its extension to marked quivers) and the étale local classification of Cayley-
smooth orders it is enough to classify the rings of invariants of reduced marked quiver settings up
to smooth equivalence. We can always assume that the quiver @ is strongly connected (if not, the
ring of invariants is the tensor product of the rings of invariants of the maximal strongly connected
subquivers). Our aim is to classify the reduced quiver singularities up to equivalence, so we need
to determine the Krull dimension of the rings of invariants.
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Lemma 5.13 Let (Q°,«) be a reduced marked quiver setting and Q strongly connected. Then,
dim issq Q° =1— xo(a,a) —m
where m is the total number of marked loops in Q°.
Proof. Because (Q°, a) is reduced, none of the vertices satisfies condition C7,, whence
xo(€v, ) <=1 and xg(a,e) < —1

for all vertices v. In particular it follows (because @ is strongly connected) from section 4.3 that
« is the dimension vector of a simple representation of ) and that the dimension of the quotient
variety

dim issea Q =1 — xo(a, @)

Finally, separating traces of the loops to be marked gives the required formula. O

Extending theorem 5.21 to the setting of marked quivers, we can classify all smooth points of
triss, A for a Cayley-smooth order A.

Theorem 5.23 Let (Q°,a) be a marked quiver setting such that Q is strongly connected. Then
issq Q° is smooth if and only if the unique reduced marked quiver setting to which (Q°,a) can be
reduced is one of the following five types

® @c o el 0

The next step is to classify for a given dimension d all reduced marked quiver settings (Q°, &)
such that dim iss, Q° = d. The following result limits the possible cases drastically in low
dimensions.

Lemma 5.14 Let (Q°, ) be a reduced marked quiver setting on k > 2 vertices. Then,

a>1 a>1 a>1 a>1
dim issq Q"> 1+ a+ a—-1)+> Q2a)+ Y (a®>+a-2)+
® <§@ Cce el

a>1 a>1 a>1

5@9_2\+a1)+2(a2+a)+...+ S ((k+l-1)a*+a—k) +...
o CED )

In this sum the contribution of a vertexr v with a, = a is determined by the number of (marked)
loops in v. By the reduction steps (marked) loops only occur at vertices where an > 1.
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Proof. We know that the dimension of iss, @Q° is equal to

1- XQ(a,Of) -m=1- ZXQ(&),CY)QU —m

If there are no (marked) loops at v, then xg(€v, @) < —1 (if not we would reduce further) which
explains the first sum. If there is exactly one (marked) loop at v then xqg(ey,a) < —2 for if
X0 (€v, ) = —1 then there is just one outgoing arrow to a vertex w with o, = 1 but then we can
reduce the quiver setting further. This explains the second and third sums. If there are k marked
loops and ! ordinary loops in v (and @ has at least two vertices) , then

—xo(ev,a)ay — k> (k+ Doy —ay + Doy — k

which explains all other sums. O

Observe that the dimension of the quotient variety of the one vertex marked quivers

~/

is equal to (k+1—1)a®+1—k and is singular (for a > 2) unless k41 = 2. We will now classify the
reduced singular settings when there are at least two vertices in low dimensions. By the previous
lemma it follows immediately that

1. the maximal number of vertices in a reduced marked quiver setting (Q°, ) of dimension d is
d — 1 (in which case all vertex dimensions must be equal to one)

2. if a vertex dimension in a reduced marked quiver setting is a > 2, then the dimension d > 2a.

Lemma 5.15 Let (Q®,«) be a reduced marked quiver setting such that issa Q° is singular of

dimension d <5, then o = (1,...,1). Moreover, each vertex must have at least two incoming and
two outgoing arrows and no loops.

Proof. From the lower bound of the sum formula it follows that if some a, > 1 it must be equal
to 2 and must have a unique marked loop and there can only be one other vertex w with a,, = 1.
If there are x arrows from w to v and y arrows from v to w, then

dim isso Q* =2(z +y) — 1
whence x or y must be equal to 1 contradicting reducedness. The second statement follows as

otherwise we could perform extra reductions. O

Proposition 5.13 The only reduced marked quiver singularity in dimension 3 is

Beon 1 O____20
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The reduced marked quiver singularities in dimension 4 are
NN /
43, : N\ . S/ 435 N\ 49 = >

Proof. All one vertex marked quiver settings with quotient dimension < 5 are smooth, so we are in
the situation of lemma 5.15. If the dimension is 3 there must be two vertices each having exactly
two incoming and two outgoing arrows, whence the indicated type is the only one. The resulting
singularity is the conifold singularity
Cllz, y, u, ]|
(zy — uv)
In dimension 4 we can have three or two vertices. In the first case, each vertex must have exactly
two incoming and two outgoing arrows whence the first two cases. If there are two vertices, then
just one of them has three incoming arrows and one has three outgoing arrows. |

Assume that all vertex dimensions are equal to one, then one can write any (trace of an) oriented
cycle as a product of (traces of) primitive oriented cycles (that is, those that cannot be decomposed
further). From this one deduces immediately :

Lemma 5.16 Let (Q°,«) be a reduced marked quiver setting such that all a, = 1. Let m be the
mazimal graded ideal of Clrep, Q®]°*(*), then a vectorspace basis of

m*

il

is given by the oriented cycles in @ which can be written as a product of i primitive cycles but not
as a product of i + 1 such cycles.

Clearly, the dimensions of the quotients m’/m’™" are (étale) isomorphism invariants. Recall
that the first of these numbers m/m? is the embedding dimension of the singularity. Hence, for
d < 5 this simple minded counting method can be used to separate quiver singularities.

Theorem 5.24 There are precisely three reduced quiver singularities in dimension d = 4.

Proof. The number of primitive oriented cycles of the three types of reduced marked quiver settings
in dimension four

454 \\ / // day \\ Y 4y @m@
\\‘ @§ [ \@ S —

is b, respectively 8 and 6. Hence, they give nonisomorphic rings of invariants. (]
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If some of the vertex dimensions are > 2 we have no easy description of the vectorspaces m’/m®*!
and we need a more refined argument. The idea is to answer the question ”what other singularities
can the reduced singularity see 7”7 An a-representation type is a datum

T = (e1,B1;...5¢e1,01)

where the e; are natural numbers > 1, the 8; are dimension vectors of simple representations of
Q such that a = >, e;6;. Any neighborhood of the trivial representation contains semi-simple
representations of @ of type 7 for any a-representation type. Let (QfF,a-) be the associated
(marked) local quiver setting. Assume that iss., Q- has a singularity, then the couple

(dimension of strata, type of singularity)

is a characteristic feature of the singularity of iss, Q° and one can often distinguish types by
these couples. The fingerprint of a reduced quiver singularity will be the Hasse diagram of those
a-representation types 7 such that the local marked quiver setting (Q%,a-) can be reduced to a
reduced quiver singularity (necessarily occurring in lower dimension and the difference between the
two dimensions gives the dimension of the stratum). Clearly, this method fails in case the marked
quiver singularity is an isolated singularity. Fortunately, we have a complete characterization of
these.

Theorem 5.25 [12] The only reduced marked quiver settings (Q°, ) such that the quotient variety
is an isolated singularity are of the form

where @ has | vertices and all k; > 2. The dimension of the corresponding quotient is
d=> ki+1-1

and the unordered [-tuple {k1,...,k} is an (étale) isomorphism invariant of the ring of invariants.

Not only does this result distinguish among isolated reduced quiver singularities, but it also
shows that in all other marked quiver settings we will have additional families of singularities.
We will illustrate the method in some detail to separate the reduced marked quiver settings in
dimension 6 having one vertex of dimension two.
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Proposition 5.14 The reduced singularities of dimension 6 such that o contains a component
equal to 2 are pairwise non-equivalent.

Proof. One can show that the reduced marked quiver setting for d = 6 with at least one component

> 2 are
§

o0 B0

type C type D

type A type B

We will order the vertices such that a1 = 2.

type A : There are three different representation types 7 = (1,(2;1,1,0);1,(0;0,0,1)) (and
permutations of the 1-vertices). The local quiver setting has the form

A/@)ﬁ@

because for f1 = (2;1,1,0) and B2 = (0;0,0,1) we have that xq(61,51) = —2, xo(f1,52) = —2,
X0 (B2, 61) = —2 and x(B2, B2) = 1. These three representation types each give a three dimensional
family of conifold (type 3con) singularities.

Further, there are three different representation types » = (1,(1;1,1,0);1,(1;0,0,1)) (and
permutations) of which the local quiver setting is of the form

%@@

as with 81 = (1;1,1,0) and B2 = (1;0,0,1) we have xq(B1,81) = —1, x@(f1,82) = -2,
xo(B2,61) = —2 and xq(B2,82) = 0. These three representation types each give a three di-
mensional family of conifold singularities.

Finally, there are the three representation types

7 = (1,(1;1,0,0);1,(1;0,1,0);1,(0;0,0,1))

(and permutations) with local quiver setting
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O
N7/
\\ L

These three types each give a two dimensional family of reduced singularities of type 43,.
The degeneration order on representation types gives 71 < 73 and 72 < 73 (but for different
permutations) and the fingerprint of this reduced singularity can be depicted as

3con 3con

7

43a
[ ]

type B : There is one representation type 7 = (1,(1;1,0);1,(1;0,1)) giving as above a three
dimensional family of conifold singularities, one representation type 7= = (1, (1;1,1);1,(1;0,0))
giving a three dimensional family of conifolds and finally one representation type
73 = (1,(1;0,0); 1,(1;0,0); 1, (05 1,1); 1, (0; 0, 1))

of which the local quiver setting has t&\form

O=llllS-0;

\./
o0

(the loop in the downright corner is removed to compensate for the marking) giving rise to a
one-dimensional family of five-dimensional singularities of type 54,. This gives the fingerprint

33071, 3con

N
|
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type C : We have a three dimensional family of conifold singularities coming from the represen-
tation type (1,(1;1);1,(1;0)) and a two-dimensional family of type 43, singularities corresponding
to the representation type (1,(1;0);1,(1,0);1,(0;1)). Therefore, the fingerprint is depicted as

35071 -— 43(1 — e

type D : We have just one three-dimensional family of conifold singularities determined by the
representation type (1, (1);1, (1)) so the fingerprint is 3con, — ®. As fingerprints are isomorphism
invariants of the singularity, this finishes the proof.

We claim that the minimal number of generators for these invariant rings is 7. The structure
of the invariant ring of three 2 x 2 matrices upto simultaneous conjugation was determined by Ed
Formanek [27] who showed that it is generated by 10 elements

{tT(Xl), tT(XQ), tT(Xg), det(Xl), det(Xz), det(X:s), tT’(X1X2), tT(X1X3), tT(XQXg), tT(X1X2X3)}

and even gave the explicit quadratic polynomial satisfied by tr(X1 X2X3) with coefficients in the
remaining generators. The rings of invariants of the four cases of interest to us are quotients of this
algebra by the ideal generated by three of its generators : for type A it is (det(X1), det(X2), det(Xs)),
for type B : (det(X1),tr(Xz),det(X3)), for type C' : (det(X1),tr(X2),tr(Xs)) and for type D :
(tr(X1), tr(X2),tr(Xs)). d

These two tricks (counting cycles and fingerprinting) are sufficient to classify all central singu-
larities of Cayley-smooth orders for central dimension d < 6. We will give the details for d = 5, the
remaining cases for d = 6 can be found in the paper [13].

Proposition 5.15 The reduced marked quiver settings for d =5 are

QT 20 @ 0
N Vi N /
53a Q\ @///// 5ap \\\5 /
9 @@f
53¢ \\\@ / 534 \@ //
o=ullliis-© - o= S0

S4a Sap : Ly
e I %\_/
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o =Q OO
54d :K ) Die : T é}
O =0 O

Proof. We are in the situation of lemma 5.15 and hence know that all vertex-dimensions are equal
to one, every vertex has at least two incoming and two outgoing arrows and the total number of
arrows is equal to 5 — 1 + k£ where k is the number of arrows which can be at most 4.

k =2 : There are 6 arrows and as there must be at least two incoming arrows in each vertex,
the only possibilities are types 52, and 5ap.

k=3 : There are seven arrows. Hence every two vertices are connected, otherwise one needs at
least 8 arrows: S

There is one vertex with 3 incoming arrows and one vertex with 3 outgoing arrows. If these vertices
are equal (= v), there are no triple arrows. Call = the vertex with 2 arrows coming from v and
y the other one. Because there are already two incoming arrows in z, xq(€y,€;) = 0. This also
implies that xg(ey,€0) = —2 and xg(€z, €v) = X0(€xz,€y) = —1. This gives us setting 53,. If the
two vertices are different, we can delete one arrow between them, which leaves us with a singularity
of dimension d = 4 (because now all vertices have 2 incoming and 2 outgoing vertices). So starting
from the types 43,—» and adding one extra arrow we obtain three new types 53,_q.

k =4 : There are 8 arrows so each vertex must have exactly two incoming and two outgoing
arrows. First consider the cases having no double arrows. Fix a vertex v, there is at least one
vertex connected to v in both directions. This is because there are 3 remaining vertices and four
arrows connected to v (two incoming and two outgoing). If there are two such vertices, w1 and w2,
the remaining vertex ws is not connected to v. Because there are no double arrows we must be in
case b4,. If there is only one such vertex, the quiver contains two disjoint cycles of length 2. This
leads to type 5a4p.

If there is precisely one double arrow (from v to w), the two remaining vertices must be contained
in a cycle of length 2 (if not, there would be 3 arrows leaving v). This leads to type H4c.

If there are two double arrows, they can be consecutive or disjoint. In the first case, all arrows
must be double (if not, there are three arrows leaving one vertex), so this is type 544. In the latter
case, let v1 and v2 be the starting vertices of the double arrows and w; and w2 the end points. As
there are no consecutive double arrows, the two arrows leaving w; must go to different vertices not
equal to wa. An analogous condition holds for the arrows leaving w2 and therefore we are in type
54c. O

Next, we have to separate the corresponding rings of invariants up to isomorphism.

Theorem 5.26 There are exactly ten reduced marked quiver singularities in dimension d = 5.
Only the types 53, and 54 have an isomorphic ring of invariants.
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Proof. Recall that the dimension of m/m? is given by the number of primitive cycles in Q. These
numbers are

type | dim m/m? || type | dim m/m?
524 8 S4a 6

Hap 9 Sap 6

53a 8 54c 9

53p 7 544 16

53¢ 12 Sae 3

534 10

Type 54q can be separated from type 54p because 54, contains 2 + 4 twodimensional families of
conifold singularities corresponding to representation types of the form

11400

009D 11 11,500
10 no1 anddx 5@ g7,
1

whereas type 54p has only 1 4 4 such families as the decomposition
FERE
is not a valid representation type.

Type bag and 523, are both isolated singularities because we have no non- trivial representation
types, whereas types 54c, and 54. are not as they have representation types of the form

00®00® 79
giving local quivers smooth equivalent to type 435 (in the case of type 54.) and to type 3, (in the
case of bae).
Finally, as we know the algebra generators of the rings of invariants (the primitive cycles) it

is not difficult to compute these rings explicitly. Type 53, and type 54 have a ring of invariants

isomorphic to
C[X;,Y4,2;5:1<4,5<2]
(Z11Z22=212221,X1Y1Z22=X1Y2Z21=X2Y1Z12=X2Y22Z11)
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6 — Nilpotent Representations

Having obtained some control over the quotient variety triss, A of a Cayley-smooth algebra A
we turn to the study of the fibers of the quotient map

trep, A O triss, A

If (Q°, ) is the local marked quiver setting of a point £ € triss, A then the GL,-structure
of the fiber 771(¢) is isomorphic to the GL(a)-structure of the nullcone Null, Q° consisting of
all nilpotent a-dimensional representations of Q®. In geometric invariant theory, nullcones are
investigated by a refinement of the Hilbert criterium : Hesselink’s stratification.

The main aim of the present chapter is to prove that the different strata in the Hesselink
stratification of the nullcone of quiver-representations can be studied via moduli spaces of semi-
stable quiver-representations. We will illustrate the method first by considering nilpotent m-tuples
of n X n matrices and generalize the results later to quivers and Cayley-smooth orders. The methods
allow us to begin to attack the "hopeless’ problem of studying simultaneous conjugacy classes of
matrices. We then turn to the description of representation fibers, which can be studied quite
explicitly for low-dimensional Cayley-smooth orders, and investigate the fibers of the Brauer-Severi
fibration. Before reading the last two sections on Brauer-Severi varieties, it may be helpful to glance
through the final chapter where similar, but easier, constructions are studied.

6.1 Cornering matrices

In this section we will outline the main idea of the Hesselink stratification of the nullcone [35] in
the generic case, that is, the action of GL,, by simultaneous conjugation on m-tuples of matrices
M =M, ®...»M,. With Null' we denote the nullcone of this action

Null™ = {x = (A1, ..., An) €M™ | 0=1(0,...,0) € O(z)}

It follows from the Hilbert criterium 2.2 that x = (A1,..., An) belongs to the nullcone if and only

if there is a one-parameter subgroup C* 2, GL,, such that

lim A(t).(A1, ..., Am) = (0,...,0).

t—0
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We recall from proposition 2.5 that any one-parameter subgroup of GL, is conjugated to one
determined by an integral n-tuple (r1,...,7r,) € Z™ by
tm 0
A(t) = .
0 tm
Moreover, permuting the basis if necessary, we can conjugate this A\ to one where the n-tuple if
dominant , that is, r1 > ro > ... > r,. By applying permutation Jordan-moves , that is, by

simultaneously interchanging certain rows and columns in all A;, we may therefore assume that the
limit-formula holds for a dominant one-parameter subgroup A of the maximal torus

c1 0
T, ~C"x...xC"={ | c; €C"} — GL,
— 0 cn
of GL,. Computing its action on an n X n matrix A we obtain

" 0 a1 ... Qin t—" 0 t" gy ... T TMag,

0 tm an1 e Ann 0 T_Tn trn_rl an1 e trn_rn Ann

But then, using dominance r; < r; for ¢ > j, we see that the limit is only defined if a;; = 0 for
i > j, that is, when A is a strictly upper triangular matrix. We have proved the first ’cornering’
result.

Lemma 6.1 Any m-tuple x = (Ai1,...,An) € Nully has a point in its orbit O(x) under si-
multaneous conjugation ' = (AL, ..., Al,) with all A} strictly upper triangular matrices. In fact

permutation Jordan-moves suffice to arrive at x’.

For specific m-tuples x = (Ai, ..., Ax) it might be possible to improve on this result. That is,
we want to determine the smallest ’corner’ C' in the upper right hand corner of the matrix, such
that all the component matrices A; can be conjugated simultaneously to matrices A} having only
non-zero entries in the corner C
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and no strictly smaller corner C’ can be found with this property. Our first task will be to compile
a list of the relevant corners and to define an order relation on this set. Consider the weight space
decomposition of M)" for the action by simultaneous conjugation of the maximal torus T,

My = @1<ij<n My (i — 75) = B1<i,j<nCr " r,
where ¢ = diag(ci,...,cn) € Trm acts on any element of M (m; — ;) by multiplication with cicj_l7
that is, the eigenspace M, (m; — ;) is the space of the (i, j)-entries of the m-matrices. We call
W={m—-m | 1<i,j<n}

the set of Tn-weights of M]'. Let x = (A1,...,Am) € Null;' and consider the subset E, C W
consisting of the elements m; — 7; such that for at least one of the matrix components Ay, the (i, j)-
entry is non-zero. Repeating the argument above, we see that if A is a one-parameter subgroup of
T, determined by the integral n-tuple (r1,...,7r,) € Z" such that lim \(¢).z = 0 we have

V7 —mj € By wehave ri—1r; >1
Conversely, let £ C W be a subset of weights, we want to determine the subset
{s=(s1,...,80) ER" | 85—8; >1Vm—7m; €E}

and determine a point in this set, minimal with respect to the usual norm
Isll=4/s2+...+s2

Let s = (s1,...,8n) attain such a minimum. We can partition the entries of s in a disjoint union
of strings
{pipi+ 1, pi + ki}

with k; € N and subject to the condition that all the numbers p;; et pi+j with 0 < j <k
occur as components of s, possibly with a multiplicity that we denote by a;;. We call a string
string; = {pi,pi + 1,...,p;i + ki} of s balanced if and only if

ki
> si= aipi+4)=0
s Estring; 7=0
In particular, all balanced strings consists entirely of rational numbers. We have
Lemma 6.2 Let E C W, then the subset of R" determined by

R% :{ (7"1,...,7"”) | Ty —Tj >1 Vﬂ'i—ﬂ'j EE}

has a unique point sg = (s1,...,Sn) of minimal norm || sg ||. This point is determined by the
characteristic feature that all its strings are balanced. In particular, sg € Q".
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Proof. Let s be a minimal point for the norm in R% and consider a string of s and denote with S
the indices k € {1,...,n} such that sx € string. Let m; — m; € E, then if only one of ¢ or j belongs
to S we have a strictly positive number a;;

si—s; =147y with 7; >0
Take €9 > 0 smaller than all r;; and consider the n-tuple
Se =8+ €(d1s,...,0ns) with drs =1if k € S and 0 otherwise

with | € |< eo. Then, s € R} for if m; —7; € F and ¢ and j both belong to S or both do not belong
to S then (se¢)i — (se); = s; —s; > 1 and if one of i or j belong to S, then

(Se)i — (Se)j = 1+T’ij +te Z 1

by the choice of ¢g. However, the norm of s, is

lscll= [Is 1l +2e 3 s+ 48

kesS

Hence, if the string would not be balanced, ), . s # 0 and we can choose € small enough such
that || se ||<|| s ||, contradicting minimality of s. O

For given n we have the following algorithm to compile the list S,, of all dominant n-tuples
(s1,...,5n) (that is, s; < s; whenever ¢ > j) having all its strings balanced.

e List all Young-diagrams Y,, = {Y1,...} having < n boxes.
e For every diagram Y] fill the boxes with strictly positive integers subject to the rules
1. the total sum is equal to n
2. no two rows are filled identically
3. at most one row has length 1
This gives a list 7,, = {T1, ...} of tableaux.

e For every tableau T; € 7, for each of its rows (a1, az,...,ax) find a solution p to the linear
equation
aixtax(z+1)+...+a(z+k)=0

and define the Y a;-tuple of rational numbers

py--spyp+1,..p+1,...p+k,...,p+ k)
———

ay ag ay

Repeating this process for every row of 7; we obtain an n-tuple, which we then order.
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The list S,, will be the combinatorial object underlying the relevant corners and the stratification

of the nullcone.

Example 6.1 (S,, for small n) For n = 2, we have giving (3, —1) and giving (0,0).

For n = 3 we have five types

S4 has eleven types

Observe that we ordered the elements in S, according to || s ||. The reader is invited to verify that

Sa

tableau | 51 sa  s3 | || s |

1 0 -1 2

1/2 1 1 2 2

Ss = A >
3 73 73 3

1]1]

1 1 0 _1 1

n L 1 !

0 0 0 0
tableau s1 sa sz sal| s
303 -3 -3 s
T B A
I N A
1 0 o0 -1 9
S A A

- e e

1 1 1

i i 1 —i :
1]2]
1] N I
2]1]
h BN N
1]1]
2 1 0 0 1 1
2] 1 ! !
0 0 0 0 0

S5 has 28 different types.

To every s = (s1,...

,8$n) € Sp we associate the following data
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e the corner Cs is the subspace of M, consisting of those m tuples of n x n matrices with zero
entries except perhaps at position (¢,7) where s; —s; > 1. A partial ordering is defined on
these corners by the rule

Co<Cs < |Is < |sl

e the parabolic subgroup Ps which is the subgroup of GL, consisting of matrices with zero
entries except perhaps at entry (i,5) when s; — s; > 0.

e the Levi subgroup L, which is the subgroup of GL, consisting of matrices with zero entries
except perhaps at entry (i,7) when s; —s; = 0. Observe that Ly = [[ GLq4,, where the a;;
are the multiplicities of p; + j.

ajj

Example 6.2 Using the sequence of types in the previous example, we have that the relevant
corners and subgroup for 3 x 3 matrices are

. [ ]
Cs
o o0 (AL AL (AL e e e e oo
o e (AL AL o e (AL e o0
P [ ] [ ] o e ® e oo
® [ JL) [ ] [ ] [ LI
® [ JL) oo [ ] e 00
L, (4 (4 (AL L4 o oo

For 4 x 4 matrices the relevant corners are
EN  EEE
o =

Returning to the corner-type of an m-tuple x = (A1,..., Amn) € Null;, we have seen that E, C W
determines a unique sg, € Q" which up to permuting the entries an element s of S,,. As permuting
the entries of s translates into permuting rows and columns in M, (C) we have
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Theorem 6.1 Every x = (A1,...,Am) € Nully' can be brought by permutation Jordan-moves to
an m-tuple ' = (A1,...,Ay,) € Cs. Here, s is the dominant reordering of sg, with E, C W the
subset m; — w; determined by the non-zero entries at place (i,7) of one of the components Ay. The
permutation of rows and columns is determined by the dominant reordering.

The m-tuple s (or sg,) determines a one-parameter subgroup As of 75, where A corresponds to
the unique n-tuple of integers

(ri,...,mn) € NysNZ" with ged(r;) =1

For any one-parameter subgroup p of T;, determined by an integral n-tuple u = (a1,...,an) € Z"
and any © = (A1,...,An) € Null we define the integer

m(z, ) = min {a; —a; | z contains a non-zero entry in M, (m; — ;) }
From the definition of RY% it follows that the minimal value sg and A, is

s 7L and Sfi
e m(z, Asp_ ) T om(z, As)

We can now state to what extend A; is an optimal one-parameter subgroup of T,.

Theorem 6.2 Let x = (Ai1,...,An) € Null])' and let p be a one-parameter subgroup contained in
T, such that img A(t).x =0, then

A | llal
M@ Aep,) © mlr )

The proof follows immediately from the observation that m € R%, and the minimality of
SE,. Phrased differently, there is no simultaneous reordering of rows and columns that admit an
m-tuple 2”7 = (A”1,...,A”m) € Cy for a corner Cyy < Cs. In the next section we will improve on

this result.

6.2 Optimal corners

We have seen that one can transform an m-tuple © = (A1,..., An) € Null;' by interchanging rows
and columns to an m-tuple in corner-form Cs. However, it is possible that another point in the
orbit O(z) say y = g.x = (Bi,...,Bm) can be transformed by permutation Jordan moves in a
strictly smaller corner.
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Example 6.3 Consider one 3 X 3 nilpotent matrix of the form

with ab #0

8
|
coco
coe
oo o

Then, E, = {m — m2,m — w3} and the corresponding s = sg, = (%, —%, —%) so x is clearly of

corner type

Cs =

However, x is a nilpotent matrix of rank 1 and by the Jordan-normalform we can conjugate it in
standard form, that is, there is some g € GL3 such that

[Nl
o OO

oo
y=gx=gxg = |0
0

For this y we have E, = {m — m2} and the corresponding sg, = (3, —3,0), which can be brought

-1
into standard dominant form s’ = (%,0, —%) by interchanging the two last entries. Hence, by

interchanging the last two rows and columns, y is indeed of corner type

Cy =

and we have that Cy < Cs.

We have used the Jordan-normalform to produce this example. As there are no known canonical
forms for m tuples of n X n matrices, it is a difficult problem to determine the optimal corner type
in general.

Definition 6.1 We say that x = (A1,...,An) € Null)} is of optimal corner type Cs if after
reordering rows and columns, x is of corner type Cs and there is no point y = g.x in the orbit which
is of corner type Cgr with Cy < Cs.

We can give an elegant solution to the problem of determining the optimal corner type of an m-
tuple in Nwull; by using results on f-semistable representations. We assume that x = (A1,..., An)
is brought into corner type Cs with s = (s1,...,5,) € Sn. We will associate a quiver-representation
to x. As we are interested in checking whether we can transform z to a smaller corner-type, it is
intuitively clear that the border region of Cs will be important.
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e the border B; is the subspace of Cs consisting of those m-tuples of n X n matrices with zero
entries except perhaps at entries (i, 5) where s; — s; = 1.

Example 6.4 For 3 x 3 matrices we have the following corner-types Cs having border-regions B
and associated Levi-subgroups L

H]ﬁ
Cs
H]ﬁ
Bs
[ ] o0 [ ] [ ] o o0
[ ] o e o e [ ] o o0
L, [ ] [ ] o e [ ] o o0

For 4 x 4 matrices the relevant data are given in figure 6.1

From these examples, it is clear that the action of the Levi-subgroup Ls on the border B; is a quiver-
setting. In general, let s € S,, be determined by the tableau Ts, then the associated quiver-setting

(Qsa Oés) 18

e () is the quiver having as many connected components as there are rows in the tableau Ts.
If the i-th row in T is

(aio,a“, .. .,aiki)

then the corresponding string of entries in s is of the form

{p’n7plapl+17vpl+177p’b+kl77p’b+k’b}
—_———

aio @il Uik,

and the i-th component of Qs is defined to be the quiver @; on k; + 1 vertices having m
arrows between the consecutive vertices, that is @Q; is

O=r=>Q=m=@=m=> - =m=>(k.)

e the dimension vector «; for the i-th component quiver @; is equal to the i-th row of the
tableau T, that is

o = (@io, @ity - - - 5 Qik,)

and the total dimension vector «; is the collection of these component dimension vectors.
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i
[

- o (mES | mE  mEE
2 Mes B A =m
= = =
B, =
[ ] [ ] o0 [ ] o0 [ )
[ ) [ ) o0 o0 o0 o0 e
[ ) o0 [ ) o0 [ 2K ] o0 e
L. = [ ) [ 2K ] [ ) [ ) o0 o0 e
E Jas n
Cs =
H
m
B, =
[ BN AN ) [ AN ) [ ] [ ] [ BN 2K 2K )
[ BK AN ) [ 2K ) [ ) [ 2K ] [ 2K AX BN )
[ 2K 2K J [ ) [ 2K ] [ 2K ] [ 2K AX BN )
LS: [ ) [ ) [ 2K ] [ ) [ 2K AX BN )

Figure 6.1: Corners and borders for 4 x 4 matrices.
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e the character GL(as) —» C* is determined by the integral n-tuple s = (t1,...,tn) € Z"
where if entry k corresponds to the j-th vertex of the i-th component of Qs we have

tr=mni; = d.(pi +J)

where d is the least common multiple of the numerators of the p;’s for all i. Equivalently,
the n;; are the integers appearing in the description of the one-parameter subgroup A; =
(r1,...,rn) grouped together according to the ordering of vertices in the quiver @s. Recall
that the character x5 is then defined to be

Xs(g1-- . gn) = [ [ det(g:)"
=1

or in terms of GL(«as) it sends an element g;; € GL(as) to [, ; det(gi;)"7.

Proposition 6.1 The action of the Levi-subgroup Ls = H” GL,,. on the border Bs coincides with
the base-change action of GL(as) on the representation space rep,, Qs. The isomorphism

ajj

By — rep,, Qs

is given by sending an m-tuple of border Bs-matrices (A1, ..., Am) to the representation in rep,, s
where the j-th arrow between the vertices v, and vqy1 of the i-th component quiver Q; is given by
the relevant block in the matriz A;.

Example 6.5 We illustrate these definitions with a few examples for 4 x 4 matrices

tableau Ls Bs 93 (QS7 s, 93)
D Mo [O]
:
[ JEJ 5 1 -3
[2[1]1] ole (5,1,-3,-3) O<[+0O<[}-®

° [ 1 &
oo [ ]
[ 3K J |:| 1 0 -1
[1]2]1] ° (1,0,0,-1) O<["F@~[}-0O

oo [ ] L s
o SO

1 ° (1,1,0,—2) ©
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Using these conventions we can now state the main result of this section, giving a solution to
the problem of optimal corners.

Theorem 6.3 Let x = (A1,..., An) € Nully) be of corner type Cs. Then, x is of optimal corner
type Cs if and only if under the natural maps

Cy — B =, rep,, Qs

(the first map forgets the non-border entries) x is mapped to a 0s-semistable representation in
rep,, Qs

6.3 Hesselink stratification

Every orbit in Nwull;" has a representative x = (A1,..., An) with all A; strictly upper triangular
matrices. That is, if N C M, is the subspace of strictly upper triangular matrices, then the action
map determines a surjection

GL, x N™ -2 Null?"

Recall that the standard Borel subgroup B is the subgroup of GL,, consisting of all upper triangular
matrices and consider the action of B on GL,, x M, determined by

b.(g,x) = (gb~ ", b.x)

Then, B-orbits in GL,, x N™ are mapped under the action map ac to the same point in the nullcone
Nully'. Consider the morphisms

™

GLn x M" — T GL./B x M™

which sends a point (g,z) to (¢9B,g.z). The quotient GL,/B is called a flag variety and is a
projective manifold. Its points are easily seen to correspond to complete flags

F:0CFhCkhcC...CF,=C" with dimc F; =1

of subspaces of C". For example, if n = 2 then GL2/B ~ P!. Consider the fiber 77! of a point
(9, (B1,...,Bm)) € GLn/B x M,]". These are the points

g 'h =beB

A, ..., Am such th
(h, (Ar, .., )) such that {bAib1 =g 'Biyg foralll<i<m.

Therefore, the fibers of 7 are precisely the B-orbits in GL, x M;". That is, there exists a quotient
variety for the B-action on GL, x M* which is the trivial vectorbundle of rank mn?

T =GL,/B x M —% GL,/B
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GL, xBU

GL,.U

GL, x® N™ Null™

Figure 6.2: Resolution of the nullcone.

over the flag variety GL,/B. We will denote with GL,, x BN™ the image of the subvariety GL, x N™
of GL, x M,;" under this quotient map. That is, we have a commuting diagram

GLn x N ©—» GLn x M™

GLn, x® N™ < GL,/B x M]"

Hence, V = GL, xZ N™ is a sub-bundle of rank m.@ of the trivial bundle 7 over the flag
variety. Note however that V itself is not trivial as the action of GL,, does not map N™ to itself.

Theorem 6.4 Let U be the open subvariety of m-tuples of strictly upper triangular matrices N™
consisting of those tuples such that one of the component matrices has rank n — 1. The action map
ac induces the commuting diagram of figure 6.2. The upper map is an isomorphism of G L, -varieties
for the action on fiber bundles to be left multiplication in the first component.

Therefore, there is a natural one-to-one correspondence between G L, -orbits in GL,.U and B-
orbits in U. Further, ac is a desingularization of the nullcone and Null}' is irreducible of dimension

(m+ 1)771(”2_ 1).

Proof. Let A € N be a strictly upper triangular matrix of rank n — 1 and g € GL,, such that
gAg™! € N, then g € B as one verifies by first bringing A into Jordan-normal form J,,(0). This
implies that over a point = (A1,..., Ay) € U the fiber of the action map

ac

GL, x N — Null}'

has dimension M"T_l) = dim B. Over all other points the fiber has at least dimension @.But
then, by the dimension formula we have

n(n —1)

dim Nully' = dim GL, +dim N™ —dim B = (m+1) 5
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Figure 6.3: Resolution of Null3.

Over GL,.U this map is an isomorphism of G Ly-varieties. Irreducibility of Nwull} follows from
surjectivity of ac as C[Null})'] = C[GL,]® C[N™] and the latter is a domain. These facts imply
that the induced action map

GL, x® N™ 2% Nulll"
is birational and as the former is a smooth variety (being a vectorbundle over the flag manifold),

this is a desingularization.

Example 6.6 Let n = 2 and m = 1. We have seen in chapter 3 that Null3 is a cone in 3-space
with the singular top the orbit of the zero-matrix and the open complement the orbit of

0 1
0 0
In this case the flag variety is P! and the fiber bundle GLs x2 N has rank one. The action map

is depicted in figure 6.3 and is a G Le-isomorphism over the complement of the fiber of the top.

Theorem 6.4 gives us a complexity-reduction, both in the dimension of the acting group and in
the dimension of the space acted upon, from

e (GGL,-orbits in the nullcone Null}"*, to

e B-orbits in N™.
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at least on the stratum GL, .U described before. The aim of the Hesselink stratification of the
nullcone is to extend this reduction also to the complement.

Let s € S, and let Cs be the vectorspace of all m-tuples in M,* which are of corner-type Cs. We
have seen that there is a Zariski open subset (but, possibly empty) Us of Cs consisting of m-tuples
of optimal corner type Cs. Observe that the action of conjugation of GL,, on M;" induces an action
of the associated parabolic subgroup Ps on Cs.

Definition 6.2 The Hesselink stratum Ss associated to s is the subvariety GL,,.Us where Us is the
open subset of Cs consisting of the optimal Cs-type tuples.

Theorem 6.5 With notations as before we have a commuting diagram

GL, xT U, = > S,

GL., x* C, e > S,

where ac is the action map, Ss is the Zariski closure of Ss in Nully' and the upper map is an
isomorphism of G Ly, -varieties.

Here, GL,/Ps is the flag variety associated to the parabolic subgroup Ps and is a projective
manifold. The variety GL,, x = Cy is a vectorbundle over the flag variety GL,,/Ps and is a subbundle
of the trivial bundle GL, xTs M™.

Therefore, the Hesselink stratum Ss is an irreducible smooth variety of dimension

dim Ss = dim GLn/Ps + 71k GL, x™ O
=n? — dim P + dime Cs

and there is a natural one-to-one correspondence between the G Ly -orbits in Ss and the Ps-orbits
in Us.

Moreover, the vectorbundle GL, x> Cy is a desingularization of Ss hence feels’ the gluing of
Ss to the remaining strata. Finally, the ordering of corners has the geometric interpretation

573 C U S
ls"lI<lsll
We have seen that Us = p~ ! rep;’ (Qs,05) where Cs —24» B, is the canonical projection
forgetting the non-border entries. As the action of the parabolic subgroup Ps restricts to the action

of its Levi-part Ls on Bs = rep, () we have a canonical projection

Us/Ps P“ Moszi(QMaS)
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to the moduli space of 0s-semistable representations in rep, s. As none of the components of
Qs admits cycles, these moduli spaces are projective varieties. For small values of m and n these
moduli spaces give good approximations to the study of the orbits in the nullcone.

Example 6.7 (Nullcone of m-tuples of 2 x 2 matrices) In the first volume we have seen by a
brute force method that the orbits in Null3 correspond to points on P! together with one extra orbit,
the zero representation. For arbitrary m, the relevant strata-information for Null3* is contained in
the following table

tableau s Bs

CS PS (Q57a5705)

DO
1o mnfiSoR-Y o

[ JEJ 0

(0,0) ole ®

Because B; = C; we have that the orbit space Us/Ps ~ M3%(Qs,0s). For the first stratum,
every representation in rep, s is 0s-semistable except the zero-representation (as it contains a
subrepresentation of dimension 8 = (1,0) and 6s(8) = —1 < 0. The action of Ly = C* x C* on
C™ —0 has as orbit space P!, classifying the orbits in the maximal stratum. The second stratum
consists of one point, the zero representation.

Example 6.8 A more interesting application, illustrating all of the general phenomena, is the
description of orbits in the nullcone of two 3 x 3 matrices. H. Kraft described them in [50, p. 202]
by brute force. The orbit space decomposes as a disjoint union of tori and can be represented by
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the picture

Here, each node corresponds to a torus of dimension the right-hand side number in the bottom
row. A point in this torus represents an orbit with dimension the left-hand side number. The top
letter is included for classification purposes. That is, every orbit has a unique representant in the
following list of couples of 3 x 3 matrices (A, B). The top letter gives the torus, the first 2 rows
give the first two rows of A and the last two rows give the first two rows of B, z,y € C*

a b c d e f g h i

0/1/0] [0]1]0) |O]1]0O] |[OJ1]|0] |O]|1/0] |O][O]|O} [OJ1]|0] |O]1|0] |O0|0|x
0/0/1] [0]|0O|1| |O]|O[1] |0JO|1] |[O|OJ1| |O|O|1| [O|O|O] |OfO|1] |O]O]O
0[z|0] [0]0]|0| |O]|xz|0] |O|z|y| |[O]|xz|O| |O[1]0| [0|0]|O0] |O|O|z| |O]1]0O
0/0ly| [0]0]|z| |0]O]|0O] |0/0O|x| [0]0J/O] |O]|O|x| |0J0O]|1] |0]0JO] |O]O]1
j k l m n 0 P q r

0/0/0] [0]OJ1) |O]|O|O] (0JO|1] |O]|OJO| |O]|1]0O| |(O|1]|0O] |O|/OJO] |O]O]O
0/0/1] [0]O]O| |O]|O|1] |OJO|O] |[O]/OJO| |O|O|O| [O|O|O] |O|O|O] |O]O]O
0(1/0]| (0]1]|0| |O]|O[1] |OJ1|0] |[O]|1|0| |O|xz|0O| [O|O]|O] |Of1|0] |O]O]O
0/0/0] [0]0]|O) |O]|O|O] |OJO|O] |O]|OJ1] |O]|O]|O| (O|O]|O] |O]OJO] |O]O]O

We will now derive this result from the above description of the Hesselink stratification. To begin,
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the relevant data concerning Ss is summarized in the following table

tableau s B, Cs P (Qs, s, 05)
oole
oo ', — 0, 0!
(1,0,-1) L ®\/ \\,./@
@ oole
oo ', — 2
® ©)
(%7%7_5) L S~
Il [e]e]e
oe . — !
(%7—%7—%) LAL ®\'/@
1 —1
elele| o T
1]1] oo >
i (%707_%) Ld @
olole
elele| o
(0,0,0,) elele] ©®

For the last four corner types, Bs = Cs whence the orbit space Us/Ps is isomorphic to the moduli
space M3 (Qs,0s). Consider the quiver-setting

/'—\7 :
oo

If the two arrows are not linearly independent, then the representation contains a proper sub-
representation of dimension-vector 8 = (1,1) or (1,0) and in both cases 6s(3) < 0 whence the
representation is not fs-semistable. If the two arrows are linearly independent, we can use the
G La-component to bring them in the form ({(ﬂ , {(1]] ), whence M3°(Qs, o) is reduced to one

point, corresponding to the matrix-couple of type [

—
[e=NesRes)
[e=Jen )
o =O
[e=Nen i)
[e=NesRes)
oSO =
—
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A similar argument, replacing linear independence by common zero-vector shows that also the
quiver-setting corresponding to the tableau has one point as its moduli space, the matrix-
tuple of type k. Incidentally, this shows that the corners corresponding to the tableaux or

cannot be optimal when m = 1 as then the row or column vector always has a kernel or
cokernel whence cannot be 6s-semistable. This of course corresponds to the fact that the only
orbits in Nullj are those corresponding to the Jordan-matrixes

010 01 0 0 0 0

0 0 1 0 0 0 0 0 0

0 00 0 00 0 0 0
1]1]

which are respectively of corner type [11111] [1] and , whence the two other types do not
occur. Next, consider the quiver setting

A representation in rep, Qs is #s-semistable if and only if the two maps are not both zero (oth-
erwise, there is a subrepresentation of dimension f = (1,0) with 6,(3) < 0). The action of
GL(as) = C* x C* on C? — 0 has a s orbit space P! and they are represented by matrix-couples

—
o OO
o OO

b
01 )
0

oo R
oo O
o OO

with [a : b] € P! giving the types o,p and ¢. Clearly, the stratum consists just of the zero-matrix,
which is type r. Remains to investigate the quiver-setting

Again, one easily verifies that a representation in rep, Qs is fs-semistable if and only if (a,b) #
(0,0) # (c¢,d) (for otherwise one would have subrepresentations of dimensions (1,1,0) or (1,0,0)).
The corresponding G L(as)-orbits are classified by

M (Qs.05) ~ P x P*
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corresponding to the matrix-couples of types a, b, c,e, f,g,j, k and n

—
o OO
SO0
o O
o OO
O O
oo
~—

where [a : b] and [c : d] are points in P'. In this case, however, Cs # Bs and we need to investigate
the fibers of the projection

US/PS J» M;z (stas)

Now, Ps is the Borel subgroup of upper triangular matrices and one verifies that the following two
couples

) and (

—
coo
SO0
o O
coo
O O
oot O
oo o
[en R en e
(e iy SIS
[e= N enRen)
O O
oo
N

lie in the same B-orbit if and only if det {Lbl 2} # 0, that is, if and only if [a : b] # [c : d] in

P'. Hence, away from the diagonal p is an isomorphism. On the diagonal one can again verify by
direct computation that the fibers of p are isomorphic to C, giving rise to the cases d,h and i in
the classification.

The connection between this approach and Kraft’s result is depicted in figure 6.4. The picture on
the left is Kraft’s toric degeneration picture where we enclosed all orbits belonging to the same
Hesselink strata, that is, having the same optimal corner type. The dashed region enclosed the
orbits which do not come from the moduli spaces M3’ (Qs,0s), that is, those coming from the
projection Us/Ps —» M3 (Qs,0s)). The picture on the right gives the ordering of the relevant
corners.

Example 6.9 We see that we get most orbits in the nullcone from the moduli spaces M33 (Qs, 0s).
The reader is invited to work out the orbits in Null?. We list here the moduli spaces of the relevant
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IIJ
III
/ \ LT

Figure 6.4: Nullcone of couples of 3 x 3 matrices.

corners
corner M3 (Qs, 0s) corner M3 (Qs, 0s) corner M3 (Qs, 0s)
[ ] P! x P! x P! HEER P! [ ] P!
[ [ ]| [ 1] H
[ | [ ]
[ ]
PP UP x P UP x P! P! U S%(P) PO
[T ] [ ]
P! P! P°
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Observe that two potential corners are missing in this list. This is because we have the following
quiver setting for the corner

and there are no ,-semistable representations as the two maps have a common kernel, whence a
subrepresentation of dimension 5 = (1,0) and 6s(8) < 0. A similar argument holds for the other
missing corner and quiver setting

For general n, a similar argument proves that the corners associated to the tableaux and

are not optimal for tuples in Null;; unless m > n. It is also easy to see that with m > n
all relevant corners appear in Null;" 1, that is all potential Hesselink strata are non-empty.

6.4 Cornering quiver representations

In this section we generalize the results on matrices to representation of arbitrary quivers. Let
Q@ be a quiver on k vertices {v1,...,vr} and fix a dimension vector @ = (a1, ...,ax) and denote
the total dimension Zle a; by a. A representation V' € rep, @ is said to belong to the nullcone

Nulls Q if the trivial representation 0 € O(V). Equivalently, all polynomial invariants are zero
when evaluated in V, that is, the traces of all oriented cycles in @ are zero in V. By the Hilbert
criterium 2.2 for GL(a), V € Null, Q if and only if there is a one-parameter subgroup

GL,,
2> GL(a) = < GL,
GLa,
such that lim A(t).V = 0. Up to conjugation in GL(«), or equivalently, replacing V' by another

point in the orbit O(V'), we may assume that X lies in the maximal torus T, of GL(«) (and of GL,)
and can be represented by an integral a-tuple (r1,...,74) € Z* such that

tm
A(t) =
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We have to take the vertices into account, so we decompose the integer interval [1,2,...,a] into
vertex intervals I,,; such that

i—1 @

[1,2,...,a] =Ufy I, with I, =[> a;+1,...,> aj]

j=1 j=1

If we recall that the weights of Ty, are isomorphic to Z* having canonical generators 7, for 1 <p < a
we can decompose the representation space into weight spaces

repa Q = @ repa Q(TFPQ)

Tpqg=Tq—Tp

where the eigenspace of mp,q is non-zero if and only if for p € I, and q € I,,;, there is an arrow

in the quiver Q. Call 7o Q the set of weights m,, which have non-zero eigenspace in rep,, Q. Using
this weight space decomposition we can write every representation as V' = Ep,q Vpq where Vp, is a
vector of the (p, g)-entries of the maps V' (a) for all arrows a in @ from v; to v;. Using the fact that
the action of Ty, on rep, Q is induced by conjugation, we deduce as before that for A determined
by (r1,...,7a)

iir% At).V =0 & rq—rp >1 whenever Vpq #0

Again, we define the corner type C' of the representation V' by defining the subset of real a-tuples
Ev ={(z1,...,22) ER" | g —xp > 1V V,q # 0}

and determine a minimal element sy in it, minimal with respect to the usual norm on R®. Similar
to the case of matrices considered before, it follows that sy is a uniquely determined point in Q%
having the characteristic property that its entries can be partitioned into strings

{pl,-uyphpl+17~~-7pl+1>-~7pl+kl7---7pl+kl} Wlth allalm21

aio agy aik,

which are balanced, that is Efrﬁ:o aim(pr +m) = 0.

Note however that this time we are not allowed to bring sy into dominant form, as we can
only permute base-vectors of the vertex-spaces. That is, we can only use the action of the vertez-
symmetric groups

Say X oo X Sq, &> Sa

to bring sv into vertexr dominant form , that is if sy = (s1,...,Sq) then
sq £ sp whenever p,q € I,, for some i and p < ¢

We compile a list S, of such rational a-tuples by the following algorithm



338

Nilpotent Representations

e Start with the list S, of matrix corner types.

e For every s € S, consider all permutations o € Sq/(Sa; X ... X Sg, ) such that o.s =
(Se(1)s - -+ So(a)) 1s vertex dominant.

e Take H,, to be the list of the distinct a-tuples o.s which are vertex dominant.
e Remove s € H, whenever there is an s’ € Hq such that
e Q={Tpq €ETa Q | S —8p > 1} Cy Q= {mpq Ema Q | s, — 5, > 1}
and | s[> s" ||
e The list S, are the remaining entries s from H,.

For s € S, we define associated data similar to the case of matrices

e The corner Cs is the subspace of rep, @ such that all arrow matrices V3, when viewed as
a X a matrices using the partitioning in vertex-entries, have only non-zero entries at spot (p, q)
when sq — s, > 1.

e The border Bs is the subspace of rep, @ such that all arrow matrices V3, when viewed as
a X a matrices using the partitioning in vertex-entries, have only non-zero entries at spot (p, q)
when sq —sp, = 1.

e The parabolic subgroup Ps(c) is the intersection of Ps C GL, with GL(«) embedded along
the diagonal. Ps(«) is a parabolic subgroup of GL(«), that is, contains the product of the
Borels B(a) = Ba, X ... X Ba,.

e The Levi-subgroup Lg(c) is the intersection of Ly C GL, with GL(c) embedded along the
diagonal.

We say that a representation V' € rep, Q is of corner type Cs whenever V' € Cs.

Theorem 6.6 By permuting the vertez-bases, every representation V € rep, @ can be brought to
a corner type Cs for a uniquely determined s which is a verter-dominant reordering of sv .

Example 6.10 Consider the following quiver setting

x y

e

TN
\\_/

/‘
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Then, the relevant corners have the following block decomposition

M M0 M8 o Mo M.

LD ) 0] )0 ey o0

(1,0,-1) (0,-1,1) a,-1,0 G 5-3 -39 3.-5 -9

d 0Hf md 0 50

BED (0wt ) o

=33 ($,0,-5 0, -3, 5 (3.-%.0 (0,0,0)

[

Again, we solve the problem of optimal corner representations by introducing a new quiver
setting.
Fix a type s € S, @ and let Ji,...,J, be the distinct strings partitioning the entries of s, say
with
Jo=Ap,-- oo+ 1,...,p+ 1, itk o+ R}
———

S biao Sk bin Sh ik,

where b; ;,, is the number of entries p € I,, such that s, = p; + m. To every string [ we will
associate a quiver (),; and dimension vector a,; as follows

e Q. has k.(ki + 1) vertices labeled (v;,m) with 1 <i <k and 0 < m < k;.

e In @, there are as many arrows from vertex (v;, m) to vertex (v;, m+1) as there are arrows in
Q from vertex v; to vertex v;. There are no arrows between (v;,m) and (v;, m') if m’' —m # 1.

e The dimension-component of «,; in vertex (v;, m) is equal to b; im.

Example 6.11 For the above quiver, all component quivers Qs,; are pieces of the quiver below

Clearly, we only need to consider that part of the quiver Q)s; where the dimensions of the vertex
spaces are non-zero.
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The quiver-setting (Qs, as) associated to a type s € So @ will be the disjoint union of the string
quiver-settings (Qs,1, as,) for 1 <1 <.

Theorem 6.7 With notations as before, for s € So @ we have isomorphisms

Bs ~ rep, Qs
Ls(a) =~ GL(as)

Moreover, the base-change action of GL(as) on rep, Qs coincides under the isomorphisms with
the action of the Levi-subgroup Ls(a) on the border Bs.

In order to determine the representations in rep, s which have optimal corner type Cs we
define the following character on the Levi-subgroup

u
_ k k; X0s *
Ls(a) = H Xi=1 Xm:O GLbi,lm —5 C
=1

determined by sending a tuple (gi,im )itm — []
by

my; .
m det g; l:;f’" where the exponents are determined

0s = (Miim)im where m;m = d(pi +m)

with d the least common multiple of the numerators of the rational numbers p; for all 1 <1 < u.

Theorem 6.8 Consider a representation V€ Null, Q of corner type Cs. Then, V is of optimal
corner type Cs if and only if under the natural maps

Cs s Bs =, rep,, Qs

V is mapped to a 0s-semistable representation in rep, Qs. If Us is the open subvariety of Cs
consisting of all representations of optimal corner type Cl, then

Us = a ! repii (Qs,0s)
For the corresponding Hesselink stratum Ss = GL(a).Us we have the commuting diagram

S
S

GL(a) x7)

ac -

GL(a) x7() ¢,
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where ac s the action map, Ss is the Zariski closure of Ss in Null, Q and the upper map is an
isomorphism as GL(a)-varieties.

Here, GL(a)/Ps(x) is the flag variety associated to the parabolic subgroup Ps(a) and is a pro-
jective manifold. The variety GL(a) x7=(*) Cy is a vectorbundle over the flag variety GL(a)/Ps(c)
and is a subbundle of the trivial bundle GL(a) x*(*) rep, Q.

Hence, the Hesselink stratum Ss is an irreducible smooth variety of dimension

dim S. = dim GL(a)/Ps(a) + rk GL(a) x™=(%) ¢,

k
= Z a? — dim Ps(a) + dime Cs
i=1

and there is a natural one-to-one correspondence between the GL(a)-orbits in Ss and the Ps(a)-
orbits in Us.

Moreover, the vectorbundle GL(c) xPs(®) O is a desingularization of S, hence feels’ the gluing
of Ss to the remaining strata. The ordering of corners has the geometric interpretation

75 C U Ss’
[Is"I<1Isl|

wn

Finally, because Ps(a) acts on Bs by the restriction to its subgroup Ls(a) = GL(as) we have a
projection from the orbit space

US/PS J" MOS:(QS?HS)

to the moduli space of 0s-semistable quiver representations.

Example 6.12 Above we have listed the relevant corner-types for the nullcone of the quiver-setting

\:“/
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In the table below we list the data of the three irreducible components of Null, @Q/GL(a) corre-
sponding to the three maximal Hesselink strata :

Cs, Bs L, M3 (Qs, 05)
=& [
o e "
(1,0, -1)
= H L
me [ * P
(0,-1,1)

alnlla

]P;O

[ [] ®

(1,—-1,0)

There are 6 other Hesselink strata consisting of precisely one orbit. Finally, two possible corner-
types do not appear as there are no 6s-semistable representations for the corresponding quiver
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setting
CS,BS Ls (Qs;a5705) M;i(@mes)

1

©

o=

o=
|

wiho

6.5 Simultaneous conjugacy classes

We have come a long way from our bare hands description of the simultaneous conjugacy classes
of couples of 2 x 2 matrices in the first chapter of volume 1. In this section we will summarize
what we have learned so far to approach the hopeless problem of classifying conjugacy classes of m
tuples of n X n matrices.

First, we show how one can reduce the study of representations of a Quillen-smooth algebra
to that of studying nullcones of quiver representations. Let A be an affine C-algebra and M is
a semi-simple n-dimensional module such that the representation variety rep, fn A is smooth in
M, that is £ € Smy, A. Let M, be of representation type 7 = (e1,d1;...; ek, dr), that is,

Me=S%"@a...082%

with distinct simple components S; of dimension d; and occurring in M, with multiplicity e;, then
the GL(a) = Stab Mg-structure on the normal space N¢ to the orbit O(M¢) is isomorphic to that
of the representation space

rep, @°

of a certain marked quiver on k vertices. The slice theorem asserts the existence of a slice S¢ N N¢



344

Nilpotent Representations

and a commuting diagram

GL, XGL(Q) Sg
@0
+Gv 4
o
GL, x5 Ne rep,, /A
Se/GL(a)
ZZ//O
N %,
™ &iay\d ]

N¢/GL(c) issn, / A

in a neighborhood of ¢ € iss,, fn A on the right and a neighborhood of the image 0 of the trivial
representation in N¢/GL(«) on the left. In this diagram, the vertical maps are the quotient maps,
all diagonal maps are étale and the upper ones are GLp-equivariant. In particular, there is a
G Ly-isomorphism between the fibers

2 (0) = 7 ()
Because 75 '(0) ~ GL, xY(®) 771(0) with 7 is the quotient morphism for the marked quiver
representations N¢ = rep,, Q° —» issa Q® = N,/GL(a) we have a G L,-isomorphism
71 (€) = GLn x M 771(0)
That is, there is a natural one-to-one correspondence between

e (G L,-orbits in the fiber 71’1_1(07 that is, isomorphism classes of n-dimensional representations
of A with Jordan-Holder decomposition M, and

e GL(a)-orbits in 7~ 1(0), that is, the nullcone of the marked quiver Null, Q°.
Summarizing we have the following
Theorem 6.9 Let A be an affine Quillen-smooth C-algebra and M¢ a semi-simple n-dimensional
representation of A. Then, the isomorphism classes of n-dimensional representations of A with

Jordan-Holder decomposition isomorphic to M are given by the GL(«)-orbits in the nullcone
Nully, Q° of the local marked quiver setting.
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The problem of classifying simultaneous conjugacy classes of m-tuples of n X n matrices, is
the same as n-dimensional representations of the Quillen-smooth algebra C(z1,...,Zm). To study
semi-simple representations, one considers the quotient map

M, =rep,Clz1,...,Tm) —O iss, C(z1,...,Tm) = iss,’

Fix a point £ € iss] and assume that the corresponding semi-simple n-dimensional representation

Mz is of representation type 7 = (e1,ds;. . .; ek, dk).
We have shown that the coordinate ring Cliss;'] = N is the necklace algebra , that is, is
generated by traces of monomials in the generic n X n matrices X1, ..., X,, of length bounded by

n? + 1. Further, if we collect all Mg with representation type 7 in the subset iss?'(7), then
iss, = U issy (1)
T

is a finite stratification of iss] into locally closed smooth algebraic subvarieties.

We have an ordering on the representation types 7/ < 7 indicating that the stratum iss'(7’) is
contained in the Zariski closure of issy' (7). This order relation is induced by the direct ordering

= (e, dy; . e, di) <Y = (er, du;. . en, di)
if there is a permutation o of [1,2,...,%’] and there are numbers
l=jo<ji<jo...<jr=FK
such that for every 1 < i < k we have the following relations

_ i / /
eid; = Z;:ji,1+1 ()0 ()
e; < 6;(1) for all 5,1 < j < J;

Example 6.13 The order relation on the representation types of dimension n = 4 has the following
Hasse diagram.

\
/

\E/
/

\g/
N
AN

/
\

(=]
(=]
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Because iss;, is irreducible, there is an open stratum corresponding to the simple representa-
tions, that is type (1,n). The sub-generic strata are all of the form

7= (1,m1;1,m2) with mi+mo=n.

The (in)equalities describing the locally closed subvarieties issj(7) can (in principle) be deduced
from the theory of trace identities. Remains to study the local structure of the quotient variety
iss™ near £ and the description of the fibers ! (€).

Both problems can be tackled by studying the local quiver setting (Q¢, ae) corresponding to
& which describes the GL(a¢) = Stab(M¢)-module structure of the normal space to the orbit of
M. If £ is of representation type 7 = (e1,d1;...; ek, di) then the local quiver Q¢ has k-vertices
{v1,...,vx} corresponding the the k distinct simple components Si, ..., Sk of M and the number
of arrows (resp. loops) from v; to v; (resp. in v;) are given by the dimensions

dirmcEactl(Si7 S;) resp. dimeExt! (Si, Si)

and these numbers can be computed from the dimensions of the simple components,

# = (m —1)d;d,

# \@¢ =(m—1)d; +1

Further, the local dimension vector ag is given by the multiplicities (e1,...,ex). The étale local
structure of iss;" in a neighborhood of ¢ is the same as that of the quotient variety issa, Q¢ in a
neighborhood of 0. The local algebra of the latter is generated by traces along oriented cycles in
the quiver Q¢. A direct application is

Proposition 6.2 For m > 2, £ is a smooth point of issy’ if and only if M¢ is a simple represen-

tation, unless (m,n) = (2,2) in which case iss3 ~ C® is a smooth variety.

Proof. 1f £ is of representation type (1,n), the local quiver setting (Qe, c¢) is

4]
()

©)

where d = (m — 1)n® 4 1, whence the local algebra is the formal power series ring in d variables
and so iss;) is smooth in . Because the singularities form a Zariski closed subvariety of iss]’, the
result follows if we prove that all points ¢ lying in sub-generic strata, say of type (1,m1;1,m2) are
singular. In this case the local quiver setting is equal to

MG o0
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where a = (m — 1)mimg and I; = (m — 1)mf + 1. Let us denote the arrows from vi to v2 by
Z1,...,Zq and those from vy to v1 by y1,...,9a. If (m,n) # (2,2) then a > 2, but then we have
traces along cycles

{wiy; | 1<4,j <a}
that is, the polynomial ring of invariants is the polynomial algebra in Iy + lo variables (the traces
of the loops) over the homogeneous coordinate ring of the Segre embedding

2
Pa—l % ]Pa—l c ]Pa -1

which has a singularity at the top (for example we have equations of the form (z1y2)(z2y1) —
(z1y1)(z2y2)). Thus, the local algebra of issj’ cannot be a formal power series ring in £ whence
iss? is singular in £. We have seen in section 1.2 that for the exceptional case iss3 ~ C°. O

To determine the fibers of the quotient map M* —»» iss” we have to study the nullcone of
this local quiver setting, Nullo, Q¢. Observe that the quiver Q¢ has loops in every vertex and
arrows connecting each ordered pair of vertices, whence we do not have to worry about potential
corner-type removals. Denote Y e; = z < n and let C, be the set of all s = (s1,...,s.) € Q* which
are disjoint unions of strings of the form

where I; € N, all intermediate numbers p; + j with 5 < k; do occur as components in s with
multiplicity a;; > 1 and p; satisfies the balance-condition

ki
> ay(pi+4)=0
=0

for every string in s. For fixed s € C. we can distribute the components s; over the vertices
of Q¢ (e; of them to vertex v;) in all possible ways modulo the action of the small Weyl group
Sey X ... S, — S.. That is, we can rearrange the s;’s belonging to a fixed vertex such that they
are in decreasing order. This gives us the list Sa, or Sr of all corner-types in Nulla, Q¢. For each
s € Sa, we then construct the corner-quiver setting

(Qé sy Qg 5705 S)

and study the Hesselink strata Ss which actually do appear, which is equivalent to verifying whether
there are ¢ s-semistable representations in rep,, , Q¢ s We have given a purely combinatorial
way to settle this (in general quite hard) problem of optimal corner-types.

That is, we can determine which Hesselink strata Ss actually occur in 771 (€) ~ Nulls,, Q.
The GL(ag s)-orbits in the stratum S, are in natural one-to-one correspondence with the orbits
under the associated parabolic subgroup Ps acting on the semistable representations

Uy =" repi ,(Qe o0 )
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type | 7 (Qr,ar)

2. | (1,2) O]

2, | (LLLY (0 — ® )=
N\ -/

2. | (2,1) (C;

Figure 6.5: Local quiver settings for 2 x 2 matrices.

and there is a natural projection morphism from the corresponding orbit-space
US/PS ig" Mriz S(Qf 5’95 3)

to the moduli space of ¢ ;-semistable representations. The remaining (hard) problem in the clas-
sification of m-tuples of n X n matrices under simultaneous conjugation is the description of the
fibers of this projection map ps.

Example 6.14 (m-tuples of 2 x 2 matrices) There are three different representation types 7 of
2-dimensional representations of C(z1,...,x,) with corresponding local quiver settings (Q-, a-)
given in figure 6.5 The defining (in)equalities of the strata iss3'(7) are given by k X k minors (with
k < 4 of the symmetric m X m matrix

tr(z929) ... tr(z922)
tr(z%29) ... tr(z5,z2)

where 29 = z; — %tr(ﬂci) is the generic trace zero matrix. These facts follow from the description
of the trace algebras T3" as polynomial algebras over the generic Clifford algebras of rank < 4
(determined by the above symmetric matrix) and the classical matrix decomposition of Clifford
algebras over C. For more details we refer to [53].
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S Bsycs (Qs,amgs) Mgi(Qaes)

-2 OO0 O P
O O
%) Wm0 o P2

0

(0,0) 1] o PY

Figure 6.6: Moduli spaces for type 2.

To study the fibers M3* —» iss3' we need to investigate the different Hesselink strata in the
nullcones of these local quiver settings. Type 2, has just one potential corner type corresponding
to s = (0) € 81 and with corresponding corner-quiver setting

0

®

which obviously has P° (one point) as corresponding moduli (and orbit) space. This corresponds
to the fact that for & € iss5"(1,2), M is simple and hence the fiber 7! (€) consists of the closed
orbit O(M¢).

For type 2, the list of figure 6.6 gives the potential corner-types Cs together with their associated
corner-quiver settings and moduli spaces (note that as Bs = Cs in all cases, these moduli spaces
describe the full fiber) That is, for £ € iss5"(1,1;1,1), the fiber 77 (£) consists of the unique closed
orbit O(Mg) (corresponding to the P°) and two families P™~2 of non-closed orbits. Observe that
in the special case m = 2 we recover the two non-closed orbits found in section 1.2.

Finally, for type 2., the fibers are isomorphic to the nullcones of m-tuples of 2 x 2 matrices. We
have the following list of corner-types, corner-quiver settings and moduli spaces. Again, as Bs = Cjs
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in all cases, these moduli spaces describe the full fiber.

S BS7CS (Q37a5703) M;i(Qmos)
—1 1

(t,-1 pmt
0

(0,0) ® PP

whence the fiber 77 (€) consists of the closed orbit, together wit a P™ !-family of non-closed orbits.
Again, in the special case m = 2, we recover the P!-family found in section 1.2.

Example 6.15 (m-tuples of 3 x 3 matrices) There are 5 different representation-types for 3-
dimensional representations. Their associated local quiver settings are given in figure 6.7 For each
of these types we can perform an analysis of the nullcones as before. We leave the details to the
interested reader and mention only the end-result

e For type 3, the fiber is one closed orbit.

e For type 3; the fiber consists of the closed orbit together with two P2™~3-families of non-closed
orbits.

e For type 3. the fiber consists of the closed orbit together with twelve P™~2 x P™~2_families
and one P ~2-family of non-closed orbits.

e For type 34 the fiber consists of the closed orbit together with four P! x P™~2families, one
P2 x P2 family, two P™ 2-families, one P~ '-family and two M-families of non-closed
orbits determined by moduli spaces of quivers, where M is the moduli space of the following
quiver setting

o[-0

together with some additional orbits coming from the projection maps ps.

e For type 3. we have to study the nullcone of m-tuples of 3 X 3 matrices, which can be done
as in the case of couples but for m > 3 the two extra strata do occur.

We see that in this case the only representation-types where the fiber is not fully determined by
moduli spaces of quivers are 34 and 3..
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type T

3a (1,3)

3p (172a171)

3¢ | (1,1;1,1;1,1)

3¢ | (2,1;1,1)

TR

3e (3,1) \@

~

Figure 6.7: Local quiver settings for 3 x 3 matrices.
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6.6 Representation fibers

Let A be a Cayley-Hamilton algebra of degree n and consider the algebraic quotient map

trep, A T triss, A

from the variety of n-dimensional trace preserving representations to the variety classifying iso-
morphism classes of trace preserving n-dimensional semi-simple representations. Assume £ €
Smi A — triss, A. That is, the representation variety trep,, A is smooth along the G L,-orbit
of M¢ where M is the semi-simple representation determined by £ € triss, A. We have seen that
the local structure of A and trep, A near £ is fully determined by a local marked quiver setting
(Q¢, ). That is, we have a G Ly-isomorphism between the fiber of the quotient map, that is, the
n-dimensional trace preserving representation degenerating to M¢

7€) = GLy x99 Nulla, Qe

and the nullcone of the marked quiver-setting. In this section we will apply the results on nullcones
to the study of these representation fibers 7~ (¢).

Observe that all the facts on nullcones of quivers extend verbatim to marked quivers Q°® using
the underlying quiver @) with the proviso that we drop all loops in vertices with vertex-dimension
1 which get a marking in Q°®. This is clear as nilpotent quiver representations obviously have zero
trace along each oriented cycle, in particular in each loop.

The examples given before illustrate that a complete description of the nullcone is rather cumber-
some. For this reason we restrict here to the determination of the number of irreducible components
and their dimensions in the representation fibers. Modulo the GL,-isomorphism above this study
amounts to describing the irreducible components of Nulla, Q¢ which are determined by the maxi-
mal corner-types Cs, that is such that the set of weights in Cs is maximal among subsets of 7., Q¢
(and hence || s || is maximal among Sa, Q¢)-

To illustrate our strategy, consider the case of curve orders. In section 5.4 we proved that if
A is a Cayley-Hamilton order of degree n over an affine curve X = triss, A and if £ € Sm,, A,
then the local quiver setting (@, ) is determined by an oriented cycle @ on k vertices with k < n
being the number of distinct simple components of Mg, the dimension vector a = (1,...,1) as in
figure 6.8 and an unordered partition p = (di, ..., dx) having precisely k parts such that ). d; = n,
determining the dimensions of the simple components of M. Fixing a cyclic ordering of the k-
vertices {v1, ..., vr} we have that the set of weights of the maximal torus T, = C*X...xC* = GL(«)
occurring in rep, @ is the set

To Q = {Tk1, T12, 723, -+ -, Th—1k }
k=1 _ k(k—1 . .
Denote K =3 7" i = % and consider the one string vector

K K K K K
S—(,k_2—?,k—1—?,_z, _?,2—?,)

i
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7'4
O—C)

Figure 6.8: Local quiver settings for curve orders.

then s is balanced and vertex-dominant, s € S, @ and ws @ = II. To check whether the corre-
sponding Hesselink strata in Null, ) is nonempty we have to consider the associated quiver-setting
(Qs, as,0s) which is

K Ktk K + 2k K+ k2 — 2k —K+4+ k2 -k
v vit1 vit2 vi—2 vi—1

It is well known and easy to verify that rep, @ has an open orbit with representative all ar-
rows equal to 1. For this representation all proper subrepresentations have dimension vector
8 =(0,...,0,1,...,1) and hence 0,(8) > 0. That is, the representation is f,-stable and hence
the corresponding Hesselink stratum Ss # 0. Finally, because the dimension of rep, @sisk—1

we have that the dimension of this component in the representation fiber 7'('71(1') is equal to
dim GLn — dim GL(o) +dim rep, Q.=n"—k+k—1=n’—1
which completes the proof of the following
Theorem 6.10 Let A be a Cayley-Hamilton order of degree n over an affine curve X such that A
is smooth in & € X. Then, the representation fiber 7r71(§) has exactly k irreducible components of

dimension n® — 1, each the closure of one orbit. In particular, if A is Cayley-smooth over X, then
the quotient map

trep, A —» triss, A= X

is flat, that is, all fibers have the same dimension n* — 1.
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e ‘ [ 1]

k+1

QOO
k-1 k

Figure 6.9: Local quiver settings for surface orders.

For Cayley-Hamilton orders over surfaces, the situation is slightly more complicated. From
section 5.4 we recall that if A is a Cayley-Hamilton order of degree n over an affine surface S =
triss, A and if A is smooth in £ € X, then the local structure of A is determined by a quiver
setting (Q,a) where a = (1,...,1) and @ is a two-circuit quiver on k + [ + m < n vertices,
corresponding to the distinct simple components of M, as in figure 6.9 and an unordered partition
p=(di,...,drti+m) of n with k+1+m non-zero parts determined by the dimensions of the simple
components of M¢. With the indicated ordering of the vertices we have that

1 <i1<k-1
WQQZ{Wii+1| kE+1 Si§k+l*1 }
k+l+1 <i<k+l+m-—1

U LTk ki1, Thtl ki41, Thtitm 1y Thitm k+1}

As the weights of a corner cannot contain all weights of an oriented cycle in ) we have to consider
the following two types of potential corner-weights I of maximal cardinality

e (outer type) : Il = 7o Q — {ma, s} where a is an edge in the interval [vi,...,vx] and b is an
edge in the interval [vg41, ..., Vkti]-

e (inner type) : Il = mo @ — {7} where c is an edge in the interval [Vk+i41, Vk+itm]-
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2 1 2 1

foRo [oo

k+1 - k41

B oNe

sz £
k+1+ o @ - k+1+

k+1 . k+1
0O -0

k-1 k QSl k-1 k QSl
Figure 6.10: Border quiver settings.

There are 2 4+ (k — 1)(I — 1) different subsets II of outer type, each occurring as the set of weights
of a corner (s, that is Il = 75 @ for some s € S . The two exceptional cases correspond to

IIi =7a Q — {Tktidtm 1, Thti kt+i+1}

Iy =ma Q@ — {Mhti4m kt1, Tk ktis1}
which are of the form 7, @ with associated border quiver-setting (Qs,,as,,0s,) where a,, =
(1,...,1), Qs, are the full line subquivers of @ given in figure 6.10 with starting point v1 (resp.
vk+1). The corresponding s; € S, @ is a single string with minimal entry

_Zf:éer_li__k:—&—l—&—m—l at place !
k+i+m 2 P k+1

and going with increments equal to one along the unique path. Again, one verifies that rep, Qs
has a unique open and 6s-stable orbit, whence these Hesselink strata do occur and the border B
is the full corner Cs. The correspondmg irreducible component in 77! (¢) has therefore dimension
equal to n® — 1 and is the closure of a unique orbit. The remaining (k — 1)(I — 1) subsets II of outer
type are of the form

i = Ta Q — {7 i+1,Tj j+1}
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withl<i<k—landk+1<j<k+!—1. We will see in a moment that they are again of type
ws @ for some s € S, @ with associated border quiver-setting (Qs, as,0s) where as = (1,...,1)
and Qs is the full subquiver of Q

If we denote with A; the directed line quiver on [ + 1 vertices, then Qs can be decomposes into full
line subquivers

but then we consider the one string s € S, @ with minimal entry equal to where with

=z
k+l+m
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notations as above

c

a b
z=>i+2Y (a+i)+» (a+b+i)

i=1

d e
+2> (a+btc+i)+ > (a+b+c+d+i)

i=1 i=1

where the components of s are given to the relevant vertex-indices. Again, there is a unique open
orbit in rep,, Qs which is a fs-stable representation and the border Bs coincides with the corner

Cs. That is, the corresponding Hesselink stratum occurs and the irreducible component of 7~ (&)
it determines had dimension equal to

dim G Ly, — dim GL(«) + dim rep,, Qs=n"—(k+1l+m)+ (k+1+m—1)

=n’—1

There are m — 1 different subsets II,, of inner type, where for k +1+ 1 < u < k + 1+ m we define
I, = 7o Q — {7u u+1}, that is dropping an edge in the middle
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First assume that k = [. In this case we can walk through the quiver (with notations as before)

CAG C( ;C Ac:

Ay

and hence the full subquiver of @ is part of a corner quiver-setting (Qs, as,0s) where a = (1,...,1)

and where s has as its minimal entry — 77—~ where

a b c
z=Yi+2) (a+i)+ Y (a+b+i)
=1 =1 i=1

In this case we see that rep, s has 0s-stable representations, in fact, there is a P!-family of such

orbits. The corresponding Hesselink stratum is nonempty and the irreducible component of = *(€)
determined by it has dimension

dim GLy — dim GL(«) + dim rep,, Qs =n’—(k+l+m)+(k+1+m)=n°
If I < k, then I, = w5 Q for some s € So Q but this time the border quiver-setting (Qs, s, 0s)
is determined by as = (1,...,1) and Qs the full subquiver of @ by also dropping the arrow

corresponding to mg+i41 k+1, that is

Vk+1

Ay

Vu+1 A Vk4+1+m
a

If Qs is this quiver (without the dashed arrow) then B, = rep, (s and it contains an open orbit
of a 0s-stable representation. Observe that s is determines as the one string vector with minimal

entry —m where

a b c d
z=Yi+2) (a+i)+» (a+b+i)+ Y (a+b+c+i)
i=1 =1 i=1

=1
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However, in this case Bs # Cs and we can identify Cs with rep,,_ Q% where Q) is Qs together with

the dashed arrow. There is an A'-family of orbits in C; mapping to the fs-stable representation.
In particular, the Hesselink stratum exists and the corresponding irreducible component in 7r71(§)
has dimension equal to

dim GL, — dim GL(a) + dim Cs =n® — (k+1+m) + (k+1+m) =n’.
This concludes the proof of the description of the representation fibers of smooth orders over
surfaces, summarized in the following result.

Theorem 6.11 Let A be a Cayley-Hamilton order of degree n over an affine surface X = triss, A
and assume that A is smooth in € € X of local type (Axim, ). Then, the representation fiber 7= (€)
has exactly 2 + (k — 1)(I — 1) + (m — 1) drreducible components of which 2 + (k — 1)(I — 1) are of
dimension n? — 1 and are closure of one orbit and the remaining m — 1 have dimension n? and
are closures of a one-dimensional family of orbits. In particular, if A is Cayley-smooth, then the
algebraic quotient map

trep, A s triss, A=X
s flat if and only if all local quiver settings of A have quiver Agim with m = 1.
The final example will determine the fibers over smooth points in the quotient varieties (or

moduli spaces) provided the local quiver is symmetric. This computation is due to Geert Van de
Weyer.

Example 6.16 (Smooth symmetric settings) Recall from theorem 5.22 that a smooth sym-

metric quiver setting (sss) if and only if it is a tree constructed as a connected sum of three different
types of quivers:

JossC
° @@@, with m <n

« O WO
« @200

where the connected sum is taken in the vertex with dimension 1. We call the vertices where the
connected sum is taken connecting vertices and depict them by a square vertex [J. We want to
study the nullcone of connected sums composed of more than one of these quivers so we will focus
on instances of these four quivers having at least one vertex with dimension 1:
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I (@@, with m <n

n O @O
e 0 @ ~0

We will call the quiver settings of type I and II forming an sss (Q, «) the terms of Q.

claim 1: Let (Q,«) be an sss and Q. a type quiver for Q, then any string quiver of Q. is either
a connected sum of string quivers of type quivers for terms of QQ or a string quiver of type quivers

! ogo!
®.

Consider a string quiver @, ;) of Q.. By definition vertices in a type quiver are only connected
if they originate from the same term in . This means we may divide the string quiver @,
into segments, each segment either a string quiver of a type quiver of a term of @ (if it contains
the connecting vertex) or a level quiver of a type quiver of the quivers listed above (if it does not
contain the connecting vertex).

The only vertices these segments may have in common are instances of the connecting vertices.
Now note that there is only one instance of each connecting vertex in @, because the dimension of
each connecting vertex is 1. Moreover, two segments cannot have more than one connecting vertex
in common as this would mean that in the original quiver there is a cycle, proving the claim.

Hence, constructing a type quiver for an sss boils down to patching together string quivers of
its terms. These string quivers are subquivers of the following two quivers:

I:

1II:

Observe that the second quiver has two components. So a string quiver will either be a tree
(possible from all components) or a quiver containing a square. We will distinguish two different

types of squares; Sy corresponding to a term of type II(1) and S> corresponding to a term of type
I1(2).
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S
bl

These squares are the only polygons that can appear in our type quiver. Indeed, consider a possible

polygon
Vp ,
Vj <
Vg )
N
Ur

This polygon corresponds to the following subquiver of Q:

Vi <> Up
Z AN
vy Ur
AN V4

Vg <> Uq

But @ is a tree, so this is only a subquiver if it collapses to Vi =<—= Vj <——= Vi .

claim 2 : Let (Q,a) be an sss and Q. a type quiver containing (connected) squares. If Qp
determines a non-empty Hesselink stratum then

(i) the 0-azis in Q. lies between the azes containing the outer vertices of the squares of type Si;

(i) squares of type S1 are connected through paths of maximum length 2;
(i4i) squares of type S1 that are connected through a path of length 2 are connected to other quivers
in top and bottom vertex (and hence originate from type II(1) terms that are connected to

other terms in both their connecting vertices);

() the string (i) containing squares of type S1 connected through a path of length two equals
e —2,-1,0,1,2,...).
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(v) for a square of type Sa:

7

P

SN AN

with p vertices on its left branch and q vertices on its right branch we have

N[

<pi <

N3

Let us call the string quiver of @, containing the squares @,,;) and let & € u(i)No be the character
determining this string quiver. Consider the subrepresentation

0; 0Oiz1 Oiy2

<

This subrepresentation has character () — ;) (v)0: > 0 where v is the vertex which dimension
we reduced to 0, so §; < 0. But then the subrepresentation

0; 0Oiy1 Oigo

o

O)

o

gives 0;42 > 0, whence (7). Note that the left vertex of one square can never lie on an axis right
of the right vertex of another square. At most it can lie on the same axis as the right vertex, in
which case this axis is the 0-axis and the squares are connected by a path of length 2. In order to
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prove (iii) look at the subrepresentation

This subrepresentation has negative character and hence the original representation was not
semistable. Finally, for (v) we look at the subrepresentation obtained by reducing the dimension
of all dotted vertices by 1:

i

m
having character —((p + 1)ui — 3>°%_, j) > 0. So p; < §. Mirroring this argument yields the other
inequality p; > —%.
claim 3 : Let (Q,a) be an sss and Q, be a type quiver determining a non-empty stratum and

let Quy be a string quiver determined by a segment p(i) not containing 0. Then the only possible
dimension vectors for squares of type S1 in Q) are those of figure 6.11.

Top and bottom vertex of the square are constructed from the connecting vertices so can only be
one-dimensional. Left and right vertex of the square are constructed from a vertex of dimension n.
Claim 2 asserts that the leftmost vertex lies on a negative axis while the rightmost vertex lies on a
positive axis. If the left dimension is > 2 then the representation splits

e
0

o
Ve ©
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1

(65] = 1 1
1
1

a2 = 1 2
1
1

a3 = 2 2
1

Figure 6.11: Possible dimension vectors for squares.

with » = m — 2. By semistability the character of V2 must be zero. A similar argument applies to
the right vertex.

claim 4 : Let u be a type determining a non-empty stratum.
(i) When a vertex (v,1) in Qu determined by a term of type II(1) has a(v,i) > 2 then p; = 0.
(i) When a vertex (v,i) in Qu determined by a term of type I with m arrows has a(v,i) > m

then p; = 0.

Suppose we have a vertex v with dimension ay,(;)(v) > 2, then the number of paths running through
this vertex is at most 2: would there be at least three paths arriving or departing in the vertex, it
would be a connecting vertex which is not possible because of its dimension. Are there two paths
arriving and at least one path departing, it must be a central vertex of a type II(2) term. But
then the only possible subtrees generated from type II(1) terms with vertices of dimension at least
three are (modulo reversing all arrows)

91' 91‘ 91’

S

In the last tree there are no other arrows from the vertex with dimension n. For each of these trees
we have a subrepresentation

0i
®
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whence 6; > 0. But if §; > 0, reducing the dimension of the vertex with dimension > 3 gives a
subrepresentation with negative character, so #; = 0. The second part is proved similarly.

Summarizing these results we obtain the description of the nullcone of a smooth symmetric quiver-
setting.

Let (Q,a) be an sss and p a type determining a non-empty stratum in nully, Q. Let Q. be the
corresponding type quiver and o the corresponding dimension vector, then

(i) every connected component Q,;y of Qu is a connected sum of string quivers of either terms
of Q or quivers generated from terms of Q by removing the connecting vertex. The connected
sum is taken in the instances of the connecting vertices and results in a connected sum of trees
and quivers of the form

(i)

AL

2\0*” \O/ O 7

() For a square of type S1 we have u(i)j—1 < 0 < p(i);4+1. Moreover, such squares cannot be
connected by paths longer than two arrows and can only be connected by paths of this length

if p(i)j+1 = 0.
(#ii) For vertices (v, j) constructed from type II(1) terms we have ay, (v, j) < 2 when p; # 0.

(iv) For a vertex (v,j) constructed from a type I term with m arrows we have oy, (v,j) < m when
pi # 0.

6.7 Brauer-Severi varieties

In this section we will reconsider the Brauer-Severi scheme BSy,(A) of an algebra A. In the generic
case, that is when A is the free algebra C(z1,...,zm), we will show that it is a moduli space of a
certain quiver situation. This then allows us to give the étale local description of BS, (A) whenever
A is a Cayley-smooth algebra. Again, this local description will be a moduli space.

The generic Brauer-Severi scheme of degree n for m-generators, BS;'(gen) is defined as fol-
lows. Consider the free algebra on m generators C(z1,...,2Zm) and consider the GLy-action on
rep, C(z1,...,2m) x C* = M, & C" given by

g (A1, ..., Ap,v) = (gAlg_l, .. ,gAmg_l,gv)

and consider the open subset Brauer®(gen) consisting of those points (Ai, ..., Am,v) where v is
a cyclic vector, that is, there is no proper subspace of C™ containing v and invariant under left
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multiplication by the matrices A;. The GL,-stabilizer is trivial in every point of Brauer®(gen)
whence we can define the orbit space

BS,"(gen) = Brauer®(gen)/GLy,
Consider the following quiver situation

m

&

© ®

on two vertices {vi,v2} such that there are m loops in vz and consider the dimension vector
a = (1,n). Then, clearly

rep, @ =C" & M;" ~rep, C{z1,...,2m) & C"

where the isomorphism is as GLn-module. On rep, @ we consider the action of the larger group
GL(a) = C* x GL,, acting as

(A 9)-(v, A1, ..., Ap) = (goA~ " gA1g™ .. gAmg ™)

Consider the character g where § = (—n,1), then 6(a) = 0 and consider the open subset of
f-semistable representations in rep, Q.

Lemma 6.3 The following are equivalent for V = (v, A1,..., Am) € rep, Q
1. 'V is 0-semistable.
2. V is 0-stable.
3. V € Brauer?®(gen).

Consequently,
M (Q, ) = BSy' (gen)

Proof. 1.= 2.: If V is f-semistable it must contain a largest 6-stable subrepresentation W (the
first term in the Jordan-Holder filtration for 6-semistables). In particular, if the dimension vector
of Wis 8 = (a,b) < (1,n), then 6(8) = 0 which is impossible unless 8 = a whence W = V is
f-stable.

2. = 3. : Observe that v # 0, for otherwise V' would contain a subrepresentation of dimension
vector 8 = (1,0) but 6(3) = —n is impossible. Assume that v is non-cyclic and let U < C" be
a proper subspace say of dimension [ < n containing v and stable under left multiplication by the
A;, then V has a subrepresentation of dimension vector 8’ = (1,1) and again 8(8') =1 —n < 0 is
impossible.
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3. = 1. : By cyclicity of v, the only proper subrepresentations of V' have dimension vector
B = (0,1) for some 0 < [ < n, but they satisfy () > 0, whence V is 6-(semi)stable.

As for the last statement, recall that geometric points of M3°(Q, ) classify isomorphism classes
of direct sums of O-stable representations. As there are no proper f-stable subrepresentations,
M3 (Q, o) classifies the GL(a)-orbits in Brauer®(gen). Finally, as in chapter 1, there is a one-to-
one orbits between the G L,-orbits as described in the definition of the Brauer-Severi variety and
the GL(a)-orbits on rep, Q. O

By definition, M3°(Q,0) = proj @®n~ Clrep, Q]GL(C“)’XHQ and we can either use the results of
section 3 or the previous section to show that these semi-invariants f are generated by brackets,
that is,

f(V) =det [wl(Al, o An)v oo wa(Ay, .. Am)v]
where the w; are words in the noncommuting variables x1, ..., Zm. As in section 1.3 we can restrict
these n-tuples of words {w1,...,w,} to sequences arising from multicolored Hilbert n-stairs. That

is, the lower triangular part of a square n X n array

this time filled with colored stones (i) where 1 < i < m subject to the two coloring rules
e each row contains exactly one stone
e each column contains at most one stone of each color

The relevant sequences W(o) = {1,ws,...,wn} of words are then constructed by placing the
identity element 1 at the top of the stair, and descend according to the rule



368 Nilpotent Representations

e Every go-stone has a top word T' which we may assume we have constructed before and a side
word S and they are related as indicated below

1 1

= =

In a similar way to the argument in chapter 1 we can cover M3°(Q,a) = BS;'(gen) by open
sets determined by Hilbert stairs and find representatives of the orbits in o-standard form, that is
replacing every i-colored stone in ¢ by a 1 at the same spot in A; and fill the remaining spots in
the same column of A; by zeroes

» . Ap = 0

As this fixes (n — 1)n entries of the mn? + n entries of V, one recovers the following result of M.
Van den Bergh [81]

Theorem 6.12 The generic Brauer-Severi variety BS;(gen) of degree n in m generators is a
smooth variety which can be covered by affine open subsets each isomorphic to C(m=Dn?+n
For an arbitrary affine C-algebra A, one defines the Brauer stable points to be the open subset
of rep, AxC"
Brauer;,(A) = {(¢,v) € rep,, AxC" | ¢p(A)v=C"}
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As Brauer stable points have trivial stabilizer in GL,, all orbits are closed and we can define the
Brauer-Severi variety of A of degree n to be the orbit space

BS,.(A) = Brauer, (A)/GLy,

We claim that Quillen-smooth algebras have smooth Brauer-Severi varieties. Indeed, as the quotient
morphism
Brauer;,(A) — BS,(A)

is a principal GL,-fibration, the base is smooth whenever the total space is smooth. The total
space is an open subvariety of rep,, A x C™ which is smooth whenever A is Quillen-smooth.

Proposition 6.3 If A is Quillen-smooth, then for every n we have that the Brauer-Severi variety
of A at degree n is smooth.

Next, we bring in the approximation at level n. Observe that for every affine C-algebra A we
have a GL,-equivariant isomorphism

rep, A ~ trep, /A
n
More generally, we can define for every Cayley-Hamilton algebra A of degree n the trace preserving
Brauer-Severi variety to be the orbit space of the Brauer stable points in trep, A x C". We denote
this variety with BSY"(A). Again, the same argument applies

Proposition 6.4 If A is Cayley-smooth of degree n , then the trace preserving Brauer-Severi va-
riety BSL (A) is smooth.

We have seen that the moduli spaces are projective fiber bundles over the variety determined
by the invariants,
M3 (Q,0) — issq Q

Similarly, the (trace preserving) Brauer-Severi variety is a projective fiber bundle over the quotient
variety of rep, A, that is, there is a proper map

BS,(A) —5» iss, A

and we would like to study the fibers of this map. Recall that when A is an order in a central simple
algebra of degree n, then the general fiber will be isomorphic to the projective space P" ' embedded
in a higher dimensional PV . Over non-Azumaya points we expect this P*~! to degenerate to more
complex projective varieties which we would like to describe. To perform this study we need to
control the étale local structure of the fiber bundle 7 in a neighborhood of £ € iss,, A. Again, it is
helpful to consider first the generic case, that is when A = C(z1,...,xm) or T;?. In this case, we
have seen that the following two fiber bundles are isomorphic

BS)'(gen) — iss, Ty and M3*(Q,0) — issa Q
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where o = (1,n), 6 = (—n, 1) and the quiver

m

A
® ® as Euler form  xq = o | _,.

A semi-simple a-dimensional representation V¢ of ) has representation type

(1,0) ® (0,d1)** @ ... ® (0,d)**  with Y dies=n

and hence corresponds uniquely to a point & € iss, T,' of representation type 7
(e1,d1;...;er,di). The étale local structure of rep, @ and of iss, @ near ¢ is determined by
the local quiver Q. on k+ 1-vertices, say {vo,v1,...,vr} with dimension vector a¢ = (1,e1,...,ex)
and where Q¢ has the following local form for every triple (vg,v;,v;) as can be verified from the
Euler-form

0

O

where a;; = (m — 1)did; = aj; and a; = (m — 1)d; + 1, a; = (m — 1)d; + 1. The dashed part of Q¢
is the same as the local quiver Q¢ describing the étale local structure of iss, Tj near {. Hence,
we see that the fibration BS)'(gen) — iss, T,' is étale isomorphic in a neighborhood of ¢ to
the fibration of the moduli space

M;Z (QC70C) - iSSaC Q¢ =~ issag Q¢

in a neighborhood of the trivial representation and where 6, = (—n, d1, ..., dx). Another application
of the Luna slice results gives the following
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Theorem 6.13 Let A be a Cayley-smooth algebra of degree n. Let £ € triss, A correspond to the
trace preserving n-dimensional semi-simple representation

Me=S%1o... 087
where the S; are distinct simple representations of dimension d; and occurring with multiplicity e;.
Then, the projective fibration

BSY(A) —S»» triss, A

is étale isomorphic in a neighborhood of £ to the fibration of the moduli space
M3 (Q2,0¢) — issa, Q =~ issa, Qf

in a neighborhood of the trivial representation. Here, Qf is the local marked quiver describing the
étale local structure of trep, A near £, where Q¢ is the extended marked quiver situation, which
locally for every triple (vo, v, v;) has the following shape where the dashed region is the local marked
quiver Q¢ describing Ext (Mg, M¢) and where ac = (1,e1,...,ex) and 0 = (—n,d1, ..., dx).

6.8 Brauer-Severi fibers

In the foregoing section we have given a description of the generic Brauer-Severi variety BS; (gen)
as a moduli space of quiver representation as well as a local description of the fibration

BS,"(gen) s iss,’
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in an étale neighborhood of a point £ € iss)' of representation type 7 = (e1,ds;...;ex,dr). We
proved that it is étale locally isomorphic to the fibration

M;Z (QC,GQ) - issag QC

in a neighborhood of the trivial representation. That is, we can obtain the generic Brauer-Severi
fiber ¢! (&) from the description of the nullcone Nulla, Q¢ provided we can keep track of 0c-
semistable representations. Let us briefly recall the description of the quiver-setting (Q¢, ac, 0¢).

e The quiver Q¢ has k + 1 vertices {vo, Vi, ,vk} such that there are d; arrows from vg to v;
for 1 <i < k. For 1 <i,j <k there are a;; = (m —1)d;d; + d;; directed arrows from v; to v;.

e The dimension vector a¢ = (1,e1,...,ex).
e The character 0 is determined by the integral k + 1-tuple (—n,d1, ..., dk).

That is, for any triple (vo,vi,v;) of vertices, the full subquiver of Q¢ on these three vertices has
the following form

Let £ = Zle e; and T the usual (diagonal) maximal torus of dimension 14+ F in GL(a¢) < GLE
and let {mo,m1,..., 7} be the obvious basis for the weights of T'.. As there are loops in every v; for
¢ > 1 and there are arrows from v; to v; for all 4,7 > 1 we see that the set of weights of rep,, Q¢ is

Tae Q¢ ={mj=mj—m | 0<i<E,1<j<E}

The maximal sets s Q¢ for s € Sa, Q¢ are of the form

T Qe Ly ={my; | i=0o0ro(i) <o()}
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for some fixed permutation o € Sg of the last E entries. To begin, there can be no larger subset
as this would imply that for some 1 < ¢,j < E both m;; and 7;; would belong to it which cannot
be the case for a subset 7y Q¢. Next, 7o = ms Q¢ where

s=(p,p+o(l),p+0(2),...,p+0(E)) where p=-%

If we now make s vertex-dominant, or equivalently if we only take a o in the factor Sg/(Se, X
Sey X ... %X Se.), then s belongs to Sa; Q¢. For example, if £ = 3 and 0 = id € S3, then the
corresponding border and corner regions for 7, are

I e e

Cs = ‘ and Bg = ‘

We have to show that the corresponding Hesselink stratum is non-empty in Nulla, Q¢ and that
it contains f¢-semistable representations. For s corresponding to a fixed o € Sk the border quiver-
setting (Qs, as, 05) is equal to

—E 42 —E +4 E -2 E

ézzoﬁ@:zlﬁ@:zzzs S FII ¢y SN ey

where the number of arrows z; are determined by

20 =py ifo(l) € I,
Zi = Quo if 0(4) € I, and o(i + 1) € T,

where we recall that I, is the interval of entries in [1,..., E] belonging to vertex v;. As all the
z; > 1 it follows that rep,,, Qs contains 0,-stable representations, so the stratum in NullaC Q¢
determined by the corner-type Cs is non-empty. We can depict the Ls = T-action on the corner as
a representation space of the extended quiver-setting

V1E

V02

20 21*)®; :zE:>®

Translating representations of this extended quiver back to the original quiver-setting (Q¢, cc) we
see that the corner C; indeed contains 6c-semistable representations and hence that this stratum
in the nullcone determines an irreducible component in the Brauer-Severi fiber ¢(&) of the generic
Brauer-Severi variety.




374

Nilpotent Representations

Theorem 6.14 Let € € iss)' be of representation type 7 = (e1,du;. .. ;ex,dk) and let E = Ele e;.
Then, the fiber 71 (&) of the Brauer-Severi fibration

Brauer?®(gen)

BS;(gen) — iss;

has exactly B! o irreducible components, all of dimension

erlea!...
ei(ei — 1)
n+(m—1)26iejdidj+(m—1)2#—26i
i<j i i

Proof. In view of the foregoing remarks we only have to compute the dimension of the irreducible
components. For a corner type Cs as above we have that the corresponding irreducible component
in NullQC Q¢ has dimension

dim GL(a¢) — dim Ps + dim C
and from the foregoing description of Cs as a quiver-representation space we see that
o dim P, =1+ <t
o dimCs=n+3, W((m —1d?+1) + Yic;(m — L)esejdid;.

as we can identify Ps >~ C* X Be; X ... X Be, where B, is the Borel subgroup of GL.. Moreover,
as 11 (€) is a Zariski open subset of

(C* x GLy) x ") Nullo, Q¢
we see that the corresponding irreducible component of ¢ ~*(¢) has dimension
1+ dim GL, — dim Ps + dim C,

As the quotient morphism ™ (¢£) —= 771(€) is surjective, we have that the Brauer-Severi fiber
77 1(¢) has the same number of irreducible components of 9 ~*(£). As the quotient

DTHE) — 7w (E)

is by Brauer-stability of all point a principal PGL(1, n)-fibration, substituting the obtained dimen-
sions finishes the proof. O
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In particular, we deduce that the Brauer-Severi fibration BST (gen) —» iss” is a flat morphism
if and only if (m,n) = (2,2) in which case all Brauer-Severi fibers have dimension one.

As a final application, let us compute the Brauer-Severi fibers in a point £ € X = triss, A of the
smooth locus Sm., A of a Cayley-Hamilton order of degree n which is of local quiver type (Q, «)
where o = (1,...,1) and Q is the quiver

where the cycle has k vertices and p = (p1,...,px) is an unordered partition of n having exactly k
parts. That is, A is a local Cayley-smooth order over a surface of type Ax_101. These are the only
types that can occur for smooth surface orders which are maximal orders and have a non-singular
ramification divisor. Observe also that in the description of nullcones, the extra loop will play
no role, so the discussion below also gives the Brauer-Severi fibers of smooth curve orders. The
Brauer-Severi fibration is étale locally isomorphic to the fibration

5Q,0) — Do iss, Q = issy Q'
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in a neighborhood of the trivial representation. Here, Q' is the extended quiver by one vertex vo

the extended dimension vector is @’ = (1,1,...,1) and the character is determined by the integral
k + 1-tuple (—n, p1,p2,--.,pxr). The weights of the maximal torus T = GL(c') of dimension k + 1
that occur in representations in the nullcone are

Tor Q = {mo i, mi is1,1 <i < k}
Therefore, maximal corners C; are associated to s € S, Q" where
ms Q ={m0 ;,1 <j < k}U{miit1, Tit1 it2,-- -, Mi2 i1}

for some fixed i. For such a subset the corresponding s is a one string k + 1-tuple having as minimal
value fg at entry 0, fg + 1 at entry 1, fg + 2 at entry ¢+ 1 and so on. To verify that this corner-

type occurs in Null, Q" we have to consider the corresponding border quiver-setting (Q%, o, 0%)
which is

—k —k+2 —k+4 k—2 k

which clearly has @.-semistable representations, in fact, the corresponding moduli space
My (Q,,0,) ~ PP1~1. In this case we have that Ly = P; = GL(c,) and therefore we can also
interpret the corner as an open subset of the representation space

CS > repa{g Q”S
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where the embedding is Ps = GL(a})-equivariant and the extended quiver Q" is

Translating corner representations back to rep,, Q' we see that Cs contains ¢’-semistable repre-
sentations, so will determine an irreducible component in the Brauer-Severi fiber 7r71(§). Let us
calculate its dimension. The irreducible component N, of Null,, Q' determined by the corner Cs
has dimension

dim GL(a') — dim P +dim Cs = (k+1) — (k+1)+ > pi+ (k—1)

=n+k—-1

But then, the corresponding component in the Brauer-stable is an open subvariety of (C* X
GL,) xGL@) N and therefore has dimension

dim C* x GL, —dim GL(a') +dim Ny =1+4+n> — (k+1)4+n+k—1
:n2+n—1

But then, as the stabilizer subgroup of all Brauer-stable points is one dimensional in C* x GL,, the
corresponding irreducible component in the Brauer-Severi fiber 7 *(¢) has dimension n — 1. This
completes the proof of the

Theorem 6.15 Let A be a Cayley-Hamilton order of degree n over a surface X = triss, A and
let A be Cayley-smooth in & € X of type Ax—101 and p as before. Then,the fiber of the Brauer-Severi
fibration

BSL(A) — X

in &€ has exactly k irreducible components, each of dimension n— 1. In particular, if A is a Cayley-
smooth order over the surface X such that all local types are (Ak—_101.p) for some k > 1 and partition
p of n in having k-parts, then the Brauer-Severi fibration is a flat morphism.

In fact, one can give a nice geometric interpretation to the different components. Consider the
component corresponding to the corner Cs with notations as before. Consider the sequence of k— 1
rational maps

]P:nfl ]P)nflfpi—l ]P)nflfm—lfpi—2 L Ippq‘,*l
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defined by killing the right hand coordinates

[1:.txp] =@t Tpep, 100> L T i@, 202 0

Pi—1 n—p;

that is in the extended corner-quiver setting

N\

i1
/ ""/\
we subsequently set all entries of the arrows from vg to v;—; zero for j > 1, the extreme projection
P"~! —» PPi~! corresponds to the projection Cs/Ps —> By/Ls = M2 (Q%,0.). Let V; be
the subvariety in szl P"~! be the closure of the graph of this sequence of rational maps. If we

label the coordinates in the k — j-th component P"~! as x(j) = [z1(j) : ... : 2.(j)], then the
multi-homogeneous equations defining V; are

Za(J) =0ifa>pi+piy1+...+Dpitj

Ta(Nzp(G—1) =xe(fza(f—1Df1<a<b<pi+...4+piti—1
One verifies that V; is a smooth variety of dimension n—1. If we would have the patience to work out
the whole nullcone (restricting to the §’-semistable representations) rather than just the irreducible
components, we would see that the Brauer-Severi fiber 771 (£) consists of the varieties Vi,..., Vi
intersecting transversally. The reader is invited to compare our description of the Brauer-Severi
fibers with that of M. Artin [3] in the case of Cayley-smooth maximal curve orders.
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7 — Noncommutative Manifolds

By now we have developed enough machinery to study the representation varieties trep, A and
triss, A of a Cayley-smooth algebra A € alg@n. In particular, we now understand the varieties

rep, A =trep, /A and iss, A = triss, /A
n

n

for the level n approximation fn A of a Quillen-smooth algebra A, for all n. In this chapter we
begin to study noncommutative manifolds, that is, families (X, ), of commutative varieties which
are locally controlled by Quillen-smooth algebras. Observe that for every C-algebra A, the direct
sum of representations induces sum maps

rep,, A x rep,, A —> TeP, 1m A and iss, A X iss;, A — issptm A

The characteristic feature of a family (X, ). of varieties defining a noncommutative variety is that
they are connected by sum-maps

Xn X Xm —_— Xn+m

and that these morphisms are locally of the form iss, A X iss; A —— isspim A for a Quillen-
smooth algebra A. An important class of examples of such noncommutative manifolds is given by
moduli spaces of quiver representations. In order to prove that they are indeed of the above type,
we have to recall results on semi-invariants of quiver representations and on universal localization.

Next, we turn to the study of noncommutative differential forms. The idea being that noncom-
mutative functions,vectorfields and differential forms on an algebra A induce ordinary functions,
vectorfields and differential forms on all of the representation varieties rep, A and iss, A. This
approach is especially important in case A is a symplectic algebra, for example the path algebra of a
double quiver. In this case we will define an infinite dimensional Lie algebra, the necklace Lie alge-
bra, which induces flows on all the varieties iss,, A providing a dynamic aspect to noncommutative
geometry.

7.1 Formal structure
Objects in noncommutative geometry@n are families of varieties (X;); which are locally controlled

by a set of noncommutative algebras A. That is, X; is locally the quotient variety of a representa-
tion variety rep, A for some n and some C-algebra A € A. In section 2.7 we have seen that the
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representation varieties form a somewhat mysterious subclass of the category of all (affine) GL,-
varieties. For this reason it is important to equip them with additional structures that may make
them stand out among the G L,-varieties. In this section we define the formal structure on repre-
sentation varieties, extending in a natural way the formal structure introduced by M. Kapranov on
smooth affine varieties. Let us give an illustrative example of this structure.

Example 7.1 (Formal structure on A?) Consider the affine space A? with coordinate ring
Clz1,...,2q4) and order the coordinate functions 1 < x2 < ... < x4. Let f4 be the free Lie
algebra on Cz1 @...® Czq which has an ordered basis B = Uy >1 By, defined as follows. B; is the or-
dered set {z1,...,zq4} and Bs = {[zi,z;] | 7 < i}, ordered such that B1 < Bz and [z;, z;] < [k, zi]
iff j <lorj=1and i< k. Having constructed the ordered sets B; for [ < k we define

By = {[t,w] | t = [u,v] € Bi,w € Bi_; such that v <w <t for [ < k}.

For I < k we let B; < By and By, is ordered by [t,w] < [t'.w'] iff w < w’ or w=w" and t < t'.
It is well known that B is an ordered C-basis of the Lie algebra fq and that its enveloping algebra

U(fd) = (C<JS1, e ,l‘d>

is the free associative algebra on the z;. We number the elements of Ui>2Bj according to the
order {b1,bs,...} and for b; € By we define ord(b;) = k — 1 (the number of brackets needed to
define b;). Let A be the set of all functions with finite support A : Ug>2Br —— N and define
ord(X) = > A(bi)ord(b;). Rephrasing the Poincaré-Birkhoff- Witt result for U(fa) we have that any
noncommutative polynomial p € C(z1,...,zq) can be written uniquely as a finite sum

p=> [l M

AEA

where [fy] € Clz1,...,zq] = S(B1) and My =], b;\(bi). In particular, for every X, u,v € A, there
is a unique bilinear differential operator with polynomial coefficients

CX, : Clzr,...,xa] ®c Clz1,...,zq) —> Clz1,...,24]

defined by expressing the product [f] Mx. [f M, in C(z1,...,zq) uniquely as 3 . A[CX,.(f, g)] M..
By associativity of C(z1,...,z4) the C%, satisfy the associativity constraint , that is, we have
equality of the trilinear differential operators

Z CZ] Az © (Cé\lll)\g & Zd Z C)quz Zd @ C>\2>\3)

for all A1, A2, A3, v € A. That is, one can define the algebra C(x1, ..., Zq)([ab)) to be the C-vectorspace

of possibly infinite formal sums Y, o [f>] My with multiplication defined by the operators C¥,,.
Let A4(C) be the d-th Weyl algebra , that is, the ring of differential operators with polynomial

coefficients on A?. Let 0,4 be the structure sheaf on A? then it is well-known that the ring of
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sections O,q(U) on any Zariski open subset U — A? is a left A4(C)-module. Define a sheaf (’)f;d
of noncommutative algebras on A¢ by taking as its sections over U the algebra

Of,(U) = Cla1,. .., za)an) o ®  Oua(U)

that is the C-vectorspace of possibly infinite formal sums ), o \[fs]] My with fx € Opa(U) and the
multiplication is given as before by the action of the bilinear differential operators C%,, on the left
A4(C)-module O,a(U), that is, for all f,g € Oua(U) we have

[ Mafd) My =D JCKu(f, 90 Mo

This sheaf of noncommutative algebras OIJ;i is called the formal structure on A%

We will now define formal structures on arbitrary affine smooth varieties. Let R be an as-
sociative C-algebra, R its Lie structure and RZ* the subspace spanned by the expressions
[r1,[r2, ..., [Tm=1,7m]...] containing m — 1 instances of Lie brackets. The commutator filtration of
R is the (increasing) filtration by ideals (F* R)rez with F* R = R for d € N and

F*"R=Y" > RR{“R...RR{‘R
m i1 +...+im=k

Observe that all C-algebra morphisms preserve the commutator filtration. The associated graded
algebra grr R is a (negatively) graded commutative Poisson algebra with part of degree zero, the
abelianization Rap, = [TRm' If R =C(x1,...,x4), then the commutator filtration has components

F™" Clar,...,wa) = ) I Mx, YAz ord(N) > k}
A

Definition 7.1 Denote with nily the category of associative C-algebras R such that F~*R =0 (in

particular, nily = commalg the category of commutative C-algebras). An algebra A € Ob(nily) is

said to be k-smooth if and only if for all T € Ob(nily), all nilpotent twosided ideals I <T and all
¢ T

C-algebra morphisms A — 4 there emist a lifted C-algebra morphism
et
S e
|

making the diagram commutative. Alternatively, an algebra is k-smooth if and only if it is nily-
smooth.
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Cl{z1,-..,xq)
F=F C(z1,....,xq) . .. .. .
and the fact that algebra morphisms preserve the commutator filtration. Generalizing this, if A is
Quillen-smooth then the quotient

For example, the quotient is k-smooth using the lifting property of free algebras

A
Am =752

is k-smooth.
Kapranov proves [39, Thm 1.6.1] that an affine commutative Grothendieck-smooth algebra C' has

a unique (upto C-algebra isomorphism identical on C') k-smooth thickening C™ with sz};) ~ (.
The inverse limit (connecting morphisms are given by the unicity result)

¢! =1im c®

is then called the formal completion of C. Clearly, one has C’(fb = C. For example,

C[mh--.,xd]f:]im Clz1,...,zaq)

~C .
M FE Clay,...,2q) (1, ., Za)(ga0))

If X is an affine smooth (commutative) variety, one can use the formal completion C[X]/ to define
a sheaf of noncommutative algebras Of( defining the formal structure on X.

The fact that C is Grothendieck-smooth is essential to construct and prove uniqueness of the
formal completion. At present, no sufficiently functorial extension of formal completion is known
for arbitrary commutative C-algebras. It is not true that any (non affine) smooth variety can be
equipped with a formal structure. In fact, the obstruction gives important new invariants of a
smooth variety related to Atiyah classes . We refer to [39, §4] for more details.

We recall briefly the algebraic construction of microlocalization. Let R be a filtered algebra with
a separated filtration {F, }nez and let S be a multiplicatively closed subset of R containing 1 but
not 0. For any r € F, — F,,—1 we denote its principal character o(r) to be the image of r in the
associated graded algebra gr(R). We assume that the set o(S) is a multiplicatively closed subset

of gr(R). We define the Rees ring R to be the graded algebra
R = @®nezFut" — R[t,t"]

where ¢ is an extra central variable. If o(s) € gr(R), then we define the element 5 = st" € R,,.
The set S = {8, s € S} is a multiplicatively closed subset of homogeneous elements in R.

Assume that o(5) is an Ore set in gr(R) = %, then for every n € Ng the image 7, (S) is an

Ore set in % where R —» (t—lz) is the quotient morphism. Hence, we have an inverse system of
graded localizations and can form the inverse limit in the graded sense

Qi) = lim? 7 (3) ™" s
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The element ¢ acts torsionfree on this limit and hence we can form the filtered algebra

T
) = @)

~

which is the micro-localization of R at the multiplicatively closed subset S. We recall that the
associated graded algebra of the microlocalization can be identified with the graded localization

gr(Q4(R)) = o(S) ' gr(R).

Let R be a C-algebra with Ry, = [TRR] = C. We assume that the commutator filtration (Fk)kez
is a separated filtration on R. Observe that this is not always the case (for example consider U(g)
for g a semi-simple Lie algebra) but often one can repeat the argument below replacing R with
R

ﬁF’(L)bserve that gr(R) is a negatively graded commutative algebra with part of degree zero C. Take
a multiplicatively closed subset S. of C, then S = S. + [R, R] is a multiplicatively closed subset
of R with the property that o(S) = S. and clearly S. is an Ore set in gr(R). Therefore, S is a
multiplicatively closed set of the Rees ring R consisting of homogeneous elements of degree zero.
Observing that (t")o = F~"t" for all n € Ng we see that

R
F-n

Q5(R) = lim m, (5) ™"

where R —3» % is the quotient morphism and Q% is filtered again by the commutator filtration

and has as associated graded algebra
gr(Q5(R)) = S gr(R).

One can define a microstructure sheaf O% on the affine scheme X of C' by taking as its sections
over the affine Zariski open set X (f)

I(X(f),0%) = Q% (R)

where S = {1, f, f%,...} + [R, R]. For C a Grothendieck-smooth affine commutative algebra this
sheaf of noncommutative algebras is the formal structure on X introduced by M. Kapranov.

An important remark to make is that one really needs microlocalization to construct a sheaf of
noncommutative algebras on X. If by some fluke we would have that all the Sy are already Ore
sets in R, we might optimistically assume that taking as sections over X (f) the Ore localization
Sf_lR we would define a sheaf Or over X. This is in general not the case as the Ore set S; need
no longer be Ore in a localization Sf_lR !

Still one can remedy this by defining a noncommutative Zariski topology on X using words in
the Ore sets Sy, see [82, §1.3]. Whereas we do not need this to define formal structures it seems to
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me inevitable that at a later stage in the development of noncommutative geometry we will need
to resort to such noncommutative Grothendieck topologies on usual commutative schemes.

Having define a formal structure on affine smooth varieties, we will now extend it to arbitrary
representation varieties. The starting point is that for every associative algebra A the functor

Homaig(A, My (—
alg omatg( ) > sets

is representable in alg. That is, there exists an associative C-algebra VA such that there is a
natural equivalence between the functors

Homag(A, My, (=) ~ Homag( VA, —).

n.e.

In other words, for every associative C-algebra B, there is a functorial one-to-one correspondence
between the sets

algebra maps A — M, (B)

algebra maps VA — B

We call ¥/A the n-th root algebra of A .

Example 7.2 If A = C(zi,...,xq), then it is easy to see that YA is the free algebra
C(x11,1, - - -, Tnn,a) on dn” variables. For, given an algebra map A 2, M., (B) we obtain an algebra
map ¥/ A — B by sending the free variable z;; 1 to the (i, j)-entry of the matrix ¢(zx) € M, (B).

Conversely, to an algebra map VA Y+ Bwe assign the algebra map A — M, (B) by sending
z, to the matrix (Y(xij,x))i,; € Mn(B). Clearly, these operations are each others inverses.

To define /A in general, consider the free algebra product AxM,,(C) and consider the subalgebra
VA= AxM,(C)M© ={pe Ax M,(C)|p.(1*m) = (1L*m).p ¥m € M,(C)}

Before we can prove the universal property of ¥/A we need to recall a property that M, (C) shares

with any Azumaya algebra : if M, (C) %+ Risan algebra morphism and if RM"(©) = {r € R |

r.¢(m) = ¢p(m).r Ym € M, (C)}, then we have R ~ M, (C) ®c RM"©,
In particular, if we apply this to R = A% M, (C) and the canonical map M, (C) e Ax M, (C)
where ¢(m) = 1% m we obtain that M, (VA) = M,(C) ®@c VA= Ax M,(C).

Hence, if VA N B is an algebra map we can consider the composition
A AT A Mo (C) ~ Mo (VA) 2290 v, (B)

to obtain an algebra map A — M, (B). Conversely, consider an algebra map A —» M, (B)
and the canonical map M, (C) —— M, (B) which centralizes B in M, (B). Then, by the universal
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g*i

property of free algebra products we have an algebra map A x M,,(C) — M, (B) and restricting
to /A we see that this maps factors

A% M, (C) &% M, (B)

and one verifies that these two operations are each others inverses.
It follows from the functoriality of the y/. construction that C(z1,...,z4) —> A implies that
YVC{(z1,...,xq) — Y/A. Therefore, if A is affine and generated by < d elements, then /A is

also affine and generated by < dn? elements.
These properties allow us define a formal completion of C[rep,, A] in a functorial way for any

associative algebra A. Equip /A with the commutator filtration
e Fo VA F VA VA = VA4 =
Because algebra morphisms are commutator filtration preserving, it follows from the universal
property of /A that Fni‘/é\/z is the object in nilj representing the functor
—k

. Homarg (A, My (—))
nily 28 L » sets.

In particular, because the categories commalg and nil; are naturally equivalent, we deduce that

oL VA WA
\/Zab—[m7m]—}llm—(c[ P, A

because both algebras represent the same functor. We now define
VA
Fop VA

n\/ A[[ab]] = lim

Assume that A is Quillen-smooth, then so is /A because we have seen before that
M, (Y A) ~ Ax M,(C)

and the class of Quillen-smooth algebras is easily seen to be closed under free products and matrix
algebras.



386

Noncommutative Manifolds

As a consequence, we have for every k € N that the quotient 7 % is k-smooth. Moreover, we
—k

have that Vi Vi
VA VA
7n)“b e~ Clrep,, A].
Fo, VAT VA, VA
Because Clrep,, A] is an affine commutative Grothendieck-smooth algebra, we deduce from the
uniqueness of k-smooth thickenings that

(

2
F . VA

and consequently that the formal completion of C[rep,, A] can be identified with

Clrep, A]™ ~

Clrep, A =~ VA

Therefore, if we define for an arbitrary C-algebra A the formal completion of Clrep, A] to be
{L/Z[[ab” we have a canonical extension of the formal structure on affine Grothendieck-smooth com-
mutative algebras to the class of coordinate rings of representation spaces on which it is functorial
in the algebras.

There is a natural action of GL,, by algebra automorphisms on 7\1/2 Let ua denote the universal
morphism A —“%» M, (¥/A) corresponding to the identity map on ¥A. For g € GL, we can
consider the composed algebra map

A —"% M, (VA

o
@
Q

M, (VA)

Then g acts on /A via the automorphism VA Pe, g A corresponding the the composition g.
It is easy to verify that this defines indeed a G L-action on VA.
The formal structure sheaf o/ 4 defined over rep,, A constructed from /A will be denoted

repn
by o’ + We see that it actually has a GL,-structure which is compatible with the GL,-action on

VI
rep, A.

7.2 Semi invariants

An important class of examples of noncommutative varieties are moduli spaces of 6-semistable
representations of quivers. Because the moduli space M3°(Q,0) is by definition the projective
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scheme of the graded algebra of semi-invariants of weight yg for some n
M*(Q.0) = proj @7 Clrep,, Q] (X"

we need some control on these semi-invariants of quivers.

In this section we will give a generating set of semi-invariants. The strategy of proof should be
clear by now. First, we will describe a large set of semi-invariants. Then we use classical invariant
theory to describe all multilinear semi-invariants of GL(«), or equivalently, all multilinear invariants
of SL(a) = SLa, X ... x SL4, and describe them in terms of these determinantal semi-invariants.
Finally, we show by polarization and restitution that these semi-invariants do indeed generate all
semi-invariants.

Let @ be a quiver on k vertices {v1,...,vr}. We introduce the additive C-category add Q
generated by the quiver. For every vertex v; we introduce an indecomposable object which we

denote by . An arbitrary object in add @ is then a sum of these

6961 EB...@EB%

That is we can identify add Q with N*. Morphisms in the category add Q are defined by the rules

Homws o). @) =0 @
Homuas o @), ©) = O

where the right hand sides are the C-vectorspaces spanned by all oriented paths from v; to v; in
the quiver @, including the idempotent (trivial) path e; when ¢ = j.
Clearly, for any k-tuples of positive integers a = (u1,...,ur) and 8 = (vi,...,vk)

Homaaa Q(@u1 @1”@@% , ®“1 @H'@@vk )

is defined by matrices and composition arises via matrix multiplication

4 L

Mo @ ) oo Mueu(@& @)

Mor (@ @) . My ® )
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Fix a dimension vector a = (a1, ...,a) and a morphism ¢ in add Q

EDU1 @uk ED’Ul Dvg
O o 0@ - O™ 0.0 @

For any representation V' € rep, @ we can replace each occurrence of an arrow of @
in ¢ by the a; X a;-matrix V,. This way we obtain a rectangular matrix

V(¢) € sz a1v1><Z 1 aiug ((C)

If we are in a situation where Zawi = Zaiui, then we can define a semi-invariant polynomial
function on rep, Q by
Pos(V) = det V()

We call such semi-invariants determinantal semi-invariants . One verifies that Py o is a semi-
invariant of weight y¢ where 8 = (u1 — v1,...,ur — vx). We will show that such determinantal
semi-invariant together with traces along oriented cycles in the quiver @) generate all semi-invariants.

Because semi-invariants for the GL(«)-action on rep, @ are the same as invariants for the
restricted action of SL(a) = SLa, X ... X SLg,, we will describe the multilinear SL(«a)-invariants
from classical invariant theory. Because

rep, Q = @ Ma xa; (C)
EB C% @ C*%
we have to consider multilinear SL(«)-invariants of

QR ciect=Q [ K C'e @ C]
® G0 O=©

Hence, any multilinear SL(a)-invariant can be written as f = [[F_, f; where f; is a SLq,-invariant

of
R cie Q C*
G—0O O]

To increase our cultural luggage let us recall the classical description of multilinear SLy,-
invariants on M2 @ V,¥7 @ V,;7®% that is, the SL,-invariant linear maps

Ma®...0 Ma @V, ®...0V, 0V ®...0V, —tsC
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By the identification M,, = V;, ® V,; we have to determine the SL,-invariant linear maps
V@it ® Vr®itz f C
The description of such invariants is given by classical invariant theory, see [84, II.5,Thm. 2.5.A].

Theorem 7.1 The multilinear SL,-invariants f are linear combinations of invariants of one of
the following two types

1. For (i1,... in,hiy..yhn, oo ytl, ... tn, S1,...,8r) a permutation of the i + j vector indices
and (u1,...,ur) a permutation of the i + z covector indices, consider the SLy-invariant
[Uim“' 7vin] [vh17 oo ?Uhn] [vt17"'7vtn] ¢u1(v51) . ~~¢ur(7}5r)

where the brackets are the determinantal invariants

[Vays---sVa,] = det [Vay Vay . Va,]
2. For (i1, .- yin, A1,y .oy hny oo ytiy oo tn,y S1,.. ., 8r) a permutation of the i+ z covector indices
and (u1,...,ur) a permutation of the i + j vector indices, consider the SLy-invariant

[¢’i17 M ¢Zn]* [¢h17 M thn}* M [d)tla ] ¢tn}* d)ul (7‘)51) e qbur(”&')
where the cobrackets are the determinantal invariants

Pay
[¢ﬂ«17"'7¢an}*:det .
Par,
Observe that we do not have at the same time brackets and cobrackets, due to the relation

$1(v1) ... P1(va)
[Viy ..., Un] [P1,. .., ¢n] = det :

bn(v1) .o du(vn)

We can give a matrix-interpretation of these basic invariants. Let us consider the case of a bracket
of vectors (the case of cobrackets is similar)

[Virs -+ Vi

If all the indices {41, ...,in} are original vector-indices (and so do not come from the matrix-terms)
we save this term and go to the next factor. Otherwise, if say 41 is one of the matrix indices,
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A, = ¢i; ®v;,, then the covector ¢;;, must be paired up in a scalar product ¢, (vy, ) with a vector
vy, - Again, two cases can occur. If u; is a vector index, we have that

Bir (Vur ) Vigs -+« Vi ] = [Aiy Vg s Vigy o v o5 Vin] = [Vh, 3 Vigsy e -« 5 Vi)
Otherwise, we can keep on matching the matrix indices and get an expression
Gir (Vuy) Puy (Vuz) Guz (Vug) -
until we finally hit again a vector index, say u;, but then we have the expression
Gir (Vuy) Puy (V1) « oo Puy_q (V) [Vig, -y Vi | = [MUy,, Vig, - - ., Viy,]

where M = A;; Ay, ... Ay,_,. One repeats the same argument for all vectors in the brackets. As
for the remaining scalar product terms, we have a similar procedure of matching up the matrix
indices and one verifies that in doing so one obtains factors of the type

¢(Mv) and tr(M)

where M is a monomial in the matrices. As we mentioned, the case of covector-brackets is similar
except that in matching the matrix indices with a covector ¢, one obtains a monomial in the
transposed matrices.

Having found these interpretations of the basic SL,-invariant linear terms, we can proceed by
polarization and restitution processes to prove

Theorem 7.2 The SLy-invariants of W = rep,, Q" where Q' is the quiver

&
are generated by the following four types of functions, where we write a typical element in W as

(Al,...,Ak,’l}1,..‘,’Um,(ﬁl,...,(z)p)
—— —— ———

k m P

with the A; the matrices corresponding to the loops, the v; making up the rows of the n X m matriz
and the ¢; the columns of the p x n matrix.

e tr(M) where M is a monomial in the matrices A;,
e scalar products ¢;(Mwv;) where M is a monomial in the matrices A;,

e brackets [Mivs,, Maviy, . .., Mpv;, | where the M; are monomials in the matrices A;,
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e cobrackets [M1¢7, ..., Mno] ] where the M; are monomials in the matrices A;,

Returning to the special case under consideration, that is, of S L,-invariants on  gC" ®cC*™,
it follows from this that the linear S L,,-invariants are determined by the following three sets

e traces, that is, for each pair (b, c) we have C™ ® C*™ = M, (C) I

e brackets, that is, for each m-tuple (b1,...,bm) we have an invariant ®p; C™ —— C defined
by
Vo @ ... Q v, — det [Ub1 me]

e cobrackets, that is, for each m-tuple (ci, ..., cn) we have an invariant ®., C*™ — C defined
by
bey
Gey @ ... R e, — det :
Pem

Multilinear SL,-invariants of @ gC™ ® ®C*™ are then spanned by invariants constructed from
the following data. Take three disjoint index-sets I, J and K and consider surjective maps

B 5 TUK
C 5 JUK

subject to the following conditions

#p k) =1=H# v (k) for all k € K.
#pu @) =m=# v foralli € I and j € J.

To this data v = (u,v,I,J, K) we can associate a multilinear SL-invariant f,(Qpvs ® Qcdc)
defined by
Pey

H ¢V71(k) (’Updfl(k)) H det ['Ubl ‘e me] H det

keK el j€d ¢C
m

where = (3) = {b1,...,bn} and v (j) = {c1,...,cm}. Observe that f, is determined only up to
a sign by the data ~.
But then, we also have a spanning set for the multilinear SL(«a)-invariants on

repaQ:®[ ® C*™ ® ® c* ]
© G—© 0=
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determined by quintuples I' = (u, v, I, J, K') where we have disjoint index-sets partitioned over the
vertices v € {v1,...,vx} of @

I =, L
J =U,
K =], K.

together with surjective maps from the set of all arrows A of @

A S TuKk
A S JUK

where we have for every arrow ®<———) that

u(a) €I, UK,
v(ia) € Jw UKy

and these maps p and v are subject to the numerical restrictions

#Hu k) =1=#v (k) for all k € K.
#p7 @) =a,=#v7H(j) foralli€ I, and all j € J,.

Such a quintuple I = (u, v, I, J, K) determines for every vertex v a quintuple

’YU:(/LU:/J | {%@ }7 Vy =V | {®<a—@}7]U7J’U>KU)

satisfying the necessary numerical restrictions to define the SL,,-invariant f,, described before.
Then, the multilinear SL(«)-invariant on rep, @ determined by I' is defined to be

Jr= H S

and we have to show that these semi-invariants lie in the linear span of the determinantal semi-
invariants.

First, consider the case where the index set K is empty. If we denote the total number of arrows
in Q by n, then the numerical restrictions imposed give us two expressions for n

Z Ay . F L,:nzz Ay Jy

v v
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Every arrow ®<———) determines a pair of indices u(a) € I, and v(a) € Jy. To the quintuple
I" we assign a map ®r in add Q

6911@“.@@% ﬁ»@h@.HGBGBJk

DIy D Jw
which decomposes as a block-matrix in blocks My, € Hom( , ) of which the (¢, )
entry is given by the sum of arrows

> OO
w(a)=i
v(a)=j

For a representation V € rep, @, V(®r) is an n x n matrix and the determinant defines the
determinantal semi-invariant Pg, . which we claim to be equal to the basic invariant fr possibly
up to a sign.

We introduce a new quiver situation. Let Q' be the quiver with vertices the elements of I LI J
and with arrows the set A of arrows of @), but this time w take the starting point of the arrow

G—2 0O in Q to be u(a) € I and the terminating vertex to be v(a) € J. That is, Q' is a
bipartite quiver

()

I J

On Q' we have the quintuple I = (', v/, I', J', K') where K' = {),

r=)=]&w Js=Js=] W0

iel iel jeJ jeJ

and p' = p, V' = v. We define an additive functor add Q' ——» add Q by
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for all ¢ € I, and all j € J,. The functor s induces a functor rep Q —+ rep Q' defined by
V —» Vos. If V €rep, Q then s(V) € rep,, Q' where

Ci = Qy ifi € I,

’ .
— (C1,.+1Cpyda, ... dy)  with
o=l epdy.dy) W {dj:aw it j € Ju

# 1 # J

That is, the characteristic feature of @’ is that every vertex i € I is the source of exactly ¢; arrows
(follows from the numerical condition on u) and that every vertex j € J is the sink of exactly d;
arrows in Q’. That is, locally Q' has the following form

There are induced maps
rep, Q ——» rep, Q' GL(a) — GL(a)

where the latter follows from functoriality by considering GL(«) as the automorphism group of the
trivial representation in rep, (). These maps are compatible with the actions as one checks that

5(g.V) = s(g).s(V). Also s induces a map on the coordinate rings C[rep, Q] —— C[rep,, Q'] by
s(f) = f os. In particular, for the determinantal semi-invariants we have

S(Pa’,d)’) = Pa,s(q.’?')
and from the compatibility of the action it follows that when f is a semi-invariant the GL(a')
action on rep,, Q" with character )/, then s(f) is a semi-invariant for the GL(a)-action on rep, Q
with character s(x) = x’' o s. In particular we have that

$(Par,@p) = Pa,sap) = Pajor  and  s(frv) = fr

Hence in order to prove our claim, we may replace the triple (Q, o, T') by the triple (Q’, o/, T”). We
will do this and forget the dashes from here on.
In order to verify that fr = &P, ¢, it suffices to check this equality on the image of

w= @ ciec? in (K CTeCY

One verifies that both fr and Pa e, are G L(«)-semi-invariants on W of weight x¢ where
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Using the characteristic local form of Q = @', we see that W is isomorphic to the GL(«a)- module

W~ (Ce...oC)el (CYa..0CY) ~ M, (C) o Mi(C)
i€l c'i jEJ d i€l jeJ

and the ¢ factors of GL(«) act by inverse right-multiplication on the component M., (and trivially
on all others) and the j factors act by left-multiplication on the component Mgy, (and trivially on
the others). That is, GL(«) acts on W with an open orbit, say that of the element

w = (/ﬂcl7"'7/Dcp’/ﬂd17"'?/ﬂdq) € W

One verifies immediately from the definitions that that both fr and P. e evaluate to +1 in w.
Hence, indeed, fr can be expressed as a determinantal semi-invariant.

Remains to consider the case when K is non-empty. For k € K two situations can occur

e 1 ' (k) = a and v~ (k) = b are distinct, then k corresponds to replacing the arrows a and b

by their concatenation
®T®<b—@

e u (k) =a=v""(k) then a is a loop in Q and k corresponds

a

)

®

to taking the trace of a.

This time we construct a new quiver Q” with vertices {w1, ..., wyn} corresponding to the set A of
arrows in ). The arrows in QQ” will correspond to elements of K, that is if £ € K we have the
arrow (or loop) in Q" with notations as before

k

O

k
O<—©@ o ©
We consider the connected components of )”. They are of the following three types

e (oriented cycle) : To an oriented cycle C' in Q” corresponds an oriented cycle C¢ in the
original quiver (). We associate to it the trace tr(C¢) of this cycle.

e (open paths) : An open path P in Q” corresponds to an oriented path Pp in Q which may
be a cycle. To P we associate the corresponding path Pp in Q.
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e (isolated points) : They correspond to arrows in Q.

We will now construct a new quiver @’ having the same vertex set {vi,...,v;} as @ but with
arrows corresponding to the set of paths Pp described above. The starting and ending vertex of
the arrow corresponding to Pp are of course the starting and ending vertex of the path Pp in Q.

Again, we define an additive functor add Q' —» add Q by the rules
Pp
© -+ @ ad o~ oed B
If the path Pp is the concatenation of the arrows ago...oa; in @, we define the maps
{u'(P,s) = plar) {{P,s} 1
{Ppy —J
that is, a quintuple IV = (¢/, v/, I', J', K’ = () for the quiver Q’. One then verifies that

fr=s(fr) [[tr(CE) = s(Paep) [ [ tr(CE)
C C

= Fa,s(®pr) Htr(C/C)
C

finishing the proof of the fact that multilinear semi-invariants lie in the linear span of determinantal
semi-invariants (and traces of oriented cycles).

The arguments above can be reformulated in a more combinatorial form which is often useful in
constructing semi-invariants of a specific weight, as is necessary in the study of the moduli spaces

M33(Q,0). Let Q be a quiver on the vertices {v1,..., v}, fix a dimension vector o = (a1, ..., ax)
and a character xg where 6 = (¢1,...,t;) such that 6(«) = 0. We will call a bipartite quiver Q' as in
figure 7.1 on left vertex-set L = {l1,...,l,} and right vertex-set R = {r1,...,r,} and a dimension

vector B = (c1,...,¢p;d1,...,dq) to be of type (Q, «, 0) if the following conditions are met

e All left and right vertices correspond to vertices of @, that is, there are maps

1
{L — {v1,..., 0k}

R {vi,..., v}
possibly occurring with multiplicities, that is there is a map
LUR % Ny

such that ¢; = m(l;)a. if I(l;) = v, and d; = m(r;)a; if r(r;) = v,.
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/W
c:

L R

Figure 7.1: Left-right bipartite quiver.

e There can only be an arrow if for v, = I(l;) and v; = r(r;) there is an oriented
path )
® ®

in @ allowing the trivial path and loops if v, = v;.

e Every left vertex ; is the source of exactly ¢; arrows in Q' and every right-vertex r; is the
sink of precisely d; arrows in Q.
o Consider the u x u matrix where u = >, c; = >, d; (both numbers are equal to the total

number of arrows in Q') where the i-th row contains the entries of the i-th arrow in Q" with
respect to the obvious left and right bases. Observe that this is a GL((3) semi-invariant on
repg, Q' with weight determined by the integral k + I-tuple (—1,...,—1;1,...,1). If we fix
for every arrow a from I; to r; in Q' an m(r;) X m(l;) matrix p, of linear combinations of
paths in @ from [(l;) to r(r;), we obtain a morphism

rep, @ —> repg Q'

sending a representation V' € rep,_, @ to the representation W of Q' defined by W, = p. (V).
Composing this map with the above semi-invariant we obtain a GL(«) semi-invariant of
rep, () with weight determined by the k-tuple 8 = (¢1,...,tx) where

ti= y, mr) - Y. my)

jer—1(vy) el 1(vy)
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We call such semi-invariants standard determinantal . Summarizing the arguments of this section
we have proved after applying polarization and restitution processes

Theorem 7.3 The semi-invariants of the GL(a)-action on rep, @ are generated by traces of
oriented cycles and by standard determinantal semi-invariants.

7.3 Universal localization

In order to prove that the moduli spaces M3°(Q,0) are locally controlled by Quillen-smooth al-
gebras, we need to recall the notion of universal localization . We refer to the monograph by A.
Schofield [72] for full details.

Let A be a C-algebra and projmod A the category of finitely generated projective left A-modules.
Let X be some class of maps in this category (that is some left A-module morphisms between certain

projective modules). Then, there exists an algebra map A =, As, with the universal property
that the maps Asx. ®4 o have an inverse for all o € X. Ay is called the universal localization of A
with respect to the set of maps X.

Proposition 7.1 When A is Quillen-smooth, then so is As.

Proof. Consider a test-object (7', 1) in alg, then we have the following diagram

T
T _
Ly, 1
¥ g ¢
A As

Js
where 1 exists by Quillen-smoothness of A. By Nakayama’s lemma all maps 0 € ¥ become
isomorphisms under tensoring with 1. Then, ¢ exists by the universal property of As. O

Consider the special case when A is the path algebra CQ of a quiver on k vertices. Then, we can
identify the isomorphism classes in projmod CQ with the opposite category of add @ introduced
in the foregoing section. To each vertex v; corresponds an indecomposable projective left CQ-ideal
P; = CQe,; having as C-vectorspace basis all paths in Q starting at v;. For the homomorphisms we

have
Hoch(Pi,Pj): @ (Cp:Homadd Q(7 )
O~ @
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where p is an oriented path in @ starting at v; and ending at v;. Therefore, any A-module morphism
o between two projective left modules

P,®...6P, 2> P,®...6P;,

can be represented by an u X v matrix M, whose (p, ¢)-entry myq is a linear combination of oriented
paths in Q starting at v;, and ending at v;,,.

Now, form an v X v matrix N, of free variables y,, and consider the algebra CQ, which is the
quotient of the free product CQ * C{y11,...,Yuv) modulo the ideal of relations determined by the
matrix equations

Vi 0 Vi, 0
My Ny = No.M, =

0 Vi 0 Vjy
Equivalently, CQ, is the path algebra of a quiver with relations where the quiver is @) extended
with arrows ypq from v, to vj, forall 1 <p <wuand 1l < g < v and the relations are the above
matrix entry relations.

Repeating this procedure for every o € ¥ we obtain the universal localization CQs. This proves

Proposition 7.2 If ¥ is a finite set of maps, then the universal localization CQyx. is an affine
C-algebra.

It is easy to verify that the representation space rep, CQ. is an affine Zariski open subscheme
(but possibly empty) of rep, CQ. Indeed, if V = (V,)a € rep, @, then V determines a point in
rep, CQx if and only if the matrices M, (V') in which the arrows are all replaced by the matrices
V., are invertible for all o € X.

In particular, this induces numerical conditions on the dimension vectors « such that rep, Qs #
0. Let @ = (a1,...,ax) be a dimension vector such that > a; = n then every o € ¥ say with

PPl g . @ PP 7, pPhg. . @ p
gives the numerical condition
era1 + ... +egar = fra1 + ...+ frak.

These numerical restrictions will be used to relate 6-stable representations of ) to simple represen-
tations of universal localizations of CQ.

Fix a character § = (t1,...,tx) € Z* and divide the set of indices 1 < i < k into the left set
L = {i1,...,4.} consisting of those ¢ such that ¢; < 0 and the right set R = {j1,...,jv} consisting
of those j such that ¢; > 0. Consider a dimension vector « such that .cc = 0, then 6 determines
the character

GL(a) =% C*  (g1,...,g) — | ] det(g:)"



400

Noncommutative Manifolds

Next, consider the sets of morphisms

EQZ m 29(2:)

ze€Ny

where ¥g(2) is the set of all morphisms

Lg...@PY e L. PP g g P

tu Jv

D—=zt
P,

51
With notation as before, it follows that
de(V) = det Ms(V) V €rep, Q@

is a semi-invariant on rep, @ of weight zxe. This semi-invariant determines the Zariski open subset
of rep, @
Xo(a) ={V €xep, Q | ds(V) # 0}

It is clear from the results of section 4.8 that X, («) consists of @-semistable representations. We
can characterize the #-stable representations in this open set.

Lemma 7.1 For V € X,(a) the following are equivalent

1. V is a 0-stable representation.

2. V is a simple a-dimensional representation of the universal localization CQ,.

Proof. Let W be a (-dimensional subrepresentation of V with 8 = (b1,...,bx), then for W to
be a (-dimensional representation of the universal localization CQ, it must satisfy the numerical
restriction

_tilbil - .. = tiubiu = tjlbjl + ...+ tjvij that is gﬁ =0

Hence, if V' is 6-stable, there are no proper subrepresentations of V as a CQ,-representation.
Conversely, if V' is an a-dimensional subrepresentation of CQ, we must have that d, (V) # 0. But
then, if W is a B-dimensional Q-subrepresentation of V' we must have that > —ti, bi, <>, t5, b4,
(if not, o (V) would have a kernel) whence 6.3 > 0. If W is a subrepresentation such that 6.8 = 0,
then W would be a proper CQ, subrepresentation of V, a contradiction. Therefore, V' is #-stable.

O

Theorem 7.4 The moduli space of 0-semistable representations of the quiver Q
M(Q,0)

is locally controlled by the set of Quillen-smooth algebras {CQo | o € 3g }.
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Proof. By the results of the foregoing section we know that the quotient varieties of the Zariski
open affine subsets X, («) cover the moduli space M3°(Q,0). Further, by lemma 7.1 we have a
canonical isomorphism

Xo(a)/GL(a) ~ issq CQ,

Finally, because
rep,, CQ, = U.GL, x GL(@) rep, CQo

where the disjoint union is taken over all @ = (a1,...,ax) such that ) . a; = n, we have that
issq CQ. is an irreducible component of iss, CQ, finishing the proof. a

Lemma 7.1 also allows us to study the moduli spaces M3°(Q, 6) locally by the local quiver settings
associated to semi-simple representations. That is, let £ € M3°(Q, 0) be the point corresponding to

Me=58%1q .. @S2
where S; is a #-stable representation of dimension vector 3; occurring in M, with multiplicity e;.
Theorem 7.5 With notations as above, the étale local structure of the moduli space M’ (Q,0)

near & is that of the quotient variety issg Q¢ where 8 = (e1,...,e.) and Q¢ is the quiver on z
vertices such that

#O<~——0 = —xaB:,5)
®
# @ :1_XQ(ﬂivﬂi)

near the trivial representation.
Proof. In view of the above results and the slice theorems, we only have to compute the ext-
spaces Emtql;Qﬁ (Si, Sj). From [72, Thm. 4.7] we recall that the category of CQ, representations
is closed under extensions in the category of representations of ). Therefore, we have for all
CQo-representations V and W that

Extiq(V,W) =~ Exttq, (V, W)

from which the result follows using theorem 4.5. a

In the following section we will give some applications of this result. Universal localizations can
also be used to determine the formal structure on representation spaces of quivers.
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Let Q be a quiver on k vertices and consider the extended quiver Q™

That is, we add to the vertices and arrows of Q one extra vertex vy and for every vertex v; in Q) we
add n directed arrows from vg to v;. We will denote the j-th arrow 1 < j < n from v to v; by zi;.

Consider the morphism between projective left CQ™-modules

PLoP®..0OP 2> Phd...& P
N————

determined by the matrix

Tkl e e Tkn

We consider the universal localization (CQE,n)

arrows y;; with 1 < j <n from v; to vo.
With these arrows y;; one forms the n x k matrix

, that is, we add for each vertex v; in ) another n

Y11 Yk1

Yin oo Ykn
and the universal localization (CQE,") is described by the relations

Vo 0

M,.N, = and N,.M, =
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We will depict this quiver with relations by the picture QS,")

From the discussion above it follows that there is a canonical isomorphism

rep,, v/ CQ ~rep,, (CQE,T‘).

In fact we can even identify
Y/CQ = vy CQ™ wvo.

Indeed, the right hand side is generated by all the oriented cycles in Qf,n) starting and ending at
vo and is therefore generated by the yipxiq and the yipazjq where a is an arrow in @ starting in v;
and ending in v;. If we have an algebra morphism

CQ %+ M,(B)
then we have an associated algebra morphism
V0 (CQ((,") Vo Y. B
defined by sending yipaxjq to the (p, g)-entry of the n X n matrix ¢(a) and y;pxiq to the (p, g)-entry

of ¢(v;). The defining relations among the x;, and y;q introduced before imply that 4 is indeed an
algebra morphism.

Example 7.3 Let A = C(a,b), that is A is the path algebra of the quiver

A

@

O
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In order to describe ¥/A we consider the quiver with relations

h@ o _
\_,./ I YiT; = 0450, thyz = V1.
O 7

We see that the algebra of oriented cycles in vy in this quiver with relations is isomorphic to the
free algebra in 2n? free variables

C(y1a21, - - -, YnQTn, Y10T1, . . ., Ynbxy)
which coincides with our knowledge of {/C(a,b).

There is some elementary calculus among the n-th roots of algebras. For example, it follows
from the universal property of /A that there is a natural morphism

where k = [[ k;. When A = CQ we can represent this morphism graphically by the picture

where the map is given by composing paths from vy to v;. Also observe that we used the isomor-
phisms in the rightmost part of the left quiver to remove additional arrows from the extra vertices
to v; at each stage.

Probably more important are the connecting morphisms

A x A x A Sk g
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Figure 7.2: Free product of quivers.

with & = 3 k; obtained from the universal property of {/A by composing algebra morphisms
A2y My, (B) to an algebra morphism

o1 0

0 =
A ¢

My (B).

Observing that the ordering of the factors is important (but only up to isomorphism of the repre-
sentations).

We need to have a quiver interpretation of the free product CQ1 * CQ2 of two path algebras (at
least as far as finite dimensional representations are concerned). Let Q1 be a quiver on k vertices
{vi,...,vx} and Q2 a quiver on p vertices {w1,...,wp} and consider the extended quiver Q1 * Q2
of figure 7.2. That is, we add one extra arrow from each vertex of Q1 to each arrow of Q2.

Let {P,..., Px} be the projective left CQ: * Q2-modules corresponding to the vertices of Q1
and {PJ, ..., P,} those corresponding to the vertices of Q2 and consider the morphism

Plo..0P, > Po.. . 0PR

determined by the p X k matrix

where z;; denotes the extra arrow from vertex v; to vertex w;.
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Let Q1 % Q2, denote the quiver with relations one obtains by inverting this map (as above).
Then, it is fairly easy to see that

rep, CQ1 * Q2 ~ rep, Q1 *Q2,

where the right-hand side denote the subscheme of n-dimensional representations of the quiver Q1
times the n-dimensional representations of Q2 where the extra arrows determine an isomorphism
of the representations.

Using this interpretation of the free product one can now give a graphical interpretation of the
connecting morphisms in the case of the two loop quiver (the general case is similar).

0 (XX ®

obtained by ’grafting’ the bottom tree. Observe that again we used the isomorphisms given by the
k; bundles to eliminate adding extra arrows in the free products.

7.4 Compact manifolds

noncommutative geometry@n is the study of families of algebraic varieties (with specified connecting
morphisms) which are local controlled by a set of noncommutative algebras. If this set of algebras
consists of Quillen-smooth algebras we say that the family of varieties is a noncommutative manifold
. If all varieties in the family are in addition projective (possibly with singularities) we say that
the family is a compact noncommutative manifold .

So far, we have mot specified the properties of the connecting morphisms. In this section we
present a first class of examples, the sum families. In the next chapter we will encounter another
possibility coming from the theory of completely integrable dynamical systems.

Definition 7.2 A sum family is an object (X )» in noncommutative geometry@n indezxed over the
positive integers such that for each n there is a GLy-variety Y, and a quotient morphism

Y, —»» Yy /GLy ~ X,

and Yy, is locally of the form rep, A for an affine C-algebra A belonging to a set A of algebras.
Moreover, there are equivariant connecting sum-maps

Vi X Yo —2» Yinan

for all m,n € Ni where equivariance means with respect to the group GL, x GLy embedded
diagonally in GLpqn. If the set A consists of Quillen-smooth algebras, we call (Xy), a sum
manifold .
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Theorem 7.6 For a quiver Q on k vertices and a fized character 6 € ZF, the family of varieties

(L MIQo).

is a sum manifold in noncommutative geometry@n. If Q has no oriented cycles, then this family is
a compact sum manifold.

Proof. In view of theorem 7.5 we only need to construct equivariant-sum maps. They are induced
from the direct sums of representations

repanrepﬁQ—@»repaﬂgQ VW)= VaeWw

and the required properties are clearly satisfied. O

Example 7.4 Let Mp2(n;0,n) be the moduli space of semi-stable vectorbundles of rank n over
the projective plane P? with Chern numbers c1 = 0 and cs = n. Using results of K. Hulek [36] one
can identify this moduli space with

Mgz (n;0,n) 2= M, ) (Q,0)
where Q and 6 are the following quiver-setting

—1 1

Therefore, the family of moduli spaces (Mpz(n;0,n)), is a compact sum manifold in geo @n.

Let C be a smooth projective curve of genus g and let Mc(n,0) be the moduli space of semi-
stable vectorbundles of rank n and degree 0 over C. We expect that the family of moduli spaces
(Mc(n,0)), is a compact sum manifold.

In this section we will investigate another class of examples : representations of the torus knot
groups . Consider a slid cylinder C' with m line segments on its curved face, equally spaced and
parallel to the axis. If the ends of C are identified with a twist of 27> where n is an integer
relatively prime to m, we obtain a single curve K, , on the surface of a solid torus T'. If we assume
that the torus T lies in R? in the standard way, the curve K, ., is called the (m,n) torus knot .

Computing the fundamental group of the complement R® — Ko, one obtains the (m,n)-torus
knot group

(R — Kpn) = G >~ (a,b | a™ =b")

An important example is the three string braid group.
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Example 7.5 Consider Artin’s braid group Bs on three strings. Bs has the presentation

Bs~(L,R | LR"'L=R'LR™")
where L and R are the fundamental 3-braids
e

ST
// / \\

L R
If we let S = LR 'L and T = R™'L, an algebraic manipulation shows that
Bs =(S,T | T® =57

is an equivalent presentation for Bs. The center of Bs is the infinite cyclic group generated by the
braid
Z=8>=(LR'L?=(R'LP’=T1°

It follows from the second presentation of B3 that the quotient group modulo the center is isomor-
phic to

Dot | S =1=t") =TT

(Z)

the free product of the cyclic group of order 2 (with generator s) and the cyclic group of order 3
(with generator ¢). This group is isomorphic to the modular group PSL2(Z) via

- 1 1 — 1 0
L — [O 1] and R —» [1 1}

It is well known that the modular group PSL2(Z) acts on the upper half-plane H? by left multi-
plication in the usual way, that is

az+b
cz+d

a bl | 2 2 .
L d] : H® —— H® given by 2z —
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The fundamental domain H?/PSLs (Z) for this action is the hyperbolic triangle

and the action defines a quilt-tiling on the hyperbolic plane, indexed by elements of PSL2(Z) =
ZQ * 23

tatt tt 5 sts sists

=2

We want to study the irreducible representations of the torus knot group Gm,». We recall that
the center of G, is generated by a™ and that the quotient group is the free product group

-~ Gmn m n
Gun=+—""=(zyy | 2" =1=y" ) =ZmxZ,
<am>

of the cyclic groups of order m and n. As the center acts by scalar multiplication on an irreducible

representation by Schur’s lemma the representation theory of Gm,n essentially reduces to that of
the quotient Gy, . The latter can be studied b noncommutative geometry as the group algebra

CGm,n is Quillen-smooth. This follows from

CGmmn =Clp %Ly, = CZLpy, xCZ, ~Cx...xCxCx...xC

m n
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and as both factors of the free algebra product on the right are Quillen-smooth (in fact, semisimple)
so is the product by the universal property. Further, as both factors are the path algebras of quivers
on m resp. n vertices without arrows, we know that the representation theory of the free algebra
product, and hence of CG,,,, can be reduced to f-semistable representations the quiver Qm,n

where 0 = (—1,...,—1,1,...,1), by the results of the foregoing section. The left vertex spaces S,
—_————— ——

m n
1<i<mfora @m,n—representation are the eigenspaces for the restricted Z.,-action and the left
vertex spaces T, 1 < j < n are the eigenspaces for the restricted Z,-action.

Example 7.6 Consider the modular group PSL2(Z) ~ Z2%Zs, the free product of the cyclic groups
of order two and three with generators o resp. 7. Let S be an n-dimensional simple representation
of PSL2(Z). Let £ be a 3-rd root of unity, then restricting S to these finite Abelian subgroups we
have

Slz, ~ S e s
Slzg =TP" @TP” @ TS

where S, resp. T, are the one-dimensional representations on which o resp. 7 acts via multiplication
with z. Observe that a1 + a2 = b1 + b2 + b3 = n and we associate to S a representation V' of the
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quiver situation

with Vi; = SiEB % and Vo = T;Bbj and where the linear map corresponding to an arrow @
is the composition of

i @b,
Vaij Si@a > Slz,=V lzg —= Tg !
of the canonical injections and projections. If o = (ai1,az2,b1,b2,b3) then we take as 6 =

(=1,=1,41,41,41). Observe that @; ;V,,;, : C* — C" is a linear isomorphism. If W —— V is
a subrepresentation, then 0(W) > 0. Indeed, if the dimension vector of W is 8 = (¢1, c2, d1,d2, d3)
and assume that (W) < 0, then k = ¢1 + ¢c2 > | = di + d2 + d3, but then the restriction of
®Va,; to W gives a linear map C* —»» C! having a kernel which is impossible. Hence, V is a -
semistable representation of the quiver. In fact, V is even #-stable, for consider a subrepresentation
W & V with dimension vector 3 as before and §(W) = 0, that is, c1 + c2 = d1 + d2 + d3 = m,
then the isomorphism @®;,;Va,; | W and the decomposition into eigenspaces of C™ with respect
to the Zy and Zs-action, makes C™ into an m-dimensional representation of PSL2(Z) which is a
subrepresentation of S. S being simple then implies that W =V or W = 0, whence V is f-stable.
The underlying reason is that the group algebra CPSL2(Z) is a universal localization of the path
algebra CQ of the above quiver.

As irreducible G, »-representations correspond to #-stable representations of the quiver Qm,n
we need to determine the dimension vectors « of #-stables. In section 4.8 we have given an inductive
algorithm to determine them. However, using the fact that the moduli spaces are locally controlled
and hence are determined locally by local quivers we can apply the easier classification of simple
roots given in section 4.4 so solve this problem.

Example 7.7 With S;; we denote the simple 1-dimensional representation of PSL3(Z) determined
by
Sij lz,=Si and Sy lz,
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Let n = x1+...+x¢ and we aim to study the local structure of rep,, CPSL2(Z) in a neighborhood
of the semi-simple n-dimensional representation

Ve = S57 @ 85572 0 S5 @ S5 @ 5570 @ S557°

To determine the structure of Q¢ we have to compute dim Ext'(S;;, Ski). To do this we view the S;;
as representations of the quiver Q)2 3 in the example above. For example Si2 is the representation

g
©
©

of dimension vector (1, 0; 0, 1, 0).For representations of 2,3, the dimensions of Hom and Ext-groups
are determined by the bilinear form

10 -1 -1 -1
01 -1 -1 -1
xo=10 0 1 0 0
00 0 1 0
00 0 o0 1

If Verep, Q and W € Tepy Q@ where a = (a1, a2;b1,b2,b3) with a1 + a2 = b1 + b2 + b3 = k and
ﬁ = (Cl,CQ;dl,dz,dg) with c1+co= d1 =+ d2 =+ d3 = [ we have

dim Hom(V,W) — dim Ext' (V,W) = xo(a, 8) = kl — (a1¢1 + azca + bidy + bads + bsds)
As Hom(Sij, Ski) = C®%ir%l we have that

1 ifi#kandj#l
0 otherwise

dim E:Ctl(Sij,Skz) = {
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But then, the local quiver setting (Qe, a¢) is

s

We want to determine whether the irreducible component of rep,, CPSL2(Z) containing Ve contains
simple PSLy(Z)-representations, or equivalently, whether ag is the dimension vector of a simple
representation of Q¢, that is,

XQe(ag,€6) <0 and  xq.(ej,¢) foralll1 <j <6
The Euler-form of Q¢ is determined by the matrix where we number the vertices cyclically
1 -1 0 0 0
-1 1 -1 0 0 0
0o -1 1 -1 0
1

X¢=1lo0 0o -1 1
0O 0 0 -1

-1 0 0 0 1 1
leading to the following set of inequalities
1 < x5+ T x4 < w2+ w3
T2 <yt T x5 < w1+ w3
3 < Ta+ s ze <1+ T2

Finally, observe that Vg corresponds to a Q2 3-representation of dimension vector (z1+x2+z3, x4+
X5 + Te; 1 + T4, T2 + x5, 3 + x6). If we write this dimension vector as (a1, az; b1, b2, bs) then the
inequalities are equivalent to the conditions

a; >b; forall1<i<2and1<;<3
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which gives us the desired restriction on the quintuples

- ®

at least when a; > 3 and b; > 2. The remaining cases are handled similarly.

Observe that we can use a similar strategy to determine the restrictions on irreducible repre-
sentations of any torus knot group quotient Gy, ~ Zm * Zn. Having the classification of the
dimension vectors « of f-semistable representations of Qm,, we can use the local quiver settings
to study these projective varieties M5’ (Qm,n,8), in particular to determine the « for which this
moduli space is a projective smooth variety.

Example 7.8 For example, isss PSL2(Z) has several components of dimension 3 and 2. For one of
the three 3-dimensional components, the one corresponding to o = (2,2;2,1, 1), the different types
of semi-simples M and corresponding local quivers Q¢ are listed in figure 7.3. To verify whether
issp, PSL2(Z) is smooth in & it suffices to prove that the traces along oriented cycle for the quiver-
setting (Q¢, ae) generate a polynomial algebra. For example, consider a point § € issy PSL2(Z)

of type
@ ®®2 ) @ b e f

ea o , ©) ©) ©)

@ @ MO o i

Then, the traces along oriented cycles in ()¢ are generated by the following three algebraic inde-
pendent polynomials

r =ac+bd

y =eg+fh

z = (cg+dh)(ea+ fb)

and hence isss PSL2(Z) is smooth in £. The other cases being easier, we see that this component
of issqy PSL2(Z) is a smooth compact manifold.

A further application of our local quiver-settings (Q¢, c¢) is that one can often describe large
families of irreducible G, »-representations, starting from knowing only rather trivial ones.



7.4. Compact manifolds 415

] OO, :
oo 000

MONOR

500
: @®@®@
OMONO
N
)

@@gj@@
CD@C;?@@
s
®®@®®

©)

)

)

)

y
y

@6”

@ @ J—
@ @

@
@
©)

EB

Figure 7.3: Local quiver settings for M3°(Q2,3,0) for o = (2,2;2,1,1).
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Example 7.9 Consider the semisimple PSLy(Z)-representation £ of type

o o O O

O O O @ A
@c @ O © o o] o o
@ @ @ @ ; ; :
NORENORENONING
Then, Mg is determined by the followmg matrices
1 0 0 O 1 0 0 O
0 -1 0 0 0 ¢ 00
( o 0 1 0”0 0 ¢ O )
0 0 0 -1 0 0 0 1

The quiver-setting (Qg¢, ae) implies that any nearby orbit is determined by a matrix-couple

1 b 0 0 1 b 0 O
(| -1 d © az ¢* da 0 )
0 a 1 fil? |0 e ¢ fo
0 0 er —1 0 0 e 1

and as there is just one arrow in each direction these entries must satisfy
0=a1az2 = bibs = cico = didz = e1e2 = f1 f2
As the square of the first matrix must be the identity matrix s, we have in addition that
0=aiby =cidi =e1fa

Hence, we get several sheets of 3-dimensional families of representations (possibly, matrix-couples
lying on different sheets give isomorphic PS Lo (Z)-representations, as the isomorphism holds in the
étale topology and not necessarily in the Zariski topology). One of the sheets has representatives

1 0 0 0 1 b 0 0
a -1 d 0 0 ¢ 0 0

(OOIO’OCCf)
0 0 e —1 0 0 0 1

From the description of dimension vectors of semi-simple quiver representations it follows that such
a representation is simple if and only if

ab#0 cd#0 and ef #0

Moreover, these simples are not-isomorphic unless their traces ab, cd and ef evaluate to the same
numbers.
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Finally, one can use the local quiver-settings (Q¢, ae) to determine the isomorphism classes of
Gm,n-representations having a specified Jordan-Ho6lder sequence. For this we apply the theory on
nullcones developed in the foregoing chapter.

Example 7.10 In the above example, this nullcone problem is quite trivial. A representation has
M as Jordan-Hoélder sum if and only if all traces vanish, that is,

ab=cd=ef =0

Under the action of the group GL(ag) = C* x C* x C* x C*, these orbits are easily seen to be
classified by the arrays

a|c|e

bldlf

filled with zeroes and ones subject to the rule that no column can have two 1’s, giving 27 = 33-orbits.

7.5 Differential forms

In this section we will define the complex of noncommutative differential forms of an arbitrary C-
algebra A and deduce some extra features in case A is Quillen-smooth. In the following section we
will compute the noncommutative deRham cohomology spaces which will be of crucial importance
in the final chapter.

Let us recall briefly the classical (commutative) case. When A is a commutative C-algebra, the
A-module of Kéhler differentials QY is generated by the C-linear symbols da for a € A satisfying
the relations

d(ab) = adb + bda Va,be A

d . . o .
and the map A —~» QY is the universal derivation. By convention we define

)= A
Q4= Ni Q4

where the exterior product is taken over A (not over C). Observe that it is spanned by the elements
aopdai A ... A day that we usually write aoda; . .. das,.
The exterior differential operator
Qf —L ot
is defined by
d(aodas . ..dan) = daoday . . .dan

and gives rise to a sequence

0 d 1 d d d 1 d
A=0% Sl 5 0 S S ottt S
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which is a complex (that is, d o d = 0) called the deRham complex . The homology groups of this
complex

d
11
Ker Q% — Q)

HZRA: 1 d n
Im Q) — Q7

are called the de Rham cohomology groups of A (over C).
We will extend this to noncommutative C-algebras. We denote by dgalg the category of differ-
ential graded C-algebras , that is, an object R € dgalg is a Z-graded C-algebra

R = ®iczR;

endowed with a differential d of degree one

d d d d
. Ri71 HRZH Ri+1 —_— ...

such that dod = 0 and for all »r € R; and s € R we have

d(rs) = (dr)s + (—=1)"r(ds).

Clearly, morphisms in dgalg are C-algebra morphisms R %+ S which are graded and commute
with the differentials.

To a C-algebra A we will now associate the differential graded algebra € A of noncommutative
differential forms . Denote the quotient vector space A/C.1 with A and define

NMA=ARAR...QA
————

n

forn > 0and Q" A =0 for n < 0. For a; € A we denote the image of ap ® a1 ®...Ran in Q" A by
(a07"'7an)‘

Consider the vectorspace Q2 A = ®nez Q" A and define a product on it by

n

(ao, .. .,an)(an+1, .. .,CLm) = Z(—l)”_i(ao, ey Qi—1, AiQG41 5 Q425 - - .,am).
i=0

Further, define an operator d of degree one
TG0 (et N [ N o S0 QNI o LUy QLG

by the rule
d(ao,...,an) = (1,a0,...,an).
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Theorem 7.7 These formulas define the unique dgalg structure on 0 A such that
aodasi ...dan = (ao,a1,...,a0n).

Proof. In any R = ®;R; € dgalg containing A as an even degree subalgebra we have the following
identities
d(aoday .. .dan) = daodas . . .dan
(aodai ...dan)(ant1danye ... dam) = (=1)"apaidas . ..dam

+ Zz;l(—l)nizaod(h - d(aia¢+1) ...dam

which proves uniqueness.
To prove existence, we define d on Q2 A as above making the Z-graded C-vectorspace €2 A into
a complex as d o d = 0. Consider the graded endomorphism ring of the complex

End = ®nezEnd, = @nezHomeompies (20 A4, QT A).
With the composition as multiplication, End is a Z-graded C-algebra and we make it into an object
in dgalg by defining a differential
. 2+ Endn_y 2+ End, 2+ Endny1 —> ...
by the formula on any homogeneous ¢
Dp=dop—(—1)" ?pod.
Now define the morphism A . Endy which assigns to a € A the left multiplication operator
la(ao,...,an) = (aao,...,an)

and extend it to a map

QALEnd by li(ag,...,an) =lago D laio...0 D la,.

Applying the general formulae given at the beginning of the proof to the subalgebra [(A) —— End
we see that the image of [. is a differential graded subalgebra of End and is the differential graded
subalgebra generated by [(A).

Define an evaluation map End ——» Q A by ev(¢) = ¢(1). Because
D la;(1,ai41,- .- an) = d(ai, ai-1,...,an) —la;d(1,aiz1,...,an)
(L,ai,...,an)
we have that
ev(lago D layo...oD lay) = (ag,...,an)

showing that ev is a left inverse for [, whence [, in injective.
Hence we can use the isomorphism ©Q A ~ Im(l.) to transport the dgalg structure to 2 A
finishing the proof. a
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Example 7.11 (Noncommutative differential forms of C x C) Let A = C x C and e and f
the idempotents corresponding to the two factors. The quotient space A = A/C1 can be identified
with Ce and therefore

Q" CxC=(CxC)®Ce*" = (C x C)de".

The differential d is defined by the formula
d((ae + Bf)de") = (a = B)de™"!

and the product of 2 C x C is defined by the rule

(arye 4+ Bof)de™™™  when n is even

(C(e + ﬂf)de"(fye + 6f)dem = {(ade + B’Y.f)de”"'m When n is Odd

We will relate the algebra structure of Q A to that of A. The trick is to define another mul-
tiplication on Q A making it only into a filtered algebra. We then prove that this filtered algebra
is isomorphic to the I-adic filtration of an algebra constructed from A and we recover the dgalg
multiplication on 2 A by taking the associated graded algebra.

We introduce the universal algebra L4 with respect to based linear maps from A to C-algebras.
A based linear map is a C-linear map

AL+ R
where R is a C-algebra and p(1) = 1. The curvature of p is then defined to be the bilinear map

Ax A —» R defined by
/ / /
w(a,a’) = p(aa’) — p(a)p(a’)

that is, it is a measure for the failure of p to be an algebra map. Observe that w vanishes if either
a or a' is 1 so it can be viewed as a linear map

A®A —» R.
Let T(A) = ®,>0A®" be the tensor algebra of the vectorspace A and define

T(A)
T(A)1=14)T(A)

La=

where 14 is the identity of A consider as a 1-tensor in T'(A), then we have a based linear map
AL L, ar—a

n

where @ is the image in L4 of the 1-tensor a in T'(A). The map p"" is universal for based linear

maps A N R, that is, there is a unique algebra morphism L a Pe, R making the diagram
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commute

In particular, there is a canonical algebra map La g A corresponding to the identity map on
A. We define
Ta =Ker ¢pja<lla

and equip L4 with the [4-adic filtration.
For an arbitrary R € dgalg we define the Fedosov product on R to be the one induced by defining
on homogeneous r, s € R the product

r.s =1rs — (—1)% "drds

One easily checks that the Fedosov product is associative. Observe that if we decompose R = R*’ &®
R° into its homogeneous components of even (resp. odd) degree, then this new multiplication is
compatible with this decomposition and makes R into a Z/2Z-graded algebra.

We will now investigate the Fedosov product on 2 A. Let w“™ be the curvature of the universal

based linear map A ARG La.

Theorem 7.8 There is an isomorphism of algebras

La~(Q A, .)
between LLa and the even forms Q¢ A equipped with the Fedosov product given by
o

p""(ag)w " (a1, a2) ... w"" (a2n—1, azn) —> aodai ...daz,

Under this isomorphism we have the correspondence
]IZ ~ @anQQk A

The associated graded algebra gives an isomorphism

n

]I ev
gr;, La= @Hn_ﬁl ~ QA
A

with even forms equipped with the dgalg structure.
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Proof. Consider the based linear map A —» Q¢ A given by inclusion, then its curvature is given
by
w(a,a') = ad’ — a.a’ = dada’.

By the universal property of L4 there is an algebra morphism
La 2+ Q% A4, .)

such that ¢(p“"(a)) = a and ¢(w"™(a,a’)) = dada’. Observe that the Fedosov product coincides
with the usual dgalg product when one of the terms is closed , that is d r = 0. Therefore, we have

?(p"" (ap)w" ™ (a1, a2) ...w" " (a2n-1,a2n)) = aodai . . .dasn
On the other hand, as Q" A= A® A®*" we have a well defined map Q¢ A ¥, L4 given by

P(aopdas . . .dazn) = p""(ao)w"" (a1, a2) ... p"" (agn—1,a2n)

and it remains to prove that this map is surjective. The image of v is closed under left multiplication
as it is closed under left multiplication by elements p“"(a) (and they generate L) as

P (a).p" (ao)w " (a1,a2) ... w*™ (a2n—1, azn)
= p""(aao)w " (a1,a2) ... w" " (a2n—1,a2n) — w""(a,a0)w*"(a1,a2) ... w*" (azn-1, a2n)
Because the image contains 1 this proves the claim and the isomorphism.

Identify via this isomorphism L4 with Q°¥ A. Because dada’ € 14 we have Q% A —— I7% for
all k > n. Thus, Fr, = ®x>n Q% A —— T4. Conversely, [4 = Fi and hence

HZ:(Fl)ann

by the definition of the Fedosov product. Therefore, I’y = F;, and the claim over the associated
graded follows. 0

Example 7.12 (Even differential forms of C x C) As before, let e and f be the idempotents
of A = C x C corresponding to the two components. By definition,
T(Ce + Cf) C(E, F)

Lewe=G—cpy ~a-5-m ="

The universal based linear map is given by

e —F

Jun
CxC 2 B {f s
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and the curvature on A = Ce is given by
w"(e,e) = E — E?
Therefore the isomorphism between Q°” A and Ly = C[E] is given by

(ae + Bf)de®™ —Y> (aE + B(1 — E))(E — E*)".

The Fedosov product on Q°¥ A is given by the formula (using the multiplication formulas we found
above)

(ae + Bf)de . (ve + 5 f)de®™ = (arye + B5f)de” ™ — (o — B)(y — 6)de" 2 +?

In order to check that 1 is indeed an algebra morphism we need to verify that in C[E] we have the
equality

(@B + B(1 — E))(E — E*)"(yE + 6(1 — E))(E — E*)"
= (VB + A5~ B)(E ~ B)™*™ — (a - B)(y — 6)(E — B2+

which is indeed the case.

Further, T4 = C[E](E — E?) and indeed (};CE%Q) ~ C x C. Finally, under the identification ¢ we

obtain the usual multiplication of noncommutative differential forms from

(E - E*)" (E—- E*™ (E - EHntm

_ _ Q2n+2m A.
(E _ E2)n+1 x (E‘ _ E2)m+1 (E _ E2)n+m+1

O Ax Q™ A=

We now turn to all noncommutative differential forms 2 A. Observe that this algebra has an
involution o which is the identity on even forms and is minus the identity on odd forms. o is
an algebra automorphism both for the usual dgalg-algebra structure as for the Fedosov product.
Algebras with an involution are called super-algebras .

We want to construct an algebra universal for algebra morphisms from A to a super-algebra.
Consider the free product A x* A which is defined as follows. Let Bi be a vectorspace basis for
A — C.1 and Bz a duplicate of it. As a C-vectorspace A * A has a basis consisting of words

wzalblagbg...akbk or w:alblazbg..lak

for some k where the a;’s all belong to B: or all to B2 and the b;’s all belong to the other base set.
On this vectorspace one defines a C-algebra structure in the obvious way, that is by concatenating
words and if necessary (if the end term of the first word lies in the same base-set as the beginning
term of the second) use the multiplication table in A to reduce to a linear combination of allowed
words.
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f
The algebra A x A is universal with respect to pairs of algebra maps A —5 R from A to R.
g
That is, there is a unique algebra map =y

R

El

N

WY

A A

making the diagram commute. Here, i1 is the inclusion of A in A * A using only syllables in B;
and iz is defined similarly. The construction of v clearly is induced by sending a € B1 to f(a) and
b € By to g(b).

Further, interchanging the bases B —"+ B equips A * A with an involution, or if you prefer,

makes A x A a super-algebra. Now, let S be a super-algebra with involution os and let A Jos

be an algebra morphism, then there is a unique morphism of super-algebras ¢ making the diagram

commute
AxA

f
1 is the universal map corresponding to the pair of algebra maps A > S.
ogof

For any a € A we define the elements in A x A :

Jp—N—
i~
—~
S
N
SIS
—~
. S,
=
—
S
=
_|_
o
Y]
—~
Q
=

and we define Q4 < A * A to be the ideal of A x A generated by the elements ¢(a) for a € A, then

clearly
Ax A

Qa

We now have an analog of the previous theorem for all differential forms.

A~
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Theorem 7.9 There is an isomorphism of super-algebras
AxA~(Q A, .)

between A x* A and the moncommutative differential forms Q A equipped with the Fedosov product
given by
p(ao)gq(ar)...q(an) — aodas ...dan

Under this isomorphism we have the correspondence
Qi ~ ®r>0" A

and the associated graded algebra is isomorphic to Q A with the usual dgalg structure.

Proof. We have an algebra map A > QA equipped with the Fedosov product given by a — a+da
because

(a +da).(a' +da') = ad’ —dada’ + ada’ + daa’ + dada’
= aa’ + d(aa’)

By the universal property of A x A there is a super-algebra morphism

AxA Y QA P(p(a)) =a and v(g(a)) =da

But then using that the Fedosov product coincides with the usual product when one of the forms
is closed we have

Y(plao)g(ar) ... q(an)) = aodas ...dan

Conversely, we have a section to ¢ defined by

QA2 AxA aoday . ..dan — p(ao)g(ai)...q(an)

and we only have to prove that ¢ is surjective. The image Im ¢ is closed under left multiplication
by p(a) and g(a) as p(1) = 1 and

Because the elements p(a) and g(a) generate A x A, the image Im ¢ is a left ideal containing 1,
whence 7 is surjective.

The claims about the ideals Q" and about the associated graded algebra follow as in the proof
for even forms. |
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Example 7.13 (Noncommutative differential forms of C(z,y)) The noncommutative free
algebra in two variables C(z,y) is the path algebra of the quiver

x y

Ses

Clearly we have C(z,y) * C(z,y) = C(z1, y1, z2,y2) and the maps

p@) = b+ o2)  qle) =
=i +y) ay) =

(w1 — @2)
(y1 —y2)

N[ =N |

It is easy to compute the maps p and ¢ on any monomial in x and y using the formulae holding in
any Ax A

p(aa’) = p(a)p(a’) + q(a)q(a’)

q(aa’) = p(a)q(a’) + q(a)p(a’)
Further note that it follows from this that Qc(z,yy = (1 — 2,%1 — y2) and we have all the required
tools to calculate (in principle) with Q C(z,y).

Example 7.14 (Noncommutative differential forms of C x C) The infinite dihedral group
Do is the group with presentation

Doo = (a,b] a®> =1 =10
that is, an arbitrary element in Do, is a word of the form
a‘babab . .. abab’

where 4, § = 0 or 1. Multiplication is given by concatenation of words, using the relations a® = 1 =
b? when necessary.

The group algebra C[Doo] is the vectorspace with basis Do, and with multiplication induced by
the groupmultiplication in Do,. We now claim that

(C x C) * (C x C) ~ C[Dog]

Indeed, C x C ~ C[Z2] the group algebra of the cyclic group of order two, that is C[Z2] = Clx]/(2® —
1), the isomorphism being given by

1 1
One also has the obvious notion of a free product in the category of groups and from the definition
it is clear that
ZQ * ZQ ~ Doo
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and therefore also on the level of group algebras

The relevant maps C x C i’, C[Do] are given by

ple)=3+3(a+d)  qle)=1(a—b)
$—3la+b)  q(f)=—3(a—0)

and so Qcxc = (@ — b) 9C[Ds)]. Again, this information allows us to calculate with 2 C x C by
referring all computations to the more familiar group algebra C[Dso].

The above definitions and results are valid for every C-algebra A. We will indicate a few extra
properties provided the algebra A is Quillen-smooth.

We have the universal lifting algebra L4 for based linear maps from A to C-algebras and the
ideal 4 such that
La

Pid
A +——
]IA

The [ a-adic completion of L4 is by definition the inverse limit

]LA = 1lim ]LfA
- Ia

n

Assume that A is formally smooth, then for every k& we have an algebra map lifting %71

La
I
&\fv
A La
$ia t la

These compatible lifts define an algebra lift A L 4. This map can be used to construct algebra

lifts modulo nilpotent ideals in a systematic way. Assume I < R is such that I* = 0 and there is

an algebra map A s % We can lift p to R as a based linear map, say p. Now we have the
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following situation

can kol

La

A

~| =

Here, ¢, is the algebra map coming from the universal lifting property of L 4 and qu is its extension
to the completion. But then, i = ¢, o I*" is an algebra lift of p. That is,

Proposition 7.3 A is formally smooth if and only if there is an algebra section A — L4 to the
projection La — A defined by mapping out I 4.

We will give an explicit construction of the embedding A LI La. By formal smoothness we
have an algebra lift

ABQPA = A
HA
A\
A : A = La
id HA

which is of the form l2(a) = a — ¢(a) for a linear map A P Q2 A AsLy is freely generated by
the a € A — C1, we can define a derivation on L4 defined by

Li —2+Ls  D(a)=d(a) Vac A

This derivation is called the Yang-Mills derivation of A.
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Clearly D(L4) < 14 and we have
D(dada') = D(aa’ — a.a")
= D(aa’) — D(a).a’ — a.D(a")
¢(aa’) — ¢(a).a’ — a.g(a’)

’ / 2
aa — a.a mod I}

= dada’ mod ]I2A

the next to last equality coming from the fact that Iy is an algebra map. Hence, D = id on
L=0%4
2 ’
Further, D(I{) —— I’} and so D induces a derivation on the associated graded gri, La. As
this derivation is zero on A = ]HL—*: and one on %TA it is m on H,E%. But then we have by induction
A A
(D—=n)..(D—1)D(La) —» I3

Therefore, 11']’1:% decomposes into eigenspaces of D corresponding to the eigenvalues 0,1,...,n and
because D is a derivation this decomposition defines a grading compatible with the product.

.
Hence, we obtain an isomorphism of HE% with its associated graded algebra by lifting H,}I\% to

k

the eigenspace of D on H,,l}% corresponding to the eigenvalue k.

A
Taking the inverse limit as n —— oo we obtain an algebra isomorphism of L4 with the com-
pletion of its associated graded algebra, that is,

Qev A:H O A~Ta

In particular, the kernel of D is a subalgebra of La mapped isomorphically onto A by the canonical

surjection Ly, — A Hence, this subalgebra gives the desired universal lift A S L.
We can even give an explicit formula for [“". Let L be the degree two operator on Q2 A defined
by

2n
L(agdal e dagn) = ¢(a0)da1 e dazn + Z aoda1 e daj,1d¢(aj)daj+1 e dazn
j=1

and let H denote the degree zero operator on even forms which is multiplication by n on Q2" A.
Then, we have the relations

[HL)]=L and D=H+L



430 Noncommutative Manifolds

whence we have on QU A that
1
e "He" =H +e "[He"|=H +/ e "'[H,L)e'"dt = D
0
Therefore, the universal lift for all a € A is given by

I""(a) = e “a=a—¢la) + %Lqﬁ(a) — ..

Example 7.15 (The universal lift for C x C) Recall the correspondence between Q¢ C x C
and Lexe = C[E] given by

(ae+ Bf)de” — (aE + B(1~ E))(E - E*)"
Lifting e to ]f% we have to compute
(2—E)’E*=E+ (2E-1)(E - E*) 4+ (E - E*?
whence ¢(e) = (1—-2F)(E—FE?) and as f = 1—e we have ¢(f) = (2E—1)(E— E?). The Yang-Mills
derivation D on C[E] is hence the one determined by
ClE] 2> C[E]  D(E) = (1-2E)(E — E?).
To determine the universal lift of e we have to compute

. 1 1
[“"(e) =e— Le+ §L2e - 6L36+ e

and we have

L(e) = ¢(e) = (f — e)de®
L?(e) = L(f — e)de* = —6(f — e)de”
L%(e) = —6L(f — e)de* = 60(f — e)de®
L'(e) = ...

and therefore

I"“"(e) = E+ (2E —1)(E — E*) + 3(2E — 1)(E — E*)> + 102E — 1)(E — E*)® + ...

Another characteristic feature of formally smooth algebras is the existence of connections on
Q! A. If E is an A-bimodule, then a connection on E consists of two operators
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e A right connection : E Y, E®a Q' A satisfying

Vr(aed') = a(V,e)a' + aedd’,

o A left connection : E YLl ®a F satistying

Vi(aea') = a(Vie)a' + daed

Given a right connection V, there is a bimodule splitting s, of the right multiplication map m,

my
E®AA<4>E

given by the formula
sr(e) =e®1—3j(Vye) where jle®da)=ea®1l—e®a

Similarly, a left connection gives a bimodule splitting s; to the left multiplication map. Conse-
quently, if a connection exists on E, then E must be a projective bimodule.

Consider the special bimodule of noncommutative 1-forms Q' A, then as Q' AR QO A =0Q2? A
a connection on Q' A is the datum of three maps

4
A4 0’4
satisfying the following properties
Vi(aed) = aVi(e)a’ +(da)ea’
d(aea’) = a(de)d’ +(da)ea’ —ae(da’)
V,(aea') = aV,(e)d +ae(da’)

Hence, if V, is a right connection then d + V, is a left connection and if V; is a left connection
then V; — d is a right connection. Therefore, onesided connections exist on Q' A if and only if
connections exist and hence if and only if Q' A is a projective bimodule.

But then we have an A-bimodule splitting of the exact sequence

0—> QA s Q' Aga "+ Q' A—+ 0
where j(wda) =wa®1 —w ® a and m(w ® a) = wa.

Proposition 7.4 A connection exists on Q' A if and only if A is formally smooth.
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Proof. A bimodule splitting of the above map is determined by a retraction bimodule map p for
j.ASQ' AR A~ A® A® A, a bimodule map p

QAeA 0% A
is equivalent to a map A %+ 0% Avia p(apdar ® az) = app(aiaz). But then we have

pj(daidasz) =p((dai)az ® 1 — da1 ® das)
=p(d(aia2) ® 1 — a1(daz2) ® 1 — da1 ® a2)
=d(araz) — ard(az) — ¢(a1)az)

and splitting of the map means pj = i¢d that is that ¢ satisfies
¢(aa’) = ap(a’) + ¢(a)a’ + dada’
which is equivalent to an algebra lift

A e a
T4

Now, assume we have an algebra morphism

A—f>§ with  12=0

and lift f to a based linear map A —+ R. By the universal property of L4 we have an algebra lift
La L+ R
living over f. Therefore p*(T4) C I and therefore p* is zero on I giving an algebra morphism

]L *
L rp
HA

living over f. But then the existence of an algebra map ¢* as above gives a desired lifting f* o ¢*
of f, finishing the proof. O

For a map A % 0% Aas above, a connection is given by the formulae

V.(ada') = ap(a’) and V.(adad") = ag(a’) + dada’
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Example 7.16 (Connection on C(z,y)) Clearly we have Q' C{z,y) = C(z, y)®Cz+CyC(z, y)
which is the free bimodule generated by dx and dy. There is a canonical connection with

¢(z) =0 and V(dz)=
r(dy) =0

v
#(y) =0 and Vi(dy) =V

The image of ¢ on any word z; ...z, with z; = x or y is given by the formula

d(z1...2n) =Ved(z1 ... 2n)

7vr Zzl L Ri—1 d21)21+1 Zn)

= Z Z1 ... Zi—1 dzl)d(ziﬂ c. Zn)

Example 7.17 (Connection on C x C) We have calculated above that the lifting map ¢ is de-
termined by

¢(e) = (1 = 2E)(E — E*) = (f — e)de”
Therefore the corresponding left and right connections are given by

Vi((ae + Bf)de) = (Bf — ae)de
Vi((ae+ Bf)de) = (af — Be)de

7.6 deRham cohomology

In this section we will compute various sorts of noncommutative deRham cohomology . We have for
an arbitrary C-algebra A the complex of noncommutative differential forms

d d

A=A -4 ot a2 Qm A4 ortt o4 4

A first attempt to define noncommutative de Rham cohomology is to take the homology groups of
this complex, we call these the big noncommutative de Rham cohomology

Ker Q" A —%s Qntl A
ImQn-1A4—4 qQna

Hpy A=
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Example 7.18 (Big de Rham cohomology of C x C) We have seen before that Q" C x C =
(C x C)de™ and that the differential is given by

Q"CxC 4  Qtlcxc

(e + Bf)de™ — (a— ﬁ)de"+1

From which it is immediately clear that

Hy, CxC= C
H2,CxC= 0

for all n > 1. This is not quite the answer H° Cx C = C&C we would expect from the commutative
case.

For a general C-algebra A it is usually very difficult to compute these cohomology groups. In case
of free algebras we can use the graded structure of the complex together with the Fuler derivation
to compute them, a trick we will use later in greater generality.

Example 7.19 (Big de Rham cohomology of C(z,y)) Define the FEuler derivation E on

C{x,y) b
) by E(z)==z and Ely)=y

Observe that if w is a word in  and y of degree k, then we have the Eulerian property that
E(w) = kw

as one easily verifies.
We can define a degree preserving derivation Lg on the differentially graded algebra Q C(z,y)
by the rules
Lg(a) = E(a) and Lg(da) = dE(a) Va € C(z,y)

Further we introduce the degree —1 contraction operator ig which is the super-derivation on
Q C{z,y) , that is,
ip(ww) =ip(W)w + (—1)'wip(W) forwe Q' Clz,y)
defined by the rules
ig(a) =0 ig(da) = E(a) Va € C(z,y).
That is, we have the following situation

d d

/\ /“\
Qrt Qn Q!
O — OO

LE LE
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These operators satisfy the equation
Lg =igod+doig

as both sides are derivations on Q C{z,y) and coincide on the generators a and da for a € C{z,y)
of this differentially graded algebra.
We claim that Lg is a total degree preserving linear automorphism on

Q" Clz,y) for n > 1.
For if w; for 0 < i < n are words in =z and y of degree k; with k; > 1 for ¢ > 1, then we have
LE(wodw1 - dwn) = (ko 4 ...+ kn)wodwl .o dwy,.

Using the words in z and y as a basis for A we see that the kernel and image of the differential d
must be homogeneous. But then, if w is a multi-homogeneous element in Q" C(z,y) and in Ker d
we have for some integer k # 0 that

kw=Lgw)=(irod+doig)w=d(ig w)

and hence w lies in I'm d. Therefore, we have proved

Hpg Clz,y) = 0

for all n > 1.

The examples show that the differentially graded algebra Q A is formal for A = Cx C or C(z,y).
Recall that for an arbitrary A.c-algebra © (in particular for 2 € dgalg), the homology algebra H* Q
has a canonical Ax-structure . That is, we have m; = 0, mz is induced by the 'multiplication’ ms
on  and there is a quasi-isomorphism of As-algebras H* Q@ — Q lifting the identity of H* Q.

The Asc-algebra  is said to be formal if the canonical structure makes H* €2 into an ordinary
associative graded algebra (that is, such that all m, = 0 for n > 3). In particular, if @ = Q A and
if the big deRham cohomology is concentrated in degree zero, then the degree properties of m,,
imply that m, = 0 for n > 3 and hence that Q A is formal.

Let A be an arbitrary C-algebra and 6 € Derc A, the Lie algebra of C-algebra derivations of A,
then we define a degree preserving derivation Lg and a degree —1 super-derivation ig on Q2 A

d d
/M\Q N
' A " QA
UVQWJ

Lo
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defined by the rules

Lg(a) = 6(a) Lg(da) = d 6(a)
ig(a) =0 io(da) = 6(a)

for all a € A. In this generality we again have the fundamental identity
Lo =igod+doig

as both sides are degree preserving derivations on 2 A and they agree on all the generators a and
da for a € A.

Lemma 7.2 Let 6,y € Derc A, then we have on Q A the following identities of operators

Lg e} i'y — i,y o Lg = [Le, i,y] = Z'[gy,y] = igoA,_,yog
LooL,—LyoLg=[Lo,Ly] = Lig~ = Looy—ros

Proof. Consider the first identity. By definition both sides are degree —1 super-derivations on 2 A
so it suffices to check that they agree on generators. Clearly, both sides give 0 when evaluated on
a € A and for da we have

(Lo 0iy —iy 0 Lg)da = Lo v(a) — iy d 0(a) =0 v(a) — v 0(a) = i[g,4(da)

A similar argument proves the second identity. O

Let @ be a quiver on k vertices {v1,...,vr}, then we can define an Euler derivation E on CQ
by the rules that
E(w;))=0V1<i<k and E(a) =aVa € Qa

By induction on the length I(p) of an oriented path p in the quiver @ one easily verifies that
E(p) = l(p)p. By the lemma above we have all the necessary ingredients to redo the argument in
example 7.19.

Theorem 7.10 For a quiver Q on k vertices, the noncommutative differential forms Q CQ is
formal. In fact, we have for the big deRham cohomology

Hp,, CQ ~Cx...xC (k factors)
Hy;, CQ ~0 Vn>1
For w € Q' A and o’ € Q7 A we define the super-commutator to be

[w, 0] = ww — (-1)9w'w
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That is, it is the usual commutator unless both i and j are odd in which case it is the sum ww’ +w’w.
As the differential d is a super-derivation on 2 A we have that

d(jw,w']) = [dw,w'] + (—l)i[w, dw']

and therefore the differential maps the subspaces of super-commutators to subspaces of super-
commutators. Therefore, if we define

Q" A

PRY A= s 1o 4, an 7 4]

Then the dgalg-structure on €2 A induces one on the complex

0 d 1

A%+ DR 2

DR A2+ DR?A -4
which is called the Karoubi complex of A.
We define the noncommutative de Rham cohomology groups of A to be the homology of the

Karoubi complex, that is
Ker DR A —%» DR™! A

Hip A = -
ImDR" ' A —» DR" A

Example 7.20 (Noncommutative de Rham cohomology of C x C) Recall that the product
on 2 C x C is given by the formula

(aye + B3 f)de™™  when n is even
(ade + Byf)de™™  when n is odd

(ae + Bf)de" (ve + o f)de™ = {
If m is odd, then we deduce from this that the commutator
[ae + B, (ve + 5f)de™] = (a = B)(ve — 6.f)de™
and hence we can write any element of Q™ C x C = (C x C)de™ as a (super) commutator, whence
DR" CxC=0 when m is odd.
On the other hand, if m is even then any commutator with & even
[(ae + Bf)de®, (ve + 6 f)de™ ] =0

whereas if k£ is odd we have

[(ae + Bf)de", (ve + 3 f)de™ *] = (ad + B)de™
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As a consequence the space of super-commutators in Q2™ C x C is one dimensional and therefore
DR CxC=C when m is even and > 0.

Thus, the Karoubi complex of C x C has the following form

CxC o 2sc4 o440 .

and therefore we have for the noncommutative de Rham cohomology groups

CxC when n =0
HirCxC=<0 when n is odd
C when n is even and > 0.

Example 7.21 (Noncommutative de Rham cohomology of C(z,y)) Consider again the
Eulerian derivation E on C(z,y) and the operators Lg and ig on 2 C(z,y). Repeating the above
argument that d is compatible with the subspaces of super-commutators for i and L we see
that we have induced operations

d d
/“\ /“\
DR" ! DR" DR™

Lg 22 Lg 22 Lg

We have again that Lg is an isomorphism on DR"™ C(z,y) whenever n > 1 and again we deduce
from the equality Lg = ig od 4+ doig that

n C whenn=0,
Hir C{z,y) = {0

when n > 1.

Theorem 7.11 Let Q be a quiver on k vertices, then the Karoubi complex of CQ is acyclic. In
particular,

HI CQ ~Cx...xC (k factors)

Hir CQ ~0 Vn>1

So far we have considered differential forms with respect to the basefield C. Sometimes it is
useful to consider only the relative differential forms on A with respect to a subalgebra B. These
can be defined as follows.
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Let Ap be the cokernel of the inclusion B —— A in the category B — bimod of bimodules over
B. We define the space of relative differential forms of degree n with respect to B to be

O A=A®Rp Ap®p...®8 AB
—_

By definition Q% A is the quotient space of Q™ A by the relations

) :(a07...,aifl,bai,.,.,an)
) =0

for all b € B and 1 <14 < n. One verifies that the multiplication and differential defined on Q2 A are
compatible with these relations, making Qg A an object in dgalg. Moreover, there is a canonical
epimorphism

(a07...,ai,1b,ai,..,,

Qan,
(a07. ey @—1,8,Q541,-..,0n

QA—» Qp A in dgalg.

We will now determine the kernel. First we give the universal property for Qg A. Given I' = T

in dgalg and an algebra map A L+ T° such that d(f B) = 0, then there is a unique morphism
in dgalg making the diagram commute

A fo,r°

Indeed, by the universal property of {2 A there is a unique morphism €2 A Y Tin dgalg extending
f given by

fx(aodas .. .dan) = f(ao)d(f(a1))...d(f(an)).

If d(f B) = 0 then one verifies that f. is compatible with the relations defining Qg A, proving the
universal property.

Proposition 7.5 For a subalgebra B of A we have an isomorphism in dgalg

QA

QBA:QAd(B)QA

Proof. The ideal generated by d(B) is closed under d and therefore the quotient is an object in
dgalg with the same universal property as Qg A. a



440

Noncommutative Manifolds

An important special case is when B = C x ... x C is the subalgebra of CQ generated by the
vertex-idempotents. In this case we will denote

Qre CQ =08 CQ

and call it the relative differential forms on Q.

Lemma 7.3 Let Q be a quiver on k vertices, then a basis for Qr,; CQ is given by the elements
podpi .. .dpn,

where p; is an oriented path in the quiver such that length po > 0 and length p; > 1 for 1 <i<n
and such that the starting point of p; is the endpoint of pix1 for all 1 <i<mn—1.

Proof. Clearly I(p;) > 1 when ¢ > 1 or p; would be a vertex-idempotent whence in B. Let v be
the starting point of p; and w the end point of p;4+1 and assume that v # w, then
Pi @B Pit1 = PiV B WPi+1 = PivWw @B Pi+1 =0

from which the assertion follows. O

We define the big relative de Rham cohomology groups of A with respect to B to be the coho-
mology of the complex

0% A2 oL a2 03 a4
that is,
Ker Q" A —%s Qntl A
ImQn-1A4 % qna

In the case of path algebras of quivers, we can use the grading by length op paths and the Eulerian
derivation to compute these relative de Rham groups.

Hp A=

Example 7.22 (Big relative de Rham cohomology) Let M (resp. CxC) be the path algebras
of the quivers
x y

©

resp. @
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The Eulerian derivation £ on M is defined by
E(e)=E(f)=0 E(@@) =z Ely)=y E{u)=u and E(v)=v.
Observe that E respects all relation holding in M and so is indeed a C x C- derivation of M.

As before we define a degree preserving derivation Lg and a degree —1 super-derivation ig on
Qret M = Qcxe M by the rules

Lg(a) = E(a) Lg(da) = dE(a)
ig(a) =0 ig(da) = E(a)
for all @ € M. We have the equality
Lg =igod+doig

and arguing as before we obtain that

', M — CxcC when n =0,
0 when n > 1.

Theorem 7.12 Let QQ be a quiver on k vertices, then the relative differential forms Q.1 CQ is a
formal differentially graded algebra. In fact,

H?, CQ ~Cx...xC (k factors)
H, CQ =~0 Vn>1

We can repeat the construction of the Karoubi complex verbatim for relative differential opera-
tors and define a relative Karoubi complex

DROBA—d>DR}3A—d>DR?3A—d>
where
O A

DRp A= —; , Pyt
izo [ 5 4,95 A]

Clearly , we then define the noncommutative relative de Rham cohomology groups of A with respect
to B to be the homology of this complex

Ker DR A —2» DR A
n—1 d n
ImDRE " A —2» DRY, A

Hpar A=
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Let 8 € Derp A, that is 0 is a C-derivation on A such that 6(b) = 0 for every b € B. Then, as
Lo(db) =d 6(b) =0 and 19(db) = 6(b) =0
we see that the operators Ly and ig can be defined on the relative forms

QA

Qe d=giBaa

and also on the relative Karoubi complex. Again, these induced operators satisfy the identities of
lemma 7.2. In the special case of the Eulerian derivation E on the path algebra CQ we see that
FE € Derp CQ and hence we have the following result.

Theorem 7.13 Let Q be a quiver on k vertices. Then, the relative Karoubi complex is acyclic.
That is,

HSel,dR CQRQ ~Cx...xC (k factors)
H'gn CQ ~0  ¥n>1

7.7 Symplectic structure

Let @ be a quiver on k vertices {vi,...,vr}. We will determine the first terms in the relative
Karoubi complex. Define

Q:Lel CQ
2icol e CQ, Q7 CQ

dR:el (CQ =

In the commutative case, dR° are the functions on the manifold and dR' the 1-forms. We will
characterize the noncommutative functions and noncommutative 1-forms in the case of quivers.

Recall that a mecklace word w in the quiver @ is an equivalence class of an oriented cycle
c=a1...a; of length I > 0in Q, where ¢ ~ ¢’ if ¢’ is obtained from ¢ by cyclically permuting the
composing arrows a;.

Lemma 7.4 A C-basis for the noncommutative functions

cQ

0 ~
dR;.c; CQ — [ CQ,CQ ]

are the necklace words in the quiver Q.
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Proof. Let W be the C-space spanned by all necklace words w in () and define a linear map

co "W p— wp ¥fp¥sacycle
p—0 if p is not

for all oriented paths p in the quiver @), where w), is the necklace word in @ determined by the
oriented cycle p. Because wp, p, = Wp,p, it follows that the commutator subspace [CQ, CQ] belongs
to the kernel of this map. Conversely, let

r=x0+T1+...+Tm

be in the kernel where xo is a linear combination of non-cyclic paths and z; for 1 < i < m is a
linear combination of cyclic paths mapping to the same necklace word w;, then n(z;) = 0 for all
i > 0. Clearly, 7o € [CQ,CQ] as we can write every noncyclic path p = a.p’ = a.p’ — p’.a as a
commutator. If x; = aip1 +agpz +. .. + aip; with n(p;) = w;, then p1 = q.q' and p2 = ¢’.q for some
paths ¢, q" whence p; — p2 is a commutator. But then, x; = a1(p1 — p2) + (a2 — a1)p2 + ... + aip
is a sum of a commutator and a linear combination of strictly fewer elements. By induction, this
shows that z; € [CQ,CQ]. O

If we fix a dimension vector «, then taking traces defines a map

dR® CQ —» C[rep, Q]

whence noncommutative functions determine G'L(c)-invariant commutative functions on the rep-
resentation space rep, @ and hence commutative functions on the quotient varieties iss. Q.
In fact, we have seen that the image tr(dR° CQ) generates the ring of polynomial invariants

Clrep,, Q" = C[issa Q.

Lemma 7.5 dR!,, CQ is isomorphic as C-space to

oo
O weenw=- @ O 0100
Proof If p.q is not a cycle, then pdq = [p,dq] and so vanishes in dR;., CQ so we only have to
consider terms pdq with p.q an oriented cycle in Q. For any three paths p,q and r in @ we have
the equality
[p-qdr] = pqdr — qd(rp) + qrdp
whence in dR}_; CQ we have relations allowing to reduce the length of the differential part

qd(rp) = pqdr + qrdp
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so dR!_, CQ is spanned by terms of the form pda with ¢ € Q. and p.a an oriented cycle in Q.
Therefore, we have a surjection

0aCQ —> P v.CQu;da
By construction, it is clear that [0, CQ, ., CQ)] lies in the kernel of this map and using an
argument as in the lemma above one shows also the converse inclusion. O

Example 7.23 (dRi M) Take the path algebra M of the quiver of example 7.22. Noncommuta-

rel
tive functions on M are the O-forms, which is by definition the quotient space

M
0 —
dRye M = [V, M ]

If p is an oriented path of length > 1 in the quiver with different begin- and endpoint, then we can
write p as a concatenation p = p1p2 with p; an oriented path of length > 0 such that papi; = 0 in
M. As [p1,p2] = p1p2 —p2p1 = 0 in dR%,; M we deduce that the space of noncommutative functions
on M has as C-basis the necklace words w

g5
O

where each bead is this time one of the elements
sz @zy and E:uv

together with the necklace words of length zero e and f. Each necklace word w corresponds to the
equivalence class of the words in M obtained from multiplying the beads in the indicated orientation
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and and two words in {z,y,u,v} in M are said to be equivalent if they are identical up to cyclic
permutation of the terms.
Substituting each bead with the n x n matrices specified before and taking traces we get a map

0 o M tr
dR;o; M = 7[ M. M ] Clrep, M]

Hence, noncommutative functions on M induce ordinary functions on all the representation spaces
rep, M and these functions are GL(«)-invariant. Moreover, the image of this map generates the
ring of polynomial invariants as we mentioned before.

Next, we consider noncommutative 1-forms on M which are by definition elements of the space

Q'}el M
[M, Q7. M]

rel

dR}y, M =

Recall that Q!_, M is spanned by the expressions podp; with po resp. p; oriented paths in the
quiver of length > 0 resp. > 1 and such that the starting point of pg is the end point of p1. To
form dR}.; M we have to divide out expressions such as

[ p, podp1 | = ppodp1 + poprdp — pod(p1p)

That is, if we have connecting oriented paths ps and p; both of length > 1 we have in dR.,, M

pod(p1p2) = p2podp1 + pop1dp2

and by iterating this procedure whenever the differential term is a path of length > 2 we can
represent each class in dR}.,; M as a combination from

Me dx + Me dy + Me du + Mf dv
Now, Me = eMe + fMe and let p € fMe. Then, we have in dR%,; M
d(zp) =pdz+axdp

but by our description of Q! M the left hand term is zero as is the second term on the right, whence
p dr = 0. A similar argument holds replacing z by y. As for u, let p € eMe, then we have in
ARy M
d(up) =p du+udp
and again the left-hand and the second term on the right are zero whence p du = 0. An analogous
result holds for v and p € fMf. Therefore, we have the description of noncommutative 1-forms on
M
dR;., M = eMe dx + eMe dy + fMe du + eMf dv
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That is, in graphical terms

y

M

0
Rol ool

dR'}'el M

&G 00+ @i

Using the above descriptions of dR®,; CQ for i = 0, 1 and the differential dR%,; CQ 4 drl,;, CQ
we can define partial differential operators associated to any arrow in Q.
9, drY,, CQ —» v;CQuv; by  df = 91 4a
a

ool da

To take the partial derivative of a necklace word w with respect to an arrow a, we run through

w and each time we encounter a we open the necklace by removing that occurrence of a and then
take the sum of all the paths obtained.

Example 7.24 For the path algebra M we have the partial differential operators

O—0d Oo—0

e AN S AN
O O O O
Ow / I ow / I
o = 2 i " lgﬂ i 2 @ f@
E] O O E] O O

AN e AN e

O—0 O—0O

O—0 O—0O

e AN e AN
O O O O
/ \ / X
B-X 0 @ »-r o @
\ \ /

AN e AN e
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Recall that a symplectic structure on a (commutative) manifold M is given by a closed differential
2-form. The non-degenerate 2-form w gives a canonical isomorphism

TM~T"M

that is, between vector fields on M and differential 1-forms. Further, there is a unique C-linear
map from functions f on M to vectorfields §; by the requirement that —df = i¢,w where i¢ is the
contraction of n-forms to n — 1-forms using the vectorfield £&. We can make the functions on M
into a Poisson algebra by defining

{£.9} = w(€,&)

and one verifies that this bracket satisfies the Jacobi and Leibnitz identities.
The Lie derivative L¢ with respect to £ is defined by the Cartan homotopy formula

Le o =igdp + dicy

for any differential form . A vectorfield £ is said to be symplectic if it preserves the symplectic
form, that is, Lew = 0. In particular, for any function f on M we have that £; is symplectic.
Moreover the assignment

J— &
defines a Lie algebra morphism from the functions O(M) on M equipped with the Poisson bracket
to the Lie algebra of symplectic vectorfields, Vect, M. Moreover, this map fits into the exact

sequence
0 —> C—» O(M) —» Vecty M — Hijp M — 0

Recall the definition of the double quiver Q¢ of a quiver Q given in section 5.5 by assigning to
every arrow a € Q, an arrow a” in Q‘i in the opposite direction.

Definition 7.3 The canonical noncommutative symplectic structure on the double quiver Q% is
given by the element

w= Z dada™ € dR2,; CQ*
a€Qa
We will use w to define a correspondence between the noncommutative 1-forms dR}.; CQ® and

the noncommutative vectorfields which are define to be B = C%v-derivations of the path algebra
CQ?. Recall that if § € Derg CQ? we define operators Ly and 79 on Q@ CQ? and on dR CQ? by the

rules
Lo(a) = 6(a) Lo(da) = db(a)
ig(a) =0 io(da) = 6(a)

and that the following identities are satisfied for all 8, € Derp CQ?

[Lg, LW} = L[g,,y] and [ig, i"/] = ’L'[gy,y]
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These operators allow us to define a linear map
Derp CQ —— dR},; CQ by  7(0) =is(w)

We claim that this is an isomorphism. Indeed, every B-derivation § on CQ? is fully determined by

its image on the arrows in Q¢ which satisfy if a =

0(a) = 0(vjav:) = v;0(a)v; € v;CQ%;

so determines an element (a)da* € dR},; CQ®. Further, we compute

ig(w) = Y ig(da)da™ — ig(da*)da
a€Qq

Z O(a)da® — 0(a™)da

a€Qa

which lies in dR},; CQ?. As both B-derivations and 1-forms are determined by their coefficients, 7
is indeed bijective.

Example 7.25 For the path algebra of the double quiver M, the analog of the classical isomorphism
T M ~T* M is the isomorphism

Dercyxe M - dR!, M
as for any C x C-derivation 6 we have

19 w = tg(dzx)dy — dxie(dy) + ig(du)dv — duie(dv)
= 0(z)dy — dzb(y) + 6(u)dv — dub(v)
= 6(z)dy — 0(y)dz + 0(u)dv — 0(v)du

and using the relations in M we can easily prove that any C x C derivation on M must satisfy
O(z) € eMe 0(y) € eMe 6(u) € eMf 6(v) € fMe

so the above expression belongs to dR!., M. Conversely, any 6 defined by its images on the
generators z,y, u and v by

—0(y)dx + 0(z)dy — 0(v)du + O(u)dv € dR;yo; M

induces a derivation on M.
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In analogy with the commutative case we define a derivation 6 € Derg CQ? to be symplectic
if and only if Lew = 0 € dRZ,, CQ?. We will denote the subspace of symplectic derivations by

rel
Der, CQ. It follows from the noncommutative analog of the Cartan homotopy equality

Lo =19pod+doig
and the fact that w is a closed form, that 8 € Der,, CQ? implies
Low = digw =7(0) =0

That is, 7(0) is a closed form which by the acyclicity of the Karoubi complex shows that it must
be an exact form. That is we have an isomorphism of exact sequences of C-vectorspaces

0 » B > ngel (CQd —db (dRTI‘EZ CQ)ewact 0
- ~ T

0 B > cQ’ Der,, CQ* 0
[CQ7,CQT] )

n the next section we will show that this is in fact an exact sequence of Lie algebras.

7.8 Necklace Lie algebras

Let Q be a quiver on k vertices, Q% its double and w = ZaEQa dada™ the canonical symplectic form

on CQ?. Recall from last section the definition of the partial differential operators a% for an arrow
< Ad
ain Q°.

Definition 7.4 The Kontsevich bracket on the necklace words in Q%, dR2,; CQ? is defined to be

_ 811)1 8w2 Bwl % d d
{wr, walee = Z ( da da* da* da ) mod [CQ7, CQ]

a€Qa

That is, to compute {w1, w2}k we consider for every arrow a € Q. all occurrences of a in wq and
a” in wy. We then open up the necklaces removing these factors and gluing the open ends together
to form a new necklace word. We then replace the roles of a* and a and redo this operation (with
a minus sign), see figure 7.4. Finally, we add all the obtained necklace words.
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e — 0 e —o
yd AN e AN
. ° ° °
° 6;1 . . {2}2 .
\ / /
. o ° ° o °
> \.g_/*./ B \0//—:0/
a€Qq P N VR N
. o* . ° o* °
° &,]\2 . ° 17)\1 °
° ° ° °
AN yd AN e
e — 0 e —o

Figure 7.4: Kontsevich bracket {w1, w2} k.

Example 7.26 For the path algebra M the canonical symplectic form is w = dzdy + dudv. Using
the above graphical description we have that the Kontsevich bracket {w1, w2}k is equal to

_ O
D/D D\D/D/ ls
/ I )
Z | wy TE%I» w2 l/j
oo N
0 0 O O
N e N s
0—0 0—0
_ O
D/D D\D/—EI/ O
/ I )
- Z | 1?1 \2;@ % 16\2 l/j
[o].[¢] \D 3 a 0
N e AN s



7.8. Necklace Lie algebras 451

_ 0
D/D D\D o~ O
y \ / \
+ > O o / 0y /D
i\ it o
Sg—n” 0—0
_ 0
D/D D\D/D/ ln
/ T S \
- Z O 1?1 /\ 1?2 /
i Y A 0 0
N e AN e
0—0 0—0o

Using this graphical description of the Kontsevich bracket, it is an enjoyable exercise to verify
that the bracket turns dr2,, CQ? into a Lie algebra. That is, for all necklace words w;, the bracket
satisfies the Jacobi identity

{{w1, w2k, w3}k + {{w2, ws}r, w1} x + {{ws, w1}k, w2}x =0

~ ~ ~ ~ AN ~ ~
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
S o A S
[ ] [ ] [ ] [ ] [ ] [ ] [ ] . [ ]
Vo vy Vo A
) a ° ° a ) ) ° ) °
\.//-D./ \.ﬁ./ \.H-/. \.//-/j.
./ \;-*/ \. ./ E*/ \. ./ b \. ./ \;;/ \.
s /0 T 2 A
[ ] [ ] —_ [ ] [ ] —_ [ ] [ ] [ ] [ ]
whEQay MRy Vo Vo vy
[ ] [ ] [ ] [ ] [ ] @ [ ] [ ] a [ ]
\.//-:./ \./Hj/\./ \./-H. \.//3.
./ ;(/ \. ./ :*/ \. ./ :*/ \. ./ :*/ \.
;T ST / \ ;T
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
vy vy vy vty
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
AN e AN e AN p AN e
o — 0 e — 0 e — 0 e — 0

Hwi,waetr, w3tk
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e — 0 e — 0
7 AN 7 AN 7 N 7 N
[ ) [ ] [ ] [ ) [ ] [ ] [ ) [ ]
/A /A /A /A
[ [ ) [ ] . [ ) [ ] [ ] [ ) [ )
Vo Vo vty Vo
) a ) [ ) a ) ) [ ) ) )
\.i/-/*./ \.//-:./ ./—/—/./ ./—/—/./
./ :*/ \. ./ :*/ \. [ :*/ \. ./ b \.
s/ /o rot . ot
[ ) [ [ ] [ ) —_ [ ] [ ] [ ) [
wrEQey Ty Vo vy Vo
[ ) [ ] [ ] [ ) [ ] a [ ] [ ) a [ ]
\.ifj./ \.//-D./ ./—/—/./ .H—/./
o Y e o Y e o Y e N
/ot o /o o
[ ) [ ] [ ] [ ) [ ] [ ] [ [
vty vty vy vy
[ ) [ ] [ ] [ ) [ ] [ ] [ ) [ ]
\.—./ \.—./ \.—./ \.—./
{{wz, ws}x, w1}k
e — 0o e — 0 e — 0 e — 0
pd AN 7 AN 7 AN pd AN
[ ) [ ] [ ] [ ) [ ] [ ] [ ) [ ]
/I /o I I
[ [ [ ] [ ) [ ] [ ] [ [
vy Vo vty Vo
) a ) ) a ) ) ) ) )
Oi/-/*./ \.//-:./ .//-:/0/ Oi/-/*./
o Y e o X e N v N v
s /0 /A /A . /A
[ ) [ ] —_ [ ] [ ) —_ [ ] [ ] [ ] [ ]
whEQey My Vo vy vy
) > ) ) ) ) a [ ) ) a )
\o'//-/-/\\o/ \oﬁo/ o/+/o/ o/—/—/o/
o/ :f \o o/ Y,f/ \o ° :f \o ° Py \o
rot o It S
[ ) [ ] [ ] [ ) [ ] [ ] [ ) [ ]
vy vy vy vy
[ ] [ ] [ [ ] [ ] [ [ ] [ ]
\.—./ \.—./ \.—./ \.—./

Term la vanishes against 2c¢, term 1b against 3d, 1c against 3a, 1d against 2b, 2a against 3¢ and 2d
against 3.
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Recall the exact commutative diagram from last section
d
ngel CQd - (dR}‘el (CQ)ezact — 0

B

0

~

cQ*
"B [eqicqq Pt

Clearly, the symplectic derivations Der,, CQ? are equipped with a Lie algebra structure via [01,02] =

91 092—02091.

For every necklace word w we have a derivation 6, = 7~ *dw which is defined by

ew(a) = Ba~
Ow(a™) =—-2v

With this notation we get the following interpretations of the Kontsevich bracket

, (dw) = Le,, (w)

w

{w1, w2}k = 19, (i6,,w) = Le,, (w2) = —Le,,, (w1)
where the next to last equality follows because ingw = dw, and the fact that ¢
for any w. More generally, for any B-derivation 6 and any necklace word w we have the equation
i9(ig,,w) = Lo(w)

By the commutation relations for the operators Ly and ig we have for all B-derivations 6#; the
equalities
Lo, 16,%0;w — 165%05 Lo, w = [L91 , igz]iggw + 16, Lo, to5w
- 192 L91 i93w + i92 [L91 ) i03]w

= U[01,05]103W + 165 1[9,,05]W

By the homotopy formula we have Ly, w = 0 for every necklace word w, whence we get

L9w1 1021030 = 1[0y, ,05]%05W T 1022[0,,, ,05]W

Take 02 = 0.,,, then the left hand side is equal to
Lo, %0, %0sw = —Le,, 19510,,,w

= —Le,, Lo;w2
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whereas the last term on the right equals

L0y UBuwy ,631W = T 0w, 03] 10w, W

= —Lg,,, 65]W2 = —Ltneta,, Logw2 + Log Lo, w2

wy s
and substituting this we obtain that

i[ ig;w = —Lg,, Le;wa + Lg,, Lo;wa — Lo, L9w1 wa

9w1 ﬂwz] wiq wq

= _L93L9w1 w2 = —L93 {U)l,U)Z}K

= 7i93i9{u71,w2}KW = Z'G{wl,wz}Kiea"-’

Finally, if we take 6 = [0w,, Ow,] — 0w, wa}, We have that igw is a closed 1-form and that igig,w =
—ip,tgw = 0 for all 3. But then by the homotopy formula Lg,ipw = 0 whence igpw = 0, which
finally implies that & = 0. This concludes the proof of :

Theorem 7.14 With notations as before, the necklace words dRC,, CQ? is a Lie algebra for the
Kontsevich bracket, and the sequence

T—l
0 —» B —» dr%, CQ* T Der, CQ* —» 0
is an ezact sequence (hence a central extension) of Lie algebras.

This result will be crucial in the study of coadjoint orbits in the final chapter.
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So far, the more interesting applications of the theory developed in the previous chapter have not
been to noncommutative manifolds but to families (Y3, )., of varieties in which the role of Quillen-
smooth algebras is replaced by Cayley-smooth algebras and where the sum-maps are replaced by
gluing into a larger space. In this chapter we give the details of Ginzburg’s coadjoint-orbit result
for Calogero-Moser phase space which was the first instance of such a situation.

Hilb,, C?

s" C? » Calo,

Here, Hilb,, C? is the Hilbert scheme of n points in the complex plane C? which is a desingularization
of the symmetric power S™ C2. On the other hand, S™ C? can be viewed as the special fiber of
a family of which the general fiber is isomorphic to Calo,, the phase space of Calogero-Moser
particles. Calo, is a smooth affine variety and we will see that it is isomorphic to triss, A, for
some Cayley-smooth order A,, € alg@n. Surprisingly, forgetting the complex structure, Calo,, itself
is diffeomorphic (as a C*°-manifold) to Hilb, C? via rotations of hyper-Kéhler structures.

George Wilson has shown that the varieties Calo, can be glued together to form an infinite
dimensional manifold, the adelic Grassmannian

|_| Calo, = Gr*¢

The adelic Grassmannian can be identified with the isomorphism classes of right ideals in the first
Weyl algebra A;(C) and as the automorphism group of the Weyl algebra acts on this set with
countably many orbits it was conjectured that every Calo, might be a coadjoint orbit. This fact
was proved by Victor Ginzburg who showed that, indeed,

Calo, — g*

for some infinite dimensional Lie algebra g which is nothing but the necklace Lie algebra of the
path algebra of a double quiver naturally associated to the situation. After reading through this
chapter, the reader will have no problem to prove for herself that every quiver variety, in the sense
of Nakajima, is diffeomorphic to a coadjoint orbit of a necklace Lie algebra.
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8.1 Moment maps

In section 2.8 we have studied in some detail the real moment map of m-tuples of n x n matrices. In
this section we will first describe the obvious extension to representation spaces of quivers and then
to prove the properties of the real moment map for moduli spaces of #-semistable representations.
We fix a quiver @ on k vertices {v1,...,vr} and a dimension vector o« = (a1,...,ax) € N*.
We take the standard Hermitian inproduct on each of the vertex spaces C¥% and this induces the
standard operator inner product on every arrow-component of rep, @. That is, for every arrow

we define (Va, Wa) = tr(V,Wy)

on the component Homc(C®% C®%) for all V,W € rep, and where W, is the adjoint matriz
(Wjs)s,5 of W = (wsj)s,5. The Hermitian inproduct on rep, Q is defined to be

VW)= > tr(VaWs)
a€Qq

The mazimal compact subgroup of the basechange group GL(a) = Hle G L., is the multiple unitary
group

k
U(a) = H Ua,

which preserves the Hermitian inproduct under the basechange action as subgroup of GL(«). The
Lie algebra Lie U(«) is the algebra of multiple skew-Hermitian matrices

k
Lie U(a) = @iHerma]. ={h="(h1,...., &) | hy=—hj}
j=1
and the induced action of Lie U(«) on rep, @ is given by the rule

(h.V)a = h;Va — Vah; for

for all V' € rep, Q. This action allows us to define the real moment map p for the action of U(«)
on the representation space rep, @ by the assignment

rep, Q —» (iLie U(a))* V — (h—i(h.V,V))
That is, the moment map is determined by
RV, V)= > tr(hVaVy = VahiVy)
= > trh( Y VAV = > VaVL)
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Using the nondegeneracy of the Killing form on Lie U(«) we have the identification

PO ={Verep, Q| > VWi = Y ViVa VuieQu)
<O GO

The real moment map ur is then defined to be

rep, Q 5> Lie Ula) ViV V] =i( > VaVy — > ViVa)
O<O C20)

Reasoning as in section 2.8 we can prove the following moment map description of the isomorphism
classes of semi-simple a-dimensional representations of Q.

Theorem 8.1 There are natural one-to-one correspondences between
1. points of issa @, and
2. U(a)-orbits in pg ' (0).

Next, we will prove a similar result to describe the points of M3°(Q,0), the moduli space of
0-semistable a-dimensional representations of @, introduced and studied in section 4.8. Fix, an
integral k-tuple 0 = (t1,...,tx) € ZF with associated character

k
GL(a) X' C' 9= (g1, ) > [ [ det(g)"

=1

We have seen in section 4.8 that in order to describe M3’ (Q, 0) we consider the extended represen-
tation space rep,  ® C. We introduce a function N on this extended space replacing the norm in
the above discussion.

1
rep, Q®C —» R (V,2) > [2]e2!VI°

where ||V|| is the norm coming from the Hermitian inproduct on rep, (. Sometimes, the function
N is called the Kdhler potential for the inproduct on rep, Q. We will investigate the properties of
N.

Lemma 8.1 Let X be a closed subvariety of rep, Q & C disjoint from rep, Q = {(V,0) | V €
rep, Q} — rep, Q & C. Then, the restriction of N to X is proper and therefore achieves its
minimum.



458

Moduli Spaces

Proof. Because X and rep;, @ are disjoint closed subvarieties of rep, @ @ C, there is a polynomial
f € Clrep, Q ® C] = C[rep, Q][2] such that f | X =1and f | rep, Q@ = 0. That is, X is
contained in the hypersurface

Vf-1)=V(EP(V)+...+2"Py(V) —1) — rep, Q& C

where the P; € Clrep, Q].
Now, N is proper if the inverse images Nfl([O,r]) are compact for all r € Ry, that is, there
exist constants 1 and r2 depending on X and r such that

N(z,V)<r implies |z] <71 and |V < 7.
1
We can always take 71 = r so we only need to bound |V|. If |z]| < 7“675”‘/“2, then we have that

1 n
ZPL(V) 4.4 2" Pa(V)| < 1P (Ve 2P e PV e 2 IV

Choose 12, depending on r and P; such that the condition

VI > r2 implies that [P (V)] < %7"_%5”‘/”2 Vi<i<n
But then if |V > 72, we have |zP1(V) 4+ ...+ 2"Po(V)| < 1 and so (V,z) does not belong to
X. O

Recall that GL(«) acts on the extended representation space rep, Q @ C via
9-(V,2) = (9:Vixs ' (9)2)

Lemma 8.2 Let O be a GL(«)-orbit in the extended representation space rep, Q ® C which is
disjoint from repl, Q. Then, if the restriction of N to O achieves its minimum, then O is a closed
orbit.

Proof. Assume that N achieves its minimum in the point V., = (V,z) € O. If O is not a closed
orbit we can by the Hilbert criterium find a one-parameter subgroup A of GL(«) such that

Lim A(t).Vz ¢ O

and the limit exists in rep, @ @ C. Decompose the representation V = >
with respect to the one-parameter subgroup A, that is,

AtV =D t"V,

neZ

nez V., into eigenspaces
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Because the limit exists, we have that V;, = 0 whenever n < 0 and 6(\) < 0. Because the limit is
not contained in O we have that V,, # 0 for some n > 0. Further, by conjugating X if necessary
we may assume that the weightspace decomposition V' ="V, is orthogonal with respect to the
inproduct in rep, Q.

Using these properties we then have that

NV, 2)) = [ale2 0P g~z usolt"I75 1

This expression will decrease when t approaches zero, contradicting the assumption that the mini-
mum of N | O was achieved in (V, z). This contradiction implies that O must be a closed orbit.
a

Recall from section 4.8 that an orbit O(V, 2) is closed and disjoint from rep,, Q for some z € C*
if and only if V is the direct sum of #-stable representations of ). Recall the real moment map

rep, @ L (iLie U(a))*

And consider the special real valued function dxy on Lie U(«) which is the restriction to Lie U(«)

of the differential of GL(a) —% C* at the identity element (which takes real values). In fact, for
any m = (m1,...,my) € Lie GL(a) = Mo (C) we have that

dxo(m) = Z titr(m;) = Z tr(m;t;Ta;)
v; €EQu v;€Qu

With these notations we have the promised extension to moduli spaces of f-semistable representa-
tions.

Theorem 8.2 There are natural one-to-one correspondences between
1. points of M3°(Q,0), and
2. U(a)-orbits in pu~*(dxe).

Proof. Let V, = (V,z) € rep, Q ® C with z # 0. For any h = (hy,...,hs) in iLie U(«) we define
the functions

my(h) = 4 lizo log N(e™ V)
— (hV, V) — dxo(h)

m® (h) :% o log N(¢™ V)
2V
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The function my is the zero map if and only if the restriction of N to the orbit O(V;) has a
critical point at V.. As the basechange action of U(«) on the extended representation space
rep, @ @ C preserves the Kihler potential N, N induces a function on the quotient O(V.)/U(«).

The formula for mg) shows that this function is strictly convex (except in directions along the
fibers {(V,¢) | ¢ € C} where it is linear). Hence, a critical point is a minimum and there can be
at most one such critical point. From the lemmas above we have that N has a minimum on O(V%)
if and only if O(V%) is a closed orbit, which in its turn is equivalent to V being the direct sum of
O-stable representations, whence determining a point of M3°(Q,0). O

Finally, for any h € iLie U(«) we have the formulas

p(VY(R) =i Y tr(ha( Y VaVe = > ViVa))
v €EQu T a - e a 8
dxo(h) = > tr(hitl,)

v; €EQu
whence by nondegeneracy of the Killing form, the equality u(V) = dyg is equivalent to the condi-
tions
STOVaVE = > ViVa =ity Vo; € Qo
O<O GO

We can assign to 6 = (t1,...,t;) € Z* the element i0T, = (it1Ta,, ..., itx T, ) € Lie U(a). We
then can rephrase the results of this section as

Theorem 8.3 There are natural identification between the spaces
issa Q — pz ' (0)/U(a)
and between the spaces )
M (Q,0) < pg (i07a)/U(a)
8.2 Dynamical systems

In this chapter we will illustrate what we have learned on the simplest wild quiver @ which is neither

Dynkin nor extended Dynkin

In this section we will show that the representation theory of this quiver is of importance in system
theory.
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A linear time invariant dynamical system X is determined by the following system of differential
equations
dx

- Bx + Au 8.1)

Y = Cuz.

Here, u(t) € C™ is the input or control of the system at tome ¢, z(t) € C™ the state of the system and
y(t) € CP the output of the system X. Time invariance of ¥ means that the matrices A € My xm (C),
B € M,(C) and C € Mp,x»(C) are constant, that is ¥ = (A, B, C) is a representation of the quiver

Q

b

r

a c

of dimension vector a = (m,n, p). The system 3 can be represented as a black box

. u(t) - y(t) .

x(t)

which is in a certain state x(t) that we can try to change by using the input controls u(t). By
reading the output signals y(t) we can try to determine the state of the system.
Recall that the matriz exponential €® of any n x n matrix B is defined by the infinite series

B2 B™
=1 +B+=+...+— +...
2! m)!

Bt

The importance of this construction is clear from the fact that e”" is the fundamental matriz for
T

the homogeneous differential equation 92 = Bz. That is, the columns of e are a basis for the

dt
n-dimensional space of solutions of the equation % = Bx.
Motivated by this, we look for a solution to equation (8.1) as the form x(t) = eB'g(t) for some

function g(t). Substitution gives the condition

dg _

pri e P'Au whence g(7) = g(m0) —|—/ e B Au(t)dt.

TO
Observe that z(10) = e®™g(ry) and we obtain the solution of the linear dynamical system ¥ =
(A,B,C) :
z(r) =" Bg (1) + I TV Au(t)dt
y(r) = CePa(r) + /5 Ce" Y8 Au(t)dt.
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Differentiating we see that this is indeed a solution and it is the unique one having a prescribed
starting state x(70). Indeed, given another solution z1(7) we have that z1(7) — z(7) is a solution
dx

to the homogeneous system 77 = Bt, but then

TBefTOB(

z1(1) =x(1) +e z1(70) — x(70)).

We call the system X completely controllable if we can steer any starting state x (7o) to the zero
state by some control function u(t) in a finite time span [0, 7]. That is, the equation

0=xz(70) + / e IB Ay (t)dt
T0

has a solution in 7 and w(t). As the system is time-invariant we may always assume that 70 = 0

and have to satisfy the equation

0=uxo +/ e'P Au(t)dt  for every xo € C" (8.2)
0

B A

Assume that 7k ¢(¥) < n then there is a non-zero state s € C™ such that s'”¢(X) = 0, where
s'" denotes the transpose (row column) of s. Because B satisfies the characteristic polynomial
x5 (t), B™ and all higher powers B™ are linear combinations of {{,,B, B?, ..., B" '}. Hence,
s'"B™A = 0 for all m. Writing out the power series expansion of e!? in equation (8.2) this leads to
the contradiction that 0 = sz for all zg € C*. Hence, if rk c¢(X) < n, then ¥ is not completely
controllable.

Conversely, let 7k ¢(X) = n and assume that ¥ is not completely controllable. That is, the space
of all states

Consider the control matriz ¢(X) which is the n X mn matrix

c(X)=|| A BA || B?A

s(t,u) = /OT e P Au(t)dt

is a proper subspace of C". But then, there is a non-zero state s € C™ such that s*"s(,u) = 0 for
all 7 and all functions u(t). Differentiating this with respect to 7 we obtain

s'"e TP Au(r) =0 whence s TPA=0 (8.3)

for any 7 as u(7) can take on any vector. For 7 = 0 this gives s'”A = 0. If we differentiate (8.3)
with respect to 7 we get s""Be” "% A = 0 for all 7 and for 7 = 0 this gives s'""BA = 0. Iterating
this process we show that s"B™A = 0 for any m, whence

s"[A BA B*A ... B"'A]=0

contradicting the assumption that rk ¢(X) = n. That is, we have proved :
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Proposition 8.1 A linear time-invariant dynamical system ¥ determined by the matrices (A, B, C)
is completely controllable if and only if rk ¢(X) is mazimal.

We say that a state z(7) at time 7 is unobservable if Ce!™ 9Pz () = 0 for all ¢. Intuitively this
means that the state z(7) cannot be detected uniquely from the output of the system X. Again, if
we differentiate this condition a number of times and evaluate at ¢ = 7 we obtain the conditions

Cx(r)=CBz(r)=...= CB" 'a(r) = 0.

We say that X is completely observable if the zero state is the only unobservable state at any
time 7. Consider the observation matriz o(X) of the system ¥ which is the pn X n matrix

O(E) = [Ctr (C'_B)t'r . (Canl)tr] tr

An analogous argument as in the proof of proposition 8.1 gives us that a linear time-invariant
dynamical system X determined by the matrices (A, B, C) is completely observable if and only if
rk o(X) is maximal.

Assume we have two systems ¥ and ', determined by matrix triples from rep_, @ = Mpxm (C) x
M,,(C) X Mpxn(C) producing the same output y(¢) when given the same input u(t), for all possible
input functions u(t). We recall that the output function y for a system ¥ = (A, B, C) is determined
by

y(r) = CeBT0) () —|—/ Ce™ B Au(t)dt.
70

Differentiating this a number of times and evaluating at 7 = 7 as in the proof of proposition 8.1
equality of input/output for ¥ and ¥’ gives the conditions

CB'A=C'B"A" foral i.

But then, we have for any v € C™" that ¢(X)(v) = 0 & ¢(X')(v) = 0 and we can decompose
CP™ = V@®W such that the restriction of ¢(X) and ¢(X') to V are the zero map and the restrictions to
W give isomorphisms with C". Hence, there is an invertible matrix g € G Ly, such that ¢(X') = gc(X)
and from the commutative diagram

(Cmn (%) (Cn c o(%) (Cpn

(Cmn C(El) (Cn c O(E/) Cpn

we obtain that also o(%') = o(Z)g™".
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Consider the system X1 = (A1, B1,C1) equivalent with ¥ under the base-change matrix g. That
is, ¥y = g.¥ = (gA,gBg*,Cg™ ). Then,

[A1, Bids,.., By A = ge(S) = (%) = [4, B, B A

and so A; = A’. Further, as Bi'HAl = B A" we have by induction on ¢ that the restriction
of By on the subspace of B/ilm(A' ) is equal to the restriction of B’ on this space. Moreover, as
S B'Im(A’) = C™ it follows that B; = B’. Because o(X') = o(X)g~! we also have C; = C".

=0
This finishes the proof of :

Proposition 8.2 Let ¥ = (A,B,C) and ¥/ = (A’,B’,C") be two completely controllable and
completely observable dynamical systems. The following are equivalent

1. The input/output behavior of ¥ and ' are equal.

2. The systems ¥ and ¥’ are equivalent, that is, there exists an invertible matriz g € GLy, such
that

A =gA, B ' =gBg™' and C'=Cg "

Hence, in system identification it is important to classify completely controllable and observable
systems ¥ € rep,, Q under this restricted basechange action. We will concentrate on the input part
and consider completely controllable minisystems, that is, representations ¥ = (A, B) € rep, Q
where o« = (m, n) such that ¢(X) is of maximal rank. First, we relate the system theoretic notion
to that of §-semistability for 8 = (—n,m) (observe that 6(«) = 0).

Lemma 8.3 IfY = (A, B) € rep, Q is 0-semistable, then X is completely controllable and m < n.

Proof. If m > n then (Ker A,0) is a proper subrepresentation of ¥ of dimension vector § =
(dim Im A —m,0) with 8(3) < 0 so ¥ cannot be #-semistable. If ¥ is not completely controllable
then the subspace W of C®" spanned by the images of A, BA, ..., B" 1 A has dimension k < n. But
then, ¥ has a proper subrepresentation of dimension vector 5 = (m, k) with 6(3) < 0, contradicting
the #-semistability assumption. O

We introduce a combinatorial gadget : the Kalman code . It is an array consisting of (n+1) x m
boxes each having a position label (4, 5) where 0 < i < n and 1 < j < m. These boxes are ordered
lezicographically that is (i',j") < (i, ) if and only if either i’ < i or i’ =i and j' < j. Exactly n of
these boxes are painted black subject to the rule that if box (i, j) is black, then so is box (¢, 5) for
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all i/ < 4. That is, a Kalman code looks like

Bl k]

1 m

We assign to a completely controllable couple ¥ = (A, B) its Kalman code K (X) as follows : let
A= [Al Ay ... Am], that is A; is the i-th column of A. Paint the box (i, 7) black if and only
if the column vector B*A; is linearly independent of the column vectors B¥ A; for all (k,1) < (4, 5).

The painted array K (X) is indeed a Kalman code. Assume that box (4, j) is black but box (i’, 5)
white for i’ < 4, then

Bi/Aj = Z OzlekAl but then, BiAJ‘ = Z Ozlek-H_i,Al
(k,1)<(i’,5) (k,0)<(#',5)

and all (k+14 —4',1) < (4,1), a contradiction. Moreover, K(X) has exactly n black boxes as there
are n linearly independent columns of the control matrix ¢(X) when X is completely controllable.

The Kalman code is a discrete invariant of the orbit O(X) under the restricted basechange
action by GL,,. This follows from the fact that BiAj is linearly independent of the BF A, for all
(k,1) < (i,4) if and only if gB*A; is linearly independent of the gB*A; for any g € GL,, and the
observation that gB*A; = (gBg~")*(gA),.

With rep. @ we will denote the open subset of rep, @ of all completely controllable couples
(A, B). We consider the map

rep, @ > My (nt1)m(C)

(A,B) ~ [A BA B?A ... B"'A B"A]

The matrix (A, B) determines a linear map 94, ) : ctm . C™ and (A, B) is a completely
controllable couple if and only if the corresponding linear map (4,5 is surjective. Moreover, there
is a linear action of G Ly, on M, (n41)m (C) by left multiplication and the map 1t is G Ln-equivariant.
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¥(A, B)

Figure 8.1: Kalman code and barcode.

The Kalman code induces a barcode on (A, B), that is the n X n minor of (A, B) determined
by the columns corresponding to black boxes in the Kalman code, see figure 8.1 By construction
this minor is an invertible matrix g~' € GLL,,. We can choose a canonical point in the orbit O(X)
: g.(A,B). It does have the characteristic property that the n x n minor of its image under v,
determined by the Kalman code is the identity matrix ,. The matrix 1 (g.(A, B)) will be denoted
by b(A, B) and is called barcode of the completely controllable pair ¥ = (A4, B). We claim that the
barcode determines the orbit uniquely.

The map ¥ is injective on the open set rep;, Q. Indeed, if

(A BA ... BAl=[a BA .. B4
then A= A’, B| Im(A) = B’ | Im(A) and hence by induction also

B|B'Im(A) =B'| B'Im(A’) foralli<n-—1.

But then, B = B’ as both couples (A, B) and (A’, B’) are completely controllable. Hence, the
barcode b(A, B) determines the orbit O(X) and is a point in the Grassmannian Grass,(m(n+1)).
We have

P max
Ve &—— nXm(n+l)((C)

4, () X

Grassp(m(n + 1))

where 9 is a GL,-equivariant embedding and x the orbit map. Observe that the barcode matrix
b(A, B) shows that the stabilizer of (A, B) is trivial. Indeed, the minor of ¢g.b(A, B) determined by
the Kalman code is equal to g. Moreover, continuity of b implies that the orbit O(X) is closed in
rep, Q.
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Consider the differential of ¢). For all (A, B) € rep, Q and (X,Y) € T(a,p) rep, Q ~ rep, Q

we have
j—1

(B+€eY) (A4 €eX)=B"A+¢ (B”X+ZBiYBn717iA).
i=0

Therefore the differential of ¢ in (A, B) € rep, Q, di(a,p5)(X,Y) is equal to
[X BX+YA B:X+BYA+YBA ... B"X+Y/"}BYB""i4],

Assume dip(a,p)(X,Y) is the zero matrix, then X = 0 and substituting in the next term also
Y A = 0. Substituting in the third gives Y BA = 0, then in the fourth Y B%A = 0 and so on until
YB" 'A = 0. But then,

Y[A BA B’A ... B"'A]=0.

If (A, B) is a completely controllable pair, this implies that ¥ = 0 and hence shows that di 4 g is
injective for all (A, B) € repS, Q. By the implicit function theorem, ¢ induces a G Ly-equivariant
diffeomorphism between rep;, @ and a locally closed submanifold of M7 . 1),,,(C). The image of
this submanifold under the orbit map x is again a manifold as all fibers are equal to GL,,. This
concludes the difficult part of the Kalman theorem :

Theorem 8.4 The orbit space O, = rep;, Q/GLy of equivalence classes of completely controllable
couples is a locally closed submanifold of dimension m.n of the Grassmannian Grassn,(m(n + 1)).

In fact rep:, @ b O, is a principal GL,-bundle.

To prove the dimension statement, consider rep¢ (K) the set of completely controllable pairs
(A, B) having Kalman code K and let O.(K) be the image under the orbit map. After identifying
rep® (K) with its image under 1, the barcode matrix b(A, B) gives a section O.(K) —— rep’ (K).
In fact,

GLn % O(K) —> Vu(K)  (g,2) = g.5(a)

is a GLy-equivariant diffeomorphism because the n X n minor determined by K of ¢g.b(A, B) is g.
Consider the generic Kalman code KY of figure 8.2 obtained by painting the top boxes black from
left to right until one has n black boxes. Clearly repS (K7) is open in repf, and one deduces

dim O, = dim O.(K?) = dim V.(K?) — dim GL, = mn + n? —n?=mn.
The Kalman orbit space also naturally defines an order over the moduli space M3°(Q,0). First,
observe that whenever m < n we have 6-stable representations of dimension vector a = (m,n) for

0 = (—m, m). Then,

dim MZ*(Q,0) = dim rep, Q — dim GL(a) +1=n>+mn—n’> —m*>+1=m(n—m) +1
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1 m

Figure 8.2: Generic Kalman code.

By the lemma we have that rep’’ @ is an open subset of rep; @ and let Oss be the open subset
of O, it determines. Then, the natural quotient map

Oss — M«is (Q» 9)

is generically a principal PG L,,-fibration, so determines a central simple algebra over the function
field of M3%(Q,0).

In particular, if m = 1 then Oss ~ M3°(Q, 0) and both are isomorphic to A" and the orbits are
parametrized by an old acquaintance, the companion matriz and its canonical cyclic vector

1

0 —1 0 Tn—1
A= B = :

0 10 a

0 —1 X1

Trivial as this case seems, we will see that it soon gets interesting if we consider its extension to
the double quiver Q¢ and to deformed preprojective algebras.

8.3 Deformed preprojective algebras
Recall the construction of deformed preprojective algebras given in section 5.5. Let @ be a quiver

on k vertices and Q% its double quiver , that is to each arrow a € Q, we add an arrow a* with the
reverse orientation in Q¢ and define the commutator element ¢ = ZaeQa [a,a*] in the path algebra
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CQ. For a weight A = (A1, ..., ) € C* we define the deformed preprojective algebra

11
)

In this section we will give an outline of the determination of the dimension vectors of simple
II-representations due to W. Crawley-Boevey [21].

We know already that a dimension vector o = (a1,...,ax) can be the dimension vector of a
II)-representation only if A\.a = 0, so we will denote this subset of N* by N¥. With Aj\r we will

denote the subset of positive roots o of Q lying in N and with NA;\r the additive semigroup they
generate.

If v; is a loop-free vertex of Q we have defined the reflezion Z* —» Z* by
ri(a) = a—To(a, &)
and we define its dual reflezion C* —» C* by the formula
si(A)j = A — To(ei, )

Clearly, we have s;(\).c = A.r;(«). We say that a loop-free vertex v; in Q is admissible for (X, a)
(or for ) if \; # 0. We define an equivalence relation ~ on pairs (A, a) € C* x Z* induced
by (A, a) ~ (si(M\),7i(c)) whenever v; is an admissible vertex for (A,a). We want to relate the
representation theory of II to that of II,,(x).

Theorem 8.5 If v; is an admissible vertex for X\, then there is an equivalence of categories
E;
I\ —rep — I, (x) — rep
that acts as the reflection r; on the dimension vectors.

Proof. Because the definition of II, does not depend on the orientation of the quiver () we may
assume that there are no arrows in @ having starting vertex v;. Let V' € rep, II\ and consider V'
as a representation of the double quiver Q¢. Consider the vectorspace

- @ v
where the sum is taken over all arrows a € @, terminating in v;. Let u, and m, be the inclusion
and projection between V; and Vg and define maps V; LS Vg and Vg S, 4 by the formulas

W:% Z Vi oma and w= Z a0 Vg
O<O O<O
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then 7 o u =Ty, whence p o7 is an idempotent endomorphism on V.
We define the representation V' of Q% by the following data : Vj = Vj for j # i, V, = V, and
V.l« = Vo= whenever the terminating vertex of a is not v;. Further,

Vi=ImM—por=Kern
and for an arrow in @ we define

{V; =-X(-pom)opa + V] —= V/

L= m | VIV V]
We claim that V"’ is a representation of IL;,(»). Indeed, for a vertex v; we have
D VdVae= Y = M(l—pomopaoma| Vi ==X(l1—pom) | Vi =Ty
O<O OO
and (s;A\); = —\;. Further, for an arrow in @ then
VaeVa =m0 (=Xi(1— pom) o pta) = —Aiffa 0 fia + Aimra 0 om0 pia = —A Ty, + VaxVa
but then, whenever j # i we have the equality
Do VaVie— D> ViVi= Y VaVar— Y VeV —Toles, )My,
because there are —Tg(€j, €;) arrows from v; to v;. Then, this reduces to
ATy, — To(ej, ) ATy, = (si)); Ty,
The assignment V' — V' extends to a functor F; and the exact sequence
0—> V) —> Vg —> Vi —> 0

shows that it acts as r; on the dimension vectors. Finally, the reflection also defines a functor
E; : 1, (»)—rep — II\—rep and one shows that there is a natural equivalence V. — Ej(E;(V))
finishing the proof.

Recall from section 5.5 that for a fixed dimension vector o we have the complex moment map

repa Qd ﬂ’ Ma I‘La(v)l = Z VaVa* - Z Va* Va
G-® <O
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and that we have the identification rep, I\ = pat(N). A geometric interpretation of the proof of
the foregoing theorem tells us that the schemes py'(\) and u;l(a)(si(/\)) have the same number of
irreducible components and that

dim py'(\) — ca = dim ,u;il(a)(si()\)) —ri(a).ri(a)

see [21, lemma 1.2] for full details. The set of A-Schur roots Sy was defined to be the set of a € N*
such that

po(a) = p(B1) + ... +pa(Br)
for all decompositions a« = 81 + ... + B, with the 3; € A;\". If we demand a proper inequality >
for all decompositions we get a subset >\ and call it the set of A-simple roots . Recall that Sy and
hence X, consists of Schur roots of Q.

As in the case of Kac’s theorem where one obtains the set of all roots from the subsets II =
{e; | wv; has no looops} and the fundamental set of roots Fg = {a € N* —0 | To(a,€;) < 0 and
supp(a) is connected }, we can use the above reflection functors F; to reduce pairs (A, o) under
the equivalence relation ~ to a particularly nice form, see [21, Thm. 4.8].

Theorem 8.6 If o € X, then (A, a) ~ (N, ) with

o ell if o is a real root,
o € Fg if a is an imaginary root.

Proposition 8.3 If (A, ) is such that o € X, then rep I\ = pat(N) is irreducible and

dim py' () = a.a— 1+ 2pg(a)
In particular, py*(X\) is a complete intersection.
Proof. If a € ¥, then we know by theorem 5.18 that
dim 15" (\) = a0 — xa(a, @) + pa(a) = aa — 1+ 2pg(a)

as pg(a) = 1 — xg(a,a). Moreover, this number is also the relative dimension of the complex
moment map fi,. Therefore, ug'()\) is equidimensional and we only have to prove that it is
irreducible.

By theorem 8.6 and the geometric interpretation of the reflexion functor equivalence we may
reduce to the case where « is either a coordinate vector or lies in the fundamental region. The
former case being trivial, we assume a € Fg. Consider the projection map

pa'(\) —> rep, Q
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then the image of 7 is described in theorem 5.17 and any non-empty fiber 77 (V) ~ (E:ctéQ(V, V)"
is irreducible. As in the proof of theorem 5.18 we can decompose rep,, ) according to representation
types in rep, (7). Because a € ¥, we have that dim 7~ ' (rep, (7)) < d = a.ac — 1+ 2pg(a). for all
T# (1, ).

Because a is a Schur root, rep, (1, @) is an open set and 7~ ! (rep, Q@ —rep,, (1, @)) has dimension
less than d, whence it is sufficient to prove that 7 '(rep,(1,)) is irreducible. Because it is an
open subset of uy'()\) it is equidimensional of dimension d and every fiber is irreducible. But, if
X —— Y is a dominant map with Y irreducible and all fibers irreducible of the same dimension,
then X is irreducible, finishing the proof. 0

The term A-simple roots for X, is justified by the following result.

Theorem 8.7 Let (A, «) be such that o € Xx. Then, rep Iy = pnt(N) is a reduced and irreducible

complete intersection of dimension d = a.cc — 1 + 2pg () and the general element of uy'(\) is a
simple representation of 11,.
In particular, issq IIx s an irreducible variety of dimension 2pg(«).

Proof. We know that ,u‘_a}pha (M) is irreducible of dimension d. By the type stratification, it is
enough to prove the existence of one simple representation of dimension vector c. The reflection
functors being equivalences of categories, we may assume that « is either in II or in Fg. Clearly,
for o a dimension vector, there is a simple representation, whence assume « € Fg.

Assume there is no simple a-dimensional representation of IIx. Because rep II,, is irreducible,
there is a dimension vector 8 < «a and an open subset of representations containing a subrepresen-
tation of dimension vector 8. As the latter condition is closed, every a-dimensional representation
of IT) contains a (-dimensional subrepresentation.

Because « is a Schur root for @, the general a-dimensional representation of ) extends to IIx

and hence contains a subrepresentation of dimension vector (3, that is 3 %, Applying the

same argument to the quiver Q° we also have 3 s a

If we now consider duals,this implies that the general a-dimensional representation of ) has
a subrepresentation of dimension vector @ — 3. But then, by the results of section 4.7 we have
ext(B,a — B) = 0 = ext(a — B, 3) whence a general a-dimensional representation of @ decomposes
as a direct sum of representations of dimension 8 and o — 3, contradicting the fact that « is a Schur
root. Hence, there are a-dimensional simple representations of I1y.

Let V be a simple representation in ug, 1()\), then computing differentials it follows that e is
smooth at V', whence u,'()) is generically reduced. But then, being a complete intersection, it is
Cohen-Macaulay and therefore reduced. O

This finishes the proof of the easy part of the characterization of simple roots for IIy due to W.
Crawley-Boevey, [21].
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Theorem 8.8 The following are equivalent
1. IIx has a-dimensional simple representations.
2. a € Xy

The proof of [21] involves a lengthy case-by-case study and awaits a more transparent argument,
perhaps along the lines of hyper-Kéahler reduction as in section 8.5.
If @ € X, then II5(«) is an order in a central simple algebra over the functionfield of issqa II.

8.4 Hilbert schemes

In this section we will illustrate some of the foregoing results in the special case of the quiver @
coming from the study of linear dynamical systems, and its double quiver Q¢

a b
O% b and O/\\—/C’%
a* b*

In order to avoid heavy use of stars, we denote as in the previous chapters, a = u, a* = v, b ==z
and b* = y, so the path algebra of the double Q¢

u

Q/\

v Yy

is the algebra M considered before. We fix the dimension vector @ = (1,n) and the character
0 = (—n, 1) and recall from section 8.2 that the moduli space M3°(Q,0) ~ C".

We say that u is a cyclic vector for the matrix-couple (X,Y) € M,(C) ® M, (C) if there is no
proper subspace of C" containing « which is stable under left multiplication by X and Y.

Lemma 8.4 A representation V = (X,Y,u,v) € rep, M is 0-semistable if and only if u is a cyclic
vector for (X,Y). Moreover, in this case V is even 0-stable.

Proof. If there is a proper subspace of C" of dimension k containing u and stable under the
multiplication with X and Y then V contains a subrepresentation of dimension 8 = (1,k) and
0(B8) < 0. If u is cyclic for (X,Y) then the only proper subrepresentations of V' are of dimension
(0, k) for some k, but for those 8(3) > 0 whence V is 6-stable. O
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The complex moment map p = o for this situation is

rep, Q%= M,(C) & Mn(C)®C" & C™ 2 C & M, (C)

(X,Y,u,v) — (—v, [Y, X] 4+ u.v)

Observe that the image is contained in M2(C) = {(¢c, M) | c+tr(M) = 0}. The differential dyu in
the point (X, Y, u,v) is equal to

dix,yuw) (A B,c,d) = (—v.c —du, [B, X] + [V, A] + u.d + cv).

Lemma 8.5 The second component of the differential du is surjective in (X,Y, u,v) if u is a cyclic
vector for (X,Y).

Proof. Consider the nondegenerate symmetric bilinear form ¢r(M N) on M, (C) With respect to this
inproduct on M, (C) the space orthogonal to the image of (the second component of) du(x,v,u,v)
is equal to

{M € M,(C) | tr([B,X]M + [Y,A]M + u.dM + coM) =0,Y(4, B, c,d)}

Because the trace does not change under cyclic permutations and is nondegenerate we see that this
space is equal to

{MeM,(C)| M,X]=0 [Y,M]=0 Mu=0 and oM =0}
But then, the kernel ker M is a subspace of C" containing u and stable under left multiplication by

X and Y. By the cyclicity assumption this implies that ker M = C™ or equivalently that M = 0.
As dué_X,Y,u,v) = 0 and tr is nondegenerate, this implies that the differential is surjective. O

Let repy® Q4 = rep;, Q4= rep;, M be the open variety of 6-(semi)stable representations.
Proposition 8.4 For every matriz (c, M) € M2(C) in the image of the map
rep®? M —“» MJ(C)
the inverse image pu~* (M) is a submanifold of rep, M of dimension n? + 2n.

This is a special case of theorem 5.19. Observe that for the quiver @ we have pg(m,n) =
mn +1—m?. As any decomposition of a = (1,7) is of the form

(1,n) = (1,a1) + (0,a2) + ...+ (0, ax) with Zai =n
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we have that pg(a) =n > Y. po(Bi) = a1+ 1+...+1 and equality only occurs for (1,1)+(0,1)+
...+ (0,1). Therefore a € Sp.

We now turn to the description of the moduli space M:*(Q%60). In this particular case we
clearly have.

Lemma 8.6 For a = (1,n) and 8 = (—n, 1) there is a natural one-to-one correspondence between
1. GL(o)-orbits in rep:, M, and
2. GLn-orbits in rep;, M under the induced action.

For the investigation of the GL,(C)-orbits on rep’ M we introduce a combinatorial gadget :
the Hilbert n-stair. This is the lower triangular part of a square n x n array of boxes

1l

1 n
filled with go-stones according to the following two rules :

e cach row contains exactly one stone, and

e cach column contains at most one stone of each color.

For example, the set of all possible Hilbert 3-stairs is given below.

o] O [© [O] O]
| o| q [e ] 0 o|

Ole]

To every Hilbert stair o we will associate a sequence of monomials W (o) in the free noncommutative
algebra C(z,y), that is W (o) is a sequence of words in z and y.

At the top of the stairs we place the identity element 1. Then, we descend the stairs according
to the following rule.
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e Every go-stone has a top word T' which we may assume we have constructed before and a side
word S and they are related as indicated below

1 1 1 1 1 1

@ | =x @ | =x ® | = Ol v Ol v Ol v

, °|. o~ |e x Ol ®|

We will evaluate a Hilbert n-stair o with associated sequence of non-commutative words W (o) =
{l,wz(x,y), cee >wn($7y)} on

rep, M = M,(C) & M,(C) s C" & C™

For a quadruple (X,Y,u,v) we replace every occurrence of z in the word w;(z,y) by X and every
occurrence of y by Y to obtain an n X n matrix w; = w;(X,Y) € M, (C) and by left multiplication
on u a column vector w;.v. The evaluation of o on (X,Y,u,v) is the determinant of the n x n
matrix

o(X,Y,u,v) =det| u W2.u || W3.U e Wn U

For a fixed Hilbert n-stair o we denote with rep(c) the subset of quadruples (X, Y, u,v) in rep, M
such that the evaluation o(v, X,Y) # 0.

Theorem 8.9 For every Hilbert n-stair, rep (o) # 0
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Proof. Let u be the basic column vector

Let every black stone in the Hilbert stair o fix a column of X by the rule

. e X 0

1 J n J

That is, one replaces every black stone in o by 1 at the same spot in X and fills the remaining
spots in the same column by zeroes. The same rule applies to Y for white stones. We say that such
a quadruple (X, Y, u,v) is in o-standard form.

With these conventions one easily verifies by induction that

wi(X,Y)er =e; forall2<i<n.

Hence, filling up the remaining spots in X and Y arbitrarily one has that o(X,Y, u,v) # 0 proving
the claim. 0

Hence, rep (o) is an open subset of rep, M (and even of rep’ M) for every Hilbert n-stair o.
Further, for every word (monomial) w(z,y) and every g € GL,(C) we have that

w(gXg ', gYg Hgv = gw(X,Y)v

and therefore the open sets rep (o) are stable under the GL,(C)-action on rep, M. We will give
representatives of the orbits in rep (o).

Let W, = {1,z,...,2",2y,...,y"} be the set of all words in the non-commuting variables x
and y of length < n, ordered lexicographically.

For every quadruple (X,Y,u,v) € rep, M consider the n X m matrix

1/)(X,Y,u,v):[u Xu X?%u ... Y"u]
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where m = 2"T! — 1 and the j-th column is the column vector w(X,Y)v with w(z, ) the j-th word

in W,.
Hence, (X,Y,u,v) € rep (o) if and only if the n x n minor of ¥ (X,Y,u,v) determined by the
word-sequence {1,ws,...,ws} of o is invertible. Moreover, as

Y(gXg ' gYg ' gu,ug ") = gv(v, X, Y)

we deduce that the GL,(C)-orbit of (X,Y,u,v) € rep, M contains a wunique quadruple
(X1,Y1,u1,v1) such that the corresponding minor of (X1, Y1, ur,v1) = T,.

Hence, each GL,,(C)-orbit in rep (o) contains a unique representant in o-standard form. There-
fore,

Proposition 8.5 The action of GLn(C) on rep (o) is free and the orbit space
rep (0)/GLn(C)
is an affine space of dimension n® + 2n.

Proof. The dimension is equal to the number of non-forced entries in X, Y and v. As we fixed
n — 1 columns in X or Y this dimension is equal to

k=2n>—(n—1)n+n=n>+2n.

The argument above shows that every GL,(C)-orbit contains a unique quadruple in o-standard
form so the orbit space is an affine space. O

Theorem 8.10 For o = (1,n) and 8 = (—n, 1), the moduli space
Mg’ (de 9) = Més(Mv 6)
is a complex manifold of dimension n® 4 2n and is covered by the affine spaces rep (o).

Proof. Recall that rep; M is the open submanifold consisting of quadruples (z,Y,u,v) such that
u is a cyclic vector of (X,Y) or equivalently such that

C(X,Y)u=C"

where C(X,Y’) is the not necessarily commutative subalgebra of M, (C) generated by the matrices
X and Y.

Hence, clearly rep (o) C rep,, M for any Hilbert n-stair o. Conversely, we claim that a quadruple
(X,Y,u,v) € rep, M belongs to at least one of the open subsets rep (o).

Indeed, either Xu ¢ Cu or Yu ¢ Cu as otherwise the subspace W = Cu would contradict the
cyclicity assumption. Fill the top box of the stairs with the corresponding stone and define the 2-
dimensional subspace Vo = Cui +Cus where u1 = u and uz = w2 (X, Y)u with ws the corresponding
word (either z or y).
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Assume by induction we have been able to fill the first i rows of the stairs with stones leading
to the sequence of words {1, wa(z,y),...,wi(z,y)} such that the subspace V; = Cus + ...+ Cu;

with u; = w;(X,Y)v has dimension 3.

Then, either Xu; ¢ V; for some j or Yu; ¢ V; (if not, V; would contradict cyclicity). Then, fill
the j-th box in the i + 1-th row of the stairs with the corresponding stone. Then, the top i + 1
rows of the stairs form a Hilbert ¢ + 1-stair as there can be no stone of the same color lying in
the same column. Define wit1(z,y) = zw;(z,y) (or yw;i(z,y)) and ui+1 = wit1(X,Y)u. Then,

Vig1 = Cur + ... + Cuiy1 has dimension ¢ + 1.

Continuing we end up with a Hilbert n-stair o such that (X,Y,u,v) € rep (o). This concludes

the proof.

Example 8.1 (The moduli space M:*(Q%,0) when n = 3) Representatives for the GL3(C)-

orbits in rep (o) are given by the following quadruples for o a Hilbert 3-stair :

(@] ° (@] (O] (O] (O]
o| | o o] o | o] o
(0 o b] [0 0 d] (0 a b] [0 a b] [ b (] [ 0 b]
X 1 ¢ d 1 0 b 1 ¢ d 0 ¢ d d e c 0 d
0 e f_ 0 1 c] 0 e f_ |1 e f_ 9 h i e 1 f_
[0 Rl [d e (¢ 0 K] o Rl o o 4] o h]
Y 0 7+ g g h 3 i 0 g 1 ¢ 3 1 0 k 1 ¢ 3
E L] j k1 k1 1] 0 L] 0 1 1] 0 &k 1]
1 1 1 1 1 1
u 0 0 0 0 0 0
0 0 0 0 0 0
v [m n 0} [m n 0] [m n 0] [m n o] [m n 0] [m n o]

We now turn to the deformed preprojective algebras

Then,

II\ =

then if we denote by M3°(Ily, 6) the moduli space of f-semistable representations of I, then we

M

(v.u + A, [Y, X] + w.v — Avg)

. Let A = (=n\, XT,) € M2(C) for A € C.
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have the following situation

p (A Nrep!, M« rep® M

M3 (I, 0) - M:*(M,0)

and from the theorem above we obtain :

Theorem 8.11 For a A € M2 (C), the orbit space of 0-semistable representations of the deformed
preprojective algebra
M3 (11, 0)

is a submanifold of M3° (M, 0) of dimension 2n.

We will identify the special case of the preprojective algebra (that is A = 0 with the Hilbert
scheme of n points in the plane .
Consider a codimension n ideal i < C[z,y] and fix a basis {v1,...,v,} of the quotient space

M:M:({:Ul—i—...-FC’Urr

Multiplication by x on C[z,y] induces a linear operator on the quotient Vi and hence determines
a matrix X; € M, (C) with respect to the chosen basis {v1,...,v,}. Similarly, multiplication by y
determines a matrix Y; € M, (C).

Moreover, the image of the unit element 1 € C[z,y] in Vi determines with respect to the basis
{v1,...,vn} a column vector u € C" = V;. Clearly, this vector and matrices satisfy :

[Xi,Yi]=0 and C[Xi,YiJlu=C".

Here, C[Xj,Yi] is the n-dimensional subalgebra of M, (C) generated by the two matrices X; and
Y:. In particular, u is a cyclic vector for the matrix-couple (X,Y").

Conversely, if (X,Y,u) € M,(C) ® M,(C) & C" is a cyclic triple such that [X,Y] = 0, then
C(X,Y) = C[X,Y] is an n-dimensional commutative subalgebra of M, (C), then the kernel of the
natural epimorphism

Clz,y] — C[X,Y] 22— X y—VY
is a codimension n ideal i of C[z, y].

However, there is some redundancy in the assignment i — (X;,Yi, ui) as it depends on the
choice of basis of V;. If we choose a different basis {v], ..., v;,} with basechange matrix g € GL,(C),
then the corresponding triple is

(XY u) = (9.Xi.9~ ', g.Yig ™t gui)

The above discussion shows that there is a one-to-one correspondence between
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e codimension n ideals i of C[z,y], and

e GL, (C)-orbits of cyclic triples (X,Y,u) in M, (C) & M, (C) & C" such that [X,Y] = 0.

Example 8.2 (The Hilbert scheme Hilb,) Consider a triple (X,Y,u) € M2(C) ® M2(C) ® C?
and assume that either X or Y has distinct eigenvalues (type a). As

[{18 BJ{Z Z:|]:|:(l/2—01/1)c (VIBVQ)b}

we have a representant in the orbit of the form

( )\1 O M1 O U1 )
0 Aol 7] 0 pa |’ |u2
where cyclicity of the column vector implies that ujus # 0.

The stabilizer subgroup of the matrix-pair is the group of diagonal matrices C* X
C* = GL2(C), hence the orbit has a unique representant of the form

( A1 0 M1 0 1 )
O A2 ’ 0 'LLQ ’ 1
The corresponding ideal i < C[z, y] is then

i={f(x,y) €Clz,y] | f(A1,p1) = 0= f(A2, p2)}

hence these orbits correspond to sets of two distinct points in C?.
The situation is slightly more complicated when X and Y have only one eigenvalue (type b). If
(X,Y,u) is a cyclic commuting triple, then either X or Y is not diagonalizable. But then, as

[ v 1| |a b ] = c d—a
0 v|’'|ec d|' |0 c
we have a representant in the orbit of the form
( A al (g B |wm )
0 A0 |’ |us
with [ : 8] € P! and uz # 0. The stabilizer of the matrixpair is the subgroup

(5 2rer 0 = 6o
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and hence we have a unique representant of the form
( A al (g B] |0 )
0 A0 u|’|1

i= {f(z.5) €Cle,y] | f(A 1) =0 and a%(/\,u)+ﬁ%(/\,u):0}

The corresponding ideal i <« C[z, y] is

as one proves by verification on monomials because

A a]” uw B "To  [ked Tt 1 F !
0 A 0 pwp| |1 AFpt
Therefore, i corresponds to the set of two points at (), ) € C? infinitesimally attached to each

other in the direction 048% + [38%. For each point in C? there is a P! family of such fat points.
Thus, points of Hilby correspond to either of the following two situations :

C? C?

type a type b

The Hilbert-Chow map Hilby —— S? C? (where S? C? is the symmetric power of C2, that is
Sy = Z/27Z orbits of couples of points from C?) sends a point of type a to the formal sum [p] + [p’]
and a point of type b to 2[p]. Over the complement of (the image of) the diagonal, this map is a
one-to-one correspondence.

However, over points on the diagonal the fibers are P! corresponding to the directions in which
two points can approach each other in C%. As a matter of fact, the symmetric power S C? has

singularities and the Hilbert-Chow map Hilbs —»= S2 C? is a resolution of singularities.

Theorem 8.12 Let rep, M e MO (C) be the complex moment map, then
Hilb, ~ M5’ (11, 0)

and is therefore a complex manifold of dimension 2n.
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Proof. 'We identify the triples (X,Y,u) € M, (C) & M,(C) @ C" such that u is a cyclic vector of
(X,Y) and [X,Y] = 0 with the subspace

{(X,Y,u,0) | [X,Y]=0 and uis cyclic } = rep] M

which is clearly contained in p~*(0). To prove the converse inclusion assume that (X,Y,u,v) is a
cyclic quadruple such that
[X,Y]4+uv=0.

Let m(z,y) be any word in the noncommuting variables  and y. We claim that
vm(X,Y)u =0.

We will prove this by induction on the length I(m) of the word m(z,y). When I(m) = 0 then
l(z,y) =1 and we have

vUX,Y)u=vu=tr(uv) =tr([X,Y]) =0.

Assume we proved the claim for all words of length < [ and take a word of the form m(z,y) =
ma(z,y)yxma(z,y) with [(m1) + I(m2) + 2 = I. Then, we have

wm(X,Y) = wm (X, Y)Y Xma(X,Y)

wm (X, Y)([Y, X]+ XY)m2(X,Y)
(wm1 (X, Y)v).wma2(X,Y) + wmi (X, Y)XYma(X,Y)
= wmy (X, Y)XYma(X,Y)

where we used the induction hypotheses in the last equality (the bracketed term vanishes).
Hence we can reorder the terms in m(z,y) if necessary and have that wm(X,Y) = wX'1y'

with l1 +l2 = [ and /1 the number of occurrences of z in m(z,y). Hence, we have to prove the
claim for X112,
wX"y'2y = tr( XY 2ow)

= —tr(X"Y"2[X,Y])

= —tr([X“ v, X]Y)

= —tr(X"1 Y2, X]Y)

= =Yt (xhYy, XYz

= Yty XYY, X]

= - Zi";l tr(Y2 i Xhyiyw

=X, WYX Y
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But we have seen that wY 2 'X"1Y® = wX"Y"2 hence the above implies that wX"1Y!2y =
—lwX"1 Y2y, But then wX"1Y "2y = 0, proving the claim.

Consequently, w.C(X,Y).v = 0 and by the cyclicity condition we have w.C" = 0 hence w = 0.
Finally, as v.w + [X, Y] = 0 this implies that [X,Y] = 0 and we can identify the fiber x~'(0) with
the indicated subspace. From this the result follows. 0

We can use the affine covering of M3’ (M, 0) by Hilbert stairs, to cover the Hilbert scheme Hilb,
by the intersections Hilb(o) = rep(o) N Hilb,,.

Example 8.3 (The Hilbert scheme Hilb;) Consider Hilbs ( EI ). Because

0 a|l |c d|,_| ae—d af —ac—bd
[{1 bHe f}]_{c+be—f d— ae

this subset can be identified with C* using the equalities

d=ar and f=c+ be.

Similarly, Hilb, ([O]) ~ C*.

Example 8.4 (The Hilbert scheme Hilbs) Up to change of colors there are three 3-stairs to
consider . -

D ° °
ol | o ol

We claim that

Hilbs (0] ]y ~c®.

For consider the commutator

0 a b 0 g h b—g at + bk —cg — eh aj +bl—dg— fh
[ |1 ¢ d|,]o & j|]=|d-" g+dk—ej h+cj+dl—di—fj
0 e f 1 k k f—k —a—ck—el+ei+ fk —b—dk+ej

Taking the Groebner basis of these relations one finds the following relations
f =k
g =ej—ik
d =1
h =i%—cj+jk—il
b =g
a =ei—ck+k®—el
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from which the claim follows. In a similar manner one proves that

Hilbs (L_1®]) ~ .

However, the situation for

Hilbs (L_10])

is more complicated.

Theorem 8.13 The Hilbert scheme Hilb, of n points in C? is a complex connected manifold of
dimension 2n.

Proof. The symmetric power S™ C' parametrizes sets of n-points on the line C' and can be
identified with C™. Consider the map

Hilb, —» S™ C*

defined by mapping a cyclic triple (X,Y,u) with [X,Y] = 0 in the orbit corresponding to the point
of Hilb, to the set {A1,...,A\n} of eigenvalues of X. Observe that this map does not depend on
the point chosen in the orbit.

Let A be the big diagonal in S™ C', that is, S™ C' — A is the space of all sets of n distinct points
from C*. Clearly, S™ C! — A is a connected n-dimensional manifold. We claim that

(ST C'—A)~ (S"C' - A)xC"
and hence is connected.

Indeed, take a matrix X with n distinct eigenvalues {A1,..., An}. We may diagonalize X. But
then, as

A1 Y ... Yin A=Ay ... (A= M)yin
I =] :
An Ynl ... Ynn ()\n - )\l)ynl ce. ()\n - )\n)ynn
we see that also Y must be a diagonal matrix with entries (u1, ..., pun) € C* where u; = y;;. But

then the cyclicity condition implies that all coordinates of v must be non-zero.
Now, the stabilizer subgroup of the commuting (diagonal) matrix-pair (X,Y) is the mazimal
torus T, = C* x ... x C* of diagonal invertible n x n matrices. Using its action we may assume
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that all coordinates of v are equal to 1. That is, the points in 77 ({\1, ..., An}) with A; # A; have
unique (up to permutation as before) representatives of the form

A1 H1 1
)\2 1253 1

that is 77" ({A1,..., An} can be identified with C™, proving the claim.

Next, we claim that all the fibers of 7 have dimension at most n. Let {\1,...,\,} € S" C'
then there are only finitely many X in Jordan normalform with eigenvalues {1, ..., Ay }. Fix such
an X, then the subset T'(X) of cyclic triples (X,Y, ) with [X,Y] = 0 has dimension at most
n+ dim C(X) where C(X) is the centralizer of X in M, (C), that is,

C(X)={Y € M,(C) | XY =Y X}.

The stabilizer subgroup Stab(X) = {g € GL,(C) | gXg~' = X} is an open subset of the vec-
torspace C/(X) and acts freely on the subset T'(X) because the action of GL, (C) on ' (0)Nrep® M
has trivial stabilizers.

But then, the orbitspace for the Stab(X)-action on T'(X) has dimension at most

n+ dim C(X) — dim Stab(X) = n.

As we only have to consider finitely many X this proves the claim. The diagonal A has dimension
n—11in S™ C* and hence by the foregoing we know that the dimension of 7 ~*(A) is at most 2n — 1.
Let H be the connected component of Hilb, containing the connected subset 7~ '(S™ C' — A). If
7~ Y(A) were not entirely contained in H, then Hilb, would have a component of dimension less
than 2n, which we proved not to be the case. This finishes the proof. O

We can give a representation theoretic interpretation of the resolution of singularities Hilbert-

Chow morphism
Hilb, —> S" C?

Yo = {(1,0),(0,1)}, that is the only simple Ilo-representations are one-dimensional. Any semi-
simple representation of Iy of dimension vector a = (1,n) therefore decomposes as Ty ® ST @
... ® 8P with Ty the unique simple (1,0)-dimensional representation and the S; in the two-
dimensional family of (0, 1)-simple representations of Iy (corresponding to couples (i, ui) € C?).
Therefore we have the projective bundle morphism

Hilb, = MS* (Mo, 0) —» iss, Iy = S™ C?

where the mapping sends a point of Hilb,, determined by a cyclic triple (X,Y,u) to the n-tuple of
eigenvalues (\;, p;) of X and Y.
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8.5 Hyper Kahler structure

Again, Q is a quiver on k vertices and Q¢ its double. We fix a dimension vector o = (a1,...,ar) €
N* and a character 8 = (t1,...,t) € Z* and a weight A = (A1,..., Ax) € C* such that the numerical
conditions

k n
0(a) = Ztiai =0 and Aa)= Z,\iai -0
=1 i=1

are satisfied. The first is required to have 0-semistable representations, the second for A to lie in
the image of the complex moment map

rep,, QY 5 M) Vi Z [Va, Vax]

a€Qa

where a* is the arrow in Q¢ corresponding to a € Qq (that is with the opposite direction).
Recall that the quaternion algebra H is the 4-dimensional division algebra over R defined by

H=R1®Ri®dRjdRE i ==k*=-1 k=1ij=—ji

Definition 8.1 A C*° (real) manifold M is said to be a hyper-Kdhler manifold if H acts on H by
diffeomorphisms.

Lemma 8.7 For any quiver Q, the representation space rep,, Q¢ is a hyper-Kihler manifold.
Proof. We have to specify the actions. They are defined as follows, for V' &€ rep,, Q* for all arrows
be Q% and all arrows a € Qq

@V =1iVs

(GV)a ==V (V)er = VI

(kV)a=—iVL (kV)ex =iV,

where this time we denote the Hermitian adjoint of a matrix M by M' to distinguish it from the
star-operation on the arrows of Q%. A calculation shows that these operations satisfy the required
relations. ]

In section 8.1 we introduced the real moment map for quiver representations. If we apply this
to the double quiver Q¢ we can take
d MR . ) ¥
rep, Q* > LieU(a) Vi Y Ve V]
b

beQd



488 Moduli Spaces

We will use the action by nOD-Z€1o elements of H to obtain C'*°-diffeomorphisms between certain
subsets of rep,, Q4. Let h = f

_1 ’ St ot
puc(h.V) = 5 Z [i(Va + iV, iVax —iV]]]

aEQa
=35 Z = [Va, Va= ]"_[VMVT]_[V ]+[VaT*7VT] )
aEQa
_1 f f i
- 2 ( [Vay Va*] - [Va7Va + Z Va7 V [Va*,Va*} )

a€Qq GGQa

2 (ne()! = pe(V) = iua(V)

—_

and

pr(h.V) = i( > Ve + iV, =iV =iV ]+ Y [iVas — iV, =iV +iVi])

a€Qq a€Qq
= - Z [Va, V] 4 [V, Var] + [V, VI 4 [V, Vi
GGQa

+ [Var, VI = [Vas, Va] = VL VLT + VT Va])
= *@uc(V) +2ue(V))
In particular we have
Proposition 8.6 If A € R*, then we have a homeomorphism between the real varieties

pz V) N (0) = 12 (0) M (0N )

Moreover, the hyper-Kdhler structure commutes with the base-change action of U(c), whence we
have a natural one-to-one correspondence between the quotient spaces

(ug ' (XTa) N g (0)) /U (@) —> (g (0) N gz (iXTa)) /U (@)

By the results of section 8.1 we can identify both sides. To begin, by definition of the complex
moment map uc we have that

pe'(@ =rep Mo and  pg' (M) =rep 1
Moreover, applying theorem 8.3 to the double quiver Q% we have
isse Q' >~ pz'(0)/U(@)  and  M(Q"N) ~ pg ' (iXa)/U(a)
when \ € Z*. This concludes the proof of
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Theorem 8.14 For a character 0 = (t1,...,tx) € ZF such that 0(a) = 0, there is a natural
one-to-one correspondence between

isse I > M3(IIo, 6)
which is an homeomorphism in the (induced) real topology.

Note however that this bijection does not respect the complex structures of these varieties.
This is already clear from the fact that issa Ilp is an affine complex variety and M3°(Ilp, 0) is a
projective bundle over iss, Ilp.

If V €rep, Q¢ belongs to uﬂgl(g) we know that V' is a semisimple representation, that is,

V=strae.. . osir

with the S; simple representations of dimension vector 3;. Further, if W € rep;l(iﬁ’ﬂa), then W is
a direct sum of #-stable representations, that is,

W=Tg. o1

with the T; 0-stable representations of dimension vector 7;. By the explicit form of the map, we
have that if W = h.V that r = s, e; = f; and 3; = ;. That is,

Proposition 8.7 Let 6 be a character such that (o) = 0, then the deformed preprojective
algebra Ilg has semi-simple representations of dimension vector o of representation type T =
(e1,01;...;er, Br) if and only if the preprojective algebra Ily has 0-stable representations of di-
mension vectors B3; for all 1 < i <r.

In particular, 11y has a simple representation of dimension vector « if and only if Iy has a
0-stable representation of dimension vector o.

The variety M5’ (Ilo, 6) is locally controlled by noncommutative algebras. Indeed, as in the case
of moduli spaces of #-semistable quiver-representations, it is locally isomorphic to iss. (Ilg)s for
some universal localization of IIs. We can determine the a-smooth locus of the corresponding sheaf
of Cayley-Hamilton algebras.

Proposition 8.8 Let o € Xy, then the a-smooth locus of M5*(1lo,0) is the open subvariety
M (Io, 0) of 0-stable representations of Ilo.

In particular, if the sheaf of Cayley-Hamilton algebras over M3’ (Ilp,0) is a sheaf of a-smooth
algebras if and only if o is a minimal dimension vector in Xg.

Proof. As a € ¥g we know that iss, Il has dimension 2pg(a) = 2—Tg(«, ). By the hyper-Kéhler
correspondence so is the dimension of MS°(Ilo, 8), whence the open subset of ,u(gl(Q) consisting of
f-semistable representations has dimension

a.a—142pg(a)
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as there are 6-stable representations in it. Take a GL(«)-closed orbit O(V') in this open set. That
is, V is the direct sum of -stable subrepresentations

V=5P1g. g5
with S; a 0-stable representation of Iy of dimension vector §; occurring in V with multiplicity e;
whence a =}, e;f5:.

As all S; are Ilp-representations we can determine the local quiver Qv by the knowledge of all
Extf;, (Si, S;) from proposition 5.12

Extn, (Si, Sj) = 26i; — To(Bi, ;)
But then the dimension of the normal space to the orbit is
dim Extyy, (V,V) =2 Z e; — To(a,a)
i=1

whence the étale local structure in an n-smooth point is of the form GL(a) x% L(7)Exzt!(V,V)
where 7 = (e1,...,e,) and is therefore of dimension

2
.o+ Z el —To(a,a)

i=1
This number is equal to the dimension of the subvariety of #-semistable representations of Iy which

has dimension .t — 14+ 2 — T (e, @) if and only if r = 1 and e; = 1, that is if V' is f-stable. O

Even in points of M3*(Ilo, §) which are not in the a-smooth locus we can use the local quiver to
deduce combinatorial properties of the set of dimension vectors 3y of simple representations of Ilg.

Proposition 8.9 Let o, 3 € Yo, then
1. If T(a, ) < =2 then a + B € Xy,
2. If T(a,8) > —1 then a+ 3 ¢ Y.

Proof. The property that o and 8 are Schur roots of @ such that Tg(a, 3) < —2 ensures that
v = a+ B is a Schur root of @ and hence that ug' (67, has dimension 7.y — 1 4+ 2pg(7), whence
so is the subvariety of f#-semistable v-dimensional representations of Ilp. We have to prove that Il
has a #-stable «-dimensional representation.
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Let V=S ®T with S resp. T a 0-stable representation of Ily of dimension vector « resp. [
(they exist by the hyper-Kéahler correspondence). But then the local quiver Qv has the following
form

and by a calculation similar to the one in the foregoing proof we see that the image of the slice
morphism in the space GL(7) x € xe rep(; ;) Qv has codimension 1. However, as Tq (a,8) < =2
there are at least 3 algebraically independent new invariants coming from the non-loop cycles in
Qv, so they cannot all vanish on the image. This means that (1,a;1,3) cannot be the generic
type for f-semistables of dimension =, so by the stratification result, there must exist 0-stables of
dimension 7.

For the second assertion, assume that v = a+f is the dimension vector of a simple representation
of Iy, then iss, IIy has dimension 2pg(y) = 2 — To(a, B, + B) = 2pg(a) + 2pg(B) whence
so is the dimension of M;°(Ilo,0). By assumption (1,c;1,3) cannot be the generic type for 6-
semistable representations, but the stratum consisting of direct sums S @ T with S € M (11, 0)
and T' € M3(Q,0) has the same dimension as the total space, a contradiction.

The first part of the foregoing proof can also be used to show that usually the moduli spaces
M3 (IIy, ) and the quotient varieties issq Iy have lots of singularities.
Proposition 8.10 Let « € |sigmag such that o = 3+~ with B,y € . Then,
M3 (1o, 0) and issq g

is singular along the stratum of points of type (1,5;1,7).

Proof. The quotient space of the local quiver situation (as in the foregoing proof) contains singu-
larities at the trivial representations which remain singularities in any codimension one subvariety.
|

Still, if « is a minimal dimension vector in Xg, the varieties M3°(Ilp, 0) and issq Iy are smooth.
In fact, we will show in section 8.7 that the affine smooth variety iss, Iy is in fact a coadjoint
orbit.
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8.6 Calogero particles

The Calogero system is a classical particle system of n particles on the real line with inverse square
potential.

xr1 T2 Tn
That is, if the i-th particle has position z; and velocity (momentum) y;, then the Hamiltonian is

equal to
Zyl +Z CIEAY

1<J

The Hamiltonian equations of motions is the system of 2n differential equations

dt - ayi
dyi o _6H
dt o 8171

This defines a dynamical system which is integrable .
A convenient way to study this system is as follows. Assign to a position defined by the 2n

vector (Z1,y1;. .., Zn,Yn) the couple of Hermitian n X n matrices

_ i i -

Y1 %1 —o2 e oo 1—%n
x1 ]
K3
Ta—a1 Y2
X = and Y =
Tn ) Tp—1—Tn

T K

LTn—T1 e e Tn —Tn—1 yn .

Physical quantities are given by invariant polynomial functions under the action of the unitary
group U, (C) under simultaneous conjugation. In particular one considers the functions

J
Fj:tTL
J

For example,

{ r(Y) = Zyz the total momentum

Lr(Y?) =33yl - i m the Hamiltonian
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We can now consider the U, (C)-translates of these matrix couples. This is shown to be a manifold
with a free action of U,(C) such that the orbits are in one-to-one correspondence with points
(x1,Y15...;Tn,yn) in the phase space (that is, we agree that two such 2n tuples are determined
only up to permuting the couples (x;,y;). The n-functions F; give a completely integrable system
on the phase space via Liouville’s theorem , see for example [1].

In the classical case, all points are assumed to lie on the real axis and the potential is repulsive so
that collisions do not appear. G. Wilson [85] considered an alternative where the points are assumed
to lie in the complex numbers and such that the potential is attractive (to allow for collisions), that
is, the Hamiltonian is of the form

1 » 1
H== 2 _ - -
QZZ.% ; (xi — ;)2

giving again rise to a dynamical system via the equations of motion. One recovers the classical
situation back if the particles are assumed only to move on the imaginary axis.

X2

Tn

In general, we want to extend the phase space of n distinct points analytically to allow for collisions.

When all the points are distinct, that is, if all eigenvalues of X are distinct we will see in a
moment that there is a unique G L, (C)-orbit of couples of n X n matrices (up to permuting the n
couples (zi,y;)).

Y1 Zlilz zliz"
T1 zgizl Y2
X = and Y = :
In : . t. 1
i ' 1' Tp—1—Tn
| Zn—21 e e m yn |
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For matrix couples in this standard form one verifies that

1 .01
YV, X[+ |: .. =T
1 ... 1
This equality suggests an approach to extend the phase space of n distinct complex Calogero

particles to allow for collisions.
Assign the representation (X, Y, u,v) € rep, M where o = (1,n) and M is the path algebra of

the quiver Q¢ is
@
Y

v

where X and Y are the matrices above and where

Recall that the complex moment map for this quiver-setting is defined to be

rep, Q* = M, (C) ® M, (C) »C" @ C™ - C & M, (C)

(X,Y,u,v) — (—vu, [Y, X] 4+ u.v)

Therefore, the above equation entails that (X,Y,u,v) € /L(El(t‘)’ﬂa) where 6 = (—n,1), that is
(X,Y,u,v) € rep, IIy. Observe that « = (1,n) € Xy (in fact, o is a minimal element in Xp),
whence theorem 8.7, rep, Ilp is an irreducible complete intersection of dimension d = n? + 2n
and there are a-dimensional simple representations of Ilg. In particular, iss, Iy is an irreducible
variety of dimension 2n.

We can define the phase space for Calogero collisions of n particles to be the quotient space

Calo, = issq 1Ilp

In a moment we will show that this is actually an orbit-space and :

Theorem 8.15 The phase space Calo,, of Calogero collisions of n-particles is a connected complex
manifold of dimension 2n.
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Theorem 8.16 Let rep, M BN Vi (C) be the complex moment map, then any V = (X,Y,u,v) €
rep, Ilg is a O-stable representation. Therefore,

Calo, = g " (01,)/GL(a) = issa Mg =~ (ug ' (61,) Nrep’ M)/GL(a) = MS(Tlp,0)
and is therefore a complex manifold of dimension 2n, which is connected by theorem 8.7.

Proof. The result will follow if we can prove that any Calogero quadruple (X,Y,u,v) has the
property that u is a cyclic vector, that is, lies in rep] M.

Assume that U is a subspace of C" stable under X and Y and containing w. U is then also
stable under left multiplication with the matrix

A=[X,Y]+7T,
and we have that tr(A | U) = tr(T, | U) = dim U. On the other hand, A = u.v and therefore
c1 U1 c1 " U1
Aol =1:] v o vl | ] =0 v
Cn Un Cn i=1 Un
Hence, if we take a basis for U containing u, then we have that
tr(A|U)=a

where A.u = au, that is a = ) u;v;.

But then, tr(A | U) = dim U is independent of the choice of U. Now, C" is clearly a subspace
stable under X and Y and containing u, so we must have that a = n and so the only subspace U
possible is C" proving cyclicity of u with respect to the matrix-couple (X,Y). O

Again, it follows that we can cover the phase space Calo, by open subsets
Caloy, (¢) = {(X,Y,u,v) in o-standard form such that [V, X] + u.v =T, }

where o runs over the Hilbert n-stairs.

Example 8.5 (The phase space Caloz) Consider Calos ( (0] ). Because

0 d 1 —d -1 h —ac—bd
o B 8 O R i K St

We obtain after taking Groebner bases that the defining equations are

g =2
h =b
f =c+eh
d =1+ae
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In particular we find

C’al@(@):{({? Z][Z ii‘bﬂ{é]p b)) | ab,ceeC}~Ct

and a similar description holds for Calos ( o] ).

Example 8.6 (The phase space Calos) We claim that

O
Calos (@] ])~c®

For, if we compute the 3 x 3 matrix

0 a b 0 g h 1
[{1 ¢ df,|0 i j]+0.[m n O]f/ﬂg
0 e f 1 k 1 0

then the Groebner basis for its entries gives the following defining equations

=3
c+k
=i+1

3

=g—ej—ki+ ko
= 2jk + 212 — jn — 3lo+ 0*
=2k®> —2el —kn+eo

2 > ~Q A= o 3
\
Q
[
-

In a similar manner one can show that

o] o
Calos ( o] )~ C° but Calos ( o )

is again more difficult to describe.

We can identify the classical Calogero situations as an open subset of Caloy,.

Proposition 8.11 Let (X,Y,u,v) € rep,, Iy and suppose that X is diagonalizable. Then
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1. all eigenvalues of X are distinct, and

2. the GL(a)-orbit contains a representative such that

_ 1 1 -
(651 PV N =
1
A1 N1 @2
X = Y = :
An . 1
1 1. An—1—An
Bessw R W Y an |
1
1
u=|. v=[1 1 1]
1

and this representative is unique up to permutation of the n couples (Xi, ;).

Proof. Choose a representative with X a diagonal matrix as indicated. Equating the diagonal
entries in [Y, X] +u.v = T, we obtain that for all 1 < ¢ < n we have u;v; = 1. Hence, none of the
entries of

(X, Y]+1, =uw

is zero. Consequently, by equating the (7, j)-entry it follows that A; # \; for @ # j.

The representative with X a diagonal matrix is therefore unique up to the action of a diagonal
matrix D and of a permutation. The freedom in D allows us to normalize v and v as indicated,
the effect of the permutation is described in the last sentence.

Finally, the precise form of Y can be calculated from the normalized forms of X, u and v and
the equation [V, X] + w.v = T,. O

Invoking the hyper-Kahler structure on rep, M we have by theorem 8.14an homeomorphism, in
fact in this case a C'°°-diffeomorphism between the Calogero phase-space and the Hilbert scheme

Calo, = issa L —“» M:*(Io,0) = Hilb,

8.7 Coadjoint orbits

In this section we will give an important application of noncommutative geometry@n developed in
the foregoing chapter. If « is a minimal dimension vector in ¥y we will prove that the quotient
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variety iss, Ilp is smooth and a coadjoint orbit for the dual of the necklace algebra. In particular,
the phase space of Calogero particles is a coadjoint orbit.

We fix a quiver Q on k vertices, a dimension vector o € N*¥ and a character 8 € Z* such that
0(a) = 0 with corresponding weight 67,. Recall that Xy is the subset of dimension vectors a such
that

pa(a) > pe(B) + ...+ pa(Br)

for all decompositions o = 1 + ... + 3, with the 8; € AT6, that is, §; is a positive root for the
quiver @ and 6(8;) = 0. With X§"*" we will denote the subset of minimal dimension vectors in g,
that is, such that for all 8 < a we have 8 ¢ Xg.

Proposition 8.12 If a € 5", then the deformed preprojective algebra Il is a-smooth, that is
rep,, Iy is a smooth GL(c)-variety of dimension d = a.oc — 1+ 2pg(«).

Moreover, the quotient variety issa Il is a smooth variety of dimension 2pg(«), and the quotient
map

rep, g —> issy Ilp

is a principal PGL(a)-fibration, so determines a central simple algebra.
Proof. Let V' € rep, IIp and let V*° be its semisimplification. As ¥y is the set of simple dimension
vectors of ITp by theorem 8.8 and « is a minimal dimension vector in this set, V' must be simple. As
V?% is the direct sum of the Jordan-Ho6lder components of V|, it follows that V' ~ V*° is simple and
hence its orbit O(V) is closed. As the stabilizer subgroup of V is C*{l, computing the differential
of the complex moment map shows that V' is a smooth point of ugl(ﬁ’ﬂa =rep, Ily.

Therefore, rep, Ily is a smooth GL(«a)-variety whence Iy is a-smooth. Because each o-
dimensional representation is simple, the quotient map

™ .
rep, Iy —> iss, Ilp

is a principal PGL(a)-fibration in the étale topology. The total space being smooth, so is the
basespace issqy Ilg. |

The trace pairing identifies rep,, Q¢ with the cotangent bundle T* rep, @ and as such it comes

equipped with a canonical symplectic structure . More explicit, for every arrow in Q
we have an a; x a; matrix of coordinate functions Ay, with 1 <u < a; and 1 < v < a; and for the
adjoined arrow in Q¢ an a; x aj matrix of coordinate functions Aj,. The canonical

symplectic structure on rep, Q% is then induced by the closed 2-form

1<v<a;
1<u<a;

W= Z dAus N dAL,
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This symplectic structure induces a Poisson bracket on the coordinate ring Clrep, Qd] by the
formula

1<v<a;

1<uZay

- of 89 0f og
ray= 2. (Gi-5as a4z, oAy, )

The basechange action of GL(«) on the representation space rep, Q% is symplectic which means
that for all tangentvectors ¢,t' € T rep,, Q® we have for the induced GL(«a) action that

w(t,t') = w(g.t,g.t)
for all g € GL(a).
The infinitesimal GL(«) action gives a Lie algebra homomorphism

Lie PGL(o) — Vect,, rep, Q°

which factorizes through a Lie algebra morphism H to the coordinate ring making the diagram

below commute
Lie PGL(«a

/\

Clrep, Q ]

Vect, rep,

where puc is the complex moment map introduced before. We say that the action of GL(«) on
rep, M is Hamiltonian .

This makes the ring of polynomial invariants Clrep, Qd]GL(“) into a Poisson algebra and we

will write
lie = ((C[repa Qd]GL(a)v {_7 _})

for the corresponding abstract infinite dimensional Lie algebra.
The dual space of this Lie algebra lie* is then a Poisson manifold equipped with the Kirillov-
Kostant bracket .
FEvaluation at a point in the quotient variety issq, Q¢ defines a linear function on lie and therefore
evaluation gives an embedding
iss, Q% —— lie”

as Poisson varieties. That is, the induced map on the polynomial functions is a morphism of Poisson
algebras.

Let us return to the setting of deformed preprojective algebras. So let § be a character with
0(a) = 0 and corresponding weight 61, € Lie PGL(«).
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Theorem 8.17 Let a € S5¥", then isso Il is an affine symplectic manifold and the Poisson
embeddings

issy IIp & iss, Qd » [ie"

make isso Iy into a closed coadjoint orbit of the infinite dimensional Lie algebra lie*.

Proof. 'We know from proposition 8.12 that iss, Ilp is a smooth affine variety and that PGL(«)
acts freely on MEI(G"U@) = rep, IIg. Moreover, the infinitesimal coadjoint action of lie on lie*
preserves iss, Ilp and therefore Cl[iss, Ilp] is a quotient Lie lie algebra (for the induced bracket)
of lie.

In general, if X is a smooth affine variety, then the differentials of polynomial functions on
X span the tangent spaces at all points x of X. Therefore, if X is in addition symplectic, the
infinitesimal Hamiltonian action of the Lie algebra C[X] (with the natural Poisson bracket) on X
is infinitesimally transitive. But then, the evaluation map makes X a coadjoint orbit of the dual
Lie algebra C[X]".

Hence, the quotient variety ossq Ilp is a coadjoint orbit in fe". Therefore, the infinite dimensional
group Ham generated by all Hamiltonian flows on iss. Ily acts with open orbits.

By proposition 8.12 iss, Ilp is an irreducible variety, whence is a single Ham-orbit, finishing
the proof. 0

The Lie algebra lie depends on the dimension vector a. By the general principle of
noncommutative geometry@n we would like to construct a noncommutative variety from a fam-
ily of coadjoint quotient spaces of deformed preprojective algebras. For this reason we need a
larger Lie algebra, the necklace Lie algebra.

Recall that the necklace Lie algebra introduced in section 7.8

cQ*

nect = dr%,; C . J—
+ 00 = cgr.cen

is the vectorspace with basis all the necklace words w in the quiver Q¢, that is, all equivalence

classes of oriented cycles in the quiver Q%, equipped with the Kontsevich bracket

_ awl Owg 8’LU1 8w2
{wnwabie = Z (8a da*  Oa* Oa

a€Qq

) mod [CQY,CQY

We recall that the algebra of polynomial quiver invariants C[iss, Q%] = Clrep,, QﬂGL(a) is gen-
erated by traces of necklace words. That is, we have a map

cQ? tr

nect = W — lie = C[iSSa Qd]
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Recalling the definition of the Lie bracket on lie we see that this map is actually a Lie algebra map,
that is, for all necklace words wi and ws in Qd we have the identity

tr {wi, w2} x = {tr(w1), tr(ws)}
Now, the image of tr contains a set of algebra generators of Cliss, Q¢], so the elements tr nect
are enough to separate points in iss, Q¢ and in the closed subvariety iss, IIg. That is, the
composition

issq Iy & issq Q4 s nect*
is injective. Again, the differentials of functions on iss, Ily obtained by restricting traces of

necklace words span the tangent spaces at all points if the affine variety iss, Iy is smooth. That
is, we have :

Theorem 8.18 Let o € X5*". Then, the quotient variety of the preprojective algebra iss, Iy is
an affine smooth manifold and the embeddings

issq Hp > issq Q% —— lie* ——» nect”
make issq, g into a closed coadjoint orbit in the dual of the necklace Lie algebra neck.
We have proved in section 7.8 that there is an exact sequence of Lie algebras

00— Ch...6C — nectk — Der,, CQdHO
_/_/

k

That is, the necklace Lie algebra nect is a central extension of the Lie algebra of symplectic deriva-
tions of CQ?. This Lie algebra corresponds to the automorphism group of all B = C x ... x C-
automorphisms of the path algebra CQ? preserving the moment map element, the commutator

c= Z [a,a”]

a€Qq

That is, we expect a transitive action of an extension of this automorphism group on the quotient
varieties of deformed preprojective algebras iss, Iy when oo € 23"*". Further, it should be observed
that these coadjoint cases are precisely the situations were the preprojective algebra Iy is a-
smooth. That is, whereas the Lie algebra of vectorfields of the smooth noncommutative variety
corresponding to CQ? has rather unpredictable behavior on the singular noncommutative closed
subvariety corresponding to the quotient algebra Ily, it behaves as expected on those a-dimensional
components where Ilp is a-smooth.
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8.8 Adelic Grassmannian

At the moment of writing it is unclear which coadjoint orbits iss, Ilg should be taken together
to form an object in noncommutative geometry@n, for a general quiver Q). In this section we will
briefly recall how the phase spaces Calo, of Calogero particles can be assembled together to form
an infinite dimensional cellular complex, the adelic Grassmannian Gro?.

Let A € C, a subset V C C[z] is said to be A-primary if there is some power r € Ny such that

(x = N)"Clz] C V C Clz]
A subset V' C Clz] is said to be primary decomposable if it is the finite intersection
V=V ,Nn...nVy,
with A\; # A; if ¢ # j and Vi, is a A;-primary subset. Let ky, be the codimension of Vy, in C[z] and

consider the polynomial
T

pv(z) = H(az — )\i)kM

=1

Finally, take W = py (z) "'V, then W is a vectorsubspace of the rational functionfield C(z) in one
variable.

Definition 8.2 The adelic Grassmannian Gr®? is the se of subspaces W C C(x) that arise in this
way.

We can decompose Gr®® in affine cells as follows. For a fixed A € C we define
Gra={WeGr** | Ik,1eN : (x—NClz]cW C (z—\"'Clz]}
Then, we can write every element w € W as a Laurent series
w = as(z — A\)° + higher terms

Consider the increasing set of integers S = {so < s1 < ...} consisting of all degrees s of elements
w € W. Now, define natural numbers

Vi =1 — 8 then vy > V1 > .
That is, to W € Gry we can associate a partition
p(W) = (U07U17 ce,Uzl1)

Conversely, if p is a partition of some n, then the set of all W € Gr, with associated partition
pw = p form an affine space A" of dimension n. Hence, Gry has a cellular structure indexed by
the set of all partitions.
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As Grod = [T\cc Gra because for any W € Gr®® there are uniquely determined W(\;) €
Gry,; such that W = W(A\1) Nn... N W(\,), there is a natural number n associated to W where
n = |pi| where p; = p(W(\:)) is the partition determined by W(\;). Again, all W € Gr®?
with corresponding (A1, p1;...; Ar,pr) for an affine cell A" of dimension n. In his way, the adelic
Grassmannian Gr®® becomes an infinite cellular space with the cells indexed by r-tuples of complex
numbers and partitions for all » > 0. The adelic Grassmannian is an important object in the theory
of dynamical systems as it parametrizes rational solutions of the KP hierarchy . A surprising
connection between Gr*¢ and the Calogero system was discovered by G. Wilson in [85].

Theorem 8.19 Let Gr“d(n) be the collection of all cells of dimension n in gro?, then there is a
set-theoretic bijection

Gr*(n) «— Calon
between Gr“d(n) and the phase space of n Calogero particles.

The adelic Grassmannian also appears in the study of right ideals of the first Weyl algebra

_ Czy)
40 = (zy —yz —1)

which is an infinite dimensional simple C-algebra, having no finite dimensional representations.
Consider right ideals of A;(C) under isomorphism, that is

p o~y iff fp=gyp forsome f,g € Ai(C).

If we denote with D1 (C) the Weyl skewfield , that is, the field of fractions of A;(C), then the
foregoing can also be expressed as

po~p iff p=nh.yp' for some h € D;(C).

The set of isomorphism classes will be denoted by Weyl.

The connection between right ideals of A;(C) and gr®® is contained (in disguise) in the paper
of R. Cannings and M. Holland [16]. A;(C) acts as differential operators on C[z] and for every
right ideal I of A;(C) they show that I.C[z] is primary decomposable. Conversely, if V' C Clz] is
primary decomposable, they associate the right ideal

Iy = {0 € A(C) | 0.C[z] C V}

of A1(C) to it. Moreover, isomorphism classes of right ideals correspond to studying primary
decomposable subspaces under multiplication with polynomials. Hence,

Gr*® ~ Weyl
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The group Aut A;(C) of C-algebra automorphisms of A;(C) acts on the set of right ideals of A;(C)
and respects the notion of isomorphism whence acts on Weyl. The group Aut A;1(C) is generated

by automorphisms o/ defined by
{2‘8 zayc+f(y) with f € Cly], {Zﬁ:g; z;—f—f(a:) with f € Clz]
We claim that for any polynomial in one variable f(z) € C[z] we have that
flay)a” =a" flay—n)  and  fay)y" =y".f(zy +n)
Indeed, we have (zy).x = z.(yz) = z.(ry — 1) and therefore
flay).w = x.f(ey — 1)

from which the claim follows by recursion. In particular, as z".y" = =z
n—1, n—1

" y" " (zy + n — 1) we get by recurrence that

n—1

" Hay)y =

n

2"y =zy(zy+ 1)(zy+2)...(zy+n—1)
In calculations with the Weyl algebra it is often useful to decompose A;(C) in weight spaces. For

t € Z let us define
AC)t) ={ f € Au(C) | [xy, fl=1tf}
then the foregoing asserts that A;(C) = @¢czA1(C)(t) where A;(C)(¢) is equal to

y'Clzy] = Clzyly* fort >0
7 'Clzy] = Clzy]z ™" for t < 0.

For a natural number n > 1 we define the n-th canonical right ideal of A;(C) to be
pn = 2" A1 (C) + (zy +n) A1 (C).
Lemma 8.8 The weight space decomposition of p,, is given fort € Z
pu(t) = 2" AL(C)(t + 1+ 1) + (zy + 1) A (C)(1)

which is equal to
(zy + n)Clzyly* fort >0,
(zy + n)Clzylz ™" for —n <t <0,
Clry)x™" fort < —n.
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Proof. Let t = —1, then p,(—1) is equal to

2" Clayly” + (zy + n)Clayle

Using 2"y ™ = zy(zy + 1) ... (zy + n) this is equal to

ay(zy +1) ... (xy +n)Clayly™" + (zy + n)Clzylz

The first factor is (zy + 1)...(xy + n)Clzy]z from which the claim follows. For all other ¢ the
calculations are similar. O

One can show that p,, % p,, whenever n # m so the isomorphism classes [p,] are distinct points
in Weyl for all n. We define

Weyl, = Aut A1(C).[pn] = { [o(pn)] Vo € Aut A:1(C)}

the orbit in Weyl of the point [p,] under the action of the automorphism group.

Example 8.7 (The Weyl right ideals Weyl1) For a point (a,b) € C* we define a right ideal of
A1(C) by
Pas = (2 +0)°A1(C) + ((z + a)(y + b) + 1) 41 (C).
Observe that p; = po,0. Consider the action of the automorphism ag on these right ideals. As
f € C[z] we can write
f=f(—a)+ (x+a)fr with f1 € C[z].

Then, recalling the definition of 05 we have

o3 (Pap) = (z+0a)?A1(C) + ((z + a)(y + b+ f(—a) + (z +a) f1) + 1) A1 (C)
=(z+a)’A1(C) + (z + a)(y + b+ f(—a)) + 1) A1(C) = Pa,b+ f(—a)

Now, consider the action of an automorphism oJ. We claim that
Pap = A1(C) N (y +b) "' (z + a) A1 (C)

This is easily verified on the special case p; using the above lemma, the arbitrary case follows by
changing variables. We have

Pasb =A(C)N Y+~ (z +a)Ai(C)
~ (x+a) t(y+b)A1(C)N A (C) (multiply with h = (z +a) "' (y + b))

= (y + b)2A1(C) + ((y + b)(z + a) — DALC) Y g0
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Writing f = f(—b) 4+ (y + b) f1 with f1 € C[y] we then obtain by mimicking the foregoing

ol (Pap) = 0] (db.a)
= db,a+f(—b)
= Patf(-b),b

and therefore there is an h € D1(C) such that of (pa,p) = hPas f(—5).6-
As the group Aut A;(C) is generated by the automorphisms o/ and o we see that

Weyly = Aut A1(C).[p1] > { [pap | a,b€C}

Moreover, this inclusion is clearly surjective by the above arguments. Finally, we claim that
Weyly ~ C2. That is we have to prove that if

Pap = h~pa’,b' = (av b) = (a/v b,)

Observe that A;(C) —— C(z)[y, 6] where this algebra is the differential polynomial algebra over
the field C(x) and is hence a right principal ideal domain. That is, we may assume that the element
h € D,(C) actually lies in C(z)[y,d]. Now, induce the filtration by y-degree on C(z)[y, d] to the
subalgebra A;(C). This is usually called the Bernstein filtration . Because A1(C) and C(z)[y, d]
are domains we have for all f € A;(C) that

deg(h.f) = deg(h) + deg(f).
Now, as both pg, and p,/,» contain elements of degree zero z? 4 a resp. 22 +a’ we must have that
h € C(x).
View y as the differential operator —3% on Cz] and define for every right ideal p of A;(C) its
evaluation to be the subspace of polynomials

ev(p)={D.f | Dep, feCla]}
where D.f is the evaluation of the differential operator on f. One calculates that
ev(pap) = C(1 4 b(z + a)) + (z + a)*Clz]
and as from pap = h.pyrpy and h € C(z) follows that
ev(pap) = hev(par,pr)
we deduce that h € C* and hence that pap = porp and (a,b) = (a’, ).

Yu. Berest and G. Wilson proved in [7] that the Cannings-Holland correspondence respects the
automorphism orbit decomposition.
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Theorem 8.20 We have Weyl = | |, Weyl, and there are set-theoretic bijections
Weyl, — Gr**(n)

whence also with Caloy,.

Example 8.8 Consider the special case n = 1. As D is the only partition of 1, for every A € C,
gr is a one-dimensional cell A, whence Gr®?(1) ~ A% In fact we have

LW

‘ary
P1 :

where the origin corresponds to the canonical right ideal p; and the right ideal corresponding to
(A ) is P = (@ = X)?A1(C) + ((z = N)(y — 1) + 1) A1(C).

Finally, let us verify that p, should correspond to a point in Gr®®(n). As p, = 2" A4;(C) +
(zy + n)A1(C) we have that

pn.Clz] =C+Cx+ ...+ Cz" " + (2" ")C[x]
whence (z"1)C[z] C p».C[z] C C[z] and converting this to Gr®® the corresponding subspace is
(z™)Clz] C ™ 'p,.Clz] C 7 'Cla]

The associated sequence of degrees is (—1,0,1,...,n — 2,n,...) giving rise to the partition p =
(1,1,...,1) proving the claim.
——

n

If we trace the action of Aut A1(C) on Weyl,, through all the identifications, we get a transitive
action of Aut A1(C) on Calo,,. However, this action is non-differentiable hence highly non-algebraic.
Berest and Wilson asked whether it is possible to identify Calo, with a coadjoint orbit in some
infinite dimensional Lie algebra. We have seen before that this is indeed the case if we consider the
necklace Lie algebra.

It is our hope that similar results are true for more general quivers and certain families of
coadjoint orbits coming from quotient varieties of deformed preprojective algebras.
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