lecture 1

MANIFOLDS

1.1 Some examples of algebras

Throughout, £ will be an arbitrary field with algebraic closure 2. In order to get a feeling
“for definitions to come it is good to have an arsenal of examples.

matrix-algebra : M, (¢) is the algebra of all n x n matrices with entries in £.

group-algebra : £G for a finite group G is the {-vectorspace with basis {eq : ¢ € G} and
multiplication induced from the rule that eg.ep = egp. :

polynomial algebra : {[zq,...,z,] the algebra of commutative polynomials in the vari-
ables x1,...,Zn.

free algebra : £{z1,...,x,) the algebra of non-commutative polynomials in the variables
Z1,...,Ty (O, equivalently, the tensor algebra of an n-dimensional £-vectorspace). An
/-basis consists of all words in the alphabet {z1, ..., z, } and multiplication is induced by
concatenation of words.

first Weyl algebra : A, (¢) is generated by two elements @ and y satisfying the so-called
canonical commutation relation [z,y] = 2y — yz = 1. It is also the ring of differential
operators on the affine line.

path algébra : £Q) for a finite quiver (an oriented graph) is the £-vectorspace with basis the
oriented paths in @ of length > 0 and multiplication induced by concatenation of paths.

coordinate ring : ¢[X] for an affine /-variety X is the algebra of polynomial functions on
X. For example, if C is a smooth elliptic curve with equation y? = z* + az + b then
U[C] = €[z, y]/(z° + az + b~ y?).

1.2 Projective A-modules

We quickly run through some basic homological algebra. For more details we refer to J.
Rotman *Introduction to homological algebra’. If A is an {-algebra we denote by A —mod
the category of all left A-modules, that is, £-vectorspaces M with a linear action on the left
.t AXM — M satisfying 1.m = mand a.(¢’.m) = (aqa’).m. Morphisms in A—mod
are linear maps f : M —— N such that f(a.m) = a f(m). Two left A-modules are
isomorphic M =~ N iff there are A-module morphisms f : M — Nandg: N — M
suchthat f o g = idy and g o f = idpys.

A free left module F is isomorphic to the direct sum A’ for some indexset I. A left A-

module P is a projective module if P < F' that is, is a direct summand of a free module
F.




lecture 1. manifolds 4

Exercise 1.1 (By no means easy) Classify all (or construct examples of) projective A-
modules for A in the list of seven examples in the previous section. Failing this, look up
the literature about this problem

Recall the notion of exactness of sequences of left A-modules. Consider a sequence of left
A-modules and left A-module morphisms

fim1 fi
- — My —— M; —> My — ..

This is called a complex whenever f; o f;_1 = 0 for all 4, that is, if for all ¢ we have that
Im(fic1 € Ker(f;). Itis called exact in M; if Ker(f;) = Im(f;~1) and exact if it is
exact in all M;. In general, the cohomology vector spaces

Ker(f;)

Bi= oy

measures the obstruction to exactness in M;.

Exercise 1.2 (Easy) Prove that a left A-module P is projective if and only if every diagram
of left A-module morphisms

M - N 0
with the lower sequence exact (that is, a surjection) can be completed with a left A-module
morphism f’. Hint ; use the fact that every left A-module M has a short exact sequence

F—sM-—>0

with F' a free A-module (choose an /£-basis in M) and use that the lifting property is trivial
for free modules.

A covariant functor F' : A— mod — { —vect is said to be left exact iff for every exact

sequence
0 - M’ - M - M”

also the sequence
0 —> F(M") — F(M) — F(M")

is exact (so, F' preserves monomorphisms). Similarly, one defines a right exact functor
(preserves epimorphisms).

Lemma 1.3 For every N € A — mod, the functor F(—) = Hom 4 (N, —) is left exact.

8

Proof. Take an exact sequence 0 M 2+ M » M7 then the sequence

0 — Homa(N, M") =2 Homa(N, M) -2 Homa(N, M”)

is defined by Fa(¢) = a0 ¢p.and FB(¢)) = 3 o 9. Suppose Fa is not injective, then there
is a morphism ¢ : N —— M’ such that Fa(¢) = 0, that is, a(¢(m)) = 0Vm € M.
Because « is injective, ¢(m) = 0 for all m whence ¢ = 0. As an exercise, check that the
sequence is also exact in the middle term. 0




lecture 1. manifolds 5

In general, this functor is not right exact. However, we have the following characterization
of projective left A-modules.

Lemma 1.4 P is a projective left A-module if and only if Hom (P, —) is an exact functor
(that is, is both a left- and a right-exact functor).

Proof. Remains to prove that for an epimorphism M —— M” —— 0 also the induced

map
Homa(P,M) —» Homs(P,M”) — 0

is epi. But this is just the lifting property for projectives. ]

1.3 Ext-spaces

Justas Hom 4 (M, --) is a covariant functor, Hom 4 (—, N is a contravariant functor (that
i, reverses the direction of the arrows. So, if M AN M is a morphism of left A-modules,
then there is a map

Hom(M',N) LR Homa(M,N)
defined by sending ¢ to ¢ o f. Now, take a projective resolution of M that is a long exact
sequence

da P, dy P dy PO M . 0
with all P; projective left A-modules and consider the complex
0 — Homa(Pp, N) 20 prom (P, Ny 22298 froma(Py, N) — .

and we define the n-th Ext-space

Ker Hom(dp41,N)

2t =
Ex A(M>N) ImHOm(dnaN)

to be the obstructions to exactness of this complex. Clearly we have that
ExtS(M,N) = Homa(M,N)

The importance of these Ext-spaces (as is the case for all so called derived functors) is that
it turns short exact sequences into long exact sequences (in either entry). So if

0 - M — M M? 0

is a short exact sequence of left A-modules, then we have a long exact sequence of £-
vectorspaces

0 — Hom(M”,N) —~ Hom(M,N) — Hom(M',N) — Ext'(M”,N) —~
Ext*(M,N) — Ext'(M',N) — Ext*(M”,N) — ...

and, similarly, for a short exact sequence of left A-modules

0—> N —+ N N” 0

there is a long exact of ¢-spaces
0 — Hom(M,N') — Hom(M,N) — Hom(M” ,N) — Ext'(M,N’') —»
Ext*(M,N) — Ext'(M,N”) — Ext*(M',N) — ...
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For our applications in non-commutative geometry it is very important to have a concrete
interpretation of ExtY (M, N) as equivalence classes of extensions. An extension of N by
M is a short exact sequence of left A-modules

0 - N - X M -0

and two such sequences are called equivalent if there is a commutative diagram

0 - N X - M - 0
idN ¢ Z‘dM
0 - N - X’ M -0

(exercise : verify that this is indeed an equivalence relation!). Here is the procedure to
define a map from such extensions to Extk (M, N). Consider the diagram

—p—%2 .p__ % . p M - 0
H H H
0 N X . M - 0

(where the dotted arrows exist by the lifting property for projectives). By commutativity
of the diagram, o o dp = 0 so « determines an element of Ker Hom 4(ds, N) and hence
a class in Exty (M, N). As an exercise, verify that this is independent of the choice of o
making the diagram commute and of the equivalence class of extension.

Another use of Ext-spaces is that it gives still another property of projective modules.

Lemma 1.5 If P is a projective left A-module, then Ext% (P, M) = 0 for all n > 1 and
alM € A—mod.

Proof. Take as a projective resolution of P the sequence
.0 >0 P » P » 0 and apply the definitions. (]

Note that the zero-vector in Ext} (M, N) corresponds with the extension with middle term
M @ N and obvious maps. Hence, if Exty (M, N) = 0 then every extension of N by M
splits. This allows us to give yet another characterization of projectives (Proof as an easy
exercise to the above)

Lemma 1.6 M is a projective left A-module if and only if Extly(M,N) = 0 for all N €
A —mod.

Finally, there is one more result we will need later on
Lemma 1.7 If P is a projective left A-module and if there is a short exact sequence
0 N - P M 0
then for every X € A — mod and all n > 1 there is an isomorphism
Ext?t (M, X) ~ Ext (N, X)

Proof. Applying Hom 4(—, X) to the short exact sequence gives us filaments
Ext!(P,X) — Ezt'(N,X) — Ezt'™ (M, X) — Ext'*'(P, X)

Because P is projective the first and last terms are zero. [
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1.4 Bimodules and Hochschild cohomology

M is called an A-bimodule if M is both a left- and a right A-module satisfying
(a1m)as = a1(mas) VYo, € AmeM

and bimodule morphisms are defined in the obvious way. We need to define the notions of
projective modules, cohomology etc. in the category A — bimod of all A-bimodules rather
than in A — mod. Fortunately, we need no extra work.

The enveloping algebra A® of an {-algebra A is the tensor product algebra
A = —A®p AP

where A°P (the opposite algebra) is A as an £-space with multiplication a.a’ = a’a (that
is, the reversed multiplication of A). There is an equivalence of categories

A—bimod < A°-—mod
using the definition of a left A°-module structure on any A-bimodule M via
(a ®a’).m = ama’
(Exercise : verify that this all fits).

Exercise 1.8 Compute the enveloping algebra A€ for
A= Mnl(e) S ... 0 My, (Z)

and deduce from this the classification of all A-bimodules.

We define the Hochschild cohomology H*(M) for M € A — bimod to be
HY(M) = Ext'y. (A, M)

where we give A the natural A-bimodule structure. As before, these spaces can be cal-
culated if we have a projective A®-resolution of A, that is a projective resolution of A as
bimodules. We can easily define even a free resolution. Observe that A® A (all tensors are
taken over £) is the free A-bimodule of rank one. Denote

A=A/l1  as/t-vectorspace

then A ® aen ® A is the free A-bimodule on a basis of Al Now, define a sequence of
A-bimodules

AR AT R A AQRAQA —r AQA -2 A —

where we define
n

b(ao, a1, . . - ) Oy 1) = Z(—l)i(ao, c 3 051y Onpl)
—n i=0
€4

Exercise 1.9 Verify thatb : A ® A —— A s just multiplication and that
AQAA > A9 A

sends (ag, a1, az) to (aoa1,as) - (ag, a1az). Observe that bo b = 0 and verify that this
also holds for higher terms, so the above sequence is a complex.
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1.5 (Non-commutative) differential forms

There is another interpretation of the free bimodules appearing in this resolution
AA® @A=0rA® A
where 0" A = A® A°" are the non-commutative differential n-forms using the dictionary
(ag,a1,...,an) = aodaids. .. day

We can put a graded algebra structure on the space of all differential forms

QA=02,Q"A
by the rule
n .
(30,1, 8n)-(@nt1s -y Gnak) = 3 (=1)"" (a0, -, 0361, -, Antk)
i=0

which determines a map Q"4 ® Q1A —— Qnt*=1 4 Because 2°A = A this multi-
plication defines an A-bimodule structure on all of the Q" A. Important for us will be the
differential 1-forms Q! A. -

Recall that-for an A-bimodule M, an ¢-derivation is an {-linear map D : A —— M
satisfying
D) =0 and D(ab) = D(a)b+ aD(b)
Example 1.10 Consider the map
A QI A=A0A a~ (1,0)
then this is an ¢-derivation as
d(a)b + ad(d) = (1,a).b+ a.(1,b) = —(a,b) + (1,ab) + (a,b) = (1, ab) = d(ab)

In fact, it is the universal {-derivation meaning that for any ¢-derivation D there exists a
unique A-bimodule morphism making the diagram below commute

< ZlA"
Observe that if M is an A-bimodule, we can define the fensor algebra
TaM)=AdMO(MMUM)(MOUMeAM)d . ..
with the natural multiplication. This definition allows us to control 4.

Lemma 1.11 QA = T4(Q'A)
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Proof. Have algebra map (inclusion) A —— QA and a bimodule map (inclusion)
Q1A —— QA so from the universal property of tensor-algebras we have an algebra map

T4(Q'4) — QA
which is an isomorphism as by induction we have
DN =QAR, (AQA) =" A=Q"14
O

We have an exact sequence of A-bimodules
0— QU4 L+ A0 A" A — 0

with m multiplication and j(apda1) = apa1 ® 1 —ag ® a1. As A s a free left (resp. right)
A-module (NOT necessarily a projective A bimodule!) we know that the sequence splits as
a sequence of left A-modules (or right A-modules) whence we can tensor with Q" ® 4 —
and obtain an exact sequence of A-bimodules

0> QPARUN — Q"AQUARRA —+ QAR A —> 0
whence an exact sequence of A-bimodules
0— QA Lo OngA " QA — 0
where the maps are defined by

jwde) =wa®l-w®a
mw ® a) = wa

1.6 (Non-commutative) points

When M is an A-bimodule, its Hochschild cohomoloy H*(M) = ExtY.(A, M) can be
- calculated as the cohomology of the complex

C"(A,M) = Homgu(A @AY @ AM)= Homg(ng‘, M)

C"H(A, M)= Home(A@ A% © 4, M) = Homo(Z%", M)
where for f € Homy(A™", M), (5f)(a1, ., an41) is defined to be
n
arf(az, ... G041 +-Z(—l)if(a1,\ 30303415 Q1) ("1)n+1f(a1, L an)anst
=1

This allows us to compute low dimensional cohomology groups from investigation of

81

CO(A, M) 2v CL(4, M) C2(A, M)

|
N

M —— Homg( ,M) — Home(z® ,M)
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where dp(m) is the map sending @ to am — ma (check that this is well-defined). Therefore,
HO(M) = Ker 6o = {m € M|am = ma} = M*
the center of M. Likewise, if D € Hom,(A, M) then
81.D(a1,a2) = a1 D(az) -~ D(ajaz) + D(a1)asy

whence Ker d; is precisely the space of £-derivations and the image of &y are by the above
the inner derivations, whence

_ {-derivations on M

HYM . —
( ) inner derivations

This brings us to our first theorem (definition)

Theorem 1.12 The following are equivalent
1. A has cohomological dimension 0 with respect to Hochschild cohomology, that is,
H*(M)=0foralli >1andall M € A — bimod.
2. Ais a projective A-bimodule.
3. Every £-derivation of A in a A-bimodule is inner.
Proof. (1) = (3): H*(M) = 0 and so the statement follows from the above description
of H*.

(3) = (2): HY(M) = Exth. (A, M) = Oforall M € A®—mod whence A is a projective
left A¢-module.

(2) = (1) : If A s a projective A®-module, then Exty. (A, M) = 0 forall 4 > 1 and all
M e A - bimod, whence the statement follows. O

An f-algebra satisfying these equivalent conditions is called a (ron-commutative) point.
- We will now characterize such points.

Because A is a projective A-bimodule, we have a bimodule splitting A 2+ A® A of the
multiplication sequence

0—> QA4 —> AQA-"+4—0
s € Homae(A, A® A) = (A® A)* and is fully determined by z = s(1). If z = 3 2, Qy;

then we have that
m(z)=1 so >, zy =1

VaeA: Yoz, Qyi =Y 2 ®yia
z{a®1-1®a)=0

such elements are usually called separability idempotents. Indeed we have that 22 = 2 as
2= (Z TiQY)Z = 2:(36z R (1Qy)z = Z(:m L) Y®l)z = (Z TiY) Q2 =2
Therefore,

Theorem 1.13 Non-commutative points are exactly the separable ¢-algebras.
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e/y =

Exercise 1.14 Prove that M, ({) is a point with separability idempotent
1 n
z = E E e ® ej;
4, j=1
What happens if char(€)|n ?

Exercise 1.15 If char(¢) does not divide the order #G of a finite group G, then the group
algebra G is a non-commutative point with separability idempotent

1
==Y g®g7"
#G gE-G

1.7 (Non-commutative) curves

If M is an A-bimodule, we can define an £-algebra structure on A & M by
(a,m).(a’,m') = (ad’,am’ +ma')

Note that I = 0@ M is a twosided ideal of this algebraand that I? = 0 and (A®M)/I ~ A.
We call A @ M the trivial square-zero extension of Aby M.

More generally, an {-algebra B is said to be a square-zero extension if there is a twosided
ideal I < B with I? = 0 and B/I ~ A.

Exercise 1.16 Show that the kernel I of the projection B —— A from a square-zero
extension has a well-defined A-bimodule structure. Hint : for 7(b) = a and ¢ € I define
a.4 = bi and 7.0 = ¢b and prove that this does not depend on the choices made (because
I? = 0).

Hence, any square-zero extension B determines an A-bimodule and we call two square-
zero extensions (with the same bimodule M) equivalent iff there is an {-algebra map ¢
making the diagram commute

M < B - A
id ¢ ida
M < B > A

Precisely as we calculated H° and H' one can show that H?(M) classifies equivalence
classes of square-zero extensions of A determined by the A-bimodule M and that the zero-
vector in this space corresponds to the trivial square-zero extension A @ M.

Theorem 1.17 The following are equivalent

1. A has cohomological dimension 1 with respect to Hochschild cohomology, that is,
HI (M) =0forallj >2andall M € A~ bimod.

2. QYA is a projective A-bimodule.
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3. For every square-zero extension (B, I) of A there is a lifting algebra map

A e B

B/I

Proof. (3) = (2): Lifting means that every square-zero extension is equivalent to a trivial
square-zero extension, whence H2(M) = 0 for every M € A — bimod. Hence, for all
M € A~ bimod

0= Ext3.(A, M) = Extly. (Q* A, M)

(because 0 — Q'A —> A® A —+ A —— 0 with middle term a free A-bimodule).
Hence, 2 A is indeed a projective A-bimodule.

(2) = (1) : We know that Extl;, (W' A, M) = Oforalli > land all M € A — bimod,
But then, Ext'\! (A, M) = H*1(M) = 0.

(1) = (3) : trivial from the above remarks. O

An /f-algebra A satisfying these equivalent conditions is called a (. non-commutative ) curve.
Other terminology for this class of algebras is : quasi-free algebras (Cuntz-Quillen) and
SJormally smooth algebras (Kontsevich).

Recall that an Z-algebra A is said to be hereditary if every left A-module M has a projective
resolution
0O— P — Py —+ M — 0

of length < 1.
Theorem 1.18 A (non-commutative) curve is an hereditary algebra.
Proof. Because A ® A is a free onesided A-module, the sequence

0 — QP4 —+ AQA—+ A—>0

splits as a sequence of right A-modules. Therefore, tensoring this sequence with a left
A-module M we till have an exact sequence

0 —— QAQAM —- ARAQAM — A®a M —— 0

0

2 osMl— s0M - M 0

Here, the middle term is a free left A-module and as Q' A is a projective A-bimodule it is
a direct summand of some A ® V ® A whence

VAQUMAARV QAU M =AQQVOM

and the right hand side is a free left A-module. O
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1.8 Back to the examples

Let us go back to the classes of /-algebras we gave at the beginning and determine in which
class they fall.

M, (¢) is a simple algebra and a non-commutative point. If £ C L is a finite inseperable
field extension of £ (which then must have prime characteristic) then M, (L) is a simple
algebra but is not a point.

£G is a semi-simple algebra and a non-commutative point provided char(£) does not divide
the order of the group G.

l[z1,.. .,z is a non-commutative point iff » = 0 and a non-commutative curve iff n = 1
(see next time).

I{zy,. . .,x,) is a non-commutative point iff n = 0 and for all n it is a non-commutative
curve (see next time).

Ay (4) is hereditary iff char(€) = 0 but is never a non-commutative curve.

£Q) is a non-commutative point iff there are no arrows in ¢} and is always a non-
commutative curve. '

£ X is a non-commutative point (resp. curve) iff X is the disjoint union of a finite number
of points (resp. of smooth affine curves).
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MACHINES

2.1 Grothendieck’s characterization

Recall from last time that an £-algebra A is said to be a
o (non-commutative) point iff A is a projective A-bimodule iff A is a separable /-
algebra
e (non-commutative) curve iff Q' A is a projective A-bimodule iff A has the lifting

property for square-zero extensions

From now on we will call such algebras just (non-commutative) manifolds for we will
show that if one extends one of the many characterizations of smooth affine commutative
algebras to the non-commutative world we find exactly the above mentioned algebras. This
is the first surprise of non-commutative geometry : non-commutative manifolds are morally
either points or curves!

Recall that a (commutative) affine variety is a subset of common zeroes
X =V(f1,...,f) CA¥(0)

for a finite set of polynomials f; € £[z1,...,2y]. For more information on varieties and
schemes, read the first chapter of R. Hartshorne *Algebraic Geometry’.

The coordinate ring of the affine variety X is defined to be the quotient

— E[Zﬁl,»‘ “)xN]
(fl:“ . “7fl)

that is, it is the £-algebra of polynomial functions defined on X. .

X

We say that £[X] has the nilpotent lifting property if for every commutative {-algebra C,
every ideal I < C with I? = 0 and every algebra map ¢, there exist an {-algebra lift ¢

0]

c/I
making the diagram commute.

J.P. Serre proved that an affine variety X is smooth of dimension d if and only if £[X] has
finite global dimension d (that is, every £[X]-module has a projective resolution of length
< d). On the other hand, A. Grothendieck proved the following facts :
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e If £[X] has the nilpotent lifting property then £[X ] has finite global dimension.

e If £ is a perfect field (e.g. if £ is finite or algebraically closed) then any £[X] having
finite global dimension satisfies the nilpotent lifting property.

Therefore, a natural generalization of smooth varieties to the non-commutative world is to
take £-algebras satisfying the nilpotent lifting property in alg the category of all {-algebras,
that is, where we allow C in the above diagram to be non-commutative. Observe that this
condition is a lot stronger than the commutative lifting property so it is not true in general
that a commutative ring satisfying the commutative lifting property also satisfies the non-
commutative one.

Example 2.1 Take X = A"({) then ¢[X] = {[z1,...,zy] clearly satisfies the commuta-
tive nilpotent lifting property (just left the images of ¢(x;) to elements of C, say ¢; and
define ¢ by sending z; to ¢;. However, this argument does no longer work in alg, Take for
example the 4-dimensional non-commutative ¢-algebra

B=—BY __ _yigisetyelay

(=%, 9% 2y + yx)
and 7 the one-dimensional nilpotent twosided ideal in B
I=(zy—-yzx)=4Lxy with I2=6
then the quotient is a commutative Z-algebra

- lzyl
B/I = R =llplzely

so there is an algebramap ¢ : ¢[X] — B/I sending z1 + z, T2 ~ y and x; ~ 0 for
all £ > 3. A potential lift ¢ : £[X] — B must be of the form

43(3:1) =2 -+ azy and d(x2) =y + By

But then [$(z1), d(z2)] # 0 in B contradicting the fact [z1, 22] = 0 in £[X]. So, whenever
" n > 2then £z, .. ., x,] does not have the nilpotent lifting property in alg,

We will show that A has the nilpotent lifting property in alg if and only if A is a non-
commutative curve.

2.2 The generic square-zero extension

Consider the (usually extremely large) tensor algebra over ¢
TA)=LoAD(ARA) G (ARARA)®...
For any ¢-algebra R a based linear map is an £-linear map
AL+ R st p(lx)=1pg

By the universal property of tensor algebras, any based linear map p extends to an algebra
map

T(A) L. R a1 ® ... Qax — plar)p(as) ... plak)
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and as p(14) = 1p this algebra map factors through the quotient

T(4)

PA=a D

where 1 4 is the element in T'(A) of degree one and 1 is the unit element of T'(A4). That is,
B(A) has the universal property that every based linear map p extends to an £-algebra map
making the diagram

A—2L R

R4

YIRS

B4)

commute. In particular, apply this to the identity map ¢d : A —— A then we get a
twosided ideal B
Iy =Kerid such that B(A)/Ia~A

Therefore, B(A)/I% is a square-zero extension of A which we call the generic square-zero
extension.

2.3 Characterizing manifolds

Let us call a £-algebra A a (non-commutative) manifold if it satisfies the nilpotent lifting
property in alg.

Theorem 2.2 The following are equivalent

1. A has the nilpotent lifting property in alg,.

2. Ais a non-commutative curve.

. Proof. (1) = (2): Immediate from the characterization of curves via lifting of square-zero
extensions.

(2) = (1) : Let B be a f-algebra having a twosided ideal I with I? = 0 and an algebra
map ¢ : A —— B/I. We can always lift ¢ to a based linear map p (not necessarily an
algebra map!) making the diagram commute

p

A i B

B/I
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This p extends to an algebra map p by the universal property of B(A) and we obtain the
diagram

A—2 LB/l

A

B(A) —— B

e

B(A)/1I3
By commutativity of the upper square, 5(I4) C I whence 5(I%) C I? = 0 and therefore 5
factors through an algebra map (1). Now, B(A)/I7 is a square-zero extension of A hence
there is a lifting algebra map

(2) : A— B(A)/I3

But then we have found the required algebra lift (3) = (1) o (2). 0

2.4 Representation schemes

Our next aim will be to show that (non-commutative) manifolds (or curves if you want) are
really machines (as M. Kontsevich described it) producing a family of commutative affine
manifolds. The first family to consider are the affine schemes rep,, A of n-dimensional
representations of A. Recall that an n-dimensional representation is an algebra map

A s M (0)

We will now describe the coordinate ring {[rep,, A]. Assume A is an affine Z-algebra with
presentation

€<.’171, o 7"’EN>
(fi(ilfl, ca ,:CN) S I)

where the index set I is not necessarily finite. Consider the affine space AN n’ (£) with
coordinate functions z;;(k) (where 1 < 4,7 < nand 1 < k < N) and define the generic
n X n matrices

A=

z11(k) ... zia(k)
Xe=| :
Tra(k) . zpa(k)
We can evaluate each of the identities f;(z1,...,2n) in the non-commuting variables x

in the matrices X and obtain an n X n matrix
filX1, ., Xn) € Ma((AN™))

and we define the ideal I,(A) < £[AN "2] to be generated by all entries of all these n x n
matrices f;(X1,...,Xn). Observe that whereas I may be infinite, the ideal I,,(A) is
clearly finitely generated by Noetherianity of £[AN ”2].‘ We define the n-th representation
scheme of A via its coordinate ring

| ANR? ]

l[rep, A] = T.0A)



lecture 2. machines 18

The whole point of this construction is that an ¢-point of rep, A corresponds to an n-
dimensional representation of 4. One should be extremely careful though not to confuse
the geometric points of rep,, A with n-dimensional £-representations. A geometric point
of rep,, A corresponds to an {-algebra map

and for a subfield # ¢ L C £ this is said to be an L-point is the image is contained in
Mn(L).

Example 2.3 Let { C L be a finite separable field extension of ¢ (in particular, L is a
non-commutative manifold, even a point), then we can write

_ A
(f(z))
for some irreducible polynomial f(z) € {[z] and L is the field generated by the roots of
f(z). Then
rep; L({) =0  whereas  rep; L(f) = { roots of f(z) }

As an exercise, if deg(f) = n find an {-point in rep,, L (Hint : think of companion
matrices...).

For a general ¢-algebra A one can also characterize the representation scheme rep,, A (or,
equivalently, its coordinate ring ¢[rep,, A]) by the following universal property. There is a
natural algebra map

A n({[rep, A]) definedby xx— Xi
Let C be a commutative {-algebra, then for every Z-algebramap ¢, there is a unique algebra
map ¢ : {[rep, A] -— C making the diagram

A s Mo(C)

A

M ()

Mn (E [repn A] )

commutative. Clearly, 1 is defined by sending the class of x;;(k) to the (4, j)-entry of
¢(zx). This allows us to prove a fundamental result

Theorem 2.4 If A is a non-commutative manifold, then for all n the representation scheme
rep,, A is a smooth (commutative) variety.

Proof. By Grothendieck’s characterization we have to show that ¢[rep,, A] satisfies the
nilpotent lifting property with respect to commutative algebras. So, take a commutative
¢-algebra C an ideal T < C satisfying I? = 0 and an £-algebra map

Urep, A) 2+ C/I
which we want to lift to C. Consider the following diagram

P
A oeien. M (C)
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Recall that the product of two irreducible varieties is again irreducible and that the image
of an irreducible variety is irreducible. Therefore, there is a unique componentrep,, A in
rep,, , A containing the image of the irreducible variety rep, A X repz A under the
sum-map. We denote this relationship by

a+ =7y

and in this way we define a commutative semigroup structure on comp(A) the set of all
irreducible components of representation varieties of the manifold A. (For general algebras
A one can do a similar construction but then one has to restrict to connected components;
for manifolds these two notions coincide)

Example 2.7 The algebra A = £ x ... x £ (k factors) is semi-simple with simple represen-
tations M; (1 < 4 < k) hence every finite dimensional representation M of A is isomorphic

to
MeMP @ . @ MP*

for some a = (ay,. ..,ax) € N¥ and with |a| = Y, a;. Thetefore, for each n we have
that rep,, A is the disjoint union of a finite number of G'L,,-orbits

rep, A= u rep, A
loe|=n

and hence comp(A) = N* with generators the components of rep, A corresponding to the
simple representations M.

Exercise 2.8 For the manifolds below, prove that their component semigroups are as indi-
cated (in the case £ = £).

1. A= M,({)then comp(A) =Nn CN.

2. A = (G, then comp(A) == N* where k is the number of characters of G.
3. A=¥z1,.. .,zN), then comp(A) ~ N,

4. A = {[C], then comp(A) ~ N.
5

5. A = £Q), then comp(A) ~ N* where k is the number of vertices of Q.

2.6 The component semigroup, ¢ arbitrary

An n-dimensional representation A 2. M, (2) is the same thing as an n-dimensional
left A-module My = £™ (considered as column vectors) with action

av = ¢(a)v € £*

Clearly, this depends on the choice of basis in My and two different bases lead to isomor-
phic left A-modules. That is, there is an action of the base-change group G L,, on the affine
variety rep,, A such that its orbits are precisely the isomorphism classes of n-dimensional
A-representations.

Let us start with an example showing some of the problems which occur when trying to

extend the definition of a component semigroup to manifolds A over-an arbitrary basefield
£
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Where ¢ = Myp(¢) © jn. As Mp(I) is a square-zero ideal in M, (C) we know from
the manifold condition on A the existence of a lifted algebra map . But then, using the
universal property of the map 7,, there exists a unique algebra map

fxep, A] — C

making the diagram commute. This map is the required algebra lift. |

Exercise 2.5 To see that this result allows us to prove smoothness of varieties that would
be intractable otherwise, take a, b € £ such that

C =V +azx+b—y?) CA?

is a smooth affine elliptic curve. Determine explicitly the 8 (4 from the above equation and
4 from [z,y] = 0) equations defining xep, ¢[C] in A8 and try to show that this variety is
smooth. Attempt a similar approach to reps £[C] and higher n...

2.5 The component semigroup, ¢ = ¢

In this section we assume for the first time that £ = 7 is algebraically closed.In the next
section we will show how one can extend the results to an arbitrary field. In the next lecture
we will give a more elegant solution replacing the semigroup to be introduced here by a
(braided) coalgebra.

If A is a manifold we know that each of the representation varieties rep,, A is a smooth
affine manifold but it may have different irreducible components (which must be disjoint
by smoothness).

Example 2.6 Let A = £ x ... x £ (k factors). Then,
rep; A={My,. ..M |M;=0x. .x£{x0.. x0}

has k distinct points.

Let us denote this decomposition

rep, A = L' rep, A
o3

where « is just a label of the irreducible component rep, A. We call o a dimension
vector of total dimension n and denote this by || = n. We will now impose relations
among these o’s. Assume that M € rep,, A is determined by the matrices m; € M, ({)
and N € rep,, A determined by matrices n; € M,,(£) (where ¢ € I a set of algebra
generators of A), then we can form the direct sum representation

m 0]

M®N €rep,, , A determined by [ 0 n
These morphisms are called the sum maps

rep, A x rep, A —>rep, . A
And decomposing all varieties involved in their disjoint irreducible components we have a

map
|_| rep, A x U repg A — U rep, A

| o] =n, |Bl=m |y|=m+n

R



lecture 2. machines 21

Example 2.9 Let / C L be a finite separable field extension of dimension k¥ (observe
that L is a manifold, even a non-commutative point). As L is (semi)simple, every finite
dimensional L-module is isomorphic to L4 for some a € N. Therefore, there can only
be ¢-points in rep,, L if n is a multiple of k. Still, it is perfectly possible to define the
¢-scheme rep,, L for arbitrary n. Assume that

_a

f@)
where f(t) is an irreducible polynomial of degree k. Then, £[rep,, L] is the quotient of the
polynomial algebra £[211,Z12, . . . , Znn) in the entries of a generic n x n matrix X by the

ideal generated by the n? entries of f(X). For example,

o

z]
(z)

An ¢-point of rep,, L corresponds to a morphism ¢[rep,, L] — ¢ whence rep; L has no
{-rational points. Moreover, irreducible components of the £-scheme rep,, L cortespond
to minimal prime ideals of £[rep, L], so for example, as an £-scheme rep; L has just one
component. Still, L ®; ¢~ ¢ x . . xZ£and we have seen that rep; L ®; ¢ has exactly k
irreducible components!

lirep, L] = ~ L

~H

Therefore, we define the component semigroup comp A to be the sub semigroup of
comp A ®g £ consisting of those components o such that

rep, A®, ¢ contains an £-point
An equivalent description is as follows : consider the Galois group G = Gal(f/¢), then
this group acts on all the representation varieties rep,, A ® ¢ and hence induces an action
by automorphisms on comp A @, ¢. For this action we have that
comp A = (compA ®; £)¢
the sub semigroup consisting of elements fixed by G.

Exercise 2.10 Show that these two definitions are really the same!

Example 2.11 In the above example we have that the Galois group Gal(Z/f) acts on
comp(L ®, £) = N* by permuting the entries, whence

comp(L) = (N*)¢ = {(a,a,...,a) | @ € N}

consistent with the observation that all finite dimensional L-modules are of the form L®¢,

2.7 The Euler-form on rep A

As we are only doing homological algebra in this section, ¢ can be arbitrary. We have
seen before that if A is a manifold, then A is a hereditary algebra meaning that every left
A-module M has a projective resolution

0 - P B M 0

of length < 1. If we apply this fact to the method of computation of Extl, (M, N) we get
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Lemma 2.12 If A is a manifold, then for any M, N & rep A we have
Exty(M,N)=0 i>2

where rep A is the set of all finite dimensional left A-modules.

An alternative method to prove this is to observe that
Ext',(M,N) = Ext'.(A, Homy(M,N)) = 0

fori > 2 as Q' Ais a projective A-bimodule. As M and N are finite dimensional spaces,
s0is Homa(M,N) = Ext% (M, N) being a subspace of the finite dimensional space
Homy(M, N) and also from our description of Extl (M, N) as classifying equivalence
classes of extensions of N by M we deduce that Extl (M, N) is a finite dimensional
£-space. This allows us to define the Euler-form forany M, N € rep A

x(M, N) = dimy Hom (M, N) — dimg Exty (M, N)

Lemma 2.13 Both x(—, N) and x(M, —) are additive on short exact sequences.

Proof. A short exact sequence of finite dimensional left A-modules

0 M’ M M? 0

leads to a lohg exact sequence of £-vector spaces
0 — Homus(M',N) — Homa(M,N) — Homs(M” ,N) —
ExtY(M',N) — ExtY(M,N) — Exzt4(M”,N) —— Ext3(M',N) =0
and hence the alternating sum of their dimensions is equal to zero, whence
Xa(M,N) = xa(M',N) + xa(M”,N)
The same argument (reversing the arrows) applies to x4 (M, =). O

Lemma 2.14 If we know x4(S, 8"} on all simple left A-modules S, S' € simp A, then we
know xa(M,N) for all M, N € rep A. :

Proof. Recall that any M € rep A has a finite Jordan-Holder filtration
0=Ml+1 cMicM,C...CMiCMy=M

with all successive quotients

S; = a simple A-module

i+1
This filtration gives us a collection of short exact sequences

0 » S M1 - Si_1 > O

0 — My —> Mo —> Si_2 — 0

0 M,y - M S > 0
and applying the foregoing to these sequences from top to bottom we see that we can
compute x4 (M, N) in terms of the x 4(S;, N). Applying a similar argument to a Jordan-
Holder filtration of N we can compute also all x4(S;, N) in terms of x 4(S;,T;) where
the T are the simple components of the filtration for N.
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2.8 The Euler form on comp(A)

We now come to the first major result stating that the Euler-form is constant along modules
lying in the same irreducible components. We will give only a sketch of the proof, as it
involves some geometric invariant theory (GIT).

Theorem 2.15 (¢{ = [{) xa defines a bilinear form on the commutative semigroup
comp(A). That is, if M, M' € rep, Aand N,N' € repg A, then

XA(M7 N) = XA(MlvN/)

and this common value we denote with x a(c, ).

Proof. (Sketch) If M has simple Jordan-Holder factors Sq,...,S, and N has Jordan-
Holder factors 17, . . ., T, then it follows from the previous section that

XA(MyN) ZXA(Sl o . @Su,Tl @@Tv)

. By (GIT) the semi-simple module M*° = &S5; lies in the same component as M (and

N*¢ = @,;T; in the same component as N) . Next, we use that the function
xa(—,—) : rep, AX repg A — Zx‘

is upper-semicontinuous, that is, there is a Zariski open subset consisting of couples
(M, N) where x4(M, N) is minimal. By irreducibility, we can therefore find a couple
(M, N) such that both x4 (M, N) and x 4(V, M) are minimal and by the above we may
assume that M and N are both semi-simple (just replace them by M ** and N*%).

Another consequence of (GIT) is that for every semi-simple module X € rep., A we have
that
[71? = xa(X, X) = dimy Tx(rep, A)

where the right hand side is the tangent space to the representation component rep,, A. This
follows from the étale siice theorem stating that locally in X the representation component
resembles the fiber bundle

GL xF®) Eatl (X, X)

where GL(X) is the stabilizer subgroup of X which is an open piece in Hom A(X , X).
Because all rep., A are smooth varieties, it follows that

xa(X, X) = xa(X', X')
whenever X and X' are semi-simple representations in rep, A.

Now, take M a semi-simple module in rep, A and N’ a semi-simple in rep, A, then we
have from bilinearity and the previous remark that

XA(M/’N,)“'XA(NI)M/) =XA(M3N)+XA(N7M)

and by the choice of (M, N) before also xa(M',N’) > xa(M,N) and xa(N',M') >
xA(N, M) from which equality of both inequalities follows and we are done! O

Now, take /¢ Egain arbigary and M, N two finite dimensional A-modules where A is a
manifold. If 4 = A ®, 4, then we have

Homa(M,N) = Homz(M &, N®f) and Ezty(M,N) = Ezti(M&l, N @)

from which we deduce from the previous result :



lecture 2. machines 24

Theorem 2.16 (£ arbitrary) x 4 defines a bilinear form on the commutative semigroup
comp(A). Thatis, if M, M’ € rep, A(f) and N, N’ € repg A(), then

Xa(M,N) = xa(M',N')

and this common value we denote with x 4(a, 3).
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MODULARS

3.1 Variety machines

Recall that we call an affine Z-algebra A a manifold (aka quasi-free, formally smooth or
non-commutative curve) iff Q! A is a projective A-bimodule iff A has the nilpotent lift-
ing property. The main motivation for studying this class of non-commutative algebras is
that such an A provides us with families of (commutative) manifolds. We consider three
examples :

representation varieties : Letrep, A = {¢ : A — M, (£)} be the affine scheme of
n-dimensional representations of A, then {rep, A : n € N} is a family of smooth affine
varieties whenever A s a manifold.

Hilbert schemes : Consider the open subset of rep,, A x " consisting of couples (¢, v)
such that ¢(A).v = £". The base-change action of GL,, on this set is given by

g.(6,v) = (997", gv)

and is a free action whence we can form the orbit-space which we denote by Hilb, A and
call the (non-commutative) Hilbert scheme of A. It classifies all codimension n left-ideals
of A If A is a manifold then { Hilb, A : n € N} is a family of smooth varieties
because the smooth variety rep, A x £" is a principal GL,-bundle over Hilb, A. One
can generalize this to higher Hilbert schemes HiHilb]™ A starting from the open subset of

{(¢,v1,...,05) €Erep, AL x ... x{"} suchthat (A +. .+ d(Ayvy = £°

with GL,-action g.(¢,v1,...,v) = (969>, gv1,.. ,gvk). Again, if A is a manifold
then {HiHilbl* A : m,n € N} is a family of smooth varieties.

Simple representations : Consider the open subset of rep,, A
{6 : 008 : AQF — M,(0)}

of absolutely simple n-dimensional representations of A, then its orbit space simp, A is
a smooth variety whenever A is a manifold because the smooth open subset defined above
is a principal PG L,-bundle over it. One should observe that principal GL,-bundles are
a lot easier to study than principal PG L,-bundles. In fact one can even argue that non-
commutative algebra owns its existence from the fact that there are non-trivial principal
PGL,-bundles.

3.2 Counting points

WE want to understand the geometry of these families. One way to get at conjectural
descriptions is to count points over finite fields. So, assume that { = F, and let Abe a
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manifold defined over F, then it follows from the constructions that the sets of IF-rational
points
# rep, AF,) # Hilb, A(F,) # simp,, A(F,)

are finite numbers. In his mini-course, Markus Reineke proved the following result

Theorem 3.1 (Reineke) If we know # rep,, A(F,) for all n € N and some extra infor-
mation, then we can compute # Hilb, A(Fq) and # simp, A(Fg).

To compute # Hilb, A(F,) the extra information consists of knowledge of the com-
ponent semigroup comp(A) together with the Euler form on it as well as the numbers
# rep,, A(F,) for all components o € comp(A).

To compute # simp,, A we need all this extra information not only for A but for all exten-
sions A ®F, Fyr together with the action of the Galois group on the representation spaces.

The main problem is that there are virtually no examples known of manifolds A where we
do have all this precise information, except in the case when A is the path algebra of a
quiver.

3.3 The case of path algebras

Let @ be a finite quiver on k vertices {v1,..., vt} and let a;; be the number of directed
arrows in @ from v; to v;. Then we know all required information for the path algebra
A = [Q from representation theory, see for example the lecture notes by Harm Derksen
for more details.

To begin, the component semigroup comp(A) =~ NF with generators ¢; =

(0,...,0,1,0,...,0) corresponding to the vertex-simples. Further, we can describe the
components rep,, A. To start, take @ = (a1, .. . ,ax) € N¥ and define the quiver represen-
tation space

rep, @ = ®1<ij<kMa, xa, (£)®%

be the affine space of all representations of Q of dimension vector o, that is, all assignments
of square matrices of the appropriate dimensions to all arrows in ¢J. On this space there is
a base-change action by the base-change group

GL(a) = GLg, X ... %X GLg,
which acts via: g = (g91,...,9x) and V = (M, : aarrow) then
9.V = (g;Mag7" : a arrow from v; to v; )

Representations belong to the same GL(«a)-orbits in rep,, Q if and only if they are isomor-
phic as (Q-representations,

Let the total dimension of & be n = |a| = }_, a; then there is a natural embedding of
GL(a) —— GL, along the diagonal. In this way, GL(c) acts on the product space
GL, x1ep, Q@ via  g.(h,V)=(hg™t,9.M)

which one verifies to be a free action whence we can form the orbit space which is called
the principal fiber bundle
GL, xCL® rep, Q
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This fiber bundle is the component rep, A of rep,, A corresponding to a € comp(A).
But then we can compute the number of points in such a component over a finite field (use
freeness of the action)

_ #GLa(Fy) #rep, QFg) _ # GLn(Fg) g=1 %%
# GL(a)(Fq) [Ti-1 GLa, (Fy)

# rep, A(Fq)

a number which we can compute using the standard fact that

%)
#GLn(F) =¢\2/) (q=1) (P ~1).. (g™ —1)

Remains to know the Euler-form on com A = NF. Define the integral matrix E(Q) €
M (Z) whose (i, 7)-th entry is equal to 6;; — a;;, then one can prove that the Euler form

xa(e, B) = " E(Q)B
and is therefore computable from the information on the quiver @. Finally, observe that
A ® ]qu = ]Fq1 Q

and the action of the Galois group is given by its action on the scalars, so we know all extra
information we need in this special (but important) case.

3.4 Free products

We want to find a large class of new examples for which we can compute everything ex-
plicitly. Free algebras of path algebras (or even the simplest case of free products of semi-
simple algebras) provide such a class.

Recall that if A and B are £-algebras, then the algebra free product A, B (or simply A B)
i the Z-algebra determined by the universal property that for every £-algebra D there is a
natural isomorphism

Homy(A, D) x Homy(B, D) ~ Homy(A+ B, D)

"Here is how to construct A B : choose an £-basis a; : i € I of A and a ¢-basis ?)j 1 j€ed
of B (both including 1), then A % B has an ¢-basis consisting of all alternating words

W = 4 04, G4y - E a’ilbil

and where multiplication is induced by concatenation. Even for the simplest of algebras A
and B (say both £-semisimple) not much is known about these algebra free products.

Lemma 3.2 If A and B are manifolds, then so is A x B.

Proof. Follows from the universal property by using the nilpotent lift characterization of
manifolds. O

Lemma 3.3 rep, A* B =rep, A*rep, B.

Proof. A representation is an ¢-algebra map A x B — M, (£) whence determines (and
is determined by) algebra maps A —— M, (¢) and B — M, (¥). O
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The connected component semigroup comp(A) comes equipped with a semigroup map
comp(A) A

assigning to a dimension vector c its total dimension deg(«) = |c|. This allows us to
define the fibered product

comp(A) xn comp(B) = {(e, 8) € comp(A) x comp(B) | || = 6]}
Lemma 3.4 comp(A « B) = comp(A) Xy comp(B).

Proof. Follows from the previous lemma. (i

So, we only have to produce the Euler-form on the component semigroup of a free product
algebra. We will do this in the special case when A and B are both semisimple ¢-algebras
by reducing to a certain path algebra for which we know the Euler-form. We start with an
example :

Example 3.5 Let PSLo(Z) = Zsy * Z3 be the (projective) modular group (important in
number-theory as well as in knot-theory), Its group algebra is of the above type

(PSLo(Z) 2 025 % 02y == (£ x £) % (£ x £ x £)

(at least if char({) is not 2 or 3 and £ contains a primitive 3-rd root of unity). Let us clarify
what we know already about this algebra.

COmp(fPSLz(Z)) ~ N? XN N = {(a —1,a9; b1, bg,bg) | a1+ as =by + by +bs }
and for & = (a1, ag; by, ba, b3) in this semigroup with n = a1 + ag
rep, LPSLy(Z) = (GLn/GLq, x GLgy) X GLp/(GLp, X GLp, X GLp,)

from which it follows that we can calculate the number of F,-points in such a component
for all dimension vectors «. Let M € rep,, £PSLo (Z) and consider the restrictions

M |z,~ V.EBal eV®2 and M lz,o Vl@bl @ Vp€Bb2 ® V;)égbs

with obvious notations. Choosing bases in these eigenspaces, we can relate M to a rep-
resentation of a bipartite quiver ¢ having two left and three right vertices with one arrow
connecting each left-vertex to each right-vertex and where the maps corresponding to these
arrows make up the blocks of an n x n matrix

An A
Ap = | A1 Ao
Azr Az

describing the base-change matrix between our two sets of bases for M. That is, to M we
can associate a representation in the open subset of rep,, ) consisting of those representa-
tions such that the n x n matrix on their arrow-matrices is invertible. A moments thought
shows that we can also reverse this process. But then we have for all finite dimensional
A = {PSLy(Z)-representations M and N that

XxA(M,N) = xeq(Anm, An)

where the right hand side can be computed using the Euler-matrix of the quiver Q.
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Clearly, this idea can be extended to algebra free products of (split) semi simples.

Theorem 3.6 The Euler-form of the algebra free product
A= (M (0)®. &M, () (M, (O)® .. & M, (£))

can be computed from that of the path algebra £Q) where Q) is the bipartite quiver on u left
vertices and v right vertices having precisely k;l; directed arrows from the i-th left vertex
to the j-th right vertex.

3.5 Projectt

By the results of the last section we have all the required information to compute (using the
results of Markus Reineke) the generating sequences for the number of points of Hilbert
schemes and simples of any algebra free product of two semisimple ¢-algebras. But why
should we invest time in trying to perform these tedious calculations?

Well, there are a number of conjectures in non-commutative geometry that need some extra
testing. One such conjectural description of the guasi-free world is that whereas commu-
tative manifolds correspond to quasi-free algebras, their tangent spaces should correspond
to path algebras of quivers. More precisely,

Conjecture 3.7 To any quasi-free algebra A one can associate a quiver Q 4 such that A
is étale Morita equivalent to teh path algebra £Q o whatever that means.

If this conjecture is true then one would expect a nice relation between the generating
sequences of A and those of the algebra Morita equivalent to £¢) 4 and we can compute
all this in teh case when A is the free product of two split semisimple /-algebras. By a
nice relation one might mean that their quotient is a rational function or that there is a
simple algebraic relation between these generating functions. I would advice to perform
the calculations first in some easy cases such as

A=(PSLyZ) or A= My(0)* Mn(f)

But, what might this quiver ()4 be associated to these algebras? In general, if A is a
manifold, consider teh semigroup comp(A) and assume taht it is finitely generated as a
semigroup. In fact, here is another

Conjecture 3.8 If A is an affine quasi-free £-algebra, then comp(A) is finitely generated
as semigroup.

Let {a,..., o} be a minimal set of semigroup generators (that is, such that none of the
o; can be written as a sum of the others) then we define the quiver Q4 to be the one on
k vertices {v1,. . ., vi } Where v; corresponds to the generator component ¢; and such that
there are precisely

8s5 — xalai, Oéj)
directeda rrows from v; to v; in Q 4. In the ’One quiver to rule them all’ paper I gave some
evidence to support the following conjectural truth

Theorem 3.9 If A is a manifold, then its tangent space is the ring Morita equivalent to
0Q) 4 where the Morita equivalence is determined by teh integers |oa], .. ., o

Using our knowledge to compute the Euler form x 4 for A a free product of semisimples it
is easy to work out the following in our two prime cases :
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Lemma 3.10 The quiver Q o corresponding to A = My (£) * M, (£) is the bouquet quiver
with one vertex and with excatly

N = ag + b(z) — nmapbg loops
where ag = lem(m,n)/n and by = lem(m, n)/m. We expect A to be étale equivalent to

Mlcm(m,n)“(xl, S ZNY)

For A = {PSLo(Z) the associated quiver Q 4 is teh double quiver of the extended Dynkin
quiver As (a cycle on 6 vertices). In this case we expect £PSLo(Z) to be étale equivalent
t0 £Q 4 as all generators have total dimension one.

Hence, teh first project is to work out all generating sequences for those two quasi-free
algebras and their associated path algebras or more generally for any free algebra product
of two semisimple ¢-algebras (in fact, a next step may be to do all this for the free product
of two path algebras with obvious modifications to compute their Euler product).

3.6 Project2

If £ = £ is algebraically closed, then the semigroup comp(A) contains all information
required, but over an arbitrary field £ this semigroup can be ridiculously small compared
to the semigroup of A ® £. For example, if £ C L is a k-dimensional separable field
extension, then comp(L) = kN N whereas comp(L ® £) ~ N¥. For this project we want
to construct something associated to a quasi-free algebra A over an arbitrary basefield £
having the property that it has the same size as the corresponding object for A ® £ and that
this obkect over the algebraic closure enables us to reconstruct the component semigroup
comp(A @ F).

We need to recall first some facts from commutative algebra. If C is a commutative affine
£-algebra then we call C unramified if and only if

CQui~lx. 7

a finite number of times. It is well known that the only unramified algebras over a field £

are of the form
C=L;y x...xL

where each L; is a finite dimensional separable fields extension of £. It follows from this
that any subalgebra of an unramified algebra is unramified, that the tensor-product of two
unramified algebras is unramified and that an epimorphic image of an unramified algebra
remains unramified.

From this it follows that if C' is an affine /-algebra then there exists a unique maximal
unramified {-subalgebra of C which we denote with w(C). Here are some useful facts
about this subalgebra.

If £ C L is a field extension, then
Wo(C) Q¢ L >~ 71'0(0@ L

so everything defined in terms of mo’s will be of teh same size over £ as over its algebraic
closure 7. Moreover, if C = ¢ [X] is the coordinate ring of an affine variety defined over £,
then we call X (or ¢[X]) connected if and only if £[X | contains no non-trivial idempotents,
that is, we cannot write £[X] as the direct sum £[X;] & ¢[X3]. We call X (or £[X]) geo-
metrically connected iff £]X] ® 7 is connected. Here is teh geometrical interpretation of te
subalgebra 7 (C).
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Theorem 3.11 X or £[X] is connected if and only if wo(£[X]) is a field.
X or £[X] is geometrically connected if and only if mo (£[X]) = L.
If X is connected and has an £-rational point, then X is geometrically connected.

If X has several connected componments, say {[X]| = [ X1] & ... & £[Xy], then we have
that
Wo(Z[X]) ~ Ly X...X Lk

with each component L; a finite dimensional separable field extension of L.

That is, 7o (¢[X]) contains all information about the connected components of X and how

they might decompose further over field extensions £ C L C £. Moreover, mp behaves
nicely with respect to morphisms and products of ¢-varieties.

Theorem 3.12 A morphism Xy ~— X5 of affine £-varieties induces an £-algebra map
mo(£[X2]) —— mo(£[X1])
If X1 and X5 are affine £-varieties, then the natural map
o (€[X1]) ®¢ mo(¢[X2]) — mo(€[X1] ®e £[Xa]) = mo(£[X1 X X3))

is an £-algebra isomorphism.

Of course We will apply all of this to our sum morphisms
rep, A X rep,, A — rep,, . A
which then give us algebra maps
Am,n
mo(L[rep, 1, A]) — mo(l[rep, A]) @ mo({[rep,, A)
which allow us to define on the graded vector-space
mo(A) = Bpiomo(n) = &7 Lomo(¢[rep, A))
a gradation preserving map (the comultiplication)
A En m= Am,n
mo(A) —> mo(A) ®mo(A4)  m(N) THEEEIE N mo(n) @ mo(m)
n+m=N

as well as a counit € : mo(A) — | = mp(0) projecting to the degree zero component. As
all the mo(n) are l-algebras (hence so is 7o (A) it is an exercise to show that

Lemima 3.13 7o(A) with the above structures is a commutative and co-commutative bial-
gebra.

remains to clarify teh connection with the component semigroup comp(4 ® #).

Theorem 3.14 Recall that the function bialgebra Fun comp(A ® 0) is teh algebra of 2-
valued functions on teh semigroup comp(A ® £) and has a comultiplication induced by

Al)= Y B®v
Btry=a
Then, tehre is a natural bialgebra isomorphism

7o(A) ®¢ £ = 1(A ®¢ £) =~ Fun comp(A ® 7)
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Note that the function bialgebra is sort of dual to the usual semigroup-algebra fcomp(A®7).
So we cannot descent the semigroup comp(A ® £) to a reasonable semigroup over £ but
we can descent the function bialgebra to obtain an £-bia;gebra mo(A) cintaining enough
information. In fact there is another description of this bialgebra.

Lemma 3.15 The Galois group Gal(Z/f) acts on A ® ¥ (and hence on comp(A ® £) and
its function bialgebra) and we have

mo(A) ~ Func comp(A ® 7)1 /0)

It would be interesting to compute these bialgebras as explicitly as possible for some easy
classes of quasi-free algebras A.

So we have a big enough object defined over £ but are still missing one essential ingredient
: the Euler-form. Here is a way to encode this information too. The Euler-form defines a
bi-cocharacter (teh dual of a bi-character on teh level of the semigroup algebra) and we can
use it to twist teh coalgebra structure resulting in a braided co- or bi-algebra. In this way,
we get a braided cocommutative bialgebra which not only encodes the Euler-form but is
also related to the self dual nature of the Hall algebra (this last became clear after talking

to Markus Reineke). Projects to work out might be to check the validity of the commuting
diagram

Hall((A)) ! Qtw[[comp(A @ F,)]]
I I
Hall((A))* & 70(A)tw

(here the top map is teh algebra map defined by Markus Reineke in his mini-course) in
particular, whether one can lift the (twisted) bialgebra structure over [F, to one over Z (or
£). Again, it would be interesting to work all this out in greater detail.
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