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QUOTIENT SINGULARITIES

1.1 Orbifold constructions

In this section we will run through the construction of theorbifoldCn/Gwhich is the orbit-
space of the action of a finite groupG on ann-dimensional representationV = Cn of G.
We start by recalling some standard facts on the representation theory of finite groups. For
more details on this we refer to [?, Chp 1-2]. Some of this results we will generalize in
later chapters to other reductive groups and mor egeneral non-commutative algebras.

Definition 1.1 An n-dimensional representationof a finite groupG is a group-morphism

G
φ- GLn(C)

Equivalently,φ defines aG-action on then-dimensional spaceV ≃ Cn via the ruleg.v =
φ(g)v where elements ofV are viewed as column-vectors.

As we will work throughout this book with finite dimensional representations of algebras,
let us bring in the finite dimensional (usually non-commutative) group algebra

CG = ⊕g∈GCeg with multiplication induced by eg.eh = egh

and observe that ann-dimensionalG-representationφ determines ann-dimensionalleft
CG-moduleMφ ≃ Cn with module structure induced by

eg.v = φ(g)v for all g ∈ G

Alternatively, we say thatMφ is ann-dimensional representation ofCG. Conversely, an
n-dimensional leftCG-moduleM = CG defines ann-dimensionalG-representationφM
with φM (g) then×nmatrix expressing the left action byeg onM . Hence, both approaches
are equivalent.

A G-linear map(sometimes called aG-equivariant map) betweenG-representationsV and
W is a linear mapψ : V - W such that for allg ∈ G the diagram below commutes

V
ψ - W

V

g.

?
ψ - W

g.

?

In particular, twoG-representationsV andW are isomorphiciff they have the same di-
mensionn and if their actions areconjugate, that is, there is an invertiblen× n matrixA
such that

φW (g) = A−1φV (g)A for all g ∈ G.
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The vectorspace of allG-linear maps fromV to W will be denoted byHomG(V,W ). If
ψ ∈ HomG(V,W ) is injective,V is called asubrepresentationofW . A representationW
withoutpropersubrepresentations is calledirreducible(or simple).

There are standard procedures to construct new representations from known representations
:

• the direct sumV ⊕W with actiong.(v + w) = φV (g)v + φW (g)w.

• the tensor productV ⊗W with actiong.(v ⊗ w) = φV (g)v ⊗ φW (g)w.

• the dualV ∗ = HomC(V,C) with actiong.v∗ = φV (g−1)τv∗. (Here,Aτ denotes
thetransposeof A)

Theregular representationR is the underlying space of the group algebraCG with action
g.eh = egh.

A crucial property of finite groups is that they arereductive. That is, every finite dimen-
sional representation is isomorphic to a direct sum of simple representations. This fact
follows by induction on the dimension of the representationfrom theaveraging argument
below. A similar argument replacing sums by integrals on unitary groups can be used to
prove thatGLn is reductive, a fact we will use later on.

Lemma 1.2 If W is aG-subrepresentation ofV , then there is aG-subrepresentationW ′

of V such that (asG-representations)

V = W ⊕W ′

Proof. Take aC-vectorspace complementV = W ⊕ U of W and consider theC-linear
projection mapπ1 : V -- W on the first component. Average this map over the finite
groupG, that is, define

V
π-- W via π(v) =

1

# G

∑

g∈G

g.(π1(g
−1.v))

(where# G is theorder of G) and verify that this is aG-linear map onW . Thekernelof
π, ker π = {v ∈ V | π(v) = 0} will be aG-subrepresentation ofV andV = W ⊕ ker π
asG-representations. �

A second important ingredient isSchur’s lemmawhich can be extended verbatim to simple
finite dimensional representations of algebras.

Lemma 1.3 (Schur’s lemma) If V
ψ- W is a G-linear map between simpleG-

representations, then eitherφ = 0 or φ is an isomorphism which is given by scalar multi-
plication byλ ∈ C.

Proof. Becauseker ψ andim ψ areG-subrepresentations ofV resp.W it follows from
irreducibility thatψ is either the zero-map or an isomorphism. Ifψ 6= 0, takeV = W and
let λ be an eigenvalue of the matrix describingψ. Then,ψ − λ1V is aG-linear map with
non-zero kernel and soV = ker ψ − λ1V or, equivalently,ψ = λ1V onV . �

Proposition 1.4 (Complete Reducibility) Any finite dimensionalG-representationV can
be decomposed as

V = V ⊕e1
1 ⊕ . . .⊕ V ⊕ek

k

with theVi non-isomorphic irreducible representations. In this decomposition, the irre-
ducible factors and their multiplicities are uniquely determined.
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Proof. If W is aG-representation with decomposition⊕jW
⊕fj

j and ifφ : V - W is

aG-linear map, then by Schur’s lemma,φ must map the factorV ⊕ei

i into that factorW⊕fj

j

for whichWj ≃ Vi. Applying this to the identity map ofV , the uniqueness statement
follows. �

The principal problem in the representation theory of algebras is to determine methods to
test whether two finite dimension representations are isomorphic. Later on, we will see that
tracescan be used to distinguish non-isomorphicsemi-simple modules. The archetypical
instance of this result is the classical notion ofgroup characters.

Definition 1.5 Thecharacterχ of ann-dimensional representationφ : G - GLn(C)
of a finite groupG is the map

χ : G - C defined by χ(g) = tr(φ(g))

wheretr denotes the trace of the square matrix.

Clearly, as traces of conjugate matrices are equal, the character is an isomorphism invariant
of a representation. Moreover, one easily verifies (see [?, Chp 2]) thatχ(1) equals teh
dimension of the representation, thatχ(g) is a class function, that is, is constant along
conjugacy classes and that the character of a direct sum of representations is the sum of the
characters. One defines aninproducton the characters ofG by the rule

〈χ, χ′〉 =
1

# G

∑

g∈G

χ(g)χ′(g)

With respect to this inproduct, the main results on characters are summarized in :

Proposition 1.6 LetG be a finite group withφ1, φ2, . . . the set of distinct simple represen-
tations ofG having charactersχ1, χ2, . . ..

1. The charactersχi are orthogonal, that is,

〈χi, χj〉 = δij for all i, j

2. The number of isomorphism classes of irreducibleG-representations is finite and
equals the number of conjugacy classes inG.

3. If di is the dimension of the irreducibleG-representationφi, thendi|# G and

# G = d2
1 + . . .+ d2

r

wherer is the number of conjugacy classes ofG.

Proof. See [?, Chp. 2] for details. �

It follows that the representation theory ofG is fully encoded in itscharacter tablewhich is
a square matrix with the rows corresponding to the distinct irreducibleG-representations,
the columns to the conjugacy classes ofG and the(i, j)-entry isχi(g) with g an element
of thej-th conjugacy class.

After this brief recap, let us address the topic of this section. LetV be ann-dimensional
G-representation and consider the linear action of the finitegroupG on then-dimensional
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affine spaceCn = V . The correspondingorbifold will be theorbit spaceCn/G, that is the
set of equivalence classes

(a1, . . . , an) ∼ (b1, . . . , bn) iff g.






a1

...
an




 =






b1
...
bn




 for someg ∈ G

We will prove thatCn/G is an affine variety (usually with singularities) with coordinate
ring O(Cn/G) = C[x1, . . . , xn]G, the ring ofpolynomialG-invariants. Again, this is
an archetypical case of a more general result : if a reductivegroup acts on a vectorspace,
then the best algebraic approximation to the orbit-space (which does not have to exist in
general, due to the existence of non-closed orbits) is the affine variety associated to the
affine algebra of polynomial invariants. We will encounter many instances of this result
later on in this book.

An n-dimensionalG-representationV determines a group-morphism

G
φ- GLn(C)

which also determines an action ofG by automorphismson the polynomial algebra
C[x1, . . . , xn] via the rule






φg(x1)
...

φg(xn)




 = φ(g).






x1

...
xn






That is, everyg ∈ G sendsxi to a linear combinationφg(xi) and induces therefore a
degree preservingautomorphism onC[x1, . . . , xn]. Under this automorphism, an arbitrary
polynomial of degreed, f(x1, . . . , xn) is send to the polynomial of degreed

φg(f) = f(φg(x1), . . . , φg(xn)) ∈ C[x1, . . . , xn]

Definition 1.7 LetG
φ- GLn(C) be determined by ann-dimensionalG-representation

V and let{φg : g ∈ G} be the induced algebra automorphisms on the polynomial algebra
C[x1, . . . , xn]. A polynomialf(x1, . . . , xn) ∈ C[x1, . . . , xn] is said to be aninvariant
underG if

φg(f) = f for all g ∈ G

The subalgebra (verify!) of all invariant polynomials is denotedC[x1, . . . , xn]G and is
called thering of polynomial invariants.

Example 1.8 Let V4 be the Klein VierergruppeZ/2Z × Z/2Z and consider the2-
dimensional representation determined by

V4
- {

[
±1 0
0 ±1

]

} ⊂ GL2(C)

thenV4 is generated by the two matrices
[
−1 0
0 1

]

and

[
1 0
0 −1

]

and a polynomialf(x, y) =
∑

ij aijx
iyj ∈ C[x, y] is invariant underV4 if and only if

f(x, y) = f(−x, y) = f(x,−y)

that is, if and only if,aij = 0 wheneveri or j is odd. Therefore, the ring of polynomial
V4-invariants is

C[x, y]V4 = C[x2, y2]
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The fact that this ring of invariants is again a polynomial ring is rather special. On the
other hand, the fact that it is generated by finitely many elements is general as we will now
prove. Iff1, . . . , fm are polynomials inC[x1, . . . , xn] we will denote withC[f1, . . . , fm]
thesubalgebraof C[x1, . . . , xn] generated by thefi. Observe that we donot mean by this
that this subalgebra is again a polynomial ring (there may bealgebraic relations among the
fi). The averaging trick we used before also has its use here.

Definition 1.9 LetG - GLn(C) determine ann-dimensionalG-representationV . The
correspondingReynolds operatoris the map

C[x1, . . . , xn]
RG- C[x1, . . . , xn]

defined by

RG(f)(x1, . . . , xn) =
1

# G

∑

g∈G

f(φg(x1), . . . , φg(xn)) =
1

# G

∑

g∈G

φg(f)

Lemma 1.10 Let RG be the Reynolds operator corresponding to an action
G - GLn(C). Then,

1. RG is a C-linear map.

2. For all f ∈ C[x1, . . . , xn] we have thatRG(f) ∈ C[x1, . . . , xn]
G.

3. If f ∈ C[x1, . . . , xn]G, thenRG(f) = f .

Proof. RG is a linear combination of the algebra morphismsφg whenceC-linear proving
(1). To prove (2) leth ∈ G then

φh(RG(f)) =φh(
1

# G

∑

g∈G

φg(f)) =
1

# G

∑

g∈G

φh(φg(f))

=
1

# G

∑

hg∈G

φhg(f) = RG(f)

As for (3) if f ∈ C[x1, . . . , xn]
G then

RG(f) =
1

# G

∑

g∈G

φg(f) =
1

# G

∑

g∈G

f = f

and we are done! �

We therefore see thatRG is a surjective map which gives us a method to produce lots
of polynomialG-invariants. We say that amonomialm = xa1

1 . . . xan
n has degreed and

denotedegm = d if d = a1 + . . .+ an.

Proposition 1.11 The ring of polynomialG-invariants

C[x1, . . . , xn]G = C[RG(m) : degm ≤ N ]

is generated by the images under the Reynolds operator of allmonomials of degree at most
the order ofG and hence is finitely generated.
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Proof. For anyk ∈ N we can expand

(x1 + . . .+ xn)
k =

∑

degm=k

amm(x1, . . . , xn)

as a linear combination of all monomials of degreem. Now, take another set of variables
u1, . . . , un and consider in the polynomial ringC[x1, . . . , xn, u1, . . . , un] for everyg ∈ G

(u1φg(x1) + . . .+ unφg(xn))k =
∑

degm=k

amφg(m(x1, . . . , xn))m(u1, . . . , un)

But then, we have the equality

∑

g∈G

(u1φg(x1) + . . .+ unφg(xn))k =
∑

g∈G

∑

degm=k amφg(m)m(u1, . . . , un)

=
∑

degm=k(Nam)RG(m)m(u1, . . . , un)

Denotevg = u1φg(x1)+ . . .+unφg(xn), then the left-hand expression isSk(v1, . . . , vN )
theSN -invariant whereSN is the symmetric group onN letters acting by permuting the
variables ofC[v1, . . . , vN ]. In the exercises we will see that for anyk ∈ N, Sk is a polyno-
mial in the invariantsS1, . . . , SN . That is, we can write

Sk(v1, . . . , vN ) = P (S1(v1, . . . , vN ), . . . , SN (v1, . . . , vN ))

and resubstituting in this expressionvg = u1φg(x1) + . . . + unφg(xn) and working out
both sides of the equality above and comparingxi-terms belonging to the same monomial
in theui we deduce that

(Nam)RG(m(x1, . . . , xn)) = Q(RG(m′(x1, . . . , xn)) : degm′ ≤ N)

for some polynomialQ. As a consequence (using linearity of the Reynolds operator) we
see that the imageRG(f) for anyf ∈ C[x1, . . . , xn] is a certain polynomial in the images
RG(m) where the degree of the monomialm is at mostN . �

If V is ann-dimensionalG-representation, then the groupmorphismG - GLn(C) also
determines an action ofG onCn p 7→ g.p via






a1

...
an




 7→ φ(g).






a1

...
an






and we want to describe theorbit spaceCn/G, that is, we want to describe theG-orbits

O(p) = {q ∈ C
n | q = g.p for someg ∈ G}

Clearly, any polynomial invariantf ∈ C[x1, . . . , xn]G remains constant over theG-orbit
of a pointp = (a1, . . . , an) as

f(g.(a1, . . . , an)) = φg(f)(a1, . . . , an) = f(a1, . . . , an)

and as affine varieties are determined by their polynomial functions we hope that the co-
ordinate ring of the orbit-space (or thequotient variety) is given buy the invariants, that
is

C[Cn/G] = C[x1, . . . , xn]
G
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We begin by describing the affine variety determined by the invariant ring. In the previous
section we have seen that the invariant ring is finitely generated, say

C[x1, . . . , xn]
G = C[f1, . . . , fm] ⊂ C[x1, . . . , xn]

for certain invariant polynomialsfi. However, there may be relations among thesefi, that
is, we can write

C[x1, . . . , xn]G =
C[y1, . . . , ym]

I

where I is the kernel of the surjective algebra morphism
C[y1, . . . , ym] -- C[f1, . . . , fm] defined byyi 7→ fi. In this way we can asso-
ciate to the ring of invariants an affine variety

V(I) ⊂ C
m = A

m

and we have a mapping

C
n π- V(IV ) by p 7→ (f1(p), . . . , fm(p))

and as thefi are constant alongG-orbits, this map factors over the orbit-spaceCn/G.

Lemma 1.12 The factored map

C
n/G - V(I) ⊂ C

m

is injective.

Proof. Assumep = (a1, . . . , an) andq = (b1, . . . , bn) are two points inCn such that
O(p) 6= O(q) (that is,O(p)∩O(q) = ∅) then we have to show thatfi(p) 6= fi(q) for some
1 ≤ i ≤ m.

ConsiderS = O(q) ∪ (O(p) − {p}), thenS is a finite subset ofCn and hence is an
affine variety. Becausep /∈ S there is a polynomialf ∈ I(S) ⊳ C[x1, . . . , xn] such that
f(s) = 0 for all s ∈ S but f(p) 6= 0. Consider the Reynolds image off : RG(f) =
(1/N)

∑

g∈G φg(f) then it follows that

RG(f)(q) =
1

N

∑

g∈G

φg(f)(q) =
1

N

∑

g∈G

f(g.q) = 0

whereas

RG(f)(p) =
1

N

∑

g∈G

f(g.p) =
M

N
f(p) 6= 0

whereM is the number ofg ∈ G such thatg.p = p. BecauseRG(f) ∈ C[x1, . . . , xn]
G,

there is a polynomialP (f1, . . . , fm) = RG(f). But then as

P (f1(q), . . . , fm(q)) = RG(f)(q) 6= RG(f)(p) = P (f1(p), . . . , fm(p))

it follows that for at least onei we havefi(p) 6= fi(q) and hence the image ofp andq
under the quotient mapπ are different. �

Before we can prove surjectivity of the factored map, we needto give another description of
the ring of invariants. By giving each variablexi degree one, the polynomial ring becomes
a graded algebra

C[x1, . . . , xn] = R0 ⊕R1 ⊕R2 ⊕ . . .
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whereRd is the finite dimensional vectorspace spanned by all monomials m such that
degm = d. As theG-action on polynomials preserves the degree, each of theRd is a finite
dimensionalG-representation and hence decomposes into its irreduciblefactors

Rd = V
⊕e1(d)
1 ⊕ V

⊕e2(d)
2 ⊕ . . .⊕ V ⊕er(d)

r

whereV1 is the trivialG-representation. WithRd(i) we will denote the subspaceV ⊕ei(d)
i

of Rd.

Also the subring of invariant polynomials is graded (the induced gradation)

C[x1, . . . , xn]G = S0 ⊕ S1 ⊕ S2 ⊕ . . .

and, by definitiong.f = f for all f ∈ Sd. That is, we can identify

Sd = Rd(1) = V
⊕e1(d)
1

the space spanned by all factors ofRd isomorphic to the trivial representation. Moreover
note that for any1 ≤ i ≤ r we have that

SdRd′(i) ⊂ Rd+d′(i)

If M ⊂ C[x1, . . . , xn] is G-stable, that is, ifg.f ∈ M for all f ∈ M and allg ∈ G,
thenM can be decomposed into irreducibleG-representations and we denote byM(i) the
collection of all subspaces of typeVi. Using these facts we can now finish the proof of

Proposition 1.13 The ring of polynomial invariantsC[x1, . . . , xn]
G is the coordinate ring

of the orbit spaceCn/G, that is, the factored map

C
n/G - V(I) induced by C

n π- V(I) ⊂ C
m

is a bijection.

Proof. It remains to prove that the mapπ is surjective. Letp ∈ V(I) and letm be the
maximal ideal ofC[x1, . . . , xn]

G corresponding top. We claim that theextended ideal

mC[x1, . . . , xn] 6= C[x1, . . . , xn]

In fact, we claim the stronger property that

mC[x1, . . . , xn] ∩ C[x1, . . . , xn]G = m

Indeed,M = mC[x1, . . . , xn] isG-stable and therefore

M = ⊕ri=1M(r) = ⊕ri=1(mC[x1, . . . , xn])(i) = ⊕ri=1m(C[x1, . . . , xn](i))

the last equality holding becausem ⊂ C[x1, . . . , xn](1). Restricting to the component of
the trivial representation we get

mC[x1, . . . , xn] ∩ C[x1, . . . , xn]G = (mC[x1, . . . , xn])(1) = m(C[x1, . . . , xn](1)) = m

becauseC[x1, . . . , xn](1) = C[x1, . . . , xn]
G, proving the claim.

Let p be any maximal ideal ofC[x1, . . . , xn] containing the proper idealmC[x1, . . . , xn]
andq ∈ Cn be the corresponding point, thenπ(q) = p. �
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1.2 McKay quivers

Let V be ann-dimensional representation ofG, we will associate toV a quiver (that is, a
finite directed graph)QV = mckG(V ), theMcKay quiverof V .

Definition 1.14 The vertices{v1, . . . , vr} of QV = mckG(V ) are in one-to-one corre-
spondence with the distinct irreducible representationsVi (for 1 ≤ i ≤ r) of G where we
let v1 correspond to thetrivial representation.

Let Vj be the irreducibleG-representation corresponding to vertexvj , then we have that

V ⊗ Vj = V
⊕a1j

1 ⊕ . . .⊕ V ⊕arj
r

for certainaij ∈ N. In the McKay quiver we use these integers to drawaij directedarrows
from vertexvi to vertexvj . Repeating this procedure for all vertices, we obtain the McKay
quiverQV = mckG(V ).

Example 1.15 (The cyclic groupC3 = Z/3Z) Write the Abelian groupZ/3Z multiplica-
tively, that is,C3 = {1, ρ, ρ2} whereρ is a primitive third root of unity. Then,C3 has three
distinct conjugacy classes{1}, {ρ} and{ρ2} whenceC3 must have three distinct irre-
ducible representation which must be necessarily of dimension one. These representations
Vi : C3

- C∗ are determined by the image ofρ and are

V1 = {ρ 7→ 1} V2 = {ρ 7→ ρ} V3 = {ρ 7→ ρ2}

and therefore the character table ofC3 is given by the matrix

{1} {ρ} {ρ2}
V1 1 1 1
V2 1 ρ ρ2

V3 1 ρ2 ρ

Consider the two-dimensionalC3-representation

V = V2 ⊕ V3 then χV = χV2
+ χV3

and thereforeχV⊗Vi
= χV2

χVi
+ χV3

χVi
giving

{1} {ρ} {ρ2}
V ⊗ V1 2 −1 −1
V ⊗ V2 2 −ρ 3− ρ2

V ⊗ V3 2 −ρ2 −ρ

Therefore, we have the following decompositions






V ⊗ V1 ≃ V2 ⊕ V3

V ⊗ V2 ≃ V3 ⊕ V1

V ⊗ V3 ≃ V1 ⊕ V2

whence the McKay quiverQV = mckC3
(V ) has the form

�������� --

��

��������

zz

mm

��������

ZZ ::
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On the other hand, for the three-dimensionalC3-representation

V = V2 ⊕ V2 ⊕ V2

thenχV = 3χ2 and henceχV⊗Vi
= 3χ2χi giving

{1} {ρ} {ρ2}
V ⊗ V1 3 3ρ 3ρ2

V ⊗ V2 3 3ρ2 3ρ
V ⊗ V3 3 3 3

Hence we have the decompositions






V ⊗ V1 = V2 ⊕ V2 ⊕ V2

V ⊗ V2 = V3 ⊕ V3 ⊕ V3

V ⊗ V3 = V1 ⊕ V1 ⊕ V1

which gives us that the McKay quiverQV = mckC3
(V ) has the following form

�������� --//11 ��������

zz���
��

��
��

��
��

��
��

��

��
��������

ZZ __?????????????????

dd

Historically, the McKay quiver was assigned to aKleinian singularitylinking them totame
quiversand theirisotropic roots.

Definition 1.16 Let G ⊂ SL2(C) a finite subgroup of the3-dimensional complex Lie
group

SL2(C) = {

[
a b
c d

]

| ad− bc = 1}

thenG has a natural2-dimensional representation via the embeddingSL2(C) ⊂ GL2(C)
and we can consider the quotient varietiesC2/G which in this case are calledKleinian
singularities.

One has a complete classification of all finite subgroups ofSL2(C). There are two infinite
families and three exceptional cases.

The cyclic groupsCn : Let ρ be a primitiven-th root of unity and consider the subgroup
of SL2(C) generated by the matrix

[
ρ 0
0 ρ−1

]

which is clearly cyclic of ordern. It acts onC[x, y] via the automorphism
{

x 7→ ρx

y 7→ ρ−1y

and one verifies immediately that the ring of polynomial invariants is

C[x, y]Cn = C[xn, yn, xy] =
C[X,Y, Z]

(Xn − Y Z)
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which has an isolated singularity at the origin. Btw. the frontispiece gives the real picture
of the Kleinian singularityC3/C3.

The dihedral groupsDn : If ρ is a primitive2n-th root of unity, consider the subgroup
of SL2(C) generated by the two matrices

a =

[
ρ 0
0 ρ−1

]

and b =

[
0 i
i 0

]

which is a group of order4n and it acts onC[x, y] via the two automorphisms
{

x 7→ ρx

y 7→ ρ−1y
and

{

x 7→ iy

y 7→ ix

With some difficulty one can prove that the ring of invariants

C[x, y]Dn = C[x2y2, x2n + (−1)ny2n, xy(x2n − (−1)ny2n)] =
C[X,Y, Z]

(Z2 +X(Y 2 +Xn))

which again has an isolated singularity at the origin.

The exceptional groups : Recall thatSU2(C) (the group of special unitary2×2 matrices)
is the universal2-fold cover of the rotation groupSO3(R). Thus, we can lift any finite
subgroup of the rotation group to a finite subgroup ofSU2(C) ⊂ SL2(C). In particular one
can do this for the group of rotations leaving thetetrahedron, octahedronandicosahedron
fixed, giving us the finite subgroups

T, O, I ⊂ SL2(Z) of order, resp.24, 48 and120

We will not give precise matrix representations of these groups but only state the result on
the rings of invariants in these three cases :

C[x, y]T =
C[X,Y, Z]

(X4 + Y 3 + Z2)

C[x, y]O =
C[X,Y, Z]

(X3 +XY 3 + Z2)

C[x, y]I =
C[X,Y, Z]

(X5 + Y 3 + Z2)

all of which have an isolated singularity at the origin.

The tame quiversare the directed graphs obtained from a so calledextended Dynkin dia-
gramsgiven in figure 1.2 by putting some orientation on each of the edges. Tame quivers
come equipped with anisotropic rootα which is a certain dimension vector depicted on
the right hand side of figure 1.2.

Definition 1.17 A dimension vectorfor a quiver onr vertices is an integral vectorα ∈
Nr.For a McKay quiverQV = mckG(V ) there is adistinguished dimension vector

αG = (d1, . . . , dr) with di = dimVi

Definition 1.18 If Q is an arbitrary quiver, for example an extended Dynkin graphwith
some orientation on the edges, then one can define itsdoubleD(Q) to be the extended
quiver obtained by adjoining for each arrowa inQ an arrowa∗ with the reverse orientation

��������i
a // ��������j in Q ��������i

a
++
��������j

a∗

kk in D(Q)
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Ãm , m ≥ 1 ��������

��������

�������� �������� �������� �������� ��������oooooooooo

OOOOOOOOOO

��������1

��������1

��������1 ��������1 ��������1 ��������1 ��������1
oooooooooo

OOOOOOOOOO

D̃m , m ≥ 4
��������

��������

�������� �������� �������� ��������

��������

��������

ooo

OOO

OOO
ooo

��������1

��������1
��������2 ��������2 ��������2 ��������2

��������1

��������1

oo

OO

OO
oo

Ẽ6 �������� �������� �������� �������� ��������

��������

��������

��������1 ��������2 ��������3 ��������2 ��������1

��������2

��������1

Ẽ7 �������� �������� �������� �������� �������� �������� ��������

��������

��������1 ��������2 ��������3 ��������4 ��������3 ��������2 ��������1

��������2

Ẽ8 �������� �������� �������� �������� �������� �������� �������� ��������

��������

��������2 ��������4 ��������6 ��������5 ��������4 ��������3 ��������2 ��������1

��������3

Fig. 1.1: The extended Dynkin diagrams.

With this notationMcKay’s observationcan be stated as :

Proposition 1.19 The McKay quiver settings corresponding to a two-dimensional Kleinian
singularity are precisely the quiver settings

(QV , αG) = (D(Q), α)

whereQ is an extended Dynkin quiver andα its corresponding isotropic root. In this
correspondence the cyclic subgroupsCn correspond toÃn−1, the dihedral subgroupsDn

to D̃n and the exceptional subgroupsT,O andI respectively toẼ6, Ẽ7 andẼ8.

To illustrate this so calledMcKay correspondencewe consider the special case of the cyclic
subgroupC6 = Z6 in detail. If ρ is a primitive6-th root of unity, then a complete list of
irreducibleZ6-representation is given by

{V0, V1, V2, V3, V4, V5} with Vi = Cvi g.vi = ρivi

for the generatorg = 1 of Z6. The action ofZ6 onV = C2 is given by the matrix
[
ρ 0
0 ρ5

]

whence V ≃ V1 ⊕ V5

The tensor-products of simple representations are easily worked out in this case

Vi ⊗ Vj ≃ Vi+j mod 6

from which it follows that
Vi ⊗ V = Vi+1 ⊕ Vi−1
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where all indices are taken modulo6. Therefore, the corresponding McKay quiver has the
form if we denote the vertex��������i to correspond to the simple representationVi

��������0

y6

zz

x1

��
��������5

x6

::

y5

��

��������1

y1

ZZ

x2

��
��������4

x5

KK

y4

��

��������2

y2

KK

x3

zz
��������3

x4

ZZ

y3

::

and as the corresponding dimension vectorα = (1, 1, 1, 1, 1, 1) is the isotropic root ofÃ5

and as the subquiver of thexi arrows isÃ5 we get McKay’s observation in this case by
takingx∗i = yi.

1.3 Hilbert schemes

If α = (n1, . . . , nr) is a dimension vector, therepresentation space

repα QV = ⊕1≤i,j≤rMnj×ni
(C)⊕aij

is the vectorspace such that every arrow from vertexvi to vertexvj determines a linear map
(a matrix) fromCni to Cnj .

Lemma 1.20 For the distinguished dimension vectorαG = (d1, . . . , dr) of the McKay
quiverQV = mckG(V ), there is a natural identification

repαG
QV = HomG(R, V ⊗R)

whereR is the regular representation ofG.

Proof. The numberaij of directed arrows fromvi to vj is by definition the number of
Vi-components in theG-tensor productV ⊗ Vj , that is, by Schur’s lemma

aij = HomG(Vi, V ⊗ Vj)

But then, by definition of the representation space we have that

repαG
QV = ⊕1≤i,j≤rHomG(Vi, V ⊗C Vj)⊗HomC(Cdi ,Cdj)

= HomG(⊕1≤i≤rVi ⊗C Cdi ,⊕1≤j≤rV ⊗ (Vj ⊗C Cdj ))

= HomG(⊕1≤i≤rV
⊕di

i , V ⊗ (⊕1≤j≤rV
⊕dj

j ))

= HomG(R, V ⊗R)

finishing the proof. �
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There is a natural action of thebase change group

GL(αG) = GLa1
× . . .×GLak

onrepαG
QV by base-change. That is, ifg = (g1, . . . , gk) ∈ GL(α) andMa is theaj×ai

matrix corresponding to the arrow��������i // ��������j , then

g.Ma = gj .Ma.g
−1
i

The GL(α)-orbits under this action are precisely the isomorphism classes of quiver-
representations. We have seen before that ifG is a finite group acting on a vectorspace,
then we can parametrize all orbits by the maximal ideals of the ring of polynomial invari-
ants. For more general reductive groups such asGL(αG) we will see later that it is not
always possible to construct an orbit space due to the existence of non-closed orbits (in the
case of finite groups, each orbit is a finite number of points whence closed). Still, as before,
the variety determined by the ring of polynomial invariants

C[repαG
QV ]GL(αG)

is the best algebraic approximation to this non-existent orbit space. Later we will see
methods to determine such invariant rings but in the specialcase ofG being Abelian there
is a direct route because in this caseGL(αG) ≃ C∗ × . . .× C∗ is a torus and one can find
polynomial invariants by determining integer solutions toa linear system of equations.

We will illustrate this in the special case ofG ≃ Z6 studied above. So let(Q,α) be the
Z6-quiver setting, then

C[repα Q] = C[x1, . . . , x6, y1, . . . , y6] and GL(α) = C
∗ × . . .× C

∗

︸ ︷︷ ︸

6

andλ = (λ1, . . . , λ6) ∈ GL(α) acts via
{

λ.xi = λiλ
−1
i−1xi

λ.yi = λi−1λ
−1
i yi

and consequently the action ofλ on any monomial multiplies this monomial with some
scalar. As a consequence the ring of polynomial invariants is generated by the monomials
where this scalar factor is1. We can represent any monomial in thexi and theyj by an
integral vector

xa1

1 . . . xa6

6 y
b1
1 . . . ybl

6 7→ (a1, . . . , a6, b1, . . . , b6) ∈ N
12

and the monomials left invariant by the torus-action are precisely the solutions to the linear
set of relations determined by the12 × 6 matrix, where the columns correspond to the
variables and the rows to the action of the different components ofGL(α)























−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
1 0 0 0 0 −1
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
−1 0 0 0 0 1






















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and one verifies that thefundamental solutionsare given by the 6 short cyclesxiyi, that is

c1 = (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0), . . . , c6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1)

and the two long cycles

cx = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) and cy = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)

From this it follows that the ring of invariants

C[repα Q]GL(α) ≃
C[c1, c2, c3, c4, c5, c6, cx, cy]

(c1c2c3c4c5c6 − cxcy)

which is a singular hypersurface inC8 so is7-dimensional. Clearly this does not yet give
us the Kleinian singularityC2/Z6 but we still have to divide out thecommuting matrices
relations.

Observe thatV = Cx+ Cy = V0 ⊕ V5 and we have the identification

HomZ6
(CZ6, V ⊗ CZ6) = repα Q

AnyB ∈ HomZ6
(CZ6, V ⊗CZ6) is determined by two6×6 matricesBx andBy defined

by the rule that

B(c) = x⊗Bx(c) + y ⊗By(c) for all c ∈ CZ6

IdentifyingCZ6 with the space spanned by the vertex-idempotentsCv0 + . . . + Cv5 any
B = (x1, . . . , x6, y1, . . . , y6) ∈ repα Q determines the matrices

Bx =











0 x1 0 0 0 0
0 0 x2 0 0 0
0 0 0 x3 0 0
0 0 0 0 x4 0
0 0 0 0 0 x5

x6 0 0 0 0 0











and By =











0 0 0 0 0 y6
y1 0 0 0 0 0
0 y2 0 0 0 0
0 0 y3 0 0 0
0 0 0 y4 0 0
0 0 0 0 y5 0











and thecommuting matrix relationsare given by setting the entries of the commutator
[Bx, By] equal to zero. Now,[Bx, By] =











x1y1 − y6x6 0 0 0 0 0
0 x2y2 − y1x1 0 0 0 0
0 0 x3y3 − y4x4 0 0 0
0 0 0 x4y4 − y5x5 0 0
0 0 0 0 x5y5 − y6x6 0
0 0 0 0 0 x6y6 − y1x1











Consider the affine subvariety ofrepα Q consisting of the representations satisfying these
conditions

X = V(x1y1 = x2y2 = . . . = x6y6) ⊂ repα Q

then the corresponding quotient varietyX//GL(α) has as coordinate ring the quotient of
the invariant ring ofrepα Q on which we imposed these relations, that is,

C[X ]GL(α) =
C[c1, c2, c3, c4, c5, c6, cx, cy]

(c1c2c3c4c5c6 − cxcy, c1 − c2, c2 − c3, . . . , c6 − c1)
≃

C[x, y, z]

(x6 − yz)

which is the coordinate ring of the Kleinian singularityC
2/Z6. This is no accident. There

is a general result recovering quotient singularities fromthe McKay quiver setting by re-
stricting to the variety of commuting matrices.
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Proposition 1.21 LetG ⊂ SLd(C) act freely outside the origin ofCd. Let (Q,α) be the
McKay quiver setting corresponding to the quotient singularity Cd/G. LetX ⊂ repα Q
denote the affine subvariety consisting of representationsfor which the correspondingG-
equivariant mapB ∈ HomG(R, V ⊗R) satisfies the equation

B ∧B = 0 ∈ HomG(R,∧2V ⊗R)

then the corresponding quotient variety

X//GL(α) ≃ C
d/G

is isomorphic to the quotient singularity.

The varietySn C2 parametrizing unorderedn-tuples in the complex planeC2 is singular
and there is a naturaldesingularization

Hilbn C
2 -- Sn C

2

whereHilbn C2 is theHilbert schemeof n points in the plane. That is, the Hilbert scheme
parametrizes idealsI of C[x, y] such that

dimC

C[x, y]

I
= n

We want to describe the points inHilb6 C2 which are isomorphic asZ6-representation
to CZ6, that is we want to classify the codimension6 idealsI of C[x, y] which are stable
under theZ6-action onC[x, y] and such that the corresponding quotient representation

C[x, y]

I
≃ CZ6

such a point inHilb6 C2 is called aZ6-constellationand the classifying variety will be
denoted byZ6 − Hilb C2.

To start off, there is a natural onto mapping

Z6 − Hilb C
2 -- C

2/Z6

defined as follows : take a codimension6-ideal I of C[x, y] and letmP be the maximal
ideal of a pointP ∈ C2 such thatI ⊂ mP , then map the point ofZ6−Hilb C2 determined
by I to the point[P ] ∈ C2/Z6. As I is stable under theZ6-action, the choice of the
particularP is irrelevant. This map is surjective for take a point[0] 6= P ∈ C2/Z6, then
we can consider the ideal

I = ∩g∈Z6
mg.P

and for[0] take for example the idealI = (x6, y). As before, identifyCZ6 with Cv0 +
. . .+ Cv5 the space spanned by the vertex-idempotents then under aZ6-isomorphism

C[x, y]

I
≃ CZ6 = Cv0 + . . .+ Cv5

the image of1 corresponds tov0. Moreover, multiplication byx, resp. byy, in the quotient
C[x, y]/I determines two commuting6 × 6 matricesBx andBy in EndC(CZ6) and by
assumption the induced linear map

CZ6
- (Cx+ Cy)⊗ CZ6 defined by v 7→ x⊗Bx.v + y ⊗By.v

is Z6-equivariant, that is determines an element of

HomZ6
(CZ6, V ⊗ CZ6) = repα Q
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and hence describes a point in the commuting matrix subvariety X ⊂ repα Q. However,
conversely, it is not true that an arbitrary point ofX determines a point ofZ6 − Hilb C2

as for such an ideal we have the extra condition that the imageof 1 under the identification

C[x, y]

I
= CZ6 = Cv0 + . . .+ Cv5

that isv0, must generate the whole6-dimensional representation when acted upon by the
matricesBkxB

l
y. So, for example, a point inX with x1 = y6 = 0 does not satisfy this extra

requirement.

Still, if x = (x1, . . . , x6, y1, . . . , x6) ∈ X such that for every vertexvi 6= v0 we have a
pathP in the quiverQ such thatP (x) 6= 0, then the generating conditionis satisfied andx
determines a point of the Hilbert schemeZ6−HilbC2. This gives us a way to calculate the
Hilbert scheme. LetXs be the set of points satisfying this path-condition, then clearlyXs

is a Zariski open subset ofX . However, it is not true thatXs is affine. Still, we can cover
Xs by affine open piecesUi and take the correspondingGL(α)-quotientsUi//GL(α).
Gluing these affine quotients together gives a covering ofZ6 − Hilb C2. We claim that
Z6 − Hilb C

2 is a smooth variety.

Let us consider one of these affine open pieces (the calculations for the others are similar).
Take

U = {x ∈ Xs | x2x1(x) 6= 0 6= y4y5y6(x)}

then this is an affine open piece with coordinate ring

C[U ] = C[X ]f with f = x2x1y4y5y6

Now, we have to divide out theGL(α)-action. In every orbit ofU we can find a representant
of the form

��������0

y6
xx

x1

��
��������5

y5

		

��������1

x2

		
��������4

y4

��

��������2

��������3

��������0

1
xx

1

��
��������5

a

88

1

		

��������1

a

XX

1

		
��������4

a

II

1

��

��������2

a

II

b
xx

��������3

a

XX
c

88

Here, we used theGL(α)-action to normalize the certain non-zero arrows to1 and then
the commuting matrix relations imply that most of the remaining arrows must be equal to
a ∈ C. As the ring of invariants is generated by (traces of) cyclesin Q we have

C[U ]GL(α) =
C[a, b, c]

(bc− a)
≃ C[b, c]

whenceU//GL(α) ≃ A2 and is smooth. As a consequence, we have that the natural map

Z6 − Hilb C
2 π-- C

2/Z6

is aresolution of singularities. Again, this is no accident and there is a general result.
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Definition 1.22 If G is a finite group acting onCd freely outside the origin we define the
G-equivariant Hilbert schemeG − Hilb Cd to be the variety parametrizing codimension
#G-idealsI of C[x1, . . . , xd] stable under the action ofG and such that the corresponding
quotient

C[x1, . . . , xd]

I
≃ CG

asG-representations.

Proposition 1.23 If G is a finite group acting onCd freely outside the origin, then there is
a natural map

G− Hilb C
d -- C

d/G

which is a (partial) resolution of the quotient singularity. If d = 2 (and for many cases,
including all AbelianG, in d = 3) this is a resolution of singularities.

1.4 Non-commutative algebras
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THE CONIFOLD ALGEBRA

2.1 The algebra

In this section we give two different characterizations of the conifold algebra, a non-
commutative algebra of current interest in stringtheory : as a skew-group algebra and as a
Clifford algebra.

Quiver-diagramsplay an important role in stringtheory as they encode intersection infor-
mation of so calledwrappedD-branes(higher dimensional strings) inCalabi-Yau mani-
folds(some special three dimensional manifolds over the complexnumbersC). One of the
earliest models, studied by I. R. Klebanov and E. Witten [?], was based on theconifold
singularity. Recall that the conifold singularity is the singularity oftheaffine cone(see [?,
]) over the image of theSegre embedding(see [?, ]) P1 × P1 ⊂ - P3. That is, an affine
presentation of the conifold singularity is given by the affine commutativeC-algebra

Ccon =
C[a, b, c, d]

(ab− cd)

A D3-braneis a three-dimensional (over the real numbersR) submanifold of a Calabi-Yau
manifold and as this is a six-dimensional (again over the real numbers) manifold it follows
that twoD3-branes in sufficiently general position intersect each other in a finite number
of points. If one wraps two sufficiently generalD3-branes around a conifold singularity,
their intersection data will be encoded in the quiver-diagram

��������
x1 ,,
x2

%%
��������

y1
ll

y2

ee

Without going into details (for more information see [?]) one can associate to such a quiver-
diagram a non-commutative algebra describing the vacua with respect to a certainsuper-
potentialwhich is a suitable linear combination of oriented cycles inthe quiver-diagram.
In the case of twoD3-branes wrapped around a conifold singularity one obtains :

Definition 2.1 Theconifold algebraAcon is the non-commutative affineC-algebra gener-
ated by three non-commuting variablesX,Y andZ and satisfying the following relations







XZ = −ZX

Y Z = −ZY

X2Y = Y X2

Y 2X = XY 2

Z2 = 1
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That is,Acon has a presentation

Acon =
C〈X,Y, Z〉

(Z2 − 1, XZ + ZX, Y Z + ZY, [X2, Y ], [Y 2, X ])

whereC〈X,Y, Z〉 is the free associative algebra on three non-commuting variables and
where[A,B] = AB −BA denotes the commutator.

Actually, one sometimes sees another presentation ofAcon as

C〈X,Y, Z〉

(Z2 − 1, XZ + ZX, Y Z + ZY, [Z[X,Y ], X ], [Z[X,Y ], Y ])

but asZ is a unit, it is easily seen that both presentations give isomorphicC-algebras.

In general, the structure of a non-commutative affineC-algebra can be quite complicated
but here we are in luck as there is a largecentral subalgebrain the conifold algebra. Recall
that an elementr of a non-commutative algebraR is said to becentralif it commutes with
all elements, that is,[r, s] = rs − sr = 0 for all s ∈ R.

Lemma 2.2 In the conifold algebraAcon the following elements

x = X2, y = Y 2 and z =
1

2
(XY + Y X)

are algebraically independent central elements andAcon is a free module over the central
subalgebraC = C[x, y, z] with basis

Acon = C.1 ⊕ C.X ⊕ C.Y ⊕ C.Z ⊕ C.XY ⊕ C.XZ ⊕ C.Y Z ⊕ C.XY Z

In fact, the conifold algebra is a skew group algebra

Acon ≃ C[z,X ][Y, σ, δ]#Z/2Z

for some automorphismσ andσ-derivationδ.

Proof. Consider the subalgebraS of Acon generated byX andY , that is

S =
C〈X,Y 〉

([X2, Y ], [Y 2, X ])

Then clearlyx andy are central elements ofS as isz = 1
2 (XY + Y X) because

(XY + Y X)X = XYX + Y X2 = Y XY +X2Y = X(Y X +XY )

Now, consider thëOre extension(see [?, ])

S′ = C[z,X ][Y, σ, δ] with σ(z) = z, σ(X) = −X and δ(z) = 0, δ(X) = 2z

This means thatz is a central element ofS′ and thatY X = σ(X)Y + δ(X) = −XY +2z
whence the map

S - S′ defined by X 7→ X and Y 7→ Y

is an isomorphism. By standard results, thecenterof S′ is equal to

Z(S′) = C[x, y, z]
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whence the three elements are algebraically independent. Consider the automorphism de-
fined byφ(X) = −X andφ(Y ) = −Y onS, then the conifold algebra can be written as
theskew group ring(see [?, ])

Acon ≃ S#Z/2Z

This is the ring on all elementss#g with g ∈ Z/2Z and(s#g)(s′#g′) = sφg(s
′)%gg′.

As Z(S) = C[x, y, z] is fixed underφ the elementsx = x#1, y = y#1 andz = z#1 are
central inAcon and asS′ is free overZ(S′) with basis

S′ = Z(S′).1 ⊕ Z(S′).X ⊕ Z(S′).Y ⊕ Z(S′).XY

the result on freeness ofAcon overC[x, y, z] follows. �

If C is a commutativeC-algebra and ifMq is asymmetricm×m matrix with entries inC,
then we have abilinear formon the freeC-moduleV = C⊕ . . .⊕C of rankm defined by

Bq(v, w) =
[
v1 v2 . . . vm

]
.








b11 b12 . . . b1n
b12 b22 . . . b2n
...

...
...

b1n b2n . . . bnn







.








w1

w2

...
wm








The associatedClifford algebraClq(V ) is then the quotient of thetensor algebraTC(V ) =
C〈v1, . . . , vm〉 where{v1, . . . , vm} is a basis of the freeC-moduleV and the defining
relations are

Clq(V ) =
TC(V )

(v ⊗ w + w ⊗ v − 2Bq(v, w) : v, w ∈ V )

As an example, the algebraS ≃ S′ constructed in the above proof is the Clifford algebra
of the binary quadratic form overC = C[x, y, z]

Bq =

[
x z
z y

]

on V = C.X ⊕ C.Y

asBq(X,X) = x,Bq(Y, Y ) = y andBq(X,Y ) = z. As the entries of the symmetric
variable are independent variables, we call this algebra thegeneric binary Clifford algebra,
see [?] for more details and the structure of higher generic Clifford algebras.

Lemma 2.3 The conifold algebraAcon is theClifford algebraof a non-degenerate ternary
quadratic form overC[x, y, z].

Proof. Consider the freeC = C[x, y, z]-module of rank threeV = C.X ⊕ C.Y ⊕ C.Z
and the symmetric3× 3 matrix

Bq =





x z 0
z y 0
0 0 1





then it follows thatAcon ≃ Clq(V ) asBq(X,Z) = 0, Bq(Y, Z) = 0, Bq(Z,Z) = 0 and
the remaining inproducts are those ofS ≃ S′ above. �

What is the connection betweenAcon and the conifold singularity? WhereasC = C[x, y, z]
is a centralsubalgebraofAcon, the center itself is strictly larger. TakeD = XY Z−Y XZ
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and verify that

(XY Z − Y XZ)X = −X(2z −XY )Z + xY Z

= −2zXZ + 2xY Z

= xY Z − (2zXZ − Y X2Z)

= X(XYZ − Y XZ)

and a similar calculation shows thatDY = Y D andDZ = ZD. Moreover,D /∈
C[x, y, z]. Indeed, in the descriptionAcon ≃ S#Z/2Z we have that

C[x, y, z] ⊂ S#1 whereas D = XY Z − Y XZ = (XY − Y X)#Z ∈ S#Z

Moreover, we have thatD2 ∈ C[x, y, z] because

D2 = (XY Z − Y XZ)2 = 2z(XY + Y X)− 4xy = 4(z2 − xy) ∈ C[x, y, z]

Lemma 2.4 The centerZcon of the conifold algebraAcon is isomorphic to the conifold
singularity

Zcon ≃
C[a, b, c, d]

(ab− cd)

Proof. LetZ be the central subalgebra generated byx, y, z andD, then a representation of
Z is

Z =
C[x, y, z,D]

(D2 − 4(z2 − xy))
≃

C[a, b, c, d]

(ab− cd)

where the second isomorphism comes from the following change of coordinates

a = D + 2z, b = D − 2z, c = 2x and d = 2y

As a consequenceZ is the coordinate ring of the conifold singularity and is in particular
integrally closed. AsAcon is a finite module overZ it follows that if Z 6= Zcon then the
field of fractionsL of Zcon would be a proper extension of the field of fractionsK of Z.
This can be contradicted using classical results on Clifford algebras over fields. To begin,
note that as the ternary form

Bq =





x z 0
z y 0
0 0 1





has square-free determinantxy − z2 /∈ C(x, y, z)∗2 the Clifford algebra over the rational
field C(x, y, z)

Acon ⊗C[x,y,z] C(x, y, z)

is a central simple algebra of dimension4 over its centerK ′ which is a quadratic field
extension ofC(x, y, z) determined by adjoining the square root of the determinant.As
[K : C(x, y, z)] = 2 it follows thatK = K ′ and hence also thatK = LwhenceZ = Zcon.

�

2.2 The space

In this section we will determine the non-commutative affinevariety corresponding to the
conifold algebra.
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Definition 2.5 Thenon-commutative affine varietymax A of a non-commutative algebra
A is the set of all maximal two-sided ideals ofA equipped with theZariski topology. The
Zariski topology is the topology determined by taking as itsclosed sets the subsets

V(I) = {m ∈ max A | I ⊂ m}

for all two-sided idealsI of A.

Observe that the Zariski topology onmaxA is indeed a topology asV(0) = maxA, V(A) =
∅, V(

∑

i Ii) = ∩iV(Ii) andV(I.J) = V(I) ∪ V(J). The last equality follows from the
fact that maximal two-sided ideals ofA aretwo-sided prime ideals, that is idealsP of A
satisfying that ifI.J ⊂ P then eitherI ⊂ P or J ⊂ P .

We want to relate these non-commutative affine varieties to ordinary (that is, commutative)
varieties for example those determined by central subalgebras.

Definition 2.6 A C-algebra morphismA
f- B is said to be acentral extensionprovided

B = ZB(A)f(A) where ZB(A) = {b ∈ B | bf(a) = f(a)b ∀a ∈ A}

In particular, any epimorphismA -- B is a central extension as is any monomorphism
A ⊂ B whereA is a central subalgebra ofB as in this caseZB(A) = B.

Lemma 2.7 If A
f- B is a central extension andB is a finiteA-module, then the map

f∗ : max B - max A defined by m 7→ f−1(m)

is continuous for the Zariski topologies onmax A andmax B.

Proof. If I ⊳ A is a two-sided ideal, thenZB(A)f(I) is a tow-sided ideal ofB as for any
b =

∑

i zif(ai) ∈ B (with zi ∈ ZB(A)) we have that

b.f(I) =
∑

i

zif(ai)f(I) ⊂
∑

i

zif(I) ⊂ ZB(A)f(I)

an similarly for multiplication byb on the right-hand side. As a consequence,f−1(P ) is
a two-sided prime ideal ofA wheneverP is a two-sided prime ideal ofB for if I.J ⊂
f−1(P ) then

ZB(A)f(I)f(J) = (ZB(A)f(I))(ZB(A)f(J)) ⊂ P

whenceZB(A)f(I) ⊂ P or ZB(A)f(J) ⊂ P . If m is a maximal two-sided ideal ofB,
thenf−1(m) is a prime ideal ofA which must be maximal asB is a finiteA-module under
f . Hence, the map is well-defined and verification that the map is continuous, that is that
f∗(V(I)) = V(f−1(I)) is obvious. �

Observe that we do not need the condition thatB is a finiteA-module if we consider the
prime ideal spectrumspec (instead ofmax) in the statement wherespec A is the set of all
two-sided prime ideals ofA, again equipped with the Zariski topology.

After these generalities, let us go back to the study of the conifold algebraAcon and
relate the non-commutative affine varietymax Acon with that of the central subalgebra
max C[x, y, z] = A3.

Lemma 2.8 Intersecting maximal idealsm ofAcon with the central subalgebraC[x, y, z]
determines a continuous map

max Acon
φ- A

3

with the following fiber information :
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1. If n /∈ V(xy − z2), thenφ−1(n) consists of two points.

2. If (x, y, z) 6= n ∈ V(xy − z2), thenφ−1(n) consists of one point.

3. If (x, y, z) = n, thenφ−1(n) consists of two points.

Proof. For P = (a, b, c) ∈ A3 the corresponding maximal ideal ofC[x, y, z] is nP =
(x − a, y − b, z − c) and therefore the quotient ofAcon by the extended two-sided ideal
Acon.nP is the Clifford algebraClP overC of the ternary quadratic form

BP =





a c 0
c b 0
0 0 1





and the elements ofφ−1(nP ) are the two-sided maximal ideals ofClP . We can diagonalize
the symmetric matrix, that is there is a base-change matrixM ∈ GL3 such that

M τ .





a c 0
c b 0
0 0 1



 .M =





u 0 0
0 v 0
0 0 1



 = BQ

(with uv = ab−c2) and henceClP ≃ ClQ. The Clifford algebraClQ is the8-dimensional
C-algebra generated byx1, x2 andx3 satisfying the defining relations

x2
1 = u, x2

2 = v, x2
3 = 1 and xixj + xjxi = 0 for i 6= j

If uv 6= 0 thenBQ is a non-degenerate ternary quadratic form with determinant a square
in C∗ whenceClQ is the direct sum of two copies ofM2(C). If uv = 0, sayu = 0 and
v 6= 0, thenx1 generates a nilpotent two-sided ideal ofClQ and the quotient is the Clifford
algebra of the non-degenerate binary quadratic form

BR =

[
v 0
0 1

]

whence ClR ≃M2(C)

as any such algebra is a quaternion algebra. Finally, if bothu = 0 = v then the two-sided
idealI generated byx1 andx2 is nilpotent and the quotient

ClR/I = C[x3]/(x
2
3 − 1) ≃ C⊕ C

As the maximal ideals of a non-commutative algebraR and of a quotientR/I by a nilpotent
ideal coincide, the statements follow. �

This allows us to relate the non-commutative affine varietymaxAcon with the affine variety
max Zcon of its center, that is with the conifold singularity.

Lemma 2.9 Intersecting with the centerZcon determines a continuous map

max Acon
ψ- max Zcon m 7→ m ∩ Zcon

which is a one-to-one correspondence away from the unique singularity ofmax Zcon whose
fiber consists of two points.

Proof. The inclusionC[x, y, z] ⊂ Zcon of commutativeC-algebras determines a two-fold
cover

max Zcon = V(D2 − 4(z2 − xy)) ⊂ A
4 c-- A

3 (x, y, z,D) 7→ (x, y, z)
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which is ramifiedoverV(z2 − xy). That is, ifP = (a, b, c) /∈ V(z2 − xy) then there are
exactly two point lying over it

P1 = (a, b, c,+
√

c2 − ab) and P2 = (a, b, c,−
√

c2 − ab)

On the other hand, ifP = (a, b, c) ∈ V(z2− xy), then there is just one point lying over it :
(a, b, c, 0). The statement then follows from combining this covering information with the
composition map

max Acon
ψ- max Zcon

c- A
3

which isφ and the foregoing lemma. �

Observe thatψ is a homeomorphism onmax Acon − V(x, y, z) and hence can be seen as a
non-commutative birational map. Ifm lies in this open set then

Acon/m ≃M2(C)

whereas for the two maximal idealsm+ = (X,Y, Z − 1) andm− = (X,Y, Z + 1) lying
over the conifold singularity we have

Acon/m+ ≃ C ≃ Acon/m−

We call the open setmax Zcon − V(z2 − xy) the Azumaya locusof the conifold algebra
Acon and its complement theramification locus.

2.3 The representations

In this section we will clarify why we say thatmax Acon - max Zcon is a non-
commutative desingularization by proving that the representation variety corresponding
to the conifold algebra is smooth.

Definition 2.10 An n-dimensional representationof a non-commutativeC-algebraA is an
algebra morphism

A
φ- Mn(C)

A representationφ determines ann-dimensional rightA-moduleMφ by identifyingMφ =
C⊕n and defining theA-action onMφ via

m.a =
[
c1 c2 . . . cn

]
.φ(a)

Two n-dimensional rightA-modulesMφ andMψ are said to beisomorphicif there is

a linear isomorphismMφ
g- Mψ such thatg(m.φa) = g(m).ψa. Using the above

identifications, this means there is ag ∈ GLn such that for allm =
[
c1 . . . cn

]

m.φ(a).g = g(m.φa) = g(m).ψa = m.g.ψ(a)

or. equivalently, that then-dimensional representationsφ andψ areconjugated, that is

∃g ∈ GLn, ∀a ∈ A : φ(a) = g.ψ(a).g−1

Lemma 2.11 If A is a non-commutative affineC-algebra, then for eachn there exists an
idealIn(A) in some polynomial ringC[z1, . . . , zN ] such that itsgeometric points, that is

V(In(A)) ⊂ A
N ←→ repn A

are in one-to-one correspondence withn-dimensional representationsrepn A ofA. More-
over, there is an action ofGLn onV(In(A)) such thatorbitsunder this action correspond
to isomorphism classes ofn-dimensional rightA-modules.
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Proof. Take an affine presentation ofA, that is

A ≃
C〈x1, . . . , xk〉

I

for some two-sided idealI ⊳C〈x1, . . . , xk〉. For each1 ≤ i ≤ k consider thegenericn×n
matrix

Xi =






x11(i) . . . x1n(i)
...

...
xn1(i) . . . xnn(i)






where all thexuv(i) are commuting variables. LetN = k.n2 and consider the polynomial
ring R on theN variablesxuv(i). For eachi = f(x1, . . . , xk) ∈ I ⊂ C〈x1, . . . , xk〉
we can consider then × n matrix with all its entries contained inR by substituting each
occurrence ofxi in i by the generic matrixXi

in = f(X1, . . . , Xk) =






in(1, 1) . . . in(1, n)
...

...
in(n, 1) . . . in(n, n)




 ∈Mn(R)

and defineIn(A) to be the ideal ofR ≃ C[z1, . . . , zN ] generated by all entriesin(u, v) for
all i ∈ I (observe that even whenI is not finitely generated, the idealIn(A) will be asR
is Noetherian). Hence, there is an algebra morphism

A
jn- Mn(

C[z1, . . . , zN ]

In(A)
)

Every pointP ∈ V(In(A)) ⊂ AN determines a maximal ideal ofC[z1, . . . , zN ]/In(A)
and hence an algebra morphismπP : C[z1, . . . , zN ]/In(A) -- C. Therefore,P ∈
V(In(A)) defines then-dimensional representation

A
jn- Mn(

C[z1, . . . , zN ]

In(A)
)
Mn(πP )- Mn(C)

Conversely, ifA
φ- Mn(C) is ann-dimensional representation with

φ(xi) =






a11(i) . . . a1n(i)
...

...
an1(i) . . . ann(i)






then the pointPφ with entries allauv(i) lies in V(In(A)). Finally, there is a naturalGLn-
action by automorphisms onC[z1, . . . , zN ] by sending forg ∈ GLn the (u, v)-entry of
Xi to the(u, v)-entry ofg−1Xig and the idealIn(A) is invariant under this action, that is,
g.p ∈ In(A) for all p ∈ In(A). This follows from the fact that for anyf ∈ C〈x1, . . . , xk〉

f(g−1X1g, . . . , g
−1Xkg) = g−1f(X1, . . . , Xk)g

�

Lemma 2.12 For the conifold algebraAcon, the representation varietyrep1 Acon consists
of two points corresponding to the one-dimensional representations

φ+ =







X 7→ 0

Y 7→ 0

Z 7→ +1

and φ− =







X 7→ 0

Y 7→ 0

Z 7→ −1

Observe that these are the two points ofmax Acon lying over the conifold singularity.
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Proof. An algebra mapAcon
φ- C must satisfyφ(Z)2 = 1 whenceφ(Z) = ±1.

Moreover, the imagesφ(X), φ(Y ) andφ(Z) commute, so

0 = φ(XZ + ZX) = 2φ(X)φ(Z) = ±2φ(X) whence φ(X) = 0

and similarlyφ(Y ) = 0. �

Forn > 1 it is more complicated to determineIn(Acon) and the associated representation
variety repn Acon. For example, to determineI2(Acon) we consider the generic2 × 2
matrices

X 7→

[
x1 x2

x3 x4

]

Y 7→

[
y1 y2
y3 y4

]

Z 7→

[
z1 z2
z3 z4

]

and have to work out the matrix-identities induced by the defining relations ofAcon. For
example

XZ + ZX 7→

[
2x1z1 + x2z3 + x3z2 x1z2 + x2z4 + x2z1 + x4z2

x1z3 + x3z1 + x3z4 + x4z3 2x4z4 + x2z3 + x3z2

]

Y Z + ZY 7→

[
2y1z1 + y2z3 + y3z2 y1z2 + y2z4 + y2z1 + y4z2

y1z3 + y3z1 + y3z4 + y4z3 2y4z4 + y2z3 + y3z2

]

So, even in this case we do not get much insight into simple geometric questions about
rep2 Acon such as smoothness, dimension, orbit structure etc. For largern the situation
becomes even more complicated.

This is where non-commutative geometry enters. We will use ringtheoretic properties of
the non-commutative algebraA to get some grip on the representation varietiesrepn A. In
the special case ofrep2 Acon we can use some ad-hoc arguments.

Lemma 2.13 For the conifold algebraAcon, the representation varietyrep2 Acon is a
smooth affine variety having three disjoint irreducible components. Two of these compo-
nents are a point, the third componenttrep2 A has dimension6.

Proof. From the defining relationZ2 = 1 it follows that the image ofZ in any finite
dimensional representation has eigenvalues±1. Hence, after simultaneous conjugation of
the images ofX , Y andZ we may assume thatZ has one of the following three forms

Z 7→

[
1 0
0 1

]

or Z 7→

[
−1 0
0 −1

]

or Z 7→

[
1 0
0 −1

]

The first two possibilities are easily dealt with. Here, the image ofZ is a central unit so
it follows from the relationsXZ + ZX = 0 = Y Z + ZY as in the previous lemma that
X 7→ 0 andY 7→ 0. That is, these two components consist of just one point (theaction of
GL2 by simultaneous conjugation fixes these matrices) corresponding to the2-dimensional
semi-simplerepresentations

M+ = φ+ ⊕ φ+ and M− = φ− ⊕ φ−

The interesting case is the third one. BecauseX2 andY 2 are central elements it follows (for
example using the characteristic polynomial of2 × 2 matrices) that in any2-dimensional

representationAcon
φ- M2(C) we have thattr(φ(X)) = 0 andtr(φ(Y )) = 0. Hence,

the third component ofrep2 Acon consists of those2-dimensional representationsφ such
that

tr(φ(X)) = 0 tr(φ(Y )) = 0 and tr(φ(Z)) = 0
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For this reason we denote this component bytrep2 Acon and call it the variety oftrace pre-
serving2-dimensional representations. To describe the coordinate ring of this component
we can usetrace zerogeneric2× 2 matrices

X 7→

[
x1 x2

x3 −x1

]

Y 7→

[
y1 y2
y3 −y1

]

Z 7→

[
z1 z2
z3 −z1

]

which drastically reduces the defining equations asT 2 andTS+ST are both scalar matri-
ces for any trace zero2× 2 matrices. More precisely, we have

XZ + ZX 7→

[
2x1z1 + x2z3 + x3z2 0

0 2x1z1 + x2z3 + x3z2

]

Y Z + ZY 7→

[
2y1z1 + y2z3 + y3z2 0

0 2y1z1 + y2z3 + y3z2

]

Z2 7→

[
z2
1 + z2z3 0

0 z2
1 + z2z3

]

and therefore the coordinate ring oftrep2 Acon

C[trep2 Acon] =
C[x1, x2, x3, y1, y2, y3, z1, z2, z3]

(2x1z1 + x2z3 + x3z2, 2y1z1 + y2z3 + y3z2, z2
1 + z2z3 − 1)

To verify thattrep2 Acon is a smooth6-dimensional affine variety we therefore have to
show that theJacobian matrix





2z1 z3 z2 0 0 0 2x1 x3 x2

0 0 0 2z1 z3 z2 2y1 y3 y2
0 0 0 0 0 0 2z1 z3 z2





has constant rank3 ontrep2 Acon. This is forced by the submatrices
[
2z1 z3 z2

]
along

the ’diagonal’ of the Jacobian unlessz1 = z2 = z3 = 0 but this cannot hold for a point in
trep2 Acon by the equationz2

1 + z2z3 = 1. �

2.4 The quotient

Becausetrep2 Acon is a smooth affine variety, we call the conifold algebraAcon a
smooth@2-algebra and say thatmax Acon -- max Zcon is a non-commutative desin-
gularizationof the conifold singularity. In this section we give the connection between
trep2 Acon and the conifold singularity by showing that the latter is the quotient variety
of the former under the base-change action byGL2.

We will give an alternative proof of the fact that the trace preserving representation variety
trep2 Acon is a smooth variety. Recall that up to simultaneous basechange we could bring
the image ofZ in the form

Z 7→

[
1 0
0 −1

]

Taking the generic2× 2 matrices

X 7→

[
x1 x2

x3 x4

]

Y 7→

[
y1 y2
y3 y4

]

it follows from the relationsXZ + ZX = 0 = Y Z + ZY thatx1 = x4 = 0 = y1 = y4.
Therefore, such a2-dimensional representation ofAcon can be simultaneously conjugated
to one of the form

X 7→

[
0 x2

x2 0

]

Y 7→

[
0 y2
y3 0

]

Z 7→

[
1 0
0 −1

]
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and as the images ofX2 and Y 2 are scalar matrices the remaining defining relations
[X2, Y ] = 0 = [Y 2, X ] are automatically satisfied.2-dimensional representations ofAcon
in this canonical form hence form a smooth4-dimensional affine space

A
4 = V(x1, x4, y1, y4, z1 − 1, z2, z3, z4 + 1) ⊂ A

12

To recovertrep2 Acon from this affine space we have to letGL2 act on it. The subgroup
of GL2 fixing the matrix

[
1 0
0 −1

]

is T = {

[
λ 0
0 µ

]

| λ, µ ∈ C
∗},

the two-dimensionaltorus. There is an action ofT on the productGL2 × A4 via

t.(g, P ) = (gt−1, t.P ) for all t ∈ T, g ∈ GL2 andP ∈ A
4

and wheret.P means the action by simultaneous conjugation by the2× 2 matrix t ∈ T ⊂
GL2 on the three2× 2 matrix-components ofP .

Lemma 2.14 Under the action-map

GL2 × A
4 - trep2 Acon (g, P ) 7→ g.P

two points(g, P ) and(g′, P ′) are mapped to the same point if and only if they belong to
the sameT -orbit in GL2×A4. That is, we can identifytrep2 Acon with theprincipal fiber
bundle(or orbit-space)

trep2 Acon ≃ GL2 ×
T

A
4 = (GL2 × A

4)/T

In particular, there is a natural one-to-one correspondence betweenGL2-orbits in
trep2 Acon andT -orbits inA4.

Proof. If g.P = g′.P ′, thenP = g−1g′.P ′ and as bothP andP ′ have as their third2× 2
matrix component

[
1 0
0 −1

]

it follows thatg−1g′ is in the stabilizer subgroup of this matrix sog−1g′ = t−1 for some
t ∈ T whenceg′ = gt−1 and as(g−1g′)−1.P = P ′ alsot.P = P ′ whence

t.(g, P ) = (gt−1, t.P ) = (g′, P ′)

Hence we can identifytrep2 Acon = GL2.A
4 with the orbit-space of theT -action which

is usually denoted byGL2 ×T A4 and called the principal (or associated) fiber bundle.
Incidentally, this gives another proof for smoothness oftrep2 Acon as it is the base of a
fibration with smooth fibers of the smooth top spaceGL2 × A4.

GL2 acts onGL2 × A
4 by g.(g′, P ′) = (gg′, P ′) and this action commutes with theT -

action so induces aGL2-action on the orbit-space

GL2 × (GL2 ×
T

A
4) - GL2 ×

T
A

4 g.(g′, P ′) = (gg′, P ′)

As we have identifiedGL2×
T

A
4 with trep2 Acon via the action map, that is(g, P ) = g.P

the remaining statement follows. �

We would like to construct an orbit space for theGL2-action ontrep2 Acon as its points
are the isomorphism classes of2-dimensional representations. However, such an orbit
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space only exists when all orbits are closed andtrep2 Acon has non-closed orbits, for
example

[
ǫ 0
0 1

]

.(

[
0 x
0 0

]

,

[
0 y
0 0

]

,

[
1 0
0 −1

]

) = (

[
0 ǫx
0 0

]

,

[
0 ǫy
0 0

]

,

[
1 0
0 −1

]

)

all belong to the same orbit for everyǫ 6= 0, but its limiting point is the representation
sendingX andY to the zero matrix which is a non-isomorphic representation.

As we will see later, the best algebraic approximation to thenon-existent orbit space is
the affine variety corresponding to the ring ofpolynomial invariantsC[trep2 Acon]

GL2

which in this case is isomorphic to the ring ofpolynomial torus invariantsC[A4]T by the
foregoing lemma.

Lemma 2.15 The ring of polynomial invariants

C[trep2 Acon]
GL2 ≃ C[A4]T

are isomorphic to the coordinate ring of the conifold singularity Zcon. As a consequence,
thequotient map

trep2 Acon
-- spec Zcon

maps a two-dimensional representation to the direct sum of its Jordan-Ḧolder components
as the quotient varietyspec Zcon parametrizes isomorphism classes of two-dimensional
semi-simple representations ofAcon.

Proof. The action of the two-dimensional torusT onA4 = {(x2, x3, y2, y3)} is given by
[
λ 0
0 µ

]

.(

[
0 x2

x3 0

]

,

[
0 y2
y3 0

]

,

[
1 0
0 −1

]

) =

(

[
0 λµ−1x2

λ−1µx3 0

]

,

[
0 λµ−1y2

λ−1µy3 0

]

,

[
1 0
0 −1

]

)

Hence, the action of(λ, µ) ∈ T onC[A4] = C[X2, X3, Y2, Y3] is defined by

X2 7→ λ−1µX2 X3 7→ λµ−1X3 Y2 7→ λ−1µY2 Y3 7→ λµ−1Y3

and this action sends any monomial in the variables to a scalar multiple of that monomial.
So, in order to determine the ring of polynomial invariants

C[X2, X3, Y2, Y3]
T = {f = f(X2, X3, Y2, Y3) | (λ, µ).f = f ∀(λ, µ) ∈ T }

it sufficers to determine all invariant monomials, or equivalently, all positive integer quadru-
plets(a, b, c, d) such thata− b+ c− d = 0 as

(λ, µ).Xa
2X

b
3Y

c
2 Y

d
3 = λ−a+b−c+dµa−b+c−dXa

2X
b
3Y

c
2 Y

d
3

Clearly, such quadruplets are all generated (as Abelian group under addition) by the four
basic oones

(1, 1, 0, 0) 7→ X2X3 (1, 0, 0, 1) 7→ X2Y3 (0, 1, 1, 0) 7→ X3Y2 (0, 0, 1, 1) 7→ Y2Y3

and therefore

C[trep2 Acon]
GL2 ≃ C[X2, X3, Y2, Y3]

T = C[X2X3, X2Y3, X3Y2, Y2, Y3] ≃
C[p, q, r, s]

(ps− qr)

is the conifold singularityZcon. We know already thatspec Zcon has as its points the
isomorphism classes of2-dimensional semi-simple representations withφ+ ⊕ φ− as the
semi-simple representation corresponding to the singularity and all other points classify a
unique simple2-dimensional representation. �
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2.5 The desingularization

It is all well to call the mapspec Acon -- spec Zcon a non-commutative desingular-
ization of the conifold singularity, but sceptical people would like to construct an ordinary
(that is, commutative) desingularization ofspec Zcon from the conifold algebraAcon. In
this section we will achieve this by constructingmoduli spacesof certain open sets of2-
dimensional representations ofAcon.

First, we need to clarify the connection with the quiver-diagramQcon :

��������
x3 ,,
y3

%%
��������

x2

ll
y2

ee

A representationof Qcon of dimension vectorα = (m,n) is by definition the assignment
of a vectorspace of the appropriate dimension to each vertexof Qcon and a linear map
between the vertex-spaces to every arrow inQcon, that is a quadruple of matrices

(A3, B3, A2, B2) ∈Mm×n(C)⊕Mm×n(C)⊕Mn×m(C)⊕Mn×m(C) = repα Qcon

Base change in the vertex-spaces induces an action of thebasechange groupGL(α) =
GLm ×GLn on the space of all representationsrepα Acon via

(g, h).(A3, B3, A2, B2) = (g−1A3h, g
−1B3h, h

−1A2g, h
−1B2g)

and twoα-dimensional representations are said to beisomorphicif they belong to the
same orbit. Forβ = (m′, n′) and V ′ = (A′

3, B
′
3, A

′
2, B

′
2) ∈ repβ Qcon and V =

(A3, B3, A2, B2) ∈ repα Qcon a morphismF : V ′ - V consists of linear maps
(f1, f2) ∈ Mm′×m(C) × Mn′×n(C) between the vertex spaces such that all the corre-
sponding arrow-diagrams are commutative, that is, the diagrams

C
m A3 - C

n

C
m′

f1

6

A′

3 - C
n′

f2

6
C
m B3 - C

n

C
m′

f1

6

B′

3 - C
n′

f2

6
C
m � A2

C
n

C
m′

f1

6

� A′

2

C
n′

f2

6
C
m � B2

C
n

C
m′

f1

6

� B′

2

C
n′

f2

6

all all commuting. If bothfi are monomorphisms we say thatF is a monomorphism or
thatV ′ is a subrepresentationof V and if bothfi are epimorphisms we say thatF is an
epimorphism or thatV is a quotient representation ofV ′.

With these definitions we can identify theT -action onA4 above with the action of the
base-change groupT = C∗ × C∗ = GL(α) for α = (1, 1) on the space of allα-
dimensional representationsrepα Qcon = {(x3, y3, x2, y2)} = A4. Next, we bring
in a stability structureθ = (−1, 1) (observe thatθ.α = 0). We call a representation
V = (x3, y3, x2, y2) ∈ repα Qcon θ-stableif for all proper subrepresentationsV ′ ⊂ V of
dimension vectorβ we have thatθ.β > 0. In our case, forα = (1, 1) this condition just
says thatV has no subrepresentations of dimension vectorβ = (1, 0). That is,

V = (x3, y3, x2, y2) is θ-stable ⇔ x3 6= 0 or y3 6= 0

The subsetrep|thetaα Qcon is a Zariski open (though not affine) subset ofrepα Qcon and
thestabilizer subgroupof any pointV ∈ repθα Qcon is

stabT V = {(λ, λ) | λ ∈ C
∗} = Tc
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and hence the groupPGL(α) = T/Tc acts freely onrepθα Qcon and therefore we can
construct the orbit space classifying the isomorphism classes ofθ-stableα-dimensional
representations ofQcon

moduliθα Qcon = repθα Qcon/T

which is called themoduli spaceof θ-stable representations.

For the action of the torusT on C[repα Qcon] = C[x3, y3, x2, y2] a polynomialf =
f(x3, y3, x2, y2) is said to be aθ-semi-invariant of weightk provided

(λ, µ).f = λ−kµkf

In particular,θ-semi-invariants of weight0 are just the polynomial invariants and the prod-
uct of θ-semi-invariants of weightk resp.l is a semi-invariant of weightk + l. Therefore
we have agradedsubalgebra ofC[x3, y3, x2, y2] of all θ-semi-invariants

C[repα Qcon]
θ = C[repα Qcon]

θ
0 ⊕ C[repα Qcon]

θ
1 ⊕ . . .

whereC[repα Qcon]
θ
k is the space of allθ-semi-invariants of weightk.

Recall from [?, p.76] thatproj R of any positively graded commutative algebraR =
R0 ⊕ R1 ⊕ . . . is the set of allgraded prime idealswhich do not contain the positive part
R+ = R1⊕R2⊕ . . .. One defines onprojR the Zariski topology by taking as the closed
subsets

V(I) = {P ∈ proj R | I ⊂ P}

for any graded idealI of R. Intersecting a graded prime ideal with the part of degree zero
R0 defines a continuous map

proj R
π-- spec R0

which is surjective andprojective, that is, all fibersπ−1(p) are projective varieties.

Lemma 2.16 The moduli space of allθ-stableα-dimensional representations

moduliθα Qcon ≃ proj C[repα Qcon]
θ

is theproj of the ring ofθ-semi-invariants and as the semi-invariants of weight zeroare
the polynomial invariants we get a projective morphism

proj C[repα Qcon]
θ -- spec Zcon

which is a desingularization of the conifold singularity.

Proof. As in the case of polynomial invariants, the spaceC[repα Qcon]
θ
k is spanned by

monomials
xa2x

b
3y
c
2y
d
3 satisfying − a+ b− c+ d = k

and one verifies that this space is the module over the ring of polynomial invariants gener-
ated by all monomials of degreek in x3 andy3. That is

C[repα Qcon]
θ = C[x2x3, x2y3, x3y2, y2y3][x3, y3] ⊂ C[x2, y2, x3, y3]

with the generatorsa = x2x3, b = x2y3, c = x3y2 andd = y2y3 of degree zero ande = x3

andf = y3 of degree one. As a consequence, we can identifyproj C[repα Qcon]
θ with

the closed subvariety

V(ad− bc, af − be, cf − de) ⊂ A
4 × P

1



lecture 2. The conifold algebra 35

with (a, b, c, d) the affine coordinates ofA4 and[e : f ] projective coordinates ofP1. The
projectionproj C[repα Qcon]

θ -- spec Zcon is projection onto theA4-component of
A4 × P1.

To prove smoothness we coverP1 with the two affine opense 6= 0 (with affine coordinate
x = f/e andf 6= 0 with affine coordinatey = e/f . In the affine coordinates(a, b, c, d, x)
the relations become

ad = bc ax = b and cx = d

whence the coordinate ring isC[a, c, x] and so the variety is smooth on this affine open.
Similarly, the coordinate ring on the other affine open isC[b, d, y] and smoothness follows.
Moreover,π is birational over the complement of the singularity. This follows from the
relations

ax = b, cx = d, by = a, dy = c

which determinex (or y and hence the point inproj) lying over any(a, b, c, d) 6=
(0, 0, 0, 0) in spec Zcon. Therefore, the mapπ is a desingularization and theexceptional
fiber

E = π−1(0, 0, 0, 0) ≃ P
1

which classifies theθ-stable representations which lie over(0, 0, 0, 0) (that is, those such
thatx2x3 = x2y3 = x3y2 = y2y3 = 0) as they are all of the form

��������
x3 ,,
y3

%%
��������

0
ll

0

ee

with eitherx3 6= 0 or y3 6= 0 and the differentT -orbits of those are parametrized by the
points ofP1. As the smooth points ofspec Zcon are known to correspond to isomorphism
classes of simple (hence certainlyθ-stable) representations we have proved that

proj C[repα Qcon]
θ ≃ moduliθα Qcon

is the moduli space of allθ-stableα-dimensional representations ofQcon. �

Clearly, we could have done the same calculations starting with another stability struc-
tureθ′ = (1,−1) and obtained another desingularization replacing the roles ofx2, y2 and
x3, y3. This gives us the situation

blowup

moduliθα Qcon ........................
r

-
��

φ

moduliθ
′

α Qcon

φ ′

--

spec Zcon
��

π
′π

--

Here,blowup denotes the desingularization ofspec Zcon one obtains by blowing-up the
point (0, 0, 0, 0) ∈ A4 and which has exceptional fiberP1 × P1. Blowing down either of
these lines (the mapsφ andφ′) one obtains the ’minimal’ resolutions given by the moduli
spaces. These spaces are related by therational mapr which is called theAtiyah flopin
string theory-literature.
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