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lecture 1

QUOTIENT SINGULARITIES

1.1 Orbifold constructions

In this section we will run through the construction of theifold C™ /G which is the orbit-
space of the action of a finite grodp on ann-dimensional representatidn = C" of G.
We start by recalling some standard facts on the repregemtaeory of finite groups. For
more details on this we refer t@,[Chp 1-2]. Some of this results we will generalize in
later chapters to other reductive groups and mor egenenatammutative algebras.

Definition 1.1 An n-dimensional representatiasf a finite groupG is a group-morphism
G %+ GL,(C)

Equivalently,¢ defines a7-action on thex-dimensional spac¥ ~ C™ via the ruleg.v =
¢(g)v where elements df are viewed as column-vectors.

As we will work throughout this book with finite dimension&presentations of algebras,
let us bring in the finite dimensional (usually non-commivigtgroup algebra

CG = ®yecCey with multiplication induced by eg.e, = egp

and observe that an-dimensionalG-representatioy determines am-dimensionaleft
CG-modulelM, ~ C™ with module structure induced by

eqg.v = ¢(g)v forallg € G

Alternatively, we say thal/y is ann-dimensional representation @fG. Conversely, an
n-dimensional leftCG-moduleM = CG defines am-dimensionalz-representatioi
with ¢ (g) then xn matrix expressing the left action ly on M. Hence, both approaches
are equivalent.

A G-linear map(sometimes called @-equivariant mapbetweerG-representationg and
W is alinear mapy) : V. —— W such that for ally € G the diagram below commutes

V—Y oW
g g
vV —Y oW

In particular, twoG-representation¥” and W areisomorphiciff they have the same di-
mensionn and if their actions areonjugate that is, there is an invertible x n matrix A
such that

ow(g) = A "oy (g)A forallg € G.
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The vectorspace of all-linear maps fronl” to W will be denoted byH omg(V, W). If
¥ € Homg(V,W) is injective,V is called asubrepresentatioof W. A representatioll’
without propersubrepresentations is callededucible (or simplé.

There are standard procedures to construct new represastitom known representations

e the direct sunl” & W with actiong.(v + w) = ¢v (g)v + dw (g)w.
e the tensor product’ ® W with actiong.(v ® w) = ¢y (9)v ® ow (g)w.

e the dualV* = Homc(V,C) with actiong.v* = ¢y (g~ !)"v*. (Here,A™ denotes
thetransposef A)

Theregular representatiorR is the underlying space of the group algetii@ with action
g.-€n = €gh-

A crucial property of finite groups is that they aeductive That is, every finite dimen-
sional representation is isomorphic to a direct sum of stmppresentations. This fact
follows by induction on the dimension of the representafiom theaveraging argument
below. A similar argument replacing sums by integrals ortargigroups can be used to
prove thatz L,, is reductive, a fact we will use later on.

Lemma 1.2 If W is a G-subrepresentation df , then there is a3-subrepresentatiofl’’
of V' such that (ag7-representations)

V=waoW

Proof. Take aC-vectorspace complemeht = W @& U of W and consider th€-linear
projection mapr; : V. — W on the first component. Average this map over the finite
groupd, that is, define

m . 1
V— W via  w(v) = %C Z g.(m1 (g7 )
geG
(where# G is theorder of G) and verify that this is &-linear map onl¥. Thekernelof
m ker m = {v € V| m(v) = 0} will be a G-subrepresentation 8f andV = W @ ker =
asG-representations. O

A second important ingredient&chur’s lemmavhich can be extended verbatim to simple
finite dimensional representations of algebras.

Lemma 1.3 (Schur's lemma) If — Y + W is a G-linear map between simplé&-
representations, then either= 0 or ¢ is an isomorphism which is given by scalar multi-
plication by € C.

Proof. Becauseer ¢ andim v areG-subrepresentations &f resp. W it follows from
irreducibility thate is either the zero-map or an isomorphismpl#« 0, takeV = W and
let A be an eigenvalue of the matrix describitng Then,b — Aly is aG-linear map with
non-zero kernel and S8 = ker ¢» — A1y or, equivalently;) = A1y onV. ]

Proposition 1.4 (Complete Reducibility) Any finite dimensionak-representatior’ can
be decomposed as
V=vPrg. . oV

with the V; non-isomorphic irreducible representations. In this depmsition, the irre-
ducible factors and their multiplicities are uniquely deténed.
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Proof. If W is aG-representation with decompositi@)Wj@ff andif¢ : V— Wis

aG-linear map, then by Schur’s lemmamust map the factdr;eaef' into that factoﬂ/[/j@ff
for which W; ~ V;. Applying this to the identity map o¥’, the uniqueness statement
follows. O

The principal problem in the representation theory of atgelis to determine methods to
test whether two finite dimension representations are ispmo. Later on, we will see that
tracescan be used to distinguish non-isomorpsémni-simple modulesThe archetypical
instance of this result is the classical notiorgadup characters

Definition 1.5 Thecharactery of ann-dimensional representatigh: G — GL,,(C)
of a finite groupG is the map

x : G—C definedby  x(g) = tr(o(g))

wheretr denotes the trace of the square matrix.

Clearly, as traces of conjugate matrices are equal, thecteaiis an isomorphism invariant
of a representation. Moreover, one easily verifies (§e€Chp 2]) thaty(1) equals teh
dimension of the representation, thaly) is a class functionthat is, is constant along
conjugacy classes and that the character of a direct sunpifgentations is the sum of the
characters. One defines mproducton the characters @¥ by the rule

<mﬂz?%2ﬁ@%@

geaG

With respect to this inproduct, the main results on chara@ee summarized in :

Proposition 1.6 LetG be a finite group withby, ¢», . . . the set of distinct simple represen-
tations ofG having characterg, xo, . - .

1. The characterg; are orthogonal, that is,
<X1‘, Xj> = 5@' for all Z,j

2. The number of isomorphism classes of irreducileepresentations is finite and
equals the number of conjugacy classe&in

3. Ifd; is the dimension of the irreducibl@-representatior;, thend;|# G and
#G=di +...+d?

wherer is the number of conjugacy classegaf

Proof. See [?, Chp. 2] for detalils. O

It follows that the representation theory@fis fully encoded in itsharacter tablevhich is
a square matrix with the rows corresponding to the distimetucibleG-representations,
the columns to the conjugacy classesbénd the(i, j)-entry isx;(g) with g an element
of the j-th conjugacy class.

After this brief recap, let us address the topic of this sectiLetl” be ann-dimensional
G-representation and consider the linear action of the fgribeipG on then-dimensional
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affine spac&€™ = V. The correspondingrbifold will be theorbit spaceC™ /G, that is the
set of equivalence classes

ay b1
(a1, ... an) ~ (b1,...,by) iff g | 1| =|: forsomeg € G

an by

We will prove thatC™ /G is an affine variety (usually with singularities) with coordte
ring O(C"/G) = Clxy,...,2,]%, the ring ofpolynomial G-invariants Again, this is
an archetypical case of a more general result : if a redugtivap acts on a vectorspace,
then the best algebraic approximation to the orbit-spadecfwdoes not have to exist in
general, due to the existence of non-closed orbits) is tfieeafariety associated to the
affine algebra of polynomial invariants. We will encounteginyg instances of this result
later on in this book.

An n-dimensionalz-representatio” determines a group-morphism
G —2+ GL,(C)

which also determines an action 6f by automorphismson the polynomial algebra
Clz1, ..., xy,] viathe rule

bg(21) T

(bg(xn) LTn
That is, everyg € G sendsz; to a linear combinatior,(x;) and induces therefore a
degree preservingutomorphism or€ [z, . . ., x,]. Under this automorphism, an arbitrary
polynomial of degred, f(z1,...,z,) is send to the polynomial of degréde

¢g(f) = f(¢g($1)a cee ¢g($n)) € C[wla e axn]

Definition 1.7 Let G —~ GL,(C) be determined by an-dimensional-representation
Vandlet{¢, : g € G} be the induced algebra automorphisms on the polynomiabedge
Clz1,...,x,]. A polynomial f(x1,...,2,) € Clxy,...,xz,] is said to be annvariant
underdG if

og(f)=f forallge G

The subalgebra (verify!) of all invariant polynomials isnd¢edC|z1, ..., z,]¢ and is
called thering of polynomial invariants

Example 1.8 Let V, be theKlein VierergruppeZ/2Z x Z/27Z and consider the2-
dimensional representation determined by

Vi — {ﬁl f1]} C GL,(C)

thenV} is generated by the two matrices

DR

and a polynomiaf (z,y) = 3_,; aijz'y’ € Clz,y] is invariant undeW; if and only if

f(may) = f(_may) = f(.I', _y)

that is, if and only if,a;; = 0 whenever or j is odd. Therefore, the ring of polynomial
Vi-invariants is
Clz,y]"* = Cla?, ]
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The fact that this ring of invariants is again a polynomialgriis rather special. On the
other hand, the fact that it is generated by finitely many eleisis general as we will now
prove. If f1,..., f, are polynomials irC[z1, . .., x,] we will denote withC[f1, ..., f]
thesubalgebraof C[z1, . .., x,] generated by th¢g;. Observe that we doot mean by this
that this subalgebra is again a polynomial ring (there magitpebraic relations among the
fi)- The averaging trick we used before also has its use here.

Definition 1.9 LetG — GL,,(C) determine am-dimensionalz-representatiofy. The
correspondindreynolds operatas the map

Clz1,. .., xn] Me, Clay, ...,y
defined by
1 1
Ro(f)(wr,- o an) = 2 D F(8(@1)so s dg(@n)) = 25 > do(f)

geaG

Lemma 1.10 Let R be the Reynolds operator corresponding to an action
G — GL,(C). Then,

1. R¢ is aC-linear map.
2. Forall f € Clzy,...,z,] we have thaRR¢(f) € Clzy, ..., 2,]%.
3. If f € Clay,...,2,)%, thenRg(f) = f.

Proof. R is a linear combination of the algebra morphisggsvhenceC-linear proving
(). To prove (2) let, € G then

on(Relf)) =on(og 3 60l1) = 25 3 on(@y(1)

geG geG
1
=0 bng(f) = Ra(f)
#thZeG !
As for (3)if f € Clz1,...,x,]¢ then
1 1
Ra(f)=77 ) ¢(H)=71= D) f=Ff

Fe N =7G2,

and we are done! O

We therefore see thaks is a surjective map which gives us a method to produce lots
of polynomialG-invariants. We say that @monomialm = «{* ... 2% has degred and
denotedegm =dif d=a1 + ...+ an.

Proposition 1.11 The ring of polynomiadz-invariants
Clz1,...,2,]¢ = C[Rg(m) : degm < N]

is generated by the images under the Reynolds operator nfaibmials of degree at most
the order ofG and hence is finitely generated.
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Proof. For anyk € N we can expand
(21 +...+zn)k = Z amm(x1, ..., x,)
degm=k
as a linear combination of all monomials of degree Now, take another set of variables
u1,...,u, and consider in the polynomial rir@x1, . .., zp, u1, ..., u,] foreveryg € G
(uld)g(zl) +...+ und’g(zn))k = Z am(bg(m(zlv teey zn))m(ula e ,Un)
degm=Fk
But then, we have the equality

Z(U1¢g($1) +.o..+ Un¢g($n))k = deG Zdegm:k amg(m)m(us, ..., un)

geqG
Zdegm:k(Na’m)RG(m)m(ulv oo ,’U,n)

Denotev, = u1¢g(z1) + . .. + ungy(x,), then the left-hand expressionds(v1, . . ., vw)
the Sy-invariant whereSy is the symmetric group ofV letters acting by permuting the
variables ofC[uvy, . .., vn]. In the exercises we will see that for aky N, Sy, is a polyno-
mial in the invariantsSy, ..., Sy. Thatis, we can write

Sk(Ul,. ..,UN) = P(Sl(Ul,.. .,UN),.. .,SN(Ul,. ..,UN))

and resubstituting in this expressiop = ui¢4(x1) + ... + undy(z,) and working out
both sides of the equality above and comparngerms belonging to the same monomial
in theu; we deduce that

(Nam)Ra(m(z1,...,2,)) = Q(Rg(m/(x1,...,2,)) : degm’ < N)

for some polynomial). As a consequence (using linearity of the Reynolds opérater
see that the imagBq (f) forany f € C[zy,...,x,] is a certain polynomial in the images
Rc(m) where the degree of the monomialis at mostV. O

If V' is ann-dimensionali-representation, then the groupmorphiSm— GL,,(C) also
determines an action ¢f onC" p — g.p via

a1 ai

= @(g).

an an
and we want to describe tleebit spaceC™ /G, that is, we want to describe tii&-orbits
O(p) ={q€C"|q=g.pforsomeg € G}

Clearly, any polynomial invariant € Clxz1, ..., z,] remains constant over ti@orbit
of a pointp = (a1, ...,a,) as

flg(ar,...,an)) = og(f)ar,...,an) = f(a1,...,an)

and as affine varieties are determined by their polynomiattions we hope that the co-
ordinate ring of the orbit-space (or tlygiotient variety is given buy the invariants, that
is

C[C"/G] = Clay, ..., zn]¢
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We begin by describing the affine variety determined by tlariant ring. In the previous
section we have seen that the invariant ring is finitely geteet, say

Clz1, ..., 0% =C[f1,..., fm]) C Clz1,..., Tn)

for certain invariant polynomialg;. However, there may be relations among thgséhat
is, we can write
]G _ C[yla---;ym]

1
where [ is the kernel of the surjective algebra  morphism
Cly1s- -+ ym] — C[f1,..., fm] defined byy; — f;. In this way we can asso-
ciate to the ring of invariants an affine variety

Clx1, ..., xn

V(I) C C™ = A™

and we have a mapping

cr —ﬂ" V(IV) by b= (fl(p)a i 'afm(p))

and as the; are constant alon§-orbits, this map factors over the orbit-spadce/G.

Lemma 1.12 The factored map
c"/G — V({I)cCm
is injective.

Proof. Assumep = (as,...,a,) andqg = (b1,...,b,) are two points inC" such that
O(p) # O(q) (thatis,O(p)NO(q) = 0) then we have to show thdit(p) # fi(q) for some
1<2<m.

ConsiderS = O(q) U (O(p) — {p}), thenS is a finite subset oC™ and hence is an
affine variety. Becausg ¢ S there is a polynomiaf € I(S) < Clzy,...,z,] such that
f(s) = 0forall s € Sbhutf(p) # 0. Consider the Reynolds image ¢f: Ra(f) =
(1/N)> e ¢4(f) then it follows that

Re(P@) = 5 - 6a(N)@) =+ 3 flg0) =0

geG geG

whereas

Ro(£)®) = % 3 l90) = 2 f(9) #0

geG

where M is the number of; € G such thay.p = p. BecauseRg(f) € Clxy, ..., x,]%,
there is a polynomiaP(f1, ..., fm) = Ra(f). Butthen as

P(fi(q),-- -, fm(q)) = Ra(f)(q) # Ra(f)(p) = P(f1(p),-- -, fm(p))

it follows that for at least oneé we havef;(p) # fi(q) and hence the image pfandq
under the quotient mapare different. O

Before we can prove surjectivity of the factored map, we riegilve another description of
the ring of invariants. By giving each variabte degree one, the polynomial ring becomes
agraded algebra

C[l‘l,...,SCn] :RQ@Rl@RQ@
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where R, is the finite dimensional vectorspace spanned by all morlemiasuch that
degm = d. As theG-action on polynomials preserves the degree, each akthis a finite
dimensionalG-representation and hence decomposes into its irredeittiers

Ry=V2 W gype g gy

whereV; is the trivial G-representation. WittR;(i) we will denote the subspade%i(d)
of Ry.

Also the subring of invariant polynomials is graded (theuiceld gradation)
Clzt,. 2] =S ®S1 B S @ ...
and, by definitiory. f = f for all f € S;. That is, we can identify
S = Ry(1) = V@

the space spanned by all factorsi®f isomorphic to the trivial representation. Moreover
note that for anyl < i < r we have that

SaRa (’L) C Rd+d’ (Z)

If M C Clay,...,z,] is G-stable, that is, ify.f € M forall f € M and allg € G,
thenM can be decomposed into irreduciliferepresentations and we denoteyi) the
collection of all subspaces of typé. Using these facts we can now finish the proof of

Proposition 1.13 The ring of polynomial invariant§€|z1, .. ., z,,]¢ is the coordinate ring
of the orbit spac&€™ /G, that is, the factored map

C"/G — V(I)  inducedby C" -~ V(I)cC™
is a bijection.

Proof. It remains to prove that the mapis surjective. Lepp € V(I) and letm be the
maximal ideal ofC[z, . .., z,]¢ corresponding tg. We claim that thextended ideal

mClzy,...,xn] # Clay, ..., 2]

In fact, we claim the stronger property that
mClzy, ..., 2, NClay, ..., 2y
Indeed M = mClzy,...,z,] is G-stable and therefore

M = EB::IM(T) = @;‘A:l(m(c[wla s ’xn])(l) = @;‘A:lm((c[wla s ’xn](l))

the last equality holding becauseC C[zq,...,x,](1). Restricting to the component of
the trivial representation we get

mClz1,...,2,] N Clzy,...,2,]¢ = (MC[z1, ..., 2,])(1) = m(Clzy,...,2,](1)) =m
becaus&[zy,. .., z,](1) = Clry,...,2,]%, proving the claim.

Let p be any maximal ideal o€[z1, ..., x,] containing the proper idealC[z1, ..., z,]

andq € C" be the corresponding point, theilg) = p. O



lecture 1. Quotient singularities 11

1.2 McKay quivers

Let V be ann-dimensional representation 6f, we will associate td” aquiver (that is, a
finite directed graph{)y = mckg(V'), theMcKay quiverof V.

Definition 1.14 The vertices{v, ..., v} of Qv = mcks(V) are in one-to-one corre-
spondence with the distinct irreducible representatigndor 1 < i < r) of G where we
let v; correspond to theivial representation

Let V; be the irreduciblér-representation corresponding to vertgexthen we have that
VeV, =Vg. . ovdm

for certaina;; € N. In the McKay quiver we use these integers to draywirectedarrows
from vertexv; to vertexv;. Repeating this procedure for all vertices, we obtain th&sic
quiverQy = mckg (V).

Example 1.15 (The cyclic groupCs = Z/37Z) Write the Abelian grouf./37Z multiplica-
tively, thatis,C3 = {1, p, p?} wherep is a primitive third root of unity. Then(’; has three
distinct conjugacy classefl }, {p} and{p?} whenceC3; must have three distinct irre-
ducible representation which must be necessarily of dilnarene. These representations
V; : C3 — C* are determined by the image pfind are

Vi={p—=1} Va={p—p} Va={p—p’}
and therefore the character table(éfis given by the matrix
{13 [ {o} [ {P*} ]
il 1l 1 1

Vol 1| p | p°
Vsl 1 | p | »p

Consider the two-dimensionék-representation
V=VaeVs then xv=xw+xvu
and thereforecvgv, = xv, Xv, + Xvi Xv; giving

{1 | {e} | {0%) |
VeWi| 2 | -1 -1
VeoVy| 2 —p | 3—p?
Vel | 2 | —p? —p

Therefore, we have the following decompositions

Vew=Voel;
VeaV,xVseh
VaVsx= el

whence the McKay quivey = mcke, (V') has the form
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On the other hand, for the three-dimensiofigirepresentation
V=Whoelol
thenyy = 3x2 and hencery gy, = 3x2x: giving

| {1} | {p} | {P°} ]
VeoWi| 3 | 3p | 3p°
VaVy| 3 [3p%2] 3p
VeVs| 3 3 3

Hence we have the decompositions

Vo= Vel,al,
Veal,= V3oV30V;
VeVs= VieVieW

which gives us that the McKay quivé}y = mcke, (V') has the following form

O=————=0

O

Historically, the McKay quiver was assigned t&keinian singularitylinking them totame
quiversand theirisotropic roots

Definition 1.16 Let G C SL»(C) a finite subgroup of th&-dimensional complex Lie
group
SLo(C) = {|* °| |ad—be=1}
2 — c d a C =
thenG has a natura2-dimensional representation via the embedditig (C) C GL2(C)

and we can consider the quotient variet®%/G which in this case are calleidleinian
singularities

One has a complete classification of all finite subgroupsof(C). There are two infinite
families and three exceptional cases.

The cyclic groupsC,, : Let p be a primitiven-th root of unity and consider the subgroup
of SLy(C) generated by the matrix

p 0

0 pt

which is clearly cyclic of orden. It acts onC[z, y| via the automorphism

T pT
y—pty

and one verifies immediately that the ring of polynomial i&ats is

CIX,V, 7]

Cla,y|“» = Cla™,y", ay] = X" -v2)
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which has an isolated singularity at the origin. Btw. thenfispiece gives the real picture
of the Kleinian singularityC?/Cs.

The dihedral groups D,, : If p is a primitive2n-th root of unity, consider the subgroup
of SLy(C) generated by the two matrices

_|lp 0 {0 1
a[o p—l} and bL. 0}

which is a group of ordetn and it acts orC|x, y] via the two automorphisms

{:Er—>p:1:1 and {xr—>zy
yr—=py Y
With some difficulty one can prove that the ring of invariants

CX,Y, Z]
(Z2+ X(Y2+ X))

Cla,yP» = Cla®y?, 2™ + (=1)"y™", ay(«*" — (=1)"y™")] =

which again has an isolated singularity at the origin.

The exceptional groups : Recall thatSUs(C) (the group of special unita/x 2 matrices)
is the universaR-fold cover of the rotation grouOs(R). Thus, we can lift any finite
subgroup of the rotation group to a finite subgroup®%(C) C SL,(C). In particular one
can do this for the group of rotations leaving te&rahedron, octahedroandicosahedron
fixed, giving us the finite subgroups

T, O, I C SLy(Z) oforder, resp24,48and120

We will not give precise matrix representations of thesaigsdbut only state the result on
the rings of invariants in these three cases :

C[X,Y, Z]

T _
Cle, ol = (X1 4+Y3 4 22)
C[X,Y, Z]
O __ )
Clevl” = 3 xv9+ 29
(C[$ y]] _ C[Xa Ya Z]

(X5+Y3+2?2)
all of which have an isolated singularity at the origin.

Thetame quiversare the directed graphs obtained from a so cate@nded Dynkin dia-
gramsgiven in figurdZLP by putting some orientation on each of thges. Tame quivers
come equipped with aisotropic roota which is a certain dimension vector depicted on
the right hand side of figufel.2.

Definition 1.17 A dimension vectofor a quiver onr vertices is an integral vectaer €
N".For a McKay quiveQy = mckg (V') there is adistinguished dimension vector

oG = (dl, ey dr) with d; = dimV}

Definition 1.18 If @ is an arbitrary quiver, for example an extended Dynkin grajth
some orientation on the edges, then one can defingoitbleD () to be the extended
quiver obtained by adjoining for each arravin ) an arrowa™* with the reverse orientation

® a ®@ nhQ 0T =0 inDQ)
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i
?
Eg O—0—0@—0—0
T ®
Er o—o o O—0—O@—@—0—0—0@
i ?
Eg o—o o @—0—O—60—@—0—0—0

Fig. 1.1: The extended Dynkin diagrams.

With this notationMcKay's observatioman be stated as :

Proposition 1.19 The McKay quiver settings corresponding to a two-dimersaditeinian
singularity are precisely the quiver settings

(Qv,ac) = (D(Q), )

where @ is an extended Dynkin quiver andits corresponding isotropic root. In this
correspondence the cyclic subgrougs correspond ta4,, 1, the dihedral subgroup®,,
to D,, and the exceptional subgroufsO and! respectively tdFs, £7 and Eg.

To illustrate this so calleicKay correspondenaee consider the special case of the cyclic
subgroupCs = Zg in detail. If p is a primitive6-th root of unity, then a complete list of
irreducibleZg-representation is given by

{Vo, V1, Vo, V3, Vi, Vs } with V; =Cv; g = plu;

for the generatog = 1 of Zg. The action ofZg on V' = C? is given by the matrix

[g /?5] whence V ~VidVs

The tensor-products of simple representations are easilged out in this case
‘/i & ‘/] = ‘/iJrj mod 6

from which it follows that
VieV =V ®Viq
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where all indices are taken modulo Therefore, the corresponding McKay quiver has the
form if we denote the vertexp) to correspond to the simple representafion

©
® ®
T5 Ys Y2 T2
@ ®
®

and as the corresponding dimension veeter (1,1,1,1,1,1) is the isotropic root ofd;
and as the subquiver of thg arrows isA; we get McKay’s observation in this case by
takingz} = y;.

1.3 Hilbert schemes

If « = (nq,...,n,) is a dimension vector, thepresentation space
rep, Qv = ®1<ij<rMp,xn, (C) ¥
is the vectorspace such that every arrow from vesjér vertexv; determines a linear map
(a matrix) fromC": to C™J.
Lemma 1.20 For the distinguished dimension vecta;, = (di,...,d,) of the McKay
quiverQy = mckq (1), there is a natural identification
rep,,, Qv = Homg(R,V @ R)
whereR is the regular representation of.
Proof. The numbem;; of directed arrows fromy; to v; is by definition the number of
V;-components in thé&'-tensor product” @ V;, thatis, by Schur’s lemma
a;j = Homg(V;,V @ V)
But then, by definition of the representation space we haate th
rep,, Qv = @i<ijorHoma(Vi,V @c V) @ Homg(C%,C%)
= Homg(®1<i<, Vi ©c C¥, @1<<,V ® (V; ®c C%))
= Home(®1<i<, V24,V @ (@15, V"))
= Homg(R,V ® R)

finishing the proof. O
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There is a natural action of thEse change group
GL(ag) = GLg, X ... x GLg,

onrep, . Qv by base-change. Thatisgf= (g1,...,gx) € GL(a) andM, is thea; x a;
matrix corresponding to the arro) —— @ , then

g.M, = gj.]V[a.gi_l

The GL(«)-orbits under this action are precisely the isomorphisnssga of quiver-
representations. We have seen before thét i§ a finite group acting on a vectorspace,
then we can parametrize all orbits by the maximal ideals efritig of polynomial invari-
ants. For more general reductive groups suclizdga) we will see later that it is not
always possible to construct an orbit space due to the existef non-closed orbits (in the
case of finite groups, each orbitis a finite number of pointsiae closed). Still, as before,
the variety determined by the ring of polynomial invariants

Clrep,,, Qv|CLlee)

is the best algebraic approximation to this non-existebit@mpace. Later we will see
methods to determine such invariant rings but in the speeaisg ofG being Abelian there

is a direct route because in this c&gé(ag) ~ C* x ... x C* is a torus and one can find
polynomial invariants by determining integer solutiongtiinear system of equations.

We will illustrate this in the special case 6f ~ Zg studied above. So l€), «) be the
Zg-quiver setting, then
Clrep, Q] = Clz1,..., 26, Y1, - - -, Yo and GL(a)=C"x...xC~

—_———
6

andX = (A1,...,Xs) € GL(«) acts via

)\.aci = )\i)\lzllmi
ANyi =Nty

and consequently the action afon any monomial multiplies this monomial with some
scalar. As a consequence the ring of polynomial invariangenerated by the monomials
where this scalar factor is. We can represent any monomial in theand they; by an
integral vector

L adoybt bt (ay,.. a6, b1, .., bg) € N2
and the monomials left invariant by the torus-action areigedy the solutions to the linear
set of relations determined by tH@ x 6 matrix, where the columns correspond to the
variables and the rows to the action of the different comptsef G L («)

-1 1 0 0 0 0
0 -1 1 0 0 0
0 0 -1 1 0 0
0 0 0 -1 1 0
0 0 0 0 -1 1
1 0 0 0 0 -1
1 -1 0 0 0 0
0 1 -1 0 0 0
0 0 1 -1 0 0
0 0 0 1 -1 0
0o 0 0 0 1 -1

-1 0 0 0 0 1]
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and one verifies that tfendamental solutionare given by the 6 short cyclesy;, that is
« =(1,0,0,0,0,0,1,0,0,0,0,0),...,¢ = (0,0,0,0,0,1,0,0,0,0,0, 1)
and the two long cycles
¢ =(1,1,1,1,1,1,0,0,0,0,0,0) and ¢, = (0,0,0,0,0,0,1,1,1,1,1,1)
From this it follows that the ring of invariants

C1,C2,C3,C4,C5,Cq, Cg, Cy]

(creacseacscs — cpcy)

C
Clrep, Q]GL(O‘) ~ [

which is a singular hypersurface @® so is7-dimensional. Clearly this does not yet give
us the Kleinian singularity{C? /Zs but we still have to divide out theommuting matrices
relations

Observe that’ = Cz + Cy = V) @ V5 and we have the identification
Homgz,(CZe,V @ CZg) = rep, @

Any B € Homy,(CZg,V @ CZg) is determined by twé x 6 matricesB,, andB,, defined
by the rule that

B(c) =2 ® By(c) +y ® By(c) forall c € CZg

Identifying CZe with the space spanned by the vertex-idempoténts+ ... + Cus any

B = (z1,...,%6,Y1,---,Ys) € rep, Q determines the matrices
0 z» 0 0 0 0 0 0 0 0 0 s
0 0 2o 0 0 0 pw 0 0 0 0 0
10 0 0 23 0 O 0O v 0 0 0 O
Ba=10 0 0 0 o ol @ B=10 0 4, 0 0 o
0 0 0 0 0 a5 0 0 0 ya 0 0
s 0 0 0 0 0 0 0 0 0 ys O

and thecommuting matrix relationsre given by setting the entries of the commutator
[Bs, By] equal to zero. Now,B,;, B,| =

T1Y1 — Y6Te 0 0 0 0 0
0 T2Y2 — Y121 0 0 0 0
0 0 T3Y3 — Yaly 0 0 0
0 0 0 T4Ys — Y525 0 0
0 0 0 0 T5Ys — Y66 0
0 0 0 0 0 TelYe — Y121

Consider the affine subvariety oép,_, ) consisting of the representations satisfying these
conditions
X =V(z1y1 = 22y2 = ... = z6Yys) C rep, Q
then the corresponding quotient variety /G L(«) has as coordinate ring the quotient of
the invariant ring ofrep,, 2 on which we imposed these relations, that is,
C[X]GL(Q) _ (C[Cl,02,03,04,05,06,0;3,03/] ~ C[.T,y,z]

(c1eac3c40506 — CyCy,C1 — C2,C2 — C3,...,C6 — c1) (26 —y2)

which is the coordinate ring of the Kleinian singulariy /Zg. This is no accident. There
is a general result recovering quotient singularities ftbeMcKay quiver setting by re-
stricting to the variety of commuting matrices.



lecture 1. Quotient singularities 18

Proposition 1.21 LetG C SL4(C) act freely outside the origin af“. Let(Q, ) be the
McKay quiver setting corresponding to the quotient singtyaC?/G. LetX C rep, Q
denote the affine subvariety consisting of representafionghich the corresponding-
equivariant mapB € Homg(R,V ® R) satisfies the equation

BAB=0¢ Homg(R,\*V ® R)
then the corresponding quotient variety
X//GL(a) ~C¢/G

is isomorphic to the quotient singularity.

The varietyS™ C? parametrizing unordereg-tuples in the complex plan€? is singular
and there is a naturdesingularization

Hilb, C? —= S™ C?

whereHilb,, C? is theHilbert schemef n points in the plane. That is, the Hilbert scheme
parametrizes idealsof C[x, y] such that

Clz, y]
T

dimg =n
We want to describe the points iilbg C? which are isomorphic aZg-representation
to CZg, that is we want to classify the codimensidideals! of C[z,y] which are stable
under theZg-action onClz, y] and such that the corresponding quotient representation
Clz, ]
2~ CZ
bi 6
such a point iflilbs C? is called aZg-constellationand the classifying variety will be
denoted byZg — Hilb C2.

To start off, there is a natural onto mapping
Zg —Hilb C? —= C?/Zs

defined as follows : take a codimensiétideal I of C[z, y] and letmp be the maximal
ideal of a point? € C? such thatl C mp, then map the point &t —Hilb C? determined
by I to the point[P] € C?/Zs. As I is stable under th&g-action, the choice of the
particular P is irrelevant. This map is surjective for take a pditit# P € C?/Zg, then
we can consider the ideal

I= ngZGmg.P

and for[0] take for example the idedl = (2°,y). As before, identifyCZg with Cvg +
...+ Cus the space spanned by the vertex-idempotents then uriersomorphism

M:CZ(;:(CUO—F...—HC%

the image ofl corresponds toy. Moreover, multiplication byt, resp. byy, in the quotient
Clz,y]/I determines two commuting x 6 matricesB, and B, in Endc(CZg) and by
assumption the induced linear map

CZs — (Cz+Cy)®CZs definedby v— 2 ® By.v+y® By.v
is Zg-equivariant, that is determines an element of

Homgz,(CZe,V @ CZg) = rep, @
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and hence describes a point in the commuting matrix sullyakieC rep,, ). However,
conversely, it is not true that an arbitrary point®fdetermines a point dfg — Hilb C?
as for such an ideal we have the extra condition that the irn&g@nder the identification

Clz, y]
T

=CZg = Cvg + ...+ Cuy

that isvg, must generate the whotedimensional representation when acted upon by the
matricesB’;Bé. So, for example, a point iX’ with z; = yg = 0 does not satisfy this extra
requirement.

still, if x = (x1,...,26,91,...,26) € X such that for every vertex; # vy we have a
path P in the quiver@ such thatP(z) # 0, then the generating conditigssatisfied and:
determines a point of the Hilbert scheffig—Hilb C2. This gives us a way to calculate the
Hilbert scheme. LeX ¢ be the set of points satisfying this path-condition, thexadly X *

is a Zariski open subset of . However, it is not true thak ® is affine Still, we can cover
X* by affine open piece¥; and take the correspondif@L(«)-quotientsU;//GL(«).
Gluing these affine quotients together gives a coveringqf- Hilb C2. We claim that
7 — Hilb C? is a smooth variety.

Let us consider one of these affine open pieces (the calontafior the others are similar).
Take
U={z € X®|zaz1(x) # 0 # yaysys()}

then this is an affine open piece with coordinate ring
ClU] = C[X]y with f = Tow1yaysys

Now, we have to divide out th@ L(«)-action. In every orbit o/ we can find a representant

®/@X® @//@‘X\b
DD
AV

Here, we used thé&'L(«)-action to normalize the certain non-zero arrowd tand then
the commuting matrix relations imply that most of the renrajrarrows must be equal to
a € C. As the ring of invariants is generated by (traces of) cytrieg we have

CU]GH@ = 7%?’_1’ ’ac)] ~ C[b,

whencel///GL(«) ~ A? and is smooth. As a consequence, we have that the natural map
Ze —Hilb C? —or C?/Zs

is aresolution of singularitiesAgain, this is no accident and there is a general result.
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Definition 1.22 If G is a finite group acting oft? freely outside the origin we define the
G-equivariant Hilbert schemé&' — Hilb C? to be the variety parametrizing codimension
#G-idealsI of C[zy, ..., x4 Stable under the action ¢f and such that the corresponding
guotient
(C[.I’l,...,.’[]d] ~CQ
I
asG-representations.

Proposition 1.23 If G is a finite group acting o freely outside the origin, then there is
a natural map
G —Hilb C?! — C%/@

which is a (partial) resolution of the quotient singularitif ¢ = 2 (and for many cases,
including all AbelianG, in d = 3) this is a resolution of singularities.

1.4 Non-commutative algebras
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THE CONIFOLD ALGEBRA

2.1 The algebra

In this section we give two different characterizations loé tonifold algebra a non-
commutative algebra of current interest in stringtheorg aakew-group algebra and as a
Clifford algebra.

Quiver-diagramslay an important role in stringtheory as they encode ieigisn infor-
mation of so calledvrappedD-branes(higher dimensional strings) i@alabi-Yau mani-
folds(some special three dimensional manifolds over the complexbersC). One of the
earliest models, studied by I. R. Klebanov and E. Witte}y \vas based on theonifold
singularity. Recall that the conifold singularity is the singularitytbé affine congsee 2,
]) over the image of th&egre embeddin@ee P, ]) P! x P! —— P3. That is, an affine
presentation of the conifold singularity is given by thersffcommutativé_-algebra

(C[a7 b7 C7 d]

Ceon = (ab — cd)

A D3-braneis a three-dimensional (over the real numid@ysubmanifold of a Calabi-Yau
manifold and as this is a six-dimensional (again over themeabers) manifold it follows
that two D3-branes in sufficiently general position intersect eacleoth a finite number
of points. If one wraps two sufficiently gener@i3-branes around a conifold singularity,
their intersection data will be encoded in the quiver-diagr

Without going into details (for more information seéd)[one can associate to such a quiver-
diagram a non-commutative algebra describing the vacuanegpect to a certaisuper-
potentialwhich is a suitable linear combination of oriented cyclethie quiver-diagram.
In the case of twd)3-branes wrapped around a conifold singularity one obtains :

Definition 2.1 Theconifold algebraA..,,, is the non-commutative affingé-algebra gener-
ated by three non-commuting variablEsY andZ and satisfying the following relations

Xz =-7ZX
YZ =-ZY
X%y =YX?
Y2X = XY?

72 =1
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That is, A, has a presentation

CX.,Y, Z)

Acon =
(Z° _1,XZ+ ZX,YZ + ZY,[X2,Y],[Y2, X))

whereC(X,Y, Z) is the free associative algebra on three non-commutingvies and
where[A, B] = AB — BA denotes the commutator.

Actually, one sometimes sees another presentatioh.gf as

C(X,Y, Z)
(72 —1,XZ+ ZX,YZ + ZY,[Z[X,Y],X], [Z[X,Y],Y])

but asZ is a unit, it is easily seen that both presentations give &pimcC-algebras.

In general, the structure of a non-commutative affikalgebra can be quite complicated
but here we are in luck as there is a laogatral subalgebrén the conifold algebra. Recall
that an element of a non-commutative algebrais said to becentralif it commutes with
all elements, that igy, s] = rs — sr = 0 forall s € R.

Lemma 2.2 In the conifold algebr&d..,,, the following elements
1
r=X? y=Y? and = 5(XY+YX)

are algebraically independent central elements ahg,, is a free module over the central
subalgebraC’ = Clz, y, z] with basis

Aeon =C16CXdCYBCZHCXYDPCXZHCYZDCXYZ
In fact, the conifold algebra is a skew group algebra
Acon =~ Clz, X][Y, 0, 6| #Z/2Z

for some automorphism ando-derivationd.

Proof. Consider the subalgebfaof A.,, generated by andY’, that is

C(X,Y)
(X2, Y], [Y2, X))

S:

Then clearlyz andy are central elements ¢fas isz = (XY + Y X) because
(XY +YX)X = XYX+YX?=YXY + X?Y = X(YX + XY)
Now, consider th®©re extensiorfsee P, ])
S" = Clz, X][Y,0,0] with o(2)=2z2,0(X)=-X and §(z)=0,6(X) =2z

This means that is a central element &f’ and thaty’ X = o(X)Y +6(X) = - XY + 2z
whence the map

S —9 definedby X+— X and Y —Y
is an isomorphism. By standard results, teaterof S’ is equal to

Z(8") = Clz,y, 2]
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whence the three elements are algebraically independensi@er the automorphism de-
fined by¢(X) = —X and¢(Y) = —Y on S, then the conifold algebra can be written as
theskew group ringsee P, ])

Acon ~ SH#7./27.

This is the ring on all elements#g with g € Z/2Z and (s#g)(s'#9') = s¢q4(s")%gq’.
As Z(S) = C[z, y, z] is fixed under) the elements = x#1, y = y#1 andz = z#1 are
central inA.,, and asS’ is free overZ(S’) with basis

S =2Z(8N1a2Z(8).X®Z2(58).Y & Z(S).XY

the result on freeness @f..,,, overClz, y, z] follows. O

If C'is a commutativé&-algebra and if\/, is asymmetrian x m matrix with entries inC,
then we have ailinear formon the freeC-moduleV = C @ ... @ C of rankm defined by

b11 b12 e bln w1

b12 b22 e an wo
By(v,w) = [vl vy ... vm]. ]

bin ban ... bun Wiy,

The associate@lifford algebraCl, (V) is then the quotient of theensor algebral (V) =
C(v1,...,vm) Where{vy,...,v,} is a basis of the fre€-moduleV and the defining
relations are

Tc(V)
(wWRuw+w®v—2By(v,w) : v,weV)

Cly(V) =

As an example, the algebfa~ S’ constructed in the above proof is the Clifford algebra
of the binary quadratic form ove? = C[z, y, 2]

Bq[j ;] on V=CXa&CY

asBy(X,X) = z,B,(Y,Y) = yandB,(X,Y) = z. As the entries of the symmetric
variable are independent variables, we call this algelageheric binary Clifford algebra
see P] for more details and the structure of higher generic Cldfalgebras.

Lemma 2.3 The conifold algebral..,,,, is theClifford algebraof a non-degenerate ternary
quadratic form ovelClz, y, z].

Proof. Consider the fre€' = C|z, y, z]-module of rank thred = C.X & C.Y & C.Z
and the symmetri8 x 3 matrix

then it follows thatA,,,, ~ Cly(V) asB,(X,Z) = 0,B,(Y,Z) =0, B4(Z,Z) = 0 and
the remaining inproducts are those%f- S’ above. O

What is the connection betweel,,,, and the conifold singularity? Where@s= C|z, y, z|
is a centrabubalgebraof A, the center itself is strictly larger. Take = XY Z -Y X Z
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and verify that

(XYZ-YX2)X= -X(2:—XY)Z+2YZ
= —22X7Z +2xYZ
= aYZ— (2:2XZ-YX?2)
= X(XYZ-YXZ)

and a similar calculation shows th&Y = YD and DZ = ZD. Moreover,D ¢
Clz, y, z]. Indeed, in the descriptioA..,, ~ S#Z/2Z we have that

Clz,y,z] C S#1 whereas D=XYZ-YXZ=(XY -YX)#Z e S#Z
Moreover, we have thab? € Cl[z, y, 2] because
D?*=(XYZ -YXZ)* =22(XY +YX) —day = 4(2* — 2y) € C[z,y, 2]

Lemma 2.4 The centerZ,.,,, of the conifold algebrad.,,, is isomorphic to the conifold
singularity
Z o Cla, b, ¢, d]
(ab — cd)
Proof. Let Z be the central subalgebra generated by, = andD, then a representation of
Zis
C[‘rayazaD] ~ C[aabacad]
(D% —4(22 —xy)) ~ (ab—cd)

where the second isomorphism comes from the following chafgoordinates

7 =

a=D+2z, b=D—2z, c¢=2x and d=2y

As a consequencg is the coordinate ring of the conifold singularity and is &rtcular
integrally closed. AsA.,, is a finite module ove# it follows that if Z # Z.,, then the
field of fractionsL of Z.,,, would be a proper extension of the field of fractidiisof Z.
This can be contradicted using classical results on Ctiftdgebras over fields. To begin,
note that as the ternary form

0
B, = 0
1

o w8
ow w

has square-free determinant — 22 ¢ C(x,y, 2)*? the Clifford algebra over the rational
field C(x, y, 2)

Acon ®(C[J;,y,z] (C(IL', Y, Z)
is a central simple algebra of dimensidrover its centerk” which is a quadratic field
extension ofC(z, y, z) determined by adjoining the square root of the determin&st.

[K : C(z,y, z)] = 2itfollows thatK = K’ and hence also th& = L whenceZ = Z..,,,.
O

2.2 The space

In this section we will determine the non-commutative affméety corresponding to the
conifold algebra.
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Definition 2.5 The non-commutative affine variefax A of a non-commutative algebra
A is the set of all maximal two-sided ideals dfequipped with th&ariski topology The
Zariski topology is the topology determined by taking asitsed sets the subsets

V(I)={memax A| I C m}

for all two-sided ideald of A.

Observe that the Zariski topology aax A is indeed a topology 88(0) = max A, V(A) =
0, V(>, ;) = nyV(I;) andV(I.J) = V(I) U V(J). The last equality follows from the
fact that maximal two-sided ideals af aretwo-sided prime idealghat is ideals” of A
satisfying that if/.J C P then eithet/ € PorJ C P.

We want to relate these non-commutative affine varietiesdmary (that is, commutative)
varieties for example those determined by central sub&dgeb

Definition 2.6 A C-algebra morphisml !, Bissaid to be gentral extensioprovided
B="7Zg(A)f(A) where  Zg(A)={be B|bf(a) = f(a)bVa € A}

In particular, any epimorphistA — B is a central extension as is any monomorphism
A C B whereA is a central subalgebra &f as in this cas&’z(A) = B.

Lemma 2.7 If A —'+ Bis a central extension an8 is a finite A-module, then the map
f* i max B ——> max A definedby m — f~!(m)

is continuous for the Zariski topologies aax A andmax B.

Proof. If I < Ais atwo-sided ideal, theds(A)f(I) is a tow-sided ideal oB3 as for any
b=73",zf(a;) € B(with z; € Zp(A)) we have that

b.f(I) = Zzif(ai)f(l) C Zzif(l) C Zp(A)f(I)

an similarly for multiplication byb on the right-hand side. As a consequente!(P) is

a two-sided prime ideal oA wheneverP is a two-sided prime ideal oB for if 1.J C
f~Y(P) then

Zp(A) (D) f () = (Zp(A) f(1))(Zs(A)f(])) C P

whenceZg(A)f(I) C PorZg(A)f(J) C P. If mis a maximal two-sided ideal a8,
thenf~!(m) is a prime ideal ofA which must be maximal aB is a finite A-module under
f. Hence, the map is well-defined and verification that the reapntinuous, that is that
f*(V(I)) =V(f~Y(1)) is obvious. a

Observe that we do not need the condition tRas a finite A-module if we consider the
prime ideal spectrunapec (instead ofax) in the statement whergpec A is the set of all
two-sided prime ideals ofl, again equipped with the Zariski topology.

After these generalities, let us go back to the study of thaifelol algebraA.,,, and
relate the non-commutative affine varietyx A.,, with that of the central subalgebra
max Clz,y, 2] = A3.

Lemma 2.8 Intersecting maximal ideals of A.,,, with the central subalgebr&]|z, y, z]
determines a continuous map

max Acon o, A3

with the following fiber information :
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1. Ifn ¢ V(zy — 22), thengp~!(n) consists of two points.
2. If (z,y,2) #n € V(zy — 2?), theng~—!(n) consists of one point.
3. If (z,9,2) = n, thengy~!(n) consists of two points.
Proof. For P = (a,b,c) € A® the corresponding maximal ideal &z, y, z] isnp =

(z — a,y — b,z — ¢) and therefore the quotient of.,,, by the extended two-sided ideal
Acon-np is the Clifford algebraClp overC of the ternary quadratic form

Bp =

oo 9
S o0
_ o O

and the elements @f ! (np) are the two-sided maximal ideals©f ». We can diagonalize
the symmetric matrix, that is there is a base-change mafrix G L3 such that

M7, M = = Bg

S0 S
SO ST 0O
= O O
oo
o< O
= o O

(with uv = ab—c?) and henc€'p ~ Clg. The Clifford algebrall, is thes-dimensional
C-algebra generated by , x5 andxs satisfying the defining relations

i =u, v3=v, 23 =1 and  xx; +xa; =0fori #j

If wv # 0 thenBg is a non-degenerate ternary quadratic form with determiaaguare
in C* whenceClg, is the direct sum of two copies df(C). If uv = 0, sayu = 0 and
v # 0, thenz; generates a nilpotent two-sided idealldf, and the quotient is the Clifford
algebra of the non-degenerate binary quadratic form

Bgr = [76 ﬂ whence  Clg ~ Ms(C)

as any such algebra is a quaternion algebra. Finally, if both0 = v then the two-sided
ideal I generated by:; andz- is nilpotent and the quotient

CZR/I: (C[$3]/(JJ§ — 1) ~CopC

As the maximal ideals of a non-commutative algeBrand of a quotienk /I by a nilpotent
ideal coincide, the statements follow. O

This allows us to relate the non-commutative affine vattety A..,,, with the affine variety
max Z.on, Of its center, that is with the conifold singularity.
Lemma 2.9 Intersecting with the centéf..,,, determines a continuous map

P
max Acon, — max Zeon me—mnN Zeon

which is a one-to-one correspondence away from the uniaugeikirity ofmax Z.,,, whose
fiber consists of two points.

Proof. The inclusionClz, y, z] C Z..,, of commutativeC-algebras determines a two-fold
cover

max Zeon = V(D? — 4(2% — zy)) € AT —5» A® (z,y,2,D) — (z,y, 2)
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which isramifiedoverV(z2 — zy). Thatis, if P = (a,b,c) ¢ V(2% — zy) then there are
exactly two point lying over it
Py = (a,b,¢,+v/ ¢ — ab) and P, = (a,b,c,—\/c® —ab)

On the other hand, iP = (a, b, c¢) € V(2% — zy), then there is just one point lying over it :
(a,b,c,0). The statement then follows from combining this coverinfgimation with the
composition map

P c
max Aop —> max Zeon — A3

which is¢ and the foregoing lemma. O

Observe that) is a homeomorphism amx A.,, — V(x,y, z) and hence can be seen as a
non-commutative birational map. 4f lies in this open set then

Acon/m =~ My(C)

whereas for the two maximal ideats;, = (X,Y,Z — 1) andm_ = (X,Y,Z + 1) lying
over the conifold singularity we have

Acon/er ~C~ Acon/mf

We call the open setax Z.,, — V(2% — 2y) the Azumaya locusf the conifold algebra
A.on @nd its complement themification locus

2.3 Therepresentations

In this section we will clarify why we say thatax A.,, — max Z.,, IS a non-
commutative desingularization by proving that the repmést@on variety corresponding
to the conifold algebra is smooth.

Definition 2.10 An n-dimensional representatiasf a non-commutativ€-algebraA is an
algebra morphism

A2+ M,(C)

A representation determines an-dimensional rightd-modulel, by identifying A, =
C®" and defining thed-action onl/, via

m.a = [cl cy ... cn} .p(a)
Two n-dimensional rightA-modulesi/, and M, are said to bésomorphicif there is

a linear isomorphism\/; —2—~ M,, such thatg(m.sa) = g(m).4a. Using the above
identifications, this means there iga& GL,, suchthatforalin = [c1 ... «¢]

m.¢(a).g = g(m.4a) = g(m).ya =m.g.(a)
or. equivalently, that the-dimensional representationsandy areconjugatedthat is

dg € GLy,Va € A . ¢la) = gap(a).g"

Lemma 2.11 If A is a non-commutative affir@-algebra, then for each there exists an
ideal I,,(A4) in some polynomial rin@[z1, . . ., zx] such that itgeometric pointsthat is

V(I,(A)) c AN — rep, A

are in one-to-one correspondence witidimensional representatiorep,, A of A. More-
over, there is an action a L,, on V(I,,(A)) such thatorbitsunder this action correspond
to isomorphism classes afdimensional rightA-modules.
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Proof. Take an affine presentation df that is

A~ (C<$1,...,$k>
I
for some two-sided idedl<«C(z1, . .., zx). For eachl < i < k consider thgenericn x n
matrix . .
x11(1) ... x1,(7)
XZ = . .
where all ther,,, (i) are commuting variables. Lé¢ = k.n? and consider the polynomial
ring R on the N variablesz,,(i). For eachi = f(z1,...,z;) € I C C{zy,...,2x)

we can consider the x n matrix with all its entries contained iR by substituting each
occurrence of; in i by the generic matrixX;

in(1,1) ... in(1,n)
in=f(X1,..., Xp) = : : € M, (R)
in(n,1) ... in(n,n)
and defindl,,(A) to be the ideal oR ~ C|z1, ..., zy] generated by all entrigs (u, v) for

all i € I (observe that even whehis not finitely generated, the ideg| (A) will be asR
is Noetherian). Hence, there is an algebra morphism

C[zlv" '7ZN]

A I Mn( [n(A) )

Every pointP € V(I,,(A)) c AN determines a maximal ideal @f[z1, ..., 2x]/L.(A)
and hence an algebra morphism : Clz,...,2z5]/I,(A) — C. Therefore,P €
V(I,(A)) defines thex-dimensional representation

Clz,. - .,ZN])
I, (A)

Mn(ﬂ'P)

A Mo( M,(C)

Conversely, ifA 2. M,,(C) is ann-dimensional representation with
all(i) e aln(i)
P(xi) =
an1(i) ... apn(?)

then the pointP, with entries alla,,, (7) lies inV(Z,,(A)). Finally, there is a natura¥FL,,-
action by automorphisms o]z, ..., zx] by sending forg € GL,, the (u,v)-entry of
X; to the(u, v)-entry ofg~1 X; g and the ideal,, (A) is invariant under this action, that is,
g.p € I,(A) forall p € I,,(A). This follows from the fact that for any € C(z1, ..., xx)

flo7' X1g, ..., g7 ' Xig) = g7 f(X1,..., Xi)g
0

Lemma 2.12 For the conifold algebrai...,, the representation varietyep, A.., cOnsists
of two points corresponding to the one-dimensional repregeons

X—0 X—0
o+ =Y —0 and - =Y —0
Z — +1 Z— —1

Observe that these are the two pointaak A, lying over the conifold singularity.
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Proof. An algebra map4... %+ C must satisfy¢(Z)? = 1 whence¢(Z) = 1.
Moreover, the images(X), ¢(Y') and¢(Z) commute, so

0=0¢(XZ+ZX)=20(X)p(Z) =+2¢(X) whence ¢(X)=0

and similarly(Y’) = 0. O

Forn > 1 itis more complicated to determidg(A.,,,) and the associated representation
varietyrep,, Acon. FOr example, to determink(A..,) we consider the generiz x 2

matrices
o] v ) 2o
T3 T4 Y3  Ya Z3 24

and have to work out the matrix-identities induced by therdiedj relations ofA.,,,. For
example

XZ+7X 2x121 + 2223 + X322 X129 + Tozy + Toz] + Tazo
T123 + T321 + T324 + Ta23 QLaz4 + Tozs + T320
YZ+ZY — 2y121 + Y223 + Yszo Y122 + Y224 + Y221 + Ya22
Y123 +Ysz1 + Ysza + Yaz3 Qaz4 + Yazs + Y32o

So, even in this case we do not get much insight into simplengd#iic questions about
rep, Acon SUCh as smoothness, dimension, orbit structure etc. Fgerlarthe situation
becomes even more complicated.

This is where non-commutative geometry enters. We will usgtiheoretic properties of
the non-commutative algebrhto get some grip on the representation varietigs,, A. In
the special case afep, A.., We can use some ad-hoc arguments.

Lemma 2.13 For the conifold algebraA,,,, the representation varietyep, A.., iS a
smooth affine variety having three disjoint irreducible gaments. Two of these compo-
nents are a point, the third componeritep, A has dimensio®.

Proof. From the defining relatioz? = 1 it follows that the image ofZ in any finite
dimensional representation has eigenvaliés Hence, after simultaneous conjugation of
the images ofX, Y andZ we may assume that has one of the following three forms

1 0 -1 0 1 0
ZH[O 1] or Zl—>|:0 _J or Z}—>|:O _1]

The first two possibilities are easily dealt with. Here, thege ofZ is a central unit so
it follows from the relationsX 7 + ZX = 0 = YZ + ZY as in the previous lemma that
X — 0andY — 0. That is, these two components consist of just one pointgtien of

G L, by simultaneous conjugation fixes these matrices) corretipg to the2-dimensional
semi-simpleepresentations

My=¢. @9 and M_=¢_®¢_

The interesting case is the third one. Becaki$eandY? are central elements it follows (for
example using the characteristic polynomiakok 2 matrices) that in ang-dimensional
representatio .., N M>(C) we have thatr(¢(X)) = 0 andtr(¢(Y')) = 0. Hence,
the third component afep, A.., consists of those-dimensional representatiogissuch
that

r(@(X) =0  tr(¢(Y)=0 and  tr(¢(2) =0
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For this reason we denote this componentbyp, A.,,, and call it the variety ofrace pre-
serving2-dimensional representation3o describe the coordinate ring of this component
we can usérace zerogeneric2 x 2 matrices

X Z1 2 Y Y1 Y2 AN Z1 z22
xr3 —X1 Y3 —U1 zZ3  —Zz1

which drastically reduces the defining equation§asindT'S + ST are both scalar matri-
ces for any trace zedx 2 matrices. More precisely, we have

XZ 47X [21’121 + X223 + T322 0 :|

0 2x121 + T223 + 2322

YZ 42V Fylzl + Y223 + Y322 0 ]

0 2y121 + Y223 + Y322
2
9 zi + 2223 0
Z [ 0 z% + 2223}

and therefore the coordinate ringtafep, Acon

Cla, w2, 23, Y1, Y2, Y3, 21, 22, 23]

Cltrep, Acon| =
[ 1) 00"] (21.121 + Toz3 + X322, 2y121 + Y223 + Y322, Z% + 2223 — 1)

To verify thattrep, A.., IS @ smoott6-dimensional affine variety we therefore have to
show that thelacobian matrix

22’1 z3  Z9 0 0 0 2%1 T3 X9
0 0 0 221 23 22 2y1 Y3 Yo
0 0 0 0 0 0 221 z3 z9

has constant rankontrep, A..,. Thisis forced by the submatric@%zl 23 zQ] along
the 'diagonal’ of the Jacobian unless = 2z, = 23 = 0 but this cannot hold for a point in
trep, Aqon by the equation? + 2923 = 1. O

2.4 The quotient

Becausetrep, A, iS @ smooth affine variety, we call the conifold algetta,, a
smooth@2-algebra and say thatax A.,, — max Z.,, iS anon-commutative desin-
gularization of the conifold singularity. In this section we give the cextion between
trep, A.on and the conifold singularity by showing that the latter is tfuotient variety
of the former under the base-change actior:ldy.

We will give an alternative proof of the fact that the tracegmrving representation variety
trep, Acon iS @ smooth variety. Recall that up to simultaneous baseghar could bring
the image ofZ in the form
b
7 —

0 -1
Taking the generie x 2 matrices
X - |:='L'1 !Eﬂ Vo |:yl yz]
T3 T4 Ys Ya

it follows from the relationsXZ + ZX =0=YZ + ZY thatxy = 24 = 0 = y; = y4.
Therefore, such a-dimensional representation df.,,, can be simultaneously conjugated
to one of the form
0 i) 0 Y2 1 0
X’_){Tz 0} Yr—>[y3 0} Z»—»{O _J
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and as the images of? andY? are scalar matrices the remaining defining relations
[X2,Y] = 0= [Y? X] are automatically satisfie@-dimensional representations 4f,,,
in this canonical form hence form a smodtdimensional affine space

A =V(z1,24,91,y2, 21 — 1, 20, 23, 24 + 1) C A'?

To recovertrep, A.., from this affine space we have to I6t, act on it. The subgroup
of G L, fixing the matrix

1 0 . A0 N
|:0 1:| IS T_{|:0 M:| |)\,,U,E(C }7
the two-dimensionabrus There is an action df on the product L, x A* via

t.(g,P)= (gt ',t.P) forallte€T,ge GLyandP € A*

and where. P means the action by simultaneous conjugation by2tke2 matrixt € T' C
G Lo on the thre@ x 2 matrix-components aP.

Lemma 2.14 Under the action-map
GLy x A* —» trepy Acon (9,P)— g.P

two points(g, P) and (¢’, P’) are mapped to the same point if and only if they belong to
the samé -orbitin GL, x A*. Thatis, we can identifyrep, A.., with theprincipal fiber
bundle(or orbit-space)

trep, Acon =~ GLy xT A* = (GLy x A*)/T

In particular, there is a natural one-to-one correspondenicetweenG Lo-orbits in
trep, Acon andT-orbits in A%,

Proof. If g.P = ¢'.P’, thenP = g~ '¢’.P’ and as botiP? and P’ have as their thir@ x 2
matrix component

1 0

b

it follows thatg—'¢’ is in the stabilizer subgroup of this matrix go'¢’ = ¢! for some
t € T whencey’ = gt~ andasg~'¢’)~'.P = P’ alsot.P = P’ whence

t.(g.P)= (gt ", t.P)=(¢', P)

Hence we can identifyrep, A.., = GL2.A* with the orbit-space of th&-action which

is usually denoted by L, x” A* and called the principal (or associated) fiber bundle.
Incidentally, this gives another proof for smoothnessodp, A.,, as it is the base of a
fibration with smooth fibers of the smooth top spatk, x A

GL, acts onG Ly x A* by g.(¢', P') = (gg’, P') and this action commutes with the-
action so induces & Lo-action on the orbit-space

GLy x (GLy xT A"y — GLy xT A*  g.(¢/, P") = (99, P)
As we have identified’ Lo x T A* with trep, A.,, via the action map, thatig, P) = g.P
the remaining statement follows. O

We would like to construct an orbit space for f¥d.o-action ontrep,, A, as its points
are the isomorphism classes »dimensional representations. However, such an orbit
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space only exists when all orbits are closed amdp, A.,, has non-closed orbits, for
example

e 0 ( 0 =z 0 vy 1 0 )= ( 0 ex| |0 ey 1 0 )
0 1|°*{0 0|”|0 0|’|0 =17 Y0 O|’|0 O|”|0 -1
all belong to the same orbit for eveey=# 0, but its limiting point is the representation

sendingX andY to the zero matrix which is a non-isomorphic representation

As we will see later, the best algebraic approximation tortbe-existent orbit space is
the affine variety corresponding to the ringmslynomial invariantsC[trep, A..,]%"?
which in this case is isomorphic to the ring pdlynomial torus invariant€[A*)” by the
foregoing lemma.

Lemma 2.15 The ring of polynomial invariants
Cltrepy Acon]¢F? ~ C[AYT

are isomorphic to the coordinate ring of the conifold sirayity Z..,,,. As a consequence,
thequotient map
trep, Acon —* Spec Zeon

maps a two-dimensional representation to the direct sunsdfdrdan-Hlder components
as the quotient varietgpec Z.,, parametrizes isomorphism classes of two-dimensional
semi-simple representations 4f,,, .

Proof. The action of the two-dimensional toriison A* = {(z2, 23, y2, y3)} is given by

AR P R B

( 0 AL ag 0 A yo 1 0 )
A pzs 0 | (A uys 0 [0 —1
Hence, the action of\, 1) € T onC[A*] = C[X», X3, Ya, Y3] is defined by
Xo—= A" Xy Xz A tXs Yo A uYs Vi A 'Y

and this action sends any monomial in the variables to arscaldiple of that monomial.
So, in order to determine the ring of polynomial invariants

(C[X27X3;}/27YE’>]T = {f = f(X27X3;}/251/3) | ()‘7M)f = f V()\,/J/) € T}
it sufficers to determine all invariant monomials, or eqleéwdly, all positive integer quadru-
plets(a,b,c,d) suchthat —b+c—d=0as
()\, N)Xéng}/Q(Y},d — )\—a+b—c+dMa—b+c—dXézX§Y'2c‘Yéd
Clearly, such quadruplets are all generated (as Abelianpgomder addition) by the four
basic oones
(1,1,0,0) — X2X5 (1,0,0,1) — XoY3 (0,1,1,0) — X3Y> (0,0,1,1) — Y5Y3
and therefore
Clp. g, ]
(ps —qr)

is the conifold singularityZ..,,. We know already thaspec Z.,, has as its points the
isomorphism classes @dimensional semi-simple representations with® ¢_ as the
semi-simple representation corresponding to the sinigyland all other points classify a
unigue simple-dimensional representation. O

Cltrepy Acon] "2 =~ C[X2, X3, Y2, V3]T = C[X2 X3, X2V3, X3Ya, Vo, Ya] ~
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2.5 The desingularization

It is all well to call the mapspec A..., — spec Z..,, @ NON-commutative desingular-
ization of the conifold singularity, but sceptical peoplewid like to construct an ordinary
(that is, commutative) desingularizationgfec Z.,,, from the conifold algebral.,,,. In
this section we will achieve this by constructingpduli space®f certain open sets of-
dimensional representations 4f.,, .

First, we need to clarify the connection with the quiveregdamd..., :

Y3
s N o
20—

7

A representatiorof Q..,.,, of dimension vectotr = (m, n) is by definition the assignment
of a vectorspace of the appropriate dimension to each vefftéx.,,, and a linear map
between the vertex-spaces to every arroWiy,,, that is a quadruple of matrices

(A3; B37 A27 BQ) S men((c) ¥ men((c) ¥ Mnxm(c> D Mnxm((c) = rep, Qcon

Base change in the vertex-spaces induces an action dfatbechange grou'L(«) =
GL,, x GL,, onthe space of all representatiarep,, A.on, Via

(9,h).(As, Bs, A2, Bo) = (g~ ' Ash, g~ 'Bsh, h™' Asg, h™ ' Bag)

and two a-dimensional representations are said toisgmmorphicif they belong to the
same orbit. For3 = (m',n') andV' = (A3, By, A5, By) € reps Qeon andV =
(As, B3, Ao, Ba) € rep, Qcon @amorphismE’ : V' —— V consists of linear maps
(f1,f2) € Mps«m(C) x M, «,(C) between the vertex spaces such that all the corre-
sponding arrow-diagrams are commutative, that is, therdiag

B

’ Al / ’ B! / ’ Al / ’ /
(Cm 3 Cn (Cm 3 Cn (Cm < 2 Cn (Cm < Cn

all all commuting. If bothf; are monomorphisms we say thétis a monomorphism or
that V"’ is asubrepresentationf V' and if both f; are epimorphisms we say thatis an
epimorphism or thal” is a quotient representation Bf.

With these definitions we can identify tfi&-action onA* above with the action of the
base-change group = C* x C* = GL(«) for « = (1,1) on the space of alk-
dimensional representation®p, Qcon = {(73,ys,72,92)} = A% Next, we bring
in a stability structured = (—1,1) (observe that.cc = 0). We call a representation
V = (x3,y3,22,Y2) € rep, Qeon 0-stableif for all proper subrepresentatiohs C V' of
dimension vectofi we have that.3 > 0. In our case, forv = (1, 1) this condition just
says thal” has no subrepresentations of dimension vegter (1,0). That s,

V = (x3,ys,x2,y2) Is6-stable & x3#£00rys #0

The subsefeplihem Qcon is a Zariski open (though not affine) subsetreb,, ..., and

thestabilizer subgroupf any pointV’ € rep? Qo is

stabp V={(\,\) | AeC"'} =T,
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and hence the groupGL(a) = T/T. acts freely onrepg Qcon and therefore we can
construct the orbit space classifying the isomorphismselaoff-stablea-dimensional
representations @,

mOdu:LiZ Qcon = repi Qcon/T

which is called thenoduli spacef §-stable representations.

For the action of the torug’ on Crep,, Qcon] = Clxs, y3,z2,y2] @ polynomialf =
f(xs,ys3,x2,y2) is said to be #@-semi-invariant of weight provided

(A p).f = AFub s

In particular,f-semi-invariants of weight are just the polynomial invariants and the prod-
uct of §-semi-invariants of weight resp.[ is a semi-invariant of weight + [. Therefore
we have ggradedsubalgebra of[xs, ys, 22, y2] Of all f-semi-invariants

(C[repa Qcon]e = C[repa Qcon]g D (C[repa Qcon]? ...

whereClrep,, Q.on| is the space of alt-semi-invariants of weight.

Recall from [?, p.76] thatproj R of any positively graded commutative algela=
Ro @ Ry @ ... is the set of algraded prime idealsvhich do not contain the positive part
Ry =Ri® R2®.... One defines oproj R the Zariski topology by taking as the closed
subsets

V(I)={P eprojR|IC P}

for any graded ideal of R. Intersecting a graded prime ideal with the part of degree ze
R, defines a continuous map
proj R s spec Ry

which is surjective angrojective that is, all fibersr—!(p) are projective varieties.

Lemma 2.16 The moduli space of afl-stablea-dimensional representations
moduli’ Q.on ~ proj Clrep, Qeon)’

is theproj of the ring off-semi-invariants and as the semi-invariants of weight zee

the polynomial invariants we get a projective morphism

]0

pI‘Oj C[repa Qcon —> Spec Zcon

which is a desingularization of the conifold singularity.

Proof. As in the case of polynomial invariants, the spdtieep, Q...)? is spanned by
monomials

rarlysyd  satisfying  —a+b—c+d=k
and one verifies that this space is the module over the ringlghpmial invariants gener-
ated by all monomials of degréein x5 andys. Thatis

C[repa Qcon]e = C[-TQ:er €T2Y3, T3Y2, y2y3] [$37 y3] - C[Z‘Qa Y2,x3, y3]

with the generatorg = xox3, b = x2y3, ¢ = x3y2 andd = y-y3 of degree zero and= 3
andf = y; of degree one. As a consequence, we can ideptifyj Clrep, Qcon)’ With
the closed subvariety

V(ad — be,af — be,cf —de) C A* x P!
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with (a, b, ¢, d) the affine coordinates of* andle : f] projective coordinates @f'. The
projectionproj Clrep,, Qcon]’ —> spec Z..n is projection onto thé\*-component of
At x P

To prove smoothness we coukt with the two affine opens # 0 (with affine coordinate
x = f/eandf # 0 with affine coordinate) = ¢/ f. In the affine coordinate@, b, ¢, d, )
the relations become

ad = bc ar =b and cx=d

whence the coordinate ring @[a, ¢, 2] and so the variety is smooth on this affine open.
Similarly, the coordinate ring on the other affine opef'js, d, y] and smoothness follows.
Moreover,r is birational over the complement of the singularity. This follows frone th
relations

ar=>b, cx=d, by=a, dy=c

)

which determinex (or y and hence the point iproj) lying over any(a,b,c,d) #
(0,0,0,0) in spec Z..,,. Therefore, the map is a desingularization and thexceptional
fiber

E =77%0,0,0,0) ~ P!

which classifies thé-stable representations which lie o\@r 0, 0, 0) (that is, those such
thatzoxs = xoys = x3y2 = y2ys = 0) as they are all of the form
TN
O —0

=

with eitherzs # 0 or ys # 0 and the differenf-orbits of those are parametrized by the
points of P!. As the smooth points afpec Z.,,, are known to correspond to isomorphism
classes of simple (hence certaifihstable) representations we have proved that

proj Clrep, Qcon]‘g ~ modulii Qcon

is the moduli space of afl-stablea-dimensional representations@f.o. . O

Clearly, we could have done the same calculations startiitly another stability struc-
tured’ = (1, —1) and obtained another desingularization replacing thesrole, y» and
x3,y3. This gives us the situation

blowup

Y

modullg QCO’N, ..................... ».modulii QCO’N,

\\ /
¥
spec Zcon

Here,blowup denotes the desingularization §fec Z.,, one obtains by blowing-up the
point (0,0,0,0) € A* and which has exceptional fib&" x P!. Blowing down either of
these lines (the mapsand¢’) one obtains the 'minimal’ resolutions given by the moduli
spaces. These spaces are related byatienal mapr which is called theAtiyah flopin
string theory-literature.
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