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Abstract

We use non-commutative geometry to study finite dimensional representations
of virtually free groups. In particular, we determine the dimensions of the varieties
classifying isomorphism classes ofn-dimensional representations by reducing the
representation theory of virtually free groups to that of quivers. As the arguments
apply as well to the larger class of fundamental algebras of graphs of separable
algebras, we state them in that generality.

1 Graphs of separable algebras

Fix a commutative basefield̀and recall that a finite dimensional`-algebraS is said
to beseparableif and only ifS is the direct sum of simple algebras each of which has
a center which is a separable field extension of`. For example, the group algebra`G
of a finite groupG is separable if and only if the order ofG is a unit in`.

A finitely generated̀ -algebraA is said to bequasi-free[1] ( or formally smooth
[4] ) if either of the following two equivalent conditions is satisfied

• The universal bimoduleΩ1
` (A) of derivations is a projectiveA-bimodule.

• A satisfies the lifting property modulo nilpotent ideals in`− alg, the category
of `-algebras.

For example, the free algebra`〈x1, . . . , xm〉 is quasi-free as is the path algebra`Q
of a finite quiverQ. Moreover, any separablè-algebraS is quasi-free by [1,§4].
Remark that the standard assumption of [1] is that` = C the field of complex num-
bers. However, with minor modifications most results remain valid over an arbitrary
basefield and we will refer to statements in [1] whenever the argument can be repeated
verbatim.

We will imitate the Bass-Serre theory of fundamental groups of graph of groups,
see [12] or [2], to construct a class of quasi-free algebras. LetG = (V,E) be a finite
graph with vertex-setV and edgesE. A G-graph of separable algebrasSG is the
assignment of separablè-algebrasSv andSe to any vertexv ∈ V and to any edge
e ∈ E ofG such that there are embeddings as`-algebras

Se ⊂
ie,v- Sv and Se ⊂

ie,w- Sw whenever ��������v
e ��������w

In order to define thefundamental algebraπ1(SG) of a graph of separable algebras
SG we need to have algebra equivalents foramalgamated groups[12, §1.2] and of
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the HNN construction[12, §1.4]. If S is a separablè-algebra and ifA andA′ are
S-algebras, then thecoproductA ∗S A′ is the algebra representing the functor

HomS−alg(A,−) ×HomS−alg(A′,−)

in the categoryS−alg ofS-algebras, see for example [10, Chp. 2] for its construction
and properties. As for the HNN-counterpart, letα, β : S ⊂ - A be two`-algebra
embeddings ofS inA and consider the algebra

A∗α,βS =
A ∗ `[t, t−1]

(β(s) − t−1α(s)t : ∀s ∈ S)

Lemma 1 LetS be a separablè-algebra,A andA′ quasi-freè -algebras and em-
beddingsα, β : S ⊂ - A andS ⊂ - A′. Then, thè -algebras

A ∗S A′ and A∗α,βS

are again quasi-freè-algebras.

Proof. The crucial property to use can be deduced from [1, Prop. 6.1.2] and asserts that
any two`-algebra morphismsφ, ψ : S - B such thatφ andψ : S - B/I
(whereI is a nilpotent ideal ofB) are conjugate via a unitb in B/I then there is a
unit b ∈ B mapping tob and such thatb conjugatesφ toψ.

A morphismA∗SA′ g- B/I is fully determined by morphismsA
f- B/I

andA′ f ′
- B/I such thatf |S = f ′|S. AsA andA′ are quasi-free one has̀-

algebra liftsf̃ : A - B andf̃ ′ : A′ - B whence two morphisms onS which
have to be conjugated by anb ∈ B∗ such thatb = 1B/I , that isf ′(s) = b−1f(s)b
for all s ∈ S. But then, we have a liftA∗SA′ - B determined by the morphisms
b−1fb andf ′.

A morphismA ∗α,βS
g- B/I determines (and is determined by) a morphism

A
f- B/I and a unitb = g(t) such thatf ◦ α andf ◦ β : S - B/I are

conjugated viab. BecauseA is quasi-free we have a lift̃f : A - B and algebra
mapsf̃ ◦α andf̃ ◦β : S - B which reduce tob conjugate morphisms. But then
there is a unitb ∈ B∗ conjugatingf̃ ◦ α to f̃ ◦ β and mappingt to b produces the
required liftA ∗α,βS - B. �

The construction of the fundamental algebraπ1(SG) can now be continued as in
the case for graphs of groups. LetT be a maximal subtree ofG and constructπ1(ST )
by induction on the number of edges inT while extending the formalism of graphs of
seperable algebras to graphs of quasi-free algebras with edge-algebras separable. Ifv
is a leaf vertex with edgee and other vertexw, we go to a smaller treeT ′ by dropping
v ande, keep the same algebras on all remaining edges and all vertices different from
w and defining as the neww-vertex algebra the coproductSv ∗Se

Sw. Observe that
for every vertexu ∈ V we have a canonical embeddingiu : Su - π1(ST ).

We will use these embeddings to go fromπ1(ST ) toπ1(SG) by induction on the
number of edges inG which are not in the maximal subtreeT . At each step, we will
have constructed an algebraA with embeddingsiu : Su ⊂ - A. For the next edge
e connecting verticesv andw we have two embeddings

αe : Se ⊂ - Sv ⊂ iv- A and βe : Se ⊂ - Sw ⊂iw- A
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and will delete the edgee and replaceA by the HNN-constructionA∗αe,βe

Se
. From

this construction and the previous lemma we deduce

Theorem 1 For any graph of separablè-algebrasSG the associated fundamental
algebraπ1(SG) is a quasi-freè -algebra.

2 Quasi-free group algebras

The classification of quasi-freè-algebras is way out of reach at the moment so it is
important to have partial classifications. In [1,§6] the finite dimensional̀ -algebras
were shown to be the hereditary finite dimensional`-algebras. In this section we will
classify the quasi-free group algebras`H forH a finitely generated group. The desired
answer is that these are precisely the`H with H a virtually free group(that is,H
has a free subgroup of finite index) but we have to take precautions depending on the
characteristic of̀ .

If GG is a graph offinite groupsas in [12] such that all orders are invertible in`,
then we can associate to it a graph of separable`-algebrasSG by taking

Sv = `Gv ∀v ∈ V and Se = `Ge ∀e ∈ E

with embeddings determined by the group-embeddings. Ifπ1(GG) is thefundamental
groupof GG as in [12,§5.1] then the point of the construction in the previous section
is that

`π1(GG) ' π1(SG)

and hence these group algebras are quasi-free`-algebras. The connection with virtually
free groups is provided by a result of Karrass, see for example [14, Thm. 3.5]. The
following statements are equivalent for a finitely generated groupH

• H = π1(GG) for a graph of finite groups.

• H is a virtually free group.

For example, all congruence subgroups in the modular groupSL2(Z) are virtually
free. On the other hand, the third braid groupB3 = 〈s, t | s2 = t3〉 is not virtually
free. Note that very little is known about simple representations of congruence sub-
groups. For some low dimensional classifications ofSL2(Z)-representations see [13].
Our approach to this problem uses non-commutative geometry and therefore the next
result is crucial.

Theorem 2 The following statements are equivalent :

1. The group algebràH is a quasi-freè -algebra.

2. H is a virtually free group such that in a descriptionH = π1(GG) all orders
of the vertex groupsGv are finite and invertible iǹ .

Proof. If `H is a quasi-freè -algebra, it has to be hereditary by [1, Prop. 5.1] and
hence, in particular, its augmentation idealωH mast be a projective left̀H-module.
By a result of Dunwoody, see [2, Thm. IV.2.12] this is equivalent toH being the
fundamental group of a graph of finite groupsGG such that all vertex-group orders are
invertible in`, whence2 follows. The converse implication follows from the discussion
preceding the statement and the last section. �
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3 The zero quiverQ0(SG) of π1(SG)

In this section we will assume that` = ` is algebraically closed and fix a graphSG of
separablè-algebras. One of the guiding principles of non-commutative geometry as in
[1], [4] or [5] is that quasi-free algebras are the coordinate rings of affine smooth non-
commutative varieties and that path algebras of quivers correspond to tangent spaces
to these non-commutative manifolds. In [7] a procedure was given to assign to any
quasi-freè -algebraA a quiver-setting(QA, αA), consisting of a quiverQA and a
dimension-vectorαA, encoding all the relevant information to study finite dimensional
representations ofA. In this section we will calculate the quiver-setting corresponding
to the quasi-free algebraπ1(SG). As an intermediary step we will construct a finite
quiverQ0(SG) such that finite dimensional representations ofπ1(SG) correspond to
certain finite dimensional representations of the path algebra`Q0(SG).

As ` is algebraically closed we have decomposition of the vertex- and edge-
algebras

Sv = Mdv(1)(`)⊕. . .⊕Mdv(nv)(`) resp. Se = Mde(1)(`)⊕. . .⊕Mde(ne)(`)

The embeddingsSe ⊂ - Sv are depicted via their Bratelli-diagrams or, equivalently,
by natural numbersa(ev)

ij for 1 ≤ i ≤ ne and1 ≤ j ≤ nv satisfying the numerical
restrictions

dv(j) =
ne∑
i=1

a
(ev)
ij de(i) for all 1 ≤ j ≤ nv and allv ∈ V ande ∈ E

remark that these numbers give therestriction data, that is, the multiplicities of the
simple components ofSe occurring in the restrictionV (v)

j ↓Se for the simple compo-
nentsVj of Sv. From these decompositions and Schur’s lemma it follows that for any

edge��������v
e ��������w in the graphG we define the numbers

HomSe(V
(v)
i , V

(w)
j ) =

ne∑
k=1

a
(ev)
ki a

(ew)
kj = n

(e)
ij

We are now in a position to construct the quiverQ0(SG). As its vertices, for any

vertexv ∈ V ofG takenv vertices{µ(v)
1 , . . . , µvnv

}. Fix an orientation~G on all of

the edges ofG. For any edge��������v
e ��������w inG we add for each1 ≤ i ≤ nv and each

1 ≤ j ≤ nw preciselyn(e)
ij arrows between the verticesµ(v)

i andµ(w)
j oriented in

the same way as the edgee in ~G.
An n-dimension vectorfor Q0(SG) is a vectorα = (α(v)

i : v ∈ V, 1 ≤ i ≤
nv) of natural numbers satisfying the following numerical conditions

nv∑
i=1

dv(i)α
(v)
i = n for all v ∈ V

Recall that therepresentation spacerepα Q0(SG) is the affinè -space

repα Q0(SG) =
⊕

��������v
e // ��������w

⊕nv

i=1 ⊕nw

j=1 Mα
(w)
j ×α(v)

i

(`)
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and twoα-dimensional representations are said to beisomorphicif they are conjugated
via the natural base-change action ofGL(α) = ×v∈V ×n

i=1 GL(α(v)
i ).

For any edge��������v
e // ��������w we denote byQe the bipartite subquiver ofQ0(SG)

on the vertices{µ(v)
1 , . . . , µ(v)

nv
}, {µ(w)

1 , . . . , µ(w)
nw

} and then(e)
ij arrows between

µ
(v)
i andµ(w)

j determined by the embeddingsSe ⊂ - Sv andSe ⊂ - Sw.
We say that a representationM ∈ repα Q0(SG) (for somen-dimension

vectorα) is e-(semi)stable if the restrictionM |Qe is θ-(semi)stable (in the termi-
nology of [3]) for θ = (−dv(1), . . . ,−dv(nv), dw(1), . . . , dw(nw)). That
is, there is no properQe-subrepresentationN of M |Qe of dimension vector
(n1, . . . , nnv , n

′
1, . . . , n

′
nw

) such that
∑nw

i=1 n
′
idw(i) <

∑nv

i=1 nidv(i) for e-
semistable and such that

∑nw

i=1 n
′
idw(i) ≤

∑nv

i=1 nidv(i) for e-stable. We say
that a representationM ∈ repα Q0(SG) (for somen-dimension vectorα) is SG-
(semi)stable ifM is e-(semi)stable for all edgese ∈ E. The relevance of the quiver
Q0(SG) and the introduced terminology is contained in the following result.

Theorem 3 Everyn-dimensional representationπ1(SG)
φ- Mn(`) determines

(and is determined by) anSG-semistable representationMφ ∈ repα Q0(SG) for
somen-dimension vectorα. Moreover, ifφ andφ′ are isomorphic representations of
π1(SG), thenMφ andMφ′ are isomorphic as quiver representations.

Proof. LetN = `
n

φ be then-dimensional module determined byφ. For each vertex
v ∈ V we have a decomposition by restrictingN to the separable subalgebraSv

N ↓Sv
' V

⊕α(v)
1

1,v ⊕ . . .⊕ V
⊕α(v)

nv
nv,v

where theVi,v are the distinct simple modules ofSv of dimensiondv(i). Choose aǹ-
basisBv ofN ↓Sv

compatible with this decomposition. These decompositions deter-

mine ann-dimension vectorα. For any edge��������v
e // ��������w the embeddingsSe ⊂α- Sv

andSe ⊂ β- Sw determine twon-dimensionalSe-representations

(N ↓Sv
) ↓αSe

and (N ↓Sw
) ↓βSe

which, by construction ofπ1(SG) are isomorphic. That is, the basechange map

Bv
ψvw- Bw is an invertible element of

HomSe
(N ↓Sv

, N ↓Sw
) = ⊕nv

i=1 ⊕nw

j=1 Mα
(w)
j ×α(v)

i

(HomSe
(Vi,v, Vj,w))

and henceψvw determines a representation of the bipartite quiverQe of dimen-
sion vectorα|Qe. Repeating this for all edgese ∈ E we obtain a representation
Mφ ∈ repα Q0(SG). Invertibility of the mapψvw is equivalent toMφ being
e-semistable, soMφ is SG-semistable. Isomorphic representationsφ andφ′ deter-
mine isomorphic vertex-decompositions whence, by Schur’s lemma, bases which are
transferred into each other via an element ofGL(α) and hence the quiver representa-
tionsMφ andMφ′ are isomorphic. From the construction of the fundamental algebra
π1(SG) it follows that one can reverse this procedure to construct onn-dimensional
representation ofπ1(SG) from aSG-stable representationM ∈ repα Q0(SG) for
somen-dimension vectorα. �
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Under this correspondence simpleπ1(SG)-representations correspond toSG-
stable representations. Ifα is ann-dimension vector such thatrepαQ0(SG) contains
SG-stable representations (which then form a Zariski open subset), thenα is aSchur
root of Q0(SG) and consequently the dimension of the classifying variety is equal to
1−χ(α,α) whereχ is theEuler formof the quiverQ0(SG, that is, the bilinear form
onZl (wherel is the number of vertices inQ0(SG) defined by

χ(εi, εj) = δij − #{ ��������i // ��������j }

for the vertex-dimensionsεi = (δij)j . For this result and related material on Schur
roots we refer to [11]. We deduce from this

Theorem 4 Isomorphism classes of simplen-dimensional representations ofπ1(SG)
are parametrized by the points of a smooth quasi-affine variety (possibly with several
irreducible components)

simpn π1(SG) =
⊔
α

simpα π1(SG)

whereα runs over alln-dimension vectors such thatrepα Q0(SG) containsSG-
stable representations. These components have dimensions

dim simpα π1(SG) = 1 − χ(α,α)

whereχ is the Euler form of the quiverQ0(SG).

As an example consider the modular groupSL2(Z) which is the amalgamated
productZ4 ∗Z2 Z6, see for example [2, I§7]. If char(`) 6= 2, 3 the group-algebra
`SL2(Z) is the fundamental algebra of the graph of separable`-algebras

��������v
e // ��������w with Sv = `Z4 Sw = `Z6 Se = `Z2

As all simples are one-dimensional (determined by their eigenvalue), it is easy to verify
that the zero quiverQ0(`SL2(Z)) has the following form

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������

−i

−1

i

1

−ρ

ρ2

−1

ρ

−ρ2

1

++WWWWWWWWWWWWWWWWW

33ggggggggggggggggg

;;wwwwwwwwwwwwwwwwwwwww ++WWWWWWWWWWWWWWWWW

33ggggggggggggggggg

;;wwwwwwwwwwwwwwwwwwwww

##GGGGGGGGGGGGGGGGGGGGG

++WWWWWWWWWWWWWWWWW

33ggggggggggggggggg

##GGGGGGGGGGGGGGGGGGGGG

++WWWWWWWWWWWWWWWWW

33ggggggggggggggggg

(ρ is a primitive3rd root of unity) which is the disjoint union of two copies of the
quiver associated toPSL2(Z) in [15].

4 The one quiverQ1(SG) of π1(SG)

The étaleGLn-local structure of the representation schemesrepn π1(SG) of n-
dimensional representations near the orbit of a semi-simple representation is isomor-
phic to that of some semi-simple orbit inrepn A(SG) whereA(SG) is a quasi-free
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`-algebra Morita equivalent to the path algebra`Q1(SG) of the so-calledone quiver
Q1(SG) which we will now describe.

By the foregoing theorem, therepnπ1(SG) are smooth varieties having as many
irreducible components as there aren-dimension vectorsα ofQ0(SG) such that there
existsSG-semistable representations inrepαQ0(SG). All such dimension vectorsα
form a sub-semigroup of the semigroup of all dimension vectors ofQ0(SG) which we
denote withcomp π1(SG) and call thecomponent semigroup(see [9]) ofπ1(SG).
Let {α1, . . . , αk} be the minimal set of semigroup generators ofcomp π1(SG)
(observe that this is precisely the set of irreducible componentsrepα π1(SG) of some
repn π1(SG) on which the basechange action byGLn is a freePGLn-action).

Theone quiverQ1(SG) hask vertices{ν1, . . . , νk} whereνi corresponds to the
semigroup generatorαi. In Q1(SG) the number of directed arrows betweenµi and
µj is given by

# { ��������i // ��������j } = δij − χ(αi, αj)

whereχ is (as before) the Euler-form for the zero quiverQ0(SG). A first application
ofQ1(SG) to the representation theory ofπ1(SG) is that it allows us to compute the
componentsrepα π1(SG) which contain simple representations.

Theorem 5 If α = c1α1 + . . . + ckαk ∈ comp π1(SG) then the component
repα π1(SG) contains simple representations if and only if

χ1(γ, εi) ≤ 0 and χ1(εi, γ) ≤ 0

for all 1 ≤ i ≤ k whereγ = (c1, . . . , ck) andεi = (δ1i, . . . , δki) and whereχ1

is the Euler form of the one quiverQ1(SG).

Proof. This is [7, Thm. 2] adapted to the situation at hand. �

If char(`) = 0 one can apply Luna slice machinery to construct a Zariski open
subset of all simple representations inrepα π1(SG) from the knowledge of low-
dimensional simples. For example, suppose we have found simple representations

Si ∈ repαi
π1(SG) for all 1 ≤ i ≤ k

and consider the pointM in the affine spacerepα Q0(SG) determined by the semi-
simple representation ofπ1(SG)

M = S⊕c1
1 ⊕ . . .⊕ S⊕ck

k

then the normal space to theGL(α)-orbit O(M) is isomorphic to
Ext1π1(SG)(M,M) which can be identified torepγ Q1(SG) (again by the
results from [7]).

Theorem 6 Letα = c1α1 + . . .+ ckαk be a component such thatrepα π1(SG)
contains simple representations. In the affine spacerepαQ0(SG) identify the normal
space to the orbitO(M) of the semi-simple representationM (as above) with

NM = {M + V | V ∈ repγ Q1(SG) }

whereγ = (c1, . . . , ck). Then,GL(α).NM contains a Zariski open subset of all
α-dimensional simple representations ofπ1(SG).
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Proof. This is a special case of the Luna slice theorem, see for example [6] for more
details. �

In fact, one can generalize this result to other known semi-simple representations
N of π1(SG) but then one has to replaceQ1(SG) by thelocal quiverQN ofN , the
structure of which can be entirely deduced from the one quiverQ1(SG), see [7] for
more details.

In theSL2(Z) example,comp `SL2(Z) is generated by the12 components of
two-dimensional representations ofQ0(`SL2(Z))

νij = (δ1i, . . . , δ4i; δ1j, . . . , δ6j) 1 ≤ i ≤ 4, 1 ≤ j ≤ 6

From this the structure of the one quiverQ1(`SL2(Z)) (corresponding to the12
one-dimensional simples of`SL2(Z)) can be verified to be

��������
��������

��������

��������

��������
��������

VV

��

((hh

uu

66

��

VV

((hh vv

55 ��������
��������

��������

��������

��������
��������

VV

��

((hh

uu

66

��

VV

((hh vv

55

Here, the vertices of the first component correspond (in cyclic order) to
ν11, ν33, ν15, ν31, ν13, ν35 and those of the second component (in cyclic order) to
ν22, ν44, ν26, ν42, ν24, ν46. Applications to the representation theory of the modu-
lar groupSL2(Z) and its central extensionB3 (the third braid group) will be given
elsewhere.
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