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Abstract

We use non-commutative geometry to study finite dimensional representations
of virtually free groups. In particular, we determine the dimensions of the varieties
classifying isomorphism classesmfdimensional representations by reducing the
representation theory of virtually free groups to that of quivers. As the arguments
apply as well to the larger class of fundamental algebras of graphs of separable
algebras, we state them in that generality.

1 Graphs of separable algebras

Fix a commutative basefielland recall that a finite dimensionédalgebraS is said
to beseparablef and only if S is the direct sum of simple algebras each of which has
a center which is a separable field extensiod.ofor example, the group algebfér
of a finite groupG is separable if and only if the order 6f is a unit ine.
A finitely generated/-algebraA is said to bequasi-freg[1] ( or formally smooth
[4]) if either of the following two equivalent conditions is satisfied

e The universal bimodul€; (A) of derivations is a projectivel-bimodule.

e A satisfies the lifting property modulo nilpotent ideal&ir- alg, the category
of ¢-algebras.

For example, the free algebédx,, . .., x,,) is quasi-free as is the path algeld@

of a finite quiverQ. Moreover, any separabkalgebrasS is quasi-free by [1§4].
Remark that the standard assumption of [1] is that C the field of complex num-

bers. However, with minor modifications most results remain valid over an arbitrary
basefield and we will refer to statements in [1] whenever the argument can be repeated
verbatim.

We will imitate the Bass-Serre theory of fundamental groups of graph of groups,
see [12] or [2], to construct a class of quasi-free algebrasGLet (V, E) be a finite
graph with vertex-seV and edge. A G-graph of separable algebraS¢ is the
assignment of separabfealgebrasS,, and.S, to any vertexv € V and to any edge
e € E of G such that there are embeddingeslgebras

S, <% 8§, and S, <% S, Wwhenever ®—°—@
In order to define théundamental algebrar, (Se) of a graph of separable algebras
Sc we need to have algebra equivalents &onalgamated groupfl2, §1.2] and of



the HNN construction12, §1.4]. If S is a separablé-algebra and ifA and A’ are
S-algebras, then theoproductA g A’ is the algebra representing the functor

Homg_a15(A, —) X Homg_az(A’, —)

in the categons — alg of S-algebras, see for example [10, Chp. 2] for its construction
and properties. As for the HNN-counterpart, éetf3 : S —— A be two£-algebra
embeddings of in A and consider the algebra

w3 A x Lt t71]
Ax” =
S (B(s) —t—la(s)t : Vs € S)

Lemma 1l Let S be a separablé-algebra, A and A’ quasi-freef-algebras and em-
beddingsa, 3 : S —— A andS —— A’. Then, thef-algebras

Axg A’ and  Ax2P
are again quasi-freé-algebras.

Proof. The crucial property to use can be deduced from [1, Prop. 6.1.2] and asserts that
any two#-algebra morphisme, ¢ : S —— B such thaip andy : § —— B/I
(wherelI is a nilpotent ideal ofB) are conjugate via a unitin B/I then there is a
unitb € B mapping tob and such thab conjugatesp to .

AmorphismA s A’ —%+~ B/I s fully determined by morphismd —/~ B/I

andA’ L. B/I such thatf|S = f’|S. As A and A’ are quasi-free one hds
algebra liftsf : A —— Bandf’ : A’ —» B whence two morphisms afi which
have to be conjugated by &nc B* such thab = 1p,1, thatisf’(s) = b~ f(s)b
forall s € S. Butthen, we have a lifd xg A’ —— B determined by the morphisms
b~lfbandf’.

A morphism A *‘S"’ﬁ LA B/ I determines (and is determined by) a morphism

AL, B/I and a unitb = g(t) such thatf ocandf o3 : S — B/I are
conjugated vi£.~Because4 is quasi-free we have a liff : A —— B and algebra
mapsf oaandf o3 : S — B whichreduce td conjugate morphisms. But then
there is a unib € B* conjugatingf o  to f o 8 and mapping to b produces the
required lift A *3° —— B, O

The construction of the fundamental algelra(Sa) can now be continued as in
the case for graphs of groups. Bthe a maximal subtree & and constructr; (St)
by induction on the number of edgesThwhile extending the formalism of graphs of
seperable algebras to graphs of quasi-free algebras with edge-algebras sepavable. If
is a leaf vertex with edge and other vertexw, we go to a smaller tre€” by dropping
v ande, keep the same algebras on all remaining edges and all vertices different from
w and defining as the new-vertex algebra the coprodust, xg_ S,,. Observe that
for every vertexu € V' we have a canonical embeddifyg : S,, — 71 (ST).

We will use these embeddings to go frem(St) to 71 (S¢e) by induction on the
number of edges G+ which are not in the maximal subtrge At each step, we will
have constructed an algebhdawith embeddings,, : S, <~ A. For the next edge
e connecting vertices andw we have two embeddings

et Se > 8 e A and  Be:S. > Sy e A



and will delete the edge and replaced by the HNN—constructiorA*gj’ﬂE. From
this construction and the previous lemma we deduce

Theorem 1 For any graph of separablé-algebrasS¢s the associated fundamental
algebram, (S¢) is a quasi-freef-algebra.

2 Quasi-free group algebras

The classification of quasi-frealgebras is way out of reach at the moment so it is
important to have partial classifications. In gg] the finite dimensionaf-algebras
were shown to be the hereditary finite dimensiofralgebras. In this section we will
classify the quasi-free group algebfdd for H a finitely generated group. The desired
answer is that these are precisely ##d with H avirtually free group(that is, H
has a free subgroup of finite index) but we have to take precautions depending on the
characteristic of.

If G is a graph ofiinite groupsas in [12] such that all orders are invertibledn
then we can associate to it a graph of separétakyebrasSq by taking

Sy =4G, YveV and Se =¢G. Vec E

with embeddings determined by the group-embeddings; (G ) is thefundamental
groupof G¢ as in [12,85.1] then the point of the construction in the previous section
is that

ﬂﬂ'l(gg) ~ 71'1(8@)

and hence these group algebras are quasiéedgebras. The connection with virtually
free groups is provided by a result of Karrass, see for example [14, Thm. 3.5]. The
following statements are equivalent for a finitely generated gidup

e H = 71(G¢) for a graph of finite groups.
e H is avirtually free group.

For example, all congruence subgroups in the modular g&lip(Z) are virtually

free. On the other hand, the third braid graBg = (s, t | s = t3) is not virtually

free. Note that very little is known about simple representations of congruence sub-
groups. For some low dimensional classification$'df, (Z)-representations see [13].

Our approach to this problem uses non-commutative geometry and therefore the next
result is crucial.

Theorem 2 The following statements are equivalent :
1. The group algebrédH is a quasi-free/-algebra.

2. H is a virtually free group such that in a descriptidd = 1 (G¢) all orders
of the vertex groupé&s,, are finite and invertible ir?.

Proof. If £H is a quasi-fre¢-algebra, it has to be hereditary by [1, Prop. 5.1] and
hence, in particular, its augmentation idegly mast be a projective leftH-module.

By a result of Dunwoody, see [2, Thm. [V.2.12] this is equivalentHobeing the
fundamental group of a graph of finite grou@dg such that all vertex-group orders are
invertible in¢, whence2 follows. The converse implication follows from the discussion
preceding the statement and the last section. |



3 The zero quiverQy(S¢g) of 1 (S¢)

In this section we will assume thét= £ is algebraically closed and fix a gragi; of
separabl€-algebras. One of the guiding principles of non-commutative geometry as in
[1], [4] or [5] is that quasi-free algebras are the coordinate rings of affine smooth non-
commutative varieties and that path algebras of quivers correspond to tangent spaces
to these non-commutative manifolds. In [7] a procedure was given to assign to any
quasi-freef-algebraA a quiver-settingd Q a, a.4), consisting of a quiveQ 4 and a
dimension-vectow 4, encoding all the relevant information to study finite dimensional
representations 0. In this section we will calculate the quiver-setting corresponding
to the quasi-free algebra; (S¢). As an intermediary step we will construct a finite
quiverQo(S¢) such that finite dimensional representationgo{S¢ ) correspond to
certain finite dimensional representations of the path algéRw Sc ).

As ¢ is algebraically closed we have decomposition of the vertex- and edge-
algebras

S, = Mdv(l) (Z)@ . -@Mdv(nv)(z) resp. Se = Mde(l) (Z)EB . .@Mde(ne)(Z)

The embedding$. —— S, are depicted via their Bratelli-diagrams or, equivalently,
by natural numberez(.;‘”) for1 < i < neandl < j < n, satisfying the numerical
restrictions

dy(j) = Z a$sd.(i) foralll <j < m,andallv € V ande € E

remark that these numbers give thestriction data that is, the multiplicities of the

simple components &, occurring in the restrictioﬁ/j(”) 1s, for the simple compo-
nentsV; of S,,. From these decompositions and Schur’s lemma it follows that for any

edge®—5—®) in the graphG we define the numbers

Homs, (V", V™) = Za(ev) (o) _ (o

l]

We are now in a position to construct the quiv@s(Sg). As its vertices, for any
vertexv € V of G taken,, vertlces{u( VoL, s Mo }. Fixan orientatiorG on all of

the edges o&. For any edgen—=—@) in G we add for each < ¢ < n,, and each
1< j < nyg premselyn(e) arrows between the verticq:é”) andu§w) oriented in
the same way as the edgén G.

An n-dimension vectofor Qo (S¢) is a vectora = (aﬁ”) v eV,1<i <
n,,) of natural numbers satisfying the following numerical conditions

Z dv(i)agv) =n forallv e V

Recall that theepresentation spaceep,, Qo(Sg) is the affine¢-space

repa Qo(Sc) = P O, OF M ), o (£)
O—>@

4



and twoa-dimensional representations are said tasbenorphidf they are conjugated
via the natural base-change action®L (o) = X,ev X1, GL(ag”)).

For any edge®—==@ we denote byQ. the bipartite subquiver ofQo(Sg)
on the vertice 1{*, . . ., w3, (..., pi®)} and thengj) arrows between
l%(-v) and;é"” determined by the embeddings < S, andS., —— S,,.

We say that a representatid € rep, Qo(Se) (for somen-dimension
vector ) is e-(semi)stable if the restrictiod |Q. is 8-(semi)stable (in the termi-

nology of [3]) for 8 = (—dy(1),..., —dy(Ny), dw(1),...,dy(ny)). That
is, there is no propeiQ.-subrepresentatiodV of M|Q. of dimension vector
(P1y. ey np,, MY, .oyl ) such thay ™) nlidy, (1) < Y22, naidy(3) for e-

semistable and such that - nld, (i) < > ° n;d,(:) for e-stable. We say
that a representatiohM € rep, Qo(Sc) (for somen-dimension vectory) is Sg-
(semi)stable ifM is e-(semi)stable for all edges € E. The relevance of the quiver
Qo (S¢) and the introduced terminology is contained in the following result.

Theorem 3 Everyn-dimensional representation (S¢) _2, M,,(£) determines
(and is determined by) a8g-semistable representatiad, € rep, Qo(Sa) for
somen-dimension vectot. Moreover, if¢p and ¢’ are isomorphic representations of
71 (Sea), thenM, and My are isomorphic as quiver representations.

Proof. Let N = 7., be then-dimensional module determined gy For each vertex
v € V we have a decomposition by restricti to the separable subalgel$g
(v) (v)
N ls,= V3 @...0 V™
where theV; ,, are the distinct simple modules 8f, of dimensiord,, (¢). Choose aif-
basisB, of N | g, compatible with this decomposition. These decompositions deter-

mine ann-dimension vectoe. For any edgey—>>@) the embedding$. Sl
andS, P, S, determine twar-dimensionalS,-representations

(N ls,)ls  and (N ls,) 15

which, by construction ofr(Sg) are isomorphic. That is, the basechange map

B, P B., is an invertible element of

Homg, (N ls,,N ls,) = @?;’1 EB;;H Ma(w)Xa@(HomSe(Vi,v’ Vjw))

and hencey,,,, determines a representation of the bipartite quiEkr of dimen-

sion vectora|Q.. Repeating this for all edges € E we obtain a representation

My € repa Qo(Se). Invertibility of the mapp,., is equivalent toM being
e-semistable, sdV1, is Sg-semistable. Isomorphic representatighsind ¢’ deter-

mine isomorphic vertex-decompositions whence, by Schur's lemma, bases which are
transferred into each other via an elemen@¥ (a) and hence the quiver representa-
tions My and M are isomorphic. From the construction of the fundamental algebra
71(S¢) it follows that one can reverse this procedure to construat-@imensional
representation ofr; (S¢) from aSg-stable representatio®Md € rep, Qo(Se) for
somen-dimension vectoex. O



Under this correspondence simpig (S¢)-representations correspond &y-
stable representations.dfis ann-dimension vector such thaep,, Qo(S¢) contains
Sc-stable representations (which then form a Zariski open subset)pthea Schur
root of Qo (S¢) and consequently the dimension of the classifying variety is equal to
1 — x(a, &) wherey is theEuler formof the quiverQo (S¢, that is, the bilinear form
onZ! (wherel is the number of vertices i@ (S¢) defined by

X(€i, &) = i — #{O—0}

for the vertex-dimensions; = (d;;);. For this result and related material on Schur
roots we refer to [11]. We deduce from this

Theorem 4 Isomorphism classes of simpledimensional representations of (S¢g)
are parametrized by the points of a smooth quasi-affine variety (possibly with several
irreducible components)

simpy, 1 (Sg) = |_| stmpy 71(Sa)

(o3

wherea runs over alln-dimension vectors such thaep, Qo(Sg) containsSg-
stable representations. These components have dimensions

dim simpy 71 (Se) = 1 — x(a, @)
wherey is the Euler form of the quive®Ro (S¢g).

As an example consider the modular grafii2 (Z) which is the amalgamated
productZy *z, Zg, see for example [2, §7]. If char(£) # 2, 3 the group-algebra
LS L,(Z) is the fundamental algebra of the graph of separéfalgebras

O—>@ with S, =024 Sy, =40Z¢ S.=1~0Lo

As all simples are one-dimensional (determined by their eigenvalue), it is easy to verify
that the zero quiveQo (¢S L2(Z)) has the following form

1
1 —p?
7 P
—1 —1
i p?
—p

(p is a primitive 3rd root of unity) which is the disjoint union of two copies of the
quiver associated t# S Ly (Z) in [15].

4 The one quiverQ,(S¢) of m1(S¢)

The étale GL,,-local structure of the representation schemep,, 71 (Sg) of n-
dimensional representations near the orbit of a semi-simple representation is isomor-
phic to that of some semi-simple orbitirep,, A(Sg) whereA(S¢) is a quasi-free



£-algebra Morita equivalent to the path algeb@, (S¢) of the so-callecbne quiver
Q1(S¢) which we will now describe.

By the foregoing theorem, theep,, w1 (Sc) are smooth varieties having as many
irreducible components as there arelimension vectors of Qo (S ) such that there
existsSg-semistable representationsiap, Qo(Sc)- All such dimension vectora
form a sub-semigroup of the semigroup of all dimension vecto@¢(fSs ) which we
denote withcomp 71 (S¢) and call thecomponent semigrougzee [9]) ofr1 (Sg).
Let {a1,...,ar} be the minimal set of semigroup generatorscoinp =1 (S¢g)
(observe that this is precisely the set of irreducible componenss, 1 (Sg) of some
rep, w1 (Sg) on which the basechange action®L,, is a freePG L,,-action).

Theone quiverQ1(S¢) hask vertices{vs, . . ., vg } wherev; corresponds to the
semigroup generatax;. In Q1 (S¢) the number of directed arrows betwegnand
1; is given by

# {O0——0} = di; — x(cu, )

wherex is (as before) the Euler-form for the zero quiv@s (S¢). A first application
of Q1(S¢) to the representation theory of (S¢) is that it allows us to compute the
components-ep, 71 (Sg) which contain simple representations.

Theorem5 If &« = i1 + ... + cpar € comp 71 (Sg) then the component
repq 71 (Se) contains simple representations if and only if

x1(v,€) <0 and  xi(e,vy) <0

forall 1 < i < kwherey = (c1,...,c,) ande; = (14, - - - » Ori) and wherex
is the Euler form of the one quiv€)1 (Sg).

Proof. Thisis [7, Thm. 2] adapted to the situation at hand. ]
If char(£) = 0 one can apply Luna slice machinery to construct a Zariski open

subset of all simple representationsriap, 71 (Sg) from the knowledge of low-
dimensional simples. For example, suppose we have found simple representations

S; € repy; ©1(Sa) foralll <i:<k

and consider the poim¥{ in the affine spaceep, Qo(Se) determined by the semi-
simple representation af; (Sg)

M=S8P"q...p s>

then the normal space to the&FL(«)-orbit O(M) is isomorphic to
Ewt}rl(sG)(M, M) which can be identified torep, Q:1(S¢) (again by the
results from [7]).

Theorem 6 Letax = ciav1 + . . . + cpay, be a component such thaep, 71 (S¢a)
contains simple representations. In the affine spage, Qo (S¢) identify the normal
space to the orbi© (M) of the semi-simple representatidd (as above) with

Ny ={M+V |V € repy Q1(Sc) }

wherey = (e1,...,¢k). Then,GL(a).Njs contains a Zariski open subset of all
a-dimensional simple representationsmf(S¢).



Proof. This is a special case of the Luna slice theorem, see for example [6] for more
details. O

In fact, one can generalize this result to other known semi-simple representations
N of w1 (S¢g) but then one has to replacg (S ) by thelocal quiverQn of IV, the
structure of which can be entirely deduced from the one quefS¢s), see [7] for
more details.

In the S L (Z) example.comp £S L, (Z) is generated by th#2 components of
two-dimensional representations@f (£S5 L2 (7))

Vij = (014550445015, ..., 065) 1<:i<4,1<35<6

From this the structure of the one quiv@ (¢SL2(Z)) (corresponding to tha2
one-dimensional simples é5 L, (Z)) can be verified to be

K> £

Here, the vertices of the first component correspond (in cyclic order) to
V11, V33, V15, V31, V13, V35 and those of the second component (in cyclic order) to
Va2, Va4, Vag, Va2, V24, Vae- Applications to the representation theory of the modu-
lar groupSL2(Z) and its central extensioBg (the third braid group) will be given
elsewhere.
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