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Abstract

In this paper we associate to anℓ-qurveA (formerly known as a quasi-free
algebra [3] or formally smooth algebra [7]) theone-quiverQ1(A) and dimension
vectorα1(A). This pair contains enough information to reconstruct for all n ∈
N theGLn -étale local structure of the representation schemerepn A. In an
appendix we indicate how one might extend this to qurves overnon-algebraically
closed fields. Further, we classify all finitely generated groupsG such that the
group algebraℓG is anℓ-qurve. Ifchar(ℓ) = 0 these are exactly the virtually
free groups. We determine the one-quiver setting in this case and indicate how it
can be used to study the finite dimensional representations of virtually free groups.
As this approach also applies tofundamental algebrasof graphs of separableℓ-
algebras, we state the results in this more general setting.

1 Qurves

In this paper,ℓ is a commutative field with algebraic closureℓ. Algebras will be asso-
ciativeℓ-algebras with unit and (usually) finitely generated overℓ. For anℓ-algebraA
letA′ be theℓ-vectorspaceA/ℓ.1 and define (following [3,§1]) the graded algebra of
non-commutative differential forms

ΩA = ⊕∞
i=o ΩiA with Ωi A = A⊗A′⊗i

with multiplication defined by the mapsΩnA⊗ Ωk−1A - Ωn+k−1A where

(a0, . . . , an).(an+1, . . . , an+k) =

n∑

i=0

(−1)n−i(a0, . . . , aiai+1, . . . , an+k)

As Ω0A = A this multiplication defines anA-bimodule structure on eachΩnA
and one proves [3, Prop. 2.3] thatΩA = TA(Ω1A) the tensor algebra of theA-
bimoduleΩ1A. Remark that the standard assumption of [3] is thatℓ = C the field of
complex numbers. However, with minor modifications most results remain valid over
an arbitrary basefield and we will refer to statements in [3] whenever the argument can
be repeated verbatim.

Definition 1 A finitely generatedℓ-algebraA is said to be anℓ-qurve(or quasi-free
[3] or formally smooth[7] ) if either of the following two equivalent conditions is
satisfied
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• The universal bimoduleΩ1
ℓ(A) of derivations is a projectiveA-bimodule.

• A satisfies the lifting property modulo nilpotent ideals inℓ− alg, the category
of ℓ-algebras.

Whereas the lifting property extends Grothendieck’s characterization of commutative
regular algebras (see for example [6]) to the non-commutative setting, such algebras
are known to behereditaryby [3, Prop. 5.1] and hence they behavequite like curves.

Recall that a finite dimensionalℓ-algebraS is said to beseparableif and only if
S is the direct sum of simple algebras each of which has a centerwhich is a separable
field extension ofℓ. For example, the group algebraℓG of a finite groupG is separable
if and only if the order ofG is a unit inℓ. Separableℓ-algebras are known to beℓ-
qurves by [3,§4] but should be thought of as corresponding topoints. In fact, they are
characterized by either of the following two equivalent conditions

• A is a projectiveA-bimodule.

• A satisfies theconjugatelifting property modulo nilpotent ideals inℓ− alg.

That is, if I ⊳ B is a nilpotent ideal and ifφ, ψ : S
-

- B/I are twoℓ-algebra
morphisms which are conjugated by a unitb ∈ B/I then there exist algebra lifts
φ, ψ : S -

- B and a unitb ∈ B (mapping tob) conjugatingφ andψ, see [3,
Prop. 6.1.2].

Genuine examples ofℓ-qurves are : the free algebraℓ〈x1, . . . , xm〉, the path
algebraℓQ of a finite quiverQ and the coordinate ringℓ[C] of a smooth affine com-
mutative curveC. From these more complicated examples are construed by universal
constructions such as taking algebra free productsA ∗ A′ or universal localizations
AΣ. In the next section we will introduce a new class ofℓ-qurve examples.

For anℓ-algebraA recall that therepresentation schemerepn A is the affineℓ-
scheme representing the functor

ℓ− commalg - sets defined by C 7→ Homℓ−alg(A,Mn(C))

whereℓ− commalg is the category of commutativeℓ-algebras. A major motivation
for studyingℓ-qurves comes from the result mentioned in [8], [7] and proved in [11,
(2.2)].

Proposition 1 If A is a ℓ-qurve, then all representation schemesrepn A are smooth
affine varieties (possibly having several connected components).

2 Qurves from graphs

In this section we will imitate the Bass-Serre theory of the fundamental group of a
graph of groups, see [19] or [4], to construct a large class ofexamples ofℓ-qurves.

Definition 2 LetG = (V, E) be a finite graph with vertex-setV and edgesE. A
G-graph ofℓ-qurvesQG is the assignment of

• Anℓ-qurveAv to every vertexv ∈ V .

• A separableℓ-algebraSe to every edgee ∈ E.
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• Inclusions ofℓ-algebras

Se ⊂
ie,v

- Av and Se ⊂
ie,w

- Aw for every edge ��������v
e

��������w

If, moreover, all vertex-algebras are separable algebrasSv we call this data aG-graph
of separable algebrasand denote it bySG.

In order to construct thefundamental algebraπ1(QG) of aG-graph of qurvesQG

we need to haveℓ-algebra equivalents for the notions ofamalgamated group products
[19, §1.2] and of theHNN construction[19, §1.4]. If S is a separableℓ-algebra and if
A andA′ areS-algebras, then thecoproductA ∗S A

′ is the algebra representing the
functor

HomS−alg(A,−) ×HomS−alg(A
′,−)

in the categoryS−alg ofS-algebras, see for example [17, Chp. 2] for its construction
and properties. As for the HNN-construction, letα, β : S ⊂ - A be twoℓ-algebra
embeddings ofS inA, consider the algebra

A∗α,βS =
A ∗ ℓ[t, t−1]

(β(s) − t−1α(s)t : ∀s ∈ S)

Lemma 1 Let S be a separableℓ-algebra,A andA′ ℓ-qurves andℓ-embeddings
α, β : S ⊂ - A andS ⊂ - A′. Then, theℓ-algebras

A ∗S A
′ and A∗α,βS

are againℓ-qurves.

Proof. Our edge-algebras need to be separableℓ-algebras because we will need the
conjugate lifting property modulo nilpotent ideals.

A morphismA∗SA
′ g

- B/I is fully determined by morphismsA
f
- B/I

andA′ f ′

- B/I such thatf |S = f ′|S. AsA andA′ are quasi-free one hasℓ-
algebra liftsf̃ : A - B andf̃ ′ : A′ - B whence two morphisms onS which
have to be conjugated by anb ∈ B∗ such thatb = 1B/I , that isf ′(s) = b−1f(s)b
for all s ∈ S. But then, we have a liftA∗SA

′ - B determined by the morphisms
b−1fb andf ′.

A morphismA ∗α,βS
g
- B/I determines (and is determined by) a morphism

A
f
- B/I and a unitb = g(t) such thatf ◦ α andf ◦ β : S - B/I are

conjugated viab. BecauseA is quasi-free we have a lift̃f : A - B and algebra
mapsf̃ ◦α andf̃ ◦β : S - B which reduce tob conjugate morphisms. But then
there is a unitb ∈ B∗ conjugatingf̃ ◦ α to f̃ ◦ β and mappingt to b produces the
required liftA ∗α,βS

- B. �

However, as often with universal constructions, we have to take care not to end
up with the trivial algebra! BecauseS is semi-simple andA andA′ are faithfulS-
algebras it follows from [17, Chp. 2] that there are inclusionsA ⊂ - A ∗S A

′ and
A′ ⊂ - A ∗S A

′. To prove thatA ⊂ - A∗α,βS we give another description of
the HNN-construction mimicking [19,§1.4]. For anyn ∈ Z takeA[n] ≃ A and
construct the following amalgamated products

A0 = A, A1 = A[−1] ∗S A0 ∗S A[1], . . . Ak = A[−k] ∗S Ak−1 ∗S A[k]
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with respect to the following embeddings

A[−1] A[0] A[1] A[2]

S

β
bbFFFFFFFFF

α
=={{{{{{{{

S

β
aaCCCCCCCC

α
=={{{{{{{{

S

β
aaCCCCCCCC

α
=={{{{{{{{

As S is semi-simple we have by [17, Chp. 2] embeddingsA0 ⊂ A1 ⊂ A2 ⊂ ...
and henceA embeds in the limitÃ = lim

→
An. The shift-identity

. . . - A[k − 1]
id
- A[k]

id
- A[k + 1] - . . .

induces an automorphismφ onÃ and as the two algebras below have the same univer-
sal property they are isomorphic

A∗α,βS ≃ Ã[t, t−1, φ] whence A ⊂ - A∗α,βS

Definition 3 LetQG be a graph ofℓ-qurves and letT be a maximal subtree ofG. We
construct theℓ-algebraAT by induction on the numbert of edges inT . If t = 0 so
V = {v} thenAT = Av . If t > 0, consider a leaf vertexv with connecting edge
��������v

e
��������w in T . Construct a new treeT ′ on t − 1 edges by dropping the vertexv

and edgee and construct a new graph ofℓ-qurvesQ′
T ′ by

A′
w = Av ∗Ae

Aw, A′
u = Au for v 6= u ∈ V , A′

f = Af for e 6= f ∈ E

thenAT ≃ AT ′ . Observe that there are embeddingsSu ⊂
iu
- AT for everyu ∈ V .

LetG − T = {e1, . . . , er} and takeA0 ≃ AT . For every edge��������v
ei

��������w in
G− T there are two embeddings

αi : Se ⊂
iei,v

- Sv ⊂
iv
- Ai−1 and βi : Se ⊂

iei,w
- Sw ⊂

iw
- Ai−1

and we define
Ai ≃ Ai−1∗αi,βi

Se

The algebraAr is then called thefundamental algebra of the graph ofℓ-qurvesQG

and is denoted byπ1(QG).

Theorem 1 If QG is a graph ofℓ-qurves, the fundamental algebraπ1(QG) is again
anℓ-qurve.

Proof. Immediate from the construction and lemma 1. �

3 Qurve group algebras

The classification ofℓ-qurves is way out of reach at the moment so it is important to
have partial classifications. In [3,§6] the finite dimensionalℓ-qurves were shown to
be the hereditary finite dimensionalℓ-algebras (and hence Morita equivalent to path
algebrasℓQ of a finite quiverQ without oriented cycles). In this section we will
classify the group algebrasℓH for H a finitely generated group which areℓ-qurves.
The desired answer is that these are precisely theℓH with H a virtually free group
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(that is,H has a free subgroup of finite index) but we have to take the characteristic of
ℓ into account (observe that finite groups are virtually free).

If GG is a graph offinite groupsas in [19] such that all orders are invertible inℓ,
then we can associate to it a graph of separableℓ-algebrasSG by taking

Sv = ℓGv ∀v ∈ V and Se = ℓGe ∀e ∈ E

with embeddings determined by the group-embeddings. Ifπ1(GG) is thefundamental
groupof GG as in [19,§5.1] then the point of the construction in the previous section
is that

ℓπ1(GG) ≃ π1(SG)

and hence these group algebras areℓ-qurves. The connection with virtually free groups
is provided by a result of Karrass, see for example [21, Thm. 3.5]. The following
statements are equivalent for a finitely generated groupH

• H = π1(GG) for a graph of finite groups.

• H is a virtually free group.

For example, all congruence subgroups in the modular groupSL2(Z) are virtually
free. On the other hand, the third braid groupB3 = 〈s, t | s2 = t3〉 is not virtu-
ally free. Note that very little is known about simple representations of congruence
subgroups. For some low dimensional classifications ofSL2(Z)-representations see
[20].

Theorem 2 The following statements are equivalent for a finitely generated groupH :

1. The group algebraℓH is anℓ-qurve.

2. H is a virtually free group such that in a descriptionH = π1(GG) all orders
of the vertex groupsGv are finite and invertible inℓ.

Proof. If ℓH is a quasi-freeℓ-algebra, it has to be hereditary by [3, Prop. 5.1] and
hence, in particular, its augmentation idealωH mast be a projective leftℓH-module.
By a result of Dunwoody, see [4, Thm. IV.2.12] this is equivalent toH being the
fundamental group of a graph of finite groupsGG such that all vertex-group orders
are invertible inℓ, whence (2) follows. The converse implication follows fromthe
discussion preceding the statement and the last section. �

If char(ℓ) = 0 it follows from this and proposition 1 that all representation
schemesrepn ℓH are smooth affine varieties wheneverH is a finitely generated
virtually free group.

4 The component semigroup

From now on we will assume thatℓ = ℓ is algebraically closed. In the appendix we
will replace the component semigroup by a component co-algebra over an arbitrary
basefieldℓ. If A is an ℓ-qurve we know from proposition 1 that all representation
schemes are smooth affine varieties.

5



Definition 4 For anℓ-qurveA the smooth varietyrepnA decomposes into connected
(equivalently, irreducible) components

repn A =
⊔

|α|=n

repα A

whereα is a label. We callα a dimension vectorof total dimension|α| = n.

An ℓ-point of repn A is ann-dimensional leftA-module and the direct sum of
modules defines thesum maps

repn A× repm A - repn+m A

If we decompose these varieties into their connected components and use the fact that
the image of two connected varieties is again connected, we can define a semigroup.

Definition 5 Thecomponent semigroupcomp(A) is the set of all dimension vectors
α equipped with the additionα+ β = γ whereγ determines the unique component
repγ A of repn+m A containing the image ofrepα A × repβ A under the sum
map

⊔

|α|=n

repα A×
⊔

|β|=m

repβ A -

⊔

|γ|=n+m

repγ A

comp(A) is a commutative semigroup with an augmentation mapcomp(A) - N

sending a dimension vectorα to its total dimension|α|.

Here are some examples :

• For A = Mn1(ℓ) ⊕ . . . ⊕ Mnk
(ℓ) semi-simple, comp(A) =

(Nn1, . . . ,Nnk) ⊂ Nk.

• ForA = ℓQ a path algebra we havecomp(A) = Nk wherek is the number
of vertices of the quiverQ.

• For a direct sumA = A1 ⊕ A2 we havecomp(A) = comp(A1) ⊕
comp(A2).

• For a free algebra productA = A1∗A2 we have thatcomp(A1) is the fibered
product (using the augmentation)comp(A1) ×N comp(A2), see [14, Prop.
1].

In [14, Question 2] K. Morrison asked whethercomp(A) is always a free Abelian
semigroup (as in the examples above). However, even forA anℓ-qurve, reality is more
complex as one can remove components by the process of universal localization (see
for example [17] for definition and properties of universal localization).

Proposition 2 For every sub semigroupS ⊂ N, there is anℓ-qurveA with

comp(A) = S

as augmented semigroups.
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Proof. Suppose first thatgcd(S) = 1, that is the elements ofS are coprime. By
using results on polynomial- and rational identities of matrices (see for example [16])
it was proved in [10] that there is an affineℓ-algebra with presentation

A =
ℓ〈x1, . . . , xa, y1, . . . , yb〉

(1 − yipi(x1, . . . , xa, y1, . . . , yi−1) : 1 ≤ i ≤ b)

(with each of thepi ∈ ℓ〈x1, . . . , xa, y1, . . . , yi−1〉) having the property thatA
has finite dimensional representations of dimensions exactly the elements ofS. A is
a universal localization ofℓ〈x1, . . . , xa〉 and hence is anℓ-qurve (for example use
[17, Thm. 10.6] to prove thatΩ1(A) is a projectiveA-bimodule). As such, for every
n, repn A is a Zariski open subset (possibly empty) ofrepn ℓ〈x1, . . . , xa〉 =
Mn(ℓ)

×a and is therefore irreducible (when non-empty). Therefore,comp(A) =
S ⊂ N and consists precisely of thosen ∈ N for which none of thepi (when
expressed as a rational non-commutative function inx1, . . . , xa) is a rational identity
for n× n matrices.

For the general case, assume thatgcd(S) = m and takeS′ = S/m with asso-
ciated algebra (as above)A′ for whichcomp(A′) = S′ ⊂ N. But then,

comp(A′ ∗Mm(ℓ)) = S′ ×N Nm = S

andA = A′ ∗Mm(ℓ) is again anℓ-qurve. �

5 Tits and Euler forms

In this section we will define bilinear forms oncomp(A) (whenA is anℓ-qurve)
generalizing the Tits- and Euler-forms on the dimension vectors of a quiver. LetrepA
be the Abelian category of all finite dimensional representations ofA. If A is an affine
ℓ-algebra, thenHomA(M,N) andExt1A(M,N) are finite dimensionalℓ-spaces
for allM,N ∈ rep A.

If A is hereditary (for example, ifA is anℓ-qurve) we have thatχA(M,−) and
χA(−, N) are additive on short exact sequences inrep A where

χA(M,N) = dimℓHomA(M,N) − dimℓExt
1
A(M,N)

ForM ∈ rep A define itssemi-simplificationMss to be the semi-simpleA-module
obtained by taking the direct sum of the Jordan-Hölder components ofM . From addi-
tivity on short exact sequences it follows for allM,N ∈ rep A that

χA(M,N) = χA(Mss,Nss)

Forα, β ∈ comp(A) it follows from [9] and [2, lemma 4.3] that the functions

repα A× repβ A - Z (M,N) 7→

{

dimℓHomA(M,N)

dimℓExt
1
A(M,N)

are upper semicontinuous. In particular, there are Zariskiopen subsets (whence dense
by irreducibility) of repα A × repβ A where these functions attain a minimum.
Following [18] we will denote these minimal values byhom(α, β) resp.ext(α, β).

The groupGLn acts onrepn A by base-change and orbitsO(M) under this
action are precisely the isomorphism classes ofn-dimensional leftA-modules. From
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[5] we recall that the semi-simplificationMss belongs to the Zariski closureO(M)
of the orbit and thatExt1A(M,M) can be identified to thenormal spaceto the orbit
O(M) with respect to the scheme structure onrepn A.

Proposition 3 LetA be an affineℓ-algebra.

1. If repγ A is a smooth variety, then for allM ∈ repγ A we have

|γ|2 − χA(M,M) = dim repγ A

and henceχA(M,M) is constant onrepγ A.

2. If repα A, repβ A andrepα+β A are smooth varieties, then

χA(M,N) + χA(N,M)

is a constant function onrepα A× repβ A.

Proof. If repγ A is smooth inM , it follows from the above remarks that

TMrepγ A = Ext1A(M,N) ⊕ TMO(M), O(M) = GL|γ|/Stab(M)

whereStab(M) is the stabilizer subgroup which by [9] has the same dimension as
HomA(M,M). Therefore,

dim repγ A = dimℓTMrepγ A

= dimℓExt
1
A(M,M) + |γ|2 − dimℓHomA(M,M)

whence (1). (2) follows from this by considering the pointM ⊕ N ∈ repα+β A
and using bi-additivity ofχA. �

Definition 6 If A is anℓ-qurve, then for allα ∈ comp(A) the representation variety
repα A is smooth. Therefore, the constant value

(α, β)A = χA(M,N) + χA(N,M)

onrepα A× repβ A defines a symmetric bilinear form

(−,−)A : comp(A) × comp(A) - Z

which we call theTits-formof theℓ-qurveA.

For general affineℓ-algebrasχA(M,N)+χA(N,M) does not have to be constant
and the foregoing result can be used to deduce singularity ofspecific representation
varieties.

Example 1 Let A = ℓB3 be the group-algebra of thethird braid groupB3 =
〈s, t | s2 = t3〉. The one dimensional representation variety is the cusp minus the
singular origin

rep1 A = {(x, y) ∈ ℓ
2

| x3 = y2} − {(0, 0)}

and hence is a smooth affine variety. As all points are simpleA-modules we have
thatdimℓHomA(−,−) is equal to zero on the open setrep1 A× rep1 A− ∆
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and is equal to one on thediagonal∆. As fordimℓ Ext
1
A(−,−) this is zero on

rep1 A× rep1 A− (∆ ⊔ ∆1 ⊔ ∆2) where
{

∆1 = {((x, y), (ρx,−y)) : x3 = y2}

∆2 = {((x, y), (ρ2x,−y)) : x3 = y2}

for ρ a primitive third root of unity. As a consequence,χA(M,N) is zero on the
Zariski open subsetrep1A×rep1 A−(∆1⊔∆2) and is equal to−1 on∆1⊔∆2.
Therefore,ℓB3 is not anℓ-qurve. In fact,rep2 ℓB3 is not smooth.

If α is the dimension vector of a simple representation ofA, then there is a Zariski
open subsetsimpα A of simple representations inrepα A.

Proposition 4 If A is anℓ-qurve andα, β are dimension vectors of simple represen-
tations, then the function

χA(S, T )

is constant onsimpα A× simpβ A.

Proof. There is a Zariski open subsetU ⊂ simpα A × simpβ A consisting of
couples(S′, T ′) such that

dimℓExt
1
A(S′, T ′) = ext(α, β) and dimℓExt

1
A(T ′, S′) = ext(β,α)

Hence, for all(S, T ) ∈ simpα A× simpβ A
{

dimℓExt
1
A(S, T ) ≥ dimℓExt

1
A(S′, T ′)

dimℓExt
1
A(T, S) ≥ dimℓExt

1
A(T ′, S′)

If α 6= β (or if α = β andS 6≃ T ) χA(S, T ) = −dimℓExt
1
A(S, T ) and

hence the above inequalities must be equalities by proposition 3. Remains to prove for
S, T ∈ simpα A with S 6≃ T thatχA(S, S) = χA(S, T ). Consider the two
semi-simple representationsM = S ⊕ S andN = S ⊕ T in rep2α A. From
proposition 3 (1) we get

4χA(S, S) = χA(S, S) + χA(T, T ) + χA(S, T ) + χA(T, S)

= 2χA(S, S) + 2χA(S, T )

(using proposition 3 (1) and the above fact thatχA(S, T ) = χA(T, S)) whence
χA(S, S) = χA(S, T ). �

If M ∈ rep A, its semi-simplification has as isotypical decomposition

M = S⊕e1
1 ⊕ . . .⊕ S⊕ek

k

with all Si non-isomorphic. IfSi ∈ repβi
A we say that therepresentation typeof

M (which is determined upto permutation of the(ei, βi) terms).

τ(M) = (e1, β1; . . . ; ek, βk)

Proposition 5 If A is anℓ-qurve, theEuler-form

χA(M,N) = dimℓHomA(M,N) − dimℓExt
1
A(M,N)

depends only on the representation typesτ(M) andτ(N).
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Proof. Follows from the foregoing result by observing thatχA(M,N) =
χA(Mss, Nss). �

In particular, there is a Zariski open subset inrepα A × repβ A of couples
(M,N) on which the value ofχA(M,N) is constant and equal to theEuler form

χA(α, β) = hom(α, β) − ext(α, β)

Clearly, this open set contains all representations ofgeneric representation typeτgen,
see for example [13]. In fact, ifchar(ℓ) = 0 the proof of proposition 7 implies that
χA(M,N) is constant onrepα A× repβ A.

6 One quiver to rule them all

If A is anℓ-qurve, we will denote withΣA the minimal set of semigroup-generators of
the component semigroupcomp(A). Observe thatΣA is well-defined as it follows
from the Jordan-Hölder decomposition that

ΣA = {α ∈ comp(A) | simpα A = repα A}

In particular, it follows from proposition 5 thatχA(S, T ) = χS(α, β) for all repre-
sentationsS ∈ repα A andT ∈ repβ A if α, β ∈ ΣA. In all examples known to
us,ΣA is a finite set.

Definition 7 If A is anℓ-qurve, we define itsone-quiverQ1(A) to be the quiver on
the (possibly infinite) vertex set{vα | α ∈ ΣA} such that the number of directed
arrows (loops) fromvα to vβ is given by

# { ��������α //'&%$ !"#β } = δαβ − χA(α, β)

Theone-dimension vectorα1(A) forA is the dimension vector forQ1(A) having as
its vα-component the total dimension|α|.

If Q1(A) is a quiver on finitely many vertices{v1, . . . , vk} andα1(A) =
(n1, . . . , nk), we can define theℓ-algebra

B(Q1(A), α1(A)) =






B11 . . . B1k

...
...

Bk1 . . . Bkk






whereBij is theni×nj block matrix having all its components equal to the sub vec-
torspace of the path algebraℓQ1(A) spanned by all oriented paths inQ1(A) starting
at vertexvi and ending invj . Observe, thatB(Q1(A), α1(A)) is Morita equivalent
to the path algebraℓQ1(A) and as such is again anℓ-qurve.

Example 2 (Deligne-Mumford curves) Recall from [1, Coroll. 7.8] that asmooth
Deligne-Mumford curvewhich is generically a scheme, determines (and is determine
by) a smooth affine curveX and anhereditary orderA over ℓ[X]. As such,A is
an ℓ-qurve with centerℓ[X] and is a subalgebra ofMn(ℓ(X)) for somen called
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the p.i.-degree ofA. If mx is the maximal ideal ofℓ[X] corresponding to the point
x ∈ X then for all but finitely many exceptions{x1, . . . , xl} we have that

A/mxA ≃ Mn(ℓ)

For the exceptional points (theramification locusofA) there are finitely many maximal
ideals{P1(i), . . . , Pki

(i)} ofA lying overmxi
and

A/Pj(i) ≃ Mnj(i)(ℓ) with n1(i) + . . .+ nki
(i) = n

As a consequence,repl A for all l < n consists of finitely many closed orbits each
corresponding to a maximal idealPj(i) such thatA/Pj(i) ≃ Ml(ℓ). Hence, the
component semigroupcomp(A) has generatorsαj(i) for all 1 ≤ i ≤ l and1 ≤
j ≤ ki and relations for all1 ≤ i, j ≤ l

α1(i) + . . .+ αki
(i) = α1(j) + . . .+ αkj

(j)

From direct calculation or using [12, Prop. 6.1] it follows that the one quiverQ1(A)
is the disjoint union ofl quivers of typeÃki

, that is thei-th component isQ1(A)(i)
and is the quiver onki vertices

�������� //��������

��?
??

??
??

?

�������� ��������

��
��������

OO

��������

����
��

��
��

��������

__????????
��������oo

and the corresponding components for the one dimension vector α1(A) are
α1(A)(i) = (n1(i), . . . , nki

(i)). Therefore, the associated algebra

B(Q1(A), α1(A)) = B1 ⊕ . . .⊕Bl

whereBi is the block-matrix algebra








Mn1(i)×n1(i)(ℓ[x]) Mn1(i)×n2(i)(ℓ[x]) . . . Mn1(i)×nki
(i)(ℓ[x])

Mn2(i)×n1(i)(xℓ[x]) Mn2(i)×n2(i)(ℓ[x]) . . . Mn2(i)×nki
(i)(ℓ[x])

...
...

...
Mnki

(i)×n1(i)(xℓ[x]) Mnki
(i)×n2(i)(xℓ[x]) . . . Mnki

(i)×nki
(i)(ℓ[x])








It follows from [15, Chp. 9] or [12, Prop. 6.1] that in a neighborhood ofxi theℓ-qurve
A is étale isomorphic toBi.

Elsewhere, we will generalize this example by relating theℓ-qurveA with the
algebraB(Q1(A), α1(A)) using the formal tubular neighborhood theorem [3,§6].
Here, we will use theone-quiver-setting(Q1(A), α1(A)) to describe theGLn-étale
local structure ofrepn A in the neighborhood of a semi-simple representation. As
this description uses the Luna slice result, we will assume thatchar(ℓ) = 0 in the
remainder of this section. We recall the construction of thelocal quiverand refer to
[11] and [12] for details and proofs.
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Definition 8 LetM ∈ repα A be a semi-simpleA-module of representation type
τM = (e1, γ1; . . . ; el, βl), that is

M = S⊕e1
1 ⊕ . . .⊕ S⊕el

l

with all Si non-isomorphic and of dimension vectorγi.
The local quiverQM is the quiver onl vertices (corresponding to the distinct

simple components ofM ) such that the number of directed arrows fromvi to vj is
equal todimℓ Ext

1
A(Si, Sj).

Thelocal dimension vectorαM = (e1, . . . , el) determined by the multiplicities
ei of the simple components ofM .

Observe that we know already that the quiverQM only depends on the representa-
tion typeτM ofM and not on the choice of the simple componentsSi. The relevance
of this local quiver setting(QM , αM) is that it determines theGLn-equivariant étale
structure ofrepα A in a neighborhood of the closed orbitO(M) by the results from
[11].

Asn =
∑

i ei|γi| there is an embedding ofGL(αM) intoGLn and with respect
to this embedding there is aGLn-equivariant étale isomorphism between

• repα A in a neighborhood ofO(M), and

• GLn ×GL(αM ) repαM
QM is a neighborhood ofO(1n, 0)

where 0 is the zero representation. We will show that the one-quiversetting
(Q1(A), α1(A)) contains enough information to describe all these local quiver set-
tings(QM , αM) wheneverA is anℓ-qurve.

ΣA = {βi | i ∈ I} is the set of semigroup generators ofcomp(A) (possibly
infinite). For anyα ∈ comp(A) we can write

α = a1β1 + . . .+ akβk ai ∈ N

(possibly in many several ways) with theβi ∈ ΣA. If the set of verticesV ↔ ΣA
is infinite, we can always replace the infinite one-quiver setting (Q1(A), α1(A)) by
a finite quiver setting(supp(α), α1(A)|supp(α)) wheresupp(α) is thesupport
of α, that is those verticesβi ∈ V ↔ ΣA such thatai ∈ N+ in a fixed description
ofα in terms of the semigroup generators. For notational reasons, we denote this finite
quiver setting again by(Q1(A), α1(A)).

Proposition 6 The one-quiver setting(Q1(A), α1(A)) contains enough information
to determinesimp(A) the set of all dimension vectors of simple finite dimensional
representations ofA.

Proof. If α ∈ comp(A), fix a description

α = a1β1 + . . .+ akβk

with ai ∈ N+ and{β1, . . . , βk} among the semigroup generators ofcomp(A).
This implies that there are points inrepα A corresponding to semi-simple represen-
tations

M = S⊕a1

1 ⊕ . . .⊕ S⊕ak

k

where theSi are distinct simple representations inrepβi
A. But then the local quiver

setting ofM in repα A, (QM , αM) is just(Q1(A), ǫ) whereǫ = (a1, . . . , ak).

12



Becauserepα A is irreducible, it follows thatα ∈ simp(A) if and only if ǫ is the
dimension vector of a simple representation ofQ1(A). These dimension vectors have
been classified in [13] and we recall the result.

Let χ be the Euler-form ofQ1(A), that isχ = (cij)i,j ∈ Mk(Z) with
cij = δij − #{ ��������i // ��������j } and letδi be the dimension vector of a vertex-simple
concentrated in vertexvi. Then,ǫ is the dimension vector of a simple representation
ofQA if and only if the following conditions are satisfied :

1. the supportsupp(ǫ) is a strongly connected subquiver ofQA (there is an
oriented cycle insupp(ǫ) containing each pair(i, j) such that{vi, vj} ⊂
supp(ǫ))

2. for allvi ∈ supp(ǫ) we have the numerical conditions

χ(ǫ, δi) ≤ 0 and χ(δi, ǫ) ≤ 0

unlesssupp(ǫ) in an oriented cycle of typẽAl for somel in which case all
components ofǫ must be equal to one.

The statement follows from this. �

Proposition 7 The one-quiver setting(Q1(A), α1(A)) contains enough information
to compute theℓ-dimension ofExt1A(S, T ) for all finite dimensional simple represen-
tationsS andT ofA.

If S ∈ repα A whereα =
∑

i aiβi andT ∈ repβ A whereβ =
∑

i biβi,
then

dimℓ Ext
1
A(S, T ) = −χQ1(A)(ǫ, η)

for ǫ = (a1, . . . , ak) andη = (b1, . . . , bk).

Proof. Let Si andTi be distinct simples inrepβi
A and consider the semi-simple

representationsM resp.N in repα A resp.repβ A

M = S⊕a1

1 ⊕ . . .⊕ S⊕ak

k and N = T⊕b1
1 ⊕ . . .⊕ T⊕bk

k

By the foregoing proposition, we have complete informationon the local quiver setting
ofM ⊕N in repα+β A from (Q1(A), α1(A)). By assumption onα andβ there
is a Zariski open subset of simplesS′ ∈ repα A and simplesT ′ ∈ repβ A such
thatS′ ⊕ T ′ lies in a neighborhood ofM ⊕N .

It follows from [13] that one can reconstruct the local quiver setting ofS′⊕T ′ from
that ofM ⊕N . This local quiver has two vertices{v1, v2} with −χQ(η, ǫ) arrows
from v1 to v2 and−χQ(ǫ, η) arrows fromv2 to v1. In v1 there are1 − χQ(ǫ, ǫ)
loops and inv2 there are1 − χQ(η, η) loops. The dimension vector is(1, 1). From
this we deduce that

dimℓ Ext
1
A(S′, T ′) = −χ(ǫ, η)

but we have seen before that the extension-dimension only depends on the repre-
sentation type and not on the choice of simples, hence this number is also equal to
dimℓ Ext

1
A(S, T ). �

Theorem 3 The one-quiver setting(Q1(A), α1(A)) contains enough information to
construct the local quiver setting(QM , αM) for every semi-simple representation

M = S⊕e1
1 ⊕ . . .⊕ S⊕el

l

13



ofA.

Proof. This is a direct consequence of the foregoing two propositions. To begin, we
can determine the possible dimension vectorsαi of the simple componentsSi. Write
αi =

∑k
j=1 aj(i)βj thenǫi = (a1(i), . . . , ak(i)) must be the dimension vector

of a simple representation of the associated quiverQ1(A). Moreover, by the previous
theorem we know that

dimℓ Ext
1
A(Si, Sj) = δij − χ(ǫi, ǫj)

and hence we have full knowledge of the local quiverQM . �

7 The one-quiver forπ1(SG)

In this section we will construct the one-quiver setting forthe fundamental algebra
π1(SG) of a graphSG of separable (that is, semi-simple)ℓ-algebras. As an inter-
mediary step we will construct a finite quiverQ0(SG) such that finite dimensional
representations ofπ1(SG) correspond to certain finite dimensional representations of
the path algebraℓQ0(SG).

We have decomposition of the vertex- and edge-algebras

Sv = Mdv(1)(ℓ)⊕. . .⊕Mdv(nv)(ℓ) resp. Se = Mde(1)(ℓ)⊕. . .⊕Mde(ne)(ℓ)

The embeddingsSe ⊂ - Sv are depicted via Bratelli-diagrams or, equivalently, by
natural numbersa(ev)

ij for 1 ≤ i ≤ ne and1 ≤ j ≤ nv satisfying the numerical
restrictions

dv(j) =

ne∑

i=1

a
(ev)
ij de(i) for all 1 ≤ j ≤ nv and allv ∈ V ande ∈ E

Remark that these numbers give therestriction data, that is, the multiplicities of the
simple components ofSe occurring in the restrictionV (v)

j ↓Se
for the simple compo-

nentsV (v)
j of Sv. From these decompositions and Schur’s lemma it follows that for

any edge��������v
e

��������w in the graphG we have

HomSe
(V

(v)
i , V

(w)
j ) =

ne∑

k=1

a
(ev)
ki a

(ew)
kj = n

(e)
ij

Definition 9 For a graphSG of separableℓ-algebras we define a quiverQ0(SG) as
follows

• Vertices : for any vertexv ∈ V ofG takenv vertices{µ(v)
1 , . . . , µvnv

}.

• Arrows : fix an orientation~G on all of the edges ofG. For any edge��������v
e

��������w

in G we add for each1 ≤ i ≤ nv and each1 ≤ j ≤ nw preciselyn(e)
ij

arrows between the verticesµ(v)
i andµ(w)

j oriented in the same way as the

edgee in ~G.

We callQ0(SG) theZariski quiverof the graph of separable algebrasSG.
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Therepresentation spacerepα Q0(SG) is the affineℓ-space

repα Q0(SG) =
⊕

��������v
e // ��������w

⊕nv

i=1 ⊕nw

j=1 Mα
(w)
j

×α
(v)
i

(ℓ)

and twoα-dimensional representations are said to beisomorphicif they are conjugated
via the natural base-change action ofGL(α) = ×v∈V ×n

i=1 GL(α
(v)
i ).

A dimension vectorα = (α
(v)
i : v ∈ V, 1 ≤ i ≤ nv) forQ0(SG) is said to

be ann-dimension vectorif the following numerical conditions are satisfied

nv∑

i=1

dv(i)α
(v)
i = n

for all v ∈ V .
For any edge��������v

e // ��������w we denote byQe the bipartite subquiver ofQ0(SG)

on the vertices{µ(v)
1 , . . . , µ(v)

nv
}, {µ

(w)
1 , . . . , µ(w)

nw
} and then(e)

ij arrows between

µ
(v)
i andµ(w)

j determined by the embeddingsSe ⊂ - Sv andSe ⊂ - Sw.

Definition 10 Letα be ann-dimension vector,M ∈ repα Q0(SG) ande ∈ E :

• M is said to bee-semistable iff for allQe- subrepresentationsN ofM |Qe of
dimension vector(n1, . . . , nnv

, n′
1, . . . , n

′
nw

) we have

nw∑

i=1

n′
idw(i) ≥

nv∑

i=1

nidv(i)

• M is said to bee-stable iff for all properQe-subrepresentationsN ofM |Qe
of dimension vector(n1, . . . , nnv

, n′
1, . . . , n

′
nw

) we have

nw∑

i=1

n′
idw(i) >

nv∑

i=1

nidv(i)

• M is said to beSG-semistable (resp.SG-stable) iffM is e-semistable (resp.
e-stable) for all edgese ∈ E.

The relevance of the quiverQ0(SG) and the introduced terminology is contained
in the next result.

Proposition 8 Everyn-dimensional representationπ1(SG)
φ
- Mn(ℓ) deter-

mines (and is determined by) anSG-semistable representationMφ ∈ repα Q0(SG)
for somen-dimension vectorα. Moreover, ifφ andφ′ are isomorphic representations
ofπ1(SG), thenMφ andMφ′ are isomorphic as quiver representations.

Proof. LetN = ℓ
n

φ be then-dimensional module determined byφ. For each vertex
v ∈ V we have a decomposition by restrictingN to the separable subalgebraSv

N ↓Sv
≃ V

⊕α
(v)
1

1,v ⊕ . . .⊕ V
⊕α(v)

nv
nv,v

15



where theVi,v are the distinct simple modules ofSv of dimensiondv(i). Choose anℓ-
basisBv ofN ↓Sv

compatible with this decomposition. These decompositionsdeter-

mine ann-dimension vectorα. For any edge��������v
e // ��������w the embeddingsSe ⊂

α
- Sv

andSe ⊂
β
- Sw determine twon-dimensionalSe-representations

(N ↓Sv
) ↓αSe

and (N ↓Sw
) ↓βSe

which, by construction ofπ1(SG) are isomorphic. That is, the basechange map

Bv
ψvw

- Bw is an invertible element of

HomSe
(N ↓Sv

, N ↓Sw
) = ⊕nv

i=1 ⊕nw

j=1 Mα
(w)
j

×α
(v)
i

(HomSe
(Vi,v, Vj,w))

and henceψvw determines a representation of the bipartite quiverQe of dimen-
sion vectorα|Qe. Repeating this for all edgese ∈ E we obtain a representation
Mφ ∈ repα Q0(SG). Invertibility of the mapψvw is equivalent toMφ being
e-semistable, soMφ is SG-semistable. Isomorphic representationsφ andφ′ deter-
mine isomorphic vertex-decompositions whence, by Schur’slemma, bases which are
transferred into each other via an element ofGL(α) and hence the quiver representa-
tionsMφ andMφ′ are isomorphic. From the construction of the fundamental algebra
π1(SG) it follows that one can reverse this procedure to construct on n-dimensional
representation ofπ1(SG) from aSG-stable representationM ∈ repα Q0(SG) for
somen-dimension vectorα. �

Under this correspondence simpleπ1(SG)-representations correspond toSG-
stable representations. Ifα is ann-dimension vector such thatrepαQ0(SG) contains
SG-stable representations (which then form a Zariski open subset), thenα is aSchur
root ofQ0(SG) and consequently the dimension of the classifying variety is equal to
1 − χ0(α, α) whereχ is theEuler formof the quiverQ0(SG). For this result and
related material on Schur roots we refer to [18].

Proposition 9 Isomorphism classes of simplen-dimensional representations of
π1(SG) are parametrized by the points of a smooth quasi-affine variety (possibly with
several irreducible components)

isosimpn π1(SG) =
⊔

α

isosimpα π1(SG)

whereα runs over alln-dimension vectors such thatrepα Q0(SG) containsSG-
stable representations. These components have dimensions

dim isosimpα π1(SG) = 1 − χ0(α, α)

whereχ0 is the Euler form of the quiverQ0(SG).

As an example consider the modular groupSL2(Z) which is the amalgamated
productZ4 ∗Z2 Z6, see for example [4, I§7]. If char(ℓ) 6= 2, 3 the group-algebra
ℓSL2(Z) is the fundamental algebra of the graph of separableℓ-algebras

��������v
e // ��������w with Sv = ℓZ4 Sw = ℓZ6 Se = ℓZ2
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As all simples are one-dimensional (determined by their eigenvalue), it is easy to verify
that the zero quiverQ0(ℓSL2(Z)) has the following form

��������

��������

��������

��������

��������

��������

��������

��������

��������

��������

−i

−1

i

1

−ρ

ρ2

−1

ρ

−ρ2

1

++WWWWWWWWWWWWWWWWW

33ggggggggggggggggg

;;wwwwwwwwwwwwwwwwwwwww ++WWWWWWWWWWWWWWWWW

33ggggggggggggggggg

;;wwwwwwwwwwwwwwwwwwwww

##GGGGGGGGGGGGGGGGGGGGG

++WWWWWWWWWWWWWWWWW

33ggggggggggggggggg

##GGGGGGGGGGGGGGGGGGGGG

++WWWWWWWWWWWWWWWWW

33ggggggggggggggggg

(ρ is a primitive3rd root of unity) which is the disjoint union of two copies of the
quiver associated toPSL2(Z) in [22].

The congruence subgroupΓ0(2) = {

[
a b
c d

]

∈ SL2(Z) with c even} is the

fundamental group of the graph of finite groups

��������v
e

��������w f Gw = Ge = Gf = Z2, Gv = Z4

If char(ℓ) 6= 2, the group algebraℓΓ0(2) is the fundamental algebra of a graph of
separableℓ-algebras and the zero quiverQ0(ℓΓ0(2)) has the following form

��������

��������

��������

��������

��������

��������

−i

−1

i

1

−1

1

33ggggggggggggggggg

33ggggggggggggggggg ++WWWWWWWWWWWWWWWWW ++WWWWWWWWWWWWWWWWW

bb

bb

Definition 11 For a graphSG of separableℓ-algebras we define a quiverQ1(SG) as
follows

• Vertices : Let{α1, . . . , αk} be the minimal set of generators for the sub-
semigroup of dimension vectorsα ofQ0(SG) which aren-dimension vectors
for somen ∈ N and such thatrepα Q0(SG) containsSG-semistable repre-
sentations. The vertices{ν1, . . . , νk} are in one-to-one correspondence with
these generators{α1, . . . , αk}.

• Arrows : The number of directed arrows inQ1(SG) fromνi to νj

# { ��������i // ��������j } = δij − χ0(αi, αj)

whereχ0 is the Euler-form of the Zariski quiverQ0(SG).

We callQ1(SG) the one-quiver of the graph of separable algebrasSG.

The one-quiverQ1(SG) allows us to determine the componentsrepα π1(SG)
which contain (a Zariski open subset of) simple representations. Remark that the de-
scription of Schur roots is a lot harder than that of dimension vectors of simple repre-
sentations.
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Proposition 10 If α = c1α1 + . . .+ ckαk ∈ comp π1(SG) then the component
repα π1(SG) contains simple representations if and only if

•

χ1(γ, ǫi) ≤ 0 and χ1(ǫi, γ) ≤ 0

for all 1 ≤ i ≤ k whereγ = (c1, . . . , ck) andǫi = (δ1i, . . . , δki) and
whereχ1 is the Euler form of the one quiverQ1(SG)

• supp(γ) is a strongly connected subquiver ofπ1(SG) and if supp(γ) is of
extended Dynkin typẽAl then all non-zero components ofγ must be equal to
one.

Proof. Follows from the proof of proposition 6. �

If char(ℓ) = 0 one can apply Luna slice machinery to construct a Zariski open
subset of all simple representations inrepα π1(SG) from the knowledge of low-
dimensional simples. For example, suppose we have found simple representations

Si ∈ repαi
π1(SG) for all 1 ≤ i ≤ k

and consider the pointM in the affine spacerepα Q0(SG) determined by the semi-
simple representation ofπ1(SG)

M = S⊕c1
1 ⊕ . . .⊕ S⊕ck

k

then the normal space to theGL(α)-orbit O(M) is isomorphic to
Ext1π1(SG)(M,M) which we have seen can be identified torepγ Q1(SG).

Proposition 11 Let α = c1α1 + . . . + ckαk be a component such that
repα π1(SG) contains simple representations. In the affine spacerepαQ0(SG)
identify the normal space to the orbitO(M) of the semi-simple representationM (as
above) with

NM = {M + V | V ∈ repγ Q1(SG) }

whereγ = (c1, . . . , ck). Then,GL(α).NM contains a Zariski open subset of all
α-dimensional simple representations ofπ1(SG).

Proof. This is a special case of the Luna slice result applied to the local quiver setting.
In fact, one can generalize this result to other known semi-simple representationsN of
π1(SG) but then one has to replaceQ1(SG) by thelocal quiverQN ofN . �

In theSL2(Z) example,comp(ℓSL2(Z)) is generated by the12 components of
two-dimensional representations ofQ0(ℓSL2(Z))

νij = (δ1i, . . . , δ4i; δ1j, . . . , δ6j) 1 ≤ i ≤ 4, 1 ≤ j ≤ 6

for which i andj are both even or both odd. From this the structure of the one quiver
Q1(ℓSL2(Z)) (corresponding to the12 one-dimensional simples ofℓSL2(Z)) can
be verified to be
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Here, the vertices of the first component correspond (in cyclic order) to
ν11, ν33, ν15, ν31, ν13, ν35 and those of the second component (in cyclic order) to
ν22, ν44, ν26, ν42, ν24, ν46. Applications to the representation theory of the modu-
lar groupSL2(Z) and its central extensionB3 (the third braid group) will be given
elsewhere.

In theΓ0(2) example,comp(ℓΓ0(2)) is generated by the4 dimension vectors

(1, 0, 0, 0; 1, 0), (0, 0, 1, 0; 1, 0), (0, 1, 0, 0; 0, 1), (0, 0, 0, 1; 0, 1)

and one verifies that the one-quiverQ1(ℓΓ0(2)) has the following form

�������� ))<< ��������ii bb �������� ))<< ��������ii bb

Appendix : The component coalgebracoco(A)

Over an algebraically closed fieldℓ we have seen that the component semigroup and
Euler form contain useful information on the finite dimensional representations of an
ℓ-qurve. Clearly, one can repeat all arguments verbatim for an arbitraryℓ by restricting
at those components which containℓ-rational points. However, this sub-semigroup
comp(A) of comp(A⊗ ℓ) is usually too small to be of interest.

Example 3 Let ℓ ⊂ L be a finite separable field extension of dimensionk. AsL is
a simple algebra, all its finite dimensional representations are of the formL⊕a and
hence only components ofrepn L containingℓ-rational points exist whenk|n. Over
the algebraic closure we have

L⊗ ℓ = ℓ× . . .× ℓ
︸ ︷︷ ︸

k

whencecomp(L⊗ℓ) ≃ Nk generated by the factors ofL⊗ℓ. We havecomp(A) ⊂
comp(A⊗ ℓ) sending the generatork to (1, . . . , 1).

We recall some standard facts from [6, Chp. 1] on unramified commutative algebras
over an arbitrary basefieldℓ. A commutative affineℓ-algebraC is said to beunramified
whenever

C ⊗ ℓ ≃ ℓ× . . .× ℓ

It is well known that all unramifiedℓ-algebras are of the form

C ≃ L1 × . . .× Lk

where eachLi is a finite dimensional separable field extension ofℓ. From this it fol-
lows that subalgebras, tensorproducts and epimorphic images of unramifiedℓ-algebras
are again unramified. As a consequence, an affine commutativeℓ-algebraC has a
uniquemaximal unramifiedℓ-subalgebraπ0(C). In caseC = ℓ[X] is the coordinate
algebra of an affineℓ-schemeX, the algebraπ0(C) contains all information about
the connected components ofX. Recall that an affineℓ-schemeX (or its coordinate
algebraℓ[X]) is said to beconnectedif ℓ[X] contains no non-trivial idempotents and
is calledgeometrically connectedif ℓ[X] ⊗ ℓ is connected. We summarize [6, I.7] in

Proposition 12 For an affineℓ-schemeX we have
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1. X is connected iffπ0(ℓ[X]) is a field.

2. X is geometrically connected iffπ0(ℓ[X]) = ℓ.

3. If X is connected and has anℓ-rational point, thenX is geometrically con-
nected.

4. Ifπ0(ℓ[X]) = L1 × . . .×Lk with all Li separable field extensions ofℓ, then
X has exactlyk connected components.

5. If Y is an affine ℓ-scheme andX - Y a morphism, then
π0(ℓ[Y ]) - π0(ℓ[X]) is anℓ-algebra morphism.

6. If Y is an affineℓ-scheme, then the natural map

π0(ℓ[X]) ⊗ π0(ℓ[Y ]) - π0(ℓ[X] ⊗ ℓ[Y ]) = π0(ℓ[X × Y ])

is anℓ-algebra isomorphism.

Definition 12 ForA anℓ-qurve consider the sum-maps

repn A× repm A - repm+n A

which determineℓ-algebra morphisms

∆m,n : π0(ℓ[repm+n A]) - π0(ℓ[repn A]) ⊗ π0(ℓ[repm A])

Denoteπ0(n) = π0(ℓ[repn A]) and consider the gradedℓ-vectorspace

coco(A) = π0(0) ⊕ π0(1) ⊕ π0(2) ⊕ . . .

Define a coalgebra structure by taking as thecomultiplicationmap

coco(A)
∆
- coco(A) ⊗ coco(A)

∑

m+n=N

∆m,n : π0(N) -

∑

n+m=N

π0(n) ⊗ π0(m)

and as thecounitcoco(A)
ǫ
-- π0(0) = ℓ. We call(coco(A),∆, ǫ) thecompo-

nent coalgebraof theℓ-qurveA.

In fact, it follows from the foregoing proposition thatcoco(A) is in fact amock
bialgebra, that is a bialgebra without a unit-map. Recall that ifG is a finite group, its
function bialgebrafunc(G) is the space of allℓ-valued functions onG with point-
wise multiplication and co-multiplication induced by

∆(xg) =
∑

g′.g”=g

xg′ ⊗ xg”

wherexh is the function mappingh 7→ 1 and all otherh′ ∈ G to zero. IfG is no
longer finite,func(G) is still a mock bialgebra.

Proposition 13 If A is anℓ-qurve, then there is an isomorphism of mock bialgebras

coco(A) ⊗ ℓ ≃ func(comp(A⊗ ℓ))

and hencecoco(A) contains enough information to reconstruct the component semi-
group comp(A ⊗ ℓ). Alternatively, the Galois groupGal(ℓ/ℓ) acts onA ⊗ ℓ
and hence oncomp(A ⊗ ℓ) and the function coalgebra. The component coalgebra
coco(A) can be obtained by Galois descent

coco(A) = func(comp(A⊗ ℓ))Gal(ℓ/ℓ)
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