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Abstract

In this paper we associate to &mgurve A (formerly known as a quasi-free
algebra [3] or formally smooth algebra [7]) tbae-quiverQ1 (A) and dimension
vectorai; (A). This pair contains enough information to reconstruct fbmae
N the G L., -étale local structure of the representation schemp, A. In an
appendix we indicate how one might extend this to qurves onegaralgebraically
closed fields. Further, we classify all finitely generatedugs G such that the
group algebraG is ané-qurve. Ifchar(£) = 0 these are exactly the virtually
free groups. We determine the one-quiver setting in thie easl indicate how it
can be used to study the finite dimensional representationgually free groups.
As this approach also applies fisndamental algebraef graphs of separablé-
algebras we state the results in this more general setting.

1 Qurves

In this paper¢ is a commutative field with algebraic closuteAlgebras will be asso-
ciative £-algebras with unit and (usually) finitely generated ofiefFor anf-algebraA
let A’ be thef-vectorspaced /£.1 and define (following [3§1]) the graded algebra of
non-commutative differential forms

QA=002 A with QA=AxA®

with multiplication defined by the mafR" A ® Q*~1A —» Qn1tk—1 4 where
n .
(ao, e an).(an_H, cee an+k) = Z(—l)n_z(ao, NN X1 s F S PP an+k)
=0

As Q°A = A this multiplication defines am-bimodule structure on eaci™ A
and one proves [3, Prop. 2.3] th&tA = T4 (Q2' A) the tensor algebra of thd-
bimoduleQ! A. Remark that the standard assumption of [3] is that C the field of
complex numbers. However, with minor modifications mostiltssemain valid over
an arbitrary basefield and we will refer to statements in [BEnever the argument can
be repeated verbatim.

Definition 1 A finitely generated-algebra A is said to be ar¢-qurve(or quasi-free
[3] or formally smooth[7] ) if either of the following two equivalent conditions is
satisfied



e The universal bimodul&} (A) of derivations is a projectivel-bimodule.

e A satisfies the lifting property modulo nilpotent ideal&inr- alg, the category
of £-algebras.

Whereas the lifting property extends Grothendieck’s cbmazation of commutative
regular algebras (see for example [6]) to the non-commutasietting, such algebras
are known to bénereditaryby [3, Prop. 5.1] and hence they behayeéte like aurves

Recall that a finite dimensionétalgebras$ is said to beseparablef and only if
S is the direct sum of simple algebras each of which has a cuiltieh is a separable
field extension of. For example, the group algebf& of a finite groupGs is separable
if and only if the order ofG is a unit in£. Separablé-algebras are known to k&
qurves by [3§4] but should be thought of as correspondingtints In fact, they are
characterized by either of the following two equivalentditions

e A is a projectiveA-bimodule.
e A satisfies theonjugatdifting property modulo nilpotent ideals it — alg.

That is, if I < B is a nilpotent ideal and i,vy : S —= B/I are two/-algebra
morphisms which are conjugated by a ubitc B/I then there exist algebra lifts
¢, : S —=% B and a unitb € B (mapping tob) conjugatinge andp, see [3,
Prop. 6.1.2].

Genuine examples of-qurves are : the free algebfdx,,...,z,,), the path
algebraf@ of a finite quiverQ and the coordinate ring[C] of a smooth affine com-
mutative curveC'. From these more complicated examples are construed bgrsaiv
constructions such as taking algebra free prodcts A’ or universal localizations
As:. In the next section we will introduce a new clasZajurve examples.

For an¢-algebraA recall that therepresentation schemeep,, A is the affinet-
scheme representing the functor

£ — commalg — sets definedby C — Homy_a4(A, M,(C))

wherel — commalg is the category of commutativiealgebras. A major motivation
for studyingé-qurves comes from the result mentioned in [8], [7] and pdowve[11,
(2.2)].

Proposition 1 If A is a£-qurve, then all representation schemes,, A are smooth
affine varieties (possibly having several connected coripisi.

2 Qurves from graphs

In this section we will imitate the Bass-Serre theory of thedamental group of a
graph of groups, see [19] or [4], to construct a large clagxamples of-qurves.

Definition 2 Let G = (V, E) be a finite graph with vertex-s8 and edges£. A
G-graph of¢-qurvesQ is the assignment of

e An/-qurve A, to every vertexw € V.

e A separable/-algebrasS, to every edge € E.



e Inclusions oft-algebras
S, ey, A, and S, ey A, foreveryedge ®———@®

If, moreover, all vertex-algebras are separable algeb$gasve call this data aG-graph
of separable algebrasd denote it bySs.

In order to construct thiitndamental algebra; (Q¢) of aG-graph of qurve® ¢
we need to havé-algebra equivalents for the notionsarhalgamated group products
[19, §1.2] and of theHNN constructior19, §1.4]. If S is a separablé-algebra and if
A and A’ are S-algebras, then theoproductA g A’ is the algebra representing the
functor

Homg_a14(A,—) X Homg_a,(A’, —)

in the categons — alg of S-algebras, see for example [17, Chp. 2] for its construction
and properties. As for the HNN-construction, tef3 : S —— A be two£-algebra
embeddings of in A, consider the algebra

. A x Lt t71]

T (B(s) —t~ta(s)t : Vs € S)

Lemmal Let S be a separableg-algebra, A and A’ £-qurves and¢-embeddings
a,3: 8 <~ AandS —— A’. Then, thef-algebras

a’ﬁ
Axg

Axg A" and A%
are againé-qurves.

Proof. Our edge-algebras need to be separdkddgebras because we will need the
conjugate lifting property modulo nilpotent ideals.

AmorphismA s A’ —%~ B/I s fully determined by morphismd —/~ B/I

and A’ i: B/I such thatf|S = f’|S. As A and A’ are quasi-free one hds
algebra liftsf : A —— B andjf’ : A’ —— B whence two morphisms afi which
have to be conjugated by &ne B* such thab = 1p/,1, thatisf’(s) = b~ f(s)b
forall s € S. Butthen, we have a lifd xg A’ —— B determined by the morphisms
b~1fbandf’.

A morphismA *‘;’ﬁ 2, B/ I determines (and is determined by) a morphism

AL, B/I and a unitb = g(t) suchthatf ocandf o3 : S —— B/I are
conjugated vib. BecauseA is quasi-free we have a liff : A — B and algebra
mapsf oaandfoB3: S —» B which reduce td conjugate morphisms. But then
there is a unib € B* conjugatingf o a to f o 8 and mapping to b produces the
required lift A 3° —— B. O

However, as often with universal constructions, we haveake tcare not to end
up with the trivial algebra! Becaus® is semi-simple andd and A’ are faithful S-
algebras it follows from [17, Chp. 2] that there are inclusi?d —— A xg A’ and
A’ A xg A’. To prove thatA —— A*g"’ we give another description of
the HNN-construction mimicking [1%1.4]. For anyn € Z take A[n] ~ A and
construct the following amalgamated products

Ao = A, A1 = A[—l] *g AO *g A[l], ce Ak. = A[—k] *g Ak'—l *g A[k]



with respect to the following embeddings

A[—1] A[0] A[1] A[2]
NP AN

As S is semi-simple we have by [17, Chp. 2] embeddiays C A; C A2 C ...
and henced embeds in the limitA = lim A,,. The shift-identity

D Al — 1] 2 AlK] L Ak 1] — ...

induces an automorphisgon A and as the two algebras below have the same univer-
sal property they are isomorphic

AxSP ~ Aft,t71,¢] whence A< AxIP

Definition 3 Let Q¢ be a graph o#-qurves and lef” be a maximal subtree @¥. We
construct thef-algebra Ar by induction on the numberof edges ifl". If t = 0 so
V = {v}thenAr = A,. Ift > 0, consider a leaf vertex with connecting edge

®—=—@® in T. Construct a new tre@” ont — 1 edges by dropping the vertex
and edgee and construct a new graph étqurvesQ’r by

Al =A,xa, Ay, Al =A, forv#ueV, A}:Affore;éfeE

thenAr ~ Ar,. Observe that there are embeddings SN A foreveryu € V.
LetG — T = {es,...,e,} and takedoy ~ Ar. For every edgeéd——@ in
G — T there are two embeddings
s S. &L S < A,y and B; : S, &Y S, <. oA,
and we define
Aj = Ag_yx gl

The algebraA.,. is then called thdundamental algebra of the graph&fjurvesQ¢
and is denoted by1 (Q¢).

Theorem 1 If Q¢ is a graph of¢-qurves, the fundamental algebrg (Q¢) is again
an{-qurve.

Proof. Immediate from the construction and lemma 1. O

3 Qurve group algebras

The classification of-qurves is way out of reach at the moment so it is important to
have partial classifications. In [36] the finite dimensionaf-qurves were shown to
be the hereditary finite dimensioné&lalgebras (and hence Morita equivalent to path
algebrast@ of a finite quiver@ without oriented cycles). In this section we will
classify the group algebradd for H a finitely generated group which afequrves.
The desired answer is that these are precisely#iewith H a virtually free group



(thatis,H has a free subgroup of finite index) but we have to take theacheristic of
£ into account (observe that finite groups are virtually free)

If G is a graph ofinite groupsas in [19] such that all orders are invertibledn
then we can associate to it a graph of separélaligebrasSs by taking

Sy =4G, YveV and Se =¢G. Vec E

with embeddings determined by the group-embeddings, (G¢) is thefundamental
groupof G¢ as in [19,§5.1] then the point of the construction in the previous secti
is that

¢r1(Ga) =~ ™1(Sc)

and hence these group algebrastageirves. The connection with virtually free groups
is provided by a result of Karrass, see for example [21, Thnb]. 3The following
statements are equivalent for a finitely generated gidup

e H = 71 (G¢) for a graph of finite groups.
e H is avirtually free group.

For example, all congruence subgroups in the modular g&lip(Z) are virtually
free. On the other hand, the third braid graBg = (s, t | s = t3) is not virtu-
ally free. Note that very little is known about simple reetations of congruence
subgroups. For some low dimensional classification§ b (Z)-representations see
[20].

Theorem 2 The following statements are equivalent for a finitely gatest groupH :
1. The group algebrdH is an¢-qurve.

2. H is a virtually free group such that in a descriptidd = w1 (G¢) all orders
of the vertex groupé&s,, are finite and invertible ir?.

Proof. If £H is a quasi-fred-algebra, it has to be hereditary by [3, Prop. 5.1] and
hence, in particular, its augmentation idegy mast be a projective leH -module.

By a result of Dunwoody, see [4, Thm. [V.2.12] this is equérdlto H being the
fundamental group of a graph of finite grougg such that all vertex-group orders
are invertible in¢, whence (2) follows. The converse implication follows frahe
discussion preceding the statement and the last section. O

If char(€) = 0 it follows from this and proposition 1 that all representati
schemesrep,, £H are smooth affine varieties wheneEr is a finitely generated
virtually free group.

4 The component semigroup

From now on we will assume thét= £ is algebraically closed. In the appendix we
will replace the component semigroup by a component cobaggever an arbitrary
basefielde. If A is an£-qurve we know from proposition 1 that all representation
schemes are smooth affine varieties.



Definition 4 For an¢-qurveA the smooth varietyep,, A decomposes into connected
(equivalently, irreducible) components

rep, A = |_| repa A

|a|=mn
wherea is a label. We calkx a dimension vectoof total dimensiona| = n.

An £-point of rep,, A is ann-dimensional leftA-module and the direct sum of
modules defines theum maps

repn A X repm A — reppym A

If we decompose these varieties into their connected coemsrand use the fact that
the image of two connected varieties is again connectedawealefine a semigroup.

Definition 5 Thecomponent semigrougomp(A) is the set of all dimension vectors
«a equipped with the additioox + 3 = ~ where~ determines the unique component
rep, A of rep,4m A containing the image ofep, A X reps A under the sum
map
U repa A X |_| repg A — U repy A

la|=n |Bl=m [v|=n+m
comp(A) is acommutative semigroup with an augmentation e@amp(A) — N
sending a dimension vecter to its total dimensionc]|.

Here are some examples :

eFor A = M, #) & ... ® M, (£) semi-simple, comp(A) =
(Nnq,...,Nng) C Nk,

e For A = £Q a path algebra we havwmp(A) = N* wherek is the number
of vertices of the quive@.

e For a direct sumA = A; @ Ap we havecomp(A) = comp(A1) &
comp(Az).

e Forafree algebraprodug&t = A, * A2 we have thatomp(A+) is the fibered
product (using the augmentatiomymp(A1) Xy comp(Az), see [14, Prop.
1].

In [14, Question 2] K. Morrison asked whethevmp(A) is always a free Abelian
semigroup (as in the examples above). However, eved fanf-qurve, reality is more
complex as one can remove components by the process of saliVecalization (see
for example [17] for definition and properties of universadlization).

Proposition 2 For every sub semigrou§ C N, there is an¢-qurve A with
comp(A) =S

as augmented semigroups.



Proof. Suppose first thagcd(S) = 1, that is the elements &8 are coprime. By
using results on polynomial- and rational identities of nicats (see for example [16])
it was proved in [10] that there is an affidealgebra with presentation

_ £<m1a"'a$aay1a“'ayb>
(1_yipi(wla---awaayla"'ayi—l) : 1 S”'S b)

(with each of thep;, € £{x1,...,%Ta,¥y1,..-,Yi—1)) having the property that
has finite dimensional representations of dimensions Bxtet elements of5. A is
a universal localization of(zx1,...,x,) and hence is aé-qurve (for example use
[17, Thm. 10.6] to prove tha®@!(A) is a projectiveA-bimodule). As such, for every
n, rep, A is a Zariski open subset (possibly empty)safp,, £{x1,...,Ts) =
M, (£)*2 and is therefore irreducible (when non-empty). Therefetenp(A) =
S C N and consists precisely of those € N for which none of thep, (when
expressed as a rational non-commutative functiamin. . . , ) is a rational identity
for n X n matrices.

For the general case, assume ted(S) = m and takeS’ = S/m with asso-
ciated algebra (as abovd) for whichcomp(A’) = S’ C N. But then,

comp(A’ x M, (€)) = 8" xyNm = S

andA = A’ x M,,(£) is again arf-qurve. O

5 Tits and Euler forms

In this section we will define bilinear forms artomp(A) (when A is an£-qurve)
generalizing the Tits- and Euler-forms on the dimensionamsof a quiver. Letep A
be the Abelian category of all finite dimensional represtmta of A. If A is an affine
¢-algebra, thetH om 4 (M, N) and ExztY, (M, N) are finite dimensiona-spaces
forall M, N € rep A.

If A is hereditary (for example, ifA is anf-qurve) we have thay 4 (M, —) and
xa(—, IN) are additive on short exact sequencesép A where

xa(M,N) = dimzjHom (M, N) — dimzExt (M, N)

For M € rep A define itssemi-simplificationVf ** to be the semi-simplél-module
obtained by taking the direct sum of the Jordan-Holder comepts ofA. From addi-
tivity on short exact sequences it follows for &f, N € rep A that

xa(M,N) = xa(M?®®, N*?)
Fora, 3 € comp(A) it follows from [9] and [2, lemma 4.3] that the functions

repa A X repg A — 7 (M,N) — {dz_mlHOTA(M’ N)
dimgzExt, (M, N)
are upper semicontinuous. In particular, there are Zaogkn subsets (whence dense
by irreducibility) of rep, A X repg A where these functions attain a minimum.
Following [18] we will denote these minimal values hpm («, 3) resp.ext(a, 3).
The groupGL,, acts onrep,, A by base-change and orbi€3(M) under this
action are precisely the isomorphism classea-@fimensional leftA-modules. From



[5] we recall that the semi-simplificatioM ¢ belongs to the Zariski closu® (M)
of the orbit and thaExt), (M, M) can be identified to theormal spaceo the orbit
O (M) with respect to the scheme structureraap,, A

Proposition 3 Let A be an affine-algebra.

1. If repy A is a smooth variety, then for aM € rep, A we have
712 — xa(M, M) = dim rep, A
and hencex 4 (M, M) is constant omrep, A.
2. Ifrepn A, repg A andrepa43 A are smooth varieties, then
xa(M,N) + xa(N, M)
is a constant function onep, A X repg A.
Proof. If repy A is smooth inM, it follows from the above remarks that
Tyvrepy A = Exty (M,N) ® TnO(M), O(M) = GL,,|/Stab(M)

whereStab(M) is the stabilizer subgroup which by [9] has the same dimenaf
Hom (M, M). Therefore,

dimrep, A = dimzTyrepy, A
= dimgzExztY, (M, M) + |v|? — dimzHom s(M, M)
whence (1). (2) follows from this by considering the poVk & N € repq.+g A
and using bi-additivity ofy 4.

Definition 6 If A is ané-qurve, thenforale € comp(A) the representation variety
reps A is smooth. Therefore, the constant value

(o, 8)a = xa(M,N) + xa(N, M)
onrep, A X repg A defines a symmetric bilinear form
(= —)a : comp(A) x comp(A) — Z
which we call theTits-form of theZ-qurve A.

For general affiné-algebrasy 4 (M, N) + x a (N, M) does not have to be constant
and the foregoing result can be used to deduce singularispeific representation
varieties.

Example 1 Let A = ¢Bs be the group-algebra of ththird braid groupBs =
(s,t | 82 = t3). The one dimensional representation variety is the cuspsnihe
singular origin

repr A= {(z,y) € £ | 2® = y*} — {(0,0)}

and hence is a smooth affine variety. As all points are simplmodules we have
thatdim; Hom a(—, —) is equal to zero on the open setp; A X repy A — A



and is equal to one on theiagonalA. As fordim; Extl (—, —) this is zero on
rep; A X rep1 A — (A U A U Ag) where

{Al = {((z,v), (pz, —y)) : =% =y?}
Az = {((z,y), (PP, —y)) : z® =y?}

for p a primitive third root of unity. As a consequencea (M, N) is zero on the
Zariski open subsetepl_A xXrepr A— (A1 u_Az) andis equalto-1 onA; LIA,.
Therefore £ B3 is not ané-qurve. In factreps £B3 is not smooth.

If ais the dimension vector of a simple representatiodothen there is a Zariski
open subsetimp, A of simple representations irep,, A.

Proposition 4 If A is an£-qurve anda, 3 are dimension vectors of simple represen-
tations, then the function
XA(Sa T)

is constant orstmps A X simpg A.

Proof. There is a Zariski open subsbt C simp, A X simpg A consisting of
couples(S’, T') such that

dimzExt! (S',T') = ext(c, 8) and dimzExtl(T',8’) = ext(B, a)
Hence, for all(S, T') € simp, A X simpg A
dimzExty (S, T) > dimzExt! (S, T")
dimzExty (T, S) > dimzExt! (T', ")

If a # B(orifa = BandS % T) xa(S,T) = —dimzExty (S, T) and
hence the above inequalities must be equalities by prappdt Remains to prove for
S, T € simp, Awith S 2 T thatxa(S,S) = xa(S,T). Consider the two
semi-simple representatiodd = S @ S andN = S @ T in repz, A. From
proposition 3 (1) we get

4xa(S, S) = XA(S, S) + xa(T, T) + xa(S,T) + XA(T’ S)
= 2x4a(S,S) + 2xa(S,T)

(using proposition 3 (1) and the above fact that (S, T) = xa(T, S)) whence
XA(S, S) =XA(S,T). O
If M € rep A, its semi-simplification has as isotypical decomposition
M=58%"g...0sP

with all §; non-isomorphic. IiS; € repg, A we say that theepresentation typef
M (which is determined upto permutation of tfe;, 3;) terms).

T(M) = (e1,B15---; €k, Br)
Proposition 5 If A is an£-qurve, theEuler-form
xa(M,N) = dimzgHoma(M, N) — dimzExztY, (M, N)

depends only on the representation typ¢d4) and (V).



Proof.  Follows from the foregoing result by observing thgta (M, N) =
XA(MSS,NSS). |:|

In particular, there is a Zariski open subsetriap, A X repg A of couples
(M, N) on which the value ok 4 (M, N) is constant and equal to tiiler form

xa(a,B) = hom(aa B) — ewt(aa ﬁ)

Clearly, this open set contains all representatiorgeoferic representation typgen,
see for example [13]. In fact, #har(£) = 0 the proof of proposition 7 implies that
xa(M, N) is constant omep, A X repg A.

6 One quiver to rule them all

If A isané-qurve, we will denote witlE 4 the minimal set of semigroup-generators of
the component semigroupmp(A). Observe thak 4 is well-defined as it follows
from the Jordan-Holder decomposition that

Y4 ={a € comp(A) | simps, A =rep, A}

In particular, it follows from proposition 5 thaga (S, T') = xs(«, 3) for all repre-
sentationsS € repn A andT' € repg A if o, B € X 4. In all examples known to
us,X 4 is a finite set.

Definition 7 If A is an£-qurve, we define itene-quiverQ, (A) to be the quiver on
the (possibly infinite) vertex stv, | @ € X a} such that the number of directed
arrows (loops) fromw,, to vg is given by

#{ @—>@} = 604,3 - XA(O‘aﬁ)

Theone-dimension vectak, (A) for A is the dimension vector fa@, (A) having as
its vo-component the total dimenside|.

If Q1(A) is a quiver on finitely many vertice§vy, ..., vx} andas(A) =
(n1,...,ng), we can define thé-algebra

Bll e Blk'

B(Q1(A),a1(A)) = :
Bri ... By

whereB;; is then; X n; block matrix having all its components equal to the sub vec-
torspace of the path algeb€€, (A) spanned by all oriented paths@ (A) starting

at vertexv; and ending inv;. Observe, thaB(Q1(A), a1 (A)) is Morita equivalent

to the path algebréQ, (A) and as such is again &xqurve.

Example 2 (Deligne-Mumford curves) Recall from [1, Coroll. 7.8] that asmooth
Deligne-Mumford curvevhich is generically a scheme, determines (and is determine
by) a smooth affine curv& and anhereditary ordetd over £[X]. As such,A is
an £-qurve with cente[X] and is a subalgebra oM, (€(X)) for somen called

10



the p.i.-degree ofd. If m,, is the maximal ideal of[ X] corresponding to the point
x € X then for all but finitely many exceptiofs1, . . . , 2; } we have that

A/myA ~ M, (£)

For the exceptional points (themification locu®f A) there are finitely many maximal
ideals{ Py (%), ..., P, (i)} of A lying overm,, and

A/P;(i) ~ Mp,;y(8)  with  nq(3) + ... 4 nk, (i) = n

As a consequenceep; A for all I < n consists of finitely many closed orbits each
corresponding to a maximal ided; (i) such thatA/P;(i) ~ M,(¢). Hence, the
component semigrougomp(A) has generatoray;(z) forall 1 < ¢ < landl <

7 < k; andrelations foralll < z,57 <1

ay(i) + ...+ ap, (i) = a1(g) + ... + ax; ()

From direct calculation or using [12, Prop. 6.1] it follow&at the one quive@; (A)
is the disjoint union ot quivers of typeAy,, that is thei-th component i€)1 (A)(¢)
and is the quiver otk; vertices

and the corresponding components for the one dimensionoveej(A) are
a1(A)(@) = (n1(d),...,nk, (7). Therefore, the associated algebra

B(Q1(A),;a1(A)) =B1®...® B

whereB; is the block-matrix algebra

Mo, iyxni ) (E2]) Moy yxnayElz]) oo Moy yxna, ) (£2])
Mo,y xna () (®L[x])  Mps(iyxna) (€l]) oo Mo xna, ) (£]2])
My, (iyxna () (TEE]) M, (i) xna() (®L[2]) -0 M, (i) xn, i) (€[2])

It follows from [15, Chp. 9] or [12, Prop. 6.1] that in a neiglbbhood ofx; the£-qurve
A is étale isomorphic tdB;.

Elsewhere, we will generalize this example by relating €hgurve A with the
algebraB(Q1(A), a1(A)) using the formal tubular neighborhood theorem{g].
Here, we will use thene-quiver-settingQ1(A), a1 (A)) to describe th&' L,,-étale
local structure ofrep,, A in the neighborhood of a semi-simple representation. As
this description uses the Luna slice result, we will assuma¢dhar(£) = 0 in the
remainder of this section. We recall the construction ofltwal quiverand refer to
[11] and [12] for details and proofs.

11



Definition 8 Let M € reps A be a semi-simpled-module of representation type
v = (e1,715- -5 €1, 01), thatis

M=S8P"gq...p 55

with all S; non-isomorphic and of dimension vectgy.

Thelocal quiver@Qy is the quiver onl vertices (corresponding to the distinct
simple components d¥f) such that the number of directed arrows framto v; is
equal todimz Ext!, (S;, S;).

Thelocal dimension vectotxys = (e, ..., e;) determined by the multiplicities
e; of the simple components Bf .

Observe that we know already that the quigey; only depends on the representa-
tion typerys of M and not on the choice of the simple componesitsThe relevance
of thislocal quiver settind @ ar, aear) is that it determines th& L,,-equivariant étale
structure ofrep,, A in a neighborhood of the closed orliX( M) by the results from
[11].

Asn = ), e;|v;| there is an embedding 67 L (aps) into G L,, and with respect
to this embedding there is@L,,-equivariant étale isomorphism between

e repy A in aneighborhood o (M), and
e GL, xGL(am) rep, Qs is aneighborhood o (1, 0)

where 0 is the zero representation. We will show that the one-quaeting
(Q1(A), a1 (A)) contains enough information to describe all these locateyset-
tings (Qns, anr) WheneverA is ané-qurve.

Ya = {Bi| i € I} is the set of semigroup generatorsaafmp(A) (possibly
infinite). For anya € comp(A) we can write

a=a1fB1+...+arB a; €N

(possibly in many several ways) with titg € X 4. If the set of verticed/ «— X4
is infinite, we can always replace the infinite one-quivetisgti{Q1(A), a1 (A)) by
a finite quiver settind supp(a), a1 (A)|supp(a)) wheresupp(a) is thesupport
of ¢, that is those verticeS; € V < X4 such thae; € Ny in a fixed description
of a in terms of the semigroup generators. For notational rease@ denote this finite
quiver setting again byQ1 (A), a1 (A)).

Proposition 6 The one-quiver settingR1(A), a1 (A)) contains enough information
to determinesimp(A) the set of all dimension vectors of simple finite dimensional
representations ofi.

Proof. If « € comp(A), fix a description

a=a1B1+...+axfr

with a; € N4 and{f31,..., 8k} among the semigroup generatorscofmp(A).
This implies that there are pointsitep, A corresponding to semi-simple represen-
tations

M=5%"g...¢sd*

where theS; are distinct simple representationsriepg, A. But then the local quiver
setting of M in rep, A, (Qnr, anr) is just(Q1(A), €) wheree = (a1, ...,ax).
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Becauserep, A is irreducible, it follows thaty € simp(A) if and only if € is the
dimension vector of a simple representatioff(A). These dimension vectors have
been classified in [13] and we recall the result.

Let x be the Euler-form ofQq(A), thatisx = (cij)i,; € Mg(Z) with
cij = 0;5 — #{®——=@ } and letd; be the dimension vector of a vertex-simple
concentrated in vertey;. Then,e is the dimension vector of a simple representation
of Q 4 if and only if the following conditions are satisfied :

1. the supportsupp(e) is a strongly connected subquiver &4 (there is an
oriented cycle insupp(e) containing each paifz, j) such that{v;,v;} C
supp(e))

2. forallv; € supp(e) we have the numerical conditions
X(ea 61) S 0 and X(diae) S 0

unlesssupp(e€) in an oriented cycle of typel; for somel in which case all
components o must be equal to one.

The statement follows from this. O

Proposition 7 The one-quiver settingQ1 (A), a1 (A)) contains enough information
to compute thé-dimension oExt!, (S, T') for all finite dimensional simple represen-
tationsS andT of A.
If S € repn A wherea = 3, a;8; andT € repg A whereg = ), b;3;,
then
dimy Extly (S, T) = —xqQ,(a) (€, )
fore = (a1,...,ax) andn = (by,...,bx).

Proof. Let S; andT; be distinct simples imrepg, A and consider the semi-simple
representationd/ resp.N in rep, A resp.repg A

M=5%q..e82* and N=T@...0TI™

By the foregoing proposition, we have complete informatarthe local quiver setting
of M & N inrepa+ A from (Q1(A), a1 (A)). By assumption omx andg3 there
is a Zariski open subset of simpl&8 € rep, A and simplesI” € repg A such
thatS’ @ T” lies in a neighborhood adM & N.

It follows from [13] that one can reconstruct the local quisetting ofS’@T” from
that of M @ IN. This local quiver has two verticg1, v2 } with —x g (n, €) arrows
from v to v and—xq (e, ) arrows fromvg to v1. In v there arel — x (e, €)
loops and inv, there arel — xq(n, 1) loops. The dimension vector (4, 1). From
this we deduce that

dimg Ext', (S',T") = —x(e,m)
but we have seen before that the extension-dimension orggraks on the repre-
sentation type and not on the choice of simples, hence thitbeuis also equal to
dimz Ext!, (S, T). O

Theorem 3 The one-quiver setting1 (A), a1 (A)) contains enough information to
construct the local quiver setting ar, apr) for every semi-simple representation

M=S8P"q...p 55
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of A.

Proof. This is a direct consequence of the foregoing two propasstidro begin, we
can determine the possible dimension vecteyof the simple componeniS;. Write
a; = 25:1 a;(i)B; thene; = (a1(é),...,ar(¢)) must be the dimension vector
of a simple representation of the associated quiye¢A). Moreover, by the previous
theorem we know that

dimy Emth(Si, S;) = ;5 — x(€iy €5)

and hence we have full knowledge of the local quigay; . O

7 The one-quiver form; (S¢)

In this section we will construct the one-quiver setting foe fundamental algebra
m1(Sg) of a graphSg of separable (that is, semi-simpléalgebras. As an inter-
mediary step we will construct a finite quiv€lo(Sa) such that finite dimensional
representations af; (S¢) correspond to certain finite dimensional representatiéns o
the path algebréQo(Sg).

We have decomposition of the vertex- and edge-algebras

S, = Mdv(l) (Z)EB . -@Mdv(nv)(z) resp. Se = Mde(l) (Z)@ . .EBMde(ne)(Z)

The embedding$. —— S, are depicted via Bratelli-diagrams or, equivalently, by

natural numberal(.;i”) forl1 <7 < n.andl < j < n, satisfying the numerical
restrictions

Ne
do(j) = Y a$s”d.(i) foralll <j < n,andallv € V ande € E
=1

Remark that these numbers give tlestriction data that is, the multiplicities of the
simple components &, occurring in the restrictioﬁ/;.(”) 1 s, for the simple compo-

nentst(”) of S,. From these decompositions and Schur’s lemma it followsftira
any edge»)

e

@ in the graphG we have

ij

Ne
Homse(V,-(”), ‘/;(w)) _ Z al(;v)al(;w) —n®
k=1
Definition 9 For a graphS¢ of separable/-algebras we define a quiv€do (S¢) as
follows

e Vertices : for any vertex € V of G taken,, vertices{ug”), ceestip b

e Arrows : fix an orientatiorG on all of the edges df. For any edged)——®
in G we add for each < 7 < n, and eachl < j < n,, preciselyngf)
arrows between the verticqsz(.”) and ug.w) oriented in the same way as the
edgee in G.

We callQo (S¢) theZariski quiverof the graph of separable algebra&;.

14



Therepresentation spaceep, Qo(Sg) is the affinet-space

rePa QO(SG) = @ @?zvl @;l;ul Ma(w) xa® (Z)
7 (3
O—=®
and twoa-dimensional representations are said tisbenorphidf they are conjugated
via the natural base-change action®L (o) = Xyev X1, GL(al(.”)).
A dimension vector = (a(”) : v e V,1 <1i< ny)forQo(Se) is said to

i

be ann-dimension vectoaif the following numerical conditions are satisfied

ez
Z dy (i)al(-”) =n

=1
forallv € V.
For any edge®—==@ we denote byQ. the bipartite subquiver ofQo(Sg)
on the verticeg u{*, ... ., i}, i, pi®)} and thengj) arrows between

,uz(-”) andu§w) determined by the embeddin§s —— S, andS. —— S,,.
Definition 10 Leta be ann-dimension vectoM € reps, Qo(S¢) ande € E :

e M is said to bee-semistable iff for allQ .- subrepresentation® of M |Q.. of
dimension vecto(na, . . ., Mn, , Ny, . . ., 1y, ) We have

Tf: nidy (i) > i nidy (%)
=1 =1

e M is said to bee-stable iff for all properQ.-subrepresentation® of M |Q.
of dimension vectofn, ..., nn,, N, ..., n;lw) we have

D nidy (i) > Y nidy (i)
e M is said to beSg-semistable (respSg-stable) iff M is e-semistable (resp.

e-stable) for all edgee € FE.

The relevance of the quivédy (Se) and the introduced terminology is contained
in the next result.

Proposition 8 Every n-dimensional representation, (S¢) _®. M, (£) deter-
mines (and is determined by) &ia;-semistable representatidW, € repa Qo(Sa)
for somen-dimension vectow. Moreover, if¢ and¢’ are isomorphic representations
of w1 (S¢a), thenM, and My are isomorphic as quiver representations.

Proof. Let N = ZZ be then-dimensional module determined ky For each vertex
v € V we have a decomposition by restrictifg to the separable subalgelfa

(v) @av(iv)
Nls, >~V @ @ Vo™
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where theV; ,, are the distinct simple modules 8f, of dimensiond,, (¢). Choose ar-
basisB, of N | g, compatible with this decomposition. These decomposititatsr-

mine ann-dimension vectoe. For any edge»)—S~@) the embedding§, <=~ S,
andS, P, S, determine twan-dimensionalS.-representations

(N ls,) 13 and (N ls,) 13,

which, by construction ofr;(Sg) are isomorphic. That is, the basechange map

B Pow B., is an invertible element of

Homs, (N |s,, N ls,) = @2 @72 M_w o (Homs, (Viw, Viw))

and hencey,,., determines a representation of the bipartite quier of dimen-
sion vectora|Q.. Repeating this for all edges € E we obtain a representation
My € repa Qo(Se). Invertibility of the map,,., is equivalent toM, being
e-semistable, sdVf, is Sg-semistable. Isomorphic representatigngand ¢’ deter-
mine isomorphic vertex-decompositions whence, by ScHersna, bases which are
transferred into each other via an elemen@& («) and hence the quiver representa-
tions M, and M are isomorphic. From the construction of the fundamentsiala
71(S¢) it follows that one can reverse this procedure to constraoet-aimensional
representation ofr; (S¢) from aSg-stable representatiodd € repo Qo(Se) for
somen-dimension vectoex. d

Under this correspondence simpia (S )-representations correspond 8-
stable representations.dfis ann-dimension vector such thaep, Qo (S¢) contains
Sc-stable representations (which then form a Zariski opeseatipthenx is a Schur
root of Qo (S¢e) and consequently the dimension of the classifying varegqual to
1 — xo(a, @) wherex is theEuler formof the quiverQo(S¢). For this result and
related material on Schur roots we refer to [18].

Proposition 9 Isomorphism classes of simple-dimensional representations of
71 (S¢g) are parametrized by the points of a smooth quasi-affine taf@ssibly with
several irreducible components)

isosimp, 71 (Sg) = |_| isosimpqy 71 (Sa)

[e 2

wherea runs over alln-dimension vectors such thaep, Qo(Sg) containsSg-
stable representations. These components have dimensions

dim isosimpqy 71(Sg) =1 — xo(a, @)
wherex is the Euler form of the quiveRo (S¢).
As an example consider the modular gro8ii2 (Z) which is the amalgamated

productZ, *z, Ze, see for example [4, §7]. If char(£) # 2, 3 the group-algebra
LS L,(Z) is the fundamental algebra of the graph of separéfzligebras

O—>® with Sy =024 Su =Ll Se =7
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As all simples are one-dimensional (determined by theemiglue), it is easy to verify
that the zero quiveR (¢S L2 (Z)) has the following form

1
1 —p?
1 p
—1 —1
—i p?
-P

(p is a primitive 3rd root of unity) which is the disjoint union of two copies dfet
quiver associated t& S Ly (Z) in [22].

The congruence subgrodfy(2) = { Z Z

fundamental group of the graph of finite groups

€ SL,(Z) with ceven} is the

O——@)f  Gu=Ge=Gy=1I, G, =1L

If char(£) # 2, the group algebrél'y(2) is the fundamental algebra of a graph of
separablé-algebras and the zero quiv@ (£L'o(2)) has the following form

1
2 1
1 -1
—1
If:)(ﬁfinition 11 For a graphS¢ of separable/-algebras we define a quiv€d; (S¢) as
ollows

e Vertices : Let{a1,...,ar} be the minimal set of generators for the sub-
semigroup of dimension vectass of Qo (S¢) which aren-dimension vectors
for somen € N and such thatrep, Qo(S¢g) containsSg-semistable repre-
sentations. The verticeg/q, ..., v, } are in one-to-one correspondence with
these generator§ay, . . ., . }.

¢ Arrows : The number of directed arrows @, (S¢) fromv; tov;
#{O——=0 } = di; — xo(i, j)
wherexg is the Euler-form of the Zariski quiv&do (S¢).
We callQ1(S¢) the one-quiver of the graph of separable algebs.

The one-quive; (S¢) allows us to determine the componentgp,, 71(Sa)
which contain (a Zariski open subset of) simple represimtat Remark that the de-
scription of Schur roots is a lot harder than that of dimensiectors of simple repre-
sentations.
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Proposition 10 If @« = cia1 + . . . 4+ cxap € comp w1 (S¢) then the component
repq, ™1 (Se) contains simple representations if and only if

[ )
X1(77 ei) S 0 and Xl(ei’ 7) S 0
forall1 < i < kwherey = (c1,...,c,) ande; = (814, .. ,0k;) and
wherex is the Euler form of the one quiv€), (S¢)

e supp(v) is a strongly connected subquiverof (Sg) and if supp(y) is of
extended Dynkin typd; then all non-zero components g¢fmust be equal to
one.

Proof. Follows from the proof of proposition 6. O

If char(£) = 0 one can apply Luna slice machinery to construct a Zarisknope
subset of all simple representationsriap, 71 (Sg) from the knowledge of low-
dimensional simples. For example, suppose we have foungeimpresentations

S; € repq; ©1(Sa) foralll <i<k

and consider the poif¥{ in the affine spaceep, Qo(Se) determined by the semi-
simple representation af; (Sg)

M=5%"qg...¢sd

then the normal space to the&FL(«)-orbit O(M) is isomorphic to
Ewt}rl(sc)(Mv M) which we have seen can be identifiedrigp, Q1 (Sa).

Propositionl1l Let « = cija; + ... + cgax be a component such that
repo, ™1(Se) contains simple representations. In the affine spaep,Qo(Sa)
identify the normal space to the orl@? (M) of the semi-simple representatidd (as
above) with

Ny ={M +V |V € repy, Q:1(Sc) }

wherey = (e1,...,¢k). Then,GL(a).Nps contains a Zariski open subset of all
a-dimensional simple representationsmf(S¢).

Proof. This is a special case of the Luna slice result applied todbal lquiver setting.
In fact, one can generalize this result to other known sémpie representationd’ of
71(S¢) but then one has to replac® (S¢) by thelocal quiverQn of V. O

Inthe SLy(Z) examplecomp(£S L2 (Z)) is generated by the2 components of
two-dimensional representations@f (¢S L2(Z))

V,'j=(51,',---,64i§61ja---’66j) 1<:1<4,1<5<6

for which < andj are both even or both odd. From this the structure of the onequ
Q1(¢SL2(Z)) (corresponding to th@2 one-dimensional simples &S L3 (7)) can
be verified to be
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Here, the vertices of the first component correspond (in icydrder) to
V11, V33, V15, V31, V13, V35 and those of the second component (in cyclic order) to
Va2, Va4, Vag, Va2, V24, Vag. Applications to the representation theory of the modu-
lar groupSL2(Z) and its central extensioBg3 (the third braid group) will be given
elsewhere.

In theT'o(2) examplecomp(£T'o(2)) is generated by thé dimension vectors

(1,0,0,0;1,0), (0,0,1,0;1,0), (0,1,0,0;0,1), (0,0,0,1;0,1)

and one verifies that the one-quiv@j (¢T'9(2)) has the following form

O =0 O=00)

Appendix : The component coalgebracoco(A)

Over an algebraically closed fieklwe have seen that the component semigroup and
Euler form contain useful information on the finite dimemsbrepresentations of an
£-qurve. Clearly, one can repeat all arguments verbatimrf@rhitrary¢ by restricting

at those components which contadrational points. However, this sub-semigroup
comp(A) of comp(A ® £) is usually too small to be of interest.

Example 3 Let£¢ C L be a finite separable field extension of dimengioms L is
a simple algebra, all its finite dimensional representasi@e of the formL®¢ and
hence only componentsoép,, L containingé-rational points exist whek|n. Over
the algebraic closure we have

LRe=C0x...x2¢
—_———
k

whencaezomp(L®¥) ~ N¥ generated by the factors &fQ£. We have:omp(A) C
comp(A ® £) sending the generatde to (1,...,1).

We recall some standard facts from [6, Chp. 1] on unramifiedoatative algebras
over an arbitrary basefield A commutative affin€-algebraC is said to baeinramified
whenever

CRIL~EX...xXE

It is well known that all unramified-algebras are of the form
C~Li X...XLg

where eachL; is a finite dimensional separable field extensiod.oFrom this it fol-
lows that subalgebras, tensorproducts and epimorphicamafunramified-algebras
are again unramified. As a consequence, an affine commuftatiigebraC has a
uniguemaximal unramified-subalgebrary (C). In caseC = €[ X] is the coordinate
algebra of an affiné-schemeX, the algebraro(C) contains all information about
the connected components &f. Recall that an affiné-schemeX (or its coordinate
algebraf[ X1]) is said to beconnectedf £[ X ] contains no non-trivial idempotents and
is calledgeometrically connecteifl £{ X] ® £ is connected. We summarize [6, 1.7]in

Proposition 12 For an affinef-schemeX we have
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1. X is connected iffro (£[X]) is a field.
2. X is geometrically connected iffo (£[X]) = £.

3. If X is connected and has aftrational point, thenX is geometrically con-
nected.

4. Ifmo(£[X]) = L1 X ... x Ly with all L; separable field extensions @fthen
X has exactlyk connected components.

5.1f Y is an affine £-scheme andX Y a morphism, then
mo(£[Y]) — mo(£[X]) is an£-algebra morphism.

6. IfY is an affinef-scheme, then the natural map
7o (£[X]) @ mo(£[Y]) — mo(£[X] ® £[Y]) = mo(£[X X Y])
is an£-algebra isomorphism.
Definition 12 For A an£-qurve consider the sum-maps
repn, A X repym A — repm4n A
which determiné-algebra morphisms
Apn ¢ To(l[repmin A]) — mo(£[repn A]) @ wo(L[repm A])
Denoterg(n) = mo(£[rep, A]) and consider the gradeivectorspace
coco(A) = wp(0) B mo(1) B 7o(2) B ...
Define a coalgebra structure by taking as t@multiplicationmap
coco(A) A, coco(A) ® coco(A)
> Aman i m(N) — ) mo(n) ® mo(m)
m4n=N n+m=N
and as thecounitcoco(A) —» mo(0) = £. We call(coco(A), A, €) thecompo-
nent coalgebraf the£-qurve A.

In fact, it follows from the foregoing proposition thabco(A) is in fact amock
bialgebra that is a bialgebra without a unit-map. Recall thatifis a finite group, its
function bialgebrafunc(G) is the space of akf-valued functions orz with point-
wise multiplication and co-multiplication induced by

A(zg) = Z Ty & Ty
g9’.9”=g

wherexy, is the function mapping — 1 and all otherh’ € G to zero. IfG is no
longer finite, func(G) is still a mock bialgebra.

Proposition 13 If A is an£-qurve, then there is an isomorphism of mock bialgebras
coco(A) ® £ ~ func(comp(A® £))

and hencecoco(A) contains enough information to reconstruct the componemis
group comp(A ® £). Alternatively, the Galois grougral(¢/£) acts onA ® ¢

and hence omomp(A ® £) and the function coalgebra. The component coalgebra
coco(A) can be obtained by Galois descent

coco(A) = func(comp(A® Z))Gal(z/e)
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