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ABSTRACT: In math.AG/9904171 it was shown that the étale local structure of finite dimensional
representations for a formally smooth algebra is determined by (varying) local quiver settings.
In this note we prove that there is one quiver setting(QA, αA) depending only on the formally
smooth algebraA which contains enough information to reconstruct all theselocal quiver settings.
Conjecturally, the formally smooth algebraA is locally isomorphic in a (yet to be developed) non-
commutative étale topology to an algebraB Morita equivalent (determined by the dimension vector
αA) to the path algebraCQA.
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Following [7] and [6] one defines a non-commutative smooth affine variety to correspond to
a formally smooth algebraA. Such an algebraA has the lifting property with respect to nilpotent
ideals inalg, the category of all associativeC-algebras with unit. That is, for everyB ∈ alg,
every nilpotent idealI ⊳ B and everyC-algebra morphismφ : A - B/I, there exists a lifted
algebra morphism̃φ making the diagram below commutative

A ....................
φ̃

- B

@
@

@
@

@
φ

R
B

I

??

This notion generalizes Grothendieck’s characterizationof commutative regular algebras (replac-
ing alg by commalg, the category of all commutativeC-algebras) but as the lifting property in
alg is stronger not all commutative regular algebras will be formally smooth. In fact, by [6] any
commutative formally smooth affine algebra is the coordinate ring of a disjoint union of points and
smooth affine curves.

Typical non-commutative examples of formally smooth algebras are path algebrasCQ of finite
quiversQ (see [9]), in particular free associative algebrasC〈x1, . . . , xn〉. Following [7] (or [9])
one assigns to a formally smooth affine algebraA the family of finite dimensional representation
schemes{repn A : n ∈ N} each element of which is a smooth affine (commutative) variety
(possibly containing several connected components). There is a natural base-change action byGLn

on repn A with quotient varietyissn A parametrizing isomorphism classes of semi-simplen-
dimensional representations. The étale local structure of the quotient varietiesissn A is described
in terms of local quiver-settings which we will recall briefly.
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1. Local quiver settings

A point ξ in issn A corresponds to the isomorphism class of a semi-simplen-dimensional repre-
sentation ofA

Mξ = S⊕e1

1 ⊕ . . . ⊕ S⊕ek

k

where theSi are the distinct simple components (say of dimensiondi) occurring inA with multi-
plicity ei. Construct a quiverQξ on k-vertices{v1, . . . , vk} (corresponding to the distinct simple
components ofMξ) with the property that the number of directed arrows fromvi tovj is equal to the
dimension of the extension groupExt1A(Si, Sj). Consider the dimension vectorαξ = (e1, . . . , ek)

(corresponding to the multiplicities of the simple components inMξ) and recall thatrepαxi
Qξ is

the affine space of allαξ-dimensional representations of the quiverQξ. On this space there is a
base-change action by the groupGL(αξ) = GLe1

× . . .×GLek
and the corresponding affine quo-

tient varietyissαξ
Qξ parametrizes semi-simpleαξ-dimensional representations ofQξ, see [11].

As n =
∑

i eidi there is a natural embedding ofGL(αξ) in GLn. With these notations, the étale
local structure of the quotient varietyissn A nearξ is described by the following result of [9].

Theorem 1 If A is a formally smooth affine algebra, there is aGLn-equivariantétale isomorphism
between

repn A and GLn ×GL(αξ) repαξ
Qξ

in a neighborhood of the orbit ofMξ (resp. the orbit of the zero representation). As a consequence,
there is anétale isomorphism between

issn A and issαξ
Qξ

in a neighborhood ofξ (resp. a neighborhood of the point0 corresponding to the zero representa-
tion).

The main result of this note asserts that there is one quiver setting (QA, αA) depending only
on the formally smooth algebraA that contains enough information to reconstruct all these local
quiver settings(Qξ, αξ) for ξ ∈ issn A for anyn ∈ N.

2. The quiver setting(QA, αA)

If A is a formally smooth affine algebra we can decompose the affinesmooth variety

repn A =
⊔

|α|=n

repα A

into its connected componentsrepα A and we will call the labelα a dimension vector ofA of
total dimensionn. The setcomp A of all dimension vectors ofA can be equipped with an Abelian
semigroup structure by definingα + β = γ wheneverrepγ A is the connected component of
repm+n A containing the image ofrepα A × repβ A under the direct sum map

repn A × repm A
⊕- repm+n A
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for α a dimension vector of total dimensionn andβ of total dimensionm. The semigroupcomp A

is augmented as there is a natural mapcompA - N sendingα to its total dimension|α|. In fact,
for a formally smooth algebraA this definition ofcompA coincides with the component semigroup
introduced and studied by K. Morrison in [12].

Clearly, comp CQ ≃ N
k if Q hask vertices as the semigroup generators correspond to the

vertex-simples. IfX is a smooth affine curve, thencomp C[X] ≃ N as allrepn C[X] are irre-
ducible smooth affine varieties. In general though the structure of comp A can be quite compli-
cated.

Example 1 For every sub-semigroupS ⊂ N there exists an affine formally smooth algebraA such
that

comp A ≃ S

as augmented semigroups.

Proof.A special affine algebra of inversion depthb A has a presentation

A =
C〈x1, . . . , xa, y1, . . . , yb〉

(1 − yipi(x1, . . . , xa, y1, . . . , yi−1) , 1 ≤ i ≤ b)

where thepi are polynomials in the noncommuting variables{x1, . . . , xa, y1, . . . , yi−1}. There-
fore, A is a universal localization (see e.g. [15] for definition andproperties) of the free associa-
tive algebraC〈x1, . . . , xa〉 and as suchA is formally smooth. Becauserepn C〈x1, . . . , xa〉 =

Mn(C)⊕a is irreducible,comp A ⊂ N and consists of thosen ∈ N such that none of thepi is a
rational identity forn × n matrices (see [8]).

In the special case whengcd(S) = 1 it was proved in [8, Coroll. 1] that there is a special
affine algebraA such thatcomp A = S. In general, ifgcd(S) = n let S′ = S/n andA′ a special
affine algebra such thatcomp A′ = S′. Then, the free algebra productA = Mn(C) ∗ A′ is again a
formally smooth algebra and satisfiescomp A = S.

In all these examples, the component semigroup is finitely generated but we do not know
whether this is always the case for an affine formally smooth algebra. From now on, we will
impose :

Assumption 1 : A is an affine formally smooth algebra such thatcomp A has a finite number of
semigroup generators.

There exists a ringtheoretic characterization of these semigroup generators :

Lemma 1 The following are equivalent

1. α is a semigroup generator ofcomp A of total dimensionn.

2. The quotient maprepα A -- issα A is a principalPGLn-fibration in theétale topology.

3. The ring
∫

α
A of all GLn-equivariant maps fromrepα A to Mn(C) is an Azumaya algebra

with centerC[issα A].

– 3 –



Proof. If M ∈ repα A is not a simple representation, then the orbit closureO(M) contains a
semi-simple representation corresponding to the Jordan-Hölder decomposition ofM into distinct
simple components

N = S⊕e1

1 ⊕ . . . ⊕ S⊕el

l

whereSi is simple of dimension vectorβi. But then,α =
∑

i eiβi. As the stabilizer subgroup of a
simple representation isC∗ (by Schur’s lemma) this proves that1 and2 are equivalent. The equiv-
alence of2 and3 follows from [13] and the fact that both are classified by the ´etale cohomology
groupH1

et(issα A,PGLn).

For α, β ∈ comp A andN ∈ repα A. M ∈ repβ A we know from [5, Lemma 4.3] that the
dimension of the extension space

dimC Ext1A(N,M)

is an upper semi-continuous function onrepα A × repβ A. In particular, there is a Zariski open
subsetE(α, β) of this product where this dimension attains its minimal value which we will denote
by ext(α, β).

Definition 1 LetA be an affine formally smooth algebra having a finite set of semigroup generators
{β1, . . . , βk} of comp A. Let QA be the quiver onk vertices{v1, . . . , vk} such that the number
of directed arrows fromvi to vj is equal toext(βi, βj) and the number of loops invi is equal to
dim issβi

A. Let αA be the dimension vector(n1, . . . , nk) whereni = |βi|. We say thatA is a
formally smooth algebra of type(QA, αA).

3. Some examples

LetA be an affine formally smooth algebra of type(QA, αA) with αA = (n1, . . . , nk) and construct
the algebra

B =







B11 . . . B1k

...
...

Bk1 . . . Bkk







whereBij is theni×nj block matrix with all its components equal to the subspace ofCQA spanned
by all oriented paths inQA starting atvi and ending atvj. That is,B is an affine formally smooth
algebra which is Morita equivalent to the path algebraCQA with the Morita equivalence deter-
mined by the dimension vectorαA. The hope is that in a (yet to be developed) non-commutative
étale topology the algebrasA andB are locally isomorphic. The examples below may add some
weight to this conjecture.

Example 2 Let X be an affine smooth curve with coordinate ringA = C[X], thencomp A = N

with generating componentrep1 A = iss1 A = X. Therefore,A is of type

QA = ��������
�� and αA = (1)

The associated algebraB is in this case isomorphic to the polynomial ringC[x] which is indeed
locally isomorphic (in the étale topology) toA.
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Example 3 If A is the path algebraCQ thencomp A = N
k with semigroup generators the vertex

dimension vectorsδi = (0, . . . , 0, 1, 0, . . . , 0). Clearly,

repδi
A = issδi

A = A
li

whereli is the number of loops in thei-th vertex ofQ. If δi 6= δj then we obtain from the Euler-
form formula thatdimC Ext1A(Si, Sj) is equal to the number of arrows from thei-th vertex to the
j-th vertex ofQ for everySi ∈ repβi

A andSj ∈ repβj
A. As a consequence,

QA = Q and αA = (1, . . . , 1)

In this case the associated algebraB is isomorphic toCQA = CQ.

Example 4 Let A be a hereditary order over a smooth affine curveX (or, if you prefer : a smooth
Deligne-Mumford stack which is generically a curve see [4, Coroll. 7.8]). Then,A is an affine
formally smooth algebra with centerC[X] and is a subalgebra ofMn(C(X)) for somen (the p.i.-
degree ofA). If mx is the maximal ideal corresponding tox then for all but finitely manyx we
have that

A/mxA ≃ Mn(C)

For the exceptional points{x1, . . . , xl} (the so called ramified points) there are finitely many max-
imal ideals ofA

{P1(i), . . . , Pki
(i)} lying over mi

These ideals correspond to simple representations ofA of dimension{n1(i), . . . , nki
(i)} such that

n1(i) + . . . + nki
(i) = n.

Therefore, the representation schemesrepl A for l < n consist of finitely many closed orbits
and the semigroup generators ofcomp A are given byαj(i) for all 1 ≤ i ≤ l and1 ≤ j ≤ ki where

repαj(i)
A = O(A/Pj(i)) ⊂ - repnj(i)

A

It follows from [10, Prop. 6.1] that in this case the quiverQA is the disjoint union ofl quivers
QA(i) of typeÃki

(with circular orientation), that is,

QA(i) = �������� //��������

��?
??

??
??

?

�������� ��������

����������

OO

��������

����
��

��
��

��������

__????????
��������oo

and αA(i) = (n1(i), . . . , nki
(i))

The associated algebraB = B1 ⊕ . . . ⊕ Bl where

Bi =









Mn1(i)(C[x]) . . . Mn1(i)×nki
(i)(C[x])

...
...

Mnki
(i)×n1

(xC[x]) . . . Mnki
(i)(C[x])









(ideals below the main diagonal) and it follows from [14, Chpt. 9] or [10, Prop. 6.1] thatA in a
neighborhood ofxi is étale isomorphic toBi.
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Example 5 The modular groupalgebraA = CPSL2(Z) can be identified with the free algebra
productCZ/2Z ∗CZ/3Z and therefore is a formally smooth affine algebra and every finite dimen-
sional representation of it is isomorphic to a representation of the bipartite quiver

��������

��������

77ooooooooooooo

''OOOOOOOOOOOOO

��4
44

44
44

44
44

44
44

44
44

44

��������

��������

DD






















77ooooooooooooo

''OOOOOOOOOOOOO

��������

where the left-hand vertex-spaces are the eigenspaces for theZ/2Z-action and those on the right-
hand the eigenspaces for theZ/3Z-action. In particular, ann-dimensionalCPSL2(Z) representa-
tion has dimension vector(a1, a2; b1, b2, b3) such thata1 +a2 = b1 + b2 + b3 = n and such that the
matrix determined by the6 arrows is invertible (it gives a base-change on then-dimensional repre-
sentation), see [1] or [16] for more details. As a consequence comp A has semigroup generators

v11 = (1, 0; 1, 0, 0), v12 = (1, 0; 0, 1, 0), v13 = (1, 0; 0, 0, 1)

v21 = (0, 1; 1, 0, 0), v22 = (0, 1; 0, 1, 0), v23 = (0, 1; 0, 0, 1)

and each componentrepvij
A consists of a single simple1-dimensional moduleSij. BecauseA is

a universal localization of the path algebra of this bipartite quiver we can compute the dimensions
of Ext1A(Sij , Skl) from the corresponding dimension vectors of the quiver. As aconsequence, the
associated quiver setting(QA, αA) is

QA = (/).*-+,v11

(/).*-+,v23
(/).*-+,v22

(/).*-+,v12
(/).*-+,v13

(/).*-+,v21

44

tt

��

FF

SS

��tt

44

��

FF

SS

��
and αA = (1, 1, 1, 1, 1, 1)

and the associated algebraB is the path algebraCQA.

4. Simple dimension vectors

Definition 2 α ∈ comp A is said to be a simple dimension vector provided there is a non-empty
Zariski open subset ofrepα A consisting of simple representations. The set of all simpledimension
vectors ofA will be denoted bysimp A.
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Theorem 2 If A is a formally smooth algebra thenQA contains enough information to determine
simp A.

Proof. If α ∈ comp A we can write (possibly in several ways)

α = a1β1 + . . . + akβk

with ai ∈ N and{β1, . . . , βk} the semigroup generators ofcomp A. This implies that there are
points inrepα A corresponding to semi-simple representations

M = S⊕a1

1 ⊕ . . . ⊕ S⊕ak

k

where theSi are distinct simple representations inrepβi
A and we can choose theSi such that for

all 1 ≤ i, j ≤ k we have thatSi⊕Sj ∈ E(βi, βj). But then the local quiver setting ofM in repα A

is determined by(QA, ǫ) whereǫ = (a1, . . . , ak). Becauserepα A is irreducible, it follows from
section 1 thatα ∈ simp A if and only if ǫ is the dimension vector of a simple representation of
QA. These dimension vectors have been classified in [11] and we recall the result.

Let χ be the Euler-form ofQA, that isχ = (cij)i,j ∈ Mk(Z) with cij = δij − #{ arrows
from vi to vj } and letδi be the dimension vector of a vertex-simple concentrated in vertexvi.
Then, ǫ is the dimension vector of a simple representation ofQA if and only if the following
conditions are satisfied : (1) the supportsupp(ǫ) is a strongly connected subquiver ofQA (there is
an oriented cycle insupp(ǫ) containing each pair(i, j) such that{vi, vj} ⊂ supp(ǫ)) and (2) for
all vi ∈ supp(ǫ) we have the numerical conditions

χ(ǫ, δi) ≤ 0 and χ(δi, ǫ) ≤ 0

unlesssupp(ǫ) in an oriented cycle of typẽAl for somel in which case all components ofǫ must
be equal to one.

Example 6 If we apply this result to the setting(QA, αA) for the modular groupalgebraA =

CPSL2(Z) we find that a dimension vector(a1, a2; b1, b2, b3) has an open subset of simplePSL2(Z)-
representations if and only if

bj ≤ ai for all 1 ≤ i ≤ 2 and1 ≤ j ≤ 3

which is the criterium found by Bruce Westbury in [16].

5. ext(α, β) on simples

In the foregoing section we were careful to takeSi⊕Sj ∈ E(βi, βj) but this is not really necessary.

Lemma 2 For every simpleSi in repβi
A and simpleSj in repβj

A we have that

dimC Ext1A(Si, Sj) = ext(βi, βj)
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Proof.Forα = βi + βj the local structure ofrepα A near the orbit ofM = Si ⊕ Sj is determined
by the local quiver setting(QM , αM )

��������
1

eij

&.
di

 (
��������
1 dj

v~

eji

fn .

wheredi = dim issβi
A, dj = dim issβj

A, eij = dimC Ext1A(Si, Sj) andeji = dimC Ext1A(Sj , Si)

andαM = (1, 1). Now,repαM
QM can be identified withExt1A(M,M) which is the normal space

NM to the orbit ofM in repα A which has therefore dimension

dim NM = di + dj + eij + eji

On the other hand, there is a pointN = S′
i⊕S′

j in repα A with N ∈ E(βi, βj) andN ∈ E(βj , βi)

and we have
eij ≥ ext(βi, βj) eji ≥ ext(βj , βi)

and as for the normal spaceNN to the orbit ofN in repα A we have that

dim NN = di + dj + ext(βi, βj) + ext(βj , βi)

As the stabilizer subgroup ofN andM is isomorphic toC∗ × C
∗ andrepα A is smooth it follows

thatdim NM = dim NN from which the claim follows.

Theorem 3 If A is a formally smooth algebra, thenQA contains enough information to compute
the dimension ofExt1A(S, T ) for all simple representationsS andT . More precisely,

dim Ext1A(S, T ) = −χ(ǫ, η)

if S is a simple representation inrepα A whereα =
∑

i aiβi and ǫ = (a1, . . . , ak) and if T is a
simple representation ofrepβ A whereβ =

∑

i biβi andη = (b1, . . . .bk).

Proof. Let Si andTi be distinct simples inrepβi
A and consider the semi-simple representations

M resp.N in repα A resp.repβ A

M = S⊕a1

1 ⊕ . . . ⊕ S⊕ak

k and N = T⊕b1
1 ⊕ . . . ⊕ T⊕bk

k

By the foregoing lemma we have complete information on the local quiver setting ofM ⊕ N

in repα+β A from QA. By assumption onα and β there is a Zariski open subset of simples
S′ ∈ repα A and simplesT ′ ∈ repβ A such thatS′⊕T ′ lies in a neighborhood ofM ⊕N . By the
result of [11] we can therefore reconstruct the local quiversetting ofS′ ⊕ T ′ from that ofM ⊕N .
This quiver setting has the following form

��������
1

−χ(ǫ, η)
&.1 − χ(ǫ, ǫ)

 (
��������
1 1 − χ(η, η)
v~

−χ(η, ǫ)

fn .

from which we deduce that
ext(α.β) = −χ(ǫ, η)

But then comparing the local quiver settings ofS′ ⊕ T ′ with S ⊕ T and repeating the argument of
the foregoing lemma, the result follows.
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6. The main result

Theorem 4 If A is a formally smooth algebra, the associated quiverQA contains enough infor-
mation to reconstruct the local quiver settings(Qξ, αξ) for any semi-simple representation

Mξ = S⊕e1

1 ⊕ . . . ⊕ S⊕el

l

of A.

Proof. This is a direct consequence of the foregoing two sections. To begin, we can determine
the possible dimension vectorsαi of the simple componentsSi. Write αi =

∑k
j=1 aj(i)βj then

ǫi = (a1(i), . . . , ak(i)) must be the dimension vector of a simple representation of the associated
quiverQA. Moreover, by the previous theorem we know that

dim Ext1A(Si, Sj) = δij − χ(ǫi, ǫj)

and hence have full knowledge of the local quiverQξ.

Recall that the results of [2] and [3] allow us to classify thesingularities of the quotient vari-
etiesissα A upto smooth equivalence and, in particular, to determine their singular loci.
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