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ABSTRACT: We give examples of classification problems from a variety of topics (conju-
gacy classes of matrices, linear control systems, Hilbert schemes, Calogero phase spaces,
(gravitational) instantons and quotient singularities) which are best understood using non-
commutative geometry. That is, each of these problems is in essence a classification upto
isomorphism of certain finite dimensional representations of an affine (noncommutative)
algebra. In this first part, we study the first four examples. More details can be found in the
text “noncommutative geometry @n’ (ng@n) which can be obtained from the Courses-page.
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1. Noncommutative geometry

Opver the last couple of decades it has become clear that several important classification
problems in geometry and physics are best understood in terms of finite dimensional rep-
resentations of a specific affine C-algebra.

Let A be an affine C-algebra, that is, A has a presentation

A~Clzy,...,zm) /14

where C(z1,.. ., &n) is the free algebra on m noncommuting variables z; and I4 is the
ideal of relations holding in A. An n-dimensional representation of A is an n-dimensional
left A-module M/ = C™, that is there is a bilinear map

AQc M — M

such that 1.m = m and a.(b.m) = (ab).m. Fixing a basis in M we can view the action of
a € A as multiplication by the n x n matrix ¢(a), that is, there is a C-algebra morphism

A2+ M,(©)

giving an alternative definition of a finite dimensional representation. The set of all n-
dimensional representations can be given the structure of an affine variety rep, A, the
representation variety of A. Because every C-algebra morphism

Clz1,. ., Tm) —2— M,(C)




is fully determined by the images of the free variables ¢(z;) € M,(C) it follows that the
representation variety is the affine space

rep, C{z1,...,Zm) = M,(C) x ... x Mn((Cz

~”
m

If arelation f(z1,...,%m) € C{z1, ..., Zy) holds among the generators of A, then it must
also hold among the a; = ¢(z;) for any n-dimensional representation ¢ of A, that is,

rep, A= {(a1,...,am) € Mp(C) x ... x Mn(C) | f(a1,...,am) = 0forall f € I}

There is a natural action of the group of invertible n x n matrices GL,, on rep, A by
simultaneous conjugation, that is,

g(a1,. . am) = (9a197",. .., gtmg™")

and the orbits O(¢) = {g.¢ | g € GL,} for this action are precisely the isomorphism
classes of n-dimensional left A-modules. The geometric classification of these orbits is
the essence of noncommutative geometry.

Definition 1 A classification problem, expressed in terms of the study of G-orbits (for
some algebraic group ) on a variety X, is said to be a noncommutative variety if there is
an affine (noncommutative) C-algebra A, a dimension n and a Zariski open subset

Uc—rep, A

such that there is a natural one-to-one correspondence between G-orbits in X (the classi-
fied objects) and G L,-orbits in U (isomorphism classes of n-dimensional A-representations
inU.

2. Conjugacy classes of matrices

More information on this section can be found in ag@n §1.1. From linear algebra we recall
that two n X n matrices A, B € M,,(C) are said to be equivalent

"A~B & 3geGL,: B=gAg™!

Equivalence classes of matrices, that is the action of GL,, on the variety M,,(C) by conju-
gation is a noncommutative variety as

M, (C) = rep, C[z]

and the action of GL,, on both sides is the same. A set-theoretic solution of this classifi-
cation problem is given by the Jordan normalform of a matrix. From it some important
lessons can be learned.



It is not always possible to have an orbit map
X L X/

with X /G an affine variety such that its points classify the G-orbits in X . Indeed, this can
only be achieved if all G-orbits in X are closed (as they must be all of the form 7~1(¢) for
some ¢ € X/G). Consider the matrices

Al A0
P a5

which belong to distinct orbits as they are different Jordan forms. For any € # 0 we have

b B 5=

belongs to the orbit of A. Hence if ¢ — 0, we see that B lies in the closure of O4 whence
O 4 cannot be a closed orbit in M,. As any matrix in O 4 has trace 2], the orbit is contained
in the 3-dimensional subspace

Atz oy
Zz A—z

|

In this space, the orbit-closure O 4 is the set of points satisfying 2> + yz = 0 (the determi-
nant has to be \?), which is a cone having the origin as its top :

The orbit Op is the top of the cone and the orbit O 4 is the complement.

Therefore, the best we can hope for is a quotient map X ——~ X/ /@ classifying
the closed G-orbits in X. We will see later that if G is a reductive algebraic group (such
as GL,) and if X is an affine variety, then such a quotient variety always exists and its

coordinate ring
ClX//G] = C[X]®

is the ring of G-invariant polynomials on X . In the example of the G L,-action by conju-
gation on M,,(C) a supply of GL,-invariant function is given by the elementary symmetric




functions oy in the eigenvalues {1, ..., An}

Al M) = D> Ay A

11 < <. <1y

If A € M, has eigenvalues {1, ..., A, } then

n

[1¢t = ) = xa(®) = det(th, — A) = £* + > (=1’ (A}t

Jj=1 i=1
Developing the determinant det(¢1, — A) we see that each of the coefficients o;(A) is a
polynomial function in the entries of A and is clearly G L,,-invariant. We can define a map

M,(C) = C* A (01(A),...,0u(4))

which is onto (apply it to the companion matrix), As the orbit O 4 is closed if and only if A
is diagonalizable (apply an argument as in the 2 X 2 case above to any off diagonal entry
in a Jordan normal form of A) we see that

M,(C)//GL, ~C"
as the point (as, . ..,a,) € C" determines (and is determined by) the closed orbit of

M

An
where {1, ..., A\, } are the roots of ™ + > i (—1)%a;t"".

There is an open subset of C" (determined by the non-zero locus of the discriminant
of the above polynomial) consisting of points £ = (a1, ..., a,) such that the fiber 7=*(£)
consists of a unique closed orbit. However, for all remaining points, the fiber is a union
of several orbits (determined by the different types of possible Jordan normal forms), the
*worst case’ occurring for &€ = (0, ... ,0) = 0. The fiber

7~10) = null = {A € M,(C) | A" = 0}

is called the nullcone and consists of all nilpotent matrices. The orbits of such matrices
correspond one-to-one to the different partitions of n. If A resp. B are nilpotent matrices
with corresponding partitions p4 = (a; > az > ... > a, > 0)resp. pg = (b 2 by... >
b, > 0) then the Gerstenhaber-Hesselink theorem solves the orbit-closure problem for this
nullcone :

T T
OgC Oy if and only if Zai > Zbi foralll <r <n
i=1 i=1 '
In general, the nullcone of a linear group G acting on a vectorspace V' is the union of all
orbits O, such that 0 € @,. It can contain infinitely many orbits and its precise structure
is usually rather hard to determine. ‘



3. Linear control systems

More information on this section can be found in ag@n §8.2. A linear time invariant control
system 2 is governed by the following system of differential equations
dz

pr = Bx + Au 3.1)

y =Cz

Here, u(t) € C™ is the input or control of the system at time ¢, z(t) € C" the state of the
system and y(¢) € C? the outpur of the system X. Time invariance of ¥ means that the
matrices A € Mpxm(C), B € M,,(C) and C' € M,x,(C) are constant. The system X can
be represented as a black box

. u(t) - y(®

x(t)

which is in a certain state z(t) that we can try to change by using the input controls u(t).
By reading the output signals y(¢) we can try to determine the state of the system. A
system ¥ = (A, B, C) is completely controllable if we can steer an arbitrary starting state
to the zero state by some control function (t) in a finite time span. This control-theoretic
notion is equivalent to the condition that the control matrix

«(X)=[ABA B?A ... B"14]

has maximal rank n. Dually, a system is said to be completely observable if we can
determine the state of a system by observing the output function. This notion is equivalent
to the condition that the observation matrix

SR
CB
o(x)=| CB?

L.CB"

has maximal rank n.

An important control-theoretic problem is to determine when two completely con-
trollable and observable systems ¥ = (4, B,C) and &' = (A', B, (") are equivalent,
that is, have the same input-output behavior. Somewhat surprisingly this condition can
be rephrased into an orbit problem : ¥ and ¥’ are equivalent if and only if there is an
invertible matrix g € GL,, such that

A=gA B=gAgt (C'=Cgt



That is, we can define a G L,, action on the vectorspace M« (C) X M,(C) X Mpym(C)
as above and determine the Zariski open subset Sys of it consisting of all completely
controllable and observable systems (both conditions are open as they are determined by
non-vanishing of an n x n minor of the matrices o(X) and ¢(Z).

Here we encounter another strategy to classify G-orbits : even when it is not possible
to construct an orbit space for the whole variety X (because there are non-closed orbits) it
may be possible to construct an orbit-space for the orbits in a specific open subset U of X
(because all orbits are closed in U, for example because they all have the same dimension).
One can then hope to reiterate this process starting with the G-closed subset X — U.

All GL,-orbits of completely controllable systems are closed in the Zariski open sub-
set Sys, they determine in M,,x,»(C) x M,(C) because the stabilizer subgroup

Stab(¥) = {g € GL, | ¢ =T} = {4}

and hence all such orbits have dimension n2. To prove this, observe that g € GL,, acts
on the control matrix ¢(X) by multiplication on the left and because ¢(X) contains an
invertible » X n minor we have that gc(X) = ¢(X) implies that g = 1,. Recall that the
Grasmannian Grasy(l) of k-dimensional subspaces of C! is the orbit space of the open
subset

M (C)™ C My (C)

of matrices of maximal rank under the action by left multiplication of GLj. This allows
us to construct an orbit-space Sys./G Ly, via

¢ max
Sysc e Mnx(n+1)m(C>

i ;
Syse/GLy,, — Gras,((n+ 1)m)

where ¢(A, B) = [A AB AB? ... AB"]. One calculates that the dimension of Sys./GLr,
is mn. This can then be used to prove that the orbit-space of all completely controllable
and observable systems Sys/G Ly, is a vectorbundle of rank np over Sys./GLy,.

We will now prove that the classification problem of completely controllable systems
(Syse, GLy) is anoncommutative variety. A finite quiver () is a directed graph determined
by

e afinite set Q, = {vy,..., v} of vertices, and

e a finite set Q, = {a1,...,a;} of arrows where we allow multiple arrows between
vertices and loops in vertices.



Every arrow has a starting vertex s(a) = i and a terminating vertex t(a) = j.
The description of the quiver () is encoded in the integral £ x k matrix

X11 - X1k
xo= | : : where xi; = 0y — # { O~—0}

Xkl -« Xkk
The corresponding bilinear form on Z* is called the Euler form of the quiver Q.
The underlying vectorspace of the path algebra CQ) of the quiver () has as basis the
directed paths in (). Multiplication is induced by (left) concatenation of paths. More

precisely, 1 = v, + ... + v, is a decomposition of 1 into mutually orthogonal vertex-
idempotents and we define

e v,.a is always zero unless @<———CO in which case it is the path a,

e a.v; is always zero unless O<—>=—® in which case it is the path a,

. a; aj . . [
e qa;.a; is always zero unless O<——QO<——O in which case it is the path a;a;.
7 \ 7

Example 1 Consider the quiver with Euler form
1-m
0 0

O———-=m=>0€>

then the path algebra of this quiver is the noncommutative algebra

That is, the directed graph

CQ=A= [((()3 Clz]ay +C[x]+ (C[a:]am]

where z denotes the loop in the second vertex and ay, . .., an, are the m arrows from the
first to the second vertex. If M is an n-dimensional left A-module then we can use the

idempotents
o — 10 o = 00
"t oo >~ o1

to decompose (as a C-vectorspace) M = M; @ M, where M; = e, M. If a = dim M,
and b = dim M, we say that M has dimension vector o = (a,b) and clearly n = a + b.
Choosing a basis of M (that is, going to a different point in the orbit O(M)) relative to
this decomposition we may assume that the corresponding representation

A2+ M,(C)




is such that
O 160
¢(€1) - l:_Q ,_O_:| ¢(62) - l:_Q_ ,ﬂb]

But then, using that e;a; = a; = a;e2 and e2a; = 0 = a;e; we have for the remaining
algebra generators, denoting

) Ai
a; = |:8 CE;:| then ¢(a¢) = I:g _Q:’

for some matrix A; € M,(C) and for

T = [8 2} wehave  ¢(z) = B }%}

for some square matrix X € M,(C). Thatis, by going to a different point in the G L,,-orbit
of M we have associated to M a representation of the quiver Q).

In general, a representation V of a finite quiver () is given by

e a finite dimensional C-vector space V; for each vertex v; € ), and
. Va , .
e alinear map V; «——— V; for every arrow in Q,.

If dim V; = d; we call the integral vector o = (dy, ..., ds) € N the dimension vector of
V and denote it with dim V.
The set rep,, Q of all representations V' of @) such that dim (V') = « is an affine space

rep, @ = ) Myx4(C) = C’

where r = ZaeQa ds(a)dt(a)-
A morphism V —% . W between two representations V' and W of () is determined by
a set of linear maps
V LN W;  for all vertices v; € @,

satisfying the following compatibility conditions. For every arrow there is a commuting
diagram in @,

Vi Vj
¢z ¢ 7
W, — W,



Basechange in all the vertex spaces induces an action of the algebraic group GL(a) =
GLg, % ... x GLg, on the affine space rep Q. Thatis, if g = (91,...,9x) € GL(a) and
if V = (V3)aeq, then ¢.V is determined by the matrices

(9-V)a = Gita)Vagaia)

If V and W in rep, @ are isomorphic as representations of ¢, such an isomorphism is
determined by invertible matrices g; : V; — W, € G L4, and therefore they belong to the
same orbit under GL(c). Again, one can use the vertex-idempotents to decompose any
finite dimensional representation of the path algebra as a vectorspace direct sum. Choosing
the vertex bases accordingly (which amounts to going to an isomorphic representation) we
may assume that the associated representation ¢ : CQ — M,,(C) is such that

inducing an embedding of GL(a) = GLg, X ... X GLy, —— GL, withn = |a| =
>_; di. As aconsequence the variety of all n-dimensional representation of the path algebra
decomposes

rep, CQ = I__I GL, xGHe) rep, @

|ee|=n
into a disjoint union of associated fiber bundles. They are defined as follows : using the
embedding GL(«) —— GL, there is a GL(a)-action on GL,, X rep, Q via

g.(h,V) = (hg',9.V)  Vh€GLy,V € rep, Q

and GL, x “M@rep  Q is the orbit space for this action. The GLy-action on GL,xrep, Q@
by left multiplication on the first factor, factorizes through the G L(«)-orbit space and there
is a natural one-to-one correspondence between (1) GL,-orbits in GL,, x ¥ rep_ Q and
(2) GL(o)-orbits in rep,, Q.

Example 2 These facts allow us to finish the proof that the classification problem of
equivalence classes of completely controllable systems is a noncommutative variety. For

the quiver ()
o= )
take the dimension vector « = (1, n). There is a canonical identification
Mysm(C) x M,(C) —— rep,, @
sending a system (A, B) to the representation V' of @) with
V,=B, V=4

the i-th column of A. This map induces a natural one-to-one correspondence between



e Equivalence classes of systems under G L,

A = gA, B’ =gBg!

e GL(a)-orbits of quiver representations in rep,, )
Ap = (cg)Aic™, B =(cg)Blcg)™
for (¢,9) € GL(a) = C* X GLy,.

Having an identification between equivalence classes of linear systems and isomorphism
classes of quiver representations, we want to identify the completely controllable systems
in quiver terms. Let § = (—n, 1), then .o« = 0 and & determines a character (that is, a
group morphism)

GL(a) =C* x GL, — C* (c,9) — ¢ "det(g)

A representation V' € rep,, () is said to be f-stable if and only if for every proper subrep-
resentation W C V' we have that
8.6>0

where (3 is the dimension vector of W. Under the above identification we have a one-to-
one correspondence between

e Completely controllable systems (A4, B) € Sys,, and
e {-stable representations (A, ..., Am, B) € rep, @

Indeed, a representation (A, ..., A, B) has a proper subrepresentation of dimension
vector (1, k) for some k < n if and only if all vectors

A;B? 1<i<m,0<j<n

span a vectorspace of dimension < k but this is equivalent to the control matrix having rank
at most k. using the natural one-to-one correspondence between G L{«)-orbits in rep,, Q
and G L,-orbits in the Zariski open component GL,, x¢X® rep @ of rep,,; CQ we are
done.

Exercise 1 Prove that the control-theoretic problem of classifying completely controllable
and observable systems is a noncommutative variety. Identify M,«,,(C) x M,(C) x
M, (C) with representations of the quiver

o o

~10-=



of dimension vector (1,7, 1) and show that Sys corresponds under this map to representa-
tions which are both § = (—n, 1,0) and §' = (0, 1, —n)-stable. Prove that the correspond-
ing noncommutative algebra is

CClz]|®V Clz]@VeW
CQ~ |0 Clz] Clz]@W
0 0 Clz]

where V (resp. W) is an m (resp. p) dimensional vectorspace.

4. Hilbert schemes

In this section we will show that the Hilbert scheme, Hilb,, C? classifying all codimension
n ideals I <« C[z, y] is a noncommutative variety. We will first reduce this classification
problem to a GL,-orbit problem and then identify the relevant noncommutative algebra.
More information can be found in ng@n §8.4.

Let I <« C[z,y] be such that V = Clz, y]/! is an n-dimensional vectorspace and fix a
basis {v1,...,v,} of V. Multiplication by z (resp. y) on C[z, y] induces a linear operator
on V and hence determines a matrix X € M, (C) (tesp. Y € M, (C)). Clearly, [X,Y] =0
and they generate an n-dimensional subalgebra C[X,Y]| ~ Clz,y|/I of M, (C). Further,
the image of the unit element 1 € C[z, y] determines a column vector v € V = C" with
the property that

CIX,Y]v=C"
Note however that the triple (v, X,Y) € C*@ M,, & M, is not uniquely determined by the
ideal I as it depends on the choice of basis of V. If we choose a different basis {v}, ..., v}

with basechange matrix g € GL,, then the corresponding triple is
(W, X", Y') = (gv,9Xg™",9Yg™").
Consider the vectorspace of all triples
H,=C"® M, &M, withaction ¢.(v,X,Y)=(gv,9Xg7},gYg™")

for all g € GL,,. The above discussion shows that the ideal I < C[z, y] of codimension n
. determines an orbit Oy in H,. Conversely, let C¢ be the subset of triples (v, X,Y) € H,
satisfying the additional conditions :

1. The matrix pair commutes : [X,Y] = 0, and
2. v is a cyclic vector for this pair, thatis : C[X,Y]v = C".

For (v,X,Y) € C¢ we can define a map Clz, y] AN o by sending a polynomial

= f(z,y) to the vector ¢(f) = f(X,Y)v. By the second condition, ¢ is surjective
and therefore, its kernel I = {f € C[z,y] | ¢(f) = 0} is an ideal of codimension n.
That is, the Hilbert scheme Hilb,, C? of n points in the plane C? is the orbit space for the
G L,-action on the subset C¢.

—11-



Example 3 (Hilb, C?) Let us first consider the Hilbert scheme Hilb C? of one point in
C? which we expect to be C2. Indeed, H; = {(v,X,Y) | v,X,Y € C} and any pair
(X,Y) is commuting. Moreover, v is cyclic for (X,Y) if and only if v # 0. That is,
C¢ = C* x C x C. The group GL; = C* acts via c.(v, X,Y) = (cv,X,Y’) and hence
the triples {(1,X,Y)} = C? parametrize the orbits of Cf, that is, Hilb; C*> = C? and the
ideal I of codimension one corresponding to the point p = (X,Y) € C? is the ideal of
polynomials f € C[z,y] vanishing in p, f(X,Y) = 0.

Next, we consider the Hilbert scheme Hilb, C? of two points in C2. Let (v, X,Y) €
C% and assume that either X or Y has distinct eigenvalues (type a). As

(6ol Lap=len 25

we have a representant in the orbit of the form

( V1 )\1 0 M1 0 )
va] 10 o) L0 o
where cyclicity of the column vector implies that v;v, # 0. The stabilizer subgroup of the

matrix-pair is the group of diagonal matrices C* x C* —— G L, hence the orbit has a
unique representant with v; = vy = 1. The corresponding ideal I <« C[z, y] is then

I'={f(z,y) € Clz,y] | f(A1, 1) = 0 = F(h2, p2)}

hence these orbits in C§ correspond to sets of two distinct points in C2.
The situation is slightly more complicated when X and Y have only one eigenvalue
(type b). If (v, X, Y) € C§ then either X or Y is not diagonalizable. But then, as

( v1| |ab = cd—a
Ov]’|lcd]' [0 ¢
we have a representant in the orbit of the form
( U Ao H /8 )
vo] [0 AT [0
with [ : 8] € P! and v, 5 0. The stabilizer of the matrixpair is the subgroup

(o 1e#0— ot

0c

and hence we have a unique representant with v; = 0 and v, = 1. The corresponding ideal
I«Clz,y]is

I= {7(&0) € Cloyl | FO,m) = 0 and SL00w) + 650000 = 0)

-12-



as one proves by verification on monomials because
xalf w3 ‘o ka1l 4 1N R
00X [0p] [1] Mot

Therefore, I corresponds to the set of two points at (), ) € C? infinitesimally attached to
each other in the direction a2 + §2. For each point in C? there is a P* family of such
fat points. Thus, points of Hilb, C? correspond to either of the following two situations :

C? c?

< ®

_—/’
type a type b

The Hilbert-Chow map Hilb, C2 — S C2 sends a point of type a to the formal sum
[p] + [¢'] and a point of type b to 2[p]. Over the complement of (the image of) the diagonal,
this map is a one-to-one correspondence. However, over points on the diagonal the fibers
are P!, so  is not a one-to-one correspondence as in the case of Hilb,, C!. The situation is
nicer for C! because there points can only collide along one direction, whereas in C? they
can approach each other along a P! family of lines leading to different ideals. In fact, the
symmetric power S2 C? has singularities and the Hilbert-Chow map Hilb, C? —» §2 C?
is a resolution of singularities.

Consider the noncommutative algebra

a=[S S

which is the path algebra of a quiver with relations. Consider the quiver Q)

x

¢

Y

then A ~ CQ/(zy — yz). The matrix idempotents can be used to decompose every finite
dimensional representation, whence

rep, A = Ll GL, x®*®) rep_ (Q|R)

|a|=n

where the representation space of this quiver with relations is defined to be

rep, (Q|R) = {V €rep, Q| V.V, =V, V,}

—-13 -



Exercise 2 Show that the Hilbert scheme Hilb, C? is a noncommutative variety by relat-
ing it to the § = (—n, 1)-stable representations of o = (1, n)-dimensional representations
of A and hence to the orbits of a Zariski open subset of rep,, ; A.

5. Calogero particles

More information on this section can be found in ag@n §8.6. The Calogero system is a
classical particle system of n particles on the real line with inverse square potential.

1 X Tn

That is, if the i-th particle has position z; and velocity (momentum) y;, then the Hamilto-

nian is equal to
1 1
H == : —
1 LGy

The Hamiltonian equations of motions is the system of 2n differential equations

dr, _ 0H
dt N ayl

dy; OH
dt N 8.7),;

This defines a dynamical system which is integrable.
A convenient way to study this system is as follows. Assign to a position defined by

the 2n vector (z1,y1; - . - , Tn, Yn) the couple of Hermitian or self-adjoint n x n matrices
_ ; -
Y oa e peosr. 2y .
; .
Lo—21 Y2
X = : : and Y =
i
) X Tp—-1"%n
3 i X,
[T 7 Tmwar I B "

Physical quantities are given by invariant polynomial functions under the action of the uni-
tary group U,(C) under simultaneous conjugation. In particular one considers the func-
tions

X7
Fy=tr—
J
For example,
tr(X)=>.u the total momentum
Str(X?) = 5308 — 2o 5:1507)7 the Hamiltonian

—14 -



We can now consider the U, (C)-translates of these matrix couples. This is shown to be a
manifold with a free action of U,,(C) such that the orbits are in one-to-one correspondence
with points (z1,y1;...;Zns,Yys) in the phase space (that is, we agree that two such 2n
tuples are determined only up to permuting the couples (z;, y;). The n-functions F} give a
completely integrable system on the phase space via Liouville’s theorem.

In the classical case, all points are assumed to lie on the real axis and the potential is
repulsive so that collisions do not appear. G. Wilson considered an alternative where the
points are assumed to lie in the complex numbers and such that the potential is attractive
(to allow for collisions), that is, the Hamiltonian is of the form

1 1
=324 L ey

1<j

giving again rise to a dynamical system via the equations of motion. One recovers the
classical situation back if the particles are assumed only to move on the imaginary axis.

[ ¥A]
[ ¥}

Y

In general, we want to extend the phase space of n distinct points analytically to allow for
collisions. The strategy to do this is to assign to the n couples (z;, ;) the matrix-pair

_ 1 1
Boomm o z1—Zn
1 .. :
wo-o 2 ) o Z1
X = : : and Y =
: — T,
Tn~1—%n
1 1
Lan—21 """ 7" Zp—%n-1 Yn
and to observe that
1...1
[X, Y]+ =T,
1...1

This equality suggests an approach to extend the phase space of n distinct complex Calogero
particles to allow for collisions. Consider the following G L,-orbit problem : consider the

vectorspace
V,, = M,(C) x M,(C) x C* x (C")*

—-15-



where (C™)* is the space of row-vectors. Define a G L,.-action on this space by
9.(X,Y,u,v) = (gXg7",gYg ™", gu,vg™")
Consider the G L, -invariant closed subset of V/,
Cn={(X,Y,u,v) | [X, Y]+ uwv ="1,}

If Y is in diagonal form diag(z,, .. ., Z,) then computing the diagonal entries of [X, Y]+
u.v =1, we find that u;v; = 1 forall 1 <4 < n, whence none of the entries of [V, X] +1,
is zero and computing the (%, j)-entry we find that z; # x; for i # j. The representant of
Y is unique upto the action of a diagonal matrix D and a permutation matrix. The freedom
in D allows us to normalize v and v such that

1
u=|: v=[1.. 1]
1

and finally computing the equation [X, Y] +u.v = 1, with these normalized forms we find
that X is the matrix described before. That is, every fourtuple (X,Y,u,v) € C, with Y
diagonalizable can be brought to the above standard form which is unique upto permuting
the n points (z;, ;) hence the orbit corresponds to a Calogero state. Moreover, all these
orbits are closed in C,, because u is a cyclic vector for any (X,Y, u,v) € C,), that is, C"
is the smallest subspace containing v and stable under multiplication with X and Y.

Indeed, if U is a subspace of C™ stable under X and Y containing u, U is also stable
under left multiplication with the matrix

A=[Y,X]+1,

and we have that tr(A | U) = ¢r(8, | U) = dim U. On the other hand, A = u.v and
therefore
< U ; (4] n Ul

. [vl e vn] )= (Z Uici)

Cn Uy, Cn Up

A.

Hence, if we take a basis for U containing u, then we have that
tr(A|U)=a

where A.u = au, thatis a = Y, u;v;. But then, tr(A | U) = dim U is independent of the
choice of U. Now, C" is clearly a subspace stable under X and Y and containing u, so
we must have that a = n and so the only subspace U possible is C™ proving cyclicity of u
with respect to the matrix-couple (X,Y"). Therefore, all GL,-orbits in C,, are closed and
we can construct an orbit-space

calo, = C,/GL,

which is called the Calogero state space, an open set of which describes the states such
that all points are distinct (Y diagonalizable). ‘

— 16—



Exercise 3 Prove that C, is a noncommutative variety. Hint : use the quiver ¢)

U
v
Y

and consider the noncommutative algebra

_ CQ
T (zy — YT+ uv — ep)

where e, is the second vertexidempotent. Construct a one-to-one correspondence between
C,andrep, (Q|R) for & = (1,n) and show that there is a correspondence between G L,,-
orbits in Cy, and G L{«)-orbits in rep,, (Q|R). Finally, use this to identify the classification
problem of Calogero particles with the isomorphism problem in a Zariski open subset of
rep,.; 4.

6. Research problem 1

Taken from Allen Tannenbaum “Invariance and System Theory : Algebraic and Geometric
Aspects”, Springer Lecture Notes in mathematics 845 (1981) p. 63-64.

Let sys,, , be the orbitspace Sys./G L, of completely controllable systems, then we
have the diagram

Syse v Myym(C) X M,(C) £+ M,(C)

Tn

M Y

Sysm,n b Cn

where , is the quotient map of the conjugation action on M,,(C). Describe explicitly the
fibers of ¢.
If U is the open subset of C™ determined by matrices with distinct non-zero eigenval-
ues, then for ¢ € U one can prove that
¢ e) =P x .. x Pt

N~
n

(verify this!). Therefore, the morphism ¢ : sys,, , — C" is a situation in which prod-
ucts of projective spaces are degenerating to varieties with rational singularities ¢~*(c) for
¢ ¢ U. "These degenerations should be very interesting from both a mathematical and
system theoretic point of view”, loc.cit. p. 64. |
Use noncommutative geometry to prove that the situation is even nicer : prove that all

fibers ¢~ (c) are smooth varieties and describe their structure explicitly.

—17 -
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1. Representation varieties

Let A be an affine C-algebra with presentation
(C<$1, - ,$m>
ST
where 4 is the twosided ideal of relations holding in A. An n-dimensional representation
is a C-algebra morphism

A=

A2+ M, (C)
which also determine a left A-module structure on C™ say My by the rule that a.v =
#(a)v for all @ € A and all v € C™. We want to construct an affine variety (actually an
affine scheme) rep,, A such that its C-points are in one-to-one correspondence with the
n-dimensional representations. ‘
If Ais the free algebra A = C{x1, ..., %), then any C-algebra morphism A — M,(C)

is fully determined by the images a; = ¢(z;) € M,(C) of the variables. That is, the rep-
resentation variety is just the affine space

rep, C(z1,...,2m) = My(C) x ... x M, (C) = C™

7

the correspondence being given by ¢ < (ay,...,an). Let z;;(k) be the n? coordinate
functions on rep,, C{x1, . .., Zn) corresponding to the k-th component M, (C) and define

the generic matrix
.’L’ll(k) P xln(k)
Xe=| i :




Clearly, for an affine algebra A with defining ideal I4 as above, rep, A is a closed sub-

scheme of rep, C(z1, ..., %m) and its coordinate ring is the quotient
i 0 1<4,5<n,1<k<
Clrep, 4] = Clai; (k) <4,j<ml<k<m
(f’ij(X17""7Xm) : fEIA)
where for any f(z1,...,Zm) € 14 We can substitute a generic matrix for every variable

and obtain an n X n matrix

fuu(Xy, o Xm) o fia(Xa, e, Xin)
f(Xy, X)) = : :
fnl(Xla“ . 7Xm) v fnn(XhaXm)

where each of the entries f,,(X1,...,X,,) is a polynomial in the variables z;;(k). Even
if A is not finitely presented, that is I4 not finitely generated, then the ideal I,(A4) =
(fij(X1,...,Xm)Vf € I4)is finitely generated because the polynomial algebra is Noethe-
rian, so rep,, A is an affine scheme. Observe that it is not necessarily an affine variety
because it may happen that I,,(A) is not a radical ideal.

Still, the C-points of rep,, A, that is the maximal ideals of C[rep,, A] or equivalently
the algebra maps

Clrep,, Al A

determine n-dimensional representations by sending the generator

$(z11(2)) ... P(z1a(i))

Z; —

ST D) ... )

There is an action by simultaneous conjugation of GL, onrep, C(z1,...,zm) = M,(C)x
... X M, (C)

g-(a1,- .- am) = (garg™,. .., gamg™")

which induces a GL,-action by C-algebra automorphisms on the polynomial algebra
Clzs;(k) : 1,7, k] by sending z;;(k) to the (%, j)-entry of the n X n matrix of linear forms
gXrg~!. Under this action it is clear that I,,(A) is G L,-stable, that is,

g.f € I,(A) forall f e I,(A)

Therefore, there is an induced G L,,-action on the closed subscheme rep,, A and also on its
associated reduced variety. The G L, -orbits on the C-points are precisely the isomorphism
classes of n-dimensional left A-modules M. Our main objective will be to develop tools
to study this orbit space problem.




2. The conifold algebra

The conifold algebra is of current interest in stringtheory, see for example hep-th/0110184.

This algebra is defined to be

C(z,y,2)
(2 + zz,y2 + 29,22 — 1, [2[z, ], 2], [2]z, ], y])

c =

and we would like to understand the orbit-structure of the G L, -schemes rep,, A, for all
n. The case n = 1 is pretty trivial : we assign to each variable a 1 x 1 matrix X,Y, Z and

we obtain that
ILi(A) = (2XZ,2Y Z, 72— 1)

whence Clrep; A;] = C[z]/(2* — 1) =~ C x C so rep, A, consists of two points corre-
sponding to the one-dimensional representations

z+0 z—0
M_!, y—0 H__ Yy 0
z—1 2 —1

For n > 1 the situation is more complicated and can hardly be handled with the brute
force methods of (commutative) algebraic geometry. Let us work out the case of two-
dimensional representations. To define the ideal I;(A.) we consider the generic matrices

X = {901 xz] Y = !:yl sz 7= [Zl Zz]
T3 T4 Y3 Ya 23 %4
and we have to work out the matrix-identities induced by J(A). For example,

XYt VX = [ 221y1 + ToYs + T3Ye  TiYe + ToYs + Toyr + $4sz

T1Ys + T3y1 + TaYs + Tays  2T4Ys + T2y3 + T3y

whence these four entries belong to I(A,). If we repeat this for the other defining relations
of A, we get a huge set of ideal generators of I5(A,) which do not give us much insight into
simple geometric questions about rep, A, such as : is it smooth ? what is the dimension
? let alone the orbit structure. This is were noncommutative geometry enters : we have to
use ringtheoretic properties of the algebra A, to get a grip on rep,, A.!

3. Semi-simple representations

Still, the general philosophy of geometric invariant theory (git) is quite helpful but we
need to find a non-commutative algebraic interpretation of all the crucial concepts. In this
section we will give a first example. We have seen that the best algebraic approximation
to the (non-existent) orbit space classifies the closed orbits. In the case of the G'L,-action



on rep,, A we will prove that the closed orbits are the isomorphism classes of semi-simple
representations. In the proof we will need another big gun from invariant theory : the
Hilbert criterium. More details can be found in ngén §2.2, §2.3 and §2.4.

For M € rep,, A we define its orbit

O(M)={gM|geGLy}

There are at least two “natural’ topologies on rep,, A : the Zariski topology and the analytic
topology (the induced topology from the embedding rep,, A C C™"*Y s0 in principle we
have to consider two closures of O(M ). However, as O(M) is a constructible set it follows
that

o). = O(M)

Further, the complement O(M) — O(M) is a disjoint union of other orbits, all of which
have strictly smaller dimension than O(M). This allows us to find a closed orbit in O(M)
: take an orbit of minimal dimension! We will see in a moment that there is a unigue

closed orbit in O(M). ,
A one parameter subgroup of GL,, is a morphism of algebraic groups

A C—GL,

any such morphism is fully determined by a ¢ € GL,, and an n-tuple (ry,...,r,) € Z"
and is defined to be
e
Mty=g7"| . g
trn

For M € rep, A we can hope to reach points in the orbit-closure O(M) via the limit of
one-parameter subgroup actions

N = lim A(t).M

This geometric construction has the following ringtheoretical interpretation : a limit point
exists if and only if there is a finite filtration

B

O0=MyCM, C...CMiCMy=M

of left A-submodules of M such that the associated graded module

WL

gr(M) = & M;/M;y1 ~ N

Suppose we have a limit, then we can decompose the underlying vectorspace C" of M
into weight spaces

C" = @;Vy; Vii={veC"| Aty =tvVte C*}

dal.

‘\]( -—-'9\'5
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and then one shows that M; = @;;V); is a left A-submodule of M and these different
submodules do define a filtration such that the associated graded corresponds to the limit
point. Conversely, if we have a finite filtration, then decompose C" into subspaces V; for
0 < < ksuch that M; = @F ;Vi and take ) to be the one-parameter subgroup defined by
A(t) = tby;. The relevance of this limit construction is clear from the Hilbert criterium,
which specializes to the following form in the case of interest to us.

Theorem 1 (Hilbert criterium) Let M, N € rep, A and assume that O(N) is a closed
orbit contained in O(M). Then, there is a one-parameter subgroup \ of GL,, such that

lim A(t) M € O(N)

That is, there is a finite filtration by left A-submodules of M with associated graded module
isomorphic to N.

An example showing that the condition of O(N) being a closed orbit is really nec-
essary is given in ng@n §2.4. An immediate consequence of the Hilbert criterium is the
ringtheoretic characterization of closed orbits in representation varieties.

Theorem 2 For M € rep,, A the orbit O(M) is closed if and only if M is a semi-simple
left A-module (that is, a direct sum of simple A-modules).

Proof. Assume that M is semi-simple, there is always a closed orbit O(N) contained in
the orbit closure O (M) whence there is a filtration by submodules on M having associated
graded isomorphic to N. By semi-simplicity the associated graded N must be isomorphic
to M so O(M) is closed.

Conversely, if O(M ) is closed, consider a Jordan-Holder filtration on M (such that the
associated graded module is the direct sum of the composition factors of M), then gr(M)
is semi-simple and contained in O(M) = O(M) whence gr(M) ~ M. |

4. The conifold simples

The (geometric) description of all finite dimensional simple representations of an affine C-
algebra is difficult, in general. In the special case of the conifold algebra we will classify
all simple representations by means of some classical ringtheory : the theory of quadratic
forms and their associated Clifford algebras.

For R a commutative C-algebra, an m-ary quadratic form is a quadratic polynomial
in R[X1,..., Xy

ap ... Gim X1

Aim -+ Gmm Xm




where the matrix Ay = (ay;)i; € Mm(R) is symmetric. The quadratic form f induces a
quadratic map Qs tesp. a symmetric bilinear pairing By on the free R-module R®™ =
R®...® Rofrankm

Qf : R®™ —+ R B‘f : R®¥™ x R®™ —— R

where for any two column vectors Z = (x1,...,Zn)" and ¥ = (y1,...,Ym)" in R®™ we
define

— T b d = 1 = — hord vl
Q&) =27 ArZ  By(7,9) = 5(Qs(Z+9) — Qr(7) = Qs(9))
The radical of the quadratic form f is the submodule
rad(f) = {Z € R®™ | V§ € R®™ . By(Z,¥) = 0}

The quadratic form f is said to be regular if rad(f) = {0} and is said to be non-singular
if A; € GL,,(R), thatis, det(Ay) is a unit in R.

The Clifford algebra Cl; of the quadratic form f is the noncommutative R-algebra
defined to be the quotient of the of the free R-algebra R(Xj, ..., X,,) (where the variables

X; are abasis of the free R-module R®™ by the twosided ideal generated by all elements
of the form

ZQ T — Q)
with Z € R®™. If we give the free R-algebra the natural gradation, thatis deg(X;) = 1 and
deg(r) = 0 for all r € R, then Z ® Z is homogeneous of degree two whereas Q¢(Z) € R
has degree zero. Therefore, Cl; has a natural Z/2Z-gradation :

Ol‘f =Cy® Cy C’zC, C Cy k=143 mod?2

Generators of Cj, are said to be bosonic whereas generators in C; are called fermionic.

Example 1 (Conifold algebra) Let R be the polynomial algebra C[z,y, 2] and consider
the Clifford algebra Cl over R associated to the symmetric 3 X 3 matrix

zz0
zy 0
001

Let X,Y and Z be the standard basis for R®3, then the defining relations of Cl as an
R-algebra are

(

X? =z
9 y?
(M‘t )X X vx) )2
| XY +YX =22
XZ+2X =0

waﬂ‘Z§i= Xij-+¥ﬁx (Yz+zv =0




Alternatively, we can describe C! as the C-algebra, generated by X,Y and Z and such
that ,y and z defined as above are central elements, that is

CX,Y, Z)

A= I XZ+2XYZ+ 27 [X57] V5, X))

Observe that it follows from these equations that X2, Y2 and XY + Y X are central ele-

ments of Cl. Now, recall that the conifold algebra was described to be the algebra
C(X,Y, Z)

(22 - 1,XZ+ZX,YZ+ ZY,[Z|X,Y], X),|Z[X,Y],Y])

Because Z isaunitand ZX = —XZ, ZY = —~Y Z it is clear that the two last identities

are equivalent to

A=

[Z[X,Y],X]=0< [X%Y]=0 and [Z[X,Y],Y]=0&[Y%X]=0
whence A, >~ CI.

A simple n-dimensional representation of A, = C{ determines a C-algebra epimor-
phism
A, =2 M, (C)

and Iy = ker(¢) is a twosided maximal ideal of A,. Because R = Clz,y, 2] is a central
subalgebra of A, and A, is a finitely generated R-module (actually, it is a free R-module
of rank 8), the intersection I, N R is a maximal ideal of R, hence determines a point
p = (a,b,c) € C® and we obtain an epimorphism Cl(,y —~ M,(C) from the Clifford
algebra C'l () over C associated to the ternary form

acQ
f(p)=[cbO
001

The algebraic structure of Clifford algebras over C is well-known allowing us to determine
its simple factors. Let f be an m-ary quadratic form over C having a k-dimensional radical,
then

Cly = Cly ®c A(CY)
for some non-singular m — k-ary quadratic form g over C and where A(C*) is the exterior
algebra on k letters, that is,

ACF) = Cly, -y (WE, vy + v V1 < 4,5 < k)

which is a finite dimensional graded C-algebra of diménsion 2 having a unique simple
representation (of dimension one, dividing out (yi,. . .,yx)). In the isomorphism we used
the modified tensorproduct ®' of Z/2Z-algebras, that is

(c® e)(d @ €)= (~1)%9es) et @ ee’ Ve € Cly,e € ACF)




Anyway, the simple factors of Cl; are entirely determined by those of Cl, so we have to
recall the structure of Clifford algebras over C of n = m — k-ary non-singular quadratic

Mu(C) x Myu(C) if n =20+ 1is odd.
Cly ~

forms :

My (C) if n = 2l is even.

Theorem 3 Every simple representation of the conifold algebra A, ~ Cl; has dimension
< 2 and determines a point p = (a, b, c) € C3.

1. If p & V(zy — 2%), then there are two simple A -representations of dimension two
lying over p.

2. If p € V(zy — 2%) — {(0,0,0)}, then there is a unique simple A.-representation of
dimension two lying over p.

3. If p=(0,0,0), then there are two simple A.-representations of dimension one lying
over p.

5. The quotient variety

In this section we will give generators of the ring of polynomial invariants C[rep, A]t»

and prove that the associated variety classifies the closed G L,-orbits, that is the isomor-
phism classes of semi-simple n-dimensional representations of A. For this reason we will
denote the algebraic quotient variety in this case

rep, A//GL, = iss, A

for isomorphisms of semi-simple representations. We start with the ring of invariants,
more details and proofs can be found in ng@n §1.3 and §2.5.

Consider the special case when A = C(zy,...,Zn), then the action of GL, on
rep, A = M,(C) x ... x M,(C) is by simultaneous conjugation and we like to de-
termine polynomial functions in the matrix-entries which are invariant under this action.
Recall that the k-th generic matrix is defined to be the n X n matrix of coordinate functions

xn(k) Ve .121n(k)
X = : :
a1 (B) - .. T (k)

Clearly, as g. X, = gXg~* we have g.X}, .. X, = gXi, ... Xi,g7" whence the polyno-
mial function ¢tr(X;, ... X;,) is GL,-invariant.

Theorem 4 (Procesi-Razmyslov) The ring of polynomial invariants

C[Mn(C) x ... x M,(C)]Ftn




is generated by traces of monomials in the generic matrices
t?"(Xﬁ X Xil)

foralll <i, <mandl <n?+1.

Proof. (sketch, more details in na@g §1.3-1.6) First determine the multi-linear G L,-invariants,
that is, the linear maps

Mn(C)®™ = Ma(C)® ... ® My (C) — C

invariant under the diagonal action of GL,. Write M,,(C) =V, ® V> for V,, = C" the
standard GL,,-representation, then this is the problem of determining all GL,,-invariants
of m vectors and m covectors, that is G L, -invariant linear maps

(V)e™ © (V)om — C

n

which by classical invariant theory are linear combination of the invariants

o1 ® @ fm®01 @ ®vn) =[] filvew)

for o € S,,. If we write A; = v; ® f; and if we decompose the partition into cycles
o= (i1%2...%)(J1j2 - Jg) .. . (2122 .. %)
then one calculates that
po(A1 ® ... @ Ap) = tr(Ay Aiy ... A tr(Aj Ay Ay) (A A, - Ar)

For an arbitrary G L,-invariant polynomial functions, one can reduce to its (multi) homo-
geneous components of degree (ds, . .., dn,) apply the polarization process, that is reduce
to multi-linear polynomials by increasing the number of matrices, use the multi-linear re-
sult above and recover the polynomial back by the restitution process which proves that
any polynomial invariant is a polynomial in the invariants

tT(Xile‘z Ce Xil)

for some 1 < ¢, < m and some [. Because GL,, is a reductive group (that is, all its finite
dimensional representations are completely reducible) we know from general theory that
the ring of invariants is finitely generated (see ng@n §2.5 for a proof), so there is a bound
on the [ needed. Alternatively, one can use a non-commutative argument (based on the
Nagata-Higman result) to get the bound [ < 2™, see ng@n §1.4. Using a lot more on the
trace relations (that is, the identities holding among these generators) one can then reduce
the bound to I < n? + 1, see ngén §1.5-1.7.




Next, consider an arbitrary affine C-algebra with presentation

(C<$1, cr 7xm>
I4

thenrep, A —— M, (C)x...x M,(C)isaclosed GL,-subscheme and the epimorphism
C[M,, x...x M,] —~ C|rep,, A]induces an epimorphism on the level of invariants (use
reductivity of GL,, and the fact that the GL,, action on rep,, A is locally finite, see ng@én
§2.5)

A=

C[Ma(|C) x ... x My(C))%*» —~ Clzep,, A%

we deduce that the ring of polynomial invariants C[rep,, A]°L~ is generated by the images
of the traces in monomials in the generic matrices of length [ < n? + 1.

Because by ng@n §2.5, the ring of polynomial invariants separates disjoint closed
G L,-stable subschemes of rep,, A and so in particular its points classify the closed orbits
(that is, the isoclasses of n-dimensional semi-simple representations of A we will denote

Clrep, A% = Cliss, 4]

and denote the corresponding quotient scheme with iss, A. the inclusion C[iss,, A] C
Clrep,, A] induces a projection (the quotient map)

T
rep, A —> iss, A

which sends an n-dimensional representation V' of A to the direct sum of its Jordan-Holder
components. In particular it follows that two n-dimensional representations V' and V'’ have
the same Jordan-Holder decomposition if and only if all traces of monomials in the algebra
generators of A evaluate to the same complex number when evaluated in V and V'.

6. The conifold quotient singularity

Next week we will be able to study the local geometry of rep, A. and prove that it is a
smooth variety. Today we will determine the quotient variety iss, A and relate it to our
previous classification of the simple representations of A..

We have to determine the traces of monomials in the images of the 2 x 2 generic
matrices determined by the generators X,Y and Z of A,. Because Z2 = 1 we have to
separate three possible diagonal forms for Z

() Z = [(1) ﬂ (b) Z = [_01 _01] () 2= Ll) —01}

In the cases (a) and (b), Z is a central unit whence the relations X Z+ZX =0=YZ+2Y
imply that X =Y = 0, so these components Qf iss,y A, correspond to just one point, resp.

(a) MP? and (b) M®?

-10-




Maa') = ()N(Q X(a') 4 )\(q)(om(o\')

M)

Haswa (M

Aok -

BY DU Ry 0000 BE
VIR YA 728R20

where My, is the one-dimensional simple representation of A, determined by X
0,Y — 0 and Z — =+1. Th remaining component (c) is the interesting one correspond-
ing to the Clifford algebra. Here, we have (because the characteristic polynomials of the
images of the generic matrices in are X? — zlh =0, Y2 — y& = O and Z% — & = 0)

tr(Z) =0, tr(22) = 2, tr(X) = 0, tr(X2) = 2z, tr(Y) =0, tr(Y?) = 2y
Moreover, the equations X Z + ZX = 0 =Y Z + ZY imply that
tr(XZ2)=0=1tr(YZ) whereas  tr(XY) =2z

These relations allow us to prove that the trace of any monomial in just two of the genera-
tors {X,Y, Z} is a polynomial in z,y and z. But there is another generator of the ring of
polynomial invariants,

w=tr(XYZ)

To determine its value, we start from the characteristic polynomial ;‘:7 %Z 000 O

ﬁﬁﬁﬁoa

(XY Z)? —tr(XYZ)XY Z + det(X)det(Y)det(Z) = 0
work out the first term using the defining relations in A, to get
(XY Z)? = —X2Y? + 22XY = —zyly + 2:XY

and take the trace of the characteristic polynomial. It follows that w satisfies the quadratic
relation '
—2xy +422 —w? —2zy =0 thatis w?® = 4(2* — zy)

By the defining relations in A, (or equivalently the characteristic polynomials of X, Y and
Z) it follows that every trace of a monomial in X,Y and Z is a polynomial in z,y, 2 and -
w. That is, the coordinate ring of the quotient variety is

C[x,%z';w] ~ C[xl,x2,$3,$4]

Cliss, A = =
[issg A w? — 422 ~ dzy ~ (2179 — T3T4)

which is the coordinate ring of the conifold quotient singularity.

By the foregoing section we know that the points in iss; A, classify the semi-simple
2-dimensional representations of A.. We have seen that all of them are simple except for
M, & M_, determined by the origin. The embedding

Clz,y, 2] C Clissy A,
determines a projection ‘
issy A, L
which is ramified along V(2% — zy). That is, if p ¢ V(2* — zy) there are two points of
issy A, lying over p whereas if p € V(22 — zy) there is just one. This agrees with the

fact that there is just one semi-simple (actually simple) representation for every point in
issy A, which is not the origin.

-11 -
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Last time we have seen how to approach the quotient variety (or scheme)
iss, A =rep, A//GL,

classifying n-dimensional semi-simple A-representations. Today, we will use this to study
the G L,-geometry of the representation variety rep,, A itself.

1. Components and their dimensions

Representation varieties behave functorially, that is, if B N A is a C-algebra morphism,
there is an induced morphism between the representation schemes

rep, A AN rep, B

obtained by restriction of scalars. If p € rep, A determines the algebra morphism
A2 2(C) then f*(p) is the n-dimensional representation of B defined by the com-
position

B+ 4% M,
Assume that A has a set {ey, . .., ey} of orthogonal idempotents, that is, elements satisfy-
ing

€2

s =€ e;e; = 0 wheni # j er+...+e =1

then these elements generate a semi-simple commutative subalgebra of A

B=Cx..xCe—s A4
k



Because B is semi-simple, all its n-dimensional representations are semi-simple and B
has precisely & simple (one-dimensional) representations determined by its components,
that is,

M, :e—0, ...e1—0¢€—1¢€11+—0 ... e—0

Because all B-representations are semi-simple, their orbits are closed and the representa-
tion variety decomposes as a finite disjoint union

rep, B = U OMP* @ ... @ M2*)
Yiei=n

a=(a1, oK)
Hence, rep,, A also decomposes

rep, A= |_| rep, A with rep, A= (f)T(OMP" &... & M>¥)
> =N

a=(ay,. ,ag)
We call rep,, A the representation scheme of a-dimensional representations of A. It con-
sists of those representations A 2. M,,(C) such that

tr(¢(er)) = ar,tr(dle2)) = as, ..., tr(¢(ex)) = ax
Example 1 The conifold algebra A, contains the subalgebra "
_ _Cl
S (2-1)
the idempotents being given by the elements e; = %(1 —z)and ey = %(l + z). Therefore,
rep, A, decomposes into three components

~CxC

rep(s) AU Iep 1) ALl IeP(o,2) A

and contain resp. the representations for which tr(z) = —2 (2,0), tr(z) = 0 (1,1) and
tr(z) = 2 (0,2). Another way to say the same thirig is : because ¢(z) is a semi-simple
element in M,(C) it is a diagonalizable matrix, so is conjugated to one of the following
three possible diagonal matrices

10

o

-1 0 10
0 -1 0-1
If ¢ lies in the first or the last component, ¢(z) is (conjugated to) a central unit, but then
| 0 = ¢(z)d(2) + ¢(2)$(z) = 2¢(2)8(2)
whence ¢(z) = 0 (and similarly ¢(y) = 0. That is,
rep0) Ae = 0-(M— & M-) rep( g Ac = O(M. & M)

Last time we calculated that the component rep; ;y A, corresponds to the Clifford algebra
and has quotient variety the three-dimensional conifold singularity.



In all relevant examples one is usually interested in those components rep, A which
have a Zariski open subset of simple n-dimensional representations. Equivalently, there is
a Zariski open subset Az C iss, A = rep, A//GLy, called the Azumaya locus such that
under the quotient map

rep, A —Dr iss, A

the fiber 71(p) is a single orbit O(M) with M a simple A-module. This often allows us
to compute the dimension of such components.

By Schur’s lemma we know that End (M), the A-module morphisms M — M of
a simple A-module M are reduced to scalar multiples Cidy,. Therefore, if M is a simple
n-dimensional representation, its stabilizer subgroup

Stab(M) = {g € GL, | g M = M} =C"1,
and therefore the dimension of the orbit is
dim O(M) = dim GL, — dim Stab(M) =n® — 1

Alternatively, the orbit O(M) is isomorphic to the projective linear group PGL, =
GL,/(C*1,). In fact, we will see in a moment that the orbit-map n~*(Az) — L Az
over the Azumaya locus is a principal PG L, -fibration. '

Theorem 1 Assume iss, A is an irreducible component of dimension d of iss, A con-
taining a Zariski open subset of simple n-dimensional representations. Then,

dimzrep, A=d+n*—1

Similar tricks can often be used to compute the dimension of components if we have
information on the stabilizer subgroup of a generic representation (that is, for a Zariski
open subset of its representations).

Example 2 The components rep, 5 A and rep 5y A, consist of a unique orbit O(M)
so its dimension is 4 — dim Stab(M). As M is twice the sum of a simple one-dimensional
representation, End(M) = M,(C) whence its stabilizer subgroup is G L (or verify di-
rectly), whence these components reduce to a single fix-point.

We have seen last time that iss(y,1) A, is irreducible of dimension three. Moreover,
all of its points but the origin determine a simple 2-dimensional representation, that is,

Az = iss(1y) A, — {t}
the Azumaya locus is the complement of the isolated singularity ¢. Therefore,

which would be hard to determine just starting from the defining equations of rep, A..




2. The tangent space

Having determined the good components and their dimensions, we would like to determine
whether rep,, A is a smooth variety and, if not, to locate its singularities.
If A= C{z1,...,%m)/la we have a closed embedding

rep, A — C™ = M,(C) x ... x M,(C)
and every n-dimensional representation M € rep, A is determined by an m-tuple of
matrices m = (my, . .., my,) where m; = ¢(%;) if § : A —— M,(C) is the algebra map
determined by M. The tangent space at m in the big space

T (Ma(C) X .. X Mn(C)) = Mo(C) & ... @ M,(C)

and the element (n,,...,n,) in it can be represented by the m-tuple of n X n matrices
over the dual numbers Cle] ~ Clz]/(z?)

(my + €na,y ..., Mm + eny) € My(Cle]) X ... x My(Cle])

The tangent space in m at the subscheme xrep,, A, Ty, (rep, A) is the subspace consisting
of those (ny,. .., ny,) such that

0...0
flmi+eny,...,mpy+eny) = |: 1| € M,(C[e)
0...0
for all f(z1,...,2Zm) € I4. Evenif we do not know explicitly the full ideal of relations of

rep, A or rep, A this is usually easy to work out as it is a system of linear equations in
the entries if (n1,...,7mn).
If the dimension of rep,, A inm is d, then m is a smooth point of rep, A if and only
if ‘
dimg T (rep, A) = d
To verify that rep,, A is smooth we do not have to verify this condition in all points. For,

the singular locus of rep,, A is closed and G L,-stable, so there is a singularity if and only
if there is a closed orbit (a semi-simple representation) of singularities.

Theorem 2 rep, A is smooth if and only if for every semi-simple M € rep, A we have
that

dimg Tn(xep, A) = dim,, rep, A

Often, one only has to consider the *worst’ possible semi-simples in rep,, A.



Example 3 We will show that rep, ;) A, is a smooth variety. We know already that the
quotient variety iss(;,;) 4. has an isolated singularity ¢ and that the complement is the
Azumaya locus of A.. Therefore, '

’/T_l(iSS(l,l) A.—{t}) L issq,) Ae

is a principal PG L,-fibration over a smooth variety and hence the total space is smooth.
(This holds more generally, the part of rep,, A lying over the intersection of the Azumaya
locus and the smooth locus of iss, A contains only smooth points).Hence, possible sin-
gularities must lie in 7~1(¢) and there is a unique semi-simple representation in this closed
G L,-stable set, m = M, & M_ or in matrix-terms

- 00 . 00 - 10
0o] Y7 loo 0-1
That is, we have to solve which z1,..., %4, %1, ..., Y4, 21, . - , 24 satisfy all defining rela-
tions of A, when we replace z, resp. y and z with the matrices over the dual numbers

xl__}e{ﬂhxz}, y'_w{myz}’ zr—)[l 0]_*_6[2122}
T3 T4 Y3 Ya 0-1 23 24

the equation 22 = 1 becomes

LR i PR e

whence z; = z4 = 0. The equation zz + zz = 0 becomes

¢ 2.’1)1 0
0 —2$4
whence z; = z4 = 0 and similarly also y; = y4 = 0 from the equation yz + zy = 0. All
other relations are automatically satisfied. Therefore,

Tm(repy 1y Ac) = Cza + Czs + Cya + Cys + Czz + Cz

has dimension 6 which coincides with the dimension of rep, ;) A, whence m is also a
smooth point.

Because rep; ;) Ac1s a smooth variety with quotient variety the conifold singularity
we say that the conifold algebra is a noncommutative desingularization (or more precisely,
an (1, 1)-dimensional noncommutative desingularization) of the conifold singularity. Next
time we will see how one can use noncommutative desingularizations to obtain commuta-
tive desingularizations.




3. The normal space

In this section we will give another method to compute the dimension of the tangent space
Trn(rep,, A) by describing the normalspace Ny, to the orbit O(M)

Tn(rep, A) = Np ® Tin(O(M))

There are two advantages : the description of N,, only uses module-theoretic facts on M
(self-extensions) and N, is not just a vectorspace but a Stab(M )-representation. In the
important case when M is a semi-simple module this will give us a local quiver setting
describing the étale local G L,-structure of rep, A in a neighborhood of O(M). More
details can be found in ng@n §3.3 and §4.2.

Let M and N be two A-representations of dimension m resp. n. An extension of
N by M is an n + m-dimensional representation P such that M is a submodule of P
with quotient N. Two extensions are equivalént if there is an A-module isomorphism
P %+ P’ such that the diagram describing the extensions

0 M P - N 0
I ¢ I
0 - M - P’ - N 0

is commutative. We can also express this is matrix-terms. Let pps @ A —— M,,(C) and
on : A—— M,(C) be the representations associated to M and N, then any extension
P defines a representation pp : A — Mp4,(C) such that

’NP(G) = {pMO(a) 2\52)} foralla € A

where A : A —— Homc(N, M) is a linear map satisfying the cycle condition
Maa') = pu(a)\(@') + AMa)on(a')

The set of all such cycle linear maps form a vectorspace Z(N, M) and two extensions
are equivalent if and only if there difference is a boundary, that is there is a linear map
B € Homg(N, M) such that

Ma) = Aa') = pula)of—PBooy(a) forallac A
The set of all boundaries is a subspace B(N, M) of Z(N, M) and the quotient

%% = Exty,(N, M)

is the space of all equivalence classes of extensions.



Example 4 Let us compute Exzt} (M., M) for the one-dimensional simple A.-modules

z+0 z+0
Mi=¢y—0 M_=<y—0
z—1 z2— -1

Any cycle A A H omgc (M, My) is fully determined by the images of the generators
and hence determines a triple (a, b,c) € C* such that the matrices

. Oa . 0b Y +1 ¢
7 o0 Y7 oo 0 *1
determine a two dimensional representation of A.. The identity 2% = 1 implies that ¢ = 0

unless both terms are different. If they are both say M., then the identity zz + zz = 0

becomes
[O 2a

00
and similarly b = 0. Therefore, Z(M,, M) =0= Z(M_,M_) and

} whence a = 0

Exty (My,M.)=0 and  Eaxty (M_,M_)=0

If the two terms are different, the equations 22 = 1 and zz + zz = 0,2y + yz = 0 impose
no conditions on (a, b, ¢) and the other defining equations of A, are automatically satisfied.
So,

Z(My,M_) =C®=Z(M_, M,)

The boundaries B(M.., M) are given by those A, .= omg(M,, M_) = C such that
for some d € Home(M.., M_) we have

§(z)=0d—d0=0 &) =0d—0d=0 6(z)=-1d—dl=-2d
whence Z(M,.,Z-) = {(0,0,¢)} and therefore
Exth (My,M.)=C?={(a,b,0)} andsimilarly FEaxty (M_,M,)=C?
Fix M € rep, A, then the cycles Z(M, M) can be identified to the tangent space

Tm(rep, A). Let ¢ : A —— M,(C) be the algebra map determined by M and
A A—— Homc(M, M) = M,(C) acycle, that is, satisfying

Maad') = ¢(a)A\(d) + Ma)p(a')  Va,d € A
then we have an algebra map (and hence a tangent vector)

A—— M,(Cle]) ar ¢la)+era)



Indeed, for all a,a’ € A we have
(#(a)+ex(a))(¢(a') +eA(@)) = ¢(a)g(a’) +e($(a)A(a)) + Ma)$(e)) = ¢(aa) +eA(ad’)

Conversely, every tangent vector ¥ : A —— M, (Cle]) determines a cycle ) by setting
x(a) = #(a) + eX(a). On the other hand, the tangent space Ty (GL,) =~ M,(C) and the
differential of the action map of GL, onrep, A sending g to g.M is

Mo(C) - Tn(zep, A) g — A where Aa) = gé(a) - $(a)g

because (1, + €g)p(l — eg) = ¢ + €(g.¢ — ¢.g). That is, the tangent space to the orbit
O(M) in rep,, A coincides with the boundaries B(M, M).

Theorem 3 The normal space Ny, to the orbit O(M) inrep, A is isomorphic to the space
of self-extensions Exth (M, M).

This gives an alternative method to compute the dimension of the tangent space as

dimg Ty (rep, A) = dime Ny, + dim O(M)
= dimg¢ Exth(M, M) + n? — dim Stab(M)

and another test on smoothness of M.

4. The local quiver setting

The stabilizer subgroup Stab(M) acts on the normal space N,,, = Ext) (M, M) by conju-
gation. In the important case when M is a semi-simple n-dimensional representation, we
will show that this action is isomorphic to the basechange action of a certain quiver setting
: the local quiver setting. For more details we refer to ng@n §4.5.

Consider the decomposition of the semi-simple representation M in its simple com-

ponents

M=S*o.. oS
where the S; are the distinct simple components, say of dimension d; and oécurring in
M with multiplicity e;. To begin, n = die; + ... + diex and as for ¢ # 35 S; and S
are non-isomorphic we have that the stabilizer subgroup of M, that is, the invertible A-
endomorphisms of M is (use Hom4(S;,S;) = 0if ¢ # j and Homyu(S;, S;) = C by
Schur’s lemma)
| | Stab(M) ~ GLe, X ... X GLg,

and if we choose a basis of M (that is, go to another point in the orbit if necessary) adapted
to this decomposition we see that Stab(M) is embedded in GL,, via

GL, (C® M)

GLe, (C®Ty)



The Ext-functor is additive in both factors, whence we have a description of Extly (M, M)

as
M., (Ety(S1,50)) - Meye, (Bxty(S1, 51)

MekXel (Extil(sh Sl)) cee Mek (Exth(sk, Sk))

which can be identified to the representation space rep, Q of the local quiver setting
(Q, B) where the dimension vector 8 = (ey,...,e) is given by the multiplicities of the
simple components in M and where @ is a quiver on k vertices {v1, . .., v} (correspond-
ing to the distinct simple components of M) such that there are

ai; = dime Bxth(S;,S;)

directed arrows from v; to v;. Observe that Stab(M) ~ GL(() the base change group of
reps Q-

Theorem 4 If M is a semi-simple representation with isotypical decomposition
M=S%o. oS5k

then as a Stab(M) = GLg, X ... X GL,, -representation the normal space N, to the orbit
O(M) is isomorphic to the representation space

rep; @

where 3 = (e1,-..,ex) and Q has dimc Exty(Si, S;) directed arrows from vertex v; to
vertex v;. We call (Q, B) the local quiver setting of the semi-simple representation M.

Example 5 Consider the semi-simple two-dimensional representation of A,
M = M + @ M —_
The stabilizer subgroup is

Stab(M) ~ C* x C* = {[g 2] } e GL,

and by our previous calculations, the local quiver setting (Q, §) has quiver

>

and dimension vector (1,1). A representation in rep, ;) () is determined by matrices

b3 [ Bl



on which Stab(M) acts by simultaneous conjugation which is also the action by basechange
of the group GL(0).

If M is a two-dimensional simple representation in rep; ;) A, then the stabilizer
subgroup Stab(M) ~ C* = C*f, = GL; by Schur’s lemma and one verifies that

Exty (M, M) ~C?

That is, the local quiver setting (@, 3) for such a representation has quiver

and dimension vector 3 = (1).

5. The Luna slice theorem

In this section we will apply the Luna slice theorem to get the G Ly,-local structure of
rep, A near the orbit O(M) of a semi-simple representation from the local quiver setting
(Q, B). Proofs and more details can be found in ng@n §4.1, §4.3 and §4.5.

Recall that a morphism of commutative rings R L S is said to be étale if Sis a
finite R-module and for a presentation of S as

g Bloy )
(fl) vy 7f71)
we have that the Jacobian matrix
oh of1
Ox1 " Oxn
Ox1 """ Ozp

is an invertible n x n matrix over S. Many ringtheoretic properties (such as smoothness,
complete intersection etc.) are preserved under étale morphisms. A morphism of affine
varieties X —— Y is said to be étale if the induced morphism on the coordinate rings
C[Y] — C[X] is an étale morphism. One should think of étale maps as finite covers,
they are locally isomorphic in the analytic topology (but not necessarily in the Zariski
topology). For more details see ng@n Chp. 3.

A naive attempt to describe the G L,,-structure of rep,, A near an orbit O(M) would
be to say that it should look like the product G /Stab(M) x N, of the orbit with the normal
spaces, see figure 1. Surprisingly, this is "almost’ true provided the orbit O(M) is closed
(that is, M is a semi-simple representation), m is a smooth point of rep, A and we work
in the étale topology, see ag@n §4.3 for a proof :

Theorem 5 (Luna slice theorem) Let M be an n-dimensional semi-simple representa-
tion of A with local quiver setting (Q, 3) such that the corresponding point m € rep, A

~10-



bi
N9

/_(;(-M)

Nom
Figure 1: Normal spaces to the orbit.
is smooth. Then, there is a smooth G L([3)-stable subvariety S,, — rep, A through m

(the slice) and a diagram of varieties

GLnxGL(B)qs

GL, xGH8) reps GL, x¢t® s AN rep, A

Y ¢ Y "E \
issg Q Sm//GL(B) — iss, A
such that the upper maps are G L,,-equivariant étale maps and the lower maps étale maps
between the corresponding quotient varieties. The map 1 is the action-map and ¢ takes m
to the zero-representation in repg Q-

Example 6 All conditions are satisfied for the semi-simple module M = M, @ M_ in
rep( 1y A.. By the above result, the GL-structure of rep, ;) A, near O(M) should be
étale isomorphic to that of the associated fiber bundle

GL2 XC*XC* rep(l,l) Q

(for the quiver @) described before) near the zero-representation and that there is an étale
isomorphism between the quotient variety iss(; 1y A, near the image of m and the quiver-
quotient variety iss(y,1y ¢ near the image if the zero-representation.

In this case, these morphisms are actually isomorphisms in the Zariski topology. In-
deed, do a basechange such that the action of z on a representation N € rep; ;) Ac is

given by the matrix ;
s 10
0-1

—11 -




It follows from the equations zz + zz = 0 = yz + zy that the action of z resp. y is given

by
0 M) 0 Y2
x> —
x3 0 Y3 0
and hence these matrices determine a representation in rep; ;) Q. As we needed to per-
form a basechange, this gives a morphism

rep( ) Ac — GLo x e rep(; ) @

Another application of the slice result is the étale local structure of rep ; ;y A. near a simple
representation M. In this case we have that the local quiver setting is (@, (1)) where Q is
the three loop quiver. Therefore, a G Ly-neighborhood of the orbit is étale isomorphic to

GLy x© Clz,y,2] = PGLy x Clz,y, 2]

as the action of C* on rep(;) @ is trivial. That is, over the Azumaya locus we have that the
quotient map
K .
rep 1y Ac — iss(1) Ac

is a principal PG Ly-fibration in the étale topology.

When M is semi-simple but m is not smooth, one can still describe the GL,,-étale
local structure of rep, A in terms of representations of quivers with relations. The idea
is to look for an epimorphism A’ —~ A such that the image of m is smooth in rep,, A’
(a drastic choice of A’ would be the free algebra C(zy,. .., Z)). Use the previous result
using the local quiver setting (@', §') for m with respect to A’ (this gives the "big’ normal
space of figure 1), then one can define a slice for m in rep,, A by taking the inverse image
of the inclusion rep, A —— rep, A’ under the action map. Finally, take the image of
this closed subset in GL,, x%L6) rep » @ which gives us the relations which must hold
for the quiver-representations.

~12 -
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Last time we have seen that the local study of representation varieties reduces to that
of representations of quivers (possibly with relations). This week we will see what is
known in this case and introduce the moduli spaces of quiver-representations.

1. Quiver quotient varieties

Let Q) be a quiver with k vertices {vy,...,v;} and such that there are a;; arrows with
starting vertex v; and terminating vertex v;. The Euler form of Q is given by the matrix

XQ = (0i5 — ai5)i; € My(Z)

which determines a bilinear form on Z*. The Vertex-idempotents e; form a complete set of
orthogonal idempotents in the path algebra CQ) whence C() has the semi-simple algebra
C x ... x C (k factors) as a subalgebra. Therefore,

rep, CQ = |_| GL, xCH) rep, @
o=(a1, .,ak)
2 ai=n
where rep,, ) is the affine space of all a-dimensional representations of Q : V' = (V,),
where for each arrow a in Q with s(a) = v; and t(a) = v; we have that V, € Mg, (C).
On this space the basechange group GL(a) = X;GL,, acts via

(91, 96) Vo = g;Vag™




The to V = (V,), € rep, @ corresponding n-dimensional representations of C() is given
by sending the vertex idempotent e; to the diagonal matrix

.. 0
dv(e;) = T,
. O .

with 1’s at places Z;;ll a;+1 <1< Z;=1 a;. The image of the arrow-generator a is an
a; X a; block-matrix

¢v(a) =

at spot (i, 7). As there is a natural one-to-one correspondence between G L,-orbits in the
associated fiber bundle GL,, x®X(*) rep_ @ and GL(«)-orbits in rep,, Q we have that

GL, x°® rep_Q//GL, ~ rep, Q//GL(a) = iss, Q

the variety parametrizing isomorphism classes of semi-simple o-dimensional representa-
tions of . Its coordinate ring ’

(C[iSSa Q] — (C[repa Q]GL(O() — C[GLn XGL(Ot) rep, Q]GLn

can be computed via the Procesi-Razmyslov theorem from the traces of monomial of the
images of the generic matrices under the relations of C(). This means that the generic
matrix corresponding to the vertex idempotent e; is send to the above diagonal matrix and
that corresponding to a to a block-matrix as above with all its entries variables. Calculating
multiplication of such block-matrices we see that a monomial in these matrices has non-
zero trace if and only if the monomial corresponds to an oriented circuit in the quiver Q).
This proves (for more details see ng@n §3.3)

Theorem 1 The ring of polynomial quiver-invariants
Clrep,, Q)¢
is generated by taking traces of oriented cycles of total length < n* + 1 in the quiver Q.
Example 1 For the conifold algebra we have seen that
rep,1) Ae GLy x&*¢ rep(;1) @

for the quiver setting

P
®§;7®




then, the images of the generic matrices are respectively
10 00 0 z1
00 01 00
0 zo 00 00
00 11 0 Y2 0

and the traces in monomials of these matrices are generated by the polynomials

{z = 2191,y = Toy2, u = T1Y2, v = Tay1 }
but they satisfy the relation zy = uv, whence Cliss(,1y @] is the conifold singularity

Clz,y,u,v]
(zy — wv)

2. Quiver local quivers

We are interested in those dimension vectors ¢ such that
rep, CQ =GL, x L) rep, @

contains a Zariski open subset consisting of simple representations. We have a full answer
to this question in terms of the Euler form of the quiver )

Theorem 2 There is a Zariski open subset of simple representations in rep, CQ if and

only if
xq(a,8;) <0 and xq(d;, ) <

for all vertex-simples 6; = (6;;);. ""{" /ZU-W (ﬁ\,) ({L@

One direction is easy : if say xg(a, d;) > 0 for some vertex v;, this means that the total ' M
number of incoming dimensions (multiplied with the number of arrows) is strictly smaller
that the vertex-dimension at v;. But then we can produce a proper subrepresentation by
taking in vertex v; the subspace spanned by all incoming matrices. The harder part is to
prove the converse implication, see ng@n §3.4 for more details.
If o is such a simple root, then we also know the dimension of the quotient variety
iss, @ = rep, Q//GL(«a) as we know the total dimension of rep,, @ and because there
is a Zariski open subset where the quotient map is a principal PGL(a) = GL(a)/C*-
fibration. Therefore

dim iss, CQ = dimg iss, @ = 1 — xo(o, @)

Thus, for a given dimension vector o we can determine all possible representation types

T=(B,e1. i Bue) Y ebi=a

i=1




where the §; are dimension vectors of simple representations of @ and where the e; are
the multiplicities. With iss, Q(7) we denote the subset of all a-dimensional semi-simple
representations of type 7. It follows that this locally closed subset is of dimension

:,(f
4L 57 z
W 0 dim iss, Q(1) = Y (1 = xa(6:,6:)
~ g =1
{ 3 . . :
¢ : Next, let V' € rep,, @ be a semi-simple representation of type 7, then we would like to
— ¢ determine the local quiver setting (Q.,c.,) of V entirely in terms of the type 7. We have
38 75 seen that to do so it is important to be able to compute the dimension of Exzt!-spaces. For
~ 9 _ representations of quivers we have the following result
>
~ Theorem 3 Let V resp. W be representations of a quiver ) of dimension vector o resp.
4
7
B, then
é e {1')3'” dim Homco(V, W) — dim Eztgo(V, W) = xq(e, B)
>0
@ % ZT For a proof we refer to ng@n §3.3. Specializing to the case when V' and W are sim-
o J ple representations we know by Schur’s lemma that dim Homcg(V, W) is one or zero
I
N 507 Uoldepending on whether (or not) V' o~ W. Therefore
| T
. Theorem 4 Let V' be an «a-dimensional semi-simple representation of Q) of type 7 =
= L (B1,€1;-..; Bz, €z), that is,
=~ V=weie. . ew
~> 3 *-—r‘{ where dim W; = [3; and W; is a simple representation. The local quiver setting (Q, c;)
—2 (\ only depends on 7. The quiver Q. has z vertices {ws,...,w,} such that the number of
_5 ~  arrows from w; to w; is
@ - & 8i5 — x@(Bs, B;)
n and the dimension vector o, = (e1,. . ., e,).
: Exercise 1 Consider the quiver setting (@), @) coming from linear control systems
1...7\
.>~ @:—’rn:@o
>
] Determine C[iss, Q)] and deduce that iss, @ ~ C". Determine all dimension vectors
é of simple representations of ) and deduce all possible representation types occurring in
- rep, @. For each type 7 determine the local quiver setting (Q., c..). Determine for which
{ types 7 we have that
o iss, Q(7) C iss, Q(7)

How would you extend this to arbitrary quiver settings ?



3. Stability structures
If the quiver ) has no oriented cycles, there are no non-trivial polynomial invariants

whence the quotient variety iss, @ is reduced to one point. Still, it may be that there
are perfectly good orbit-spaces for a Zariski open subset of rep,, Q.

Example 2 Consider the quiver setting

@ n+1=—=>Q)
with n 4 1 arrows {zo, 21, ..., Z,} from v; to vo. The basechange group acts via
()‘7 mu)“(xO; L1yoo- axn) = ,U)‘_l(xO) L1y 7xn)

If we consider the Zariski open subset rep(; 1y @ — {(0,...,0)} then the GL(a)-orbits in
this open set are all closed (they have the same dimension) and they are classified by the
points in P*, the projective n-space.

Let  be a quiver on k vertices and let § = (p1,...,px) € Z* such that .o =
Zf=1 pia; = 0. A representation V' € rep,, () is said to be 8-sermistable if and only if for
every proper subrepresentation 0 # W —— V we have that

0.dimW >0

If this is a strict inequality for all proper subrepresentations, we call V' #-stable. One
can show (see ng@n §7.3 for details) that the -semistable representations in rep, () are
actually the a-dimensional representations of a certain universal localization of C¢) and
that under this identification, §-stables correspond to simple representations. Therefore,
there is a version of the Jordan-Hdlder theorem for #-semistable representations, that is, if
V is O-semistable there is a finite filtration of V' with all successive quotients §-stable.

We will see in a moment that the set of all 6-semistable representations in rep, Q
forms a Zariski open subset. Mimicking the characterization of closed orbits in rep,, A
we can prove that closed orbits in the open subset.of §-semistables correspond to direct
sums of 0-stables (the §-version of semi-simple representations), so if there is a quotient
variety its points will classify direct sums of #-stable representations of total dimension c.

For example, the nonzero representations of

O=—=nt+1—=>0

are the f-semistable (actually f-stable) representations where § = (—1,1) as the only
proper subrepresentation of such a representations has dimension vector (0,1). Several
examples we encountered before can also be expressed in this setting.




Example 3 (linear control systems) A completely controllable system (A, B) € Myym(C)x
M,,(C) is a O-stable representation of the quiver setting

for § = (—n, 1) (verify!).

The notions extends to representations of quivers with relations :

Example 4 (Hilbert scheme) Consider the quiver-setting with relations

.
O
Y

®

satisfying the relation zy — yx = 0. Then, the orbit space of the §-(semi)stable represen-
tations is the Hilbert scheme Hilb, C? where § = (—n, 1).

4. The moduli space

In this section we will construct a quotient variety for the f-semistable representations of
a quiver setting (@, o). Recall that semi-simple representations were separated by poly-
nomial invariants on rep, (), direct sums of §-stable representations are separated by
semi-invariant polynomials. The stability structure § determines a character

GL(0) = GLg, X ... X GLg 22+ C* (g1, ., 9k) — det(gi)P* ... det(gi)P*
and a polynomial f € Clrep,, Q)] is said to be a X¢-semi-invariant iff

g.f =xe(9)"f Vg€ GL(a)

for a fixed w € N, called the weight of the semi-invariant. Remark that polynomial invari-
ants are also semi-invariants (of weight 0) and that the weight-function defines a gradation
on the subring of all polynomial semi-invariants

Clrep,|°M@x = (D{f € Clrep, Q| 9.f = xs(9)* Vg € GL()}

weN .

with part of degree zero the ring of invariants Clrep, Q]%(®) = C[iss, Q).

Any positively graded commutative C-algebra R = @;enR; defines its projective
scheme proj R on the set of all its graded prime ideals (apart from the positive cone
R, = ®;>1R;). The scheme structure is given by defining standard affine open pieces (for
f ahomogeneous element) '

X(f)={P<, R| [ ¢ P}




whose ring of sections is the degree zero part of the graded ring of fractions R;. For
example, consider the § = (—1, 1)-(semi)stable representations of

@ n+41=—=>0)
and let z; be the i-th arrow, then z; is a y,-semi-invariant of weight one and the ring of all
Xo-semi-invariants is C[zo, . .., z,] graded as usual. The corresponding projective scheme
clearly is
proj Clzo, z1,. .., T, = P"

the projective n-space which is covered by the affine open pieces X(z;) with ring of sec-
tions i '
Z n
C[x—j,..,,; = (Clzo, - - -, Tnlai)o

?

This case is the archetypical example of

Theorem 5 The quotient variety of the Zariski open subset of all §-semistable represen-
tations in xep,, Q) is the projective scheme

modulia(Q, 9) = proj (C[Iepa Q]GL(C‘):Xo

the points of which classify the direct sums of 0-stable representations of total dimension
o

We call moduli, (@), 6) the moduli space of f-semistable a-dimensional representa-
tions of (), we refer to ng@n §6.3 for the proof of this result. For this reason it is important
to know a generating set of the algebra of all semi-invariants. Again this problem essen-
tially reduces to classical invariant theory, see ng@n §7.2.

Let [ and r be natural numbers and consider maps

(1,00 -2+ {1,..,k} and {1,...,r} ——{1,...,k}

Further, consider natural numbers x1,...,z; and y1, ..., ¥, such that

1 7
Z Ziare) = Z Y5AR(5)
(UJ)\ i=1 j=1

Now consider ai{7 x 7 block matrix where at place (j,7) we place a z; X y; matrix with all
its entries linear combinations of paths from vz ;) to vg(;) in the quiver Q). Evaluating this
matrix on rep, () we obtain a square matrix whose determinant is a semi-invariant with
corresponding character "

é="(f1, .., fx) suchthat f;= Z Y — Z x;

JER™I(1) ieL—1(l)

We call such a semi-invariant a determinantal semi-invariant of character ¢.

A
!

£




Theorem 6 The ring of semi-invariants
Clrep, QH)

is generated by traces of oriented cycles in the quiver () and by determinantal semi-
invariants of character nx forn € N.

Example 5 For the quiver setting of linear control systems, take [ = nand r = 1 and
1 =...=x, =1and y =1 and consider the 1 X n matrix

[Pl pn]

where p; is a path from the first vertex to the second, so of the form B°A, for some c, d,
so we see that the corresponding determinant is a semi-invariant of character § = (—n, 1).

The inclusion of the degree zero part Clrep, Q)% into the full ring of semi-
invariants defines a projective space bundle

moduli,(@,0) —> iss, Q

that is, all fibers are projective varieties. Similar results hold for quivers with relations. If
V and W are 6-stable representations and f : V —— W a morphism of representations,
consider the exact sequence

00— Ker f —V Lo w Coker f —— 0

It follows that either f is an isomorphism or f is the zero map. Indeed, from the short
exact sequences

00— Kerf—>V —Imf—0 0 Im f — W —— Coker f — 0
it follows that 6.dim Ker f = 0.dim Im f = §.dim Coker f = 0 and 0-stability of V

and W does the rest. In particular, we have a Schur lemma for #-stable representations

HOT)’L@Q(V, W) =

{Cif’V:W

Ootherwise

Exercise 2 Let (Q, o) be a quiver setting such that gcd(ay, . .. ,a;) = 1. Prove that there
is a stability structure 8 such that

moduli, (@, 6)

is a smooth variety. (Hint : find § such that all §-semistables are §-stable).




\qotedin !
A

Exercise 3 Consider the quiver setting of the Hilbek&\emes and prove that we obtain a

projective space bundle —— —_—
moduli,(@,68) —~ iss, @

Hilb, C2 — s 5" C?
where S™ C? is the n-th symmetric power of C? (that is, n-unordered points in C2. Prove
moreover that this is a resolution of singularities, the so called Hilbert-Chow map.

5. Noncommutative desingularization

We now come to a major application of noncommutative geometry to stringtheory : the
construction of (partial) commutative desingularizations of quotient singularities. Nor-
mally one constructs desingularizations by blowing-up and blowing-down, that is, extend-
ing the singular variety. The noncommutative approach is drastically different : if there is
a noncommutative algebra A with a smooth component rep,, A such that iss, A is the
singular variety, then one can restrict to a Zariski open subset of semistable representations
such that the corresponding moduli space is a desingularization.

Example 6 (the conifold singularity) We have seen before that for the conifold algebra
Ac and oo = (1,1) we have that rep, A, is a smooth variety and iss, A, is the conifold
singularity (the three dimensional Z/2Z-quotient singularity)

Clz,y, u, ]
(zy — uv)

Moreover, we have an isomorphism
rep, A ~ GLy O rep Q

for the quiver setting

oo

We have essentially two different stability structures on rep, @, § = (—1,1) and §' =
(1,—1). All #-semistable representations are f-stable and they form the Zariski open sub-
set of rep,, @ for which at least one of the two top arrows is non-zero. The algebra of
semi-invariants is generated by the traces (the conifold singularity) together with these
two arrows i, T, that is,

Clz,y, u,v]

(zy — wv) (1, 2]

C[rep, Q] GL(a)xe —




graded by deg(z1) = deg(zs) = 1. Because rep, @ is smooth, so is the subset of §-
semistable representations and as they are all §-stable the corresponding quotient map

rep,(Q,0) — moduli,(@,6)

is a principal PGL(c)-fibration whence the moduli space moduli, (@, 8) is a smooth va-
riety. The inclusion of the degree zero part gives a morphism

moduli,(Q,a) —> issq A,
which is a desingularization of the conifold singularity. The exceptional ﬁber
7710,0,0,0) ~ P

as it corresponds to projClz,zo). Similarly, if y1,y. are the two lower maps, the &'
semistables are #'-stable and form the Zariski open subset of representations such that at
least one of these two maps is nonzero. Mimicking the above argument we obtain that also

moduliy(Q,8) —» iss, A,

is a desingularization with exceptional fiber P*. The rational map

modulia(Q, 9) ........................ . modulia(Q, 0’)

iss, A.
is called a flop in physics literature (actually, the Atiyah flop).
This procedure is quite general. In the fbllowing (not entirely trivial) exercise we

present the main steps to produce the desingularization of two-dimensional quotient sin-
gularities (due to Peter Kronheimer) by noncommutative geometry.

Exercise 4 The two-dimensional quotient singularities C2/G where G is a finite subgroup
of SLy(C) correspond to the tame quiver settings of figure 1. Replace each solid edge e
in these diagrams by an arrow-pair (z., z) in both directions. Consider the preprojective

__CQ
(@)= = 7))

It is well known that for a tame quiver setting (@, ) the quotient variety

iss, (@)

is a two-dimensional quotient singularity and that there is a Zariski open subset of simple
IIo(Q)-representations in rep,, &.

algebra

~10—
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E l
7 c——6—5 o—0 O—0—0—0—0—0—0

[©]
B 1 i
8 C—6 S & O @—@—@—0—3@—030—0—0

Figure 1: The tame quiver settings.

1. Use this to determine the dimension of rep,, IIo(Q).

2. Bill Crawley-Boevey proved that for V and W representaiions of ITH(Q) of dimen-
sion vectors o and (5 one has

dimg Ea:t%lo(V, W) = dime Homp, (V, W)+dime Homp,(W,V)—x(e, 8)—x(8, @)

where x is the Euler form of a quiver where we replace every solid edge by one
directed arrow (in whatever direction). Use this to prove that for a tame quiver
setting (@, ) the representation variety

rep, Iy(Q)

is singular but one can choose a stability structure 8 such that the Zariski open subset

rep,(Ilo(Q), 9)

is a smooth variety.
3. Conclude to get a desingularization

moduli, (TIy(Q),8) —~ C?/G

Research problem 2 (open) : In which generality can one use noncommutative geometry
to resolve commutative singularities. That is, given a singular variety X, can we find

-11-



a noncommutative algebra A, a component rep, A and a stability structure § such that
iss, A = X and
moduli,(A4,0) — X

a (partial) resolution of singularities. Can one iterate this procedure to obtain a desingular-
ization? Partial results are known for singularities of quiver quotients but the general case
remains open. In particular, can one do this for three dimensional quotient singularities

(important in string theory) ?

~12-
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1. Two local quivers

Let F' = C(z, y) the free algebra on two variables and consider the representation scheme
of 2-dimensional representations of F’

rep, F = My(C) x My(C) = {(A,B) | A,B €. M(C) }
where the correspondence is given by the algebra maps
Clo,y) — My(C) a—A y— B
The action by GLs on rep, F' is given by simultaneous conjugation
GL; x rep, F —xep, F (g,(A,B)) = (9Ag™",9Bg™")

We will consider two semi-simple dimensional representations M and S and investigate
the local structure near their orbits. S is the simple two-dimensional representation

01 10
S xr—»{ml O} H[O _1}
(verify that this is indeed a simple representation, that is, the image is the whole of M5(C)).
the stabilizer subgroup of S consists only of the scalar matrices

stab(S) = {2 0| [neC) =~
0A
M will be a semi-simple representation having two distinct one-dimensional components
00 10
M=M,®M, : xH[OO] H[O—l}



It stabilizer subgroup (that is the matrices g € GL, commuting with the images of = and
y) is the subgroup of diagonal matrices

A0

ApeCl~C xC*
ou]l ,uw€C} X

Stab(M) = { [

(verify!). As rep, F is an affine space, the tangent space in each point is the 8-dimensional
affine space, that is

01 T1 X2 10 Y1 Y2
Ts(rep, F') =
A Rt A e
and the stabilizer subgroup Stab(S) ~ C* acts trivially on the tangents pace, that is, as a

C*-representation we have
Ts(rep, F) = Mg*

with M the one-dimensional trivial C*-representation, A.m = m,VA € C*,m € M. As
for the semi-simple M we have

Tuteens 7) = (e [2 2] [) O] +e 2 2

T3 T4 Y3 Y4

This time the stabilizer subgroup acts non-trivially on certain entries, for example

A0 [zize] (A2 0] [ 2 dula
0wl lzswa] | O pt] [N luzs o4

whence as a Stab(M) ~ C* x C*-representation we have a decomposition
T (rep, F) = Moy ® MG~y © MZ, )
= (Cz; 4+ Czq + Cy; + Cyy) ® (Cz2 + Cyo) @ (Cas + Cys)

where M) is the one dimensional representation such that (A, u).m = Xeu‘m.

Next, we bring in the tangent space to the orbit. To do this we have to compute the
image of the differential of the action map. For a general representation (A, B) € rep, F
this amounts to computing

e[t B e |2 1))

as Ty (GL,) = M,(C). Apply this to the simple representation S to get

wo S b SPr—e[c)-

(o [reed s o)+ )



which is a three-dimensional subspace of Ts(rep, F). Therefore,as a Stab(S) = C*-
representation, the normal space to the orbit in S can be represented as

o3 = (| yof +e[5 2] o S+

Applied to the semi-simple representation M we obtain
abl,,[J00] [1 O] ab
e o] 5 S|t -

( 00 (10 iy [0 —2b )
00/7l0-1] "2¢c 0
which is a two-dimensional subspace of Ty (rep, F') which as a Stab(M) = C* x C*-

representation is isomorphic to M 1y @ M(_,1). Therefore, the normal space to the orbit
can be represented as a Stab(M )-representation by

3 ol _ 1 Xo 10 W 0
Ny = Mgo) ® Ma,—1) & M—1,1) = { (e [563 xJ ’ {0 ——1} e [0 Ya )}

These calculations are compatible with the local quiver settings. For S the local quiver

setting (@, 5) is

T4
T2 % Y
2 &7 Ya
Clearly, GL() = C* and it acts trivially on rep; Q@ = C® whence as Stab(S) = C*-
representation we have an isomorphism
Ns =~ rep; Q)

For M the local quiver setting (Q, 3) is (verify!)

Y1 g @/K Y4
@@
1 Y - T4



This time the basechange group GL(3) = C* x C* = {(\,u)} and its action on the
quiver-representation space repg () is given by the rules

.
T — 2

N =%
Ty Ty
Ya 7 Ya

Ty — AT Ty

|23 > A7 pzs

and hence as a Stab(M)-representation we have an isomorphism

Ny~ reps Q

2. Two étale maps

Let N = (A, B) be a semi-simple representation in rep, F' with local quiver setting
(Q, B). Then, the slice in N is given by the normal space to the orbit Ny = repg () and
the Luna slice theorem asserts that the horizontal maps of the commuting diagram

GL, xG® reps @ action rep, F
! ™
Y A\
issp Q) - issy F

are étale maps in a Zariski neighborhood of O(N) resp. of 7(N'). We know that C[iss, F)
is generated by traces of monomials in generic 2 x 2 matrices X and Y, that is,

Clissy F] = Cltr(X), tr(Y), tr(X?),tr(Y?),tr(XY)]
a polynomial ring (verify!) whence issy F' =~ C® and the map  is given by
(A, B) — (tr(A), tr(B),tr(A%),tr(B?),tr(AB))
On the other hand we will see next time that the rihg of polynomial quiver invariants
Clissg Q] = Clrep, QIEH®)

is generated by taking traces along oriented cycles in @ (actually this is a more or less
direct consequence of the Procesi-Razmyslov theorem), explaining the map 7'.-We will
explain the upper horizontal maps and verify the étale property for the lower horizontal
maps for the representations S and M.



With the above conventions for the normalspace in S and the quiver setting (@, 5) we
have that the action map in S is induced by the map

GLy X repg Q@ — rep, F'

01 Ty T2 10 n 0 —1
(9, (%1, %2, %4, Y1, Ya)) Hgd_l 0} + [0 mj , [0 _1] + [0 yJ)-g
As the action of GL(5) = C* is trivial on rep, @ we have that the quotient map
GL, x% reps @ =~ PGLy X repg @ T issp Q

is just projection on the second factor (all coordinates of reps () are (traces of) loops).
Hence, to understand the map

issg Q) AR iss, F'
we have to compute (tr(A), tr(B), tr(A?),tr(B?),tr(AB)) for

(4,B) = ([_’fll 1;“’2} , Hyl _1iy4])

Hence, the map f is defined by sending (x1, 2, 4, Y1, Ya) tO
(@1 + Ta, Y1 + Y, T} + 25 — 2 — 235,95 + Y5 + 231 — Ya) + 2, Ty + Tays + T1 — T4)

On the level of coordinate algebras, we have an embedding

o — -

Clisss F] = Cla, by¢,d,¢] — Clissg @] = Crr, 72, 1, 9] = Lot FUEL 2208, Vo4

(f17f2’f37f47f5)

where
(fl =T+ Tyg—a
fo =yi+ya—b
S fs =22432-2—-2x5—cC
fo =@ +yi+2(y—ya)+2~d
(fs =T+ ost+ o —z4—e

To verify that this is an étale morphism we have to compute the Jacobian matrix

1 0 1 0

0 0 0 1 1
det | 221 =2 24 0 0 =4(2+y1 —a)?
0 0 0 2y1+22y,-2
(v1+1 0 yu—1 = T4




That is, if we consider the Zariski open subset U of issg ) where 2 + y; — y4 nonzero we
have that U —/— iss, F'is an étale morphism. Also observe that 7(.S) lies in the image
of U as the zero representation (0,0,0,0,0) lies in U. The condition 2 + y; — ys # 0
means that the B matrix is not a scalar matrix. Note however that the map f is not an
isomorphism as there are several points in U having the same image (verify and compute
the degree, that is, the number of points in U having the same image).

For the semi-simple representation M we have with the conventions of the previous
section that the action map is induced by the map

GLy; X repg QQ — rep, F'

T T 10 0 -
(9, (1, T2, T3, %4, Y1, Y2)) + 9-(( [x; wj ) [0 _J + [yol y4])"g '

This time, the polynomial quiver invariants are

(C[iSSﬁ Q] = C[wl y T4, Y1, Ya, $2$3]

and under the quotient map n’ a point (g, (1, Z2, Z3, T4, Y1, Ya) ismapped to (1, T4, Y1, Ys, T223) €
C® = issg Q. The map

isspg @ AN issy F

is determined by calculating (tr(A), tr(B), tr(A?), tr(B?),tr(AB)) for

(A7B)=([a:1x2},[l-+(-)y1 0 ])

T3 T4 —1+y
That is, the image of a point (21, 24, Y1, Y4, 2) € issg Q is the point
(T1 4 Tay Y1 + Y, T + TF + 22, Y1ya + Ya — Y1, T1Y1 + Tays + 01 — Ty) € issy F

the induced morphism between the coordinate rings is

(C[iSSQ F][$1,$4>Z/17y4az]
(f17f2; f37 f4)f5)

Clissy F] = Cla, b, ¢,d,e] — Clissg Q] =

where

4
i =xi+zi—a

fo =y1+uys—0b

fs =al+ai+2z—c
fi =yia+ya—y—d

\fs =TiY1+ TaYsa + 21 — Ty — €




The corresponding Jacobian matrix is

1 1 0 0 0

0 1 1 0
det | 2217 224 0 0 2
0 0 y—1y+10
(1 +1y—1 x4 zy O

-

=—-22+y — )’

proving again that the map is an étale map provided we restrict to the Zariski open subset
U where 2 + y; — y4 # 0.

3. A Clifford algebra - o

Consider the Clifford algebra A associated@the quadratic form

¥

over the polynomial algebra Clu,v]. That is, A is generated by z and y satisfying the
relations
?=u y¥P=v zy+yzr=0_

Let us compute the dimension of rep, A. First we determine the coordinate ring of iss, A.
As tr(z) = 0 = tr(y) and from the equation zy + yz = 0 it follows that tr(zy) = 0
whence Clissy A] = Cltr(2?),tr(y?)] = Clu,v] and iss, A is two dimensional. Re-
peating the Clifford algebra techniques we used to classify the simple representations of
the conifold algebra we see that if uv # 0, the corresponding semi-simple 2-dimensional
representation is actually simple hence there is a Zariski open subset in iss, A consisting
of simple representations. Therefore,

dim rep, A= dim issy A+2°—1=5

Also remark that both M and S (the representations of the previous sections) belong to
rep, A, S corresponds to the point (1,1) and is simple whereas M corresponds to the
point (0, 1) and is semi-simple.

We claim that M is a smooth point in rep, A. Embed rep, A —— rep, F, then
we must determine which tangent vectors in Ts(rep, F) actually are tangent to rep, A.
Applying the equation 2y + yz = 0 to

z1z2| (10 ] l:yl yz]
, +e€
(€ [373 -’764] [0 -1 Y3 Y4 )

we find that 2, = z4 = 0. Moreover, tr(y) = 0 whence y; = —y; so we get as the tangent
space
_ 0 z2 10 Y Yo
Tuteer, A= 10 %), 5 %]+ 2 |
i



so it is 5-dimensional whence M is smooth. As a representation over the stabilizer sub-
group Stab(M) = C* x C* it decomposes into

Tr(rep A) = Mgy @ M(??_l) b M821,1)

The tangent space to the orbit of M we already computed to be isomorphic to M, _1y &
M_1,1) and hence the local quiver setting (@, 8) for M in rep, A is

3
o0
2

There is no need for a genuine slice variety as the image of the usual action map for rep, ¥’

GL, x rep, Q — rep, F

0 2] [L+y O .
) = o[22 [FH 0 D

has its image in rep, A.
The induced morphism on the quotient varieties, (use the fact that Clrepy Q] =
Clzyx3, y1] (the oriented cycles in @) and that Clissy A] = Clu, v])

issg @ — iss, A (962333, y1) = (902333, (1 + y1)2)

Clearly the Jacobian of this map is

1 0

t
de [o 21+

)] = 2(1 + yl)
so the maps is étale on the Zariski open subset where y; # —1. In this case it is clear that
it is a two-to-one map (and rnot an isomorphism in the Zariski topology!).

Calculate for yourself that the local quiver setting for the simple representation .S in

rep, Ais

T2 C@O Y1

Again, there is no need for a real slice as the action map for rep, F' sends

0 1+m2} [14-@/1 0

(0. = 0| 2 L0 ] ewen, a

So in mot easy cases there is no need for the other square in the formulation of the Luna
slice theorem. Here is a short explanation of what you have to do if the natural action map
maps outside rep, A :



If £, = C(z1,...,%m) — A then rep, A LA rep, F, and consider We
normal space Ny, to the orbit O(M) in wisrep, F, and define the slice variety S =
Ny Ni(zep, A). We know that M is a smooth point of S so we can always find a Stab(M)-
invariant polynomial in C[S] such that the Zariski open subset of S it determines consists
only of smooth points and contains M. Then the trick is to find a Stab(M )-equivariant lift
for the natural Stab(M)-exact sequence

0 m? m N — 0

where IV}, is the normal space to the orbit in rep,, A. This lift

Ny L me— 8]

will then define a morphism of varieties S 2. N 3 Which is étale in M and hence defines
an étale map in a Zariski neighborhood.



