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Introduction

”... La suite est trop confuse dans les notes pour être exploitable
telle quelle.”

Bellaiche, Dat, Marin, Racinet, Randriambololona in [33].

Rather than adding to the plethora of pet-proposals for a noncommutative
geometry, we will focus in this book on some methods that are likely to prove
useful in the ’final theory’. Whereas the details of this theory are unclear at the
time of writing, the rough outline is slowly emerging.

The starting point is that a lot of interesting (families of) moduli spaces in
algebraic geometry are special cases of the isomorphism problem in suitable Abelian
categories ab

moduli ⊂ - iso(ab)

In recent years one has come to realize that many of these naturally occurring
Abelian categories are locally controlled by noncommutative algebras

ab = ∪i rep Ai

where rep Ai is the Abelian category of all finite dimensional representations of the
affine noncommutative algebra Ai and where the covering is compatible with the
natural notions of isomorphism on both sides. However, one should not view rep A
as an affine noncommutative scheme. This is only justified under extra conditions
on A.

Among these noncommutative schemes rep A one singles out the smooth vari-
eties by imposing a noncommutative regularity condition on the algebra A. There
are several characterizations of commutative regular algebras. Generalizing these
to the world of noncommutative algebras leads to quite different notions of non-
commutative smoothness. We choose Grothendieck’s characterization in terms of
algebra lifts through nilpotent ideals. This approach has the advantage that the
resulting alg-smooth algebras behave well with respect to noncommutative differen-
tial forms and connections. An obvious disadvantage is that examples quickly lead
us away from the cosy setting of Noetherian algebras and into the exotic wilderness
of universal algebra constructions.

Basic examples of alg-smooth algebras include coordinate rings of smooth affine
curves as well as path algebras of finite quivers. More intricate examples are con-
structed from these by applying universal algebra constructions such as free prod-
ucts, universal localization, passing to a Morita equivalent algebra, taking the n-th
root, and so on.

1



2 INTRODUCTION

In this book we will present methods to tackle the isomorphism problem for
smooth noncommutative varieties, that is, we want to describe

iso(rep A)

for A an alg-smooth algebra. Clearly, this is a wild problem so sooner or later we
will hit the wall. All we can do is to try to push the wall a bit further. The methods
we will use are drawn from two classical sources : geometric invariant theory and
the theory of orders in central simple algebras.

We can partition rep A with respect to the dimension of the representation

rep A =
⊔
n

repn A

where repnA is the affine scheme of n-dimensional representations of A. If A is
alg-smooth, each repnA is a smooth affine scheme (in particular, it is reduced).
The direct sum ⊕ on A-representation induces sum-morphisms

repnA× repmB
- repm+nA

Whereas repnA is reduced, it usually decomposes into several irreducible compo-
nents

repnA =
⊔
|α|=n

repαA

The component semigroup compA is the set of all occurring α, the addition is
induced by the sum morphisms and the dimension |α| defines an augmentation
compA - N.

Consider the subset simpA (resp. schurA) of all components containing a
simple (resp. a Schur) representation. The empire of the algebra A is the (infinite)
quiver EmpA with a vertex vα for every α ∈ schurA. The number of directed arrows
from the vertex vα to vβ is equal to ext(α, β) which is the minimal dimension
of Ext1A(V,W ) for V ∈ repαA and W ∈ repβA. With empA we denote the full
subquiver on the vertices vα for α ∈ simpA. These quivers contains the information
about the noncommutative étale structure of repA.

The wall of the alg-smooth algebra A is the (usually finite) full subquiver
wallA of EmpA on the vertices corresponding to semigroup generators of compA.
Without being too dogmatic about it, let us define repA to be affine if and only
if wallA is strongly connected, that is, every pair of vertices vα, vβ belongs to an
oriented cycle in wallA. This means that there are ’enough’ simple representations
to allow a meaningful reduction. In general, one can reduce to an affine setting by
taking suitable universal localizations of A.

We assume that repA is affine and that wallA is a finite quiver on the semi-
group generators {α1, . . . , αk}. Then, A is said to be isomorphic in the noncom-
mutative étale topology to

B G 〈wallA〉

where the algebra B is Morita equivalent to the path algebra 〈wallA〉 of the finite
quiver wallA. The Morita equivalence is determined by the dimensions |α| of
the semigroup generators α. We claim that path algebras of quivers (or Morita
equivalent algebras) play the role of affine spaces as being the only analytic local
structure for manifolds.
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The structure of empA is determined by the Euler form χA of wallA. If β ∈
compA it can be written as

β = e1α1 + . . .+ ekαk with ei ∈ N

and β ∈ simpA if and only if

χA(ε, δi) ≤ 0 and chiA(δi, ε) ≤ 0

for all 1 ≤ i ≤ k with ε = (e1, . . . , ek) (unless, wallA is just one oriented cycle in
which case ε must be (1, . . . , 1)). Further, the arrows from vβ to vγ in empA are
determined by the wall as

ext(β, γ) = δβγ − χA(ε, η)

if η = (f1, . . . , fk) and γ = f1α1 + . . .+ fkαk. In particular, if A and A′ are in the
same étale isomorphismclass, then simpA = simpA′. We next define when such A
and A′ are birational in the noncommutative Zariski topology.

Let α ∈ compA ∩ compA′ with |α| = n, and consider the natural basechange
action of GLn on repαA and on repαA

′ of which the orbits are precisely the isomor-
phism classes of representations. From invariant theory we recall that the closed
orbits can be classified by the affine scheme corresponding to the ring of polyno-
mial GLn-invariants. Michael Artin proved that the closed orbits determine the
isoclasses of semisimple n-dimensional representations and Claudio Procesi proved
that the ring of polynomial invariants is generated by traces of monomials in the
algebra generators. The corresponding quotient maps

repα
π-- issαA repαA

′ π′- issαA
′

send the n-dimensional representation to the isomorphism class of the direct sum
of its Jordan-Hölder components. If α ∈ simpA = simpA′ then the induced PGLn-
action is generically free, whence there is an open subset in the quotient varieties
over which the representation variety is a principal PGLn-fibration. Hence they de-
fine two central simple algebras Σα resp. Σ′α of dimension n2 over the functionfield
C(issαA) resp. C(issαA′). We call A and A′ birational in the noncommutative
Zariski topology if and only if for all α ∈ simpA = simpA′ we have that issαA is
birational to issαA′ (hence they have the isomorphic functionfields and respecting
this isomorphism we have that

Σα ' Σ′α
We can express this condition without reference to geometry. Define

∫
α
A to be

the algebra obtained from A by first adjoining formally all traces of monomials
in the algebra generators, then modding out all relations coming from the Cayley-
Hamilton identity for n×nmatrices (|α| = n) and finally taking the direct summand
corresponding to the irreducible component repαA. These algebras natural come
equipped with a trace map and we define its image tr

∫
α
A to be the commutative

algebra
∮
α
A. Reformulating the above, we have that A and A′ are birational if and

only if ∫
α

A and
∫
α

A′

are orders in the same central simple algebra for all α ∈ simpA = simpA′.
The solution to the isomorphism problem for finite dimensional representation

of the alg-smooth algebra A combines the étale and the Zariski invariants of A.
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The main result asserts that

iso(repA) =
⊔

(Q,α)

iso(nullα Q)︸ ︷︷ ︸
étale

× azu

∫
β1

A× . . .× azu

∫
βl

A︸ ︷︷ ︸
Zariski

where the disjoint union is taken over all quiver settings (Q,α) with Q a finite
subquiver of empA on the vertices {vβ1 , . . . , vβl

} ⊂ simpA and where azu
∫
βi
A is the

Azumaya locus of
∫
βi
A. The correspondence is given as follows. Let M ∈ repβA,

then its image ξ = πβ(M) in issβA is given by the semi-simplification

Mss = S⊕e11 ⊕ . . .⊕ S⊕el

l

where the Si are non-isomorphic simples lying in repβi
A and occurring with multi-

plicity ei in Mss. This already accounts for the Zariski part. Let m be the maximal
ideal of C[issβA] corresponding to πβ(M), then the m-adic completion of the order∫
β
A is fully determined by a quiver-setting

m̂∫
β

A G

0̂∫
α

〈Q〉

where Q is a quiver on l vertices (corresponding to the distinct simple components
of Mss) and α = (e1, . . . , el) (the multiplicities of the simple components). In Q,
the number of arrows from the vertex corresponding to Si to that of Sj is given by

# { ��������i��������j oo } = dim Ext1A(Si, Sj)

and one verifies that this number is ext(βi, βj) whence Q is the full subquiver of
empA on the vertices {vβ1 , . . . , vbl

}. In geometric terms, the local description implies
that the fiber of the quotient map in ξ is isomorphic as GLn-variety to

π−1
β (ξ) ' GLn ×GL(α) nullα Q

where nullα Q is the nullcone for the basechange action group GL(α) on the space
of α-dimensional representations of Q. In particular, GLn-orbits in the fiber π−1(ξ)
correspond one-to-one to GL(α)-orbits in the nullcone, which accounts for the étale
part in the above description.

If there are not enough simple representations, that is if repA is not affine, it
is better to consider the bigger empire EmpA on the Schur roots of A. One replaces
the process of semisimplification by that of taking the Jordan-Hölder components
with respect to a suitable stability structure on repA. Using Schofield’s theory of
universal localization at Sylvester rank function one can usually reduce to the case
treated before, that is,

ressA = ∪irepAΣi

where the universal localizations are taken such that repAΣ is affine and where
ressA are the finite dimensional representations of A which are semistable for
some stability structure on repA. If one fixes a stability structure θ, then the
substitute for issαA is the moduli space mossα(A, θ) whose points parametrize
direct sums of θ-stable representations of A of total dimension α. The basis idea
of the above local description of ressA is that a θ-stable representation becomes
simple in a suitable universal localization AΣ.

In the special, but important, case of path algebras of quivers, these moduli
spaces also play a crucial role in the remaining combinatorial problem of describing
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the orbits in nullαQ. We give a representation theoretic interpretation of the Hes-
selink stratification of these nullcones in terms of associated string quiver settings
where the underlying quiver is directed. Non-emptiness of a potential stratum is
decided by the non-emptiness of the corresponding moduli space where the stabil-
ity structure is determined by the coweight. Unfortunately, there is a twist in the
tail. Whereas the moduli spaces account for most of the orbits in a given stratum,
to describe all orbits one has to enlarge the quiver and study the orbits under a
parabolic group. Here, we hit the wall with the methods presented in this book.
After all, describing repA, even in the special case of the free algebra, is a hopeless
problem.

This book is organized as follows. The first two chapters set the main stage,
we define alg-smooth algebras, give examples of them and show that they are the
natural class of noncommutative smooth algebras to consider from a noncommuta-
tive differential geometric perspective. Then, we introduce representation schemes
of affine algebras as the main tool to study these alg-smooth algebras. Whereas
for alg-smooth algebras one often gets by using only the reduced structure, for ar-
bitrary algebras the scheme structure is needed. This scheme structure contains all
information about algebra morphisms A - Mn(C) where C is a commutative
algebra. In fact, one can even equip these schemes with a thickening structure,
inspired by the work of Kapranov, to include all algebra morphisms A - Mn(B)
where B is a noncommutative infinitesimal extension of a commutative ring.

In the third and fourth chapter we show that one can develop a geometry at
level n having all the sophistication of ordinary commutative geometry (which is
level 1). More precisely, if GL(n)-aff is the category of all commutative affine
schemes equipped with a linear GLn-action, then there is a triangle

alg@n

alg
repn -

R
n

-

GL(n)-aff

trep
n

-

The fundamental anti-equivalence spec : commalg - aff of commutative
algebraic geometry extends to a left inverse ⇑n assigning to an affine GLn-scheme
afX its witness algebra which is the algebra of GLn-equivariant polynomial maps
afX - Mn(C). There is the commuting diagram of functors

alg@n
trepn -�
⇑n

GL(n)-aff

commalg

tr

?

spec
- aff

quot

?

where quot is the quotient functor which assigns to an affine scheme with GLn-
action afX the affine scheme determined by the ring of polynomial invariants
C[afX]GLn .

The fifth chapter is pivotal in our approach to iso(repA). We recall enough
of étale cohomology to describe the Brauer group of functionfields by the coniveau
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spectral sequence and to describe orders by cohomology pointed sets of automor-
phism schemes provided we know their étale local description. The latter is given
by applying the Luna-Knop theory of étale slices to the setting of representation
schemes. As an illustration of the force of these two methods we characterize all
central simple algebras over a projective smooth surface having a noncommutative
smooth model.

The last two chapters apply the machinery developed so far to the isomorphism
problem of finite dimensional representations of alg-smooth algebras and their
contents was described above.

A major conceptual problem in writing this book was that it assumes some
familiarity with quite different topics : commutative algebraic geometry, invariant
theory, representation theory, étale cohomology, Brauer groups, universal algebra,
Azumaya algebras and p.i.-theory to name of few. Whereas I tried to include as
many details as feasible, the reader may want to consult some standard texts for
more details. I recommend, respectively, the books by Robin Hartshorne [22],
Hanspeter Kraft [36], Peter Gabriel and Andrei Roiter [19], J.S. Milne [47], Ina
Kersten [29], Aidan Schofield [60], Maxim Knus and Manuel Ojanguren [32] and
Claudio Procesi [52].



Notation

Machines.

• commalg the category of commutative C-algebras.
• alg the category of all C-algebras.
• 〈m〉 = C〈x1, . . . , xm〉 the free algebra in m variables.
• 〈∞〉 = C〈x1, x2, . . .〉 the free algebra in infinitely many variables.
• 〈Q〉 = CQ the path algebra of a finite quiver Q.
• A G A′ : A is Morita-equivalent to A′.
• A ∗A′ the algebra free product of A and A′.
• mod A the category of left A-modules.
• projnod A the finitely generated projective left A-modules.
• AΣ the universal localization of A at a set Σ of maps in projmod A.
• u(Σ) : the upper envelope of a set Σ of maps in projmod A.
• Brat A : the Bratelli diagram of an inductive limit A of semi-simple

algebras.
• dgalg the category of differential graded C-algebras.
• Ω A the ring of noncommutative differential forms of A.
• Ωev A the ring of even noncommutative differential forms of A.
• T (A) the tensor algebra of A.
• ⊥A the universal algebra for based linear maps from A.
• ∇r (resp. ∇l) a right (resp. left) connection.
• DerC A the Lie algebra of C-derivations of A.
• ΩB A the ring of B-relative noncommutative differential forms of A.

Thickenings.

• n
√
A the n-th root algebra of A.

• C[F ] the coordinate ring of the affine scheme F .
• repn A the n-dimensional representation functor of A.
• iA the universal map A - Mn(

n
√
A).

• poisson the category of commutative Poisson algebras.
• Aab the Abelianization A

[A,A] of A.
• ALie the Lie algebra structure on A given by commutators.
• F k A the k-th part of the commutator filtration on A.
• gr A the associated graded algebra for the commutator filtration on A.
• QµS(A) the micro-localization of A at S wrt. the commutator filtration on
A.
• OµA the formal structure defined by A on spec Aab.
• 〈d〉[[ab]], the formal structure on Ad determined by 〈d〉.

7



8 NOTATION

• fd the free Lie algebra on d variables.
• thick the category of thickenings of commutative algebras.
• thick.d the category of d-thickenings of commutative algebras.
•

∫ d
1

: alg - thick.d, the d-th thickening functor.
•

∫∞
1

: alg - thick, the thickening functor.

Necklaces.

• vect the category of C-vectorspaces.
• [A,A]v the subspace spanned by all commutators of A.
• nx

w
the necklace associated to the word w.

• si the i-th Newton symmetric function.
• neckd the space spanned by all necklaces in Xd = {x1, . . . , xd}.
• {−,−}K the Kontsevich bracket on necklaces.
•

∮
: alg - commalg the necklace functor.

• alg@ the category of C-algebras with trace.
•

∫
: alg - alg@ the trace functor.

• σi the i-th elementary symmetric function.
• χ(n)

a (t) the formal Cayley-Hamilton polynomial of degree n.
• alg@n the category of Cayley-Hamilton algebras of degree n.
•

∫
n

: alg - alg@n the Cayley-Hamilton functor of degree n.
•

∮
n

: alg - commalg the necklace functor of degree n.
• ↓n : alg - commalg the n-th invariant functor.
• DR∗ the Karoubi complex.
• H∗dR noncommutative de Rham cohomology.
• DR∗B the B-relative Karoubi complex.
• H∗B,dR noncommutative B-relative de Rham cohomology.
• neckQ the necklace Lie algebra of a symmetric quiver.

Witnesses.

• Sd the symmetric group on d letters.
• λ a partition (or conjugacy class of Sd).
• λ∗ the dual partition.
• cλ the Young symmetrizer.
• fundn fundamental n-th necklace relation.
• ↑n : alg - alg@n the n-th equivariant functor.
• chan fundamental n-th trace relation.
• trepnA scheme of trace preserving n-dimensional representations.
• GL(n)-aff the category of affine schemes with GLn-action.
• ⇑n : GL(n)-aff - alg@n the witness algebra functor.
• simpGLn the isomorphism classes of irreducible GLn-representations.
• V(s) the isotypical component of V of type s ∈ simpGLn.
• issnA the quotient scheme of repnA under the action of GLn.
• rrepnA the reduced variety of repnA.
• rissnA the reduced variety of issnA.
• O(M) the GLn-orbit of M ∈ repnA.
• O(M) the Zariski closure of the orbit O(M).
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• repnA
π-- issnA the quotient map.

• Un unitary n× n matrices.
• µR the real moment map.

Coverings.

• specC the prime spectrum of C ∈ commalg.
• GK the absolute Galois group of the field K.
• Cet the étale site of C ∈ commalg.
• Gm the multiplicative group scheme.
• µµµn the group scheme of n-th roots of unity.
• Rif the right derived functors of f .
• S(Cet) the sheaves on the étale site.
• Sab(Cet) the sheaves of Abelian groups on the étale site.
• Hi

et(C,G) the étale cohomology groups for G ∈ Sab(Cet).
• H1

et(C,G) the cohomology pointed set for G ∈ S(Cet).
• TwC(A) twisted forms of the C-algebra A.
• Tsen.d the d-th Tsen property for fields.
• Tate.d the d-th Tate property for fields.
• Ep,q2 ⇒ En spectral sequence data.
• afX, afY, ... the affine scheme X,Y, ...
• Stab the stabilizer subgroup.
• TxX the tangent space in x to a variety (scheme) X.
• NxX the normal space to the orbit in x ∈ X.
• smoothnA the n-th smooth locus of A.

•
m̂∫
n
A the m-adic completion of

∫
n
A for m a maximal ideal of

∮
n
A.

• Q• a marked quiver.
• ramA the ramification locus of an order A.

Empires.

• repA the Abelian category of finite dimensional representations of A.
• compA the semigroup of connected components of repA.
• X(n) the n-th symmetric product of a variety (scheme) X.
• simpA the simple roots of A.
• suppα the support of a dimension vector α.
• azunA the n-th Azumaya locus of A.
• Cshp the strict Henselization of C at p ∈ specC.
• C{x1, . . . , xd} the ring of algebraic functions in d variables.
• Br(C) the Brauer group of C ∈ commalg.
• ext(α, β) the minimal dimension of extension groups.
• empireA the empire of A.
• nullempireA the nullcone of the empire of A.
• typesαA all representation types of α ∈ compA.
• << the ordering on typesα Q.
• wallA the wall of A.
• azuαA the Azumaya locus of A wrt. α ∈ simpA.
• ramαA the ramification locus of A wrt. α ∈ simpA.
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•
∫ ∗∗
n
A the reflexive closure of the order

∫
n
A.

• β(C) the reflexive Brauer group of a normal commutative domain C.
• neckα the Poisson Lie algebra on C[issαQ].

Nullcones.

• schurA the Schur roots of A.
• EmpA the bigger empire of A.
• ressA finitre dimensional semistable representations of A.
• � confused in the stability structure.
• ∆(V ) special semistable subrepresentation of V .
• ∇(V ) special semistable factorrepresentation of V .
• µ(V ) slope stability structure.
• K0(A) Grothendieck group of f.g. projective A-modules.
• G0(A) Grothendieck group of f.p. A-modules.
• schofA Schofield fractal of A.
• TQ Tits form of quiver Q.
• qQ quadratic form of quiver Q.
• indQ indecomposable roots of Q.
• itypesαQ decomposition types into indecomposable roots for α.
• FQ fundamental set of roots of Q.
• Grassk(l) Grassmann manifold of k-dimensional subspaces of Cl.
• ∆re real roots.
• ∆im imaginary roots.
• hom(α.β) minimal dimension of homomorphisms.
• Grassα(β) quiver Grassmannian.
• α ⊥ β left orthogonal relation.
• mossα(Q, θ) moduli space of θ-semistable α-dimensional representations

of Q.
• Qb bipartite double of Q.
• c(Σ), o(Σ),K(Σ) control matrix, observation matrix and Kalman code of

system Σ.
• brauerA Brauer stable representations of A.
• bsA Brauer-Severi scheme of A.
• nullmn nullcone of GLn-action on Mm

n .
• nullαQ nullcone of GL(α)-action on repαQ.



CHAPTER 1

Machines

”I propose to consider smooth algebras (that is, formally smooth
finitely generated algebras) as machines for producing an infinite
system of usual smooth schemes (Mn)n=1,2,....”

Maxim Kontsevich in [34].

There are several characterizations of commutative regular algebras. Generaliz-
ing these to the world of noncommutative algebras leads to quite different notions of
noncommutative smoothness. We choose Grothendieck’s characterization in terms
of algebra lifts through nilpotent ideals. This approach has the advantage that the
resulting alg-smooth algebras behave well with respect to noncommutative differ-
ential forms and connections. An obvious disadvantage is that examples quickly
lead us away from the setting of Noetherian algebras and into the exotic wilderness
of universal algebra constructions.

In later chapters we will study alg-smooth algebras via associated Noetherian
algebras determined by their schemes of finite dimensional representations. These
representation schemes are (commutative) smooth varieties. In this way we view
alg-smooth algebras as machines producing a family of manifolds and connecting
morphisms.

Commutative manifolds are locally diffeomorphic to affine spaces. We will see
that path algebras of quivers are to alg-smooth algebras what affine spaces are to
manifolds. For this reason we give explicit descriptions of all constructions for this
class of alg-smooth algebras.

1.1. Smooth algebras.

In this section we will define alg-smoooth algebras and give some elementary
examples : coordinate rings of smooth affine curves and path algebras of quivers.
From these building blocks one can construct more complicated examples by two
methods : algebra free products and universal localizations. We will restrict at-
tention to affine algebras. However, in the theory of C∗-algebras there are many
(non-affine) alg-smooth algebras for which our methods fail as they have very few,
if any, finite dimensional representations. We present one example coming from the
aperiodic Penrose tilings of the plane.

Throughout, we fix an algebraically closed field of characteristic zero and denote
it with C. All algebras will be associative C-algebras with a unit element.

With cat we will denote a category of C-algebras. For example. commalg is
the category of all commutative C-algebras and alg is the category of all C-algebras
and C-algebra morphisms as morphisms.

11



12 1. MACHINES

Definition 1. A test-object in a category of C-algebras cat is a pair (B, I)
such that B is an object in cat, I /B is a nilpotent ideal of B such that the quotient
map

B -- B

I
is a morphism in cat. In particular, the quotient algebra B

I is an object in cat.

For a fixed category cat of C-algebras we define cat-smooth algebras by a
lifting property with respect to test-objects.

Definition 2. An object A in cat is said to be cat-smooth if and only if for
all test-objects (B, I) in cat and all morphisms A

φ- B
I in cat the diagram

A

B --
�...

.....
.....

.....
.....

.....
...

∃φ̃

B

I

φ

?

can be completed with a morphism A
φ̃- B in cat.

The terminology is motivated by the characterization of commutative regular
algebras, due to Alexander Grothendieck.

Theorem 1 (Grothendieck). Let C be a commutative affine C-algebra, then C
is regular if and only if C is commalg-smooth.

In this case, the affine scheme specC with coordinate ring C is a smooth
scheme. In particular, specC is a reduced variety, that is, C has no non-zero
nilpotent elements.

Proof. See for example [25] or [22, Exercise 8.6]. �

alg-smooth algebras were first studied by Bill Schelter in [59] and subsequently
in the framework of noncommutative differential geometry by Joachim Cuntz and
Daniel Quillen in [10].

Example 1. The archetypical example of an alg-smooth algebra is the free
algebra in m-variables 〈m〉 = C〈x1, . . . , xm〉. Let (B, I) be a test-object in alg and
consider an algebra morphism

C〈x1, . . . , xm〉
φ- B

I

If φ(xi) = bi then taking any representant bi ∈ B of the class bi ∈ B
I , φ̃(xi) = bi

defines an algebra lift as there are no relations among the xi.
The free algebra on infinitely many variables 〈∞〉 = C〈x1, x2, . . .〉 is also a

alg-smooth algebra though not affine.

A commutative alg-smooth algebra is clearly commalg-smooth. However, the
converse is not true.

Example 2. Consider the polynomial algebra C[x1, . . . , xm] and the 4-
dimensional noncommutative local algebra

B =
C〈x, y〉

(x2, y2, xy + yx)
= C⊕ Cx⊕ Cy ⊕ Cxy
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B has a one-dimensional nilpotent ideal I = C(xy−yx) such that the 3-dimensional
quotient B

I is commutative. Take the algebra morphism C[x1, . . . , xd]
φ- B

I
defined by x1 7→ x, x2 7→ y and xi 7→ 0 for i ≥ 2. This morphism admits no lift to
B as for any potential lift [φ̃(x), φ̃(y)] 6= 0 in B. Therefore, C[x1, . . . , xd] can only
be smooth if d = 1.

Example 3. The k + 1-dimensional semi-simple algebra

Ck =
C[e1, . . . , ek]

(e2i − ei, eiej ,
∑k
i=1 ei − 1)

= C⊕ . . .⊕ C

is alg-smooth because one can lift a decomposition of the unit element in mutual
orthogonal idempotents through a nilpotent ideal. Indeed, let (B, I) be a test-
object with I l = 0 and let 1 = e1 + . . .+ ek be a decomposition of 1 into orthogonal
idempotents of B

I . Any element 1− i with i ∈ I is invertible in B as

(1− i)(1 + i+ i2 + . . .+ il−1) = 1− il = 1.

If e is an idempotent of B/I and x ∈ B such that π(x) = e. Then, x − x2 ∈ I
whence

0 = (x− x2)l = xl − lxl+1 +
(
l
2

)
xl+2 − . . .+ (−1)lx2l

and therefore xl = axl+1 with a = l −
(
l
2

)
x + . . . + (−1)l−1xl−1. Observe that

ax = xa. If we take e = (ax)l, then e is an idempotent in B as

e2 = (ax)2l = al(alx2l) = alxl = e

the next to last equality follows from xl = axl+1 = a2xl+2 = . . . = alx2l. Moreover,

π(e) = π(a)lπ(x)l = π(a)lπ(x)2l = π(alx2l) = π(x)l = e.

If f is another idempotent in B/I such that ef = 0 = fe then we can lift f to an
idempotent f ′ of B. Because f ′e ∈ I we have

f = (1− e)(1− f ′e)−1f ′(1− f ′e).

Because f ′(1−f ′e) = f ′(1−e) one verifies that f is idempotent, π(f) = f and e.f =
0 = f.e. Assume by induction that we have already lifted the pairwise orthogonal
idempotents e1, . . . , ek−1 to pairwise orthogonal idempotents e1, . . . , ek−1 of B, then
e = e1 + . . .+ ek−1 is an idempotent of B such that eek = 0 = eke. Hence, we can
lift ek to an idempotent ek ∈ B such that eek = 0 = eke. But then also

eiek = (eie)ek = 0 = ek(eei) = ekei.

Finally, as e1 + . . .+ ek − 1 = i ∈ I we have that

e1 + . . .+ ek − 1 = (e1 + . . .+ ek − 1)l = il = 0

This decomposition defines the required lift Ck - B.

Definition 3. A finite quiver Q is a directed graph determined by
• a finite set Qv = {v1, . . . , vk} of vertices, and
• a finite set Qa = {a1, . . . , al} of arrows where we allow multiple arrows

between vertices and loops in vertices.
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Every arrow ��������i��������j
aoo has a starting vertex s(a) = i and a terminating vertex

t(a) = j. The description of the quiver Q is encoded in the integral k × k matrix

χQ =

χ11 . . . χ1k

...
...

χk1 . . . χkk

 where χij = δij −# { ��������i��������j oo }

The corresponding bilinear form on Zk is called the Euler form of the quiver Q.
The underlying vectorspace of the path algebra 〈Q〉 = CQ of the quiver Q has

as basis the directed paths in Q. Multiplication is induced by (left) concatenation
of paths. More precisely, 1 = v1 + . . . + vk is a decomposition of 1 into mutually
orthogonal vertex-idempotents and we define

• vj .a is always zero unless ��������j ��������aoo in which case it is the path a,

• a.vi is always zero unless ��������i�������� aoo in which case it is the path a,

• ai.aj is always zero unless ���������������� ��������aioo ajoo in which case it is the
path aiaj .

Path algebras of quivers are of crucial importance in the study of alg-smooth
algebras. We will show that they are to noncommutative manifolds what affine
spaces are to commutative manifolds.

Example 4. For any finite quiver Q, the path algebra 〈Q〉 is alg-smooth. Let
(B, I) be a test-object in alg and consider

B -- B

I

〈Q〉

φ

6

�...............................

?φ̃

The decomposition 1 = φ(v1) + . . . + φ(vk) into mutually orthogonal idempotents
in B

I can be lifted though the nilpotent ideal I to a decomposition 1 = φ̃(v1)+ . . .+
φ̃(vk) into mutually orthogonal idempotents in B by example 3. But then, taking
for every arrow a

��������j ��������i
aoo an arbitrary element φ̃(a) ∈ φ̃(vj)(φ(a) + I)φ̃(vi)

gives a required lift 〈Q〉 φ̃- B.

Observe that all examples of alg-smooth algebras constructed so far are path
algebras of quivers. The free algebra 〈m〉 of example 1 is the path algebra of the
quiver with one vertex and m loops. The semi-simple algebra Ck of example 3 is
the path algebra of the quiver on k vertices having no arrows.

Before we can construct more examples of alg-smooth algebras we need a ring-
theoretic characterization of them.

Definition 4. An A-bimodule M is a left and right A-module such that
a(ma′) = (am)a′ for all a, a′ ∈ A and all m ∈ M . A-bimodules are the same
as left A ⊗ Aop-modules where Aop is A with the opposite multiplication. The
correspondence is given by a⊗ a′.m = ama′.
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Let A a C-algebra and I an A-bimodule. The Hochschild chain and cochain
complexes are defined by

C•(A, I) = {I ⊗A⊗n , n ∈ N} and C•(A, I) = {HomC(A⊗n, I) , n ∈ N}
and the associated Hochschild homology and cohomology groups are denoted by
Hn(A, I) and Hn(A, I).

Hence, the i-th Hochschild cohomology group Hi(A,M) of an A-bimodule M
is the i-th extension ExtiA⊗Aop(A,M) in the category of left A ⊗ Aop-modules. In
particular, an A-bimoduleM is projective as bimodule if and only ifH1(M,M ′) = 0
for all A-bimodules M ′.

By iteration on the degree of nilpotency, an algebra A is alg-smooth if it
satisfies the lifting property for test-objects (B, I) with I2 = 0. Given such a
test-object, consider the pull-back diagram

A×B
I
B

pr1 -- A

B

pr2

??
π -- B

I

φ

?

where A×B
I
B = {(a, b) : φ(a) = π(b)} is an infinitesimal extension of A, that is,

the kernel of pr1, say M has square zero.
For M a fixed bimodule over A consider all infinitesimal extensions of A by

M . A basic result about Hochschild cohomology (see for example [51, Chap. 11])
identifies isomorphism classes of these extensions with the second Hochschild coho-
mology group H2(A,M).

Recall that Ω1A is the kernel of the multiplication A-bimodule map.

0 - Ω1A - A⊗A m- A - 0

Theorem 2 (Schelter). The following statements are equivalent.
(1) A is alg-smooth.
(2) A has cohomological dimension ≤ 1 for Hochschild cohomology.
(3) Ω1A is a projective A-bimodule.
(4) Every infinitesimal extension R -- A has a splitting A - R.

Proof. If an infinitesimal extension R -- A has a splitting then it deter-
mines an isomorphism of R with the semidirect product A ⊕M and the splitting
becomes the inclusion of A. Therefore (4) implies that H2(A,M) = 0 for all A-
bimodules M . The defining sequence of Ω1A asserts that

H2(A,M) = Ext2
A⊗Aopp(A,M) = Ext1

A⊗Aopp(Ω1A,M)

from which it follows that Ω1A is a projective A-bimodule. �

Definition 5. Two C-algebras A and A′ are called Morita-equivalent if and
only if there is an equivalence of categories

mod A ∼ mod A′

where mod A is the category of left A-modules. This is equivalent to

A′ ' EndA P



16 1. MACHINES

with P a finitely generated progenerator for the category A − mod. That is, P is
a finitely generated projective left A-module and for any M ∈ A − mod there is
an epimorphism P I -- M . If A and A′ are Morita-equivalent, we denote this
property by A G A′.

Definition 6. For C-algebras A and A′, let B be a vectorspace basis for A−C1
and B′ a vectorspace basis for A′ − C1. The free algebra product A ∗ A′ is the C-
vectorspace with basis all words of the form

w = a1b1a2b2 . . . akbk or w = a1b1a2b2 . . . ak

for some k, all ai ∈ B and all bj ∈ B′. Multiplication is defined by concatenation of
words and if the end term of the first word belongs to the same set of the starting
term of the second word one uses the multiplication table in the relevant algebra
to reduce to a linear combination of allowed words.

The free algebra product is universal with respect to pairs of C-algebra mor-
phisms A

f- R �g
A′. That is, with the natural inclusion maps i and i′ any

C-algebra morphism γ : A ∗A′ - R is of the form f ∗ g
R

A ∗A′

γ

6

A

f

-

i

-

A′

�

g

�

i ′

making the diagram commute.

Theorem 3. Let A and A′ be two C-algebras.

(1) If A is alg-smooth and A G A′, then A′ is alg-smooth.
(2) If A and A′ are alg-smooth, then so are A ∗A′ and A⊕A′.
(3) If A is a commutative affine domain which is alg-smooth, then A ' C or

A is the coordinate ring of a smooth affine curve.

Proof. (1) : If A G A′ then their categories of bimodules are equivalent and
the conclusion follows from theorem 2.

(2) : By the universal property of free products any algebra map A∗A′ - B
I

is of the form φ ∗ ψ for A
φ- B

I and A′
ψ- B

I . By assumption there exist lifts
φ̃ and ψ̃ but then the original map has a lifting φ̃ ∗ ψ̃. The second case is obvious.

(3) : For a commutative affine C-algebra, Hochschild dimension coincides with
homological dimension, whence the result follows. �

Example 5. A finite dimensional semi-simple C-algebra

A = Mn1(C)⊕ . . .⊕Mnk
(C)

is alg-smooth. Indeed, A G Ck and Ck is alg-smooth by example 3.
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Taking alg-smooth algebras to be the affine building blocks, we want to con-
struct noncommutative manifolds by gluing these blocks along ’open subsets’. In
commutative algebraic geometry, the algebra of functions on a Zariski open subset
is given by a localization of the coordinate ring. For this reason we have to consider
localizations of noncommutative algebras.

In noncommutative ringtheory one usually considers the localization of an al-
gebra A at a multiplicative subset S satisfying the (left) Ore conditions

• If as = 0 for a ∈ A and s ∈ S, then there is an s′ ∈ S such that s′a = 0.
• For all s1 ∈ S and a1 ∈ A, there are s2 ∈ S and a2 ∈ A such that
s2a1 = a2s1.

If these conditions are satisfied, one can form a ring of fractions AS by taking
equivalence classes on S × A (leading to left quotients s−1a) with respect to the
relation

(s1, a1) ∼ (s2, a2)⇔ ∃a, a′ ∈ A : aa1 = a′a2 and as1 = a′s2 ∈ S

However, for general alg-smooth algebras (such as free algebras or path alge-
bras of quivers) there are very few multiplicatively closed sets satisfying the Ore
conditions.

Example 6. Consider in the free algebra 〈m〉 = C〈x1, . . . , xm〉 the multiplica-
tively closed subset {1, x1, x

2
1, . . .}. As there are no relations in 〈m〉 we can never

satisfy the second Ore condition for s1 = x1 and a1 = xj when j 6= 1. Therefore,
there is no Ore set in 〈m〉 containing the powers of x1.

For this reason we have to consider another localization theory : universal
localization .

Definition 7. If A is a C-algebra we denote by projmod A the category of
finitely generated projective left A-modules. The universal localization AΣ with
respect to a set Σ of maps in projmod A is the algebra having an algebra morphism
jΣ : A - AΣ such that the extended maps

AΣ ⊗A σ in projmod AΣ

are isomorphisms for all σ ∈ Σ and is universal as such. That is, if A - B is an
algebra map such that all extended maps B ⊗A σ are isomorphisms in projmod B,
then there is an algebra map

A
jΣ - AΣ

B
�...

.....
.....

.....
.....

.....
..

φ̃
φ

-

making the diagram commute.

Theorem 4. Let A be alg-smooth and Σ a set of maps in projmod A. Then,
the universal localization AΣ is alg-smooth.
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Proof. Consider a test-object (B, I) in alg and an algebra map A
φ- B

I ,
then we have the following diagram

B -- B

I

A

ψ

6
.................

jΣ
- AΣ

φ

6

�...............................

φ̃

Here, ψ exists because A is alg-smooth. By Nakayama’s lemma (see for example
[51, §4.2]) all maps σ ∈ Σ become isomorphisms under tensoring with ψ. But then,
φ̃ exists by the universal property of AΣ. �

Unlike Ore localizations, it is often quite hard to give a precise genera-
tor/relation description of universal localizations. Observe that if we invert the
maps Σ in projmod A, we also invert all maps lying in the upper envelope u(Σ),
that is all maps in projmod A which can be written as

σ1 u12 . . . u1l

0 σ2 u2l

...
. . .

...
0 0 . . . σl


for some l with σi ∈ Σ and the uij arbitrary maps.

A description of an equivalence relation giving the elements of AΣ, even of
maps between induced projective modules of AΣ, was given by Peter Malcolmson
[45] (see also [60, Chp. 4] for more details).

Theorem 5 (Malcolmson). Let Σ be a set of maps in projmod A. Then,

(1) Every map between induced projective AΣ-modules has the form

fγ−1g with γ ∈ u(Σ)

(2) Two such maps f1γ−1
1 g1 and f2γ

−1
2 g2 are equal if and only if there is a

solution to the matrix equation
γ1 0 0 0 g1
0 γ2 0 0 −g2
0 0 γ3 0 0
0 0 0 γ4 g4
f1 f2 f3 0 0

 =
[
γ5

f5

]
.
[
γ6 g6

]

where all maps are defined over A and γi ∈ u(Σ).

Example 7. Let Σ be a set of square matrices over A such that 1 ∈ Σ and
Σ = u(Σ). An element of AΣ is determined by a triple (f, γ, g) where γ ∈ Σ is a
square matrix (say n× n), f a 1× n row vector and g an n× 1 column vector and
we denote the corresponding element of AΣ by fγ−1g. To understand the above
equivalence relation, assume that (f1, γ1, g1) ∼ (f2, γ, g2) with the matrix-equation
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given in theorem 5. If all matrices in Σ are invertible, then

0 = f5g6 = f5γ6(γ5γ6)−1γ5g6

= f1γ
−1
1 g1 − f2γ−1

2 g2 + f3γ
−1
3 0 + 0γ−1

4 g4

= f1γ
−1
1 g1 − f2γ−1

2 g2

whence f1γ−1
1 g1 = f2γ

−1
2 g2.

An algebra structure on AΣ is induced by the following operations :

• (f1, γ1, g1) + (f2, γ2, g2) = (
[
f1 f2

]
,

[
γ1 0
0 γ2

]
,

[
g1
g2

]
)

• (f1, γ1, g1).(f2, γ2, g2) = (
[
f1 0

]
,

[
γ1 −g1f2
0 γ2

]
,

[
0
g2

]
)

• −(f, γ, g) = (f, γ,−g)
and the canonical map A - AΣ is defined by a 7→ (1, 1, a). For proofs and more
details, see [46].

Fortunately, one can give an explicit description of universal localizations of
path algebras of quivers.

Example 8. LetQ be a finite quiver on k vertices and consider the path algebra
〈Q〉. Then, we can identify the isomorphism classes in projmod 〈Q〉 with Nk. To
each vertex vi corresponds an indecomposable projective left 〈Q〉-ideal Pi = CQvi
having as C-vectorspace basis all paths in Q starting at vi.

The homomorphisms between these projectives are given by

HomCQ(Pi, Pj) =
⊕

��������i ��������j
poo o/ o/ o/ o/

Cp

where p is an oriented path in Q starting at vj and ending at vi.
Therefore, any 〈Q〉-module morphism σ between two projective left modules

Pi1 ⊕ . . .⊕ Piu
σ- Pj1 ⊕ . . .⊕ Pjv

can be represented by an u× v matrix Mσ whose (p, q)-entry mpq is a linear com-
bination of oriented paths in Q starting at vjq and ending at vip .

Form a v× u matrix Nσ with entries free variables ypq. The universal localiza-
tion at {σ} is then the affine algebra

〈Q〉σ =
〈Q〉 ∗ C〈y11, . . . , yuv〉

Iσ

where Iσ is the ideal determined by the matrix equations

Mσ.Nσ =

vi1 0
. . .

0 viu

 Nσ.Mσ =

vj1 0
. . .

0 vjv


Equivalently, 〈Q〉σ is the path algebra of a quiver with relations where the quiver
is Q extended with arrows ypq from vip to vjq for all 1 ≤ p ≤ u and 1 ≤ q ≤ v and
the relations are the above matrix entry relations.

Repeating this procedure for every σ ∈ Σ we obtain the universal localization
〈Q〉Σ. In particular, if Σ is a finite set of maps, then the universal localization 〈Q〉Σ
is an affine C-algebra, that is finitely generated.
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Example 9. When we take the universal localization 〈Q〉a of the path algebra

with respect to one arrow ��������i ��������j
a // we obtain an algebra, Morita equivalent to

the path algebra of the contracted quiver Q′ obtained by identifying the vertices vi
and vj . For example, consider the quiver Q

��������1 ��������2n +3

having n arrows, say a1, . . . , an from v1 to v2. The path algebra CQ is the n + 2-
dimensional algebra

CQ =
[
C Ca1 + . . .+ Can
0 C

]
The universal localization with respect to a1 is the path algebra of the quiver

��������1 ��������2n +3
x

ww

with relations xa1 = v1 and a1x = v2. The elements v1, v2, a1 and x generate
the the matrixalgebra M2(C) and the centralizer of this subring is isomorphic to
v1〈Q〉a1

v1 which is freely generated by the paths xai for i 6= 1. Therefore,

〈Q〉a1
'M2(〈a− 1〉)

where 〈a− 1〉 is the path algebra of the contracted quiver, obtained from Q by
removing the arrow a1 and identifying the vertices. It is clear that this argument
extends to more general quivers.

Example 10. With the few facts we know so far we can build a huge class
of alg-smooth algebras. Take as the elementary building blocks the alg-smooth
algebras

• The coordinate ring C[C] of an affine smooth curve, see theorem 3(3).
• The path algebra 〈Q〉 of a finite quiver Q, see example 4.

The basic operations to create new alg-smooth algebras from known ones are

• Taking the algebra free product A ∗A′.
• Passing to a Morita equivalent algebra.
• Taking the universal localization AΣ for a set of maps in projmod A.

To describe universal localizations we have to keep track of projmod, the finitely
generated projective modules. For the building blocks we have a complete descrip-
tion.

• The isomorphism classes of projmodC[C] are

Z⊕ Pic C

where Pic C is the Picard group , that is, the ideal class group of the
Dedekind domain C[C].
• Every finitely generated projective modules of 〈Q〉 is isomorphic to

P⊕n1
1 ⊕ . . .⊕ Pnk

k

where Pi is the indecomposable projective corresponding to vertex vi and
all ni ∈ N.

We can also follow projmod through the constructions :
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• A finitely generated projective module of A ∗A′ is isomorphic to

A ∗A′ ⊗A P ⊕A ∗A′ ⊗A′ P ′

where P (resp. P ′) is a finitely generated projective of A (resp. A′), see
[60, Thm 2.13].
• A finitely generated projective module of AΣ is isomorphic to

AΣ ⊗A P

where P is a finitely generated projective of A, see [60, Cor. 4.5].

We will study affine alg-smooth algebras by investigating their schemes of finite
dimensional representations. In the theory of C∗-algebras, there is a class of (non-
affine) alg-smooth algebras which often have no finite dimensional representations
at all. We present one such example, connected to Penrose aperiodic tilings of the
plane, in detail.

Theorem 6 (Cuntz-Quillen). The inductive limit of a countable system

. . . - An - An+1
- . . .

of finite dimensional semi-simple algebras is alg-smooth.

Proof. (Sketch) We know from example 5 that every An is alg-smooth. Hence
it suffices to show that one can choose the liftings in a compatible way. This can
be deduced from the fact that for a finite-dimensional semi-simple algebra A there
is a uniqueness for the lifting morphism. Suppose we have a square-zero extension
A = B/I and two lifting morphisms l, l′ : A - B. Using l we can identify
B = A⊕ I with l(a) = a. But then,

l′(a) = a+D(a)

where D : A - I is a derivation which must be inner by semi-simplicity (see
for example [51, §11.5]), that is, D(a) = [a, i] for some i ∈ I. But then, because

l′(a) = a+ [a, i] = (1 + i)−1l(a)(1 + i)

the two lifts in an infinitesimal extension are conjugate by an element congruent to
one modulo I. �

Let An = Mn1(C) ⊕ . . . ⊕Mnk
(C) and An+1 = Mm1(C) ⊕ . . . ⊕Mml

(C). A
C-algebra morphism An - An+1 determines non-negative integers mij such that
mi =

∑
jmijnj and hence be a labeled graph

• • •

• • •����������������� //
//

//
//

//
//

//
//

/ ooooooooooooooooooooooooooooooooojjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjtttttttttttttttttttttttttt ��
��
��
��
��
��
��
��
�

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

/////////////////
m1 m2 ml

n1 n2 nk. . .

. . .

m11 m12 m1k mlk

We delete an edge whenever mij = 0 and delete the label if mij = 1. If we put these
labeled graphs on top of each other for all n ∈ N we obtain the Bratelli diagram
Brat A of the alg-smooth algebra A = lim

→
An.
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Much structural information of A can be read off from the Bratelli diagram.
For example, closed twosided ideals of A are in one-to-one correspondence with
subsets D of the vertices of Brat A satisfying the following two properties

(1) If v ∈ D and w is a vertex in a lower layer which can be connected by a
path to v, then w ∈ D, and

(2) If all vertices w1, . . . , wz in the next layer which are connected to v belong
to D, then so does v.

We give one concrete example of such an alg-smooth algebra without finite
dimensional representations.

Example 11. The Penrose algebra APen is the alg-smooth algebra connected
to aperiodic Penrose tilings of the plane. The tiles, which are usually called Penrose
kites and darts, are quadrangles with two sides of length 1 and two sides of length
τ = 1+

√
5

2 , the golden ratio. The corners are colored with two colors and the
matching condition to produce Penrose tilings is that we must put equal edges
together and also match the colors at the vertices.

UUUUUUUUUU

���������������� 66
66

66
66

66
66

66
66

iiiiiiiiii

•
◦

•

◦

Kite

6666666666666666

UUUUUUUUUU iiiiiiiiii

��
��

��
��

��
��

��
��

◦

•
◦

•

Dart

Using these tiles and the matching condition one obtains uncountable many ape-
riodic tilings of the plane, properties of which are proved using the operations of
composition, decomposition and inflation of tilings. These operations naturally lead
to an inductive limit of semi-simple algebra, see [9, §II.3] for more details. Consider

Kn = {(z0, z1, . . . , zn) ∈ {0, 1}n+1 satisfying zi = 1⇒ zi+1 = 0}
The projection morphism Kn+1

-- Kn is the obvious one forgetting the final
zn+1. On the finite set Kn we have the equivalence relation Rn defined by z ∼ z′ if
and only if zn = z′n. A function a = a(z0,...,zn),(z′0,...,z

′
n) on the finite set Rn defines

an element ã of the Penrose algebra APen by the rule{
ãz,z′ = a(z0,...,zn),(z′0,...,z

′
n) if ((z0, . . . , zn), (z′0, . . . , z

′
n)) ∈ Rn,

ãz,z′ = 0 if ((z0, . . . , zn), (z′0, . . . , z
′
n)) /∈ Rn.

The structure of the subalgebra An of APen generated by the complex-valued func-
tions on Rn is

An 'M0n
(C)⊕M1n

(C)
where 0n is the number of elements of Kn that end with 0 and 1n the number
of elements ending with 1. The projection Kn+1

-- Kn induces an inclusion
An ⊂ - An+1 which is

An = M0n(C)⊕M1n(C) ⊂ - An+1 = M0n+1n(C)⊕M0n(C)

m0 ⊕m1
-

[
m0 0
0 m1

]
⊕m0
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as the coherence condition implies that 0n+1 = 0n + 1n and 1n+1 = 0n. Observe
that if we add 00 = 1, then the sequence of numbers {00, 01, 02, . . .} is the Fibonacci
series {1, 1, 2, 3, 5, 8, 13, . . .}. Therefore, the Bratelli diagram Brat APen is of the
form

ttttttttt JJJJJJJJJ

jjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTT

jjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTT

jjjjjjjjjj

TTTTTTTTTTTTTTTT

jjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTT

jjjjjjjjjjjjjjjj

TTTTTTTTTT•

•

•

•

•

•

•

•

•

•

•

8

5

3

2

1

1

5

3

2

1

1

Consequently, the Penrose algebra APen is a simple alg-smooth algebra. To prove
this we consider the set D describing a closed ideal. We indicate in the pictures
below the order by which the properties dictate the inclusion of a vertex starting
from a given vertex 1�������� in D.

3�������� 3��������
2�������� 4��������
5�������� 1��������

ooooooooooo

OOOOOOOOOOO

ooooooooooo

OOOOOOOOOOO

or 3�������� 3��������
2�������� 2��������
1�������� 3��������

ooooooooooo

OOOOOOOOOOO

ooooooooooo

OOOOOOOOOOO

In particular, APen does not have finite dimensional representations.

1.2. Differential forms.

In this section we run through the formal theory of noncommutative differential
forms. We have two specific aims in mind. First, we will prove that the existence of
a connection on the 1-forms Ω1A forces the algebra A to be alg-smooth.Secondly,
we prove that free algebras and path algebras of quivers have the homology of
contractible spaces, consistent with their role of noncommutative affine spaces.

At this point you may wonder why on earth we take the exotic class of alg-
smooth algebras as the building blocks for noncommutative algebraic manifolds.
There are two compelling reasons.

First, we want the noncommutative algebra A to control a family of (commuta-
tive) manifolds. If A is alg-smooth we will see in the next chapter that such a family
is given by repnA, n = 1, 2, . . ., the schemes of finite dimensional representations
of A.

Secondly, we will prove in this section that in order to have a decent theory
of noncommutative differential forms on A allowing for connections on the cotan-
gent bundle (the 1-forms Ω1A), the algebra A must be alg-smooth. Later we will
prove that these noncommutative differential forms induce ordinary GLn-invariant
differential forms on the smooth varieties repnA when A is alg-smooth.
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Definition 8. dgalg is the category of differential graded C-algebras , that is,
an object R ∈ dgalg is a Z-graded C-algebra

R = ⊕i∈ZR
i

endowed with a differential d of degree one

. . .
d- Ri−1 d- Ri

d- Ri+1 d- . . .

satisfying d ◦ d = 0 and for all r ∈ Ri and s ∈ R we have

d(rs) = (dr)s+ (−1)ir(ds).

Morphisms in dgalg are C-algebra morphisms R
φ- S which are graded and

commute with the differentials.

Definition 9. For A ∈ alg, the differential graded algebra ΩA of noncom-
mutative differential forms is constructed as follows. Let A be the quotient vector
space A/C.1 and

ΩnA = A⊗A⊗ . . .⊗A︸ ︷︷ ︸
n

for n ≥ 0 and ΩnA = 0 for n < 0. For all ai ∈ A we denote the image of
a0 ⊗ a1 ⊗ . . .⊗ an in ΩnA by a0da1 . . . dan.

A multiplication is defined on ΩA = ⊕n∈Z ΩnA by

(a0da1 . . . dan)(an+1dan+2 . . . dam) =
(−1)na0a1da2 . . . dam + (−1)n−1a0d(a1a2)da3 . . . dam+

n−1∑
i=2

(−1)n−ia0 . . . dai−1d(aiai+1)dai+1 . . . dam+

a0da1 . . . dan−1d(anan+1)dan+2 . . . dam

The differential d of degree one

. . .
d- Ωn−1A

d- ΩnA
d- Ωn+1A

d- . . .

is defined by
d(a0da1 . . . dan) = 1da0da1 . . . dan.

Example 12 (Cuntz-Quillen). These formulas define the unique dgalg struc-
ture on Ω A such that

a0da1 . . . dan = (a0, a1, . . . , an).

In any R = ⊕iRi ∈ dgalg containing A as an even degree subalgebra we have the
following identities

d(a0da1 . . . dan) = da0da1 . . . dan

(a0da1 . . . dan)(an+1dan+2 . . . dam) = (−1)na0a1da2 . . . dam

+
∑n
i=1(−1)n−ia0da1 . . . d(aiai+1) . . . dam

which proves uniqueness.
To prove existence, we define d on Ω A as above making the Z-graded C-

vectorspace Ω A into a complex as d ◦ d = 0. Consider the graded endomorphism
ring of the complex

End = ⊕n∈ZEndn = ⊕n∈ZHomcomplex(Ω• A,Ω•+n A).
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With the composition as multiplication, End is a Z-graded C-algebra and we make
it into an object in dgalg by defining a differential

. . .
D- Endn−1

D- Endn
D- Endn+1

D- . . .

by the formula on any homogeneous φ

Dφ = d ◦ φ− (−1)deg φφ ◦ d.

Now define the morphism A
l- End0 which assigns to a ∈ A the left multiplication

operator
la(a0, . . . , an) = (aa0, . . . , an)

and extend it to a map

Ω A
l∗- End by l∗(a0, . . . , an) = la0 ◦D la1 ◦ . . . ◦D lan.

Applying the general formulae given at the beginning of the proof to the subalgebra
l(A) ⊂ - End we see that the image of l∗ is a differential graded subalgebra of End
and is the differential graded subalgebra generated by l(A).

Define an evaluation map End
ev- Ω A by ev(φ) = φ(1). Because

D lai(1, ai+1, . . . , an) = d(ai, ai−1, . . . , an)− laid(1, ai+1, . . . , an)
= (1, ai, . . . , an)

we have that
ev(la0 ◦D la1 ◦ . . . ◦D lan) = (a0, . . . , an)

showing that ev is a left inverse for l∗ whence l∗ in injective.
Hence we can use the isomorphism Ω A ' Im(l∗) to transport the dgalg

structure to Ω A.

Definition 10. ForA,R in alg a C-linear mapA
ρ- R satisfying ρ(1A) = 1R

is called a based linear map .
The universal algebra for based linear maps from A is the quotient algebra of

the tensor algebra T (A) = ⊕n≥0A
⊗n

⊥A=
T (A)

T (A)(1− 1A)T (A)
where 1A is the degree one element of T (A) determined by the unit element of A.
There is a universal based linear map

A
u- ⊥A a 7→ a

such that for any based linear map A
ρ- R there is a unique algebra map φρ

⊥A

A
ρ -

u

-

R

φρ

?

................

making the diagram commute. If we apply this to the identity map A
id- A we

obtain an ideal IA = Ker φid of ⊥A. Clearly, A ' ⊥A

IA
.

Example 13. Let Ck = C ⊕ . . . ⊕ C (k factors) with idempotents e1, . . . , ek,
then T (Ck) = 〈k〉 and as 1Ck

= e1 + . . .+ ek we deduce that ⊥Ck
= 〈k − 1〉.
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Definition 11. There are two canonical embeddings A
i1-

i2
- A∗A. For a ∈ A

define the elements in A ∗A :{
p(a) = 1

2 (i1(a) + i2(a))
q(a) = 1

2 (i1(a)− i2(a))

and let QA / A ∗ A be the ideal generated by the elements q(a) for a ∈ A. Clearly

A ' A ∗A
QA

.

We will relate the algebra of all noncommutative differential forms ΩA, re-
spectively ΩevA = ⊕n≥0Ω2nA the algebra of all even noncommutative differential
forms, to the algebra A ∗ A, respectively ⊥A, by defining a new multiplication on
ΩA.

Definition 12. For R ∈ dgalg define the Fedosov product on R to be the one
induced by defining on homogeneous r, s ∈ R the product

r ◦ s = rs− (−1)deg rdrds

R equipped with the Fedosov product will be denoted by (R, ◦) and is again an
object in alg.

Theorem 7 (Cuntz-Quillen). With notations as above we have :
(1) (ΩevA, ◦) '⊥A and under this isomorphism InA ' ⊕k≥nΩ2kA.
(2) (ΩA, ◦) ' A ∗A and under this isomorphism QnA ' ⊕k≥nΩkA.

Proof. (1) : The inclusion A ⊂ (ΩevA, ◦) is a based linear map and by the
universal property of ⊥A there is an algebra morphism

⊥A
φ- (ΩevA, ◦) with φ(u(a)) = a

Define for all a, a′ ∈ A the element ω(a, a′) = u(aa′)− u(a)u(a′) ∈⊥A and observe
that

φ(ω(a, a′)) = aa′ − a ◦ a′ = dada′

From the fact that the Fedosov product coincides with the usual product on ΩA if
one of the terms t is a closed form (that is, if dt = 0) it follows that φ is surjective
as

φ(u(a0)ω(a1, a2) . . . ω(a2n−1, a2n)) = a0 ◦ da1da2 ◦ . . . ◦ da2n−1da2n

= a0da1da2 . . . da2n

There is a section to φ, the linear map (ΩevA, ◦) ψ- ⊥A sending a0da1 . . . da2n

to u(a0)ω(a1, a2) . . . ω(a2n−1, a2n). The image is closed under left multiplication by
u(a) for a ∈ A as ψ(a ◦ a0da1 . . . da2n)

= ψ(aa0da1 . . . da2n)− ψ(dada0da1 . . . da2n)
= u(aa0)ω(a1, a2) . . . ω(a2n−1, a2n)− ω(a, a0)ω(a1, a2) . . . ω(a2n−1, a2n)
= u(a)u(a0)ω(a1, a2) . . . ω(a2n−1, a2n) = u(a)ψ(a0da1 . . . da2n)

Because the image contains the unit element and the u(a) generate ⊥A it follows
that ψ is surjective whence φ is an isomorphism. The last statement follows from
this identification.
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(2) : We have two algebra map A
u- (ΩA, ◦) given by a 7→ a± da because

(a± da) ◦ (a′ ± da′) = aa′ − dada′ ± a(da′)± (da)a′ + dada′

= aa′ ± d(aa′)
By the universal property of A ∗A there is an algebra morphism

A ∗A ψ- (ΩA, ◦) ψ(p(a)) = a and ψ(q(a)) = da

Because the Fedosov product coincides with the usual product when one of the
forms is closed we have

ψ(p(a0)q(a1) . . . q(an)) = a0da1 . . . dan

Conversely, we have a section to ψ defined by

ΩA
φ- A ∗A a0da1 . . . dan 7→ p(a0)q(a1) . . . q(an)

and we only have to prove that φ is surjective. The image Im φ is closed under left
multiplication by p(a) and q(a) as p(1) = 1 and{

p(a)p(a0)q(a1) . . . q(an) = p(aa0)q(a1) . . . q(an)− q(a)q(a0)q(a1) . . . q(an)
q(a)p(a0)q(a1) . . . q(an) = q(aa0)q(a1) . . . q(an)− p(a)q(a0)q(a1) . . . q(an)

Because the elements p(a) and q(a) generate A ∗ A, the image Im φ is a left ideal
containing 1, whence ψ is surjective. Again, the last statement follows. �

Having defined noncommutative differential forms, we can consider connections
on bimodules and the relation to alg-smoothness.

Definition 13. For E an A-bimodule, connections on E are given by linear
maps.

• A right connection : E
∇r- E ⊗A Ω1A satisfying

∇r(aea′) = a(∇re)a′ + aeda′,

• A left connection : E
∇l- Ω1A⊗A E satisfying

∇l(aea′) = a(∇le)a′ + daea′

We say that E has a connection if it has both a left and a right connection.

Theorem 8 (Cuntz-Quillen). The following are equivalent :
(1) A is alg-smooth.
(2) There is an algebra morphism A - ⊥A

I2A
.

(3) There is a linear map A
φ- Ω2A satisfying

φ(a1a2) = a1φ(a2) + φ(a1)a2 + da1da2

(4) There is a right connection on the A-bimodule Ω1A.
(5) There is a connection on the A-bimodule Ω1A.

Proof. (1)⇒ (2) : Consider the test-object (B, I) = (⊥A

I2A
, IA

I2A
). As A ' ⊥A

IA
=

B/I we can lift the identity morphism to an algebra morphism.
(2)⇒ (3) : From theorem 7 we recall that

⊥A
I2
A

' A⊕ Ω2A
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where multiplication on the right-hand side is given by the Fedosov product modulo
forms of degree > 2. Because we lift the identity morphism, the algebra morphism
A - ⊥A

I2A
must have the form a 7→ a− φ(a) for some φ : A - Ω2A. We have

(because the Fedosov product coincides with the ordinary product on ΩA if one of
the terms is a closed form)

(a1 − φ(a1)) ◦ (a2 − φ(a2)) = a1a2 − da1da2 − a1φ(a2)− φ(a1)a2

which is an algebra morphism if and only if it satisfies the required condition.
(3)⇒ (4) : Observe that Ω1A⊗A Ω1 ' Ω2A. Define, using the map φ a linear

map
∇r : Ω1A - Ω2A ∇r(a0da1) = a0φ(a1)

This satisfies the required condition as

∇r(a0(da1)a) = ∇r(a0d(a1a)− a0a1da)
= a0φ(a1a)− a0a1φ(a)
= a0a1φ(a) + a0φ(a1)a+ a0da1da− a0a1φ(a)
= a0(∇rda1)a+ a0da1da

(4)⇒ (5) : A connection on Ω1A is the datum of three maps

Ω1A

∇l-
d-
∇r-

Ω2A

satisfying the following properties

∇l(aea′) = a∇l(e)a′ +(da)ea′

d(aea′) = a(de)a′ +(da)ea′ −ae(da′)
∇r(aea′) = a∇r(e)a′ +ae(da′)

Hence, if ∇r is a right connection then d + ∇r is a left connection and if ∇l is a
left connection then ∇l − d is a right connection.

(5) ⇒ (1) : For any A-bimodule E, a right connection ∇r on E defines a
bimodule splitting sr of the right multiplication map mr

E ⊗A
mr-�
sr

E

by the formula

sr(e) = e⊗ 1− j(∇re) where j(e⊗ da) = ea⊗ 1− e⊗ a

Similarly, a left connection gives a bimodule splitting sl to the left multiplication
map. Consequently, if a connection exists on E, then E must be a projective
bimodule. If we apply this to the A-bimodule Ω1A we obtain the result from
theorem 2. �

Example 14. A connection on 〈m〉 = C〈x1, . . . , xm〉. Let φ(xi) = 0 for all
1 ≤ i ≤ m, then we can define by induction of the length n of a word in the
generators, the image of

φ(xi1 . . . xin) = xi1φ(xi2 . . . xin) + φ(xi1)xi2 . . . xin + dxi1d(xi2 . . . xin)
= dxi1d(xi2 . . . xin) + xi1φ(xi2 . . . xin)
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Whence we obtain the description of the map φ : 〈m〉 - Ω2〈m〉

φ(xi1 . . . xin) =
n−1∑
k=1

xi1 . . . xik−1dxikd(xik+1 . . . xin)

From this map we define the connection ∇r : Ω1〈m〉 - Ω2〈m〉 by

∇r d(xi1 . . . xin) =
n−1∑
k=1

xi1 . . . xik−1dxikd(xik+1 . . . xin)

Example 15 (Cuntz-Quillen). The Yang-Mills derivation on a alg-smooth
algebra A. The IA-adic completion of ⊥A is by definition the inverse limit

⊥̂A = lim�
n

⊥A
InA

If A is alg-smooth then there is a collection of compatible lifted algebra morphisms
A - ⊥A

In
A

. These compatible lifts define a universal algebra lift A
lun

- ⊥̂A. This
map can be used to construct algebra lifts modulo nilpotent ideals in a systematic
way.

Let (B, I) be a test-object in alg and A
µ- B

I an algebra map. We can lift
µ to B as a based linear map, say ρ and have the following situation

⊥A
can - ⊥̂A

B

φ̂ρ

?

φ
ρ

-

A

u

6

µ -

l
u
n

-

ρ

-

B

I

??

Here, φρ is the algebra map coming from the universal lifting property of ⊥A and
φ̂ρ is its extension to the completion. But then, µ̃ = φ̂ρ ◦ lun is an algebra lift of µ.

One can construct the universal lift lun from the linear map A
φ- Ω2A of

the previous theorem. Because ⊥A is freely generated by the a ∈ A−C1, we define
the Yang-Mills derivation on ⊥A by

⊥A
D- ⊥A D(a) = φ(a) ∀a ∈ A.

Let L be the degree two operator on ΩevA defined by

L(a0da1 . . . da2n) = φ(a0)da1 . . . da2n +
2n∑
j=1

a0da1 . . . daj−1dφ(aj)daj+1 . . . da2n

and let H denote the degree zero operator on even forms which is multiplication
by n on Ω2nA. Then, we have the relations

[H,L] = L and D = H + L
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and as a consequence we have on ⊥̂A ' Ω̂ev A =
∏
n Ω2nA that

e−LHeL = H + e−L[H, eL] = H +
∫ 1

0

e−tL[H,L]etLdt = D

Therefore, the universal lift for all a ∈ A is given by

lun(a) = e−La = a− φ(a) +
1
2
Lφ(a)− . . .

For more details we refer to [10, p.280].

As path algebras of quivers are similar to affine spaces we want to compute the
homology groups and prove that they are the same as the de Rham cohomology of
affine space.

Definition 14. For A in alg, a derivation θ is a C-linear map A - A
satisfying for θ(aa′) = θ(a)a′ + aθ(a′) for all a, a′ ∈ A. The set of all C-linear
derivations DerC A is a Lie algebra with bracket [θ, θ′] = θ ◦ θ′ − θ′ ◦ θ where ◦ is
composition of maps.

For B in dgalg a super-derivation is a linear map s : B - B such that
for all homogeneous b, b′ ∈ B we have s(bb′) = s(b)b′ + (−1)ibs(b′) where i is the
degree of b.

Given θ ∈ DerC A we define a degree preserving derivation Lθ and a degree −1
super-derivation iθ on ΩA

Ωn−1A Ωn A Ωn+1A

Lθ

XX

Lθ

YY

Lθ

XX

d

%%

iθ

ee

d

%%

iθ

ee

by the rules {
Lθ(a) = θ(a) Lθ(da) = d θ(a)
iθ(a) = 0 iθ(da) = θ(a)

for all a ∈ A.

Theorem 9 (Cartan homotopy formulas). For θ, γ ∈ DerC A we have

Lθ = iθ ◦ d+ d ◦ iθ
and we have the following equalities of operators{

Lθ ◦ iγ − iγ ◦ Lθ = [Lθ, iγ ] = i[θ,γ] = iθ◦γ−γ◦θ

Lθ ◦ Lγ − Lγ ◦ Lθ = [Lθ, Lγ ] = L[θ,γ] = Lθ◦γ−γ◦θ

Proof. For the first equality, observe that both sides are derivations on ΩA
which agree on all the generators a, da (a ∈ A) for ΩA.

By definition,both sides of the second identity are degree −1 super-derivations
on ΩA so it suffices to check that they agree on generators. Clearly, both sides give
zero when evaluated on a ∈ A and for da we have

(Lθ ◦ iγ − iγ ◦ Lθ)da = Lθ γ(a)− iγ d θ(a) = θ γ(a)− γ θ(a) = i[θ,γ](da)

A similar argument proves the last identity. �
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Definition 15. An algebra A ∈ alg is said to be contractible if the homology
of the differential forms complex

Hn A =
Ker(ΩnA - Ωn+1A)
Im(Ωn−1A - ΩnA)

is concentrated in degree zero and H0 A = C.

Recall from commutative differential geometry that affine spaces are C-
contractible. We want to generalize this to free algebras and to path algebras
of quivers.

Example 16 (Kontsevich). The free algebra 〈m〉 = C〈x1, . . . , xm〉 is con-
tractible. Define the Euler derivation E on 〈m〉 by defining it one the generators
to be

E(xi) = xi for all 1 ≤ i ≤ m.

By induction on the length k of a word w in the variables xi one proves that

E(w) = kw

We claim that LE is a total degree preserving linear automorphism on

Ωn〈m〉 for n ≥ 1.

For if wi for 0 ≤ i ≤ n are words in the xi of degree ki with ki ≥ 1, then one verifies
that

LE(w0dw1 . . . dwn) = (k0 + . . .+ kn)w0dw1 . . . dwn.

Using the words of length ≥ 1 in the xi as a basis for 〈m〉, we see that the kernel
and image of the differential d must be homogeneous. But then, if ω is a multi-
homogeneous element in Ωn〈m〉 and in Ker d we have for some integer k 6= 0 that

kω = LE(ω) = (iE ◦ d+ d ◦ iE)ω = d(iE ω)

and hence ω lies in Im d. That is,{
H0 〈m〉 = C
Hn 〈m〉 = 0

for all n ≥ 1.

In order to generalize this argument to the case of path algebras of quivers we
have to get rid of the forms dvi for the vertex-idempotents vi. As 〈Q〉 is even a
smooth algebra in algCk

, the category of all Ck-algebras, it makes sense to consider
the relative differential forms, defined as follows.

Definition 16. For a C-subalgebra B ⊂ A define the relative differential forms
of degree n with respect to B to be

ΩnB A = A⊗B AB ⊗B . . .⊗B AB︸ ︷︷ ︸
n

where AB is the cokernel of the B-bimodule inclusion B ⊂ A. ΩnB A is the quotient
space of ΩnA by the relations

a0da1 . . . d(ai−1b)dai . . . dan =a0da1 . . . dai−1d(bai) . . . dan
a0da1 . . . dai−1dbdai+1 . . . dan =0
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for all b ∈ B and 1 ≤ i ≤ n. One verifies that the multiplication and differential
defined on ΩA are compatible with these relations, making ΩB A an object in
dgalg.

ΩB A has the following universal property. Given Γ = ⊕Γn in dgalg and an
algebra map A

f- Γ0 such that d(f B) = 0, then there is a unique morphism in
dgalg making the diagram commute

ΩB A ................
∃f∗

- Γ

A
∪

6

f - Γ0
∪

6

Because of this, we have an isomorphism in dgalg

ΩB A =
ΩA

ΩA(dB)ΩA
The homology of the relative differential complex will be denoted by Hn

B A and an
algebra A is said to be B-relative contractible if H0

B A = B and Hn
B A = 0 for all

n ≥ 1.

Example 17. The path algebra of a finite quiver on k-vertices is Ck-relative
contractible. We claim that a basis for ΩnCk

〈Q〉 is given by the elements

p0dp1 . . . dpn

where pi is an oriented path in the quiver such that l(p0) ≥ 0 and l(pi) ≥ 1 (where
l(p) is the length of the path p) for 1 ≤ i ≤ n and such that the starting point of
pi is the endpoint of pi+1 for all 1 ≤ i ≤ n− 1. Clearly l(pi) ≥ 1 when i ≥ 1 or pi
would be a vertex-idempotent whence in Ck. Let v be the starting point of pi and
w the end point of pi+1 and assume that v 6= w, then

pi ⊗B pi+1 = piv ⊗B wpi+1 = pivw ⊗B pi+1 = 0

from which the claim follows.
But then we can define a Ck-derivation E on 〈Q〉 by E(vi) = 0 for all vertex-

idempotents and E(a) = a for all arrows in Q. By induction on the length l(p) of
a path p in the quiver Q we verify that E(p) = l(p)p. Using the description of a
basis of ΩnCk

〈Q〉, we can repeat the argument of example 16. If follows that

H0
Ck
〈Q〉 = Ck and Hn

Ck
〈Q〉 = 0

for all n ≥ 1.



CHAPTER 2

Thickenings

”The naive aim of noncommutative algebraic geometry would
be to associate to the surjection R -- Rab an embedding of
spec Rab into some noncommutative space spec R. The essence
of our perturbative approach is not to worry about the whole
spec R but concentrate on the formal neighborhood of spec Rab
in spec R.”

Mikhail Kapranov in [27]

For A ∈ alg we denote with repA the Abelian category of all finite dimensional
representations of A . We use the dimension function to decompose

repA =
⊔
n

repnA

where repnA is the affine scheme of n-dimensional representations of A. We will see
that if A is alg-smooth, then each repnA is a smooth reduced variety. In this way
we view alg-smooth algebras as machines producing a family of smooth (affine)
varieties. For general A however, the scheme structure of repnA will be important
in chapter 3 to reconstruct certain Cayley-Hamilton quotients from it.

We will introduce the coordinate ring of the representation scheme repnA as
the Abelianization of the n-th root algebra n

√
A represents the functor

alg - sets B 7→ Homalg(A,Mn(B))

If A is alg-smooth, then so is n
√
A giving yet another method to construct alg-

smooth algebras. Moreover, these algebras form a semigroup. By this we mean
that there are connecting algebra morphisms

k
√
A - k1

√
A ∗ . . . ∗ kr

√
A

whenever k =
∑
ki. Abelianizing these morphisms we will obtain the sum maps

on the representation schemes. There is also a natural GLn action on n
√
A which

after Abelianization gives a GLn-action on repnA the orbits of which are precisely
the isomorphism classes of n-dimensional representations.

We will endow repnA with a sheaf Oµn√
A

of noncommutative algebras, which
encodes all algebra morphisms A - Mn(B) when B is a noncommutative infin-
itesimal extension of a commutative algebra. For A an alg-smooth algebra, this
construction coincides with the formal structure of Mikhail Kapranov [27]. This as-
sociates to an affine commalg-smooth algebra C (which we know is not alg-smooth,
unless the Krull dimension is one) a thick-smooth algebra A with Abelianization
C.

33
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2.1. Representing algebras.

In this section we will introduce and study the n-th root algebra n
√
A repre-

senting the functor

alg - sets B 7→ Homalg(A,Mn(B))

If A is alg-smooth, then so is n
√
A giving yet another method to construct alg-

smooth algebras. Moreover, there are connecting algebra morphisms
k
√
A - k1

√
A ∗ . . . ∗ kr

√
A

whenever k =
∑
ki. These morphisms will induce the sum maps on the represen-

tation schemes.

Definition 17. A functor F : alg - sets is said to be representable by
the algebra D if and only if F is isomorphic to the functor

Homalg(D,−) : alg - sets

which assigns to a C-algebra B the set of C-algebra morphisms Homalg(D,B) and

to an algebra morphism B
f- B′ the mapping

Homalg(D,B)
f◦−- Homalg(D,B′)

obtained by composition.

Theorem 10 (Bergman). The functor

Homalg(A,Mn(−)) : alg - sets B 7→ Homalg(A,Mn(B))

is represented by an algebra n
√
A, the n-th root of A.

That is, for any C-algebra B, there is a functorial one-to-one correspondence
between the sets {

C-algebra maps A - Mn(B)
C-algebra maps n

√
A - B

Proof. Consider the canonical embedding Mn(C) ⊂
i- A∗Mn(C) and define

n
√
A = CMn(C)(A ∗Mn(C)) = {r ∈ A ∗Mn(C) | ri(m) = i(m)r ∀m ∈Mn(C)}

One can use the separability idempotent
∑n
i=1 eij⊗eji ∈Mn(C)⊗Mn(C)op to prove

that for any C-algebra map Mn(C) - R we have that Mn(CMn(C)(R)) ' R. In
the special of interest to us we have

Mn(
n
√
A) ' A ∗Mn(C)

We claim that n
√
A represents the functor Homalg(A,Mn(−)). If n

√
A

f- B is
an algebra map, we obtain an algebra map A - Mn(B) by composition

A
idA∗1- A ∗Mn(C) 'Mn(

n
√
A)

Mn(f)- Mn(B)

Conversely, given an algebra map A
g - Mn(B) and the canonical map

Mn(C)
i- Mn(B) which centralizes B in Mn(B). Then, by the universal prop-

erty of free algebra products we have an algebra map A ∗Mn(C)
g∗i- Mn(B) and
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restricting to n
√
A this maps factors

A ∗Mn(C)
g∗i- Mn(B)

n
√
A

∪

6

...................- B
∪

6

One verifies that these two operations are each others inverses. �

Example 18. The n-th root of 〈m〉, n
√
〈m〉 ' 〈mn2〉.

Assign to an algebra map 〈m〉 = C〈x1, . . . , xm〉
f- Mn(B) the algebra map

〈mn2〉 = C〈xij,k | 1 ≤ i, j ≤ n, 1 ≤ k ≤ m〉 - B

by sending the variable xij,k to the (i, j)-entry of f(xk) ∈Mn(B).

Conversely, assign to an algebra map 〈mn2〉 g - B the algebra map
〈m〉 f- Mn(B) defined by

f(xk) =

g(x11,k) . . . g(x1n,k)
...

...
g(xn1,k) . . . g(xnn,k)


and verify that both operations are each others inverses.

Taking n-th roots is yet another method to construct new alg-smooth algebras.

Theorem 11. (1) If A is an affine C-algebra, then so is n
√
A.

(2) If A is alg-smooth, then so is n
√
A.

Proof. (1) : Consider the canonical map

A
idA∗

rr
n- A ∗Mn(C) 'Mn(

n
√
A)

By the universal property of the construction it is clear that the matrix entries of
idA ∗ rr

n(a) for all a ∈ A generate the algebra n
√
A as a C-algebra. Hence, if A is

generated by at most m elements, then n
√
A is generated by at most mn2 elements.

(2) : Mn(C) is alg-smooth whence so is A ∗Mn(C) by theorem 3. As n
√
A

is Morita equivalent to A ∗Mn(C), it follows again from theorem 3 that n
√
A is

alg-smooth. �

Example 19. (The n-th root of a path algebra of a finite quiverQ on k vertices)
Consider the extended quiver Q(n) on the left of figure 1 That is, add to the vertices
and arrows of Q one extra vertex v0 and for every vertex vi in Q add n directed
arrows from v0 to vi. We will denote the j-th arrow 1 ≤ j ≤ n from v0 to vi by xij .
Consider the morphism between projective left 〈Q(n)〉-modules

P1 ⊕ P2 ⊕ . . .⊕ Pk
σ- P0 ⊕ . . .⊕ P0︸ ︷︷ ︸

n

determined by the matrix

Mσ =

x11 . . . . . . x1n

...
...

xk1 . . . . . . xkn

 .
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Figure 1. The extended quiver Q(n) and the universal localization.

Consider the universal localization 〈Q(n)〉σ, that is, add for each vertex vi in Q
another n arrows yij with 1 ≤ j ≤ n from vi to v0 as on the right of figure 1. With
these arrows yij one forms the n× k matrix

Nσ =


y11 . . . yk1
...

...
...

...
y1n . . . ykn


and the universal localization 〈Q(n)〉σ is described by the relations

Mσ.Nσ =

v1 0
. . .

0 vk

 and Nσ.Mσ =


v0 0

. . .
. . .

0 v1

 .
We can now determine the n-th root of the path algebra

n
√
〈Q〉 = v0 〈Q(n)〉σ v0.

The right hand side is generated by all the oriented cycles in Q
(n)
σ starting and

ending in v0 and is therefore generated by the yipxiq and the yipaxjq where a is an
arrow in Q starting in vj and ending in vi. For an algebra morphism

〈Q〉 φ- Mn(B)

there is an algebra morphism

v0 〈Q(n)〉σ v0
ψ- B

by sending yipaxjq to the (p, q)-entry of the n × n matrix φ(a) and yipxiq to the
(p, q)-entry of φ(vi). The defining relations among the xip and yiq imply that ψ is
indeed an algebra morphism. For example, consider the special case 〈2〉 = C〈a, b〉,
that is the path algebra of the quiver on the left of figure 2 In order to describe
n
√
〈2〉 we consider the quiver with relations as on the right of figure 2. We see that

the algebra of oriented cycles in v0 in this quiver with relations is isomorphic to the
free algebra in 2n2 free variables

C〈y1ax1, . . . , ynaxn, y1bx1, . . . , ynbxn〉
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Figure 2. The quiver and extended quiver for 〈2〉 = C〈x, y〉.

which agrees with the description of n
√
〈2〉 given in example 18.

Theorem 12. There is a natural action of GLn by algebra automorphisms on
the n-th root algebra n

√
A.

Proof. The natural map A
idA∗1- A∗Mn(C) gives a canonical C-algebra map

A
iA- Mn(

n
√
A) ' A ∗Mn(C)

with the following universal property. For any C-algebra morphism A
φ- Mn(B),

there is a C-algebra map n
√
A

ψ- B completing the commuting diagram

A
iA- Mn(

n
√
A)

Mn(B)

φ

?�...
.....

.....
.....

.....
.....

.

∃ M
n
(ψ

)

For g ∈ GLn we consider conjugation on the first component of Mn(
n
√
A) =

Mn(C) ⊗ n
√
A. Then, g acts on n

√
A via the automorphism n

√
A

φg- n
√
A cor-

responding the the composition ψg

A
iA - Mn(

n
√
A)

Mn(
n
√
A)

iA

?
..................................

Mn(φg)

- Mn(
n
√
A)

g.g−1

?

ψ
g

-

�

Example 20. TheGLn-action on n
√
〈m〉. We have seen that n

√
〈m〉 = 〈mn2〉 =

C〈x11,1, . . . , xnn,m〉. The universal map 〈m〉 i- Mn( n
√
〈m〉) is given by

xk 7→

x11,k . . . x1n,k

...
...

xn1,k . . . xnn,k
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It follows that the action of g ∈ GLn on n
√
〈m〉 is given by the automorphism

sending the variable xij,k to the (i, j)-th entry of the matrix

g.

x11,k . . . x1n,k

...
...

xn1,k . . . xnn,k

 .g−1

The connecting morphisms compatible with the GLn-actions are induced by a
canonical map between free products of roots. This map, in turn, follows from the
universal property of n

√
A.

There is some arithmetic associated with the root construction.

Theorem 13. For all strictly positive natural numbers ai, ki we have
(1) For k =

∑
i aiki there is a connecting morphism

k
√
A

c- k1
√
A ∗ k2

√
A ∗ . . . ∗ kz

√
A

(2) For k =
∏
i ki there is a natural isomorphism

k
√
A -

k1

√
k2

√
. . .

kz
√
A

Proof. (1) : Assume k = a1k1 + . . .+ azkz and consider the algebra

U = k1
√
A ∗ k2

√
A ∗ . . . ∗ kz

√
A

The canonical maps ki
√
A

ci- U correspond to algebra maps A
fi- Mki

(U).
This gives algebra maps

A
fi

rr
ai- Maiki(U) a 7→

fi(a) 0
. . .

0 fi(a)


Consider the algebra map

A
f- Mk(U) a 7→

f1(a)
rr
a1 0

. . .
0 fz(a)r

r
az


which gives the required morphism k

√
A - U .

(2) : This follows from the defining property of n
√
A using the canonical iso-

morphism Mab(B) 'Ma(Mb(B)). �

The n-th root algebra n
√
A is a fairly mysterious ring, the precise structure of

which is obscure. An intriguing property was proved by A. Schofield [60, Thm.
2.19].

Theorem 14 (Schofield). For any algebra A ∈ alg, the n-th root algebra n
√
A

is a domain.

Proof. Assume a, b ∈ n
√
A with ab = 0. By Morita equivalence, we may

regard a and b as endomorphisms of the induced projective module

P = (Mn(C) ∗A)⊗Mn(C) S

where S is the simple module of Mn(C). By the coproduct theorems of George
Bergman (see [2] or [60, Thms. 2.1,2.2,2.3]) Im b is an induced module (being a



2.2. REPRESENTATION SCHEMES. 39

submodule of an induced module). Moreover, there is an isomorphism of induced
modules P ′ - P such that the composition with the surjection P -- Im b is an
induced map P ′ - Im b. Because (Mn(C)∗A)⊗Mn(C)S is the only representation
of P as an induced module, we have a commuting diagram

P
a - P

b - P

‖

Mn(C) ∗A⊗Mn
Q1

?
id⊗α- Mn(C) ∗A⊗Mn

S
id⊗α- Mn(C) ∗A)⊗Mn

Q2

∪

6

where Q1, Q2 are (projective) Mn(C)-modules. The only possibility for the Mn(C)-
morphism

Q1
α- S

β- Q2

to be zero is that either α or β is the zero map. But this implies that a or b must
be zero. �

2.2. Representation schemes.

In this section we restrict attention to algebra morphisms from A to Mn(C)
when C is a commutative C-algebra. This functor is representable by an affine
scheme repnA, the scheme of n-dimensional representations of A. The coordinate
ring C[repnA] is the Abelianization of n

√
A. Moreover, the natural GLn-action as

well as the connecting sum maps are induced by those on n
√
A.

Definition 18. A functor af : commalg - sets is said to be an affine
scheme if there is an affine commutative C-algebra D which represents af, that is,
af is isomorphic to the functor

Homcommalg(D,−) : commalg - sets

The algebra D is then said to be the coordinate ring of the scheme af and will be
denoted by C[af].

Definition 19. Let A be an affine C-algebra. The n-th representation functor
of A is the functor

repnA : commalg - sets

which assigns to a commutative C-algebra C the set of all C-algebra morphisms
A - Mn(C). Equivalently, repn A is the set of all left A⊗C-module structures
on the free C-module C⊕n of rank n. The correspondence is given by defining a
module structure on C⊕n by left multiplication

(a⊗ c).

c1...
cn

 = φC(a)

cc1...
ccn


Theorem 15. If A is an affine C-algebra, then the Abelianization of the n-th

root n
√
A represents the functor repnA, that is,

C[repnA] '
n
√
A

[ n
√
A, n
√
A]
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Proof. By theorem 11 n
√
A is an affine C-algebra representing the functor

Homalg(A,−) : alg - sets

Therefore, its Abelianization represents the functor

Homalg(A,−) : commalg - sets

which is the functor repn A. �

Example 21. We know that n
√
〈m〉 = 〈mn2〉 = C〈x11,1, . . . , xnn,m〉. There-

fore, the Abelianization is the polynomial ring C[x11(1), . . . , xnn(m)] in the mn2

commuting variables xij(k) for 1 ≤ i, j ≤ n and 1 ≤ k ≤ m. The representation
scheme repn〈m〉 is the affine space of dimension mn2

Mm
n = Mn(C)⊕ . . .⊕Mn(C)︸ ︷︷ ︸

m

The coordinate functions of the k-th component are given by the entries of the
generic n× n matrix

Xk =

x11(k) . . . x1n(k)
...

...
xn1(k) . . . xnn(k)


The functorial construction and the foregoing example give us a method to

compute the coordinate ring of repnA for any affine C-algebra A.

Example 22. If A has a generating set {a1, . . . , am}, then we have a presen-
tation

A ' C〈x1, . . . , xm〉
IA

' 〈m〉
IA

where IA is the twosided ideal of relations holding among the ai. Consider the ideal
IA(n) of the polynomial ring C[Md

n] = C[repn〈m〉] in the variables xij(k) generated
by all the entries of the matrices

r(X1, . . . , Xm) ∈Mn(C[repn〈m〉])

for all r(x1, . . . , xd) ∈ IA. It follows from the functorial description of the n-th root
that

C[repnA] =
n
√
A

[ n
√
A, n
√
A]

=
C[x11(1), . . . , xnn(m)]

IA(n)

Even when A is not finitely presented, the ideals IA(n) are always finitely generated.
In general however, the ideal IA(n) need not be radical, so the functor repnA is
not always determined by the set of zeroes of IA(n) in the affine space Mm

n .

Theorem 16. Composing the universal map of the n-th root with Abelianization
we have a universal algebra map

j
(n)
A : A

iA- Mn(
n
√
A) -- Mn(C[repnA])
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For every C-algebra morphism A
φ- Mn(B) with B a commutative C-algebra,

there is a morphism of commutative C-algebras C[repnA]
ψ- B making the dia-

gram

A
j
(n)
A - Mn(C[repnA])

Mn(B)

φ

?�...
.....

.....
.....

.....
.....

.....

∃ M
n
(ψ

)

commute. Moreover, repnA has a natural action of the algebraic group scheme
GLn. That is, for all commutative algebras C there is a group action

GLn(C)× repnA(C) - repnA(C)

and the orbits under this action are precisely the isomorphism classes of left A⊗C-
module structures on C⊕n.

Proof. By the universal property of the map iA there is a C-algebra morphism
ψ̃ : n
√
A - B making the upper left triangle of the diagram below commute

A
iA - Mn(

n
√
A)

Mn(B)

φ

?
�...............................

Mn(ψ)

�
Mn

(ψ̃
)

Mn(C[repnA])

??

Because B is commutative, the map ψ̃ factors through the Abelianization
n√
A

[
n√
A,

n√
A]

= C[repnA] giving the required map ψ.

By theorem 12 there is an action of GLn by algebra automorphisms on n
√
A.

As any algebra automorphism preserves the commutator ideal, it induces an action
on the Abelianization which is C[repn A]. The action of GLn(C) is given by
basechange in the free C-module C⊕n whence orbits correspond to isomorphism
classes of A⊗ C-modules. �

Example 23. It follows from example 20 that the action of GLn on repn〈m〉 =
Mm
n is simultaneous conjugation

GLn ×Mm
n

- Mm
n (g, (Y1, . . . , Ym)) 7→ (gY1g

−1, . . . , gYmg
−1)

Theorem 17. Let k =
∑
aiki be a solution in strict positive integers, then

there is a connecting morphism of representation schemes

repk1A× repk2A× . . .× repkz
A - repkA

compatible with the actions.

Proof. Abelianizing the connecting morphisms of theorem 13
k
√
A - k1

√
A ∗ k2

√
A ∗ . . . ∗ kz

√
A
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we obtain a morphism of commutative algebras
k
√
A

[ k
√
A, k
√
A]

-
k1
√
A

[ k1
√
A, k1
√
A]
⊗

k2
√
A

[ k2
√
A, k2
√
A]
⊗ . . .⊗

kz
√
A

[ kz
√
A, kz
√
A]

and this morphism gives us a morphism of the affine schemes

repk1A× repk2A× . . .× repkz
A - repkA

For a commutative algebra C this map sends a z-tuple

(V1, . . . , Vz) ∈ repk1A(C)× . . .× repkz
A(C)

to the A⊗ C-module structure

V ⊕a1
1 ⊕ . . .⊕ V ⊕az

z

Hence the image consists of decomposable modules. Conversely, if we bring in the
GLn(C)-action we see that a module structure on C⊕n is decomposable if and only
if its orbit contains an image of one of these connecting morphisms. �

Affine alg-smooth algebras are machines producing an infinite system of affine
smooth varieties repn A, n = 1, 2, . . ..

Theorem 18. If A is an affine alg-smooth C-algebra, then the n-th represen-
tation scheme repnA is a smooth affine variety (in particular, it is reduced) for all
n.

Proof. By Grothendieck’s criterium we have to prove that the coordinate ring
C[repnA] =

n√
A

[
n√
A,

n√
A]

is a commalg-smooth C-algebra. That is, we have to find an

algebra lift φ̃ for every algebra map C[repnA]
φ- B/I with (B, I) a test-object

in commalg. Consider the diagram

A
j
(n)
A - Mn(C[repnA])

Mn(B)

ψ̃

?

.................
--

�......
.......

.......
.......

.......
.......

.......
..

Mn(B/I)

Mn(φ)

?-

where j(n)
A is the n-th universal map and where ψ is the composition Mn(φ) ◦ j(n)

A .
Because A is alg-smooth, we have an algebra lift

A
ψ̃- Mn(B)

making the lower left triangle commute. By the universal property of the map j(n)
A

we then deduce the existence of an algebra map of commutative C-algebras

C[repnA]
φ̃- B

making the upper left triangle commute. But then it follows that the lower right
triangle commutes and hence that φ̃ is an algebra lift for φ. �

Example 24. Let A be the finite dimensional semi-simple algebra

A = Md1(C)⊕ . . .⊕Mdk
(C)

Because A is alg-smooth, repnA is reduced so we only have to study the C-points.
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A has precisely k distinct simple modules {S1, . . . , Sk} of dimensions
{d1, . . . , dk}. Here, Si can be viewed as column vectors of size di on which the
component Mdi(C) acts by left multiplication and the other factors act trivially.
Because A is semi-simple every n-dimensional A-representation M is isomorphic to

M = S⊕e11 ⊕ . . .⊕ S⊕ek

k

for certain multiplicities ei satisfying the numerical condition

n = e1d1 + . . .+ ekdk

Therefore, repn A is the disjoint union of a finite number of (necessarily closed)
GLn-orbits, each determined by an integral vector (e1, . . . , ek) satisfying the con-
dition.

To understand the structure of the orbits we need to determine the stabilizer
subgroup of M , that is, the group of A-module isomorphisms of M . By Schur’s
lemma we know that

HomA(Si, Si) ' CidSi
and HomA(Si, Sj) = 0 when i 6= j

Choose a basis of M by first fixing a basis for S1 and taking e1 copies of it, one for
each of the S1 components of M , then fixing a basis for S2 and taking e2 copies of
it, one for each S2 component, and so on. In this basis, any A-module isomorphism
of M is an element of the stabilizer subgroup StabGLn

(M)
GLe1(C⊗

rr
d1) 0 . . . 0

0 GLe2(C⊗
rr
d2) 0

...
. . . . . .

0 0 . . . GLek
(C⊗ rr

dk
)

 ⊂ - GLn(C)

Therefore, the n-dimensional representation scheme of A decomposes into connected
components, one for each solution (e1, . . . , ek) to the numerical condition n = e1d1+
. . .+ ekdk

repn A '
⊔

(e1,...,ek)

GLn/(GLe1 × . . .×GLek
)

Definition 20. Let Q be a finite quiver. A representation V of the quiver Q
is given by

• a finite dimensional C-vector space Vi for each vertex vi ∈ Qv, and
• a linear map Vj �Va

Vi for every arrow ��������i��������j
aoo in Qa.

If dim Vi = di we call the integral vector α = (d1, . . . , dk) ∈ Nk the dimension
vector of V and denote it with dim V .

The set repα Q of all representations V of Q such that dim(V ) = α is an affine
space

repα Q =
⊕

��������i��������j
aoo

Mdj×di(C) ' Cr

where r =
∑
a∈Qa

ds(a)dt(a).

A morphism V
φ- W between two representations V and W of Q is deter-

mined by a set of linear maps

Vi
φi- Wi for all vertices vi ∈ Qv
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satisfying the following compatibility conditions. For every arrow there is a com-
muting diagram ��������i��������j

aoo in Qa

Vi
Va - Vj

Wi

φi

?
Wa - Wj

φj

?

Basechange in all the vertex spaces induces an action of the algebraic group
GL(α) = GLd1×. . .×GLdk

on the affine space repαQ. That is, if g = (g1, . . . , gk) ∈
GL(α) and if V = (Va)a∈Qa

then g.V is determined by the matrices

(g.V )a = gt(a)Vag
−1
s(a).

If V and W in repα Q are isomorphic as representations of Q, such an isomorphism
is determined by invertible matrices gi : Vi - Wi ∈ GLdi

and therefore they
belong to the same orbit under GL(α).

Example 25. Let α = (d1, . . . , dk) be a dimension vector such that n = |α| =∑
i di. Fixing on ordering of the vertices and fixing a basis in every vertexspace we

obtain an embedding of algebraic groups

GL(α) = GLd1 × . . .×GLdk
⊂ - GLn

Using this embedding we have an action of GL(α) on the product GLn × repαQ

h.(g, V ) = (gh−1, h.V )

and the associated fiber bundle

GLn ×GL(α) repαQ

is the set of orbits under this action. It is a smooth affine variety.
We claim that the n-th representation scheme of 〈Q〉 decomposes

repn〈Q〉 =
⊔
|α|=n

GLn ×GL(α) repαQ

into smooth connected components.
Recall that Ck ' C⊕ . . .⊕ C is the subalgebra of CQ generated by the vertex

idempotents. The inclusion Ck ⊂ - CQ induces a morphism

repnCQ ψ-- repnCk =
⊔
|α|=n

GLn/GL(α)

where the decomposition is given by the previous example. The α-component
corresponds to the semisimple Ck-module S⊕d11 ⊕ . . . ⊕ S⊕dk

k with Si the simple
one-dimensional module concentrated in vertex vi. Take the point p ∈ repnCk
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sending the vertex idempotent vi to the matrix

vi 7→



0
. . .

1
. . .

1
. . .

0


with 1’s from position

∑i−1
l=1 dl + 1 to position

∑i
l=1 dl. The fiber ψ−1(p) consists

of all representations of Q of dimension vector α. As the basespace is an orbit with
stabilizer GL(α) and ψ is GLn-equivariant it follows that the inverse image of the
component GLn/GL(α) is the homogeneous space

GLn ×GL(α) repαQ

as claimed.

Example 26. It is not always true that repn A is a reduced variety. Take

A =
C[x]
(x2)

and consider the representation scheme rep2 A. The coordinate ring C[rep2 A] is
the quotient of the polynomial ring C[x1, x2, x3, x4] by the ideal generated by the
entries of the matrix[

x1 x2

x3 x4

]2

=
[
x2

1 + x2x3 x2(x1 + x4)
x3(x1 + x4) x2

4 + x2x3

]
That is, the ideal with generators

IA = (x2
1 + x2x3, x2(x1 + x4), x3(x1 + x4), (x1 − x4)(x1 + x4))

The reduced variety of rep2 A consists of all matrices X such that X2 = 0. Con-
jugating X to an upper triangular form we see that the variety is the union of two
GL2-orbits

O(
[
0 1
0 0

]
) ∪ O(

[
0 0
0 0

]
)

This variety is a cone in C3 with top the zero matrix and defining radical ideal

(x1 + x4, x
2
1 + x2x3)

IA is properly contained in this ideal. Still, we have that

rad(IA) = (x1 + x4, x
2
1 + x3x4)

because x1 + x4
3 = 0 ∈ C[x1, x2, x3, x4]/IA.

Example 27. We generalize the previous example and study the representation
scheme repn

C[x]
(xr) . Any algebra morphism C[x] - Mn(C) is determined by the

image of x, whence repn(C[x]) = Mn(C). We know that conjugacy classes in
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Mn(C) are classified by the Jordan normalform . Let A is conjugated to a matrix
in normalform 

J1

J2

. . .

Js


where Ji is a Jordan block of size di, hence n = d1 + d2 + . . . + ds. Then, the
n-dimensional C[x]-module M determined by A can be decomposed uniquely as

M = M1 ⊕M2 ⊕ . . .⊕Ms

where Mi is a C[x]-module of dimension di which is indecomposable , that is, cannot
be decomposed as a direct sum of proper submodules.

Consider the quotient algebra A = C[x]/(xr), then the ideal IA of
C[x11, x12, . . . , xnn] is generated by the n2 entries of the matrixx11 . . . x1n

...
...

xn1 . . . xnn


r

.

Observe that when J is a Jordan block of size d with eigenvalue zero we have

Jd−1 =


0 . . . 0 d− 1

. . . 0
. . .

...
0

 and Jd =


0 . . . . . . 0
...

...
...

...
0 . . . . . . 0


Therefore, the representation scheme repn C[x]/(xr) is the union of all conjugacy
classes of matrices having 0 as only eigenvalue and all of which Jordan blocks have
size ≤ r. Expressed in module theoretic terms, any n-dimensional C[x]/(xr)-module
M is isomorphic to a direct sum of indecomposables

M = I⊕e11 ⊕ I⊕e22 ⊕ . . .⊕ I⊕er
r

where Ij is the unique indecomposable j-dimensional C[x]/(xr)-module (corre-
sponding to the Jordan block of size j). Of course, the multiplicities ei of the
factors must satisfy the equation

e1 + 2e2 + 3e3 + . . .+ rer = n

In M we can consider the subspaces for all 1 ≤ i ≤ r − 1

Mi = {m ∈M | xi.m = 0}

the dimension of which can be computed knowing the powers of Jordan blocks

ti = dimC Mi = e1 + 2e2 + . . . (i− 1)ei + i(ei + ei+1 + . . .+ er)
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Giving n and the r−1-tuple (t1, t2, . . . , tn−1) is the same as giving the multiplicities
ei because 

2t1 = t2 + e1

2t2 = t3 + t1 + e2

2t3 = t4 + t2 + e3
...

2tn−2 = tn−1 + tn−3 + en−2

2tn−1 = n+ tn−2 + en−1

n = tn−1 + en

Let n-dimensional C[x]/(xr)-modules M and M ′ be determined by the r−1-tuples
(t1, . . . , tr−1) respectively (t′1, . . . , t

′
r−1) then we have that

O(M ′) ⊂ - O(M) if and only if t1 ≤ t′1, t2 ≤ t′2, . . . , tr−1 ≤ t′r−1

Therefore, we have an inverse order isomorphism between the orbits in
repn(C[x]/(xr)) and the r − 1-tuples of natural numbers (t1, . . . , tr−1) satisfying
the following linear inequalities (which follow from the above system)

2t1 ≥ t2, 2t2 ≥ t3 + t1, 2t3 ≥ t4 + t2, . . . , 2tn−1 ≥ n+ tn−2, n ≥ tn−2.

First, consider r = 2, then the orbits in repn C[x]/(x2) are parameterized by a
natural number t1 satisfying the inequalities n ≥ t1 and 2t1 ≥ n, the multiplicities
are given by e1 = 2t1−n and e2 = n− t1. Moreover, the orbit of the module M(t′1)
lies in the closure of the orbit of M(t1) whenever t1 ≤ t′1. That is, if n = 2k+δ with
δ = 0 or 1, then repn C[x]/(x2) is the union of k + 1 orbits and the orbitclosures
form a linear order as follows (from big to small)

Iδ1 ⊕ I⊕k2 I⊕δ+2
1 ⊕ I⊕k−1

2 . . . I⊕n1

If r = 3, orbits in repn C[x]/(x3) are determined by couples of natural numbers
(t1, t2) satisfying the following three linear inequalities

2t1 ≥ t2
2t2 ≥ n+ t1

n ≥ t2

For example, for n = 8 we obtain the situation of figure 3 Therefore, rep8 C[x]/(x3)
consists of 10 orbits with orbitclosure diagram as in figure 3 (the nodes represent the
multiplicities [e1e2e3]). Here we used the equalities e1 = 2t1 − t2, e2 = 2t2 − n− t1
and e3 = n − t2. For general n and r this result shows that repn C[x]/(xr) is the
closure of the orbit of the module with decomposition

Mgen = I⊕er ⊕ Is if n = er + s

Example 28. For A,A′ ∈ alg we have that

repnA ∗A
′ ' repnA× repnA

′

Indeed, by the universal property of algebra free products, any algebra map A ∗
A′ - Mn(C) with C ∈ commalg is determined by the restrictions A - Mn(C)
and A′ - Mn(C).
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2t1 = t2
2t2 = 8 + t1

t2 = 8

• •
• • •

• • •• •

[800]

[610]

[420]

[501]
????

[040]
����

[121]
����

[202]

[012]

[420]

[230]
����

[311]
����

[121]
????

[230]

[040]
????

Figure 3. Inequalities and orbit closures in rep8
C[x]
(x3) .

Further, if Σ is a finite set of maps in projmodA, then repnAΣ, the represen-
tation scheme of the universal localization of A at Σ is a Zariski open subscheme
of repnA. Note however that this open subscheme may be empty.

2.3. Formal structure.

In this section we will define the formal structure on repnA. The motivation is
that we want to endow repnA with a sheaf (for gluing purposes) of noncommutative
algebras encoding as much information as possible about algebra morphisms from
A to Mn(B) with B a noncommutative algebra.

By microlocalization we will be able to recover all information for B a noncom-
mutative infinitesimal extension of a commutative algebra. If A is alg-smooth we
will connect this sheaf to the canonical formal structure Mikhail Kapranov defined
on affine smooth varieties.

Definition 21. A commutative C-algebra C is said to be a Poisson algebra
provided there there is an alternating bilinear bracket {f, g} on C, called the

Poisson bracket, which satisfies the Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 ∀f, g, h ∈ C
and is a derivation with respect to each argument, that is

{f, gh} = {f, g}h+ g{f, h} and {fg, h} = f{g, h}+ {f, h}g
A Poisson algebra C is negatively graded if C = ⊕∞k=0C−k is a graded commutative
algebra and the decomposition into homogeneous components is compatible with
the Poisson bracket

{C−k, C−l} ⊂ C−(k+l)
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Let poisson be the category of all commutative Poisson algebras with morphisms
C-algebra morphisms preserving the Poisson brackets.

We will assign to any C-algebra A a Poisson algebra by considering the com-
mutator filtration.

Definition 22. For A ∈ alg , ALie its natural Lie algebra structure defined
by

[a, a′] = aa′ − a′a
Let ALiem be the subspace spanned by the expressions [a1, [a2, . . . , [am, am+1] . . .]
containing m instances of Lie brackets.

The commutator filtration of A is the (increasing) filtration by ideals (F k A)k∈Z
with F k A = A for d ∈ N and

F−k A =
∑
m

∑
i1+...+im=k

AALiei1 A . . . AALieim A

Observe that all C-algebra morphisms preserve the commutator filtration.
The main properties of the commutator filtration are that for all k, l ∈ N we

have
F−kA.F−lA ⊂ F−(k+l)A and [F−kA,F−lA] ⊂ F−(k+l+1)A

The first inclusion asserts that the commutator filtration is an algebra filtration,
the second implies that the associated graded of the commutator filtration, that is,

gr A = ⊕∞k=0

F−kA

F−(k+1)A

is a negatively graded commutative Poisson algebra with part of degree zero the
Abelianization Aab = A

[A,A] .
Indeed, define the degree of an element a ∈ A, deg(a), to be the maximal k

such that a ∈ F−kA, then we define the principal symbol of an element of a ∈ A to
be the homogeneous element of degree −deg(a) of gr A

σa = a ∈ F−deg(a)A

F−(deg(a)+1)A

With these definition, define a Poisson bracket on the associated graded, let f, g ∈
gr A and take f ′, g′ preimages of f and g and define

{f, g} = σ[f ′, g′]

This definition does not depend on the choice of the preimages and is indeed a
Poisson bracket.

We will assume throughout that the commutator filtration on A is separated ,
that is, ⋂

i

F−i A = 0

However, this is not always the case. In the exceptional cases one has to replace A
by the quotient A

∩iF−i A in what follows.

Example 29. Taking the total degree of an element in 〈m〉 or the length of a
path in 〈Q〉 and observing that the minimal degree (length) of an element in F−i

is at least i+ 1, the commutator filtration on free algebras and on path algebras of
quivers is separated.



50 2. THICKENINGS

Example 30. Let g be a finite dimensional semi-simple Lie algebra. Then,
[g, g] = g. If U(g) denotes the enveloping algebra of g, then

F−i U(g) = [U(g), U(g)]

for all i < 0. Therefore, the commutator filtration on U(g) is not separated.

If the commutator filtration on A is separated, we construct a sheaf of non-
commutative algebras OµA on the commutative affine scheme spec Aab = rep1A by
micro-localization.

Definition 23. Define the Rees ring of the commutator filtration to be the
algebra

Ã =
⊕
i∈Z

(F−iA)ti ⊂ - A[t, t−1]

where t is an extra central variable. The two basic properties of the Rees ring
construction are

Ã

(t)
' gr A and

Ã

(t− 1)
' A

Let πd denote the gradation preserving quotient map Ã -- Ã
(td)

.
Let Sc be a multiplicatively closed subset of Aab, then

S = Sc + [A,A]

is a multiplicatively closed subset of A with σS = Sc. Note that all elements of S
have degree zero. Then, π1(S) is a left and right Ore set consisting of homogeneous
elements in π1(Ã) = gr A.

Because one can lift Ore sets through nilpotent ideals, it follows that πd(S) is
a left and right Ore set of homogeneous degree zero elements in πd(Ã) for every d.
Therefore, we have for every d a graded localization

πd(S)−1 Ã

(td)
These algebras form an inverse system of graded algebras and we consider its inverse
limit

QµS(Ã) = lim
←

πd(S)−1 Ã

(td)
The central element t acts torsion free on this graded algebra and the filtered algebra

QµS(A) =
QµS(Ã)

(t− 1)QµS(Ã)

is called the micro-localization of A at the multiplicatively closed set S, see for
example [65] for more details.

It follows from general theory, see for example [65], that the associated graded
algebra of the micro-localization is isomorphic to the graded localization

gr QµS(A) ' σ(A)−1gr A = S−1
c gr A

Let spec Aab = rep1A be the affine scheme with coordinate ring Aab = A
[A,A] =∫

1
A, the latter definition will be explained in the next chapter. Recall that the

Zariski topology on spec Aab has a basis of open sets

X(f) = {P a prime ideal of Aab such that f /∈ P }
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Consider the multiplicatively closed set {1, f, f2, . . .} in Aab and the corresponding
set Sf = {1, f, f2, . . .}+ [R,R].

Definition 24 (Kapranov). The formal structure of the affine algebra A on
the affine scheme of its Abelianization is the sheaf of noncommutative algebras OµA
on rep1A defined by its sections on the basis open set X(f)

Γ(X(f),OµA) = QµSf
(A)

Let fd be the free Lie algebra in d variables x1, . . . , xd. We will give an explicit
Poincaré-Birkhoff-Witt basis for the enveloping algebra U(fd).

Definition 25. Let Xd = {x1, . . . , xd}. Order the variables by x1 < x2 <
. . . < xd and induce the alphabetic ordering on all the words in Xd, that is

u < v

{
v = ux or

u = xau′ and v = xbv′ with a < b

for nonempty words x, words u′ and v′ and letters a en b. This is the total ordering
on the words such as they would appear in a dictionary.

A Lyndon word is a nonempty word w such that w is smaller in the ordering
than all its nontrivial right factors, that is if w = uv for nonempty words u and v
then w < v.

Example 31. The Lyndon words in two variables a < b of length ≤ 4 are in
order

a < a3b < a2b < a2b2 < ab < ab2 < ab3 < b

Definition 26. The standard factorization of a Lyndon word is a decomposi-
tion w = uv where v is the smallest proper rightfactor of w. Inductively, associate a
Lie element Lw of fd to w : if w = a is a letter from Xd = {x1, . . . , xd} then Lw = a.
Otherwise, for the standard factorization w = uv of w we define Lw = [Lu, Lv].

Observe that if w is a word of length l, then Lw involves l − 1 Lie brackets.
With Bl we denote the set of Lie elements Lw where w is a Lyndon word of length
l.

Example 32. The Lyndon words of length 5 together with their standard
factorization and the corresponding Lie algebra elements in f2 are

a4b = a(a3b) = [a, [a, [a, [a, b]]]]
a3b2 = a(a2b2) = [a, [a, [[a, b], b]]]
a2b3 = a(ab3) = [a, [[[a, b], b], b]]

ab2ab = (ab2)(ab) = [[[a, b], b], [a, b]]
abab2 = (ab)(ab2) = [[a, b], [a, [a, b]]]

ab4 = (ab3)b = [[[[a, b], b], b], b]

It is well known, see for example [57, §4] that B = ∪k≥1Bk is an ordered
C-basis of the Lie algebra fd and that its enveloping algebra

U(fd) = C〈x1, . . . , xd〉 = 〈d〉

is the free associative algebra in the variables xi.
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Example 33. The commutator filtration on 〈d〉. Number the elements of
∪k≥2Bk according to the order {b1, b2, . . .} and for bi ∈ Bk we define ord(bi) = k−1
(the number of brackets needed to define bi). Let Λ be the set of all functions with
finite support λ : ∪k≥2Bk - N and define ord(λ) =

∑
λ(bi)ord(bi).

Rephrasing the Poincaré-Birkhoff-Witt result for U(fd) we have that any non-
commutative polynomial p ∈ C〈x1, . . . , xd〉 can be written uniquely as a finite sum

p =
∑
λ∈Λ

[[fλ]] Mλ

where [[fλ]] ∈ C[x1, . . . , xd] = S(B1) and Mλ =
∏
i b
λ(bi)
i . In fact, by [57, Thm. 4.9]

a C-basis for the enveloping algebra U(fd) = 〈d〉 is given by the decreasing products

Lw1Lw2 . . . Lwz
wi a Lyndon words and w1 ≥ w2 ≥ . . . ≥ wz

With this notation we have that the commutator filtration on 〈d〉 has components

F−k 〈d〉 = {
∑
λ

[[fλ]] Mλ,∀λ : ord(λ) ≥ k}

Example 34 (Kapranov). The formal structure on Ad induced by 〈d〉. For
every λ, µ, ν ∈ Λ, there is a unique bilinear differential operator with polynomial
coefficients

Cνλµ : C[x1, . . . , xd]⊗C C[x1, . . . , xd] - C[x1, . . . , xd]

defined by expressing the product [[f ]] Mλ. [[g]] Mµ in 〈d〉 uniquely as∑
ν∈Λ[[Cνλµ(f, g)]] Mν . There is an algorithm to compute these coefficients, see ex-

ample 35.
By associativity of 〈d〉, the Cνλµ satisfy the associativity constraint . That is,

we have equality of the trilinear differential operators∑
µ1

Cνµ1λ3
◦ (Cµ1

λ1λ2
⊗ id) =

∑
µ2

Cνλ1µ2
◦ (id⊗ Cµ2

λ2λ3
)

for all λ1, λ2, λ3, ν ∈ Λ. One defines the algebra 〈d〉[[ab]] to be the C-vectorspace
of possibly infinite formal sums

∑
λ∈Λ[[fλ]] Mλ with multiplication defined by the

operators Cνλµ. We have

Γ(Ad,Oµ〈d〉) = 〈d〉[[ab]]
We compute now the sections on an arbitrary open subset. Let Ad(C) be the d-th
Weyl algebra ,

Ad(C) =
C〈x1, . . . , xd, y1, . . . , yd〉

([xi, xj ], [yi, yj ], [xi, yj ]− δij)
Let OAd be the structure sheaf on Ad. It is well-known that the ring of sections
OAd(U) on any Zariski open subset U ⊂ - Ad is a left Ad(C)-module. Define a
sheaf OfAd of noncommutative algebras on Ad by taking as its sections over U the
algebra

OfAd(U) = C〈x1, . . . , xd〉[[ab]] ⊗
C[x1,...,xd]

OAd(U)

That is the C-vectorspace of possibly infinite formal sums
∑
λ∈Λ[[fλ]] Mλ with fλ ∈

OAd(U) and the multiplication is given as before by the action of the bilinear
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differential operators Cνλµ on the left Ad(C)-module OAd(U). That is, for all f, g ∈
OAd(U) we have

[[f ]] Mλ.[[g]] Mµ =
∑
ν

[[Cνλµ(f, g)]] Mν

This sheaf of noncommutative algebras OfAd is the formal structure on Ad defined
by 〈d〉.

Example 35. One can give an algorithm to compute the coefficients [[Cνλµ(f, g)]].
A standard sequence of Lyndon words is a sequence

s = (w1, . . . , wn)

where the wi = uivi are the standard factorizations of the Lyndon words and we
have for each i that either wi is a letter from Xd or

vi ≥ wi+1, . . . , wn

A rise of s is an index i such that wi < wi+1, an inversion is a couple (i, j) with
i < j such that wi < wj . A legal rise is a rise i such that

wi+1 ≥ wi+2, . . . , wn

Define a rewriting system on the set of all standard sequences. If i is a legal rise
then s→ s′ where

s′ = (w1, . . . , wi−1, (wi.wi+1), wi+2, . . . , wn)

where wi.wi+1 is again a Lyndon word. Call this operation λi(s) and let
∗- be

the reflexive and transitive closure of the binary operation - . By [57, Thm.
4.3] for every standard sequence s there exists a decreasing standard sequence t
such that s

∗- t.
For a legal rise i of s

ρi(s) = (w1, . . . , wi−1, wi+1, wi, wi+2, . . . , wn)

For any standard sequence s define the derivation tree T (s) of s to be the labelled
rooted tree with the following properties : if s is decreasing then T (s) is its own root,
labelled s. If not, T (s) is the tree with root labelled s and with left subtree T (λi(s))
and right subtree T (ρi(s)) for the rightmost legal rise i. For any decreasing sequence
t = (t1, . . . , tk) define P (t) = Lt1Lt2 . . . Ltk . Let m be a monomial in the variables
x1, . . . , xd, then m defines a standard sequence by writing the letter components
from left to right and consider the derivation tree T (m), then in U(fd) = 〈d〉 it
follows from [57, lemma 4.11] that

m =
∑
t

P (t) t a leaf of T (m)

To compute the coefficients [[Cνλµ(f, g)]], use the fact that any word in the variables
determines a standard sequence by writing the letter factors from left to right. So
assume f and g are monomials in the commuting variables, write their product
by concatenating these monomials (forgetting the commutativity). Then apply the
first part and for each of the terms collect together all terms La and Lb. This gives
the coefficients for the remaining product.
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For a fixed commutative affine algebra C there are many algebras A with Aab '
C, so there are several formal structures on spec C. If C is commalg-smooth,
Mikhail Kapranov proved in [27] that there is a canonical choice determined by
smooth algebras in appropriate categories of C-algebras.

If I is a central A-bimodule, that is a.i = i.a for all a ∈ A and i ∈ I, we
have that C•(A, I) and C•(A, I) are complexes of Aab-modules and, in particular,
Hn(A, I) and Hn(A, I) are Aab-modules, see [27, Prop. 1.3.2]. Moreover, from the
identification of the complexes

C•(A, I) ' HomAab
(C•(A,Aab), I)

and the fact that C•(A,Aab) consists of freeAab-modules, there is a spectral sequence

Eij2 = ExtjAab
(Hi(A,Aab), I)⇒ Hi+j(A, I)

Theorem 19 (Kapranov). Let A be a C-algebra such that Aab is commalg-
smooth.

(1) For any central A-bimodule I : H2(A, I) = HomAab
(H2(A,Aab), I).

(2) There is a universal infinitesimal extension of A

0 - H2(A,Aab) - Aτ - A - 0

such that for any infinitesimal extension 0 - I - B - A there
is a morphism of extensions

0 - H2(A,Aab) - Aτ - A - 0

‖

0 - I
?

- B
?

- A - 0
identical on A.

Proof. (1) : Because Aab is commalg-smooth, we know that H1(A,Aab) =
Ω1
Aab

is a projective Aab-module whence ExtjAab
(H1(A,Aab), I) = 0 for all j > 0.

Moreover,
ExtjAab

(H0(A,Aab), I) = ExtjAab
(Aab, I) = 0

Therefore, the only nontrivial term Eij2 with i+ j = 2 is HomAab
(H2(A,Aab), I) and

as there are no differentials coming into this term we only have to consider outgoing
differentials. But d2 with values in Ext2

Aab
(H0(A,Aab), I) = 0 and d3 with values

in Ext3
Aab

(H0(A,Aab), I) = 0, proving the claim.
(2) : Apply part (1) to I = H2(A,Aab) then the identity map gives a spe-

cific element in H2(A,H2(A,Aab)) which classifies infinitesimal extensions of A
with kernel H2(A,Aab) giving us the extension Aτ . The infinitesimal extension
0 - I - B - A of A is determined by an element of H2(A, I) which by
(1) gives a morphism H2(A,Aab) - I which determines a morphism of exten-
sions. �

Definition 27. A thickening of a commutative algebra C is a C-algebra A such
that F−iA = 0 for i large enough and such that Aab = C. The full subcategory of
alg consisting of all thickenings of commutative algebras will be denoted by thick.
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For any d ∈ N we denote by thick.d the full subcategory of alg consisting of
all thickenings of degree d, that is, all C-algebras A such that F−(d+1)A = 0.

The d-th thickening functor, respectively the thickening functor∫ d

1

: alg - thick.d resp.
∫ ∞

1

: alg - thick

assigns to a C-algebra A the (completed) thickening of Aab∫ d

1

A =
A

F−(d+1)A
resp.

∫ ∞
1

A = lim
←

A

F−dA

Theorem 20 (Kapranov). Let C be an affine commalg-smooth algebra. Then,
(1) For every d ∈ N there is a unique (upto isomorphism identical on C)

thick.d-smooth algebra A.d with A.dab ' C.
(2) There is a unique (upto isomorphism identical on C) thick-smooth alge-

bra A with Aab ' C.

Proof. (1) : Observe that thick.1 = commalg and as C is commalg-smooth
we will prove existence by induction on d. Assume A′ is thick.d-1-smooth with
A′ab ' C and consider the universal infinitesimal extension A = A

′τ . We claim that

A is thick.d-smooth. It suffices to prove a splitting for all B
π-- A in thick.d

with nilpotent kernel. Let B′ = B
F−dB

, then B′ ∈ thick.d-1 and consider the

natural projection B
q-- B′. Consider the diagram

B
π - A

U
�

γ

�

α

B′

q

? π′ -
�

σ′
A′

p

?

β

-

Here, π′ is the surjection induced by π and as B′ ∈ thick.d-1 and A′ is thick.d-1-
smooth there is a splitting σ′. The algebra U is taken to be the fiber product

U = B ×B′ A′
β - A′

B

α

?
q - B′

σ′

?

with α and β the natural projections. Then, U
β-- A′ is an infinitesimal extension

with kernel I = Ker q. Moreover, π ◦ α : U - A is a morphism of infinitesimal
extensions because

p ◦ π ◦ α = π′ ◦ q ◦ α = π ◦ σ′ ◦ β = β
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But then, by the universal property of A = A
′τ there is a morphism of infinitesimal

extensions A
γ- U and we can define a morphism σ = α ◦ γ which one verifies

to be a splitting of π.
To prove uniqueness, assume there are two thick.d-smooth thickenings A1, A2

of C. By induction on d we may assume that

A1

F−dA1
' Ad−1 ' A2

F−dA2

where Ad−1 is the unique thick.d-1-smooth thickening of C. But then the lifting
property of thick.d-smooth algebras provides us with a diagram

0 - I1 - A1
- Ad−1 - 0

‖

0 - I2
?

6

- A2

f

?

g

6

- Ad−1 - 0

Remains to prove that f ◦ g and gcircf are automorphisms. Let h = g ◦ f then as
A1,ab ' C ' A2,ab we have that π1 ◦h = π1 where A1

π1-- C is the Abelianization
map with kernel I1. There is an isomorphism of algebras

A1 ×C A1
'- A1 ×C (C ⊕ I1) (a, a′) 7→ (a, π1(a) + a′ − a)

Consider the commuting diagram

A1
(id,h)- A1 ×C A1

'- A1 ×C (C ⊕ I1)

C

π1

??
........................................................

h
- C ⊕ I1

?

where h exists because C ⊕ I1 is commutative. Moreover, the projection of h to
C is the identity map and such algebra morphisms are classified by the module
Der(C, I) of I-valued derivations of C. But then,

h(a) = a+D(π1(a)) ∀a ∈ A1

for some D ∈ Der(C, I) and is therefore an algebra isomorphism.
(2) follows immediately from (1). �

Definition 28. Let C be an affine commalg-smooth algebra. The unique for-
mal structure OµA on the affine smooth variety spec C determined by the unique
thick-smooth algebra A with Aab ' C is called the thickening structure on spec C.

We can extend the n-dimensional representation functor commalg - sets of
A (see definition 19) to the categories of thickenings of commutative algebras and
show that they are representable. Moreover, we can relate Kapranov’s thickening
structure on the smooth representation scheme repn A when A is alg-smooth to
the root construction.

Theorem 21. With notations as above, we have :
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(1) The functors

thick.d - sets resp. thick - sets

which assigns to a thickening B the set Homalg(A,Mn(B)) of all C alge-
bra morphisms are representable in thick.d respectively in thick by the
algebras ∫ d

1

n
√
A respectively

∫ ∞
1

n
√
A

(2) If A is alg-smooth, then
∫ d
1
A is thick.d-smooth and

∫∞
1
A is thick-

smooth.
(3) If A is alg-smooth, then the thickening structure on the smooth affine

variety repn A coincides with Oµn√
A
.

Proof. (1) : If B ∈ thick.d, then any algebra morphism A - Mn(B) is
determined by an algebra map n

√
A - B which factors
n
√
A - B

∫ d

1

n
√
A

?? .....
.....

.....
.....

.....-

(2) : Let (B, I) be a test-object in thick.d, then for every algebra morphism
A - B

I we have a commuting diagram

A
f - B

I

∫ d

1

A

??

................- B

66l

-

Here, the lift l exists because A is alg-smooth and this map factors through
∫ d
1
A

as B ∈ thick.d. The thick-case is similar.
(3) : Because A is alg-smooth, so is n

√
A and hence

∫∞
1

n
√
A is thick-smooth.

Moreover, the Abelianization of n
√
A and of

∫∞
1

n
√
A is the coordinate ring of repn A.

Therefore, the result follows from the uniqueness of thickening structures. �

For a general algebra A ∈ alg, the formal structure Oµn√
A

determined by the

n-th root algebra n
√
A on repn A contains all information about algebra maps

A - Mn(B) where B is a thickening of a commutative algebra.





CHAPTER 3

Necklaces

”I will take the Ring”, he said
”though I do not know the way.”

J.R.R. Tolkien in ’Lord of the Rings”.

In this chapter we will finally get some algebraic grip on the alg-smooth algebra
A by associating to it a family of affine Noetherian algebras

∫
n
A, n ∈ N. These

algebras are all quotients of a fixed algebra with trace
∫
A obtained by dividing

out the formal Cayley-Hamilton identities of degree n. The trace algebra
∫
A

is obtained from A by adjoining the polynomial algebra on all necklaces in the
generators of A, that is, equivalence classes of monomials in the generators under
cyclic permutation.

Further, we will equip the space spanned by all necklaces with a Lie algebra
structure coming from noncommutative symplectic geometry.

3.1. Algebras with trace.

In this section we associate to the algebra A ∈ alg an algebra with a trace map∫
A ∈ alg@. If A = 〈d〉 this algebra is obtained by tensoring with the polynomial

algebra on all necklaces in Xd = {x1, . . . , xd}. If d is even, we define a Lie bracket
on the space spanned by all necklaces.

Definition 29. Let A ∈ alg and V ∈ vect, the category of C-vectorspaces.
A trace map A

t- V is a linear map satisfying t(ab) = t(ba) for all a, b ∈ A.
The universal trace map A

nA- A
[A,A]v

, where [A,A]v is the subspace of A
spanned by all the commutators [a, b] with a, b ∈ A, has the property that any
trace map factors

A
nA-- A

[A,A]v

V

t

?�...
.....

.....
.....

.....
..

∃l

Definition 30. Let A ∈ alg with algebra generators ai, i ∈ I. Let w =
ai1ai2 . . . ail be a word of length l in the ai. The corresponding necklace word nx

w
is the equivalence class of w in all monomials of length l under cyclic permutation.
That is, w ∼ wk = aikaik+1 . . . aila1a2 . . . aik−1 for all k ≤ l.

The class nx
w

can be depicted by viewing the consecutive terms ai of w as i-
colored beads of a necklace as in figure 1 Two words w and w′ are equivalent if
their necklaces differ only upto a rotation.

59
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Figure 1. The necklace of a word w.

Example 36. The necklaces for 〈d〉 = C〈x1, . . . , xd〉. Order the variables in
Xd = {x1, . . . , xd} by x1 < . . . < xd. From [57, Thm. 5.1 & Cor. 7.5] we recall
that a complete set of representatives of the necklace words in Xd is given by the
words

{ln | l a Lyndon word in Xd and n ≥ 1 }
A necklace is said to be primitive if no nontrivial rotation leaves it invariant. More
generally, every necklace has a minimal period p dividing its length l. The number
of primitive necklaces of length l for 〈d〉 is given by

1
l

∑
p|l

µ(p)d
l
p

where µ is the Möbius function. Indeed, let X l
d be the set of words in Xd of length

l, then the generating function of X l
d is

(x1 + . . .+ xd)l = s1(a1, . . . , ad)l

where a1, . . . , ad are commuting variables and where we define the evaluation of a
necklace word w to be an1

1 . . . and

d provided w contains ni occurrences of the letter
xi. Also recall the definition of the Newton functions

si(a1, . . . , ad) = ai1 + . . .+ aid

Further, X l
d = tp|lCe(l) where Cp(l) is the set of words of length l and period

e (that is, of the form wl/e with w a primitive necklace). Let P (e) be the set
of primitive words of length e, then each word in P (e) has e equivalents having
the same necklace and the map u 7→ ul/e from P (e) to Ce(l) is a bijection. Let
le(a1, . . . , ad) denote the generating function of primitive necklaces of length e, then

s1(a1, . . . , ad)l =
∑
e|n

ele(a
l/e
1 , . . . , a

l/e
d )

and because si(a1, . . . , ad) = s1(ai1, . . . , a
i
d) we deduce that

1
l

∑
i|l

µ(i)si(a1, . . . , ad)l/i = 1
l

∑
i|l µ(i)s1(ai1, . . . , a

i
d)
l/i

= 1
l

∑
i|l µ(i)

∑
e| li

ele(a
l/e
1 , . . . , a

l/e
d )
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As i|l and e| li is the same as e|l and i| le the last expression is equal to

1
l

∑
e|l

ele(a
l/e
1 , . . . , a

l/e
d )

∑
i| le

µ(i)

and the second term vanishes unless l = e (where it is 1) so this is just ll(a1, . . . , ad).
Finally, substitute in the generating function a1 = . . . = ad = 1 to obtain the result.
For more details we refer to [57, §7.1]. As a consequence, the number of all necklaces
of length l for 〈d〉 is equal to

1
l

∑
p|l

φ(p)d
l
d

with φ the Euler function.

Definition 31. Let neckd be the C-vectorspace spanned by the necklaces in
Xd = {x1, . . . , xd} and let ∗ : Xd

- Xd be an involution, that is, (x∗i )
∗ = xi

for all 1 ≤ i ≤ d. The ∗-Kontsevich bracket on neckd is induced by the bracket on
necklaces defined by
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To compute the bracket {w1, w2}K for two necklaces w1 and w2 we consider for all
letters a from Xd all occurrences of a in w1 and all occurrences of a∗ in w2. Open
up the necklaces by removing these factors and glue the open ends together to form
a new necklace. Next, replace the roles of a∗ and aand redo this operation with a
minus sign and all all these terms.

The ∗-Kontsevich bracket defines a Lie-algebra structure on neckd, see figure 2
for a graphical proof. We call neckd with this Lie bracket the ∗-necklace Lie algebra
of 〈d〉.

For V ∈ vect we denote by S(V ) the symmetric algebra of V , that is the
Abelianization of the tensor algebra T (V ) = ⊕∞i=0V

⊗i.

Definition 32. The necklace functor∮
: alg - commalg

assigns to a C-algebra A its necklace algebra∮
A = S(

A

[A,A]v
)
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Figure 2. Jacobi identity for the Kontsevich bracket. Term 1a
vanishes against 2c, term 1b against 3d, 1c against 3a, 1d against
2b, 2a against 3c and 2d against 3b.
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Example 37. For A ∈ commalg, the necklace algebra
∮
A is isomorphic to the

symmetric algebra S(A) on A because [A,A]v = 0.
Let A = Mn(C) and recall that all n × n matrices of trace zero form the

simple Lie algebra sln for the commutator bracket. In particular, we have that
[Mn(C),Mn(C)]v = [sln, sln] = sln. The universal trace map on Mn(C) is

Mn(C)
n- Mn(C)

[Mn(C),Mn(C)]v
= C.rrn with M 7→ Tr(M)rrn

with Tr the usual trace on matrices. But then,∮
Mn(C) = S(C.rrn) ' C[x]

with x corresponding to the class of the identity matrix rr
n.

Definition 33. alg@ is the category of C-algebras with trace . Its objects are
pairs (A, trA) with A ∈ alg and a linear trace map

trA : A - A

satisfying the following properties for all a, b ∈ A :
(1) trA(a)b = btrA(a),
(2) trA(ab) = trA(ba) and
(3) trA(trA(a)b) = trA(a)trA(b).

Note that the first property asserts that the image trA(A) of the trace map is
contained in the center of A.

Morphisms in alg@ are trace preserving algebra maps. That is, if (A, trA) and
(B, trB) are two objects in alg@ we only consider algebra maps making the diagram

A
φ - B

A

trA

?
φ - B

trB

?

commute.

Definition 34. The trace functor∫
: alg - alg@

assigns to an algebra A ∈ alg its trace algebra
∫
A =

∮
A ⊗C A.

∫
A ∈ alg@ with

trace ∫
A

tr-
∫
A defined by c⊗ a 7→ cnA(a)⊗ 1

where nA is the universal trace map.
∮
A⊗ 1 is a central subalgebra of

∫
A and we

have
tr

∫
A =

∮
A

Example 38. If A ∈ commalg we have seen in example 37 that
∮
A = S(A).

Therefore, ∫
A ' S(A)⊗C A

and the trace map is given by the multiplication map tr(a⊗ a′) = aa′ ⊗ 1.
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Example 39. For A = Mn(C) we know from example 37 that
∮
Mn(C) ' C[x].

As a consequence,∫
Mn(C) =

∮
Mn(C)⊗Mn(C) = C[x]⊗Mn(C)

and the trace is given by tr(xi ⊗M) = xin(M)⊗ 1 = xiTr(M)x = Tr(M)xi+1.

Example 40. By example 37 we have
∮

C[x] = S(C[x]) ' C[x0, x1, . . . , xi, . . .]
with xi corresponding to xi for all i ∈ N. But then,∫

C[x] =
∮

C[x]⊗ C[x]

and the trace is induced by tr(xi ⊗ xj) = xin(xj)⊗ 1 = xixj .

Theorem 22. The forgetful functor

alg@
i- alg

has the trace functor as a left adjoint .

Proof. We have to show that for any A ∈ alg and any (B, trB) ∈ alg@ there
is a functorial bijection

Homalg(A, iB)
t(A,B)- Homalg@(

∫
A,B)

To a trace preserving algebra map
∫
A

Φ- B we assign the restriction φ to the

subalgebra 1⊗A of
∫
A. Conversely, if A

φ- B is an algebra map, then

A
trB◦φ- trBB

is a trace map to the commutative C-algebra trBB. By the universal property of
the symmetric algebra, it factors through an algebra map∮

A
φ̃- trBB ⊂ - B

But then, we have a trace preserving algebra map

Φ = φ̃⊗ φ :
∫
A =

∮
A⊗A - B

One verifies that these two constructions are each others inverses.
Functoriality of the bijections means that for any algebra morphism A

f- A′

and any trace preserving algebra morphism (B, trB)
g- (B′, trB′) the following

diagrams of sets are commutative

Homalg(A′, iB)
t(A′,B)- Homalg@(

∫
A′, B)

Homalg(A, iB)

−◦f

?
t(A,B)- Homalg@(

∫
A,B)

−◦
R
f

?



3.1. ALGEBRAS WITH TRACE. 65

respectively,

Homalg(A, iB)
t(A,B)- Homalg@(

∫
A,B)

Homalg(A, iB′)

ig◦−

?
t(A,B′)- Homalg@(

∫
A,B′)

g◦−

?

�

Example 41. The one Ring to rule them all :
∫
〈∞〉. It is often convenient

to have an infinite supply of variables X = {x1, x2, . . . , xi, . . .} and to consider the
corresponding free algebra 〈∞〉 = C〈x1, x2, . . .〉. Totally order the set X, induce
a total order on all the words in X and define Lyndon words in X as before.
Let w = xi1xi2 . . . xil ∈ Lyndon∗, the set of powers of Lyndon words in X, and
denote the represented necklace by

x
w = [i1, i2, . . . , il]. Define a new variable tx

w
.

With these notations we have that the free necklace algebra is the commutative
polynomial ring ∮

〈∞〉 = C[tx
w
| w ∈ Lyndon∗ ]

in infinitely many commuting variables.
The free trace algebra is the algebra∫

〈∞〉 = C[tx
w
| w ∈ Lyndon∗ ]⊗ C〈x1, x2, . . . 〉

with coefficients in
∮
〈∞〉. The trace map on

∫
〈∞〉 is defined to be

tr(
∑
i

ai ⊗ wi) =
∑
i

aitx
wi
⊗ 1

where the ai are polynomials in the variables tx
w

.

Example 42. The free necklace algebra on m variables
∮
〈m〉 is the quotient of∮

〈∞〉 where we divide out the ideal generated by all necklaces involving a term xi
with i > m. Similarly, we have a description of the free trace algebra on m variables∫
〈m〉 as a (trace preserving) quotient of

∫
〈∞〉.

Though
∫
〈m〉 is not an affine C-algebra, it is a trace affine algebra , that is,

there are finitely many of its elements (in this case Xm) which together with all the
traces of words in these elements generate the algebra.

Theorem 23. Every trace affine algebra (A, trA) is an epimorphic image∫
〈∞〉 -- A and

∫
〈m〉 -- A

if A is generated by m elements in the category alg@ of algebras with trace.

Proof. Assume that A is trace generated by the elements {a1, . . . , am} and
forget the trace, then there is a morphism 〈m〉 - A defined by sending xi to ai.
Applying the trace functor we obtain a trace preserving algebra map∫

〈m〉 -
∫
A

vA- A

where vA is the universal map. By assumption on the trace generation of A the
composition is an epimorphism. �
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3.2. Cayley-Hamilton algebras.

In this section we define for every n ∈ N the quotient
∫
n
A of

∫
A by dividing

out the ideal of all Cayley-Hamilton identities of degree n. If A is affine, then∫
n
A is an affine Noetherian algebra. In the next chapter we will relate

∫
n
A to the

GLn-geometry of the scheme of n-dimensional representations repnA.
Take n commuting variables λ1, . . . , λn and consider the polynomial

fn(t) =
n∏
i=1

(t− λi) = tn +
n∑
i=1

(−1)iσitn−i

where σi is the i-th elementary symmetric polynomial in the λj . These polynomials
are algebraically independent and generate the ring of symmetric polynomials in
the λj ,

C[σ1, . . . , σn] = C[λ1, . . . , λn]Sn

Here, Sn is the symmetric group on n letters acting by automorphisms on the
polynomial ring C[λ1, . . . , λn] by permuting the variables.

Theorem 24. The symmetric Newton functions si = λi1 + . . . + λin. form
another generating set for the symmetric polynomials. That is,

C[σ1, . . . , σn] = C[s1, . . . , sn].

Proof. It suffices to express each σi as a polynomial in the sj . We claim that
the following identities hold for all 1 ≤ j ≤ n
(3.1) sj − σ1sj−1 + σ2sj−2 − . . .+ (−1)j−1σj−1s1 + (−1)jσj .j = 0

For j = n this identity holds because we have

0 =
n∑
i=1

fn(λi) = sn +
n∑
i=1

(−1)iσisn−i

if we take s0 = n. Assume now j < n then the left hand side of equation 3.1
is a symmetric function in the λi of degree ≤ j and is therefore a polynomial
p(σ1, . . . , σj) in the first j elementary symmetric polynomials. Let φ be the algebra
epimorphism

C[λ1, . . . , λn]
φ-- C[λ1, . . . , λj ]

defined by mapping λj+1, . . . , λj to zero. Clearly, φ(σi) is the i-th elementary
symmetric polynomial in {λ1, . . . , λj} and φ(si) = λi1 + . . . + λij . Repeating the
above j = n argument (replacing n by j) we have

0 =
j∑
i=1

fj(λi) = φ(sj) +
j∑
i=1

(−1)iφ(σi)φ(sn−i)

(this time with s0 = j). But then, p(φ(σ1), . . . , φ(σj)) = 0 and as the φ(σk) for
1 ≤ k ≤ j are algebraically independent we must have that p is the zero polynomial
finishing the proof of the identity. �

Let M be an n×n matrix with eigenvalues {λ1, . . . , λn}, then the characteristic
polynomial of M is

det (trrn −M) =
n∏
i=1

(t− λi) = fn(t)
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If we conjugate M to an upper triangular matrix, we see that the Newton functions
are

si = λi1 + . . .+ λin = tr(M i)
for all 1 ≤ i ≤ n. By the foregoing theorem, there exist polynomials in the traces
of powers of M

σi = gi(tr(M), tr(M2), . . . , tr(Mn))
such that the characteristic polynomial of M can be expressed as

det (trrn −M) = tn +
n∑
i=1

(−1)ngi(tr(M), . . . , tr(Mn))tn−i

Definition 35 (Procesi). For (A, trA) ∈ alg@ we define for a ∈ A the (formal)
Cayley-Hamilton polynomial of degree n

χ(n)
a (t) = tn +

n∑
i=1

gi(trA(a), trA(a2), . . . , trA(an))tn−i ∈ A[t]

where the gi are the polynomials introduced above.
An algebra with trace (A, trA) ∈ alg@ is said to be a Cayley-Hamilton algebra

of degree n if the following two properties are satisfied :
(1) trA(1)− n = 0, and
(2) For all a ∈ A we have χ(n)

a (a) = 0 in A.
alg@n is the category with objects the Cayley-Hamilton algebras of degree n and
with morphisms trace preserving C-algebra maps.

Example 43. The archetypical example of a Cayley-Hamilton algebra of degree
n is the ring of n×n matrices Mn(C) over a commutative algebra C equipped with
the usual trace map.

Definition 36. The Cayley-Hamilton functor of degree n∫
n

: alg - alg@n

assigns to an algebra A its n-th trace algebra . This is the quotient in alg of
∫
A

by dividing out the trace closure of the ideal generated by all the left-hand terms
of the formal Cayley-Hamilton polynomials of degree n of elements of A∫

n

A =
∫
A

( tr(1)− n, χ(n)
a (a) ∀a ∈

∫
A )

Thus,
∫
n
A ∈ alg@n and we define the necklace functor of degree n∮

n

: alg - commalg

This functor assigns to an algebra A its n-th necklace algebra
∮
n
A = tr

∫
n
A.

Example 44. The Cayley-Hamilton functor of degree one is just Abelianiza-
tion. The first Cayley-Hamilton equation is χ(1)

a (x) = x − tr(a). Hence, in the
quotient

∫
1
A we have that a = tr(a) for all a ∈

∫
1
A. By the trace property

tr(a)b = btr(a) we deduce that
∫
1
A is commutative. So the universal algebra map

A -
∫
1
A factors through the Abelianization. This is an isomorphism as

∮
A is

generated by tr(a) for a ∈ A (which are equal to a in the quotient
∫
1
A). This also

explains the notation
∫ d
1
A used in the previous chapter.
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Example 45. With the notation of example 40 we have that∫
n

〈1〉 =
∫
n

C[x] ' C[x, x1, . . . , xn−1] and
∮
n

〈1〉 =
∮
n

C[x] ' C[x1, . . . , xn]

Indeed, in the quotient
∫
n

C[x] we have to satisfy the equations

tr(1) = x0 = n and xn − x1x
n−1 + p2(x1, x2)xn−2 − . . .± pn(x1, . . . , xn) = 0

where xn appears linearly in pn(x1, . . . , xn). Also, the higher xm for m > n can be
written as polynomials in x, x1, . . . , xn−1 by induction and multiplying the second
equality by powers of x and taking traces. But then we see that∮

n

C[x] = tr

∫
n

C[x] = C[x1, . . . , xn]

Example 46. Recall that
∫
Mn(C) = Mn(C[x]) and tr(1 ⊗ rr

n) = nx. In the
quotient

∫
m
Mn(C) we must have nx = m so

∫
m
Mn(C) is an epimorphic image of

Mn(C). Assume that the quotient is Mn(C), then the composition

Mn(C) -
∫
m

Mn(C)
trm- C

gives a trace map on Mn(C) satisfying the formal m-th Cayley-Hamilton equation.
The last coefficient of χ(m)

a (x) gives a multiplicative map on Mn(C) so it gives a
character on GLn which must therefore be of the form detk for some integer k.
But then by polarization (to be discussed in the next chapter) we must have that
tr(M) = kTr(M) for all M ∈ Mn(C). But then, x = k and m is a multiple of n.
As a consequence we have∫

m

Mn(C) =

{
Mn(C) if n|m
0 otherwise

and that
∮
m
Mn(C) is C resp. 0.

We aim to prove that
∫
n
A is an affine C-algebra whenever A is. First we make

a small detour into one of the more exotic realms of noncommutative algebra : the
Nagata-Higman problem .

Theorem 25 (Nagata-Higman). Let R be an associative algebra without a unit
element. Assume there is a fixed natural number n such that xn = 0 for all x ∈ R.
Then, R2n−1 = 0, that is

x1.x2. . . . x2n−1 = 0
for all xj ∈ R.

Proof. We use induction on n, the case n = 1 being obvious. Consider for all
x, y ∈ R

f(x, y) = yxn−1 + xyxn−2 + x2yxn−3 + . . .+ xn−2yx+ xn−1y.

Because for all c ∈ C we must have that

0 = (y + cx)n = xncn + f(x, y)cn−1 + . . .+ yn

it follows that all the coefficients of the ci with 1 ≤ i < n must be zero, in particular
f(x, y) = 0. But then we have for all x, y, z ∈ R that

0 = f(x, z)yn−1 + f(x, zy)yn−2 + f(x, zy2)yn−3 + . . .+ f(x, zyn−1)

= nxn−1zyn−1 + zf(y, xn−1) + xzf(y, xn−2) + x2zf(y, xn−3) + . . .+ xn−2zf(y, x)
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and therefore xn−1zyn−1 = 0. Let I / R be the twosided ideal of R generated by
all elements xn−1, then we have that I.R.I = 0. In the quotient algebra R = R/I
every element x satisfies xn−1 = 0.

By induction we may assume that R
2n−1−1

= 0, or equivalently that R2n−1−1

is contained in I. But then,

R2n−1 = R2(2n−1−1)+1 = R2n−1−1.R.R2n−1−1 ⊂ I.R.I = 0

finishing the proof. �

The Nagata-Higman problem asks for the optimal function l(n) such that
Rl(n) = 0 but Rl(n)−1 6= 0. It is conjectured that l(n) = n(n+1)

2 . In the next
chapter, we will prove Razmyslov’s bound l(n) ≤ n2. For more details on this
problem we refer to the lecture notes by E. Formanek [16].

Definition 37. Giving the variables xi all degree one defines a positively graded
C-algebra structure on 〈∞〉. This gradation induces a positive gradation on the
necklace algebra

∮
〈∞〉 by taking as the degree of a generator tx

w
to be the length

of the word w in the variables xi. This induces a gradation on the trace algebra∫
〈∞〉 such that the trace map is degree preserving.

Because all the Cayley-Hamilton relations are homogeneous, it follows that the
generic n-th trace algebra

∫
n
〈∞〉 and the generic n-th necklace algebra

∮
n
〈∞〉 are

positively graded algebras. We will call the gradation on each of these algebras the
generator gradation .

Similarly, for a fixed number d of generators,
∫
〈d〉,

∮
〈d〉,

∫
n
〈d〉 and

∮
n
〈d〉 are

positively graded C-algebras with respect to the generator gradation.

Theorem 26 (Procesi). The generic n-trace algebra on
∫
n
〈∞〉 is spanned as

a module over the generic n-th necklace algebra
∮
n
〈∞〉 by all monomials

xi1xi2 . . . xil

of length l ≤ 2n − 1. In particular, for a fixed number d of variables
∫
n
〈d〉 is a

finitely generated module over
∮
n
〈d〉.

Proof. Let
∫
+

be the strict positive part of
∫
n
〈∞〉 in the generator gradation

and
∮
+

the strict positive part of
∮
n
〈∞〉. Form the graded associative C-algebra

(without unit element)

R =

∫
+∮

+
.
∫
+

Every element t ∈
∫
+

satisfies a Cayley-Hamilton relation of degree n of the form

tn + c1t
n−1 + c2t

n−2 + . . .+ cn = 0

with the ci ∈
∮
+
. Hence, xn = 0 for all x ∈ R. By the Nagata-Higman theorem we

know that R2n−1 = (R1)2
n−1 = 0.

Let
∫ ′ be the graded

∮
n
〈∞〉-submodule of

∫
n
〈∞〉 spanned by all monomials

in the (images of the) variables xi of degree at most 2n − 1. Then,∫
n

〈∞〉 =
∫ ′

+
∮

+

.

∫
n

〈∞〉.
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We claim that
∫
n
〈∞〉 =

∫ ′. If not, there is a homogeneous t ∈
∫
n
〈∞〉 of minimal

degree k not contained in
∫ ′. Still, we have a description

t = t′ + c1.t1 + . . .+ cs.ts

with t′ and all ci, ti homogeneous elements of positive degree. As deg(ti) < k,
ti ∈

∫ ′ for all i. Whence t ∈
∫ ′, a contradiction. The second part follows. �

We have reduced the problem of finite algebra generation of
∫
n
〈d〉 to that of

the generic n-th necklace algebra
∮
n
〈d〉.

Theorem 27 (Procesi). The generic n-th necklace algebra
∮
n
〈∞〉 is generated

by the necklaces tx
w

where w is a necklace word of length l ≤ 2n. In particular, for
a fixed number d of variables

∮
n
〈d〉 is an affine C-algebra and so is

∫
n
〈d〉.

Proof. Let
∫ ′ be the C-subalgebra of

∫
n
〈∞〉 generated by the (images of

the) variables xi. Then, tr(
∫ ′
+
) generates the ideal

∮
+
. Let S be the set of all

monomials in the xi of degree at most 2n − 1. By the foregoing theorem we know
that

∫ ′ ⊂ ∮
n
〈∞〉.S. The trace map

tr :
∫
n

〈∞〉 -
∮
n

〈∞〉

is
∮
n
〈∞〉-linear. Therefore, as

∫ ′
+
⊂

∫ ′
.(Cx1 + Cx2 + . . .) we have

tr(
∫ ′

+

) ⊂ tr(
∮
n

〈∞〉.S.(Cx1 + Cx2 + . . .)) ⊂
∮
n

〈∞〉.tr(S′)

where S′ is the set of monomials in the xi of degree at most 2n. If
∮ ′ is the C-

subalgebra of
∮
n
〈∞〉 generated by all tr(S′), then we have tr(

∫ ′
+
) ⊂

∮
n
〈∞〉.

∮ ′
+
.

Finally, we deduce ∮
+

=
∮
n

〈∞〉.tr(
∫

+

) ⊂
∮
n

〈∞〉.
∮ ′

+

and thus
∮
n
〈∞〉 =

∮ ′+ ∮
n
〈∞〉

∮ ′
+
. It follows that

∮
n
〈∞〉 =

∮ ′ by an argument
similar to that of the foregoing proof. The other statements follow from this and
the previous theorem. �

Example 47. In a Cayley-Hamilton algebra of degree 2 the following identities
are valid for all a, b

0 = a2 − tr(a)a+ 1
2 (tr(a)2 − tr(a2))

a.b+ b.a = tr(ab)− tr(a)tr(b) + tr(a)b+ tr(b)a

The second identity follows from the first by replacing a + b for a. Consider the
free algebra on two generators 〈2〉 = C〈x, y〉 and consider in

∮
2
〈2〉 the subalgebra∮ ′ generated the necklaces

{tr(x), tr(y), tr(x2), tr(y2), tr(xy)}
Using the two identities and

∮
2
〈2〉-linearity of the trace on

∫
2
〈2〉 we see that the

trace of any monomial in x and y of degree k ≥ 3 can be expressed in elements of∮ ′ and traces of monomials of degree ≤ k − 1. We deduce that∮
2

〈2〉 = C[tr(x), tr(y), tr(x2), tr(y2), tr(xy)].
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Note that there can be no algebraic relations between these generators because we
can specialize to the 2× 2 matrices in C[a, b, c, d, e, f ]

x 7→
[
a 0
0 b

]
y 7→

[
c d
e f

]
and obtain algebraic independent polynomials. From the identities it follows that
over

∮
2
〈2〉 any monomial in x and y of degree k ≥ 3 can be expressed as a linear

combination of 1, x, y and xy and so these elements generate
∫
2
〈2〉 as a

∮
2
〈2〉-

module. In fact, they form a free basis. If not, there would be a relation say

xy = α1 + βx+ γy

with α, β, γ ∈
∮
2
〈2〉. However, specializing

x 7→
[
0 1
0 0

]
y 7→

[
0 0
1 0

]
whence xy 7→

[
1 0
0 0

]
.

we obtain a contradiction. Therefore,∫
2

〈2〉 =
∮

2

〈2〉.1⊕
∮

2

〈2〉.x⊕
∮

2

〈2〉.y ⊕
∮

2

〈2〉.xy

Example 48. Consider the subalgebra R of
∮
2
〈3〉 generated by the elements

tr(x), tr(y), tr(z), tr(x2), tr(y2), tr(z2) and tr(xy), tr(xz), tr(yz). Let Λ be the sub-
algebra of

∫
2
〈3〉 generated by R and x, y and z. It follows from the identities

given in example 47 that Λ is a finitely generated module over R generated by the
elements

{1, x, y, z, xy, yz, xz, xyz}
We will see in chapter 6 that the Krull dimension of

∮
2
〈3〉 is 9 whence the generators

of R are algebraically independent, that is

R = C[tr(x), tr(y), tr(z), tr(xy), tr(xz), tr(yz), tr(x2), tr(y2), tr(z2)]

Further,
∮
2
〈3〉 is a quadratic extension of R as tr(xyz) /∈ R for otherwise there

would be an homogeneous multilinear identity

tr(xyz) = αtr(x)tr(y)tr(z) + β(tr(x)tr(yz) + tr(y)tr(xz) + tr(z)tr(xy))

which cannot exist by specializing the generators to the 2× 2 matrices

x 7→
[
0 1
0 0

]
y 7→

[
0 0
1 0

]
z 7→

[
1 0
0 −1

]
Moreover, taking traces of the identity

(xyz)2 − tr(xyz)xyz + det(x)det(y)det(z) = 0

and simplifying the first term we get that tr(xyz) satisfies a quadratic equation
over R, ∮

2

〈3〉 ' R.1⊕R.tr(xyz)

Let K be the field of fractions of R, then K ⊗R
∫
2
〈3〉 has dimension 8 (again, this

will follow from results from chapter 6) over K so the 8 module generators given
before are a basis. Finally, as tr(Λ) ⊂ Λ we obtain that Λ =

∫
2
〈3〉,∫

2

〈3〉 = R.1⊕R.x⊕R.y ⊕R.z ⊕R.xy ⊕R.xz ⊕R.yz ⊕R.xyz
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For more details we refer to the paper [40]. For a description of
∮
2
〈d〉 and

∫
2
〈d〉

we refer to the monograph [38] where
∫
2
〈d〉 (resp.

∮
2
〈d〉) are called the trace ring

(resp.the center of the trace ring) of d generic 2× 2 matrices.

Example 49. Consider generic 3× 3 trace zero matrices

X = x− 1
3
tr(x) Y = y − 1

3
tr(y)

then it follows from the Cayley-Hamilton identity of X + Y that the following
relations hold

g1 X3 + CX + F = 0
g2 X2Y +XYX + Y X2 + CY +DX +H = 0
g3 Y 2X + Y XY +XY 2 +DY + EX +G = 0
g4 Y 3 + EY + I = 0

where we denote

C = −1
2
tr(X2) D = −tr(XY ) E = −1

2
tr(Y 2) G = −tr(XY 2)

H = −tr(Y X2) F = −1
3
tr(X3) I = −1

3
tr(Y 3)

Then one can prove that∫
3

〈2〉 ' C[tr(x), tr(y), C,D,E, F,G,H, I]〈X,Y 〉
(g1, g2, g3, g4)

which is a free module of rank 18 over the polynomial subalgebra of
∮
3
〈2〉

C[tr(x), tr(y), C,D,E, F,G,H, I, J ]

where J is the central element

J = 2XYXY +X2Y 2 +Y X2Y +Y XY X +XY 2X + 2DXY +DYX +GX +HY

We refer to the paper [41] for full details.

3.3. Invariants of representations.

Recall from theorem 16 that there is an action of GLn on repnA, the orbits
of which correspond to isomorphism classes of n-dimensional A-representations.
Hence, GLn acts by algebra isomorphisms on the coordinate ring C[repnA]. In
this section we will prove that the algebra of invariant polynomials is generated by
(traces of) necklaces.

Definition 38. The n-th invariant functor

↓n : alg - commalg

assigns to a C-algebra A the ring of invariants of the GLn-action on the n-th
representation scheme repn A

↓n A = C[repnA]GLn
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The strategy we will use is to prove the generator result first for A = 〈m〉
and deduce the general result by applying the Reynold’s operator. In the following
chapter we will identify ↓n A with

∮
n
A.

Recall that
repn〈m〉 = Mn(C)⊕ . . .⊕Mn(C)︸ ︷︷ ︸

m

= Mm
n

the affine space of m-tuples of n× n matrices on which GLn acts by simultaneous
conjugation. We have to determine the ring of all polynomial maps f

Mm
n = Mn(C)⊕ . . .⊕Mn(C)

f- C
which are constant along orbits for this action. The strategy we follow is standard
in invariant theory.

• First, we will determine the multilinear maps which are constant along
orbits, equivalently, the linear maps

M⊗mn = Mn(C)⊗ . . .⊗Mn(C)︸ ︷︷ ︸
m

- C

which are constant along GLn-orbits where GLn acts by the diagonal
action, that is,

g.(A1 ⊗ . . .⊗Am) = gA1g
−1 ⊗ . . .⊗ gAmg−1.

• Next, we will be able to obtain from them all polynomial invariant maps
by using polarization and restitution operations.

First, we translate the problem into classical invariant theory of GLn. Let Vn ' Cn
be the n-dimensional vectorspace of column vectors on which GLn acts naturally
by left multiplication

Vn =


C
C
...
C

 with action g.


ν1
ν2
...
νn


In order to define an action on the dual space V ∗n = Hom(Vn,C) ' Cn of covectors
(or, row vectors) we have to use the contragradient action

V ∗n =
[
C C . . . C

]
with action

[
φ1 φ2 . . . φn

]
.g−1

Observe, that we have an evaluation map V ∗n × Vn - C which is given by the
scalar product f(v) for all f ∈ V ∗n and v ∈ Vn

[
φ1 φ2 . . . φn

]
.


ν1
ν2
...
νn

 = φ1ν1 + φ2ν2 + . . .+ φnνn

which is invariant under the diagonal action of GLn on V ∗n × Vn. Further, we have
the natural identification

Mn(C) = Vn ⊗ V ∗n =


C
C
...
C

⊗ [
C C . . . C

]
.
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Under this identification, a pure tensor v ⊗ f corresponds to the rank one matrix
or rank one endomorphism of Vn defined by

v ⊗ f : Vn - Vn with w 7→ f(w)v

and observe that the rank one matrices span Mn(C). The diagonal action of GLn
on Vn ⊗ V ∗n is then determined by its action on the pure tensors where it coincides
with the action of conjugation on Mn.

Consider the identification

(V ∗⊗mn ⊗ V ⊗mn )∗ ' End(V ⊗mn )

obtained from the nondegenerate pairing

End(V ⊗mn )× (V ∗⊗mn ⊗ V ⊗mn ) - C

given by

〈λ, f1 ⊗ . . .⊗ fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(λ(v1 ⊗ . . .⊗ vm))

GLn acts diagonally on V ⊗mn and hence again by conjugation on End(V ⊗mn ) af-
ter embedding GLn ⊂ - GL(V ⊗mn ) = GLmn. Therefore, the identifications are
isomorphism as vectorspaces with GLn-action. Hence, the space of GLn-invariant
linear maps

V ∗⊗mn ⊗ V ⊗mn
- C

is the space EndGLn
(V ⊗mn ) of GLn-linear endomorphisms of V ⊗mn .

There is a different presentation of this vectorspace relating it to the symmetric
group. Recall that the diagonal action of GLn on V ⊗mn is given by

g.(v1 ⊗ . . .⊗ vm) = g.v1 ⊗ . . .⊗ g.vm
The symmetric group Sm on m letters on V ⊗mn given by

σ.(v1 ⊗ . . .⊗ vm) = vσ(1) ⊗ . . .⊗ vσ(m)

These two actions commute with each other and give embeddings of GLn and Sm
in End(V ⊗mn ). The subspace of V ⊗mn spanned by the image of GLn will be denoted
by 〈GLn〉. Similarly, with 〈Sm〉 we denote the subspace spanned by the image of
Sm.

Theorem 28 (Schur). With notations as above we have :
(1) 〈GLn〉 = EndSm(V ⊗mn )
(2) 〈Sm〉 = EndGLn(V ⊗mn )

Proof. (1) : Under the identification End(V ⊗mn ) = End(Vn)⊗m an element
g ∈ GLn is mapped to the symmetric tensor g ⊗ . . . ⊗ g. On the other hand, the
image of EndSm

(V ⊗mn ) in End(Vn)⊗m is the subspace of all symmetric tensors in
End(V )⊗m. We can give a basis of this subspace as follows. Let {e1, . . . , en2} be a
basis of End(Vn), then the vectors ei1⊗. . .⊗eim form a basis of End(Vn)⊗m which is
stable under the Sm-action. Further, any Sm-orbit contains a unique representative
of the form

e⊗h1
1 ⊗ . . .⊗ e⊗hn2

n2

with h1 + . . .+ hn2 = m. If we denote by r(h1, . . . , hn2) the sum of all elements in
the corresponding Sm-orbit then these vectors are a basis of the symmetric tensors
in End(Vn)⊗m.
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The claim follows if we can show that every linear map λ on the symmetric
tensors which is zero on all g ⊗ . . . ⊗ g with g ∈ GLn is the zero map. Write
e =

∑
xiei, then

λ(e⊗ . . .⊗ e) =
∑

xh1
1 . . . x

hn2

n2 λ(r(h1, . . . , hn2))

is a polynomial function on End(Vn). As GLn is a Zariski open subset of End(V )
on which by assumption this polynomial vanishes, it must be the zero polynomial.
Therefore, λ(r(h1, . . . , hn2)) = 0 for all (h1, . . . , hn2) finishing the proof.

(2) : Recall that the groupalgebra CSm of Sm is a semisimple algebra . Any
epimorphic image of a semisimple algebra is semisimple. Therefore, 〈Sm〉 is a
semisimple subalgebra of the matrixalgebra End(V ⊗mn ) ' Mnm. By the double
centralizer theorem (see for example [51, §12.7]), it is therefore equal to the central-
izer of EndSm(V ⊗mm ). By the first part, it is the centralizer of 〈GLn〉 in End(V ⊗mn )
and therefore equal to EndGLn(V ⊗mn ). �

By (2), every GLn-endomorphism of V ⊗mn can be written as a linear combina-
tion of the morphisms λσ describing the action of σ ∈ Sm on V ⊗mn . We will trace
back these morphisms λσ through the canonical identifications until we can express
them in terms of matrices.

Theorem 29 (Procesi-Razmyslov). .
Let σ = (i1i2 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ) be a decomposition of σ ∈ Sm

into cycles (including those of length one). Then, under the above identification we
have

µσ(A1 ⊗ . . .⊗Am) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ
)

where µσ is the linear invariant V ∗⊗mn ⊗V ⊗mn
- C corresponding to λσ under the

identification (V ∗⊗mn ⊗V ⊗mn )∗ ' End(V ⊗mn ). That is, µσ(f1⊗. . . fm⊗v1⊗. . .⊗vm)
is equal to

〈λσ, f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(vσ(1) ⊗ . . . vσ(m))
=

∏
i fi(vσ(i))

Proof. We know that every multilinear GLn-invariant map

γ : V ∗⊗mn ⊗ V ⊗mn
- C

is a linear combination of the invariants µσ, σ ∈ Sm. Under Mn(C) = Vn ⊗ V ∗n a
multilinear GLn-invariant map

(V ∗n ⊗ V )⊗mn = V ∗⊗mn ⊗ V ⊗mn
- C

corresponds to a multilinear GLn-invariant map

Mn(C)⊗ . . .⊗Mn(C) - C

Under the identification, matrix multiplication is induced by composition on rank
one endomorphisms and here the rule is given by

v ⊗ f.v′ ⊗ f ′ = f(v′)v ⊗ f ′ν1...
νn

⊗ [
φ1 . . . φn

]
.

ν
′
1
...
ν′n

⊗ [
φ′1 . . . φ′n

]
=

ν1...
νn

 f(v′)⊗
[
φ′1 . . . φ′n

]
.
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Moreover, the trace map on Mn is induced by that on rank one endomorphisms
where it is given by the rule

tr(v ⊗ f) = f(v)

tr(

ν1...
νn

⊗ [
φ1 . . . φn

]
) = tr(

ν1φ1 . . . ν1φn
...

. . .
...

νnφ1 . . . νnφn

) =
∑
i

νiφi = f(v)

Both sides of identity in the statement are multilinear hence it suffices to verify
the equality for rank one matrices. Write Ai = vi ⊗ fi, then we have that

µσ(A1 ⊗ . . .⊗Am) = µσ(v1 ⊗ . . . vm ⊗ f1 ⊗ . . .⊗ fm)
=

∏
i fi(vσ(i))

Consider the subproduct

fi1(vi2)fi2(vi3) . . . fiα−1(viα) = S

Now, look at the matrixproduct

vi1 ⊗ fi1 .vi2 ⊗ fi2 . . . . .viα ⊗ fiα
which is by the product rule equal to

fi1(vi2)fi2(vi3) . . . fiα−1(viα)vi1 ⊗ fiα
Hence, by the trace rule we have that

tr(Ai1Ai2 . . . Aiα) =
α∏
j=1

fij (vσ(ij)) = S

�

Having found a description of the multilinear invariant polynomial maps

Mm
n = Mn(C)⊕ . . .⊕Mn(C)︸ ︷︷ ︸

m

- C

we will now describe all polynomial maps which are constant along orbits by po-
larization.

Theorem 30 (First fundamental theorem of matrix invariants). Any invariant
function from C[Mm

n ]GLn = C[repm〈m〉]GLn is a polynomial in the invariants

tr(Xi1 . . . Xil)

where Xi1 . . . Xil run over all possible noncommutative polynomials in the generic
matrices {X1, . . . , Xm}. In particular, there is an algebra epimorphism∮

〈m〉 -- ↓n 〈m〉

Proof. The coordinate algebra C[repn〈m〉] is the polynomial ring in mn2

variables xij(k) where 1 ≤ k ≤ m and 1 ≤ i, j ≤ n. Consider the m generic n × n
matrices

Xk =

x11(k) . . . x1n(k)
...

...
xn1(k) . . . xnn(k)

 ∈Mn(C[Mm
n ]) = Mn(C[repn 〈m〉]).
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The action of GLn on polynomial maps f ∈ C[Mm
n ] is fully determined by the

action on the coordinate functions xij(k) given by

g.xij(k) = (g−1.Xk.g)ij .

This action preserves the subspaces spanned by the entries of any of the generic
matrices.

Hence, we can define a Zm-gradation on C[Mm
n ] by deg(xij(k)) =

(0, . . . , 0, 1, 0, . . . , 0) (with 1 at place k) and decompose

C[Mm
n ] =

⊕
(d1,...,dm)∈Nm

C[Mm
n ](d1,...,dm)

where C[Mm
n ](d1,...,dm) is the subspace of all multihomogeneous forms f in the

xij(k) of degree (d1, . . . , dm), that is, in each monomial term of f there are exactly
dk factors coming from the entries of the generic matrix Xk for all 1 ≤ k ≤ m. The
action of GLn stabilizes each of these subspaces, that is,

if f ∈ C[Mm
n ](d1,...,dm) then g.f ∈ C[Mm

n ](d1,...,dm) for all g ∈ GLn.
In particular, if f determines a polynomial map on Mm

n which is constant along
orbits, that is, if f belongs to the ring of invariants C[Mm

n ]GLn then each of its mul-
tihomogeneous components is also an invariant and therefore it suffices to determine
all multihomogeneous invariants.

Let f ∈ C[Mm
n ](d1,...,dm) and take for each 1 ≤ k ≤ m dk new variables

t1(k), . . . , tdk
(k). Expand

f(t1(1)A1(1) + . . .+ td1Ad1(1), . . . , t1(m)A1(m) + . . .+ tdm
(m)Adm

(m))

as a polynomial in the variables ti(k), then we get an expression∑
t1(1)s1(1) . . . tsd1 (1)

d1
. . . t1(m)s1(m) . . . tdm

(m)sdm (m).

f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m))(A1(1), . . . , Ad1(1), . . . , A1(m), . . . , Adm
(m))

such that for all 1 ≤ k ≤ m we have
∑dk

i=1 si(k) = dk. Moreover, each of the
f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m)) is a multi-homogeneous polynomial function on

Mn(C)⊕ . . .⊕Mn(C)︸ ︷︷ ︸
d1

⊕Mn(C)⊕ . . .⊕Mn(C)︸ ︷︷ ︸
d2

⊕ . . .⊕Mn(C)⊕ . . .⊕Mn(C)︸ ︷︷ ︸
dm

of multi-degree (s1(1), . . . , sd1(1), . . . , s1(m), . . . , sdm(m)). Observe that if f is an
invariant polynomial function on Mm

n , then each of these multi homogeneous func-
tions is an invariant polynomial function on MD

n where D = d1 + . . .+ dm.
In particular, we consider the multi-linear function

f1,...,1 : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C

which we call the polarization of the polynomial f and denote with Pol(f). Observe
that Pol(f) in symmetric in each of the entries belonging to a block Mdk

n for every
1 ≤ k ≤ m. If f is invariant under GLn, then so is the multilinear function Pol(f)
and we know the form of all such functions by the results given before (replacing
Mm
n by MD

n ).
We want to recover f back from its polarization. We claim to have the equality

Pol(f)(A1, . . . , A1︸ ︷︷ ︸
d1

, . . . , Am, . . . , Am︸ ︷︷ ︸
dm

) = d1! . . . dm!f(A1, . . . , Am)
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and hence we recover f . This process is called restitution . The claim follows from
the observation that

f(t1(1)A1 + . . .+ td1(1)A1, . . . , t1(m)Am + . . .+ tdm(m)Am) =

f((t1(1) + . . .+ td1(1))A1, . . . , (t1(m) + . . .+ tdm(m))Am) =

(t1(1) + . . .+ td1(1))d1 . . . (t1(m) + . . .+ tdm(m))dmf(A1, . . . , Am)

and the definition of Pol(f). Hence we have proved that any multi-homogeneous
invariant polynomial function f on Mm

n of multidegree (d1, . . . , dm) can be obtained
by restitution of a multilinear invariant function

Pol(f) : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C

If we combine this with the description of all multilinear invariant functions we
obtain the first part of the theorem.

The last statement follows from the observation that the generators
tr(Xi1Xi2 . . . Xil) are only determined up to cyclic permutation of the factors Xj .
That is, they correspond to a necklace word w

�

�)))))

� HHHHH
�

�
vvvvv

�
��
��
�

�

))
))

)

�
HHHHH

�

�vvvvv

�����

x
w

where each i-colored bead corresponds to a generic matrix Xi. These bead-matrices
are cyclically multiplied to obtain an n×n matrix with coefficients in Mn(C[Mm

n ]).
The trace of this matrix is called tr(w) and they generate the ring of polynomial
invariants. �

Example 50. The Jordan normalform can be used to give a direct proof of the
fact that the polynomial functions on rep1〈1〉 = M1

n = Mn(C) which are constant
along orbits are polynomials in the traces of the generic n× n matrix

X =

x11 . . . x1n

...
...

xn1 . . . xnn


Construct the continuous map

Mn
π- Cn

sending a matrix A ∈Mn to the point (σ1(A), . . . , σn(A)) in Cn, where σi(A) is the
i-th elementary symmetric function in the eigenvalues of A (which is a polynomial
in the traces of powers of A). Clearly, this map is constant along orbits. We claim
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that π is surjective. Take any point (a1, . . . , an) ∈ Cn and consider the matrix
A ∈Mn

(3.2) A =


0 an
−1 0 an−1

. . . . . .
...

−1 0 a2

−1 a1


then π(A) = (a1, . . . , an), that is,

det(trrn −A) = tn − a1t
n−1 + a2t

n−2 − . . .+ (−1)nan.

We call a matrix B ∈Mn cyclic if there is a (column) vector v ∈ Cn such that Cn is
spanned by the vectors {v,B.v,B2.v, . . . , Bn−1.v}. Let g ∈ GLn be the basechange
transforming the standard basis to the ordered basis

(v,−B.v,B2.v,−B3.v, . . . , (−1)n−1Bn−1.v).

In this new basis, the linear map determined by B (or equivalently, g.B.g−1) is
equal to the matrix in canonical form

0 bn
−1 0 bn−1

. . . . . .
...

−1 0 b2
−1 b1


where Bn.v has coordinates (bn, . . . , b2, b1) in the new basis. Conversely, any matrix
in this form is a cyclic matrix. By taking the determinant of the n×n matrix with
columns v,B.v, . . . , Bn−1.v for a generic vector v we see that the set of all cyclic
matrices B forms a Zariski open subset of Mn(C). Let f be a polynomial function
on Mn(C) which is constant along orbits and consider the diagram

Mn
f - C

Cn

s

6

π

?.....
.....

.....
.....

.....
.....

.

f
′ =
f◦
s

-

where s is the section of π (that is, π ◦ s = idCn) determined by sending a point
(a1, . . . , an) to the cyclic matrix in canonical form A as in equation (3.2). We claim
that f = f ′ ◦π for f ′ = f ◦ s a polynomial in the σi (or equivalently in the traces of
powers of the generic matrix X). By continuity, it suffices to check equality on the
dense open set of cyclic matrices in Mn. There it is a consequence of the following
three facts we have proved before : (1) : any cyclic matrix lies in the same orbit as
one in standard form, (2) : s is a section of π and (3) : f is constant along orbits.

Theorem 31. For any affine C-algebra A, there is an algebra epimorphism∮
A

πn-- ↓n A

That is, the ring of invariants C[repnA]GLn , is generated by traces of necklaces
words.
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Proof. We only need to recall the construction of the Reynolds operator. Let
V and W be two C-vectorspaces with a locally finite GLn-action and let V

f- W
be a GLn-equivariant linear map. The Reynolds operator R is the canonical pro-
jection to the isotypical component of the trivial representation (for unexplained
terminology refer to section 4.2). There is a commuting diagram

V
f - W

V GLn

R

??
f0- WGLn

R

??

and it follows from complete reducibility ofGLn-representations that f0 is surjective
(resp. injective) if f is surjective (resp. injective). The statement then follows from
the surjection C[repn 〈m〉] -- C[repn A] and the previous theorem. �

Example 51. (Invariants of quiver-representations) Recall from example 25
that the n-th representation scheme of 〈Q〉 decomposes into smooth connected
components

repn〈Q〉 =
⊔
|α|=n

GLn ×GL(α) repαQ

Therefore, ↓n 〈Q〉 = C[repn 〈Q〉]GLn decomposes into⊕
|α|=n

C[GLn ×GL(α) repαQ]GLn

If H ⊂ G are reductive groups and V an H-representation, then we have for the
invariants of the associated fiber product

C[G×H V ]G ' C[V ]H

Applying this to the action of the basechange group GL(α) on repαQ we get

↓n 〈Q〉 =
⊕
|α|=n

C[repαQ]GL(α)

where the components are called the invariants of α-dimensional quiver represen-
tations .

A generating set for the path algebra 〈Q〉 is given by the vertex-idempotents
v1, . . . , vk and the arrows a1, . . . , al giving an epimorphism 〈m〉 -- 〈Q〉 with
m = k + l. This epimorphism induces the epimorphism

↓n 〈m〉
π-- ↓n 〈Q〉 -- C[repαQ]GL(α)

and to determine the generators of the quiver invariants we have to follow the image
of the generic matrices under these maps and take traces of necklace words. For
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the first k variables, the generic matrix Xi is mapped to the n× n matrix

vi 7→



0
. . .

1
. . .

1
. . .

0


with 1’s from position

∑i−1
l=1 dl + 1 to position

∑i
l=1 dl for α = (d1, . . . , dk). For

the last l variables, the generic matrix Xa corresponding to the arrow ��������j ��������i
a

oo

is mapped to the block matrix in Mn(C[repα Q])
0 . . . . . . 0
...

...
... Ma

...
0 . . . . . . 0


where Ma is the dj × di matrix of variables from C[repα Q]

Ma =

 x11(a) . . . . . . x1di
(a)

...
...

xdj1(a) . . . . . . xdjdi
(a)


We know that the ring of quiver invariants C[repαQ]GL(α) is generated by the
images of the traces of necklacewords tr(Xi1 . . . Xir ). Using the explicit block-form
of the matrices, we see that such a trace is zero unless the induced path π(xi1 . . . xir )
is an oriented cycle in the quiver Q. We recover the result, proved in [42] that

C[repαQ]GL(α)

is generated by traces along oriented cycles in the quiver Q. By this we mean that
we multiply the n × n matrices corresponding to the vertices and arrows in order
and take the trace of the obtained n× n matrix with coefficients in C[repαQ].

Example 52. If A ∈ alg is affine it has a presentation A = 〈m〉/RA where RA
is the ideal of relations holding in A. It follows from the Reynold operator that

↓n A = C[repnA]GLn

is generated by (traces of) necklaces of words in the generators a1, . . . , am of A. If
A is the path algebra of a quiver with relations, then we can restrict attention to
necklaces in the quiver. In particular this applies to the universal localization 〈Q〉Σ
and the n-th root algebra n

√
〈Q〉 of the path algebra of a finite quiver Q.

3.4. Necklace Lie algebras.

In this section we will size down the complex of noncommutative differential
forms by dividing out the super-commutators. The zero term in this Karoubi com-
plex can be viewed as the noncommutative functions and is the space spanned by
all necklaces. More generally, terms in the Karoubi complex induce GLn-invariant
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differential forms on the representation schemes. Moreover, for a symmetric quiver
we will define a Poisson structure on this space.

We have seen that the ∗-Kontsevich bracket induces a Lie algebra structure
on neckd the space spanned by all necklace words of 〈d〉. In this section we will
extend this to necklace Lie algebras of quivers and relate them to noncommutative
differential forms and to noncommutative symplectic geometry.

For A ∈ alg, we define for ω ∈ ΩiA and ω′ ∈ ΩjA the super-commutator to be

[ω, ω′] = ωω′ − (−1)ijω′ω

That is, it is the usual commutator unless both i and j are odd in which case it is
the sum ωω′ + ω′ω.

Definition 39. The differential d is a super-derivation on ΩA whence

d([ω, ω′]) = [dω, ω′] + (−1)i[ω, dω′]

Therefore, if we define

DRn A =
ΩnA∑n

i=0[ΩiA,Ωn−iA]

Then the dgalg-structure on Ω A induces one on the complex

DR0 A
d- DR1 A

d- DR2 A
d- . . .

which is called the Karoubi complex of A.

Example 53. Terms of the Karoubi complex induce ordinary differential forms
on the smooth manifolds repnA whenever A is alg-smooth. DR0A = A

[A,A]v
can be

viewed as the space of noncommutative functions on A. Elements of A induce
matrix valued functions on repnA hence taking traces gives a linear map

DR0A =
A

[A,A]v
tr- C[repnA]

which are even GLn-invariant. More generally, any element of ΩA induces a matrix
valued differential form on repnA and taking traces gives a differential form on
repnA. Using the vanishing of the trace of commutators we see that this map
factors through the Karoubi complex

ΩA -- DR∗A - Ω∗C[repnA]

That is, taking traces of noncommutative differential forms gives a uniform way to
define GLn-invariant differential forms on all the representation spaces repnA for
n ∈ N.

Definition 40. We define the (noncommutative) de Rham cohomology groups
of A to be the homology of the Karoubi complex, that is

Hn
dR A =

Ker DRn A
d- DRn+1 A

Im DRn−1 A
d- DRn A

Example 54. The de Rham cohomology of 〈m〉. Let E be the Eulerian deriva-
tion on 〈m〉 and verify that d is compatible with the subspaces of super-commutators
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for iE and LE . The induced operations

DRn−1 DRn DRn+1

LE

XX

LE

YY

LE

XX

d

%%

iE

ee

d

%%

iE

ee

are such that LE is an isomorphism on DRn 〈m〉 whenever n ≥ 1 and still satisfy
LE = iE ◦ d+ d ◦ iE . Therefore,

HndR 〈m〉 =

{
C when n = 0 ,
0 when n ≥ 1.

Definition 41. For a C-subalgebra B ⊂ A, define a relative Karoubi complex

DR0
B A

d- DR1
B A

d- DR2
B A

d- . . .

where
DRnB A =

ΩnB A∑n
i=0 [ ΩiB A,Ωn−iB A ]

The (noncommutative) relative de Rham cohomology groups of A with respect to
B is the homology of this complex

HnB,dR A =
Ker DRnB A

d- DRn+1
B A

Im DRn−1
B A

d- DRnB A

Example 55. The Ck-relative de Rham cohomology of 〈Q〉. Again one can
use the Eulerian Ck-derivation on 〈Q〉 to prove that{

H0
Ck,dR

CQ ' C× . . .× C (k factors)
Hn
Ck,dR

CQ ' 0 ∀n ≥ 1

Definition 42. A quiver necklace word w in the quiver Q is an equivalence
class of an oriented cycle c = a1 . . . al of length l ≥ 0 in Q. Here, c ∼ c′ if c′ is
obtained from c by cyclicly permuting the composing arrows ai.

Theorem 32. With notations as before, we have
(1) A C-basis for the noncommutative quiver functions

DR0
Ck
〈Q〉 ' 〈Q〉

[ 〈Q〉, 〈Q〉 ]v
is given by the quiver necklace words in the quiver Q.

(2) The space of noncommutative quiver 1-forms DR1
Ck
〈Q〉 is

⊕
j(/).*-+, i(/).*-+,aoo

vi.CQ.vj da =
⊕

j(/).*-+, i(/).*-+,aoo

i(/).*-+, j(/).*-+,��
d j(/).*-+, i(/).*-+,aoo

Proof. (1) : Let neckQ be the C-space spanned by all quiver necklace words
w in Q and define a linear map

〈Q〉 n-- W

{
p 7→ wp if p is a cycle
p 7→ 0 if p is not



84 3. NECKLACES

for all oriented paths p in the quiver Q, where wp is the necklace word in Q deter-
mined by the oriented cycle p. Because wp1p2 = wp2p1 it follows that the commu-
tator subspace [〈Q〉, 〈Q〉] belongs to the kernel of this map. Conversely, let

x = x0 + x1 + . . .+ xm

be in the kernel where x0 is a linear combination of non-cyclic paths and xi for
1 ≤ i ≤ m is a linear combination of cyclic paths mapping to the same necklace
word wi, then n(xi) = 0 for all i ≥ 0. Clearly, x0 ∈ [〈Q〉, 〈Q〉] as we can write every
noncyclic path p = a.p′ = a.p′−p′.a as a commutator. If xi = a1p1+a2p2+. . .+alpl
with n(pi) = wi, then p1 = q.q′ and p2 = q′.q for some paths q, q′ whence p1 − p2

is a commutator. But then, xi = a1(p1 − p2) + (a2 − a1)p2 + . . .+ alpl is a sum of
a commutator and a linear combination of strictly fewer elements. By induction,
this shows that xi ∈ [〈Q〉, 〈Q〉].

(2) : If p.q is not a cycle, then pdq = [p, dq] and so vanishes in DR1
Ck
〈Q〉 so

we only have to consider terms pdq with p.q an oriented cycle in Q. For any three
paths p, q and r in Q we have the equality

[p.qdr] = pqdr − qd(rp) + qrdp

whence in DR1
Ck
〈Q〉 we have relations allowing to reduce the length of the differential

part
qd(rp) = pqdr + qrdp

so DR1
Ck
〈Q〉 is spanned by terms of the form pda with a ∈ Qa and p.a an oriented

cycle in Q. Therefore, we have a surjection

Ω1
Ck
〈Q〉 --

⊕
j(/).*-+, i(/).*-+,aoo

vi.CQ.vj da

By construction, it is clear that [Ω0
rel CQ,Ω1

rel CQ] lies in the kernel of this map and
using an argument as in the lemma above one shows also the converse inclusion. �

Definition 43. The description of DRiCk
〈Q〉 for i = 0, 1 and the differential

DR0
Ck
〈Q〉 d- DR1

Ck
〈Q〉 allow us to define quiver partial derivatives associated to

an arrow j(/).*-+, i(/).*-+,aoo in Q.

∂

∂a
: DR0

Ck
〈Q〉 - vi〈Q〉vj by df =

∑
a∈Qa

∂f

∂a
da

To compute the partial derivative of a quiver necklace word w with respect to an
arrow a, we run through w and each time we encounter a we open the necklace by
removing that occurrence of a and then take the sum of all the paths obtained.

To define a Kontsevich bracket on neckd we needed an involution ∗ on the
generators. In particular, d must be even. A similar restriction will be needed in
order to define a Lie algebra structure on the space neckQ.

Definition 44. A quiver Q is said to be symmetric if for all vertices vi and vj
we have

# { ��������i��������j oo } = # { ��������j��������i oo }
or, equivalently, if the Euler form of Q is symmetric.
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If Q is symmetric, a quiver involution ∗ is an involution on the set {a1, . . . , al}
of arrows of Q such that if

j(/).*-+, i(/).*-+,aoo then i(/).*-+, j(/).*-+,a∗oo

Given a quiver involution ∗ we can partition the arrows of Q

Qa = L tR such that L∗ = R

We call such a partition a symplectic quiver structure on Q.

Let us recall the relevant notions in the commutative case. A symplectic struc-
ture on a (commutative) manifold M is given by a closed differential 2-form. The
non-degenerate 2-form ω gives a canonical isomorphism

T M ' T ∗ M

that is, between vector fields on M and differential 1-forms. Further, there is a
unique C-linear map from functions f on M to vectorfields ξf by the requirement
that −df = iξf

ω where iξ is the contraction of n-forms to n − 1-forms using the
vectorfield ξ. We can make the functions on M into a Poisson algebra by defining

{f, g} = ω(ξf , ξg)

and one verifies that this bracket satisfies the Jacobi and Leibnitz identities.
The Lie derivative Lξ with respect to ξ is defined by the Cartan homotopy

formula
Lξ ϕ = iξdϕ+ diξϕ

for any differential form ϕ. A vectorfield ξ is said to be symplectic if it preserves
the symplectic form, that is, Lξω = 0. In particular, for any function f on M we
have that ξf is symplectic. The assignment

f - ξf

defines a Lie algebra morphism from the functions O(M) on M equipped with the
Poisson bracket to the Lie algebra of symplectic vectorfields, V ectω M . This map
fits into the exact sequence

0 - C - O(M) - V ectω M - H1
dR M - 0

Definition 45. A noncommutative quiver vectorfield is a Ck-derivation θ of
〈Q〉. the set of all quiver vectorfields will be denoted by DerCk

〈Q〉.
If ∗ is a quiver involution and Qa = L t R a quiver symplectic structure we

define the symplectic 2-form

ω =
∑
a∈L

dada∗ ∈ DR2
Ck
〈Q〉

A vectorfield θ ∈ DerCk
〈Q〉 is said to be symplectic if Lθω = 0 in DR2

Ck
〈Q〉. The

set of all symplectic vectorfields is denoted by Derω〈Q〉.

Theorem 33. Given a symplectic structure Qa = LtR on a symmetric quiver,
there is a one-to-one correspondence between

(1) noncommutative quiver 1-forms, and
(2) noncommutative quiver vectorfields.
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Figure 3. Kontsevich bracket {w1, w2}K .

Proof. For θ ∈ DerCk
〈Q〉 define operators Lθ and iθ on ΩCk

〈Q〉 and on
DRCk

〈Q〉 by {
Lθ(a) = θ(a) Lθ(da) = dθ(a)
iθ(a) = 0 iθ(da) = θ(a)

These operators allow us to define a linear map

DerCk
〈Q〉 τ- DR1

Ck
〈Q〉 by τ(θ) = iθ(ω)

Every Ck-derivation θ on 〈Q〉 is fully determined by its image on the arrows in Q

and if a = j(/).*-+, i(/).*-+,aoo

θ(a) = θ(vjavi) = vjθ(a)vi ∈ vj〈Q〉vi
so determines an element θ(a)da∗ ∈ DR1

Ck
〈Q〉.

iθ(ω) =
∑
a∈L

iθ(da)da∗ − iθ(da∗)da

=
∑
a∈L

θ(a)da∗ − θ(a∗)da

lies in DR1
Ck
〈Q〉. As both Ck-derivations and 1-forms are determined by their coef-

ficients, τ is indeed bijective. �

Definition 46. Let ∗ be a quiver involution with a symplectic structure Qa =
LtR. The ∗-Kontsevich bracket on the noncommutative quiver functions DR0

Ck
〈Q〉

is defined by

{w1, w2}K =
∑
a∈L

(
∂w1

∂a

∂w2

∂a∗
− ∂w1

∂a∗
∂w2

∂a
) mod [〈Q〉, 〈Q〉]

That is, to compute {w1, w2}K we consider for every arrow a ∈ L all occurrences
of a in w1 and a∗ in w2. We then open up the necklaces removing these factors and
gluing the open ends together to form a new necklace word. We then replace the
roles of a∗ and a and redo this operation (with a minus sign), see figure 3. Finally,
we add all the obtained necklace words.
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Theorem 34. Let Q be a symmetric function, ∗ a quiver involution and Qa =
L tR a symplectic structure.

The noncommutative quiver functions DR0
Ck
〈Q〉 equipped with the Kontsevich

bracket is a Lie algebra and the sequence

0 - Ck - DR0
Ck
〈Q〉 τ−1d- Derω〈Q〉 - 0

to be defined below is an exact sequence (hence a central extension) of Lie algebras.

Proof. One proves the first statement with the graphical argument given be-
fore for the free algebra. The Cartan homotopy formula

Lθ = iθ ◦ d+ d ◦ iθ
and the fact that ω is a closed form imply when θ ∈ Derω〈Q〉 that

Lθω = diθω = τ(θ) = 0

That is, τ(θ) is a closed form which by vanishing of the cohomology of the Karoubi
complex shows that it must be an exact form. That is we have an isomorphism of
exact sequences of C-vectorspaces

0 - Ck - DR0
Ck
〈Q〉 d- (DR1

Ck
〈Q〉)exact - 0

0 - Ck

=

?
- 〈Q〉

[〈Q〉, 〈Q〉]

'
?

- Derω〈Q〉

τ−1

?
- 0

The symplectic derivations Derω〈Q〉 is a Lie algebra with bracket [θ1, θ2] = θ1 ◦
θ2 − θ2 ◦ θ1.

For every necklace word w we have a derivation θw = τ−1dw which is defined
by {

θw(a) = ∂w
∂a∗

θw(a∗) = −∂w∂a
With this notation we get the following interpretations of the Kontsevich bracket

{w1, w2}K = iθw1
(iθw2

ω) = Lθw1
(w2) = −Lθw2

(w1)

where the next to last equality follows because iθw2
ω = dw2 and the fact that

iθw1
(dw) = Lθw1

(w) for any w. More generally, for any Ck-derivation θ and any
necklace word w we have the equation

iθ(iθw
ω) = Lθ(w)

By the commutation relations for the operators Lθ and iθ we have for all Ck-
derivations θi the equalities

Lθ1iθ2iθ3ω − iθ2iθ3Lθ1ω = [Lθ1 , iθ2 ]iθ3ω + iθ2Lθ1iθ3ω

− iθ2Lθ1iθ3ω + iθ2 [Lθ1 , iθ3 ]ω
= i[θ1,θ2]iθ3ω + iθ2i[θ1,θ3]ω

By the homotopy formula we have Lθw
ω = 0 for every necklace word w, whence we

get
Lθw1

iθ2iθ3ω = i[θw1 ,θ2]
iθ3ω + iθ2i[θw1 ,θ3]

ω
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Take θ2 = θw2 , then the left hand side is equal to
Lθw1

iθw2
iθ3ω = −Lθw1

iθ3iθw2
ω

= −Lθw1
Lθ3w2

whereas the last term on the right equals
iθw2

i[θw1 ,θ3]
ω = −i[θw1 ,θ3]

iθw2
ω

= −L[θw1 ,θ3]
w2 = −Lθw1

Lθ3w2 + Lθ3Lθw1
w2

and substituting this we obtain that
i[θw1 ,θw2 ]iθ3ω = −Lθw1

Lθ3w2 + Lθw1
Lθ3w2 − Lθ3Lθw1

w2

= −Lθ3Lθw1
w2 = −Lθ3{w1, w2}K

= −iθ3iθ{w1,w2}K
ω = iθ{w1,w2}K

iθ3ω

Finally, if we take θ = [θw1 , θw2 ]−θ{w1,w2}K
we have that iθω is a closed 1-form and

that iθiθ3ω = −iθ3iθω = 0 for all θ3. But then by the homotopy formula Lθ3iθω = 0
whence iθω = 0, which finally implies that θ = 0. �



CHAPTER 4

Witnesses

”In the spirit of Weyl’s book, we then take the problem of de-
scribing the relations among such invariants and concomitants.
The result is quite striking in that it basically says that any rela-
tion among invariants and matrix concomitants is a consequence
of the theorem of Hamilton-Cayley.”

C. Procesi in [53].

In this chapter we prove the fundamental reconstruction results due to Claudio
Procesi [54]. Let alg@n be the category of all algebras with trace satisfying the
formal n-th Cayley-Hamilton identities and assign to B ∈ alg@n the commutative
affine scheme trepnB of trace preserving representations. Let GL(n)-aff be the
category of all commutative affine schemes equipped with a linear GLn-action, then
there is a triangle

alg@n

alg
repn -

R
n

-

GL(n)-aff

trep
n

-

The fundamental anti-equivalence spec : commalg - aff of commutative
algebraic geometry extends to a left inverse ⇑n assigning to an affine GLn-scheme
fun its witness algebra which is the algebra of GLn-equivariant polynomial maps
fun - Mn(C). There is the commuting diagram of functors

alg@n
trepn -

�
⇑n

GL(n)-aff

commalg

tr

?

spec
- aff

quot

?

where quot is the quotient functor which assigns to an affine scheme with GLn-
action fun the affine scheme determined by the ring of polynomial invariants
C[fun]GLn . In particular, there is a geometric reconstruction result for the n-th
trace algebra of an algebra A∫

n

A = Mn(C[repnA])GLn and tr

∫
n

A = C[repnA]GLn

That is, the n-th trace algebra can be recovered from the representation scheme
repnA as the ring of GLn-equivariants and the n-th necklace algebra

∮
n
A = tr

∫
n
A

89
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is the coordinate ring of the quotient scheme which by the result of M. Artin
[1] parametrizes the n-dimensional semisimple representations of A. Note how-
ever that because ⇑n is only a left inverse (and not an equivalence of categories)
noncommutative geometry@n is not merely GLn-equivariant geometry. In fact,
equivariant constructions (such as equivariant desingularization) quickly lead us
away from representation schemes.

4.1. Necklace relations.

In this section we will determine the kernel of the epimorphism∮
〈∞〉 µ-- ↓n 〈∞〉

which will be crucial to relate the invariant ring ↓n A to the n-th necklace algebra∮
n
A. The result is proved using the representation theory of the symmetric group.

We recall some of the basics of this theory and refer the reader to [17, Ch.4] for
more details.

Definition 47. Sd is the symmetric group of all permutations on d letters.
Conjugacy classes in Sd correspond to partitions λ = (λ1, . . . , λk) of d, that is,
decompositions in natural numbers

d = λ1 + . . .+ λk with λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1

The correspondence assigns to a partition λ = (λ1, . . . , λk) the conjugacy class of
a permutation consisting of disjoint cycles of lengths λ1, . . . , λk.

One assigns to a partition λ = (λ1, . . . , λk) a Young diagram with λi boxes in the
i-th row, the rows of boxes lined up to the left. The dual partition λ∗ = (λ∗1, . . . , λ

∗
r)

to λ is defined by interchanging rows and columns in the Young diagram of λ.
A Young tableau is a numbering of the boxes of a Young diagram by the integers

{1, 2, . . . , d}. For a fixed Young tableau T of type λ one defines subgroups of Sd by

Pλ = {σ ∈ Sd | σ preserves each row }

Qλ = {σ ∈ Sd | σ preserves each column }

Example 56. To the partition λ = (3, 2, 1, 1) of 7 we assign the Young diagram

λ = λ∗ =

with dual partition λ∗ = (4, 2, 1). Two distinct Young tableaux of type λ are

1 2 3
4 5
6
7

1 3 5
2 4
6
7

For the second Young tableau we obtain the subgroups{
Pλ = S{1,3,5} × S{2,4} × {(6)} × {(7)}
Qλ = S{1,2,6,7} × S{3,4} × {(5)}
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The group algebra CSd is a semisimple algebra. In particular, any simple Sd-
representation is isomorphic to a minimal left ideal of CSd which is generated by
an idempotent.

Definition 48. Given a tableau T of type λ, define the elements of CSd

aλ =
∑
σ∈Pλ

eσ , bλ =
∑
σ∈Qλ

sgn(σ)eσ and cλ = aλ.bσ

cλ is called the Young symmetrizer corresponding to T .

There is a one-to-one correspondence between the simple representations of
CSd and the conjugacy classes in Sd (or, equivalently, Young diagrams).

Theorem 35 (Young). For every partition λ of d the left ideal CSd.cλ = Vλ
is a simple Sd-representations and, conversely, any simple Sd-representation is iso-
morphic to Vλ for a unique partition λ.

Proof. Observe that Pλ ∩ Qλ = {e} (any permutation preserving rows as
well as columns preserves all boxes) and so any element of Sd can be written in at
most one way as a product p.q with p ∈ Pλ and q ∈ Qλ. In particular, the Young
symmetrizer can be written as cλ =

∑
±eσ with σ = p.q for unique p and q and

the coefficient ±1 = sgn(q). From this it follows that for all p ∈ Pλ and q ∈ Qλ we
have

p.aλ = aλ.p = aλ , sgn(q)q.bλ = bλ.sgn(q)q = bλ , p.cλ.sgn(q)q = cλ

Moreover, we claim that cλ is the unique element in CSd (up to a scalar factor)
satisfying the last property. This requires a few preparations.

Assume σ /∈ Pλ.Qλ and consider the tableaux T ′ = σT , that is, replacing the
label i of each box in T by σ(i). We claim that there are two distinct numbers which
belong to the same row in T and to the same column in T ′. If this were not the
case, then all the distinct numbers in the first row of T appear in different columns
of T ′. But then we can find an element q′1 in the subgroup σ.Qλ.σ

−1 preserving
the columns of T ′ to take all these elements to the first row of T ′. But then, there
is an element p1 ∈ Tλ such that p1T and q′1T

′ have the same first row. We can
proceed to the second row and so on and obtain elements p ∈ Pλ and q′ ∈ σ.Qλ, σ−1

such that the tableaux pT and q′T ′ are equal. Hence, pT = q′σT entailing that
p = q′σ. Further, q′ = σ.q.σ−1 but then p = q′σ = σq whence σ = p.q−1 ∈ Pλ.Qλ,
a contradiction. Therefore, to σ /∈ Pλ.Qλ we can assign a transposition τ = (ij)
(replacing the two distinct numbers belonging to the same row in T and to the
same column in T ′) for which p = τ ∈ Pλ and q = σ−1.τ.σ ∈ Qλ.

After these preliminaries, assume that c′ =
∑
aσeσ is an element such that

p.c′.sgn(q)q = c′ for all p ∈ Pλ, q ∈ Qλ
We claim that aσ = 0 whenever σ /∈ Pλ.Qλ. For take the transposition τ found
above and p = τ , q = σ−1.τ.σ, then p.σ.q = τ.σ.σ−1.τ.σ = σ. However, the
coefficient of σ in c′ is aσ and that of p.c′.q is −aσ proving the claim. That is,

c′ =
∑
p,q

apqep.q

but then by the property of c′ we must have that apq = sgn(q)ae whence c′ = aecλ
finishing the proof of the claimed uniqueness of the element cλ.
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As a consequence we have for all elements x ∈ CSd that cλ.x, cλ = αxcλ for
some scalar αx ∈ C and in particular that c2λ = nλcλ, for,

p.(cλ.x.cλ).sgn(q)q = p.aλ.bλ.x.aλ.bλ.sgn(q)q
= aλ.bλ.x.aλ.bλ = cλ.x.cλ

and the statement follows from the uniqueness result for cλ.
Define Vλ = CSd.cλ then we have cλ.Vλ ⊂ Ccλ. We claim that Vλ is a simple

Sd-representation. Let W ⊂ Vλ be a simple subrepresentation, then being a left
ideal of CSd we can write W = CSd.x with x2 = x (note that W is a direct
summand). Assume that cλ.W = 0, then W.W ⊂ CSd.cλ.W = 0 implying that
x = 0 whence W = 0, a contradiction. Hence, cλ.W = Ccλ ⊂W , but then

Vλ = CSd.cλ ⊂W whenceVλ = W

is simple. Remains to show that for different partitions, the corresponding simple
representations cannot be isomorphic.

We put a lexicographic ordering on the partitions by the rule that

λ > µ if the first nonvanishing λi − µi is positive

We claim that if λ > µ then aλ.CSd.bµ = 0. It suffices to check that aλ.σ.bµ = 0
for σ ∈ Sd. As σ.bµ.σ−1 is the ”b-element” constructed from the tableau b.T ′ where
T ′ is the tableaux fixed for µ, it is sufficient to check that aλ.bµ = 0. As λ > µ
there are distinct numbers i and j belonging to the same row in T and to the same
column in T ′. If not, the distinct numbers in any fixed row of T must belong to
different columns of T ′, but this can only happen for all rows if µ ≥ λ. So consider
τ = (ij) which belongs to Pλ and to Qµ, whence aλ.τ = aλ and τ.bµ = −bµ. But
then,

aλ.bµ = aλ.τ, τ, bµ = −aλ.bµ
proving the claim.

If λ 6= µ we claim that Vλ is not isomorphic to Vµ. Assume that λ > µ and φ
a CSd-isomorphism with φ(Vλ) = Vµ, then

φ(cλVλ) = cλφ(Vλ) = cλVµ = cλCSdcµ = 0

Hence, cλVλ = Ccλ 6= 0 lies in the kernel of an isomorphism which is clearly absurd.
Summarizing, we have constructed to distinct partitions of d, λ and µ noniso-

morphic simple CSd-representations Vλ and Vµ. As we know that there are as many
isomorphism classes of simples as there are conjugacy classes in Sd (or partitions),
the Vλ form a complete set of isomorphism classes of simple Sd-representations. �

Recall that the free necklace algebra
∮
〈∞〉 is the commutative polynomial

ring on variables tx
w

where w varies over all necklace words in the noncommuting
variables X = {x1, x2, . . . , xi, . . .}. If w = xi1 . . . xil we will write tx

w
= t(xi1 . . . xil).

Definition 49. For σ ∈ Sd let

σ = (i1i1 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ)

be a decomposition into cycles including those of length one. Define a linear map

T : CSd -
∮
〈∞〉

which assigns to σ the formal necklace Tσ(x1, . . . , xd) defined by

Tσ(x1, . . . , xd) = t(xi1xi2 . . . xiα)t(xj1xj2 . . . xjβ ) . . . t(xz1xz2 . . . xzζ
)
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A linear combination
∑
aσTσ(x1, . . . , xd) is said to be n-th necklace relation if it

belongs to the kernel of ∮
〈∞〉 µ-- ↓n 〈∞〉

given in theorem 30.

Theorem 36 (Second fundamental theorem of matrix invariants). A formal
necklace ∑

σ∈Sd

aσTσ(x1, . . . , xd)

is a necklace relation (for n× n matrices) if and only if the element∑
aσeσ ∈ CSd

belongs to the ideal of CSd spanned by the Young symmetrizers cλ relative to par-
titions λ = (λ1, . . . , λk)

n

with a least n+ 1 rows, that is, k ≥ n+ 1.

Proof. Let V = Vn be again the n-dimensional vectorspace of column vectors,
then Sd acts naturally on V ⊗d via

σ.(v1 ⊗ . . .⊗ vd) = vσ(1) ⊗ . . .⊗ vσ(d)

hence determines a linear map λσ ∈ End(V ⊗d). In the previous chapter we have
seen that under the natural identifications

(M⊗dn )∗ ' (V ∗⊗d ⊗ V ⊗d)∗ ' End(V ⊗d)

the map λσ defines the multilinear map

µσ : Mn(C)⊗ . . .⊗Mn(C)︸ ︷︷ ︸
d

- C

defined by (using the cycle decomposition of σ as before)

µσ(A1 ⊗ . . .⊗Ad) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ
) .

Therefore, a linear combination
∑
aσTσ(x1, . . . , xd) is an n-th necklace relation if

and only if the multilinear map
∑
aσµσ : M⊗dn - C is zero. This, in turn,

is equivalent to the endomorphism
∑
aσλσ ∈ End(V ⊗m), induced by the action

of the element
∑
aσeσ ∈ CSd on V ⊗d, being zero. In order to answer the latter

problem we have to understand the action of a Young symmetrizer cλ ∈ CSd on
V ⊗d.
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Let λ = (λ1, λ2, . . . , λk) be a partition of d and equip the corresponding Young
diagram with the standard tableau (that is, order first the boxes in the first row
from left to right, then the second row from left to right and so on).

1

d

//
//

//

The subgroup Pλ of Sd which preserves each row then becomes

Pλ = Sλ1 × Sλ2 × . . .× Sλk
⊂ - Sd.

As aλ =
∑
p∈Pλ

ep we see that the image of the action of aλ on V ⊗d is the subspace

Im(aλ) = Symλ1 V ⊗ Symλ2 V ⊗ . . .⊗ Symλk V ⊂ - V ⊗d .

Here, Symi V denotes the subspace of symmetric tensors in V ⊗i.
Similarly, equip the Young diagram of λ with the tableau by ordering first the

boxes in the first column from top to bottom, then those of the second column from
top to bottom and so on.

1 d

��

�� ��

Equivalently, give the Young diagram corresponding to the dual partition of λ

λ∗ = (µ1, µ2, . . . , µl)

the standard tableau. Then, the subgroup Qλ of Sd which preserves each row of λ
(or equivalently, each column of λ∗) is

Qλ = Sµ1 × Sµ2 × . . .× Sµl
⊂ - Sd

As bλ =
∑
q∈Qλ

sgn(q)eq we see that the image of bλ on V ⊗d is the subspace

Im(bλ) =
µ1∧

V ⊗
µ2∧

V ⊗ . . .⊗
µl∧

V ⊂ - V ⊗d .

Here,
∧i

V is the subspace of all anti-symmetric tensors in V ⊗i. Note that
∧i

V =
0 whenever i is greater than the dimension dim V = n. That is, the image of the
action of bλ on V ⊗d is zero whenever the dual partition λ∗ contains a row of
length ≥ n+ 1, or equivalently, whenever λ has ≥ n+ 1 rows. Because the Young
symmetrizer cλ = aλ.bλ ∈ C Sd this finishes the proof. �
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Example 57. (Fundamental necklace relation)
Consider the partition λ = (1, 1, . . . , 1) of n + 1, with corresponding Young

tableau

n+1

...

2
1

Then, Pλ = {e}, Qλ = Sn+1 and we have the Young symmetrizer

aλ = 1 bλ = cλ =
∑

σ∈Sn+1

sgn(σ)eσ.

The corresponding element is called the fundamental necklace relation

fundn(x1, . . . , xn+1) =
∑

σ∈Sn+1

sgn(σ)Tσ(x1, . . . , xn+1).

Clearly, fundn(x1, . . . , xn+1) is multilinear of degree n + 1 in the variables
{x1, . . . , xn+1}. Conversely, any multilinear necklace relation of degree n+ 1 must
be a scalar multiple of fundn(x1, . . . , xn+1). This follows from the theorem as the
ideal described there is for d = n+1 just the scalar multiples of

∑
σ∈Sn+1

sgn(σ)eσ.

Theorem 37 (Procesi-Razmyslov). The n-th necklace relations form the ideal
of

∮
〈∞〉 generated by all the elements

fundn(m1, . . . ,mn+1)

where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}.

Proof. Take a homogeneous necklace relation f ∈ Ker µ of degree d and
polarize it to get a multilinear element f ′ ∈

∮
〈∞〉. Clearly, f ′ is also an n-th

necklace relation and if we can show that f ′ belongs to the described ideal, then so
does f as the process of restitution maps this ideal into itself.

We may thus assume that f is multilinear of degree d. A priori f may depend on
more than d variables xk, but we can separate f as a sum of multilinear polynomials
fi each depending on precisely d variables such that for i 6= j fi and fj do not
depend on the same variables. Setting some of the variables equal to zero, we see
that each of the fi is again a necklace relation.

Thus, we may assume that f is a multilinear n-th necklace relation of degree d
depending on the variables {x1, . . . , xd}. But then we know from theorem 36 that
we can write

f =
∑
τ∈Sd

aτTτ (x1, . . . , xd)

where
∑
aτeτ ∈ CSd belongs to the ideal spanned by the Young symmetrizers of

Young diagrams λ having at least n+ 1 rows.
We claim that this ideal is generated by the Young symmetrizer of the partition

(1, . . . , 1) of n + 1 under the natural embedding of Sn+1 into Sd. Let λ be a
Young diagram having k ≥ n + 1 boxes and let cλ be a Young symmetrizer with
respect to a tableau where the boxes in the first column are labeled by the numbers
I = {i1, . . . , ik} and let SI be the obvious subgroup of Sd. As Qλ = SI × Q′

we see that bλ = (
∑
σ∈SI

sgn(σ)eσ).b′ with b′ ∈ CQ′. Hence, cλ belongs to the
twosided ideal generated by cI =

∑
σ∈SI

sgn(σ)eσ but this is also the twosided ideal
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generated by ck =
∑
σ∈Sk

sgn(σ)eσ as one verifies by conjugation with a partition
sending I to {1, . . . , k}. Moreover, by induction one shows that the twosided ideal
generated by ck belongs to the twosided ideal generated by cd =

∑
σ∈Sd

sgn(σ)eσ,
finishing the proof of the claim.

Hence, we can write∑
τ∈Sd

aτeτ =
∑

τi,τj∈Sd

aijeτi
.(

∑
σ∈Sn+1

sgn(σ)eσ).eτj

so it suffices to analyze the form of the necklace identity associated to an element
of the form

eτ .(
∑

σ∈Sn+1

sgn(σ)eσ).eτ ′ with τ, τ ′ ∈ Sd

Now, if a groupelement
∑
µ∈Sd

bµeµ corresponds to the formal necklace polynomial
neck(x1, . . . , xd), then the element eτ .(

∑
µ∈Sd

bµeµ).eτ−1 corresponds to the formal
necklace polynomial neck(xτ(1), . . . , xτ(d)).

Therefore, we may replace the element eτ .(
∑
σ∈Sn+1

sgn(σ)eσ).eτ ′ by the ele-
ment

(
∑

σ∈Sn+1

sgn(σ)eσ).eη with η = τ ′.τ ∈ Sd

We claim that we can write η = σ′.θ with σ′ ∈ Sn+1 and θ ∈ Sd such that each cycle
of θ contains at most one of the elements from {1, 2, . . . , n + 1}. Indeed assume
that η contains a cycle containing more than one element from {1, . . . , n+ 1}, say
1 and 2, that is

η = (1i1i2 . . . ir2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

then we can express the product (12).η in cycles as

(1i1i2 . . . ir)(2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

Continuing in this manner we reduce the number of elements from {1. . . . , n + 1}
in every cycle to at most one.

But then as σ′ ∈ Sn+1 we have seen that (
∑
sgn(σ)eσ).eσ′ =

sgn(σ′)(
∑
sgn(σ)eσ) and consequently

(
∑

σ∈Sn+1

sgn(σ)eσ).eη = ±(
∑

σ∈Sn+1

sgn(σ)eσ).eθ

where each cycle of θ contains at most one of {1, . . . , n+ 1}. Let us write

θ = (1i1 . . . iα)(2j1 . . . jβ) . . . (n+ 1s1 . . . sκ)(t1 . . . tλ) . . . (z1 . . . zζ)

Now, let σ ∈ Sn+1 then the cycle decomposition of σ.θ is obtained as follows
: substitute in each cycle of σ the element 1 formally by the string 1i1 . . . iα,
the element 2 by the string 2j1 . . . jβ , and so on until the element n + 1 by the
string n + 1s1 . . . sκ and finally adjoin the cycles of θ in which no elements from
{1, . . . , n+ 1} appear.

Finally, we can write out the formal necklace element corresponding to the
element (

∑
σ∈Sn+1

sgn(σ)eσ).eθ as

fundn(x1xi1 . . . xiα , x2xj1 . . . xjβ , . . . , xn+1xs1 . . . xsκ
)t(xt1 . . . xtλ) . . . t(xz1 . . . xzζ

)

finishing the proof of the theorem. �



4.2. TRACE RELATIONS. 97

4.2. Trace relations.

In this section we will introduce the n-th ring of equivariant maps ↑n A and
study the kernel of the trace preserving map

∫
〈∞〉 -- ↑n 〈∞〉 which is called

the ideal of trace relations. This description will be crucial in the next section to
relate the algebras

∮
n
A resp.

∫
n
A to ↓n A resp. ↑n A.

Recall that GLn acts by algebra automorphisms on the coordinate ring
C[repnA] and by conjugation on the matrixring Mn(C). The diagonal action on

Mn(C[repnA]) = Mn(C)⊗ C[repnA]

is given by the formula

g.

c11 . . . c1n
...

...
cn1 . . . cnn

 = g−1

g.c11 . . . g.c1n
...

...
g.cn1 . . . g.cnn

 g
Definition 50. The n-th equivariant functor

↑n : alg - alg@n

assigns to a C-algebra A the ring of GLn-equivariant maps

↑n A = Mn(C[repnA])GLn

That is, ↑n A is the algebra of all polynomial maps repnA - Mn(C) which are
equivariant , that is, commute with the GLn action on both spaces

repnA
f- Mn(C)

repnA

g.

?
f- Mn(C)

g g−1

?

The matrixalgebra Mn(C[repnA]) with the natural trace map is a Cayley-Hamilton
algebra of degree n. The restriction of this trace to the subalgebra ↑n A makes ↑n A
an object of alg@n.

We have already used the Reynolds operator so it is about time to introduce it
formally.

Definition 51. GLn is a reductive group , that is, every finite dimensional
GLn-representation is completely reducible, that is, a direct sum of irreducible
GLn-representations.

Let simpGLn be the set of isomorphism classes of irreducible GLn-
representations. An irreducible GLn-representation W belonging to the class
s ∈ simpGLn is said to be of type s.

Let X be a vectorspace (not necessarily finite dimensional) with a linear GLn-
action. The GLn-action on X is said to be locally finite if every finite dimensional
subspace Y ⊂ X is contained in a finite dimensional GLn-subrepresentation Y ′ ⊂
X. In this case we can use reductivity of GLn to decompose

X =
⊕

s∈simpGLn

X(s)
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into its isotypical components , that is,

X(s) =
∑
{W |W ⊂ X,W ∈ s}

If X
φ- X ′ is a GLn-linear map, then for all s ∈ simpGLn we have linear

maps X(s)
φs- X ′(s). If φ is injective (resp. surjective) then each φs is injective

(resp. surjective).
If 0 ∈ simpGLn is the class of the trivial GLn-representation, then

X(0) = XGLn = {x ∈ X | g.x = x ∀g ∈ GLn}

The Reynolds operator is the projection X
R-- X(0) the isotypical component of

the trivial representation, or equivalently, the GLn-invariant elements of X.

Example 58. Mn(C) = V ⊗ V ∗ is a GLn-representation, hence so is Mm
n and

all symmetric powers Si Mm
n . Therefore C[repn〈m〉] = C[Mm

n ] = ⊕Si Mm
n has a

locally finite GLn-action.
If A is an affine algebra generated by m elements, then the kernel of the epi-

morphism C[repn〈m〉] -- C[repnA] is GLn-stable. Therefore, the GLn-action
on the coordinate ring C[repnA] of the scheme of n-dimensional representations of
the affine algebra A is locally finite.

Using the Reynolds operator, it suffices in order to determine the algebra gen-
erators of ↑n A to find those ↑n 〈∞〉 (or ↑n 〈m〉).

Theorem 38 (Procesi). As an algebra over the n-th invariant algebra ↓n 〈m〉,
the n-th equivariant algebra ↑n 〈m〉 is generated by the monomials in the generic
matrices {X1, . . . , Xm} of degree ≤ 2n − 1.

Proof. Recall that repn〈m〉 = Mm
n = Mn(C) ⊕ . . . ⊕ Mn(C). Consider a

GLn-equivariant map Mm
n

f- Mn(C) and associate to it the polynomial map

Mm+1
n = Mm

n ⊕Mn(C)
tr(fXm+1) - C

defined by sending (A1, . . . , Am, Am+1) to tr(f(A1, . . . , Am).Am+1).
For all g ∈ GLn we have that f(g.A1.g

−1, . . . , g.Am.g
−1) is equal to

g.f(A1, . . . , Am).g−1 and hence

tr(f(g.A1.g
−1, . . . , g.Am.g

−1).g.Am+1.g
−1) = tr(g.f(A1, . . . , Am).g−1.g.Am+1.g

−1)

= tr(g.f(A1, . . . , Am).Am+1.g
−1)

= tr(f(A1, . . . , Am).Am+1)

so tr(fXm+1) is an invariant polynomial function onMm+1
n which is linear inXm+1.

By the first fundamental theorem of matrix invariants, we can write

tr(fXm+1) =
∑

gi1...il︸ ︷︷ ︸
∈↓n〈m〉

tr(Xi1 . . . XilXm+1)

Here, we used the necklace property allowing to permute cyclically the trace terms
in which Xm+1 occurs such that Xm+1 occurs as the last factor. But then,
tr(fXm+1) = tr(gXm+1) where

g =
∑

gi1...ilXi1 . . . Xil .
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Finally, from the nondegeneracy of the trace map on Mn(C) (that is, if A,B ∈Mn

such that tr(AC) = tr(BC) for all C ∈ Mn(C), then A = B) it follows that
f = g. �

Definition 52. By the foregoing theorem, there is a trace preserving epimor-
phism ∫

〈∞〉 τ-- ↑n 〈∞〉

The elements of Kerτ are called trace relations .

Example 59. (Fundamental trace relation)
As the fundamental necklace relation

fundn(x1, . . . , xn+1) =
∑

σ∈Sn+1

sgn(σ)Tσ(x1, . . . , xn+1).

is multilinear in the variables xi we can use the necklace property of the formal
trace t to write it in the form

fundn(x1, . . . , xn+1) = t(chan(x1, . . . , xn)xn+1) with chan(x1, . . . , xn) ∈
∫
〈∞〉

Observe that chan(x1, . . . , xn) is multilinear in the variables xi. Moreover, by
the nondegeneracy of the trace map tr and the fact that fundn(x1, . . . , xn+1) is a
necklace relation, it follows that chan(x1, . . . , xn) is a trace relation.

Any multilinear trace relation of degree n in the variables {x1, . . . , xn} is a
scalar multiple of chan(x1, . . . , xn). This follows from the corresponding uniqueness
result for fundn(x1, . . . , xn+1).

An explicit expression of this fundamental trace relation is

chan(x1, . . . , xn) =
n∑
k=0

(−1)k
∑

i1 6=i2 6=...6=ik

xi1xi2 . . . xik
∑
σ∈SJ

sgn(σ)Tσ(xj1 , . . . , xjn−k
)

where J = {1, . . . , n} − {i1, . . . , ik}.
For x one of the variables xi, the formal n-th Cayley-Hamilton polynomial

χ
(n)
x (x) is a homogeneous element of degree n of

∫
〈∞〉. It follows from Cayley-

Hamilton theorem for Mn(C[repn〈∞〉]) that χ(n)
x (x) is a trace relation. Fully po-

larizing χ
(n)
x (x) (say, using the variables {x1, . . . , xn}) one obtains a multilinear

trace relation of degree n which must be a scalar multiple of fundn(x1, . . . , xn).

Example 60. For n = 2, the formal Cayley-Hamilton polynomial of an element
x ∈

∫
〈∞〉 is

χ(2)
x (x) = x2 − t(x)x+

1
2
(t(x)2 − t(x2))

Polarization with respect to the variables x1 and x2 gives the expression

x1x2 + x2x1 − t(x1)x2 − t(x2)x1 + t(x1)t(x2)− t(x1x2)
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which is cha2(x1, x2). Indeed, multiplying by x3 on the right and taking the formal
trace t we obtain

t(x1x2x3) + t(x2x1x3)− t(x1)t(x2x3)− t(x2)t(x1x3)
+t(x1)t(x2)t(x3)− t(x1x2)t(x3)

= T(123)(x1, x2, x3) + T(213)(x1, x2, x3)− T(1)(23)(x1, x2, x3)− T(2)(13)(x1, x2, x3)
+T(1)(2)(3)(x1, x2, x3)− T(12)(3)(x1, x2, x3)
=

∑
σ∈S3

Tσ(x1, x2, x3) = fund2(x1, x2, x3)

Theorem 39 (Procesi). The trace relations Kerτ is the twosided ideal of the
trace algebra

∫
〈∞〉 generated by all elements

fundn(m1, . . . ,mn+1) and chan(m1, . . . ,mn)

where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}.

Proof. Consider an n-th trace relation trace(x1, . . . , xd) ∈ Ker τ . Then, we
have a necklace relation

t(trace(x1, . . . , xd)xd+1) ∈ Ker ν

By theorem 37 we know that this element must be of the form∑
ni1...in+1fundn(mi1 , . . . ,min+1)

with the mi monomials, the ni1...in+1 ∈
∮
〈∞〉 and the expression linear in the

variable xd+1. That is, xd+1 appears linearly in each of the terms

n1...n+1fundn(m1, . . . ,mn+1)

so appears linearly in n1...n+1 or in precisely one of the monomials mi. If xd+1

appears linearly in n1...n+1 we can write

n1...n+1 = t(n′1...n.xd+1) with n′1...n ∈
∫
〈∞〉

If xd+1 appears linearly in one of the monomials mi we may assume that it does so
in mn+1, permuting the monomials if necessary. That is, we may assume mn+1 =
m′n+1.xd+1.m”n+1 with m,m′ monomials. But then, we can write

n1...n+1fundn(m1, . . . ,mn+1) = n1...n+1t(chan(m1, . . . ,mn).m′n+1.xd+1.m”n+1)
= t(n1...n+1.m”n+1.chan(m1, . . . ,mn).m′n+1.xd+1)

using
∮
〈∞〉-linearity and the necklace property of the formal trace t. Separating

the two cases, one can write the total expression

t(trace(x1, . . . , xd)xd+1) = t([
∑
i

n′i1...in+1
fundn(mi1 , . . . ,min+1)

+
∑
j

nj1...jn+1 .m”jn+1 .chan(mj1 , . . . ,mjn).m′jn+1
]xd+1)

Two formal trace elements trace(x1, . . . , xd) and trace′(x1, . . . , xd) are equal iff

t(trace(x1, . . . , xd)xd+1) = t(trace′(x1, . . . , xd)xd+1)

finishing the proof. �



4.2. TRACE RELATIONS. 101

Definition 53. For m1,m2, . . . ,mi, . . . ∈
∫
〈∞〉, the substitution

f 7→ f(m1,m2, . . . ,mi, . . .)

is the uniquely determined algebra endomorphism of
∫
〈∞〉 which maps the variable

xi to mi and is compatible with the trace t.
That is, the substitution sends a monomial xi1xi1 . . . xik to the element

mi1mi2 . . .mik and the trace of a necklace word t(xi1xi2 . . . xik) to the element
t(mi1mi2 . . .mik).

A substitution invariant ideal of
∫
〈∞〉 is a twosided ideal of

∫
〈∞〉 closed under

all possible substitutions as well as under the formal trace t.
For a subset of elements E ⊂

∫
〈∞〉 there is a minimal substitution invariant

ideal containing E. We will refer to this ideal as the substitution invariant ideal
generated by E.

The algebra
∫
n
〈∞〉 is the free algebra in the generators {x1, x2, . . . , xi, . . .}

in the category alg@n. That is, if (B, tr) ∈ alg@n is trace generated by
{b1, b2, . . . , bi, . . .}, then there is a trace preserving algebra epimorphism in alg@n∫

n

〈∞〉 -- B

by mapping xi 7→ bi and t(xi1 . . . xil) to tr(bi1 . . . bil).
The kernel of the natural quotient morphism∫

〈∞〉 πn--
∫
n

〈∞〉

is a substitution invariant ideal. For, consider a substitution endomorphism φ of∫
〈∞〉 ∫

〈∞〉 φ-
∫
〈∞〉

∫
〈∞〉

Ker ψ

?

..........

⊂ -
∫
n

〈∞〉

πn

??

.....................

ψ

-

Because ψ = πn ◦ φ preserves traces, Ker ψ is an ideal closed under traces and the
quotient

R
〈∞〉

Ker ψ ∈ alg@n (being a subalgebra of
∫
n
〈∞〉). The claim that

∫
n
〈∞〉

is free means that Ker πn is the minimal ideal of
∫
〈∞〉 such that the quotient is

an object in alg@n. Therefore, Ker ψ ⊂ Ker πn and ψ factors through
∫
n
〈∞〉.

Therefore, the substitution φ induces an endomorphism of
∫
n
〈∞〉 proving the claim.

Theorem 40 (Procesi). There are natural isomorphisms in alg@n∫
n

〈∞〉 ' ↑n 〈∞〉 and
∫
n

〈m〉 ' ↑n 〈m〉

As a consequence we have isomorphisms in commalg∮
n

〈∞〉 ' ↓n 〈∞〉 and
∮
n

〈m〉 ' ↓n 〈m〉



102 4. WITNESSES

Proof. We claim that the ideal of n-th trace relationsKer τ is the substitution
invariant ideal of

∫
〈∞〉 generated by the formal Cayley-Hamilton polynomials

χ(n)
x (x) for all x ∈

∫
〈∞〉

This follows from theorem 39 and the definition of a substitution invariant ideal
once we can show that the full polarization of χ(n)

x (x), which we have seen is
chan(x1, . . . , xn), lies in the substitution invariant ideal generated by the χ(n)

x (x).
This follows as we can replace the process of polarization by the process of

multilinearization, the first step is to replace, for instance

χ(n)
x (x) by χ

(n)
x+y(x+ y)− χ(n)

x (x)− χ(n)
y (y)

The final result of multilinearization is the same as of full polarization and multi-
linearizing a polynomial in a substitution invariant ideal remains in the ideal.

Because χ(n)
x (x) for x ∈

∫
〈∞〉 maps to zero under πn, it follows from substitu-

tion invariance of Ker πn that Ker τ ⊂ Ker πn. Because the quotient by Ker τ is
↑n 〈∞〉 ∈ alg@n, we obtain by minimality of Ker πn that Ker τ = Ker πn proving
the first statement. The second follows. �

The foregoing can be used to improve the bound of 2n−1 in the Nagata-Higman
problem to n2.

Theorem 41 (Razmyslov). Let R be an associative C-algebra without unit
element. Assume that rn = 0 for all r ∈ R. Then, for all ri ∈ R we have

r1r2 . . . rn2 = 0

Proof. Consider the positive part 〈∞〉+ of the free C-algebra 〈∞〉 which is
an associative C-algebra without unit. Let T (n) be the twosided ideal of 〈∞〉+
generated by all n-powers fn for f ∈ 〈∞〉+. Observe that the ideal T (n) is invariant
under all substitutions of 〈∞〉+. The Nagata-Higman problem then asks for a
number N(n) such that the product

x1x2 . . . xN(n) ∈ T (n).

An alternative description of the quotient algebra 〈∞〉+/T (n) is the following. Let∮
+

be the positive part of the n-th necklace algebra
∮
n
〈∞〉 and

∫
+

the positive part
of the n-th trace algebra

∫
n
〈∞〉. Consider the associative C-algebra without unit∫

+

=

∫
+∮

+

∫
n
〈∞〉

Observe the following facts about
∫
+

: as C-algebra it is generated by the variables
X1, X2, . . . because all the other algebra generators of the form t(xi1 . . . xir ) of∫
〈∞〉 are mapped to zero in

∫
+
. Further, from the Cayley-Hamilton polynomial it

follows that every t ∈ T+ satisfies tn = 0. Hence, we have an algebra epimorphism

〈∞〉+
T (n)

--
∫

+

Observe that the quotient ∫
〈∞〉∮

+
〈∞〉

∫
〈∞〉
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(where
∮
+
〈∞〉 is the positive part of the graded algebra

∮
〈∞〉) is the free C-algebra

on the variables {x1, x2, . . .}. To obtain
∫
+

we have to factor out the ideal of trace

relations. A formal n-th Cayley-Hamilton polynomial χ(n)
x (x) is mapped to xn in∫

〈∞〉/
∮
+
〈∞〉

∫
〈∞〉. That is, to obtain

∫
+

we factor out the substitution invariant
ideal (observe that t is zero here) generated by the elements xn, but this is just the
definition of 〈∞〉+/T (n), hence the above epimorphism is actually an isomorphism.

Therefore, a reformulation of the Nagata-Higman problem is to find a number
N = N(n) such that the product of the first N generic matrices

X1X2 . . . XN ∈
∮

+

〈∞〉
∫
n

〈∞〉 or, equivalently that tr(X1X2 . . . XNXN+1)

can be expressed as a linear combination of products of traces of lower degree. Using
the description of the necklace relations given in theorem 36 we can reformulate
this conditions in terms of the group algebra CSN+1. Let us introduce the following
subspaces of the groupalgebra :

• A will be the subspace spanned by all N + 1 cycles in SN+1,
• B will be the subspace spanned by all elements except N + 1 cycles,
• L(n) will be the ideal of CSN+1 spanned by the Young symmetrizers

associated to partitions

n

L(n)

with ≤ n rows, and
• M(n) will be the ideal of CSN+1 spanned by the Young symmetrizers

associated to partitions

n

M(n)

having more than n rows.
With these notations, we can reformulate the above condition as

(12 . . . NN + 1) ∈ B +M(n) and consequently CSN+1 = B +M(n)

Define an inner product on the groupalgebra CSN+1 such that the groupelements
form an orthonormal basis, then A and B are orthogonal complements and also L(n)
and M(n) are orthogonal complements. But then, taking orthogonal complements
the condition can be rephrased as

(B +M(n))⊥ = A ∩ L(n) = 0.

Finally, let us define an automorphism τ on CSN+1 induced by sending eσ to
sgn(σ)eσ. Clearly, τ is just multiplication by (−1)N on A and therefore the above
condition is equivalent to

A ∩ L(n) ∩ τL(n) = 0.
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Moreover, for any Young tableau λ we have that τ(aλ) = bλ∗ and τ(bλ) = aλ∗ .
Hence, the automorphism τ sends the Young symmetrizer associated to a partition
to the Young symmetrizer of the dual partition. This gives the following characteri-
zation : τL(n) is the ideal of CSN+1 spanned by the Young symmetrizers associated
to partitions

n

τL(n)

with ≤ n columns.
Now, specialize to the case N = n2. Clearly, any Young diagram having n2 +1

boxes must have either more than n columns or more than n rows

n

and consequently we indeed have for N = n2 that

A ∩ L(n) ∩ τL(n) = 0

finishing the proof. �

4.3. Witness algebras.

In this section we will show that the n-th necklace algebra
∮
n
A and the n-th

trace algebra
∫
n
A can be reconstructed from the GLn-action on the n-th represen-

tation scheme repnA by proving that the functors{∮
n

↓n
: alg - commalg and

{∫
n

↑n
: alg - alg@n

are paired equivalent. Moreover we will give a geometric reconstruction result for
Cayley-Hamilton algebras of degree n.

Definition 54. The n-th trace preserving representation functor of a C-algebra
with trace (A, tr) in alg@ is the functor

trepnA : commalg - sets

which assigns to a commutative C-algebra B the set Homalg@(A,Mn(B)).

Theorem 42. For A an affine algebra in alg@, the functor trepnA is repre-
sented by the affine commutative algebra

C[trepnA] =
C[repn〈∞〉]

IA

with IA a stable ideal under the GLn-action on C[repn〈∞〉].
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Proof. The functor trepnA is representable by the quotient C[trepnA] =
C[repnA]

IA
where IA is the ideal of C[repnA] minimal with respect to the condition

that the composition

A
j
(n)
A- Mn(C[repnA]) -- Mn(

C[repnA]
IA

)

is trace preserving. The ideal IA can be described as follows. Consider the quotient
in alg@

A′ =
A

(tr(1)− n, χ(n)
a (a) ∀a ∈ A)

then A′ is a Cayley-Hamilton algebra of degree n and we have that trepnA =
trepnA

′. As A is an affine algebra in alg@ we have trace preserving epimorphisms∫
〈∞〉 -- A and

∫
n

〈∞〉 pA-- A′

where the kernel TA of pA is the ideal of trace relations of degree n of A′.
By the universal embedding

∫
n
〈∞〉 ⊂ - Mn(C[repn〈∞〉]) we can extend the

ideal TA to the matrixalgebra and obtain

Mn(C[repn〈∞〉])TAMn(C[repn〈∞〉]) = Mn(IA)

for some ideal IA of C[repn〈∞〉]. �

Example 61. Let A be the quantum plane of order two,

A =
C〈x, y〉

(xy + yx)

One verifies that u = x2 and v = y2 are central elements of A and that A is a
free module of rank 4 over C[u, v]. In fact, A is a C[u, v]-order in the quaternion
division algebra

∆ =
(
u v

C(u, v)

)
and the reduced trace map on ∆ makes A into a Cayley-Hamilton algebra of degree
2. More precisely, tr is the linear map on A such that{

tr(xiyj) = 0 if either i or j are odd, and
tr(xiyj) = 2xiyj if i and j are even.

In particular, a trace preserving 2-dimensional representation is determined by a
couple of 2× 2 matrices

(
[
x1 x2

x3 −x1

]
,

[
x4 x5

x6 −x4

]
) with tr(

[
x1 x2

x3 −x1

]
.

[
x4 x5

x6 −x4

]
) = 0

That is,trep2A is the hypersurface in C6 determined by the equation

trep2A = V(2x1x4 + x2x6 + x3x5) ⊂ - C6

and is therefore irreducible of dimension 5 with an isolated singularity at p =
(0, . . . , 0).
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Theorem 43 (Procesi). Let (A, tr) ∈ alg@ be an algebra with trace and let
(A′, tr) ∈ alg@n be the quotient which is a Cayley-Hamilton algebra of degree n.
Then, we can reconstruct A′ and its central subalgebra tr(A′) as algebras of equi-
variant resp. invariant polynomial maps

A′ 'Mn(C[trepnA])GLn and tr(A′) = C[trepnA]GLn

Proof. In the previous chapter we have proved that
∫
n
〈∞〉 '

Mn(C[repn〈∞〉])GLn and we can apply the Reynolds operator R to the situation

Mn(C[repn〈∞〉])
π-- Mn(C[trepnA])

∫
n

〈∞〉

R
??

π0-- Mn(C[trepnA])GLn

R

??

The epimorphism π0 factors through
R

n
〈∞〉
TA

inducing an epimorphism

A′ -- Mn(C[trepnA])GLn

We claim that this map is also injective, or equivalently, that

Mn(C[repn〈∞〉])TAMn(C[repn〈∞〉]) ∩
∫
n

〈∞〉 = TA

Using functoriality of the Reynolds operator with respect to multiplication in
Mn(C[repn〈∞〉]) by an element x ∈

∫
n
〈∞〉 or with respect to the trace map (both

commuting with the GLn-action) we deduce the following identities :

• For all x ∈
∫
n
〈∞〉 and all z ∈Mn(C[repn〈∞〉]) we have

R(xz) = xR(z) and R(zx) = R(z)x

• For all z ∈Mn(C[repn〈∞〉]) we have

R(tr(z)) = tr(R(z))

Assume that z =
∑
i tixini ∈ Mn(C[repn〈∞〉])TAMn(C[repn〈∞〉]) ∩

∫
n
〈∞〉 with

mi, ni ∈ Mn(C[repn〈m〉]) and ti ∈ TA. Now, consider the generic matrix Xm+1 ∈∫
n
〈∞〉 which does not occur in any of these elements. By the necklace property of

traces we have

tr(zXm+1) =
∑
i

tr(mitiniXm+1) =
∑
i

tr(niXm+1miti)

and if we apply the Reynolds operator to it we obtain the equality

tr(zXm+1) = tr(
∑
i

R(niXm+1mi)ti)

For any i, the term R(niXm+1mi) is invariant so belongs to
∫
n
〈m+ 1〉 and is linear

in Xm+1. Knowing the generating elements of
∫
n
〈m+ 1〉 we can write

R(niXm+1mi) =
∑
j

sijXm+1tij +
∑
k

tr(uikXm+1)vik
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with all of the elements sij , tij , uik and vik in
∫
n
〈m〉. Substituting this information

and again using the necklace property we obtain

tr(zXm+1) = tr((
∑
i,j,k

sijtijti + tr(vikti))Xm+1)

From nondegeneracy of the trace map we deduce

z =
∑
i,j,k

sijtijti + tr(vikti)

Because ti ∈ TA and TA is stable under taking traces we obtain z ∈ TA finishing
the proof of the first statement.

Apply functoriality of the Reynolds operator to the setting

Mn(C[trepnA])
tr --

� ⊃ C[trepnA]

A′

R

?? trA --
� ⊃ C[trepnA]GLn

R

??

from which the second statement follows. �

Theorem 44. When applied to affine C-algebras, the functors{∮
n

↓n
: alg - commalg and

{∫
n

↑n
: alg - alg@n

are paired equivalent.

Proof. Because the trace functor
∫

: alg - alg@ is a left adjoint functor
of the forgetful functor i : alg@ - alg and because n × n matrices over
commutative algebras are Cayley-Hamilton algebras of degree n we have functorial
bijections for any algebra A and any commutative algebra B

Homalg(A,Mn(B)) = Homalg@(
∫
A,Mn(B)) = Homalg@n(

∫
n

A,Mn(B))

Therefore, we have equivalence between the functors

repnA ' trepn

∫
A ' trepn

∫
n

A

and the result follows from theorem 43 applied to the Cayley-Hamilton algebra
∫
n
A

of degree n. �

Example 62. If A ∈ alg is an affine C-algebra, then for all n∫
n

A ∈ alg@n and
∮
n

A ∈ commalg

are affine C-algebras. Moreover,
∫
n
A is a finite module over the Noetherian com-

mutative algebra
∮
n
A hence is itself Noetherian. Indeed, this follows from the

generic case and the Reynolds operator.
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Example 63. Let A be a Cayley-Hamilton algebra of degree n with trace map
tr, then we can define a norm map on A by defining

N(a) = σn(a) for all a ∈ A.

Recall that the elementary symmetric function σn is a polynomial function
f(t1, t2, . . . , tn) in the Newton functions ti =

∑n
j=1 x

i
j . Then, σ(a) =

f(tr(a), tr(a2), . . . , tr(an)). Because, we have a trace preserving embedding
A ⊂ - Mn(C[trepnA]) and the norm map N coincides with the determinant
in this matrix-algebra, we have that

N(1) = 1 and ∀a, b ∈ A N(ab) = N(a)N(b).

Furthermore, the norm map extends to a polynomial map on A[t] and we have that
χ

(n)
a (t) = N(t − a), in particular we can obtain the trace by polarization of the

norm map. For the finite dimensional semi-simple C-algebra

A = Md1(C)⊕ . . .⊕Mdk
(C),

let tr be a trace map on Amaking it into a Cayley-Hamilton algebra of degree n with
tr(A) = C. Then, we claim that there exist a dimension vector α = (m1, . . . ,mk) ∈
Nk+ such that n =

∑k
i=1midi and for any a = (A1, . . . , Ak) ∈ A with Ai ∈Mdi(C)

we have that
tr(a) = m1Tr(A1) + . . .+mkTr(Ak)

where Tr are the usual trace maps on matrices.
The norm-map N on A defined by the trace map tr induces a group morphism

on the invertible elements of A

N : A∗ = GLd1(C)× . . .×GLdk
(C) - C∗

that is, a character. Now, any character is of the following form, let Ai ∈ GLdi(C),
then for a = (A1, . . . , Ak) we must have

N(a) = det(A1)m1det(A2)m2 . . . det(Ak)mk

for certain integers mi ∈ Z. Since N extends to a polynomial map on the whole of
A we must have that all mi ≥ 0. By polarization it then follows that

tr(a) = m1Tr(A1) + . . .mkTr(Ak)

and it remains to show that no mi = 0. Indeed, if mi = 0 then tr would be the zero
map on Mdi

(C), but then we would have for any a = (0, . . . , 0, A, 0, . . . , 0) with
A ∈Mdi

(C) that
χ(n)
a (t) = tn

whence χ(n)
a (a) 6= 0 whenever A is not nilpotent. This contradiction finishes the

proof of the claim. Recall from §4.3 that

repnA =
⊔

(m1,...,mk)

GLn/(GLm1 × . . .×GLmk
)

That is, the representation scheme is the disjoint union of the different trace pre-
serving representation schemes

trepnA = GLn/(GLm1 × . . .×GLmk
)

for the trace map tr = m1Tr1 + . . .+mkTrk.
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Example 64. Let A be a finite dimensional algebra with radical J and assume
there is a trace map tr on A making A into a Cayley-Hamilton algebra of degree
n and such that tr(A) = C. We claim that the norm map N : A - C is zero
on J . Indeed, any j ∈ J satisfies jl = 0 for some l whence N(j)l = 0. But then,
polarization gives that tr(J) = 0 and we have that the semisimple algebra

Ass = A/J = Md1(C)⊕ . . .⊕Mdk
(C)

is a semisimple Cayley-hamilton algebra of degree n on which we can apply the
foregoing exercise. Because A ' Ass ⊕ J as C-vectorspaces we deduce that if
tr : A - C is a trace map such that A is a Cayley-Hamilton algebra of degree
n, there exists a dimension vector α = (m1, . . . ,mk) ∈ Nk+ such that for all a =
(A1, . . . , Ak, j) with Ai ∈Mdi(C) and j ∈ J we have

tr(a) = m1Tr(A1) + . . .mkTr(Ak)

with Tr the usual traces on Mdi(C) and
∑
imidi = n.

Fix a trace map tr on A determined by a dimension vector α = (m1, . . . ,mk) ∈
Nk. Then, the trace preserving variety trepn A is the scheme of A-modules of
dimension vector α, that is, those A-modules M such that

Mss = S⊕m1
1 ⊕ . . .⊕ S⊕mk

k

where Si is the simple A-module of dimension di determined by the i-th factor
in Ass. By theorem 43 A can be recovered from the GLn-structure of the affine
scheme trepn A of all A-modules of dimension vector α.

Still, there can be other trace maps on A making A into a Cayley-Hamilton
algebra of degree n. For example let C be a finite dimensional commutative C-
algebra with radical N , then A = Mn(C) is finite dimensional with radical J =
Mn(N) and the usual trace map tr : Mn(C) - C makes A into a Cayley-
Hamilton algebra of degree n such that tr(J) = N 6= 0. Still, if A is semi-simple,
the center Z(A) = C⊕ . . .⊕ C (as many terms as there are matrix components in
A) and any subring of Z(A) is of the form C ⊕ . . . ⊕ C. In particular, tr(A) has
this form and composing the trace map with projection on the j-th component we
have a trace map trj on which we can apply the foregoing.

Definition 55. GL(n)-aff will be the category of all affine schemes with a
GLn-action. A reformulation of theorem 43 is that the contravariant functor

trepn : alg@n - GL(n)-aff

which assigns to a Cayley-Hamilton algebra of degree n its trace preserving repre-
sentation scheme has a left inverse

⇑n : GL(n)-aff - alg@n

assigning to an affine GLn-scheme fun the equivariants ⇑n fun = Mn(C[fun])GLn .
The Cayley-Hamilton algebra ⇑n fun is called the witness algebra of fun.

Note however that this is not an equivalence of categories. There are many
GLn-varieties having the same witness algebra.

Example 65. To give some easy examples we need to recall some facts about
orbitclosures of nilpotent n× n matrices.

Denote a partition p of n by an integral n-tuple (a1, a2, . . . , an) with a1 ≥ a2 ≥
. . . ≥ an ≥ 0 with

∑n
i=1 ai = n. As before, we represent a partition by a Young
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diagram by omitting rows corresponding to zeroes.If q = (b1, . . . , bn) is another
partition of n we say that p dominates q and write

p > q if and only if
r∑
i=1

ai ≥
r∑
i=1

bi for all 1 ≤ r ≤ n.

The dominance order is induced by the Young move of throwing a row-ending box
down the diagram. Indeed, let p and q be partitions of n such that p > q and
assume there is no partition r such that p > r and r > q. Let i be the minimal
number such that ai > bi. Then by the assumption ai = bi + 1. Let j > i be
minimal such that aj 6= bj , then we have bj = aj + 1 because p dominates q. But
then, the remaining rows of p and q must be equal. That is, a Young move can be
depicted as

p =

i

j

−→ q =

i

j

For example, the Young moves between the partitions of 4 given above are as
indicated

.
→

.
→

.

→

.

→

A Young p-tableau is the Young diagram of p with the boxes labeled by integers
from {1, 2, . . . , s} for some s such that each label appears at least ones. A Young
p-tableau is said to be of type q for some partition q = (b1, . . . , bn) of n if the
following conditions are met :

• the labels are non-decreasing along rows,
• the labels are strictly increasing along columns, and
• the label i appears exactly bi times.

For example, if p = (3, 2, 1, 1) and q = (2, 2, 2, 1) then the p-tableau below

4

3

2

1 1 3

2

is of type q (observe that p > q and even p → q). In general, let p = (a1, . . . , an)
and q = (b1, . . . , bn) be partitions of n and assume that p → q. Then, there is a
Young p-tableau of type q. For, fill the Young diagram of q by putting 1’s in the
first row, 2’s in the second and so on. Then, upgrade the fallen box together with
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its label to get a Young p-tableau of type q. In the example above

4

3
=⇒

2

1 1

2

3'&%$ !"#

•OO

4

3

2

1 1 3

2

Conversely, assume there is a Young p-tableau of type q. The number of boxes
labeled with a number ≤ i is equal to b1 + . . . + bi. Further, any box with label
≤ i must lie in the first i rows (because the labels strictly increase along a column).
There are a1 + . . .+ ai boxes available in the first i rows whence

i∑
j=1

bi ≤
i∑

j=1

ai for all 1 ≤ i ≤ n

and therefore p > q. After these preliminaries on partitions, let us return to nilpo-
tent matrices.

Let A be a nilpotent matrix of type p = (a1, . . . , an), that is, conjugated to a
matrix with Jordan blocks (all with eigenvalue zero) of sizes ai. We have seen before
that the subspace Vl of column vectors v ∈ Cn such that Al.v = 0 has dimension

l∑
h=1

#{j | aj ≥ h} =
l∑

h=1

a∗h

where p∗ = (a∗1, . . . , a
∗
n) is the dual partition of p. Choose a basis {v1, . . . , vn} of

Cn such that for all l the first a∗1 + . . .+ a∗l base vectors span the subspace Vl. For
example, if A is in Jordan normal form of type p = (3, 2, 1, 1)

0 1 0
0 0 1
0 0 0

0 1
0 0

0
0


then p∗ = (4, 2, 1) and we can choose the standard base vectors ordered as follows

{e1, e4, e6, e7︸ ︷︷ ︸
4

, e2, e5︸ ︷︷ ︸
2

, e3︸︷︷︸
1

}.

Take a partition q = (b1, . . . , bn) with p → q (in particular, p > q), then for the
dual partitions we have q∗ → p∗ (and thus q∗ > p∗). But then there is a Young
q∗-tableau of type p∗. In the example with q = (2, 2, 2, 1) we have q∗ = (4, 3) and
p∗ = (4, 2, 1) and we can take the Young q∗-tableau of type p∗

2 2 3

1 1 1 1
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Now label the boxes of this tableau by the base vectors {v1, . . . , vn} such that the
boxes labeled i in the Young q∗-tableau of type p∗ are filled with the base vectors
from Vi − Vi−1. Call this tableau T . In the example, we can take

T = e2 e5 e3

e1 e4 e6 e7

Define a linear operator F on Cn by the rule that F (vi) = vj if vj is the label of
the box in T just above the box labeled vi. In case vi is a label of a box in the
first row of T we take F (vi) = 0. Obviously, F is a nilpotent n× n matrix and by
construction we have that

rk F l = n− (b∗1 + . . .+ b∗l )

That is, F is nilpotent of type q = (b1, . . . , bn). Moreover, F satisfies F (Vi) ⊂ Vi−1

for all i by the way we have labeled the tableau T and defined F .
In the example above, we have F (e2) = e1, F (e5) = e4, F (e3) = e6 and all

other F (ei) = 0. That is, F is the matrix

0 1
0 0

0 0
0 1
0 0

1 0
0


which is seen to be of type (2, 2, 2, 1) after performing a few Jordan moves.

Returning to the general case, consider for all ε ∈ C the n× n matrix :

Fε = (1− ε)F + εA.

We claim that for all but finitely many values of ε we have Fε ∈ O(A). Indeed,
we have seen that F (Vi) ⊂ Vi−1 where Vi is defined as the subspace such that
Ai(Vi) = 0. Hence, F (V1) = 0 and therefore

Fε(V1) = (1− ε)F + εA(V1) = 0.

Assume by induction that F iε (Vi) = 0 holds for all i < l, then we have that

F lε(Vl) = F l−1
ε ((1− ε)F + εA)(Vl)

⊂ F l−1
ε (Vl−1) = 0

because A(Vl) ⊂ Vl−1 and F (Vl) ⊂ Vl−1. But then we have for all l that

rk F lε ≤ dim Vl = n− (a∗1 + . . .+ a∗l ) = rk Al
def
= rl.

Then for at least one rl × rl submatrix of F lε its determinant considered it as a
polynomial of degree rl in ε is not identically zero (as it is nonzero for ε = 1). But
then this determinant is non-zero for all but finitely many ε. Hence, rk F lε = rk Al

for all l for all but finitely many ε. As these numbers determine the dual partition
p∗ of the type of A, Fε is a nilpotent n × n matrix of type p for all but finitely
many values of ε, proving the claim. But then, F0 = F which we have proved to be
a nilpotent matrix of type q belongs to the closure of the orbit O(A). That is, we
have proved the difficult part of the Gerstenhaber-Hesselink theorem which asserts
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that if A is a nilpotent n × n matrix of type p = (a1, . . . , an) and B nilpotent of
type q = (b1, . . . , bn) then, B belongs to the closure of the orbit O(A), that is,

B ∈ O(A) if and only if p > q

in the domination order on partitions of n.
To prove this theorem we only have to observe that if B is contained in the

closure of A, then Bl is contained in the closure of Al and hence rk Al ≥ rk Bl

(because rk Al < k is equivalent to vanishing of all determinants of k × k minors
which is a closed condition). But then,

n−
l∑
i=1

a∗i ≥ n−
l∑
i=1

b∗i

for all l, that is, q∗ > p∗ and hence p > q. The other implication was proved above
if we remember that the domination order was induced by the Young moves and
clearly we have that if B ∈ O(C) and C ∈ O(A) then also B ∈ O(A).

We are now in a position to give the promised examples of affine GLn-schemes
having the same witness algebra. Consider the action by conjugation of GLn on
Mn(C) = repn〈1〉 and take a nilpotent matrix A. All eigenvalues of A are zero, so
the conjugacy class of A is fully determined by the sizes of its Jordan blocks. These
sizes determine a partition λ(A) = (λ1, λ2, . . . , λk) of n with λ1 ≥ λ2 ≥ . . . ≥ λk.

O(B) ⊂ O(A)⇐⇒ λ(B)∗ ≥ λ(A)∗.

where λ∗ denotes the dual partition. The witness algebra of O(A) is equal to

Mn(C[O(A)])GLn = C[X]/(Xk)

where k is the number of columns of the Young diagram λ(A).
Hence, the orbit closures of nilpotent matrices such that their associated Young

diagrams have equal number of columns have the same witness algebras. For ex-
ample, if n = 4 then the closures of the orbits corresponding to

and

have the same witness algebra, although the closure of the second is a proper closed
subscheme of the closure of the first.

Example 66. The following table lists all partitions (and their dual in the
other column)

The partitions of 8.

a (8) v (1,1,1,1,1,1,1,1)
b (7,1) u (2,1,1,1,1,1,1)
c (6,2) t (2,2,1,1,1,1)
d (6,1,1) s (3,1,1,1,1,1)
e (5,3) r (2,2,2,1,1)
f (5,2,1) q (3,2,1,1,1)
g (5,1,1,1) p (4,1,1,1,1)
h (4,4) o (2,2,2,2)
i (4,3,1) n (3,2,2,1)
j (4,2,2) m (3,3,1,1)
k (3,3,2) k (3,3,2)
l (4,2,1,1) l (4,2,1,1)
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The domination order between these partitions can be depicted as follows where
all the Young moves are from left to right
a�������� b�������� c��������

d��������
e��������

f��������
g��������

h��������
i�������� j��������

k��������

l��������
m�������� n��������

o��������

p��������
q��������

r��������
s��������

t�������� u�������� v��������
??

?? ���� ??
??

??
??

??
?? ����

??
??

??
??

����

����
����

����
����

Of course, from this graph we can read off the dominance order graphs for partitions
of n ≤ 8. In the picture below, the closures of orbits corresponding to connected
nodes of the same color have the same witness algebra.

◦ • ◦
◦
•
•
•

◦
◦ ◦

•

◦
• •

◦

◦
•
◦
•
◦ ◦ •

?? �� ??

??

?? ��

??

??

��

��

��

�� ��

We can use the reconstruction result to characterize the smooth algebras in
alg@n as those Cayley-Hamilton algebras A of degree n for which trepnA is a
smooth variety.

Theorem 45. If A is alg-smooth, then the n-th trace algebra
∫
n
A is alg@n-

smooth.

Proof. If (B, I) is a testobject in alg@n, then it is also a testobject in alg.
Hence, there is a lifting φ̃ : A - B to the map A -

∫
n
A

φ- B
I . Because

the trace functor is the left adjoint to the inclusion alg@
i- alg there is a

corresponding trace preserving algebra morphism

ψ = t(A,B)(φ̃) :
∫
A - B

As B is a Cayley-Hamilton algebra of degree n, this map factors through the quo-
tient

∫
n
A. �

Theorem 46 (Procesi). For (A, trA) ∈ alg@n the following are equivalent :
(1) A is alg@n-smooth.
(2) trepnA is a smooth scheme.

Proof. (1) ⇒ (2) : We have to show that C[trepn A] is commalg-smooth.
Take a commutative test-object (T, I) with I nilpotent and an algebra map κ :
C[trepn A] - T/I. Composing with the universal embedding iA (coming from
the reconstruction result) we obtain a trace preserving morphism µ0

A ................................................
µ1

- Mn(T )

Mn(C[trepn A])

iA

?

∩

Mn(κ)
- Mn(T/I)

??

µ0

-

Because Mn(T ) with the usual trace is a Cayley-Hamilton algebra of degree n and
Mn(I) a trace stable ideal there is a trace preserving algebra map µ1 because A
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is alg@n-smooth. By the universal property of the embedding iA there exists a
C-algebra morphism

λ : C[trepn A] - T

such that Mn(λ) completes the diagram. The morphism λ is the required lift.
(2) ⇒ (1) : Let (T, I) be a test-object in alg@n and take a trace preserving

C-algebra map κ : A - T/I. We obtain the diagram

T ⊂
iT- Mn(C[trepn T ])

A
κ -.....

.....
.....

.....
.....

.....
.....

...

?∃
λ

-

T/I

??
⊂
iT/I- Mn(C[trepn T/I])

??
=Mn(C[trepn T ]/J)

Mn(C[trepn A])

iA

?

∩

.........
.........

.........
.........

.........
.........

.........
..

Mn
(α)

-

Here, J = Mn(C[trepnT ])IMn(C[trepnT ]) and we know already that J ∩ T = I.
By the universal property of the embedding iA we obtain a C-algebra map

C[trepn A]
α- C[trepn T ]/J

which we would like to lift to C[trepn T ]. This does not follow from the fact that
C[trepn A] is commalg-smooth as J is usually not nilpotent.

We need the technical result that if I is an ideal of B closed under taking traces
and if E(I) denotes the extended ideal

E(I) = Mn(C[trepnB])IMn(C[trepnB])

then for all powers k we have the inclusion E(I)kn
2 ∩B ⊂ Ik.

Write B
I = B =

R
n
〈m〉
T and consider the extended ideal EB =

Mn(C[repn〈m〉])TMn(C[repn〈m〉]) = Mn(N) then we know already that
C[trepnB] = C[repn〈m〉]

N . We claim that for all k we have Ek
B
∩

∫
n
〈m〉 ⊂ T k.

Indeed, let
∫
n
〈m〉 be the trace algebra on the generic n × n matri-

ces {X1, . . . , Xm} and
∫
n
〈l +m〉 the trace algebra on the generic matrices

{Y1, . . . , Yl, X1, . . . , Xm}. Let {U1, . . . , Ul} be elements of
∫
n
〈m〉 and consider the

trace preserving map
∫
n
〈l +m〉 u-

∫
n
〈m〉 induced by the map defined by send-

ing Yi to Ui. Then, by the universal property we have a commutative diagram of
Reynold operators

Mn(C[M l+m
n ])

ũ- Mn(C[Mm
n ])

∫
n

〈l +m〉

R

?
u -

∫
n

〈m〉

R

?
.
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Now, let A1, . . . , Al+1 be elements from Mn(C[Mm
n ]), then we can calculate

R(A1U1A2U2A3 . . . AlUlAl+1) by first computing

r = R(A1Y1A2Y2A3 . . . AlYlAl+1)

and then substituting the Yi with Ui. The Reynolds operator preserves the degree
in each of the generic matrices, therefore r will be linear in each of the Yi and is
a sum of trace algebra elements. By our knowledge of the generators of necklaces
and the trace algebra we can write each term of the sum as an expression

tr(M1)tr(M2) . . . tr(Mz)Mz+1

where each of the Mi is a monomial of degree ≤ n2 in the generic matrices
{Y1, . . . , Yl, X1, . . . , Xm}. Now, look at how the generic matrices Yi are distributed
among the monomials Mj . Each Mj contains at most n2 of the Yi’s, hence the
monomial Mz+1 contains at least l − vn2 of the Yi where v ≤ z is the number of
Mi with i ≤ z containing at least one Yj .

Now, assume all the Ui are taken from the ideal T /
∫
n
〈m〉 which is closed

under taking traces, then it follows that

R(A1U1A2U2A3 . . . AlUlAl+1) ∈ T v+(l−vn2) ⊂ T k

if we take l = kn2 as v + (k − v)n2 ≥ k. But this finishes the proof of the claim.
Returning to the main line of argument, as I is a nilpotent ideal of T there is

some h such that Ih = 0. As I is closed under taking traces we know by the claim
that

E(I)hn
2
∩ T ⊂ Ih = 0.

Now, by definition E(I) = Mn(C[trepn T ])IMn(C[trepn T ]) which is equal to
Mn(J). That is, the inclusion can be rephrased as Mn(J)hn

2 ∩T = 0, whence there
is a trace preserving embedding T ⊂ - Mn(C[trepn T ]/Jhn

2
). Now, we have the

following situation

T ⊂ - Mn(C[trepn T ]/Jkn
2
)

A
κ -.....

.....
.....

.....
.....

.....
.....

...

λ

-

T/I

??
⊂
iT/I- Mn(C[trepn T ]/J)

??

Mn(C[trepn A])

iA

?

∩

......
......

......
......

......
......

......
......

......
......

......
......

......
......

....-

Mn
(α)

-

This time we can lift α to a C-algebra morphism

C[trepn A] - C[trepn T ]/Jhn
2
.

which gives us a trace preserving morphism

A
λ- Mn(C[trepn T ]/Jhn

2
)
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with image contained in the algebra of GLn-invariants. Because
T ⊂ - Mn(C[trepn T ]/Jhn

2
) and by surjectivity of invariants under sur-

jective maps, the GLn-equivariants are equal to T , giving the required lift
λ. �

Whereas GLn-equivariant geometry provides us with powerful tools to study
n-dimensional (trace preserving) representation schemes, the methods sometimes
lead us away from Cayley-Hamilton algebras.

The foregoing theorem may suggest a method to construct alg@n-smooth al-
gebras. Start with an arbitrary A ∈ alg@n. If A is not alg@n-smooth the scheme
trepnA contains singularities. There is a GLn-equivariant desingularization. Cover
this desingularization by affine GLn-invariant opens and take their witness algebra
which morally should give us alg@n-smooth algebras. However, this is not the case.

Example 67. Let A be the quantum plane of order two. In example 61 we
have seen that

trep2A = V(2x1x4 + x2x6 + x3x5) ⊂ - C6

is a hypersurface with an isolated singularity at the origin p = (0, 0, 0, 0, 0, 0).
Consider the blow-up of C6 at p which is the closed subvariety of C6×P5 defined

by

C̃6 = V(xiXj − xjXi)

with the Xi the projective coordinates of P5. The strict transform of trep2A is the
subvariety

˜trep = V(xiXj − xjXi, 2X1X4 +X2X6 +X3X5) ⊂ - C6 × P5

which is a smooth variety. Moreover, there is a natural GL2-action on it induced
by simultaneous conjugation on the fourtuple of 2× 2 matrices[

x1 x2

x3 −x1

] [
x4 x5

x6 −x4

] [
X1 X2

X3 −X1

] [
X4 X5

X6 −X4

]
As the projection ˜trep -- trep2A is a GL2-isomorphism outside the exceptional
fiber, we only need to investigate the semi-stable points over p. Take the particular
point x [

0 0
0 0

] [
0 0
0 0

] [
i 0
0 −i

] [
0 a
−a 0

]
which is semi-stable and has as stabilizer

Stab(x) = µµµ2 = 〈
[
0 1
1 0

]
〉 ⊂ - PGL2

Hence, there is no affine GL2-stable open of ˜trep containing x such that it is of
the form trep2B for some B ∈ alg@2 as this would contradict the fact that the
stabilizer subgroup of a module is connected. Connectivity follows from the fact
that the stabilizer subgroup is the group of module automorphisms, which in turn
is the group of units of the endomorphism ring of the module.



118 4. WITNESSES

4.4. Semisimple modules.

If A is an affine algebra, its n-th necklace algebra
∮
n
A =↓n A is an affine

commutative algebra whence it is the coordinate ring of an affine scheme which we
denote with issnA. In this section we will justify this notation by showing that the
C-points of issnA classify the isomorphism classes of semi-simple n-dimensional
A-representations. Information on the C-points is contained in the reduced variety
structure of the scheme so we will restrict to varieties in this section. If we want
to stress this fact we denote by rrepnA the reduced variety of the scheme repnA
of n-dimensional representations, and by rissnA the reduced variety of the affine
scheme issnA. Note that in case A is alg-smooth, then repnA is smooth whence
a reduced variety. But then, issnA is also reduced in this case. For arbitrary
algebras however the two structures can be different,

Example 68. Let A = C[x]
(x2) , then the coordinate ring of rep1A = iss1A (note

thatGL1 = C∗ acts trivially on rep1A) is the ring of dual numbers C[ε] = C[x]/(x2).
However, the coordinate ring of the reduced varieties rrep1A = rissnA is C.

Because of their relevance to the reduced structure of representation schemes,
we quickly run through the proofs of the dimension formula, Chevalley’s theorem
and the relation between analytic and Zariski closures. More details can be found
in the excellent textbook by Hanspeter Kraft [36].

Definition 56. A morphism X
φ- Y between two affine irreducible varieties

is said to be dominant if the image φ(X) is Zariski dense in Y . On the level of
the coordinate algebras, dominance is equivalent to φ∗ : C[Y ] - C[X] being
injective and hence inducing a fieldextension φ∗ : C(Y ) ⊂ - C(X) between the
functionfields.

A morphism X
φ- Y between two affine varieties is said to be finite if under

the algebra morphism φ∗ the coordinate algebra C[X] is a finite C[Y ]-module.
A finite and surjective morphism with X irreducible and

X
φ- Y

Y is normal satisfies the going-down property . That is, let Y ′ ⊂ - Y be an
irreducible Zariski closed subvariety and x ∈ X with φ(x) = y′ ∈ Y ′. Then,
there is an irreducible Zariski closed subvariety X ′ ⊂ - X such that x ∈ X ′ and
φ(X ′) = Y ′.

Example 69. Let X be an irreducible affine variety of dimension d. By the
Noether normalization result C[X] is a finite module over a polynomial subalgebra
C[f1, . . . , fd]. But then, the finite inclusion C[f1, . . . , fd] ⊂ - C[X] determines a
finite surjective morphism

X
φ-- Cd

Example 70. An important source of finite morphisms is given by integral
extensions. Recall that, if R ⊂ - S is an inclusion of domains we call S integral
over R if every s ∈ S satisfies an equation

sn =
n−1∑
i=0

ris
i with ri ∈ R.
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A normal domain R has the property that any element of its field of fractions
which is integral over R belongs already to R. If X

φ- Y is a dominant morphism
between two irreducible affine varieties, then φ is finite if and only if C[X] in integral
over C[Y ] for the embedding coming from φ∗.

Theorem 47 (Dimension formula). Let X
φ- Y be a dominant morphism

between irreducible affine varieties. Then, for any x ∈ X and any irreducible
component C of the fiber φ−1(φ(z)) we have

dim C ≥ dim X − dim Y.

Moreover, there is a nonempty open subset U of Y contained in the image φ(X)
such that for all u ∈ U we have

dim φ−1(u) = dim X − dim Y.

Proof. Let d = dim X − dim Y and apply the Noether normalization result
to the affine C(Y )-algebra C(Y )C[X]. Then, we can find a function g ∈ C[Y ] and
algebraic independent functions f1, . . . , fd ∈ C[X]g (g clears away any denominators
that occur after applying the normalization result) such that C[X]g is integral over
C[Y ]g[f1, . . . , fd]. That is, we have the commutative diagram

XX(g)
ρ -- XY (g)× Cd

X
?

∩

φ - Y � ⊃ XY (g)

pr1

??

where we know that ρ is finite and surjective. But then we have that the open
subset XY (g) lies in the image of φ and in XY (g) all fibers of φ have dimension
d. For the first part of the statement we have to recall the statement of Krull’s
Hauptideal result : if X is an irreducible affine variety and g1, . . . , gr ∈ C[X] with
(g1, . . . , gr) 6= C[X], then any component C of VX(g1, . . . , gr) satisfies the inequality

dim C ≥ dim X − r.
If dim Y = r apply this result to the gi determining the morphism

X
φ- Y -- Cr

where the latter morphism is the one from example 69. �

Theorem 48 (Chevalley’s theorem). Let X
φ- Y be a morphism between

affine varieties, the function

X - N defined by x 7→ dimx φ
−1(φ(x))

is upper-semicontinuous. That is, for all n ∈ N, the set

{x ∈ X | dimx φ
−1(φ(x)) ≤ n}

is Zariski open in X.

Proof. Let Z(φ, n) be the set {x ∈ X | dimx φ
−1(φ(x)) ≥ n}. We will prove

that Z(φ, n) is closed by induction on the dimension of X. We first make some
reductions. We may assume that X is irreducible. For, let X = ∪iXi be the
decomposition of X into irreducible components, then Z(φ, n) = ∪Z(φ | Xi, n).
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Next, we may assume that Y = φ(X) whence Y is also irreducible and φ is a
dominant map. Now, we are in the setting of theorem 47. Therefore, if n ≤
dim X−dim Y we have Z(φ, n) = X, so it is closed. If n > dim X−dim Y consider
the open set U in Y of theorem 47. Then, Z(φ, n) = Z(φ | (X − φ−1(U)), n). the
dimension of the closed subvariety X−φ−1(U) is strictly smaller that dim X hence
by induction we may assume that Z(φ | (X − φ−1(U)), n) is closed in X − φ−1(U)
whence closed in X. �

Example 71. For A an affine C-algebra, denote the reduced structure of the n-
th representation scheme by rrepn A. We claim that for any C-point V ∈ rrepn A

its orbit O(V ) is open in the closure O(V ) and the closure contains a closed orbit.
Consider the orbit-map GLn

φ- rrepn A defined by g 7→ g.V . Because the
image contains an open dense subset of the closure of the image for any morphism
between affine varieties, O(V ) = φ(GLn) contains a Zariski open subset U of O(V )
contained in the image of φ which is the orbit O(V ). But then,

O(V ) = GLn.V = ∪g∈GLn
g.U

is also open in O(V ). O(V ) contains a closed orbit. Indeed, assume O(V ) is
not closed, then the complement CM = O(V ) − O(V ) is a proper Zariski closed
subset whence dim C < dim O(V ). But, C is the union of GLn-orbits O(Vi) with
dim O(Vi) < dim O(V ). Repeating the argument with the Vi and induction on the
dimension we will obtain a closed orbit in O(V ).

Definition 57. A subset Z of an affine variety X is said to be locally closed if
Z is open in its Zariski closure Z. A subset Z is said to be constructible if Z is the
union of finitely many locally closed subsets.

Finite unions, finite intersections and complements of constructible subsets are
again constructible. Further, if X

φ- Y be a morphism between affine varieties
and if Z is a constructible subset of X, then φ(Z) is a constructible subset of Y .

Example 72. The subset rindn A of the reduced representation variety
rrepn A consisting of the indecomposable n-dimensional representations of A is
constructible.

Indeed, consider for any pair k, l such that k + l = n the morphism

GLn × rrepk A× rrepl A
- rrepn A

by sending a triple (g,M,N) to g.(M⊕N). The image of this map is constructible.
The decomposable n-dimensional A-modules belong to one of these finitely many
sets whence are constructible, but then so is its complement which in repindn A.

Definition 58. Let the basefield be the field of complex numbers and X a
closed subvariety of Ck. The induced C-topology on X is called the analytic topol-
ogy. It is much finer than the Zariski topology. For Z a subset in X we denote the
analytic closure by Z

C
.

Theorem 49. If Z is a constructible subset of an affine variety X, then

Z
C

= Z

Proof. Consider an embedding X ⊂ - Ck then Z is a constructible subset
of Ck. As a constructible subset, Z contains a subset U which is open and dense
(in the Zariski topology) in Z.
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By reducing to irreducible components, we may assume that Z is irreducible. If
dim Z = 1, consider Zs, the subset of points where Z is a complex manifold. Then,
Z − Zs is finite and by the implicit function theorem every u ∈ Zs has a C-open
neighborhood which is C-homeomorphic to the complex line C1, whence the result
holds in this case.

In general, let z ∈ Z and consider an irreducible curve C ⊂ - Z containing z
and such that C ∩U 6= ∅. Such a curve always exists, for if d = dim Z consider the
finite surjective morphism Z

φ- Cd of example 69. Let y ∈ Cd − φ(Z − U) and
consider the line L through y and φ(z). By the going-down property there is an
irreducible curve C ⊂ - Z containing z such that φ(C) = L and by construction
C ∩ V 6= ∅.

Then, C ∩ V is Zariski open and dense in C and by the one dimensional argu-
ment, z ∈ (C ∩ V )

C
⊂ V C

. We can do this for any z ∈ V finishing the proof. �

Example 73. Let V be an n-dimensional representation of an affine C-algebra
A. The Zariski closure O(V ) of its orbit in the reduced representation variety

rrepn A coincides with its closure O(V )
C

in the analytic topology.

Definition 59. A one parameter subgroup of a linear group G is a morphism
λ : C∗ - G of algebraic groups.

Example 74. Let λ : C∗ - GLn be a one-parameter subgroup of GLn.
Let H be the image under λ of the subgroup µµµ∞ of roots of unity in C∗. We claim
that there is a g ∈ GLn such that

g.H.g−1 ⊂ -

C∗ 0
. . .

0 C∗


Assume h ∈ H not a scalar matrix, then h has a proper eigenspace decomposition
V ⊕W = Cn. We use that hl = rr

n and hence all its Jordan blocks must have size
one. Because H is commutative, both V and W are stable under H. By induction
on n we may assume that the images of H in GL(V ) and GL(W ) are diagonalizable,
but then the same holds in GLn.

As µµµ∞ is infinite, it is Zariski dense in C∗ and because the diagonal matrices
are Zariski closed in GLn we have

g.λ(C∗).g−1 = g.H.g−1 ⊂ - Tn

Further, any one-parameter subgroup of Tn is determined by an n-tuple
(r1, . . . , rn) ∈ Zn and maps t to (tr1 , . . . , trn .

Summarizing, if λ : C∗ - GLn is a one-parameter subgroup, then there is
a g ∈ GLn and an n-tuple (r1, . . . , rn) ∈ Zn such that

λ(t) = g−1.

t
r1 0

. . .
0 trn

 .g
Theorem 50. Let V be a GLn-representation, v ∈ V and a point w ∈ V lying

in the orbitclosure O(v).
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Then, there exists a matrix g with coefficients in the field C((t)) such that
det(g) 6= 0 and

(g.v)t=0 is well defined and is equal to w

Proof. Note that g.v is a vector with coordinates in the field C((t)). If all
coordinates belong to C[[t]] we can set t = 0 in this vector and obtain a vector in
V . It is this vector that we denote with (g.v)t=0.

Consider the orbit map µ : GLn - V defined by g′ 7→ g′.v. As w ∈ O(v) we
have seen that there is an irreducible curve C ⊂ - GLn such that w ∈ µ(C). We
obtain a diagram of C-algebras

C[GLn] - C[C] ⊂ - C(C)

C[V ]

µ∗

6

- C[µ(C)]

µ∗

∪

6

⊂ - C[C ′]
∪

6

Here, C[C] is defined to be the integral closure of C[µ(C)] in the functionfield
C(C) of C. Two things are important to note here : C ′ - µ(C) is finite, so
surjective and take c ∈ C ′ be a point lying over w ∈ µ(C). Further, C ′ having
an integrally closed coordinate ring is a complex manifold. Hence, by the implicit
function theorem polynomial functions on C can be expressed in a neighborhood
of c as power series in one variable, giving an embedding C[C ′] ⊂ - C[[t]] with
(t) ∩ C[C ′] = Mc. This inclusion extends to one on the level of their fields of
fractions. That is, we have a diagram of C-algebra morphisms

C[GLn] - C(C) = C(C ′) ⊂ - C((t))

C[V ]

µ∗

6

- C[µ(C)]
∪

6

⊂ - C[C ′]
∪

6

⊂ - C[[t]]
∪

6

The upper composition defines an invertible matrix g(t) with coefficients in C((t)),
its (i, j)-entry being the image of the coordinate function xij ∈ C[GLn]. Moreover,
the inverse image of the maximal ideal (t)/C[[t]] under the lower composition gives
the maximal ideal Mw / C[V ]. This proves the claim. �

Example 75. Let g be an n×n matrix with coefficients in C((t)) and det g 6= 0.
Then there exist u1, u2 ∈ GLn(C[[t]]) such that

g = u1.

t
r1 0

. . .
0 trn

 .u2

with ri ∈ Z and r1 ≤ r2 ≤ . . . ≤ rn. Indeed, by multiplying g with a suitable power
of t we may assume that g = (gij(t))i,j ∈ Mn(C[[t]]). If f(t) =

∑∞
i=0 fit

i ∈ C[[t]]
define v(f(t)) to be the minimal i such that ai 6= 0. Let (i0, j0) be an entry where
v(gij(t)) attains a minimum, say r1. That is, for all (i, j) we have gij(t) = tr1trf(t)
with r ≥ 0 and f(t) an invertible element of C[[t]].
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By suitable row and column interchanges we can take the entry (i0, j0) to
the (1, 1)-position. Then, multiplying with a unit we can replace it by tr1 and by
elementary row and column operations all the remaining entries in the first row and
column can be made zero. That is, we have invertible matrices a1, a2 ∈ GLn(C[[t]])
such that

g = a1.

[
tr1 0τ

0 g1

]
.a2

Repeat the same idea on the submatrix g1 and continue.

Theorem 51 (Hilbert criterium). Let V be a GLn-representation, X ⊂ V a
closed GLn-stable subvariety and O(x) = GLn.x the orbit of a point x ∈ X.

If Y ⊂ O(x) is a closed GLn-stable subset, then there exists a one-parameter
subgroup λ : C∗ - GLn such that

lim
t→0

λ(t).x ∈ Y

Proof. It suffices to prove the result for X = V . By the foregoing theorem,
there is an invertible matrix g ∈Mn(C((t))) such that

(g.x)t=0 = y ∈ Y
By the foregoing example, we can find u1, u2 ∈ GLn(C[[t]]) such that

g = u1.λ
′(t).u2 with λ′(t) =

t
r1 0

. . .
0 trn


a one-parameter subgroup. There exist xi ∈ V such that u2.x =

∑∞
i=0 zit

i in
particular u2(0).x = x0. But then,

(λ′(t).u2.x)t=0 =
∞∑
i=0

(λ′(t).xiti)t=0

= (λ′(t).x0)t=0 + (λ′(t).x1t)t=0 + . . .

But one easily verifies (using a basis of eigenvectors of λ′(t)) that

lim
s→0

λ
′−1(s).(λ′(t)xiti)t=0 =

{
(λ′(t).x0)t=0 if i = 0,
0 if i 6= 0

As (λ′(t).u2.x)t=0 ∈ Y and Y is a closed GLn-stable subset, we also have that

lim
s→0

λ
′−1(s).(λ′(t).u2.x)t=0 ∈ Y that is, (λ′(t).x0)t=0 ∈ Y

But then, we have for the one-parameter subgroup λ(t) = u2(0)−1.λ′(t).u2(0) that

lim
t→0

λ(t).x ∈ Y

finishing the proof. �

Definition 60. The nullcone of a GLn-representation V is the set of points x
such that the fixed point 0 ∈ V lies in the orbit closure of x.

Theorem 52. Let V be a finite dimensional GLn-representation and v ∈ V a
point in the nullcone. Then, there is a one-parameter subgroup λ : C∗ - GLn
such that

lim
t→0

λ(t).v = 0
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Definition 61. A finite filtration F on an n-dimensional representation M is
a sequence of A-submodules

F : 0 = Mt+1 ⊂Mt ⊂ . . . ⊂M1 ⊂M0 = M.

The associated graded A-module is the n-dimensional module

grF M = ⊕ti=0Mi/Mi+1.

Theorem 53. The following two statements are equivalent for n-dimensional
A-modules M and N .

(1) There is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).M = N

(2) There is a finite filtration F on the A-module M such that

grF M ' N
as A-modules.

Proof. (1) ⇒ (2) : If V is any GLn-representation and C∗ λ- GLn a
one-parameter subgroup, we have an induced weight space decomposition of V

V = ⊕iVλ,i where Vλ,i = {v ∈ V | λ(t).v = tiv,∀t ∈ C∗}.
In particular, we apply this to the underlying vectorspace of M . We define

Mj = ⊕i>jVλ,i
and claim that this defines a finite filtration on M with associated graded A-module
N . For any a ∈ A (it suffices to vary a over the generators of A) we can consider
the linear maps

φij(a) : Vλ,i ⊂ - V = M
a.- M = V -- Vλ,j

(that is, we express the action of a in a blockmatrix Φa with respect to the de-
composition of V ). Then, the action of a on the module corresponding to λ(t).ψ is
given by the matrix Φ′a = λ(t).Φa.λ(t)−1 with corresponding blocks

Vλ,i
φij(a)- Vλ,j

Vλ,i

λ(t)−1

6

φ′ij(a)
- Vλ,j

λ(t)

?

that is φ′ij(a) = tj−iφij(a). Therefore, if limt→0λ(t).ψ exists we must have that

φij(a) = 0 for all j < i.

But then, the action by a sends any Mk = ⊕i>kVλ,i to itself, that is, the Mk are
A-submodules of M . Moreover, for j > i we have

lim
t→0

φ′ij(a) = lim
t→0

tj−iφij(a) = 0

Consequently, the action of a on the limit-module is given by the diagonal block-
matrix with blocks φii(a), but this is precisely the action of a on Vi = Mi−1/Mi,
that is, the limit corresponds to the associated graded module.
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Figure 1. Kraft’s diamond describing the nullcone of M2
3 .

(2)⇒ (1) : Given a finite filtration on M

F : 0 = Mt+1 ⊂ . . . ⊂M1 ⊂M0 = M

we have to find a one-parameter subgroup C∗ λ- GLn which induces the filtration
F as in the first part of the proof. Clearly, there exist subspaces Vi for 0 ≤ i ≤ t
such that

V = ⊕ti=0Vi and Mj = ⊕tj=iVi.

Then we take λ to be defined by λ(t) = tiIdVi
for all i and it verifies the claims. �

Example 76. In the statement of the Hilbert criterium it is important that Y
is a closed subset. In general, it does not follow that any orbit O(y) ⊂ - O(x) can
be reached via a one-parameter subgroup. Consider two modules M,N ∈ rrepn A.
Assume that O(N) ⊂ - O(M) and that we can reach the orbit of N via a one-
parameter subgroup. Then, by the equivalence of the foregoing theorem we know
that N must be decomposable as it is the associated graded of a nontrivial filtration
on M . This gives us a criterium to construct examples showing that the closedness
assumption in the formulation of Hilbert’s criterium is essential.

The nullcone of rrep3〈2〉 has been worked out by Hanspeter Kraft in [35,
p.202]. The orbits are depicted in figure 1 In this picture, each node corresponds
to a torus. The right hand number is the dimension of the torus and the left hand
number is the dimension of the orbit represented by a point in the torus. The solid
or dashed lines indicate orbitclosures. For example, the dashed line corresponds to
the following two points in M2

3 = M3 ⊕M3

M = (

0 0 1
0 0 1
0 0 0

 ,
0 1 0

0 0 0
0 0 0

) N = (

0 0 1
0 0 0
0 0 0

 ,
0 1 0

0 0 0
0 0 0

)

We claim that N is an indecomposable 3-dimensional module of ♦2. Indeed, the
only subspace of the column vectors C3 left invariant under both x and y is equal
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to C
0
0


hence Mρ cannot have a direct sum decomposition of two or more modules. Next,
we claim that O(N) ⊂ - O(M). Indeed, simultaneous conjugating ψ with the
invertible matrix1 ε−1 − 1 0

0 1 0
0 0 ε−1

 we obtain the couple (

0 0 1
0 0 ε
0 0 0

 ,
0 1 0

0 0 0
0 0 0

)

and letting ε - 0 we see that the limiting point is N .

Theorem 54 (M. Artin). The orbit O(M) of a C-point M of rrepnA is closed
in rrepnA if and only if M is an n-dimensional semisimple A-module.

Proof. Assume that the orbit O(M) is Zariski closed. Let gr M be the
associated graded module for a composition series of M . By the above equivalence
we know that O(gr M) is contained in O(M) = O(M). But then gr M ' M
whence M is semisimple.

Conversely, assumeM is semisimple. We know that the orbitclosure O(M) con-
tains a closed orbit, say O(N). By the Hilbert criterium we have a one-parameter
subgroup C∗ λ- GLn such that

lim
t→0

λ(t).M = N ′ ' N.

By the equivalence this means that there is a finite filtration F onM with associated
graded module grF M ' N . For the semisimple module M the only possible
finite filtrations are such that each of the submodules is a direct sum of simple
components, so grF M 'M , whence M ' N and hence the orbit O(M) is closed.

�

Definition 62. The inclusion
∮
n
A = C[repnA]GLn ⊂ C[repnA] induces the

quotient maps

repnA
π- issnA rrepnA

π- rissnA

Theorem 55. For A an affine algebra, the quotient map

rrepnA
π-- rissnA

is surjective and the C-points of issnA classify the isomorphism classes of semi-
simple n-dimensional representations of A.

Proof. First, we prove these statements for A = 〈m〉. As repn〈m〉 = Mm
n is

a GLn-representation we prove a few general facts valid for any finite dimensional
GLn-representation V .

(1) : Let I /C[V ] be a GLn-stable ideal, that is, g.I ⊂ I for all g ∈ GLn, then

(C[V ]/I)GLn ' C[V ]GLn/(I ∩ C[V ]GLn).

Indeed, as I has the inducedGLn-action which is locally finite we have the isotypical
decomposition I = ⊕I(s) and clearly I(s) = C[V ](s) ∩ I. But then also, taking
quotients we have

⊕s(C[V ]/I)(s) = C[V ]/I = ⊕sC[V ](s)/I(s).
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Therefore, (C[V ]/I)(s) = C[V ](s)/I(s) and taking the special case s = 0 is the
statement.

(2) : Let J / C[V ]GLn be an ideal, then we have a lying-over property

J = JC[V ] ∩ C[V ]GLn .

Hence, C[V ]GLn is Noetherian and is finitely generated.
For any f ∈ C[V ]GLn left-multiplication by f in C[V ] commutes with the GLn-

action, whence f.C[V ](s) ⊂ C[V ](s). That is, C[V ](s) is a C[V ]GLn -module. But
then, as J ⊂ C[V ]GLn we have

⊕s(JC[V ])(s) = JC[V ] = ⊕sJC[V ](s).

Therefore, (JC[V ])(s) = JC[V ](s) and again taking the special value s = 0 we obtain
JC[V ]∩C[V ]GLn = (JC[V ])(0) = J . Noetherianity follows from the fact that C[V ]
is Noetherian. Because the action of GLn on C[V ] preserves the gradation, the ring
of invariants is also graded

C[V ]GLn = R = C⊕R1 ⊕R2 ⊕ . . . .

Because C[V ]GLn is Noetherian, the ideal R+ = R1 ⊕R2 ⊕ . . . is finitely generated
R+ = Rf1 + . . . + Rfl by homogeneous elements f1, . . . , fl. We claim that as a
C-algebra C[V ]GLn is generated by the fi. Indeed, we have R+ =

∑l
i=1 Cfi + R2

+

and then also

R2
+ =

l∑
i,j=1

Cfifj +R3
+

and iterating this procedure we obtain

Rm+ =
∑

P
mi=m

Cfm1
1 . . . fml

l +Rm+1
+ .

Consider the subalgebra C[f1, . . . , fl] of R = C[V ]GLn , then for any power d > 0

C[V ]GLn = C[f1, . . . , fl] +Rd+.

For any i we then have for the homogeneous components of degree i

Ri = C[f1, . . . , fl]i + (Rd+)i.

Now, if d > i we have that (Rd+)i = 0 and hence that Ri = C[f1, . . . , fl]i. As this
holds for all i we proved the claim.

(3) : Let Ij be a family of GLn-stable ideals of C[V ], then

(
∑
j

Ij) ∩ C[V ]GLn =
∑
j

(Ij ∩ C[V ]GLn).

Indeed, for any j we have the decomposition Ij = ⊕s(Ij)(s). But then, we have

⊕s(
∑
j

Ij)(s) =
∑
j

Ij =
∑
j

⊕s(Ij)(s) = ⊕s
∑
j

(Ij)(s).

Therefore, (
∑
j Ij)(s) =

∑
j(Ij)(s) and taking s = 0 gives the required statement.

Returning to the case of interest to us : we claim that the algebraic quotient

repn〈m〉
π- issn〈m〉
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is surjective on C-points and if Z ⊂ - repn〈m〉 is a closed GLn-stable subset (such
as repnA), then π(Z) is closed in issn〈m〉 and the morphism

π | Z : Z - π(Z)

is an algebraic quotient, that is, C[π(Z)] ' C[Z]GLn = C[issnA].
For, let y ∈ issn〈m〉 with maximal ideal My / C[issn〈m〉]. By (2) we have

MyC[repn〈m〉] 6= C[repn〈m〉] and hence there is a maximal ideal Mx of C[repn〈m〉]
containing MyC[repn〈m〉], but then π(x) = y.

Let Z = V(I) for a G-stable ideal I of C[repn〈m〉], then π(Z) = Vissn〈m〉(I ∩
C[issn〈m〉]). That is, C[π(Z)] = C[issn〈m〉]/(I ∩ C[issn〈m〉]). However, by (1)
we have that

C[issn〈m〉]/(C[issn〈m〉] ∩ I) ' (C[repn〈m〉]/I)
GLn = C[Z]GLn

and hence C[π(Z)] = C[Z]GLn . Finally, surjectivity of π | Z is proved as before.
An immediate consequence is that the Zariski topology on issn〈m〉 is the

quotient topology of that on repn〈m〉. For, take U ⊂ issn〈m〉 with π−1(U) Zariski
open in repn〈m〉. Then, repn〈m〉−π−1(U) is aGLn-stable closed subset of repn〈m〉
and π(repn〈m〉 − π−1(U)) = issn〈m〉 − U is Zariski closed in issn〈m〉.

We claim that the quotient repn〈m〉
π- issn〈m〉 separates disjoint closed

GLn-stable subvarieties of repn〈m〉. Let Zj be closed GLn-stable subvarieties of
repn〈m〉 with defining ideals Zj = V(Ij). Then, ∩jZj = V(

∑
j Ij). Applying (3)

we obtain

π(∩jZj) = Vissn〈m〉((
∑
j

Ij) ∩ C[issn〈m〉]) = Vissn〈m〉(
∑
j

(Ij ∩ C[issn〈m〉]))

= ∩jVissn〈m〉(Ij ∩ C[issn〈m〉]) = ∩jπ(Zj)

The onto property implies that π(Zj) = π(Zj) from which the claim follows.
C-points of issn〈m〉 classify the closed GLn-orbits in repn〈m〉 (whence the

isomorphism classes of semi-simple n-dimensional representations). In fact, every
fiber π−1(y) contains exactly one closed orbit C and we have

π−1(y) = {x ∈ repn〈m〉 | C ⊂ O(x)}
Indeed, the fiber F = π−1(y) is a GLn-stable closed subvariety of repn〈m〉. Take
any orbit O(x) ⊂ F then either it is closed or contains in its closure an orbit
of strictly smaller dimension. Induction on the dimension then shows that O(x)
contains a closed orbit C. On the other hand, assume that F contains two closed
orbits, then they have to be disjoint contradicting the separation property. �

Example 77. For M ∈Mn(C) it is usually very difficult to describe the ideal
of relations of the orbit O(M) of M . If M is semisimple (that is, M diagonalizable)
we can invoke the reconstruction theorem 43 to describe this ideal. Consider the
semisimple commutative algebra generated by X, that is,

A =
C[t]

(f(t))

where f(t) is the minimal polynomial of M and the trace map on A is given once we
give the elements ak = Tr(Mk), or equivalently the coefficients of the characteristic
polynomial. The equations defining the closed orbit of M are then Tr(Mk) = ak
for 1 ≤ k < degf(t) and the entries of f(X) for a generic n× n matrix X.
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Example 78. Let A ∈ alg be finite dimensional, then there are only a finite
number of simple A-representations. Therefore, rissnA is a finite number of points.
As a consequence repnA is the disjoint union of a finite number of connected
components, each consisting of those n-dimensional representations of A having
the same Jordan-Hölder decomposition. Connectivity follows from the fact that
the semi-simple representation of the sum of the Jordan-Hölder components lies in
the closure of each orbit.

Example 79. Let C ∈ commalg be an affine algebra with corresponding re-
duced variety X = rspecC. Every simple C-representation is one-dimensional,
that is, determines a point of X. Applying the Jordan-Hölder theorem we obtain
that

rissnC ' X(n) = (X × . . .×X︸ ︷︷ ︸
n

)/Sn

the n-th symmetric product of X.
In particular, if X is an affine smooth curve, then its coordinate ring C = C[X]

is alg-smooth and therefore repnC is smooth and therefore reduced. Hence, issnC
is also reduced and we have that issnC = X(n) the n-symmetric product of the
curve X.





CHAPTER 5

Coverings

”When Michael Artin got interested in the topic he was able to
use the powerful ideas of faithfully flat descent which were un-
known to the specialists in non-commutative algebra, also that
was the time of revival of geometric invariant theory and the in-
variant interpretation has changed completely the point of view.”

Claudio Procesi in [55]

This chapter describes two applications of the étale machinery to noncommuta-
tive algebras : description of Brauer groups of functionfields and the local structure
of orders. First, we introduce cohomology on the étale site of a commutative ring
and relate it to classical Galois cohomology. We aim for a handle on the size of
the Brauer group of a functionfield C(X) of a d-dimensional variety X which is
provided by the coniveau spectral sequence. In this sequence étale cohomology is
related to Galois cohomology for the functionfields of all irreducible subvarieties of
X. We include classical work of Tsen and Tate on the cohomological size of the
resulting Galois groups as they give an indication of the huge variety of noncom-
mutative orders over a fixed variety X. In the special case when X is a smooth
projective surface, the Artin-Mumford exact sequence determines the Brauer group
of C(X) in terms of all curves on X and their (ramified) covers.

In the second section we give an important application of étale extensions to
invariant theory. If a reductive group G is acting on a smooth variety X and if O(x)
is a closed G-orbit one would like the local G-structure of X around x to be the
product of the orbit O(x) with the normal space Nx to the orbit. Surprisingly, this
is true if we view isomorphism in the étale topology and replace product by fiber
bundle, as was proved by Domingo Luna [44]. We give the proof due to Friedrich
Knop as it is valid even when the variety X is not smooth, nor even reduced (as is
often the case in representation schemes).

We then apply this result to the local description of representation varieties
of alg-smooth and alg@n-smooth algebras. It turns out that the normal space is
isomorphic (as a representation over the stabilizer subgroup) to the representation
space of a particular (marked) quiver setting : the local quiver. The étale local
structure of

∮
n
A and

∫
n
A is fully encoded in the local quiver.

In the final section we combine these two different applications to the problem of
characterizing those central simple algebras Σ over a projective (normal) variety X
having a noncommutative smooth model, that is, a sheaf of alg@n-smooth algebras.
The coniveau spectral sequence describing Brn(C(X)) gives us information on the
ramification of maximal orders in Σ whereas the étale local description of alg@n-
smooth orders given by the local quiver allows us to compute the ramification

131
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possible for alg@n-smooth orders. Combining these two algebra-geometric data we
are able to prove that such a central simple algebra has a model with only a finite
number of noncommutative singularities, each of which is of quantum-plane type
and we characterize the ones without singularities.

5.1. Etale cohomology.

A closed subvariety X ⊂ - Cm can be equipped with the Zariski topology
or with the much finer analytic or complex topology. A major disadvantage of
the coarseness of the Zariski topology is the failure to have an implicit function
theorem in algebraic geometry. Etale morphisms are introduced to bypass this
problem. These morphisms determine the étale topology which is no longer a
topology determined by subsets but rather a Grothendieck topology determined by
covers . In this section, algebras C ∈ commalg will not necessarily be affine and
with specC we denote the prime spectrum of C, that is the set of prime ideals of
C, equipped with the Zariski topology.

Definition 63. A finite morphism C
f- B of commutative C-algebras is

said to be étale if and only if B = C[t1, . . . , tk]/(f1, . . . , fk) such that the Jacobian
matrix 

∂f1
∂t1

. . . ∂f1
∂tk

...
...

∂fk

∂t1
. . . ∂fk

∂tk


has a determinant which is a unit in B. The corresponding map on the prime
spectra

specB
f∗- specC

should be viewed as a finite cover.

Example 80. Consider the inclusion C[x, x−1] ⊂ C[x, x−1][ n
√
x] and the in-

duced map on the affine schemes

spec C[x, x−1][ n
√
x]

ψ- spec C[x, x−1] = C− {0}.

Every point λ ∈ C − {0} has exactly n preimages λi = ζi n
√
λ. Moreover, in a

neighborhood of λi, the map ψ is a diffeomorphism. Still, we do not have an
inverse map in algebraic geometry as n

√
x is not a polynomial map. However,

C[x, x−1][ n
√
x] is an étale extension of C[x, x−1]. In this way étale morphisms can

be seen as an algebraic substitute for the failure of an inverse function theorem in
algebraic geometry.

Example 81. LetK be a field of characteristic zero, choose an algebraic closure
K with absolute Galois group GK = Gal(K/K). Then, the following are equivalent

(1) K - A is étale
(2) A⊗K K ' K× . . .×K
(3) A =

∏
Li where Li/K is a finite field extension

Indeed, assume (1), then A = K[x1, . . . , xn]/(f1, . . . , fn) where fi have invertible
Jacobian matrix. Then A ⊗ K is a commalg-smooth algebra (hence reduced) of
dimension 0 so (2) holds. Assume (2), then

HomK−alg(A,K) ' HomK−alg(A⊗K,K)
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C ′ ............
et
- C ′ ⊗C B

C

6

et - B

6

B
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-
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-

A
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-

(basechange) (composition)

C ′
et- C ′ ⊗C B

C
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6

....................
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- B

6

C

B .................................................
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C−alg
-

�

et

B′

et

-

(descent) (morphisms)

Figure 1. Sorite for étale morphisms

has dimK(A⊗K) elements. On the other hand we have by the Chinese remainder
theorem that

A/Jac A =
∏
i

Li

with Li a finite field extension of K. However,

dimK(A⊗K) =
∑
i

dimK(Li) = dimK(A/Jac A) ≤ dimK(A)

and as both ends are equal A is reduced and hence A =
∏
i Li whence (3). Assume

(3), then each Li = K[xi]/(fi) with ∂fi/∂xi invertible in Li. But then A =
∏
Li

is étale over K whence (1) holds.

Theorem 56. Etale morphisms satisfy ’sorite’, that is, they satisfy the com-
mutative diagrams of figure 1. In these diagrams, et denotes an étale morphism,
f.f. denotes a faithfully flat morphism and the dashed arrow is the étale morphism
implied by ’sorite’.

Proof. See for example [47, I]. �

Definition 64. The étale site of C, which we will denote by Cet is the category
with

• objects : the étale extensions C
f- B of C

• morphisms : compatible C-algebra morphisms
A

B1
φ -

�

f1

B2

f
2

-
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In view of theorem 56 all morphisms in Cet are étale morphisms.
Cet is equipped with a Grothendieck topology by defining a cover to be a collec-

tion C = {B fi- Bi} in Cet such that

spec B = ∪i Im (spec Bi
fi∗- spec B )

Observe that all the properties of a Grothendieck category as in [47, II.§1] follow
from this definition and theorem 56.

Example 82. With the notation of example 81, we associate to every finite
étale extension A =

∏
Li the finite set rts(A) = HomK−alg(A,K) on which the

Galois group GK acts via a finite quotient group. If we write A = K[t]/(f), then
rts(A) is the set of roots in K of the polynomial f with obvious action byGK . Galois
theory, in the interpretation of Grothendieck, can now be stated by observing that
the functor

Ket
rts(−)- finite GK − sets

is an anti-equivalence of categories.

Definition 65. An étale presheaf of groups on Cet is a functor

G : Cet - groups

In analogy with usual (pre)sheaf notation we denote for every object B ∈ Cet the
global sections Γ(B,G) = G(B) and for every morphism B

φ- B′ in Cet the
restriction map ResBB′ = G(φ) : G(B) - G(B′) with g | B′ = G(φ)(g).

An étale presheaf G is an étale sheaf provided for every B ∈ Cet and every cover
{B - Bi} we have exactness of the equalizer diagram

0 - G(B) -
∏
i

G(Bi)
--

∏
i,j

G(Bi ⊗B Bj)

A sequence of sheaves of Abelian groups on Cet is said to be exact

G′ f- G g- G”

if for every B ∈ Cet and s ∈ G(B) such that g(s) = 0 ∈ G”(B) there is a cover
{B - Bi} in Cet and sections ti ∈ G′(Bi) such that f(ti) = s | Bi.

Example 83. For a group G we define the constant sheaf

G : Cet - groups B 7→ G⊕π0(B)

where π0(B) is the number of connected components of spec B.

Example 84. The multiplicative group Gm. The functor

Gm : Cet - groups B 7→ B∗

is a sheaf on Cet.

Example 85. the roots of unity µn. There is a sheaf morphism

Gm
(−)n

- Gm

and we denote its kernel by µn. As C ∈ commalg is a C-algebra we can identify
µn with the constant sheaf Zn = Z/nZ via the isomorphism ζi 7→ i after choosing
a primitive n-th root of unity ζ ∈ C. The Kummer sequence of sheaves of Abelian
groups

0 - µn - Gm
(−)n

- Gm
- 0
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is exact on Cet (but not necessarily on spec C with the Zariski topology). We
only need to verify surjectivity. Let B ∈ Cet and b ∈ Gm(B) = B∗. Consider the
étale extension B′ = B[t]/(tn − b) of B, then b has an n-th root over in Gm(B′).
Observe that this n-th root does not have to belong to Gm(B).

Example 86. Using the notation of example 81 we have the following inter-
pretation of Abelian sheaves on Ket. Let G be a presheaf on Ket. Define

MG = lim- G(L)

where the limit is taken over all subfields L ⊂ K which are finite over K. The Galois
group GK acts on G(L) on the left through its action on L whenever L/K is Galois.
Hence, GK acts an MG and MG = ∪MH

G where H runs through the open subgroups
(that is, containing a normal subgroup having a finite quotient) of GK . That is,
MG is a continuous GK-module . Conversely, given a continuous GK-module M we
define a presheaf GM on Ket by taking GM (L) = MH where H = GL = Gal(K/L)
and GM (

∏
Li) =

∏
GM (Li) for an arbitrary étale extension. One verifies that GM

is a sheaf of Abelian groups on Ket.
There is an equivalence of categories between sheaves an Ket and continuous

GK-modules
S(Ket)

-� GK − mod

induced by the correspondences G 7→MG and M 7→ GM . Indeed, a GK-morphism
M - M ′ induces a morphism of sheaves GM

- GM ′ . Conversely, if H is
an open subgroup of GK with L = KH , then if G φ- G′ is a sheafmorphism,
φ(L) : G(L) - G′(L) commutes with the action of GK by functoriality of φ.
Therefore, lim

→
φ(L) is a GK-morphism MG - MG′ . One verifies easily that

HomGK
(M,M ′) - Hom(GM ,GM ′) is an isomorphism and that the canonical

map G - GMG is an isomorphism.

Definition 66. Let A be an Abelian category. An object I of A is said to be
injective if the functor

A - abelian M 7→ HomA(M, I)

is exact. We say that A has enough injectives if, for every object M in A, there
is a monomorphism M ⊂ - I into an injective object. If A has enough injectives
and f : A - B is a left exact functor from A into a second Abelian category B,
then there is an essentially unique sequence of functors

Ri f : A - B i ≥ 0

called the right derived functors of f satisfying the following properties
(1) R0 f = f
(2) Ri I = 0 for I injective and i > 0
(3) For every short exact sequence in A

0 - M ′ - M - M” - 0

there are connecting morphisms δi : Ri f(M”) - Ri+1 f(M ′) for i ≥ 0
such that we have a long exact sequence

. . . - Ri f(M) - Ri f(M”)
δi

- Ri+1 f(M ′) - Ri+1 f(M) - . . .

(4) For any morphismM - N there are morphisms Ri f(M) - Ri f(N)
for i ≥ 0
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To compute the objects Ri f(M) define an object N in A to be f -acyclic if
Ri f(M) = 0 for all i > 0. If we have an acyclic resolution of M

0 - M - N0
- N1

- N2
- . . .

by f -acyclic object Ni, then the objects Ri f(M) are canonically isomorphic to the
cohomology objects of the complex

0 - f(N0) - f(N1) - f(N2) - . . .

One can show that all injectives are f -acyclic and hence that derived objects of M
can be computed from an injective resolution of M .

Definition 67. Let Sab(Cet) be the category of all sheaves of Abelian groups
on Cet. This is an Abelian category having enough injectives whence we can form
right derived functors of left exact functors. In particular, consider the global
section functor

Γ : Sab(Cet) - Ab G 7→ G(C)
which is left exact. The right derived functors of Γ will be called the étale coho-
mology functors and we denote

Ri Γ(G) = Hi
et(C,G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 - G′ - G - G” - 0, then we have a long exact cohomology se-
quence

. . . - Hi
et(C,G) - Hi

et(C,G”) - Hi+1
et (C,G′) - . . .

Example 87. The category GK − mod of continuous GK-modules is Abelian
having enough injectives. Therefore, the left exact functor

(−)G : GK − mod - abelian

admits right derived functors. They are called the Galois cohomology groups and
denoted

Ri MG = Hi(GK ,M)
For any sheaf of Abelian groups G on Ket we have a group isomorphism

Hi
et(K,G) ' Hi(GK ,G(K))

Therefore, étale cohomology is a natural extension of Galois cohomology to arbi-
trary algebras.

For applications in noncommutative algebra and geometry G will often be a
sheaf of automorphism groups which are usually not Abelian. In this case we
cannot define cohomology groups. Still, we can define a first cohomology pointed
set H1

et(C,G).

Definition 68. If G is a sheaf of not necessarily Abelian groups on Cet, then
for an étale cover C = {C - Ci} of C define a 1-cocycle for C with values in G
to be a family

gij ∈ G(Cij) with Cij = Ci ⊗C Cj
satisfying the cocycle condition

(gij | Cijk)(gjk | Cijk) = (gik | Cijk)
where Cijk = Ci ⊗C Cj ⊗C Ck.
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Two cocycles g and g′ for C are said to be cohomologous if there is a family
hi ∈ G(Ci) such that for all i, j ∈ I we have

g′ij = (hi | Cij)gij(hj | Cij)−1

This is an equivalence relation and the set of cohomology classes is written as
H1
et(C,G). It is a pointed set having as its distinguished element the cohomology

class of gij = 1 ∈ G(Cij) for all i, j ∈ I.
We then define the non-Abelian first cohomology pointed set to be

H1
et(C,G) = lim- H1

et(C,G)

where the limit is taken over all étale coverings of C. It coincides with the previous
definition in case G is Abelian.

A sequence 1 - G′ - G - G” - 1 of sheaves of non necessarily
Abelian groups on Cet is said to be exact if for every B ∈ Cet we have that G′(B) =
Ker G(B) - G”(B) and for every g” ∈ G”(B) there is a cover {B - Bi} in
Cet and sections gi ∈ G(Bi) such that gi maps to g” | B.

Theorem 57. For an exact sequence of groups on Cet

1 - G′ - G - G” - 1

there is associated an exact sequence of pointed sets

1 - G′(C) - G(C) - G”(C)
δ- H1

et(C,G′) -

- H1
et(C,G) - H1

et(C,G”) ........- H2
et(C,G′)

where the last map exists when G′ is contained in the center of G (and therefore is
Abelian whence H2 is defined).

Proof. The connecting map δ is defined as follows. Let g” ∈ G”(C) and let
C = {C - Ci} be an étale covering of C such that there are gi ∈ G(Ci) that map
to g | Ci under the map G(Ci) - G”(Ci). Then, δ(g) is the class determined by
the one cocycle

gij = (gi | Cij)−1(gj | Cij)
with values in G′. The last map can be defined in a similar manner, the other maps
are natural and one verifies exactness. �

Let A be a not necessarily commutative C-algebra and M an C-module. Con-
sider the sheaves of groups Aut(A) resp. Aut(M) on Cet associated to the presheaves

B 7→ AutB−alg(A⊗C B) resp. B 7→ AutB−mod(M ⊗C B)

for all B ∈ Cet. A twisted form of A (resp. M) is an C-algebra A′ (resp. an
C-module M ′) such that there is an étale cover C = {C - Ci} of C such that
there are isomorphisms {

A⊗C Ci
φi- A′ ⊗C Ci

M ⊗C Ci
ψi- M ′ ⊗C Ci

of Ci-algebras (resp. Ci-modules). The set of C-algebra isomorphism classes (resp.
C-module isomorphism classes) of twisted forms of A (resp. M) is denoted by
TwC(A) (resp. TwC(M)). To a twisted form A′ one associates a cocycle on C

αA′ = αij = φ−1
i ◦ φj
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with values in Aut(A). Moreover, one verifies that two twisted forms are isomorphic
as C-algebras if their cocycles are cohomologous. That is, there are embeddings{

TwC(A) ⊂ - H1
et(C, Aut(A))

TwC(M) ⊂ - H1
et(C, Aut(M))

In favorable situations one can even show bijectivity. In particular, this is the case
if the automorphisms group is a smooth affine algebraic group-scheme.

Example 88. GLr is an affine smooth algebraic group defined over K and
is the automorphism group of a vectorspace of dimension r. It defines a sheaf of
groups on Ket that we will denote by GLr. Because the first cohomology classifies
twisted forms of vectorspaces of dimension r and there is just one such class, we
have

H1
et(K, GLr) = H1(GK , GLr(K)) = 0

In particular, we have ’Hilbert’s theorem 90’

H1
et(K,Gm) = H1(GK ,K∗) = 0

Example 89. Let A be a finite dimensional K-algebra. It is classical, see for
example [51], that the following are equivalent :

(1) A has no proper twosided ideals and the center of A is K.
(2) AK = A⊗K K 'Mn(K) for some n.
(3) AL = A⊗K L 'Mn(L) for some n and some finite Galois extension L/K.
(4) A 'Mk(D) for some k where D is a division algebra of dimension l2 with

center K.
An algebra satisfying these properties is said to be a central simple algebra over K.

PGLn is an affine smooth algebraic group defined over K and is the automor-
phism group of the K-algebra Mn(K). It defines a sheaf of groups on Ket denoted
by PGLn. By the above equivalences any central simple K-algebra ∆ of dimension
n2 is a twisted form of Mn(K). Therefore, the pointed set

H1
et(K, PGLn) = H1(GK , PGLn(K))

classifies the central simple K-algebras of dimension n2.

Definition 69. If A and B are central simple K-algebras, then so is A⊗KB by
example 89 (2). We say that two central simple K-algebras A and B are equivalent
iff

A 'Ma(D) and B 'Mb(D)
for a finite dimensional division algebra D with center K. The tensorproduct
induces a groupstructure on the equivalence classes of central simple K-algebras,
Br(K), called the Brauer group of the field K.

The unit element of Br(K) is [K] and the inverse of [A] is the equivalence class
of the opposite algebra [Aop] as A⊗K Aop 'Ml2(K) if A is of dimension l2.

Theorem 58. There is a natural inclusion

H1
et(K, PGLn) ⊂ - H2

et(K,µn) = Brn(K)

where Brn(K) is the n-torsion part of the Brauer group of K. Moreover,

Br(K) = H2
et(K,Gm)

is a torsion group.
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1 1

1 - µn
?

- Gm

?
(−)n

- Gm
- 1

||

1 - SLn
?

- GLn
?

det - Gm
- 1

PGLn
?

= PGLn
?

1
?

1
?

Figure 2. Brauer group diagram.

Proof. Consider the exact commutative diagram of sheaves of groups on Ket
of figure 2. Taking cohomology of the second exact sequence we obtain

GLn(K)
det- K∗ - H1

et(K, SLn) - H1
et(K, GLn)

where the first map is surjective and the last term is zero, whence

H1
et(K, SLn) = 0

Taking cohomology of the first vertical exact sequence we get

H1
et(K, SLn) - H1

et(K, PGLn) - H2
et(K,µn)

from which the first claim follows.
As for the second assertion, taking cohomology of the first exact sequence we

get
H1
et(K,Gm) - H2

et(K,µn) - H2
et(K,Gm)

n.- H2
et(K,Gm)

By Hilbert 90, the first term vanishes and hence H2
et(K,µn) is equal to the n-torsion

of the group
H2
et(K,Gm) = H2(GK ,K∗) = Br(K)

where the last equality is the crossed product theorem , see for example [51]. �

In noncommutative geometry, the field K will be the functionfield of an alge-
braic variety and Br(K) gives a measure for the noncommutative function skew-
fields having center K. These Brauer groups are usually huge objects and their
description contains a lot of geometric/combinatorial data about a smooth model
of K. The dimension of the variety puts a bound on the size of the Galois group
GK and hence limits the non-zero Galois cohomology groups.
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Definition 70. A field K is said to be a Tsen.d-field if every homogeneous
form of degree deg with coefficients in K and n > degd variables has a non-trivial
zero in K.

Example 90. An algebraically closed field K is a Tsen.0-field as any form in
n-variables defines a hypersurface in Pn−1

K . In fact, algebraic geometry tells us a
stronger story : if f1, . . . , fr are forms in n variables over K and n > r, then these
forms have a common non-trivial zero in K. Indeed, every fi defines a hypersurface
V (fi) ⊂ - Pn−1

K . The intersection of r hypersurfaces has dimension ≥ n − 1 − r
from which the claim follows.

In fact, one can extend this to higher Tsen-fields. Let K be a Tsen.d-field
and f1, . . . , fr forms in n variables of degree deg. If n > rdegd, then they have a
non-trivial common zero in K. See [64] for a proof.

Theorem 59. Let K be of transcendence degree d over an algebraically closed
field C, then K is Tsen.d.

Proof. First we claim that the purely transcendental field C(t1, . . . , td) is a
Tsen.d. By induction we have to show that if L is Tsen.k, then L(t) is Tsen.k+1.

By homogeneity we may assume that f(x1, . . . , xn) is a form of degree deg with
coefficients in L[t] and n > degk+1. For fixed s we introduce new variables y(s)

ij with
i ≤ n and 0 ≤ j ≤ s such that

xi = y
(s)
i0 + y

(s)
i1 t+ . . .+ y

(s)
is t

s

If r is the maximal degree of the coefficients occurring in f , then we can write

f(xi) = f0(y
(s)
ij ) + f1(y

(s)
ij )t+ . . .+ fdeg.s+r(y

(s)
ij )tdeg.s+r

where each fj is a form of degree deg in n(s+1)-variables. By the previous example,
these forms have a common zero in L provided

n(s+ 1) > degk(ds+ r + 1)⇐⇒ (n− degi+1)s > degi(r + 1)− n

which can be satisfied by taking s large enough. the common non-trivial zero in L
of the fj , gives a non-trivial zero of f in L[t].

By assumption, K is an algebraic extension of C(t1, . . . , td) which by the above
argument is Tsen.d. As the coefficients of any form over K lie in a finite extension
E of C(t1, . . . , td) it suffices to prove that E is Tsen.d.

Let f(x1, . . . , xn) be a form of degree deg in E with n > degd. Introduce new
variables yij with

xi = yi1e1 + . . . yikek

where ei is a basis of E over C(t1, . . . , td). Then,

f(xi) = f1(yij)e1 + . . .+ fk(yij)ek

where the fi are forms of degree deg in k.n variables over C(t1, . . . , td). Because
C(t1, . . . , td) is Tsen.d, these forms have a common zero as k.n > k.degd. Finding
a non-trivial zero of f in E is equivalent to finding a common non-trivial zero to
the f1, . . . , fk in C(t1, . . . , td), done. �

Theorem 60 (Tsen’s theorem). Let K be the functionfield of a curve C defined
over an algebraically closed field. Then, the only central simple K-algebras are
Mn(K). That is, Br(K) = 1.
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Proof. Assume there exists a central division algebra ∆ of dimension n2 over
K. There is a finite Galois extension L/K such that ∆⊗L = Mn(L). If x1, . . . , xn2

is a K-basis for ∆, then the reduced norm of any x ∈ ∆,

N(x) = det(x⊗ 1)

is a form in n2 variables of degree n. Moreover, as x ⊗ 1 is invariant under the
action of Gal(L/K) the coefficients of this form actually lie in K.

By the previous theorem, K is Tsen.1 andN(x) has a non-trivial zero whenever
n2 > n. As the reduced norm is multiplicative, this contradicts N(x)N(x−1) = 1.
Hence, n = 1 and the only central division algebra is K itself. �

Example 91. If K is the functionfield of a surface, and if ∆ is a central simple
K-algebra of dimension n2, then the reduced norm map

N : ∆ - K

is surjective. For, let e1, . . . , en2 be a K-basis of ∆ and k ∈ K, then

N(
∑

xiei)− kxnn2+1

is a form of degree n in n2 + 1 variables. Since K is Tsen.2, it has a non-trivial
solution (x0

i ), but then, δ = (
∑
x0
i ei)x

−1
n2+1 has reduced norm equal to k.

Definition 71. The cohomological dimension of a group G, cd(G) ≤ d if and
only if Hr(G,A) = 0 for all r > d and all torsion modules A ∈ G-mod.

A field K is said to be a Tate.d-field if the absolute Galois group GK =
Gal(K/K) has cohomological dimension d.

Example 92. We claim that cd(G) ≤ d if Hd+1(G,Z/pZ) = 0 for the simple
G-modules with trivial action Z/pZ.

To start, one can show that a profinite group G (that is, a projective limit of
finite groups, see [64] for more details) has cd(G) ≤ d if and only if

Hd+1(G,A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we can
decompose the cohomology in its p-primary parts and relate their vanishing to the
cohomological dimension of the p-Sylow subgroups Gp of G. This problem can then
be verified by computing cohomology of finite simple Gp-modules of p-power order,
but for a profinite p-group there is just one such module namely Z/pZ with the
trivial action proving the claim.

We will encounter many spectral sequences so it may be useful to recall their
definition in some detail.

Definition 72. A spectral sequence Ep.q2 =⇒ En (or Ep,q1 =⇒ En) consists of
the following data :

A family of objects Ep,qr in an Abelian category for p, q, r ∈ Z such that p, q ≥ 0
and r ≥ 2 (or r ≥ 1).

A family of morphisms in the Abelian category

dp.qr : Ep.qr - Ep+r,q−r+1
r

satisfying the complex condition

dp+r,q−r+1
r ◦ dp,qr = 0
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and where we assume that dp.qr = 0 if any of the numbers p, q, p+ r or q − r + 1 is
< 1. At level one we have the following

Ep,q1 =
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•

•

•
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At level two we have the following

Ep,q2 =
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The objects Ep,qr+1 on level r+ 1 are derived from those on level r by taking the
cohomology objects of the complexes, that is,

Epr+1 =
Ker dp,qr

Im dp−r,q+r−1
r

At each place (p, q) this process converges as there is an integer r0 depending on
(p, q) such that for all r ≥ r0 we have dp.qr = 0 = dp−r,q+r−1

r . We then define

Ep,q∞ = Ep,qr0 (= Ep,qr0+1 = . . .)

Observe that there are injective maps E0,q
∞

⊂ - E0,q
2 .

A family of objects En for integers n ≥ 0 and for each we have a filtration

0 ⊂ Enn ⊂ Enn−1 ⊂ . . . ⊂ En1 ⊂ En0 = En

such that the successive quotients are given by

Enp / E
n
p+1 = Ep,n−p∞
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That is, the terms Ep,q∞ are the composition terms of the limiting terms Ep+q.

Ep,q∞ =
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Theorem 61. (Hochschild-Serre spectral sequence) If N is a closed normal
subgroup of a profinite group G, then

Ep,q2 = Hp(G/N,Hq(N,A)) =⇒ Hn(G,A)

holds for every continuous G-module A.

Theorem 62 (Tate). Let K be a field of transcendence degree d over an alge-
braically closed field, then K is Tate.d. In particular, if A is a constant sheaf of
an Abelian torsion group A on Ket, then

Hi
et(K,A) = 0

whenever i > trdegC(K).

Proof. Let C denote the algebraically closed basefield, then K is algebraic
over C(t1, . . . , td) and therefore

GK ⊂ - GC(t1,...,td)

Thus, K is Tate.d if C(t1, . . . , td) is Tate.d. By induction it suffices to prove that
if cd(GL) ≤ k then cd(GL(t)) ≤ k + 1. Let L be the algebraic closure of L and M
the algebraic closure of L(t). As L(t) and L are linearly disjoint over L we have
the following diagram of extensions and Galois groups

L ⊂ - L(t) ⊂
GL(t) - M

L

GL

∪

6

⊂ - L(t)

GL

∪

6

⊂

GL
(t
)

-

where GL(t)/GL(t) ' GL.
We claim that cd(GL(t)) ≤ 1. Consider the exact sequence of GL(t)-modules

0 - µµµp - M∗ (−)p

- M∗ - 0

where µµµp is the subgroup (of C∗) of p-roots of unity. As GL(t) acts trivially on
µµµp it is after a choice of primitive p-th root of one isomorphic to Z/pZ. Taking
cohomology with respect to the subgroup GL(t) we obtain

0 = H1(GL(t),M∗) - H2(GL(t),Z/pZ) - H2(GL(t),M∗) = Br(L(t))
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But the last term vanishes by Tsen’s theorem as L(t) is the functionfield of a curve
defined over the algebraically closed field L. Therefore, H2(GL(t),Z/pZ) = 0 for all
simple modules Z/pZ, whence cd(GL(t)) ≤ 1.

By the inductive assumption we have cd(GL) ≤ k and now we are going to use
exactness of the sequence

0 - GL - GL(t)
- GL(t)

- 0

to prove that cd(GL(t)) ≤ k+ 1. For, let A be a torsion GL(t)-module and consider
the Hochschild-Serre spectral sequence

Ep,q2 = Hp(GL,Hq(GL(t), A)) =⇒ Hn(GL(t), A)

By the restrictions on the cohomological dimensions of GL and GL(t) the level two
term has following shape

Ep,q2 =

6
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•
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•
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where the only non-zero groups are lying in the lower rectangular region. Therefore,
all Ep,q∞ = 0 for p+q > k+1. Now, all the composition factors of Hk+2(GL(t), A) are
lying on the indicated diagonal line and hence are zero. Thus, Hk+2(GL(t), A) = 0
for all torsion GL(t)-modules A and hence cd(GL(t)) ≤ k + 1. �

We need to classify all central simple algebras Σ of dimension n2 over the
function field K of transcendence degree d. For large dimensions d this is a hopeless
task. Still, étale cohomology can be used to go a long way towards this goal and
for small d one does get a nice description.

The first tool we need is the Leray spectral sequence . Assume we have an
algebra morphism C

f- C ′ and a sheaf of groups G on C’et. We define the direct
image of G under f to be the sheaf of groups f∗ G on Cet defined by

f∗ G(B) = G(B ⊗C C ′)

for all B ∈ Aet (recall that B ⊗C C ′ ∈ C’et so the right hand side is well defined).
This gives us a left exact functor

f∗ : Sab(C’et) - Sab(Cet)

and therefore there exist right derived functors Ri f∗. If G is an Abelian sheaf on
C’et, then Ri f∗G is a sheaf on Cet. One verifies that its stalk in a prime ideal p is
equal to

(Ri f∗G)p = Hi
et(C

sh
p ⊗C C ′,G)

where the right hand side is the direct limit of cohomology groups taken over all
étale neighborhoods of p. We can relate cohomology of G and f∗G by the following
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Theorem 63. (Leray spectral sequence) If G is a sheaf of Abelian groups on
C’et and C

f- C ′ an algebra morphism. Then, there is a spectral sequence

Ep,q2 = Hp
et(C,R

q f∗G) =⇒ Hn
et(C

′,G)

In particular, if Rj f∗G = 0 for all j > 0, then for all i ≥ 0 we have isomorphisms

Hi
et(C, f∗G) ' Hi

et(C
′,G)

Proof. See for example [47, III.Thm.1.18]. �

We will use it to relate étale cohomology overK to that over a discrete valuation
ring C in K with residue field k = C

m , that is we have algebra morphisms

C
i - K

k

π

?

From section 5.1 we recall that the n-torsion part of the Brauer groups of K and k
are given by the étale (or Galois) cohomology groups

H2
et(K,µn) resp. H2

et(k, µn)

and we like to deduce information on Brn(C).

Theorem 64. There is a long exact sequence of groups

0 - H1
et(C, µ

⊗l
n ) - H1

et(K,µ
⊗l
n ) - H0

et(k, µ
⊗l−1
n ) -

H2
et(A,µ

⊗l
n ) - H2

et(K,µ
⊗l
n ) - H1

et(k, µ
⊗l−1
n ) - . . .

Proof. By considering the Leray spectral sequence for the inclusion i we claim
that the following equalities hold :

(1) R0 i∗µ
⊗l
n ' µ⊗ln on Cet.

(2) R1 i∗µ
⊗l
n ' µ⊗l−1

n concentrated in m.
(3) Rj i∗µ⊗ln ' 0 whenever j ≥ 2.

Indeed, the strict Henselizations of C at the two primes {0,m} are resp.

Csh0 ' K and Cshm ' k{t}
where K (resp. k) is the algebraic closure of K (resp. k). Therefore,

(Rj i∗µ⊗ln )0 = Hj
et(K, µ⊗ln )

which is zero for i ≥ 1 and µ⊗ln for j = 0. Further, Cshm ⊗CK is the field of fractions
of k{t} and hence is of transcendence degree one over the algebraically closed field
k, whence

(Rj i∗µ⊗ln )m = Hj
et(L, µ

⊗l
n )

which is zero for j ≥ 2 because L is a Tate.1-field.
For the field-tower K ⊂ L ⊂ K we have that GL = Ẑ = lim

←
µm because the

only Galois extensions of L are the Kummer extensions obtained by adjoining m
√
t.

But then,

H1
et(L, µ

⊗l
n ) = H1(Ẑ, µ⊗ln (K)) = Hom(Ẑ, µ⊗ln (K)) = µ⊗l−1

n

from which the claims follow.
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0 0 0 . . .

H0
et(k, µ

⊗l−1
n ) H1

et(k, µ
⊗l−1
n ) H2

et(k, µ
⊗l−1
n ) . . .

H0
et(C, µ

⊗l
n ) H1

et(C, µ
⊗l
n ) H2

et(C, µ
⊗l
n ) . . .

Figure 3. Second term of Leray spectral sequence.

0 0 0 . . .

Ker α1 Ker α2 Ker α3 . . .

H0
et(C, µ

⊗l
n ) H1

et(C, µ
⊗l
n ) Coker α1 . . .

Figure 4. Limiting term of the Leray spectral sequence.

Therefore, the second term of the Leray spectral sequence for i∗µ⊗ln has the
shape given in figure 3 with connecting morphisms

Hi−1
et (k, µ⊗l−1

n )
αi- Hi+1

et (C, µ⊗ln )

The spectral sequences converges to its limiting term given in figure 4 The previous
theorem gives us the short exact sequences

0 - H1
et(C, µ

⊗l
n ) - H1

et(K,µ
⊗l
n ) - Ker α1

- 0

0 - Coker α1
- H2

et(K,µ
⊗l
n ) - Ker α2

- 0

0 - Coker αi−1
- Hi

et(K,µ
⊗l
n ) - Ker αi - 0

Gluing these sequences gives us the required result. �

We will extend the definition of étale cohomology to the setting of arbitrary
(non-affine) schemes.

Definition 73. A morphism of schemes

Y
f- X
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is said to be an étale extension (resp. cover) if locally f is of the form

fa | Ui : Ci = Γ(Ui,OX) - C ′i = Γ(f−1(Ui),OY )

with Ci - C ′i an étale extension (resp. cover) of algebras.
The étale site of X is also defined locally and will be denoted byXet. Presheaves

and sheaves of groups on Xet are defined similarly and the right derived functors
of the left exact global sections functor

Γ : Sab(Xet) - abelian

will be called the cohomology functors and denoted

Ri Γ(G) = Hi
et(X,G)

If X is a smooth, irreducible projective variety of dimension d over C, we can
initiate the computation of the cohomology groups Hi

et(X,µ
⊗l
n ) via Galois coho-

mology of functionfields of subvarieties using the coniveau spectral sequence :

Theorem 65 (Coniveau spectral sequence). Let X be a smooth irreducible vari-
ety over C. Let X(p) denote the set of irreducible subvarieties x of X of codimension
p with functionfield C(x). Then, there exists a coniveau spectral sequence

Ep.q1 =
⊕

x∈X(p)

Hq−p
et (C(x), µ⊗l−pn ) =⇒ Hp+q

et (X,µ⊗ln )

relating Galois cohomology of the functionfields to the étale cohomology of X.

Proof. Unlike the spectral sequences used before, the existence of the coniveau
spectral sequence by no means follows from general principles. A lot of heavy
machinery on étale cohomology of schemes is used in the proof. In particular, the
cohomology groups with support of a closed subscheme, see for example [47, p.
91-94], and cohomological purity and duality, see [47, p. 241-252]. For a detailed
exposition we refer the reader to [8]. �

Example 93. By the results of section 5.1 on cohomological dimension and
vanishing of Galois cohomology of µ⊗kn when the index is larger than the tran-
scendence degree, we deduce that the non-zero terms of the coniveau spectral are
restricted to the triangular shaped region of figure 5

Example 94. Consider the connecting morphisms of the coniveau spectral
sequence, a typical instance of which is⊕

x∈X(p)

Hi(C(x), µ⊕l−pn ) -
⊕

y∈X(p+1)

Hi−1(C(y), µ⊕l−p−1
n )

Take one of the closed irreducible subvarieties x of X of codimension p and one
y of codimension p + 1. Then, either y is not contained in x in which case the
component map

Hi
et(C(x), µ⊕l−pn ) - Hi−1

et (C(y), µ⊕l−p−1
n )

is the zero map, or, y is contained in x and hence defines a codimension one subva-
riety of x. That is, y defines a discrete valuation on C(x) with residue field C(y).
In this case, the component map is the connecting morphism of theorem 64.
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Figure 5. Coniveau spectral sequence

µn 0 0 0

0 0

0

00 0 0

H1(C(S), µn) ⊕C Zn

H2(C(S), µn) ⊕P µ−1
n⊕CH1(C(S), Zn)

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

Figure 6. The coniveau spectral sequence for a surface S.

Example 95. In particular, let K be the functionfield of X. Then we can
define the unramified cohomology groups

F i,ln (K/C) = Ker Hi(K,µ⊗ln )
⊕∂i,A- ⊕Hi−1(kA, µ⊗l−1

n )

where the sum is taken over all discrete valuation rings A of K (or equivalently, the
irreducible codimension one subvarieties of X) with residue field kA. By definition,
this is a (stable) birational invariant of X. In particular, if X is (stably) rational
over C, then

F i,ln (K/C) = 0 for all i, l ≥ 0

Example 96. The Brauer group of the function field of a smooth irreducible
projective surface S. The first term of the coniveau spectral sequence for S has
the shape of figure 6 where C runs over all irreducible curves on S and P over all
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points of S. We claim that the connecting morphism

H1(C(S), µn)
γ- ⊕C Zn

is surjective. Indeed, from the Kummer sequence describing µn as the kernel of
Gm

(−)n

- Gm and Hilbert 90 we have that

H1
et(C(S), µn) = C(S)∗/C(S)∗n

The claim follows from the exact diagram below describing divisors of rational
functions

µµµn ' µµµn 0

0 - C∗
?

- C(S)∗
?

div- ⊕CZ
?

- 0

0 - C∗
?

- C(S)∗

(−)n

?
div- ⊕CZ

n.

?
- 0

0
?

⊕CZn
?

' ⊕CZn
?

By the coniveau spectral sequence H1
et(S, µn) is the kernel of γ and in particular,

H1
et(S, µn) ⊂ - H1(C(S), µn).

Assume in addition that S is simply connected , that is, every étale cover
Y -- S is trivial (Y is the finite disjoint union of copies of S). As an element
in H1

et(S, µn) determines a cyclic extension L = C(S) n
√
f with f ∈ C(S)∗/C(S)∗n

such that in each fieldcomponent Li of L there is an étale cover Ti - S with
C(Ti) = Li. If S is simply connected, nontrivial étale covers do not exist whence
f = 1 ∈ C(S)∗/C(S)∗n or H1

et(S, µn) = 0.
We now invoke another major tool in étale cohomology of schemes, Poincaré

duality , see for example [47, VI,§11]. If S is simply connected, then
(1) H0

et(S, µn) = µn
(2) H1

et(S, µn) = 0
(3) H3

et(S, µn) = 0
(4) H4

et(S, µn) = µ−1
n

The third claim follows from the second as both groups are dual to each other. The
last claim follows from the fact that for any smooth irreducible projective variety
X of dimension d one has that

H2d
et (X,µn) ' µ⊗1−d

n

We are now in a position to state and prove the important

Theorem 66. (Artin-Mumford exact sequence) Let S be a simply connected
smooth projective surface. Then, there is an exact sequence of groups

0 - Brn(S) - Brn(C(S)) - ⊕C C(C)∗/C(C)∗n -
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µn 0 0 0

0 0

0

00 0 0

Ker γ Coker γ

Ker α Coker βKer β/Im α
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Figure 7. Limiting term for a surface S.

- ⊕P µ−1
n

- µ−1
n

- 0

Proof. The top complex in the first term of the coniveau spectral sequence
for S is

H2(C(S), µn)
α- ⊕C H1(C(C),Zn)

β- ⊕P µn
The second term of the spectral sequence (which is also the limiting term) is given
in figure 7 We know already that Coker γ = 0. By Poincare duality we have that
Ker β = Im α and Coker β = µ−1

n . Hence, the top complex is exact in its middle
term and can be extended to an exact sequence

0 - H2
et(S, µn) - H2

et(C(S), µn) - ⊕C H1
et(C(C),Zn) -

⊕Pµ−1
n

- µ−1
n

- 0
The third term is equal to ⊕CC(C)∗/C(C)∗n and the second term we remember to
be the n-torsion part of the Brauer group Brn(C(S). The identification of Brn(S)
with H2

et(S, µn) follows from Gabber’s theorem and will be explained below. �

Example 97. The Brauer group of C(x, y). If S = P2 we have that Brn(P2) =
0 as Brn(P2) is the birational invariant F 2,1

n (C(x, y)/C). From the exact sequence

0 - Brn C(x, y) - ⊕C C(C)∗/C(C)∗n - ⊕P µ−1
n

- µn - 0

we obtain a description of Brn C(x, y) by a certain geo-combinatorial package which
we call a Zn-wrinkle over P2. A Zn-wrinkle is determined by

• A finite collection C = {C1, . . . , Ck} of irreducible curves in P2, that is,
Ci = V (Fi) for an irreducible form in C[X,Y, Z] of degree di.

• A finite collection P = {P1, . . . , Pl} of points of P2 where each Pi is either
an intersection point of two or more Ci or a singular point of some Ci.

• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ
and {1, . . . , iP } the different branches of C in P . These numbers must
satisfy the admissibility condition∑

i

bi = 0 ∈ Zn

for every P ∈ P
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• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C which is compatible with the branch-data.
That is, if Q ∈ C̃ corresponds to a C-branch bi in P , then D is ramified
in Q with stabilizer subgroup

StabQ = 〈bi〉 ⊂ Zn
For example, a portion of a Z4-wrinkle can have the following picture

@@�� B
B
B
B
B�
�
�
�
�

��@@
@@��

@@��
��@@

��@@ �
�
�
�
�B
B
B
B
B

0

2

1

3

D

C̃
0 2 1
• • •

Clearly, the cover-data is the most intractable part of a Zn-wrinkle, so we need
some control on the covers D -- C̃. Let {Q1, . . . , Qz} be the points of C̃ where
the cover ramifies with branch numbers {b1, . . . , bz}, then D is determined by a
continuous module structure (that is, a cofinite subgroup acts trivially) of

π1(C̃ − {Q1, . . . , Qz}) on Zn
where the fundamental group of the Riemann surface C̃ with z punctures is known
(topologically) to be equal to the group

〈u1, v1, . . . , ug, vg, x1, . . . , xz〉/([u1, v1] . . . [ug, vg]x1 . . . xz)

where g is the genus of C̃. The action of xi on Zn is determined by multiplication
with bi. In fact, we need to use the étale fundamental group, see [47], but this group
has the same finite continuous modules as the topological fundamental group.

For example, if C̃ = P1 then g = 0 and hence π1(P1 − {Q1, . . . , Qz} is zero if
z ≤ 1 (whence no covers exist) and is Z if z = 2. Hence, there exists a unique cover
D -- P1 with branch-data (1,−1) in say (0,∞) namely with D the normalization
of P1 in C( n

√
x).

If C̃ = E an elliptic curve, then g = 1. Hence, π1(C) = Z⊕ Z and there exist
unramified Zn-covers. They are given by the isogenies

E′ -- E

where E′ is another elliptic curve and E = E′/〈τ〉 where τ is an n-torsion point on
E′.

In general, an n-fold cover D -- C̃ is determined by a function f ∈
C(C)∗/C(C)∗n. This allows us to put a group-structure on the equivalence classes
of Zn-wrinkles. In particular, we call a wrinkle trivial provided all coverings
Di

-- C̃i are trivial (that is, Di is the disjoint union of n copies of C̃i). The
Artin-Mumford theorem for P2 can now be stated as :
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Figure 8. Second term for a smooth rational projective X.

If ∆ is a central simple C(x, y)-algebra of dimension n2, then ∆ determines
uniquely a Zn-wrinkle on P2. Conversely, any Zn-wrinkle on P2 determines a
unique division C(x, y)- algebra whose class in the Brauer group has order n.

Example 98. The Brauer group of a smooth irreducible rational projective va-
riety X of dimension d. Using the fact that the birational invariants F i,jn (C(X)/C)
vanish when i > 0 we deduce, with notation as below for the second row of the first
term of the coniveau spectral sequence

H2
et(C(X).µn)

α- ⊕
codim(H)=1

H1
et(C(H),Z/nZ)

β- ⊕
codimh=2

µ−1
n

that the second term is given by figure 8 The terms on the third diagonal are also
the limiting terms. That is, by the coniveau spectral theorem we have that the
obstruction to the exactness of the sequence

0 - H2
et(C(X).µn)

α- ⊕
codim(H)=1

H1
et(C(H),Z/nZ)

β- ⊕
codimh=2

µ−1
n

in the H1-term is isomorphic to the étale cohomology group H3
et(X,µn). That is,

this group describes the obstruction to Zn-wrinkles on X describing Brn(C(X)).

5.2. Etale slices.

In this section we will prove that the étale local structure of alg-smooth
algebras is determined by path algebras of quivers. The proof uses the étale slice
theorem due to Domingo Luna [44]. We start by recalling the formulation of the
slice theorem in differential geometry.

Let M be a compact C∞-manifold with a smooth action of a compact Lie group
G. By the usual averaging process we can define a G-invariant Riemannian metric
on M . For a point m ∈M we define

• The G-orbit O(m) = G.m of m in M ,
• the stabilizer subgroup H = StabG(m) = {g ∈ G | g.m = m} and
• the normal space Nm defined to be the orthogonal complement to the

tangent space in m to the orbit in the tangent space to M . That is, we
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have a decomposition of H-vectorspaces

Tm M = Tm O(m)⊕Nm

The normal spaces Nx when x varies over the points of the orbit O(m) define
a vectorbundle N p-- O(m) over the orbit. We identify the bundle with the
associated fiber bundle

N ' G×H Nm

Any point n ∈ N in the normal bundle determines a geodesic

γn : R - M defined by

{
γn(0) = p(n)
dγn

dt (0) = n

Using this geodesic we define a G-equivariant exponential map from the normal
bundle N to the manifold M via

N exp- M where exp(n) = γn(1)

•

YY222222

n

x

γn

O(m)

Nx

M

Now, take ε > 0 and define the C∞ slice Sε to be

Sε = {n ∈ Nm | ‖ n ‖< ε }

then G×H Sε is a G-stable neighborhood of the zero section in the normal bundle
N = G×H Nm. But then we have a G-equivariant exponential

G×H Sε
exp- M
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which for small enough ε gives a diffeomorphism with a G-stable tubular neighbor-
hood U of the orbit O(m) in M .

Nm

0•

ε

−ε

G/H

exp-

•m

O(m)

U

Nx

M

If we assume moreover that the action of G on M and the action of H on Nm
are such that the orbit-spaces are manifolds M/G and Nm/H, then we have the
situation

G×H Sε
exp

'
- U ⊂ - M

Sε/H

??

'
- U/G

??
⊂ - M/G

??

giving a local diffeomorphism between a neighborhood of 0 in Nm/H and a neigh-
borhood of the point m in M/G corresponding to the orbit O(m).

We want to have a similar description for the action of GLn by basechange
on the representation scheme repnA for an affine algebra A ∈ alg. Because the
exponential map is not a morphism in algebraic geometry we would like to replace
it by an étale map. Moreover, as the étale slices relate the local structure of two
quotient varieties, it is natural to restrict to points in which the stabilizer subgroup
is again a reductive group. This is the case for closed orbits. Surprisingly, these
mild restrictions allow the existence of an algebraic (étale ) slice. This was first
proved by Domingo Luna [44] in the case of reduced varieties and later, in general,
by Friedrich Knop [31]. Because representation schemes are often not reduced we
will follow Knop’s proof in the special case of interest to us, that is, when the acting
group is GLn (or a product GL(α) = GLe1 × . . .×GLek

).

We fix the following setting : afX and afY will be two affine GLn-schemes and
afY

ψ- afX will be a GLn-equivariant morphism. Consider points y ∈ afY and
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x = ψ(y) ∈ afX. We have the diagram of quotients

x = ψ(y) ∈ afX � ψ
afY � y

afX/GLn

πX

??
afY/GLn

πY

??

and assume the following restrictions :
• ψ is étale in y,
• the GLn-orbits O(y) in afY and O(x) in afX are closed.
• the stabilizer subgroups are equal Stab(x) = Stab(y).

In algebraic terms : consider the coordinate rings R = C[afX] and S = C[afY] and
the dual morphism R

ψ∗- S. Let I / R be the ideal describing the Zariski closed
set O(x) and J / S the ideal describing O(y). Let R̂ = lim

←
R
In and Ŝ = lim

←
S
Jn be

the I-adic resp. J-adic completions.

Theorem 67. With notations and restrictions as above, we have :
(1) The morphism ψ∗ induces an isomorphism

R

In
ψ∗- S

Jn

for all n. In particular, R̂ ' Ŝ.
(2) There are natural numbers m ≥ 1 (independent of the type s ∈ simpGLn)

and n ≥ 0 such that

Imk+n ∩R(s)
⊂ - (IGLn)kR(s)

⊂ - Ik ∩R(s)

for all k ∈ N.
(3) The morphism ψ∗ induces an isomorphism

R⊗RGLn R̂GLn
'- S ⊗SGLn ŜGLn

where R̂GLn is the IGLn-adic completion of RGLn and ŜGLn the JGLn-
adic completion of SGLn .

Proof. (1) : Let afZ be the closed GLn-stable subvariety of afY where ψ is
not étale. By the separation property, there is an invariant function f ∈ SGLn

vanishing on afZ such that f(y) = 1 because the two closed GLn-subschemes
afZ and O(y) are disjoint. Replacing S by Sf we may assume that ψ∗ is an étale
morphism. Because O(x) is smooth, ψ−1 O(x) is the disjoint union of its irreducible
components and restricting afY if necessary we may assume that ψ−1 O(x) = O(y).
But then J = ψ∗(I)S and as O(y)

'- O(x) we have R
I '

S
J so the result holds

for n = 1.
Because étale maps are flat, we have ψ∗(In)S = In ⊗R S = Jn and an exact

sequence

0 - In+1 ⊗R S - In ⊗R S - In

In+1
⊗R S - 0

But then we have
In

In+1
=

In

In+1
⊗R/I

S

J
=

In

In+1
⊗R S '

Jn

Jn+1
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and the result follows from induction on n and the commuting diagram

0 - In

In+1
- R

In+1
- R

In
- 0

0 - Jn

Jn+1

'

?

- S

Jn+1

?

............

- S

Jn

'

?

- 0

(2) : Consider A = ⊕∞i=0I
ntn ⊂ - R[t], then AGLn is affine so certainly finitely

generated as RGLn -algebra say by

{r1tm1 , . . . , rzt
mz} with ri ∈ R and mi ≥ 1.

Further, A(s) is a finitely generated AGLn -module, say generated by

{s1tn1 , . . . , syt
ny} with si ∈ R(s) and ni ≥ 0.

Take m = max mi and n = max ni and r ∈ Imk+n ∩R(s), then rtmk+n ∈ A(s) and

rtmk+n =
∑
j

pj(r1tm1 , . . . , rzt
mz )sjtnj

with pj a homogeneous polynomial of t-degree mk + n − nj ≥ mk. But then
each monomial in pj occurs at least with ordinary degree mk

m = k and therefore is
contained in (IGLn)kR(s)t

mk+n.
(3) : Let s be an irreducible GLn-module, then the IGLn-adic completion of

R(s) is equal to R̂(s) = R(s) ⊗RGLn R̂GLn . Moreover,

R̂(s) = lim
←

(
R

Ik
)(s) = lim

←

R(s)

(Ik ∩R(s))

which is the I-adic completion of R(s). By the foregoing lemma both topologies
coincide on R(s) and therefore

R̂(s) = R̂(s) and similarly Ŝ(s) = Ŝ(s)

Because R̂ ' Ŝ it follows that R̂(s) ' Ŝ(s) from which the result follows as the
foregoing holds for all s. �

Theorem 68. Take a GLn-equivariant map afY
ψ- afX, points y ∈ afY,

x = ψ(y) and assume that ψ is étale in y. Assume that the orbits O(x) and O(y)
are closed and that ψ is injective on O(y).

Then, there is an affine open subset U ⊂ - afY containing y such that

(1) U = π−1
Y (πY (U)) and πY (U) = U/GLn.

(2) ψ is étale on U with affine image.

(3) The induced morphism U/GLn
ψ- afX/GLn is étale.
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GLn ×H Nx � GLn×Hφ
GLn ×H afS

ψ - afX

Nx/H

??
� φ/H

afS/H

??
ψ/GLn - afX/GLn

π

??

Figure 9. Etale slice diagram

(4) The diagram below is commutative

U
ψ - afX

U/GLn

πU

??
ψ- afX/GLn

πX

??

Proof. By the foregoing lemma we have R̂GLn ' ŜGLn which means that
ψ is étale in πY (y). As étaleness is an open condition, there is an open affine
neighborhood V of πY (y) on which ψ is étale. If R = R ⊗RGLn SGLn then the
above lemma implies that

R⊗SGLn ŜGLn ' S ⊗SGLn ŜGLn

Let SGLn

loc be the local ring of SGLn in JGLn , then as the morphism SGLn

loc
- ŜGLn

is faithfully flat we deduce that

R⊗SGLn S
GLn

loc ' S ⊗SGLn S
GLn

loc

but then there is an f ∈ SGLn − JGLn such that Rf ' Sf . Now, intersect V with
the open affine subset where f 6= 0 and let U ′ be the inverse image under πY of this
set. Remains to prove that the image of ψ is affine. As U ′

ψ- afX is étale, its
image is open and GLn-stable. By the separation property we can find an invariant
h ∈ RGLn such that h is zero on the complement of the image and h(x) = 1. But
then we take U to be the subset of U ′ of points u such that h(u) 6= 0. �

Theorem 69 (Knop-Luna slice theorem). Let afX be an affine GLn-scheme
with quotient map afX

π-- afX/GLn. Take a point x ∈ afX such that the orbit
O(x) is closed and the stabilizer subgroup Stab(x) = H is reductive.

Then, there is a locally closed affine subscheme afS ⊂ - afX (the slice) con-
taining x with the following properties

(1) afS is an affine H-scheme,
(2) the action map GLn × afS - afX induces an étale GLn-equivariant

morphism GLn ×H afS
ψ- afX with affine image,

(3) the induced quotient map ψ/GLn is étale

(GLn ×H afS)/GLn ' afS/H
ψ/GLn- afX/GLn

and the right hand side of figure 9 is commutative.
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If we assume moreover that afX is smooth in x, then we can choose the slice afS
such that in addition the following properties are satisfied

(1) afS is smooth,
(2) there is an H-equivariant morphism afS

φ- Tx afS = Nx with φ(x) = 0
having an affine image,

(3) the induced morphism is étale

afS/H
φ/H- Nx/H

and the left hand side of figure 9 is commutative.

Proof. Choose a finite dimensional GLn-subrepresentation V of C[afX] that
generates the coordinate ring as algebra. This gives a GLn-equivariant embedding

afX ⊂
i- W = V ∗

Choose in the vectorspace W an H-stable complement S0 of gln.i(x) = Ti(x) O(x)
and denote S1 = i(x) + S0 and afS2 = i−1(S1).Then, the diagram below is com-
mutative

GLn ×H afS2
⊂ - GLn ×H S1

afX

ψ

?
⊂

i - W

ψ0

?

By construction we have that ψ0 induces an isomorphism between the tangent
spaces in (1, i(x)) ∈ GLn×H S0 and i(x) ∈W which means that ψ0 is étale in i(x),
whence ψ is étale in (1, x) ∈ GLn ×H afS2. By the foregoing theorem we have an
affine neighborhood U which must be of the form U = GLn ×H afS giving a slice
afS with the required properties.

Assume that afX is smooth in x, then S1 is transversal to afX in i(x) as

Ti(x) i(afX) + S0 = W

Therefore, afS is smooth in x. Again using the separation property we can find an
invariant f ∈ C[afS]H such that f is zero on the singularities of afS (which is a
H-stable closed subscheme) and f(x) = 1. Then replace afS with its affine reduced
subvariety of points s such that f(s) 6= 0. Let m be the maximal ideal of C[afS] in
x, then we have an exact sequence of H-modules

0 - m2 - m
α- N∗x - 0

Choose a H-equivariant section φ∗ : N∗x - m ⊂ - C[afS] of α then this gives an
H-equivariant morphism afS

φ- Nx which is étale in x. Applying the foregoing
theorem to this setting finishes the proof. �

In order to apply this slice machinery to the case of interest to us, we give
a representation theoretic interpretations in case the affine GLn-scheme is repnA
for A ∈ alg. We have seen that an orbit O(M) is closed if and only if M is a
semi-simple representation, say with decomposition

M = S⊕e11 ⊕ . . .⊕ S⊕ek

k

The stabilizer subgroup in M is isomorphic to GL(α) = GLe1 × . . . × GLek
. The

normal space we will identify with Ext1A(M,M) and we will see that the action of
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the stabilizer subgroup on it is the same as the action of GL(α) on the local quiver
setting determined by M .

Definition 74. For A ∈ alg, let M and N be two representations of dimen-
sions m and n. A representation P of dimension m + n is said to be an extension
of N by M if there exists a short exact sequence of left A-modules

e : 0 - M - P - N - 0

Define an equivalence relation on extensions (P, e) of N by M : (P, e) ∼= (P ′, e′)
if and only if there is an isomorphism P

φ- P ′ of left A-modules such that the
diagram below is commutative

e : 0 - M - P - N - 0

e′ : 0 - M

idM

?
- P ′

φ

?
- N

idN

?
- 0

The set of equivalence classes of extensions of N by M will be denoted by
Ext1A(N,M).

Example 99. An alternative description of Ext1A(N,M) is as follows. Let
ρ : A - Mm(C) and σ : A - Mn(C) be the representations defining M and
N . For an extension (P, e) we identify the C-vectorspace with M ⊕ N and the
A-module structure on P gives a algebra map µ : A - Mm+n(C). We represent
the action of a on P by left multiplication of the block-matrix

µ(a) =
[
ρ(a) λ(a)
0 σ(a)

]
,

where λ(a) is an m× n matrix and hence defines a linear map

λ : A - HomC(N,M).

The condition that µ is an algebra morphism is equivalent to the condition

λ(aa′) = ρ(a)λ(a′) + λ(a)σ(a′)

and we denote the set of all liner maps λ : A - HomC(N,M) by Z(N,M) and
call it the space of cycle .

The extensions of N by M corresponding to two cycles λ and λ′ from Z(N,M)
are equivalent if and only if there is an A-module isomorphism in block form[

idM β
0 idN

]
with β ∈ HomC(N,M)

between them. A-linearity of this map translates to the matrix relation[
idM β
0 idN

]
.

[
ρ(a) λ(a)
0 σ(a)

]
=

[
ρ(a) λ′(a)
0 σ(a)

]
.

[
idM β
0 idN

]
for all a ∈ A

or equivalently, that λ(a)− λ′(a) = ρ(a)β − βσ(a) for all a ∈ A. We will define the
subspace of Z(N,M) of boundaries B(N,M)

{δ ∈ HomC(N,M) | ∃β ∈ HomC(N,M) : ∀a ∈ A : δ(a) = ρ(a)β − βσ(a)}.

Therefore, Ext1A(N,M) = Z(N,M)
B(N,M) .
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In general, extensions between representations are more difficult to compute
than homomorphisms. However, there is one important case where the two are
related, path algebras of quivers. Recall that the Euler form of a quiver Q on k
vertices is the bilinear form on Zk

χQ(., .) : Zk × Zk - Z defined by χQ(α, β) = α.χQ.β
τ

for all row vectors α, β ∈ Zk.

Theorem 70. Let V resp. W be representations of 〈Q〉 of dimension vector α
resp. β, then

dimC Hom〈Q〉(V,W )− dimC Ext1〈Q〉(V,W ) = χQ(α, β)

Proof. There is an exact sequence of C-vectorspaces

0 - Hom〈Q〉(V,W )
γ- ⊕vi∈Qv HomC(Vi,Wi)

dV
W-

dV
W- ⊕a∈Qa HomC(Vs(a),Wt(a))

ε- Ext1〈Q〉(V,W ) - 0

Here, γ(φ) = (φ1, . . . , φk) and dVW maps a family of linear maps (f1, . . . , fk) to

the linear maps µa = fjVa − Wafi for any arrow ��������i��������j
aoo in Q, that is, to the

obstruction of the following diagram to be commutative

Vi
Va - Vj

Wi

fi

?
Wa - Wj

fj

?

..............................

µ
a

-

By the definition of morphisms between representations of Q it is clear that the
kernel of dVW coincides with Hom〈Q〉(V,W ).

The map ε is defined by sending a family of maps (g1, . . . , gs) = (ga)a∈Qa
to

the equivalence class of the exact sequence

0 - W
i- E

p- V - 0

where for all vi ∈ Qv we have Ei = Wi⊕Vi and the inclusion i and projection map
p are the obvious ones and for each arrow a ∈ Qa the action of a on E is defined
by the matrix

Ea =
[
Wa ga
0 Va

]
: Ei = Wi ⊕ Vi - Wj ⊕ Vj = Ej

This makes E into a 〈Q〉-representation and one verifies that the above short exact
sequence is one of 〈Q〉-representations. Remains to prove that the cokernel of dVW
can be identified with Ext1〈Q〉(V,W ).

A set of algebra generators of 〈Q〉 is given by {v1, . . . , vk, a1, . . . , al}. A cycle
is given by a linear map λ : 〈Q〉 - HomC(V,W ) such that for all f, f ′ ∈ CQ we
have the condition

λ(ff ′) = ρ(f)λ(f ′) + λ(f)σ(f ′)
where ρ determines the action on W and σ that on V . For any vi the condition is
λ(v2

i ) = λ(vi) = pWi λ(vi) + λ(vi)pVi whence λ(vi) : Vi - Wi but then applying
again the condition we see that λ(vi) = 2λ(vi) so λ(vi) = 0. Similarly, for the arrow
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��������i��������j
aoo the condition on a = vja = avi implies that λ(a) : Vi - Wj . That is,

we can identify ⊕a∈Qa
HomC(Vi,Wj) with Z(V,W ) under the map ε. Moreover,

the image of δ gives rise to a family of morphisms λ(a) = fjVa −Wafi for a linear
map f = (fi) : V - W so this image coincides precisely to the subspace of
boundaries B(V,W ) proving that indeed the cokernel of dVW is Ext1〈Q〉(V,W ).

If dim(V ) = α = (r1, . . . , rk) and dim(W ) = β = (s1, . . . , sk), then
dim Hom(V,W )− dim Ext1(V,W ) is equal to∑

vi∈Qv

dim HomC(Vi,Wi)−
∑

��������i��������j
aoo

dim HomC(Vi,Wj)

=
∑
vi∈Qv

risi −
∑

��������i��������j
aoo

risj

= (r1, . . . , rk)χQ(s1, . . . , sk)τ = χQ(α, β)

finishing the proof. �

Example 100. Two α-dimensional representations of 〈Q〉 are isomorphic if and
only if they belong to the same orbit under GL(α). Therefore,

StabGL(α) V ' Aut〈Q〉 V

and the latter is an open subvariety of the affine space End〈Q〉(V ) = Hom〈Q〉(V, V )
whence they have the same dimension. The dimension of the orbit O(V ) of V in
repα Q is equal to

dim O(V ) = dim GL(α)− dim StabGL(α) V.

We have a geometric reformulation of the previous theorem

dim repα Q− dim O(V ) = dim End〈Q〉(V )− χQ(α, α) = dim Ext1〈Q〉(V, V )

Indeed, dim repα Q− dim O(V ) is equal to∑
��������i��������j

aoo

didj − (
∑
i

d2
i − dim End〈Q〉(V )) = dim End〈Q〉(V )− χQ(α, α)

and by the foregoing theorem the latter term is equal to dim Ext1〈Q〉(V, V ). In
particular it follows that the orbit O(V ) is open in repα Q if and only if V has
no self-extensions. As repα Q is irreducible there can be at most one isomorphism
class of a representation without self-extensions.

Because repα Q is smooth, the previous example shows that the self-extensions
Ext1〈Q〉(V, V ) have the same dimension as the normal space to the orbit in V . We
will now show that, in general, the normal space is isomorphic (as representation
over the stabilizer subgroup) to the space of self-extensions.

Example 101. Let A be an affine C-algebra generated by {a1, . . . am} and
ρ : A - Mn(C) an algebra morphism, that is, ρ ∈ repnA. We call a linear map

A
D- Mn(C) a ρ-derivation if and only if for all a, a′ ∈ A

D(aa′) = D(a).ρ(a′) + ρ(a).D(a′).
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Denote the vectorspace of all ρ-derivations of A by Derρ(A). Observe that any ρ-
derivation is determined by its image on the generators ai, hence Derρ(A) ⊂Mm

n .
We claim that

Tρ(repnA) = Derρ(A).
We know that repnA(C[ε]) is the set of algebra morphisms

A
φ- Mn(C[ε])

By the foregoing characterization of tangentspaces, Tρ(repnA) is equal to

{D : A - Mn(C) linear | ρ+Dε : A - Mn(C[ε]) is an algebra map}.

Because ρ is an algebra morphism, the algebra map condition

ρ(aa′) +D(aa′)ε = (ρ(a) +D(a)ε).(ρ(a′) +D(a′)ε)

is equivalent to D being a ρ-derivation.

Let afX
φ- afY be a morphism of affine schemes corresponding to the algebra

morphism C[afY]
φ∗- C[afX]. Let x be a geometric point of afX and y = φ(x).

Because φ∗(my) ⊂ mx, φ induces a linear map my

m2
y

- mx

m2
x

and taking the dual
map gives the differential of φ in x which is a linear map

dφx : Tx(afX) - Tφ(x)(afY).

Let D ∈ Tx(afX) = Derx(C[afX]) and xD the corresponding element of afX(C[ε])
defined by xD(f) = f(x) +D(f)ε, then xD ◦ φ∗ ∈ afY(C[ε]) is

xD ◦ φ∗(g) = g(φ(x)) + (D ◦ φ∗)ε = g(φ(x)) + dφx(D)ε

giving us the ε-interpretation of the differential

φ(x+ vε) = φ(x) + dφx(v)ε

for all v ∈ Tx(afX).

Example 102. Let X
φ- Y be a dominant morphism between irreducible

affine varieties. There is a Zariski open dense subset U ⊂ - X such that dφx is
surjective for all x ∈ U .

Indeed, we may assume that φ factorizes into

X
ρ-- Y × Cd

Y

prY

?

φ

-

with φ a finite and surjective morphism. Because the tangent space of a product is
the sum of the tangent spaces of the components we have that d(prW )z is surjective
for all z ∈ Y × Cd, hence it suffices to verify the claim for a finite morphism φ.
That is, we may assume that S = C[Y ] is a finite module over R = C[X] and let
L/K be the corresponding extension of the function fields. By the principal element
theorem we know that L = K[s] for an element s ∈ L which is integral over R with
minimal polynomial

F = tn + gn−1t
n−1 + . . .+ g1t+ g0 with gi ∈ R
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Consider the ring S′ = R[t]/(F ) then there is an element r ∈ R such that the
localizations S′r and Sr are isomorphic. By restricting we may assume that X =
V(F ) ⊂ - Y × C and that

X = V(F ) ⊂ - Y × C

Y

prY

?

φ

-

Let x = (y, c) ∈ X then we have (again using the identification of the tangent space
of a product with the sum of the tangent spaces of the components) that

Tx(X) = {(v, a) ∈ Ty(Y )⊕ C | c∂F
∂t

(x) + vgn−1c
n−1 + . . .+ vg1c+ vg0 = 0}.

But then, dφx i surjective whenever ∂F
∂t (x) 6= 0. This condition determines a non-

empty open subset of X as otherwise ∂F
∂t would belong to the defining ideal of X

in C[Y ×C] (which is the principal ideal generated by F ) which is impossible by a
degree argument

Example 103. Let afX be a closed GLn-stable subscheme of a GLn-
representation V and x a geometric point of afX. Consider the orbitclosure O(x)
of x in V . As the orbit map

µ : GLn -- GLn.x ⊂ - O(x)

is dominant we have that C[O(x)] ⊂ - C[GLn] and hence a domain, so O(x) is an
irreducible affine variety. The stabilizer subgroup Stab(x) is the fiber µ−1(x) and is
a closed subgroup of GLn. We claim that the differential of the orbit map in the
identity matrix e = rr

n

dµe : gln
- Tx(afX)

satisfies the following properties

Ker dµe = stab(x) and Im dµe = Tx(O(x)).

By the previous example we know that there is a dense open subset U of GLn such
that dµg is surjective for all g ∈ U . By GLn-equivariance of µ it follows that dµg
is surjective for all g ∈ GLn, in particular dµe : gln

- Tx(O(x)) is surjective.
Further, all fibers of µ over O(x) have the same dimension. It follows from the
dimension formula that

dim GLn = dim Stab(x) + dim O(x)

Combining this with the above surjectivity, a dimension count proves that
Ker dµe = stab(x), the Lie algebra of Stab(x).

Example 104. (The normalspace to orbitclosures in repnA) Let A be an affine
C-algebra generated by {a1, . . . , am} and ρ : A - Mn(C) an algebra morphism
determining the n-dimensional A-representation M . We have the following descrip-
tion of the normal space to the orbitclosure Cρ = O(ρ) of ρ

Nρ(repnA)
def
=

Tρ(repnA)
Tρ(Cρ)

= Ext1A(M,M).
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We have already seen that the space of cycles Z(M,M) is the space of ρ-derivations
of A in Mn(C), Derρ(A), which we know to be the tangent space Tρ(repnA).

Moreover, we know that the differential dµe of the orbit map
GLn

µ- Cρ ⊂ - Mm
n

dµe : gln = Mn
- Tρ(Cρ)

is surjective. ρ = (ρ(a1), . . . , ρ(am)) ∈Mm
n and the action of action of GLn is given

by simultaneous conjugation. But then we have for any M ∈ gln = Mn that

(In +Mε).ρ(ai).(In −Mε) = ρ(ai) + (Mρ(ai)− ρ(ai)M)ε.

By definition of the differential we have that

dµe(M)(a) = Mρ(a)− ρ(a)M for all a ∈ A.

that is, dµe(M) ∈ B(M,M) and as by surjectivity we conclude Tρ(Cρ) = B(M,M).

We have now all information to apply the Knop-Luna slice theorem to the
setting of representation schemes.

Definition 75. For A ∈ alg be an affine algebra generated by {a1, . . . , am},
let ξ ∈ issnA be a point of the quotient variety and Mξ ∈ repnA the n-dimensional
semisimple A-module corresponding to it. We can decompose Mξ into simple com-
ponents

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

with the Si distinct simple A-representations, say of dimension di. In particular we
have

n = d1e1 + . . .+ dkek

Choosing a basis of Mξ adapted to this decomposition gives us a point x =
(X1, . . . , Xm) ∈Mm

n in the orbit O(Mξ) such that

Xi =


m

(i)
1 ⊗

rr
e1 0 . . . 0

0 m
(i)
2 ⊗

rr
e2 . . . 0

...
...

. . .
...

0 0 . . . m
(i)
k ⊗

rr
ek


with each m

(i)
j ∈ Mdj

(C). The stabilizer subgroup Stab(x) of GLn are those in-
vertible matrices g ∈ GLn commuting with every Xi. By Schur’s lemma we have
that the Stab(x) is isomorphic to GL(α) = GLe1 × . . . × GLek

= GL(αξ) for the
dimension vector αξ = (e1, . . . , ek) determined by the multiplicities of the simple
components of Mξ. The embedding of Stab(x) into GLn (in the chosen basis) is
given by

GL(α) =

GLe1(C⊗
rr
d1)

. . .
GLek

(C⊗ rr
dk

)

 ⊂ - GLn

We say that ξ ∈ issnA (or that Mξ ∈ repnA is of representation type

τ = (e1, d1; . . . ; ek, dk)
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Figure 10. Big and small normal spaces to the orbit.

We know that the normal space Nsm
x can be identified with the self-extensions

Ext1A(M,M) and we will give a quiver-description of this space. The idea is to
describe first the GL(α)-module structure of N big

x , the normal space to the orbit
O(Mξ) in repn〈m〉 = Mm

n (see figure 10) and then to identify the direct summand
Nsm
x .

Theorem 71. Let ξ ∈ issnA be of representation type τ = (e1, d1; . . . ; ek, dk)
and let α = (e1, . . . , ek). The GL(α)-module structure of the normal space N big

x

in repn〈m〉 = Mm
n to the orbit of the semi-simple n-dimensional representation

O(Mξ) is isomorphic to

repα Q
big
ξ

where the quiver Qbigξ has k vertices (the number of distinct simple summands of
Mξ) and the subquiver on any two vertices vi, vj for 1 ≤ i 6= j ≤ k has the following
shape

ei8?9>:=;< ej8?9>:=;< (m− 1)d
2
j + 1(m− 1)d

2
i + 1

(m− 1)didj

))

(m− 1)didj

ii77 gg

That is, in each vertex vi there are (m− 1)d2
i + 1-loops and there are (m− 1)didj

arrows from vertex vi to vertex vj for all 1 ≤ i 6= j ≤ k.

Proof. The description ofN big
x follow from a book-keeping operation involving

GL(α)-representations. For x = (X1, . . . , Xm), the tangent space Tx O(Mξ) in Mm
n
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d1d2

︸ ︷︷ ︸
d1

︸ ︷︷ ︸
d2

Figure 11. Decomposition of the GL(α)-action on Mn.

to the orbit is equal to the image of the linear map

gln = Mn
- Mn ⊕ . . .⊕Mn = Tx M

m
n

A 7→ ([A,X1], . . . , [A,Xm])

Observe that the kernel of this map is the centralizer of the subalgebra generated
by the Xi, so we have an exact sequence of Stab(x) = GL(α)-modules

0 - gl(α) = Lie GL(α) - gln = Mn
- Tx O(x) - 0

Because GL(α) is a reductive group every GL(α)-module is completely reducible
and so the sequence splits. But then, the normal space in Mm

n = Tx M
m
n to the

orbit is isomorphic as GL(α)-module to

N big
x = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m−1

⊕gl(α)

with the action of GL(α) (embedded as above in GLn) is given by simultaneous
conjugation. If we consider the GL(α)-action on Mn we see that it decomposes into
a direct sum of subrepresentations (see figure 11)

• for each 1 ≤ i ≤ k we have d2
i copies of the GL(α)-module Mei on which

GLei
acts by conjugation and the other factors of GL(α) act trivially,

• for all 1 ≤ i, j ≤ k we have didj copies of the GL(α)-module Mei×ej
on

which GLei×GLej acts via g.m = gimg
−1
j and the other factors of GL(α)

act trivially.

These GL(α) components are precisely the modules appearing in representation
spaces of quivers. �

Example 105. If m = 2 and n = 3 and the representation type is τ =
(1, 1; 1, 1; 1, 1) (that is, Mξ is the direct sum of three distinct one-dimensional simple
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representations) then the quiver Qξ is

18?9>:=;< 18?9>:=;<

18?9>:=;<

))
ii

::

zz

RR

��
--
MM

qq
QQ

qq--

Theorem 72. Let A ∈ alg be an affine algebra generated by m elements. Let
ξ ∈ issnA be a point of representation type

τ = (e1, d1; . . . ; ek, dk)

and Mξ ∈ repnA a corresponding semisimple n-dimensional A-module.
The normal space Nsm

x in a point x ∈ O(Mξ) to the orbit in repnA is isomor-
phic as module over the stabilizer subgroup

Stab(x) = GL(α) = GLe1 × . . .×GLek

(with α = (e1, . . . , ek)) to the representation space

repα Qξ

where the local quiver Qξ has k vertices (corresponding to the distinct simple com-
ponents of Mξ) and is such that for any two vertices vi 6= vj the full subquiver is of
the form

ei8?9>:=;< ej8?9>:=;< ajjaii

aij

))

aji

ii77 gg

where
aij = dimC Ext1A(Si, Sj) ≤ (m− 1)didj + δij

for all 1 ≤ i, j ≤ k.

Proof. We have GLn-equivariant embeddings

O(Mξ) ⊂ - repnA
⊂ - repn〈m〉 = Mm

n

and corresponding embeddings of the tangent spaces in x

Tx O(Mξ) ⊂ - Tx repnA
⊂ - Tx M

m
n

Because GL(α) is reductive, the normal spaces to the orbit is a direct summand of
GL(α)-modules.

Nsm
x =

Tx repnA

Tx O(Mξ)
/ N big

x =
Tx M

m
n

Tx O(Mξ)

The isotypical decomposition of N big
x as the GL(α)-module repα Qξ allows us to

control Nsm
x . On the other hand we know that

Nsm
x = Ext1A(Mξ,Mξ) = ⊕1≤i,j≤kExt

1
A(Si, Sj)⊕eiej

and a comparison finishes the proof. �
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GLn ×GL(α) repαξ
Qξ �GLn×GL(α)φ

GLn ×GL(α) Sx
ψ - repnA

issα Qξ

??
� φ/GL(α)

Sx/GL(α)

??
ψ/GL(α) - issnA

??

Figure 12. Slice diagram for repnA.

We have all the necessary ingredients to complete the prove of the étale local
structure of alg-algebras. This result can be seen as analogous to the fact that
manifolds are locally affine spaces. In the case of alg-smooth algebras, path algebras
of quivers play the role of noncommutative affine spaces. Observe that the étale
local structure result can be proved whenever the semi-simple representation is a
smooth point of repnA.

Definition 76. For A ∈ alg let ξ ∈ issnA be a geometric point with corre-
sponding n-dimensional semisimple module Mξ ∈ repnA. ξ is said to belong to the
n-th smooth locus smoothnA of A iff repnA is smooth at Mξ. If A is alg-smooth,
then smoothnA = issnA for all n.

Definition 77. For A ∈ alg and m /
∮
n
A we denote with

m̂∮
n

A (resp. with

m̂∫
n

A)

the m-adic completion of
∮
n
A (resp. of

∫
n
A).

The following result implies in particular that alg-smooth algebras are locally
(in the étale topology) determined by path algebras of quivers.

Theorem 73. Let A ∈ alg and ξ ∈ smoothnA be a point of representation
type τ = (e1, d1; . . . ; ek, dk) with corresponding maximal ideal m /

∮
n
A. Let Qξ be

the local quiver and α = (e1, . . . , ek) and let m0 be the maximal ideal of
∮
α
〈Qξ〉

corresponding to the trivial representation 0 ∈ repα Qξ. Then,

m̂∮
n

A '
m̂0∮
α

〈Qξ〉 and

m̂∫
n

A G

m̂0∫
α

〈Qξ〉

Moreover, the Morita equivalence is determined by the embedding of the stabilizer
subgroup GL(α) in GLn.

Proof. Consider the slice diagram of figure 12 for the representation scheme
repnA. The left hand side exists because x ∈ O(Mξ) is a smooth point of repnA,
the right hand side exists always. The horizontal maps are étale and the upper
ones GLn-equivariant.

By theorem 72 we know that the normal space to the orbit Nsm
x is isomorphic

to repα Qξ from which the first claim follows. To prove the second, observe that
the algebra of GLn-equivariant maps

GLn ×GL(α) repα Qξ
- Mn(C)
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is Morita equivalent to the algebra of GL(α)-equivariant maps

repα Qξ
- M|α|(C)

where |α| = e1 + . . .+ ek. �

Example 106. Let X be a smooth affine curve and A = C[X]. The only simple
A-representations are one-dimensional and correspond to a point x ∈ X,Sx. We
have for all x, y ∈ X

Ext1A(Sx, Sy) = δxyC
We know from example 79 that issn A ' X(n) so take a point ξ with corresponding
semisimple representation

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

with e1 + . . .+ ek = n. The local quiver Qξ has the form

��������1
�� ��������2

��
. . . ��������k

��

and the dimension vector is αξ = (e1, . . . , ek). The quotient variety of this quiver-
setting is

issαξ
Qξ ' C(e1) × . . .× C(ek)

and we see that the étale map

issαξ
Qξ - issnA = X(n)

is in general not an isomorphism in the Zariski topology, but a finite cover.

Even when the left hand sides of the slice diagrams are not defined for ξ /∈
smoothnA the dimension of the normal spaces to the orbit give a numerical measure
of the ’badness’ of the noncommutative singularity.

Definition 78. Let A ∈ alg be an affine algebra and ξ ∈ issnA a point
of representation type τ = (e1, d1; . . . ; ek, dk) with corresponding semisimple rep-
resentation x = Mξ ∈ repnA. The measure of singularity in ξ is given by the
non-negative number

ms(ξ) = n2 + dimC Ext1A(Mξ,Mξ)− e21 − . . .− e2k − dimx repnA

Clearly, ξ ∈ smoothnA if and only if ms(ξ) = 0.

5.3. Smooth models.

In this section we will illustrate how the étale local structure given in the
previous section can be combined with the étale cohomological description of Brauer
groups to characterize the central simple algebras allowing an alg@n-smooth model.

Definition 79. Let Σ be a central simple algebra of dimension n2 over its
center K which is a field of transcendence degree d. We say that Σ has a smooth
model if there is a projective variety X (not necessarily smooth) with C(X) = K
and a sheaf of OX -orders A in Σ such that for an affine open cover {Ui} of X we
have that

Ai = Γ(Ui,A)
is alg@n-smooth for all i.
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Our strategy to arrive at a characterization is the following. First we determine
the étale local structure of alg@n-smooth algebras using only minor modifications
to the arguments used in the previous section. For low dimensions we are then able
to give a complete description of all local quiver-settings which do arise. Computing
the witness algebras we obtain information on the étale splitting behavior and on
the local ramification locus of alg@n-smooth orders. This information can then be
combined with the coniveau spectral sequence to give necessary conditions on the
classes [Σ] allowing an alg@n-smooth model. In the case of surfaces we can even
give a complete characterization.

We begin by giving variants of the étale local structure for Cayley-Hamilton
algebras. Again, this comes down to describing the normal space to a closed orbit
in trepnA.

Example 107. Let (A, trA) ∈ alg@n and trace generated by {a1, . . . , am}. Let
ρ ∈ trepnA, that is, ρ : A - Mn(C) is a trace preserving algebra morphism. As
trepnA(C[ε]) is the set of all trace preserving algebra morphisms A - Mn(C[ε])
(with the usual trace map tr on Mn(C[ε])) one verifies using the foregoing example
that

Tρ(trepnA) = Dertrρ (A) ⊂ Derρ(A)

the subset of trace preserving ρ-derivations D, that is, those satisfying

D ◦ trA = tr ◦D

A
D- Mn(C)

A

trA

?
D- Mn(C)

tr

?

Again, because A is trace generated by {a1, . . . , am}, a trace preserving ρ-derivation
is determined by its image on the ai and is a subspace of Mm

n .

Example 108. (The normalspace to orbitclosures in trepnA) Let (A, trA) ∈
alg@n be trace generated by {a1, . . . , am}. Let ρ ∈ trepnA, that is, ρ :
A - Mn(C) is a trace preserving algebra morphism. Any cycle λ : A - Mn(C)
in Z(M,M) = Derρ(A) determines an algebra morphism

ρ+ λε : A - Mn(C[ε])

We know that the tangent space Tρ(trepnA) is the subspace Dertrρ (A) of trace
preserving ρ-derivations, that is, those satisfying

λ(trA(a)) = tr(λ(a)) for all a ∈ A

Observe that all boundaries δ ∈ B(M,M), that is, such that there is an m ∈Mn(C)
with δ(a) = ρ(a).m−m.ρ(a) are trace preserving as

δ(trA(a)) = ρ(trA(a)).m−m.ρ(trA(a)) = tr(ρ(a)).m−m.tr(ρ(a))
= 0 = tr(m.ρ(a)− ρ(a).m) = tr(δ(a))

Hence, we can define the space of trace preserving self-extensions

ExttrA (M,M) =
Dertrρ (A)
B(M,M)
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Then, as before we have that the normal space to the orbit closure Cρ = O(ρ) is
equal to

Nρ(trepnA)
def
=

Tρ(trepnA)
Tρ(Cρ)

= ExttrA (M,M)

Definition 80. A marked quiver Q• is a finite quiver Q such that some of
its loops are marked. If α is a dimension vector for Q, the space of marked quiver
representations of dimension vector α

repα Q
•

is the subspace of repα Q consisting of all representations such that the square
matrices corresponding to marked loops have trace zero.

Theorem 74. Let (A, trA) ∈ alg@n be trace generated by m elements. Let
ξ ∈ tissnA be a point of representation type

τ = (e1, d1; . . . ; ek, dk)

and Mξ ∈ trepnA a corresponding semisimple n-dimensional A-module.
The normal space Nsm

x in a point x ∈ O(Mξ) to the orbit in trepnA is iso-
morphic as module over the stabilizer subgroup

Stab(x) = GL(α) = GLe1 × . . .×GLek

(with α = (e1, . . . , ek)) to the representation space

repα Q
•
ξ

where the marked local quiver Q•ξ has k vertices (corresponding to the distinct simple
components of Mξ) and is such that for any two vertices vi 6= vj the full subquiver
is of the form

ei8?9>:=;< ej8?9>:=;<
ajjaii

mjjmii

aij

))

aji

ii
��

•

DD

��

•

ZZ

where
aij = dimC Ext1A(Si, Sj) ≤ (m− 1)didj

for all 1 ≤ i 6= j ≤ k and the (marked) vertex loops are determined by the structure
of ExttrA (Mξ,Mξ).

Proof. We only have to observe that arrows in the local quiver Qξ of theo-
rem 72 correspond to simple GL(α)-modules, whereas a loop at vertex vi decom-
poses as GL(α)-module into the simples

Mei
= M0

ei
⊕ Ctriv

where Ctriv is the one-dimensional simple with trivial GL(α)-action and M0
ei

is the
space of trace zero matrices in Mei

.
Any GL(α)-submodule of N big

x can be thus represented by a marked quiver
using the dictionary

• a loop at vertex vi corresponds to the GL(α)-module Mei
on which GLei

acts by conjugation and the other factors act trivially,
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• a marked loop at vertex vi corresponds to the simple GL(α)-module M0
ei

on which GLei acts by conjugation and the other factors act trivially,
• an arrow from vertex vi to vertex vj corresponds to the simple GL(α)-

module Mei×ej on which GLei × GLej acts via g.m = gimg
−1
j and the

other factors act trivially,

Combining this with the calculation that the normalspace is the space of trace
preserving self-extensions ExttrA (Mξ,Mξ) we obtain the result. �

With smoothA we denote the set of points ξ ∈ tissnA such that Mξ is a
smooth point of trepnA.

Theorem 75. Let (A, trA) ∈ alg@n and ξ ∈ smoothA be a point of represen-
tation type τ = (e1, d1; . . . ; ek, dk) with corresponding maximal ideal m / tr(A). Let
Q•ξ be the marked local quiver, α = (e1, . . . , ek) and let m0 be the maximal ideal of∮
α
〈Q•ξ〉 corresponding to the trivial representation 0 ∈ repα Q

•
ξ . Then,

ˆtr(A)m '
m̂0∮
α

〈Q•ξ〉 and Âm G

m̂0∫
α

〈Q•ξ〉

where the Morita equivalence is determined by the embedding of the stabilizer sub-
group GL(α) in GLn. Moreover, if {m1, . . . ,ml} is the set of marked loops is Q•ξ
then∮

α

〈Q•ξ〉 '
∮
α
〈Qξ〉

(tr(m1), . . . , tr(ml))
and

∫
α

〈Q•ξ〉 '
∫
α
〈Qξ〉

(tr(m1), . . . , tr(ml))

Definition 81. For (A, trA) ∈ alg@n and ξ ∈ tissnA of type τ =
(e1, d1; . . . ; ek, dk). The measure of trace singularity in ξ is given by the non-
negative number

tms(ξ) = n2 + dimC ExttrA (Mξ,Mξ)− e21 − . . .− e2k − dimx trepnA

Clearly, ξ ∈ smoothnA (resp. ξ ∈ smoothA) if and only if ms(ξ) = 0 (resp.
tms(ξ) = 0).

Our next job is to determine in low dimensions d the étale local structure
of alg@n-smooth orders, or more generally, the étale local structure of an order
A ∈ alg@n in a point ξ ∈ smoothA of its smoooth locus.

Theorem 76. Let A ∈ alg@n over an affine curve X = issnA. If ξ ∈
smoothA, the étale local structure of A in ξ is determined by the quiver-setting
(Q,α) where Q is an oriented cycle on k vertices with k ≤ n and α = 1 = (1, . . . , 1).
The Morita setting is determined by an unordered partition p = (d1, . . . , dk) having
precisely k parts such that

∑
i di = n determining the dimensions of the simple

components of Mξ, see figure 13.
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1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

//

??���������

OO

__?????????

oo

!!

...

Figure 13. Local (marked) quiver-setting of smooth@n-algebras
over curves.

Further, ξ is a smooth point of X = issnA and the étale local structure of A
in ξ is isomorphic to

Âξ '



Md1(C[[x]]) Md1×d2(C[[x]]) . . . Md1×dk
(C[[x]])

Md2×d1(xC[[x]]) Md2(C[[x]]) . . . Md2×dk
(C[[x]])

...
...

. . .
...

Mdk×d1(xC[[x]]) Mdk×d2(xC[[x]]) . . . Mdk
(C[[x]])


Proof. Let (Q•, α) be the local marked quiver-setting corresponding to ξ ∈

smoothA. Because Q• is strongly connected, there exist oriented cycles in Q•. Fix
one such cycle of length s ≤ k and renumber the vertices of Q• such that the
first s vertices make up the cycle. If α = (e1, . . . , ek), then there exist semi-simple
representations in repα Q

• with composition

α1 = (1, . . . , 1︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
k−s

)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕es−1

s ⊕ ε⊕es+1
s+1 ⊕ . . .⊕ ε⊕ek

k

where εi stands for the simple one-dimensional representation concentrated in ver-
tex vi.

There is a one-dimensional family of simple representations of dimension vector
α1, hence the stratum of semi-simple representations in issα Q• of representation
type τ = (1, α1; e1−1, ε1; . . . ; es−1, εs; es+1, εs+1; ek, εk) is at least one-dimensional.
However, as dim issα Q• = 1 this can only happen if this semi-simple represen-
tation is actually simple. That is, Q = Q•, α = α1 and k = s proving the first
claim.
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Let Mξ be the semi-simple n-dimensional representation of A corresponding to
ξ, then

Vξ = S1 ⊕ . . .⊕ Sk with dim Si = di

and all Si distinct. The stabilizer subgroup is GL(α) = C∗× . . .×C∗ embedded in
GLn via the diagonal embedding

(λ1, . . . , λk) - diag(λ1, . . . , λ1︸ ︷︷ ︸
d1

, . . . , λk, . . . , λk︸ ︷︷ ︸
dk

)

which determines the Morita setting. By basechange in repα Q we can bring every
simple α-dimensional representation of Q in standard form

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

1 //

1
??������

x

OO
1

__??????
1

oo

!!

where x ∈ C∗ is the arrow from vk to v1.
Therefore, the ring of invariants C[repα Q]GL(α) ' C[x] whence ξ is a smooth

point of X by the slice result. Moreover, using the numbering conventions of the
vertices the ring of quiver-equivariants has the desired block decomposition. �

Example 109. alg@n-smooth models in dimension one. Let X be a projective
curve and A a sheaf of OX -orders in a central simple C(X)-algebra Σ of dimension
n2. Then, the following are equivalent

(1) A is a sheaf of smooth@n-algebras, that is, a smooth model of Σ.
(2) X is a smooth curve and A is a sheaf of hereditary OX -orders.

Smoothness follows from the previous theorem and the above block decomposition
combined with the local description of hereditary orders given in [56, Thm. 39.14]
and étale descent proves the hereditary statement.

Definition 82. Let (A, trA) ∈ alg@n be a C = trA(A)-order in a central
simple algebra Σ of dimension n2 over K the field of fractions of C. We say that
A is étale split in ξ ∈ issnA if and only if

A⊗C K̂ξ 'Mn(K̂ξ)

where K̂ξ is the field of fractions of Ĉξ the m-adic completion of C where m is the
maximal ideal of C corresponding to ξ.

Theorem 77. Let A ∈ alg@n be an order over an affine surface X = issnA.
If ξ ∈ smoothA, then the étale local structure of A in ξ is determined by the local
quiver-setting (Q,α) where Q is the quiver Aklm of figure 14 on k + l + m ≤ n
vertices and α = 1 = (1, . . . , 1). The Morita setting is determined by an unordered
partition p = (d1, . . . , dk+l+m) of n with k+ l+m non-zero parts determined by the
dimensions of the simple components of Mξ as in figure 14.

Further, ξ is a smooth point of X, A is étale split in ξ and the étale local
structure has the block-decomposition of figure 15 where at spot (i, j) with 1 ≤



5.3. SMOOTH MODELS. 175

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

//

??��������

OO

OO

__????????

oo

//

oo

OO

��

}}

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

...

Figure 14. Cayley-smooth surface types.

Âξ '

@
@

@
@

@
@

@
@

@
@

@
@

@
@

(x)

(x)

(y)

(y)

(1)

(1)
(1)

(1)

(1)

(x)

(y)

(x, y)︸ ︷︷ ︸
k

︸ ︷︷ ︸
l

︸ ︷︷ ︸
m

⊂ - Mn(C[[x, y]])

Figure 15. Etale local structure of an alg@n-smooth order over a surface.

i, j ≤ k+ l+m there is a block of dimension di× dj with entries the indicated ideal
of C[[x, y]]. In particular, the ramification-type of A in ξ is one of the following :

(1) A is an Azumaya algebra in ξ, or
(2) ξ is an isolated point (possibly embedded) of the ramification, or
(3) ξ is a smooth point of the ramification, or
(4) the ramification has a normal crossing at ξ.



176 5. COVERINGS

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
1 //

1
??�����

1
OO

1
OO

x

__?????
1
oo

y //

1
oo

OO

!!

{{

Figure 16. Standard form of representations in rep1 Aklm.

Proof. Let (Q•, α) be the marked local quiver-setting on r vertices with α =
(e1, . . . , er) corresponding to ξ. As Q• is strongly connected and the quotient
variety is two-dimensional, Q• must contain more than one oriented cycle, hence it
contains a sub-quiver of type Aklm, possibly degenerated with k or l equal to zero.
Order the first k+ l+m vertices of Q• as indicated then one verifies by theorem 85
that Aklm has simple representations of dimension vector 1 = (1, . . . , 1). Assume
that Aklm is a proper subquiver and s = k + l + m + 1, then Q• has semi-simple
representations in repα Q

• of type

α1 = (1, . . . , 1︸ ︷︷ ︸
k+l+m

, 0, . . . , 0)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕ek+l+m−1

k+l+m ⊕ ε⊕es
s ⊕ . . .⊕ ε⊕er

r

The dimension of the quotient variety iss1 Aklm has dimension 2 so there is a
two-dimensional family of such semi-simple representation in the irreducible two-
dimensional quotient variety issα Q•. This is only possible if this semi-simple
representation is actually simple, whence r = k + l + m, Q• = Aklm and α =
(1, . . . , 1).

If Mξ is the semi-simple n-dimensional representation of A corresponding to ξ,
then

Mξ = S1 ⊕ . . .⊕ Sr with dim Si = di

determining the unordered partition p and the Morita-equivalence because the sta-
bilizer subgroup GL(α) = C∗ × . . .× C∗ is embedded diagonally in GLn via

(λ1, . . . , λr) 7→ diag(λ1, . . . , λ1︸ ︷︷ ︸
d1

, . . . , λr, . . . , λr︸ ︷︷ ︸
dr

)

By basechange in rep1 Aklm every simple α-dimensional representation can be
brought in the standard form of figure 16 with x, y ∈ C∗ and as C[iss1 Aklm] =
C[rep1 Aklm]GL(α) is the ring generated by traces along oriented cycles in Aklm,
it is isomorphic to C[x, y] (Alternatively, one can apply theorem 99 to show that
the ring of invariants is smooth). It follows from the slice result that ξ is a smooth
point of X and that Âξ has the required block-decomposition, in particular A is
étale split in ξ.
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1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
1 //

1
??�����

1
OO

1
OO

x

__?????
1
oo

OO

!!
1(/).*-+, 1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,1
OO

1
OO
y //

1
oo

OO

{{

Figure 17. Proper semi-simples of Aklm.

1(/).*-+,

1(/).*-+,

1(/).*-+,

A0l1

JJ����������
__????

99
yy

1(/).*-+, 1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

Ak01

WW///////

KK��������������

ee

//

oo

##

Figure 18. Local quivers for Aklm.

To prove the ramification statement, we have to compute the local quiver-
settings in proper semi-simple representations of rep1 Aklm. Because simples have
a strongly connected support, the decomposition types of these proper semi-simples
are depicted in figure 17 with x, y ∈ C∗. The corresponding local quivers local quiv-
ers are respectively of the forms in figure 18. Because of the étale local isomorphism
between X in a neighborhood of ξ and of iss1 Aklm in a neighborhood of the triv-
ial representation, the picture of local quiver-settings of A in a neighborhood of ξ
is described in figure 19 The Azumaya points are the points in which the quiver-
setting is A001 (the two-loop quiver). Therefore, the worst case of ramification that
can occurs in ξ is that of a normal crossing. The other cases occur for degenerate
quiver-settings. �

Example 110. alg@n-smooth models in dimension two. Let S be a projec-
tive surface and A a sheaf of OS-algebras in a central simple C(S)-algebra Σ of
dimension n2. If A is a smooth model of Σ, then the following holds :

(1) S is a smooth surface.
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���������������� Ak01

XX
��
bb

�������� ��������A0l1
��

XX<<

�������� ����������������
Aklm

��
XXXX
��

��������
A001

}}..

•
••

•//

OO
yysssssss

__????????????

Figure 19. Local picture for Aklm.

(2) A is étale split in all points of S.
(3) The ramification locus ramA ⊂ S is either empty or consists of a finite

number of isolated (possibly embedded) points of S together with a re-
duced divisor having normal crossings as its worst singularities.

If we want to have similar precise local information on alg@n-smooth orders in
higher dimensions, we have to compile a list of admissible marked quiver settings,
that is settings (Q•, α) satisfying the two properties{

α is the dimension vector of a simple representation of Q•, and
d = 1− χQ(α, α)−

∑
imi

Example 111. The idea is to shrink a marked quiver-setting to its simplest
form and classify these simplest forms for given d. By shrinking we mean the
following process. Let α = (e1, . . . , ek) be the dimension vector of a simple repre-
sentation of Q• and let vi and vj be two vertices connected with an arrow such that
ei = ej = e. That is, locally we have the following situation

e8?9>:=;< e8?9>:=;<
χij

((

χji

hh

aii

��

•
mii

WW

ajj

��

•
mjj

WW

χpi
WWWWW

++WWWWW

χiq
ggggg

ssggggg

χrj
ggggg

ssggggg

χjs
WWWWW

++WWWWW

We use one of the arrows connecting vi with vj to identify the two vertices. That
is, we form the shrinked marked quiver-setting (Q•s, αs) where Q•s is the marked
quiver on k − 1 vertices {v1, . . . , v̂i, . . . , vk} and αs is the dimension vector with ei
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removed. Q•s has the following form in a neighborhood of the contracted vertex

e8?9>:=;<
aii + ajj + χij + χji − 1

��

•
mii + mjj

WW

χpi + χpj
\\\\\\\\\\\\\\

--\\\\\\\\\\\\\\

χiq + χjq
bbbbbbbbbbbbbb

qqbbbbbbbbbbbbbb

χrj + χri
bbbbbbbbbbbbbb

qqbbbbbbbbbbbbbb

χjs + χis
\\\\\\\\\\\\\\

--\\\\\\\\\\\\\\

In Q•s we have for all k, l 6= i, j that χskl = χkl, askk = akk, ms
kk = mkk and the

number of arrows and (marked) loops connected to vj are determined as follows
• χsjk = χik + χjk
• χskj = χki + χkj
• asjj = aii + ajj + χij + χji − 1
• ms

jj = mii +mjj

We claim that α is the dimension vector of a simple representation of Q• if and
only if αs is the dimension vector of a simple representation of Q•s and that the
dimensions of the corresponding quotient varieties are equal.

Fix an arrow ��������i��������j
aoo . As ei = ej = e there is a Zariski open subset

U ⊂ - repα Q
• of points V such that Va is invertible. By basechange in either vi

or vj we can find a point W in its orbit such that Wa = rr
e. If we think of Wa as

identifying Cei with Cej we can view the remaining maps ofW as a representation in
repαs

Q•s and denote it by W s. The map U - repαs
Q•s is well-defined and maps

GL(α)-orbits to GL(αs)-orbits. Conversely, given a representation W ′ ∈ repαs
Q•s

we can uniquely determine a representation W ∈ U mapping to W ′. Both claims
follow immediately from this observation.

A marked quiver-setting can uniquely be shrinked to its simplified form , which
has the characteristic property that no arrow-connected vertices can have the same
dimension. The shrinking process has a converse operation which we will call split-
ting of a vertex . However, this splitting operation is usually not uniquely deter-
mined.

Example 112. Two marked quiver-settings (Q•1, α) and (Q•2, α) are said to
be equivalent if and only if their representation spaces repα Q•1 and repα Q•2 are
isomorphic GL(α)-modules. For example,

��������1 ��������2
&&

ff

•

����
and ��������1 ��������2

&&
ff

��

determine the same C∗ ×GL2-module, hence are equivalent.

We will merely mention the classification in dimension 3 and 4 and leave the
claims as an exercise to the reader.

Theorem 78. Let X be a threefold and let A be a sheaf of OX-orders in a
central simple C(X)-algebra of dimension n2. If ξ ∈ smoothA, then the local quiver-
setting (Q•ξ , αξ) can be shrinked to one of the following four types

• type 1 : ��������1
"" ||
ZZ
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• type 2 : ��������2•
$$

•
zz

• type 3 : ��������1 ��������2
&&

ff

•

��

• type 4 : ��������1 ��������2 ��������1
&&

ff ff
&&

ξ is a smooth point on X unless (Q•ξ , αξ) is of type 1 and can be shrinked to a
quiver-setting of the form

��������1 ��������1
))ii
$$

dd

in which case, x is an isolated singularity of X, locally of type C[[u,v,x,y]]
(uv−xy) .

A is étale split in ξ unless (Q•ξ , αξ) is of type 2 in which case

Âξ G Cliff
[
x y
y z

]
⊗C[x,y,z] C[[x, y, z]]

where the Clifford algebra over C[x, y, z] of the indicated non-degenerate quadratic
form is the algebra

Cliff

[
x y
y z

]
' C〈a, b〉

(ab2 − b2a, a2b− ba2)

Theorem 79. Let X be a fourfold and let A be a sheaf of OX-orders in a central
simple C(X)-algebra of dimension n2. If ξ ∈ smoothA, then the local quiver-setting
(Q•ξ , αξ) can be shrinked to one of the following five equivalence classes of types

• type 1 : ��������1
�� qqQQ11

• type 2 : ��������2•
$$ zz

• type 3 : ��������1 ��������2
&&

ff
��

• type 4 : ��������1 ��������2
))ii
$$

dd

• type 5 : ��������1 ��������2 ��������1
&&

ff ff
&&��

Now that we have information on the local ramification locus and the splitting
behavior of an alg@n-smooth order, the next step is to determine the Brauer classes
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0 0 0 0 . . .

H2(K,µn) ⊕p H1(kp,Zn) µ−1
n 0 . . .

H1(K,µn) ⊕pZn 0 0 . . .

µn 0 0 0 . . .

Figure 20. Coniveau spectral sequence for C{x, y}.

that have this local behavior. We will perform the calculations in the special case
of surfaces, but they can (at least in principle) be generalized to higher dimensions.

Theorem 80. Let C{x, y} be the ring of algebraic functions in two variables
(1) If U = specC{x, y} − V (x), then Brn U = 0
(2) If U = specC{x, y} − V (xy), then Brn U = Zn with generator the

quantum-plane algebra

Cζ [u, v] =
C〈u, v〉

(vu− ζuv)
where ζ is a primitive n-th root of one

Proof. There is only one codimension two subvariety : m = (x, y). Let us
compute the coniveau spectral sequence for specC{x, y}. IfK is its field of fractions
and if we denote by kp the field of fractions of C{x, y}/p for p a height one prime,
we have the first term as in figure 20 Because C{x, y} is a unique factorization
domain, the map

H1
et(K,µn) = K∗/(K∗)n

γ- ⊕p Zn
is surjective. Moreover, all fields kp are isomorphic to the field of fractions of C{z}
whose only cyclic extensions are given by adjoining a root of z and hence they are
all ramified in m. Therefore, the component maps

Zn = H1
et(kp,Zn)

βL- µ−1

are isomorphisms. Hence, we have the form of the second (and limiting) term of the
coniveau spectral sequence. Finally, we use the fact that C{x, y} is strict Henselian
whence has no proper étale extensions. But then,

Hi
et(Xloc, µn) = 0 for i ≥ 1

and substituting this information in the spectral sequence we obtain that the top
sequence of the coniveau spectral sequence

0 - Brn K
α- ⊕p Zn - Zn - 0
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is exact. From this sequence the result follows using the fact (recalled in the next
example) that the ramification divisor of the quantum plane is V (xy). �

Example 113. (The smooth locus of the quantum plane) Let

A =
C〈x, y〉

(yx− qxy)

where q is a primitive n-th root of unity. Let u = xn and v = yn then A is a free
module of rank n2 over its center C[u, v]. Taking the trace map on the basis

tr(xiyj) =

{
0 when either i or j is not a multiple of n,
nxiyj when i and j are multiples of n,

A ∈ alg@n with tr(A) = C[u, v]. For ξ ∈ issnA = C2 a point (an, b) with a.b 6= 0,
ξ is of representation type (1, n) as the corresponding (semi)simple representation
Vξ is determined by (if m is odd, for even n we replace a by ia and b by −b)

ρ(x) =


a

qa
. . .

qn−1a

 and ρ(y) =


0 1 0 . . . 0
0 0 1 0
...

...
. . .

0 0 0 . . . 1
b 0 0 . . . 0


A calculation shows that Ext1A(Mξ,Mξ) = C2 where the algebra map

A
φ- Mn(C[ε]) corresponding to (α, β) is given by{

φ(x) = ρ(x) + ε αrr
n

φ(y) = ρ(y) + ε βrr
n

and all these algebra maps are trace preserving. That is, Ext1A(Mξ,Mξ) =
ExttrA (Mξ,Mξ) and because the stabilizer subgroup is C∗ the marked quiver-setting
(Q•ξ , αξ) is

��������1
"" pp

whence ξ ∈ smoothA, compatible with the fact that over these points the quotient
map is a principal PGLn-fibration.

For ξ = (an, 0) with a 6= 0 (or, by a similar argument (0, bn) with b 6= 0) the
representation type of ξ is (1, 1; . . . ; 1, 1) because

Mξ = S1 ⊕ . . .⊕ Sn

where the simple one-dimensional representation Si is given by{
ρ(x) = qia

ρ(y) = 0

One verifies that

Ext1A(Si, Si) = C and Ext1A(Si, Sj) = δi+1,j C
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and because the stabilizer subgroup is C∗ × . . .× C∗, the Ext-quiver setting is

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

&&

qq

YY YY

mm

����

The algebra map A
φ - Mn(C[ε]) corresponding to the extension

(α1, β1, . . . , αn, βn) ∈ Ext1A(Mξ,Mξ) is given by

φ(x) =


a+ ε α1

qa+ ε α2

. . .

qn−1a+ ε αn



φ(y) = ε



0 β1 0 . . . 0
0 0 β2 0
...

...
. . .

...
0 0 0 βn−1

βn 0 0 . . . 0


The conditions tr(xj) = 0 for 1 ≤ i < n impose n− 1 linear conditions among the
αj , whence the space of trace preserving extensions ExttrA (Vξ, Vξ) corresponds to
the quiver setting

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

&&

qq

But then, as αξ = (1, . . . , 1)

1− χQ(α, α)−
∑
i

mii = 1− (−1)− 0 = 2 = dim issnA

whence ξ ∈ smoothA.
The remaining point is ξ = (0, 0) which has representation type (n, 1) as the

corresponding semi-simple representation Mξ is the trivial one. The stabilizer sub-
group is GLn and the (trace preserving) extensions are given by

Ext1A(Mξ,Mξ) = Mn ⊕Mn and ExttrA (Mξ,Mξ) = M0
n ⊕M0

n
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determined by the algebra maps A
φ- Mn(C[ε]){

φ(x) = ε m1

φ(y) = ε m2

The local marked quiver-setting (Q•ξ , αξ) in this point is

��������n

• "" •
pp

ξ /∈ smoothA as the numerical condition fails

1− χQ(α, α)−
∑
i

mii = 1− (−n2)− 2 6= 2 = dim issnA

That is, smoothA = C2 − {(0, 0)} and the ramification divisor of A is V (uv).

Let Σ be a central simple K-algebra of dimension n2 over a field K of tran-
scendence degree 2. If A is an alg@n-smooth sheaf of OS-algebras, then we know
from example ?? that S is a projective smooth surface, that is, a smooth model for
K. By the Artin-Mumford exact sequence, theorem 66, the class of Σ in Brn C(S)
is determined by the following geo-combinatorial data

• A finite collection C = {C1, . . . , Ck} of irreducible curves in S.
• A finite collection P = {P1, . . . , Pl} of points of S where each Pi is either

an intersection point of two or more Ci or a singular point of some Ci.
• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ

and {1, . . . , iP } the different branches of C in P . These numbers must
satisfy the admissibility condition∑

i

bi = 0 ∈ Zn

for every P ∈ P
• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C which is compatible with the branch-data.
If B is a maximal OX -order in Σ, then the ramification locus ramB coincides with
the collection of curves C.

Theorem 81. Let Σ be a central simple K-algebra of dimension n2 over a field
K of transcendence degree 2. Then the following statements hold.

(1) There is a smooth projective surface S with C(S) = K such that any
maximal OS-order in Σ has at worst a finite number of noncommutative
singularities, all of which are étale locally of quantum-plane type.

(2) There is a noncommutative smooth model for Σ iff S and A as in (1) can
be chosen such that ramA is a disjoint union of smooth curves in S. This
holds if and only if for the geo-combinatorial data (C,P, d,D) determining
[Σ] ∈ BrnK (in any projective smooth model) all branch-data are trivial.

Proof. Let X be a projective smooth surface with C(X) = K and A a sheaf
of maximal OX -orders in Σ.

claim 1 : For the geo-combinatorial data (C,P, b,D) determining the class of ∆
in Brn C(X) : if ξ ∈ X lies in X − C or if ξ is a non-singular point of C, then A is
alg@n-smooth in ξ.
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If ξ /∈ C, then Aξ is an Azumaya algebra over OX,x. As X is smooth in ξ, A
is alg@n-smooth in ξ. Alternatively, we know that Azumaya algebras are split by
étale extensions, whence Âξ ' Mn(C[[x, y]]) which shows that the behavior of A
near ξ is controlled by the local quiver-setting

1(/).*-+,%% yy . . .︸ ︷︷ ︸
n

and hence ξ ∈ smoothA. If ξ is a nonsingular point of the ramification di-
visor C, consider the pointed spectrum Xξ = spec OX,ξ − {mξ}. All prime
ideals are of height one, corresponding to the curves on X passing through ξ
and hence this pointed spectrum is a Dedekind scheme. Further, A determines
a maximal order over Xξ. But then, tensoring A with the strict henselization
OshX,ξ ' C{x, y} determines a sheaf of hereditary orders on the pointed spectrum
X̂ξ = Spec C{x, y} − {(x, y)} and we may choose the local variable x such that x
is a local parameter of the ramification divisor C near ξ.

Using the characterization result for hereditary orders over discrete valuation
rings, given in [56, Thm. 39.14] we know the structure of this extended sheaf of
hereditary orders over any height one prime of X̂ξ. Because Aξ is a reflexive (even
a projective) OX,ξ-module, this height one information determines Ashξ or Âξ. This
proves that Ashξ must be isomorphic to the following blockdecomposition

Md1(C{x, y}) Md1×d2(C{x, y}) . . . Md1×dk
(C{x, y})

Md2×d1(xC{x, y}) Md2(C{x, y}) . . . Md2×dk
(C{x, y})

...
...

. . .
...

Mdk×d1(xC{x, y}) Mdk×d2(xC{x, y}) . . . Mdk
(C{x, y})


for a certain unordered partition p = (d1, . . . , dk) of n having k parts. (In fact, as
we started out with a maximal order A one can even show that all these integers
di must be equal.) This corresponds to the local quiver-setting

1(/).*-+, 1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

Ak01

WW///////

KK��������������

ee

//

oo

##
p = (d1, . . . , dk)
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whence ξ ∈ smoothA. Hence, a maximal OX -order in Σ can have at worst non-
commutative singularities in the singular points of the ramification divisor C. By
changing the smooth model X we can always arrange it that these singularities are
at worst normal crossings. To begin, recall the following classical result, see for
example [22, V.3.8].

(Embedded resolution of curves in surfaces) Let C be any curve on the surface
X. Then, there exists a finite sequence of blow-ups

X ′ = Xs
- Xs−1

- . . . - X0 = X

and, if f : X ′ -- X is their composition, then the total inverse image f−1(C) is
a divisor with normal crossings.

Fix a series of blow-ups X ′
f-- X such that the inverse image f−1(C) is a

divisor on X ′ having as worst singularities normal crossings. We will replace the
OX -order A by the OX′ -order A′ where A′ is a sheaf of OX′ -maximal orders in
Σ. In order to determine the ramification divisor of A′ we need to be able to keep
track of the ramification divisor C of Σ through the blow up at a singular point
p ∈ P.

claim 2 : Let X̃ -- X be the blow-up of X at a singular point p of C, the
ramification divisor of ∆ on X. Let C̃ be the strict transform of C and E the
exceptional line on X̃. Let C′ be the ramification divisor of ∆ on the smooth model
X̃. Then,

(1) Assume the local branch data at p distribute in an admissible way on C̃,
that is, ∑

i at q

bi,p = 0 for all q ∈ E ∩ C̃

where the sum is taken only over the branches at q. Then, C′ = C̃.
(2) Assume the local branch data at p do not distribute in an admissible way,

then C′ = C̃ ∪ E.

Clearly, C̃ ⊂ - C′ ⊂ - C̃ ∪E. By the Artin-Mumford sequence applied to X ′

we know that the branch data of C′ must add up to zero at all points q of C̃ ∩ E.
We investigate the two cases : (1) : Assume E ⊂ C′. Then, the E-branch number
at q must be zero for all q ∈ C̃ ∩ E. But there are no non-trivial étale covers
of P1 = E so ram(∆) gives the trivial element in H1

et(C(E), µn), a contradiction.
Hence C′ = C̃.

??
??

??
??

??
??

??
??

? �����������������

•
p

a −a

E

a

−a

−a

a

(2) : If at some q ∈ C̃ ∩ E the branch numbers do not add up to zero, the only
remedy is to include E in the ramification divisor and let the E-branch number be
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such that the total sum is zero in Zn. We are now in a position to prove the first
part of the theorem.

Start with any projective smooth surface X with functionfield C(X) = L and
let the class of Σ be determined by the geo-combinatorial data (C,P, b,D) in X
where C is the ramification divisor ramΣ and P is the set of singular points of C.
We can split P in two subsets

• Punr = {P ∈ P where all the branch-data bP = (b1, . . . , biP ) are trivial,
that is, all bi = 0 in Zn}
• Pram = {P ∈ P where some of the branch-data bP = (b1, . . . , biP ) are

non-trivial, that is, some bi 6= 0 in Zn}

After a finite number of blow-ups we get a birational morphism S1
π-- X such that

π−1(C) has as its worst singularities normal crossings and all branches in points of P
are separated in S. Let C1 be the ramification divisor of ∆ in S1. By the foregoing
argument we have

• If P ∈ Punr, then we have that C′ ∩ π−1(P ) consists of smooth points of
C1,
• If P ∈ Pram, then π−1(P ) contains at least one singular points Q of C1

with branch data bQ = (a,−a) for some a 6= 0 in Zn.
In fact, after blowing-up singular points Q′ in π−1(P ) with trivial branch-data we
obtain a smooth surface S -- S1

-- X such that the only singular points of the
ramification divisor C′ of ∆ have non-trivial branch-data (a,−a) for some a ∈ Zn.
Then, take a maximal OS-order A in Σ. By the local calculation of Brn C{x, y} of
theorem 80 A is étale locally of quantum-plane type in these remaining singularities.
By example 113 A is not alg@n-smooth in these finite number of points.

In particular, if all branch-data are trivial, this constructs an alg@n-smooth
model of Σ. Conversely, if A is an alg@n-smooth OS-order in Σ with S a smooth
projective model of C(X), then A is locally étale split in every point s ∈ S. But
then, so is any maximal OS-order Amax containing A. By the foregoing arguments
this can only happen if all branch-data are trivial. �





CHAPTER 6

Empires

”All information looks like noise until you break the code.”
N. Stephenson in ”Snow Crash”.

This chapter and the next present our approach to the isomorphism problem
of finite dimensional representations for an alg-smooth algebra A. We recall the
definition, due to Kent Morisson, of the component semigroup compA on the set
of all connected components of repA with addition induced by the direct sum
of representations. If A is alg-smooth, the connected components are also the
irreducible components and we denote by repαA the component determined by
α ∈ compA.

With simpA we denote the subset of compA consisting of those irreducible
components containing a simple representation. One might view #(compA−simpA)
as a measure for the failure of repA to be an affine noncommutative variety. By
universal localization one can usually arrive at a situation where this number is
finite.

The empire empA of the alg-smooth algebra A is the (infinite) quiver with
vertices vα for α ∈ simpA and where the number of directed arrows from vα to
vβ is ext(α, β) the minimal dimension of the extension group Ext1A(M,N) where
M ∈ repαA and N ∈ repβA. The structure of empA is fully determined by a
(usually finite) subquiver, the wall on the semigroup generators of compA. The
main result asserts that

iso(repαA) =
⊔

(Q,α)

iso(nullα Q)× azuβ1A× . . .× azuβl
A

where the disjoint union is taken over all quiver settings (Q,α) with Q a finite
subquiver of empA on the vertices {vβ1 , . . . , vβl

} ⊂ simpA and where azuβiA is the
Azumaya locus of

∫
βi
A which is an order in a central simple algebra.

This reduces the study to a combinatorial part, the description of the orbits in
nullcones of quiver representations, depending only on the noncommutative étale
isomorphism class of A and a geometric part, the description of the Azumaya loci,
which contains the noncommutative Zariski information on A. We postpone the
description of the nullcones to the last chapter and prove that the orders

∫
β
A

usually determine an étale cohomology class on the smooth locus of
∮
β
A.

In the final section we present the results due to Raf Bocklandt characterizing
the quiver settings (Q,α) such that issα Q is smooth. Combining this with the
local étale description, this determines the smooth loci of the irreducible varieties
issαA whenever A is alg-smooth.

189
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6.1. Component semigroups.

To start, we recall some results of Kent Morrison [48] on the connected com-
ponent semigroup of an algebra A.

Definition 83 (Morrison). For an affine C-algebra A we denote by compnA
the set of connected components of repnA and let

comp A =
⊔
n

compnA

The direct sum maps repkA× replA
- repk+lA make comp A into an Abelian

semigroup.
comp is a contravariant functor alg - ab-semigroups. That is, for every C-

algebra morphism A
f- B defines a morphism repn B

f∗- repn A by restriction

of scalars and hence a semigroup morphism comp B
f∗- comp A.

The dimension function defines a semigroup morphism comp A - N, the aug-
mentation map. We call the augmented Abelian semigroup comp A the component
semigroup of A.

Theorem 82. comp A also classifies the connected components of the quotient
varieties issnA for all n ∈ N.

Proof. It suffices to show that the fibers of the quotient maps

repnA
π-- issnA

are connected. A point ξ ∈ issnA corresponds to a semi-simple n-dimensional rep-
resentation Mξ of A. The fiber π−1(ξ) consists of all n-dimensional representations
M having as sum of its Jordan-Hölder components Mξ. By the Hilbert criterium
we can connect M with a point in the orbit of Mξ by a rational curve C, whence
π−1(ξ) is connected. �

Example 114. Let A be a finite dimensional algebra. A has finitely many
simple representations S1, . . . , Sk with dimSi = di. For a fixed natural number n,
any semi-simple n-dimensional representation of A is of the form

M = S⊕a1
1 ⊕ . . .⊕ S⊕ak

k

with
∑
aidi = n. Therefore, comp A ' Nk with k the number of simple represen-

tations of A.

Example 115. Let Q be a finite quiver on k-vertices, then comp〈Q〉 ' Nk.
Indeed, we have seen that repn 〈Q〉 decomposes into connected components corre-
sponding to the dimension vectors α of total dimension n.

Theorem 83 (Morrison). Let A and B be affine C-algebras, then
(1) comp A×B ' comp A× comp B.
(2) comp A ∗B ' comp A×N comp B.
(3) If I / A is nilpotent, then comp A ' comp A

I .
(4) comp A[x1, . . . , xm] ' comp A.
(5) comp A〈x1, . . . , xm〉 ' comp A.

Proof. (1) : The projection maps A ��p A × B p′-- B induce an isomor-
phism of semigroups p∗ + p

′∗ : comp A× comp B - comp A×B as any A×B
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representation is the direct sum of an A-representation and a B-representation. If
we take the sum of the two dimension functions, this is an isomorphism as aug-
mented semigroups.

(2) : By the universal property of the free algebra product an n-dimensional
representation of A ∗ B consists of an n-dimensional A-representation and an n-
dimensional B-representation. Therefore, the inclusions A ⊂

i- AastB �i′
⊃ B

induce an isomorphism i∗ ×N i
′∗ : comp A ∗B - comp A×N comp B.

(3) : A nilpotent ideal acts trivially on a semi-simple representation, whence
issnA = issn

A
I .

(4) : Define a positive gradation on A[x1, . . . , xk] by deg(a) = 0 for all a ∈ A
and deg(xi) = 1. The gradation induces a C∗-action on repn A[x1, . . . , xk].
The limiting point for this action is an n-dimensional representation on which
all the xi act trivially, that is a point in repn A. Therefore, the inclusion
repn A ⊂ - repn A[x1, . . . , xk] gives a one-to-one correspondence between the
connected components.

(5) : Again the gradation argument of part (4). �

Example 116. Let A be an affine commutative algebra with correspond-
ing reduced variety X = specA. As A is commutative, the only epimorphisms
A -- Mn(C) possible are with n = 1. That is, isomorphism classes of simple
A-representations are classified by X. The Jordan-Hölder theorem implies that for
n ≥ 1

issnA = X(n) = X × . . . X︸ ︷︷ ︸
n

/Sn

the n-th symmetric product of X. If X is connected, or equivalently, if A has no
non-trivial idempotents, then so is X(n) for every n whence comp A ' N. If A
decomposes as A = A1 × . . .×Ak with specAi connected, then

comp A ' comp A1 × . . .× comp Ak ' Nk

Example 117. The component semigroup for 〈m〉. Because comp C[x] ' N by
the previous example and

〈m〉 = C[x] ∗ . . . ∗ C[x]︸ ︷︷ ︸
m

it follows from part (2) of theorem 83 that comp 〈m〉 ' N.

Part (5) of theorem 83 are special cases of a more general result.

Theorem 84 (Morrison). Let A be an affine alg-smooth algebra such that
comp A ' N as augmented Abelian semigroups. Then, for any B ∈ alg we have

comp A⊗B ' comp B

Proof. Let ρ : A⊗ B - Mn(C) be an n-dimensional representation and
let

f = ρ(−⊗ 1) : A - Mn(C)

be the induced n-dimensional representation of A. The image R = f(A) is a finite
dimensional algebra so is a semidirect sum R = S ⊕ N with S semisimple and N
the radical of R of nilpotency degree k, that is, Nk = 0.
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We want to deform f to g = πS ◦ f in such a way that all intermediate algebra
morphisms ht have the property that ht(A) ⊂ R. Let U = f−1(N) and A0 =
f−1(S). Assume by induction we have already constructed an algebra map

fi : A - R such that

{
fi(N) ⊂ N i

fi|A0 = f |A0

Consider the projections R
pi+1-- R

Ni+1
��πi R

Ni and define the family of algebra
morphisms

φt : A - R

N i+1
a+ u 7→ fi(a) + tpi+1(fi(u))

This is an algebra morphism since pi+1(fi(u)) ∈ Ker πi which is a square zero
ideal. Because A is alg-smooth we can lift φt to an algebra morphism

ψt : A - R

and define fi+1 = ψ0. Then, fi+1(U) ⊂ N i+1. Iterating we eventually construct an
algebra map fk : A - R such that fk(U) ⊂ Nk = 0 whence fk = g. Thus, f
can be deformed to g by a sequence of deformations along the affine line.

The semisimple algebra S is of the form Mn1(C)⊕ . . .⊕Mnl
(C) with

∑
ni = n.

Therefore, the n-dimensional A-module Vg defined by g is the direct sum

Vg = S1 ⊕ . . .⊕ Sl

with Si a simple of dimension ni with structure map A
gi- Mni(C). Because

comp A ' N, V lies in the same connected component as the semisimple module
Tni

= S⊕ni where S is a one-dimensional simple A-module generating comp A de-
termined by A

ε-- C. That is, we can deform each gi and hence (by simultaneous
deformation) g to the representation

A - Mn(C) a 7→ ε(a)rrn
This deformation is taking place inside S and commutes with ρ(B) so we have a
deformation of ρ to the n-dimensional representation given by

σ : A⊗B - Mn(C) a⊗ b 7→ ε(a)σ(b)

proving the result. �

Definition 84. For an affine algebra A ∈ alg let simpA be the subset of
compA consisting of those connected components containing a simple A-module.
We call simpA the set of simple roots of A.

Example 118. The simple roots of 〈Q〉.
Let Q be a finite quiver with vertices Qv = {v1, . . . , vk}. We will give some

necessary conditions for a dimension vector α to belong to simp〈Q〉.
For S ⊂ Qv we denote with QS the full subquiver of Q having S as its set

of vertices. A full subquiver QS is said to be strongly connected if and only if for
all vi, vj ∈ S there is an oriented cycle in QS passing through vi and vj . We can
partition

Qv = S1 t . . . t Ss
such that the QSi are maximal strongly connected components of Q. Clearly,
the direction of arrows in Q between vertices in Si and Sj is the same by the
maximality assumption and can be used to define an orientation between Si and
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��������
source
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;;
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��������
prism

;;wwwwwwwwwwwwww
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GGGGGGGGGGGGG// ��������

focus

##GGGGGGGGGGGGGG

++WWWWWWWWWWWW
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;;
wwwwwwwwwwwwww

//

Figure 1. Vertex terminology

Sj . The strongly connected component quiver SC(Q) is then the quiver on s vertices
{w1, . . . , ws} with wi corresponding to Si and there is one arrow from wi to wj if
and only if there is an arrow in Q from a vertex in Si to a vertex in Sj . Observe
that when the underlying graph of Q is connected, then so is the underlying graph
of SC(Q) and SC(Q) is a quiver without oriented cycles.
condition 1 : If α = (d1, . . . , dk) ∈ simp〈Q〉, then Qsuppα is a strongly connected
subquiver of Q where suppα = {vi : di 6= 0} is the support of the dimension
vector. If not, we consider the strongly connected component quiver SC(Qsuppα)
and by assumption there must be a sink (for vertex-terminology see figure 1) in it
corresponding to a proper subset S ⊂

6=- Qv. If V ∈ repα Q we can then construct
a representation W by

• Wi = Vi for vi ∈ S and Wi = 0 if vi /∈ S,
• Wa = Va for an arrow a in QS and Wa = 0 otherwise.

One verifies that W is a proper subrepresentation of V , so V cannot be simple, a
contradiction.
condition 2 : If α ∈ simp〈Q〉, then for all vi ∈ suppα{

χQ(α, εi) ≤ 0
χQ(εi, α) ≤ 0

where εi is the dimension vector of the one-dimensional simple concentrated in vi.
Indeed, let V be a simple representation of Q of dimension vector α = (d1, . . . , dk),
then

χQ(εi, α) = di −
∑

��������i��������j
aoo

dj

If χQ(εi, α) > 0, then the natural linear map⊕
��������i��������j

aoo

Va : Vi -
⊕

��������i��������j
aoo

Vj
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has a nontrivial kernel, say K. Consider the representation W of Q determined by
• Wi = K and Wj = 0 for all j 6= i,
• Wa = 0 for all a ∈ Qa.

thenW is a proper subrepresentation of V , a contradiction. Similarly, if χQ(α, εi) =
di −

∑
��������j��������i

aoo
dj > 0, then the linear map

⊕
��������j��������i

aoo

Va :
⊕

��������j��������i
aoo

Vj - Vi

has an image I which is a proper subspace of Vi. The representation W of Q
determined by

• Wi = I and Wj = Vj for j 6= i,
• Wa = Va for all a ∈ Qa.

is a proper subrepresentation of V , a contradiction. These two conditions are not
sufficient as we have the following
exception : Consider the extended Dynkin quiver of type Ãk with cyclic orien-
tation.

a(/).*-+, a(/).*-+,
a(/).*-+,
a(/).*-+,

a(/).*-+,a(/).*-+,

//
??���

OO

__???
oo

""

and dimension vector α = (a, . . . , a). All arrow matrices must be invertible if
V is simple. In this case, under the action of GL(α), they can be diagonalized.
Therefore, α = (a, . . . , a) ∈ simpÃk iff a = 1. However, this is the only exceptional
case :

Theorem 85. α = (d1, . . . , dk) ∈ simp〈Q〉 if and only if one of the following
two cases holds

(1) suppα = Ãk, the extended Dynkin quiver on k vertices with cyclic orien-
tation and di = 1 for all 1 ≤ i ≤ k

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

""

(2) suppα 6= Ãk. Then, suppα is strongly connected and for all 1 ≤ i ≤ k we
have {

χQ(α, εi) ≤ 0
χQ(εi, α) ≤ 0

In either case, simp〈Q〉 is a cone in comp〈Q〉 = Nk.
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Proof. We will use induction, both on the number of vertices k in suppα and
on the total dimension n =

∑
i di of the representation. A vertex vi is said to be

large with respect to a dimension vector α = (d1, . . . , dk) whenever di is maximal
among the dj . The vertex vi is said to be good if vi is large and has no direct
successor which is a large prism nor a direct predecessor which is a large focus. If
suppα has no good vertex, then either suppα must have a large prism having no
large prism direct successors or it must have a large focus having no large focus
direct predecessors. Indeed, if neither of the cases hold, there is an oriented cycle
in suppα consisting of prisms (or consisting of focusses). Assume (vi1 , . . . , vil) is
a cycle of prisms, then the unique incoming arrow of vij belongs to the cycle. As
suppα 6= Ãk there is at least one extra vertex va not belonging to the cycle. But
then, there can be no oriented path from va to any of the vij , contradicting the
assumption that suppα is strongly connected.

But then take such a large prism (or focus), then because χQ(α, εi) ≤ 0 and
χQ(εi, α) ≤ 0 for all 1 ≤ i ≤ k, we have the following subquiver in suppα

��������a ��������a

large focus large prism

##G
GG

GG
GG

GG
GG

GG
G

++WWWWWWWWWWW

33ggggggggggg
;;wwwwwwwwwwwwww

//

77oooooooooooo //

''OOOOOOOOOOOO

We can reduce to a quiver situation with strictly less vertices by identifying these
two vertices. The resulting quiver is still strongly connected and the dimension
vector still satisfies the Euler condition. Therefore, by assumption there is a simple
representation and we can extend it to a simple representation on suppα by putting
the identity matrix on the connecting arrow, whence we are done in this case.

Therefore, we may assume that suppα has a good vertex vi. If di = 1 then
all dj = 1 for vj ∈ suppα and we can construct a simple representation by taking
Vb = 1 for all arrows b in suppα. Simplicity follows from the fact that suppα is
strongly connected.

If di > 1, consider the dimension vector α′ = (d1, . . . , di−1, di−1, di+1, . . . , dk).
Clearly, suppα′ = suppα is strongly connected and we claim that the Euler-form
conditions still hold for α′. The only vertices vl where things might go wrong are
direct predecessors or direct successors of vi. Assume for one of them χQ(εl, α) > 0
holds, then

dl = d′l >
∑

��������l��������m
aoo

d′m ≥ d′i = di − 1

But then, dl = di whence vl is a large vertex of α and has to be also a focus with
end vertex vi (if not, dl > di), contradicting goodness of vi.

Hence, by induction on n we may assume that there is a simple representation
W ∈ repα′ suppα. Consider the space repW of representations V ∈ repα Q such
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that V | α′ = W . That is, for every arrow

��������i��������j
aoo Va =

Wa

v1 . . . vdj

��������j��������i
aoo Va =

v1

Wa

...
vdj

repW is an affine space consisting of all representations degenerating to W ⊕ Si
where Si is the simple one-dimensional representation concentrated in vi.

As there are simple representations ofQ having a one-dimensional component at
each vertex in suppα and as the subset of simple representations in repα′ Q is open,
we can choose W such that repW contains representations V such that a trace of
an oriented cycle differs from that of W ⊕Si. As the invariant ring C[repα Q]GL(α)

is generated by traces along oriented cycles and classifies the isomorphism classes
of semi-simple representations, it follows that the Jordan-Hölder factors of V are
different from W and Si. In view of the definition of repW , this can only happen
if V is a simple representation, finishing the proof of the theorem. �

Next, we will construct alg-smooth algebras A having as their component
semigroup comp A (almost) any sub semigroup of N. We first need to recall some
facts on Azumaya algebras and their polynomial identities.

Definition 85. The n-th Azumaya locus of an algebra A ∈ alg is the Zariski
open subscheme (possibly empty) azunA of issnA consisting of the points ξ cor-
responding to n-dimensional simple representations Mξ.

Example 119. If repnA
π- issnA is the quotient map, then we claim that

π−1(azunA) -- azunA

is a principal PGLn-fibration in the étale topology, that is, determines an element
in H1

et(azunA,PGLn).
By assumption, the stabilizer subgroup of x = Mξ in GLn is C∗rrn, that is,

PGLn acts on repnA with trivial stabilizer in x. Let Sx be the slice in x for the
PGLn-action on repnA. By taking traces of products of a lifted basis from Mn(C)
we find a PGLn-affine open neighborhood afUξ of ξ contained in azunA and hence
by the slice result a commuting diagram

PGLn × Sx
ψ - π−1(Uξ)

Sx

??

ψ/PGLn

- Uξ

π

??

where ψ and ψ/PGLn are étale maps. That is, ψ/PGLn is an étale neighborhood
of ξ over which π is trivialized. As this holds for all points ξ ∈ azunA the claim
follows.
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In particular, if azunA = issnA and if C = C[issnA this shows that there is
an étale cover {Bi} of C such that∫

n

A⊗C Bi 'Mn(Bi)

We will now explain the terminology by proving the connection with the classical
notion of Azumaya algebras.

Definition 86. For C ∈ commalg an algebra A ∈ algC is said to be an
Azumaya algebra if and only if

(1) A is a finitely generated projective C-module, and,
(2) the natural multiplication map

Ae = A⊗C Aop
j- EndC(A) j(a′ ⊗ a”)a = a′aa”

is an isomorphism in algC .

Example 120. If A is a central simple algebra of dimension n2 over K we
have seen that A⊗K Aop 'Mn2(K). Hence, Azumaya algebras over a field K are
precisely the central simple K-algebras.

Example 121. If P ∈ projmodC, then the endomorphismring A = EndC(P )
is an Azumaya algebra over C. In particular, if P = C⊕n, then EndC(P ) = Mn(C)
is an Azumaya algebra. These Azumaya algebras will be called trivial.

If A and A′ are two Azumaya algebras over C one verifies easily that A⊗C A′
is also an Azumaya algebra over C. We call two C-Azumaya algebras equivalent if
there are P, P ′ ∈ projmodC such that

A⊗C EndC(P ) ' A′ ⊗C EndC(P ′)

Observe that this generalizes the equivalence notion on central simple algebras.
Again, the equivalence classes of C-Azumaya algebras form a commutative group
under the tensorproduct, in which the class of EndC(P ) is the identity element and
the inverse of the class of A is the class of Aop. This group is called the Brauer
group Br(C) of the commutative algebra C.

Example 122. If C - C ′ is a morphism in commalg and if A is an Azumaya
algebra over C, then AC′ = A ⊗C C ′ is an Azumaya algebra over C ′. Indeed, as
A ∈ projmodC, A⊗C C ′ is a finitely projective C ′-module and the maps

AC′ ⊗C′ AopC′ ' (A⊗C Aop)C′ ' (EndC(P ))C′ ' EndC′(P ⊗C C ′)
give the required isomorphism. Also the notion of trivial Azumaya algebra and of
equivalence is preserved, giving a groupmorphism

Br(C) - Br(C ′)

on the level of Brauer groups. If C - C ′ is a faithfully flat extension, then
we can descend C ′-isomorphisms to C-isomorphisms and C ′-projective modules to
C-projective modules. Hence, in that case, if A ⊗C C ′ is a C ′-Azumaya algebra,
then A is a C-Azumaya algebra.

In particular, let ci ∈ C be a set of elements generating the unit ideal in C, or
equivalently, the open sets X(ci) in the Zariski topology cover specC. Then, the
direct sum of the corresponding sections

⊕iCci
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is faithfully flat over C. Therefore, A is an Azumaya algebra over C if and only if
all Aci are Azumaya algebras over Cci . This means that the Azumaya property is
a local property for the Zariski topology (as well as for the étale topology).

We will now investigate the étale local structure of Azumaya algebras. For this
we need to know what the local rings are in the étale topology.

Definition 87. Let p be a prime ideal of C and denote with kp the alge-
braic closure of the field of fractions of A/p. An étale neighborhood of p is an
étale extension B ∈ Cet such that the diagram below is commutative

C
nat - kp

B

et

?

-

The localization at p for the étale topology is the strict Henselization

Cshp = lim- B

where the limit is taken over all étale neighborhoods of p.
A local algebra L with maximal ideal m and residue map π : L -- L/m = k is

said to be Henselian if for every monic polynomial f ∈ L[t] allowing a decomposition

π(f) = g0.h0

in k[t], then f = g.h with π(g) = g0 and π(h) = h0. If L is Henselian, tensoring
with k induces an equivalence of categories between the étale A-algebras and the
étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if its
residue field is algebraically closed. Thus, a strict Henselian ring has no proper
finite étale extensions and can be viewed as a local algebra for the étale topology.

Example 123. Consider the local algebra of C[x1, . . . , xd] in the maximal ideal
(x1, . . . , xd), then the Henselization and strict Henselization are both equal to

C{x1, . . . , xd}
the ring of algebraic functions . This is the subalgebra of C[[x1, . . . , xd]] of for-
mal power-series consisting of those series φ(x1, . . . , xd) which are algebraically
dependent on the coordinate functions xi over C. In other words, those φ
for which there exists a non-zero polynomial f(xi, y) ∈ C[x1, . . . , xd, y] with
f(x1, . . . , xd, φ(x1, . . . , xd)) = 0.

These algebraic functions may be defined implicitly by polynomial equations.
Consider a system of equations

fi(x1, . . . , xd; y1, . . . , ym) = 0 for fi ∈ C[xi, yj ] and 1 ≤ i ≤ m
Suppose there is a solution in C with

xi = 0 and yj = yoj

such that the Jacobian matrix is non-zero

det (
∂fi
∂yj

(0, . . . , 0; yo1, . . . , y
0
m)) 6= 0
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Then, the system can be solved uniquely for power series yj(x1, . . . , xd) with
yj(0, . . . , 0) = yoj by solving inductively for the coefficients of the series. One can
show that such implicitly defined series yj(x1, . . . , xd) are algebraic functions and
that, conversely, any algebraic function can be obtained in this way.

Theorem 86. Azumaya algebras are locally matrixrings in the étale topology.
In particular, there is a one-to-one correspondence between the pointed set

H1
et(C, PGLn)

and isomorphism classes of Azumaya algebras over C of rank n2.

Proof. (Sketch) Let m be a maximal ideal of C and let Ĉm be the completion
of the local ring Cm both having residue field k. The strict Hensilization Cshm is
then a complete local ring with maximal ideal M residue field the algebraic closure
k of k. If A is an Azumaya algebra over C, then

A⊗C
Cshm

M
'Mn(k)

for some n as there are no Azumaya algebras (central simple algebras) over an
algebraically closed field. Then, the idea is to lift a set of matrix units eij modulo
the various powers of M and by Nakayama’s lemma we still get a set of matrix
units over Cshm /Mk for all k and can pass to the limit whence

A⊗C Cshm 'Mn(Cshm )

But then, as Cshm is the limit of étale neighborhoods of m we can take an étale
extension B of C such that A⊗B is locally a matrixring of locally constant rank.

If A has constant rank n2 the second statement follows as the automorphism
groupscheme of n× n matrices is PGLn. �

Having a cohomological description of Azumaya algebras of constant rank we
expect a cohomological description of the Brauer group as in the case of fields. This
difficult result was proved by Ofer Gabber [18].

Theorem 87 (Gabber). For C ∈ commalg, there exists an isomorphism

Br(C) ' H2
et(C,Gm)tors

between the Brauer group of C and the torsion part of the cohomology group
H2
et(C,Gm).

We collect a number of ringtheoretical facts on Azumaya algebras for later use.
In particular, an Azumaya algebra of constant rank n2 is an object in alg@n.

Theorem 88. Let A be an Azumaya algebra over C. Then

(1) The center of A is C.
(2) For any ideal I / A we have I = AJ where J = I ∩ C and A

I = A ⊗C C
J

is an Azumaya algebra.
(3) There is a C-linear reduced trace map

A
tr- C

which coincides with the usual trace in any splitting A⊗C B 'Mn(B).
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(4) There is a canonical element s =
∑
i ai ⊗ a′i ∈ A⊗C Aop called the sepa-

rability idempotent such that

tr(a) =
∑
i

aiaa
′
i for all a ∈ A.

(5) A is a projective A-bimodule.
(6) There is an equivalence of categories

C − mod ' A− bimod N 7→ Ae ⊗C N

with inverse for any M ∈ A− bimod

MA = {m ∈M | (1⊗ a− a⊗ 1)m = 0 ∀a ∈ A}

which is HomA−bimod(A,M).
(7) If A ⊂ B for any C-algebra B, then B = A⊗C centB(A) where centB(A)

is the centralizer of A in B.

Proof. (1) : Let B be a faithfully flat splitting of A, that is, A⊗CB 'Mn(B).
If Z is the center of A, then C ⊂ Z and Z⊗CB is contained in the center of A⊗CB
which is B.

(2) : To prove I = AJ one extends to B as before and uses the fact that there
is a one-to-one correspondence between ideals of B and of Mn(B).

(3) and (4) : One shows that the usual trace Mn(B) = A ⊗C B - B
maps A to C by verifying the faithfully flat descent criterion using that the two
isomorphisms

A⊗C (B ⊗C B) -
- Mn(B ⊗C B)

are conjugate by an automorphism that leaves the trace invariant.
(5) : Because A⊗C Aop ' EndC(A) it suffices to show that P ∈ projmodC is

also projective over EndC(P ). This is a Zariski local condition so we may assume
that C is local and P = C⊕k is free. But then, EndA(P ) = Mk(C) of which the
projectives are the columns which are P = C⊕k.

(6) and (7) : Let left ideal J of A ⊗C Aop annihilating 1 ∈ A is generated by
the elements 1⊗ a− a⊗ 1 where a ∈ A. Indeed, if

∑
i aibi = (

∑
i ai⊗ bi)1 = 0 then∑

i

ai ⊗ bi =
∑
i

(ai ⊗ 1)(1⊗ bi − bi ⊗ 1)

Because A = A⊗C Aop/J the identification HomA−bimod(A,M) = MA is given by
φ 7→ φ(1). To prove that the natural map

(A⊗C Aop)⊗C MA = (A⊗C Aop)⊗C HomA−bimod(A,M) - M

is an isomorphism it suffices by faithfully flat descent to prove it for A = Mn(B). �

Theorem 89 (Razmyslov). There is a multilinear noncommutative polynomial
h(x, y) which is alternating in the x variables and when evaluated in n×n matrices
over a field takes all its values in the center and does not vanish identically.

Proof. If a noncommutative polynomial f is linear in a variable xi then it is
of the form

f =
∑
k

akxibk
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With this notation and for an extra variable z define

Ai(f) =
∑
k

bkxiak fxi=z =
∑
k

akzbk

Evaluating in n×n matrices we obtain from the necklace property of the trace that

tr(zf) = tr(z
∑
k

akxibk) = tr(xi
∑
k

bkzak) = tr(xiAi(f)xi=z)

whence, in particular, tr(f) = tr(xiAi(f)xi=1). Moreover, we have for any other
variable xj that

tr(xjAi(f)xi=1) = tr(xj
∑
k

bkak) = tr(
∑
k

akxjbk) = tr(fxi=xj
).

Consider the multilinear and alternating (at least in the xi) noncommutative poly-
nomial F (y1, . . . , yn2+1, x1, . . . , xn2) to be∑

σ∈Sn2

sgn(σ)y1xσ(1)y2xσ(2) . . . yn2xσ(n2)yn2+1

Then we deduce from the above and the alternating property that

tr(F ) = tr(xiAi(F )xi=1) ∀j 6= i : tr(xjAi(F )xi=1) = 0.

Define for j 6= i, hi(xj , y) = Ai(F )xi=1 which for a dual basis (up to the scalar factor
tr(F )) for the non-degenerate trace form on n × n matrices over a field whenever
x1, . . . , xn2 are evaluated to be linearly independent n× n matrices. But then, for

h(x, y) =
n2∑
i=1

xiy0hi(xj , y)

we have the identity
h(x, y) = tr(y0)tr(F )

from which the properties follow except for the non-vanishing. To prove this use
the substitutions

xi+n(j−1) 7→ eij y1 7→ e11 yn2+1 7→ en1

i 6= 1, n2 + 1 yi 7→ ekl if xi−1 7→ erk xi 7→ els

then all monomials appearing in F vanish under this substitution except for the
monomial corresponding to the identity permutation where it evaluates to e11
whence tr(F ) = 1 in this case. �

Theorem 90 (Artin). The following are equivalent for an affine algebra A :

(1) A is an Azumaya algebra of constant rank n2 over its center.
(2) A satisfies all polynomial identities of n × n matrices and has no simple

representation of dimension < n.

Proof. (Schelter) (1) ⇒ (2) : Because of the splitting A ⊗C B ' Mn(B), A
satisfies all polynomial identities of n× n matrices. Let I be the kernel of a simple
representation, then I ∩ C = m is a maximal ideal of C and A/Am is an Azumaya
algebra of rank n2 over C/m ' C whence must be Mn(C).
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(2)⇒ (1) : Take the polynomial h(x1, . . . , xn2 , y) of the previous theorem and
consider

n2+1∑
j=1

(−1)jh(x1, . . . , x̂j , . . . , xn2+1, y)xj

This is an alternating and multilinear function of x1, . . . , xn2+1 so it is an identity
of Mn(C) whence of A. For all maximal ideals M / A we have that h does not
vanish on A/M whence the evaluations of h in A generate the unit ideal. Choose
aij , bik, ti ∈ A such that

1 =
l∑
i=1

h(ai1, . . . , ain2 , bi1, . . . , bim)ti

For 1 ≤ i ≤ l and 1 ≤ j ≤ n2 define fij ∈ HomC(A,C) by

fij(a) = (−1)j+n
2
h(ai1, . . . , âij , . . . , ain2 , a, bi1, . . . , bim)

Then because h evaluates to central elements and the above equalities we have for
a ∈ A

a =
∑
i h(ai1, . . . , ain2 , bi1, . . . , bim)ati

=
∑
i,j(−1)j+n

2
h(ai1, . . . , âij , . . . , ain2 , a, bi1, . . . , bim)aijti

=
∑
i,j fij(a)aijti

which shows that {fij , aijti} are a dual basis for A as a C-module whence A ∈
projmodC. The dual basis implies the existence of C-endomorphisms of A

φijpq : A - A a 7→ fij(a)apqtp
which generate EndC(A) as a C-module. As the φijpq are in the image of the
natural map

A⊗C Aop
j- EndC(A)

this shows that j is surjective. Remains to prove injectivity. Assume j(
∑
s as⊗a′s) =

0 then
∑
s asaa

′
s = 0 for all a ∈ A. Then,∑
s

as ⊗ a′s =
∑
s(

∑
i,j fij(as)aijti ⊗ a′s)

= (
∑
i,j aijti)⊗ (

∑
s fij(as)a

′
s)

= (
∑
i,j aijti)⊗ (

∑
k,s dijkasd

′
ijka

′
s) = 0

where we denoted fij(a) =
∑
k dijkad

′
ijk. Whence j is an isomorphism so A is an

Azumaya algebra over C. �

Example 124. Let A be an affine Azumaya algebra of constant rank over its
center C. We have seen that A ∈ alg@n and that tr(A) = C. Therefore,

C = C[trepnA]GLn

and the quotient map
trepnA

π-- specC

is by the previous theorem a principal PGLn fiber bundle. Indeed, let ξ ∈ specC
be a point, then it determines a trace preserving semi-simple n-dimensional repre-
sentation. However, there are only n-dimensional simples whence π−1(ξ) consists
of a unique (closed) orbit isomorphic to PGLn. Moreover, locally we can split the



6.1. COMPONENT SEMIGROUPS. 203

quotient map in the étale topology. That is, there is an étale cover {Bi} of C
such that

A⊗C Bi 'Mn(Bi)

whence the fiber product

trepnA×specC specBi ' PGLn × specBi - specBi

trepnA
?

π -- specC

et

?

Assume that C is a regular commutative algebra, then so is Bi whence PGLn ×
specBi is a smooth variety for all i, but then so is trepnA by étale descent. Com-
bining this with theorem 46 we have that for an affine Azumaya algebra A the
following are equivalent

(1) A is alg@n-smooth.
(2) the center C is commalg-smooth.

This gives us a large supply of alg@n-smooth algebras.

Azumaya algebras arise further as the trace algebras of the generators of the
semigroup of representation schemes.

Example 125. Let α ∈ compA be a semigroup generator and augmentation n.
Let rrepα be the component of rrepn A determined by α then the restriction of
the quotient map

rrepα
⊂ - rrepn A

rissα
?

................
⊂ - rissn A

π

??

is a principal PGLn-fibration . Indeed, let M be an n-dimensional A-module in
repα, then we can deform M to its semisimplification Mss (the sum of the Jordan-
Hölder components). Assume M 6= Mss and suppose

Mss = S1 ⊕ . . .⊕ Sl

with the Si simples. Then, α = β1 + . . . + βl in compA where βi is the element
of compA corresponding to the connected component containing the simple factor
Si, contradicting the assumption that α is a semigroup generator. But then, the
corresponding trace algebra ∫

α

A = Mn(C[repα])GLn

is an Azumaya algebra of constant rank n2 over its center which is C[issα].

The component semigroup of an alg-smooth algebra can be highly complicated.
We will give some examples of universal localizations A of 〈m〉 such that compA is
any additive sub semigroup of N.
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Definition 88. A special affine algebra A has a presentation

A =
C〈x1, . . . , xa, y1, . . . , yb〉

(yipi(x1, . . . , xa, y1, . . . , yi−1)− 1 , 1 ≤ i ≤ b)
where pi is a noncommutative polynomial in the variables x1, . . . , xa, y1, . . . , yi−1.

The inversion depth idpA of a special affine algebra A is the minimal number
b required in a special presentation of A.

Example 126. If A is a special affine algebra, then A is alg-smooth as it is
a universal localization of 〈a〉. Further, repnA is a Zariski open (possibly empty)
subset of repn〈a〉 = Ma

n and is thus connected (even irreducible). Therefore, compA
is an additive sub semigroup of N. If n is a semigroup generator of compA, then∫
n
A is an Azumaya algebra of rank n2.

Example 127. Let cn(x1, . . . , xa) be a central polynomial for n × n matrices
(such as Razmyslov’s polynomials of theorem 89 and consider the special affine
algebra

A =
C〈x1, . . . , xa, y〉

(ycn(x1, . . . , xa)− 1)
of inversion depth 1. Then,

compA = {m ∈ N | n ≤ m}
and this semigroup has generators n, n+ 1, . . . , 2n− 1 whence∫

n

A,

∫
n+1

A, . . . ,

∫
2n−1

A

are Azumaya algebras. Indeed, compA is the set of natural numbers m such that
repmA 6= ∅. From the defining relation of A it follows that repmA 6= ∅ whenever
there are m ×m matrices X1, . . . , Xa ∈ Mm(C) such that cn(X1, . . . , Xa) ∈ GLn.
By Artin’s theorem we know that m ≥ n and as there are n × n matrices
A1, . . . , Aa ∈ Mn(C) such that cn(A1, . . . , Aa) 6= 0 and in the center (whence in
GLn) we can find the required matrices for all m > n by taking

Xi =
[
Ai 0
0 rr

m−n

]
from which the claims follow.

Example 128. Let A be a special affine algebra and n a semigroup generator
of compA. We claim that for any set

m1 < m2 < . . . < ms ∈ compA− {n}
we can find an element a ∈ A such that the image of a is 0 in

∫
n
A but is non-zero

in
∫
mj
A for all 1 ≤ j ≤ s.

Because
∫
n
A is an Azumaya algebra, there exist elements Rij , Si ∈

∫
n
A and

central polynomials gi for n× n matrices such that

1 =
∑
i

gi(Rij)Si in
∫
n

A

Lift the elements Rij and Si to elements rij and si in A and consider the element

a0 = 1−
∑
i

gi(rij)si ∈ A
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By construction, the image of a0 is zero in
∫
n
A and is equal to 1 for all mj < n

by Artin’s theorem. Let mt be minimal among the mj such that the image of a is
zero in

∫
mt
A, then we take

a1 = a0 + cmt
(x1, . . . , xa)

where cmt
(x1, . . . , xa) is a central polynomial for mt×mt matrices (which evaluates

to zero in all
∫
k
A with k < mt. Repeat this procedure until we reach ms and take

a to be the final element aj .

Theorem 91. Let S be an additive sub semigroup of N with generators n1 <
n2 < . . . < ns. For every integer a ≥ 1 there is a special affine algebra Aa with
idpA ≤ a such that

S ⊂ compAa and S ∩ [0, an1] = compA ∩ [0, an1]

In particular, if gcd(S) = 1 there is a special affine algebra A such that compA = S.

Proof. The proof proceeds by induction on a. If a = 1, example 127 with
n = n1 gives the required algebra. Assume the result holds for a − 1. That is, we
have a special affine algebra Aa−1 satisfying

S ⊂ compAa−1 and S ∩ [0, (a− 1)n1] = compAa−1 ∩ [0, (a− 1)n1]

Define the set of integers

{m1, . . . ,mb} = ( [(a− 1)n1, an1] ∩ compAa−1 )− ( [(a− 1)n1, an1] ∩ S )

Because S and compAa−1 are the same set when restricted to [0, (a − 1)n1] all of
the mi are generators of compAa−1.

By the argument of example 128 there is for each mi an element ri ∈ Aa−1

such that the

image of ri

{
= 0 in

∫
mi
Aa−1

6= 0 in
∫
mj
Aa−1 ∀j 6= i

Construct the special affine algebra

Aa =
Aa−1 ∗ C[z]

(zr1r2 . . . rb − 1)
and check that this algebra satisfies the requirements. �

6.2. The wall.

In this section we introduce the empire of an alg-smooth algebra as a combi-
natorial tool to initiate the study of iso(repA). It is a quiver on the set of simple
roots simpA of A. We will prove that this quiver is fully determined by a (usually
finite) subquiver, the wall, which is the full subquiver on the semigroup generators
of compA. We have seen that

∫
α
A is an Azumaya algebra if α is a semigroup

generator.
In this section we will extend this result by showing that

∫
α
A determines a

reflexive Azumaya algebra for most α ∈ simpA. These reflexive Azumaya algebras
determine an étale cohomology class on the smooth locus of the corresponding
irreducible component issαA. In the next section we will give a characterization
of the singular locus of these components.

Although some results extend, we will restrict attention to A an alg-smooth
algebra in this section. Recall that in this case compA is the set of irreducible
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components of repA and that repαA is a smooth affine variety for every α ∈ compA.
As a consequence,

azuαA ⊂ issαA

the set of all simple representations in issαA is a nonempty Zariski open smooth
subscheme for all α ∈ simpA. Further observe that as repαA is smooth, the
quotient variety issαA is normal, that is,

∮
α
A = C[issαA] is an integrally closed

Noetherian domain.

Example 129. (ext(α, β)) Let α 6= β ∈ simpA with dim(α) = n and dim(β) =
m. If A is generated by k elements, there is an affine subvariety

ExtA(α, β) ⊂ - repαA× repβA×Mm×(C)⊕k

repαA× repβA

e

??

such that the fiber e−1(V,W ) over a point (V,W ) ∈ repαA × repβA is the vec-
torspace Ext1A(V,W ). Because the fiber dimension is upper-semicontinuous and as
the target space is irreducible, there is a non-empty Zariski open subset extmin of
repαA×repβA where dimC Ext

1
A(V,W ) attains its minimal value. We denote this

minimal dimension with ext(α, β).
Observe that as α, β ∈ simpA there is an open set of couples (V,W ) with

V ∈ azuαA and W ∈ azuβA such that dimC Ext1A(V,W ) = ext(α, β). Inter-
changing the roles of α and β we have that there is also an open subset such that
dimC Ext1A(W,V ) = ext(β, α). In fact, we claim

If A is alg-smooth, then for all V ∈ azuαA and all W ∈ azuβA we have

dimC Ext1A(V,W ) = ext(α, β) and dimC Ext1A(W,V ) = ext(β, α)

Indeed, V ⊕W is a smooth point of repα+βA with stabilizer subgroup C∗ × C∗.
Computing tangent spaces (or normal spaces to orbits) we have the following equal-
ities {

dim repαA = (n2 − 1) + dim Ext1A(V, V )
dim repβA = (m2 − 1) + dim Ext1A(W,W )

and the dimension of repα+βA is equal to

(n+m)2−2+dim Ext1A(V, V )+dim Ext1A(W,W )+dim Ext1A(V,W )+dim Ext1A(W,V )

Because there is an open subset where Ext1A(V,W ) and Ext1A(W,V ) both attain
the minimal value we see that these numbers cannot increase whenever V and W
are simple representations, proving the claim.

Definition 89. The empire of the alg-smooth algebra A, emp A, is the quiver
having vertices vα for every simple root α ∈ simp A
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such that for α 6= β there are ext(α, β) directed arrows from vα to vβ and there are
dim issαA loops in every vertex vα.

Example 130. emp〈m〉 is the complete quiver K∞ on infinitely many vertices
vn, n ∈ N+ such that the full subquiver on any two vertices va and vb is of the form

va8?9>:=;< vb8?9>:=;< (m− 1)b
2

+ 1(m− 1)a
2

+ 1

(m− 1)ab

))

(m− 1)ab

ii77 gg

Before we show that empA is controlled by a tiny subquiver, we indicate its
importance in the study of isomorphism classes of finite dimensional representations
of A.

Definition 90. Let β ∈ NsimpA be a dimension vector with finite support
suppβ = {α1, . . . , αk}. With Esuppβ we denote the full subquiver of empA on the
vertices of suppβ. We denote

nullβempA = nullβ Esuppβ × azuα1A× . . . azuαk
A

where nullβEsuppβ is the nullcone for the basechange action of GL(β) on the rep-
resentation space repβ Esuppβ . We have the induced action of GL(β) on the com-
ponent nullβ Esuppβ and denote the orbits by

iso(nullβempA)

If β varies over all dimension vectors with finite support, we denote

nullempA =
⊔
β

nullβempA

and denote the orbits for the natural GL(β)-actions by iso(nullempA).

Theorem 92. If A is alg-smooth, there is a natural one-to-one correspondence

iso(repA)↔ iso(nullempA)

Proof. Let M ∈ repnA with Jordan-Hölder decomposition

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

If Si belongs to the irreducible component issαi
A where αi ∈ simpA, then

(S1, . . . , Sk) is a point of azuα1A × . . . × azuαk
A. If π : repnA -- issnA is

the quotient map, then M ∈ π−1(ξ). By the étale slice theorem we have a GLn-
equivariant isomorphism

π−1(ξ) ' GLn ×GL(αξ) nullαξ
Qξ
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in particular, there is a natural one-to-one correspondence between isoclasses of
representations in π−1(ξ) and GL(αξ)-orbits in the nullcone of Qξ.

Remains to prove that if β is the dimension vector with support {α1, . . . , αk}
such that β | suppβ = (e1, . . . , ek) then Esuppβ ' Qξ. But this follows from the
definition of Qξ and example 129 above. �

This result reduces the study of iso(repA) to (a) the description of the Azu-
maya loci of the Cayley-Hamilton orders

∫
α
A for α ∈ simpA and (b) a purely

quiver-theoretic problem (independent of A) to describe the nullcone of quiverrep-
resentations. We will investigate these nullcones in the last chapter.

We will prove that the structure of empA is determined by a (usually finite)
subquiver, the wall of A. First we need to derive some consequences of the étale
slice theorems in the case of quiver representations.

Definition 91. For a quiver setting (Q,α), typesαQ will be the set of all
semi-simple representation types of points in issαQ. That is, τ ∈ typesαQ if and
only if

τ = (e1, α1; . . . ; ez, αz)
where ei ∈ N0 are the multiplicities and αi ∈ simp〈Q〉 such that

α = e1α1 + . . .+ ezαz

Theorem 85 gives an algorithm to determine the finite set typesαQ.
We define two representation types

τ = (e1, α1; . . . ; ez, αz) and τ ′ = (e′1, α
′
1; . . . ; e

′
z′ , α

′
z′)

to be direct successors τ ′ < τ if and only if one of the following two cases occurs
• (splitting of one simple) : z′ = z+1 and for all but one 1 ≤ i ≤ z we have

that (ei, αi) = (e′j , α
′
j) for a uniquely determined j and for the remaining

i0 we have that the remaining couples of τ ′ are

(ei, α′u; ei, α
′
v) with αi = α′u + α′v

• (combining two simple types) : z′ = z − 1 and for all but one 1 ≤ i ≤ z′

we have that (e′i, α
′
i) = (ej , αj) for a uniquely determined j and for the

remaining i we have that the remaining couples of τ are

(eu, α′i; ev, α
′
i) with eu + ev = e′i

The direct successor relation < induces a partial ordering � on typesαQ.

Theorem 93. For any quiver setting (Q,α) we have :
(1) Let ξ ∈ issα Q be a point of representation type

τ = t(ξ) = (e1, α1; . . . , ez, αz) ∈ typesαQ

The normal space Nx to the orbit in x ∈ O(Mξ) in repα Q (where Mξ is
the corresponding semi-simple representation) is determined by the local
quiver setting (Qτ , ατ ), that is,

Nx ' repατ
Qτ

where (Qτ , ατ ) depends only on τ . More precisely, Qτ is the quiver on z
vertices (the number of distinct simple components of Vξ) say {w1, . . . , wz}
with

# ��������i��������j
aoo = −χQ(αi, αj) for i 6= j, and
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# ��������i
��

= 1− χQ(αi, αi)

and ατ = (e1, . . . , ez).
(2) The quotient variety issα Q has a finite stratification into locally closed

smooth subvarieties

issα Q =
⊔

τ∈typesαQ

issα(τ)

where issα(τ) is the set of points ξ ∈ issα Q such that t(ξ) = τ . More-
over, if τ = (e1, α1; . . . ; ez, αz) then

dim issα(τ) =
z∑
i=1

(1− χQ(αi, αi))

(3) The closure inclusion ordering of these locally smooth strata is given by

issα(τ ′) ⊂ issα(τ) iff τ ′ � τ

Proof. (1) : Take the point (1, x) in the irreducible component GLn ×GL(α)

repα Q in repn〈Q〉 where n =
∑z
i=1 |αi| and apply theorem 72. The Euler-form de-

scription follows from theorem 70 and Schur’s lemma stating thatHom〈Q〉(Si, Sj) =
δijC whenever Si and Sj are simple representations. Alternatively, one can apply
the Knop-Luna slice theorem directly to the GL(α)-action on repα Q and do a
book-keeping calculation similar to the proof of theorem 72, see [42] for more de-
tails.

(2) : Let ξ ∈ issα(τ) and consider a nearby point ξ′. By the étale local
description of theorem 72 and part (1) we may assume (by étale descent) that ξ′

corresponds to a semi-simple ατ -dimensional representation of Qτ . If some trace of
an oriented cycle in Qτ of length > 1 is non-zero, then ξ′ cannot be of representation
type τ . Therefore, if ξ′ ∈ issα(τ) it is determined by the traces of the loops in
Qτ . Therefore, locally in the étale topology issα(τ) is an affine space near ξ of
dimension the number of loops in Qτ .

(3) : Observe that τ ′ � τ if and only if the stabilizer subgroup GL(ατ ) is
conjugated (in GL(α)) to a subgroup of the stabilizer subgroup GL(ατ ′). The
statement now follows, either from general theory as in [63, lemma 5.5] or from a
comparison of the local quivers. �

Definition 92. For any quiver setting (Q,α) we have that repα Q is an irre-
ducible variety, whence is is the quotient issα Q. Hence, there is a unique Zariski
open stratum

issα(τgen)

We call τgen ∈ typesαQ the generic semi-simple representation type for (Q,α).

Example 131. There is an algorithm to compute the generic semi-simple rep-
resentation type τgen :
input : A quiver setting (Q,α) and a semi-simple representation type

τ = (e1, α1; . . . ; el, αl) ∈ typesαQ

For α = (a1, . . . , ak) one can always start with the type (a1, ~v1; . . . ; ak, ~vk).
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step 1 : Compute the local quiver Qτ on l vertices and the dimension vector ατ .
If the only oriented cycles in Qτ are vertex-loops, stop and output this type.
If not, proceed.
step 2 : Take a proper oriented cycle C = (j1, . . . , jr) with r ≥ 2 in Qτ where js
is the vertex in Qτ determined by the dimension vector αjs . Set β = αj1 + . . .+αjr ,
e′i = ei − δiC where δiC = 1 if i ∈ C and is 0 otherwise. replace τ by the new
semi-simple representation type

τ ′ = (e′1, α1; . . . ; e′l, αl; 1, β)

delete the terms (e′i, αi) with e′i = 0 and set τ to be the resulting type. goto step
1.

Definition 93. The wall of the algebra A, wallA is the full subquiver of empA
on the vertices vα where α runs over the semigroup generators of compA
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Recall that for a semigroup generator α, the Cayley-Hamilton algebra
∫
α
A is an

Azumaya algebra, whence azuαA = issαA.

Example 132. For the path algebra of a quiver Q on k vertices we have
that comp〈Q〉 ' Nk and hence the semigroup generators are given by the vertex-
dimension vectors δi. But then,

ext(δi, δj) = −χQ(δi, δj) + δij

from which it follows that wall〈Q〉 ' Q.

Theorem 94. If A is an alg-smooth algebra, then the wallA contains enough
information to determine the quiver structure of the whole empA.

Proof. Let {βi , i ∈ I} be the semigroup generators for compA. First we
have find the vertices of empA, that is, to characterize the set simpA. Assume
α ∈ compA, then

α = e1βi1 + . . .+ elβil
for a finite number of semigroup generators βij and ej ∈ N. Take a simple repre-
sentation Si in repβi

A, then

Mξ = S⊕e1i1
⊕ . . .⊕ S⊕el

il
∈ repαA

is a closed orbit and by the étale slice results we know that there is étale isomor-
phism between a neighborhood of ξ ∈ issαA and a neighborhood of the trivial
representation in issαξ

Qξ. If α ∈ simpA, then this neighborhood must contain
simple representations, whence αξ = (e1, . . . , el) is a simple root for the quiver Qξ
which by definition is the full subquiver of wallA on the vertices corresponding to
βi1 , . . . , βil .
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Therefore, simpA is the subset of compA obtained from those positive integer
combinations of the generators α =

∑
i eiβi such that the dimension vector e = (ei)

is a simple root of the finite quiver wallA | suppe. Observe that by theorem 85 we
have an algorithm to determine these simple roots.

Next, we have to determine the number of arrows between vα and vβ for α, β ∈
simpA. By the foregoing argument we have a finite full subquiver Q of wallA on
the vertices βi1 , . . . , βil such that α =

∑
ejβij and β =

∑
fjβij with e and f simple

roots of Q. The wallA determines the local structure of repα+βA in a point of
representation type (e1, βi1 ; . . . ; el, βil ; f1, βi1 ; . . . ; fl, βil) and as this stratum lies in
the closure of the stratum of points of type (1, α; 1, β) we know by the foregoing
discussion on local quivers for path algebras of quivers the local quiver in those
points. Therefore, ext(α, β) = δαβ − χQ(α, β) and we obtain that the number of
arrows from vα to vβ is also determined by wallA. �

The wall also determines the structure of issαA for α ∈ compA. We will
denote by χW the Euler-form of the possibly infinite quiver wallA but as we will
only apply it to dimension vectors having finite support this causes no problems.

Theorem 95. Let A be an alg-smooth algebra. For α ∈ comp denote with
typesα the collection of all representation types

τ = (e1, α1; . . . ; ez, αz) with αi ∈ simpA

then there is a finite stratification into locally closed smooth subvarieties

issαA =
⊔

τ∈typesα
issα(τ)

where issα(τ) is the set of all points ξ ∈ issαA of representation type τ . If
τ = (e1, α1; . . . ; ez, αz) then this strata is isomorphic to

issα(τ) ' azuα1A× . . .× azuαz
A

and hence has dimension
∑z
i=1 dim issαi

A =
∑z
i=1(1−χW (γi, γi)) where suppγi =

{βi1, . . . , βiki
} a subset of vertices of wallA such that

∑
γi(j)βij = αi.

The local quiver-setting in a point ξ ∈ issαA of type τ = (e1, α1; . . . ; ez, αz) is

(Qξ, αξ) = (empA | {α1, . . . , αz}, (e1, . . . , ez))
and as the right-hand side is fully determined by the wallA, the wall contains
enough information to describe the étale local structure of∮

α

A and
∫
α

A

for all α ∈ compA.

Proof. Follows from the proof of the previous theorem, the results on quo-
tient varieties of quiver representations and the étale local structure of alg-smooth
algebras. �

In particular, this result shows that for most α ∈ simpA, the ramification locus

ramαA = issαA− azuαA

has codimension ≥ 2. In this case, the reflexive closure
∫ ∗∗
n
A of the Cayley-

Hamilton order
∫
α
A is a reflexive Azumaya algebra and hence determines an étale

cohomology class.
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Definition 94. Let C ∈ commalg be a normal affine domain with field of
fractions K. An C-subalgebra A of a central simple K-algebra Σ of dimension n2

is said to be an order if A is a finitely generated C-module and contains a K-basis
of Σ, that is, A.K = Σ. Because C is integrally closed, the reduced trace of Σ on
elements of A has its values in C. That is, (A, trA) ∈ alg@n and tr(A) = C. An
order is said to be maximal if there is no C-order A′ in Σ properly containing A.

A is said to be a reflexive Azumaya algebra over C iff the center of A is C, A
is a reflexive V -module, that is

∩pAp = A

where the intersection is taken over all height one prime ideals p of C, and if every
Ap is an Azumaya algebra over the discrete valuation ring Cp.

Two reflexive Azumaya algebras (possibly in different central simple K-
algebras) are said to be equivalent if there exist reflexive C-modules M and N
such that

A⊗′C EndC(M) ' A′ ⊗′C EndC(N)
where the modified tensor product is the reflexive closure, that is, the intersection
of all localizations at height one prime ideals of C.

The set of all equivalence classes of reflexive Azumaya algebras, equipped with
the modified tensor product, is an Abelian group called the reflexive Brauer group
of C and denoted β(C). One can prove, see for example [50], that

β(C) = ∩ht(p)=1Br(Cp) ⊂ - Br(K)

That is, one can view the reflexive Brauer group as being the subgroup of Br(K)
consisting of those central simple algebras containing a maximal order with rami-
fication locus having codimension at least two.

Example 133. If C = C[X] with X an affine smooth curve, then any height
one prime is maximal. Therefore, a reflexive Azumaya algebra is Azumaya and
β(C) = Br(C).

If C = C[X] withX an affine surface, then there are reflexive Azumaya algebras
which are not Azumaya. For example,

C =
C[x, y, z]
(x2 − yz)

A = EndC(C ⊕ P )

where C is the affine cone and P = (x, y) is a ruling. Then, A is an Azumaya algebra
in every point except the top m = (x, y, z). Still, every reflexive Azumaya algebra is
Azumaya over all smooth points. This follows from the fact that reflexive modules
over regular local rings of dimension ≤ 2 are free and because reflexive Azumaya
algebras which are projective are Azumaya. Therefore, if C is the coordinate ring
of a surface X, then β(C) = Br(Xsm) where Xsm is the smooth locus of X.

If C = C[X] and dim X ≥ 3, then a reflexive Azumaya algebra does not have
to be Azumaya on the whole of Xsm. For example, take C = C[x, y, z] and

M = ker C.a⊕ C.b⊕ C.c a7→x,b 7→y,c7→z- C

then M is a reflexive module which is not projective in the origin, but then
EndC(M) is a reflexive Azumaya algebra which is not Azumaya in the origin.

In general, one has the following important result due to R. Hoobler, see [24]

β(C) ' Br(C)
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whenever C is commalg-smooth. For arbitrary affine normal domains one has the
following cohomological description of the reflexive Brauer group.

Theorem 96. If C ∈ commalg is the coordinate ring of a normal affine variety
X, then

β(C) ' H2
et(Xsm,Gm)

Proof. The singular locus of X determines an ideal I which is of height at
least 2 because C is a normal domain. Therefore, there are c1, c2 ∈ I such that
ht(Cc1 +Cc2) = 2. Let U be the open set determined by the ideal Cc1 +Cc2, then
U can be covered by two affine open sets U1 = X(c1) and U2 = X(c2). Because the
reflexive Brauer group is determined by the Brauer groups in height one primes we
obtain β(C) as the pullback

β(C) - β(Cc1)

β(Cc2)
?

- β(Cc1c2)
?

Because of Hoobler’s result and the fact that U ⊂ Xsm we can replace three corners
by Brauer groups

β(C) - Br(U1)

Br(U2)
?

- Br(U1 ∩ U2)
?

By Gabber’s result, theorem 87, we know that the Brauer group of any affine scheme
X is equal to H2

et(X,Gm)tors, the group of torsion elements of H2
et(X,Gm). If X

is in addition smooth, then because of the inclusion

H2
et(X,Gm) - H2

et(C(X),Gm) = Br(C(X))

we know that the cohomology group is torsion so we can dispose of the subscript.
That is, we obtain β(C) as the pullback of the diagram

β(C) - H2
et(U1,Gm)

H2
et(U2,Gm)

?
- H2

et(U1 ∩ U2,Gm)
?

Equivalently, this asserts that β(C) = H2
et(U,Gm) ' Br(U) where the last isomor-

phism follows because Gabber’s result is actually valid for the union of two affine
schemes. Finally, we invoke Grothendieck’s result on cohomological purity of the
Brauer group [21, III.Thm.6.1] to the situation U ⊂ Xsm. This asserts that

H2
et(U,Gm) ' H2

et(Xsm,Gm)

and the claim follows. �



214 6. EMPIRES

For this reason it is important to determine the smooth locus of issαA which
we will do in the next section. We can also read off from empA in which points
ξ ∈ issαA the order

∫
α
A is étale split.

Theorem 97. Let A be alg-smooth, α ∈ simpA and ξ ∈ issαA a point of
representation type

τ = (e1, α1; . . . ; ez, αz)
Then,

∫
α
A is étale split in ξ if and only if gcd(e1, . . . , ez) = 1.

Proof. Firs observe that the local quiver Qξ is the full subquiver of empA on
the vertices corresponding to {α1, . . . , αz}. In the étale topology

∫
α
A is locally in

ξ Morita equivalent to the algebra

B =
∫
αξ

〈Qξ〉 = Me(C[repαξ
Qξ])GL(αξ)

(where e = e1 + . . .+ ez) locally at the trivial representation. Therefore, it suffices
to investigate the splitting behavior of the latter. The quotient map

repαξ
〈Qξ〉 -- issαξ

〈Qξ〉

is over the Azumaya locus a principal PGL(αξ)-fibration, that is, it determines an
element of

H1
et(azu, PGL(α))

This pointed set classifies Azumaya algebras over azu with a distinguished em-
bedding of Cz = C × . . . × C (the vertex-idempotents in B) which are split by
an étale cover on which this embedding is conjugated to the standard embedding
Cz ⊂Me(C).

If gcd(e1, . . . , ez) = 1 then B determines the trivial class in the Brauer group.
For, let B′ be an Azumaya localization of B. By assumption, the natural map
between the K-groups

K0(Cz) - K0(Me(C))
is surjective, whence the same is true for B′ proving that the class of B′ is split by
a Zariski cover (and not merely an étale one). In other words,

repαξ
B′ ' issαξ

B′ × PGL(α)

If gcd(e1, . . . , ez) = n > 1, then we form a new quiver Q′ by extending Qξ
with an extra vertex v0 and having ei/n directed arrows from v0 to vi. Further,
consider the extended dimension vector α′ = (n, e1, . . . , ez). There is an open
subset of repα′ Q

′ where the ei/n maps from v0 to vi define an isomorphism from
V
⊕ei/n
0

- Vi for all i. This reduces the classification problem for the quiver
setting (Q′, α′) on this set to that of (Qξ, αξ) where each vertex space is in addition
given a fixed representation as the vectorspace V ⊕ei/n where V is a vectorspace of
dimension n. But this is the same problem as studying a large number of n × n
matrices under simultaneous conjugation. This latter problem is not étale split and
issα′ Q′ is rational over issαξ

Qξ, see [43] also the former cannot be split. �

Example 134. (Simple representations of torus knot groups) Consider a solid
cylinder C with q line segments on its curved face, equally spaced and parallel to
the axis. If the ends of C are identified with a twist of 2π pq where p is an integer
relatively prime to q, we obtain a single curve Kp.q on the surface of a solid torus
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T . If we assume that T lies in R3 in the standard way, the curve Kp.q is called the
(p, q) torus knot.

The fundamental group of the complement R3 −Kp,q is called the (p.q)-torus
knot group Gp,q which has a presentation

Gp,q = π1(R3 −Kp,q) ' 〈a, b | ap = bq〉

An important special case is (p, q) = (2, 3) in which case we obtain the three string
braid group, G2,3 ' B3.

Recall that the center of Gp,q is generated by ap and that the quotient group
is the free product of cyclic groups of order p and q

Gp,q =
Gp,q
〈 ap 〉

' Zp ∗ Zq

As the center acts by scalar multiplication on any irreducible representation, the
representation theory of Gp,q essentially reduces to that of Zp ∗Zq. Observe that in
the special case (p, q) = (2, 3) considered above, the quotient group is the modular
group PSL2(Z) ' Z2 ∗ Z3.

Let V be an n-dimensional representation of Zp ∗ Zq, then the restriction of V
to the cyclic subgroups Zp and Zq decomposes into eigenspaces{

V ↓Zp
' S⊕a1

1 ⊕ S⊕a2
ζ ⊕ . . .⊕ S⊕ap

ζp−1

V ↓Zq
' T⊕b11 ⊕ T⊕b2ξ ⊕ . . .⊕ T⊕bq

ξq−1

where ζ (resp. ξ) is a primitive q-th (resp. p-th) root of unity and where Sζi (resp.
Tξi) is the one-dimensional space Cv with action a.v = ζiv (resp. b.v = ξiv). Using
these decompositions we define linear maps φij as follows

S⊕ai

ζi−1

φij - T
⊕bj

ξj−1

S⊕a1
1 ⊕ S⊕a2

ζ ⊕ . . .⊕ S⊕ap

ζp−1

?

∩

= V = T⊕b11 ⊕ T⊕b2ξ ⊕ . . .⊕ T⊕bq

ξq−1

66

This means that we can associate to an n-dimensional representation V of Zp ∗ Zq
a representation of the full bipartite quiver on p+ q vertices

��������1

��������p

...

...

...

...

��������i

��������1

��������j

��������q

33ggggggggggggg

++WWWWWWWWWWWWW

��?
??

??
??

??
??

??
??

??
?

??������������������

77ooooooooooooooo

++WWWWWWWWWWWWW

99sssssssssssssss
11ccccccccccccc

%%KKKKKKKKKKKKKKK

where we put at the left i-th vertex the space S⊕ai

ζi−1 , on the right j-th vertex the

space T⊕bj

ξj−1 and the morphism connecting the i-th left vertex to the right j-vertex
is the map φij . That is, to V we associate a representation VQ of dimension vector
α = (a1, . . . , ap; b1, . . . , bq) and of course we have that a1+. . .+ap = n = b1+. . .+bq.
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If V and W are isomorphic as Zp ∗ Zq representation, they have isomorphic
weight space decompositions for the restrictions to Zp and Zq and fixing bases in
these weight spaces gives isomorphic quiver representations VQ ' WQ. Further,
observe that if V is a representation of Zp ∗ Zq then the matrix

m(VQ) =

φ11(VQ) . . . φp1(VQ)
...

...
φ1q(VQ) . . . φpq(VQ)


is invertible. Consider the universal localization 〈Q〉σ where σ corresponds to the
above map φ. Then the variety of semi-simple n-dimensional representations of
Zp ∗ Zq decomposes into components

issn Zp ∗ Zq =
⊔

P
ai=

P
bj=n

issα 〈Q〉σ

We see that comp〈Q〉σ is the subsemigroup of Zp+q

comp〈Q〉σ = {(a1, . . . , ap; b1, . . . , bq)
∑

ai =
∑

bj }

There are some obvious 1-dimensional irreducible representations of Zp ∗ Zq

Vij = Cv with a.v = ζi−1v and b.v = ξj−1v.

which have dimension vector αij = (δ1i, . . . , δpi; δ1j , . . . , δqj). This shows that the
generators of comp〈Q〉σ are given by these p.q dimensionvectors.

Hence, wall〈Q〉σ is the quiver on i.j vertices vij (corresponding to the θ-stable
representations Vij) such that the number of arrows from vij to vkl is equal to

δij,kl − χQ(αij , αkl)

Given the special form of the full bipartite quiver Q it is easy to verify that

# { a ∈ wall〈Q〉σ | 07162534vij07162534vkl
aoo } =

{
1 if i 6= k and j 6= l

0 otherwise.

For example, in the modular case PSL2(Z) = Z2 ∗ Z3 the wall has the form

(/).*-+,v11

(/).*-+,v23(/).*-+,v22

(/).*-+,v12(/).*-+,v13

(/).*-+,v21

55

uu

��

GG

TT

��uu

55

��

GG

TT

��

We want to characterize simp〈Q〉σ and the emp〈Q〉σ. We consider the direct sum
of simple representations

V = ⊕i,j V
⊕mij

ij
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that is, the dimension vector of V is α =
∑
i,jmijαij . α ∈ simp〈Q〉σ is equivalent

to γ = (m11, . . . ,mpq) being the dimension vector of a simple representation of
wall〈Q〉σ. We claim

α = (a1, . . . , ap; b1, . . . , bq) with
∑
i ai = n =

∑
j bj ∈ simp〈Q〉σ iff

n = 1 or ai + bj ≤ n
for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.

A moments thought shows that the conditions are necessary. Conversely, assume
the numerical condition is satisfied and consider the semi-simple representation of
〈Q〉σ

V = ⊕i,jV
⊕mij

ij

We note that

ai =
q∑
j=1

mij and bl =
p∑
i=1

mil.

Let Ip ∈ Mp(C) be the p × p identity matrix and let Ap ∈ Mp(C) be the p × p
matrix of the form

Ap =


0 −1 . . . −1 −1
−1 0 . . . −1 −1
...

...
. . .

...
...

−1 −1 . . . 0 −1
−1 −1 . . . −1 0

 .

Then the Euler form of the wall〈Q〉σ is the symmetric matrix

χW =


Ip Ap . . . Ap Ap
Ap Ip . . . Ap Ap
...

...
. . .

...
...

Ap Ap . . . Ip Ap
Ap Ap . . . Ap Ip

 ∈ Mq(Mp(C)).

When n = 1, we have that V = V11 is obviously a simple representation. When
n = 2, we notice that γ is the dimension vector of a simple representation if and
only if

γ|supp(γ) = (1, 1; 1, 1) because supp(γ) = Ã2

Now, consider n ≥ 3 and consider the dimension vector γ = (m11, . . . ,mpq). We
have to verify that γ is the dimension vector of a simple representation of wall〈Q〉σ
which, by symmetry of χW , amounts to checking that

χW (γ, εkl) = χW (εkl, γ) ≤ 0

for all 1 ≤ k ≤ p and 1 ≤ l ≤ q where εkl = (δij,kl) are the standard base vectors.
Computing the left hand term this is equivalent to

mkl +
p∑

k 6=i=1

q∑
l 6=j=1

−mij ≤ 0.

or

mkl +
p∑

k 6=i=1

mil ≤
p∑

k 6=i=1

q∑
l 6=j=1

mij +
p∑

k 6=i=1

mil
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Resubstituting the values of ai and bl in this expression we see that this is equivalent
to

bl ≤
p∑

k 6=i=1

ai = n− ak

Therefore, the condition is satisfied if for all 1≤ k ≤ p and 1 ≤ l ≤ q we have

ak + bl ≤ n.

finishing the proof of the claim.
In the special case of PSL2(Z) = Z2∗Z3, our condition on the dimension vector

α = (a1, a2; b1, b2, b3) is equivalent to

ai + bj ≤ n = a1 + a2 whence bj ≤ ai
for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3 which was the criterium found by Bruce Westbury
in [66].

6.3. Smooth loci.

In this section we will prove the theorem due to Raf Bocklandt characterizing
the quiver settings (Q,α) such that the ring of polynomial invariants

C[issα Q] = C[repα Q]GL(α)

is commalg-smooth, see [4],[6] and [5]. By the étale local description in terms of
local quiver settings this characterization can be used to determine the singular
locus of any issαA for α ∈ compA.

Because C[repα Q] has a natural gradation by defining the degree of all variable
matrix coordinates to be one. Therefore, the ring of invariants is a positively
graded algebra whence the regularity condition is equivalent to C[issα Q] being
a polynomial algebra. We begin by relating rings of invariants of different quiver
settings.

Theorem 98 (Bocklandt). We have the following reductions :

(1) b1 : Let (Q,α) be a quiver setting and v a vertex without loops such that

χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0.

Define the quiver setting (Q′, α′) by composing arrows through v :
'&%$ !"#u1 · · · /.-,()*+uk

/.-,()*+αv
b1

ccGGGG
bk

;;wwww

'&%$ !"#i1

a1 ;;wwww · · · '&%$ !"#il

al
ccGGGG

 −→


'&%$ !"#u1 · · · /.-,()*+uk

'&%$ !"#i1

c11

OO

c1k

::uuuuuuuuuu · · · '&%$ !"#il

clk

OO

cl1

ddIIIIIIIIII

 .
(some of the vertices may be the same). Then,

C[issα Q] ' C[issα′ Q′]

(2) b2 : Let (Q,α) be a quiver setting and v a vertex with k loops such that
αv = 1. Let (Q′, α) be the quiver setting where Q′ is the quiver obtained
by removing the loops in v, then

C[issα Q] ' C[issα Q′]⊗ C[X1, · · · , Xk]
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(3) b3 : Let (Q,α) be a quiver setting and v a vertex with one loop such that
αv = k ≥ 2 and

χQ(α, εv) = −1 or χQ(εv, α) = −1.

Define the quiver setting (Q′, α) by changing the quiver as below :

[ ��������k

�� ))SSSSSSSSS
��

��������1

>>|||| '&%$ !"#u1 · · · /.-,()*+uk

]
−→

[ ��������k

�� ))SSSSSSSSS

��������1

k :B||||
|||| '&%$ !"#u1 · · · /.-,()*+uk

]
,

[ ��������k

~~||
||
��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSSS

]
−→

[ ��������k
k

z� ||
|||||
|

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSSS

]
.

Then,
C[issα Q] ' C[issαQ′]⊗ C[X1, . . . , Xk]

Proof. (1) : repα Q can be decomposed as

repα Q =
⊕

a, s(a)=v

Mαt(a)×αs(a)(C)

︸ ︷︷ ︸
arrows starting in v

⊕
⊕

a, t(a)=v

Mαt(a)×αs(a)(C)

︸ ︷︷ ︸
arrows terminating in v

⊕ rest

= MP
s(a)=v αt(a)×αv

(C)⊕Mαv×
P

t(a)=v αs(a)
(C)⊕ rest

= Mαv−χ(α,εv)×αv
(C)⊕Mαv×αv−χ(εv,α)(C)⊕ rest

GLαv
(C) only acts on the first two terms and not on rest. Taking the quotient

corresponding to GLαv (C) involves only the first two terms.
We recall the first fundamental theorem for GLn-invariants , see for example

[36, II.4.1]. The quotient variety

(Ml×n(C)⊕Mn×m)/GLn

where GLn acts in the natural way, is for all l, n,m ∈ N isomorphic to the space of
all l ×m matrices of rank ≤ n. The projection map is induced by multiplication

Ml×n(C)⊕Mn×m(C)
π- Ml×m(C) (A,B) 7→ A.B

In particular, if n ≥ l and n ≥ m then π is surjective and the quotient variety is
isomorphic to Ml×m(C).

By this fundamental theorem and the fact that either χQ(α, εv) ≥ 0 or
χQ(εv, α) ≥ 0, the above quotient variety is isomorphic to

Mαv−χ(α,εv)×αv−χ(εv,α)(C)⊕ rest

This space can be decomposed as⊕
a, t(a)=vb, s(b)=v

Mαt(b)×αs(a)(C)⊕ rest = repα′ Q
′

Taking quotients for GL(α′) then proves the claim.
(2) : Trivial as GL(α) acts trivially on the loop-representations in v.
(3) : We only prove this for the first case. Call the loop in the first quiver `

and the incoming arrow a. Call the incoming arrows in the second quiver ci, i =
0, . . . , k − 1.
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There is a map

π : repα Q→ repα′ Q
′ × Ck : V 7→ (V ′, T r(V`), . . . , T r(V`k)) with V ′ci

:= V i` Va

Suppose (V ′, x1, . . . , xk) ∈ repα′Q
′ × Ck ∈ such that (x1, . . . , xk) correspond to

the traces of powers of an invertible diagonal matrix D with k different eigenvalues
(λi, i = 1, . . . , k) and the matrix A made of the columns (Vci , i = 0, . . . , k − 1) is
invertible. The image of the representation

V ∈ repα Q : Va = V ′c0 , V` = A

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

−1

D

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

A−1

under π is (V ′, x1, . . . , xk) because

V i` Va = A

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

−1

Di

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

A−1V ′c0

= A

 λ0
1 ··· λ

k−1
1

...
...

λ0
k ··· λ

k−1
k

−1  λi
1

...
λi

k


= Vci

and the traces of V` are the same as those of D. The conditions on (V ′, x1, . . . , xk),
imply that the image of π, U , is dense, and hence π is a dominant map.

There is a bijection between the generators of C[issαQ] and C[issα′Q′] ⊗
C[X1, . . . , Xk] by identifying

f`i 7→ Xi, i = 1, . . . , k , f···a`i··· 7→ f···ci···, i = 0, . . . , k − 1

Notice that higher orders of ` don’t occur by the Caley Hamilton identity on V`. If
n is the number of generators of C[issαQ], we have two maps

φ : C[Y1, · · ·Yn]→ C[issαQ] ⊂ C[repαQ],

φ′ : C[Y1, · · ·Yn]→ C[issα′Q′]⊗ C[X1, . . . , Xk] ⊂ C[repα′Q
′ × Ck].

Note that φ′(f)◦π ≡ φ(f) and φ(f)◦π−1|U ≡ φ′(f)|U . So if φ(f) = 0 then also
φ′(f)|U = 0. Because U is zariski-open and dense in repα′Q

′ × C2, φ′(f) ≡ 0. A
similar argument holds for the inverse implication whence Ker(φ) = Ker(φ′). �

Definition 95. A quiver setting (Q,α) is said to be final iff none of the re-
duction steps b1, b2 or b3 of theorem 98 can be applied. Every quiver setting can
be reduced to a final quiver setting which we denote (Q,α) (Qf , αf ).

Theorem 99 (Bocklandt). For a quiver setting (Q,α) with Q = suppα strongly
connected, the following are equivalent :

(1) C[issα Q] = C[repα Q]GL(α) is commalg-smooth.
(2) (Qf , αf ) (Qf , αf ) with (Qf , αf ) one of the following quiver settings

��������k ��������k

�� ��������2
��
[[.
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Proof. (2) ⇒ (1) : Follows from the foregoing theorem and the fact
that the rings of invariants of the three quiver settings are resp. C,
C[tr(X), tr(X2), . . . , tr(Xk)] and C[tr(X), tr(Y ), tr(X2), tr(Y 2), tr(XY )].

(1) ⇒ (2) : Take a final reduction (Q,α)  (Qf , αf ) and to avoid subscripts
rename (Qf , αf ) = (Q,α) (observe that the condition of the theorem as well as (1)
is preserved under the reduction steps by the foregoing theorem). That is, we will
assume that (Q,α) is final whence, in particular as b1 cannot be applied,

χQ(α, εv) < 0 χQ(εv, α) < 0

for all vertices v of Q. With 1 we denote the dimension vector (1, . . . , 1).

claim 1 : Either (Q,α) = ��������k or Q has loops. Assume neither, then if α 6= 1 we
can choose a vertex v with maximal αv. By the above inequalities and theorem 85
we have that

τ = (1, α− εv; 1, εv) ∈ typesαQ

As there are no loops in v, we have{
χQ(α− εv, εv) = χ(α, εv)− 1 < −1
χQ(εv, α− εv) = χ(εv, α)− 1 < −1

and the local quiver setting (Qτ , ατ ) contains the subquiver

��������1

k
"* ��������1

l

bj with k, l ≥ 2

The invariant ring of the local quiver setting cannot be a polynomial ring as it
contains the subalgebra

C[a, b, c, d]
(ab− cd)

where a = x1y1, b = x2y2, c = x1y2 and d = x2y1 are necklaces of length 2 with xi
arrows from w1 to w2 and yi arrows from w2 to w1. This contradicts the assumption
(1) by the étale local structure result.

Hence, α = 1 and because (Q,α) is final, every vertex must have least have two
incoming and two outgoing arrows. Because Q has no loops,

dim iss1 Q = 1− χQ(1, 1) = #arrows−#vertices + 1

On the other hand, a minimal generating set for C[iss1 Q] is the set of Euler-
ian necklaces , that is, those necklaces in Q not re-entering any vertex. By
(1) both numbers must be equal, so we will reach a contradiction by showing
that #euler, the number of Eulerian necklaces is strictly larger than χ(Q) =
#arrows−#vertices+1. We will do this by induction on the number of vertices.

If #vertices = 2, the statement is true because

Q := ��������1

k
"* ��������1

l

bj whence #euler = kl > χ(Q) = k + l − 1

as both k and l are at least 2.
Assume #vertices > 2 and that there is a subquiver of the form

basic = ��������1

k
"* ��������1

l

bj
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If k > 1 and l > 1 we have seen before that this subquiver and hence Q cannot
have a polynomial ring of invariants.

If k = 1 and l = 1 then substitute this subquiver by one vertex. ...
��������1
&&

\\9999 ��������1ff

BB���� ...BB����

\\9999

 −→
 ...

��������1

\\9999
BB���� ...BB����

\\9999


The new quiver Q′ is again final without loops because there are at least four
incoming arrows in the vertices of the subquiver and we only deleted two (the same
holds for the outgoing arrows). Q′ has one Eulerian necklace less than Q. By
induction, we have that

#euler = #euler′ + 1

> χ(Q′) + 1

= χ(Q).

If k > 1 then one can look at the subquiver Q′ of Q obtained by deleting k − 1
of these arrows. If Q′ is final, we are in the previous situation and obtain the
inequality as before. If Q′ is not final, then Q contains a subquiver of the form

��������1

k
"* ��������1ff

��?
??

??
??

?

��������1

??�������� ��������1oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

,

which cannot have a polynomial ring of invariants, as it is reducible to basic with
both k and l at least equal to 2.

Finally, if #vertices > 2 and there is no basic-subquiver, take an arbitrary
vertex v. Construct a new quiver Q′ bypassing v

l arrows︷ ︸︸ ︷��������1 · · · ��������1

��������1

bbDDDD
<<zzzz

��������1

<<zzzz · · · ��������1

bbDDDD︸ ︷︷ ︸
k arrows


−→


��������1 · · · ��������1

��������1

OO ;;wwwwwwwwww · · · ��������1

OOccGGGGGGGGGG︸ ︷︷ ︸
kl arrows

 .

Q′ is again final without loops and has the same number of Eulerian necklaces. By
induction

#euler = #euler′

> #arrows′ −#vertices′ + 1

= #arrows + (kl − k − l)−#vertices + 1 + 1
> #arrows−#vertices + 1.

In all cases, we obtain a contradiction with (1) and hence have proved claim1. So
we may assume from now on that Q has loops.

claim 2 : If Q has loops in v, then there is at most one loop in v or (Q,α) is
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2twobytwo = ��������2
��
[[

Because (Q,α) is final, we have αv ≥ 2. If αv = a ≥ 3 then there is only one loop
in v. If not, there is a subquiver of the form

��������a
��
[[

and its ring of invariants cannot be a polynomial algebra. Indeed, consider its
representation type τ = (1, k − 1; 1, 1) then the local quiver is of type basic with
k = l = a− 1 ≥ 2 and we know already that this cannot have a polynomial algebra
as invariant ring. If αv = 2 then either we are in the 2twobytwo case or there is at
most one loop in v. If not, we either have at least three loops in v or two loops and
a cyclic path through v, but then we can use the reductions

��������2 qq-- [[
b1−1

−→

��������2

��
��������2

rr��������2

22RR

����������k

EE
b1,b1−1

←−
��������2

  B
BB

Bqq--

'&%$ !"#i1

>>}}}} '&%$ !"#u1oo o/ o/ o/

The middle quiver cannot have a polynomial ring as invariants because we consider
the type 

��������1

��
��������0

pp��������2

VV 00

����������1

FF

⊕


��������0

��
��������1

pp��������0

VV 00

����������0

FF

⊕ · · ·
The number of arrows between the first and the second simple component equals

−
(
2 1 1 0

) 
1 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1




0
0
0
1

 = 2

whence the corresponding local quiver contains basic with k = l = 2 as subquiver.
This proves claim 2. From now on we will assume that the quiver setting (Q,α)
is such that there is precisely one loop in v and that k = αv ≥ 2. Let

τ = (1, 1; 1, εv;αv1 − 1, εv1 ; . . . ; . . . ;αv − 2, εv; . . . ;αvl
− 1, εvl

) ∈ typesαQ

Here, the second simple representation, concentrated in v has non-zero trace in
the loop whereas the remaining αv − 2 simple representations concentrated in v
have zero trace. Further, 1 ∈ simp〈Q〉 as Q is strongly connected by theorem 85.
We work out the local quiver setting (Qτ , ατ ). The number of arrows between the
vertices in Qτ corresponding to simple components concentrated in a vertex is equal
to the number of arrows in Q between these vertices. We will denote the vertex (and
multiplicity) in Qτ corresponding to the simple component of dimension vector 1
by 1 .

The number of arrows between the vertex in Qτ corresponding to a simple
concentrated in vertex w in Q to 1 is −χQ(εw, 1) and hence is one less than the
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number of outgoing arrows from w in Q. Similarly, the number of arrows from the
vertex 1 to that of the simple concentrated in w is −χQ(1, εw) and is equal to one
less than the number of incoming arrows in w in Q. But then we must have for all
vertices w in Q that

χQ(εw, 1) = −1 or χQ(1, εw) = −1

Indeed, because (Q,α) is final we know that these numbers must be strictly neg-
ative, but they cannot be both ≤ −2 for then the local quiver Qτ will contain a
subquiver of type

��������1
#+
1bj

contradicting that the ring of invariants is a polynomial ring. Similarly, we must
have

χQ(εw, εv) ≥ −1 or χQ(εv, εv)

for all vertices w in Q for which αw ≥ 2. Let us assume that χQ(εv, 1) = −1.

claim 3 : If w1 is the unique vertex in Q such that χQ(εv, εw1) = −1, then
αw1 = 1. If this was not the case there is a vertex corresponding to a simple
representation concentrated in w1 in the local quiver Qτ . If χQ(1, εw1) = 0 then
the dimension of the unique vertex w2 with an arrow to w1 has strictly bigger
dimension than w1, otherwise χQ(α, εw1) ≥ 0 contradicting finality of (Q,α). The
vertex w2 corresponds again to a vertex in the local quiver. If χQ(1, εw2) = 0,
the unique vertex w3 with an arrow to w2 has strictly bigger dimension than w2.
Proceeding this way one can find a sequence of vertices with increasing dimension,
which attains a maximum in vertex wk. Therefore χQ(1, εwk

) ≤ −1. This last
vertex is in the local quiver connected with W , so one has a path from 1 to εv.

��������k

��

�'G
GGG

GG

GGG
GGG

/.-,()*+w1

;;xxxxxx . . .

/.-,()*+wk

OO
O�
O�

. . .

;;wwwwww . . .

ccGGGGGG

local−→

��������1
��

��

/.-,()*+w1

=={{{{{{

/.-,()*+wk

OO
O�
O�

1

`B̀BBBB

JJ

The subquiver of the local quiver Qτ consisting of the vertices corresponding to
the simple representation of dimension vector 1 and the simples concentrated in
vertex v resp. wk is reducible via b1 to ��������1

#+
1bj , at least if χQ(1, εv) ≤ −2, a

contradiction finishing the proof of the claim. But then, the quiver setting (Q,α)
has the following shape in the neighborhood of v

��������k

�� ))SSSSSSSSS
��

��������1

>>|||| '&%$ !"#u1 · · · /.-,()*+uk

contradicting finality of (Q,α) for we can apply b3. In a similar way one proves
that the quiver setting (Q,α) has the form



6.3. SMOOTH LOCI. 225

��������k

~~||
||
��

��������1 '&%$ !"#u1

OO

· · · /.-,()*+uk

iiSSSSSSSSS

in a neighborhood of v if χQ(1, εv) = −1 and χQ(εv, 1) ≤ −2, again contradicting
finality.

There remains one case to consider : χQ(1, εv) = −1 and χQ(εv, 1) = −1.
Suppose w1 is the unique vertex in Q such that χQ(εv, εw1) = −1 and wk is the
unique vertex in Q such that χQ(εwk

, εv) = −1, then we claim :

claim 4 : Either αw1 = 1 or αwk
= 1. If not, consider the path connecting

wk and w1 and call the intermediate vertices wi, 1 < i < k. Starting from w1

we go back the path until αwi
reaches a maximum. at that point we know that

χQ(1, εwk
) ≤ −1, otherwise χQ(α, εwk

) ≥ 0. In the local quiver there is a path from
the vertex corresponding to the 1-dimensional simple over the ones corresponding
to the simples concentrated in wi to v. Repeating the argument, starting from wk
we also have a path from the vertex of the simple v-representation over the vertices
of the wj-simples to the vertex of the 1-dimensional simple.

��������2
��

!!B
BB

BB
B

/.-,()*+w1

==|||||| /.-,()*+wk

���O
�O

'&%$ !"#wi

OO
O�
O� /.-,()*+wj

##G
GGG

GGjj

##G
GGG

GG

. . .

;;wwwwww . . .

local−→

��������1
��

��

!!C
CC

CC
C

/.-,()*+w1

==|||||| /.-,()*+wk

���O
�O

'&%$ !"#wi

OO
O�
O� /.-,()*+wj

~~}}
}}

}

1

``AAAAA

JJ

The subquiver consisting of 1, εv and the two paths through the εwi
is reducible to��������1

#+
1bj and we again obtain a contradiction.

The only way out of these dilemmas is that the final quiver setting (Q,α) is of
the form

��������k

��

finishing the proof. �

Definition 96. Let (Q,α) and (Q′, α′) be two quiver settings such that there
is a vertex v in Q and a vertex v′ in Q′ with αv = 1 = α′v′ . We define the connected
sum of the two settings to be the quiver setting

( Q
v

#
v′
Q′ , α

v

#
v′
α′ )
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where Q
v

#
v′
Q is the quiver obtained by identifying the two vertices v and v′

. . .

  B
BB

BB
BB

BB
. . .

~~||
||

||
||

|

Q1
��������1

  B
BB

BB
BB

BB

~~||
||

||
||

| Q2

. . . . . .

and where α
v

#
v′
α′ is the dimension vector which restricts to α (resp. α′) on Q (resp.

Q′).

Example 135. With this notation we have

C[iss
α

v

#
v′
α′
Q
v

#
v′
Q′] ' C[issαQ]⊗ C[issα′Q′]

Because traces of a necklaces passing more than once through a vertex where the
dimension vector is equal to 1 can be split as a product of traces of necklaces
which pass through this vertex only one time, we see that the invariant ring of the
connected sum is generated by Eulerian necklaces fully contained in Q or in Q′.

Theorem 99 gives a procedure to decide whether a given quiver setting (Q,α)
has a regular ring of invariants. However, is is not feasible to give a graphtheoretic
description of all such settings in general. Still, in the special (but important) case
of symmetric quivers, there is a nice graphtheoretic characterization.

Theorem 100 (Bocklandt). Let (Q,α) be a symmetric quiver setting such that
Q is connected and has no loops. Then, the ring of polynomial invariants

C[issαQ] = C[repαQ]GL(α)

is a polynomial ring if and only if the following conditions are satisfied
(1) Q is tree-like, that is, if we draw an edge between vertices of Q whenever

there is at least one arrow between them in Q, the graph obtained in a
tree.

(2) α is such that in every branching vertex v of the tree we have αv = 1.
(3) The quiver subsetting corresponding to branches of the tree are connected

sums of the following atomic pieces :

I ��������n
&& '&%$ !"#mff

II ��������1

k "* ��������n

k

ai , k ≤ n

III ��������1
&& ��������nee

&& '&%$ !"#mff

IV ��������n
%% ��������2ff

&&'&%$ !"#mee ,

Proof. Using theorem 99 any of the atomic quiver settings has a polynomial
ring of invariants. Type I reduces via b1 to
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��������k

��

where k = min(m,n), type II reduces via b1 and b2 to ��������1 , type III reduces via
b1, b3, b1 and b2 to ��������1 and finally, type IV reduces via b1 to

��������2
��
[[

By the previous example, any connected sum constructed out of these atomic quiver
settings has a regular ring of invariants. Observe that such connected sums satisfy
the first two requirements. Therefore, any quiver setting satisfying the requirements
has indeed a polynomial ring of invariants.

Conversely, assume that the ring of invariants C[issαQ] is a polynomial ring,
then there can be no quiver subsetting of the form

�������� ,,

tt

��������ll

����������
44

��

#vertices ≥ 3 ��������
QQ

tt��������
QQ

��������
44

For we could look at a semisimple representation type τ with decomposition
��������0

((

tt

��������0hh

����������1

44

��

��������0

TT

tt��������0

TT

��������0

44

⊕


��������1
((

tt

��������1hh

����������0

44

��

��������1

TT

tt��������1

TT

��������1

44

⊕ · · ·
The local quiver contains a subquiver (corresponding to the first two components)
of type basic with k and l ≥ 2 whence cannot give a polynomial ring. That is, Q
is tree-like.

Further, the dimension vector α cannot have components ≥ 2 at a branching
vertex v. For we could consider the semisimple representation type with decompo-
sition 

��������1

��
��������0

pp��������2

VV 00

����������1

FF

⊕


��������0

��
��������1

pp��������0

VV 00

����������0

FF

⊕ · · ·
and again the local quiver contains a subquiver setting of type basic with k = 2 = l
(the one corresponding to the first two components). Hence, α satisfies the second
requirement.

Remains to show that the branches do not contain other subquiver settings than
those made of the atomic components. That is, we have to rule out the following
subquiver settings : '&%$ !"#a1

(( '&%$ !"#a2hh
(( '&%$ !"#a3hh

(( '&%$ !"#a4hh
with a2 ≥ 2 and a3 ≥ 2, '&%$ !"#a1

(( '&%$ !"#a2hh
(( '&%$ !"#a3hh

with a2 ≥ 3 and a1 ≥ 2, a3 ≥ 2 and
'&%$ !"#a1

(( '&%$ !"#a2hh
$, '&%$ !"#a3dl



228 6. EMPIRES

whenever a2 ≥ 2. These situations are easily ruled out by theorem 99 and we leave
this as a pleasant exercise. �

Example 136. The quiver setting

��������3
%% ��������2ee

��

��������k

px��������1

TT

tt

%% ��������1

08

��

ee

��������1
%% ��������3ee

44

��������4

TT

has a polynomial ring of invariants if and only if k ≥ 2.

Example 137. Let (Q•, α) be a marked quiver setting and assume that
{l1, . . . , lu} are the marked loops in Q•. If Q is the underlying quiver forgetting the
markings we have by separating traces that

C[issαQ] ' C[issαQ•][tr(l1), . . . , tr(lu)]

Hence, we do not have to do extra work in the case of marked quivers :

A marked quiver setting (Q•, α) has a regular ring of invariants if and only if (Q,α)
can be reduced to a one of the three final quiver settings of theorem 99.

We relate this result to the necklace Lie algebra neckQ of section 3.4. Recall
that if Q is a symmetric quiver, we can define symplectic structures ∗ on it which
is a partitioning of the arrows

Qa = L tR such that L∗ = R

Let QL be the subquiver on the arrows from L, then the trace pairing gives a natural
identification

repα Q↔ T ∗repα QL

between the representation space of Q and the cotangent bundle on the representa-
tion space of QL. Therefore, repα Q comes equipped with a canonical symplectic
structure.

If α = (a1, . . . , ak), then, for every arrow ��������i��������j
aoo in L we have an aj × ai

matrix of coordinate functions Auv with 1 ≤ u ≤ aj and 1 ≤ v ≤ ai and for the
adjoined arrow ��������i��������j

a∗
// in R an ai × aj matrix of coordinate functions A∗vu.

The canonical symplectic structure on repα Q is induced by the closed 2-form

ω =

1≤v≤ai
1≤u≤aj∑

��������i��������j
aoo

dAuv ∧ dA∗vu

where the sum is taken over all a ∈ L. This symplectic structure induces a Poisson
bracket on the coordinate ring C[repα Q] by the formula

{f, g} =

1≤v≤ai
1≤u≤aj∑

��������i��������j
aoo

(
∂f

∂Auv

∂g

∂A∗vu
− ∂f

∂A∗vu

∂g

∂Auv
)
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The basechange action of GL(α) on the representation space repα Q is symplectic
which means that for all tangentvectors t, t′ ∈ T repα Q we have for the induced
GL(α) action that

ω(t, t′) = ω(g.t, g.t′)
for all g ∈ GL(α). The infinitesimal GL(α) action gives a Lie algebra homomor-
phism

pgl(α) - V ectω repα Q

which factorizes through a Lie algebra morphism H to the coordinate ring making
the diagram below commute

pgl(α)

C[repα Q]
f 7→ξf

-
�

H
=
µ
∗

C

V ectω repα Q

-

where µC is the complex moment map . That is, the map

repα Q
µC- gl(α) µα(V )i =

∑
��������i�������� aoo
VaVa∗ −

∑
����������������i

aoo

Va∗Va

We say that the action of GL(α) on repα Q is Hamiltonian . This makes the ring
of polynomial invariants C[repα Q]GL(α) into a Poisson algebra and we will write

neckα = (C[repα Qd]GL(α), {−,−})
for the corresponding abstract infinite dimensional Lie algebra. The dual space
of this Lie algebra neck∗α is then a Poisson manifold equipped with the Kirillov-
Kostant bracket. Evaluation at a point in the quotient variety issα Q defines a
linear function on neckα and therefore gives an embedding

issα Q ⊂ - neck∗α

as Poisson varieties. That is, the induced map on the polynomial functions is a
morphism of Poisson algebras. The following results are adaptations of an idea due
to Victor Ginzburg [20].

Theorem 101. Let Q be a symmetric quiver and α a dimension vector such
that issα Q is smooth. Then, the Poisson embedding

issα Q ⊂ - neck∗α

makes issα Q into a closed coadjoint orbit of the infinite dimensional Lie algebra
neckα.

Proof. In general, if X is a smooth affine variety then the differentials of
polynomial functions on X span the tangent spaces at all points x ∈ X. If X is in
addition symplectic, the infinitesimal Hamiltonian action of the Lie algebra C[X]
(with the natural Poisson bracket) on X is infinitesimally transitive. Therefore, the
infinite dimensional group Ham generated by all Hamiltonian flows on X acts with
open orbits. If X is in addition irreducible, it must be a single orbit. That is, X is
a coadjoint orbit for C[X]. By assumption, issα Q is an affine smooth irreducible
variety, so the argument applies. �
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Observe that the same argument applies to any affine smooth subvariety Y of
issα Q (regardless of α being such that the quotient variety is smooth) whenever
the infinitesimal action of neckα on neck∗α preserves Y . In particular, this applies
to (deformed) preprojective algebras and associated quiver varieties . We refer the
interested reader to [20], [3] and [39].

We still have to explain the terminology neckα. Recall that the necklace Lie
algebra introduced in section 3.4

neckQ = DR0
Ck
〈Q〉 =

〈Q〉
[〈Q〉, 〈Q〉]

is the vectorspace with basis all the necklace words w in the quiver Q, that is, all
equivalence classes of oriented cycles in the quiverQd, equipped with the Kontsevich
bracket

{w1, w2}K =
∑
a∈L

(
∂w1

∂a

∂w2

∂a∗
− ∂w1

∂a∗
∂w2

∂a
) mod [〈Q〉, 〈Q〉]

The algebra of polynomial quiver invariants C[issα Q] is generated by traces of
necklace words. That is, we have a map

neckQ =
〈Q〉

[〈Q〉, 〈Q〉]
tr- neckα = C[issα Q]

From the definition of the Lie bracket on neckα we see that this map is actually a
Lie algebra map, that is, for all necklace words w1 and w2 in Q we have the identity

tr {w1, w2}K = {tr(w1), tr(w2)}
The image of tr contains a set of algebra generators of C[issα Q], so the elements
tr neckQ are enough to separate points in issα Q. Repeating the previous argu-
ment, we obtain :

Theorem 102. Let Q be a symmetric quiver and α a dimension vector such
that issα Q is a smooth variety. The embeddings

issα Q ⊂ - neckα ⊂ - neckQ

make issα Q into a coadjoint orbit for the necklace Lie algebra neckQ.

One should not read too much into this statement. Recall from theorem 100
that we have a complete characterization of the quiver-settings (Q,α) satisfying the
requirements of the theorem. Consider such a setting, that is an admissible tree,
and consider any proper subtree setting (Q′, α′). Then also issα′ Q′ is a smooth
variety and therefore also a ’coadjoint’ orbit for neckQ. Therefore, these coadjoint
orbits can have proper closed coadjoint suborbits.



CHAPTER 7

Nullcones

”There have been much talk about a theory of non-commutative
algebraic geometry. It is not my intention here to add to this,
but rather to point out that our preceding theory does give us a
functor from rings to topological spaces which is a simple sum-
mary of the information on possible homomorphisms from the
ring to simple artinian rings. It would be possible to equip this
space with a sheaf of rings, and to represent modules over the
ring as a sheaf of modules over this sheaf of rings; however, in
the absence of any obvious use for this machinery, I shall leave
it to future mathematicians of greater insight.”

Aidan Schofield in [60].

In this chapter we will describe the nullcones of quiver representations. We
give a representation theoretic interpretation of the Hesselink stratification. It
turns out that non-emptiness of a potential stratum is decided by the existence of
specific semistable representations for an associated quiver setting.

For this reason we investigate moduli spaces of semistable quiverrepresentations
in some detail. In particular we show that a θ-stable representations becomes
simple in a universal localization which allows for a local investigation of these
moduli spaces (in particular the description of their singular locus) by means of
local quivers.

These results extend to a large class of alg-smooth algebras using the theory,
due to Aidan Schofield, of localizations at Sylvester rank functions. One covers
ressA, the Abelian category of all finite dimensional semistable representations
of A locally by repAΣ for certain universal localizations, thereby reducing to the
theory developed in the foregoing chapter.

7.1. Stability structures.

Some algebras just have not enough simple finite dimensional representations
for the previous reductions to have any effect. For example, if A is a finite di-
mensional alg-algebra, then A is Morita equivalent to the path algebra 〈Q〉 of a
quiver without oriented cycles. The only simple representations of 〈Q〉 are the
vertex-simples and therefore emp〈Q〉 ' Q. Clearly, all finite dimensional represen-
tations of 〈Q〉 are nilpotent, whence the statement iso(repA) ↔ iso(nullempA)
is a tautology.

If the alg-smooth algebra A has a shortage of simples, it is better to extend the
foregoing strategy as follows. Let schurA denote the subset of compA consisting of
those irreducible components of repA containing a Schur representation . That is,

231
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a finite dimensional representation M such that EndA(M) ' C. Next, define the
bigger empire EmpA to be the (usually infinite) quiver with vertices vα corresponding
to the Schur roots α ∈ schurA having ext(α, β) directed arrows from vα to vβ .

In this section we will prove, using the work on semistable representations of
Alexei Rudakov [58], that (with obvious notations) there is a natural one-to-one
correspondence

iso(ressA)↔ iso(nullEmpA)

where ressA are the finite dimensional representations which are semistable for
some stability structure on repA. This again reduces the study to a purely combi-
natorial part, the description of orbits in nullcones of quiver representations, and
the description of the Azumaya loci of sheaves of orders over the moduli spaces
parametrizing direct sums of stable representations.

However, this study can often be reduced to the setting studied in the foregoing
chapter by universal localization. In this section we will outline the reduction and
we will give ample detail in the special (but important) case of finite dimensional
algebras (or path algebras of quivers without oriented cycles) in the next section.

Definition 97 (Rudakov). For A ∈ alg let repA denote the Abelian category
of all finite dimensional representations of A. A preorder on repA has the property
that for any two non-zero representations V and W we have either V < W or
W < V or V � W (V is confused with W ). A preorder id said to be a stability
structure on repA if and only if every short exact sequence in repA

0 - U - V - W - 0

satisfies the seesaw property , that is,

either U < V ⇔ U < W ⇔ V < W

or U > V ⇔ U > W ⇔ V > W

or U � V ⇔ U �W ⇔ V �W

A representation V is said to be semistable if V 6= 0 and for every non-trivial
subrepresentation U ⊂ V we have U ≤ V (that is, U < V or U � V ). Equivalently,
V ≤W for every non-trivial factorrepresentation V -- W .

A representation V is said to be stable if V 6= 0 and for every non-trivial
subrepresentation U ⊂ V we have U < V . Equivalently, V < W for every non-
trivial factorrepresentation V -- W .

Example 138. We collect some easy consequences of the seesaw-property. For
a short exact sequence

0 - U - V - W - 0

in repA and any nonzero M ∈ repA we have

if U < M and W < M ⇒ V < M

if U > M and W > M ⇒ V > M

if U �M and W �M ⇒ V �M

More generally, if V has a finite filtration by subrepresentations

0 = Un+1 ⊂ Un ⊂ . . . ⊂ U1 ⊂ U0 = V
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with subsequent factorrepresentations Wi = Ui/Ui+1, then

if Wi < M for all 1 ≤ i ≤ n ⇒ V < M

if Wi > M for all 1 ≤ i ≤ n ⇒ V > M

if Wi �M for all 1 ≤ i ≤ n ⇒ V �M
This property we call the center of mass property . If moreover we have that
W0 < W1 < . . . < Wn and if we denote Wi(j) = Ui/Ui+j then we have that

Wi(j) < Wk(l) ⇒ (i, j) <lex (k, l)

where <lex is the lexicographic ordering.

Example 139. We claim that stable representations behave like simples. We
have the following version of Schur’s lemma. If V ≥ W are semistable representa-
tions with a non-zero morphism V

φ- W . We claim that the following properties
hold

(1) V �W
(2) if W is stable, then φ is onto
(3) if V is stable, then φ is mono
(4) if V and W are stable, then φ is an isomorphism.

Indeed, consider the exact sequences

0 - Ker φ - V - Im φ - 0 0 - Im φ - W - Coker φ - 0

As φ 6= 0, Im φ a non-trivial factor- resp. subrepresentation whence

V ≤ Im φ and Im φ ≤W whence V ≤W
and therefore V � Im φ �W . For (2), if Im φ is a proper subrepresentation, then
Im φ < W contradicting Im φ �W . (3) is proved similarly and (4) follows.

Example 140. If 0 6= V ⊂ W , then either V is semistable or there is a
semistable subrepresentation V ′ ⊂ V with V ′ > V . Indeed, assume V is not
semistable, then there is a V1 ⊂ V with V1 > V . Either V1 is semistable and we
are done or we can continue to find a subrepresentation V2 ⊂ V1 with V2 > V1. As
all our representations are finite dimensional, this process must finish.

If 0 6= V ⊂ W and there exists a semistable subrepresentation U ⊂ W with
V > U then either U ⊂ V or there is a subrepresentation V ⊂ V ′ ⊂ W with
V ′ > V . Consider the exact sequences

0 - V ∩ U - U - X - 0 0 - V ⊂ V + U - X - 0

If U * V then X 6= 0 If V ∩ U 6= 0 then V ∩ U ≤ U whence U ≤ X. As V < U we
have V < X and by the second sequence V < V + U .

Example 141. Call a subrepresentation 0 6= V ⊂W greedy if every semistable
subrepresentation U ⊂ W satisfying V > U is contained in V . We claim that for
any subrepresentation 0 6= U ⊂W there is a greedy subrepresentation U ⊂ V ⊂W
with U ≤ V .

Indeed if V1 = U does not satisfy the requirement, then there is a semistable
X > V1 not contained in V1 whence by the foregoing example there is a V1 ⊂ V2

such that V1 < V2. If V2 does not satisfy the requirement, we can repeat this
process and obtain a properly increasing series V1 ⊂ V2 ⊂ . . . ⊂ W and by finite
dimensionality of W it must stabilize proving the claim.
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Theorem 103 (Rudakov). For every W ∈ repA there is a unique semistable
subrepresentation ∆(W ) satisfying the following properties

(1) For every 0 6= V ⊂W we have V ≤ ∆(W ).
(2) For every 0 6= V ⊂W such that V � ∆(W ) we have V ⊂ ∆(W ).

For every W ∈ repA there is a unique semistable factorrepresentation ∇(W ) sat-
isfying the following properties

(1) For every W -- V 6= 0 we have V ≥ ∇(W ).
(2) For every W -- V 6= 0 such that V � ∇(W ) we have ∇(W ) -- V .

Proof. We prove the statement on ∆(W ), that on ∇(W ) follows by duality.
There exists W ′ ⊂ W satisfying (1). If W does not satisfy (1) there is a subrep-
resentation V ⊂ W such that V > W but then by the previous example there is
a greedy subrepresentation W1 ⊂ W such that W1 ≥ V > W . If for all U ⊂ W1

we have U ≤ W1, then W1 satisfies (1). Indeed, let V ⊂ W such that V > W1,
then either V is semistable or we can extend V to a semistable V ′ ⊂ W such that
V ′ > V whence V ′ > W1 but by greediness of W1 we would have V ′ ⊂ W1, a
contradiction.

Otherwise, there is a V ⊂ W such that V > W1 and then we can extend V to
a greedy W2 ⊂ W1 such that W2 ≥ V > W1. We can proceed this way and obtain
a strictly decreasing sequence of subrepresentation which must stabilize whence
proving the existence of subrepresentations W ′ ⊂W satisfying (1).

Let W be the set of all these W ′ and take W ′1 ∈ W. If W ′1 does not satisfy
(2), there is V ⊂ W with V � W ′1 and V * W ′1 and we may assume that V is
semistable (if not, extend V to semistable V ′ > V but then V ′ > W ′1 contradicting
that W ′1 satisfies (1)). Let W ′2 = W ′1 + V then we claim that W ′2 ≥ W ′1. We have
the sequences

0 - V ∩W ′1 - V - U - 0 0 - W ′1 - W ′1 + V - U - 0

As V is semistable, V ∩W ′1 ≤ V whence V ≤ U . If W ′1 + V < W ′1 then U < W ′1
whence V ≤ U < W ′1 contradicting V � W ′1. Therefore, W ′1 ⊂ W ′2 and W ′2 ∈ W.
Either W ′2 satisfies (2) or we can repeat the argument. This way we obtain a strictly
increasing sequence of subrepresentations which must stabilize in order to give a
subrepresentation ∆ satisfying (1) and (2).

Remains to prove uniqueness. Assume ∆′ also satisfies (1) and (2), then ∆ � ∆′

and by (2) both ∆ ⊂ ∆′ and ∆′ ⊂ ∆. �

Theorem 104 (Rudakov). There is a Jordan-Hölder filtration for semistable
representations. That is, if W is a semistable representation, then there is a filtra-
tion

0 = Wn+1 ⊂Wn ⊂ . . . ⊂W1 ⊂W0 = W

such that the quotients Vi = Wi/Wi+1 are stable and V0 � V1 � . . . � Vn.

Proof. Let Wn be the minimal subrepresentation such that Wn � W , then
Wn is obviously stable. We claim that W/Wn is semistable. By the seesaw property
we have Wn � W � W/Wn. If W/Wn is not semistable, there is a Wn ⊂ V ⊂ W
with V/Wn > W/Wn. But then, W � W/Wn > W/V contradicting semistability
of W as this implies W ≤W/V . Iterating this process finishes the proof. �
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Theorem 105 (Rudakov). There is a Harder-Narasinham filtration for W ∈
repA. That is, there is a unique filtration

0 = Wm+1 ⊂Wm ⊂ . . . ⊂W1 ⊂W0 = W

such that the quotients Vi = Wi/Wi+1 are semistable and V0 < V1 < . . . < Vm.

Proof. Define U0 = 0 and U−1 = ∆(W ) and define for higher i the subrepre-
sentation U−(i+1) by the property that

U−(i+1)

U−i
= ∆(

W

U−i
)

These quotients are semistable and it follows from the seesaw property and the
sequences that

U−(i+2)

U−(i+1)
<
U−(i+1)

U−i

and hence the sequence U−1 ⊂ U−2 ⊂ . . . ⊂ U−(m+1) = W satisfies the requirements
of the theorem by example 138. Uniqueness follows from induction on the filtration
length and the following

claim : If 0 = Wm+1 ⊂ Wm ⊂ . . . ⊂ W1 ⊂ W0 = W is such that the quotients
Vi = Wi/Wi+1 are semistable and V0 < V1 < . . . < Vn, then Wm = ∆(W ).

We prove this by induction on m. If m = 0 then W is semistable. So assume
by induction that Wm−1/Wm = ∆(W/Wm) then for any V ⊂W we have that

V

Wm ∩ V
≤ Wm−1

Wm
= Vm−1 < Vm = Wm

As Wm is semistable, V ∩Wm ≤Wm but then from the center of mass property we
deduce that A ≤Wm. That is, Wm satisfies (1) defining ∆(W ). As for (2), assume
that V is a subrepresentation such that V �Wm, then

V ∩Wm ≤Wm � V whence V ≤ V

V ∩Wm

if this factor is nonzero. But then V � Wm = Vm > Vm−1 whence V/(V ∩Wm) >
Vm−1 a contradiction by induction. Therefore, the factor V/(V ∩Wm) = 0, that is,
V ⊂Wm and so Wm satisfies (2) finishing the proof of the claim. �

Remains to prove the existence of stability structures on repA.

Example 142. Let c, r be two additive functions on repA, that is, for every
short exact sequence

0 - U - V - W - 0

we have c(V ) = c(U) + c(W ) and r(V ) = r(U) + r(W ). Assume that r(V ) > 0 for
all nonzero V (for example, let r be the dimension). The slope is defined to be

µ(V ) =
c(V )
r(V )

We claim that the slope order defined by

V < W ⇔ µ(V ) < µ(W )
V �W ⇔ µ(V ) = µ(W )
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is a stability structure on repA. Indeed, we have

µ(V )− µ(W ) =
1

r(V )r(W )

∣∣∣∣r(W ) c(W )
r(V ) c(V )

∣∣∣∣
and because r is positive, the slope order is determined by the sign (or zeroing) of
the determinant. Take an exact sequence

0 - U - V - W - 0

then by additivity of c and r we have the following equalities between the determi-
nants ∣∣∣∣r(V ) c(V )

r(U) c(U)

∣∣∣∣ =
∣∣∣∣r(U) + r(W ) c(U) + c(W )

r(U) c(U)

∣∣∣∣ =
∣∣∣∣r(W ) c(W )
r(U) c(U)

∣∣∣∣
=

∣∣∣∣ r(W ) c(W )
r(U) + r(W ) c(U) + c(W )

∣∣∣∣ =
∣∣∣∣r(W ) c(W )
r(V ) c(V )

∣∣∣∣
from which the claim follows.

Definition 98 (King). Let A ∈ alg andK0(A)
θ- R be an additive function

on the Grothendieck group.
A representation V ∈ repA is said to be θ-semistable if θ(V ) = 0 and every

subrepresentation V ′ ⊂ V satisfies θ(V ′) ≥ 0.
A representation V ∈ repA is said to be θ-stable if V is θ-semistable and the

only subrepresentations V ′ with θ(V ′) = 0 are 0 and V .

Example 143. Every slope stability structure as in example 142 determines
for any V ∈ repA an additive function θ on the Grothendieck group

θ(W ) = −c(W ) +
c(V )
r(V )

r(W )

Observe that θ(V ) = 0 and M is (semi)stable for the slope stability structure if
and only if M is θ-(semi)stable. For we have

θ(V ′) ≥ 0 ⇔ −c(V ′) + c(V )
r(V )r(V

′) ≥ 0

⇔ c(V ′)
r(V ′) ≤

c(V )
r(V )

Example 144. Let Q be a finite quiver on k vertices, then K0〈Q〉 = Zk whence
any additive function θ is determined by a k-tuple (t1, . . . , tk) ∈ Rk. IfM ∈ repα Q,
then we define

θ(M) = θ.α = t1a1 + . . .+ tkak

Therefore, M is θ-semistable if for every subrepresentation M ′ ⊂ M of dimension
vector β we have θ.β ≥ 0 and is θ-stable if the only subrepresentations with θ(M ′) =
0 are 0 or M .

On rep〈Q〉 slope stability structures can be defined by taking c = (c1, . . . , ck) ∈
Rk and r = (r1, . . . , rk) ∈ Nk0 and defining for M ∈ repα Q

c(M) = c.α and r(M) = r.α

We will outline the interrelation between Schur roots, stability structures and
the notion of Sylvester rank function introduced and studied by Aidan Schofield
[60].

If α ∈ schurA, there is an open set in repαA of representations such that the
stabilizer subgroup is C∗. This open set determines a principal PGLn-fibration and
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therefore a central simple algebra Σ of dimension n2 over its center. That is, we
have an algebra morphism

A - Σ = Mr(D)
with D a central division algebra of dimension s2 and n = rs. This defines an
additive function

K0(A)
ρ- 1

r
Z such that ρ([A]) = 1

by sending the class [P ] of the finitely generated projective P (or more generally,
a finitely presented A-module) to ρ([P ]) which is the rank over Σ of Σ⊗A P . This
function has the following properties

(1) ρ(A) = 1
(2) ρ(M ⊕M ′) = ρ(M) + ρ(M ′)
(3) ρ(M”) ≤ ρ(M ′) ≤ ρ(M) + ρ(M”) for every exact sequence

M - M ′ - M” - 0

of finitely presented A-modules.
More generally, let G0(A) be the Abelian group on the isomorphism classes of
finitely presented A-modules with relations [M ⊕M ′] = [M ] + [M ′] and define an
ordering on G0(A) by specifying a positive cone [M ] > 0 for all non-zero finitely
presented modules M and if

M - M ′ - M” - 0

is an exact sequence, then we define [M ′]− [M”] ≥ 0 and [M ]− [M ′] + [M”] ≥ 0.
A Sylvester module rank function is defined to be an order preserving additive map

G0(A)
ρ- R such that ρ(A) = 1

If ρ1, . . . , ρk are Sylvester rank functions, then so is q1ρ1 + . . . qkρk with qi ∈ Q, qi >
0 and q1 + . . .+ qk = 1. Hence the Sylvester rank functions form a Q-convex subset
in the space of all real valued order preserving morphisms on G0(A). In fact, Aidan
Schofield proved [60, Thm.7.25] that they form an infinite dimensional Q-simplex
as any Sylvester rank function ρ can be written in a unique way as the weighted
sum of extremal points, that is, functions that do not lie in the linear span of others.
We call the set of all Sylvester rank functions on A the Schofield fractal schofA
of the algebra A. It contains all information about algebra morphisms from A to
simple Artinian algebras (not necessarily finite dimensional over their centers).

Returning to the study of repA we can restrict Sylvester rank functions to
repA and then it turns out that the functions we constructed above from Schur
roots α ∈ schurA are extremal points in schofA. Moreover, any Sylvester rank
function ρ determines a universal localization Aρ of A, see [60], and in most cases
Schur representations in repαA will become simple representations in an affine
intermediate universal localization Aσ ⊂ Aρ for the Sylvester rank function deter-
mined by α ∈ schurA.

We will prove these claims in full detail in the next section for path algebras
of quivers as they are important to us in the investigation of nullcones of quiver-
representations. First, we prove Schofield’s characterization of schur〈Q〉 based on
his results on general subrepresentations [61] and the theory of compartments due
to Harm Derksen and Jerzy Weyman [13] which can be seen as the part of the
Schofield fractal schof〈Q〉 relevant for finite dimensional quiver-representations.
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To enlarge our cultural luggage, we briefly recall some classical results on
indecomposable representations of quivers due to Victor Kaĉ [26]. Any quiver-
representation V ∈ repα Q decomposes uniquely into a sum

V = W⊕f11 ⊕ . . .⊕W⊕fz
z

of indecomposable representations . This follows from the fact that End〈Q〉(V )
is finite dimensional. Recall also that a representation W of Q is indecompos-
able if and only if End〈Q〉(W ) is a finite dimensional local algebra, that is, the
nilpotent endomorphisms in End〈Q〉(W ) form an ideal of codimension one. Equiv-
alently, the maximal torus of the stabilizer subgroup StabGL(α)(W ) = Aut〈Q〉(W )
is one-dimensional, which means that every semisimple element of Aut〈Q〉(W ) lies
in C∗(rrd1 , . . . ,

rr
dk

).
In general, decomposing a representation V into indecomposables corresponds

to choosing a maximal torus T in the stabilizer subgroup Aut〈Q〉(V ). Decompose
the vertexspaces

Vi = ⊕χVi(χ) where Vi(χ) = {v ∈ Vi | t.v = χ(t)v ∀t ∈ T}
where χ runs over all characters of T . One verifies that each V (χ) = ⊕iVi(χ) is
a subrepresentation of V giving a decomposition V = ⊕χV (χ). Because T acts
by scalar multiplication on each component V (χ), we have that C∗ is the maximal
torus of Aut〈Q〉(V (χ)), whence V (χ) is indecomposable.

Conversely, if V = W1 ⊕ . . .⊕Wr is a decomposition with the Wi indecompos-
able, then the product of all the one-dimensional maximal tori in Aut〈Q〉(Wi) is a
maximal torus of Aut〈Q〉(V ).

Definition 99. The Tits form of a quiver Q is the symmetrization of its Euler
form, that is,

TQ(α, β) = χQ(α, β) + χQ(β, α)
This symmetric bilinear form is described by the Cartan matrix

CQ =

c11 . . . c1k
...

...
ck1 . . . ckk

 with cij = 2δij −# { ��������i��������j }

where we count all arrows connecting vi with vj forgetting the orientation. The
corresponding quadratic form qQ(α) = 1

2χQ(α, α) on Qk is

qQ(x1, . . . , xk) =
k∑
i=1

x2
i −

∑
a∈Qa

xt(a)xh(a)

Observe that qQ(α) = dim GL(α) − dim repα Q. With ΓQ we will denote the
underlying graph of Q.

Definition 100. A quadratic form q on Zk is said to be positive definite if
0 6= α ∈ Zk implies q(α) > 0.

A quadratic form q on Zk is called positive semi-definite if q(α) ≥ 0 for all
α ∈ Zk. The radical of q is rad(q) = {α ∈ Zk | T (α,−) = 0}. If qQ is positive
semi-definite, there exist a minimal δQ ≥ 0 with the property that qQ(α) = 0 if and
only if α ∈ QδQ if and only if α ∈ rad(qQ).

If the quadratic form q is neither positive definite nor semi-definite, it is called
indefinite .
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Am , m ≥ 1 �������� �������� �������� �������� �������� ��������

Dm , m ≥ 4 �������� �������� �������� �������� �������� ��������
��������

E6 �������� �������� �������� �������� ��������
��������

E7 �������� �������� �������� �������� �������� ��������
��������

E8 �������� �������� �������� �������� �������� �������� ��������
��������

Figure 1. The Dynkin diagrams.
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��������2 ��������4 ��������6 ��������5 ��������4 ��������3 ��������2 ��������1

��������3

Figure 2. The extended Dynkin diagrams.

Theorem 106. Let Q be a connected quiver with Tits form qQ, Cartan matrix
CQ and underlying graph ΓQ. Then,

(1) qQ is positive definite if and only if ΓQ is a Dynkin diagram , that is one
of the graphs of figure 1. The number of vertices is m.

(2) qQ is semidefinite if and only if ΓQ is an extended Dynkin diagram, that
is one of the graphs of figure 2 and δQ is the indicated dimension vector.
The number of vertices is m+ 1.

Proof. Classical, see for example [7]. �
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Definition 101. An indecomposable root of Q is the dimension vector of an
indecomposable representation of Q. With indQ we denote the set of all indecom-
posable roots of Q.

If V ∈ repα Q has a decomposition into indecomposables

V = W⊕f11 ⊕ . . .⊕W⊕fz
z

with γi the dimension vector of Wi, we say that V is of type τ = (f1, γ1; . . . ; fz, γz).
With itypesα Q we denote the set of all decomposition types which do occur for
α-dimensional representations.

Example 145. The canonical decomposition and generic representations.
For a dimension vector α, we claim that there exists a unique type τcan =
(e1, β1; . . . ; el, βl) ∈ itypesα Q such that the set

repα(τcan) = {V ∈ repα Q itype(V ) = τcan}

contains a dense open set of repα Q. Indeed, by example 72 we know that for
any dimension vector β the subset repindβ Q of indecomposable representations of
dimension β is constructible. For τ = (f1, γ1, ; . . . ; fz, γz) ∈ itypesαQ the subset

repα(τ) = {V ∈ repα Q | itype(V ) = τ}

is a constructible subset of repα Q as it is the image of the constructible set

GL(α)× repindγ1 Q× . . .× repindγz
Q

under the map sending (g,W1, . . . ,Wz) to g.(W⊕f11 ⊕ . . . ⊕ W⊕fz
z ). Because of

the uniqueness of the decomposition into indecomposables we have a finite disjoint
decomposition

repα Q =
⊔

τ∈itypesαQ

repα(τ)

and by irreducibility of repα Q precisely one of the repα(τ) contains a dense open
set of repα Q. This unique type τcan is said to be the canonical decomposition of
α.

Consider the action morphisms GL(α)× repα Q
φ- repα Q. By Chevalley’s

theorem 48 we know that the function

V 7→ dim StabGL(α)(V )

is upper semi-continuous. Because dim GL(α) = dim StabGL(α)(V ) + dim O(V )
we conclude that for all m, the subset

repα(m) = {V ∈ repα Q | dim O(V ) ≥ m}

is Zariski open. In particular, repα(max), the union of all orbits of maximal di-
mension, is open and dense in repα Q.

A representation V ∈ repα Q lying in the intersection

repα(τcan) ∩ repα(max)

is called a generic representation of dimension vector α.

Example 146. Finite type quivers are Dynkin. Assume that Q is a connected
quiver of finite representation type , that is, there are only a finite number of isomor-
phism classes of indecomposable representations. Let α be an arbitrary dimension
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vector. Since any representation of Q can be decomposed into a direct sum of in-
decomposables, repα Q contains only finitely many orbits. Hence, one orbit O(V )
must be dense and have the same dimension as repα Q, but then

dim repα Q = dim O(V ) ≤ dim GL(α)− 1

as any representation has C∗(rra1 , . . . ,
rr
ak

) in its stabilizer subgroup. That is, for
every α ∈ Nk we have qQ(α) ≥ 1. Because all off-diagonal entries of the Cartan
matrix CQ are non-positive, it follows that qQ is positive definite on Zk whence ΓQ
must be a Dynkin diagram.

Definition 102. Let εi = (δ1i, . . . , δki) be the standard basis of Qk. The
fundamental set of roots is defined to be the set of dimension vectors

FQ = {α ∈ Nk − 0 | TQ(α, εi) ≤ 0 and supp(α) is connected }

Theorem 107. Let α = β1 + . . .+βs ∈ FQ with βi ∈ Nk− 0 for 1 ≤ i ≤ s ≥ 2.
If qQ(α) ≥ qQ(β1) + . . . + qQ(βs), then supp(α) is a tame quiver (its underlying
graph is an extended Dynkin diagram) and α ∈ Nδsupp(α).

Proof. (1) : Let s = 2, β1 = (c1, . . . , ck) and β2 = (d1, . . . , dk) and we may
assume that supp(α) = Q. By assumption TQ(β1, β2) = qQ(α)− qQ(β1)− qQ(β2) ≥
0. Using that CQ is symmetric and α = β1 + β2 we have

0 ≤ TQ(β1, β2) =
∑
i,j

cijcidi

=
∑
j

cjdj
aj

∑
i

cijai +
1
2

∑
i 6=j

cij(
ci
ai
− cj
aj

)2aiaj

and because TQ(α, εi) ≤ 0 and cij ≤ 0 for all i 6= j, we deduce that
ci
ai

=
cj
aj

for all i 6= j such that cij 6= 0

Because Q is connected, α and β1 are proportional. But then, TQ(α, εi) = 0 and
hence CQα = 0. By the classification result, qQ is semidefinite whence ΓQ is an
extended Dynkin diagram and α ∈ NδQ. Finally, if s > 2, then

TQ(α, α) =
∑
i

TQ(α, βi) ≥
∑
i

TQ(βi, βi)

whence TQ(α−βi, βi) ≥ 0 for some i and then we can apply the foregoing argument
to βi and α− βi. �

Definition 103. If G is an algebraic group acting on a variety Y and if X ⊂ Y
is a G-stable subset, then we can decompose X =

⋃
dX(d) where X(d) is the union

of all orbits O(x) of dimension d. The number of parameters of X is

µ(X) = max
d

(dim X(d) − d)

where dim X(d) denotes the dimension of the Zariski closure of X(d).
In the special case of GL(α) acting on repα Q, we denote µ(repα(max)) =

pQ(α) and call it the number of parameters of α. For example, if α is a simple root,
then p(α) = dim repα Q− (dim GL(α)− 1) = 1− qQ(α).
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Definition 104. Let vi be a source vertex of Q and let α = (a1, . . . , ak) a
dimension vector satisfying

∑
t(a)=vi

ah(a) ≥ ai. Consider the subset

repmonoα (i) = {V ∈ repα Q | ⊕Va : Vi - ⊕t(a)=vi
Vs(a) is injective }

All indecomposable representations are contained in this subset.
The reflected quiver RiQ is obtained from Q by reversing the direction of all

arrows with tail vi making vi into a sink vertex.
The reflected dimension vector Riα = (r1, . . . , rk) is defined to be

rj =

{
aj if j 6= i∑
t(a)=i as(a) − ai if j = i

For the reflected quiver RiQ we have that
∑
h(a)=i rt(a) ≥ ri. Define the subset

repepiRiα
(i) = {V ∈ repRiα

RiQ | ⊕Va : ⊕s(a)=iVt(a) - Vi is surjective }

Theorem 108 (Bernstein-Gel’fand-Ponomarov). Endowing both spaces with
the quotient Zariski topology, there is an homeomorphism

repmonoα (i)/GL(α)
'- repepiRiα

(i)/GL(Riα)

such that corresponding representations have isomorphic endomorphism rings.
In particular, the number of parameters as well as the number of irreducible

components of maximal dimension are the same for repindα Q(d) and repindRiα
RiQ(d)

for all dimensions d.

Proof. Let us denote with m =
∑
t(a)=i ai, rep = ⊕t(a) 6=iMas(a)×at(a)(C) and

GL =
∏
j 6=iGLaj . If Grassk(l) denotes the Grassmann manifold of k-dimensional

subspaces of Cl, then there is a homeomorphism

repmonoα (i)/GLai

'- rep× Grassai(m)

sending a representation V to its restriction in rep and the image of the map ⊕Va
for all arrows leaving vi.

Similarly, sending a representation V to its restriction in rep and the kernel of
the sum map ⊕Va for all arrows into vi, we have an homeomorphism

repepiRiα
(i)/GLri

'- rep× Grassai
(m)

and the first claim follows from figure 3. If V ∈ repα Q and V ′ ∈ repRiα
RiQ with

images respectively v and v′ in rep× Grassai
(m), we have isomorphismsStabGL×GLai

(V )
'- StabGL(v)

StabGL×GLri
(V ′)

'- StabGL(v′)

from which the claim about endomorphisms follows. �

A similar results holds for sink vertices, hence we can apply these Bernstein-
Gelfand- Ponomarov reflection functors iteratively using a sequence of admissible
vertices (that is, either a source or a sink).

Definition 105. For a vertex vi having no loops in Q, we define a reflection
Zk ri- Zk by

ri(α) = α− TQ(α, εi)
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repmonoα (i) repepiRiα
(i)

repmonoα (i)/GL(α)

??
repepiRiα

(i)/GL(Riα)

??

rep× Grassai
(m)

�

''

-

repmonoα (i)/GL(α)

/GL

??
.................................-

�
repepiRiα

(i)/GL(Riα)

/GL

??-

Figure 3. Reflection functor diagram.

The Weyl group of the quiver Q WeylQ is the subgroup of GLk(Z) generated by all
reflections ri.

A root of the quiver Q is a dimension vector α ∈ Nk such that repα Q contains
indecomposable representations. All roots have connected support. A root is said
to be {

real if µ(repindα Q) = 0
imaginary if µ(repindα Q) ≥ 1

We denote the set of all roots, real roots and imaginary roots respectively by ∆,∆re

and ∆im. With Π we denote the set {εi | vi has no loops }.
Theorem 109 (Kaĉ). With notations as before, we have
(1) ∆re = WeylQ.Π ∩ Nk and if α ∈ ∆re, then repindα Q is one orbit.
(2) ∆im = Weyl.FQ ∩ Nk and if α ∈ ∆im then

pQ(α) = µ(repindα Q) = 1− qQ(α)

Proof. For a sketch of the proof we refer to [19, §7], full details can be found
in the lecture notes [37]. �

Having a characterization of indQ we will now determine the canonical decom-
position. We first need a technical result.

Theorem 110 (Happel-Ringel). (1) If V = V ′ ⊕ V ” ∈ repα(max), then
Ext1〈Q〉(V

′, V ”) = 0.
(2) If W,W ′ are indecomposables and Ext1〈Q〉(W,W

′) = 0, then any non-zero

map W ′
φ- W is an epimorphism or a monomorphism. In particular,

if W is indecomposable with Ext1〈Q〉(W,W ) = 0, then End〈Q〉(W ) ' C.

Proof. (1) : Assume Ext1(V ′, V ”) 6= 0, that is, there is a non-split exact
sequence

0 - V ” - W - V ′ - 0
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It follows from section 4.4 that O(V ) ⊂ O(W ) − O(W ), whence dim O(W ) >
dim O(V ) contradicting the assumption that V ∈ repα(max).

(2) : From the proof of theorem 70 we have the exact diagram

⊕
vi∈Qv

HomC(Vi,Wi)
dV

W- ⊕
a∈Qa

HomC(Vs(a),Wt(a)) - Ext1〈Q〉(V,W ) - 0

⊕
vi∈Qv

HomC(Vi,W ′i )

??
dV

W ′- ⊕
a∈Qa

HomC(Vs(a),W ′t(a))

??
- Ext1〈Q〉(V,W

′)
?

...............
- 0

If W -- W ′ then the dotted arrow is surjective. By a similar argument, if
W ⊂ - W ′ then the canonical map Ext1(W ′, V ) - Ext1(W,V ) is surjective.

Assume φ is neither mono- nor epimorphism then decompose φ into

W ′
ε-- U ⊂

µ- W

As ε is epi, we have an epimorphism

Ext1〈Q〉(W/U,W
′) -- Ext1〈Q〉(W/U,U)

giving a representation V fitting into the exact diagram of extensions

0 - W ′
µ′ - V - W ′/U - 0

0 - U

ε

??
µ - W

ε′

?
- W ′/U

id

?
- 0

from which we construct an exact sequence of representations

0 - W ′

24 ε
−µ′

35
- U ⊕ V

h
µ ε′

i
- W - 0

This sequence cannot split as otherwise we would have W ⊕W ′ ' U ⊕ V contra-
dicting uniqueness of decompositions, whence Ext1〈Q〉(W,W

′) 6= 0, a contradiction.
For the remaining part, as W is finite dimensional it follows that End〈Q〉(W )

is a (finite dimensional) division algebra whence it must be C. �

Definition 106. Let α = (a1, . . . , ak) and β = (b1, . . . , bk) be two dimension
vectors. Consider the closed subvariety

HomQ(α, β) ⊂ - Ma1×b1(C)⊕ . . .⊕Mak×bk
(C)⊕ repα Q⊕ repβ Q

consisting of triples (φ, V,W ) where φ = (φ1, . . . , φk) is a morphism V - W .
Projecting to the two last components we have an onto morphism between affine
varieties

HomQ(α, β)
h-- repα Q⊕ repβ Q

The fiber dimension is upper-semicontinuous and as the target space repα Q ⊕
repβ Q is irreducible, it contains a non-empty open subset hommin where the di-
mension of the fibers attains a minimal value. This minimal fiber dimension will
be denoted by hom(α, β).
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Similarly, there is an affine variety ExtQ(α, β) with fiber over a point (V,W ) ∈
repα Q⊕repβ Q the extensions Ext1〈Q〉(V,W ). Again, there is an open set extmin
where the dimension of Ext1(V,W ) attains a minimum. This minimal value we
denote by ext(α, β).

Because hommin ∩ extmin is a non-empty open subset we have the equality

hom(α, β)− ext(α, β) = χQ(α, β).

In particular, if hom(α, α+β) > 0, there will be an open subset where the morphism
V

φ- W is a monomorphism. Hence, there will be an open subset of repα+β Q
consisting of representations containing a subrepresentation of dimension vector α.

We say that α is a general subrepresentation of α + β and denote this with
α ⊂ - α+ β.

Similarly, α is a general quotient of α+β, and we denote α+β -- α if there
is a Zariski open subset of repα+β Q of representations having an α-dimensional
quotient.

Example 147. The quiver Grassmannian is the projective manifold

Grassα(α+ β) =
k∏
i=1

Grassai
(ai + bi)

Consider the following diagram of morphisms of reduced varieties
repα+β Q

repα+β
α Q ⊂ -

s

-

repα+β Q× Grassα(α+ β)

pr1

66

Grassα(α+ β)

pr2

??

p

--

which satisfies the following properties :
repα+β Q×Grassα(α+β) is the trivial vectorbundle with fiber repα+β Q over

the projective smooth variety Grassα(α+ β) with structural morphism pr2.
repα+β

α Q is the subvariety of repα+β Q× Grassα(α+β) consisting of couples
(W,V ) where V is a subrepresentation of W (observe that for fixed W this is
a linear condition). Because GL(α + β) acts transitively on the Grassmannian
Grassα(α+β), repα+β

α Q is a sub-vectorbundle over Grassα(α+β) with structural
morphism p. In particular, repα+β

α Q is a reduced variety.
The morphism s is a projective morphism, that is, can be factored via the

natural projection
repα+β Q× PN

repα+β
α Q

s -

f

-

repα+β Q

π2

??
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Here, f is the composition of the inclusion repα+β
α Q ⊂ - repα+β Q×Grassα(α+

β) with the natural embedding of Grassmannians in projective spaces Grassα(α+
β) ⊂ - ∏k

i=1 Pni with the Segre embedding
∏k
i=1 Pni ⊂ - PN . In particular, s

is proper by [22, Thm. II.4.9], that is, maps closed subsets to closed subsets.

Theorem 111 (Schofield). For W ∈ repα+β Q in the image of the map s of
the foregoing example, let Grassα(W ) denote the scheme-theoretic fiber s−1(W ).
Let x = (W,V ) be a geometric point of Grassα(W ), then

Tx Grassα(W ) = Hom〈Q〉(V,
W

V
)

Proof. The geometric points of Grassα(W ) are couples (W,V ) where V is an
α-dimensional subrepresentation ofW . Whereas Grassα(W ) is a projective scheme,
it is in general neither smooth, nor irreducible nor even reduced. Therefore, in order
to compute the tangent space in a point (W,V ) of Grassα(W ) we have to clarify
the functor it represents on the category commalg of commutative C-algebras.

Let C be a commutative C-algebra, a representation R of the quiver Q over
C consists of a collection Ri = Pi of projective C-modules of finite rank and a
collection of C-module morphisms for every arrow a in Q

��������i��������j
aoo Rj = Pj �Ra

Pi = Ri
The dimension vector of the representation R is given by the k-tuple
(rkC R1, . . . , rkC Rk). A subrepresentation S of R is determined by a collection of
projective sub-summands (and not merely sub-modules) Si /Ri. In particular, for
W ∈ repα+β Q we define the representation WC of Q over the commutative ring
C by {

(WC)i = C ⊗C Wi

(WC)a = idC ⊗C Wa

With these definitions, we can now define the functor represented by Grassα(W ) as
the functor assigning to a commutative C-algebra C the set of all subrepresentations
of dimension vector α of the representation WC .

The tangent space in x = (W,V ) are the C[ε]-points of Grassα(W ) lying over
(W,V ). Let V

ψ- W
V be a homomorphism of representations of Q and consider

a C-linear lift of this map ψ̃ : V - W . Consider the C-linear subspace of
WC[ε] = C[ε]⊗W spanned by the sets

{v + ε⊗ ψ̃(v) | v ∈ V } and ε⊗ V

This determines a C[ε]-subrepresentation of dimension vector α of WC[ε] lying over
(W,V ) and is independent of the chosen linear lift ψ̃.

Conversely, if S is a C[ε]-subrepresentation of WC[ε] lying over (W,V ), then
S
εS = V ⊂ - W . But then, a C-linear complement of εS is spanned by elements
of the form v+ εψ(v) where ψ(v) ∈W and ε⊗ψ is determined modulo an element
of ε ⊗ V . But then, we have a C-linear map ψ̃ : V - W

V and as S is a C[ε]-
subrepresentation, ψ̃ must be a homomorphism of representations of Q. �

Theorem 112 (Schofield). The following are equivalent
(1) α ⊂ - α+ β.
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(2) Every representation W ∈ repα+β Q has a subrepresentation V of dimen-
sion α.

(3) ext(α, β) = 0.

Proof. (1)⇒ (2) : The image of the proper map s : repα+β
α Q - repα+β Q

contains a Zariski open subset. Properness implies that the image of s is a closed
subset of repα+β Q whence Im s = repα+β Q. The implication (2) ⇒ (1) is
obvious.

We compute the dimension of the vectorbundle repα+β
α Q over Grassα(α +

β). The dimension of Grassk(l) is k(l − k) and therefore the base has dimension∑k
i=1 aibi. Now, fix a point V ⊂ - W in Grassα(α + β), then the fiber over

it determines all possible ways in which this inclusion is a subrepresentation of
quivers. That is, for every arrow in Q of the form ��������i��������j

aoo we need to have a
commuting diagram

Vi - Vj

Wi

?

∩

- Wj

?

∩

Here, the vertical maps are fixed. If we modify V ∈ repα Q, this gives us the aiaj
entries of the upper horizontal map as degrees of freedom, leaving only freedom for
the lower horizontal map determined by a linear map Wi

Vi

- Wj , that is, having
bi(aj + bj) degrees of freedom. Hence, the dimension of the vectorspace-fibers is∑

��������i��������j
aoo

(aiaj + bi(aj + bj))

giving the total dimension of the reduced variety repα+β
α Q. But then,

dim repα+β
α Q− dim repα+β Q =

k∑
i=1

aibi +
∑

��������i��������j
aoo

(aiaj + bi(aj + bj))

−
∑

��������i��������j
aoo

(ai + bi)(aj + bj)

=
k∑
i=1

aibi −
∑

��������i��������j
aoo

aibj = χQ(α, β)

(2)⇒ (3) : The proper map repα+β
α

s-- repα+β Q is onto and as both varieties
are reduced, the general fiber is a reduced variety of dimension χQ(α, β), whence the
general fiber contains points such that the tangentspace has dimension χQ(α, β).
By the previous theorem, the dimension of this tangentspace is dim Hom〈Q〉(V, WV ).
But then, because

χQ(α, β) = dimC Hom〈Q〉(V,
W

V
)− dimC Ext1〈Q〉(V,

W

V
)
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it follows that Ext1(V, WV ) = 0 for some representation V of dimension vector α
and W

V of dimension vector β. But then, ext(α, β) = 0.
(3) ⇒ (2) : Assume ext(α, β) = 0 then, for a general point W ∈ repα+β Q

in the image of s and for a general point in its fiber (W,V ) ∈ repα+β
α Q we have

dimC Ext1〈Q〉(V,
W
V ) = 0 whence dimC Hom〈Q〉(V, WV ) = χQ(α, β). But then, the

general fiber of s has dimension χQ(α, β) and as this is the difference in dimen-
sion between the two irreducible varieties, the map is generically onto. Finally,
properness of s then implies that it is onto. �

Definition 107. HomQ(α, β) is the subvariety of the trivial vectorbundle

HomQ(α, β) ⊂- Hom(α, β)× repα Q× repβ Q

repα Q× repβ Q

pr

??

Φ

-

of triples (φ, V,W ) such that V
φ- W is a morphism of representations of Q.

The fiber Φ−1(V,W ) = Hom〈Q〉(V,W ) and as the fiber dimension is upper semi-
continuous, there is an open subset Hommin(α, β) of repα Q× repβ Q consisting of
points (V,W ) where dimC Hom〈Q〉(V,W ) is minimal. For given dimension vector
δ = (d1, . . . , dk) consider the subset

HomQ(α, β, δ) = {(φ, V,W ) ∈ HomQ(α, β) | rk φ = δ} ⊂ - HomQ(α, β)

which is a constructible subset of HomQ(α, β). There is a unique dimension vec-
tor γ such that HomQ(α, β, γ) ∩ Φ−1(Hommin(α, β)) is constructible and dense in
Φ−1(Hommin(α, β)). This gamma is called the generic rank of morphisms from
repα Q to repβ Q and will be denoted γ = rk hom(α, β).

Φ(HomQ(α, β, γ) ∩ Φ−1(Hommin(α, β)))

is constructible and dense in Hommin(V,W ). Therefore it contains an open subset
Homm(V,W ) consisting of couples (V,W ) such that dimCHom〈Q〉(V,W ) is min-
imal and such that {φ ∈ Hom〈Q〉(V,W ) | rkφ = γ} is a non-empty Zariski open
subset of Hom〈Q〉(V,W ).

Theorem 113 (Schofield). Let γ = rk hom(α, β), then

(1) α− γ ⊂ - α -- γ ⊂ - β -- β − γ
(2) ext(α, β) = −χQ(α− γ, β − γ) = ext(α− γ, β − γ)

Proof. The first statement is obvious from the definitions, for if γ =
rk hom(α, β), then a general representation of dimension α will have a quotient-
representation of dimension γ (and hence a subrepresentation of dimension α− γ)
and a general representation of dimension β will have a subrepresentation of di-
mension γ (and hence a quotient-representation of dimension β − γ.
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The strategy of the proof of the second statement is to compute the dimension
of the subvariety Hfactor of Hom(α, β)× repα × repβ × repγ defined by

{(φ, V,W,X) |

V
φ - W

X = Im φ
⊂

-

--

factors as representations }

in two different ways. Consider the intersection of the open set Homm(α, β) of the
previous definition with the open set of couples (V,W ) such that dim Ext(V,W ) =
ext(α, β) and let (V,W ) be a point in this intersection. In theorem 111 we proved

dim Grassγ(W ) = χQ(γ, β − γ)

Let H be the subbundle of the trivial vectorbundle over Grassγ(W )

H ⊂ - Hom(α,W )× Grassγ(W )

Grassγ(W )

??
--

consisting of triples (φ,W,U) with φ : ⊕iC⊕ai - W a linear map such that
Im(φ) is contained in the subrepresentation U ⊂ - W of dimension γ. That is,
the fiber over (W,U) is Hom(α,U) and therefore has dimension

∑k
i=1 aici. With

Hfull we consider the open subvariety of H of triples (φ,W,U) such that Im φ = U .
We have

dim Hfull =
k∑
i=1

aici + χQ(γ, β − γ)

But then, Hfactor is the subbundle of the trivial vectorbundle over Hfull

Hfactor ⊂ - repα Q× Hfull

Hfull
??

π

--

consisting of quadruples (V, φ,W,X) such that V
φ- W is a morphism of repre-

sentations, with image the subrepresentation X of dimension γ. The fiber of π over
a triple (φ,W,X) is determined by the property that for each arrow ��������i��������j

aoo

the following diagram must be commutative, where we decompose the vertex spaces
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Vi = Xi ⊕Ki for K = Ker φ

Xi ⊕Ki

24A B
C D

35
- Xj ⊕Kj

Xi

hrr
ci 0

i
??

A
- Xj

hrr
cj 0

i
??

where A is fixed, giving the condition B = 0 and hence the fiber has dimension
equal to ∑

��������i��������j
aoo

(ai − ci)(aj − cj) +
∑

��������i��������j
aoo

ci(aj − cj) =
∑

��������i��������j
aoo

ai(aj − cj)

This gives our first formula for the dimension of Hfactor

dim Hfactor =
k∑
i=1

aici + χQ(γ, β − γ) +
∑

��������i��������j
aoo

ai(aj − cj)

On the other hand, we can consider the natural map Hfactor
Φ- repα Q defined

by sending a quadruple (V, φ,W,X) to V . the fiber in V is given by all quadruples
(V, φ,W,X) such that V

φ- W is a morphism of representations with Im φ = X
a representation of dimension vector γ, or equivalently

Φ−1(V ) = {V φ- W | rk φ = γ}

Now, recall our restriction on the couple (V,W ) giving at the beginning of the proof.
There is an open subset max of repα Q of such V and by construction max ⊂ Im Φ,
Φ−1(max) is open and dense in Hfactor and the fiber Φ−1(V ) is open and dense
in Hom〈Q〉(V,W ). This provides us with the second formula for the dimension of
Hfactor

dim Hfactor = dim repα Q+ hom(α,W ) =
∑

��������i��������j
aoo

aiaj + hom(α, β)

Equating both formulas we obtain the equality

χQ(γ, β − γ) +
k∑
i=1

aici −
∑

��������i��������j
aoo

aicj = hom(α, β)

which is equivalent to

χQ(γ, β − γ) + χQ(α, γ)− χQ(α, β) = ext(α, β)

Now, for our (V,W ) we have that Ext(V,W ) = ext(α, β) and we have exact se-
quences of representations

0 - S - V - X - 0 0 - X - W - T - 0
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and by theorem 110 this gives a surjection Ext(V,W ) -- Ext(S, T ). On the
other hand we always have from the homological interpretation of the Euler form
the first inequality

dimC Ext(S, T ) ≥ −χQ(α− γ, β − γ) = χQ(γ, β − γ)− χQ(α, β) + χQ(α, γ)

= ext(α, β)

As the last term is dimC Ext(V,W ), this implies that the above surjection must be
an isomorphism and that

dimC Ext(S, T ) = −χQ(α− γ, β − γ) whence dimC Hom(S, T ) = 0

But this implies that hom(α − γ, β − γ) = 0 and therefore ext(α − γ, β − γ) =
−χQ(α− γ, β − γ). Finally,

ext(α− γ, β − γ) = dim Ext(S, T ) = dim Ext(V,W ) = ext(α, β)

finishing the proof. �

Theorem 114 (Schofield). For dimension vectors α and β we have

ext(α, β) = max
α′ ⊂ - α
β

--
β′

− χQ(α′, β′)

= max
β -- β”

− χQ(α, β”)

= max
α” ⊂ - α

− χQ(α”, β)

Proof. Let V and W be representation of dimension vector α and β such that
dim Ext(V,W ) = ext(α, β). Let S ⊂ - V be a subrepresentation of dimension α′

and W -- T a quotient representation of dimension vector β′. Then, we have

ext(α, β) = dimC Ext(V,W ) ≥ dimC Ext(S, T ) ≥ −χQ(α′, β′)

where the first inequality follows from theorem 110 and the second follows from the
interpretation of the Euler form. Therefore, ext(α, β) is greater or equal than all
the terms in the statement of the theorem. The foregoing theorem asserts the first
equality, as for rk hom(α, β) = γ we do have that ext(α, β) = −χQ(α− γ, β − γ).

In the proof of the previous theorem, we have found for sufficiently general V
and W an exact sequence of representations

0 - S - V - W - T - 0

where S is of dimension α − γ and T of dimension β − γ. Moreover, we have a
commuting diagram of surjections

Ext(V,W ) -- Ext(V, T )

Ext(S,W )

??
-- Ext(S, T )

??

...............................-

and the dashed map is an isomorphism, hence so are all the epimorphisms. There-
fore, we have{

ext(α, β − γ) ≤ dim Ext(V, T ) = dim Ext(V,W ) = ext(α, β)
ext(α− γ, β) ≤ dim Ext(S,W ) = dim Ext(V,W ) = ext(α, β)
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Further, let T ′ be a sufficiently general representation of dimension β − γ, then it
follows from Ext(V, T ′) -- Ext(S, T ) that

ext(α− γ, β − γ) ≤ dim Ext(S, T ′) ≤ dim Ext(V, T ′) = ext(α, β − γ)
but the left term is equal to ext(α, β) by the above theorem. But then, we have
ext(α, β) = ext(α, β−γ). Now, we may assume by induction that the theorem holds
for β−γ. That is, there exists β−γ -- β” such that ext(α, β−γ) = −χQ(α, β”).
Whence, β -- β” and ext(α, β) = −χQ(α, β”) and the middle equality of the
theorem holds. By a dual argument so does the last. �

Example 148. This gives us the following inductive algorithm to find all the
dimension vectors of general subrepresentations. Take a dimension vector α and
assume by induction we know for all β < α the set of general subrepresentations
β′ ⊂ - β. Then, β ⊂ - α if and only if

0 = ext(β, α− β) = max
β′ ⊂ - β

− χQ(β′, α− β)

where the first equality comes from theorem 112 and the last from the above theo-
rem.

Theorem 115. (1) α ∈ schur〈Q〉 if and only if repα Q contains a
Zariski open subset of indecomposable representations.

(2) If α ∈ FQ and suppα is not a tame quiver, then α ∈ schur〈Q〉.
(3) If α ∈ schur〈Q〉 and χQ(α, α) < 0, then n.α ∈ schur〈Q〉 for all integers

n.

Proof. (1) : If V ∈ repα Q is a Schur representation, V ∈ repα(max) and
therefore all representations in the dense open subset repα(max) have endomor-
phism ring C and are therefore indecomposable.

Conversely, let Ind ⊂ repα Q be an open subset of indecomposable rep-
resentations. Assume for V ∈ Ind we have StabGL(α)(V ) 6= C∗ and consider
φ0 ∈ StabGL(α)(V )− C∗. For any g ∈ GL(α) we define the set of fixed elements

repα(g) = {W ∈ repα Q | g.W = W}
and consider the subset of GL(α)

S = {g ∈ GL(α) | dim repα(g) = dim repα(φ0)

which has no intersection with C∗(rrd1 , . . . ,
rr
dk

) as φ0 /∈ C∗. Consider the subbundle
of the trivial vectorbundle over S

B = {(s,W ) ∈ S × repα Q | s.W = W} ⊂ - S × repα Q
p-- S

As all fibers have equal dimension, the restriction of p to B is a flat morphism
whence open . In particular, the image of the open subset B ∩ S × Ind

S′ = {g ∈ S | ∃W ∈ Ind : g.W = W}
is an open subset of S. Now, S contains a dense set of semisimple elements, see for
example [37, (2.5)], whence so does S′ = ∪W∈IndEnd〈Q〉(W ) ∩ S. But then one of
the W ∈ Ind must have a torus of rank greater than one in its stabilizer subgroup
contradicting indecomposability.

(2) : Let α = β1 + . . .+ βs be the canonical decomposition of α (some βi may
occur with higher multiplicity) and assume that s ≥ 2. By definition, the image of

GL(α)× (repβ1
Q× . . .× repβs

Q)
φ- repα Q
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is dense and φ is constant on orbits of the free action of GL(α) on the left hand
side given by h.(g, V ) = (gh−1, h.V ). But then,

dim GL(α) +
∑
i

dim repβi
Q−

∑
i

dim GL(βi) ≥ dim repα Q

whence qQ(α) ≥
∑
i qQ(βi) and theorem 107 finishes the proof.

(3) : There are infinitely many non-isomorphic Schur representations of dimen-
sion vector α. Pick n distinct of them {W1, . . . ,Wn} and from χQ(α, α) < 0 we
deduce

Hom〈Q〉(Wi,Wj) = δijC and Ext1〈Q〉(Wi,Wj) 6= 0

By the proof of theorem 110 we can construct a representation Vn having a filtration

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn with
Vj
Vj−1

'Wj

and such that the short exact sequences 0 - Vj−1
- Vj - Wj

- 0 do
not split. By induction on n we may assume that End〈Q〉(Vn−1) = C and we have
that Hom〈Q〉(Vn−1,Wn) = 0. But then, the restriction of any endomorphism φ of
Vn to Vn−1 must be an endomorphism of Vn−1 and therefore a scalar λrr. Hence,
φ−λrr ∈ End〈Q〉(Vn) is trivial on Vn−1. As Hom〈Q〉(Wn, Vn−1) = 0, End〈Q〉(Wn) =
C and non-splitness of the sequence 0 - Vn−1

- Vn - Wn
- 0 we must

have φ− λrr = 0 whence End〈Q〉(Vn) = C, that is, nα is a Schur root. �

Example 149. Schur roots and Azumaya algebras. If α = (a1, . . . , ak) is a
Schur root, then there is a GL(α)-stable affine open subvariety Uα of repα Q such
that generic orbits are closed in U . Indeed, let Tk = C∗× . . .×C∗ the k-dimensional
torus in GL(α). Consider the semisimple subgroup SL(α) = SLa1 × . . . × SLak

and consider the corresponding quotient map

repα Q
πs-- repα Q/SL(α)

As GL(α) = TkSL(α), Tk acts on repα Q/SL(α) and the generic stabilizer sub-
group is trivial by the Schur assumption. Hence, there is a Tk-invariant open subset
U1 of repα Q/SL(α) such that Tk-orbits are closed. But then, according to [28, §2,
Thm.5] there is a Tk-invariant affine open U2 in U1. Because the quotient map ψs
is an affine map, U = ψ−1

s (U2) is an affine GL(α)-stable open subvariety of repα Q.
Let x be a generic point in U , then its orbit

O(x) = GL(α).x = TkSL(α).x = Tk(ψ−1
s (ψs(x))) = ψ−1

s (Tk.ψs(x))

is the inverse image under the quotient map of a closed set, hence is itself closed.
Because Uα is affine, we can define the witness algebra ⇑α Uα to be the ring

of GL(α)-equivariant maps from Uα to Mn(C) with n = |α|. Over the Azumaya
locus azum of the order ⇑α Uα the quotient map

repα ⇑
α Uα -- issα ⇑α Uα

is a principal PGL(α)-fibration in the étale topology and so determines an element
of H1

et(azu, PGL(α)). This pointed set classifies Azumaya algebras over azu with
a distinguished embedding of Ck = C × . . . × C which are split by am étale cover
on which this embedding is conjugated to the standard embedding Ck ⊂Mn(C).
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Definition 108. We say that a dimension vector α is left orthogonal to β and
denote α ⊥ β if hom(α, β) = 0 and ext(α, β) = 0.

An ordered sequence C = (β1, . . . , βs) of dimension vectors is said to be a
compartment for Q if and only if

(1) for all i, βi ∈ schur〈Q〉 ,
(2) for al i < j, βi ⊥ βj ,
(3) for all i < j we have χQ(βj , βi) ≥ 0.

Theorem 116 (Derksen-Weyman). Suppose that C = (β1, . . . , βs) is a com-
partment for Q and that there are non-negative integers e1, . . . , es such that α =
e1β1 + . . .+ esβs. Assume that ei = 1 whenever χQ(βi, βi) < 0. Then,

τcan = (e1, β1; . . . ; es, βs)

is the canonical decomposition of the dimension vector α.

Proof. Let V be a generic representation of dimension vector α with decom-
position into indecomposables

V = W⊕e11 ⊕ . . .⊕W⊕es
s with dim(Wi) = βi

we will show that (after possibly renumbering the factors (β1, . . . , βs) is a compart-
ment for Q. To start, it follows from theorem 110 that for all i 6= j we have
Ext1〈Q〉(Wi,Wj) = 0. From theorem 110 we deduce a partial ordering i → j

on the indices whenever Hom〈Q〉(Wi,Wj) 6= 0. Indeed, any non-zero morphism
Wi

- Wj is either a mono- or an epimorphism, assume Wi
-- Wj then there

can be no monomorphism Wj
⊂ - Wk as the composition Wi

- Wk would be
neither mono nor epi. That is, all non-zero morphisms from Wj to factors must be
(proper) epi and we cannot obtain cycles in this way by counting dimensions. If
Wi

⊂ - Wj , a similar argument proves the claim. From now on we assume that
the chosen index-ordering of the factors is (reverse) compatible with the partial
ordering i→ j, that is Hom(Wi,Wj) = 0 whenever i < j, that is, βi is left orthog-
onal to βj whenever i < j. As Ext1〈Q〉(Wj ,Wi) = 0, it follows that χQ(βj , βi) ≥ 0.
As generic representations are open it follows that all repβi

Q have an open subset
of indecomposables, proving that the βi are Schur roots. Finally, it follows from
theorem 115 that a Schur root βi with χQ(βi, βi) can occur only with multiplicity
one in any canonical decomposition.

Conversely, assume that (β1, . . . , βs) is a compartment for Q, α =
∑
i eiβi

satisfying the requirements on multiplicities. Choose Schur representations Wi ∈
repβi

Q, then we have to prove that

V = W⊕e11 ⊕ . . .⊕W⊕es
s

is a generic representation of dimension vector α. In view of the properties of the
compartment we already know that Ext1〈Q〉(Wi,Wj) = 0 for all i < j and we need
to show that Ext1〈Q〉(Wj ,Wi) = 0. Indeed, if this condition is satisfied we have

dim repα Q− dim O(V ) = dimCExt
1(V, V )

=
∑
i

e2i dimCExt
1(Wi,Wi) =

∑
i

e2i (1− qQ(βi)

We know that the Schur representations of dimension vector βi depend on 1−qQ(βi)
parameters by Kac s theorem 109 and ei = 1 unless qQ(βi) = 1. Therefore, the
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union of all orbits of representations with the same Schur-decomposition type as V
contain a dense open set of repα Q and so this must be the canonical decomposition.

If this extension space is nonzero, Hom〈Q〉(Wj ,Wi) 6= 0 as χQ(βj , βi) ≥ 0.
But then by theorem 110 any non-zero homomorphism from Wj to Wi must be
either a mono or an epi. Assume it is a mono, so βj < βi, so in particular a
general representation of dimension βi contains a subrepresentation of dimension
βj and hence by theorem 112 we have ext(βj , βi − βj) = 0. Suppose that βj is
a real Schur root, then Ext1〈Q〉(Wj ,Wj) = 0 and therefore also ext(βj , βi) = 0
as Ext1〈Q〉(Wj ,Wj ⊕ (Wj/Wi)) = 0. If β is not a real root, then for a general
representation S ∈ repβj

Q take a representation R ∈ repβi
Q in the open set

where Ext1〈Q〉(S,R) = 0, then there is a monomorphism S ⊂ - R. Because
Ext1〈Q〉(S, S) 6= 0 we deduce from the proof of theorem 110 that Ext1〈Q〉(R,S) 6= 0
contradicting the fact that ext(βi, βj) = 0. If the nonzero morphism Wj

- Wi

is epi one has a similar argument. �

Example 150. Algorithm to compute the canonical decomposition. Let Q be
a quiver without oriented cycles then we can order the vertices {v1, . . . , vk} such
that there are no oriented paths from vi to vj whenever i < j (start with a sink of
Q, drop it and continue recursively).

input : quiver Q, ordered set of vertices as above, dimension vector α =
(a1, . . . , ak) and type τ = (a1, ~v1; . . . ; ak, ~vk) where ~vi = (δij)j = dim vi is the
canonical basis. By the assumption on the ordering of vertices we have that τ is
a good type for α. We say that a type (f1, γ1; . . . ; fs, γs) is a good type for α if
α =

∑
i fiγi and the following properties are satisfies

(1) fi ≥ 0 for all i,
(2) γi is a Schur root,
(3) for each i < j, γi is left orthogonal to γj ,
(4) fi = 1 whenever χQ(γi, γi) < 0.

A type is said to be excellent provided that, in addition to the above, we also have
that for all i < j, χQ(αj , αi) ≥ 0. In view of theorem 116 the purpose of the
algorithm is to transform the good type τ into the excellent type τcan. We will
describe the main loop of the algorithm on a good type (f1, γ1; . . . ; fs, γs).

step 1 : Omit all couples (fi, γi) with fi = 0 and verify whether the remaining
type is excellent. If it is, stop and output this type. If not, proceed.
step 2 : Reorder the type as follows, choose i and j such that j − i is minimal
and χQ(βj , βi) < 0. Partition the intermediate entries {i + 1, . . . , j − 1} into the
sets

• {k1, . . . , ka} such that χQ(γj , γkm) = 0,
• {l1, . . . , lb} such that χQ(γj , γlm) > 0.

Reorder the couples in the type in the sequence

(1, . . . , i− 1, k1, . . . , ka, i, j, l1, . . . , lb, j + 1, . . . , s)

define µ = γi, ν = γj , p = fi, q = fj , ζ = pµ + qν and t = −χQ(ν, µ), then
proceed.
step 3 : Change the part (p, µ; q, ν) of the type according to the following scheme

• If µ and ν are real Schur roots, consider the subcases
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(1) χQ(ζ, ζ) > 0, replace (p, µ, q, ν) by (p′, µ′; q′; ν′) where ν′ and ν′ are
non-negative combinations of ν and µ such that µ′ is left orthogonal
to ν′, χQ(ν′, µ′) = t ≥ 0 and ζ = p′µ′+ q′ν′ for non-negative integers
p′, q′.

(2) χQ(ζ, ζ) = 0, replace (p, µ; q, ν) by (k, ζ ′) with ζ = kζ ′, k positive
integer, and ζ ′ an indivisible root.

(3) χQ(ζ, ζ) < 0, replace (p, µ; q, ν) by (1, ζ).
• If µ is a real root and ν is imaginary, consider the subcases

(1) If p + qχQ(ν, µ) ≥ 0, replace (p, µ; q, ν) by (q, ν − χQ(ν, µ)µ; p +
qχQ(ν, µ), µ).

(2) If p+ qχQ(ν, µ) < 0, replace (p, µ; q, ν) by (1, ζ).
• If µ is an imaginary root and ν is real, consider the subcases

(1) If q + pχQ(ν, µ) ≥ 0, replace (p, µ; q, ν) by (q + pχQ(ν, µ), ν; p, µ −
χQ(ν, µ)ν).

(2) If q + pχQ(ν, µ) < 0, replace (p, µ; q, ν) by (1, ζ).
• If µ and ν are imaginary roots, replace (p, µ; q, ν) by (1, ζ).

then go to step 1.

One can show that in every loop of the algorithm the number
∑
i fi decreases,

so the algorithm must stop, giving the canonical decomposition of α. A consequence
of this algorithm is that r(α) + 2i(α) ≤ k where r(α) is the number of real Schur
roots occurring in the canonical decomposition of α, i(α) the number of imaginary
Schur roots and k the number of vertices of Q. For more details we refer to [13].

Example 151. Fortunately, one can reduce a general quiver setting (Q,α) to
one of a quiver without oriented cycles using the bipartite double Qb of Q. We
double the vertex-set of Q in a left and right set of vertices, that is

Qbv = {vl1, . . . , vlk, vr1, . . . , vrk}
To every arrow a ∈ Qa from vi to vj we assign an arrow ã ∈ Qba from vli to vrj .
In addition, we have for each 1 ≤ i ≤ k one extra arrow ĩ in Qba from vli to vri . If
α = (a1, . . . , ak) is a dimension vector for Q, the associated dimension vector α̃ for
Qb has components

α̃ = (a1, . . . , ak, a1, . . . , ak).
If the canonical decomposition of α for Q is τcan = (e1, β1; . . . ; es, βs), then the
canonical decomposition of α̃ for Qb is (e1, β̃1; . . . ; es, β̃s) as for a general represen-
tation of Qb of dimension vector α̃ the morphisms corresponding to ĩ for 1 ≤ i ≤ k
are all invertible matrices and can be used to identify the left and right vertex sets,
that is, there is an equivalence of categories between representations of Qb where all
the maps ĩ are invertible and representations of the quiver Q. Using this reduction,
the foregoing example can be used to compute the canonical decomposition of an
arbitrary quiver-setting.

For some pretty pictures of the fractal nature of the compartment division on
schof〈Q〉 we refer to [13].

7.2. Moduli spaces.

In this section we will study mossα(Q, θ), the moduli space of θ-semistable α-
dimensional quiver representations. Here, θ = (t1, . . . , tk) ∈ Rk and M ∈ repαQ
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Figure 4. Free product Q1 ∗Q2 of quivers.

is θ-semistable if θ.α = 0 and for every proper subrepresentation M ′ ⊂ M with
dimM ′ = β we have θ.β ≥ 0. From the general results of Rudakov it follows that
points in mossα(Q, θ) parametrize direct sum of θ-stable representations. Further
we will prove that θ-stable representations become simple in a universal localization
of 〈Q〉. As a consequence, mossα(Q, θ) can be covered by open affine subsets of the
form issα〈Q〉σ and therefore the theory of local quivers, developed in the foregoing
chapters, can be applies to study the local structure (in particular, the singular
locus) of these moduli spaces.

We start with some examples illustrating that moduli spaces of quiver repre-
sentations appear naturally (in disguise) in as different fields as representations of
knot groups, linear dynamical systems and Brauer-Severi varieties. For the latter
two examples we present the classical approach to the local study of these moduli
spaces. Rephrased in quiver terms, it turns out that determinantal semi-invariants
cover these moduli spaces.

Example 152. (Free products of quivers) Let Q1 and Q2 are two finite quivers,
then 〈Q1〉 ∗ 〈Q2〉 is an alg-smooth algebra. We like to have a concrete description
in quiver-terms of the finite dimensional representations of this algebra.

Let Q1 be a quiver on k vertices {v1, . . . , vk} and Q2 a quiver on p vertices
{w1, . . . , wp} and consider the extended quiver Q1 ∗Q2 of figure 4. That is, we add
one extra arrow from every vertex of Q1 to every vertex of Q2.

Consider the p× k matrix

Mσ =

x11 . . . x1k

...
...

xp1 . . . xpk


where xij denotes the extra arrow from vertex vj to vertex wi. It follows from
the definition of the algebra free product that every n-dimensional representation
of 〈Q1〉 ∗ 〈Q2〉 is isomorphic to a representation V of the free-product quiver of
dimension vector (α;β) (where we order the vertices (v1, . . . , vk;w1, . . . , wp)) with
|α| = n = |β| such that Mσ(M) is invertible. This defines a Zariski open subset of
rep(α;β) Q1 ∗Q2.

Define, with this ordering of vertices, θ = (−1, . . . ,−1; 1, . . . , 1). We claim that
any V in the open subset is θ-semistable. Indeed, θ(V ) = 0 because |α| = n = |β|
and for a subrepresentation W of dimension vector (γ; δ) we have that |γ| ≤ |δ|
as otherwise the linear map Mσ(W ) would have a kernel contradicting invertibility
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of Mσ(V ). Moreover, the only subrepresentations W ⊂ V which come from a
representation of the algebra free product 〈Q1〉 ∗ 〈Q2〉 satisfy θ(W ) = 0. Therefore,
V is a simple 〈Q1〉 ∗ 〈Q2〉-representation if and only if V lies in the open subset and
is θ-stable.

In fact, the representations in the Zariski open subset determined by det Mσ 6=
0 are precisely the representations of a universal localization of 〈Q1 ∗Q2〉. Let
{P1, . . . , Pk} be the projective left CQ1 ∗Q2-modules corresponding to the vertices
of Q1 and {P ′1, . . . , P ′p} those corresponding to the vertices of Q2 and consider the
morphism

P ′1 ⊕ . . .⊕ P ′p
σ- P1 ⊕ . . .⊕ Pk

determined by the the matrixMσ. The required universal localization is 〈Q1 ∗Q2〉σ.
Later we will see that in general that θ-stable representations of a quiver Q be-
come simple representations of a suitable universal localization of 〈Q〉 clarifying
the similarity between stable representations and simples mentioned before. We
have already seen in example 134 the concept of free products of quivers applied to
the representation theory of torus knot groups.

Example 153. (Linear dynamical systems) A linear time invariant dynamical
system Σ is determined by the system of differential equations

dx

dt
= Bx+Au

y = Cx.
(7.1)

Here, u(t) ∈ Cm is the input or control of the system at time t, x(t) ∈ Cn the
state of the system and y(t) ∈ Cp the output of the system Σ. Time invariance
of Σ means that the matrices A ∈ Mn×m(C), B ∈ Mn(C) and C ∈ Mp×n(C) are
constant, that is Σ = (A,B,C) is a representation of the quiver Q̃

(/).*-+, (/).*-+, (/).*-+,
b

��a // c //

of dimension vector α = (m,n, p). Recall that the matrix exponential eBt is the
fundamental matrix for the homogeneous differential equation dx

dt = Bx. That
is, the columns of eBt are a basis for the n-dimensional space of solutions of the
equation dx

dt = Bx.
Motivated by this, we look for a solution to equation (7.1) as the form x(t) =

eBtg(t) for some function g(t). Substitution gives the condition

dg

dt
= e−BtAu whence g(τ) = g(τ0) +

∫ τ

τ0

e−BtAu(t)dt.

Observe that x(τ0) = eBτ0g(τ0) and we obtain the solution of the linear dynamical
system Σ = (A,B,C) :{

x(τ) = e(τ−τ0)Bx(τ0) +
∫ τ
τ0
e(τ−t)BAu(t)dt

y(τ) = CeB(τ−τ0)x(τ0) +
∫ τ
τ0
Ce(τ−t)BAu(t)dt.

Differentiating we see that this is indeed a solution and it is the unique one having
a prescribed starting state x(τ0). Indeed, given another solution x1(τ) we have that
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x1(τ)− x(τ) is a solution to the homogeneous system dx
dt = Bt, but then

x1(τ) = x(τ) + eτBe−τ0B(x1(τ0)− x(τ0)).
We call the system Σ completely controllable if we can steer any starting state

x(τ0) to the zero state by some control function u(t) in a finite time span [τ0, τ ].
That is, the equation

0 = x(τ0) +
∫ τ

τ0

e(τ0−t)BAu(t)dt

has a solution in τ and u(t). As the system is time-invariant we may always assume
that τ0 = 0 and have to satisfy the equation

(7.2) 0 = x0 +
∫ τ

0

etBAu(t)dt for every x0 ∈ Cn

Consider the control matrix c(Σ) which is the n×mn matrix

c(Σ) = A BA B2A Bn-1A. . .

Assume that rk c(Σ) < n then there is a non-zero state s ∈ Cn such that
strc(Σ) = 0, where str denotes the transpose (row column) of s. Because B sat-
isfies the characteristic polynomial χB(t), Bn and all higher powers Bm are linear
combinations of {rrn, B,B2, . . . , Bn−1}. Hence, strBmA = 0 for all m. Writing out
the power series expansion of etB in equation (7.2) this leads to the contradiction
that 0 = strx0 for all x0 ∈ Cn. Hence, if rk c(Σ) < n, then Σ is not completely
controllable.

Conversely, let rk c(Σ) = n and assume that Σ is not completely controllable.
That is, the space of all states

s(τ, u) =
∫ τ

0

e−tBAu(t)dt

is a proper subspace of Cn. But then, there is a non-zero state s ∈ Cn such that
strs(τ, u) = 0 for all τ and all functions u(t). Differentiating this with respect to τ
we obtain

(7.3) stre−τBAu(τ) = 0 whence stre−τBA = 0

for any τ as u(τ) can take on any vector. For τ = 0 this gives strA = 0. If we
differentiate (7.3) with respect to τ we get strBe−τBA = 0 for all τ and for τ = 0
this gives strBA = 0. Iterating this process we show that strBmA = 0 for any m,
whence

str
[
A BA B2A . . . Bn−1A

]
= 0

contradicting the assumption that rk c(Σ) = n. That is,

A linear time-invariant dynamical system Σ determined by the matrices
(A,B,C) is completely controllable if and only if rk c(Σ) is maximal.

We say that a state x(τ) at time τ is unobservable if Ce(τ−t)Bx(τ) = 0 for all t.
Intuitively this means that the state x(τ) cannot be detected uniquely from the
output of the system Σ. Again, if we differentiate this condition a number of times
and evaluate at t = τ we obtain the conditions

Cx(τ) = CBx(τ) = . . . = CBn−1x(τ) = 0.
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We say that Σ is completely observable if the zero state is the only unobservable
state at any time τ . Consider the observation matrix o(Σ) of the system Σ which
is the pn× n matrix

o(Σ) =
[
Ctr (CB)tr . . . (CBn−1)tr

]tr
An analogous argument as before gives us that a linear time-invariant dynamical
system Σ determined by the matrices (A,B,C) is completely observable if and only
if rk o(Σ) is maximal.

Assume we have two systems Σ and Σ′, determined by matrix triples from
repα Q = Mn×m(C) ×Mn(C) ×Mp×n(C) producing the same output y(t) when
given the same input u(t), for all possible input functions u(t). We recall that the
output function y for a system Σ = (A,B,C) is determined by

y(τ) = CeB(τ−τ0)x(τ0) +
∫ τ

τ0

Ce(τ−t)BAu(t)dt.

Differentiating this a number of times and evaluating at τ = τ0 as before equality
of input/output for Σ and Σ′ gives the conditions

CBiA = C ′B
′iA′ for all i.

But then, we have for any v ∈ Cmn that c(Σ)(v) = 0 ⇔ c(Σ′)(v) = 0 and we can
decompose Cpn = V ⊕W such that the restriction of c(Σ) and c(Σ′) to V are the
zero map and the restrictions to W give isomorphisms with Cn. Hence, there is
an invertible matrix g ∈ GLn such that c(Σ′) = gc(Σ) and from the commutative
diagram

Cmn c(Σ)-- Cn ⊂
o(Σ)- Cpn

‖ ‖

Cmn c(Σ′)-- Cn

g

?
⊂

o(Σ′)- Cpn

we obtain that also o(Σ′) = o(Σ)g−1.
Consider the system Σ1 = (A1, B1, C1) equivalent with Σ under the base-change

matrix g. That is, Σ1 = g.Σ = (gA, gBg−1, Cg−1). Then,[
A1, B1A1, . . . , B

n−1
1 A1

]
= gc(Σ) = c(Σ′) =

[
A′, B′A′, . . . , B

′n−1A′
]

and so A1 = A′. Further, as Bi+1
1 A1 = B

′i+1A′ we have by induction on i that the
restriction of B1 on the subspace of B

′iIm(A′) is equal to the restriction of B′ on
this space. Moreover, as

∑n−1
i=0 B

′iIm(A′) = Cn it follows that B1 = B′. Because
o(Σ′) = o(Σ)g−1 we also have C1 = C ′. Therefore,

Let Σ = (A,B,C) and Σ′ = (A′, B′, C ′) be two completely controllable and
completely observable dynamical systems. The following are equivalent

(1) The input/output behavior of Σ and Σ′ are equal.
(2) The systems Σ and Σ′ are equivalent, that is, there exists an invertible

matrix g ∈ GLn such that

A′ = gA, B′ = gBg−1 and C ′ = Cg−1.
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Hence, in system identification it is important to classify completely controllable
and observable systems Σ ∈ repα Q̃ under this restricted basechange action. We
will concentrate on the input part and consider completely controllable minisystems,
that is, representations Σ = (A,B) ∈ repα Q for the quiver Q

(/).*-+, (/).*-+, bee
a //

where α = (m,n) such that c(Σ) is of maximal rank. Consider θ = (−n,m),
then we can connect the notion of θ-semistability of quiver representations with
system-theoretic notions :

If Σ = (A,B) ∈ repα Q is θ-semistable, then Σ is completely controllable and
m ≤ n.

Indeed, if m > n then (Ker A, 0) is a proper subrepresentation of Σ of dimension
vector β = (dim Im A − m, 0) with θ(β) < 0 so Σ cannot be θ-semistable. If
Σ is not completely controllable then the subspace W of C⊕n spanned by the
images of A,BA, . . . , Bn−1A has dimension k < n. But then, Σ has a proper
subrepresentation of dimension vector β = (m, k) with θ(β) < 0, contradicting the
θ-semistability assumption.

However, the restricted basechange action used in system-theory does not fit
in well with the quiver setting. However, for a fixed dimension vector α = (m,n)
we can remedy this by the deframing trick . Consider the quiver Qm

(/).*-+, (/).*-+, beem +3

having m arrows from the first vertex to the second. If β = (1, n) then there is a
natural one-to-one correspondence

repα Q ↔ repβ Qm

defined by splitting the n × m matrix V (a) into its m columns. If θ′ = (−n, 1)
then under this correspondence θ-semistable representations in repα Q correspond
to θ′-semistable representations in repβ Qm. More important, GL(β)-orbits in
repβ Qm correspond to restricted base-change orbits in repα Q. To investigate the
orbit space we introduce a combinatorial gadget : the Kalman code . It is an array
consisting of (n+ 1)×m boxes each having a position label (i, j) where 0 ≤ i ≤ n
and 1 ≤ j ≤ m. These boxes are ordered lexicographically that is (i′, j′) < (i, j) if
and only if either i′ < i or i′ = i and j′ < j. Exactly n of these boxes are painted
black subject to the rule that if box (i, j) is black, then so is box (i′, j) for all i′ < i.
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That is, a Kalman code looks like

0

n

1 m

We assign to a completely controllable couple Σ = (A,B) its Kalman code K(Σ)
as follows : let A =

[
A1 A2 . . . Am

]
, that is Ai is the i-th column of A. Paint

the box (i, j) black if and only if the column vector BiAj is linearly independent
of the column vectors BkAl for all (k, l) < (i, j).

The painted array K(Σ) is indeed a Kalman code. Assume that box (i, j) is
black but box (i′, j) white for i′ < i, then

Bi
′
Aj =

∑
(k,l)<(i′,j)

αklB
kAl but then, BiAj =

∑
(k,l)<(i′,j)

αklB
k+i−i′Al

and all (k + i− i′, l) < (i, l), a contradiction. Moreover, K(Σ) has exactly n black
boxes as there are n linearly independent columns of the control matrix c(Σ) when
Σ is completely controllable.

The Kalman code is a discrete invariant of the orbit O(Σ) under the restricted
basechange action by GLn. This follows from the fact that BiAj is linearly inde-
pendent of the BkAl for all (k, l) < (i, j) if and only if gBiAj is linearly independent
of the gBkAl for any g ∈ GLn and the observation that gBkAl = (gBg−1)k(gA)l.

With repcα Q we will denote the open subset of repα Q of all completely
controllable couples (A,B). We consider the map

repα Q
ψ - Mn×(n+1)m(C)

(A,B) 7→
[
A BA B2A . . . Bn−1A BnA

]
The matrix ψ(A,B) determines a linear map ψ(A,B) : C(n+1)m - Cn and (A,B)
is a completely controllable couple if and only if the corresponding linear map
ψ(A,B) is surjective. Moreover, there is a linear action of GLn on Mn×(n+1)m(C)
by left multiplication and the map ψ is GLn-equivariant.

The Kalman code induces a barcode on ψ(A,B), that is the n × n minor of
ψ(A,B) determined by the columns corresponding to black boxes in the Kalman
code. By construction this minor is an invertible matrix g−1 ∈ GLn. We can choose
a canonical point in the orbit O(Σ) : g.(A,B). It does have the characteristic
property that the n × n minor of its image under ψ, determined by the Kalman
code is the identity matrix rr

n. The matrix ψ(g.(A,B)) will be denoted by b(A,B)
and is called barcode of the completely controllable pair Σ = (A,B). We claim that
the barcode determines the orbit uniquely. The map ψ is injective on the open set
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repcα Q. Indeed, if[
A BA . . . BnA

]
=

[
A′ B′A′ . . . B

′nA′
]

then A = A′, B | Im(A) = B′ | Im(A) and hence by induction also

B | BiIm(A) = B′ | B
′iIm(A′) for all i ≤ n− 1.

But then, B = B′ as both couples (A,B) and (A′, B′) are completely control-
lable. Hence, the barcode b(A,B) determines the orbit O(Σ) and is a point in the
Grassmannian Grassn(m(n+ 1)). We have

repcα Q
⊂
ψ- Mmax

n×m(n+1)(C)

Grassn(m(n+ 1))

χ

??

b(.)
-

where ψ is a GLn-equivariant embedding and χ the orbit map. Observe that
the barcode matrix b(A,B) shows that the stabilizer of (A,B) is trivial. Indeed,
the minor of g.b(A,B) determined by the Kalman code is equal to g. Moreover,
continuity of b implies that the orbit O(Σ) is closed in repcα Q.

Compute the differential of ψ. For all (A,B) ∈ repα Q and for all (X,Y ) ∈
T(A,B) repα Q we have

(B + εY )j(A+ εX) = BnA+ ε (BnX +
j−1∑
i=0

BiY Bn−1−iA).

Therefore the differential of ψ in (A,B), dψ(A,B)(X,Y ) is equal to[
X BX + Y A B2X +BY A+ Y BA . . . BnX +

∑n−1
i=0 B

iY Bn−1−iA
]
.

Assume dψ(A,B)(X,Y ) is the zero matrix, then X = 0 and substituting in the next
term also Y A = 0. Substituting in the third gives Y BA = 0, then in the fourth
Y B2A = 0 and so on until Y Bn−1A = 0. But then,

Y
[
A BA B2A . . . Bn−1A

]
= 0.

If (A,B) is a completely controllable pair, this implies that Y = 0 and hence
shows that dψ(A,B) is injective for all (A,B) ∈ repcα Q. Therefore, ψ is a GLn-
equivariant embedding of repcα Q with image a locally closed smooth subvariety
of Mmax

n×(n+1)m(C). The image of this subvariety under the orbit map χ is again
smooth as all fibers are equal to GLn. This concludes the difficult part of the
Kalman theorem :

The orbit space Oc = repcα Q/GLn of equivalence classes of completely control-
lable couples is a locally closed smooth subvariety of dimension m.n of the Grass-
mannian Grassn(m(n+ 1)).

To prove the dimension statement, define repcα(K) the set of completely controllable
pairs (A,B) having Kalman code K and let Oc(K) be the image under the orbit
map. After identifying repcα(K) with its image under ψ, the barcode matrix b(A,B)

gives a section Oc(K) ⊂
s- repcα(K). In fact,

GLn ×Oc(K) - repcα(K) (g, x) 7→ g.s(x)



264 7. NULLCONES

is a GLn-equivariant isomorphism because the n×n minor of g, b(A,B) determined
byK is g. Consider the generic Kalman codeKg obtained by painting the top boxes
black from left to right until one has n black boxes. Clearly repcα(Kg) is open in
repcα Q and one deduces

dim Oc = dim Oc(Kg) = dim repcα(Kg)− dim GLn = mn+ n2 − n2 = mn.

Example 154. (Brauer-Severi varieties) Let K be a field and ∆ = (a, b)K the
quaternion algebra determined by a, b ∈ K∗. That is,

∆ = K.1⊕K.i⊕K.j ⊕K.ij with i2 = a j2 = b and ji = −ij
The norm map on ∆ defines a conic in P2

K called the Brauer-Severi variety of ∆

BS(∆) = V (x2 − ay2 − bz2) ⊂ - P2
K = proj K[x, y, z].

Its characteristic property is that a fieldextension L of K admits an L-rational
point on BS(∆) if and only if ∆⊗K L admits zero-divisors and hence is isomorphic
to M2(L). More generally, using the descent interpretation of étale (or Galois)
cohomology we see that the cohomology pointed set

H1
et(K,PGLn)

classifies at the same time when K is the algebraic closure of K
• Brauer-Severi K-varieties BS, which are smooth projective K-varieties

such that BSK = BS ×K K ' Pn−1
K .

• Central simple K-algebras ∆, which are K-algebras of dimension n2 such
that ∆⊗K K 'Mn(K).

The one-to-one correspondence between these two sets is given by associating to
a central simple K-algebra ∆ its Brauer-Severi variety BS(∆) which represents
the functor associating to a fieldextension L of K the set of left ideals of ∆ ⊗K L
which have L-dimension equal to n. In particular, BS(∆) has an L-rational point
if and only if ∆⊗K L 'Mn(L) and hence the geometric object BS(∆) encodes the
algebraic splitting behavior of ∆.

Brauer-Severi varieties (and schemes) were later defined for Azumaya algebras
and even for arbitrary Cayley-Hamilton algebras. Historically, these concepts were
introduced and studied by M. Nori [49] who called them noncommutative Hilbert
schemes. We follow here the account of M. Van den Bergh in [12].

Let (A, trA) ∈ alg@n and consider the GLn(C) action on the product scheme
trepnA× Cn defined by

g.(M,v) = (g.M, gv)
where the action in the first factor is the basechange action on trepnA and in the
second factor is left multiplication. In this product we consider the set of Brauer
stable points which are defined to be

brauerA = {(M,v) | φM (A)v = Cn}
where φM : A - Mn(C) is the morphism defining M . This is also the subset of
points with trivial stabilizer subgroup. Hence, every GLn(C)-orbit in brauerA is
closed and we can form the orbit space called the Brauer-Severi scheme of A

bsA = brauer/GLn.

We will see in a moment that this is a projective space bundle over the quotient
variety trepnA/GLn = tissnA. For arbitrary (A, trA) ∈ alg@n not much can be
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said about these Brauer-Severi schemes. However, if A is alg@n-smooth, we claim
:

If (A, trA) ∈ alg@n is alg@n-smooth, then the Brauer-Severi scheme bsA is a
smooth variety.

Indeed, as the action of GLn on brauerA is free, it suffices to prove that brauerA
is a smooth variety. But, brauerA is a Zariski open subset of the smooth variety
trepnA × Cn. We will relate the study of the Brauer-Severi variety to that of θ-
semistable points of a quiver setting. Consider the generic case, that is A =

∫
n
〈m〉.

In this case we have that

trep

∫
n

〈m〉 × Cn = repα Q

where α = (1, n) and the quiver Q is

(/).*-+, (/).*-+, mai
a //

where the arrow a corresponds to the Cn component and the m loops give Mm
n =

trep
∫
n
〈m〉. Let θ = (−n, 1), then θ-semistable representations in repα Q are

precisely the Brauer stable points brauer
∫
n
〈m〉. Indeed, let (A1, . . . , Am, v) ∈

repα Q be a Brauer stable point. This means that Cn is spanned by v and all
vectors of the form Am1

i1
. . . Amz

iz
v. But then there are no proper subrepresentations

of dimension vector β = (1, k) with k < n. Conversely, a θ-semistable representation
is Brauer stable for assume that the subspace spanned by v and the above vectors
is k < n then there is a proper β = (1, k)-dimensional subrepresentation W with
θ(W ) = −n+ k < 0.

Let us present a concrete description of the Brauer-Severi variety in case m = 2,
that is when Q is

(/).*-+, (/).*-+,
x

qq

y

QQ
a //

For the investigation of the GLn-orbits on repα Q we introduce a combinatorial
gadget : the Hilbert n-stair . This is the lower triangular part of a square n × n
array of boxes

1

n

1 n

filled with go-stones according to the following two rules :
• each row contains exactly one stone, and
• each column contains at most one stone of each color.
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For example, the set of all possible Hilbert 3-stairs is given below.

ue u u u e eu e e e u
To every Hilbert stair σ we will associate a sequence of monomials W (σ) in the
free algebra 〈2〉 = C〈x, y〉. At the top of the stairs we place the identity element 1.
Then, we descend the stairs according to the following rule.

• Every go-stone has a top word T which we may assume we have con-
structed before and a side word S and they are related as indicated below

T

S

1

T

xT

1

•

T

yT

1

◦

For example, for the Hilbert 3-stairs we have the following sequences of non-
commutative words

ue
1

x

y

u u
1

x

x2

u e
1

x

yx

eu
1

y

x

e e
1

y

y2

e u
1

y

xy

We evaluate a Hilbert n-stair σ with associated sequence of non-commutative words
W (σ) = {1, w2(x, y), . . . , wn(x, y)} on

repα Q = Mn(C)⊕Mn(C)⊕ Cn

For a triple (X,Y, v) we replace every occurrence of x in the word wi(x, y) by X and
every occurrence of y by Y to obtain an n×n matrix wi = wi(X,Y ) ∈Mn(C) and
by left multiplication on v a column vector wi.v. The evaluation of σ on (X,Y, v)
is the determinant of the n× n matrix

σ(X,Y, v) = det v w2.v w3.v wn.v. . .

For a fixed Hilbert n-stair σ we denote with rep(σ) the subset of triples (X,Y, v)
in repα Q such that the evaluation σ(X,Y, v) 6= 0. We claim

For every Hilbert n-stair, rep (σ) 6= ∅
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Let v be the first basic column vector e1. Let every black stone in the Hilbert stair
σ fix a column of X by the rule

i

j

1

n

1 n

•

X =

1i

j

0

0

.

.

.

0

0

.

.

.

That is, one replaces every black stone in σ by 1 at the same spot in X and fills
the remaining spots in the same column by zeroes. The same rule applies to Y for
white stones. We say that such a triple (X,Y, v) is in σ-standard form. With these
conventions one easily verifies by induction that

wi(X,Y )e1 = ei for all 2 ≤ i ≤ n.

Hence, filling up the remaining spots in X and Y arbitrarily one has that
σ(X,Y, v) 6= 0 proving the claim. Hence, rep(σ) is an open subset of repα Q
(consisting of θ-stable representations) for every Hilbert n-stair σ. Further, for
every word (monomial) w(x, y) and every g ∈ GLn(C) we have that

w(gXg−1, gY g−1)gv = gw(X,Y )v

and therefore the open sets rep(σ) are stable under the GLn-action on repα Q.
We will give representatives of the orbits in rep(σ).

Let Wn = {1, x, . . . , xn, xy, . . . , yn} be the set of all words in the non-
commuting variables x and y of length ≤ n, ordered lexicographically. For every
triple (X,Y, v) consider the n×m matrix

ψ(X,Y, v) =
[
u Xu X2u . . . Y nu

]
wherem = 2n+1−1 and the j-th column is the column vector w(X,Y )v with w(x, y)
the j-th word in Wn. Hence, (X,Y, v) ∈ rep(σ) if and only if the n × n minor
of ψ(X,Y, v) determined by the word-sequence {1, w2, . . . , wn} of σ is invertible.
Moreover, as

ψ(gXg−1, gY g−1, gu, vg−1) = gψ(v,X, Y )

we deduce that the GLn-orbit of (X,Y, v) contains a unique triple (X1, Y1, v1) such
that the corresponding minor of ψ(X1, Y1, v1) = rr

n. Hence, each GLn(C)-orbit in
rep(σ) contains a unique representant in σ-standard form. Therefore,

The action of GLn on rep(σ) is free and the orbit space is an affine space of
dimension n2 + n.

The dimension is equal to the number of non-forced entries in X, Y and v. As we
fixed n− 1 columns in X or Y this dimension is equal to

k = 2n2 − (n− 1)n = n2 + n.

The above argument shows that every GLn-orbit contains a unique triple in σ-
standard form so the orbit space is an affine space. We claim,
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The Brauer-Severi variety bs
∫
n
〈2〉 is a smooth variety of dimension n2 + n

and is covered (in the Zariski topology) by the affine spaces rep(σ).

We still have to prove that any Brauer-stable triple (X,Y, v) ∈ repαQ belongs to at
least one of the open subsets rep(σ). Either Xv /∈ Cv or Y v /∈ Cv. Fill the top box
of the stairs with the corresponding stone and define the 2-dimensional subspace
V2 = Cv1 +Cv2 where v1 = v and v2 = w2(X,Y )u with w2 the corresponding word
(either x or y). Assume by induction we have been able to fill the first i rows of
the stairs with stones leading to the sequence of words {1, w2(x, y), . . . , wi(x, y)}
such that the subspace Vi = Cv1 + . . . + Cvi with vi = wi(X,Y )v has dimension
i. Then, either Xuj /∈ Vi for some j or Y uj /∈ Vi for some j. Fill the j-th box in
the i + 1-th row of the stairs with the corresponding stone. Then, the top i + 1
rows of the stairs form a Hilbert i + 1-stair as there can be no stone of the same
color lying in the same column. Define wi+1(x, y) = xwi(x, y) (or ywi(x, y)) and
vi+1 = wi+1(X,Y )v. Then, Vi+1 = Cv1+ . . .+Cvi+1 has dimension i+1 continuing
we end up with a Hilbert n-stair σ such that (X,Y, v) ∈ rep(σ).

In the two previous examples we have seen that the varieties classifying closed
orbits of semistable representations are covered by open sets defined by determi-
nants. We will show that this is true in full generality. Closed orbits of rep-
resentations were described by polynomial invariants, closed orbits of semistable
representations will be described by semi-invariants .

Definition 109. A character of GL(α) is an algebraic group morphism χ :
GL(α) - C∗. They correspond to integral k-tuples θ = (t1, . . . , tk) ∈ Zk by

GL(α)
χθ- C∗ (g1, . . . , gk) 7→ det(g1)t1 . . . . .det(gk)tk

For a fixed θ we can extend the GL(α)-action to the space repα Q⊕ C by

GL(α)× repα Q⊕ C - repα Q⊕ C g.(V, c) = (g.V, χ−1
θ (g)c)

The coordinate ring C[repα Q⊕C] = C[repα][t] is graded by defining deg(t) = 1 and
deg(f) = 0 for all f ∈ C[repα Q]. As action of GL(α) preserves this gradation, the
ring of invariant polynomial maps C[repα Q][t]GL(α) is graded with homogeneous
part of degree zero the ring of polynomial invariants C[repα]GL(α) = C[issα Q].

An invariant of degree n, say ftn with f ∈ C[repα Q] satisfies

f(g.V ) = χnθ (g)f(V )

that is, f is a semi-invariant of weight χnθ . That is, the graded decomposition of
the invariant ring is

C[repα Q⊕ C]GL(α) = R0 ⊕R1 ⊕ . . . with Ri = C[repα Q]GL(α),χnθ

The moduli space of semi-stable quiver representations of dimension α is the
projective variety

mossα(Q, θ) = proj C[repα Q⊕ C]GL(α) = proj ⊕∞n=0 C[repα Q]GL(α),χnθ

A representation V ∈ repα Q is said to be χθ-semistable if and only if there is
a semi-invariant f ∈ C[repα Q]GL(α),χnθ for some n ≥ 1 such that f(V ) 6= 0. The
Zariski open subset of repα Q consisting of all χθ-semistable representations will
be denoted by ressα(Q, θ).

Theorem 117 (King). The following are equivalent
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(1) V ∈ repα Q is χθ-semistable.
(2) For c 6= 0, we have O(Vc) ∩ V(t) = ∅.
(3) For every one-parameter subgroup λ(t) of GL(α) we have lim

t→0
λ(t).Vc /∈

V(t) = repα Q× {0}.
(4) For every one-parameter subgroup λ(t) of GL(α) such that lim

t→0
λ(t).V

exists in repα Q we have θ(λ) ≥ 0.
Moreover, this occurs only if θ(α) = 0. The moduli space of θ-semistable represen-
tations of repα Q

mossα(Q, θ)
classifies closed GL(α)-orbits in the open subset ressα(Q, θ) of all χθ-semistable
representations.

Proof. Lift a representation V ∈ repα Q to points Vc = (V, c) ∈ repα Q⊕ C
and use GL(α)-invariant theory on this larger GL(α)-module

������������� ��
��
��
��
��
��
�

•

•

V(f)

V0

Vc

V(t)

Assume that the orbit closure O(Vc) does not intersect V(t) = repα Q × {0}.
As both are GL(α)-stable closed subsets of repα Q ⊕ C the separation prop-
erty of invariant theory yields the existence of a GL(α)-invariant function g ∈
C[repα Q ⊕ C]GL(α) such that g(O(Vc)) 6= 0 but g(V(t)) = 0. We may assume
g to be homogeneous, that is, of the form g = ftn for some n. But then, f is a
semi-invariant on repα Q of weight χnθ and V must be χθ-semistable. Moreover,
θ(α) =

∑k
i=1 tiai = 0 as the one-dimensional central torus of GL(α)

µ(t) = (trra1 , . . . , t
rr
ak

) ⊂ - GL(α)

acts trivially on repα Q but acts on C via multiplication with
∏k
i=1 t

−aiti . Hence,
if θ(α) 6= 0 then O(Vc) ∩ V(t) 6= ∅.

It follows from the Hilbert criterium that O(Vc) ∩ V(t) = ∅ if and only if for
every one-parameter subgroup λ(t) of GL(α) we have that lim

t→0
λ(t).Vc /∈ V(t). We

can also formulate this in terms of the GL(α)-action on repα Q. The composition
of a one-parameter subgroup λ(t) of GL(α) with the character

C∗ λ(t)- GL(α)
χθ- C∗

is an algebraic group morphism and is therefore of the form t - tm for some
m ∈ Z and we denote this integer by θ(λ) = m. Assume that λ(t) is a one-parameter
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subgroup such that lim
t→0

λ(t).V = V ′ exists in repα Q. Because λ(t).(V, c) =

(λ(t).V, t−mc), θ(λ) ≥ 0 for the orbitclosure O(Vc) not to intersect V(t).
As for the second assertion, let g = ftn be a homogeneous invariant function for

the GL(α)-action on repα Q⊕C and consider the affine open GL(α)-stable subset
X(g). The construction of the algebraic quotient and the fact that the invariant
ring is graded asserts that the closed GL(α)-orbits in X(g) are classified by the
points of the graded localization at g which is of the form

(C[repα Q⊕ C]GL(α))g = Rf [h, h−1]

for some homogeneous invariant h where Rf is the coordinate ring of the affine
open subset X(f) in mossα(Q, θ) determined by the semi-invariant f of weight χnθ .
The claim follows because the moduli space is covered by such open subsets. �

Theorem 118 (King). For V ∈ repα Q the following are equivalent
(1) V is χθ-semistable.
(2) V is θ-semistable.

For a θ-semistable representation V ∈ repα Q equivalent are
(1) The orbit O(V ) is closed in mossα(Q,α).
(2) V 'W⊕e11 ⊕ . . .⊕W⊕el

l with Wi a θ-stable representation.
The geometric points of the moduli space mossα(Q, θ) are in natural one-to-one
correspondence with isomorphism classes of α-dimensional representations which
are direct sums of θ-stable subrepresentations. The quotient map

ressα(Q, θ) -- mossα(Q, θ)

maps a θ-semistable representation V to the direct sum of its Jordan-Hölder factors
in the Abelian category of semistable representations.

Proof. For λ : C∗ - GL(α) a one-parameter subgroup and V ∈ repα Q
we can decompose for every vertex vi the vertex-space in weight spaces

Vi = ⊕n∈ZV
(n)
i

where λ(t) acts on the weight space V (n)
i as multiplication by tn. This decomposi-

tion allows us to define a filtration

V
(≥n)
i = ⊕m≥nV (m)

i

For every arrow ��������i��������j
aoo , λ(t) acts on the components of the arrow maps

V
(n)
i

Vm,n
a - V

(m)
j

by multiplication with tm−n. That is, a limit lim
t→0

Va exists if and only if V m,na = 0
for all m < n, that is, if Va induces linear maps

V
(≥n)
i

Va- V
(≥n)
j

Hence, a limiting representation exists if and only if the vertex-filtration spaces
V

(≥n)
i determine a subrepresentation Vn ⊂ V for all n. A one-parameter subgroup
λ such that lim

t→
λ(t).V exists determines a decreasing filtration of V by subrepre-

sentations
. . . ⊃ Vn ⊃ Vn+1 ⊃ . . .
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Further, the limiting representation is then the associated graded representation

lim
t→0

λ(t).V = ⊕n∈Z
Vn
Vn+1

where of course only finitely many of these quotients can be nonzero. For the given
character θ = (t1, . . . , tk) and a representation W ∈ repβ Q we denote

θ(W ) = t1b1 + . . .+ tkbk where β = (b1, . . . , bk)

Assume that θ(V ) = 0, then with the above notations, we have an interpretation
of θ(λ) as

θ(λ) =
k∑
i=1

ti
∑
n∈Z

n dimC V
(n)
i =

∑
n∈Z

nθ(
Vn
Vn+1

) =
∑
n∈Z

θ(Vn)

(1) ⇒ (2) : Let W be a subrepresentation of V and let λ be the one-parameter
subgroup associated to the filtration V ⊃ W ⊃ 0, then lim

t→0
λ(t).V exists whence

by (4) of the previous theorem θ(λ) ≥ 0, but we have

θ(λ) = θ(V ) + θ(W ) = θ(W )

(2) ⇒ (1) : Let λ be a one-parameter subgroup of GL(α) such that lim
t→0

λ(t).V
exists and consider the induced filtration by subrepresentations Vn defined above.
By assumption all θ(Vn) ≥ 0, whence

θ(λ) =
∑
n∈Z

θ(Vn) ≥ 0

and the result follows from the foregoing theorem.
As for the second part. (1)⇒ (2) : Assume that O(V ) is closed in ressα(Q, θ)

and consider the θ-semistable representation W = gr V , the direct sum of the
Jordan-Hölder factors in the Abelian category of θ-semistable representations. As
W is the associated graded representation of a filtration on V , there is a one-
parameter subgroup λ of GL(α) such that lim

t→0
λ(t).V ' W , that is O(W ) ⊂

O(V ) = O(V ), whence W ' V . (2)⇒ (1) : Let O(W ) be a closed orbit contained
in O(V ) (one of minimal dimension). By the Hilbert criterium there is a one-
parameter subgroup λ in GL(α) such that lim

t→0
λ(t).V 'W . Hence, there is a finite

filtration of V with associated graded θ-semistable representation W . As none of
the θ-stable components of V admits a proper quotient which is θ-semistable (being
a direct summand of W ), this shows that V ' W and so O(V ) = O(W ) is closed.
The other statements are clear from this. �

Example 155. Remains to determine the situations (α, θ) such that the cor-
responding moduli space mossα(Q, θ) is non-empty, or equivalently, such that the
Zariski open subset ressα(Q, θ) ⊂ repα Q is non-empty. This follows from the
results on general subrepresentations proved in section 7.1

Let α be a dimension vector such that θ(α) = 0. Then,
(1) ressα(Q,α) is a non-empty Zariski open subset of repα Q if and only if

for every β ⊂ - α we have θ(β) ≥ 0.
(2) The θ-stable representations form a non-empty Zariski open subset of

repα Q if and only if for every 0 6= β ⊂ - α we have θ(β) > 0
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L R
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Figure 5. Left-right bipartite quiver.

We will study the moduli space mossα(Q, θ) both in the Zariski- and the étale
topology. To understand the first we have to determine the graded algebra of
semi-invariants.

Definition 110. (Determinantal semi-invariants) Let Q be a quiver on the
vertices {v1, . . . , vk}, fix a dimension vector α = (a1, . . . , ak) and a character χθ
where θ = (t1, . . . , tk) such that θ(α) = 0. We will call a bipartite quiver Q′ as in
figure 5 on left vertex-set L = {l1, . . . , lp} and right vertex-set R = {r1, . . . , rq} and
a dimension vector β = (c1, . . . , cp; d1, . . . , dq) to be of type (Q,α, θ) if the following
conditions are met

• All left and right vertices correspond to vertices of Q, that is, there are maps{
L

l- {v1, . . . , vk}
R

r- {v1, . . . , vk}

possibly occurring with multiplicities, that is there is a map

L ∪R m- N+

such that ci = m(li)az if l(li) = vz and dj = m(rj)az if r(rj) = vz.

• There can only be an arrow (/).*-+,rj(/).*-+,li // if for vk = l(li) and vl = r(ri) there is
an oriented path

(/).*-+,vl(/).*-+,vk

  

in Q allowing the trivial path and loops if vk = vl.

• Every left vertex li is the source of exactly ci arrows in Q′ and every right-vertex
rj is the sink of precisely dj arrows in Q′.

• Consider the u × u matrix where u =
∑
i ci =

∑
j dj (both numbers are equal

to the total number of arrows in Q′) where the i-th row contains the entries of the
i-th arrow in Q′ with respect to the obvious left and right bases. Observe that
this is a GL(β) semi-invariant on repβ Q

′ with weight determined by the integral
k + l-tuple (−1, . . . ,−1; 1, . . . , 1). If we fix for every arrow a from li to rj in Q′ an
m(rj)×m(li) matrix pa of linear combinations of paths in Q from l(li) to r(rj), we
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obtain a morphism
repα Q

- repβ Q
′

sending a representation V ∈ repα Q to the representation W of Q′ defined by
Wa = pa(V ). Composing this map with the above semi-invariant we obtain aGL(α)
semi-invariant of repα Q with weight determined by the k-tuple θ = (t1, . . . , tk)
where

ti =
∑

j∈r−1(vi)

m(rj)−
∑

j∈l−1(vi)

m(lj)

. We call such semi-invariants standard determinantal .

Theorem 119 (Schofield-Van den Bergh). The semi-invariants of the GL(α)-
action on repα Q are generated by traces of oriented cycles and by standard deter-
minantal semi-invariants.

Proof. See [62]. Observe that analogous descriptions of the semi-invariants
were obtained in [13] and [15]. �

We will now clarify the relationship between θ-stable representations and simple
representations.

Theorem 120. For V ∈ repα Q the following are equivalent
(1) V ∈ ressα(Q, θ), that is, V is θ-semistable.
(2) There is a universal localization 〈Q〉σ such that 〈Q〉σ ⊗ V is a simple

α-dimensional representation of 〈Q〉σ.

Proof. Fix a character θ = (t1, . . . , tk) and divide the set of vertex-indices
into a left set L = {i1, . . . , iu} consisting of those 1 ≤ i ≤ k such that ti ≤ 0 and a
right set R = {j1, . . . , jv} consisting of those 1 ≤ j ≤ k such that tj ≥ 0 (observe
that L∩R may be non-empty). For every vertex vi we consider the indecomposable
projective module Pi = 〈Q〉ei spanned by all paths in the quiver Q starting at vi.
As a consequence we have that Hom〈Q〉(Pi, Pj) is spanned by all paths [j, i] in the
quiver Q from vertex vj to vertex i. For a fixed integer n we consider the set Σθ(n)
of all 〈Q〉-module morphisms

P
⊕−nti1
i1

⊕ . . .⊕ P⊕−ntiu
iu

σ- P
⊕ntj1
j1

⊕ . . .⊕ P⊕ntjv
jv

‖notation ‖notation

Pc1 ⊕ . . .⊕ Pcp

σ - Pd1 ⊕ . . .⊕ Pdq

By the remark above, σ can be described by an (p = n
∑
til) × (q = n

∑
tjm)

matrix Mσ all entries of which are linear combinations plm of paths in the quiver
Q from vertex vdm

to vertex vcl
. For V ∈ repα Q we can substitute the arrow

matrices V (a) in the definition of plm and obtain a square matrix of size acl
× adm

.
If we do this for every entry of σ we obtain a square matrix as θ(V ) = 0 which we
denote by σ(V ). But then, the function

dσ(V ) = det σ(V ) : repα Q
- C

is a semi-invariant of weight nθ. By the foregoing theorem, all semi-invariants in
C[repα Q]GL(α),χn

θ are spanned by such determinantal semi-invariants. We define

Xσ(α) = {V ∈ repα Q | dσ(V ) 6= 0}
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Because dσ is a semi-invariant of weight nθ it follows that Xσ(α) consists of θ-
semistable representations. Also remark that Xσ(α) is the variety of α-dimensional
representations of the universal localization 〈Q〉σ.
(1) ⇒ (2) : Let V be θ-stable and assume that W ⊂ V is a proper sub 〈Q〉σ-
module of dimension vector β. Restricting W to a representation of Q we see that
W ∈ repβ Q and is a subrepresentation of V . Because W ∈ repβ 〈Q〉σ we have
θ(β) = θ(W ) = 0, which is impossible as V is θ-stable.
Let 〈Q〉σ ⊗ V be a simple 〈Q〉σ representation and assume that W ⊂ V is a proper
subrepresentation of dimension vector β = (b1, . . . , bk) with θ(W ) ≤ 0. If θ(W ) < 0
then −

∑
ntilbil >

∑
ntjmbjm whence σ(W ) has a kernel but this contradicts the

fact that σ(V ) is invertible. Hence, θ(W ) = 0 but then 〈Q〉σ ⊗ W is a proper
subrepresentation of 〈Q〉σ ⊗ V contradicting simplicity. �

Example 156. The quotient map πθ is locally isomorphic to the quotient map

repα 〈Q〉σ = Xσ(α) ⊂ - ressα(Q, θ)

issα 〈Q〉σ = Xσ(α)/GL(α)

πσ

??
⊂- mossα(Q,α)

πθ

??

assigning to an α-dimensional 〈Q〉σ-module its semi-simplification, that is, the di-
rect sum of its Jordan-Hölder components. Because the affine open setsXσ(α) cover
ressα(Q, θ), the moduli space of θ-semistable quiver representations mossα(Q,α) is
locally isomorphic to quotient varieties issα 〈Q〉σ for specific universal localizations
of the path algebra, all of which are affine alg-smooth algebras.

We now consider the étale local structure of the moduli spaces mossα(Q, θ). As
a consequence we will determine their singular loci.

Definition 111. Let ξ ∈ mossα(Q,α) be a geometric point of semistable rep-
resentation type τ = (m1, β1; . . . ;ml, βl). That is, the unique closed orbit lying in
the fiber π−1

θ (ξ) is the isomorphism class of a direct sum

Vξ = W⊕m1
1 ⊕ . . .⊕W⊕ml

l

with Wi a θ-stable representation of dimension vector βi.
The local quiver setting (Qξ, αξ) associated to ξ is defined as follows :

• Qξ has l vertices w1, . . . , wl corresponding to the distinct θ-stable compo-
nents of Vξ, and
• the number of arrows from wi to wj is equal to

δij − χQ(βi, βj)

where χQ is the Euler form of Q.
• the dimension vector αξ = (m1, . . . ,ml) gives the multiplicities of the

stable summands.
Observe that the local quiver setting depends only on the semistable representation
type.

Theorem 121. There is an étale isomorphism between
(1) an affine neighborhood of ξ in the moduli space mossα(Q,α), and
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(2) an affine neighborhood of the image 0 of the zero representation in the quo-
tient variety issαξ

Qξ corresponding to the local quiver setting (Qξ, αξ).
Therefore, ξ is a smooth point of the moduli space mossα(Q, θ) if and only if the
quiver setting (Qξ, αξ) satisfies the requirements of theorem 99.

Proof. Let ξ ∈ mossα(Q,α) with corresponding Vξ having a decomposition
into θ-stable representations Wi as above. We may assume that Vξ ∈ Xσ(α) where
Xσ(α) is the affine GL(α)-invariant open subvariety of ressα(Q, θ) defined by the
determinantal semi-invariant dσ. We have seen that Xσ(α) ' repα 〈Q〉σ the variety
of α-dimensional representations of the universal localization 〈Q〉σ. Moreover, if we
define V ′ξ = 〈Q〉σ ⊗ Vξ and W ′i = 〈Q〉σ ⊗Wi we have

V ′ξ = W ′⊕m1
1 ⊕ . . .⊕W ′⊕ml

l

is a decomposition of the semisimple CQσ representation V ′ξ into its simple com-
ponents W ′i . Restricting to the affine smooth variety Xσ(α) we are in a situation
to apply the Luna slice theorem to the representation scheme of the alg-smooth
algebra 〈Q〉σ as before.

The normal space to the orbit can be identified with the self-extensions

NV ′ξ = Ext1〈Q〉σ (V ′ξ , V
′
ξ ) = ⊕li,j=1 Ext

1
〈Q〉σ

(W ′i ,W
′
j)
⊕mimj

By Schur’s lemma we know that the stabilizer subgroup of the semisimple module
V ′ξ is equal to GL(αξ) and if we write out the action of this group on the self
extensions we observe that it coincides with the action of the basechangegroup
GL(αξ) on the representation space repαξ

Γ of a quiver Γ on l vertices such that
the number of arrows from vertex wi to vertex wj is equal to the dimension of the
extension group

Ext1〈Q〉σ (W ′i ,W
′
j)

Remains to prove that the quiver Γ is our local quiver Qξ. For this we apply a
general homological result valid for universal localizations, [60, Thm 4.7]. If Aσ
is a universal localization of an algebra A, then the category of left Aσ-modules is
closed under extensions in the category of left A-modules. Therefore,

Ext1Aσ
(M,N) = Ext1A(M,N)

for Aσ-modules M and N . Therefore,

Ext1〈Q〉σ (W ′i ,W
′
j) = Ext1〈Q〉(Wi,Wj)

Further, as the Wi are θ-stable representations of the quiver Q we know that
Hom〈Q〉(Wi,Wj) = δijC. Finally, we use the homological interpretation of the
Euler form

χQ(βi, βj) = dimC Hom〈Q〉(Wi,Wj)− dimC Ext1〈Q〉(Wi,Wj)

to deduce that Γ = Qξ. The last statement follows by étale descent. �

Example 157. The foregoing theorem can be used to determine the dimen-
sion vectors of θ-stable representations lying in the positive linear span of a set of
dimension vectors of θ-stables.

Let β1, . . . , βl be dimension vectors of θ-stable representations of Q and assume
there are integers m1, . . . ,ml ≥ 0 such that

α = m1β1 + . . .+mlβl
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Then, α is the dimension vector of a θ-stable representation of Q if and only if
α′ = (m1, . . . ,ml) is the dimension vector of a simple representation of the quiver
Q′ on l vertices w1, . . . , wl such that there are exactly

δij − χQ(βi, βj)

arrows from wi to wj.

For, let Wi be a θ-stable representation of Q of dimension vector βi and consider
the α-dimensional representation

V = W⊕m1
1 ⊕ . . .⊕W⊕ml

l

It is clear from the definition that (Q′, α′) is the local quiver setting corresponding
to V . As before, there is a semi-invariant dσ such that V ∈ Xσ(α) = repα 〈Q〉σ
and 〈Q〉σ ⊗ V is a semi-simple representation of the universal localization CQσ. If
there are θ-stable representations of dimension α, then there is an open subset of
Xσ(α) consisting of θ-stable representations. But we have seen that they become
simple representations of 〈Q〉σ. This means that every Zariski neighborhood of
V ∈ repα 〈Q〉σ contains simple α-dimensional representations. By the étale local
isomorphism there are α′-dimensional simple representations of the quiver Q′.

Conversely, as any Zariski neighborhood of the zero representation in repα′ Q
′

contains simple representations, then so does any neighborhood of V ∈ repα 〈Q〉σ =
Xσ(α). We have seen before that Xσ(α) consists of θ-semistable representations
and that the θ-stables correspond to the simple representations of 〈Q〉σ, whence
Q has θ-stable representations of dimension vector α. By theorem 85 the set of θ-
stable dimension vectors can be described by a set of inequalities. For more results
along similar lines we refer the reader to the recent preprint [14] of H. Derksen and
J. Weyman.

7.3. Nullcones of quiverrepresentations.

In this last section we will conclude our approach to the study of iso(repA)
for A an alg-smooth algebra. Recall that if ξ ∈ issαA corresponds to the semi-
simple representation Mξ, then the isomorphism classes of all representations M ∈
repαA having Jordan-Hölder semisimplification Mξ are the orbits in the fiber of
the quotient map

repαA
π-- issαA

Using the results on the étale local structure, we know that as GLn-varieties

π−1(ξ) ' GLn ×GL(αξ) nullαξ
Qξ

Therefore, GLn-orbits in the fiber correspond one-to-one to GLn-orbits in the fiber
bundle which, in turn, correspond one-to-one with GL(αξ)-orbits in the nullcone
nullαξ

Qξ.
We will apply general results on nullcones due to Wim Hesselink [23] and

Frances Kirwan [30] to give a representation theoretic description of nullcones of
quiver-representations. First, we will outline the basic ideas in the case of the
free algebra 〈m〉 after which the passage to the general case is merely a notational
problem.

Example 158. (The generic case) We will outline the basic idea of the Hesselink
stratification of the nullcone [23] in the generic case, that is, the action of GLn by
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simultaneous conjugation on m-tuples of matrices Mm
n = Mn ⊕ . . . ⊕Mn. With

nullmn we denote the nullcone of this action

nullmn = {x = (A1, . . . , Am) ∈Mm
n | 0 = (0, . . . , 0) ∈ O(x)}

From the Hilbert criterium, theorem 51, we recall that x = (A1, . . . , Am) belongs
to the nullcone if and only if there is a one-parameter subgroup C∗ λ- GLn such
that

lim
t→0

λ(t).(A1, . . . , Am) = (0, . . . , 0).

Any one-parameter subgroup of GLn is conjugated to one determined by an integral
n-tuple (r1, . . . , rn) ∈ Zn and permuting the basis if necessary, we can conjugate this
λ to one where the n-tuple if dominant , that is, r1 ≥ r2 ≥ . . . ≥ rn. By applying
permutation Jordan-moves , that is, by simultaneously interchanging certain rows
and columns in all Ai, we may therefore assume that the limit-formula holds for a
dominant one-parameter subgroup λ of the maximal torus

Tn ' C∗ × . . .× C∗︸ ︷︷ ︸
n

= {

c1 0
. . .

0 cn

 | ci ∈ C∗ } ⊂ - GLn

of GLn. Computing its action on a n× n matrix A we obtaint
r1 0

. . .
0 trn


a11 . . . a1n

...
...

an1 . . . ann


t
−r1 0

. . .
0 t−rn

 =

t
r1−r1a11 . . . tr1−rna1n

...
...

trn−r1an1 . . . trn−rnann


By dominance ri ≤ rj for i ≥ j, the limit is defined only if aij = 0 for i ≥ j, that
is, when A is a strictly upper triangular matrix.

Any m-tuple x = (A1, . . . , Am) ∈ nullmn has a point in its orbit O(x), x′ =
(A′1, . . . , A

′
m) with all A′i strictly upper triangular matrices. In fact permutation

Jordan-moves suffice to arrive at x′.

For specific m-tuples x = (A1, . . . , Am) it might be possible to improve on this
result. That is, we want to determine the smallest ’corner’ C in the upper right hand
corner of the matrix, such that all the component matrices Ai can be conjugated
simultaneously to matrices A′i having only non-zero entries in the corner C

C =

and no strictly smaller corner C ′ can be found with this property. We want to
compile a list of the relevant corners and to define an order relation on this set.

Consider the weight space decomposition of Mm
n for the action by simultaneous

conjugation of the maximal torus Tn,

Mm
n = ⊕1≤i,j≤nM

m
n (πi − πj) = ⊕1≤i,j≤nC⊕mπi−πj
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where c = diag(c1, . . . , cn) ∈ Tm acts on any element of Mm
n (πi−πj) by multiplica-

tion with cic−1
j , that is, the eigenspace Mm

n (πi−πj) is the space of the (i, j)-entries
of the m-matrices. We call

W = {πi − πj | 1 ≤ i, j ≤ n}

the set of Tn-weights of Mm
n . Let x = (A1, . . . , Am) ∈ nullmn and consider the

subset Ex ⊂ W consisting of the elements πi − πj such that for at least one of the
matrix components Ak the (i, j)-entry is non-zero. Repeating the argument above,
we see that if λ is a one-parameter subgroup of Tn determined by the integral
n-tuple (r1, . . . , rn) ∈ Zn such that lim λ(t).x = 0 we have

∀ πi − πj ∈ Ex we have ri − rj ≥ 1

Conversely, let E ⊂ W be a subset of weights, we want to determine the subset

{s = (s1, . . . , sn) ∈ Rn | si − sj ≥ 1 ∀ πi − πj ∈ E }

and determine a point in this set, minimal with respect to the usual norm

‖ s ‖=
√
s21 + . . .+ s2n

Let s = (s1, . . . , sn) attain such a minimum. We can partition the entries of s in a
disjoint union of strings

{pi, pi + 1, . . . , pi + ki}

with ki ∈ N and subject to the condition that all the numbers pij
def
= pi + j with

0 ≤ j ≤ ki occur as components of s, possibly with a multiplicity that we denote
by aij . We call a string stringi = {pi, pi+1, . . . , pi+ki} of s balanced if and only if∑

sk∈stringi

sj =
ki∑
j=0

aij(pi + j) = 0

In particular, all balanced strings consists entirely of rational numbers. We claim

Let E ⊂ W, then the subset of Rn determined by

RnE = { (r1, . . . , rn) | ri − rj ≥ 1 ∀ πi − πj ∈ E}

has a unique point sE = (s1, . . . , sn) of minimal norm ‖ sE ‖. This point is deter-
mined by the characteristic feature that all its strings are balanced. In particular,
sE ∈ Qn.

Let s be a minimal point for the norm in RnE and consider a string of s and denote
with S the indices k ∈ {1, . . . , n} such that sk ∈ string. Let πi − πj ∈ E, then if
only one of i or j belongs to S we have a strictly positive number aij

si − sj = 1 + rij with rij > 0

Take ε0 > 0 smaller than all rij and consider the n-tuple

sε = s+ ε(δ1S , . . . , δnS) with δkS = 1 if k ∈ S and 0 otherwise

with | ε |≤ ε0. Then, sε ∈ RnE for if πi − πj ∈ E and i and j both belong to S or
both do not belong to S then (sε)i − (sε)j = si − sj ≥ 1 and if one of i or j belong
to S, then

(sε)i − (sε)j = 1 + rij ± ε ≥ 1
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by the choice of ε0. However, the norm of sε is

‖ sε ‖=
√
‖ s ‖ +2ε

∑
k∈S

sk + ε2#S

Hence, if the string would not be balanced,
∑
k∈S sk 6= 0 and we can choose ε small

enough such that ‖ sε ‖<‖ s ‖, contradicting minimality of s and proving the claim.
For given n we have an algorithm to compile the list Sn of all dominant n-

tuples (s1, . . . , sn) having all its strings balanced.
• List all Young-diagrams Yn = {Y1, . . .} having ≤ n boxes.
• For every diagram Yl fill the boxes with strictly positive integers subject to the
rules : (1) the total sum is equal to n, (2) no two rows are filled identically and (3)
at most one row has length 1. This gives a list Tn = {T1, . . .} of tableaux.
• For every tableau Tl ∈ Tn, for each of its rows (a1, a2, . . . , ak) find a solution p to
the linear equation

a1x+ a2(x+ 1) + . . .+ ak(x+ k) = 0

and define the
∑
ai-tuple of rational numbers

(p, . . . , p︸ ︷︷ ︸
a1

, p+ 1, . . . , p+ 1︸ ︷︷ ︸
a2

, . . . p+ k, . . . , p+ k︸ ︷︷ ︸
ak

)

Repeating this process for every row of Tl we obtain an n-tuple, which we then
order.

The list Sn will be the combinatorial object underlying the relevant corners
and the stratification of the nullcone. To every s = (s1, . . . , sn) ∈ Sn we associate
the following data
• The corner Cs is the subspace of Mm

n consisting of those m tuples of n × n
matrices with zero entries except perhaps at position (i, j) where si − sj ≥ 1. A
partial ordering is defined on these corners by the rule

Cs′ < Cs ⇔ ‖ s′ ‖ < ‖ s ‖

• The parabolic subgroup Ps which is the subgroup of GLn consisting of matrices
with zero entries except perhaps at entry (i, j) when si − sj ≥ 0.
• The Levi subgroup Ls which is the subgroup of GLn consisting of matrices with
zero entries except perhaps at entry (i, j) when si − sj = 0. Observe that Ls =∏
GLaij where the aij are the multiplicities of pi + j.

For example, S3 has five types described by

S3 =

tableau s1 s2 s3 ‖ s ‖2

1 1 1 1 0 −1 2
1 2 1

3
1
3 − 2

3
2
3

2 1 2
3 − 1

3 − 1
3

2
3

1 1
1 1

2 0 − 1
2

1
2

3 0 0 0 0
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The corresponding corners, parabolic and Levi subgroups are respectively,

Cs

Ps

t t tt tt
t t tt t tt

t t tt tt t
t t tt tt

t t tt t tt t t
Ls

t t t
t tt t t

t t tt t
t t t

t t tt t tt t t
For x = (A1, . . . , Am) ∈ nullmn , Ex ⊂ W determines a unique sEx

∈ Qn which
up to permuting the entries an element s of Sn. Therefore,

Every x = (A1, . . . , Am) ∈ nullmn can be brought by permutation Jordan-moves to
an m-tuple x′ = (A′1, . . . , A

′
m) ∈ Cs. Here, s is the dominant reordering of sEx

with
Ex ⊂ W the subset πi−πj determined by the non-zero entries at place (i, j) of one
of the components Ak. The permutation of rows and columns is determined by the
dominant reordering.

The m-tuple s (or sEx
) determines a one-parameter subgroup λs of Tn where λ

corresponds to the unique n-tuple of integers

(r1, . . . , rn) ∈ N+s ∩ Zn with gcd(ri) = 1

For any one-parameter subgroup µ of Tn determined by an integral n-tuple µ =
(a1, . . . , an) ∈ Zn and any x = (A1, . . . , An) ∈ nullmn we define the integer

m(x, µ) = min {ai − aj | x contains a non-zero entry in Mm
n (πi − πj) }

From the definition of RnE it follows that the minimal value sE and λsE
is

sEx
=

λsEx

m(x, λsEx
)

and s =
λs

m(x, λs)

We claim :

Let x = (A1, . . . , Am) ∈ nullmn and let µ be a one-parameter subgroup contained in
Tn such that lim

t→0
λ(t).x = 0, then

‖ λsEx
‖

m(x, λsEx
)
≤ ‖ µ ‖
m(x, µ)

This follows immediately from the observation that µ
m(x,µ) ∈ RnEx

and the mini-
mality of sEx . Phrased differently, there is no simultaneous reordering of rows and
columns that admit an m-tuple x” = (A”1, . . . , A”m) ∈ Cs′ for a corner Cs′ < Cs.

Example 159. It is possible that another point in the orbit O(x) say y =
g.x = (B1, . . . , Bm) can be transformed by permutation Jordan moves in a strictly
smaller corner.
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Consider one 3× 3 nilpotent matrix of the form

x =

0 a b
0 0 0
0 0 0

 with ab 6= 0

Then, Ex = {π1 − π2, π1 − π3} and the corresponding s = sEx = ( 2
3 ,−

1
3 ,−

1
3 ) so x

is clearly of corner type

Cs =
However, x is a nilpotent matrix of rank 1 and by the Jordan-normalform we can
conjugate it in standard form, that is, there is some g ∈ GL3 such that

y = g.x = gxg−1 =

0 1 0
0 0 0
0 0 0


For this y we have Ey = {π1 − π2} and the corresponding sEy

= ( 1
2 ,−

1
2 , 0), which

can be brought into standard dominant form s′ = ( 1
2 , 0,−

1
2 ) by interchanging the

two last entries. Hence, by interchanging the last two rows and columns, y is indeed
of corner type

Cs′ =
and we have that Cs′ < Cs. Observe that we used the Jordan-normalform to
produce this example. As there are no known canonical forms for m tuples of n×n
matrices, it is a more difficult to determine the optimal corner type of an element
in nullmn .

Definition 112. Let s ∈ Sn be determined by the tableau Ts. The associated
quiver-setting (Qs, αs) and character θs are defined as follows.

The quiver Qs has as many connected components as there are rows in the
tableau Ts. If the i-th row in Ts is

(ai0, ai1, . . . , aiki)

then the corresponding string of entries in s is of the form

{pi, . . . , pi︸ ︷︷ ︸
ai0

, pi + 1, . . . , pi + 1︸ ︷︷ ︸
ai1

, . . . , pi + ki, . . . , pi + ki︸ ︷︷ ︸
aiki

}

and the i-th component of Qs is defined to be the quiver Qi on ki + 1 vertices
having m arrows between the consecutive vertices, that is Qi is

0 1 2 ki

(/).*-+, (/).*-+, (/).*-+, (/).*-+,. . .m +3 m +3 m +3 m +3

The dimension vector αi for the i-th component quiver Qi is equal to the i-th
row of the tableau Ts, that is

αi = (ai0, ai1, . . . , aiki
)

and the total dimension vector αs is the collection of these component dimension
vectors.
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The character GL(αs)
χs- C∗ is determined by the integral n-tuple θs =

(t1, . . . , tn) ∈ Zn where if entry k corresponds to the j-th vertex of the i-th compo-
nent of Qs we have

tk = nij
def= d.(pi + j)

where d is the least common multiple of the numerators of the pi’s for all i. Equiv-
alently, the nij are the integers appearing in the description of the one-parameter
subgroup λs = (r1, . . . , rn) grouped together according to the ordering of vertices
in the quiver Qs. Recall that the character χs is then defined to be

χs(g1. . . . , gn) =
n∏
i=1

det(gi)ti

or in terms of GL(αs) it sends an element gij ∈ GL(αs) to
∏
i,j det(gij)

nij .

Example 160. Define the border Bs to be the subspace of Cs consisting of those
m-tuples of n× n matrices with zero entries except perhaps at entries (i, j) where
si − sj = 1. Observe that the action of the Levi-subgroup Ls =

∏
i,j GLaij on the

border Bs coincides with the base-change action of GL(αs) on the representation
space repαs

Qs. The isomorphism

Bs - repαs
Qs

is given by sending an m-tuple of border Bs-matrices (A1, . . . , Am) to the repre-
sentation in repαs

Qs where the j-th arrow between the vertices va and va+1 of
the i-th component quiver Qi is given by the relevant block in the matrix Aj . We
illustrate this with a few examples from 4× 4 matrices.

tableau Ls Bs θs (Qs, αs, θs)

2 1 1

t t t tt t
d d

(5, 1,−3,−3)
5 1 −3��������1 ��������1 ��������2mks mks

1 2 1

t t tt t t
d

(1, 0, 0,−1)
1 0 −1��������1 ��������2 ��������1mks mks

1 2
1

t tt t t t (1, 1, 0,−2)

1 −2

0

��������2 ��������1

��������1

mks

Theorem 122. Let x = (A1, . . . , Am) ∈ nullmn be of corner type Cs. Then,
x is of optimal corner type Cs, that is, there is no point y = g.x ∈ O(x) having
corner type Cs′ with Cs′ < Cs, if and only if under the natural maps

Cs -- Bs
'- repαs

Qs

(the first map forgets the non-border entries) x is mapped to a θs-semistable repre-
sentation in repαs

Qs.
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Proof. This is a specialization of the description due to Kirwan [30]. �

If N ⊂Mn is the subspace of strictly upper triangular matrices, then the action
map determines a surjection

GLn ×Nm ac-- nullmn

Recall that the standard Borel subgroup B is the subgroup of GLn consisting of all
upper triangular matrices and consider the action of B on GLn ×Mm

n determined
by

b.(g, x) = (gb−1, b.x)

Then, B-orbits in GLn × Nm are mapped under the action map ac to the same
point in the nullcone nullmn . Consider the morphisms

GLn ×Mm
n

π-- GLn/B ×Mm
n

which sends a point (g, x) to (gB, g.x). The quotient GLn/B is called a flag variety
and is a projective manifold. Its points are easily seen to correspond to complete
flags

F : 0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn = Cn with dimC Fi = i

of subspaces of Cn. Consider the fiber π−1 of a point (g, (B1, . . . , Bm)) ∈ GLn/B×
Mm
n . These are the points

(h, (A1, . . . , Am)) such that

{
g−1h = b ∈ B
bAib

−1 = g−1Big for all 1 ≤ i ≤ m.

Therefore, the fibers of π are precisely the B-orbits in GLn ×Mm
n . That is, there

exists a quotient variety for the B-action on GLn ×Mm
n which is the trivial vec-

torbundle of rank mn2

T = GLn/B ×Mm
n

p-- GLn/B

over the flag variety GLn/B. We will denote with GLn ×B Nm the image of the
subvariety GLn ×Nm of GLn ×Mm

n under this quotient map. That is, we have a
commuting diagram

GLn ×Nm ⊂ - GLn ×Mm
n

GLn ×B Nm

??
⊂- GLn/B ×Mm

n

??

Hence, V = GLn ×B Nm is a sub-bundle of rank m.n(n−1)
2 of the trivial bundle T

over the flag variety. Note however that V itself is not trivial as the action of GLn
does not map Nm to itself.

Theorem 123. Let U be the open subvariety of m-tuples of strictly upper tri-
angular matrices Nm consisting of those tuples such that one of the component
matrices has rank n − 1. The action map ac induces the commuting diagram of
figure 6. The upper map is an isomorphism of GLn-varieties for the action on fiber
bundles to be left multiplication in the first component.
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GLn ×B U
' - GLn.U

GLn ×B Nm

?

∩

ac - nullmn

?

∩

Figure 6. Resolution of the nullcone.

Therefore, there is a natural one-to-one correspondence between GLn-orbits in
GLn.U and B-orbits in U . Further, ac is a desingularization of the nullcone and
nullmn is irreducible of dimension

(m+ 1)
n(n− 1)

2
.

Proof. Let A ∈ N be a strictly upper triangular matrix of rank n − 1 and
g ∈ GLn such that gAg−1 ∈ N , then g ∈ B as one verifies by first bringing A into
Jordan-normal form Jn(0). This implies that over a point x = (A1, . . . , Am) ∈ U
the fiber of the action map

GLn ×Nm ac-- nullmn

has dimension n(n−1)
2 = dim B. Over all other points the fiber has at least dimen-

sion n(n−1)
2 .But then, by the dimension formula we have

dim nullmn = dim GLn + dim Nm − dim B = (m+ 1)
n(n− 1)

2
Over GLn.U this map is an isomorphism of GLn-varieties. Irreducibility of nullmn
follows from surjectivity of ac as C[nullmn ] ⊂ C[GLn] ⊗ C[Nm] and the latter is a
domain. These facts imply that the induced action map

GLn ×B Nm ac- nullmn

is birational and as the former is a smooth variety (being a vectorbundle over the
flag manifold), this is a desingularization. �

This result gives us a complexity-reduction, both in the dimension of the acting
group and in the dimension of the space acted upon, fromGLn-orbits in the nullcone
nullmn , to B-orbits in Nm at least on the stratum GLn.U described before. The
aim of the Hesselink stratification of the nullcone is to extend this reduction also
to the complement.

Definition 113. Let s ∈ Sn and let Cs be the vectorspace of all m-tuples in
Mm
n which are of corner-type Cs. We have seen that there is a Zariski open subset

(but, possibly empty) Us of Cs consisting of m-tuples of optimal corner type Cs.
Observe that the action of conjugation of GLn on Mm

n induces an action of the
associated parabolic subgroup Ps on Cs.

The Hesselink stratum Ss associated to s is the subvariety GLn.Us where Us is
the open subset of Cs consisting of the optimal Cs-type tuples.
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Theorem 124 (Hesselink). With notations as before we have a commuting
diagram

GLn ×Ps Us
' - Ss

GLn ×Ps Cs

?

∩

ac - Ss

?

∩

where ac is the action map, Ss is the Zariski closure of Ss in nullmn and the upper
map is an isomorphism of GLn-varieties.

Here, GLn/Ps is the flag variety associated to the parabolic subgroup Ps and
is a projective manifold. The variety GLn ×Ps Cs is a vectorbundle over the flag
variety GLn/Ps and is a subbundle of the trivial bundle GLn ×Ps Mm

n .
Therefore, the Hesselink stratum Ss is an irreducible smooth variety of dimen-

sion
dim Ss = dim GLn/Ps + rk GLn ×Ps Cs

= n2 − dim Ps + dimC Cs

and there is a natural one-to-one correspondence between the GLn-orbits in Ss and
the Ps-orbits in Us.

Moreover, the vectorbundle GLn×PsCs is a desingularization of Ss hence ’feels’
the gluing of Ss to the remaining strata. Finally, the ordering of corners has the
geometric interpretation

Ss ⊂
⋃

‖s′‖≤‖s‖

Ss′

Proof. A similar argument as in the proof of theorem 123 using the facts we
collected in previous examples. �

We have seen that Us = p−1 ressα(Qs, θs) with Cs
p-- Bs the canonical pro-

jection forgetting the non-border entries. As the action of the parabolic subgroup
Ps restricts to the action of its Levi-part Ls on Bs = repαs

Q there is a canonical
projection

Us/Ps
p-- mossαs

(Qs, θs)
to the moduli space of θs-semistable representations in repαs

Qs. As none of the
components of Qs admits cycles, these moduli spaces are projective varieties. For
small values of m and n these moduli spaces give good approximations to the study
of the orbits in the nullcone.

Example 161. (The nullcone null2
3) Hanspeter Kraft described the orbits in

null2
3 in [35, p. 202] by brute force. The orbit space decomposes as a disjoint

union of tori is depicted in figure 7 Here, each node corresponds to a torus of
dimension the right-hand side number in the bottom row. A point in this torus
represents an orbit with dimension the left-hand side number. The top letter is
included for classification purposes. That is, every orbit has a unique representant
in the list of couples of 3 × 3 matrices (A,B) given in figure 8. The top letter
gives the torus, the first 2 rows give the first two rows of A and the last two rows
give the first two rows of B, x, y ∈ C∗. We will derive this result from the above
description of the Hesselink stratification. To begin, the relevant data concerning
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r
0 0

p
4 0

q
4 0

o
4 1

k
6 0

l
6 0

m
6 0

n
6 0

g
7 0

h
6 1

i
6 1

j
7 0

b
7 1

c
7 1

d
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Figure 7. Kraft’s diamond for null2
3.

a
0 1 0
0 0 1
0 x 0
0 0 y

b
0 1 0
0 0 1
0 0 0
0 0 x

c
0 1 0
0 0 1
0 x 0
0 0 0

d
0 1 0
0 0 1
0 x y
0 0 x

e
0 1 0
0 0 1
0 x 0
0 0 0

f
0 0 0
0 0 1
0 1 0
0 0 x

g
0 1 0
0 0 0
0 0 0
0 0 1

h
0 1 0
0 0 1
0 0 x
0 0 0

i
0 0 x
0 0 0
0 1 0
0 0 1

j
0 0 0
0 0 1
0 1 0
0 0 0

k
0 0 1
0 0 0
0 1 0
0 0 0

l
0 0 0
0 0 1
0 0 1
0 0 0

m
0 0 1
0 0 0
0 1 0
0 0 0

n
0 0 0
0 0 0
0 1 0
0 0 1

o
0 1 0
0 0 0
0 x 0
0 0 0

p
0 1 0
0 0 0
0 0 0
0 0 0

q
0 0 0
0 0 0
0 1 0
0 0 0

r
0 0 0
0 0 0
0 0 0
0 0 0

Figure 8. Orbit representants in null2
3.

S3 is summarized in the table of figure 9 For the last four corner types, Bs = Cs
whence the orbit space Us/Ps is isomorphic to the moduli space mossssαs

(Qs, θs).
Consider the quiver-setting

1 −2

��������2 ��������1gg ww

If the two arrows are not linearly independent, then the representation contains a
proper subrepresentation of dimension-vector β = (1, 1) or (1, 0) and in both cases
θs(β) < 0 whence the representation is not θs-semistable. If the two arrows are
linearly independent, we can use the GL2-component to bring them in the form

(
[
0
1

]
,

[
1
0

]
), whence mossssαs

(Qs, αs) is reduced to one point, corresponding to the



7.3. NULLCONES OF QUIVERREPRESENTATIONS. 287

tableau s Bs, Cs Ps (Qs, αs, θs)

1 1 1 (1, 0,−1)

t t t tt tt 1 0 −1��������1 ��������1 ��������1ff
xx

ff
xx

1 2 ( 1
3
, 1
3
,− 2

3
)

t t tt t tt 1 −2��������2 ��������1ff
xx

2 1 ( 2
3
,− 1

3
,− 1

3
)

t t tt tt t 2 −1��������1 ��������2ff
xx

1 1
1 ( 1

2
, 0,− 1

2
)

t t tt tt
1 −1

0

��������1 ��������1

��������1

ff
xx

3 (0, 0, 0, )

t t tt t tt t t 0��������3

Figure 9. Hesselink strata for null2
3.

matrix-couple of type l

(

0 0 0
0 0 1
0 0 0

 ,

0 0 1
0 0 0
0 0 0

 )

A similar argument, replacing linear independence by common zero-vector shows
that also the quiver-setting corresponding to the tableau 2 1 has one point as its
moduli space, the matrix-tuple of type k. Next, consider the quiver setting

1 −1

0

��������1 ��������1

��������1

gg ww

A representation in repαs
Qs is θs-semistable if and only if the two maps are not

both zero (otherwise, there is a subrepresentation of dimension β = (1, 0) with
θs(β) < 0). The action of GL(αs) = C∗ ×C∗ on C2 − 0 has a s orbit space P1 and
they are represented by matrix-couples

(

0 0 a
0 0 0
0 0 0

 ,

0 0 b
0 0 0
0 0 0

 )
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with [a : b] ∈ P1 giving the types o,p and q. Clearly, the stratum 3 consists just
of the zero-matrix, which is type r. Remains to investigate the quiver-setting

1 0 −1

��������1 ��������1 ��������1

b

gg

a

ww

d

gg

c

ww

Again, one verifies that a representation in repαs
Qs is θs-semistable if and only if

(a, b) 6= (0, 0) 6= (c, d) (for otherwise one would have subrepresentations of dimen-
sions (1, 1, 0) or (1, 0, 0)). The corresponding GL(αs)-orbits are classified by

mossssαs
(Qs.θs) ' P1 × P1

corresponding to the matrix-couples of types a, b, c, e, f, g, j, k and n

(

0 c 0
0 0 a
0 0 0

 ,

0 d 0
0 0 b
0 0 0

 )

where [a : b] and [c : d] are points in P1. In this case, however, Cs 6= Bs and we
need to investigate the fibers of the projection

Us/Ps
p-- mossssαs

(Qs, αs)

Now, Ps is the Borel subgroup of upper triangular matrices and one verifies that
the following two couples

(

0 c 0
0 0 a
0 0 0

 ,

0 d 0
0 0 b
0 0 0

 ) and (

0 c x
0 0 a
0 0 0

 ,

0 d y
0 0 b
0 0 0

 )

lie in the same B-orbit if and only if det
[
a c
b d

]
6= 0, that is, if and only if

[a : b] 6= [c : d] in P1. Hence, away from the diagonal p is an isomorphism. On
the diagonal one can again verify by direct computation that the fibers of p are
isomorphic to C, giving rise to the cases d, h and i in the classification.
The connection between this approach and Kraft’s result is depicted in figure 10.
The picture on the left is Kraft’s toric degeneration picture where we enclosed
all orbits belonging to the same Hesselink strata, that is, having the same op-
timal corner type. The dashed region enclosed the orbits which do not come
from the moduli spaces mossssαs

(Qs, θs), that is, those coming from the projection
Us/Ps -- mossssαs

(Qs, θs)). The picture on the right gives the ordering of the
relevant corners.

Example 162. We see that we get most orbits in the nullcone from the moduli
spaces mossssαs

(Qs, θs). The reader is invited to work out the orbits in null2
4. We

list the moduli spaces of the relevant corners in figure 11 Observe that two potential
corners are missing in this list. This is because we have the following quiver setting
for the corner
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Figure 10. Nullcone of couples of 3× 3 matrices.

corner mossssαs
(Qs, θs) corner mossssαs

(Qs, θs) corner mossssαs
(Qs, θs)

P1 × P1 × P1 P1 P1

P3 t P1 × P1 t P1 × P1 P1 t S2(P1) P0

P1 P1 P0

Figure 11. Moduli spaces appearing in null2
4.

and there are no θs-semistable representations as the two maps have a common
kernel, whence a subrepresentation of dimension β = (1, 0) and θs(β) < 0. A
similar argument holds for the other missing corner and quiver setting

1 −3
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For general n, a similar argument proves that the corners associated to the tableaux
1 n and n 1 are not optimal for tuples in nullmn+1 unless m ≥ n. It is also easy
to see that with m ≥ n all relevant corners appear in nullmn+1, that is all potential
Hesselink strata actually appear for large m.

After this lengthy description of the nullcone in the generic case we now describe
nullα Q, the nullcone for the basechange action of GL(α) in repα Q. Fortunately,
the only remaining difficulty is a notational one.

Definition 114. Up to conjugation, any one-parameter subgroup λ of GL(α)
lies in the maximal torus Ta with a = |α| and can be represented by an integral
a-tuple (r1, . . . , ra) ∈ Za. We have to take the quiver-vertices into account, so we
decompose the integer interval [1, 2, . . . , a] into vertex intervals Ivi such that

[1, 2, . . . , a] = tki=1 Ivi
with Ivi

= [
i−1∑
j=1

aj + 1, . . . ,
i∑

j=1

aj ]

The weights of Ta are isomorphic to Za having canonical generators πp for 1 ≤ p ≤ a.
Decompose the representation space into weight spaces

repα Q =
⊕

πpq=πq−πp

repα Q(πpq)

where the eigenspace of πpq is non-zero if and only if for p ∈ Ivi
and q ∈ Ivj

, there
is an arrow ��������i��������j oo

in the quiver Q. Call πα Q the set of weights πpq which have non-zero eigenspace in
repα Q. We can write every representation as V =

∑
p,q Vpq where Vpq is a vector

of the (p, q)-entries of the maps V (a) for all arrows a in Q from vi to vj . The action
of Ta on repα Q is induced by conjugation, hence for λ determined by (r1, . . . , ra)

lim
t→0

λ(t).V = 0 ⇔ rq − rp ≥ 1 whenever Vpq 6= 0

Again, we define the corner type C of the representation V by defining the subset
of real a-tuples

EV = {(x1, . . . , xa) ∈ Ra | xq − xp ≥ 1 ∀ Vpq 6= 0}

and determine a minimal element sV in it, minimal with respect to the usual norm
on Ra. Again, sV is a uniquely determined point in Qa, having the characteristic
property that its entries can be partitioned into strings

{pl, . . . , pl︸ ︷︷ ︸
al0

, pl + 1, . . . , pl + 1︸ ︷︷ ︸
al1

, . . . , pl + kl, . . . , pl + kl︸ ︷︷ ︸
alkl

} with all alm ≥ 1

which are balanced, that is
∑kl

m=0 alm(pl + m) = 0. We cannot bring sV into
dominant form, as we can only permute base-vectors of the vertex-spaces. That is,
we can only use the action of the vertex-symmetric groups

Sa1 × . . .× Sak
⊂ - Sa

to bring sV into vertex dominant form , that is if sV = (s1, . . . , sa) then

sq ≤ sp whenever p, q ∈ Ivi for some i and p < q
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Example 163. We compile a list Sα of such rational a-tuples by the following
algorithm
• Start with the list Sa of matrix corner types.
• For every s ∈ Sa consider all permutations σ ∈ Sa/(Sa1 × . . . × Sak

) such that
σ.s = (sσ(1), . . . , sσ(a)) is vertex dominant.
• Take Hα to be the list of the distinct a-tuples σ.s which are vertex dominant.
• Remove s ∈ Hα whenever there is an s′ ∈ Hα such that

πs Q = {πpq ∈ πα Q | sq − sp ≥ 1} ⊂ πs′ Q = {πpq ∈ πα Q | s′q − s′p ≥ 1}

and ‖ s ‖>‖ s′ ‖.
• The list Sα are the remaining entries s from Hα.

For s ∈ Sα, we define associated quiver data similar to the case of matrices
• The corner Cs is the subspace of repα Q such that all arrow matrices Vb, when
viewed as a×a matrices using the partitioning in vertex-entries, have only non-zero
entries at spot (p, q) when sq − sp ≥ 1.
• The border Bs is the subspace of repα Q such that all arrow matrices Vb, when
viewed as a×a matrices using the partitioning in vertex-entries, have only non-zero
entries at spot (p, q) when sq − sp = 1.
• The parabolic subgroup Ps(α) is the intersection of Ps ⊂ GLa with GL(α) embed-
ded along the diagonal. Ps(α) is a parabolic subgroup of GL(α), that is, contains
the product of the Borels B(α) = Ba1 × . . .×Bak

.
•The Levi-subgroup Ls(α) is the intersection of Ls ⊂ GLa with GL(α) embedded
along the diagonal.

We say that a representation V ∈ repα Q is of corner type Cs whenever V ∈ Cs.
By permuting the vertex-bases, every representation V ∈ repα Q can be brought to
a corner type Cs for a uniquely determined s which is a vertex-dominant reordering
of sV .

We solve the problem of optimal corner representations by introducing a new
quiver setting. Fix a type s ∈ Sα Q and let J1, . . . , Ju be the distinct strings
partitioning the entries of s, say with

Jl = {pl, . . . , pl︸ ︷︷ ︸Pk
i=1 bi,l0

, pl + 1, . . . , pl + 1︸ ︷︷ ︸Pk
i=1 bi,l1

, . . . , pl + kl, . . . , pl + kl︸ ︷︷ ︸Pk
i=1 bi,lkl

}

where bi,lm is the number of entries p ∈ Ivi
such that sp = pl +m. To every string

l we will associate a quiver Qs,l and dimension vector αs,l as follows
• The quiver Qs,l has k.(kl + 1) vertices labeled (vi,m) with 1 ≤ i ≤ k and 0 ≤
m ≤ kl. In Qs,l there are as many arrows from vertex (vi,m) to vertex (vj ,m+ 1)
as there are arrows in Q from vertex vi to vertex vj . There are no arrows between
(vi,m) and (vj ,m′) if m′ −m 6= 1.
• The dimension-component of αs,l in vertex (vi,m) is equal to bi,lm.

The quiver-setting (Qs, αs) associated to a type s ∈ Sα Q will be the disjoint
union of the string quiver-settings (Qs,l, αs,l) for 1 ≤ l ≤ u. Again, there are natural
isomorphisms {

Bs ' repαs
Qs

Ls(α) ' GL(αs)

Moreover, the base-change action of GL(αs) on repαs
Qs coincides under the iso-

morphisms with the action of the Levi-subgroup Ls(α) on the border Bs.
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In order to determine the representations in repαs
Qs which have optimal

corner type Cs we define the following character on the Levi-subgroup

Ls(α) =
u∏
l=1

×ki=1 ×
kl
m=0 GLbi,lm

χθs- C∗

determined by sending a tuple (gi,lm)ilm -
∏
ilm det g

mi,lm

i,lm where the exponents
are determined by

θs = (mi,lm)ilm where mi,lm = d(pl +m)

with d the least common multiple of the numerators of the rational numbers pl for
all 1 ≤ l ≤ u.

Theorem 125. Let V ∈ nullα Q of corner type Cs. Then, V is of optimal
corner type Cs if and only if under the natural maps

Cs
π-- Bs

'- repαs
Qs

V is mapped to a θs-semistable representation in repαs
Qs. If Us is the open

subvariety of Cs consisting of all representations of optimal corner type Cs, then

Us = π−1 ressαs(Qs, θs)

For the corresponding Hesselink stratum Ss = GL(α).Us we have the commuting
diagram

GL(α)×Ps(α) Us
' - Ss

GL(α)×Ps(α) Cs

?

∩

ac - Ss

?

∩

where ac is the action map, Ss is the Zariski closure of Ss in nullα Q and the
upper map is an isomorphism as GL(α)-varieties.

Here, GL(α)/Ps(α) is the flag variety associated to the parabolic subgroup Ps(α)
and is a projective manifold. The variety GL(α) ×Ps(α) Cs is a vectorbundle over
the flag variety GL(α)/Ps(α) and is a subbundle of the trivial bundle GL(α)×Ps(α)

repα Q.
Hence, the Hesselink stratum Ss is an irreducible smooth variety of dimension

dim Ss = dim GL(α)/Ps(α) + rk GL(α)×Ps(α) Cs

=
k∑
i=1

a2
i − dim Ps(α) + dimC Cs

and there is a natural one-to-one correspondence between the GL(α)-orbits in Ss
and the Ps(α)-orbits in Us.

Moreover, the vectorbundle GL(α)×Ps(α) Cs is a desingularization of Ss hence
’feels’ the gluing of Ss to the remaining strata. The ordering of corners has the
geometric interpretation

Ss ⊂
⋃

‖s′‖≤‖s‖

Ss′
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Figure 12. Local quiver settings for curve orders.

Finally, because Ps(α) acts on Bs by the restriction to its subgroup Ls(α) = GL(αs)
we have a projection from the orbit space

Us/Ps
p-- mossαs(Qs, θs)

to the moduli space of θs-semistable quiver representations.

Example 164. Let (A, trA) ∈ alg@n over an affine curve X = tissnA and
ξ ∈ smoothA, then the local quiver setting (Q,α) is determined by an oriented
cycle Q on k vertices with k ≤ n being the number of distinct simple components of
Mξ, the dimension vector α = (1, . . . , 1) as in figure 12 and an unordered partition
p = (d1, . . . , dk) having precisely k parts such that

∑
i di = n, determining the

dimensions of the simple components of Mξ.
Fix a cyclic ordering of the k-vertices {v1, . . . , vk}, then the set of weights of

the maximal torus Tk = C∗ × . . .× C∗ = GL(α) occurring in repα Q is the set

πα Q = {πk1, π12, π23, . . . , πk−1k}

Denote K =
∑k−1
i=0 i = k(k−1)

2 and consider the one string vector

s = ( . . . , k − 2− K

k
, k − 1− K

k
,−K

k︸︷︷︸
i

, 1− K

k
, 2− K

k
, . . . )

then s is balanced and vertex-dominant, s ∈ Sα Q and πs Q = Π. To check whether
the corresponding Hesselink strata in nullα Q is nonempty we have to consider the
associated quiver-setting (Qs, αs, θs) which is

−K −K + k −K + 2k −K + k2 − 2k −K + k2 − k

vi vi+1 vi+2 vi−2 vi−1

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .// // // // //

It is well known and easy to verify that repαs
Qs has an open orbit with represen-

tative all arrows equal to 1. For this representation all proper subrepresentations
have dimension vector β = (0, . . . , 0, 1, . . . , 1) and hence θs(β) > 0. That is, the
representation is θs-stable and hence the corresponding Hesselink stratum Ss 6= ∅.
Finally, because the dimension of repαs

Qs is k − 1 we have that the dimension of
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Figure 13. Local quiver settings for surface orders.

this component in the representation fiber π−1(x) is equal to

dim GLn − dim GL(α) + dim repαs
Qs = n2 − k + k − 1 = n2 − 1

and we obtain the following characterization of the representation fiber

The representation fiber π−1(ξ) has exactly k irreducible components of dimension
n2 − 1, each the closure of one orbit. In particular, if A is alg@n-smooth, the
quotient map

trepnA
π-- tissnA = X

is flat (all fibers have the same dimension n2 − 1).

Example 165. Let (A, trA) ∈ alg@n over an affine surface S = tissnA and
let ξ ∈ smoothA. The local structure of A is determined by a quiver setting (Q,α)
where α = (1, . . . , 1) and Q is a two-circuit quiver on k+ l+m ≤ n vertices, corre-
sponding to the distinct simple components of Mξ as in figure 13 and an unordered
partition p = (d1, . . . , dk+l+m) of n with k + l + m non-zero parts determined by
the dimensions of the simple components of Mξ. With the indicated ordering of
the vertices we have that

πα Q = {πi i+1 |


1 ≤ i ≤ k − 1
k + 1 ≤ i ≤ k + l − 1
k + l + 1 ≤ i ≤ k + l +m− 1

}

∪ {πk k+l+1, πk+l k+l+1, πk+l+m 1, πk+l+m k+1}

As the weights of a corner cannot contain all weights of an oriented cycle in Q we
have to consider the following two types of potential corner-weights Π of maximal
cardinality

• (outer type) : Π = πα Q − {πa, πb} where a is an edge in the interval
[v1, . . . , vk] and b is an edge in the interval [vk+1, . . . , vk+l].
• (inner type) : Π = πα Q − {πc} where c is an edge in the interval

[vk+l+1, vk+l+m].
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A (lengthy) investigation of all the different cases results in the following result
which we leave as an exercise :

Let ξ ∈ smoothA be of local type (Aklm, α). Then, the representation fiber π−1(ξ)
has exactly 2+(k−1)(l−1)+(m−1) irreducible components of which 2+(k−1)(l−1)
are of dimension n2− 1 and are closure of one orbit and the remaining m− 1 have
dimension n2 and are closures of a one-dimensional family of orbits. In particular,
if A is alg@n-smooth, then the algebraic quotient map

trepnA
π-- tissnA = S

is flat if and only if all local quiver settings of A have quiver Aklm with m = 1.

The final example will determine the fibers over smooth points in the quotient
varieties (or moduli spaces) provided the local quiver is symmetric. This computa-
tion is due to Geert Van de Weyer [11].

Example 166. (Smooth symmetric settings) Recall from theorem 100 that a
smooth symmetric quiver setting (sss) if and only if it is a tree constructed as a
connected sum of three different types of quivers:

• '&%$ !"#m
'' ��������nhh

• ��������1

m
#+ ��������n

m

ck , with m ≤ n

• ��������1
(( '&%$ !"#mgg

'' ��������nhh

• '&%$ !"#m
'' ��������2hh

'' ��������ngg

where the connected sum is taken in the vertex with dimension 1. We call the
vertices where the connected sum is taken connecting vertices and graphically depict
them by a square vertex �. We want to study the nullcone of connected sums
composed of more than one of these quivers so we will focus on instances of these
four quivers having at least one vertex with dimension 1:

I ��������1

m
#+ ��������n

m

ck , with m ≤ n

II(1) ��������1
(( '&%$ !"#mgg

'' ��������1hh

II(2) ��������1
(( '&%$ !"#mgg

'' ��������nhh

We will call the quiver settings of type I and II forming an sss (Q,α) the terms
of Q.

claim 1 : Let (Q,α) be an sss and Qµ a type quiver for Q, then any string quiver
of Qµ is either a connected sum of string quivers of type quivers for terms of Q or
a string quiver of type quivers of '&%$ !"#m

""��������nbb ,

��������n .
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Consider a string quiver Qµ(i) of Qµ. By definition vertices in a type quiver are
only connected if they originate from the same term in Q. This means we may
divide the string quiver Qµ(i) into segments, each segment either a string quiver of
a type quiver of a term of Q (if it contains the connecting vertex) or a level quiver
of a type quiver of the quivers listed above (if it does not contain the connecting
vertex).

The only vertices these segments may have in common are instances of the
connecting vertices. Now note that there is only one instance of each connecting
vertex in Qµ because the dimension of each connecting vertex is 1. Moreover, two
segments cannot have more than one connecting vertex in common as this would
mean that in the original quiver there is a cycle, proving the claim.

Hence, constructing a type quiver for an sss boils down to patching together
string quivers of its terms. These string quivers are subquivers of the following two
quivers:

I:
1

�%
CCCC�������� 9A{{{{ ��������

II:
1

  BB
B

. . . ��������
!!D

DD ��������
!!D

DD �������� >>|||
!!D

DD ��������
!!D

DD ��������
!!D

DD ��������
!!D

DD �������� . . .

. . . �������� ==zzz �������� ==zzz �������� ==zzz �������� ==zzz �������� ==zzz �������� ==zzz �������� . . .

Observe that the second quiver has two components. So a string quiver will
either be a tree (possible from all components) or a quiver containing a square. We
will distinguish two different types of squares; S1 corresponding to a term of type
II(1) and S2 corresponding to a term of type II(2).

S1 S2

1

!!CC
C�������� =={{{
!!CC

C ��������
1

=={{{

1

  BB
B

. . .
%%JJ

J �������� >>|||
""E

EE ��������
""E

EE . . .�������� <<yyy �������� <<yyy �������� 99ttt
These squares are the only polygons that can appear in our type quiver. Indeed,
consider a possible polygon

vp
...

��������

��$
$$
$$
$$
$$
$$
$$
$$
$$
$

vi ��������
BB

vj ��������
BB����

��:
::

:

vk...

��������
��vq ��������
��:

::
:

vr ��������
This polygon corresponds to the following subquiver of Q:

vi oo // vp aa
!!BB

B

vj
}}
==|||
aa
!!BB

B vr

vk oo // vq
}}
==|||
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But Q is a tree, so this is only a subquiver if it collapses to vi oo // vj oo // vk .

claim 2 : Let (Q,α) be an sss and Qµ a type quiver containing (connected)
squares. If Qµ determines a non-empty Hesselink stratum then

(i) the 0-axis in Qµ lies between the axes containing the outer vertices of the
squares of type S1;

(ii) squares of type S1 are connected through paths of maximum length 2;
(iii) squares of type S1 that are connected through a path of length 2 are con-

nected to other quivers in top and bottom vertex (and hence originate from
type II(1) terms that are connected to other terms in both their connecting
vertices);

(iv) the string µ(i) containing squares of type S1 connected through a path of
length two equals (. . . ,−2,−1, 0, 1, 2, . . . ).

(v) for a square of type S2:

µi

��������1

##G
GG

. . .
%%KK

K �������� ;;xxx
$$I

II ��������
""E

EE . . .�������� <<yyy �������� ::uuu �������� 99sss

with p vertices on its left branch and q vertices on its right branch we have

−q
2
≤ µi ≤

p

2

Let us call the string quiver of Qµ containing the squares Qµ(i) and let θ ∈ µ(i)N0

be the character determining this string quiver. Consider the subrepresentation

θi θi+1 θi+2

��������•
''OOOOO

��������0

88rrrr

&&LLLL ��������•
��������•

77ooooo

This subrepresentation has character θ(αµ(i))−αµ(i)(v)θi ≥ 0 where v is the vertex
which dimension we reduced to 0, so θi ≤ 0. But then the subrepresentation

θi θi+1 θi+2

��������0

''OOOOO
��������0

99rrrrr

%%LL
LLL

��������•
��������0

77ooooo

gives θi+2 ≥ 0, whence (i). Note that the left vertex of one square can never lie on
an axis right of the right vertex of another square. At most it can lie on the same
axis as the right vertex, in which case this axis is the 0-axis and the squares are
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α1 =

 1
1 1

1


α2 =

 1
1 2

1


α3 =

 1
2 2

1


Figure 14. Possible dimension vectors for squares.

connected by a path of length 2. In order to prove (iii) look at the subrepresentation

−2 −1 0 1 2
��������0

!!B
BB��������0

==|||

!!C
CC

��������•
��������•
=={{{

��������•
==zzz

��������•
$$II

II

::uuuu

��������•
88rrrr

&&LLLL ��������•
��������•

::uuuu

This subrepresentation has negative character and hence the original representation
was not semistable. Finally, for (v) we look at the subrepresentation obtained by
reducing the dimension of all dotted vertices by 1:

µi

��������1

""EE
EE

. . .
##G

GG
��������•
<<yyy

##F
FF

��������
  A

AA . . .

��������•
;;www ��������•

>>}}} ��������•
<<xxx �������� ;;www

having character −((p + 1)µi −
∑p
j=1 j) ≥ 0. So µi ≤ p

2 . Mirroring this argument
yields the other inequality µi ≥ − q2 .

claim 3 : Let (Q,α) be an sss and Qµ be a type quiver determining a non-empty
stratum and let Qµ(i) be a string quiver determined by a segment µ(i) not containing
0. Then the only possible dimension vectors for squares of type S1 in Qµ(i) are those
of figure 14.

Top and bottom vertex of the square are constructed from the connecting vertices
so can only be one-dimensional. Left and right vertex of the square are constructed
from a vertex of dimension n. Claim 2 asserts that the leftmost vertex lies on a
negative axis while the rightmost vertex lies on a positive axis. If the left dimension
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is > 2 then the representation splits

��������1

��?
??

?

V1
��������2

??����

��?
???

��������
��������1

??����

⊕

V2
��������r

with r = m − 2. By semistability the character of V2 must be zero. A similar
argument applies to the right vertex.

claim 4 : Let µ be a type determining a non-empty stratum.

(i) When a vertex (v, i) in Qµ determined by a term of type II(1) has α(v, i) >
2 then µi = 0.

(ii) When a vertex (v, i) in Qµ determined by a term of type I with m arrows
has α(v, i) > m then µi = 0.

Suppose we have a vertex v with dimension αµ(i)(v) > 2, then the number of
paths running through this vertex is at most 2: would there be at least three paths
arriving or departing in the vertex, it would be a connecting vertex which is not
possible because of its dimension. Are there two paths arriving and at least one
path departing, it must be a central vertex of a type II(2) term. But then the
only possible subtrees generated from type II(1) terms with vertices of dimension
at least three are (modulo reversing all arrows)

θi

1

""D
DD ��������n

""D
DD

1

θi

1

""D
DD ��������n

1

<<zzz

θi

1

""D
DD ��������n

In the last tree there are no other arrows from the vertex with dimension n. For
each of these trees we have a subrepresentation

θi

��������1

whence θi ≥ 0. But if θi > 0, reducing the dimension of the vertex with dimension
≥ 3 gives a subrepresentation with negative character, so θi = 0. The second part
is proved similarly.

Summarizing these results we obtain the description of the nullcone of a smooth
symmetric quiver-setting.

Let (Q,α) be an sss and µ a type determining a non-empty stratum in nullα Q.
Let Qµ be the corresponding type quiver and αµ the corresponding dimension vector,
then

(i) every connected component Qµ(i) of Qµ is a connected sum of string quiv-
ers of either terms of Q or quivers generated from terms of Q by removing
the connecting vertex. The connected sum is taken in the instances of the
connecting vertices and results in a connected sum of trees and quivers of
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the form
µ(i)j

''OOOO
. . .

%%
�������� 77oooo

''OOOO ��������
""

. . .�������� << �������� 77oooo �������� 99
(ii) For a square of type S1 we have µ(i)j−1 ≤ 0 ≤ µ(i)j+1. Moreover, such

squares cannot be connected by paths longer than two arrows and can only
be connected by paths of this length if µ(i)j+1 = 0.

(iii) For vertices (v, j) constructed from type II(1) terms we have αµi(v, j) ≤ 2
when µi 6= 0.

(iv) For a vertex (v, j) constructed from a type I term with m arrows we have
αµi

(v, j) ≤ m when µi 6= 0.
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sur-Bex, Suise 1980 (M. Kervaire and M. Ojanguren, eds.), Lecture Notes in Mathematics,
vol. 844, Springer-Verlag, Berlin Heidelberg New York, 1981, pp. 129–209.

19. Peter Gabriel and Andrei V. Roiter, Representations of finite-dimensional algebras, Springer-
Verlag, Berlin Heidelberg New York, 1997.

20. Victor Ginzburg, Non-commutative symplectic geometry, quiver varieties and operads,

preprint Chicago, 2000.
21. Alexander Grothendieck, Le groupe de Brauer 3. examples et compléments, Dix exposés sur

la cohomologie des schémas, North-Holland, Amsterdam, 1968, pp. 80–189.
22. Robin Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-

Verlag, Berlin Heidelberg New York, 1977.
23. Wim Hesselink, Desingularization of varieties of nullforms, Invent. Math. 55 (1979), 141–163.

24. Raymond Hoobler, When is Br(x)=Br’(x) ?, Brauer groups in Ring Theory and Algebraic
Geometry (Fred Van Oystaeyen and Alain Verschoren, eds.), Lecture Notes in Mathematics,
vol. 917, Springer-Verlag, Berlin Heidelberg New York, 1982, pp. 231–244.

301



302 BIBLIOGRAPHY

25. Birger Iversen, Generic local structure of morphisms in commutative algebra, Lecture Notes

Mathematics, vol. 310, Springer-Verlag Berlin Heidelberg New York, 1973.

26. Victor G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent.
Math. 56 (1980), 57–92.

27. Mikhail Kapranov, Noncommutative geometry based on commutator expansion, J. Reine

Angew. Math. 505 (1998), 73–118.
28. G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings, Lecture Notes

in Mathematics, vol. 339, Springer-Verlag, Berlin Heidelberg New York, 1973.

29. Ina Kersten, Brauergruppen von Körpern, Aspects of Mathematics, vol. D6, Vieweg, 1990.
30. Frances C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Princeton

University Press, 1984.

31. Friedrich Knop, Beweis des Fundamentalllemmas und des Scheibensatzes, Algebraische Trans-
formationsgruppen und Invariantentheorie, Algebraic Transformation Groups and Invariant

Theory (Hanspeter Kraft, Peter Slodowy, and Tonny A. Springer, eds.), DMV Seminar, vol. 13,
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affine algebra, 19
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trace affine, 65
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with trace, 63

algebraic functions, 198

Artin-Mumford exact sequence, 149

associated graded, 49

associated graded module, 124

associated quiver data, 291

associated quiver setting, 281

associativity constraint, 52

Azumaya algebra, 197

Azumaya locus, 196

balanced coweight, 278

barcode, 262

based linear map, 25

bigger empire, 232

bimodule, 14

bipartite double, 256

border, 282, 291

Borel subgroup, 283

boundary, 159

Bratelli diagram, 21

Brauer group, 197

Brauer stable points, 264

Brauer-Severi scheme, 264

Brauer-Severi variety, 264

Cartan

matrix, 238

Cartan homotopy formula, 85

cat-smooth, 12

Cayley-Hamilton

algebra, 67

formal polynomial, 67

center of mass, 233

character, 268

Chinese remainder theorem, 133

closed form, 26

coadjoint orbit, 229

cohomology

dimension, 141

commutator filtration, 49

compartment, 254

compartments, 237

component semigroup, 190

coniveau spectral sequence, 147

connected sum of quivers, 225

connecting morphism, 38

connection, 27

left, 27

right, 27

constructible set, 120

continuous module, 135

contractible algebra, 31

relative, 32

coordinate ring, 39

coproduct theorems, 38

corner, 279, 291

corner type, 290, 291

cover, 134

covers, 132

crossed product theorem, 139

cycles, 159

decomposable, 42
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deframing trick, 261

deRham cohomology

noncommutative, 82
noncommutative relative, 83

derivation, 30

super-, 30
derived functor, 135

differential, 162

differential forms
relative, 31

differential graded, 24

dimension vector, 43, 109
direct image, 144

dominance order, 110
dominant weight, 277

double centralizer theorem, 75

dual partition, 90
Dynkin diagram, 239

enveloping algebra, 50

equivalent marked quivers, 179
equivariant functor, 97

equivariant map, 97
etale

morphism, 132

topology, 132
etale cohomology, 136

etale neighborhood, 198

etale presheaf, 134
etale sheaf, 134

etale site, 133

etale split, 174
Euler derivation, 31

Euler form, 14, 160

Eulerian necklaces, 221
extension, 159

Fedosov product, 26
filtration degree, 49

final quiver setting, 220

finite filtration, 124
finite representation type, 240

first fundamental theorem, 219

fixed elements, 252
flag variety, 283
formal necklace, 92
formal structure, 51
free action, 253

free algebra, 12
free algebra product, 16

functor
n-th representation, 39
Cayley-Hamilton, 67
invariant, 72

left adjoint, 64
necklace, 61
necklace of degree n, 67

representable, 34
trace, 63

trace preserving representation, 104

fundamental roots, 241

Galois

absolute -group, 132

Galois cohomology, 136

general quotient, 245

general subrepresentation, 245

generator gradation, 69

generic matrix, 40

generic rank, 248

generic representation, 240

Gerstenhaber-Hesselink theorem, 112

global section, 134

going-down property, 118

Grassmann manifold, 242

greede representation, 233

Grothendieck topology, 132, 134

group

cohomological dimension, 141

Hamiltonian action, 229

Hamiltonian flows, 229

Harder-Narasinham filtration, 235

Henselian algebra, 198

strict, 198

Hesselink stratification, 284

Hesselink stratum, 284

Hilbert

theorem 90, 138

Hilbert criterium, 123

Hilbert stair, 265

Hochschild cohomology, 15

imaginary root, 243

implicit function theorem, 121

indecomposable projective, 19

indecomposable representation, 238

indecomposable representations, 120

indecomposable root, 240

indefinite form, 238

infinitesimal extension, 15

universal, 54

injective object, 135

integral extension, 118

invariant functor, 72

inversion depth, 204

isotypical component, 98

Jacobian matrix, 132

Jordan move

permutation, 277

Jordan normalform, 46

Jordan-Hölder filtration, 234

Kalman code, 261

Kalman theorem, 263

Karoubi complex, 82

relative, 83
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Krull Hauptideal result, 119

Kummer sequence, 134

left orthoginal, 254

Leray spectral sequence, 144

Levi subgroup, 279, 291

lexicographic order, 92

Lie derivative, 85

linear dynamical system, 258

completely controllable, 259

completely observable, 260

equivalent, 260

time invariant, 258

local quiver setting, 208, 274

locally closed set, 120

locally finite action, 97

Lyndon word, 51

marked quiver, 171

matrix

control, 259

cyclic, 79

Jacobian, 132

matrix exponential, 258

micro-localization, 50

module

indecomposable, 46

moduli space, 256, 268

moment map, 229

Morita equivalence, 15

morphism

dominant, 118

etale, 132

finite, 118, 162

flat, 252

open, 252

Nagata-Higman problem, 68

Nakayama lemma, 18

necklace, 59

primitive, 60

necklace algebra

n-th, 67

free, 65

necklace Lie algebra, 61

necklace relation, 93

fundamental, 95

necklace word

quiver-, 83

Newton function, 60, 66

Noether normalization, 118

norm map, 108

normal domain, 119

normal space, 163

number of parameters, 241

one parameter subgroup, 121

optimal corner, 291

optimal corner type, 292

orbit

map, 120

order

lexicographic, 92

Ore condition, 17

parabolic subgroup, 279, 291

partition, 90

partition transposition, 91

Penrose algebra, 22

Picard group, 20

Poincare duality, 149

Poincare-Birkhoff-Witt theorem, 52

Poisson algebra, 48, 85, 229

Poisson bracket, 228

Poisson manifold, 229

polarization, 73, 77

positive definite form, 238

preorder, 232

prime spectrum, 132

principal element theorem, 162

principal fibration, 203

principal symbol, 49

pure tensor, 74

quantum plane, 105

quiver, 13

involution, 85

noncommutative 1-forms, 83

noncommutative functions, 83

partial derivatives, 84

representation, 43

strongly connected, 192

strongly connected component, 193

symplectic structure, 85

symplectic vectorfield, 85

vectorfield, 85

quiver invariants, 80

quiver shrinking, 178

quiver varieties, 230

quotient map, 126

radical of a form, 238

ramification locus, 211

real root, 243

reduced trace, 199

reductive group, 97

Rees ring, 50

reflected dimension vector, 242

reflected quiver, 242

reflection, 242

reflection functor, 242

reflexive Azumaya algebra, 211

reflexive closure, 211

relative contractible algebra, 32

relative differential forms, 31

representable functor, 34

representation functor, 39
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representation type, 164

order, 208

successor, 208
representations, 33

restitution, 73, 78

Reynolds operator, 80, 97, 98
root, 34, 243

root algebra, 33

Schofield fractal, 237

Schur representation, 231

Schur’s lemma, 43
seesaw property, 232

self-extension

trace preserving, 170
semi-invariant, 268

standard determinantal, 273

semi-invariants, 268
semidefinite form, 238

semistable representation, 232, 268

semistable representation type, 274
separated filtration, 49

set of roots, 134
simple roots, 192

simplified quiver setting, 179

simply connected surface, 149
simultaneous conjugation, 41

singularity measure, 169

slope, 235
slope order, 235

smooth locus, 168

smooth model, 169
special affine algebra, 204

spectral sequence, 54, 141

limiting term, 143
stability structure, 232

stabilizer subgroup, 163
stable representation, 232

string of numbers, 278

substitution, 101
invariant ideal, 101

super-commutator, 82

super-derivation, 30
Sylvester rank function, 237

symmetric algebra, 61
symmetric group, 90
symmetric polynomial

elementary, 66

Newton, 66
symmetric product, 191

symmetric quiver, 84
symplectic

action, 229
symplectic structure, 85
symplectic vectorfield, 85

tame quiver, 241

Tate field, 141
Tate’s theorem, 143

tensor algebra, 25, 61
test-object, 12

thickening, 54

thickening functor, 55
thickening structure, 56

Tits form, 238

topology
etale, 132

Grothendieck, 132
trace

nondegenerate, 99

relations, 99
trace affine, 65

trace algebra

n-th, 67
free, 65

trace map, 59

universal, 59
trace relation

fundamental, 99

Tsen field, 140
Tsen’s theorem, 140

twisted form, 137

types, 208

universal localization, 17

unramified cohomology, 148
upper envelope, 18

vector
dimension, 43

vertex

good, 195
interval, 290

large, 195

vertex dominant form, 290
vertex splitting, 179

vertex symmetric group, 290

wall, 210

weight, 278

weight space decomposition, 124, 277
Weyl algebra, 52

Weyl group, 243

witness algebra, 109
wrinkle, 150

Yang-Mills derivation, 29
Young

diagram, 90

tableau, 90, 110
Young move, 110

Young symmetrizer, 91

Zariski topology, 17, 50


