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Introduction

”... La suite est trop confuse dans les notes pour étre exploitable
telle quelle.”
Bellaiche, Dat, Marin, Racinet, Randriambololona in [33].

Rather than adding to the plethora of pet-proposals for a noncommutative
geometry, we will focus in this book on some methods that are likely to prove
useful in the ’final theory’. Whereas the details of this theory are unclear at the
time of writing, the rough outline is slowly emerging.

The starting point is that a lot of interesting (families of) moduli spaces in
algebraic geometry are special cases of the isomorphism problem in suitable Abelian
categories ab

moduli —— iso(ab)

In recent years one has come to realize that many of these naturally occurring
Abelian categories are locally controlled by noncommutative algebras

ab = U; rep 4;

where rep A; is the Abelian category of all finite dimensional representations of the
affine noncommutative algebra A; and where the covering is compatible with the
natural notions of isomorphism on both sides. However, one should not view rep A
as an affine noncommutative scheme. This is only justified under extra conditions
on A.

Among these noncommutative schemes rep A one singles out the smooth vari-
eties by imposing a noncommutative regularity condition on the algebra A. There
are several characterizations of commutative regular algebras. Generalizing these
to the world of noncommutative algebras leads to quite different notions of non-
commutative smoothness. We choose Grothendieck’s characterization in terms of
algebra lifts through nilpotent ideals. This approach has the advantage that the
resulting alg-smooth algebras behave well with respect to noncommutative differen-
tial forms and connections. An obvious disadvantage is that examples quickly lead
us away from the cosy setting of Noetherian algebras and into the exotic wilderness
of universal algebra constructions.

Basic examples of alg-smooth algebras include coordinate rings of smooth affine
curves as well as path algebras of finite quivers. More intricate examples are con-
structed from these by applying universal algebra constructions such as free prod-
ucts, universal localization, passing to a Morita equivalent algebra, taking the n-th
root, and so on.
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In this book we will present methods to tackle the isomorphism problem for
smooth noncommutative varieties, that is, we want to describe

iso(rep A)

for A an alg-smooth algebra. Clearly, this is a wild problem so sooner or later we
will hit the wall. All we can do is to try to push the wall a bit further. The methods
we will use are drawn from two classical sources : geometric invariant theory and
the theory of orders in central simple algebras.

We can partition rep A with respect to the dimension of the representation

rep A = |_|repn A

where rep, A is the affine scheme of n-dimensional representations of A. If A is
alg-smooth, each rep, A is a smooth affine scheme (in particular, it is reduced).
The direct sum @ on A-representation induces sum-morphisms

rep,A X rep,, B — rep,,, A

Whereas rep,, A is reduced, it usually decomposes into several irreducible compo-
nents

rep, A = |_| rep,A

la|=n

The component semigroup compA is the set of all occurring «, the addition is
induced by the sum morphisms and the dimension |«| defines an augmentation
compA — N.

Consider the subset simpA (resp. schurA) of all components containing a
simple (resp. a Schur) representation. The empire of the algebra A is the (infinite)
quiver Emp A with a vertex v,, for every a € schurA. The number of directed arrows
from the vertex v, to vg is equal to ext(w, ) which is the minimal dimension
of Extly(V,W) for V € rep,A and W € repyA. With empA we denote the full
subquiver on the vertices v, for a € simpA. These quivers contains the information
about the noncommutative étale structure of repA.

The wall of the alg-smooth algebra A is the (usually finite) full subquiver
wallA of EmpA on the vertices corresponding to semigroup generators of compA.
Without being too dogmatic about it, let us define repA to be affine if and only
if wallA is strongly connected, that is, every pair of vertices v, v belongs to an
oriented cycle in wallA. This means that there are ’enough’ simple representations
to allow a meaningful reduction. In general, one can reduce to an affine setting by
taking suitable universal localizations of A.

We assume that repA is affine and that wallA is a finite quiver on the semi-
group generators {aj,...,ax}. Then, A is said to be isomorphic in the noncom-
mutative étale topology to

B {j (wallA)

where the algebra B is Morita equivalent to the path algebra (wallA) of the finite
quiver wallA. The Morita equivalence is determined by the dimensions |«| of
the semigroup generators . We claim that path algebras of quivers (or Morita
equivalent algebras) play the role of affine spaces as being the only analytic local
structure for manifolds.
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The structure of empA is determined by the Euler form x4 of wallA. If g €
compA it can be written as

B =erar+...+ eray with e; € N
and 0 € simpA if and only if
xa(€,0;) <0 and chia(d;,e) <0

for all 1 < i <k with € = (eq,...,ex) (unless, wallA is just one oriented cycle in
which case € must be (1,...,1)). Further, the arrows from vz to v, in empA are
determined by the wall as

ext(B,7) = 0gy — xal(e,n)

ifn=_(f1,-..,fr) and v = fira1 + ... + frag. In particular, if A and A’ are in the
same étale isomorphismclass, then simpA = simpA’. We next define when such A
and A’ are birational in the noncommutative Zariski topology.

Let o € compA N compA’ with || = n, and consider the natural basechange
action of GL,, on rep, A and on rep_, A’ of which the orbits are precisely the isomor-
phism classes of representations. From invariant theory we recall that the closed
orbits can be classified by the affine scheme corresponding to the ring of polyno-
mial G L,-invariants. Michael Artin proved that the closed orbits determine the
isoclasses of semisimple n-dimensional representations and Claudio Procesi proved
that the ring of polynomial invariants is generated by traces of monomials in the
algebra generators. The corresponding quotient maps

’
™ . ™ .
rep, —> iss,A  rep A’ —— iss, A’

send the n-dimensional representation to the isomorphism class of the direct sum
of its Jordan-Holder components. If a € simpA = simpA’ then the induced PGL,,-
action is generically free, whence there is an open subset in the quotient varieties
over which the representation variety is a principal PG L,-fibration. Hence they de-
fine two central simple algebras X, resp. 3/, of dimension n? over the functionfield
C(issaA) resp. C(iss,A’). We call A and A’ birational in the noncommutative
Zariski topology if and only if for all o € simpA = simpA’ we have that iss,A is
birational to iss, A’ (hence they have the isomorphic functionfields and respecting
this isomorphism we have that
Yo =X

We can express this condition without reference to geometry. Define fa A to be
the algebra obtained from A by first adjoining formally all traces of monomials
in the algebra generators, then modding out all relations coming from the Cayley-
Hamilton identity for nxn matrices (Jo| = n) and finally taking the direct summand
corresponding to the irreducible component rep,A. These algebras natural come
equipped with a trace map and we define its image tr fa A to be the commutative
algebra ¢ A. Reformulating the above, we have that A and A’ are birational if and

only if
/ A and / A

are orders in the same central simple algebra for all a € simpA = simpA’.
The solution to the isomorphism problem for finite dimensional representation
of the alg-smooth algebra A combines the étale and the Zariski invariants of A.
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The main result asserts that

iso(repA) = |_| iso(null, Q) X azu/ Ax ... x azu/ A
—_—
Q@) . L

étale

Zariski
where the disjoint union is taken over all quiver settings (Q,a) with @ a finite
subquiver of empA on the vertices {vg,, ..., v} C simpA and where azu fﬁ Ais the
Azumaya locus of | 3, A. The correspondence is given as follows. Let M € repgA4,
then its image £ = mg(M) in issgA is given by the semi-simplification

M* =8P ... 08P

where the S; are non-isomorphic simples lying in rep; A and occurring with multi-
plicity e; in M®®. This already accounts for the Zariski part. Let m be the maximal
ideal of ClissgA] corresponding to mg(M), then the m-adic completion of the order
/ 5 A is fully determined by a quiver-setting

m

/ﬁAQZ<Q>

where @ is a quiver on [ vertices (corresponding to the distinct simple components
of M*%) and o = (ey,...,¢e;) (the multiplicities of the simple components). In @,
the number of arrows from the vertex corresponding to S; to that of S; is given by

# { } = dim Exty(S;, S;)
and one verifies that this number is ext(8;, 5;) whence @ is the full subquiver of

empA on the vertices {vg,, ..., }. In geometric terms, the local description implies
that the fiber of the quotient map in £ is isomorphic as G L,,-variety to

71'6_1(5) ~ GL, x%®) pu11, Q

where null, @ is the nullcone for the basechange action group GL(«) on the space
of a-dimensional representations of Q. In particular, G L,-orbits in the fiber 771(£)
correspond one-to-one to GL(«)-orbits in the nullcone, which accounts for the étale
part in the above description.

If there are not enough simple representations, that is if repA is not affine, it
is better to consider the bigger empire EmpA on the Schur roots of A. One replaces
the process of semisimplification by that of taking the Jordan-Hdlder components
with respect to a suitable stability structure on repA. Using Schofield’s theory of
universal localization at Sylvester rank function one can usually reduce to the case
treated before, that is,

ressA = U;repAy,

where the universal localizations are taken such that repAy is affine and where
ressA are the finite dimensional representations of A which are semistable for
some stability structure on repA. If one fixes a stability structure 6, then the
substitute for iss,A is the moduli space moss,(A,6) whose points parametrize
direct sums of #-stable representations of A of total dimension a. The basis idea
of the above local description of ressA is that a f-stable representation becomes
simple in a suitable universal localization Ay.

In the special, but important, case of path algebras of quivers, these moduli
spaces also play a crucial role in the remaining combinatorial problem of describing
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the orbits in null, ). We give a representation theoretic interpretation of the Hes-
selink stratification of these nullcones in terms of associated string quiver settings
where the underlying quiver is directed. Non-emptiness of a potential stratum is
decided by the non-emptiness of the corresponding moduli space where the stabil-
ity structure is determined by the coweight. Unfortunately, there is a twist in the
tail. Whereas the moduli spaces account for most of the orbits in a given stratum,
to describe all orbits one has to enlarge the quiver and study the orbits under a
parabolic group. Here, we hit the wall with the methods presented in this book.
After all, describing repA, even in the special case of the free algebra, is a hopeless
problem.

This book is organized as follows. The first two chapters set the main stage,
we define alg-smooth algebras, give examples of them and show that they are the
natural class of noncommutative smooth algebras to consider from a noncommuta-
tive differential geometric perspective. Then, we introduce representation schemes
of affine algebras as the main tool to study these alg-smooth algebras. Whereas
for alg-smooth algebras one often gets by using only the reduced structure, for ar-
bitrary algebras the scheme structure is needed. This scheme structure contains all
information about algebra morphisms A —— M,,(C) where C is a commutative
algebra. In fact, one can even equip these schemes with a thickening structure,
inspired by the work of Kapranov, to include all algebra morphisms A — M,,(B)
where B is a noncommutative infinitesimal extension of a commutative ring.

In the third and fourth chapter we show that one can develop a geometry at
level n having all the sophistication of ordinary commutative geometry (which is
level 1). More precisely, if GL(n)-aff is the category of all commutative affine
schemes equipped with a linear GL,-action, then there is a triangle

algln
‘e
N %
alg i > GL(n)-aff
The fundamental anti-equivalence spec : commalg —— aff of commutative

algebraic geometry extends to a left inverse {}"* assigning to an affine GL,,-scheme
afX its witness algebra which is the algebra of GL,-equivariant polynomial maps
afX — M,,(C). There is the commuting diagram of functors

trep,,
alg®n > GL(n)-aff
ﬂn
tr quot
commalg aff
spec

where quot is the quotient functor which assigns to an affine scheme with GL,,-
action afX the affine scheme determined by the ring of polynomial invariants
Clafx]¥Ln.

The fifth chapter is pivotal in our approach to iso(repA). We recall enough
of étale cohomology to describe the Brauer group of functionfields by the coniveau
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spectral sequence and to describe orders by cohomology pointed sets of automor-
phism schemes provided we know their étale local description. The latter is given
by applying the Luna-Knop theory of étale slices to the setting of representation
schemes. As an illustration of the force of these two methods we characterize all
central simple algebras over a projective smooth surface having a noncommutative
smooth model.

The last two chapters apply the machinery developed so far to the isomorphism
problem of finite dimensional representations of alg-smooth algebras and their
contents was described above.

A major conceptual problem in writing this book was that it assumes some
familiarity with quite different topics : commutative algebraic geometry, invariant
theory, representation theory, étale cohomology, Brauer groups, universal algebra,
Azumaya algebras and p.i.-theory to name of few. Whereas I tried to include as
many details as feasible, the reader may want to consult some standard texts for
more details. I recommend, respectively, the books by Robin Hartshorne [22],
Hanspeter Kraft [36], Peter Gabriel and Andrei Roiter [19], J.S. Milne [47], Ina
Kersten [29], Aidan Schofield [60], Maxim Knus and Manuel Ojanguren [32] and
Claudio Procesi [52].



Notation

Machines.

commalg the category of commutative C-algebras.

alg the category of all C-algebras.

(m) = C(xy,...,xn) the free algebra in m variables.

(00) = C(x1, T2, . ..) the free algebra in infinitely many variables.
(Q) = CQ the path algebra of a finite quiver Q.

A A : Ais Morita-equivalent to A’.

A x A’ the algebra free product of A and A’.

mod A the category of left A-modules.

projnod A the finitely generated projective left A-modules.

Ay the universal localization of A at a set X of maps in projmod A.
u(X) : the upper envelope of a set ¥ of maps in projmod A.

Brat A : the Bratelli diagram of an inductive limit A of semi-simple
algebras.

dgalg the category of differential graded C-algebras.

Q A the ring of noncommutative differential forms of A.

QY A the ring of even noncommutative differential forms of A.
T(A) the tensor algebra of A.

1 4 the universal algebra for based linear maps from A.

V., (resp. V;) a right (resp. left) connection.

Derc A the Lie algebra of C-derivations of A.

Qp A the ring of B-relative noncommutative differential forms of A.

Thickenings.

{/A the n-th root algebra of A.

C[F] the coordinate ring of the affine scheme F.

rep, A the n-dimensional representation functor of A.
i the universal map A — M, ({/A).

poisson the category of commutative Poisson algebras.

Agp the Abelianization ﬁ of A.

AL the Lie algebra structure on A given by commutators.

F* A the k-th part of the commutator filtration on A.

gr A the associated graded algebra for the commutator filtration on A.
Q'4(A) the micro-localization of A at S wrt. the commutator filtration on
A

O'; the formal structure defined by A on spec Ag,.
(d) ((an))» the formal structure on A? determined by (d).

7
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fq the free Lie algebra on d variables.

thick the category of thickenings of commutative algebras.
thick.d the category of d-thickenings of commutative algebras.
fld : alg — thick.d, the d-th thickening functor.

[ ¢ alg — thick, the thickening functor.

Necklaces.

vect the category of C-vectorspaces.

[A, A], the subspace spanned by all commutators of A.

n the necklace associated to the word w.

s; the i-th Newton symmetric function.

neck, the space spanned by all necklaces in X4 = {z1,...,z4}.
{—, —} k the Kontsevich bracket on necklaces.

§ : alg — commalg the necklace functor.

alg@ the category of C-algebras with trace.

J : alg — alg@ the trace functor.

o; the i-th elementary symmetric function.

X((z") (t) the formal Cayley-Hamilton polynomial of degree n.
alg@n the category of Cayley-Hamilton algebras of degree n.
J., : alg — alg@n the Cayley-Hamilton functor of degree n.
fn : alg —— commalg the necklace functor of degree n.

ln : alg —— commalg the n-th invariant functor.

DR* the Karoubi complex.

H} noncommutative de Rham cohomology.

DR} the B-relative Karoubi complex.

H} 4r noncommutative B-relative de Rham cohomology.
neckg the necklace Lie algebra of a symmetric quiver.

Witnesses.

Sq the symmetric group on d letters.

A a partition (or conjugacy class of Sy).

A* the dual partition.

¢y the Young symmetrizer.

fund,, fundamental n-th necklace relation.

Tn : alg — alg@n the n-th equivariant functor.

cha,, fundamental n-th trace relation.

trep, A scheme of trace preserving n-dimensional representations.
GL(n)-aff the category of affine schemes with G L,,-action.

1" : GL(n)-aff — alg®n the witness algebra functor.

simpG L, the isomorphism classes of irreducible GL,,-representations.
V(s the isotypical component of V' of type s € simpGL,,.

iss, A the quotient scheme of rep,, A under the action of GL,,.
rrep, A the reduced variety of rep, A.

riss, A the reduced variety of iss, A.

O(M) the GL,-orbit of M € rep, A.

O(M) the Zariski closure of the orbit O(M).
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rep,A —D+ iss, A the quotient map.
U, unitary n X n matrices.
pr the real moment map.

Coverings.

specC the prime spectrum of C' € commalg.

Gk the absolute Galois group of the field K.

Cet the étale site of C' € commalg.

G, the multiplicative group scheme.

B, the group scheme of n-th roots of unity.

R f the right derived functors of f.

S(Cet) the sheaves on the étale site.

S®(C,y) the sheaves of Abelian groups on the étale site.
H!,(C,G) the étale cohomology groups for G € S%(Cey).
HL(C,G) the cohomology pointed set for G € S(Cet).
Twe (A) twisted forms of the C-algebra A.

Tsen.d the d-th Tsen property for fields.

Tate.d the d-th Tate property for fields.

ED? = E™ spectral sequence data.

afX,afy,... the affine scheme XY, ...

Stab the stabilizer subgroup.

T, X the tangent space in z to a variety (scheme) X.
N, X the normal space to the orbit in x € X.
smooth, A the n-th smooth locus of A.

m
J,,A the m-adic completion of [ A for m a maximal ideal of ¢ A.
Q*® a marked quiver.

e ramA the ramification locus of an order A.

Empires.

repA the Abelian category of finite dimensional representations of A.
compA the semigroup of connected components of repA.
X ™) the n-th symmetric product of a variety (scheme) X.
simpA the simple roots of A.

suppa the support of a dimension vector a.

azu, A the n-th Azumaya locus of A.

Cgh the strict Henselization of C' at p € specC.

C{x1,..., 24} the ring of algebraic functions in d variables.
Br(C) the Brauer group of C € commalg.

ext(c, #) the minimal dimension of extension groups.
empireA the empire of A.

nullempireA the nullcone of the empire of A.

types, A all representation types of a € compA.

<< the ordering on types, Q.

wallA the wall of A.

azu, A the Azumaya locus of A wrt. o € simpA.

ram, A the ramification locus of A wrt. a € simpA.
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e /™" A the reflexive closure of the order [ A.
e 3(C) the reflexive Brauer group of a normal commutative domain C'.
e neck, the Poisson Lie algebra on Cliss, Q).

Nullcones.

schur A the Schur roots of A.

EmpA the bigger empire of A.

ressA finitre dimensional semistable representations of A.

= confused in the stability structure.

A(V) special semistable subrepresentation of V.

V (V) special semistable factorrepresentation of V.

w(V) slope stability structure.

Ky(A) Grothendieck group of f.g. projective A-modules.

Go(A) Grothendieck group of f.p. A-modules.

schof A Schofield fractal of A.

To Tits form of quiver Q.

go quadratic form of quiver Q.

ind(@ indecomposable roots of Q).

itypes,() decomposition types into indecomposable roots for a.
Fg fundamental set of roots of Q.

Grassg(l) Grassmann manifold of k-dimensional subspaces of C'.
A, real roots.

A, imaginary roots.

hom(a.3) minimal dimension of homomorphisms.

Grass, () quiver Grassmannian.

a L B left orthogonal relation.

moss, (@, ) moduli space of f-semistable a-dimensional representations
of Q.

Q" bipartite double of Q.

¢(X2),0(X), K(X) control matrix, observation matrix and Kalman code of
system .

brauer A Brauer stable representations of A.

bsA Brauer-Severi scheme of A.

null’” nullcone of GL,-action on M,".

null, @ nullcone of GL(a)-action on rep, Q.



CHAPTER 1

Machines

"I propose to consider smooth algebras (that is, formally smooth
finitely generated algebras) as machines for producing an infinite
system of usual smooth schemes (My)p=12,..."

Maxim Kontsevich in [34].

There are several characterizations of commutative regular algebras. Generaliz-
ing these to the world of noncommutative algebras leads to quite different notions of
noncommutative smoothness. We choose Grothendieck’s characterization in terms
of algebra lifts through nilpotent ideals. This approach has the advantage that the
resulting alg-smooth algebras behave well with respect to noncommutative differ-
ential forms and connections. An obvious disadvantage is that examples quickly
lead us away from the setting of Noetherian algebras and into the exotic wilderness
of universal algebra constructions.

In later chapters we will study alg-smooth algebras via associated Noetherian
algebras determined by their schemes of finite dimensional representations. These
representation schemes are (commutative) smooth varieties. In this way we view
alg-smooth algebras as machines producing a family of manifolds and connecting
morphisms.

Commutative manifolds are locally diffeomorphic to affine spaces. We will see
that path algebras of quivers are to alg-smooth algebras what affine spaces are to
manifolds. For this reason we give explicit descriptions of all constructions for this
class of alg-smooth algebras.

1.1. Smooth algebras.

In this section we will define alg-smoooth algebras and give some elementary
examples : coordinate rings of smooth affine curves and path algebras of quivers.
From these building blocks one can construct more complicated examples by two
methods : algebra free products and universal localizations. We will restrict at-
tention to affine algebras. However, in the theory of C*-algebras there are many
(non-affine) alg-smooth algebras for which our methods fail as they have very few,
if any, finite dimensional representations. We present one example coming from the
aperiodic Penrose tilings of the plane.

Throughout, we fix an algebraically closed field of characteristic zero and denote
it with C. All algebras will be associative C-algebras with a unit element.

With cat we will denote a category of C-algebras. For example. commalg is
the category of all commutative C-algebras and alg is the category of all C-algebras
and C-algebra morphisms as morphisms.

11
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DEFINITION 1. A test-object in a category of C-algebras cat is a pair (B,I)
such that B is an object in cat, I<B is a nilpotent ideal of B such that the quotient

map
B

B —» —

is a morphism in cat. In particular, the quotient algebra ? is an object in cat.

For a fixed category cat of C-algebras we define cat-smooth algebras by a
lifting property with respect to test-objects.

DEFINITION 2. An object A in cat is said to be cat-smooth if and only if for

all test-objects (B, I) in cat and all morphisms A . ? in cat the diagram
A
®
= ¢
» B
B - —
1

can be completed with a morphism A %, Bin cat.

The terminology is motivated by the characterization of commutative regular
algebras, due to Alexander Grothendieck.

THEOREM 1 (Grothendieck). Let C' be a commutative affine C-algebra, then C
is regular if and only if C' is commalg-smooth.

In this case, the affine scheme specC with coordinate ring C' is a smooth
scheme. In particular, specC is a reduced variety, that is, C' has no non-zero
nilpotent elements.

PROOF. See for example [25] or [22, Exercise 8.6]. O

alg-smooth algebras were first studied by Bill Schelter in [59] and subsequently
in the framework of noncommutative differential geometry by Joachim Cuntz and
Daniel Quillen in [10].

ExXAMPLE 1. The archetypical example of an alg-smooth algebra is the free
algebra in m-variables (m) = C(x1,...,2Tn). Let (B, I) be a test-object in alg and
consider an algebra morphism

s B
Clar,oovam) — 7
If ¢(z;) = b; then taking any representant b; € B of the class b; € %7 qg(xl) =
defines an algebra lift as there are no relations among the x;.

The free algebra on infinitely many variables (oc0) = C{xy,z3,...) is also a

alg-smooth algebra though not affine.

A commutative alg-smooth algebra is clearly commalg-smooth. However, the
converse is not true.

ExAMPLE 2. Consider the polynomial algebra C[zy,...,z,] and the 4-
dimensional noncommutative local algebra
Cla,y)
B=——+—"—"—=CoCxpCyapCx
(22,y% xy + yx) Y Y
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B has a one-dimensional nilpotent ideal I = C(xy—yx) such that the 3-dimensional

quotient ? is commutative. Take the algebra morphism Clzy,...,24] N ?

defined by z1 — z,x2 — y and z; + 0 for ¢ > 2. This morphism admits no lift to

B as for any potential lift [¢p(x), ¢(y)] # 0 in B. Therefore, C[z1,...,z4] can only
be smooth if d = 1.

ExAMPLE 3. The k 4 1-dimensional semi-simple algebra
Cley, ..., ex
Cr = — o kk] =Co®...eC
(7 —ei eiej, ;g€ —1)
is alg-smooth because one can lift a decomposition of the unit element in mutual
orthogonal idempotents through a nilpotent ideal. Indeed, let (B,I) be a test-
object with I' = 0 and let 1 = €7 + ...+ be a decomposition of 1 into orthogonal
idempotents of ?. Any element 1 — ¢ with ¢ € [ is invertible in B as

1-—i)A+i+i?+.. .+ ) =1-d=1.

If € is an idempotent of B/I and € B such that w(z) = €. Then, z — 22 € I
whence

0=(z—2*) =2 -l + <é) N G D

and therefore 2! = az!*! with a =1 — (é) T+ ...+ (=1)"" 12!~ Observe that

ar = xa. If we take e = (ax)!, then e is an idempotent in B as
e = (ax)® = d'(a'2®) = d'al = ¢

the next to last equality follows from x! = az!t! = a?2!*? = ... = a!2?'. Moreover,

n(e) = w(a)n(z) = n(a)'n(x)? = n(a'z?) = n(2)! = €.

If f is another idempotent in B/I such that €f = 0 = fe then we can lift f to an
idempotent f’ of B. Because f'e € I we have

f=0—e)1—fe) (1~ fle).
Because f'(1— f’e) = f'(1—e) one verifies that f is idempotent, 7(f) = f and e.f =
0 = f.e. Assume by induction that we have already lifted the pairwise orthogonal
idempotents ey, ..., €,_1 to pairwise orthogonal idempotents eq, ..., e;_1 of B, then
e=-e1; +...+ep_1 is an idempotent of B such that ee, = 0 = exe. Hence, we can
lift € to an idempotent e; € B such that ee, = 0 = exe. But then also

eier = (e;e)er = 0 = ep(ee;) = exe;.
Finally, as ey + ... +ex — 1 =14 € I we have that

€1+...<‘r€k71:(€1+...+6k71)l:il10

This decomposition defines the required lift C, — B.

DEFINITION 3. A finite quiver @ is a directed graph determined by

e a finite set Q, = {v1,..., v} of vertices, and
e a finite set Q, = {a1,...,a;} of arrows where we allow multiple arrows
between vertices and loops in vertices.
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Every arrow has a starting vertex s(a) = i and a terminating vertex
t(a) = j. The description of the quiver @ is encoded in the integral k x k matrix

X111 .- X1k
XQ = Where X,jj = 67] — # { }
Xk1  --- Xkk
The corresponding bilinear form on Z* is called the Fuler form of the quiver Q.
The underlying vectorspace of the path algebra (Q) = CQ of the quiver @ has
as basis the directed paths in Q. Multiplication is induced by (left) concatenation

of paths. More precisely, 1 = v + ... + v; is a decomposition of 1 into mutually
orthogonal vertex-idempotents and we define

. a . . . .
e v;.a is always zero unless @<———O in which case it is the path q,
. a . . . .
e a.v; is always zero unless (O<—— in which case it is the path a,
. a; aj . . oy .
e a;.a; is always zero unless O<———O<——0 in which case it is the
path a;a;.

Path algebras of quivers are of crucial importance in the study of alg-smooth
algebras. We will show that they are to noncommutative manifolds what affine
spaces are to commutative manifolds.

EXAMPLE 4. For any finite quiver ), the path algebra (Q) is alg-smooth. Let
(B, I) be a test-object in alg and consider

B

~I

"-

g

Q)

The decomposition 1 = ¢(v1) + ... + ¢(vg) into mutually orthogonal idempotents
in ? can be lifted though the nilpotent ideal I to a decomposition 1 = ¢(vy)+...+

¢(vg) into mutually orthogonal idempotents in B by example 3. But then, taking
for every arrow a

an arbitrary element  ¢(a) € ¢(v;)(d(a) + I)é(vi)
gives a required lift (Q) . B.

Observe that all examples of alg-smooth algebras constructed so far are path
algebras of quivers. The free algebra (m) of example 1 is the path algebra of the
quiver with one vertex and m loops. The semi-simple algebra Cy of example 3 is
the path algebra of the quiver on k vertices having no arrows.

Before we can construct more examples of alg-smooth algebras we need a ring-
theoretic characterization of them.

DEFINITION 4. An A-bimodule M is a left and right A-module such that
a(ma’) = (am)d’ for all a,a’ € A and all m € M. A-bimodules are the same
as left A ® A°?-modules where A°P is A with the opposite multiplication. The
correspondence is given by a ® a’.m = ama’.
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Let A a C-algebra and I an A-bimodule. The Hochschild chain and cochain
complexes are defined by

Co(A, 1) ={I® A®" . ne N} and C°*(A,I)= {Homc(A®", 1), n € N}

and the associated Hochschild homology and cohomology groups are denoted by
H,(A,I)and H"(A,I).

Hence, the i-th Hochschild cohomology group H*(A, M) of an A-bimodule M
is the i-th extension Extf4®Aop (A, M) in the category of left A ® A°’-modules. In
particular, an A-bimodule M is projective as bimodule if and only if H'(M, M') =0
for all A-bimodules M’.

By iteration on the degree of nilpotency, an algebra A is alg-smooth if it
satisfies the lifting property for test-objects (B,I) with I? = 0. Given such a
test-object, consider the pull-back diagram

pri
Axs B ——»
I

pra2 [

= B
I
where A xz B ={(a,b) : ¢(a) =n(b)} is an infinitesimal extension of A, that is,
the kernel of prq, say M has square zero.

For M a fixed bimodule over A consider all infinitesimal extensions of A by
M. A basic result about Hochschild cohomology (see for example [51, Chap. 11])
identifies isomorphism classes of these extensions with the second Hochschild coho-
mology group H?(A, M).

Recall that Q' A is the kernel of the multiplication A-bimodule map.

0 —> QA+ A4 "+ A+ 0

THEOREM 2 (Schelter). The following statements are equivalent.
(1) A is alg-smooth.
(2) A has cohomological dimension <1 for Hochschild cohomology.
(3) QLA is a projective A-bimodule.
(4) Every infinitesimal extension R — A has a splitting A — R.
PrROOF. If an infinitesimal extension R —> A has a splitting then it deter-
mines an isomorphism of R with the semidirect product A & M and the splitting
becomes the inclusion of A. Therefore (4) implies that H?(A, M) = 0 for all A-
bimodules M. The defining sequence of Q' A asserts that
H?(A, M) = Ext® g qors (A, M) = Extl g qomn (U A, M)
from which it follows that Q2 A is a projective A-bimodule. O

DEFINITION 5. Two C-algebras A and A’ are called Morita-equivalent if and
only if there is an equivalence of categories

mod A ~ mod A’
where mod A is the category of left A-modules. This is equivalent to

A’ ~Endy P
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with P a finitely generated progenerator for the category A —mod. That is, P is
a finitely generated projective left A-module and for any M € A — mod there is
an epimorphism PT — M. If A and A’ are Morita-equivalent, we denote this
property by A ( A’.

DEFINITION 6. For C-algebras A and A’, let B be a vectorspace basis for A—C1
and B’ a vectorspace basis for A’ — C1. The free algebra product A x A’ is the C-
vectorspace with basis all words of the form

w :alblagbg...akbk or w =a1b1a2b2...ak

for some k, all a; € B and all b; € B’. Multiplication is defined by concatenation of
words and if the end term of the first word belongs to the same set of the starting
term of the second word one uses the multiplication table in the relevant algebra
to reduce to a linear combination of allowed words.

The free algebra product is universal with respect to pairs of C-algebra mor-
phisms A N R «2— A’. That is, with the natural inclusion maps ¢ and i’ any
C-algebra morphism v : A* A’ —— R is of the form f * g

R

A

making the diagram commute.

THEOREM 3. Let A and A’ be two C-algebras.
(1) If A is alg-smooth and A A’, then A’ is alg-smooth.
(2) If A and A’ are alg-smooth, then so are Ax A" and A@ A’.
(3) If A is a commutative affine domain which is alg-smooth, then A ~ C or
A is the coordinate ring of a smooth affine curve.

PrOOF. (1) : If A § A’ then their categories of bimodules are equivalent and
the conclusion follows from theorem 2.
B

(2) : By the universal property of free products any algebra map A* A" — =

is of the form ¢ x ¢ for A . ? and A’ —Y ?. By assumption there exist lifts

(;NS and 1; but then the original map has a lifting qNS* 1; The second case is obvious.
(3) : For a commutative affine C-algebra, Hochschild dimension coincides with
homological dimension, whence the result follows. O

EXAMPLE 5. A finite dimensional semi-simple C-algebra
A=M,, (C)@...® M,,(C)

is alg-smooth. Indeed, A {j Cy and Cj is alg-smooth by example 3.
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Taking alg-smooth algebras to be the affine building blocks, we want to con-
struct noncommutative manifolds by gluing these blocks along ’open subsets’. In
commutative algebraic geometry, the algebra of functions on a Zariski open subset
is given by a localization of the coordinate ring. For this reason we have to consider
localizations of noncommutative algebras.

In noncommutative ringtheory one usually considers the localization of an al-
gebra A at a multiplicative subset S satisfying the (left) Ore conditions

e If as=0for a € A and s € S, then there is an s’ € S such that s’a = 0.
e For all s € S and a; € A, there are s € S and as € A such that
SaQ1 = A2871.

If these conditions are satisfied, one can form a ring of fractions Ag by taking
equivalence classes on S x A (leading to left quotients s~'a) with respect to the
relation

(s1,a1) ~ (s2,a2) & Ja,a’ € A : aa; = a'az and asy = a’'sy € S

However, for general alg-smooth algebras (such as free algebras or path alge-
bras of quivers) there are very few multiplicatively closed sets satisfying the Ore
conditions.

EXAMPLE 6. Consider in the free algebra (m) = C(x1, ..., 2,,) the multiplica-
tively closed subset {1,z1,22,...}. As there are no relations in (m) we can never
satisfy the second Ore condition for s; = z; and a1 = x; when j # 1. Therefore,
there is no Ore set in (m) containing the powers of ;.

For this reason we have to consider another localization theory : wuniversal
localization .

DEeFINITION 7. If A is a C-algebra we denote by projmod A the category of
finitely generated projective left A-modules. The wuniversal localization As, with
respect to a set ¥ of maps in projmod A is the algebra having an algebra morphism
js ¢ A —— Ay such that the extended maps

Ay ®4 0 in projmod Ay

are isomorphisms for all 0 € ¥ and is universal as such. That is, if A —— B is an
algebra map such that all extended maps B ®4 o are isomorphisms in projmod B,
then there is an algebra map

A Jjs o AZ

making the diagram commute.

THEOREM 4. Let A be alg-smooth and 3 a set of maps in projmod A. Then,
the universal localization Ay, is alg-smooth.
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ProoF. Consider a test-object (B, ) in alg and an algebra map A 2, %,

then we have the following diagram

B
1S T
by g
: j=2
A— v As
J=

Here, 1) exists because A is alg-smooth. By Nakayama’s lemma (see for example
[51, §4.2]) all maps o € ¥ become isomorphisms under tensoring with ¢. But then,

¢ exists by the universal property of Ax. a

Unlike Ore localizations, it is often quite hard to give a precise genera-
tor/relation description of universal localizations. Observe that if we invert the
maps X in projmod A, we also invert all maps lying in the upper envelope u(%),
that is all maps in projmod A which can be written as

o1 U2 ... Uy
0 o9 ugy
0 0 (o]

for some [ with o; € ¥ and the u;; arbitrary maps.

A description of an equivalence relation giving the elements of Ay, even of
maps between induced projective modules of As, was given by Peter Malcolmson
[45] (see also [60, Chp. 4] for more details).

THEOREM 5 (Malcolmson). Let ¥ be a set of maps in projmod A. Then,

(1) Ewvery map between induced projective As,-modules has the form
v tg with v € u(X)

(2) Two such maps fl'yl_lgl and f272_1gg are equal if and only if there is a
solution to the matrix equation

m 0 0 0 ¢
0 2 0 0 —go

0 0 v 0 0]= [}5] e ge]
0 0 0 v g4 °

fi f2 f3s 0 0

where all maps are defined over A and v; € u(%).

ExXAMPLE 7. Let ¥ be a set of square matrices over A such that 1 € ¥ and
Y = u(X). An element of Ay is determined by a triple (f,v,g) where v € ¥ is a
square matrix (say n x n), f a 1 X n row vector and g an n X 1 column vector and
we denote the corresponding element of Ay, by fy~'g. To understand the above
equivalence relation, assume that (f1,71,91) ~ (f2, 7, g2) with the matrix-equation
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given in theorem 5. If all matrices in ¥ are invertible, then

0= fs96 = fs76(v576) 1596
it — fovs tge 4 f375 0+ 09y tga
firn e = far e
whence f177 g1 = f275 ' go-

An algebra structure on Ay is induced by the following operations :

o (fi,v,01) + (fo,72,92) = ([L fe], [%1 WOJ ; [g;])

o (f1.71,91)-(f2.72,92) = ([f1 0], POI —g1f2} ; [O})

72 92
b _(fa/yvg) = (f?lyv _g)

and the canonical map A —— Ay, is defined by a — (1, 1, a). For proofs and more
details, see [46].

Fortunately, one can give an explicit description of universal localizations of
path algebras of quivers.

EXAMPLE 8. Let @ be a finite quiver on k vertices and consider the path algebra
{(Q). Then, we can identify the isomorphism classes in projmod (@) with N*. To
each vertex v; corresponds an indecomposable projective left (Q)-ideal P; = CQu;
having as C-vectorspace basis all paths in Q starting at v;.

The homomorphisms between these projectives are given by

HO’m,CQ(Pi,Pj) = @ (Cp

where p is an oriented path in @ starting at v; and ending at v;.
Therefore, any {Q)-module morphism o between two projective left modules

P,®..®P, -+ P,&...0P,

can be represented by an « x v matrix M, whose (p, ¢)-entry my, is a linear com-
bination of oriented paths in @ starting at v;, and ending at v;, .

Form a v x u matrix /N, with entries free variables y,,. The universal localiza-
tion at {o} is then the affine algebra

<Q>J _ <Q> * (C<y117 R ayuv>

Iy
where I, is the ideal determined by the matrix equations
Vi, 0 V5, 0
My,.N, = Ny .M, =
0 Vi, 0 U5,

Equivalently, (@), is the path algebra of a quiver with relations where the quiver
is @) extended with arrows y,, from v;, to vj, foralll <p<wand1l<gqg<wvand
the relations are the above matrix entry relations.

Repeating this procedure for every ¢ € ¥ we obtain the universal localization
(@) In particular, if ¥ is a finite set of maps, then the universal localization (Q)y,
is an affine C-algebra, that is finitely generated.
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EXAMPLE 9. When we take the universal localization (@), of the path algebra

with respect to one arrow we obtain an algebra, Morita equivalent to
the path algebra of the contracted quiver Q' obtained by identifying the vertices v;
and v;. For example, consider the quiver @

@7 n ﬁ@
having n arrows, say aq,...,a, from v; to vo. The path algebra CQ is the n + 2-
dimensional algebra

Cay + ...+ Ca,
C

The universal localization with respect to a; is the path algebra of the quiver

C
cQ=|,

x

C——

@

with relations za; = v; and a;x = vs. The elements v1,v9,a; and = generate
the the matrixalgebra M(C) and the centralizer of this subring is isomorphic to
v1(Q) «, V1 Which is freely generated by the paths za; for ¢ = 1. Therefore,

(Q)o, ~ Ma((a—1))

where (a — 1) is the path algebra of the contracted quiver, obtained from @ by
removing the arrow a; and identifying the vertices. It is clear that this argument
extends to more general quivers.

ExAaMPLE 10. With the few facts we know so far we can build a huge class
of alg-smooth algebras. Take as the elementary building blocks the alg-smooth
algebras

e The coordinate ring C[C] of an affine smooth curve, see theorem 3(3).
e The path algebra (@) of a finite quiver @, see example 4.

The basic operations to create new alg-smooth algebras from known ones are

e Taking the algebra free product A x A'.
e Passing to a Morita equivalent algebra.
e Taking the universal localization Ay for a set of maps in projmod A.

To describe universal localizations we have to keep track of projmod, the finitely
generated projective modules. For the building blocks we have a complete descrip-
tion.

e The isomorphism classes of projmodC[C] are

Z @ Pic C

where Pic C' is the Picard group , that is, the ideal class group of the
Dedekind domain C[C].
e Every finitely generated projective modules of (@) is isomorphic to

PP @ .. .o Pl

where P; is the indecomposable projective corresponding to vertex v; and
all n; € N.

We can also follow projmod through the constructions :



1.1. SMOOTH ALGEBRAS. 21

e A finitely generated projective module of A x A’ is isomorphic to
As A QPP AxA @4 P

where P (resp. P’) is a finitely generated projective of A (resp. A’), see
(60, Thm 2.13].
e A finitely generated projective module of Ay is isomorphic to

Ay ®a P
where P is a finitely generated projective of A, see [60, Cor. 4.5].

We will study affine alg-smooth algebras by investigating their schemes of finite
dimensional representations. In the theory of C*-algebras, there is a class of (non-
affine) alg-smooth algebras which often have no finite dimensional representations
at all. We present one such example, connected to Penrose aperiodic tilings of the
plane, in detail.

THEOREM 6 (Cuntz-Quillen). The inductive limit of a countable system
— Ay — Ay — .
of finite dimensional semi-simple algebras is alg-smooth.

PRrROOF. (Sketch) We know from example 5 that every A,, is alg-smooth. Hence
it suffices to show that one can choose the liftings in a compatible way. This can
be deduced from the fact that for a finite-dimensional semi-simple algebra A there
is a uniqueness for the lifting morphism. Suppose we have a square-zero extension
A = B/I and two lifting morphisms [,I’ : A —— B. Using [ we can identify
B =A® I with l(a) = a. But then,

'(a) = a+ D(a)

where D : A —— [ is a derivation which must be inner by semi-simplicity (see
for example [51, §11.5]), that is, D(a) = [a, ¢] for some ¢ € I. But then, because

I'(a) =a+[a,i] = (1 +i) " (a)(1+1)

the two lifts in an infinitesimal extension are conjugate by an element congruent to
one modulo I. O

Let A, = M,, ©O)® ... & M,,(C) and A1 = My, (C) D ... d M, (C). A
C-algebra morphism A,, — A,,11 determines non-negative integers m;; such that
m; = Zj m4;n; and hence be a labeled graph

mi

We delete an edge whenever m;; = 0 and delete the label if m;; = 1. If we put these
labeled graphs on top of each other for all n € N we obtain the Bratelli diagram
Brat A of the alg-smooth algebra A = lim A,.
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Much structural information of A can be read off from the Bratelli diagram.
For example, closed twosided ideals of A are in one-to-one correspondence with
subsets D of the vertices of Brat A satisfying the following two properties

(1) If v € D and w is a vertex in a lower layer which can be connected by a
path to v, then w € D, and
(2) If all vertices wy, ..., w, in the next layer which are connected to v belong
to D, then so does v.
We give one concrete example of such an alg-smooth algebra without finite
dimensional representations.

ExAMPLE 11. The Penrose algebra Ape,, is the alg-smooth algebra connected
to aperiodic Penrose tilings of the plane. The tiles, which are usually called Penrose
kites and darts, are quadrangles with two sides of length 1 and two sides of length
T = %, the golden ratio. The corners are colored with two colors and the
matching condition to produce Penrose tilings is that we must put equal edges
together and also match the colors at the vertices.

Kite Dart

Using these tiles and the matching condition one obtains uncountable many ape-
riodic tilings of the plane, properties of which are proved using the operations of
composition, decomposition and inflation of tilings. These operations naturally lead
to an inductive limit of semi-simple algebra, see [9, §11.3] for more details. Consider

K, ={(20,21,--,2n) € {0,1}"" satisfying z; =1 = 2,1 = 0}

The projection morphism K, ; — K,, is the obvious one forgetting the final
Zn+1. On the finite set K, we have the equivalence relation R,, defined by z ~ 2’ if
and only if z, = z/,. A function a = Az, 2),(2h,.,20) OL the finite set R,, defines
an element a of the Penrose algebra Ap., by the rule

Ay =0 if ((z0y.--y2n),(20s---520)) & R

The structure of the subalgebra A,, of Ap., generated by the complex-valued func-
tions on R,, is

{a = (s, i) (ehrety AE (2052200 20), (2,21 20)) € R,

A, ~ My, (C)® My, (C)
where 0,, is the number of elements of K, that end with 0 and 1,, the number

of elements ending with 1. The projection K, ;1 — K, induces an inclusion
A, & A, 1 which is

Ap = Mo, (C)® My, (C) =~ Apy1 = My, +1,,(C) ® Mo, (C)

mo 0

0 m1:| ® Mo

modmy — {
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as the coherence condition implies that 0,41 = 0, + 1,, and 1,41 = 0,. Observe
that if we add 09 = 1, then the sequence of numbers {0g, 01, 02, ...} is the Fibonacci
series {1,1,2,3,5,8,13,...}. Therefore, the Bratelli diagram Brat Ape, is of the
form

2 1
3 2
5 3
8 5

Consequently, the Penrose algebra Ap,, is a simple alg-smooth algebra. To prove
this we consider the set D describing a closed ideal. We indicate in the pictures
below the order by which the properties dictate the inclusion of a vertex starting

from a given vertex @ in D.
> >
> <
® ® ®

In particular, Ap., does not have finite dimensional representations.

©)

®
@
or ®

1.2. Differential forms.

In this section we run through the formal theory of noncommutative differential
forms. We have two specific aims in mind. First, we will prove that the existence of
a connection on the 1-forms Q' A forces the algebra A to be alg-smooth.Secondly,
we prove that free algebras and path algebras of quivers have the homology of
contractible spaces, consistent with their role of noncommutative affine spaces.

At this point you may wonder why on earth we take the exotic class of alg-
smooth algebras as the building blocks for noncommutative algebraic manifolds.
There are two compelling reasons.

First, we want the noncommutative algebra A to control a family of (commuta-
tive) manifolds. If A is alg-smooth we will see in the next chapter that such a family
is given by rep, A, n = 1,2, ..., the schemes of finite dimensional representations
of A.

Secondly, we will prove in this section that in order to have a decent theory
of noncommutative differential forms on A allowing for connections on the cotan-
gent bundle (the 1-forms Q!A), the algebra A must be alg-smooth. Later we will
prove that these noncommutative differential forms induce ordinary G L, -invariant
differential forms on the smooth varieties rep, A when A is alg-smooth.
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DEFINITION 8. dgalg is the category of differential graded C-algebras , that is,
an object R € dgalg is a Z-graded C-algebra
R =@z R
endowed with a differential d of degree one

d i d i d ; d
oo — R L RS R DL

satisfying d od = 0 and for all » € R’ and s € R we have
d(rs) = (dr)s + (—1)'r(ds).

Morphisms in dgalg are C-algebra morphisms R 2, S which are graded and
commute with the differentials.

DEFINITION 9. For A € alg, the differential graded algebra QA of noncom-

mutative differential forms is constructed as follows. Let A be the quotient vector
space A/C.1 and

VA=ARA®...0 A

—_——
n
for n > 0 and Q"4 = 0 for n < 0. For all a; € A we denote the image of
ap R a1 ®...R ay, in Q"A by agday . .. day,.
A multiplication is defined on QA = G,z Q™A by
(agday .. .day)(apy1dants ... day) =

(—=1)"apardas . .. day, + (—1)"tagd(aras)das . . . da,+
n—1

Z(—l)”_iao c.dai—qd(a;a;q1)daiy - . dam+
- apday . . .danp—1d(anani1)danys ... dany,
The differential d of degree one
LYo Lo LG o LY NI LA Ly RGN
is defined by
d(apday .. .day) = ldagday . . . day,.

EXAMPLE 12 (Cuntz-Quillen). These formulas define the unique dgalg struc-
ture on €2 A such that

apday . ..day, = (ag,a1,...,a,).

In any R = ®;R; € dgalg containing A as an even degree subalgebra we have the
following identities

d(apday . ..day) = daoda; . . . da,
(aoday ...day)(ant1dants ... day,)

(=1)"apardas . . . da,
—+ Z?zl(fl)"*iaodal - d(aiaiH) - dCLm
which proves uniqueness.
To prove existence, we define d on 2 A as above making the Z-graded C-

vectorspace €2 A into a complex as d od = 0. Consider the graded endomorphism
ring of the complex

End = @pezEnd,, = GnezHomeompres (2° A4, Q1" A).
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With the composition as multiplication, End is a Z-graded C-algebra and we make
it into an object in dgalg by defining a differential

D D D D
. —» End,_; — End, — Endp41 —> ...
by the formula on any homogeneous ¢

Do =do¢—(-1)" ?pod.

. l . . .1 .
Now define the morphism A — Endg which assigns to a € A the left multiplication
operator

la(ag, ..., an) = (aag, ..., an,)
and extend it to a map

QA -+ End by li(ag,...,a,) =lago D layo...oD la,.

Applying the general formulae given at the beginning of the proof to the subalgebra
[(A) — End we see that the image of I, is a differential graded subalgebra of End
and is the differential graded subalgebra generated by [(A).
Define an evaluation map End — Q A by ev(¢) = ¢(1). Because
D lai(L Aig1y- .- 7an) = d(ah Aj—Tyeeey an) — Zazd(l, Ait1y- - ,an)

= (laai7"'aan)

we have that
ev(lago D layo...0D la,) = (ag, ..., an)

showing that ev is a left inverse for [, whence [, in injective.

Hence we can use the isomorphism Q A ~ Im(l,) to transport the dgalg
structure to Q A.

DEFINITION 10. For A, R in alg a C-linear map A L+ R satisfying p(14) = 1g
is called a based linear map .

The universal algebra for based linear maps from A is the quotient algebra of
the tensor algebra T(A) = ©p>0A®"

T(A)

T(A)(1 —14)T(A)
where 14 is the degree one element of T'(A) determined by the unit element of A.
There is a universal based linear map

la=

u —
A— 14 a—a

such that for any based linear map A —2+ R there is a unique algebra map ¢,
La

£
'
A—" + R
making the diagram commute. If we apply this to the identity map A L A we
obtain an ideal I4 = Ker ¢;q of 1 4. Clearly, A ~ JI‘—;‘

ExXAMPLE 13. Let Cy, = C® ... ® C (k factors) with idempotents ey, ..., e,
then T'(Cy) = (k) and as 1¢, = €1 + ... + e we deduce that Lo, = (k —1).
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i
DEFINITION 11. There are two canonical embeddings A %’, AxA. Fora e A
12

define the elements in A * A :
(i1(a) +iz(a))

pla) =
q(a) = 3(ir(a) —iz(a))
and let Q4 < A % A be the ideal generated by the elements g(a) for a € A. Clearly
A~ A x A.
Qa
We will relate the algebra of all noncommutative differential forms QA, re-
spectively QYA = @,>002%" A the algebra of all even noncommutative differential

forms, to the algebra A x A, respectively | 4, by defining a new multiplication on
QA.

N~ D[~

DEFINITION 12. For R € dgalg define the Fedosov product on R to be the one
induced by defining on homogeneous 7, s € R the product

ros=rs—(—1)%9 "drds

R equipped with the Fedosov product will be denoted by (R,o) and is again an
object in alg.
THEOREM 7 (Cuntz-Quillen). With notations as above we have :
(1) (YA, 0) ~1 4 and under this isomorphism I% ~ ®y>,Q?* A.
(2) (RA,0) ~ Ax A and under this isomorphism Q" ~ >, Q" A.

PROOF. (1) : The inclusion A C (2°“A,0) is a based linear map and by the
universal property of | 4 there is an algebra morphism

Ls —2% (QUA,0) with ¢(u(a)) = a

Define for all a,a’ € A the element w(a,a’) = u(aa’) — u(a)u(a’) €L 4 and observe
that
d(w(a,a’)) =aa’ —aod = dadd

From the fact that the Fedosov product coincides with the usual product on QA if
one of the terms t is a closed form (that is, if dt = 0) it follows that ¢ is surjective
as
o(u(ag)w(ar,az)...w(asn—1,a2,)) = apodaidaso...odas,_1das,
aodaldag . da2n
There is a section to ¢, the linear map (Q°VA, o) N 1 4 sending agda; .. . das,
to u(ag)w(ar, az) .. .w(az2n—1,a2,). The image is closed under left multiplication by
u(a) for a € A as (a o apday ... dasy)
= w(aaodal . dagn) — w(dadaodal . dagn)
u(aag)w(ay, az) ... w(asn—1,a2,) — w(a,ap)wl(ai,as)...w(asn—_1,a,)

= u(a)u(ao)w(ar, az) .. .w(asn—1,a2,) = u(a)p(apday . . .daay)

Because the image contains the unit element and the u(a) generate 1 4 it follows
that v is surjective whence ¢ is an isomorphism. The last statement follows from
this identification.
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(2) : We have two algebra map A —— (QA, o) given by a — a = da because
(a+da)o(a' +da') = ad —dada’ + a(da’) & (da)a’ + dada’
= aa’ £ d(aa’)
By the universal property of A x A there is an algebra morphism
AxA e (Q4,0)  Y(p(a)=a and (g(a)) =da

Because the Fedosov product coincides with the usual product when one of the
forms is closed we have

Y(plag)g(ar) .. .q(an)) = aoday ... day,
Conversely, we have a section to v defined by
QA 2% AxA apday .. .da, — p(ag)g(ar) ... q(ay)

and we only have to prove that ¢ is surjective. The image Im ¢ is closed under left
multiplication by p(a) and ¢(a) as p(1) =1 and

q(a)p(ag)q(ar) ... qlan) = qlaag)q(ar) ... qlan) — p(a)g(ao)q(ar) ... q(an)

Because the elements p(a) and g(a) generate A * A, the image Im ¢ is a left ideal
containing 1, whence v is surjective. Again, the last statement follows. O

{p(a)p(ao)q(al) -.q(an) = plaag)q(ar) ... q(an) — q(a)q(ao)q(ar) ... q(an)

Having defined noncommutative differential forms, we can consider connections
on bimodules and the relation to alg-smoothness.

DEerFINITION 13. For E an A-bimodule, connections on E are given by linear
maps.
e A right connection : E LAy, ®4 QLA satisfying
V.(aed") = a(V,e)a' + aeda’,
e A left connection : E YLoala R4 F satistying
Vi(aed') = a(V,e)a’ + daea’
We say that E has a connection if it has both a left and a right connection.

THEOREM 8 (Cuntz-Quillen). The following are equivalent :
(1) A is alg-smooth.
La

(2) There is an algebra morphism A — F5.
A

(3) There is a linear map A LAY oLY satisfying
¢(araz) = a1¢(az) + ¢(ar)az + dardas
(4) There is a right connection on the A-bimodule Q' A.

(5) There is a connection on the A-bimodule Q'A.

PROOF. (1) = (2) : Consider the test-object (B,I) = (%, %) As A~ #—: =
A A
B/I we can lift the identity morphism to an algebra morphism.

(2) = (3) : From theorem 7 we recall that
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where multiplication on the right-hand side is given by the Fedosov product modulo

forms of degree > 2. Because we lift the identity morphism, the algebra morphism

A—s % must have the form a — a — ¢(a) for some ¢ : A — Q2A. We have
A

(because the Fedosov product coincides with the ordinary product on QA if one of
the terms is a closed form)

(a1 = ¢(a1)) o (a2 — ¢(a2)) = araz — dardaz — a1d(az) — ¢(a1)az
which is an algebra morphism if and only if it satisfies the required condition.
(3) = (4) : Observe that Q' A @4 Q! ~ Q2 A. Define, using the map ¢ a linear
map
V, : Q'A — Q*4  V,(apdar) = agg(ay)
This satisfies the required condition as
V,(ao(dai)a) = V., (apd(ara) — apaida)
= aod(ara) — apar¢(a)
= aoarp(a) + apd(ar)a + apdarda — aparp(a)

ap(Vydai)a + agdaida
(4) = (5) : A connection on Q!4 is the datum of three maps
Vi
1 d 2
A — Q°A
satisfying the following properties

Vi(aed') = aVi(e)d’ +(da)ed

d(aea’) = a(de)a’  +(da)ea’ —ae(da)
Vi(aea') = aV,(e)d +ae(da’)

Hence, if V, is a right connection then d + V., is a left connection and if V; is a
left connection then V; — d is a right connection.

(5) = (1) : For any A-bimodule E, a right connection V, on E defines a
bimodule splitting s, of the right multiplication map m,.

my
E®QA —F
Sr

by the formula
sr(e)=e®1—j(Vyee) where j(e®da)=ceca®1l—e®a

Similarly, a left connection gives a bimodule splitting s; to the left multiplication
map. Consequently, if a connection exists on E, then E must be a projective
bimodule. If we apply this to the A-bimodule Q'A we obtain the result from
theorem 2. (]

EXAMPLE 14. A connection on (m) = C(z1,...,2p). Let ¢(z;) = 0 for all
1 < 4 < m, then we can define by induction of the length n of a word in the
generators, the image of
@iy i) = @iy d(Tiy .. 24,) + P(ai) @iy .oy, + dag d(zy, .o y,)
= d:rild(xh e .’[in) -+ 961‘1(15(%2 e l'in)
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Whence we obtain the description of the map ¢ : (m) — Q%(m)

qzﬁ(a:il .. .a:in) = Z 1‘1’1 e xik,ldxikd(xik+1 e l‘in)

From this map we define the connection V,. : Q' (m) — Q?(m) by
VT d(fE“ e "Ein) = Z Liq ov- Iik—ldzikd(gjiwrl N ,Iz'n)

EXAMPLE 15 (Cuntz-Quillen). The Yang-Mills derivation on a alg-smooth
algebra A. The I 4-adic completion of L 4 is by definition the inverse limit
~ 1g
1la= lim —/
TR T
If Ais alg—smooth then there is a collection of compatible lifted algebra morphisms
A— . These compatible lifts define a universal algebra lift A ) 4. This
map can be used to construct algebra lifts modulo nilpotent ideals in a systematic
way.

Let (B,I) be a test-object in alg and A s % an algebra map. We can lift

1 to B as a based linear map, say p and have the following situation

can T

La - 14

Sy

B
A T

Here, ¢, is the algebra map coming from the universal lifting property of L4 and

(j)p is its extension to the completion. But then, g = q& o["™ is an algebra lift of p.

One can construct the universal lift {“" from the linear map A — 2 Q%4 of

the previous theorem. Because 1 4 is freely generated by the a € A —C1, we define
the Yang-Mills derivation on 1 4 by

Ly 2+ 14 D) =d(a) Vac A
Let L be the degree two operator on Q¢’ A defined by

L(aoda1 e dagn) = ¢(a0)da1 . dagn + Z aodCLl . daj_lqu(aj)dajH . dCLQn

and let H denote the degree zero operator on even forms which is multiplication
by n on Q2" A. Then, we have the relations

[H,L]=L and D=H+L



30 1. MACHINES
and as a consequence we have on j_A ~ QA= Hn Q2" A that
e lHe = H+e F[H, ") = H + /1 e 'E[H, L]e'tdt = D
0
Therefore, the universal lift for all @ € A is given by
1""(a) = e Fa=a— ¢(a) + %Ld)(a) -

For more details we refer to [10, p.280].

As path algebras of quivers are similar to affine spaces we want to compute the
homology groups and prove that they are the same as the de Rham cohomology of
affine space.

DEFINITION 14. For A in alg, a derivation 6 is a C-linear map A —— A
satisfying for f(aa’) = 6(a)a’ + ab(a’) for all a,a’ € A. The set of all C-linear
derivations Derc A is a Lie algebra with bracket [0,6'] = 006" — 6’ o 0 where o is
composition of maps.

For B in dgalg a super-derivation is a linear map s : B —— B such that
for all homogeneous b,b’ € B we have s(bb’) = s(b)b' + (—1)%bs(b') where i is the
degree of b.

Given 0 € Derc A we define a degree preserving derivation Ly and a degree —1
super-derivation ig on QA

d d

/\ /\
Qn—lA Qn A Qn—i—lA
O~ O — O

Ly ' Ly J

19 19 L@

by the rules

Ly(a) = 0(a) Lg(da) = d 6(a)
ip(a) =0 ig(da) = 6(a)

for all a € A.
THEOREM 9 (Cartan homotopy formulas). For 6, € Derc A we have
Lyo=ipgod+doig
and we have the following equalities of operators
{L9 0idy —iy 0oLy = [Lg,i,] = 1[9,7] = 160y —~ob
LooLy—LyoLg=|[Lg, Ly = Ligr = Looy—rop

PROOF. For the first equality, observe that both sides are derivations on QA
which agree on all the generators a, da (a € A) for QA.

By definition,both sides of the second identity are degree —1 super-derivations
on QA so it suffices to check that they agree on generators. Clearly, both sides give
zero when evaluated on a € A and for da we have

(Lgoiy—iyoLg)da= Lg y(a) —iy d 0(a) =0 v(a) — v 0(a) = i (da)

A similar argument proves the last identity. ([
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DEFINITION 15. An algebra A € alg is said to be contractible if the homology
of the differential forms complex
Ker("A —— Q"F1A)

H" A=
In(Q" 14 ——~ QrA)

is concentrated in degree zero and H° A = C.

Recall from commutative differential geometry that affine spaces are C-
contractible. We want to generalize this to free algebras and to path algebras
of quivers.

ExaMpPLE 16 (Kontsevich). The free algebra (m) = C(z1,...,%,) is con-
tractible. Define the Euler derivation E on (m) by defining it one the generators
to be

E(z;) = forall 1 <i <m.
By induction on the length &k of a word w in the variables x; one proves that
E(w) = kw
We claim that Lg is a total degree preserving linear automorphism on
Q™" (m) for n > 1.

For if w; for 0 < i < n are words in the z; of degree k; with k; > 1, then one verifies
that
Lg(wodwy ...dw,) = (ko + ...+ kp)wodwy . . . dw,.

Using the words of length > 1 in the z; as a basis for (m), we see that the kernel
and image of the differential d must be homogeneous. But then, if w is a multi-
homogeneous element in 2"(m) and in Ker d we have for some integer k # 0 that

kw=Lg(w) = (igod+doig)w=d(ig w)
and hence w lies in Im d. That is,
{HO (m)= C
H" (m)= 0
for all n > 1.

In order to generalize this argument to the case of path algebras of quivers we
have to get rid of the forms dv; for the vertex-idempotents v;. As (Q) is even a
smooth algebra in alg. , the category of all Cy-algebras, it makes sense to consider
the relative differential forms, defined as follows.

DEFINITION 16. For a C-subalgebra B C A define the relative differential forms
of degree n with respect to B to be

O A=A®p Ap®p...®p Ap

n

where Ap is the cokernel of the B-bimodule inclusion B C A. Q7 A is the quotient
space of 2™ A by the relations

aoda1 e d(ai_lb)dai e dan :aoda1 N dai_ld(bai) e dCLn
aoda1 N dai,ldbdaiﬂ e dan =0
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for all b € B and 1 < ¢ < n. One verifies that the multiplication and differential
defined on QA are compatible with these relations, making 25 A an object in
dgalg.

Qp A has the following universal property. Given I' = @I'" in dgalg and an
algebra map A v 10 such that d(f B) = 0, then there is a unique morphism in
dgalg making the diagram commute

A—L Lo
Because of this, we have an isomorphism in dgalg
QA
~ QA(dB)QA
The homology of the relative differential complex will be denoted by H3 A and an

algebra A is said to be B-relative contractible if HY A= B and H% A = 0 for all
n > 1.

Op A

ExaMPLE 17. The path algebra of a finite quiver on k-vertices is Cy-relative
contractible. We claim that a basis for Q. (Q) is given by the elements

podp1 - .. dpy,
where p; is an oriented path in the quiver such that I(pg) > 0 and I(p;) > 1 (where
I(p) is the length of the path p) for 1 < i < n and such that the starting point of
p; is the endpoint of p;11 for all 1 <i <n — 1. Clearly I(p;) > 1 when ¢ > 1 or p;
would be a vertex-idempotent whence in Cj. Let v be the starting point of p; and
w the end point of p;;11 and assume that v # w, then

Pi @B Pi+1 = PiV @B WPi+1 = pivw ®p pit1 =0
from which the claim follows.

But then we can define a Cj-derivation E on (Q) by E(v;) = 0 for all vertex-
idempotents and E(a) = a for all arrows in (). By induction on the length I(p) of
a path p in the quiver @ we verify that E(p) = I(p)p. Using the description of a
basis of Q¢ (Q), we can repeat the argument of example 16. If follows that

He Q) =Cr  and  HE (Q)=0
for all n > 1.



CHAPTER 2
Thickenings

"The naive aim of noncommutative algebraic geometry would
be to associate to the surjection R — Ry, an embedding of
spec Ry into some noncommutative space spec R. The essence
of our perturbative approach is not to worry about the whole
spec R but concentrate on the formal neighborhood of spec Rgp
in spec R.”

Mikhail Kapranov in [27]

For A € alg we denote with repA the Abelian category of all finite dimensional
representations of A . We use the dimension function to decompose

repA = |_| rep, A

where rep,, A is the affine scheme of n-dimensional representations of A. We will see
that if A is alg-smooth, then each rep, A is a smooth reduced variety. In this way
we view alg-smooth algebras as machines producing a family of smooth (affine)
varieties. For general A however, the scheme structure of rep, A will be important
in chapter 3 to reconstruct certain Cayley-Hamilton quotients from it.

We will introduce the coordinate ring of the representation scheme rep, A as
the Abelianization of the n-th root algebra /A represents the functor

alg — sets B — Homag(A, M, (B))

If A is alg-smooth, then so is {/A giving yet another method to construct alg-
smooth algebras. Moreover, these algebras form a semigroup. By this we mean
that there are connecting algebra morphisms

whenever k = > k;. Abelianizing these morphisms we will obtain the sum maps
on the representation schemes. There is also a natural GL,, action on /A which
after Abelianization gives a G'L,,-action on rep,, A the orbits of which are precisely
the isomorphism classes of n-dimensional representations.

We will endow rep, A with a sheaf OH(L/Z of noncommutative algebras, which
encodes all algebra morphisms A —— M,,(B) when B is a noncommutative infin-
itesimal extension of a commutative algebra. For A an alg-smooth algebra, this
construction coincides with the formal structure of Mikhail Kapranov [27]. This as-
sociates to an affine commalg-smooth algebra C' (which we know is not alg-smooth,
unless the Krull dimension is one) a thick-smooth algebra A with Abelianization

C.

33
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2.1. Representing algebras.

In this section we will introduce and study the n-th root algebra /A repre-
senting the functor

alg — sets B — Homag(A, M, (B))

If A is alg-smooth, then so is {/A giving yet another method to construct alg-
smooth algebras. Moreover, there are connecting algebra morphisms

VA — WAx... x XA

whenever k = Y k;. These morphisms will induce the sum maps on the represen-
tation schemes.

DEFINITION 17. A functor F' : alg —— sets is said to be representable by
the algebra D if and only if F' is isomorphic to the functor

Homa14g(D,—) : alg — sets

which assigns to a C-algebra B the set of C-algebra morphisms Homaig(D, B) and

to an algebra morphism B L B the mapping

Homayg(D, B) L Homay(D, B')
obtained by composition.
THEOREM 10 (Bergman). The functor
Homa1g(A, My(—)) : alg — sets B — Homag(A, M, (B))

is represented by an algebra /A, the n-th root of A.
That is, for any C-algebra B, there is a functorial one-to-one correspondence
between the sets

C-algebra maps A — M, (B)
C-algebra maps YA — B

ProOOF. Consider the canonical embedding M, (C) h A M, (C) and define
VA= Chp,c)(A* My (C)) = {r € Ax M,(C) | ri(m) =i(m)r ¥m € M,(C)}

One can use the separability idempotent Y- | e;;®@e;; € M,(C)® M, (C)° to prove
that for any C-algebra map M, (C) — R we have that M, (Cy, c)(R)) ~ R. In
the special of interest to us we have

M, (V/A) ~ A x M,(C)

We claim that {/A represents the functor Homa1g(A, My (—)). If VA . Bis
an algebra map, we obtain an algebra map A — M,,(B) by composition

A ML A M, (C) ~ M, (VA) XYL 6 (B)
Conversely, given an algebra map A —7 M,(B) and the canonical map
M, (C) —— M, (B) which centralizes B in M, (B). Then, by the universal prop-

g*i

erty of free algebra products we have an algebra map A x M,,(C) — M, (B) and
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restricting to /A this maps factors
A M, (C) 2% M, (B)

One verifies that these two operations are each others inverses. (I
EXAMPLE 18. The n-th root of (m), {/(m) ~ (mn?).
Assign to an algebra map (m) = C{x1,...,Zm) 2. M, (B) the algebra map
(mn?) = Cwijp | 1<i,j<n,1<k<m)— B

by sending the variable x;; i to the (¢, j)-entry of f(zx) € M,(B).
g

Conversely, assign to an algebra map (mn?) B the algebra map
(m) R M,,(B) defined by
g@ie) - 9(@Ting)
flar) = : :
9(Tn1k) o 9(Tnnk)
and verify that both operations are each others inverses.

Taking n-th roots is yet another method to construct new alg-smooth algebras.

THEOREM 11. (1) If A is an affine C-algebra, then so is V/A.

(2) If A is alg-smooth, then so is V/A.

PROOF. (1) : Consider the canonical map

A a4 M(©) ~ M (VA
By the universal property of the construction it is clear that the matrix entries of
ida *T,(a) for all @ € A generate the algebra {/A as a C-algebra. Hence, if A is
generated by at most m elements, then /A is generated by at most mn? elements.
(2) : M,(C) is alg-smooth whence so is A * M, (C) by theorem 3. As /A
is Morita equivalent to A % M, (C), it follows again from theorem 3 that /A is
alg-smooth. (]

EXAMPLE 19. (The n-th root of a path algebra of a finite quiver @ on k vertices)
Consider the extended quiver Q™) on the left of figure 1 That is, add to the vertices
and arrows of ) one extra vertex vy and for every vertex v; in @ add n directed
arrows from vy to v;. We will denote the j-th arrow 1 < j < n from vy to v; by x;.
Consider the morphism between projective left (Q(™)-modules

PLoPd..oP 2+ Pho...o B
—_———

determined by the matrix
11 PN ... T1n
M, =

LTkl -+ oo Tkn
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ol =0

//
1) 1)

@Z“%@ @Z“%@
NSO e N\ @

® Ne
FIGURE 1. The extended quiver Q™ and the universal localization.

Consider the universal localization (Q(™)_, that is, add for each vertex v; in Q
another n arrows y;; with 1 < j <n from v; to v as on the right of figure 1. With
these arrows y;; one forms the n x k matrix

Yir .- Ykl

N, =

Yin -+ Ykn
and the universal localization (Q(™), is described by the relations

Vo

My,.N, = and N, M, =

0 Vi
0 U1

We can now determine the n-th root of the path algebra
V(@) =0 (™), vo.

The right hand side is generated by all the oriented cycles in Q((;n) starting and
ending in vy and is therefore generated by the y;,x;, and the y;p,ax;, where a is an
arrow in () starting in v; and ending in v;. For an algebra morphism

[
there is an algebra morphism
O <Q(n)>g ) . B

by sending y;,ax;, to the (p, ¢)-entry of the n x n matrix ¢(a) and y;x;q to the
(p, g)-entry of ¢(v;). The defining relations among the x;, and y;, imply that ¢ is
indeed an algebra morphism. For example, consider the special case (2) = C{a,b),
that is the path algebra of the quiver on the left of figure 2 In order to describe
T{/@ we consider the quiver with relations as on the right of figure 2. We see that
the algebra of oriented cycles in v in this quiver with relations is isomorphic to the
free algebra in 2n? free variables

(C<y1(1£81, e, YnQy, ylbxlv e aynbxn>



2.1. REPRESENTING ALGEBRAS. 37

® ON @ D YTy = 0450, E TiYi = V1.
\“J -
Lbj ' Q l

FIGURE 2. The quiver and extended quiver for (2) = C(x,y).

which agrees with the description of {/(2) given in example 18.

THEOREM 12. There is a natural action of GL, by algebra automorphisms on
the n-th root algebra VA,

PROOF. The natural map A Marl A« M,,(C) gives a canonical C-algebra map

A A M, (VA) ~ Ax M,(C)

with the following universal property. For any C-algebra morphism A 2, M, (B),
there is a C-algebra map /A . B completing the commuting diagram

A 4“’ Mn(m)

For ¢ € GL, we consider conjugation on the first component of Mn((L/Z) =

M,(C) ® {/A. Then, g acts on VA via the automorphism /A b0, VA cor-
responding the the composition ),

A = - M, (V/A)
%9
ia g9 "

O

EXAMPLE 20. The GL,-action on {/(m). We have seen that {/(m) = (mn?) =
C(Z11.1, - Tpnm)- The universal map (m) —— M, (3/(m)) is given by

Til,k  --- Tink
T =

Tnlk -+ Tnnk
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It follows that the action of ¢ € GL, on %/(m) is given by the automorphism
sending the variable z;; 5 to the (i, 7)-th entry of the matrix

Ti1,k --- Tink

Tnlk -+ Tnnk

The connecting morphisms compatible with the GL,,-actions are induced by a
canonical map between free products of roots. This map, in turn, follows from the
universal property of ¥/A.

There is some arithmetic associated with the root construction.

THEOREM 13. For all strictly positive natural numbers a;, k; we have
(1) For k=7, a;k; there is a connecting morphism
VA S WA« ®Ax.. .« /A

(2) For k =1], ki there is a natural isomorphism

VA — %Y. va

ProOOF. (1) : Assume k = a1k; + ...+ a,k, and consider the algebra
U= "VAx ¥Ax.. .« /A

The canonical maps /A —“» U correspond to algebra maps A LN My, (U).
This gives algebra maps

fi (CL) 0
5,
A4L’Maiki<U) a —
Consider the algebra map
fi(a) Ty, 0
Ao Uy ae .
0 f2(a)Ta.

which gives the required morphism VA — U.
(2) : This follows from the defining property of /A using the canonical iso-
morphism M, (B) ~ M,(My(B)). O

The n-th root algebra /A is a fairly mysterious ring, the precise structure of
which is obscure. An intriguing property was proved by A. Schofield [60, Thm.
2.19].

THEOREM 14 (Schofield). For any algebra A € alg, the n-th root algebra /A
is a domain.

PROOF. Assume a,b € /A with ab = 0. By Morita equivalence, we may
regard a and b as endomorphisms of the induced projective module

P = (M,(C) x A) @, (c) S

where S is the simple module of M, (C). By the coproduct theorems of George
Bergman (see [2] or [60, Thms. 2.1,2.2,2.3]) Im b is an induced module (being a
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submodule of an induced module). Moreover, there is an isomorphism of induced
modules P’ —— P such that the composition with the surjection P — Im b is an
induced map P’ — Imb. Because (M, (C)*A)®, )9S is the only representation
of P as an induced module, we have a commuting diagram

P o . P b . P

M, (C)x A®yr, Q1 2% M, (C) x Aonr, S 2% M, (C) + A) @11, Qo

where @1, Q2 are (projective) M, (C)-modules. The only possibility for the M, (C)-
morphism
B
Q1 —— 5 — Qs
to be zero is that either a or § is the zero map. But this implies that a or b must
be zero. O

2.2. Representation schemes.

In this section we restrict attention to algebra morphisms from A to M, (C)
when C' is a commutative C-algebra. This functor is representable by an affine
scheme rep,, A, the scheme of n-dimensional representations of A. The coordinate
ring C[rep, A] is the Abelianization of {/A. Moreover, the natural G'L,-action as
well as the connecting sum maps are induced by those on ¥/A.

DEFINITION 18. A functor af : commalg —— sets is said to be an affine
scheme if there is an affine commutative C-algebra D which represents af, that is,
af is isomorphic to the functor

Homconparg(D, —) : commalg — sets

The algebra D is then said to be the coordinate ring of the scheme af and will be
denoted by Claf].

DEFINITION 19. Let A be an affine C-algebra. The n-th representation functor
of A is the functor
rep,A : commalg — sets
which assigns to a commutative C-algebra C' the set of all C-algebra morphisms
A — M, (C). Equivalently, rep,, A is the set of all left A ® C-module structures
on the free C-module C®" of rank n. The correspondence is given by defining a
module structure on C®" by left multiplication

C1 CC1
(a®c). |t | =dc(a)
Cn ccn

THEOREM 15. If A is an affine C-algebra, then the Abelianization of the n-th
root /A represents the functor rep, A, that is,
va
Clrep,4] ~ ————
[V/A, /A
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PROOF. By theorem 11 {/A is an affine C-algebra representing the functor
Homa1g(A,—) : alg — sets
Therefore, its Abelianization represents the functor
Homa1g(A,—) : commalg — sets

which is the functor rep,, A. O

EXAMPLE 21. We know that {/(m) = (mn?) = C(z11.1,--.,Znn,m). There-
fore, the Abelianization is the polynomial ring C[z11(1),...,Zu,(m)] in the mn?
commuting variables x”(k) for 1 <4,57 <nand 1 <k < m. The representation
scheme rep, (m) is the affine space of dimension mn?

M™ = M,(C) @ ...® Myn(C)

m

The coordinate functions of the k-th component are given by the entries of the
generic n X n. matric

.1‘11(]{1) PN xln(k)

Xp=1 :

The functorial construction and the foregoing example give us a method to
compute the coordinate ring of rep, A for any affine C-algebra A.

EXAMPLE 22. If A has a generating set {ay,...,a,}, then we have a presen-
tation
Clay,...,xm) (M)
Iy T Ia
where [ 4 is the twosided ideal of relations holding among the a;. Consider the ideal
I4(n) of the polynomial ring C[M2] = C[rep,, (m)] in the variables z;; (k) generated
by all the entries of the matrices

A~

r(X1,...,Xm) € My(Clrep,,(m)])

for all r(z1,...,zq) € I4. It follows from the functorial description of the n-th root
that
VA 1),...
Clrep,A] = — \/: = Clenr(1),- - - Tnn(m)]
[V/A, VA] I4(n)

Even when A is not finitely presented, the ideals I4(n) are always finitely generated.
In general however, the ideal I4(n) need not be radical, so the functor rep, A is
not always determined by the set of zeroes of I4(n) in the affine space M;".

THEOREM 16. Composing the universal map of the n-th root with Abelianization
we have a universal algebra map

S A e M,(YA) —er My(Clrep, 4)
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For every C-algebra morphism A . M, (B) with B a commutative C-algebra,

there is a morphism of commutative C-algebras Clrep,, A] Y. B making the dia-
gram

A —*— M,(Clrep, A))
’ ..-""'WV\
» &
M, (B)

commute. Moreover, rep,A has a natural action of the algebraic group scheme
GL,. That is, for all commutative algebras C' there is a group action

GL,(C) x rep,A(C) — rep, A(C)

and the orbits under this action are precisely the isomorphism classes of left AQ C-
module structures on C®™.

_ PRrOOF. By the universal property of the map i4 there is a C-algebra morphism
¥ : /A —» B making the upper left triangle of the diagram below commute

A i - M, (VA)

Because B is commutative, the map 1/3 factors through the Abelianization
VA .. .
VA VA = Clrep,, 4] giving the required map 2.

By theorem 12 there is an action of GL, by algebra automorphisms on {/A.
As any algebra automorphism preserves the commutator ideal, it induces an action
on the Abelianization which is C[rep,, A]. The action of GL,(C) is given by
basechange in the free C-module C®" whence orbits correspond to isomorphism
classes of A ® C-modules. ]

ExAMPLE 23. It follows from example 20 that the action of GL,, on rep, (m) =
M" is simultaneous conjugation

GL, x M™ — M™  (g9,(Y1,...,Y)) = (gY1g™ %, ..., gYmg ™)

THEOREM 17. Let k = > a;k; be a solution in strict positive integers, then
there is a connecting morphism of representation schemes

rep,, A x rep;, A X ... xrep, A — rep, A
compatible with the actions.

PROOF. Abelianizing the connecting morphisms of theorem 13
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we obtain a morphism of commutative algebras
VA VA WA A
VA VA (WA VA T WA, RA]

[kﬂ, kﬂ]
and this morphism gives us a morphism of the affine schemes

rep;,, A X rep;, A x ... x rep, A — rep, A
For a commutative algebra C' this map sends a z-tuple
(Vi,..., V) € rep, A(C) x ... x rep,_ A(C)
to the A ® C-module structure
VP g... oV

Hence the image consists of decomposable modules. Conversely, if we bring in the
GL,(C)-action we see that a module structure on C®" is decomposable if and only
if its orbit contains an image of one of these connecting morphisms. O

Affine alg-smooth algebras are machines producing an infinite system of affine
smooth varieties rep,, A, n=1,2,....

THEOREM 18. If A is an affine alg-smooth C-algebra, then the n-th represen-
tation scheme rep, A is a smooth affine variety (in particular, it is reduced) for all
n.

PrOOF. By Grothendieck’s criterium we have to prove that the coordinate ring

Clrep, 4] = is a commalg-smooth C-algebra. That is, we have to find an

VA
[VA, V4]
algebra lift ¢ for every algebra map C|rep, A] . B /I with (B, I) a test-object
in commalg. Consider the diagram

.(n)
A A M,(Clrep,A])

My ()

M,(B) - o M,(B/I)

where jj(éln) is the n-th universal map and where 1 is the composition M, (¢) o jg").

Because A is alg-smooth, we have an algebra lift

AL M, (B)
making the lower left triangle commute. By the universal property of the map jj(f)
we then deduce the existence of an algebra map of commutative C-algebras

Clrep,, A] %, B

making the upper left triangle commute. But then it follows that the lower right
triangle commutes and hence that ¢ is an algebra lift for ¢. O

EXAMPLE 24. Let A be the finite dimensional semi-simple algebra
A= Mdl(C) D... @Mdk((C)

Because A is alg-smooth, rep,, A is reduced so we only have to study the C-points.
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A has precisely k distinct simple modules {Si,...,Sr} of dimensions
{dy,...,dr}. Here, S; can be viewed as column vectors of size d; on which the
component My, (C) acts by left multiplication and the other factors act trivially.
Because A is semi-simple every n-dimensional A-representation M is isomorphic to

M=5SP"o...e50
for certain multiplicities e; satisfying the numerical condition
n=-eyd; + ...+ egdy

Therefore, rep, A is the disjoint union of a finite number of (necessarily closed)
GL,-orbits, each determined by an integral vector (eq,...,ex) satisfying the con-
dition.

To understand the structure of the orbits we need to determine the stabilizer
subgroup of M, that is, the group of A-module isomorphisms of M. By Schur’s
lemma we know that

Homa(S;, S;) ~ Cids, and Homa(S;,S;) =0 when i # j

Choose a basis of M by first fixing a basis for S; and taking e; copies of it, one for
each of the S7 components of M, then fixing a basis for Ss and taking es copies of
it, one for each Sy component, and so on. In this basis, any A-module isomorphism
of M is an element of the stabilizer subgroup Stabgr,, (M)

GL., (C®1y,) 0 0
0 GL.,(C®1y,) 0
. — GL,(C)
0 0 ... GL. (C®1,)
Therefore, the n-dimensional representation scheme of A decomposes into connected
components, one for each solution (eq, ..., ex) to the numerical condition n = eyd;+
...+ erdy

rep, A ~ |_| GL,/(GL¢, X ... x GLg,)
(e1,..,ex)
DEFINITION 20. Let @ be a finite quiver. A representation V of the quiver )

is given by

e a finite dimensional C-vector space V; for each vertex v; € Q),, and

e a linear map V; SACE V; for every arrow in Q.
If dim V; = d; we call the integral vector a = (di,...,dy) € N¥ the dimension
vector of V and denote it with dim V.

The set rep,, @ of all representations V' of @ such that dim(V) = « is an affine
space

rep, @ = @ Mg, xa,(C) =~ C"
where r = ZaGQa ds(a)di(a)-

A morphism V 2, W between two representations V and W of @ is deter-
mined by a set of linear maps

Vi i, W;  for all vertices v; € Q,
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satisfying the following compatibility conditions. For every arrow there is a com-

muting diagram in Qg

WiLWj

Basechange in all the vertex spaces induces an action of the algebraic group
GL(a) = GLg, X...XGLyg, on the affine space rep, Q. That is, if g = (¢1,...,9%) €
GL(a) and if V = (V,)4eq, then ¢.V is determined by the matrices

(9V)a= gt(a)vags_(i)-

If V and W in rep,, () are isomorphic as representations of ), such an isomorphism
is determined by invertible matrices g; : V; —— W, € GLg4, and therefore they
belong to the same orbit under GL(«).

EXAMPLE 25. Let o = (dy,...,d)) be a dimension vector such that n = |a| =
>, d;. Fixing on ordering of the vertices and fixing a basis in every vertexspace we
obtain an embedding of algebraic groups

GL(a) =GLg4, x ... x GLy, — GL,
Using this embedding we have an action of GL(«) on the product GL,, x rep,Q
h.(g,V) = (gh™ ', n.V)
and the associated fiber bundle
GL, x4 rep Q

is the set of orbits under this action. It is a smooth affine variety.
We claim that the n-th representation scheme of (Q)) decomposes

rep,(Q) = |_| GL, x9® rep Q

loe|=n

into smooth connected components.
Recall that Cy ~ C @ ... @ C is the subalgebra of CQ generated by the vertex
idempotents. The inclusion C) —— C@ induces a morphism

rep,,CQ S rep, Cy = |_| GL,/GL()

|a]=n

where the decomposition is given by the previous example. The a-component
corresponds to the semisimple Ci-module S?dl b...08 S;ed"' with S; the simple
one-dimensional module concentrated in vertex v;. Take the point p € rep,Cy
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sending the vertex idempotent v; to the matrix

0

V; =

0

with 1’s from position 31—} d; + 1 to position Si_, d;. The fiber v~ (p) consists
of all representations of @ of dimension vector or. As the basespace is an orbit with
stabilizer GL(«) and 1 is GL,-equivariant it follows that the inverse image of the
component GL,, /GL(«) is the homogeneous space

GL, xGH@ rep,Q
as claimed.

EXAMPLE 26. It is not always true that rep,, A is a reduced variety. Take
Cla]

T @)
and consider the representation scheme rep, A. The coordinate ring Clrep, A] is
the quotient of the polynomial ring Clz, 22,23, x4] by the ideal generated by the
entries of the matrix

2
1 x| [ @3+ aews  wa(w1 + 14)
T3 T4 r3(x1 +24) T+ 2273

That is, the ideal with generators
I = (.13% + ZEQ.Tg,LEQ(l‘l + 1‘4),1‘3($1 + .’114), (131 — 134)(581 + LE4))

The reduced variety of rep, A consists of all matrices X such that X? = 0. Con-
jugating X to an upper triangular form we see that the variety is the union of two
G Ly-orbits

oy oot )

This variety is a cone in C? with top the zero matrix and defining radical ideal
(x1 + x4, 27 + To13)
14 is properly contained in this ideal. Still, we have that
rad(Ia) = (21 + x4, 03 + 2324)
because mg =0 € Clz1,x2,23,24]/14.

EXAMPLE 27. We generalize the previous example and study the representation

scheme rep,, ((Cx[f% Any algebra morphism C[z] — M,,(C) is determined by the

image of x, whence rep, (Clz]) = M,(C). We know that conjugacy classes in
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M, (C) are classified by the Jordan normalform . Let A is conjugated to a matrix
in normalform

Ji

Ja

Js

where J; is a Jordan block of size d;, hence n = dy + ds + ... + ds. Then, the
n-dimensional C[z]-module M determined by A can be decomposed uniquely as

M=M®&Ma.. &M,

where M; is a C[z]-module of dimension d; which is indecomposable , that is, cannot
be decomposed as a direct sum of proper submodules.

Consider the quotient algebra A = C[z]/(2"), then the ideal Is of
Clz11, 212, - -, Tnn) is generated by the n? entries of the matrix
s
11 oo Tn
ITnl - Tnpn

Observe that when J is a Jordan block of size d with eigenvalue zero we have

0 ... 0 d-1 o ... ... 0

0

Jt = and J?% =

0 0O ... ... O

Therefore, the representation scheme rep, Clz]/(z") is the union of all conjugacy
classes of matrices having 0 as only eigenvalue and all of which Jordan blocks have
size < r. Expressed in module theoretic terms, any n-dimensional C[z]/(z")-module
M is isomorphic to a direct sum of indecomposables

M=IP"@I{*e.. eI

where I; is the unique indecomposable j-dimensional Clz]/(z")-module (corre-
sponding to the Jordan block of size j). Of course, the multiplicities e; of the
factors must satisfy the equation

e1+2e+3e3+...+re.=n
In M we can consider the subspaces for all 1 <i<r—1
M;={meM|z".m=0}
the dimension of which can be computed knowing the powers of Jordan blocks

tl:dzm@ Mi261+2€2+...(Z‘71)€i+i(6i+6i+1+...+6r)
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Giving n and the r — 1-tuple (¢1, 2, ...,t,—1) is the same as giving the multiplicities
e; because

2t1 =12+ €

oy =tz -+t +eo

2t3 =1ty + 12+ €3

2tn—2 =tp—1+th—3+en_2
2,1 =n+tp_o+en

n =tn-1+ey

Let n-dimensional C[z]/(z")-modules M and M’ be determined by the r — 1-tuples
(t1,...,tr—1) respectively (¢|,...,t,._;) then we have that

O(M') &~ O(M) ifand only if ¢y <t to <th, ... t,_1 <t _,

Therefore, we have an inverse order isomorphism between the orbits in
rep, (Clz]/(z")) and the r — 1-tuples of natural numbers (¢i,...,t._1) satisfying
the following linear inequalities (which follow from the above system)

2t1 Z t272t2 2 t3 + t172t3 Z t4 + tQ, .. -72tn—1 Z n -+ tn_g,’ﬂ 2 tn_g.

First, consider 7 = 2, then the orbits in rep, C[z]/(2?) are parameterized by a
natural number ¢; satisfying the inequalities n > ¢; and 2¢; > n, the multiplicities
are given by e; = 2t; —n and e; = n—t;. Moreover, the orbit of the module M (¢})
lies in the closure of the orbit of M (t;) whenever t; < t}. That is, if n = 2k+§ with
§ =0 or 1, then rep, C[z]/(2?) is the union of k + 1 orbits and the orbitclosures
form a linear order as follows (from big to small)

DoIfh — P2 gkt — . —— [on

If 7 = 3, orbits in rep, Clz]/(x3) are determined by couples of natural numbers
(t1,t2) satisfying the following three linear inequalities

2t >ta
2t2 2 n -+ tl
n Z t2

For example, for n = 8 we obtain the situation of figure 3 Therefore, repg C[z]/(2?)
consists of 10 orbits with orbitclosure diagram as in figure 3 (the nodes represent the
multiplicities [ejeses]). Here we used the equalities e; = 2t — to, €9 = 2to —n — 1
and es = n — t3. For general n and r this result shows that rep, C[z]/(z") is the
closure of the orbit of the module with decomposition

Mgen, =I1%al, if n=er+s
EXAMPLE 28. For A, A’ € alg we have that
rep, A« A’ ~rep, A x rep, A’

Indeed, by the universal property of algebra free products, any algebra map A
A" — M, (C) with C € commalg is determined by the restrictions A — M, (C)
and A" — M, (C).
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[012]
[202]
2t =t ‘
s 22 =840 121
T N

[800]

FIGURE 3. Inequalities and orbit closures in repg 8?%

Further, if ¥ is a finite set of maps in projmodA, then rep, Ay, the represen-
tation scheme of the universal localization of A at ¥ is a Zariski open subscheme
of rep,, A. Note however that this open subscheme may be empty.

2.3. Formal structure.

In this section we will define the formal structure on rep, A. The motivation is
that we want to endow rep,, A with a sheaf (for gluing purposes) of noncommutative
algebras encoding as much information as possible about algebra morphisms from
A to M, (B) with B a noncommutative algebra.

By microlocalization we will be able to recover all information for B a noncom-
mutative infinitesimal extension of a commutative algebra. If A is alg-smooth we
will connect this sheaf to the canonical formal structure Mikhail Kapranov defined
on affine smooth varieties.

DEFINITION 21. A commutative C-algebra C' is said to be a Poisson algebra
provided there there is an alternating bilinear bracket {f,g} on C, called the
Poisson bracket, which satisfies the Jacobi identity

{f:4g: 3y + g, {h, F}} +{hA{f,9}} =0 Vf,gheC

and is a derivation with respect to each argument, that is

{f:9h} ={f,g¢h+g{f,h} and {fg,h} = f{g,h} +{f h}g

A Poisson algebra C is negatively graded if C = @2 ,C_j is a graded commutative
algebra and the decomposition into homogeneous components is compatible with
the Poisson bracket

{Ck, C} C Oy
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Let poisson be the category of all commutative Poisson algebras with morphisms
C-algebra morphisms preserving the Poisson brackets.

We will assign to any C-algebra A a Poisson algebra by considering the com-
mutator filtration.

DEFINITION 22. For A € alg , A its natural Lie algebra structure defined

by
la,a'] = aa’ —d'a

Let AL be the subspace spanned by the expressions [a1, [az2, .-, [Gm, Gmi1] -]
containing m instances of Lie brackets.

The commutator filtration of A is the (increasing) filtration by ideals (F* A)cz
with F¥ A= A for d € N and

FRA=Y" > AAlCA.. AAlCA
m iyt 4i, =k

Observe that all C-algebra morphisms preserve the commutator filtration.

The main properties of the commutator filtration are that for all k,l € N we
have

FPAFTIACc F~ DA and [F*A F7'A) c F~(HFD 4
The first inclusion asserts that the commutator filtration is an algebra filtration,
the second implies that the associated graded of the commutator filtration, that is,
F=FA
_ o0
gr A=Oi0p—ar 4

is a negatively graded commutative Poisson algebra with part of degree zero the
Abelianization Ay, = ﬁ.

Indeed, define the degree of an element a € A, deg(a), to be the maximal k
such that a € F~*A, then we define the principal symbol of an element of a € A to
be the homogeneous element of degree —deg(a) of gr A

F—deg(a) 4
@@ A
With these definition, define a Poisson bracket on the associated graded, let f,g €
gr A and take f’, ¢’ preimages of f and g and define

{f.9}=0lf' 9
This definition does not depend on the choice of the preimages and is indeed a
Poisson bracket.

oa=a¢c

We will assume throughout that the commutator filtration on A is separated ,
that is,
(NF ' A=0
i

However, this is not always the case. In the exceptional cases one has to replace A

by the quotient M%A in what follows.

EXAMPLE 29. Taking the total degree of an element in (m) or the length of a
path in (@) and observing that the minimal degree (length) of an element in F~*
is at least ¢ + 1, the commutator filtration on free algebras and on path algebras of
quivers is separated.
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ExampLE 30. Let g be a finite dimensional semi-simple Lie algebra. Then,
[g9,9] = g. If U(g) denotes the enveloping algebra of g, then

F~"U(g) = [U(g),U(g)]

for all ¢ < 0. Therefore, the commutator filtration on U(g) is not separated.

If the commutator filtration on A is separated, we construct a sheaf of non-
commutative algebras O’} on the commutative affine scheme spec Ay, = rep; A by
micro-localization.

DEFINITION 23. Define the Rees ring of the commutator filtration to be the
algebra
A=PEFE A — Alt,t7]
i€
where ¢ is an extra central variable. The two basic properties of the Rees ring
construction are

~ A

A A
— ~gr A and
(t) (-1
A

Let m4 denote the gradation preserving quotient map A —» Gy

Let S; be a multiplicatively closed subset of A, then
S =5.+[A, 4]

is a multiplicatively closed subset of A with ¢S = S.. Note that all elements of S
have degree zero. Then, m1(.5) is a left and right Ore set consisting of homogeneous
elements in 7, (4) = gr A.

Because one can lift Ore sets through nilpotent ideals, it follows that 74(S) is

a left and right Ore set of homogeneous degree zero elements in 74(A) for every d.
Therefore, we have for every d a graded localization

S)y~t
N
These algebras form an inverse system of graded algebras and we consider its inverse
limit

ES

Qg‘(;l) = lll” 71'd(S)_l (td)

The central element ¢ acts torsion free on this graded algebra and the filtered algebra
Q5(A)

(t—1)Q5(4)

is called the micro-localization of A at the multiplicatively closed set S, see for

example [65] for more details.

Qs(A) =

It follows from general theory, see for example [65], that the associated graded
algebra of the micro-localization is isomorphic to the graded localization

gr Q4(A) ~o(A) 'gr A=5]"gr A
Let spec Ay = rep; A be the affine scheme with coordinate ring A, = ﬁ =

fl A, the latter definition will be explained in the next chapter. Recall that the
Zariski topology on spec Agp has a basis of open sets

X(f) = {P a prime ideal of A, such that f ¢ P }
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Consider the multiplicatively closed set {1, f, f2,...} in A4 and the corresponding
set Sy ={1,f, f% ...} +[R R].

DEFINITION 24 (Kapranov). The formal structure of the affine algebra A on
the affine scheme of its Abelianization is the sheaf of noncommutative algebras O
on rep; A defined by its sections on the basis open set X (f)

T(X(f), 0%) = Q% (4)

Let f4 be the free Lie algebra in d variables z1,...,z4. We will give an explicit
Poincaré-Birkhoff-Witt basis for the enveloping algebra U (fg).

DEFINITION 25. Let Xy = {x1,...,z4}. Order the variables by z; < z2 <
. < x4 and induce the alphabetic ordering on all the words in X4, that is
v=uxr or
u < v .
{u = zau’ and v = xbv’ with a < b

for nonempty words x, words ¢’ and v’ and letters a en b. This is the total ordering
on the words such as they would appear in a dictionary.

A Lyndon word is a nonempty word w such that w is smaller in the ordering
than all its nontrivial right factors, that is if w = uv for nonempty words v and v
then w < v.

ExAMPLE 31. The Lyndon words in two variables a < b of length < 4 are in
order

a < a®b < a’b<a®b? <ab<ab® <ab®<b

DEFINITION 26. The standard factorization of a Lyndon word is a decomposi-
tion w = wv where v is the smallest proper rightfactor of w. Inductively, associate a
Lie element L,, of f4 to w : if w = a is a letter from X4 = {x1,...,24} then L,, = a.
Otherwise, for the standard factorization w = uv of w we define Ly, = [Ly, L,].

Observe that if w is a word of length [, then L,, involves [ — 1 Lie brackets.
With B; we denote the set of Lie elements L,, where w is a Lyndon word of length
l.

ExAMPLE 32. The Lyndon words of length 5 together with their standard
factorization and the corresponding Lie algebra elements in f5 are

a'b =a(a®y) =|a

B
)
)
s

a®bv? = a(d®V?) = [a,]a,[[a,b],b
a’b® = a(ab®) = [a,[[[a, b], 0], 0]
ab’ab = (ab®)(ab) = [[[a,b], ], [a, b]]
abab® = (ab)(ab?®) = [[a, ], [a, [, b]]]
ab* = (ab®)b = [[[[a, 0], 0], ],b]

It is well known, see for example [57, §4] that B = U>1By is an ordered
C-basis of the Lie algebra f; and that its enveloping algebra

U(fa) = Clzq, ..., zq) = (d)

is the free associative algebra in the variables x;.
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EXAMPLE 33. The commutator filtration on (d). Number the elements of
Uk>2By, according to the order {b1, bo, ...} and for b, € By, we define ord(b;) = k—1
(the number of brackets needed to define b;). Let A be the set of all functions with
finite support A : Up>2Br, — N and define ord(X\) = > A(b;)ord(b;).

Rephrasing the Poincaré-Birkhoff- Witt result for U(f;) we have that any non-

commutative polynomial p € C(xy,...,x4) can be written uniquely as a finite sum
p=> [/l M
AEA

where [f\] € Clz1,...,z4] = S(By) and My = [T, 6", In fact, by [57, Thm. 4.9]
a C-basis for the enveloping algebra U(fq) = (d) is glven by the decreasing products

Ly, Ly, ... Ly,  w; a Lyndon words and wy > wg > ... > w,

With this notation we have that the commutator filtration on (d) has components

d) = D Tl M, VA ord(\) > k}
A

ExaMPLE 34 (Kapranov). The formal structure on A? induced by (d). For
every A, u,v € A, there is a unique bilinear differential operator with polynomial

coefficients
v
Cx

H:(C[xl,...,xd] ®c Clzy,...,xq) — Clz1,...,24]

defined by expressing the product [f] M. [¢] M, in (d) uniquely as
e A[[C’KH( f,9)] M,. There is an algorithm to compute these coefficients, see ex-
ample 35.

By associativity of (d), the C3,, satisfy the associativity constraint . That is,
we have equality of the trilinear differential operators

Z Y % © (C41, ®id) ZCMQ (id ® C42,,)
for all A1, A2, A3,v € A. One defines the algebra <d>“ab” to be the C-vectorspace
of possibly infinite formal sums ), [fA] M with multiplication defined by the
operators C¥,,. We have

r(a, Olay) = {d) e
We compute now the sections on an arbitrary open subset. Let A4(C) be the d-th
Weyl algebra ,
Clx1, -, Tdy Y1y -+ s Yd)
([, 25, i vl (i, y5] = i)
Let Oua be the structure sheaf on A?. It is well-known that the ring of sections
O4a(U) on any Zariski open subset U — A< is a left A4(C)-module. Define a

sheaf Ogd of noncommutative algebras on A? by taking as its sections over U the
algebra

Aq(C) =

OL(U)=Clzr, ..., 2a) iy ®  Ona(U)

C[xl,...,xd]

That is the C-vectorspace of possibly infinite formal sums ), o \[fa] Mx with fy €
044(U) and the multiplication is given as before by the action of the bilinear
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differential operators CY , on the left A4(C)-module Oxa(U). That is, for all f,g €
Opa(U) we have

1 Mafd My =) ICK,(f. 9] M,

This sheaf of noncommutative algebras Ogd is the formal structure on A% defined
by (d).

EXAMPLE 35. One can give an algorithm to compute the coefficients [C¥, (f, 9)]-
A standard sequence of Lyndon words is a sequence

S:(wlv"'awn)

where the w; = wu;v; are the standard factorizations of the Lyndon words and we
have for each 7 that either w; is a letter from X, or

Uizwi+17"'awn

A rise of s is an index 4 such that w; < w;y1, an inversion is a couple (4,j) with
i < j such that w; < wj. A legal rise is a rise ¢ such that

Wit1 2 Wit2y .-, Wy

Define a rewriting system on the set of all standard sequences. If i is a legal rise
then s — s’ where

3, - (wlv ceey, Wi—1, (wi'wi+1)a Wi42y - awn)

where w;.w;4 1 is again a Lyndon word. Call this operation A;(s) and let —— be
the reflexive and transitive closure of the binary operation —— . By [57, Thm.
4.3] for every standard sequence s there exists a decreasing standard sequence ¢

such that s —— ¢.
For a legal rise 7 of s

pi(S) = (’wl, sy Wi—1, Wig 1, Wi, Wig-2, - - - 7wn)

For any standard sequence s define the derivation tree T'(s) of s to be the labelled
rooted tree with the following properties : if s is decreasing then T'(s) is its own root,
labelled s. If not, T'(s) is the tree with root labelled s and with left subtree T'(\;(s))
and right subtree T'(p;(s)) for the rightmost legal rise i. For any decreasing sequence
t = (t1,...,t;) define P(t) = Ly, Ly, ... Ly, . Let m be a monomial in the variables
x1,...,Tq, then m defines a standard sequence by writing the letter components
from left to right and consider the derivation tree T(m), then in U(fq) = (d) it
follows from [57, lemma 4.11] that

m= ZP(t) t a leaf of T'(m)

To compute the coefficients [C} ,(f, g)], use the fact that any word in the variables
determines a standard sequence by writing the letter factors from left to right. So
assume f and g are monomials in the commuting variables, write their product
by concatenating these monomials (forgetting the commutativity). Then apply the
first part and for each of the terms collect together all terms L, and L;. This gives
the coefficients for the remaining product.
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For a fixed commutative affine algebra C there are many algebras A with A, ~
C, so there are several formal structures on spec C. If C is commalg-smooth,
Mikhail Kapranov proved in [27] that there is a canonical choice determined by
smooth algebras in appropriate categories of C-algebras.

If I is a central A-bimodule, that is a.i = i.a for all a € A and i € I, we
have that Ce(A,I) and C*(A, I) are complexes of A,p-modules and, in particular,
H,(A,I)and H"(A,I) are Ag-modules, see [27, Prop. 1.3.2]. Moreover, from the
identification of the complexes

C*(A,T) = Homa,, (Ca(A, Au), ])

and the fact that Ce (A, Aap) consists of free A,p-modules, there is a spectral sequence

By =Ext), (H;(A Aw). 1) = HM(A, D)

THEOREM 19 (Kapranov). Let A be a C-algebra such that Agp is commalg-
smooth.
(1) For any central A-bimodule I : H*(A,I) = Homy,, (Ha(A, Aap), I).
(2) There is a universal infinitesimal extension of A
0 — Ho(AApp) — AT — A——0

such that for any infinitesimal extension 0 —— I —— B —— A there
is a morphism of extensions

0 Hy(A, A - AT - A - 0

0 i - B - A >0
identical on A.

PROOF. (1) : Because Agp is commalg-smooth, we know that Hi(A, Agp) =
Qi‘ab is a projective Agp-module whence Exti‘ab (H1(A, Awp),I) = 0 for all j > 0.
Moreover,

Extzﬁlab (Ho(A7 Aab)a I) = EXtilab (Aap, I) =0

Therefore, the only nontrivial term Eéj with i4+j = 2 is Homyu,, (H2(A, Aa), I) and
as there are no differentials coming into this term we only have to consider outgoing
differentials. But dp with values in Ext%  (Ho(A, Aq),I) = 0 and ds with values
in Extiub (Ho(A, Aup), I) = 0, proving the claim.

(2) : Apply part (1) to I = Hy(A, Asp) then the identity map gives a spe-
cific element in H?(A, Hy(A, Agp)) which classifies infinitesimal extensions of A
with kernel Hy(A, Aup) giving us the extension A7. The infinitesimal extension
0 —> I —= B —— A of A is determined by an element of H?(A, I) which by
(1) gives a morphism Hy(A, Agy) — I which determines a morphism of exten-
sions. O

DEFINITION 27. A thickening of a commutative algebra C' is a C-algebra A such
that F~'A = 0 for i large enough and such that A,, = C. The full subcategory of
alg consisting of all thickenings of commutative algebras will be denoted by thick.



2.3. FORMAL STRUCTURE. 55

For any d € N we denote by thick.d the full subcategory of alg consisting of
all thickenings of degree d, that is, all C-algebras A such that F~(4+1) 4 = 0.
The d-th thickening functor, respectively the thickening functor

d o]
/ : alg —— thick.d resp. / : alg —— thick
1 1

assigns to a C-algebra A the (completed) thickening of Ay

d %S
A ) A
THEOREM 20 (Kapranov). Let C' be an affine commalg-smooth algebra. Then,
(1) For every d € N there is a unique (upto isomorphism identical on C)
thick.d-smooth algebra A.d with A.dgp ~ C.

(2) There is a unique (upto isomorphism identical on C') thick-smooth alge-
bra A with Ay ~ C.

PROOF. (1) : Observe that thick.1 = commalg and as C' is commalg-smooth
we will prove existence by induction on d. Assume A’ is thick.d-1-smooth with
A!, ~ C and consider the universal infinitesimal extension A = A 7. We claim that
A is thick.d-smooth. It suffices to prove a splitting for all B —»» A in thick.d
with nilpotent kernel. Let B’ = %izB’ then B’ € thick.d-1 and consider the
natural projection B —%» B’. Consider the diagram

T

B > A

Y ’ Y
™

B’ < - A

Here, 7’ is the surjection induced by m and as B’ € thick.d-1 and A’ is thick.d-1-
smooth there is a splitting o’. The algebra U is taken to be the fiber product

U=Bxpg A B . A

B g » B

with « and (8 the natural projections. Then, U %+ A’ is an infinitesimal extension
with kernel I = Ker ¢q. Moreover, roa : U — A is a morphism of infinitesimal
extensions because

powoazﬂ/oqoa:ﬂ'oa'oﬂ:ﬂ
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But then, by the universal property of A = A'™ there is a morphism of infinitesimal
extensions A ——» U and we can define a morphism ¢ = a o ~ which one verifies
to be a splitting of .
To prove uniqueness, assume there are two thick.d-smooth thickenings Ay, A
of C. By induction on d we may assume that
_A A1 ~ A
F,dAl o o F,dAQ

where A%~1 is the unique thick.d-1-smooth thickening of C. But then the lifting
property of thick.d-smooth algebras provides us with a diagram

0 - I - Ay - A% >0

0 - I - Az - A% -0

Remains to prove that f o g and gcircf are automorphisms. Let h = g o f then as

Aj ap >~ C = Ay o5 we have that m; o h = m; where A4, —» C is the Abelianization
map with kernel I;. There is an isomorphism of algebras

Ay xo A — Ay xo (C @ 1) (a,a") — (a,71(a) +a —a)
Consider the commuting diagram

A4 w0 AL S A xe (Ce )

C ‘C@Il

where h exists because C' @ I, is commutative. Moreover, the projection of h to
C is the identity map and such algebra morphisms are classified by the module
Der(C,I) of I-valued derivations of C. But then,

h(a) =a+ D(ﬂ'l(a)) Ya € Al

for some D € Der(C,I) and is therefore an algebra isomorphism.
(2) follows immediately from (1). O

DEFINITION 28. Let C' be an affine commalg-smooth algebra. The unique for-
mal structure O on the affine smooth variety spec C' determined by the unique
thick-smooth algebra A with Ay, >~ C' is called the thickening structure on spec C.

We can extend the n-dimensional representation functor commalg — sets of
A (see definition 19) to the categories of thickenings of commutative algebras and
show that they are representable. Moreover, we can relate Kapranov’s thickening
structure on the smooth representation scheme rep,, A when A is alg-smooth to
the root construction.

THEOREM 21. With notations as above, we have :
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(1) The functors
thick.d —— sets resp. thick —— sets
which assigns to a thickening B the set Homaig(A, My (B)) of all C alge-

bra morphisms are representable in thick.d respectively in thick by the
algebras

d 9]
/ VA respectively / VA
1 1

(2) If A is alg-smooth, then fldA is thick.d-smooth and [ A is thick-
smooth.
(3) If A is alg-smooth, then the thickening structure on the smooth affine
. gy . M
variety rep, A coincides with O VA
PRrROOF. (1) : If B € thick.d, then any algebra morphism A —— M, (B) is
determined by an algebra map /A —— B which factors

VA B

o«

[

(2) : Let (B, I) be a test-object in thick.d, then for every algebra morphism

A—» % we have a commuting diagram

A f

1

Here, the lift [ exists because A is alg-smooth and this map factors through fld A
as B € thick.d. The thick-case is similar.
(3) : Because A is alg-smooth, so is ¥/A and hence floo {/A is thick-smooth.

Moreover, the Abelianization of /A and of floo /A is the coordinate ring of rep,, A.
Therefore, the result follows from the uniqueness of thickening structures. [
For a general algebra A € alg, the formal structure O’%/Z determined by the

n-th root algebra {/A on rep, A contains all information about algebra maps
A —— M,,(B) where B is a thickening of a commutative algebra.






CHAPTER 3

Necklaces

"I will take the Ring”, he said
"though I do not know the way.”
J.R.R. Tolkien in 'Lord of the Rings”.

In this chapter we will finally get some algebraic grip on the alg-smooth algebra
A by associating to it a family of affine Noetherian algebras [ A, n € N. These
algebras are all quotients of a fixed algebra with trace [ A obtained by dividing
out the formal Cayley-Hamilton identities of degree n. The trace algebra [ A
is obtained from A by adjoining the polynomial algebra on all necklaces in the
generators of A, that is, equivalence classes of monomials in the generators under
cyclic permutation.

Further, we will equip the space spanned by all necklaces with a Lie algebra
structure coming from noncommutative symplectic geometry.

3.1. Algebras with trace.

In this section we associate to the algebra A € alg an algebra with a trace map
J A € alge. If A= (d) this algebra is obtained by tensoring with the polynomial
algebra on all necklaces in X4 = {x1,...,24}. If d is even, we define a Lie bracket
on the space spanned by all necklaces.

DEFINITION 29. Let A € alg and V € vect, the category of C-vectorspaces.
A trace map A —'+ V is a linear map satisfying t(ab) = ¢(ba) for all a,b € A.
The universal trace map A —2» ﬁ, where [A, A], is the subspace of A

spanned by all the commutators [a,b] with a,b € A, has the property that any
trace map factors

DEeFINITION 30. Let A € alg with algebra generators a;,i € I. Let w =
@i, Qj, - . . a;, be a word of length [ in the a;. The corresponding necklace word no
is the equivalence class of w in all monomials of length [ under cyclic permutation.
That is, w ~ wy = a4, a4, --- 0 a102 . .. G4, _, for all k£ <.

The class ng can be depicted by viewing the consecutive terms a; of w as i-
colored beads of a necklace as in figure 1 Two words w and w’ are equivalent if
their necklaces differ only upto a rotation.

59
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O—O0
o/ \o
/ \

O @ O
\ /

\o—o/

FIGURE 1. The necklace of a word w.

ExAMPLE 36. The necklaces for (d) = C(x1,...,24). Order the variables in
Xag=A{x1,...,zq} by &1 < ... < xg. From [57, Thm. 5.1 & Cor. 7.5] we recall
that a complete set of representatives of the necklace words in Xy is given by the
words

{I" | I a Lyndon word in Xy and n > 1 }

A necklace is said to be primitive if no nontrivial rotation leaves it invariant. More
generally, every necklace has a minimal period p dividing its length [. The number
of primitive necklaces of length [ for (d) is given by

%Zu(p)d%

pll
where p is the Mobius function. Indeed, let Xcll be the set of words in X4 of length
I, then the generating function of X} is

(21 —|—...+xd)l = sl(al,...,ad)l

where a1, ...,aq are commuting variables and where we define the evaluation of a
necklace word w to be aj" ...a}* provided w contains n; occurrences of the letter
x;. Also recall the definition of the Newton functions

si(ai,...,aq) = at + ...+ aj

Further, X} = U,;Cc(l) where Cy(l) is the set of words of length [ and period
e (that is, of the form w'/¢ with w a primitive necklace). Let P(e) be the set
of primitive words of length e, then each word in P(e) has e equivalents having
the same necklace and the map u — u'/¢ from P(e) to C.(l) is a bijection. Let

le(ay,...,aq) denote the generating function of primitive necklaces of length e, then
! 1
si(ag,...,aq)! = Z:ele(al/e7 . dd)
eln
and because s;(a1,...,aq) = s1(al,...,a}) we deduce that

1 ; i ; i iyl/i
72#(1)31(a17~-~,ad)l/ = %Ziu#(l)ﬁ(au--wad)l/
il

; l/e l/e
- %Ziu:“(l)ze\%ele(al/ ,...,ad/)
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As i|l and e|L is the same as e[l and i|L the last expression is equal to

1 l/e l/e .
YZele(al/ ,...,ad/ )Zu(z)

ell 1|£

and the second term vanishes unless | = e (where it is 1) so this is just {;(aq, . .., aq).
Finally, substitute in the generating function a; = ... = a4 = 1 to obtain the result.
For more details we refer to [57, §7.1]. As a consequence, the number of all necklaces

of length [ for (d) is equal to
1 L
7 Z ¢(P)d‘li

pll
with ¢ the Euler function.

DEFINITION 31. Let necky be the C-vectorspace spanned by the necklaces in
Xg={z1,...,24} and let * : X3 —— X4 be an involution, that is, (z})* = =;
for all 1 < ¢ < d. The x-Kontsevich bracket on necky is induced by the bracket on
necklaces defined by

./.—.\. ./.—.\.
o/ o \o o/ o \o
v v
Z .\.é./. — .\.é./.
acXy 0/:*/\0 ./:*/\.
/ \ / \
[ Vo
.\.7./. .\.7./0

To compute the bracket {wy, ws} x for two necklaces w; and wo we consider for all
letters a from X all occurrences of a in wy and all occurrences of a* in ws. Open
up the necklaces by removing these factors and glue the open ends together to form
a new necklace. Next, replace the roles of a* and aand redo this operation with a
minus sign and all all these terms.

The *-Kontsevich bracket defines a Lie-algebra structure on necky, see figure 2
for a graphical proof. We call necky with this Lie bracket the x-necklace Lie algebra
of (d).

For V € vect we denote by S(V) the symmetric algebra of V, that is the
Abelianization of the tensor algebra T(V) = &2,V .

DEFINITION 32. The necklace functor

7{ : alg —— commalg

assigns to a C-algebra A its necklace algebra

A
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FIGURE 2. Jacobi identity for the Kontsevich bracket. Term la
vanishes against 2¢, term 1b against 3d, 1c against 3a, 1d against
2b, 2a against 3¢ and 2d against 3b.
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EXAMPLE 37. For A € commalg, the necklace algebra ¢ A is isomorphic to the
symmetric algebra S(A) on A because [4, A], = 0.

Let A = M,(C) and recall that all n x n matrices of trace zero form the
simple Lie algebra sl,, for the commutator bracket. In particular, we have that
[M,,(C), M,,(C)], = [sln, sln] = slp,. The universal trace map on M, (C) is

n My, ((C)
Mel© = L), .0

with Tr the usual trace on matrices. But then,

%MMQ:S@ﬂJzQﬂ

=C1, with M — Tr(M)T,

with x corresponding to the class of the identity matrix T,.

DEFINITION 33. alg@ is the category of C-algebras with trace . Its objects are
pairs (A,tr4) with A € alg and a linear trace map

trao : A— A
satisfying the following properties for all a,b € A :
(1) tra(a)b=btra(a),
(2) tra(ab) = tra(ba) and
(3) tra(tra(a)b) =tra(a)tra(b).
Note that the first property asserts that the image tr4(A) of the trace map is
contained in the center of A.
Morphisms in alg@ are trace preserving algebra maps. That is, if (A,tr4) and
(B, trg) are two objects in alg@ we only consider algebra maps making the diagram

commute.

DEFINITION 34. The trace functor
/: alg — algQ@

assigns to an algebra A € alg its trace algebra [A = § A®c A. [ A € alg@ with
trace

/AL A defined by c®ar cng(a)®1

where n 4 is the universal trace map. ¢ A®1 is a central subalgebra of [ A and we

have
tr/A:j{A

EXAMPLE 38. If A € commalg we have seen in example 37 that § A = S(A).
Therefore,

/A:ﬂ&®@4

and the trace map is given by the multiplication map tr(a ® a’) = ad’ ® 1.
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EXAMPLE 39. For A = M, (C) we know from example 37 that § M, (C) ~ C[z].
As a consequence,

/MM©:fMA©®MAQ:CM®MMQ

and the trace is given by tr(2' @ M) = z'n(M) ® 1 = 2'Tr(M)x = Tr(M)z* .

EXAMPLE 40. By example 37 we have ¢ C[z] = S(C[z]) ~ Clzo,z1,...,2;,. ..
with x; corresponding to z* for all i € N. But then,

/Qﬂ:%@M@Qﬂ

and the trace is induced by tr(z; ® 27) = x;n(27) @ 1 = z;x;.
THEOREM 22. The forgetful functor
alge . alg
has the trace functor as a left adjoint .

PrOOF. We have to show that for any A € alg and any (B, trp) € alg@ there
is a functorial bijection

Homa14(A,iB) HAB) Homalg@(/ A, B)

To a trace preserving algebra map [ A %, Bwe assign the restriction ¢ to the

subalgebra 1 ® A of [ A. Conversely, if A . Bisan algebra map, then
AL 4B

is a trace map to the commutative C-algebra trpB. By the universal property of
the symmetric algebra, it factors through an algebra map

f A-2s trygBes B
But then, we have a trace preserving algebra map
P=9pR¢ : /A:%A@A—»B

One verifies that these two constructions are each others inverses.
Functoriality of the bijections means that for any algebra morphism A Ay

and any trace preserving algebra morphism (B, trg) AN (B’,trp:) the following
diagrams of sets are commutative

Homa14(A',iB) HALE) Homalg@(/ A’ B)

—of L—OIf

Homa14(A,iB) HAB) Homalg@(/ A, B)
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respectively,
Homa14(A,iB) HAB), Homalg@(/ A, B)

igo— Jgo—

Homaig(A,iB) HAB) Homalg@(/ A, B")
O

EXAMPLE 41. The one Ring to rule them all : [ (co). It is often convenient
to have an infinite supply of variables X = {x1,22,...,2;,...} and to consider the
corresponding free algebra (oco) = C{x1,x2,...). Totally order the set X, induce
a total order on all the words in X and define Lyndon words in X as before.
Let w = z;, x4, ...x;, € Lyndon*, the set of powers of Lyndon words in X, and
denote the represented necklace by w = [i1,%2,...,4]. Define a new variable to.
With these notations we have that the free necklace algebra is the commutative
polynomial ring

f(oo) = C[t, | w € Lyndon™ |

in infinitely many commuting variables.
The free trace algebra is the algebra

/(oo> =C[ty | w € Lyndon® | ® C(z1,22,... )
with coefficients in ¢ (co). The trace map on [ (co) is defined to be
tr(z a; @ w;) = Zaitzﬁ ®1
where the a; are polynomials in the variables ¢.

EXAMPLE 42. The free necklace algebra on m variables ¢ (m) is the quotient of
§ (00) where we divide out the ideal generated by all necklaces involving a term x;
with ¢ > m. Similarly, we have a description of the free trace algebra on m variables
J (m) as a (trace preserving) quotient of [ (co).

Though [ (m) is not an affine C-algebra, it is a trace affine algebra , that is,
there are finitely many of its elements (in this case X,,) which together with all the
traces of words in these elements generate the algebra.

THEOREM 23. FEvery trace affine algebra (A, tra) is an epimorphic image

/(oo) — A and /(m) — A
if A is generated by m elements in the category alg@ of algebras with trace.

PROOF. Assume that A is trace generated by the elements {ay,...,a,;,} and
forget the trace, then there is a morphism (m) — A defined by sending x; to a;.
Applying the trace functor we obtain a trace preserving algebra map

[ — [aa

where vy is the universal map. By assumption on the trace generation of A the
composition is an epimorphism. [
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3.2. Cayley-Hamilton algebras.

In this section we define for every n € N the quotient fn A of [ A by dividing
out the ideal of all Cayley-Hamilton identities of degree m. If A is affine, then
fn A is an affine Noetherian algebra. In the next chapter we will relate fn A to the
GL,-geometry of the scheme of n-dimensional representations rep, A.

Take n commuting variables A1, ..., A, and consider the polynomial
n n
fat) =]t =2) ="+ > (~1)ioit"™"
i=1 i=1

where o5 is the i-th elementary symmetric polynomial in the A;. These polynomials
are algebraically independent and generate the ring of symmetric polynomials in
the )\j,

Clot,...,00] = C[A1, ..., \]5"
Here, S, is the symmetric group on n letters acting by automorphisms on the
polynomial ring C[Ay, ..., \,] by permuting the variables.

THEOREM 24. The symmetric Newton functions s; = A + ...+ \.. form
another generating set for the symmetric polynomials. That is,

Clo1,...,0n] =C[s1,...,8n]

Proor. It suffices to express each o; as a polynomial in the s;. We claim that
the following identities hold for all 1 < j < n

(31) 8j —01Sj—1 + 0282 — ...+ (—1)j_10'j7181 + (—1)j0'j.j =0

For j = n this identity holds because we have
0= falX) =80+ Y (~1)'oisn_;
i=1 i=1

if we take so = n. Assume now j < n then the left hand side of equation 3.1
is a symmetric function in the \; of degree < j and is therefore a polynomial
p(o1,...,0;) in the first j elementary symmetric polynomials. Let ¢ be the algebra
epimorphism
CAL,- s An] == C[Ar,- .., A

defined by mapping Aj1,...,A; to zero. Clearly, ¢(o;) is the i-th elementary
symmetric polynomial in {A1,...,\;} and ¢(s;) = A] +... + A}, Repeating the
above j = n argument (replacing n by j) we have

0=~ £5(0) = 6(s5) + D (~1)'0(00)6(501)

(this time with sg = j). But then, p(¢(01),...,¢(0;)) = 0 and as the ¢(oy) for
1 < k < j are algebraically independent we must have that p is the zero polynomial
finishing the proof of the identity. ]

Let M be an n xn matrix with eigenvalues {1, ..., A\, }, then the characteristic
polynomial of M is
det (t0, — M) = [J(t = Xi) = fu(t)

i=1
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If we conjugate M to an upper triangular matrix, we see that the Newton functions
are
si =N+ N = (M)
for all 1 < i < n. By the foregoing theorem, there exist polynomials in the traces
of powers of M
o = gi(tr(M),tr(M?),... tr(M™))
such that the characteristic polynomial of M can be expressed as

det (t0, — M) =t"+ > (=1)"gi(tr(M), ... tr(M")t"™"
i=1
DEFINITION 35 (Procesi). For (A,tr4) € alg@ we define for a € A the (formal)
Cayley-Hamilton polynomial of degree n

X)) ="+ giltra(a),tra(a®), ... tra(a™)t" " € At

where the g; are the polynomials introduced above.
An algebra with trace (A,tr4) € alg@ is said to be a Cayley-Hamilton algebra
of degree n if the following two properties are satisfied :
(1) tra(l) —n =0, and
(2) For all a € A we have X((ln)(a) =01in A.
algln is the category with objects the Cayley-Hamilton algebras of degree n and
with morphisms trace preserving C-algebra maps.

EXAMPLE 43. The archetypical example of a Cayley-Hamilton algebra of degree
n is the ring of n x n matrices M,,(C) over a commutative algebra C equipped with
the usual trace map.

DEFINITION 36. The Cayley-Hamilton functor of degree n
/ : alg —— algln

assigns to an algebra A its n-th trace algebra . This is the quotient in alg of [ A
by dividing out the trace closure of the ideal generated by all the left-hand terms
of the formal Cayley-Hamilton polynomials of degree n of elements of A

[p—
n (tr(1) —n,x{(a) Va e [A)

Thus, fn A € alg@n and we define the necklace functor of degree n

j{ : alg —— commalg
n

This functor assigns to an algebra A its n-th necklace algebra fn A=tir fn A.

ExAMPLE 44. The Cayley-Hamilton functor of degree one is just Abelianiza-
tion. The first Cayley-Hamilton equation is x((ll)(x) = z — tr(a). Hence, in the
quotient f1A we have that a = tr(a) for all a € fl A. By the trace property
tr(a)b = btr(a) we deduce that [, A is commutative. So the universal algebra map
A — [} A factors through the Abelianization. This is an isomorphism as ¢ A is
generated by tr(a) for a € A (which are equal to a in the quotient [; A). This also

explains the notation [ ld A used in the previous chapter.
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ExAMPLE 45. With the notation of example 40 we have that

/ /(C Clz,x1,...,2n-1] and 7{ 7{@ Clz, ..., 2]

Indeed, in the quotient fn Clz] we have to satisfy the equations
tr(1) =2 =n and 2" — 12" ' + po(z1,22)2" 2 — ... £ pu(21,...,2,) =0

where z,, appears linearly in p,(z1,...,z,). Also, the higher x,, for m > n can be
written as polynomials in z,z1,...,2,—1 by induction and multiplying the second
equality by powers of = and taking traces. But then we see that

7{@ —tr/(C Clz, ..., Tn]

EXAMPLE 46. Recall that [ M, (C) = M, (C[z]) and ¢r(1 ®T,) = na. In the
quotient f M,,(C) we must have nx = m so f M, (C) is an epimorphic image of
M, (C). Assume that the quotient is M, (C), then the composition

—»/M ﬂ,@

gives a trace map on M, (C) satisfying the formal m-th Cayley-Hamilton equation.

The last coefficient of X((Im) (z) gives a multiplicative map on M, (C) so it gives a
character on GL, which must therefore be of the form det® for some integer k.
But then by polarization (to be discussed in the next chapter) we must have that
tr(M) = kTr(M) for all M € M,(C). But then, z = k and m is a multiple of n.
As a consequence we have

/ M, (C) = {Mn((C) if. nlm

0 otherwise
and that § M,(C) is C resp. 0.

We aim to prove that fn A is an affine C-algebra whenever A is. First we make
a small detour into one of the more exotic realms of noncommutative algebra : the
Nagata-Higman problem .

THEOREM 25 (Nagata-Higman). Let R be an associative algebra without a unit
element. Assume there is a fired natural number n such that ™ =0 for all x € R.
Then, R*"~1 =0, that is

T1.2....Tgn_1 = 0
for all z; € R.

PROOF. We use induction on n, the case n = 1 being obvious. Consider for all
z,y €R

flz,y) =y Foya" 2+ 2Pya" P 4+ 2" Py 2y
Because for all ¢ € C we must have that
0=(y+co)" =a"c"+ flz,y)c" '+ ... +y"

it follows that all the coefficients of the ¢! with 1 < i < n must be zero, in particular
f(z,y) = 0. But then we have for all x,y, 2z € R that

0= fla,2)y" "+ fla,zy)y" 2+ fla, 202" >+ + fla, 2™
=na" Lyt 4 zf(y, x”_l) +xzzf(y, :U"_2) + J:sz(y, x"_?’) + ..+ x"_sz(y, x)
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and therefore 2"~ 'zy"~ = 0. Let I < R be the twosided ideal of R generated by
all elements 2"~ !, then we have that I.R.I = 0. In the quotient algebra R = R/I

every element T satisfies 7"~ ! = 0.
1—1

. . —2"
By induction we may assume that R
is contained in I. But then,

R¥ 1= RTI-DH 2Tl p Rl TR =0

o 0, or equivalently that R2M -1

finishing the proof. O

The Nagata-Higman problem asks for the optimal function [(n) such that
R'™ = 0 but RI(™W=1 2 0. It is conjectured that I(n) = “F). In the next
chapter, we will prove Razmyslov’s bound /(n) < n? For more details on this

problem we refer to the lecture notes by E. Formanek [16].

DEFINITION 37. Giving the variables z; all degree one defines a positively graded
C-algebra structure on (co). This gradation induces a positive gradation on the
necklace algebra § (co) by taking as the degree of a generator t~ to be the length
of the word w in the variables x;. This induces a gradation on the trace algebra
J (o0) such that the trace map is degree preserving.

Because all the Cayley-Hamilton relations are homogeneous, it follows that the
generic n-th trace algebra [ (co) and the generic n-th necklace algebra ¢ (o) are
positively graded algebras. We will call the gradation on each of these algebras the
generator gradation .

Similarly, for a fixed number d of generators, [ (d), § (d), [ (d) and § (d) are
positively graded C-algebras with respect to the generator gradation.

THEOREM 26 (Procesi). The generic n-trace algebra on [ (co) is spanned as
a module over the generic n-th necklace algebra fn (00) by all monomials

Tj1 Ly -+ - Ty

of length | < 2™ — 1. In particular, for a fired number d of variables fn (d) is a
finitely generated module over § (d).

PROOF. Let [ . be the strict positive part of fn (00) in the generator gradation
and ¢ , the strict positive part of fn (00). Form the graded associative C-algebra
(without unit element)

Js

R=—"—

$.- Iy
Every element ¢t € [  satisfies a Cayley-Hamilton relation of degree n of the form
et 4 et" 24+, =0

with the ¢; € §, . Hence, 2" = 0 for all # € R. By the Nagata-Higman theorem we
know that R?"~! = (R;)?"~! =0.

Let |’ be the graded §, (co)-submodule of [ (co) spanned by all monomials
in the (images of the) variables x; of degree at most 2™ — 1. Then,

o[ of [
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We claim that [ (oco) = ['. Tf not, there is a homogeneous ¢ € /., (o0) of minimal
degree k not contained in [ ' Still, we have a description

t=t +cit1+ ...+ cs.ts

with ¢’ and all ¢;,¢; homogeneous elements of positive degree. As deg(t;) < k,
t; € f " for all i. Whence t € f /, a contradiction. The second part follows. O

We have reduced the problem of finite algebra generation of [ (d) to that of
the generic n-th necklace algebra §, (d)

THEOREM 27 (Procesi). The generic n-th necklace algebra §, (co) is generated
by the necklaces t- where w is a necklace word of length | < 2™. In particular, for
a fixed number d of variables f is an affine C-algebra and so is fn (d)

PROOF. Let f be the C-subalgebra of fn (00) generated by the (images of

the) variables x;. Then, tr(f_;) generates the ideal g§+. Let S be the set of all
monomials in the xl of degree at most 2" — 1. By the foregoing theorem we know
that [’ C 4. (00).S. The trace map

s [ o0 — )

is § (co)-linear. Therefore, as f+ C f (Czy + Cxa +...) we have

tr(/J:) c tr(ji (00)S.(Ca1 + Cxrz +...)) C}i(oo).tr(S’)

where §' is the set of monomials in the z; of degree at most 2". If 55/ is the C-
subalgebra of § (co) generated by all tr(S'), then we have tr(/’) L) C ¢, (o). f_;

Finally, we deduce )
f =4 anfrcfead

and thus § (co) = ¢+ ¢ (c0) ﬂ_ It follows that § (co) = ¢ by an argument
similar to that of the foregoing proof. The other statements follow from this and
the previous theorem. O

ExXAMPLE 47. In a Cayley-Hamilton algebra of degree 2 the following identities
are valid for all a,b
0 =a?—tr(a)a+ 5(tr(a)? —tr(a?))
a.b+b.a =tr(ab) —tr(a)tr(b) + tr(a)b+ tr(b)a
The second identity follows from the first by replacing a 4+ b for a. Consider the
free algebra on two generators (2) = C(z,y) and consider in §, (2) the subalgebra
$ ! generated the necklaces

{tr(z), tr(y), tr(a?), tr(y?), tr(zy)}
Using the two identities and §2 )-linearity of the trace on f2 we see that the

trace of any monomial in z and y of degree k > 3 can be expressed in elements of
3§ " and traces of monomials of degree < k — 1. We deduce that

é (2) = Cltr(a), tr(y), tr(2), tr(y?), tray)].
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Note that there can be no algebraic relations between these generators because we
can specialize to the 2 x 2 matrices in Cla, b, ¢, d, e, f]

a 0 c d
e fo b e[ ]

and obtain algebraic independent polynomials. From the identities it follows that
over fQ (2) any monomial in  and y of degree k > 3 can be expressed as a linear
combination of 1,2,y and zy and so these elements generate [, (2) as a ¢, (2)-
module. In fact, they form a free basis. If not, there would be a relation say

ry =al+ fr+y

with a, 3,7 € ¢, (2). However, specializing

x|—>01 r—>00 Whencex>—>10
0 0 10 Y™ 1o ol

we obtain a contradiction. Therefore,

/2<2> :f[;@“ @jé@).:r@]é(?).y@f;(?).xy

EXAMPLE 48. Consider the subalgebra R of §, (3) generated by the elements
tr(z), tr(y), tr(2),tr(z?), tr(y?), tr(2?) and tr(xy), tr(zz),tr(yz). Let A be the sub-
algebra of f2 (3) generated by R and z,y and z. It follows from the identities
given in example 47 that A is a finitely generated module over R generated by the
elements

{17 x? y7 Z7 xy? yZ7 xz? xyz}
We will see in chapter 6 that the Krull dimension of §2 (3) is 9 whence the generators
of R are algebraically independent, that is

R = Cltr(x), tr(y), tr(z), tr(zy), tr(zz), tr(yz), tr(2?), tr(y?), tr(z*)]

Further, ¢, (3) is a quadratic extension of R as tr(zyz) ¢ R for otherwise there
would be an homogeneous multilinear identity

tr(zyz) = atr(z)tr(y)tr(z) + B(tr(x)tr(yz) + tr(y)tr(zz) + tr(z)tr(zy))

which cannot exist by specializing the generators to the 2 x 2 matrices

el o] el el A

Moreover, taking traces of the identity
(zyz)? — tr(xyz)zyz + det(z)det(y)det(z) = 0

and simplifying the first term we get that tr(zyz) satisfies a quadratic equation
over R,
]{ (3) ¥ R1& R.tr(zyz)
2
Let K be the field of fractions of R, then K ®g [, (3) has dimension 8 (again, this
will follow from results from chapter 6) over K so the 8 module generators given
before are a basis. Finally, as tr(A) C A we obtain that A = [, (3),

/ (3)=R1®R2PRy®R.2® RayP Rrz® Ryz® Ruayz
2
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For more details we refer to the paper [40]. For a description of §, (d) and [, (d)
we refer to the monograph [38] where [, (d) (resp. §, (d)) are called the trace ring
(resp.the center of the trace ring) of d generic 2 x 2 matrices.

EXAMPLE 49. Consider generic 3 X 3 trace zero matrices
1 1
X=x- gtr(x) Y=y-— gtr(y)

then it follows from the Cayley-Hamilton identity of X + Y that the following
relations hold

g1 X34+ CX+F=0
g2 XY+ XYX+YX?+CY+DX+H=0
g3 Y2X+YXY 4+ XY2+ DY+ EX+G=0
g4 Y2+ EY +1=0

where we denote

1 1
C= —§tr(X2) D=—tr(XY) E= —§tr(Y2) G = —tr(XY?)

1 1 .
H=-tr(YX? F= —gtr(X?’) I= —gtr(Y‘3)
Then one can prove that

/<2> ~ C[t"’(ﬂ?),tT‘(y),C,D,E7F’ G7 H7 I]<X7 Y>
3 (91,92, 93, 94)

which is a free module of rank 18 over the polynomial subalgebra of ¢, (2)

Cltr(x),tr(y),C,D,E,F,G,H,I,J]

where J is the central element
J=2XYXY +X?Y?+YX?’Y +YXYX 4+ XY?X +2DXY +DYX +GX + HY
We refer to the paper [41] for full details.

3.3. Invariants of representations.

Recall from theorem 16 that there is an action of GL,, on rep,A, the orbits
of which correspond to isomorphism classes of n-dimensional A-representations.
Hence, GL,, acts by algebra isomorphisms on the coordinate ring C[rep,A]. In
this section we will prove that the algebra of invariant polynomials is generated by
(traces of) necklaces.

DEFINITION 38. The n-th invariant functor
ln @ alg —— commalg

assigns to a C-algebra A the ring of invariants of the GL,-action on the n-th
representation scheme rep, A

ln A = Clrep, A]%En
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The strategy we will use is to prove the generator result first for A = (m)
and deduce the general result by applying the Reynold’s operator. In the following
chapter we will identify |,, A with § A.

Recall that

rep,(m) =M, (C)® ... & M,(C) = M,"

m
the affine space of m-tuples of n x n matrices on which GL,, acts by simultaneous
conjugation. We have to determine the ring of all polynomial maps f

M™ = M,(C) & ...® M,(C) -+ C

n

which are constant along orbits for this action. The strategy we follow is standard
in invariant theory.

e First, we will determine the multilinear maps which are constant along
orbits, equivalently, the linear maps

ME™ = M,(C)®...® M,(C) — C

m
which are constant along GL,-orbits where GL,, acts by the diagonal
action, that is,

g (A1 ® ... @A) =gAg ' ®... @ gAng L
e Next, we will be able to obtain from them all polynomial invariant maps
by using polarization and restitution operations.

First, we translate the problem into classical invariant theory of GL,,. Let V,, ~ C"
be the n-dimensional vectorspace of column vectors on which GL,, acts naturally
by left multiplication

C 41
C Vo
Vo=1. with action  g¢. | .
C Un

In order to define an action on the dual space V;¥ = Hom(V,,,C) ~ C™ of covectors
(or, row vectors) we have to use the contragradient action

V= [(C Cc ... (C] with action [(;51 ds ... gbn] gt
Observe, that we have an evaluation map V¥ x V,, —— C which is given by the
scalar product f(v) for all f € V¥ and v € V,

141
Vg

(61 @2 ... onl. : = ¢1v1 + Gava + .o+ Puln
Un

which is invariant under the diagonal action of GL,, on V,* x V,,. Further, we have
the natural identification
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Under this identification, a pure tensor v ® f corresponds to the rank one matrix
or rank one endomorphism of V,, defined by

v f:V, —V, with w— f(w)v

and observe that the rank one matrices span M, (C). The diagonal action of GL,
on V,, ® V¥ is then determined by its action on the pure tensors where it coincides
with the action of conjugation on M,,.

Consider the identification

(Vo™ @ V™) = Bnd(VE™)
obtained from the nondegenerate pairing
End(VE™) x (Vi @ V,E™) — C
given by
MAR . Qfm U ®...QUn)=f1%...Q (A1 @ ... ®vy))

GL, acts diagonally on V,® and hence again by conjugation on End(V,®™) af-
ter embedding GL,, —— GL(V®™) = GL,,y. Therefore, the identifications are
isomorphism as vectorspaces with GL,-action. Hence, the space of G L, -invariant
linear maps
ViEm @ V™ — C

is the space Endgy, (V,¥™) of GL,-linear endomorphisms of V,®".

There is a different presentation of this vectorspace relating it to the symmetric
group. Recall that the diagonal action of GL,, on V,¥™ is given by

g (11 ®...QUR) =001 ... R gUm
The symmetric group S, on m letters on V,2™ given by
O’.(’Ul & ... ®Um) =Vs(1) @ ... @ Vs(m)

These two actions commute with each other and give embeddings of GL,, and S,,
in End(V,2™). The subspace of V,®" spanned by the image of GL,, will be denoted
by (GL,). Similarly, with (S,,) we denote the subspace spanned by the image of
Sm.-

THEOREM 28 (Schur). With notations as above we have :

(1) (GLyn) = Ends,, (V,™)
(2) (Swm) = Endcr, (V™)

PROOF. (1) : Under the identification End(V,2™) = End(V,,)®™ an element
g € GL, is mapped to the symmetric tensor ¢ ® ... ® g. On the other hand, the
image of Endg,, (V.¥™) in End(V,,)®™ is the subspace of all symmetric tensors in
End(V)®™. We can give a basis of this subspace as follows. Let {e1,...,e,2} be a
basis of End(V,,), then the vectors e;, ®...®e;  form a basis of End(V,,)®™ which is
stable under the S,,-action. Further, any S,,-orbit contains a unique representative

of the form
h -
e?hl ®...®e§2”2
with hy + ...+ h,2 = m. If we denote by r(hy, ..., h,2) the sum of all elements in
the corresponding S,,-orbit then these vectors are a basis of the symmetric tensors

in End(V,,)®™.
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The claim follows if we can show that every linear map A\ on the symmetric
tensors which is zero on all ¢ ® ... ® g with ¢ € GL,, is the zero map. Write
e = > x;e;, then

Me®...®e€) :Zx}l“ ...;vZ’;zA(r(hl,...7hnz))

is a polynomial function on End(V,,). As GL,, is a Zariski open subset of End(V)
on which by assumption this polynomial vanishes, it must be the zero polynomial.
Therefore, A(r(h1,...,h,2)) =0 for all (hq,...,h,2) finishing the proof.

(2) : Recall that the groupalgebra CS,, of S, is a semisimple algebra . Any
epimorphic image of a semisimple algebra is semisimple. Therefore, (S,,) is a
semisimple subalgebra of the matrixalgebra End(V,*™) ~ M,,,. By the double
centralizer theorem (see for example [51, §12.7]), it is therefore equal to the central-
izer of Endg,, (V,2™). By the first part, it is the centralizer of (GL,,) in End(V,®™)
and therefore equal to Endgy, (V,2™). (]

By (2), every GL,-endomorphism of V¥ can be written as a linear combina-
tion of the morphisms ), describing the action of o € S, on V,#™. We will trace
back these morphisms A, through the canonical identifications until we can express
them in terms of matrices.

THEOREM 29 (Procesi-Razmyslov). .
Let 0 = (i192...1a)(J1j2--.748) .- - (#7122. .. 2¢) be a decomposition of o € Sy,
into cycles (including those of length one). Then, under the above identification we

have
,LLO-(A1®®Am):tT(A“AZ2AZ )tT(Alej2...Ajﬁ)...tT'(AzlAzg.. A )

@ . Z<

where gy is the linear invariant V)" @V.E™ — C corresponding to A\, under the
identification (V)M @V,2")* ~ End(V,®™). That is, e (f1®... frn@01Q...Qvy,)
is equal to

Aoy i® @1 ®...0UR) = f1®...® fm(Ve1) ® ... Vo(m))
= [ fi(voe)
ProoOF. We know that every multilinear G L,,-invariant map
Y VETQVET s C

is a linear combination of the invariants p,, 0 € Sp,. Under M, (C) =V, @V, a
multilinear G L,,-invariant map

(VaeV)gm =V®" V™ — C
corresponds to a multilinear G L, -invariant map
M,C)®...® M,(C) — C

Under the identification, matrix multiplication is induced by composition on rank
one endomorphisms and here the rule is given by

v fu R f =flW e f
141 1%

@1 o a1 @[ oG] = f)e[e - ]

Vn vy, Vn

1

=~
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Moreover, the trace map on M, is induced by that on rank one endomorphisms
where it is given by the rule

tr(v® f) = f(v)
V1 Vg1 ... vidn
tr(| | ®[or ... ¢n])=tr(] :
Uy, Un®1 .. Un®n

Both sides of identity in the statement are multilinear hence it suffices to verify
the equality for rank one matrices. Write 4; = v; ® f;, then we have that

o(A1®...0An) = pe(1®.. 0, @ f1®...Q fm)
= Hi .fi(vo’(i))

)ZZVi¢i:f(U)

3

Consider the subproduct
fir (iy) fiz(Vig) - - fiay (Vi) =S

Now, look at the matrixproduct
Viy ® fiy Uiy ® fipe ooo i, ® fi,
which is by the product rule equal to

fir (Wiy) fin (Vig) -+« fin_y (Vi Vi, @ fi,

Hence, by the trace rule we have that

tT(Al' Ai2 ‘e Aza) = H fij (vo(ij)) =5
j=1

Having found a description of the multilinear invariant polynomial maps
M=M,(C)®...& M,(C) — C

m

we will now describe all polynomial maps which are constant along orbits by po-
larization.

THEOREM 30 (First fundamental theorem of matrix invariants). Any invariant
function from C[M™|%Ln = C[rep,,(m)]“L" is a polynomial in the invariants

tT(Xil N X”)

where X;, ... X;, run over all possible noncommutative polynomials in the generic
matrices {X1,...,Xm}. In particular, there is an algebra epimorphism

Fm) — L ()

PrOOF. The coordinate algebra C[rep,,(m)] is the polynomial ring in mn
variables x”(k) where 1 < k < m and 1 <i,5 <n. Consider the m generic n x n
matrices

2

l‘ll(k‘) xln(k)
Xp=1| | € Mu(CIM,"]) = My (Clrep,, (m)]).
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The action of GL, on polynomial maps f € C[M]"] is fully determined by the
action on the coordinate functions z;;(k) given by

g-ij(k) = (7" X5.9)ij-
This action preserves the subspaces spanned by the entries of any of the generic
matrices.

Hence, we can define a Z™-gradation on C[M]'] by deg(z;j(k)) =
(0,...,0,1,0,...,0) (with 1 at place k) and decompose

CMyl= P CIMMw.an
(diyee.ydm)EN™

where C[M]"](4,.....d,,) is the subspace of all multihomogeneous forms f in the
x;5(k) of degree (d1,...,dr), that is, in each monomial term of f there are exactly
dy, factors coming from the entries of the generic matrix X for all 1 < k < m. The
action of GL,, stabilizes each of these subspaces, that is,

it feC[M")a,,..d. then g.feC[M]]aq,,.a, forallgeGL,.

In particular, if f determines a polynomial map on M]* which is constant along
orbits, that is, if f belongs to the ring of invariants C[M"]“L» then each of its mul-
tihomogeneous components is also an invariant and therefore it suffices to determine
all multihomogeneous invariants.
Let f € C[M]"](4,.....d,,) and take for each 1 < k < m dj new variables
ti(k), ..., tq, (k). Expand
Ftr (DAL 4+ ..o+ ta, Ag, (1), ..t (m) A (m) + ... + ta, (M) Aqg,, (M)

as a polynomial in the variables ¢;(k), then we get an expression
St (0O Dm0 g, (m)san ()
Fs1(D)ensiy, (D eossy (m) s, (m)) (A1(1), s Agy (1), oo, Ar(m), ooy Ag,, (M)

such that for all 1 < k£ < m we have 2?21 si(k) = di. Moreover, each of the
Jsi),on, Sy (1500981 (1), er84,, () is a multi-homogeneous polynomial function on

Mo(C)® ... 8 My(C)&My(C)&...® M,(C)®...® M,(C)& ... % M,(C)

dy da dm

of multi-degree (s1(1),...,84,(1),...,81(m),...,8q,, (m)). Observe that if f is an
invariant polynomial function on M,", then each of these multi homogeneous func-
tions is an invariant polynomial function on M? where D = dy + ... + d,,.

In particular, we consider the multi-linear function

fioi:MP=M"o. . oM~ —C

which we call the polarization of the polynomial f and denote with Pol(f). Observe
that Pol(f) in symmetric in each of the entries belonging to a block M2 for every
1 <k <m. If fisinvariant under GL,, then so is the multilinear function Pol(f)
and we know the form of all such functions by the results given before (replacing
M™ by MD).

We want to recover f back from its polarization. We claim to have the equality

POl(f)(Al,...7A1,...7Am7...,Am) = dl'dm'f(Al, ,Am)

dq dm,
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and hence we recover f. This process is called restitution . The claim follows from
the observation that

f(t1(1)A1 + ..+t (1)A1, R A1 (m)Am +...+tq,, (m)Am) =
F(t(D) +. o4 ta, (1)) A1, .., (t1(m) + ...+ tg, (M) Ap) =
(1 (1) 4 oo ta, (D) (1(m) £+ + . () f(Ar, ..., A)

and the definition of Pol(f). Hence we have proved that any multi-homogeneous
invariant polynomial function f on M of multidegree (di,. .., d,,) can be obtained
by restitution of a multilinear invariant function

Pol(f): MP =M% @ ... MIm» —~ C

If we combine this with the description of all multilinear invariant functions we
obtain the first part of the theorem.

The last statement follows from the observation that the generators
tr(X;, Xi, - .. X;,) are only determined up to cyclic permutation of the factors X;.
That is, they correspond to a necklace word w

/Dim\

O O
D/ w \D
\ /

O O

\ /
O——~0

where each i-colored bead corresponds to a generic matrix X;. These bead-matrices
are cyclically multiplied to obtain an n X n matrix with coefficients in M, (C[M™]).
The trace of this matrix is called tr(w) and they generate the ring of polynomial
invariants. (I

ExAMPLE 50. The Jordan normalform can be used to give a direct proof of the
fact that the polynomial functions on rep, (1) = M} = M,,(C) which are constant
along orbits are polynomials in the traces of the generic n X n matrix

11 N AT
X =
Tni -+ Tpn
Construct the continuous map
™
M, — C"

sending a matrix A € M,, to the point (g1(A),...,0,(A4)) in C", where o;(A) is the
i-th elementary symmetric function in the eigenvalues of A (which is a polynomial
in the traces of powers of A). Clearly, this map is constant along orbits. We claim
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that 7 is surjective. Take any point (ai,...,a,) € C" and consider the matrix
Ae M,
0 an
-1 0 Ap—1
(3.2) A= - :
-1 0 as
-1 ap

then 7(A) = (aq,...,an), that is,
det(tl, — A) =t" —ayt" ' +apt" % — ...+ (=1)"ay.

We call a matrix B € M, cyclic if there is a (column) vector v € C™ such that C" is
spanned by the vectors {v, B.v, B%.v,..., B" " '.v}. Let g € GL,, be the basechange
transforming the standard basis to the ordered basis

(v,~Bw,B*v,—B3.w,...,(~1)" 1B" ).

In this new basis, the linear map determined by B (or equivalently, g.B.g~!) is
equal to the matrix in canonical form

0 b,
-1 0 bnfl
-1 0 ba
-1 b
where B™.v has coordinates (by,, . .., b2, b1) in the new basis. Conversely, any matrix
in this form is a cyclic matrix. By taking the determinant of the n x n matrix with
columns v, B.v, ..., B" 1.v for a generic vector v we see that the set of all cyclic

matrices B forms a Zariski open subset of M,,(C). Let f be a polynomial function
on M,,(C) which is constant along orbits and consider the diagram

M, C
."
S 7T ...~";§//xo
c’
where s is the section of m (that is, m 0 s = idgn) determined by sending a point
(a1, ..., ay) to the cyclic matrix in canonical form A as in equation (3.2). We claim

that f = f/om for f' = fos a polynomial in the o; (or equivalently in the traces of
powers of the generic matrix X). By continuity, it suffices to check equality on the
dense open set of cyclic matrices in M,,. There it is a consequence of the following
three facts we have proved before : (1) : any cyclic matrix lies in the same orbit as
one in standard form, (2) : s is a section of m and (3) : f is constant along orbits.

THEOREM 31. For any affine C-algebra A, there is an algebra epimorphism
]{ A | A

That is, the ring of invariants (C[repnA}GL", is generated by traces of necklaces
words.
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PrOOF. We only need to recall the construction of the Reynolds operator. Let

V and W be two C-vectorspaces with a locally finite GL,,-action and let V' Low
be a GL,-equivariant linear map. The Reynolds operator R is the canonical pro-
jection to the isotypical component of the trivial representation (for unexplained
terminology refer to section 4.2). There is a commuting diagram

!

Vv w

R R

VGLn fo WGELn

and it follows from complete reducibility of G L, -representations that fj is surjective
(resp. injective) if f is surjective (resp. injective). The statement then follows from
the surjection Clrep,, (m)] — Cl[rep,, 4] and the previous theorem. O

ExXAMPLE 51. (Invariants of quiver-representations) Recall from example 25
that the n-th representation scheme of (Q) decomposes into smooth connected
components

rep,(Q) = |_| GL, x9®) rep Q

|a]=n

Therefore, |, (Q) = C[rep,, (Q)]“L" decomposes into

@ C|GL, x GL(a) repaQ]GL"

la]=n

If H C G are reductive groups and V an H-representation, then we have for the
invariants of the associated fiber product

ClG xH V|¢ ~ V)

Applying this to the action of the basechange group GL(«a) on rep,Q we get

In (Q) = €D Clrep, Q"

|a]=n

where the components are called the invariants of a-dimensional quiver represen-
tations .

A generating set for the path algebra (Q) is given by the vertex-idempotents
v1,...,v, and the arrows aj,...,q; giving an epimorphism (m) — (Q) with
m = k + [. This epimorphism induces the epimorphism

Ln {m) =" 1 (Q) —== Clrep, Q)

and to determine the generators of the quiver invariants we have to follow the image
of the generic matrices under these maps and take traces of necklace words. For
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the first k£ variables, the generic matrix X; is mapped to the n x n matrix

0

V; =

0

with 1’s from position Zg;i d; + 1 to position Zle d; for a = (dy,...,dy). For
the last [ variables, the generic matrix X, corresponding to the arrow

is mapped to the block matrix in M, (Clrep, Q])
o ... ... 0

o ... ... 0
where M, is the d; x d; matrix of variables from Clrep, Q]
z11(a) ... ... x14,(a)
- .
rg;1(a) ... ... ®a;q,(a)

We know that the ring of quiver invariants (C[repaQ]GL(a) is generated by the
images of the traces of necklacewords tr(X;, ... X;_). Using the explicit block-form
of the matrices, we see that such a trace is zero unless the induced path 7(z;, ... ;)
is an oriented cycle in the quiver Q). We recover the result, proved in [42] that

(C[repaQ}GL(a)

is generated by traces along oriented cycles in the quiver @). By this we mean that
we multiply the n X n matrices corresponding to the vertices and arrows in order
and take the trace of the obtained n x n matrix with coefficients in C[rep_,Q)].

EXAMPLE 52. If A € alg is affine it has a presentation A = (m)/R4 where R4
is the ideal of relations holding in A. It follows from the Reynold operator that

ln A = Clrep, A]%n

is generated by (traces of) necklaces of words in the generators aq, ..., a,, of A. If
A is the path algebra of a quiver with relations, then we can restrict attention to
necklaces in the quiver. In particular this applies to the universal localization (Q)y,
and the n-th root algebra /(Q) of the path algebra of a finite quiver Q.

3.4. Necklace Lie algebras.

In this section we will size down the complex of noncommutative differential
forms by dividing out the super-commutators. The zero term in this Karoubi com-
plex can be viewed as the noncommutative functions and is the space spanned by
all necklaces. More generally, terms in the Karoubi complex induce G L,,-invariant
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differential forms on the representation schemes. Moreover, for a symmetric quiver
we will define a Poisson structure on this space.

We have seen that the x-Kontsevich bracket induces a Lie algebra structure
on neck, the space spanned by all necklace words of (d). In this section we will
extend this to necklace Lie algebras of quivers and relate them to noncommutative
differential forms and to noncommutative symplectic geometry.

For A € alg, we define for w € Q'A and W’ € Q7 A the super-commutator to be

[w,w] = ww — (=1)ww

That is, it is the usual commutator unless both ¢ and j are odd in which case it is
the sum ww’ + w'w.

DEFINITION 39. The differential d is a super-derivation on 2A4 whence
d([w,w']) = [dw,w'] + (—1)"[w, dw']

Therefore, if we define
Q" A
DoV A, QA

Then the dgalg-structure on 2 A induces one on the complex

DR" A =

DR A —“+ DR' A —4+ DR2 A — s .
which is called the Karoubi complex of A.

ExaMPLE 53. Terms of the Karoubi complex induce ordinary differential forms
on the smooth manifolds rep, A whenever A is alg-smooth. DRCA = ﬁ can be
viewed as the space of moncommutative functions on A. Elements of A induce

matrix valued functions on rep,, A hence taking traces gives a linear map

A tr

DR'A = A Al —— Clrep,, A]

which are even G L,,-invariant. More generally, any element of QA induces a matrix
valued differential form on rep,A and taking traces gives a differential form on
rep, A. Using the vanishing of the trace of commutators we see that this map
factors through the Karoubi complex

QA — DR*A — Q*CJrep,, 4]

That is, taking traces of noncommutative differential forms gives a uniform way to
define GL,-invariant differential forms on all the representation spaces rep,, A for
n € N.

DEFINITION 40. We define the (noncommutative) de Rham cohomology groups
of A to be the homology of the Karoubi complex, that is

d
Ker DR A —— DR"T! A

Hip A= —
ImDR"" A — DR" A

EXAMPLE 54. The de Rham cohomology of (m). Let E be the Eulerian deriva-
tion on (m) and verify that d is compatible with the subspaces of super-commutators
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for ig and Lg. The induced operations
d d

PN

DR 1 DR" DR’nJrl
(%
LE E LE 1B LE

are such that Lg is an isomorphism on DR" (m) whenever n > 1 and still satisfy
Lg =igod+ doig. Therefore,

Hip (m) = {

DEFINITION 41. For a C-subalgebra B C A, define a relative Karoubi complex

C whenn=0,
0 whenn>1.

DR, A —+DRL A —+DRZ, A s |
where
Qy A
Yo [Q A QA
The (noncommutative) relative de Rham cohomology groups of A with respect to
B is the homology of this complex

DR, A =

d
Ker DR}, A — DR, A

Bar A= 1 d
ImDRY, " A—— DR} A

EXAMPLE 55. The Cj-relative de Rham cohomology of (@Q). Again one can
use the Eulerian Cj-derivation on (@) to prove that
thdR CQR ~Cx...xC (k factors)
H&ﬁdR CQ ~0 Vn>1
DEFINITION 42. A quiver necklace word w in the quiver @ is an equivalence
class of an oriented cycle ¢ = ay...a; of length [ > 0 in Q. Here, ¢ ~ ¢ if ¢ is
obtained from c¢ by cyclicly permuting the composing arrows «;.
THEOREM 32. With notations as before, we have
(1) A C-basis for the noncommutative quiver functions

0 ~ L
DR¢, (Q) ~ [(Q),(Q) ]

is given by the quiver necklace words in the quiver Q.
(2) The space of noncommutative quiver 1-forms DRf, (Q) is

@ 0;.CQ.v; da = @ O ()d
PRrROOF. (1) : Let neckq be the C-space spanned by all quiver necklace words
w in @ and define a linear map

<Q>—n»W P — Wy %fp?sacycle
p+—0 if p is not
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for all oriented paths p in the quiver @), where w,, is the necklace word in @ deter-
mined by the oriented cycle p. Because wyp,p, = Wp,p, it follows that the commu-
tator subspace [(Q), (Q)] belongs to the kernel of this map. Conversely, let

rT=2o+2x1+...+Tm,

be in the kernel where z( is a linear combination of non-cyclic paths and x; for
1 <4 < m is a linear combination of cyclic paths mapping to the same necklace
word w;, then n(x;) =0 for all i > 0. Clearly, zo € [(Q), (Q)] as we can write every
noncyclic path p = a.p’ = a.p’ —p'.a as a commutator. If z; = ay1p1+aspa+...+a;p;
with n(p;) = w;, then p; = ¢.¢' and py = ¢'.q for some paths ¢, ¢ whence p; — po
is a commutator. But then, x; = a1(p1 — p2) + (a2 — a1)p2 + ... + a;p; is a sum of
a commutator and a linear combination of strictly fewer elements. By induction,
this shows that z; € [(Q), (Q)].

(2) : If p.q is not a cycle, then pdq = [p,dq] and so vanishes in DR};k (@) so
we only have to consider terms pdq with p.q an oriented cycle in Q). For any three
paths p, ¢ and 7 in @ we have the equality

[p-qdr] = pqdr — qd(rp) + qrdp
whence in DR};k (@) we have relations allowing to reduce the length of the differential
part
qd(rp) = pqdr + qrdp

SO DRlck (Q) is spanned by terms of the form pda with a € @, and p.a an oriented
cycle in (). Therefore, we have a surjection

Qlck (Q) — @ 1;.CQ.v; da

By construction, it is clear that [0, CQ, Q! , CQ] lies in the kernel of this map and

rel
using an argument as in the lemma above one shows also the converse inclusion. [

DEFINITION 43. The description of DR, (Q) for i = 0,1 and the differential

d . ) - .
DRY, (Q) — DR{, (Q) allow us to define quiver partial derivatives associated to

an arrow in Q.

2 . DR'%k <Q> - Uz‘<Q>Uj by df = Z %da

da 5.
To compute the partial derivative of a quiver necklace word w with respect to an

arrow a, we run through w and each time we encounter a we open the necklace by
removing that occurrence of @ and then take the sum of all the paths obtained.

To define a Kontsevich bracket on necky; we needed an involution * on the
generators. In particular, d must be even. A similar restriction will be needed in
order to define a Lie algebra structure on the space neckg.

DEFINITION 44. A quiver @ is said to be symmetric if for all vertices v; and v
we have

#{O~—0}=#{O0~—0}

or, equivalently, if the Euler form of @) is symmetric.
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If @ is symmetric, a quiver involution * is an involution on the set {ai,...,a;}
of arrows of () such that if

then
Given a quiver involution * we can partition the arrows of )
Q.=LUR such that L*=R

We call such a partition a symplectic quiver structure on Q.

Let us recall the relevant notions in the commutative case. A symplectic struc-
ture on a (commutative) manifold M is given by a closed differential 2-form. The
non-degenerate 2-form w gives a canonical isomorphism

TM~T"M

that is, between vector fields on M and differential 1-forms. Further, there is a
unique C-linear map from functions f on M to vectorfields {; by the requirement
that —df = i¢,w where i¢ is the contraction of n-forms to n — 1-forms using the
vectorfield £. We can make the functions on M into a Poisson algebra by defining

{f,g} = W(ff,&g)

and one verifies that this bracket satisfies the Jacobi and Leibnitz identities.
The Lie derivative L¢ with respect to & is defined by the Cartan homotopy
formula
Lg @ = igdtp + digtp
for any differential form . A vectorfield & is said to be symplectic if it preserves
the symplectic form, that is, L¢w = 0. In particular, for any function f on M we
have that {; is symplectic. The assignment

f— &

defines a Lie algebra morphism from the functions O(M) on M equipped with the
Poisson bracket to the Lie algebra of symplectic vectorfields, Vect,, M. This map
fits into the exact sequence

00— C—> OM) — Vecty, M — Hjpz M — 0

DEFINITION 45. A noncommutative quiver vectorfield is a Cg-derivation 6 of
(@). the set of all quiver vectorfields will be denoted by Der¢, (Q).

If % is a quiver involution and @), = L U R a quiver symplectic structure we
define the symplectic 2-form

w= Z dada* € DR, (Q)
a€l
A vectorfield § € Derc, (Q) is said to be symplectic if Low = 0 in DR, (Q). The
set of all symplectic vectorfields is denoted by Der,(Q).
THEOREM 33. Given a symplectic structure Q, = LUR on a symmetric quiver,
there is a one-to-one correspondence between

(1) nmoncommutative quiver 1-forms, and
(2) noncommutative quiver vectorfields.
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FIGURE 3. Kontsevich bracket {wy, w2} k.

PRrROOF. For 6 € Derc, (Q) define operators Ly and ig on Q¢, (Q) and on
DRe;, (@) by

ig(a) =0 ig(da) = 0(a)
These operators allow us to define a linear map
Derg, (@) —= DR¢, (Q) by 7(0) =ip(w)

Every Cig-derivation 6 on (Q) is fully determined by its image on the arrows in @

andifa:

{Lg(a) = 0(a) Lo(da) = d6(a)

0(a) = 0(vjav;) = v;0(a)v; € v;(Q)v;
so determines an element f(a)da* € DRy, (Q).

ig(w) = Z ig(da)da™ —ig(da™)da

a€Ll

= Z O(a)da™ — 0(a*)da

a€l

lies in DRlck (@). As both Cj-derivations and 1-forms are determined by their coef-
ficients, 7 is indeed bijective. O

DEFINITION 46. Let % be a quiver involution with a symplectic structure @, =
LUR. The x-Kontsevich bracket on the noncommutative quiver functions DROCk (@)
is defined by

8w1 8102 8w1 8w2

{wi,wao}k = Z (% 90 dar E) mod [(Q), (Q)]

a€Ll

That is, to compute {wy,ws}x we consider for every arrow a € L all occurrences
of a in wy and a* in wo. We then open up the necklaces removing these factors and
gluing the open ends together to form a new necklace word. We then replace the
roles of a* and a and redo this operation (with a minus sign), see figure 3. Finally,
we add all the obtained necklace words.
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THEOREM 34. Let Q be a symmetric function, * a quiver involution and Q, =
LUR a symplectic structure.
The noncommutative quiver functions DROCk<Q> equipped with the Kontsevich
bracket is a Lie algebra and the sequence
7 1d
0 — Cr — DRY, (Q) —> Der,(Q) — 0

to be defined below is an exact sequence (hence a central extension) of Lie algebras.

PROOF. One proves the first statement with the graphical argument given be-
fore for the free algebra. The Cartan homotopy formula

Lo =tpod+doig
and the fact that w is a closed form imply when 6 € Der,(Q) that
Low = digw =7(0) =0

That is, 7(0) is a closed form which by vanishing of the cohomology of the Karoubi
complex shows that it must be an exact form. That is we have an isomorphism of
exact sequences of C-vectorspaces

) e DR (Q) s (DR (@t —— 0
) Q) .
0 Ch Q@) Pt "

The symplectic derivations Der,(Q) is a Lie algebra with bracket [6;,02] = 6; o
92 - 02 o 91.
For every necklace word w we have a derivation ,, = 7~ 'dw which is defined

by
bula) =2
O (a*) :—‘Z—Z’

With this notation we get the following interpretations of the Kontsevich bracket

{w1,wa} e =1, (i6,,w) = Ly, (w2) = —Lg,, (w1)
where the next to last equality follows because i, w = dwz and the fact that
ig,,, (dw) = Lg,, (w) for any w. More generally, for any Cy-derivation 6 and any
necklace word w we have the equation
ig (i, w) = Lg(w)

By the commutation relations for the operators Ly and ig we have for all Ck-
derivations 6; the equalities

L01 i02 i93w — i92’i93L91w = [Lgl R i92]i93w + ’i92L91 i@sw
- i92L91i93w + g, [Lel ) 7;93](“}
= 1[0,,02)105W T 10, 1[0,,05)W

By the homotopy formula we have Ly w = 0 for every necklace word w, whence we
get

Ly, t,10,w = 1jp,,, ,0,)10:w + 16,10, ,05)W
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Take 6 = 6,,,, then the left hand side is equal to

L9w1 29w2 i93w = —L9w1 ’i93i9w2 w
= —Lg,, Lo, w>
whereas the last term on the right equals
igw2i[9wl 793](41 = —i[gwl 793]7;91020‘)

= —Lyy,, 05wz = —Le,, Lo;w2 + Lo, Lg,, w2

and substituting this we obtain that
[0, 00, ] 105w = — Lo, Lo, w2 + Lg,, Lo, w2 — Loy Lo, w2
= —Lg,Lg,, w2 = —Loy{w1, w2}k

= _293Z0{w1=W2}KW = Z‘9{101711)2}1(2930'}

Finally, if we take 6 = [0, , 0uw,] — 01w, ws}, We have that igw is a closed 1-form and
that ipig,w = —ig,ipw = 0 for all 5. But then by the homotopy formula Lg,igw = 0
whence igw = 0, which finally implies that 6 = 0. O



CHAPTER 4

Witnesses

"In the spirit of Weyl’s book, we then take the problem of de-
scribing the relations among such invariants and concomitants.
The result is quite striking in that it basically says that any rela-
tion among invariants and matrix concomitants is a consequence
of the theorem of Hamilton-Cayley.”

C. Procesi in [53].

In this chapter we prove the fundamental reconstruction results due to Claudio
Procesi [54]. Let alg@n be the category of all algebras with trace satisfying the
formal n-th Cayley-Hamilton identities and assign to B € alg@n the commutative
affine scheme trep, B of trace preserving representations. Let GL(n)-aff be the
category of all commutative affine schemes equipped with a linear G L,,-action, then
there is a triangle

algln
2
NS 2
alg P GL(n)-aff
The fundamental anti-equivalence spec : commalg —— aff of commutative

algebraic geometry extends to a left inverse )" assigning to an affine GL,-scheme
fun its witness algebra which is the algebra of GL,-equivariant polynomial maps
fun — M,,(C). There is the commuting diagram of functors

trep,,

algln X > GL(n)-aff
o
tr quot
commalg apec > aff

where quot is the quotient functor which assigns to an affine scheme with GL,,-
action fun the affine scheme determined by the ring of polynomial invariants
C[fun]9F». In particular, there is a geometric reconstruction result for the n-th
trace algebra of an algebra A

/A: M, (C[rep, A])¢L" and tr/A:C[repnA]GL"

That is, the n-th trace algebra can be recovered from the representation scheme
rep, A as the ring of GL,,-equivariants and the n-th necklace algebra fn A=tr fn A

89
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is the coordinate ring of the quotient scheme which by the result of M. Artin
[1] parametrizes the n-dimensional semisimple representations of A. Note how-
ever that because " is only a left inverse (and not an equivalence of categories)
noncommutative geometry@n is not merely GL,-equivariant geometry. In fact,
equivariant constructions (such as equivariant desingularization) quickly lead us
away from representation schemes.

4.1. Necklace relations.

In this section we will determine the kernel of the epimorphism

o) L 1 )

which will be crucial to relate the invariant ring |,, A to the n-th necklace algebra
§n A. The result is proved using the representation theory of the symmetric group.
We recall some of the basics of this theory and refer the reader to [17, Ch.4] for
more details.

DEFINITION 47. S, is the symmetric group of all permutations on d letters.
Conjugacy classes in Sy correspond to partitions A\ = (A1,...,A;) of d, that is,
decompositions in natural numbers

d=XM+...+ X with M >X>...2 X\ >1

The correspondence assigns to a partition A = (A1,..., ;) the conjugacy class of
a permutation consisting of disjoint cycles of lengths Ay, ..., Ag.

One assigns to a partition A = (A1, ..., A\x) a Young diagram with A; boxes in the
i-th row, the rows of boxes lined up to the left. The dual partition \* = (A\},..., \F)
to A is defined by interchanging rows and columns in the Young diagram of A.

A Young tableau is a numbering of the boxes of a Young diagram by the integers
{1,2,...,d}. For a fixed Young tableau T of type A one defines subgroups of Sy by

Py, = {0 € S4 | o preserves each row }
Qx = {0 € S4 | o preserves each column }

EXAMPLE 56. To the partition A = (3,2,1,1) of 7 we assign the Young diagram

A= A =1
with dual partition \* = (4,2,1). Two distinct Young tableaux of type A are
2[3] 3[5]
5 4

e

1
4
16
7]
For the second Young tableau we obtain the subgroups

Py =835 X Sq2,43 x {(6)} x {(7)}
Qn = 5{1,2,6,7} X 5{3,4} x {(5)}
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The group algebra CSj is a semisimple algebra. In particular, any simple Sg-
representation is isomorphic to a minimal left ideal of CSy; which is generated by
an idempotent.

DEFINITION 48. Given a tableau T of type A, define the elements of CSy
ay = Z es , by= Z sgn(o)e, and ¢y = ax.bs

o€ Py oEQAN

cy is called the Young symmetrizer corresponding to 7.

There is a one-to-one correspondence between the simple representations of
CS; and the conjugacy classes in Sy (or, equivalently, Young diagrams).

THEOREM 35 (Young). For every partition X of d the left ideal CSq.cx = V)
is a simple Sg-representations and, conversely, any simple Sy-representation is iso-
morphic to Vy for a unique partition A.

PROOF. Observe that Py N Q) = {e} (any permutation preserving rows as
well as columns preserves all boxes) and so any element of Sy can be written in at
most one way as a product p.g with p € Py and ¢ € Q. In particular, the Young
symmetrizer can be written as ¢y = > e, with ¢ = p.¢q for unique p and ¢ and
the coefficient £1 = sgn(q). From this it follows that for all p € Py and ¢ € Q) we
have

pax=axp=ayx , sgn(q)q.bx =0bx.sgn(q)g=>bx , p.cxr.sgn(q)q=cx

Moreover, we claim that ¢y is the unique element in CSy (up to a scalar factor)
satisfying the last property. This requires a few preparations.

Assume o ¢ Py.Q» and consider the tableaux 77 = ¢T, that is, replacing the
label ¢ of each box in T' by o (7). We claim that there are two distinct numbers which
belong to the same row in 7' and to the same column in 7”. If this were not the
case, then all the distinct numbers in the first row of T appear in different columns
of T'. But then we can find an element ¢} in the subgroup 0.Q.c ! preserving
the columns of T” to take all these elements to the first row of 7”. But then, there
is an element p; € T\ such that p1T and ¢{7T’ have the same first row. We can
proceed to the second row and so on and obtain elements p € Py and ¢’ € 0.Q 5,0~}
such that the tableaux pT and ¢'T’ are equal. Hence, pT = ¢'oT entailing that
p = ¢'o. Further, ¢’ = 0.q.0™! but then p = ¢'0c = oq whence o = p.g~' € Py.Q»,
a contradiction. Therefore, to o ¢ Py.Qx we can assign a transposition 7 = (ij)
(replacing the two distinct numbers belonging to the same row in 7' and to the
same column in 7”) for which p =7 € Py and ¢ = 0~ '.7.0 € Q).

After these preliminaries, assume that ¢/ = Y ay,€, is an element such that

p.c’.sgn(q)g=c forall pe Py,q€ Qx

We claim that a, = 0 whenever o ¢ P\.Q,. For take the transposition 7 found
above and p = 7, ¢ = o '.7.0, then p.o.q = T.0.07 .7.0 = 0. However, the

coefficient of o in ¢’ is a, and that of p.c’.q is —a, proving the claim. That is,
/
¢ = Z ApqCp.q
Pq

but then by the property of ¢’ we must have that a,, = sgn(q)a. whence ¢’ = accy
finishing the proof of the claimed uniqueness of the element c).
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As a consequence we have for all elements x € CSy that cy.x,cy = azcy for
some scalar o, € C and in particular that ci = nycy, for,

p.(ex-z.cy).sgn(q)qg = p.ax.by.x.ax.bx.sgn(q)q
= a>\.b>\.ac.a,\.b,\ = C)\-T.C)

and the statement follows from the uniqueness result for c.

Define V), = CSy.c) then we have c).V) C Ccy. We claim that V), is a simple
Sg-representation. Let W C V) be a simple subrepresentation, then being a left
ideal of CS; we can write W = CSy.x with 22 = x (note that W is a direct
summand). Assume that ¢,.W = 0, then W.W C CS4.cx.W = 0 implying that
x =0 whence W = 0, a contradiction. Hence, ¢y.W = Cc) C W, but then

Va=CS4.cx CW whenceV, =W

is simple. Remains to show that for different partitions, the corresponding simple
representations cannot be isomorphic.

We put a lexicographic ordering on the partitions by the rule that

A > p  if the first nonvanishing \; — p; is positive
We claim that if A > u then a).CS4.b, = 0. It suffices to check that ay.c.b, =0
foro € S;. As O'.bH.O'_l is the ”b-element” constructed from the tableau b.7” where
T’ is the tableaux fixed for p, it is sufficient to check that ay.b, = 0. As A > p
there are distinct numbers ¢ and j belonging to the same row in T and to the same
column in 7”. If not, the distinct numbers in any fixed row of T' must belong to
different columns of T, but this can only happen for all rows if i > A. So consider
7 = (ij) which belongs to P\ and to @, whence a).7 = ay and 7.b, = —b,. But
then,
aA.bH = a).7,T, bu = 7&)\.17#

proving the claim.

If X # p we claim that V) is not isomorphic to V},. Assume that A > u and ¢
a CSg-isomorphism with ¢(Vy) =V, then

(b(c,\V,\) = C,\¢(V,\) = C,\VM = CX(CSdCM =0

Hence, ¢\ V) = Cc)y, # 0 lies in the kernel of an isomorphism which is clearly absurd.

Summarizing, we have constructed to distinct partitions of d, A and p noniso-
morphic simple CSy-representations Vy and V,,. As we know that there are as many
isomorphism classes of simples as there are conjugacy classes in Sy (or partitions),
the V) form a complete set of isomorphism classes of simple Sy-representations. [

Recall that the free necklace algebra ¢ (co) is the commutative polynomial
ring on variables ¢~ where w varies over all necklace words in the noncommuting
variables X = {xy,z9,...,2;,...}. Tw =x;, ... z; we will write to = t(zi, .. 24,).

DEFINITION 49. For o € Sy let
o= (i141...%)(J1d2. .- 48) - .- (2122 .. 2¢)
be a decomposition into cycles including those of length one. Define a linear map
T:CSy — f (o)
which assigns to o the formal necklace T, (x1,...,24) defined by

Ty(w1,. .y mq) = U@y iy oo 25 (X5, T4y - Tgy) o (T2 Ty T2,)
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A linear combination Y asT,(x1,...,zq) is said to be n-th necklace relation if it
belongs to the kernel of

o) L 1 (o)
given in theorem 30.

THEOREM 36 (Second fundamental theorem of matrix invariants). A formal
necklace

Z aaTa(xla s 7xd)

oc€Sy

is a necklace relation (for n x n matrices) if and only if the element

Z aqse, € CSy

belongs to the ideal of CSy spanned by the Young symmetrizers cy relative to par-
titions A = (A1,..., Ak)

I

I

with a least n + 1 rows, that is, k > n + 1.

PROOF. Let V =V, be again the n-dimensional vectorspace of column vectors,
then S; acts naturally on V®9 via

O'.(’Ul ®...®’Ud) =Up(1) @ ... ® V()

hence determines a linear map A\, € End(V®?). In the previous chapter we have
seen that under the natural identifications

(MEY)* = (V¥ @ VEI)* ~ End(VE?)
the map A, defines the multilinear map

to : Mp(CO)®...0 M,(C) — C

d

defined by (using the cycle decomposition of o as before)

‘[L,T(A1®®Ad):tT(A“A,2A )t’l"(Alejz...A )...tT(AZlAZQ.. A )

o B s ze

Therefore, a linear combination > a,Ty(21,...,24) is an n-th necklace relation if
and only if the multilinear map 3 ayue : M®4 —— C is zero. This, in turn,
is equivalent to the endomorphism Y a,\, € End(V®™), induced by the action
of the element 3" a,e, € CSy on V®? being zero. In order to answer the latter
problem we have to understand the action of a Young symmetrizer ¢y € CS; on

ved
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Let A = (A1, Ag, ..., Ax) be a partition of d and equip the corresponding Young
diagram with the standard tableau (that is, order first the boxes in the first row
from left to right, then the second row from left to right and so on).

] ———>
e S PPPF

4
The subgroup P, of Sg which preserves each row then becomes
Py =5y xSy, x...x 8, — S
Asay = ZI)EP)\ e, we see that the image of the action of a) on V® is the subspace
Im(ay) = Sym™ V@ Sym™ V®...® Sym™ V — V&4

Here, Sym® V denotes the subspace of symmetric tensors in V®.

Similarly, equip the Young diagram of A with the tableau by ordering first the
boxes in the first column from top to bottom, then those of the second column from
top to bottom and so on.

1 d]

1

i+
Equivalently, give the Young diagram corresponding to the dual partition of A

A= (p, pas - - )

the standard tableau. Then, the subgroup @, of S; which preserves each row of A
(or equivalently, each column of \*) is

Qx =S, X Spy X ... xSy, = S

As by = ZQGQ)\ sgn(q)e, we see that the image of by on V®¢ is the subspace

H1 H2 1%
Imby) =\ Ve V®...®A Ve ved

Here, \' V is the subspace of all anti-symmetric tensors in V®%. Note that A" V =
0 whenever i is greater than the dimension dim V = n. That is, the image of the
action of by on V®? is zero whenever the dual partition A\* contains a row of
length > n + 1, or equivalently, whenever A\ has > n + 1 rows. Because the Young
symmetrizer ¢y = a).by € C Sy this finishes the proof. O



4.1. NECKLACE RELATIONS. 95

EXAMPLE 57. (Fundamental necklace relation)
Consider the partition A = (1,1,...,1) of n + 1, with corresponding Young
tableau

Then, Py = {e}, @x = Sp+1 and we have the Young symmetrizer

ay =1 by =cy = Z sgn(o)e,.

o0ESn41

The corresponding element is called the fundamental necklace relation

fund, (z1,...,Zpy1) = Z sgn(o) Ty (21, .y Tnt1)-
0ESnt1

Clearly, fund,(z1,...,Zn4+1) is multilinear of degree n + 1 in the variables
{x1,...,2n41}. Conversely, any multilinear necklace relation of degree n + 1 must
be a scalar multiple of fund,,(z1,...,2Zp4+1). This follows from the theorem as the
ideal described there is for d = n+1 just the scalar multiples of }° ¢ . sgn(o)e,.

THEOREM 37 (Procesi-Razmyslov). The n-th necklace relations form the ideal
of § (c0) generated by all the elements

fund, (M1, ..., Mpt1)
where the m; run over all monomials in the variables {x1, 22, ..., 24, ...}

PRrOOF. Take a homogeneous necklace relation f € Ker p of degree d and
polarize it to get a multilinear element f’ € § (c0). Clearly, f’ is also an n-th
necklace relation and if we can show that f’ belongs to the described ideal, then so
does f as the process of restitution maps this ideal into itself.

We may thus assume that f is multilinear of degree d. A priori f may depend on
more than d variables x, but we can separate f as a sum of multilinear polynomials
fi each depending on precisely d variables such that for ¢ # j f; and f; do not
depend on the same variables. Setting some of the variables equal to zero, we see
that each of the f; is again a necklace relation.

Thus, we may assume that f is a multilinear n-th necklace relation of degree d

depending on the variables {x1,...,24}. But then we know from theorem 36 that
we can write
f = Z a-,—T-,—(xl, o ,l‘d)
TESY

where Y are, € CS; belongs to the ideal spanned by the Young symmetrizers of
Young diagrams A having at least n + 1 rows.

We claim that this ideal is generated by the Young symmetrizer of the partition
(1,...,1) of n + 1 under the natural embedding of S,41 into Sy. Let A be a
Young diagram having £ > n + 1 boxes and let ¢y be a Young symmetrizer with
respect to a tableau where the boxes in the first column are labeled by the numbers
I = {iy,...,ir} and let S; be the obvious subgroup of S;. As Qx = Sr x Q'
we see that by = (3_,cg, sgn(o)ey).b" with ' € CQ'. Hence, c\ belongs to the
twosided ideal generated by ¢y = > . sgn(o)e, but this is also the twosided ideal
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generated by ¢, = > .5 sgn(o)e, as one verifies by conjugation with a partition
sending 7 to {1,...,k}. Moreover, by induction one shows that the twosided ideal
generated by cj belongs to the twosided ideal generated by cq = ) g, sgn(o)es,
finishing the proof of the claim.

Hence, we can write

ZaTeT: Z a;jer,.( Z sgn(o)es).er,

TESY Ti,Tj€Sq 0ESnt1

so it suffices to analyze the form of the necklace identity associated to an element
of the form
er( Z sgn(o)ey).e;r  with 7,7 € Sy
oESnt1

Now, if a groupelement LESy bue, corresponds to the formal necklace polynomial
neck(z1,...,%q), then the element e.(3_ 5, bu€u).€-—1 corresponds to the formal
necklace polynomial neck(z (1), ..., Tr(a))-

Therefore, we may replace the element e,.(>"
ment

sS4, SIN(0)€g).e7/ by the ele-
( Z sgn(o)ey).e, with n=71".71 €Sy
0ESnt1
We claim that we can write n = ¢’.0 with ¢’ € S,,41 and 6 € S, such that each cycle
of # contains at most one of the elements from {1,2,...,n + 1}. Indeed assume
that 7 contains a cycle containing more than one element from {1,...,n + 1}, say
1 and 2, that is

then we can express the product (12). in cycles as

(121121T)(2j1]2]3)(k1 ka) (21 Zc)

Continuing in this manner we reduce the number of elements from {1....,n+ 1}
in every cycle to at most one.

But then as o' € S,41 we have seen that (D) sgn(o)es).eor =
sgn(a’) (> sgn(o)e,) and consequently

( Z sgn(o)eq).en = £( Z sgn(o)ey)-eq

O‘GSTL+1 O’GSn+1

where each cycle of # contains at most one of {1,...,n 4 1}. Let us write

9:(1211a)(2]1]ﬁ)(n+1818,€)(t1t)\)(2124)

Now, let ¢ € S,+1 then the cycle decomposition of 0.6 is obtained as follows
substitute in each cycle of o the element 1 formally by the string 14 ...14q,
the element 2 by the string 2j; ...jg, and so on until the element n + 1 by the
string n + 1s; ..., and finally adjoin the cycles of 8 in which no elements from
{1,...,n+ 1} appear.
Finally, we can write out the formal necklace element corresponding to the

element (3_,cq ., sgn(o)es).eq as
fund, (124, - - Tiy, T2Tjy o Ty ooy T 1Ty« o T, JE(Tty Ty ) o (T2 oo 22)

finishing the proof of the theorem. O
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4.2. Trace relations.

In this section we will introduce the n-th ring of equivariant maps T,, A and
study the kernel of the trace preserving map [ (co) —= 1, (co) which is called
the ideal of trace relations. This description will be crucial in the next section to
relate the algebras fn A resp. fn Ato |, Aresp. T, A.

Recall that GL, acts by algebra automorphisms on the coordinate ring
Clrep,, A] and by conjugation on the matrixring M, (C). The diagonal action on

My (Clrep, A]) = My (C) ® C[rep, 4]
is given by the formula

C11 e Cin g.c11 ... g.Cin

Cnl  --- Cnn g.-Cnl  --- G-Cnn
DEFINITION 50. The n-th equivariant functor
Tn @ alg — algln
assigns to a C-algebra A the ring of GL,-equivariant maps
Tn A = My (C[rep, A"

That is, T,, A is the algebra of all polynomial maps rep, A — M,,(C) which are
equivariant , that is, commute with the GL,, action on both spaces

rep, A N M, (C)

rep, A N M, (C)

The matrixalgebra M, (C[rep,, A]) with the natural trace map is a Cayley-Hamilton
algebra of degree n. The restriction of this trace to the subalgebra 7,, A makes 7,, A
an object of alg@n.

We have already used the Reynolds operator so it is about time to introduce it
formally.

DEFINITION 51. GL, is a reductive group , that is, every finite dimensional
GL,-representation is completely reducible, that is, a direct sum of irreducible
G L, -representations.

Let simpGL, be the set of isomorphism classes of irreducible GL,-
representations. An irreducible GL,-representation W belonging to the class
s € simpGL,, is said to be of type s.

Let X be a vectorspace (not necessarily finite dimensional) with a linear GL,,-
action. The GL,-action on X is said to be locally finite if every finite dimensional
subspace Y C X is contained in a finite dimensional G L,-subrepresentation Y’ C
X. In this case we can use reductivity of GL,, to decompose

X= P Xy

s€simpGL,,
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into its isotypical components , that is,

X =Y {W|WcCX,We s}

X 2+ X'isa G L,-linear map, then for all s € simpGL,, we have linear
maps Xy N XES). If ¢ is injective (resp. surjective) then each ¢ is injective
(resp. surjective).

If 0 € simpGL,, is the class of the trivial GL,-representation, then

X=X ={z€ X |ga=1VgeGL,}

. . . R . .
The Reynolds operator is the projection X —= X (o) the isotypical component of
the trivial representation, or equivalently, the GL,-invariant elements of X.

EXAMPLE 58. M, (C) =V ® V* is a GL,-representation, hence so is M™ and
all symmetric powers S* M™. Therefore Clrep, (m)] = C[M*] = &S* M has a
locally finite G L,-action.

If A is an affine algebra generated by m elements, then the kernel of the epi-
morphism Clrep,, (m)] — C|rep, A] is GL,-stable. Therefore, the GL,-action
on the coordinate ring C[rep,, A] of the scheme of n-dimensional representations of
the affine algebra A is locally finite.

Using the Reynolds operator, it suffices in order to determine the algebra gen-
erators of 1,, A to find those 7, (c0) (or 1, {(m)).

THEOREM 38 (Procesi). As an algebra over the n-th invariant algebra |, (m),
the n-th equivariant algebra T, (m) is generated by the monomials in the generic
matrices {X1,..., X} of degree < 2™ — 1.

PrOOF. Recall that rep,(m) = M = M,(C) & ... ® M,(C). Consider a

G Ly-equivariant map M," N M,,(C) and associate to it the polynomial map

M™ = MM @ M, (C) Xy - C
defined by sending (A1, ..., Am, Am+1) to tr(f(Ar, ..., Am). Ami1).
For all ¢ € GL, we have that f(g.A1.97,...,9.4n.g7") is equal to
g-f(A1,...,Ap).g7 1 and hence
tr(f(g.A1.97 % ..., 0. Am.g .9 Ami1.g ) =tr(g.f(A1, ..., Ap).g Lg. Ayi.g7h)
= tr(gf(Ah s 7Am)'Am+1~gil)
=tr(f(Ar, ..., Am). Ams1)
$0 tr(fX,m41) is an invariant polynomial function on M+ which is linearin X,, 1.
By the first fundamental theorem of matrix invariants, we can write
tr(fXmi1) =Y Gir.oig (X, - Xiy Xpn 1)
—
€ln{m)

Here, we used the necklace property allowing to permute cyclically the trace terms
in which X,,41 occurs such that X,y occurs as the last factor. But then,
tr(fXm+1) = tr(9gXme1) where

g= Zgil.,‘ilXil X
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Finally, from the nondegeneracy of the trace map on M, (C) (that is, if A, B € M,
such that tr(AC) = tr(BC) for all C € M,(C), then A = B) it follows that

=y u

DEFINITION 52. By the foregoing theorem, there is a trace preserving epimor-
phism

[ o) = 1 )

The elements of Kerr are called trace relations .

EXAMPLE 59. (Fundamental trace relation)
As the fundamental necklace relation

fund, (1,...,Tnt1) = Z sgn(o) Ty (21, -y Tpy1)-
0ESht1

is multilinear in the variables x; we can use the necklace property of the formal
trace t to write it in the form

fund, (x1,...,Tnt1) = t(chay (X1, ..., Tn)Tpt1) with cha,(zq,...,2,) € / (o0)

Observe that cha,(z1,...,2,) is multilinear in the variables z;. Moreover, by
the nondegeneracy of the trace map ¢r and the fact that fund, (z1,...,2,41) is a
necklace relation, it follows that cha,(z1,...,2,) is a trace relation.

Any multilinear trace relation of degree n in the variables {z1,...,z,} is a
scalar multiple of cha,,(z1,...,2,). This follows from the corresponding uniqueness
result for fund,, (z1,...,Zn41)-

An explicit expression of this fundamental trace relation is

n

cha, (Z1,...,%n) = Z(—l)k Z Xy Ty -+ - T, Z sgn(o) Ty (Tjys- -y Tj, )

k=0 i1 FbaF . Fig o€Sy

where J = {1,...,n} — {i1,..., i}

For = one of the variables x;, the formal n-th Cayley-Hamilton polynomial
chn)(x) is a homogeneous element of degree n of [ (o). It follows from Cayley-
Hamilton theorem for M, (C[rep, (c0)]) that Xfc")(x) is a trace relation. Fully po-

larizing Xé") (x) (say, using the variables {z1,...,z,}) one obtains a multilinear

trace relation of degree n which must be a scalar multiple of fund,, (21, ...,2,).

ExaMPLE 60. For n = 2, the formal Cayley-Hamilton polynomial of an element
z € [ (o) is
1
XD (@) = 2® — () + 5 (H@)* —t(a?))

Polarization with respect to the variables x7 and x5 gives the expression

12 —+ ToX1 — t(l’l)SUQ — t(l’g)iﬂl + t(fﬂl)t(l'Q) — t(xlxg)
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which is chag(x1, x2). Indeed, multiplying by x3 on the right and taking the formal
trace t we obtain
t(z1xoxs) + t(wawixs) — t(wr)t(x2x3) — t(a2)t(z123)
+t(xy)t(xo)t(x3) — t(x122)t(23)
= T(123) (w1, 2, 3) + T(213)($1, T2, 23) — T(l)(23)(1‘1, T2, 23) — T(2)(13)(l"1, To,13)
+T (1) (2)(3) (21, T2, 23) — T(12)(3) (21, T2, T3)
= 20653 T, (1,22, 23) = funds(x1, T2, x3)

THEOREM 39 (Procesi). The trace relations Kert is the twosided ideal of the
trace algebra [ (0o) generated by all elements

fund, (m1,...,mpy1) and  cha,(my,...,my,)
where the m; run over all monomials in the variables {x1,xa2, ..., 24 .. .}.
PrOOF. Consider an n-th trace relation trace(zy,...,zq) € Ker 7. Then, we

have a necklace relation
t(trace(zy,...,2q4)Ta+1) € Ker v

By theorem 37 we know that this element must be of the form

E nil---in,+1fundn (mi1 P 7min+1)

with the m; monomials, the n;,. i, ., € §(co0) and the expression linear in the
variable x441. That is, z441 appears linearly in each of the terms

nlanrlfundn(ml, e 7mn+1)
so appears linearly in nq_ 41 or in precisely one of the monomials m;. If x4y

appears linearly in nj _,41 We can write

ni.ne1 =t} ,.Tar1) with n&n€/<oo>

If 441 appears linearly in one of the monomials m; we may assume that it does so
in m,,+1, permuting the monomials if necessary. That is, we may assume m,, ;1 =
My, 1-Td+1.m” pg1 with m, m’ monomials. But then, we can write
!/
N1 pprfundy, (my, ..., Mpyp1) =  Nanpat(chap(ma, ..., my)my, . Tap1.m” nqr)
!
= t(nl,,,n+1.m”n+1.chan(ml, ey mn).mn+1.xd+1)

using § (oo)-linearity and the necklace property of the formal trace ¢. Separating
the two cases, one can write the total expression

t(trace(zy,...,Tq)Tqr1) = t([z ”;1...z’n+1fundn(mi1 s M)
i
+ Z Ny oogmir M Gy -Chap (M, .o mjn).m./j”+1]xd+l>
J
Two formal trace elements trace(zy,...,z4) and trace’(zq,...,zq) are equal iff
t(trace(xy,...,xq)Tqr1) = t(trace’ (z1,...,24)Tq+1)

finishing the proof. O
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DEFINITION 53. For mq,ma,...,m;,... € [ (00), the substitution
f (g f(ml,mz,...,mi,...)

is the uniquely determined algebra endomorphism of [ (co) which maps the variable
x; to m; and is compatible with the trace t.

That is, the substitution sends a monomial z; x;, ...x; to the element
M, My, - ..My, and the trace of a necklace word ¢(x;, x;, ...x;, ) to the element
t(milmi2 e mik)

A substitution invariant ideal of [ (oo) is a twosided ideal of [ (co) closed under
all possible substitutions as well as under the formal trace t.

For a subset of elements E C [ (co) there is a minimal substitution invariant
ideal containing E. We will refer to this ideal as the substitution invariant ideal
generated by E.

The algebra fn (00) is the free algebra in the generators {z1,x2,...,2;,...}
in the category alg@n. That is, if (B,tr) € algln is trace generated by
{b1,ba,...,b;,...}, then there is a trace preserving algebra epimorphism in alg@n

[ (o) =1

by mapping z; — b; and t(x;, ... x;) to tr(b;, ... b;).
The kernel of the natural quotient morphism

[ = [0

is a substitution invariant ideal. For, consider a substitution endomorphism ¢ of

J (=)
[0 =+ [0

R

Because ¢ = m, o ¢ preserves traces, Ker 1 is an ideal closed under traces and the
quotient If(éfofp € algen (being a subalgebra of [ (oco)). The claim that [ (oo)
is free means that Ker , is the minimal ideal of [ (co) such that the quotient is
an object in alg@n. Therefore, Ker ¢ C Ker m, and v factors through fn (00).
Therefore, the substitution ¢ induces an endomorphism of [ (oco) proving the claim.

THEOREM 40 (Procesi). There are natural isomorphisms in alg@n

J o= tatoo) and [ (m) = 1, m)

n

As a consequence we have isomorphisms in commalg

Flo0h= Lo and f (m) = L (m)
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PROOF. We claim that the ideal of n-th trace relations Ker 7 is the substitution
invariant ideal of f (00) generated by the formal Cayley-Hamilton polynomials

X (z)  for all xe/(oo)

This follows from theorem 39 and the definition of a substitution invariant ideal
once we can show that the full polarization of X;") (z), which we have seen is
cha,(x1,...,Zy,), lies in the substitution invariant ideal generated by the chn (z).

This follows as we can replace the process of polarization by the process of
multilinearization, the first step is to replace, for instance

A @) by @+ ) - @) - X w)

The final result of multilinearization is the same as of full polarization and multi-

linearizing a polynomial in a substitution invariant ideal remains in the ideal.

Because X;") (z) for « € [ (0co) maps to zero under 7, it follows from substitu-

tion invariance of Ker m, that Ker 7 C Ker m,. Because the quotient by Ker 7 is
Tn (00) € alg@n, we obtain by minimality of Ker m, that Ker 7 = Ker m, proving
the first statement. The second follows. O

The foregoing can be used to improve the bound of 2" —1 in the Nagata-Higman
problem to n2.

THEOREM 41 (Razmyslov). Let R be an associative C-algebra without unit
element. Assume that r™ =0 for all v € R. Then, for all r; € R we have

riro ... Tp2 =0

Proor. Consider the positive part (oo), of the free C-algebra (o) which is
an associative C-algebra without unit. Let 7'(n) be the twosided ideal of (co)
generated by all n-powers f" for f € (o0) . Observe that the ideal T'(n) is invariant
under all substitutions of (co),. The Nagata-Higman problem then asks for a
number N(n) such that the product

T1T2 ... TN(n) € T(n)
An alternative description of the quotient algebra (oo), /T'(n) is the following. Let
¢, be the positive part of the n-th necklace algebra §, (co) and [, the positive part
of the n-th trace algebra [ (co). Consider the associative C-algebra without unit

/- L
Observe the following facts about ﬁ : as C-algebra it is generated by the variables
X1,Xs,... because all the other algebra generators of the form t¢(x;, ...x;.) of

J (o0) are mapped to zero in ﬁ Further, from the Cayley-Hamilton polynomial it
follows that every ¢t € T satisfies " = 0. Hence, we have an algebra epimorphism

o = /.

J (0)
$, (00} [ (o0)

Observe that the quotient



4.2. TRACE RELATIONS. 103

(where ¢, (oo) is the positive part of the graded algebra § (c0)) is the free C-algebra
on the variables {x1, z2,...}. To obtain K we have to factor out the ideal of trace

relations. A formal n-th Cayley-Hamilton polynomial X&n)(z) is mapped to " in
J (00)/ . (00) [ (00). That is, to obtain [, we factor out the substitution invariant
ideal (observe that t is zero here) generated by the elements ™, but this is just the
definition of (co), /T'(n), hence the above epimorphism is actually an isomorphism.

Therefore, a reformulation of the Nagata-Higman problem is to find a number
N = N(n) such that the product of the first N generic matrices

X1X2...XN€%
+

can be expressed as a linear combination of products of traces of lower degree. Using
the description of the necklace relations given in theorem 36 we can reformulate
this conditions in terms of the group algebra CSy 1. Let us introduce the following
subspaces of the groupalgebra :

(oo)/ (00)  or, equivalently that tr(X1Xs... XnXnN11)

e A will be the subspace spanned by all N + 1 cycles in Sy41,

e B will be the subspace spanned by all elements except N + 1 cycles,

e L(n) will be the ideal of CSy41 spanned by the Young symmetrizers
associated to partitions

with < n rows, and
e M(n) will be the ideal of CSy1 spanned by the Young symmetrizers
associated to partitions

having more than n rows.
With these notations, we can reformulate the above condition as

(12...NN+1) € B+ M(n) and consequently CSyy; =B+ M(n)

Define an inner product on the groupalgebra CSx 1 such that the groupelements
form an orthonormal basis, then A and B are orthogonal complements and also L(n)
and M (n) are orthogonal complements. But then, taking orthogonal complements
the condition can be rephrased as

(B4 M(n))* = AnL(n)=0.
Finally, let us define an automorphism 7 on CSy1; induced by sending e, to
sgn(o)ey. Clearly, 7 is just multiplication by (—1)" on A and therefore the above

condition is equivalent to
ANLn)N7L(n)=0.
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Moreover, for any Young tableau A we have that 7(ay) = by« and 7(by) = aj-.
Hence, the automorphism 7 sends the Young symmetrizer associated to a partition
to the Young symmetrizer of the dual partition. This gives the following characteri-
zation : 7L(n) is the ideal of CSy 1 spanned by the Young symmetrizers associated
to partitions

with < n columns.
Now, specialize to the case N = n?. Clearly, any Young diagram having n? + 1
boxes must have either more than n columns or more than n rows

—

and consequently we indeed have for N = n? that
ANLn)N7L(n)=0
finishing the proof. O

4.3. Witness algebras.

In this section we will show that the n-th necklace algebra fn A and the n-th
trace algebra fn A can be reconstructed from the GL,-action on the n-th represen-
tation scheme rep, A by proving that the functors

In

are paired equivalent. Moreover we will give a geometric reconstruction result for
Cayley-Hamilton algebras of degree n.

n

{fn : alg — commalg and {{” : alg —— algln

DEFINITION 54. The n-th trace preserving representation functor of a C-algebra
with trace (A, tr) in alg@ is the functor

trep, A : commalg — sets
which assigns to a commutative C-algebra B the set Homaige(A, M, (B)).

THEOREM 42. For A an affine algebra in alg®, the functor trep, A is repre-
sented by the affine commutative algebra

Clrep, ()]
Ia
with I4 a stable ideal under the GL,-action on Clrep,, (c0)].

Cltrep,A] =
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PrOOF. The functor trep, A is representable by the quotient Cltrep,A] =
C[%};"A] where I4 is the ideal of C[rep, A] minimal with respect to the condition
that the composition

(n) A
A 22 M, (Clrep, A]) —»r Mn(q%in])

is trace preserving. The ideal I 4 can be described as follows. Consider the quotient
in alg@
A

(tr(1) — n, xS (a) Va € A)

then A’ is a Cayley-Hamilton algebra of degree n and we have that trep,A =
trep, A’. As A is an affine algebra in alg@ we have trace preserving epimorphisms

/<OO> —» A and /n<oo> RENYY

where the kernel T4 of p4 is the ideal of trace relations of degree n of A’.
By the universal embedding [ (oo) < M, (Cl[rep,,(o0)]) we can extend the
ideal T4 to the matrixalgebra and obtain

My (Clrep,, (00)])TaMy (Clrep,, (0)]) = My (1a)

A=

for some ideal I4 of C[rep,,(c0)]. O

EXAMPLE 61. Let A be the quantum plane of order two,

_ _Clzy
(zy + yx)

One verifies that u = z? and v = y? are central elements of A and that A is a
free module of rank 4 over Clu,v]. In fact, A is a Clu,v]-order in the quaternion

division algebra
U v
2= (" e )

and the reduced trace map on A makes A into a Cayley-Hamilton algebra of degree
2. More precisely, tr is the linear map on A such that

tr(ziy?) =0 if either ¢ or j are odd, and
tr(zty?) = 2aty if 4 and j are even.

In particular, a trace preserving 2-dimensional representation is determined by a
couple of 2 x 2 matrices

({xl xQ] , [“ xﬂ) withtr({x1 952} _ {x‘* x5])_0

I3 —T1 Te —T4 I3 —T1 Tg —T4
That is,trep, A is the hypersurface in C® determined by the equation
trepy,A = V(22124 + 226 + T375) — CS®

and is therefore irreducible of dimension 5 with an isolated singularity at p =
(0,...,0).
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THEOREM 43 (Procesi). Let (A,tr) € alg@ be an algebra with trace and let
(A’ tr) € alg@n be the quotient which is a Cayley-Hamilton algebra of degree n.
Then, we can reconstruct A’ and its central subalgebra tr(A’) as algebras of equi-
variant resp. invariant polynomial maps

A’ ~ M, (C[trep, A)9*" and tr(A’) = C[trep, At

PROOF. In the previous chapter we have proved that fn (c0) =~
M,,(Clrep,, (0)])¥Ln and we can apply the Reynolds operator R to the situation

M, (C[rep, (o0)]) =~ M,(C[trep, A])

R R
/ {o0) > M, (C[trep, A
The epimorphism 7y factors through f”%:o) inducing an epimorphism

A" —s» M, (C[trep, A])“Ln

We claim that this map is also injective, or equivalently, that

Mn(C[repn<OO>])TAMn(C[rePn<OO>])ﬂ/ (00) =Ta

n

Using functoriality of the Reynolds operator with respect to multiplication in
M,,(Clrep,,(o0)]) by an element z € [ (o) or with respect to the trace map (both
commuting with the GL,-action) we deduce the following identities :

e Forall 2 € [, (c0) and all z € M, (Clrep, (c0)]) we have
R(zz) = 2R(z) and R(zzx) = R(2)z
o For all z € M, (Clrep, (o0)]) we have
R(tr(2)) = tr(R(2))

Assume that z = Y, t;zin; € M, (Clrep,,(00)])TaM,(Clrep, (c0)]) N [ (oo) with
my,n; € M, (Clrep,(m)]) and ¢; € T4. Now, consider the generic matrix X,,+1 €
J., (00) which does not occur in any of these elements. By the necklace property of
traces we have

tT(ZXm+1) = Ztr(mitmiXmH) = Ztr(niXmHmiti)

and if we apply the Reynolds operator to it we obtain the equality
tT‘(ZXm_H) = t’l“(z R(niXm_,_lmi)ti)
i

For any i, the term R(n; X,,41m;) is invariant so belongs to [ (m + 1) and is linear
in X,,41. Knowing the generating elements of [ (m + 1) we can write

R(n; Xmy1m;) = Z Sij Xmyi1ts; + Ztr(uikaH)vik
J k
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with all of the elements s;;, t;;, u;x and vy, in fn (m). Substituting this information
and again using the necklace property we obtain

tT(ZXm+1) = t’l”((z Sijtijti =+ tT(Uikti))Xm+1)
i3,k
From nondegeneracy of the trace map we deduce
z = Z Si]‘tijti + t’l"(l)ikti)
i3,k
Because t; € T4 and T4 is stable under taking traces we obtain z € T4 finishing

the proof of the first statement.
Apply functoriality of the Reynolds operator to the setting

tr

M, (Cltrep,A]) == C[trep,4]

R R
tra
A > C[trep, AL
from which the second statement follows. O

THEOREM 44. When applied to affine C-algebras, the functors

{fn : alg — commalg and {{” : alg — algln

are paired equivalent.

n

PROOF. Because the trace functor [ : alg — alg@ is a left adjoint functor
of the forgetful functor ¢ : alg@ —— alg and because n X n matrices over
commutative algebras are Cayley-Hamilton algebras of degree n we have functorial
bijections for any algebra A and any commutative algebra B

Homga1g(A, M, (B)) = Homalg@(/ A, M,(B)) = Homalg@n(/ A, M, (B))

n

Therefore, we have equivalence between the functors

rep, A ~ trepn/A ~ trep, / A

n

and the result follows from theorem 43 applied to the Cayley-Hamilton algebra fn A
of degree n.

EXAMPLE 62. If A € alg is an affine C-algebra, then for all n

/ A € algln and % A € commalg

are affine C-algebras. Moreover, fn A is a finite module over the Noetherian com-
mutative algebra an hence is itself Noetherian. Indeed, this follows from the
generic case and the Reynolds operator.
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ExAMPLE 63. Let A be a Cayley-Hamilton algebra of degree n with trace map
tr, then we can define a norm map on A by defining

N(a) =on(a) forall a € A.

Recall that the elementary symmetric function o, is a polynomial function
f(ti,t2,...,ty) in the Newton functions t; = >0, a5, Then, o(a) =
f(tr(a),tr(a?),...,tr(a™)). Because, we have a trace preserving embedding
A —— M, (C[trep,,A]) and the norm map N coincides with the determinant

in this matrix-algebra, we have that
N(1)=1 and Va,be A N(ab)=N(a)N(b).

Furthermore, the norm map extends to a polynomial map on A[t] and we have that

K (t) = N(t — a), in particular we can obtain the trace by polarization of the
norm map. For the finite dimensional semi-simple C-algebra

A= My (C)&...® My, (C),

let ¢ be a trace map on A making it into a Cayley-Hamilton algebra of degree n with
tr(A) = C. Then, we claim that there exist a dimension vector a = (myq,...,my) €
Nﬁ such that n = Zle m;d; and for any a = (Ay,...,A;) € A with 4; € My, (C)
we have that

tr(a) =miTr(Ay) + ...+ miTr(Ag)

where T'r are the usual trace maps on matrices.
The norm-map N on A defined by the trace map ¢r induces a group morphism
on the invertible elements of A

N : A* = GL4,(C) x ... x GLg, (C) —= C*

that is, a character. Now, any character is of the following form, let A, € GLg4,(C),
then for a = (A4,..., Ax) we must have

N(a) = det(Al)mldet(Ag)m2 e det(Ak)mk

for certain integers m; € Z. Since N extends to a polynomial map on the whole of
A we must have that all m; > 0. By polarization it then follows that

tr(a) = miTr(Ay) +...mpTr(Ag)

and it remains to show that no m; = 0. Indeed, if m; = 0 then tr would be the zero
map on Mg, (C), but then we would have for any a = (0,...,0,A4,0,...,0) with
A€ Mdi ((C) that

X (t) =t
(n)

whence xq ' (a) # 0 whenever A is not nilpotent. This contradiction finishes the
proof of the claim. Recall from §4.3 that

rep, A= || GL./(GLm, x...x GLy,)

(ma,...;mk)

That is, the representation scheme is the disjoint union of the different trace pre-
serving representation schemes

trep, A = GL,/(GLyp, X ... X GLy, )

for the trace map tr = miTry + ...+ mpTry.
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EXAMPLE 64. Let A be a finite dimensional algebra with radical J and assume
there is a trace map tr on A making A into a Cayley-Hamilton algebra of degree
n and such that tr(A) = C. We claim that the norm map N : A —— C is zero
on J. Indeed, any j € J satisfies j' = 0 for some [ whence N(j)! = 0. But then,
polarization gives that tr(J) = 0 and we have that the semisimple algebra

A®® ZA/J:Mdl((C)EB@Mdk(C)

is a semisimple Cayley-hamilton algebra of degree n on which we can apply the
foregoing exercise. Because A ~ A% @ J as C-vectorspaces we deduce that if
tr : A —— C is a trace map such that A is a Cayley-Hamilton algebra of degree
n, there exists a dimension vector « = (mq,...,my) € Ni such that for all a =
(Ay,...,Ag, ) with A; € My, (C) and j € J we have

tr(a) =miTr(A) +...miTr(Ag)

with T'r the usual traces on My, (C) and ), m;d; = n.

Fix a trace map tr on A determined by a dimension vector o = (myq, ..., my) €
N*. Then, the trace preserving variety trep, A is the scheme of A-modules of
dimension vector «, that is, those A-modules M such that

M = §P™ @ . @ SO

where S; is the simple A-module of dimension d; determined by the i-th factor
in A%%. By theorem 43 A can be recovered from the GL,-structure of the affine
scheme trep, A of all A-modules of dimension vector a.

Still, there can be other trace maps on A making A into a Cayley-Hamilton
algebra of degree n. For example let C' be a finite dimensional commutative C-
algebra with radical N, then A = M, (C) is finite dimensional with radical J =
M, (N) and the usual trace map tr : M,(C) —— C makes A into a Cayley-
Hamilton algebra of degree n such that tr(J) = N # 0. Still, if A is semi-simple,
the center Z(A) = C@ ... ® C (as many terms as there are matrix components in
A) and any subring of Z(A) is of the form C & ... ® C. In particular, tr(A) has
this form and composing the trace map with projection on the j-th component we
have a trace map tr; on which we can apply the foregoing.

DEFINITION 55. GL(n)-aff will be the category of all affine schemes with a
GL,-action. A reformulation of theorem 43 is that the contravariant functor

trep, : algln — GL(n)-aff

which assigns to a Cayley-Hamilton algebra of degree n its trace preserving repre-
sentation scheme has a left inverse

1" : GL(n)-aff — algln

assigning to an affine GL,,-scheme fun the equivariants " fun = M,, (C[fun])% L.
The Cayley-Hamilton algebra " fun is called the witness algebra of fun.

Note however that this is mot an equivalence of categories. There are many
G L,,-varieties having the same witness algebra.

ExXAMPLE 65. To give some easy examples we need to recall some facts about
orbitclosures of nilpotent n X n matrices.

Denote a partition p of n by an integral n-tuple (a1, as, ..., a,) with a; > ag >
.. > a, > 0 with Z?zl a; = n. As before, we represent a partition by a Young
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diagram by omitting rows corresponding to zeroes.If ¢ = (by,...,b,) is another
partition of n we say that p dominates q¢ and write

T T
p>q if and only if Zai > Zbi forall 1 <r <n.
i=1 i=1

The dominance order is induced by the Young move of throwing a row-ending box
down the diagram. Indeed, let p and ¢ be partitions of n such that p > ¢ and
assume there is no partition r such that p > r and r > ¢. Let ¢ be the minimal
number such that a; > b;. Then by the assumption a; = b; + 1. Let j > ¢ be
minimal such that a; # b;, then we have b; = a; + 1 because p dominates g. But
then, the remaining rows of p and ¢ must be equal. That is, a Young move can be
depicted as

[ — I —

p= | - 4= |

For example, the Young moves between the partitions of 4 given above are as
indicated

(rrm — F - - | —

: : N |

A Young p-tableau is the Young diagram of p with the boxes labeled by integers
from {1,2,...,s} for some s such that each label appears at least ones. A Young
p-tableau is said to be of type ¢ for some partition ¢ = (by,...,b,) of n if the
following conditions are met :

e the labels are non-decreasing along rows,
e the labels are strictly increasing along columns, and
e the label ¢ appears exactly b; times.

For example, if p = (3,2,1,1) and g = (2,2,2,1) then the p-tableau below

11113
2

2
3
4

is of type ¢ (observe that p > ¢ and even p — ¢). In general, let p = (ay,...,a,)
and ¢ = (b1,...,b,) be partitions of n and assume that p — ¢. Then, there is a
Young p-tableau of type ¢. For, fill the Young diagram of ¢ by putting 1’s in the
first row, 2’s in the second and so on. Then, upgrade the fallen box together with
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its label to get a Young p-tableau of type ¢. In the example above

1
2

®

113
2

.
l

=W N
=W N

Conversely, assume there is a Young p-tableau of type q. The number of boxes
labeled with a number < i is equal to b; + ... + b;. Further, any box with label
< ¢ must lie in the first ¢ rows (because the labels strictly increase along a column).
There are a; + ...+ a; boxes available in the first ¢ rows whence

Zbi§2ai for all ISZSTL
j=1 j=1

and therefore p > q. After these preliminaries on partitions, let us return to nilpo-
tent matrices.

Let A be a nilpotent matrix of type p = (ay,...,ay), that is, conjugated to a
matrix with Jordan blocks (all with eigenvalue zero) of sizes a;. We have seen before
that the subspace V; of column vectors v € C™ such that A'.v = 0 has dimension

l l
SH#la;=ht=) a;
h=1 h=1

where p* = (af,...,a}) is the dual partition of p. Choose a basis {v1,...,v,} of
C™ such that for all [ the first aj 4 ... 4 a] base vectors span the subspace V. For
example, if A is in Jordan normal form of type p = (3,2,1,1)

010
0 01
0 0 0
0 1
0 0
0

0

then p* = (4,2,1) and we can choose the standard base vectors ordered as follows

{61764566767a627657 €3 }
—_——————

4 2 1

Take a partition ¢ = (by,...,b,) with p — ¢ (in particular, p > ¢), then for the
dual partitions we have ¢* — p* (and thus ¢* > p*). But then there is a Young
g*-tableau of type p*. In the example with ¢ = (2,2,2,1) we have ¢* = (4,3) and
p* = (4,2,1) and we can take the Young ¢*-tableau of type p*
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Now label the boxes of this tableau by the base vectors {vy,...,v,} such that the
boxes labeled ¢ in the Young ¢*-tableau of type p* are filled with the base vectors
from V; — V;_1. Call this tableau T'. In the example, we can take

€1 | €2 | % | ©7

T= ¢ |¢e |e3

Define a linear operator F on C™ by the rule that F'(v;) = v; if v; is the label of
the box in T just above the box labeled v;. In case v; is a label of a box in the
first row of T we take F'(v;) = 0. Obviously, F is a nilpotent n x n matrix and by
construction we have that

rk F'=n— (b} +...+b})
That is, F is nilpotent of type ¢ = (b1,...,b,). Moreover, F' satisfies F|(V;) C V;_1
for all i by the way we have labeled the tableau T" and defined F.

In the example above, we have F(es) = ey, F(es) = eq, F(e3) = eg and all
other F(e;) = 0. That is, F is the matrix
[0 1
0 0

o o
O =

1 0

0

which is seen to be of type (2,2,2,1) after performing a few Jordan moves.
Returning to the general case, consider for all € € C the n x n matrix :

F.=(1—¢€)F +€A.

We claim that for all but finitely many values of € we have F, € O(A). Indeed,
we have seen that F'(V;) C V;_; where V; is defined as the subspace such that
AY(V;) = 0. Hence, F(V;) = 0 and therefore

F(WV)=(1-¢F+eA(V1)=0.
Assume by induction that F!(V;) = 0 holds for all i < I, then we have that
FI(V) = FY((1—F +eA)W)
C (Vi) =0
because A(V;) C V;—1 and F(V;) C V;_;. But then we have for all [ that

vk FL<dim Vi=n—(a} +...+a]) =rk AL .

Then for at least one r; x r; submatrix of F! its determinant considered it as a
polynomial of degree 7; in € is not identically zero (as it is nonzero for ¢ = 1). But
then this determinant is non-zero for all but finitely many e. Hence, rk F! = rk Al
for all [ for all but finitely many e. As these numbers determine the dual partition
p* of the type of A, F, is a nilpotent n X n matrix of type p for all but finitely
many values of ¢, proving the claim. But then, Fy = F which we have proved to be
a nilpotent matrix of type ¢ belongs to the closure of the orbit O(A). That is, we
have proved the difficult part of the Gerstenhaber-Hesselink theorem which asserts
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that if A is a nilpotent n X n matrix of type p = (ay,...,a,) and B nilpotent of

type ¢ = (b1,...,by) then, B belongs to the closure of the orbit O(A), that is,
BGW if and only if p>g¢

in the domination order on partitions of n.

To prove this theorem we only have to observe that if B is contained in the
closure of A, then B! is contained in the closure of A' and hence rk A' > rk B!
(because rk Al < k is equivalent to vanishing of all determinants of k x k minors
which is a closed condition). But then,

l l

* *

n—g aiZn—g b;
i=1 i=1

for all [, that is, ¢* > p* and hence p > ¢g. The other implication was proved above
if we remember that the domination order was induced by the Young moves and
clearly we have that if B € O(C) and C € O(A) then also B € O(A).

We are now in a position to give the promised examples of affine GL,,-schemes
having the same witness algebra. Consider the action by conjugation of GL, on
M, (C) = rep,, (1) and take a nilpotent matrix A. All eigenvalues of A are zero, so
the conjugacy class of A is fully determined by the sizes of its Jordan blocks. These
sizes determine a partition A(A) = (A1, Ag, ..., Ag) of n with Ay > Ao > ... > Ag.

O(B) C O(A) <= \(B)" = A(A)".
where A* denotes the dual partition. The witness algebra of O(A) is equal to
M, (C[O(A)])%F = C[X]/(X*)

where k is the number of columns of the Young diagram A(A).

Hence, the orbit closures of nilpotent matrices such that their associated Young
diagrams have equal number of columns have the same witness algebras. For ex-
ample, if n = 4 then the closures of the orbits corresponding to

and

have the same witness algebra, although the closure of the second is a proper closed
subscheme of the closure of the first.

EXAMPLE 66. The following table lists all partitions (and their dual in the
other column)

The partitions of 8.

a (8) v o (1,1,1,1,1,1,1,1)
b (7,1) v (2,1,1,1,1,1,1)
¢ (6,2) t (2,2,1,1,1,1)
d (6,1,1) s (3,1,1,1,1,1)
e (53) ro(2,2,2,1,1)

£ (521) | a (321,11)

g (51,1,1) | p  (41,1,1,1)

h (4,4 o (2,2,2,2)

i (4,3.1) n (3,2,2,1)

i (4,2,2) m  (3,3,1,1)

kK (3,3,2) kK (3,3,2)

1 (42,1,1) | 1 (42,1,1)




114 4. WITNESSES

The domination order between these partitions can be depicted as follows where
all the Young moves are from left to right

Of course, from this graph we can read off the dominance order graphs for partitions
of n < 8. In the picture below, the closures of orbits corresponding to connected
nodes of the same color have the same witness algebra.

We can use the reconstruction result to characterize the smooth algebras in
alg@n as those Cayley-Hamilton algebras A of degree n for which trep, A is a
smooth variety.

THEOREM 45. If A is alg-smooth, then the n-th trace algebra an is alg@n-
smooth.

PrOOF. If (B,I) is a testobject in alg@n, then it is also a testobject in alg.
Hence, there is a lifting ¢ : A —— B to the map A —— fn A2, ?. Because

the trace functor is the left adjoint to the inclusion alg@ — alg there is a
corresponding trace preserving algebra morphism

Y =t(A,B)(9) : /AH B

As B is a Cayley-Hamilton algebra of degree n, this map factors through the quo-
tient [ A. |

THEOREM 46 (Procesi). For (A,tra) € alg@n the following are equivalent :

(1) A is alg@n-smooth.
(2) trep,A is a smooth scheme.

PRrROOF. (1) = (2) : We have to show that C[trep, A] is commalg-smooth.
Take a commutative test-object (7',1) with I nilpotent and an algebra map & :
C[trep, A] — T'/I. Composing with the universal embedding i4 (coming from
the reconstruction result) we obtain a trace preserving morphism g

M1

A My (T)

A “,

M,,(Cltrep,, A])

Because M, (T) with the usual trace is a Cayley-Hamilton algebra of degree n and
M, (I) a trace stable ideal there is a trace preserving algebra map u; because A
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is alg@n-smooth. By the universal property of the embedding 74 there exists a
C-algebra morphism

A:Cltrep, A] — T

such that M, (\) completes the diagram. The morphism A is the required lift.
(2) = (1) : Let (T,I) be a test-object in alg@n and take a trace preserving
C-algebra map k : A —— T/I. We obtain the diagram

T, M, (Cltrep,, T1)

4

T/I <% M, (Cltrep, T/I])=M,(Cltrep, T]/J)

v

Al

M, (Cltrep,, A])

Here, J = M, (C[trep, T])IM, (Cltrep,T]) and we know already that J NT = I.
By the universal property of the embedding i4 we obtain a C-algebra map

C[trep, A] — C[trep, T]/J

which we would like to lift to C[trep,, T]. This does not follow from the fact that
C[trep,, A] is commalg-smooth as J is usually not nilpotent.

We need the technical result that if I is an ideal of B closed under taking traces
and if F(I) denotes the extended ideal

E(I) = M, (C[trep, B])IM, (C[trep, B])

then for all powers k we have the inclusion E(I)k”2 NnBC I

Write ? = B = # and consider the extended ideal Egp =
M, (Clrep, (m)])T M, (C[rep,(m)]) = M,(N) then we know already that
Cltrep, B] = w. We claim that for all k we have EXN [ (m) C T*.

Indeed, let [ (m) be the trace algebra on the generic n x n matri-
ces {X1,...,X,,} and [ (I+m) the trace algebra on the generic matrices
{Y1,....Y, X1,..., X}, Let {Uq,...,U;} be elements of fn (m) and consider the

trace preserving map fn (I +m) 2, fn (m) induced by the map defined by send-
ing Y; to U;. Then, by the universal property we have a commutative diagram of
Reynold operators

M, (C[ME™]) 2 M, (C[ME)
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Now, let Aj,...,A;+1 be elements from M, (C[M"]), then we can calculate
R(A U1 AU As ... iU A 41) by first computing

= R(A1Y1A2Y2A3 . Al)/lAl—i-l)

and then substituting the Y; with U;. The Reynolds operator preserves the degree
in each of the generic matrices, therefore r will be linear in each of the Y; and is
a sum of trace algebra elements. By our knowledge of the generators of necklaces
and the trace algebra we can write each term of the sum as an expression

tr(My)tr(Ms) ... .tr(M,) M. 41

where each of the M, is a monomial of degree < n? in the generic matrices

{"1,...,Y,X1,..., Xm}. Now, look at how the generic matrices Y; are distributed
among the monomlals M;. Each M; contains at most n? of the Y;’s, hence the
monomial M, contains at least | — vn2 of the Y; where v < z is the number of
M; with i < z containing at least one Y;.

Now, assume all the U; are taken from the ideal T « fn (m) which is closed
under taking traces, then it follows that

R(A1U1A2U2A3 - AlUlAl—H) S Tv+(l7vn2) C Tk

if we take [ = kn? as v + (k — v)n? > k. But this finishes the proof of the claim.
Returning to the main line of argument, as I is a nilpotent ideal of T" there is
some h such that I" = 0. As I is closed under taking traces we know by the claim
that
E(N"™ nTcI"=0.

Now, by definition E(I) = M, (C[trep, T])IM,(Cltrep, T]) which is equal to
M, (J). That is, the inclusion can be rephrased as M, (J )h”2 NT = 0, whence there
is a trace preserving embedding T' —— M,,(C[trep, T]/Jh”Q). Now, we have the
following situation

T —— M,(Cltrep, T]/Jk”Q)

- Ke

tT/1

A T £ v (Clorep, T)/J)

M, (Cleep, 4)
This time we can lift « to a C-algebra morphism
C[trep, A] — C[trep, T]/Jhnz.
which gives us a trace preserving morphism

A 2+ M, (Clerep, T]/J"")
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with image contained in the algebra of GL,-invariants. Because
T —— M, (Cltrep,, T ]/J"*) and by surjectivity of invariants under sur-
jective maps, the GL,-equivariants are equal to T, giving the required lift
A O

Whereas GL,-equivariant geometry provides us with powerful tools to study
n-dimensional (trace preserving) representation schemes, the methods sometimes
lead us away from Cayley-Hamilton algebras.

The foregoing theorem may suggest a method to construct alg@n-smooth al-
gebras. Start with an arbitrary A € alg@n. If A is not alg@n-smooth the scheme
trep,, A contains singularities. There is a GL,-equivariant desingularization. Cover
this desingularization by affine G L, -invariant opens and take their witness algebra
which morally should give us alg@n-smooth algebras. However, this is not the case.

EXAMPLE 67. Let A be the quantum plane of order two. In example 61 we
have seen that
trep, A = V(2x124 + x2x6 + T3x5) —> CS

is a hypersurface with an isolated singularity at the origin p = (0,0,0,0,0,0).
Consider the blow-up of C% at p which is the closed subvariety of C® xP° defined
by

CG = V(LL'Z‘XJ‘ — l‘jXZ‘)

with the X; the projective coordinates of P°. The strict transform of trep, A4 is the
subvariety

trep = V(2;X; — ;X;,2X1 X4 + X2 X6 + X3X5) — C® x P°

which is a smooth variety. Moreover, there is a natural GLs-action on it induced
by simultaneous conjugation on the fourtuple of 2 x 2 matrices

T1 To Ty Is X1 X2 X4 X5
T3 —I1 g —X4 X3 —X1 XG —X4

As the projection trep —= trep, A is a G Lo-isomorphism outside the exceptional
fiber, we only need to investigate the semi-stable points over p. Take the particular

point {8 8} {8 8} [é _OJ [_Oa 8}

which is semi-stable and has as stabilizer

Stab(x) = py = <[(1) é}) “ PGL,

Hence, there is no affine GLo-stable open of trep containing x such that it is of
the form trep,B for some B € alg@2 as this would contradict the fact that the
stabilizer subgroup of a module is connected. Connectivity follows from the fact
that the stabilizer subgroup is the group of module automorphisms, which in turn
is the group of units of the endomorphism ring of the module.
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4.4. Semisimple modules.

If A is an affine algebra, its n-th necklace algebra an =], A is an affine
commutative algebra whence it is the coordinate ring of an affine scheme which we
denote with iss, A. In this section we will justify this notation by showing that the
C-points of iss, A classify the isomorphism classes of semi-simple n-dimensional
A-representations. Information on the C-points is contained in the reduced variety
structure of the scheme so we will restrict to varieties in this section. If we want
to stress this fact we denote by rrep, A the reduced variety of the scheme rep, A
of n-dimensional representations, and by riss, A the reduced variety of the affine
scheme iss, A. Note that in case A is alg-smooth, then rep, A is smooth whence
a reduced variety. But then, iss, A is also reduced in this case. For arbitrary
algebras however the two structures can be different,

EXAMPLE 68. Let A = %, then the coordinate ring of rep; A = iss; A (note

that GL; = C* acts trivially on rep, A) is the ring of dual numbers C[e] = C[z]/(z?).
However, the coordinate ring of the reduced varieties rrep; A = riss, A is C.

Because of their relevance to the reduced structure of representation schemes,
we quickly run through the proofs of the dimension formula, Chevalley’s theorem
and the relation between analytic and Zariski closures. More details can be found
in the excellent textbook by Hanspeter Kraft [36].

DEFINITION 56. A morphism X —%+ ¥ between two affine irreducible varieties
is said to be dominant if the image ¢(X) is Zariski dense in Y. On the level of
the coordinate algebras, dominance is equivalent to ¢* : C[Y] —— C[X] being
injective and hence inducing a fieldextension ¢* : C(Y) —— C(X) between the
functionfields.

A morphism X —?+ ¥ between two affine varieties is said to be finite if under
the algebra morphism ¢* the coordinate algebra C[X] is a finite C[Y]-module.

A finite and surjective morphism with X irreducible and

X ey
Y is normal satisfies the going-down property . That is, let Y/ —— Y be an
irreducible Zariski closed subvariety and z € X with ¢(z) = 3’ € Y’. Then,

there is an irreducible Zariski closed subvariety X’ —— X such that z € X’ and
G(X) =Y.

EXAMPLE 69. Let X be an irreducible affine variety of dimension d. By the
Noether normalization result C[X] is a finite module over a polynomial subalgebra
Clf1,.--, fa]- But then, the finite inclusion C[fy, ..., fo] = C[X] determines a
finite surjective morphism

X %

ExXAMPLE 70. An important source of finite morphisms is given by integral
extensions. Recall that, if R —— S is an inclusion of domains we call S integral
over R if every s € S satisfies an equation

n—1

st = Z rist  with 7 € R.
i=0
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A normal domain R has the property that any element of its field of fractions
which is integral over R belongs already to R. If X %+ ¥ is a dominant morphism
between two irreducible affine varieties, then ¢ is finite if and only if C[X] in integral
over C[Y] for the embedding coming from ¢*.

THEOREM 47 (Dimension formula). Let X %+ Y be a dominant morphism

between irreducible affine varieties. Then, for any x € X and any irreducible
component C' of the fiber ¢~(4(2)) we have

dim C >dim X —dim Y.

Moreover, there is a nonempty open subset U of Y contained in the image ¢(X)
such that for all w € U we have

dim ¢ *(u) = dim X — dim Y.

ProOOF. Let d = dim X —dim Y and apply the Noether normalization result
to the affine C(Y')-algebra C(Y)C[X]. Then, we can find a function g € C[Y] and
algebraic independent functions f1,. .., fq € C[X], (g clears away any denominators
that occur after applying the normalization result) such that C[X], is integral over
C[Y]g4lf1,..., fa].- That is, we have the commutative diagram

Xx(9) a - Xy (g) x C¢

¢

X > Y < > Xy (9)
where we know that p is finite and surjective. But then we have that the open
subset Xy (g) lies in the image of ¢ and in Xy (g) all fibers of ¢ have dimension
d. For the first part of the statement we have to recall the statement of Krull’s
Hauptideal result : if X is an irreducible affine variety and g1, ..., g, € C[X] with
(g1,---,9r) # C[X], then any component C of Vx(g1, ..., g,) satisfies the inequality

dim C > dim X —r.
If dim Y = r apply this result to the g; determining the morphism
X 2oy
where the latter morphism is the one from example 69. O
THEOREM 48 (Chevalley’s theorem). Let X Y bea morphism between
affine varieties, the function
X — N defined by x> dim, ¢~ (p(x))
is upper-semicontinuous. That is, for all mn € N, the set
{z € X | dim, ¢ (o(x)) < n}
is Zariski open in X.

PROOF. Let Z(¢,n) be the set {x € X | dim, ¢~ (é(x)) > n}. We will prove
that Z(¢,n) is closed by induction on the dimension of X. We first make some
reductions. We may assume that X is irreducible. For, let X = U;X; be the
decomposition of X into irreducible components, then Z(¢,n) = UZ(¢ | X;,n).
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Next, we may assume that ¥ = ¢(X) whence Y is also irreducible and ¢ is a
dominant map. Now, we are in the setting of theorem 47. Therefore, if n <
dim X —dim 'Y we have Z(¢,n) = X, so it is closed. If n > dim X —dim Y consider
the open set U in Y of theorem 47. Then, Z(¢,n) = Z(¢ | (X — ¢~ *(U)),n). the
dimension of the closed subvariety X —¢~1(U) is strictly smaller that dim X hence
by induction we may assume that Z(¢ | (X — ¢~1(U)),n) is closed in X — ¢~ 1(U)
whence closed in X. O

ExAMPLE 71. For A an affine C-algebra, denote the reduced structure of the n-
th representation scheme by rrep, A. We claim that for any C-point V' € rrep, A
its orbit O(V') is open in the closure O(V') and the closure contains a closed orbit.

Consider the orbit-map GL, _®, rrep,, A defined by g — ¢.V. Because the
image contains an open dense subset of the closure of the image for any morphism
between affine varieties, O(V') = ¢(GL,,) contains a Zariski open subset U of O(V)
contained in the image of ¢ which is the orbit O(V). But then,

O(V) = GL,.V = Ugear,g.U

is also open in O(V). O(V) contains a closed orbit. Indeed, assume O(V) is
not closed, then the complement Cp; = O(V) — O(V) is a proper Zariski closed
subset whence dim C' < dim O(V). But, C is the union of GL,-orbits O(V;) with
dim O(V;) < dim O(V). Repeating the argument with the V; and induction on the

dimension we will obtain a closed orbit in O(V').

DEFINITION 57. A subset Z of an affine variety X is said to be locally closed if
Z is open in its Zariski closure Z. A subset Z is said to be constructible if Z is the
union of finitely many locally closed subsets.

Finite unions, finite intersections and complements of constructible subsets are
again constructible. Further, if X N Y be a morphism between affine varieties
and if Z is a constructible subset of X, then ¢(Z) is a constructible subset of Y.

ExAMPLE T72. The subset rind, A of the reduced representation variety
rrep, A consisting of the indecomposable n-dimensional representations of A is
constructible.

Indeed, consider for any pair k,[ such that k 4+ [ = n the morphism

GL, x rrep, A xrrep; A— rrep, A

by sending a triple (g, M, N') to g.(M @ N). The image of this map is constructible.
The decomposable n-dimensional A-modules belong to one of these finitely many
sets whence are constructible, but then so is its complement which in repi™? A.

DEFINITION 58. Let the basefield be the field of complex numbers and X a
closed subvariety of C*. The induced C-topology on X is called the analytic topol-
ogy. It is much finer than the Zariski topology. For Z a subset in X we denote the

analytic closure by Z°.
THEOREM 49. If Z is a constructible subset of an affine variety X, then
AR
PRrOOF. Consider an embedding X —— C* then Z is a constructible subset

of C¥. As a constructible subset, Z contains a subset U which is open and dense
(in the Zariski topology) in Z.
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By reducing to irreducible components, we may assume that Z is irreducible. If
dim Z =1, consider Z,, the subset of points where Z is a complex manifold. Then,
Z — Z, is finite and by the implicit function theorem every u € Z, has a C-open
neighborhood which is C-homeomorphic to the complex line C', whence the result
holds in this case.

In general, let z € Z and consider an irreducible curve C' —— Z containing z
and such that CNU # 0. Such a curve always exists, for if d = dim Z consider the
finite surjective morphism Z P, ¢l of example 69. Let y € C? — ¢(Z — U) and
consider the line L through y and ¢(z). By the going-down property there is an
irreducible curve C —— Z containing z such that ¢(C) = L and by construction
cCNV £0.

Then, C' NV is Zariski open and dense in C' and by the one dimensional argu-
ment, z € (C'N V)(C C V°. We can do this for any z € V finishing the proof. O

EXAMPLE 73. Let V' be an n-dimensional representation of an affine C-algebra
A. The Zariski closure O(V) of its orbit in the reduced representation variety

c
rrep, A coincides with its closure O(V) in the analytic topology.

DEFINITION 59. A one parameter subgroup of a linear group G is a morphism
A C* —— G of algebraic groups.

ExAMPLE 74. Let A : C* —— GL, be a one-parameter subgroup of GL,,.
Let H be the image under A of the subgroup g, of roots of unity in C*. We claim
that there is a g € GL,, such that

Cc* 0

gHg ' —

0 C*
Assume h € H not a scalar matrix, then h has a proper eigenspace decomposition
V@& W = C". We use that h! =1, and hence all its Jordan blocks must have size
one. Because H is commutative, both V' and W are stable under H. By induction
on n we may assume that the images of H in GL(V') and GL(W) are diagonalizable,
but then the same holds in GL,,.

As p, is infinite, it is Zariski dense in C* and because the diagonal matrices
are Zariski closed in GL,, we have

gMC).g =g Hg " — T,

Further, any one-parameter subgroup of T, is determined by an n-tuple
(ri,...,rn) € Z" and maps t to (t"™,..., ™.

Summarizing, if A : C* —— GL,, is a one-parameter subgroup, then there is
a g € GL, and an n-tuple (r1,...,7,) € Z™ such that

tm 0
At)=g " .g
0 tTn

THEOREM 50. Let V' be a GL,-representation, v € V and a point w € V lying
in the orbitclosure O(v).
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Then, there exists a matriz g with coefficients in the field C((t)) such that
det(g) # 0 and

(g.v)i=0 is well defined and is equal to  w

PRrROOF. Note that g.v is a vector with coordinates in the field C((¢)). If all
coordinates belong to C[[t]] we can set t = 0 in this vector and obtain a vector in
V. It is this vector that we denote with (g.v):=¢.

Consider the orbit map p : GL, — V defined by ¢’ — ¢'.v. As w € O(v) we
have seen that there is an irreducible curve C —— GL,, such that w € u(C). We
obtain a diagram of C-algebras

ClGLy] — C[C] —— C(O)

ClV] —— Clu(C)] — C[C"]

Here, C[C] is defined to be the integral closure of C[u(C)] in the functionfield
C(C) of C. Two things are important to note here : C' —— u(C) is finite, so
surjective and take ¢ € C’ be a point lying over w € u(C). Further, C’ having
an integrally closed coordinate ring is a complex manifold. Hence, by the implicit
function theorem polynomial functions on C' can be expressed in a neighborhood
of ¢ as power series in one variable, giving an embedding C[C'] —— C[[¢]] with
(t) N C[C"] = M,. This inclusion extends to one on the level of their fields of
fractions. That is, we have a diagram of C-algebra morphisms

C[GL,] —= C(C) = C(C") — C((®)

ClV] — C[u(C)] = C[C"] —— C[[t]]
The upper composition defines an invertible matrix g(¢) with coefficients in C((¢)),
its (4, j)-entry being the image of the coordinate function z;; € C[GL,]. Moreover,
the inverse image of the maximal ideal (¢) <C[[t]] under the lower composition gives
the maximal ideal M,, < C[V]. This proves the claim. O

EXAMPLE 75. Let g be an n x n matrix with coefficients in C((t)) and det g # 0.
Then there exist u1,us € GL,(C[[t]]) such that

tm 0
g =up. e U2

0 o
with r; € Zand ry <ry <... < ry,. Indeed, by multiplying g with a suitable power
of t we may assume that g = (g;;(t))i; € Mn(C[[t]]). If f(t) = Yo, fit" € C[[t]]
define v(f(t)) to be the minimal ¢ such that a; # 0. Let (49, jo) be an entry where
v(g;;(t)) attains a minimum, say r1. That is, for all (¢, j) we have g;;(¢) = t"t" f(¢)
with » > 0 and f(¢) an invertible element of C[[t]].
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By suitable row and column interchanges we can take the entry (ig,jo) to
the (1, 1)-position. Then, multiplying with a unit we can replace it by ¢"* and by
elementary row and column operations all the remaining entries in the first row and
column can be made zero. That is, we have invertible matrices a1, a2 € GL,,(C|[[t])
such that

1 07
g =aa. 0 .as

Repeat the same idea on the submatrix ¢g; and continue.

THEOREM 51 (Hilbert criterium). Let V' be a GL,-representation, X C V a
closed G L, -stable subvariety and O(x) = GL,.x the orbit of a point x € X.

If Y € O(z) is a closed GL,,-stable subset, then there exists a one-parameter
subgroup X\ : C* —— GL,, such that

limA(t).x €Y
t—0

Proor. It suffices to prove the result for X = V. By the foregoing theorem,
there is an invertible matrix g € M, (C((t))) such that
(9.x)i=0 =y €Y
By the foregoing example, we can find u1,us € GL,(C[[t]]) such that
tm 0
g=ur.N(t)us with N(t) = .
0 trn
a one-parameter subgroup. There exist x; € V such that us.x = Efio zitt in

particular u2(0).z = x¢. But then,

oo

()\/(t).UQ.fL')t:O = Z(X(t).xiti)t:o

i=0
= (N (t).z0)i=0 + (N (t).x1t)1=0 + . ..

But one easily verifies (using a basis of eigenvectors of A'(¢)) that
/ : N().mo)ieo ifi=
LimA = (s). (N (0t} g = § O #0)e=0 HTE=0
5—0 0 ifi=£0
As (N (t).uz.x2)1=0 € Y and Y is a closed GL,,-stable subset, we also have that
zmgxfl(s).(X(t).uZ.x)t:O €Y thatis, (N(t).20)—o €Y

But then, we have for the one-parameter subgroup A(t) = u2(0)~1. N (¢).u2(0) that
limA(t).x €Y
t—0

finishing the proof. (]

DEFINITION 60. The nullcone of a GL,,-representation V is the set of points x
such that the fixed point 0 € V lies in the orbit closure of .

THEOREM 52. Let V' be a finite dimensional G L, -representation and v € V a
point in the nullcone. Then, there is a one-parameter subgroup A : C* —— GL,
such that

lim A(t)v=0

t—0
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DEFINITION 61. A finite filtration F' on an n-dimensional representation M is
a sequence of A-submodules

F o 0=Myy,CM, C...CM CMy=M.
The associated graded A-module is the n-dimensional module
gre M = @i_oM;/Miy1.

THEOREM 53. The following two statements are equivalent for n-dimensional
A-modules M and N.

(1) There is a one-parameter subgroup C* N GL,, such that
iij% A(t).M =N
(2) There is a finite filtration F' on the A-module M such that
grp M ~ N
as A-modules.

ProOOF. (1) = (2) : If V is any GL,-representation and C* . GL, a
one-parameter subgroup, we have an induced weight space decomposition of V
V =@;Va; where Vi, ={veV|At)v=twvVteC}.
In particular, we apply this to the underlying vectorspace of M. We define
M; = @iV

and claim that this defines a finite filtration on M with associated graded A-module
N. For any a € A (it suffices to vary a over the generators of A) we can consider
the linear maps

pijla) : Vai—>V=M-Lo M=V — V)

(that is, we express the action of a in a blockmatrix ®, with respect to the de-
composition of V). Then, the action of @ on the module corresponding to A(t).4 is
given by the matrix ® = \(¢).®,.\(t)~! with corresponding blocks

$ij(a

Wa,i @) Vg
A(t) 1t A(t)
Va,i %W

45;]' (a)
that is ¢};(a) = t/""¢;(a). Therefore, if lim;_oA(t).1) exists we must have that
gbij(a) =0 for all 7 <.

But then, the action by a sends any M}, = ®;>;V,; to itself, that is, the M}, are
A-submodules of M. Moreover, for j > i we have

iZ_T)%L ¢7.j ((L) {% 5 QSZ] (a) 0
Consequently, the action of a on the limit-module is given by the diagonal block-

matrix with blocks ¢;;(a), but this is precisely the action of a on V; = M;_ /M;,
that is, the limit corresponds to the associated graded module.
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FIGURE 1. Kraft’s diamond describing the nullcone of M3.

(2) = (1) : Given a finite filtration on M
F : 0=Myy1C...CMiCMy=M

we have to find a one-parameter subgroup C* A, G L,, which induces the filtration
F as in the first part of the proof. Clearly, there exist subspaces V; for 0 < i < ¢
such that

V= EB?ZOVZ- and M; = EB;-:Z-VZ-.
Then we take A to be defined by A(t) = t*Idy, for all i and it verifies the claims. [

EXAMPLE 76. In the statement of the Hilbert criterium it is important that Y
is a closed subset. In general, it does not follow that any orbit O(y) —— O(x) can
be reached via a one-parameter subgroup. Consider two modules M, N € rrep,, A.
Assume that O(N) —— O(M) and that we can reach the orbit of N via a one-
parameter subgroup. Then, by the equivalence of the foregoing theorem we know
that IV must be decomposable as it is the associated graded of a nontrivial filtration
on M. This gives us a criterium to construct examples showing that the closedness
assumption in the formulation of Hilbert’s criterium is essential.

The nullcone of rrep,;(2) has been worked out by Hanspeter Kraft in [35,
p.202]. The orbits are depicted in figure 1 In this picture, each node corresponds
to a torus. The right hand number is the dimension of the torus and the left hand
number is the dimension of the orbit represented by a point in the torus. The solid
or dashed lines indicate orbitclosures. For example, the dashed line corresponds to
the following two points in M3 = M3z & M3

00 1] [o 1 0 00 1] [o 1 0
M=(lo 0o 1{,]0 0 of) N=(lo 0 o],]0 0 o)
00 0| [00 0 00 0/ [0 00

We claim that N is an indecomposable 3-dimensional module of <{»5. Indeed, the
only subspace of the column vectors C? left invariant under both x and ¥ is equal
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to
C

0
0
hence M, cannot have a direct sum decomposition of two or more modules. Next,

we claim that O(N) —— O(M). Indeed, simultaneous conjugating ¢ with the
invertible matrix

1 e'=1 0 0 0 1 0 1 0
0 1 0 we obtain the couple ({0 0 €|,|0 0 0])
0 0 et 0 0 O 0 0 O

and letting e —— 0 we see that the limiting point is V.

THEOREM 54 (M. Artin). The orbit O(M) of a C-point M of rrep, A is closed
in rrep, A if and only if M is an n-dimensional semisimple A-module.

PROOF. Assume that the orbit O(M) is Zariski closed. Let gr M be the
associated graded module for a composition series of M. By the above equivalence
we know that O(gr M) is contained in O(M) = O(M). But then gr M ~ M
whence M is semisimple.

Conversely, assume M is semisimple. We know that the orbitclosure O(M) con-
tains a closed orbit, say O(N). By the Hilbert criterium we have a one-parameter
subgroup C* A, GL,, such that

lim A(t).M = N’ ~ N.

By the equivalence this means that there is a finite filtration F' on M with associated
graded module grp M ~ N. For the semisimple module M the only possible
finite filtrations are such that each of the submodules is a direct sum of simple
components, so grp M ~ M, whence M ~ N and hence the orbit O(M) is closed.

O

DEFINITION 62. The inclusion § A = Clrep,A]“» C C[rep, A] induces the
quotient maps

rep, A —— iss, A rrep, A —— riss, A
THEOREM 55. For A an affine algebra, the quotient map
rrep, A —S» riss, A

is surjective and the C-points of issp, A classify the isomorphism classes of semi-
simple n-dimensional representations of A.

PRrROOF. First, we prove these statements for A = (m). As rep, (m) = M is
a G Ly-representation we prove a few general facts valid for any finite dimensional
G L, -representation V.

(1) : Let I <C[V] be a GL,-stable ideal, that is, g.I C I for all g € GL,, then

(CV)/ D = CV]E /(I nCV]9En).

Indeed, as I has the induced G L,,-action which is locally finite we have the isotypical
decomposition I = @I and clearly I,y = C[V],) N 1. But then also, taking
quotients we have

®s(C[V]/I) sy = CIV]/T = ®:C[V](5)/L(s)-
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Therefore, (C[V]/I)i) = C[V])/I(s) and taking the special case s = 0 is the
statement.
(2) : Let J aC[V]%Ln be an ideal, then we have a lying-over property

J = JC[V]NC[V]¥En,

Hence, C[V]9%» is Noetherian and is finitely generated.

For any f € C[V]¥En left-multiplication by f in C[V] commutes with the G L,,-
action, whence f.C[V]) C C[V]). That is, C[V]) is a C[V]F»-module. But
then, as J C C[V]“E» we have

EBS(J(C[V])(S) = JC[V] = G95<](C[V](s)~

Therefore, (JC[V]) ) = JC[V](,) and again taking the special value s = 0 we obtain
JCVINC[V]¥E» = (JC[V])(o) = J. Noetherianity follows from the fact that C[V]
is Noetherian. Because the action of GL,, on C[V] preserves the gradation, the ring
of invariants is also graded

CV]t" =R=C@®R &R & ...

Because C[V]%Fn is Noetherian, the ideal Ry = Ry @ Ry @ ... is finitely generated
Ry = Rf1 + ...+ Rf; by homogeneous elements fi,..., f;. We claim that as a
C-algebra C[V]%L» is generated by the f;. Indeed, we have R, = Zlizl Cfi+ R%
and then also

1
Ri= > Cfifi+ R,
i,j=1
and iterating this procedure we obtain
Ry = > Cf"...f"+Rr

S mi;=m

Consider the subalgebra C[fi,..., fi] of R = C[V]¥En then for any power d > 0
C[V]®Er =C[f1,..., fi] + RY.
For any ¢ we then have for the homogeneous components of degree i
R; =C[f1,.... fili + (RL);.

Now, if d > 7 we have that (Ri)i = 0 and hence that R; = C[f1,..., fi];- As this
holds for all i we proved the claim.
(3) : Let I; be a family of GL,-stable ideals of C[V], then

(L) NEWVIo = 30 nEv)oh).
J J
Indeed, for any j we have the decomposition I; = @,(I;)s). But then, we have

GBS(Z IJ)(Q) = ZIJ = ZEBS(IJ)(@) = s Z(Ij)(s)

J

Therefore, (3, 1;)(s) = >_;(I))(s) and taking s = 0 gives the required statement.
Returning to the case of interest to us : we claim that the algebraic quotient

rep,, (m) —— iss,(m)
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is surjective on C-points and if Z —— rep,, (m) is a closed GL,,-stable subset (such
as rep, A), then m(Z) is closed in iss, (m) and the morphism

7| Z:Z — 7(2)

is an algebraic quotient, that is, C[r(Z)] ~ C[Z]%L» = C[iss, A].

For, let y € iss,(m) with maximal ideal M, < C[iss,(m)]. By (2) we have
M,C[rep,,(m)] # Clrep,,(m)] and hence there is a maximal ideal M, of C[rep,,(m)]
containing M,C|rep, (m)], but then 7(z) = y.

Let Z = V(I) for a G-stable ideal I of C[rep,, (m)], then 7(Z) = Vigs, (my(I N
Cliss,(m)]). That is, C[r(Z)] = C[iss,(m)]/(I N C[iss,(m)]). However, by (1)
we have that

Cliss, (m)]/(Cliss,(m)] N I) = (Clrep, {m)]/I)*" = C[Z]7%

and hence C[r(Z)] = C[Z]%F». Finally, surjectivity of 7 | Z is proved as before.

An immediate consequence is that the Zariski topology on iss,(m) is the
quotient topology of that on rep,, (m). For, take U C iss,,(m) with 71 (U) Zariski
open in rep,, (m). Then, rep, (m)—n~1(U) is a GL,-stable closed subset of rep,, (m)
and 7(rep, (m) — w1 (U)) = iss,(m) — U is Zariski closed in iss, (m).

We claim that the quotient rep,, (m) —— iss, (m) separates disjoint closed
GL,-stable subvarieties of rep, (m). Let Z; be closed GL,-stable subvarieties of
rep, (m) with defining ideals Z; = V(I;). Then, N;Z; = V(3_; I;). Applying (3)
we obtain

1(M;25) = Visa,im) (D 1) N Clissy(m)]) = Vies, (my (D _(I; N Cliss,(m)])
J J
= N;Viss, (m) (I N Clissn(m)]) = N;7(Z;)

The onto property implies that 7(Z;) = 7(Z;) from which the claim follows.

C-points of iss,(m) classify the closed GL,-orbits in rep, (m) (whence the
isomorphism classes of semi-simple n-dimensional representations). In fact, every
fiber m~!(y) contains exactly one closed orbit C' and we have

7(y) = { € rep, (m) | C C O}

Indeed, the fiber F = n7!(y) is a GL,-stable closed subvariety of rep, (m). Take
any orbit O(x) C F then either it is closed or contains in its closure an orbit
of strictly smaller dimension. Induction on the dimension then shows that m
contains a closed orbit C'. On the other hand, assume that F' contains two closed

orbits, then they have to be disjoint contradicting the separation property. [

EXAMPLE 77. For M € M, (C) it is usually very difficult to describe the ideal
of relations of the orbit O(M) of M. If M is semisimple (that is, M diagonalizable)
we can invoke the reconstruction theorem 43 to describe this ideal. Consider the
semisimple commutative algebra generated by X, that is,

L ClY
(f(®))
where f(t) is the minimal polynomial of M and the trace map on A is given once we
give the elements a, = Tr(M"), or equivalently the coefficients of the characteristic
polynomial. The equations defining the closed orbit of M are then Tr(MF*) = a
for 1 <k < degf(t) and the entries of f(X) for a generic n x n matrix X.
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ExXAMPLE 78. Let A € alg be finite dimensional, then there are only a finite
number of simple A-representations. Therefore, riss, A is a finite number of points.
As a consequence rep,A is the disjoint union of a finite number of connected
components, each consisting of those n-dimensional representations of A having
the same Jordan-Holder decomposition. Connectivity follows from the fact that
the semi-simple representation of the sum of the Jordan-Holder components lies in
the closure of each orbit.

ExXAMPLE 79. Let C' € commalg be an affine algebra with corresponding re-
duced variety X = rspecC. Every simple C-representation is one-dimensional,
that is, determines a point of X. Applying the Jordan-Hélder theorem we obtain
that

riss,C ~ X" = (X x ... x X)/S,
n
the n-th symmetric product of X.

In particular, if X is an affine smooth curve, then its coordinate ring C' = C[X]
is alg-smooth and therefore rep,,C' is smooth and therefore reduced. Hence, iss,C
is also reduced and we have that iss,C = X" the n-symmetric product of the
curve X.






CHAPTER 5

Coverings

"When Michael Artin got interested in the topic he was able to

use the powerful ideas of faithfully flat descent which were un-

known to the specialists in non-commutative algebra, also that

was the time of revival of geometric invariant theory and the in-

variant interpretation has changed completely the point of view.”
Claudio Procesi in [55]

This chapter describes two applications of the étale machinery to noncommuta-
tive algebras : description of Brauer groups of functionfields and the local structure
of orders. First, we introduce cohomology on the étale site of a commutative ring
and relate it to classical Galois cohomology. We aim for a handle on the size of
the Brauer group of a functionfield C(X) of a d-dimensional variety X which is
provided by the coniveau spectral sequence. In this sequence étale cohomology is
related to Galois cohomology for the functionfields of all irreducible subvarieties of
X. We include classical work of Tsen and Tate on the cohomological size of the
resulting Galois groups as they give an indication of the huge variety of noncom-
mutative orders over a fixed variety X. In the special case when X is a smooth
projective surface, the Artin-Mumford exact sequence determines the Brauer group
of C(X) in terms of all curves on X and their (ramified) covers.

In the second section we give an important application of étale extensions to
invariant theory. If a reductive group G is acting on a smooth variety X and if O(z)
is a closed G-orbit one would like the local G-structure of X around x to be the
product of the orbit O(x) with the normal space N, to the orbit. Surprisingly, this
is true if we view isomorphism in the étale topology and replace product by fiber
bundle, as was proved by Domingo Luna [44]. We give the proof due to Friedrich
Knop as it is valid even when the variety X is not smooth, nor even reduced (as is
often the case in representation schemes).

We then apply this result to the local description of representation varieties
of alg-smooth and alg@n-smooth algebras. It turns out that the normal space is
isomorphic (as a representation over the stabilizer subgroup) to the representation
space of a particular (marked) quiver setting : the local quiver. The étale local
structure of § A and [ A is fully encoded in the local quiver.

In the final section we combine these two different applications to the problem of
characterizing those central simple algebras ¥ over a projective (normal) variety X
having a noncommutative smooth model, that is, a sheaf of alg@n-smooth algebras.
The coniveau spectral sequence describing Br,, (C(X)) gives us information on the
ramification of maximal orders in ¥ whereas the étale local description of alg@n-
smooth orders given by the local quiver allows us to compute the ramification
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possible for alg@n-smooth orders. Combining these two algebra-geometric data we
are able to prove that such a central simple algebra has a model with only a finite
number of noncommutative singularities, each of which is of quantum-plane type
and we characterize the ones without singularities.

5.1. Etale cohomology.

A closed subvariety X < C™ can be equipped with the Zariski topology
or with the much finer analytic or complex topology. A major disadvantage of
the coarseness of the Zariski topology is the failure to have an implicit function
theorem in algebraic geometry. Etale morphisms are introduced to bypass this
problem. These morphisms determine the étale topology which is no longer a
topology determined by subsets but rather a Grothendieck topology determined by
covers . In this section, algebras C' € commalg will not necessarily be affine and
with specC we denote the prime spectrum of C, that is the set of prime ideals of
C, equipped with the Zariski topology.

DEFINITION 63. A finite morphism C —L + B of commutative C-algebras is
said to be étale if and only if B = Clt1,...,tx]/(f1,- ., fx) such that the Jacobian
matrix

of1 of1
oty e Oty
O fk Ofk
8t1 tee atk

has a determinant which is a unit in B. The corresponding map on the prime
spectra

specB LN specC

should be viewed as a finite cover.

ExaMPLE 80. Consider the inclusion C[z,z~!] C Clx,z~!][{/x] and the in-
duced map on the affine schemes

spec Clz, z [ /x] %+ spec Clz,z™'] = C - {0}.

Every point A € C — {0} has exactly n preimages \; = (' /A. Moreover, in a
neighborhood of A;, the map v is a diffeomorphism. Still, we do not have an
inverse map in algebraic geometry as #/x is not a polynomial map. However,
Clz, 2~ Y[ {/] is an étale extension of C[z,z~!]. In this way étale morphisms can
be seen as an algebraic substitute for the failure of an inverse function theorem in
algebraic geometry.

ExAMPLE 81. Let K be a field of characteristic zero, choose an algebraic closure
K with absolute Galois group Gk = Gal(K/K). Then, the following are equivalent
(1) K — A is étale
(2) ARk K~Kx...xK
(3) A=]]L; where L;/K is a finite field extension

Indeed, assume (1), then A = Klz1,...,2,]/(f1,--., fn) where f; have invertible
Jacobian matrix. Then A ® K is a commalg-smooth algebra (hence reduced) of
dimension 0 so (2) holds. Assume (2), then

Hompg_q1g(A,K) ~ Homg_q4(A @ K, K)
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C e > C'®c B B
/ \
et et
C B O evrreeeseeevvsmissssesssesessiisssssssssesens - A
(basechange) (composition)
’ et ’
C C'®c B C
N / \
et et
C orreeeevvrririne ~ B 2 J - B
C—alg
(descent) (morphisms)

FI1GURE 1. Sorite for étale morphisms

has dimg (A ® K) elements. On the other hand we have by the Chinese remainder
theorem that

AfJac A = HLi

with L; a finite field extension of K. However,

dimg(A®K) = Z dimg (L;) = dimg (A/Jac A) < dimg(A)

and as both ends are equal A is reduced and hence A =[], L; whence (3). Assume
(3), then each L; = K|z;]/(f;) with 0f;/0x; invertible in L;. But then A =[] L;
is étale over K whence (1) holds.

THEOREM 56. Ftale morphisms satisfy ’sorite’, that is, they satisfy the com-
mutative diagrams of figure 1. In these diagrams, et denotes an étale morphism,
f-f- denotes a faithfully flat morphism and the dashed arrow is the étale morphism
implied by ’sorite’.

PROOF. See for example [47, T]. O

DEFINITION 64. The étale site of C', which we will denote by Ce is the category
with
e objects : the étale extensions C' L BofC
e morphisms : compatible C-algebra morphisms

By - By
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In view of theorem 56 all morphisms in Ce; are étale morphisms.
Cet is equipped with a Grothendieck topology by defining a cover to be a collec-

tion C = {B LN B;} in Cet such that
spec B =U; Im (spec B; LN spec B )
Observe that all the properties of a Grothendieck category as in [47, I1.§1] follow

from this definition and theorem 56.

ExaMPLE 82. With the notation of example 81, we associate to every finite
étale extension A = [] L; the finite set rts(A) = Homg_qi4(A,K) on which the
Galois group Gk acts via a finite quotient group. If we write A = K[t]/(f), then
rts(A) is the set of roots in K of the polynomial f with obvious action by G . Galois
theory, in the interpretation of Grothendieck, can now be stated by observing that

the functor
rts(=) . .
Kot — finite Gi — sets

is an anti-equivalence of categories.
DEFINITION 65. An étale presheaf of groups on Ce is a functor
G : Cot — groups
In analogy with usual (pre)sheaf notation we denote for every object B € Ce the

global sections T'(B,G) = G(B) and for every morphism B % B'in Cet the

restriction map Res5, = G(¢) : G(B) — G(B') with g | B’ = G(¢)(g).
An étale presheaf G is an étale sheaf provided for every B € Co, and every cover
{B —— B;} we have exactness of the equalizer diagram

0 — G(B) — [[G(B:) — [[G(Bi®s B))
i ]
A sequence of sheaves of Abelian groups on Ce is said to be exact
(Y AN e

if for every B € Cq and s € G(B) such that g(s) = 0 € G”(B) there is a cover
{B —— B;} in Ce; and sections t; € G'(B;) such that f(t;) = s | B;.

ExaMPLE 83. For a group G we define the constant sheaf

G : Cey — groups B G&™0(B)

where 7y(B) is the number of connected components of spec B.

ExAMPLE 84. The multiplicative group G,,. The functor

Gy, : Co¢ — groups B +— B*

is a sheaf on Cgy.

EXAMPLE 85. the roots of unity u,. There is a sheaf morphism

Gm s G

and we denote its kernel by p,. As C' € commalg is a C-algebra we can identify
Un, with the constant sheaf Z,, = Z/nZ via the isomorphism (¢ — i after choosing
a primitive n-th root of unity ¢ € C. The Kummer sequence of sheaves of Abelian
groups

="
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is exact on Cey (but not necessarily on spec C with the Zariski topology). We
only need to verify surjectivity. Let B € Cqy and b € G,,,(B) = B*. Counsider the
étale extension B’ = Blt]/(t" — b) of B, then b has an n-th root over in G,,(B’).
Observe that this n-th root does not have to belong to G,,(B).

ExAMPLE 86. Using the notation of example 81 we have the following inter-
pretation of Abelian sheaves on K¢.. Let G be a presheaf on Kg.. Define

Mg = lim G(L)

where the limit is taken over all subfields L C K which are finite over K. The Galois
group G acts on G(L) on the left through its action on L whenever L/K is Galois.
Hence, Gk acts an Mg and Mg = UMéI where H runs through the open subgroups
(that is, containing a normal subgroup having a finite quotient) of Gx. That is,
Mg is a continuous G g -module . Conversely, given a continuous G g-module M we
define a presheaf Gj; on Ko by taking Gy (L) = MH where H = G = Gal(K/L)
and Gas (][] Li) = [ G (L;) for an arbitrary étale extension. One verifies that Gy
is a sheaf of Abelian groups on Key.

There is an equivalence of categories between sheaves an Ke; and continuous
G -modules

S(Ket) =< G —mod

induced by the correspondences G — Mg and M +— Gjs. Indeed, a G g-morphism
M —— M’ induces a morphism of sheaves Gp; —— Gps. Conversely, if H is
an open subgroup of Gx with L = K, then if G 2. G’ is a sheafmorphism,
#(L) : G(L) — G'(L) commutes with the action of G by functoriality of ¢.
Therefore, l@z ¢(L) is a Gg-morphism Mg —— Mg/. One verifies easily that

Homg, (M, M'") —— Hom(Gys,Gyy) is an isomorphism and that the canonical
map G — Gy, is an isomorphism.

DEFINITION 66. Let A be an Abelian category. An object I of A is said to be
injective if the functor
A —— abelian M — Hom(M,I)

is exact. We say that A has enough injectives if, for every object M in A, there
is a monomorphism M <~ [ into an injective object. If A has enough injectives
and f: A —— B is a left exact functor from A into a second Abelian category B,
then there is an essentially unique sequence of functors

Rf:A—B i>0
called the right derived functors of f satisfying the following properties
(1) R f=f
(2) R* I =0 for I injective and i >0
(3) For every short exact sequence in A
0—> M — M — M” — 0
there are connecting morphisms 6 : R* f(M”) — R f(M') fori >0
such that we have a long exact sequence
i i N i
. —= R' f(M) — R' f(M") — R™! f(M') — R f(M) — ...
(4) For any morphism M — N there are morphisms R’ f(M) — R' f(N)
fori>0
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To compute the objects R f(M) define an object N in A to be f-acyclic if

R' f(M) =0 for all i > 0. If we have an acyclic resolution of M
04>M4>N04>N14>N24>

by f-acyclic object N;, then the objects R® f(M) are canonically isomorphic to the

cohomology objects of the complex

One can show that all injectives are f-acyclic and hence that derived objects of M
can be computed from an injective resolution of M.

DEFINITION 67. Let S%(C,;) be the category of all sheaves of Abelian groups
on Ce¢. This is an Abelian category having enough injectives whence we can form
right derived functors of left exact functors. In particular, consider the global
section functor

I':8%(Ce) — Ab G +— G(C)
which is left exact. The right derived functors of I will be called the étale coho-
mology functors and we denote

R'T(G) = H',(C,G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 — G ——> G —— G” —— 0, then we have a long exact cohomology se-
quence

. — H,(C,G) — H!,(C,G") — H(C,G') — ...

ExAMPLE 87. The category G — mod of continuous Gi-modules is Abelian

having enough injectives. Therefore, the left exact functor
(=)¢: Gk —mod — abelian
admits right derived functors. They are called the Galois cohomology groups and
denoted _ _
R' M% = H(Gg, M)
For any sheaf of Abelian groups G on K.; we have a group isomorphism
H,(K,G) ~ H' Gk, G(K))

Therefore, étale cohomology is a natural extension of Galois cohomology to arbi-
trary algebras.

For applications in noncommutative algebra and geometry G will often be a
sheaf of automorphism groups which are usually not Abelian. In this case we
cannot define cohomology groups. Still, we can define a first cohomology pointed
set HL(C,G).

DEFINITION 68. If G is a sheaf of not necessarily Abelian groups on Cet, then
for an étale cover C = {C' —— C;} of C define a 1-cocycle for C with values in G
to be a family
gij € G(CZJ) with Cij =C; ®c Cj
satisfying the cocycle condition
(9i5 | Cigi)(gsn | Ciji) = (9ik | Cijie)
where Cijk =C; ®c Cj ®c Chk.
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Two cocycles g and ¢’ for C are said to be cohomologous if there is a family
h; € G(C;) such that for all 4, j € I we have

gi; = (hi'| Cij)giz(hy | Cij) !
This is an equivalence relation and the set of cohomology classes is written as
HL(C,G). Tt is a pointed set having as its distinguished element the cohomology

class of g;; =1 € G(Cj;) for all 4,5 € I.
We then define the non-Abelian first cohomology pointed set to be

H,(C,G) = lim H(C,G)

where the limit is taken over all étale coverings of C'. It coincides with the previous
definition in case G is Abelian.

A sequence 1 —— G’ ——> G —— G” —— 1 of sheaves of non necessarily
Abelian groups on Cey is said to be exact if for every B € Cqy we have that G'(B) =
Ker G(B) — G”(B) and for every ¢” € G”(B) there is a cover {B — B;} in
Cet and sections g; € G(B;) such that g; maps to ¢” | B.

THEOREM 57. For an exact sequence of groups on Cey
1—>G — G —G — 1
there is associated an exact sequence of pointed sets
1 — G/(C) — G(C) — G"(C) ——~ HL(C,G) —
- Helt(c7 G) — Helt<07 G”) e g He2t<C? G')
where the last map exists when G’ is contained in the center of G (and therefore is

Abelian whence H? is defined).

PROOF. The connecting map 4 is defined as follows. Let g” € G”(C) and let
C = {C — C;} be an étale covering of C such that there are g; € G(C;) that map
to g | C; under the map G(C;) — G”(C;). Then, §(g) is the class determined by
the one cocycle
9i5 = (9: | Ci) " (95 | Ci)
with values in G’. The last map can be defined in a similar manner, the other maps
are natural and one verifies exactness. O

Let A be a not necessarily commutative C-algebra and M an C-module. Con-
sider the sheaves of groups Aut(A) resp. Aut(M) on Ce associated to the presheaves
B+ AUtB—alg(A Rc B) resp. B — AUtB—mod(M Rc B)

for all B € Cey. A twisted form of A (resp. M) is an C-algebra A’ (resp. an
C-module M) such that there is an étale cover C = {C — C;} of C such that
there are isomorphisms

A@Cciﬁ’A/(@CCi
M@CCiLMIQ@CCi

of C;-algebras (resp. C;-modules). The set of C-algebra isomorphism classes (resp.
C-module isomorphism classes) of twisted forms of A (resp. M) is denoted by
Twc(A) (resp. Twe(M)). To a twisted form A’ one associates a cocycle on C

-1
Qg = Qi = ¢i © ¢j
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with values in Aut(A). Moreover, one verifies that two twisted forms are isomorphic
as C-algebras if their cocycles are cohomologous. That is, there are embeddings

Twe(A) — HL,(C,Aut(A))
Twe(M) —— Hg,y(C, hut(M))

In favorable situations one can even show bijectivity. In particular, this is the case
if the automorphisms group is a smooth affine algebraic group-scheme.

EXAMPLE 88. GL, is an affine smooth algebraic group defined over K and
is the automorphism group of a vectorspace of dimension r. It defines a sheaf of
groups on K¢, that we will denote by GL,.. Because the first cohomology classifies
twisted forms of vectorspaces of dimension r and there is just one such class, we
have

HY(K,GL,) = H (Gk,GL,.(K)) =0
In particular, we have ’Hilbert’s theorem 90’
HL(K,G,,) = H (G, K*) =0

ExAMPLE 89. Let A be a finite dimensional K-algebra. It is classical, see for
example [51], that the following are equivalent :
(1) A has no proper twosided ideals and the center of A is K.
(2) Ax = A®k K ~ M, (K) for some n.
(3) AL = A®k L ~ M, (L) for some n and some finite Galois extension L/K.
(4) A =~ My(D) for some k where D is a division algebra of dimension /2 with
center K.
An algebra satisfying these properties is said to be a central simple algebra over K.
PGL, is an affine smooth algebraic group defined over K and is the automor-
phism group of the K-algebra M, (K). It defines a sheaf of groups on Ke denoted
by PGL,. By the above equivalences any central simple K-algebra A of dimension
n? is a twisted form of M,,(K). Therefore, the pointed set

HY(K,PGL,) = H'(Gg, PGL,(K))

classifies the central simple K-algebras of dimension n?.

DEFINITION 69. If A and B are central simple K-algebras, then so is A® i B by
example 89 (2). We say that two central simple K-algebras A and B are equivalent
iff

A~ M,(D) and B ~ M(D)
for a finite dimensional division algebra D with center K. The tensorproduct
induces a groupstructure on the equivalence classes of central simple K-algebras,
Br(K), called the Brauer group of the field K.

The unit element of Br(K) is [K] and the inverse of [A] is the equivalence class
of the opposite algebra [A°P] as A ®x A°P ~ M;2(K) if A is of dimension 2.

THEOREM 58. There is a natural inclusion
Helt(K, PGL,) — Hst(Ka pn) = Bry(K)
where Bry,(K) is the n-torsion part of the Brauer group of K. Moreover,
Br(K) = H4 (K, Gn)

18 a torsion group.
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1 1
' Rk
1 > Un > Gm > Gm -1
I
Y Y
1 - SL, - oL, —* . G, .1
Y Y
PGL, = PGL,
Y Y
1 1

FIGURE 2. Brauer group diagram.

Proor. Consider the exact commutative diagram of sheaves of groups on Key
of figure 2. Taking cohomology of the second exact sequence we obtain
GLn(K) 2% K* —+ HY(K,SL,) — HY(K,GL,)
where the first map is surjective and the last term is zero, whence
H(K,SL,) =0
Taking cohomology of the first vertical exact sequence we get
Hjt(K, SL,) — Helt(K7 PGL,) — HeZt(K> fin)

from which the first claim follows.

As for the second assertion, taking cohomology of the first exact sequence we
get

Helt(Ka Gm) — Hth(Kv ) — Hezt(Ka Gm) s Hth(Kv Gm)
By Hilbert 90, the first term vanishes and hence H2 (K, p1,,) is equal to the n-torsion
of the group
HZ (K, Gy) = H (G, K*) = Br(K)

where the last equality is the crossed product theorem , see for example [51]. O

In noncommutative geometry, the field K will be the functionfield of an alge-
braic variety and Br(K) gives a measure for the noncommutative function skew-
fields having center K. These Brauer groups are usually huge objects and their
description contains a lot of geometric/combinatorial data about a smooth model
of K. The dimension of the variety puts a bound on the size of the Galois group
Gk and hence limits the non-zero Galois cohomology groups.
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DEFINITION 70. A field K is said to be a Tsen.d-field if every homogeneous
form of degree deg with coefficients in K and n > deg? variables has a non-trivial
zero in K.

ExAMPLE 90. An algebraically closed field K is a Tsen.0-field as any form in
n-variables defines a hypersurface in ]P’Hré_l. In fact, algebraic geometry tells us a
stronger story : if f1,..., f, are forms in n variables over K and n > r, then these
forms have a common non-trivial zero in K. Indeed, every f; defines a hypersurface
V(f;) = Pg~'. The intersection of  hypersurfaces has dimension > n — 1 —r
from which the claim follows.

In fact, one can extend this to higher Tsen-fields. Let K be a Tsen.d-field
and fi,..., f. forms in n variables of degree deg. If n > rdeg?, then they have a
non-trivial common zero in K. See [64] for a proof.

THEOREM 59. Let K be of transcendence degree d over an algebraically closed
field C, then K is Tsen.d.

PROOF. First we claim that the purely transcendental field C(ty,...,tq) is a
Tsen.d. By induction we have to show that if L is Tsen.k, then L(¢) is Tsen.k+1.

By homogeneity we may assume that f(z1,...,z,) is a form of degree deg with
coefficients in L[t] and n > deg"*!. For fixed s we introduce new variables yl(]s) with
i <mn and 0 < j < s such that

2=y + oyt O

If r is the maximal degree of the coefficients occurring in f, then we can write

F@i) = fou)) + LS+ o faegusir(yls))edesst

where each f; is a form of degree deg in n(s+1)-variables. By the previous example,
these forms have a common zero in L provided

n(s+1) > deg®(ds + 7+ 1) <= (n — deg™")s > deg'(r +1) —n

which can be satisfied by taking s large enough. the common non-trivial zero in L
of the f;, gives a non-trivial zero of f in L[t].

By assumption, K is an algebraic extension of C(ty,...,ts) which by the above
argument is Tsen.d. As the coefficients of any form over K lie in a finite extension
E of C(ty,...,tq) it suffices to prove that E is Tsen.d.

Let f(z1,...,2,) be a form of degree deg in E with n > deg?. Introduce new
variables y;; with

T; = Yine1 + ... Yikek

where e; is a basis of F over C({y,...,tqs). Then,

(i) = filyij)er + -+ fu(vig)er
where the f; are forms of degree deg in k.n variables over C(ty,...,tq). Because
C(ty,...,tq) is Tsen.d, these forms have a common zero as k.n > k.deg?. Finding
a non-trivial zero of f in F is equivalent to finding a common non-trivial zero to
the f1,..., fr in C(t1,...,tq), done. O

THEOREM 60 (Tsen’s theorem). Let K be the functionfield of a curve C' defined
over an algebraically closed field. Then, the only central simple K-algebras are
M, (K). That is, Br(K) = 1.
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PROOF. Assume there exists a central division algebra A of dimension n? over
K. There is a finite Galois extension L/K such that AQ L = M, (L). If x1,..., 2,2
is a K-basis for A, then the reduced norm of any = € A,

N(x) =det(x ®1)

is a form in n? variables of degree n. Moreover, as x ® 1 is invariant under the

action of Gal(L/K) the coefficients of this form actually lie in K.

By the previous theorem, K is Tsen.1 and N(z) has a non-trivial zero whenever
n? > n. As the reduced norm is multiplicative, this contradicts N(z)N(z~1) = 1.
Hence, n = 1 and the only central division algebra is K itself. (Il

EXAMPLE 91. If K is the functionfield of a surface, and if A is a central simple
K-algebra of dimension n?, then the reduced norm map

N : A—K

is surjective. For, let eq1,...,e,2 be a K-basis of A and k € K, then

N(Z xiei) — k3?22+1

is a form of degree n in n? 4 1 variables. Since K is Tsen.2, it has a non-trivial
solution (z), but then, § = (3 2¥¢;)x,;, | has reduced norm equal to k.

DEFINITION 71. The cohomological dimension of a group G, c¢d(G) < d if and
only if H"(G, A) =0 for all r > d and all torsion modules A € G-mod.

A field K is said to be a Tate.d-field if the absolute Galois group Gg =
Gal(K/K) has cohomological dimension d.

EXAMPLE 92. We claim that cd(G) < d if H*1(G,Z/pZ) = 0 for the simple
G-modules with trivial action Z/pZ.

To start, one can show that a profinite group G (that is, a projective limit of
finite groups, see [64] for more details) has c¢d(G) < d if and only if

H¥(@G, A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we can
decompose the cohomology in its p-primary parts and relate their vanishing to the
cohomological dimension of the p-Sylow subgroups G, of G. This problem can then
be verified by computing cohomology of finite simple G,-modules of p-power order,
but for a profinite p-group there is just one such module namely Z/pZ with the
trivial action proving the claim.

We will encounter many spectral sequences so it may be useful to recall their
definition in some detail.

DEFINITION 72. A spectral sequence EYY = E™ (or EV'Y = E™) consists of
the following data :

A family of objects EP»? in an Abelian category for p, ¢,r € Z such that p,q > 0
and r > 2 (or r > 1).

A family of morphisms in the Abelian category

P-4 . P-4 p+r,q—7+1
db?: P —— EP
satisfying the complex condition
d;;%HVQ*T‘Fl odP? =0
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and where we assume that d?? = 0 if any of the numbers p,q,p+7ror ¢ —r+1is
< 1. At level one we have the following

1 4

—>0—>0— >0— >0———»>
—>0—>0—>0—>0———

—>0—>0—>0—>0——— >

P—>0—>0—>0—>0—— >

P,q
E1 - &——9 —0& —o 0o

p

At level two we have the following

P
E5 =

The objects Effl on level r + 1 are derived from those on level r by taking the
cohomology objects of the complexes, that is,

Ker db14
r+1 = 7 p—rqir—1
Im dff Tq+r

At each place (p,q) this process converges as there is an integer ro depending on
(p,q) such that for all r > ry we have d?*4 = 0 = d?~"97"~1. We then define
B = B (= EDL, = )

Observe that there are injective maps E%4 —— EJ7,
A family of objects E™ for integers n > 0 and for each we have a filtration

OCE:LLCEZI,]_ C...CE{"CE":EH
such that the successive quotients are given by

By | By = B2
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That is, the terms E2Y are the composition terms of the limiting terms EP14.

THEOREM 61. (Hochschild-Serre spectral sequence) If N is a closed normal
subgroup of a profinite group G, then

EY? = HP(G/N,HY(N,A)) = H"(G, A)
holds for every continuous G-module A.

THEOREM 62 (Tate). Let K be a field of transcendence degree d over an alge-
braically closed field, then K is Tate.d. In particular, if A is a constant sheaf of
an Abelian torsion group A on Key, then

HL,(K,A)=0
whenever i > trdege (K).

PROOF. Let C denote the algebraically closed basefield, then K is algebraic

over C(ty,...,tq) and therefore

Gk — Gy, 1)
Thus, K is Tate.d if C(t1,...,tq) is Tate.d. By induction it suffices to prove that
if cd(Gr) < k then cd(Gpr)) < k+ 1. Let L be the algebraic closure of L and M

the algebraic closure of L(t). As L(t) and L are linearly disjoint over L we have
the following diagram of extensions and Galois groups

L - L(t) <520 L

where G+)/GLy) ~ GL.
We claim that cd(Gr)) < 1. Consider the exact sequence of G ;)-modules

(=)*

0 — p, — M* o M* — 0

where p,, is the subgroup (of C*) of p-roots of unity. As G acts trivially on
R, it is after a choice of primitive p-th root of one isomorphic to Z/pZ. Taking
cohomology with respect to the subgroup Gy we obtain

0= H'(Gru),M*) — H*(Gru), Z/pZ) — H*(Gr,M*) = Br(L(t))
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But the last term vanishes by Tsen’s theorem as IL(¢) is the functionfield of a curve
defined over the algebraically closed field L. Therefore, H Q(G]L(t), Z/pZ) = 0 for all
simple modules Z/pZ, whence cd(Gy)) < 1.

By the inductive assumption we have ¢d(Gr) < k and now we are going to use
exactness of the sequence

0 — G — Grpy — Gy — 0

to prove that cd(Gr;)) < k+1. For, let A be a torsion G'1,(4)-module and consider
the Hochschild-Serre spectral sequence

By = H(Gr, H (G, A) = H" (G, A)

By the restrictions on the cohomological dimensions of G, and Gy ;) the level two
term has following shape

1 4
[ ] [ ] [ ]
20 [ ] [ ]
[ ] [ ] [ ]
EPY = . . P

k

where the only non-zero groups are lying in the lower rectangular region. Therefore,
all E2:? = 0 for p+q > k+1. Now, all the composition factors of H’H'Q(GL(t), A) are
lying on the indicated diagonal line and hence are zero. Thus, H*+2(G L),A4) =0
for all torsion G'z,(;)-modules A and hence cd(G ) <k + 1. O

We need to classify all central simple algebras ¥ of dimension n? over the

function field K of transcendence degree d. For large dimensions d this is a hopeless
task. Still, étale cohomology can be used to go a long way towards this goal and
for small d one does get a nice description.

The first tool we need is the Leray spectral sequence . Assume we have an

algebra morphism C' L+ ¢’ and a sheaf of groups G on C’4;. We define the direct
image of G under f to be the sheaf of groups fi G on C.; defined by
fx G(B) =G(B®c ')
for all B € At (recall that B ®¢ C' € C? o so the right hand side is well defined).
This gives us a left exact functor
feo 1 8%(C7 o) — S™(Ces)

and therefore there exist right derived functors R® f.. If G is an Abelian sheaf on
C’et, then R’ f,G is a sheaf on Ce;. One verifies that its stalk in a prime ideal p is
equal to

(R £.G)p = H,(C}" @c O, G)
where the right hand side is the direct limit of cohomology groups taken over all
étale neighborhoods of p. We can relate cohomology of G and f.G by the following
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THEOREM 63. (Leray spectral sequence) If G is a sheaf of Abelian groups on
C’e and C N C’ an algebra morphism. Then, there is a spectral sequence
EY*=HP(C,R? f.G) = HJ,(C',G)
In particular, if R0 f,G =0 for all j > 0, then for all i > 0 we have isomorphisms
Hét(C, f:G) ~ H;:t(C’, G)
PROOF. See for example [47, IIT.Thm.1.18]. O

We will use it to relate étale cohomology over K to that over a discrete valuation
ring C' in K with residue field k = %, that is we have algebra morphisms

%

C K

k
From section 5.1 we recall that the n-torsion part of the Brauer groups of K and k
are given by the étale (or Galois) cohomology groups

Hzt(Ka PJn) resp. Hezt(kmu“n)
and we like to deduce information on Br,(C).

THEOREM 64. There is a long exact sequence of groups
0 — HY(CO, ") — HY(K, pg") — Hoy(k,p) ™) —

n

He?t(Av/‘%l) - HSt(Kvugl) - Hc}t(hll@l_l) _— ..

PROOF. By considering the Leray spectral sequence for the inclusion ¢ we claim
that the following equalities hold :
(1) RO 4, u® ~ u®! on Cg.
(2) R i, u® ~ =1 concentrated in m.
(3) R i, u® ~ 0 whenever j > 2.
Indeed, the strict Henselizations of C' at the two primes {0, m} are resp.
Csh ~ K and C3h ~ k{t}
where K (resp. k) is the algebraic closure of K (resp. k). Therefore,
(R i.p")o = HL(K, ps')
which is zero for i > 1 and u®! for j = 0. Further, C2" ®¢ K is the field of fractions
of k{t} and hence is of transcendence degree one over the algebraically closed field
k, whence
(Rj i*,u%l)m = Hgt(lMMS?Z)
which is zero for j > 2 because L is a Tate. 1-field. R
For the field-tower K C L C K we have that G, = Z = l@#m because the

only Galois extensions of L are the Kummer extensions obtained by adjoining /.
But then,

HY(L, Y = HYNZ, p$Y(K)) = Hom(Z, p&'(K)) = p' =

from which the claims follow.
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HQ (ki =Y) | Hey (k' Y) | HE (k1)

Hgt(C,u?;l) Helt(ca,u%l) Hft(C’“ugl)

FI1GURE 3. Second term of Leray spectral sequence.

Ker oq Ker as Ker as

Hgt(C,uf?l) Helt(cvﬂg?l) Coker aq

FIGURE 4. Limiting term of the Leray spectral sequence.

Therefore, the second term of the Leray spectral sequence for i,u®! has the
shape given in figure 3 with connecting morphisms

Hi Mk, p21) = HIFY(C, 18

n

The spectral sequences converges to its limiting term given in figure 4 The previous
theorem gives us the short exact sequences

0 — HL(Copy") — HY (K, puy") — Ker ay — 0
0 — Coker oy — HZ,(K,u%") — Ker ag — 0
0 — Coker aj_y — H!,(K,u®") — Ker a; — 0

Gluing these sequences gives us the required result. O

We will extend the definition of étale cohomology to the setting of arbitrary
(non-affine) schemes.

DEFINITION 73. A morphism of schemes

y o x
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is said to be an étale extension (resp. cover) if locally f is of the form
o1 U; - C; =T (Ui, Ox) — C, =T(f"(U;),Oy)

with C; — C/ an étale extension (resp. cover) of algebras.

The étale site of X is also defined locally and will be denoted by X.;. Presheaves
and sheaves of groups on X,; are defined similarly and the right derived functors
of the left exact global sections functor

I':S%(X,) — abelian
will be called the cohomology functors and denoted
R'T(G) = H.,(X,G)

If X is a smooth, irreducible projective variety of dimension d over C, we can
initiate the computation of the cohomology groups H¢, (X, u®!) via Galois coho-
mology of functionfields of subvarieties using the coniveau spectral sequence :

THEOREM 65 (Coniveau spectral sequence). Let X be a smooth irreducible vari-
ety over C. Let XP) denote the set of irreducible subvarieties x of X of codimension
p with functionfield C(x). Then, there exists a coniveau spectral sequence

Er = @ HYP(Clr), uf'7) = HYU(X, pS)
reX(®)

relating Galois cohomology of the functionfields to the étale cohomology of X.

Proor. Unlike the spectral sequences used before, the existence of the coniveau
spectral sequence by no means follows from general principles. A lot of heavy
machinery on étale cohomology of schemes is used in the proof. In particular, the
cohomology groups with support of a closed subscheme, see for example [47, p.
91-94], and cohomological purity and duality, see [47, p. 241-252]. For a detailed
exposition we refer the reader to [8]. O

EXAMPLE 93. By the results of section 5.1 on cohomological dimension and
vanishing of Galois cohomology of u®* when the index is larger than the tran-
scendence degree, we deduce that the non-zero terms of the coniveau spectral are
restricted to the triangular shaped region of figure 5

ExaMPLE 94. Consider the connecting morphisms of the coniveau spectral
sequence, a typical instance of which is

P H(C@),ud'?) — @ HC),pud )
zeX () yeX (+1)

Take one of the closed irreducible subvarieties x of X of codimension p and one
y of codimension p + 1. Then, either y is not contained in x in which case the
component map

H{y(C@), o' ™7) —— Hey ' (Cly), p ")

is the zero map, or, y is contained in x and hence defines a codimension one subva-
riety of x. That is, y defines a discrete valuation on C(z) with residue field C(y).
In this case, the component map is the connecting morphism of theorem 64.
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1 4
o —>0—>0 e O ——> 00—
de—>o—»e0 - - 06— .
o —>0—»0 S O——— O —>
o —»0 >0 O/ —>
Ef’q = e »>0———>0 - 0—>0—»>

FI1GURE 5. Coniveau spectral sequence

0 0 0 0
H2(C(S), pn) |@cH'(C(S),Zn)|  ©p npt 0
HY(C(S), pin) D¢ Zn 0 0

Hn 0 0 0

FI1GURE 6. The coniveau spectral sequence for a surface S.

ExAMPLE 95. In particular, let K be the functionfield of X. Then we can
define the unramified cohomology groups

BOs, 4
—_—

FyY(K/C) = Ker H'(K, ") @ H' " (ka, p' ™)

where the sum is taken over all discrete valuation rings A of K (or equivalently, the
irreducible codimension one subvarieties of X) with residue field k4. By definition,
this is a (stable) birational invariant of X. In particular, if X is (stably) rational
over C, then

FAY(K/C)=0for all i,1 >0

ExXAMPLE 96. The Brauer group of the function field of a smooth irreducible
projective surface S. The first term of the coniveau spectral sequence for S has
the shape of figure 6 where C' runs over all irreducible curves on S and P over all
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points of S. We claim that the connecting morphism
HI(C(S)vun) - @c Loy
is surjective. Indeed, from the Kummer sequence describing u, as the kernel of
G, Q» G,, and Hilbert 90 we have that
H,(C(S), un) = C(8)*/C(S)™

The claim follows from the exact diagram below describing divisors of rational
functions

Bn = My 0
4 Y di \
0 -~ C* - C(S) —2 ®cZ > 0
(- n
4 Y di \
0 - C* - C(S) —2» BeZ > 0
Y Y Y
0 EBCZn =~ EBCZYL

By the coniveau spectral sequence HZ, (S, u,,) is the kernel of v and in particular,
H, (S, pn) — H(C(S), ptn)-
Assume in addition that S is simply connected , that is, every étale cover
Y —— S is trivial (Y is the finite disjoint union of copies of S). As an element
in HY (S, ) determines a cyclic extension L = C(S){/f with f € C(S)*/C(S)*"
such that in each fieldcomponent L; of L there is an étale cover T; —— S with
C(T;) = L;. If S is simply connected, nontrivial étale covers do not exist whence
f=1eC(S)*/C(S)™ or HL(S, un) = 0.
We now invoke another major tool in étale cohomology of schemes, Poincaré
duality , see for example [47, VI,§11]. If S is simply connected, then
(1) Hgt(Sv Mn) = Hn
(2) Hey(S,pn) =0
(3) HSt(S? ,un) =0
(4) Hey(S, pn) = pi*
The third claim follows from the second as both groups are dual to each other. The
last claim follows from the fact that for any smooth irreducible projective variety
X of dimension d one has that

d —d
HZN(X, pin) =
We are now in a position to state and prove the important

THEOREM 66. (Artin-Mumford exact sequence) Let S be a simply connected
smooth projective surface. Then, there is an exact sequence of groups

0 — Br,(S) — Bry,(C(S5)) — & C(C)*/C(C)" —
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0 0 0 0
Ker o Ker B8/Im o Coker B 0
Ker v Coker ~ 0 0

Hn 0 0 0

FIGURE 7. Limiting term for a surface S.

14»0

— @®ppu,t —

PROOF. The top complex in the first term of the coniveau spectral sequence
for S is
HA(C(S), ftn) —> @0 H'(C(C),Zn) —+ @p pin
The second term of the spectral sequence (which is also the limiting term) is given
in figure 7 We know already that Coker v = 0. By Poincare duality we have that
Ker 3= Im a and Coker 3 = pu,'. Hence, the top complex is exact in its middle
term and can be extended to an exact sequence

0 —— HZ(S, ptn) — HZ(C(S), pin) — @&c Hey(C(C), Zn) —
1

— >0

Sppin ' — iy
The third term is equal to ®cC(C)*/C(C)*™ and the second term we remember to
be the n-torsion part of the Brauer group Br, (C(S). The identification of Br,(S)
with H2 (S, pip,) follows from Gabber’s theorem and will be explained below. O

EXAMPLE 97. The Brauer group of C(x,y). If S = P? we have that Br, (P?) =
0 as Br,(P?) is the birational invariant F>!(C(z,y)/C). From the exact sequence

0 — Br, C(z,y) — @c C(O)"/C(C)™ — @ppy' — ptn — 0
we obtain a description of Br,, C(z,y) by a certain geo-combinatorial package which
we call a Z,-wrinkle over P2. A Z,-wrinkle is determined by

e A finite collection C = {Cy,...,Cy} of irreducible curves in P2, that is,
C; = V(F;) for an irreducible form in C[X,Y, Z] of degree d;.

e A finite collection P = {Py,..., P;} of points of P2 where each P; is either
an intersection point of two or more C; or a singular point of some C;.

e For each P € P the branch-data bp = (by,...,b;,) with b; € Z,, = Z/nZ
and {1,...,ip} the different branches of C in P. These numbers must
satisfy the admissibility condition

> bi=0€Z,

for every P € P
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e for each C € C we fix a cyclic Z,-cover of smooth curves
D—C

of the desingularization C of C which is compatible with the branch-data.
That is, if @ € C corresponds to a C-branch b; in P, then D is ramified
in @ with stabilizer subgroup

Stabg = (b;) C Zy,

For example, a portion of a Z4-wrinkle can have the following picture
0

. c

Py Py
0 2 1

Clearly, the cover-data is the most intractable part of a Z,-wrinkle, so we need
some control on the covers D —» C. Let {Q1,...,Q.} be the points of C' where
the cover ramifies with branch numbers {b1,...,b,}, then D is determined by a
continuous module structure (that is, a cofinite subgroup acts trivially) of

71—1((7_ {Q177QZ}) on Zn

where the fundamental group of the Riemann surface C with z punctures is known
(topologically) to be equal to the group

(W1,01,. ., Ug, Vg, X1, -y ) [ ([Ur, v1] . [ug, vglar ... 22)

where g is the genus of C. The action of z; on Z, is determined by multiplication
with b;. In fact, we need to use the étale fundamental group, see [47], but this group
has the same finite continuous modules as the topological fundamental group.

For example, if C' = P! then g = 0 and hence 71 (P! — {Q1,...,Q.} is zero if
z < 1 (whence no covers exist) and is Z if z = 2. Hence, there exists a unique cover
D —» P! with branch-data (1, —1) in say (0, o0) namely with D the normalization
of P! in C(/x).

If C = E an elliptic curve, then g = 1. Hence, 7;(C) = Z @ Z and there exist
unramified Z,-covers. They are given by the isogenies

E —— FE

where E’ is another elliptic curve and E = E’/(7) where 7 is an n-torsion point on
E'.

In general, an n-fold cover D — C is determined by a function f €
C(C)*/C(C)*™. This allows us to put a group-structure on the equivalence classes
of Zp-wrinkles. In particular, we call a wrinkle trivial provided all coverings
D; — C; are trivial (that is, D; is the disjoint union of n copies of CNQ) The
Artin-Mumford theorem for P2 can now be stated as :
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0 ? ? 2
0 Ker B8/Im « Coker B 0
0 0 0 0
Hn 0 0 0

FIGURE 8. Second term for a smooth rational projective X.

If A is a central simple C(x,y)-algebra of dimension n?, then A determines
uniquely a Zp-wrinkle on P2. Conversely, any Z,-wrinkle on P2 determines a
unique division C(z,y)- algebra whose class in the Brauer group has order n.

ExAMPLE 98. The Brauer group of a smooth irreducible rational projective va-
riety X of dimension d. Using the fact that the birational invariants F*(C(X)/C)
vanish when i > 0 we deduce, with notation as below for the second row of the first
term of the coniveau spectral sequence

o B —
HZ(C(X)pn) —= @ Hy(C(H),Z/nZ) ——~ & '
codim(H)=1 codimh=2
that the second term is given by figure 8 The terms on the third diagonal are also
the limiting terms. That is, by the coniveau spectral theorem we have that the
obstruction to the exactness of the sequence

« Jé3 _
0 — HE(C(X)pn) —> &  Hy(C(H),Z/nZ) — & '
codim(H)=1 codimh=2
in the H!-term is isomorphic to the étale cohomology group H2,(X, ). That is,
this group describes the obstruction to Z,-wrinkles on X describing Br, (C(X)).

5.2. Etale slices.

In this section we will prove that the étale local structure of alg-smooth
algebras is determined by path algebras of quivers. The proof uses the étale slice
theorem due to Domingo Luna [44]. We start by recalling the formulation of the
slice theorem in differential geometry.

Let M be a compact C*°-manifold with a smooth action of a compact Lie group
G. By the usual averaging process we can define a G-invariant Riemannian metric
on M. For a point m € M we define

e The G-orbit O(m) = G.m of m in M,

e the stabilizer subgroup H = Stabg(m) ={g € G | g.m = m} and

e the normal space N, defined to be the orthogonal complement to the
tangent space in m to the orbit in the tangent space to M. That is, we
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have a decomposition of H-vectorspaces
T, M =T, Om)® N,

The normal spaces N, when z varies over the points of the orbit O(m) define
a vectorbundle N —Z»> O(m) over the orbit. We identify the bundle with the
associated fiber bundle

N~Gx"TN,

Any point n € N in the normal bundle determines a geodesic

Yn : R —— M defined by {fyn(O) =r(n)

40 =n

Using this geodesic we define a G-equivariant exponential map from the normal
bundle N to the manifold M via

N5 M where exp(n) = v, (1)

Now, take € > 0 and define the C* slice S; to be
Se={n€Nm [lIn]<e}

then G x S, is a G-stable neighborhood of the zero section in the normal bundle
N =G x* N,,. But then we have a G-equivariant exponential

exp

Gxs. =5 v
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which for small enough ¢ gives a diffeomorphism with a G-stable tubular neighbor-
hood U of the orbit O(m) in M.

Nm

G/H

If we assume moreover that the action of G on M and the action of H on N,,
are such that the orbit-spaces are manifolds M/G and N,,/H, then we have the
situation

> [J < > M

S./H

U/G < M/G

~

giving a local diffeomorphism between a neighborhood of 0 in N,,/H and a neigh-
borhood of the point 7 in M /G corresponding to the orbit O(m).

We want to have a similar description for the action of GL, by basechange
on the representation scheme rep, A for an affine algebra A € alg. Because the
exponential map is not a morphism in algebraic geometry we would like to replace
it by an étale map. Moreover, as the étale slices relate the local structure of two
quotient varieties, it is natural to restrict to points in which the stabilizer subgroup
is again a reductive group. This is the case for closed orbits. Surprisingly, these
mild restrictions allow the existence of an algebraic (étale ) slice. This was first
proved by Domingo Luna [44] in the case of reduced varieties and later, in general,
by Friedrich Knop [31]. Because representation schemes are often not reduced we
will follow Knop’s proof in the special case of interest to us, that is, when the acting
group is GL,, (or a product GL(a) = GLg, X ... X GL,).

We fix the following setting : afX and afY will be two affine G L,,-schemes and

afY %+ afx will be a GL,-equivariant morphism. Consider points y € afY and
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x = 1(y) € afX. We have the diagram of quotients

r=vyly) € afX Y afy > y

afX/GL, afY/GL,
and assume the following restrictions :
e 1 is étale in y,
e the GL,-orbits O(y) in afY and O(z) in afX are closed.
e the stabilizer subgroups are equal Stab(z) = Stab(y).

In algebraic terms : consider the coordinate rings R = ClafX] and S = C[afY] and
the dual morphism R Y. S. Let I < R be the ideal describing the Zariski closed

set O(z) and J < S the ideal describing O(y). Let R = lim £ and S =1lim = be

the I-adic resp. J-adic completions.

THEOREM 67. With notations and restrictions as above, we have :
(1) The morphism ¥* induces an isomorphism
R RN S
i Jn
for all n. In particular, R~S.
(2) There are natural numbers m > 1 (independent of the type s € simpGL,,)

and n > 0 such that
Ikarn ﬂR(s) [« (IGLn)k‘R(S) -, Ik: OR(S)

for all k € N.
(3) The morphism ¢* induces an isomorphism

—_— ~ —_—
R ®pgacr, RGLn —» § ®gcLn SGLn

where RGLn s the I -adic completion of REL» and SGL» the JGEn-
adic completion of SGL.

PROOF. (1) : Let afZ be the closed GL,-stable subvariety of afY where 1 is
not étale. By the separation property, there is an invariant function f € S%L»
vanishing on afZ such that f(y) = 1 because the two closed GL,-subschemes
afZ and O(y) are disjoint. Replacing S by S; we may assume that ¢* is an étale
morphism. Because O(z) is smooth, =1 O(z) is the disjoint union of its irreducible
components and restricting afY if necessary we may assume that =1 O(z) = O(y).

But then J = ¢*(1)S and as O(y) — O(z) we have £ ~ 5 50 the result holds
forn = 1.

Because étale maps are flat, we have ¢*(I"™)S = I" ®g S = J™ and an exact
sequence

n

1
OHIWH@RS;’I”@RS;’W(@RS;’O

But then we have
I Im S I Jn
©rS = g

Jn+l — n+l QRr/1 7 It
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and the result follows from induction on n and the commuting diagram

I R R
0 s s T In -0
;
Jm S S
0 T el T e+t T gn ~0

(2) : Consider A = ®2,I"t" — RJ[t], then A%~ is affine so certainly finitely
generated as R¢Fn-algebra say by

{rit™, ..., t"*} withr; € R and m; > 1.
Further, A, is a finitely generated ACLn_module, say generated by
{s1t", ..., syt"™}  with s; € R,y and n; > 0.

Take m = maz m; and n = max n; and r € I™¥T" N R(,), then rt™**" € A, and

pmktn ij(rltml, ce Tt ) st
J

with p; a homogeneous polynomial of ¢-degree mk +n — n; > mk. But then
each monomial in p; occurs at least with ordinary degree %’“
contained in (I9En)* R tmktn,

(3) : Let s be an irreducible GL,-module, then the I“L-adic completion of
R4 is equal to E(?) = R(s) ®gorn ]?G-L\n Moreover,

= k and therefore is

5 R RO
0 = Hm(e)e = Hm iy R())

which is the I-adic completion of R(). By the foregoing lemma both topologies
coincide on R,y and therefore

E(Z) = E(S) and similarly S/’(S\) = §(S)

Because R ~ S it follows that E(S) ~ §(5) from which the result follows as the
foregoing holds for all s. (I

THEOREM 68. Take a GLy-equivariant map afyY v, afX, points y € afy,
x = P(y) and assume that v is étale in y. Assume that the orbits O(z) and O(y)
are closed and that v is injective on O(y).
Then, there is an affine open subset U —— afY containing y such that
(1) U =ny (my (U)) and 7wy (U) = U/GL,.
(2) ¥ is étale on U with affine image.

(3) The induced morphism U/GL, 2, afX/GL, is étale.
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GL,x"¢

GL, x? N, GL, x" afs > afX

o/H Y/GLn

N,/H ~« afS/H » afX/GL,

Ficure 9. Etale slice diagram

(4) The diagram below is commutative

U afX

U TX

U/GL, —% atX/GL,

PrOOF. By the foregoing lemma we have ]?G-L\ ~ @ which means that
9 is étale in 7y (y). As étaleness is an open condition, there is an open affine
neighborhood V' of my (y) on which v is étale. If R = R ®pgcr, SEFn then the
above lemma implies that

R@SGL,,, SGLn ~ S@San SGLn

Let ng” be the local ring of S¢L» in J&L»  then as the morphism ng” — SGLn
is faithfully flat we deduce that

R@San SGL" ~ S ®gcLy SGL"

loc loc

but then there is an f € SLn — J¢En guch that Ry ~ Sy. Now, intersect V with

the open affine subset where f # 0 and let U’ be the inverse image under 7y of this

set. Remains to prove that the image of ¢ is affine. As U’ Y afxis étale, its

image is open and G L,-stable. By the separation property we can find an invariant
h € R%Ln such that h is zero on the complement of the image and h(x) = 1. But
then we take U to be the subset of U’ of points u such that h(u) # 0. O

THEOREM 69 (Knop-Luna slice theorem). Let afX be an affine GLy-scheme

with quotient map afX — afX/GL,,. Take a point x € afX such that the orbit
O(x) is closed and the stabilizer subgroup Stab(x) = H is reductive.

Then, there is a locally closed affine subscheme afS —— afX (the slice) con-
taining x with the following properties

(1) afs is an affine H-scheme,

(2) the action map GL,, x afS —— afX induces an étale GL,-equivariant

morphism GL, x afs v, afX with affine image,
(3) the induced quotient map ¢ /GLy, is étale

(GL, x" afS)/GL, ~ ats/H /"¢ arx/GL,

and the right hand side of figure 9 is commutative.
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If we assume moreover that afX is smooth in x, then we can choose the slice afS
such that in addition the following properties are satisfied

(1) afs is smooth,

(2) there is an H-equivariant morphism afS 2, T, afS = N, with ¢(z) =0
having an affine image,

(3) the induced morphism is étale

ats/H /5% N, /H

and the left hand side of figure 9 is commutative.

PRrROOF. Choose a finite dimensional G L, -subrepresentation V' of ClafX] that
generates the coordinate ring as algebra. This gives a GL,-equivariant embedding

afX ' W =V*

Choose in the vectorspace W an H-stable complement Sy of gl,.i(x) = T;(,y O(x)
and denote S; = i(x) + S and afSy; = i~1(S;).Then, the diagram below is com-

mutative
GL, x" afsy «— + GL, x®% 5,

P Yo

afX < ‘ - W
By construction we have that 1y induces an isomorphism between the tangent
spaces in (1,i(z)) € GL,, xSy and i(z) € W which means that vy is étale in i(z),
whence 1 is étale in (1,7) € GL, x afS,. By the foregoing theorem we have an
affine neighborhood U which must be of the form U = GL,, x afS giving a slice
afS with the required properties.

Assume that afX is smooth in x, then S is transversal to afX in i(z) as
Ti(a:) i(an) + SO =W
Therefore, afS is smooth in . Again using the separation property we can find an
invariant f € ClafS]# such that f is zero on the singularities of afS (which is a
H-stable closed subscheme) and f(x) = 1. Then replace afS with its affine reduced

subvariety of points s such that f(s) # 0. Let m be the maximal ideal of C[afS] in
x, then we have an exact sequence of H-modules

«
2 e e NP0

0 —m
Choose a H-equivariant section ¢* : N — m —— C[afS] of a then this gives an
H-equivariant morphism afS _*. N, which is étale in z. Applying the foregoing
theorem to this setting finishes the proof. O

In order to apply this slice machinery to the case of interest to us, we give
a representation theoretic interpretations in case the affine GL,,-scheme is rep, A
for A € alg. We have seen that an orbit O(M) is closed if and only if M is a
semi-simple representation, say with decomposition

M=5SP"o...e50

The stabilizer subgroup in M is isomorphic to GL(a) = GL¢, X ... X GL,,. The
normal space we will identify with Extl (M, M) and we will see that the action of
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the stabilizer subgroup on it is the same as the action of GL(«) on the local quiver
setting determined by M.

DEFINITION 74. For A € alg, let M and N be two representations of dimen-
sions m and n. A representation P of dimension m + n is said to be an extension
of N by M if there exists a short exact sequence of left A-modules

e: 0O— M —P —N—0

Define an equivalence relation on extensions (P,e) of N by M : (P,e) = (P’ €')

if and only if there is an isomorphism P — %+ P’ of left A-modules such that the
diagram below is commutative

e: 0 - M - P - N > 0
id s [} idN
e 0 - M > P’ - N > 0

The set of equivalence classes of extensions of N by M will be denoted by
ExtYy (N, M).

EXAMPLE 99. An alternative description of Extl(N, M) is as follows. Let
p:A— M, (C)and 0 : A —— M, (C) be the representations defining M and
N. For an extension (P, e) we identify the C-vectorspace with M @ N and the
A-module structure on P gives a algebra map p: A — M,,,1,(C). We represent
the action of @ on P by left multiplication of the block-matrix

R
where A(a) is an m x n matrix and hence defines a linear map
A:A—— Homg(N, M).
The condition that p is an algebra morphism is equivalent to the condition
Aaa') = p(a)A\(@) + A(a)o(a)

and we denote the set of all liner maps A : A —— Homc(N, M) by Z(N, M) and
call it the space of cycle .

The extensions of N by M corresponding to two cycles A and X from Z (N, M)
are equivalent if and only if there is an A-module isomorphism in block form

i B Gith 8 € Home(N, M)
0 ’LdN

between them. A-linearity of this map translates to the matrix relation

[idOM i dﬂN} _ [p(oa) j_gzﬂ _ [p(oa) /;’ ((5))} . mM i dﬁN:| for all a € A

or equivalently, that A(a) — X (a) = p(a)B — fo(a) for all a € A. We will define the
subspace of Z(N, M) of boundaries B(N, M)

{6 € Homc(N, M) |38 € Homc(N, M) :VYa € A:6(a) = p(a)B — fo(a)}.

Therefore, Emth(N, M) = ﬁg%ﬁ;
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In general, extensions between representations are more difficult to compute
than homomorphisms. However, there is one important case where the two are
related, path algebras of quivers. Recall that the Fuler form of a quiver @ on k
vertices is the bilinear form on Z*

xo(,.): 7F x 7F —~ 7 defined by xq(o, B) = a.xq.f7
for all row vectors a, 3 € ZF.

THEOREM 70. Let V resp. W be representations of (Q) of dimension vector «
resp. (3, then

dime Hom gy (V,W) — dime Extio(V,W) = xq(a, §)

PrOOF. There is an exact sequence of C-vectorspaces

\4
dW

0 —— Homgy(V,W) —> ®y,eq, Home(Vi, W;) —»

dy, .
— Gacq, Home(Viay, Wia)) — Eatigy(V,W) — 0

Here, y(¢) = (¢1,...,¢%) and d}j, maps a family of linear maps (f1,..., fx) to

the linear maps po = fjVo — Wy f; for any arrow in @, that is, to the
obstruction of the following diagram to be commutative

W
By the definition of morphisms between representations of () it is clear that the
kernel of dy;, coincides with Hom gy (V, W).

The map e is defined by sending a family of maps (g1,...,9s) = (da)acq, to
the equivalence class of the exact sequence

0—>W "2 FE-2eV 0
where for all v; € Q, we have E; = W,; ®V; and the inclusion 7 and projection map
p are the obvious ones and for each arrow a € ), the action of a on E is defined
by the matrix

Ea:[mga "’Z] E=W 0V, — W; 0V, =E;

This makes E into a (@Q)-representation and one verifies that the above short exact
sequence is one of (@Q)-representations. Remains to prove that the cokernel of d%
can be identified with Ext%@(V, w).

A set of algebra generators of (Q) is given by {v1,...,vk,a1,...,a;}. A cycle
is given by a linear map A : (Q) —— Homg(V, W) such that for all f, f' € CQ we
have the condition

AL = p(HMF) + Ao (f)
where p determines the action on W and o that on V. For any v; the condition is
Av2) = AMvi) = pY Mvi) + Mvy)pY whence A(v;) : V; — W; but then applying
again the condition we see that A(v;) = 2A(v;) so A(v;) = 0. Similarly, for the arrow
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the condition on a = vja = av; implies that A(a) : V; — W;. That is,
we can identify @qeq, Home(Vi, W;) with Z(V, W) under the map e. Moreover,
the image of ¢ gives rise to a family of morphisms A(a) = f;V, — W, f; for a linear
map f = (f;) : V. —— W so this image coincides precisely to the subspace of
boundaries B(V, W) proving that indeed the cokernel of dj;; is Ext%@(v, W).

If dim(V) = a = (r1,...,rx) and dim(W) = 8 = (s1,...,8;), then
dim Hom(V,W) — dim Ext*(V,W) is equal to

> dim Home(Vi,W;) = > dim Homg(Vi,W;)

Vi €Qu o a o
= Z riS; — Z TiSj
NG S
=(r,.. ., re)xQ(s1, .-, 8K)" = xo(o, B)
finishing the proof. O

EXAMPLE 100. Two a-dimensional representations of (@) are isomorphic if and
only if they belong to the same orbit under GL(«). Therefore,

StabGL(a) V ~ Aut<Q> \%4

and the latter is an open subvariety of the affine space Endq) (V') = Hom g (V,V)
whence they have the same dimension. The dimension of the orbit O(V) of V in
rep, @ is equal to

dim O(V) = dim GL(a) — dim Stabgr(a) V-
We have a geometric reformulation of the previous theorem
dim rep, Q — dim O(V) = dim Endg,(V) — xq(a, @) = dim Ext%@(v, V)
Indeed, dim rep, @ — dim O(V) is equal to

Z did; — (Z d; — dim Endqy(V)) = dim Endq,(V) — xq(o, a)
Z
1

and by the foregoing theorem the latter term is equal to dim Emt@)(V, V). In

particular it follows that the orbit O(V') is open in rep, @ if and only if V' has
no self-extensions. As rep,, (@ is irreducible there can be at most one isomorphism
class of a representation without self-extensions.

Because rep,, () is smooth, the previous example shows that the self-extensions
Eact%@(v7 V') have the same dimension as the normal space to the orbit in V. We

will now show that, in general, the normal space is isomorphic (as representation
over the stabilizer subgroup) to the space of self-extensions.

ExAMPLE 101. Let A be an affine C-algebra generated by {ai,...am,} and
p: A—— M, (C) an algebra morphism, that is, p € rep, A. We call a linear map

AL M, (C) a p-derivation if and only if for all a,a’ € A
D(aa’") = D(a).p(a') + p(a).D(a’).
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Denote the vectorspace of all p-derivations of A by Der,(A). Observe that any p-
derivation is determined by its image on the generators a;, hence Der,(A) C M.
We claim that

T,(rep, A) = Der,(A).

We know that rep,, A(Cle]) is the set of algebra morphisms
A M, (CE])
By the foregoing characterization of tangentspaces, T,(rep,, A) is equal to
{D:A — M,(C) linear | p+ De : A — M, (C[e]) is an algebra map}.
Because p is an algebra morphism, the algebra map condition
plaa’) + D(aa’)e = (p(a) + D(a)e).(p(a') + D(a')e)

is equivalent to D being a p-derivation.

Let afX —7» afY be a morphism of affine schemes corresponding to the algebra
morphism ClafY] AN ClafX]. Let = be a geometric point of afX and y = ¢(z).
Because ¢*(my) C my,, ¢ induces a linear map % — % and taking the dual
map gives the differential of ¢ in x which is a linear map

dpy : Ty (afX) — Ty, (afy).
Let D € T, (afX) = Der,(C[afX]) and zp the corresponding element of afX(Cle])
defined by xp(f) = f(x) + D(f)e, then zp o ¢* € afY(C[e]) is
zp o ¢*(g9) = g(¢(x)) + (Do ¢")e = g(¢(x)) + do(D)e

giving us the e-interpretation of the differential

d(x + ve) = ¢(x) + doy(v)e
for all v € T, (afX).

ExaMpPLE 102. Let X %+ Y be a dominant morphism between irreducible

affine varieties. There is a Zariski open dense subset U —— X such that d¢, is
surjective for all z € U.
Indeed, we may assume that ¢ factorizes into

X — % v xcd

with ¢ a finite and surjective morphism. Because the tangent space of a product is
the sum of the tangent spaces of the components we have that d(pry ). is surjective
for all z € Y x C¢, hence it suffices to verify the claim for a finite morphism ¢.
That is, we may assume that S = C[Y] is a finite module over R = C[X] and let
L/K be the corresponding extension of the function fields. By the principal element
theorem we know that L = K|[s] for an element s € L which is integral over R with
minimal polynomial

F:tn+gn_1tn71+...+glt+go WltthGR
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Consider the ring S’ = R[t]/(F) then there is an element r € R such that the
localizations S! and S, are isomorphic. By restricting we may assume that X =
V(F) = Y x C and that

X =V(F) =Y xC

Let = (y,¢) € X then we have (again using the identification of the tangent space
of a product with the sum of the tangent spaces of the components) that

oF
Tp(X) ={(v,a) e T,(Y)® C| Cﬁ(x) +vgn-1¢"" + ...+ vgic+vgo = 0}.

But then, d¢, i surjective whenever %—f(x) # 0. This condition determines a non-

empty open subset of X as otherwise %—IZ would belong to the defining ideal of X
in C[Y x C] (which is the principal ideal generated by F') which is impossible by a

degree argument

ExAMPLE 103. Let afX be a closed GL,-stable subscheme of a GL,-
representation V and x a geometric point of afX. Consider the orbitclosure O(x)
of  in V. As the orbit map

w: GL, — GL,.x — O(x)

is dominant we have that C[O(z)] = C[GL,] and hence a domain, so O(z) is an
irreducible affine variety. The stabilizer subgroup Stab(z) is the fiber u~!(z) and is
a closed subgroup of GL,,. We claim that the differential of the orbit map in the
identity matrix e =T,

dpe = gl,, — T, (afX)

satisfies the following properties

Ker due = stab(z) and  Im du. = T,.(O(x)).
By the previous example we know that there is a dense open subset U of GL,, such
that dug is surjective for all g € U. By GL,-equivariance of p it follows that dp,
is surjective for all g € GL,, in particular du. : gl,, — Tw(Wx)) is surjective.
Further, all fibers of u over O(z) have the same dimension. It follows from the
dimension formula that

dim GL,, = dim Stab(z) + dim O(x)
Combining this with the above surjectivity, a dimension count proves that
Ker du. = stab(x), the Lie algebra of Stab(z).

ExAMPLE 104. (The normalspace to orbitclosures in rep,, A) Let A be an affine
C-algebra generated by {a1,...,an} and p: A —— M, (C) an algebra morphism
determining the n-dimensional A-representation M. We have the following descrip-
tion of the normal space to the orbitclosure C, = O(p) of p

def T,(rep,A)

Np(repnA) Tp(Cp)

= Baxthy (M, M).
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We have already seen that the space of cycles Z(M, M) is the space of p-derivations
of Ain M, (C), Der,(A), which we know to be the tangent space T,(rep, A).
Moreover, we know that the differential du. of the orbit map

GL, -~ C, — M™
dpe : g[n =M, — TP(CP)

is surjective. p = (p(a1),...,p(am)) € M™ and the action of action of GL,, is given
by simultaneous conjugation. But then we have for any M € gl,, = M,, that

(I + Me).plag)-(In — Me) = plas) + (Mp(as) — pla;) M)e.
By definition of the differential we have that
dpe(M)(a) = Mp(a) — p(a)M  for all a € A.
that is, dp.(M) € B(M, M) and as by surjectivity we conclude T,,(C,) = B(M, M).

We have now all information to apply the Knop-Luna slice theorem to the
setting of representation schemes.

DEFINITION 75. For A € alg be an affine algebra generated by {ai,...,amn},
let £ € iss, A be a point of the quotient variety and M¢ € rep,, A the n-dimensional
semisimple A-module corresponding to it. We can decompose M into simple com-
ponents

M;=S5%1 ... @Sd

with the S; distinct simple A-representations, say of dimension d;. In particular we
have
n=dyer +...+drex

Choosing a basis of Mg adapted to this decomposition gives us a point x =
(X1,...,Xm) € M7 in the orbit O(M¢) such that

m{? @1, 0 . 0

0 m o1, ... 0

X; = . 2 o ) )
0 0 oomP o,

with each mg.i) € Mgy;(C). The stabilizer subgroup Stab(z) of GL,, are those in-
vertible matrices g € GL,, commuting with every X;. By Schur’s lemma we have
that the Stab(x) is isomorphic to GL(a) = GL, X ... X GL., = GL(a¢) for the
dimension vector ag = (e1,...,ex) determined by the multiplicities of the simple
components of M. The embedding of Stab(x) into GL,, (in the chosen basis) is
given by
GLel (C ® ﬂdl)
GLe, (COTay)

We say that £ € iss, A (or that M, € rep, A is of representation type

7= (e1,d1;...;€k,dg)
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big
N(E

/QTM§>

sm
N,

T, rep, A
T T, O(M) T, O(M)

T, M™

Nsm _ q Nln'g _

Ficure 10. Big and small normal spaces to the orbit.

We know that the normal space N;™ can be identified with the self-extensions
Extyy (M, M) and we will give a quiver-description of this space. The idea is to
describe first the GL(a)-module structure of N9, the normal space to the orbit
O(Mg) in rep,,(m) = M, (see figure 10) and then to identify the direct summand
NZ™.

THEOREM T71. Let £ € iss, A be of representation type 7 = (e1,dy;. .. ; ek, dy)
and let a = (e, ...,ex). The GL(a)-module structure of the normal space NY¥9
in rep,(m) = M" to the orbit of the semi-simple n-dimensional representation
O(Mg) is isomorphic to

bi
rep, Q;g
where the quiver Q?g has k wvertices (the number of distinct simple summands of
M¢ ) and the subquiver on any two vertices v;,v; for 1 <i# j <k has the following
shape

e QB 6D e

That is, in each vertex v; there are (m — 1)d? + 1-loops and there are (m — 1)d;d;
arrows from vertex v; to vertex vj for all 1 <i# j <k.

PROOF. The description of N2 follow from a book-keeping operation involving
GL(a)-representations. For x = (X1,...,X,,), the tangent space T, O(M¢) in M,
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——
dy do

FIGURE 11. Decomposition of the GL(«)-action on M,.

to the orbit is equal to the image of the linear map

al, =M, —— M,&...®M,=T, M™

n

A — (A, X1], .. [A, X))

Observe that the kernel of this map is the centralizer of the subalgebra generated
by the X;, so we have an exact sequence of Stab(x) = GL(a)-modules

0 — gl(a) = Lie GL(a) —> gl,, =M,, — T, O(z) — 0

Because GL(«) is a reductive group every GL(«)-module is completely reducible
and so the sequence splits. But then, the normal space in M]* = T, M]" to the
orbit is isomorphic as GL(«)-module to

Ngig =M, d...®» M, @g[(a)
N—r

m—1

with the action of GL(a) (embedded as above in GL,) is given by simultaneous
conjugation. If we consider the GL(a)-action on M,, we see that it decomposes into
a direct sum of subrepresentations (see figure 11)

e for each 1 < i < k we have d? copies of the GL(a)-module M., on which
GL,, acts by conjugation and the other factors of GL(«) act trivially,

e for all 1 <i,j <k we have d;d; copies of the GL(a)-module M, ., on
which GL¢, x GL,, acts via g.m = gngj_1 and the other factors of GL(«)
act trivially.

These GL(«) components are precisely the modules appearing in representation
spaces of quivers. O

ExamMpLE 105. If m = 2 and n = 3 and the representation type is 7 =
(1,1;1,1;1,1) (that is, M is the direct sum of three distinct one-dimensional simple
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representations) then the quiver Q¢ is

THEOREM T72. Let A € alg be an affine algebra generated by m elements. Let
& € issp A be a point of representation type

7= (e1,d1;...; ek, di)

and M¢ € rep, A a corresponding semisimple n-dimensional A-module.
The normal space NJ™ in a point x € O(Me) to the orbit in rep, A is isomor-
phic as module over the stabilizer subgroup

Stab(z) = GL(a) = GLe, X ... X GL,,
(with o = (eq, ..., ex)) to the representation space

rep, Q«¢

where the local quiver Q¢ has k vertices (corresponding to the distinct simple com-
ponents of M¢) and is such that for any two vertices v; # v; the full subquiver is of
the form

where

aij = dlmc EItk(SZ, Sj) S (m — 1)dzdj + 57J
foralll1 <i,j5<k.

PROOF. We have GL,-equivariant embeddings
O(M¢) — rep, A — rep, (m) = M,"
and corresponding embeddings of the tangent spaces in x
T, O(Mg) — T, rep, A — T, M"

Because GL(«) is reductive, the normal spaces to the orbit is a direct summand of
GL(«)-modules.
NS™ — TCC rePnA <]Nbig — Tx MTT
t oM T T O(Mg)
The isotypical decomposition of N2 as the GL(a)-module rep, Q¢ allows us to
control N;™. On the other hand we know that
N;™ = Ewty(Me, Me) = 1< j<r Bty (Si, §;)%4

and a comparison finishes the proof. O
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GLnXGL(a)(ﬁ »

GLy x9) rep, Qe GL, xGH) g,

rep,A

¢/GL(a)

iss, Q¢ = Sz /GL() v/GLe) ~ issp, A

FIGUre 12. Slice diagram for rep, A.

We have all the necessary ingredients to complete the prove of the étale local
structure of alg-algebras. This result can be seen as analogous to the fact that
manifolds are locally affine spaces. In the case of alg-smooth algebras, path algebras
of quivers play the role of noncommutative affine spaces. Observe that the étale
local structure result can be proved whenever the semi-simple representation is a
smooth point of rep,, A.

DEFINITION 76. For A € alg let £ € iss, A be a geometric point with corre-
sponding n-dimensional semisimple module M € rep, A. ¢ is said to belong to the
n-th smooth locus smooth, A of A iff rep, A is smooth at M. If A is alg-smooth,
then smooth, A = iss, A for all n.

DEFINITION 77. For A € alg and m< § A we denote with

o W
]{A (resp. with /A)
the m-adic completion of § A (resp. of [ A).

The following result implies in particular that alg-smooth algebras are locally
(in the étale topology) determined by path algebras of quivers.

THEOREM T73. Let A € alg and £ € smooth, A be a point of representation
type T = (e1,dq;. .. ; ek, dy) with corresponding mazimal ideal m < fn A. Let Q¢ be
the local quiver and o = (ey,...,ex) and let mg be the mazimal ideal of §, (Q¢)
corresponding to the trivial representation 0 € rep,, Q¢. Then,

;{A ~ ;{(QO and ZA )] Z@O

Moreover, the Morita equivalence is determined by the embedding of the stabilizer

subgroup GL(c) in GL,,.

ProOOF. Consider the slice diagram of figure 12 for the representation scheme
rep, A. The left hand side exists because x € O(M¢) is a smooth point of rep,, A,
the right hand side exists always. The horizontal maps are étale and the upper
ones G Ly-equivariant.

By theorem 72 we know that the normal space to the orbit N;™ is isomorphic
to rep, Q¢ from which the first claim follows. To prove the second, observe that
the algebra of GL,-equivariant maps

GL, x4 rep, Q¢ — M,(C)



5.3. SMOOTH MODELS. 169

is Morita equivalent to the algebra of GL(«)-equivariant maps
rep, Q¢ — M|4(C)
where |a| =€ + ... + €. O
EXAMPLE 106. Let X be a smooth affine curve and A = C[X]. The only simple

A-representations are one-dimensional and correspond to a point z € X,5,. We
have for all z,y € X

Ext'y(S,, Sy) = 0,,C
We know from example 79 that iss,, A ~ X" so take a point & with corresponding
semisimple representation

Me=S"a@...@ 50
with e; + ... 4+ ex =n. The local quiver Q¢ has the form

olNe O
@ ® e ®
and the dimension vector is a¢ = (e, ..., ex). The quotient variety of this quiver-
setting is
issa, Q¢ = C) x ... x Clr)
and we see that the étale map
issq, Q¢ — iss, A= X

is in general not an isomorphism in the Zariski topology, but a finite cover.

Even when the left hand sides of the slice diagrams are not defined for ¢ ¢
smooth,, A the dimension of the normal spaces to the orbit give a numerical measure
of the ’badness’ of the noncommutative singularity.

DEFINITION 78. Let A € alg be an affine algebra and ¢ € iss,; A a point
of representation type 7 = (e1,ds;...;ex,dr) with corresponding semisimple rep-
resentation z = M, € rep,A. The measure of singularity in & is given by the
non-negative number

ms(€) = n® + dime Exty (Mg, M) — e} — ... — e; — dim, rep, A
Clearly, ¢ € smooth, A if and only if ms(£) = 0.

5.3. Smooth models.

In this section we will illustrate how the étale local structure given in the
previous section can be combined with the étale cohomological description of Brauer
groups to characterize the central simple algebras allowing an alg@n-smooth model.

DEFINITION 79. Let ¥ be a central simple algebra of dimension n? over its

center K which is a field of transcendence degree d. We say that X has a smooth
model if there is a projective variety X (not necessarily smooth) with C(X) = K
and a sheaf of Ox-orders A in ¥ such that for an affine open cover {U;} of X we
have that

A; =T(U;, A)

is alg@n-smooth for all 4.
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Our strategy to arrive at a characterization is the following. First we determine
the étale local structure of alg@n-smooth algebras using only minor modifications
to the arguments used in the previous section. For low dimensions we are then able
to give a complete description of all local quiver-settings which do arise. Computing
the witness algebras we obtain information on the étale splitting behavior and on
the local ramification locus of alg@n-smooth orders. This information can then be
combined with the coniveau spectral sequence to give necessary conditions on the
classes [X] allowing an alg@n-smooth model. In the case of surfaces we can even
give a complete characterization.

We begin by giving variants of the étale local structure for Cayley-Hamilton
algebras. Again, this comes down to describing the normal space to a closed orbit
in trep, A.

EXAMPLE 107. Let (A,tr4) € alg@n and trace generated by {a1,...,a,}. Let
p € trep, A, that is, p: A — M,,(C) is a trace preserving algebra morphism. As
trep, A(C[e]) is the set of all trace preserving algebra morphisms A — M,,(C[e])
(with the usual trace map tr on M, (Cle])) one verifies using the foregoing example
that
T,(trep,A) = Derll (A) C Der,(A)

the subset of trace preserving p-derivations D, that is, those satisfying

A—2L4 M, ()
Dotry =troD tra tr
A—2L4 M, ()
Again, because A is trace generated by {a1,...,an}, a trace preserving p-derivation

is determined by its image on the a; and is a subspace of M;".

EXAMPLE 108. (The normalspace to orbitclosures in trep,A) Let (A,tra) €
algln be trace generated by {a1,...,am}. Let p € trep,A, that is, p
A — M, (C) is a trace preserving algebra morphism. Any cycle A : A — M,,(C)
in Z(M, M) = Der,(A) determines an algebra morphism

p+re: A— M,(Cl])

We know that the tangent space T,(trep, A) is the subspace Der}(A) of trace
preserving p-derivations, that is, those satisfying

Atra(a)) =tr(Ma)) forallae A
Observe that all boundaries 6 € B(M, M), that is, such that there is an m € M,,(C)
with §(a) = p(a).m — m.p(a) are trace preserving as
S(tra(@) =  pltra(@)m —m.p(tra(a)) = tr(p(a).m — m.tr(p(a))
0 = tr(m.p(a) — p(a).m) = tr(é(a))
Hence, we can define the space of trace preserving self-extensions
Deré"(A)

tr _
Ext'T (M, M) = BOL )
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Then, as before we have that the normal space to the orbit closure C, = O(p) is
equal to

def Tp(trep, A)
N,(trep,A) = F—1—
Ao )= T E)

DEFINITION 80. A marked quiver Q® is a finite quiver @ such that some of
its loops are marked. If a is a dimension vector for @, the space of marked quiver
representations of dimension vector «

= Ext'{ (M, M)

rep, Q°

is the subspace of rep, ) consisting of all representations such that the square
matrices corresponding to marked loops have trace zero.

THEOREM T74. Let (A,tra) € algln be trace generated by m elements. Let
& € tiss, A be a point of representation type

T = (e1,dy;. .. ek, dy)

and M¢ € trep, A a corresponding semisimple n-dimensional A-module.
The normal space NJ™ in a point x € O(M¢) to the orbit in trep, A is iso-
morphic as module over the stabilizer subgroup

Stab(z) = GL(a) = GLe, X ... X GLg,
(with o« = (eq, ..., ex)) to the representation space

rep,, Qg

where the marked local quiver Qg has k vertices (corresponding to the distinct simple
components of M¢) and is such that for any two vertices v; # v; the full subquiver

is of the form
0 ajj

@jq Q

0 { iz
[ ] L]

where

aij = dlm(c Ext%(SZ,Sj) S (m — ].)dzd]

for all1 <i# j <k and the (marked) vertex loops are determined by the structure
of Bxt{ (Mg, M).

Proor. We only have to observe that arrows in the local quiver ()¢ of theo-
rem 72 correspond to simple GL(«)-modules, whereas a loop at vertex v; decom-
poses as GL(«a)-module into the simples

Me,; = Mg S7] Ctm’v

where Cyp.,, is the one-dimensional simple with trivial GL(«)-action and Mgi is the
space of trace zero matrices in Me,.

Any GL(a)-submodule of N%9 can be thus represented by a marked quiver
using the dictionary

e a loop at vertex v; corresponds to the GL(a)-module M., on which GL,,
acts by conjugation and the other factors act trivially,
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e a marked loop at vertex v; corresponds to the simple GL(«)-module Mg
on which GL., acts by conjugation and the other factors act trivially,

e an arrow from vertex v; to vertex v; corresponds to the simple GL(«)-
module M, xe; on which GLe, x GL¢; acts via g.m = gﬂngj_1 and the
other factors act trivially,

Combining this with the calculation that the normalspace is the space of trace
preserving self-extensions Ext'{ (Mg, M) we obtain the result. O

With smoothA we denote the set of points ¢ € tiss, A such that M, is a
smooth point of trep, A.

THEOREM 75. Let (A,tra) € algln and & € smoothA be a point of represen-
tation type T = (e1,d1;. .. ; ex, dx) with corresponding mazimal ideal m <tr(A). Let
QE be the marked local quiver, o = (eq,...,ex) and let mg be the mazimal ideal of
35;1 <Qg> corresponding to the trivial representation 0 € rep,, Qg. Then,

nig

(= @) and Am@37:<czg>

where the Morita equivalence is determined by the embedding of the stabilizer sub-
group GL(a) in GL,,. Moreover, if {my,...,m;} is the set of marked loops is Q¢
then

o 4. (Q¢) n o Jo (Qe)
7§<Q5> = (tr(my), ..., tr(my)) d L<Q€> = (tr(my), ... tr(my))

DEFINITION 81. For (A,trs) € algén and & € tiss,A of type 7 =
(e1,d1;...;ek,dr). The measure of trace singularity in £ is given by the non-
negative number

tms(&) = n? + dimc Exty (Mg, M) — 3 — ... — e; — dim, trep, A

Clearly, ¢ € smooth,A (resp. £ € smoothA) if and only if ms(§) = 0 (resp.
tms(€) = 0).

Our next job is to determine in low dimensions d the étale local structure
of alg@n-smooth orders, or more generally, the étale local structure of an order
A € algln in a point £ € smoothA of its smoooth locus.

THEOREM 76. Let A € alg@n over an affine curve X = iss,A. If £ €
smoothA, the étale local structure of A in & is determined by the quiver-setting
(Q, ) where Q is an oriented cycle on k vertices withk <n anda=1=(1,...,1).
The Morita setting is determined by an unordered partition p = (dy, ..., dy) having
precisely k parts such that ). d; = n determining the dimensions of the simple
components of Mg, see figure 13.
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FIGURE 13. Local (marked) quiver-setting of smooth@n-algebras
over curves.

Further, £ is a smooth point of X = iss, A and the étale local structure of A
in € is isomorphic to

I Mdl (C[["EH) Mdl X d2 (C[[CL’H) s MdIXdk ((CH:E]]) 1
Mg, xa, (xCl[z]]) | Ma,(C[[z]]) o | Mayxa, (C[[z]])
Ag ~
L Mdedl (.’L‘(C[[I'H) Mdedz (:L‘(C[[{EH) s Mdk, ((C[[LL‘]]) J

ProOOF. Let (Q°,a) be the local marked quiver-setting corresponding to & €
smoothA. Because Q° is strongly connected, there exist oriented cycles in Q°. Fix
one such cycle of length s < k and renumber the vertices of °® such that the
first s vertices make up the cycle. If & = (eq,...,ex), then there exist semi-simple
representations in rep, @°® with composition

ar=1,...,1,0,...,00@ " Ta. ool o o

s k—s

where €; stands for the simple one-dimensional representation concentrated in ver-
tex v;.

There is a one-dimensional family of simple representations of dimension vector
a1, hence the stratum of semi-simple representations in iss, Q°® of representation
type T = (L,an;e1—1,€1;5...;es—1, €55 €541, €s41; €k, €) 1s at least one-dimensional.
However, as dim iss, @°® = 1 this can only happen if this semi-simple represen-
tation is actually simple. That is, Q@ = Q°, o = o1 and k = s proving the first
claim.
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Let M¢ be the semi-simple n-dimensional representation of A corresponding to
&, then
V%ZSlEB...EBSk with dim S; = d;
and all S; distinct. The stabilizer subgroup is GL(a)) = C* x ... x C* embedded in
GL, via the diagonal embedding
()\17"'7)\k¢) _— diag()\l,...,)\17...,)\k,...,)\k)
——
dl dk

which determines the Morita setting. By basechange in rep,, ) we can bring every
simple a-dimensional representation of @) in standard form

where x € C* is the arrow from vy to v;.

Therefore, the ring of invariants Clrep, Q]¢/(®) ~ C[z] whence ¢ is a smooth
point of X by the slice result. Moreover, using the numbering conventions of the
vertices the ring of quiver-equivariants has the desired block decomposition. O

EXAMPLE 109. alg@n-smooth models in dimension one. Let X be a projective
curve and A a sheaf of Ox-orders in a central simple C(X)-algebra ¥ of dimension
n?. Then, the following are equivalent

(1) A is a sheaf of smooth@n-algebras, that is, a smooth model of X.
(2) X is a smooth curve and A is a sheaf of hereditary Ox-orders.

Smoothness follows from the previous theorem and the above block decomposition
combined with the local description of hereditary orders given in [56, Thm. 39.14]
and étale descent proves the hereditary statement.

DEFINITION 82. Let (A,tra) € algén be a C' = tra(A)-order in a central
simple algebra ¥ of dimension n? over K the field of fractions of C. We say that
A is étale splitin € € iss, A if and only if

ARc [A(E ~ Mn(kg)

where IA(E is the field of fractions of ég the m-adic completion of C where m is the
maximal ideal of C' corresponding to &.

THEOREM 77. Let A € alg@n be an order over an affine surface X = iss,A.
If £ € smoothA, then the étale local structure of A in £ is determined by the local
quiver-setting (Q, ) where @Q is the quiver Ay of figure 1/ on k +1+m < n
vertices and o« =1 = (1,...,1). The Morita setting is determined by an unordered
partition p = (dy, ..., dgti+m) of n with k+14+m non-zero parts determined by the
dimensions of the simple components of M¢ as in figure 14.

Further, £ is a smooth point of X, A is étale split in & and the étale local
structure has the block-decomposition of figure 15 where at spot (i,7) with 1 <
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Ag ~ (z) (1) —— M, (C[[z,y]])

(z,y)
—_— Y Y——
k l m

F1GURE 15. Etale local structure of an alg@n-smooth order over a surface.

1,7 < k+1+m there is a block of dimension d; x d; with entries the indicated ideal

of C[[z,y]]. In particular, the ramification-type of A in £ is one of the following :
(1) A is an Azumaya algebra in £, or

(2) € is an isolated point (possibly embedded) of the ramification, or

(3) & is a smooth point of the ramification, or

(4) the ramification has a normal crossing at €.
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FIGURE 16. Standard form of representations in rep; Agim.

PRrOOF. Let (Q°®, ) be the marked local quiver-setting on r vertices with o =
(e1,...,e.) corresponding to . As @° is strongly connected and the quotient
variety is two-dimensional, Q® must contain more than one oriented cycle, hence it
contains a sub-quiver of type Agim, possibly degenerated with k or [ equal to zero.
Order the first k+ [+ m vertices of Q°® as indicated then one verifies by theorem 85
that Ak, has simple representations of dimension vector 1 = (1,...,1). Assume
that Ay, is a proper subquiver and s = k+ 14+ m + 1, then Q° has semi-simple
representations in rep, Q°® of type

Pep—1 De m—1 es e

o1 =(1L,...,L,0,...,00 e D ... D i DD ... De”
N——
k+l+m

The dimension of the quotient variety iss; Ag;, has dimension 2 so there is a
two-dimensional family of such semi-simple representation in the irreducible two-
dimensional quotient variety iss, @°. This is only possible if this semi-simple
representation is actually simple, whence r = k 4+ 1+ m, Q° = Apm and a =
(1,...,1).
If M¢ is the semi-simple n-dimensional representation of A corresponding to &,
then
Mg:&@...@& with dim S; = d;
determining the unordered partition p and the Morita-equivalence because the sta-
bilizer subgroup GL(a) = C* x ... x C* is embedded diagonally in GL,, via
()\17'~'7)\r> = diag()\h...,)\17...,)\“...,)\,«)
———— ———
dy d
By basechange in rep; A, every simple a-dimensional representation can be
brought in the standard form of figure 16 with x,y € C* and as C[issy Agim] =
Clrep, Aklm]GL(o‘) is the ring generated by traces along oriented cycles in Agipm,
it is isomorphic to C[z,y] (Alternatively, one can apply theorem 99 to show that
the ring of invariants is smooth). It follows from the slice result that £ is a smooth

point of X and that flg has the required block-decomposition, in particular A is
étale split in &.
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020 OO,

FIGURE 17. Proper semi-simples of Agjp,.

(I

N
020

AOll AkOl
FiGURE 18. Local quivers for Agy,.

To prove the ramification statement, we have to compute the local quiver-
settings in proper semi-simple representations of rep; Ap;,. Because simples have
a strongly connected support, the decomposition types of these proper semi-simples
are depicted in figure 17 with x,y € C*. The corresponding local quivers local quiv-
ers are respectively of the forms in figure 18. Because of the étale local isomorphism
between X in a neighborhood of £ and of iss; Agy, in a neighborhood of the triv-
ial representation, the picture of local quiver-settings of A in a neighborhood of &
is described in figure 19 The Azumaya points are the points in which the quiver-
setting is Agg1 (the two-loop quiver). Therefore, the worst case of ramification that
can occurs in £ is that of a normal crossing. The other cases occur for degenerate
quiver-settings. (Il

ExXAMPLE 110. alg@n-smooth models in dimension two. Let S be a projec-
tive surface and A a sheaf of Og-algebras in a central simple C(S5)-algebra ¥ of
dimension n2. If A is a smooth model of ¥, then the following holds :

(1) S is a smooth surface.
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e e
* /

Cr *®

Qe

Aoo1

FIGURE 19. Local picture for Ag,.

(2) A is étale split in all points of S.

(3) The ramification locus ramA C S is either empty or consists of a finite
number of isolated (possibly embedded) points of S together with a re-
duced divisor having normal crossings as its worst singularities.

If we want to have similar precise local information on alg@n-smooth orders in
higher dimensions, we have to compile a list of admissible marked quiver settings,
that is settings (Q°®, ) satisfying the two properties

«  is the dimension vector of a simple representation of QQ°®, and
d =1-xgla,a) =3, m;

ExXAMPLE 111. The idea is to shrink a marked quiver-setting to its simplest
form and classify these simplest forms for given d. By shrinking we mean the
following process. Let o = (eq,...,ex) be the dimension vector of a simple repre-
sentation of @® and let v; and v; be two vertices connected with an arrow such that
e; = ¢; = e. That is, locally we have the following situation

We use one of the arrows connecting v; with v; to identify the two vertices. That
is, we form the shrinked marked quiver-setting (Q?, ;) where Q2 is the marked
quiver on k — 1 vertices {v1,...,9;,...,vx} and ay is the dimension vector with e;
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removed. ()¢ has the following form in a neighborhood of the contracted vertex

a;; +ajj + Xij +in*1‘

In QF we have for all k,1 # 4,7 that x7; = xri, i = ark, My, = Mk and the
number of arrows and (marked) loops connected to v; are determined as follows
Xjk = Xik + Xjk
Xz] = Xki T Xkj
CLM Qi + ajj + Xij + X — 1
mi; = mi; +my;

We claim that « is the dimension vector of a simple representation of @° if and
only if o is the dimension vector of a simple representation of Q)7 and that the
dimensions of the corresponding quotient varieties are equal.

Fix an arrow QO<——@. As ¢; = e; = e there is a Zariski open subset
U — rep, Q° of points V such that V, is invertible. By basechange in either v;
or vj we can find a point W in its orbit such that W, = T.. If we think of W, as
identifying C® with C® we can view the remaining maps of W as a representation in
rep, Q% and denote it by W*. The map U — rep,, Q¢ is well-defined and maps
GL(a)-orbits to GL(a)-orbits. Conversely, given a representation W’ € rep,, QF
we can uniquely determine a representation W € U mapping to W’. Both claims
follow immediately from this observation.

A marked quiver-setting can uniquely be shrinked to its simplified form , which
has the characteristic property that no arrow-connected vertices can have the same
dimension. The shrinking process has a converse operation which we will call split-
ting of a vertex . However, this splitting operation is usually not uniquely deter-
mined.

EXAMPLE 112. Two marked quiver-settings (Q$,a) and (Q$,a) are said to
be equivalent if and only if their representation spaces rep, @1 and rep, Q3 are
isomorphic GL(«)-modules. For example,

Q/N and @/\%},
\/ \/

determine the same C* x G Ls-module, hence are equivalent.

We will merely mention the classification in dimension 3 and 4 and leave the
claims as an exercise to the reader.

THEOREM 78. Let X be a threefold and let A be a sheaf of Ox-orders in a
central simple C(X)-algebra of dimension n?. If ¢ € smoothA, then the local quiver-
setting (Qg, ag) can be shrinked to one of the following four types

e type 1: Q80
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covez: 0T
e type 3: @

e typed: (O @ ©)

& is a smooth point on X wunless (Qg,ag) is of type 1 and can be shrinked to a

quiver-setting of the form
([u,v,2,y]]

in which case, x is an isolated singularity of X, locally of type C(uvfxy) .

@ @

A is étale split in & unless (Qg,ag) is of type 2 in which case
~ . €T
Acorsss 1 Y] Geiey. Cllos. 2]

where the Clifford algebra over Clz,y, z] of the indicated non-degenerate quadratic

form is the algebra
) z Yy C{a, b)
Cliff ~
* [y z} (ab? — b%a, a?b — ba?)

THEOREM 79. Let X be a fourfold and let A be a sheaf of Ox -orders in a central
simple C(X)-algebra of dimension n?. If £ € smoothA, then the local quiver-setting
(QE, ag) can be shrinked to one of the following five equivalence classes of types

e type 1: CC/(\JD;%

o type 2 : C@\J

@/\Q
\.,./

o type 4 : @@

o type 3 :

©)

\
etype5: (@ ®@ ©)

Now that we have information on the local ramification locus and the splitting
behavior of an alg@n-smooth order, the next step is to determine the Brauer classes
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H* (K, pn) | @p H' (kp, Zn) | p" | 0

HY(K, 1) BpZin 0 0

[in 0 0 0

F1GURE 20. Coniveau spectral sequence for C{z, y}.

that have this local behavior. We will perform the calculations in the special case
of surfaces, but they can (at least in principle) be generalized to higher dimensions.

THEOREM 80. Let C{xz,y} be the ring of algebraic functions in two variables
(1) If U = specC{z,y} — V(z), then Br, U =0
(2) If U = specC{x,y} — V(xy), then Br, U = Z, with generator the
quantum-plane algebra
C{u,v)
C = —"
¢lusv] (vu — Cuw)

where ¢ is a primitive n-th root of one

PROOF. There is only one codimension two subvariety : m = (z,y). Let us
compute the coniveau spectral sequence for specC{x, y}. If K is its field of fractions
and if we denote by k), the field of fractions of C{z, y}/p for p a height one prime,
we have the first term as in figure 20 Because C{z,y} is a unique factorization
domain, the map

Helt(Kv pn) = K*/(K*)" — ©p Ln
is surjective. Moreover, all fields k, are isomorphic to the field of fractions of C{z}
whose only cyclic extensions are given by adjoining a root of z and hence they are
all ramified in m. Therefore, the component maps
B _
Ly = H;t(szn) —pu!

are isomorphisms. Hence, we have the form of the second (and limiting) term of the
coniveau spectral sequence. Finally, we use the fact that C{z, y} is strict Henselian
whence has no proper étale extensions. But then,

Hét(Xlomﬂn) =0 for 7 > 1

and substituting this information in the spectral sequence we obtain that the top
sequence of the coniveau spectral sequence

0— Br, K > ©,%, — Z, — 0
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is exact. From this sequence the result follows using the fact (recalled in the next
example) that the ramification divisor of the quantum plane is V(zy). O

EXAMPLE 113. (The smooth locus of the quantum plane) Let

_ C{zy)
A= (yx — qzy)

where ¢ is a primitive n-th root of unity. Let u = 2™ and v = y™ then A is a free
module of rank n? over its center Clu,v]. Taking the trace map on the basis

tr(a'y?) 0 when either ¢ or j is not a multiple of n,
r(z = o
Y nx'y’  when i and j are multiples of n,

A € algen with tr(A) = Clu,v]. For £ € iss, A = C? a point (a",b) with a.b # 0,
¢ is of representation type (1,n) as the corresponding (semi)simple representation
Ve is determined by (if m is odd, for even n we replace a by ia and b by —b)

. 010 ... 0
0 0 1 0
qa
plx) = . and p(y) = |1 -
' n-1, 000 ... 1
q b 0 0 ... 0
A calculation shows that Extl(Mg, M) = C? where the algebra map

A2 M,,(C[e]) corresponding to («, ) is given by

Pp(z) =px)+eal,
o(y) =ply) +e Bl

and all these algebra maps are trace preserving. That is, Eaxtl (Me, M¢) =
Ext'f (Mg, M) and because the stabilizer subgroup is C* the marked quiver-setting
(QE, 045) is

e

whence £ € smoothA, compatible with the fact that over these points the quotient
map is a principal PG L, -fibration.

For £ = (a™,0) with a # 0 (or, by a similar argument (0,5™) with b # 0) the
representation type of € is (1,1;...;1,1) because

where the simple one-dimensional representation S; is given by
p(z) =d'a
ply) =0

Exti‘(Sz,Sl) =C and E(Eth(SZ,SJ) = 5i+1,j C

One verifies that
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and because the stabilizer subgroup is C* x ... x C*, the Ext-quiver setting is

The algebra map A M, (Cle]) corresponding to the extension
(1,51, ..., Qn, Bn) € Exth (Mg, M) is given by

a—+e€aq
qa + € a2
p(z) =
qn—la +eap

0 B 0 0

0 0 pBs 0
Ply) =e | L

0 0 0 Bn-1

B, O 0O ... 0

The conditions tr(z7) = 0 for 1 < i < n impose n — 1 linear conditions among the
a;, whence the space of trace preserving extensions Ext'f (Ve, V¢) corresponds to

the quiver setting
0@

'S

O—G

But then, as a¢ = (1,...,1)
1—xg(a, ) —Zm“- =1—-(-1)—-0=2=dim iss, A

whence £ € smoothA.

The remaining point is £ = (0,0) which has representation type (n,1) as the
corresponding semi-simple representation M is the trivial one. The stabilizer sub-
group is GL, and the (trace preserving) extensions are given by

Extly(Me, M¢) = M,, ® M,, and Ext{ (Mg, M¢) = M2 @ M2
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determined by the algebra maps A 2. M, (C[e))

olx) =emy
Ply) =ema
The local marked quiver-setting (Qf, a¢) in this point is

g
¢ ¢ smoothA as the numerical condition fails

1—xola,a) — Zm“ =1—(—n?) —2#2=dim iss, A

That is, smoothA = C? — {(0,0)} and the ramification divisor of A is V (uv).

Let ¥ be a central simple K-algebra of dimension n? over a field K of tran-

scendence degree 2. If A is an alg@n-smooth sheaf of Og-algebras, then we know
from example 77 that S is a projective smooth surface, that is, a smooth model for
K. By the Artin-Mumford exact sequence, theorem 66, the class of X in Br,, C(S)
is determined by the following geo-combinatorial data
e A finite collection C = {C1,...,Cy} of irreducible curvesin S.
o A finite collection P = { P, ..., B} of points of S where each P, is either
an intersection point of two or more C; or a singular point of some C;.
e For each P € P the branch-data bp = (by,...,b;,) with b; € Z,, = Z/nZ
and {1,...,ip} the different branches of C in P. These numbers must
satisfy the admissibility condition

> bi=0€Z,

for every P € P
e for each C € C we fix a cyclic Z,-cover of smooth curves

D—=C
of the desingularization C' of C' which is compatible with the branch-data.
If B is a maximal Ox-order in ¥, then the ramification locus ramBB coincides with

the collection of curves C.

THEOREM 81. Let X be a central simple K -algebra of dimension n?

K of transcendence degree 2. Then the following statements hold.

over a field

(1) There is a smooth projective surface S with C(S) = K such that any
mazximal Og-order in X has at worst a finite number of noncommutative
singularities, all of which are étale locally of quantum-plane type.

(2) There is a noncommutative smooth model for ¥ iff S and A as in (1) can
be chosen such that ramA is a disjoint union of smooth curves in S. This
holds if and only if for the geo-combinatorial data (C,P,d, D) determining
[X] € Br, K (in any projective smooth model) all branch-data are trivial.

PROOF. Let X be a projective smooth surface with C(X) = K and A a sheaf
of maximal Ox-orders in X.

claim 1 : For the geo-combinatorial data (C,P,b, D) determining the class of A
in Br,, C(X) : if £ € X lies in X — C or if £ is a non-singular point of C, then A is
alg@n-smooth in £.
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If € ¢ C, then A¢ is an Azumaya algebra over Ox ,. As X is smooth in &, A
is alg@n-smooth in €. Alternatively, we know that Azumaya algebras are split by
étale extensions, whence Ag ~ M, (C[[x,y]]) which shows that the behavior of A
near £ is controlled by the local quiver-setting

D) L.

n

and hence £ € smoothA. If £ is a nonsingular point of the ramification di-
visor C, consider the pointed spectrum X¢ = spec Ox¢ — {m¢}. All prime
ideals are of height one, corresponding to the curves on X passing through £
and hence this pointed spectrum is a Dedekind scheme. Further, A determines
a maximal order over X.. But then, tensoring A4 with the strict henselization
(’)g(h_’5 ~ C{z,y} determines a sheaf of hereditary orders on the pointed spectrum
X¢ = Spec C{z,y} — {(z,y)} and we may choose the local variable z such that
is a local parameter of the ramification divisor C near &.

Using the characterization result for hereditary orders over discrete valuation
rings, given in [56, Thm. 39.14] we know the structure of this extended sheaf of
hereditary orders over any height one prime of Xg. Because A¢ is a reflexive (even
a projective) Ox ¢-module, this height one information determines Agh or ./Zg. This
proves that .Agh must be isomorphic to the following blockdecomposition

[ Mdl ((C{x7y}) Mdl X d2 ((C{gc,y}) s Md1 X dp ((C{xay}) 1
Md2><d1 (x(c{xvy}) MdQ(C{x’y}) s Md2><dk(c{x’y})
L Mdedl (Z’(C{;E,y}) Mdedz(mC{xay}) Mdk ((C{x,y})
for a certain unordered partition p = (dy,...,dy) of n having k parts. (In fact, as

we started out with a maximal order A one can even show that all these integers
d; must be equal.) This corresponds to the local quiver-setting

09,

VA e p:(dlv"'adk)

Aror
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whence £ € smoothA. Hence, a maximal Ox-order in ¥ can have at worst non-
commutative singularities in the singular points of the ramification divisor C. By
changing the smooth model X we can always arrange it that these singularities are
at worst normal crossings. To begin, recall the following classical result, see for
example [22, V.3.8].

(Embedded resolution of curves in surfaces) Let C be any curve on the surface
X. Then, there exists a finite sequence of blow-ups

X=X, — Xy — ... — Xo=X

and, if f: X' — X s their composition, then the total inverse image f~1(C) is
a divisor with normal crossings.

Fix a series of blow-ups X’ —Jes X such that the inverse image f~1(C) is a
divisor on X’ having as worst singularities normal crossings. We will replace the
Ox-order A by the Ox-order A’ where A’ is a sheaf of Ox,-maximal orders in
3. In order to determine the ramification divisor of A’ we need to be able to keep
track of the ramification divisor C of ¥ through the blow up at a singular point
pEP.

claim 2 : Let X —» X be the blow-up of X at a singular point p of C, the
ramification divisor of A on X. Let C be the strict transform of C and E the
exceptional line on X. Let C’ be the ramification divisor of A on the smooth model

X. Then,

(1) Assume the local branch data at p distribute in an admissible way on C,
that is,

> bip=0forallge ENC

1 at q

where the sum is taken only over the branches at ¢q. Then, C' = C.
(2) Assume the local branch data at p do not distribute in an admissible way,
then ¢’ =CUE.
Clearly, C = C' —— CU E. By the Artin-Mumford sequence applied to X’
we know that the branch data of ¢’ must add up to zero at all points ¢ of C N E.
We investigate the two cases : (1) : Assume E C C’. Then, the E-branch number
at ¢ must be zero for all ¢ € C N E. But there are no non-trivial étale covers
of P! = E so ram(A) gives the trivial element in H),(C(E), i), a contradiction.
Hence ¢’ = C.

E

a —a

(2) : If at some ¢ € C N E the branch numbers do not add up to zero, the only
remedy is to include F in the ramification divisor and let the E-branch number be
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such that the total sum is zero in Z,. We are now in a position to prove the first
part of the theorem.

Start with any projective smooth surface X with functionfield C(X) = L and
let the class of X be determined by the geo-combinatorial data (C,P,b, D) in X
where C is the ramification divisor ram} and P is the set of singular points of C.
We can split P in two subsets
® Punr = {P € P where all the branch-data bp = (b1,...,b;,) are trivial,
that is, all b, =0 in Z,,}
® Pram = {P € P where some of the branch-data bp = (b1,...,b;,) are
non-trivial, that is, some b; # 0 in Z,, }

After a finite number of blow-ups we get a birational morphism Sy —+ X such that
77 1(C) has as its worst singularities normal crossings and all branches in points of P
are separated in S. Let C; be the ramification divisor of A in S;. By the foregoing
argument we have

o If P € Puyur, then we have that C’' N7~ 1(P) consists of smooth points of
Clv
o If P € Pram, then m~1(P) contains at least one singular points Q of C;
with branch data bg = (a, —a) for some a # 0 in Z,,.
In fact, after blowing-up singular points Q" in 7—!(P) with trivial branch-data we
obtain a smooth surface S —» S; — X such that the only singular points of the
ramification divisor C’ of A have non-trivial branch-data (a, —a) for some a € Z,,.
Then, take a maximal Og-order A in X. By the local calculation of Br,, C{x,y} of
theorem 80 A is étale locally of quantum-plane type in these remaining singularities.
By example 113 A is not alg@n-smooth in these finite number of points.

In particular, if all branch-data are trivial, this constructs an alg@n-smooth
model of . Conversely, if A is an alg@n-smooth Og-order in ¥ with S a smooth
projective model of C(X), then A is locally étale split in every point s € S. But
then, so is any maximal Og-order A,,q, containing A. By the foregoing arguments
this can only happen if all branch-data are trivial. O






CHAPTER 6
Empires

” All information looks like noise until you break the code.”
N. Stephenson in ”Snow Crash”.

This chapter and the next present our approach to the isomorphism problem
of finite dimensional representations for an alg-smooth algebra A. We recall the
definition, due to Kent Morisson, of the component semigroup compA on the set
of all connected components of repA with addition induced by the direct sum
of representations. If A is alg-smooth, the connected components are also the
irreducible components and we denote by rep,A the component determined by
« € compA.

With simpA we denote the subset of compA consisting of those irreducible
components containing a simple representation. One might view #(compA—simpA)
as a measure for the failure of repA to be an affine noncommutative variety. By
universal localization one can usually arrive at a situation where this number is
finite.

The empire empA of the alg-smooth algebra A is the (infinite) quiver with
vertices v, for a € simpA and where the number of directed arrows from v, to
vg is ext(a, 3) the minimal dimension of the extension group Extl (M, N) where
M € rep,A and N € repgA. The structure of empA is fully determined by a
(usually finite) subquiver, the wall on the semigroup generators of compA. The
main result asserts that

iso(rep,A4) = |_| iso(null, Q) X azug, A X ... X azug, A
(@)

where the disjoint union is taken over all quiver settings (Q,«) with Q a finite
subquiver of empA on the vertices {vg,,...,vs} C simpA and where azug, A is the
Azumaya locus of [ 5, A which is an order in a central simple algebra.

This reduces the study to a combinatorial part, the description of the orbits in
nullcones of quiver representations, depending only on the noncommutative étale
isomorphism class of A and a geometric part, the description of the Azumaya loci,
which contains the noncommutative Zariski information on A. We postpone the
description of the nullcones to the last chapter and prove that the orders f ﬁA
usually determine an étale cohomology class on the smooth locus of f,@ A.

In the final section we present the results due to Raf Bocklandt characterizing
the quiver settings (@, «) such that iss, @ is smooth. Combining this with the
local étale description, this determines the smooth loci of the irreducible varieties
iss, A whenever A is alg-smooth.

189
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6.1. Component semigroups.

To start, we recall some results of Kent Morrison [48] on the connected com-
ponent semigroup of an algebra A.

DEFINITION 83 (Morrison). For an affine C-algebra A we denote by comp,, A
the set of connected components of rep, A and let

comp A = |_| comp,, A
n

The direct sum maps rep, A x rep;A — rep, ;A make comp A into an Abelian
semigroup.
comp is a contravariant functor alg — ab-semigroups. That is, for every C-

algebra morphism A !\ Bdefines a morphism rep,, B AN rep,, A by restriction

of scalars and hence a semigroup morphism comp B A comp A.

The dimension function defines a semigroup morphism comp A — N, the aug-
mentation map. We call the augmented Abelian semigroup comp A the component
semigroup of A.

THEOREM 82. comp A also classifies the connected components of the quotient
varieties iss, A for all n € N.

PRrROOF. It suffices to show that the fibers of the quotient maps
rep, A s iss, A

are connected. A point £ € iss, A corresponds to a semi-simple n-dimensional rep-
resentation M of A. The fiber 77 1(€) consists of all n-dimensional representations
M having as sum of its Jordan-Holder components M. By the Hilbert criterium
we can connect M with a point in the orbit of M, by a rational curve C, whence
7 1(¢) is connected. O

EXAMPLE 114. Let A be a finite dimensional algebra. A has finitely many
simple representations St, ..., Sy with dimS; = d;. For a fixed natural number n,
any semi-simple n-dimensional representation of A is of the form

M=8S"@.. @52

with Y a;d; = n. Therefore, comp A ~ N* with k the number of simple represen-
tations of A.

EXAMPLE 115. Let @ be a finite quiver on k-vertices, then comp(Q) ~ N,
Indeed, we have seen that rep,, (Q)) decomposes into connected components corre-
sponding to the dimension vectors « of total dimension n.

THEOREM 83 (Morrison). Let A and B be affine C-algebras, then
(1) comp A X B ~ comp A X comp B.

(2) comp A* B ~ comp A Xy comp B.

(3) If I < A is nilpotent, then comp A ~ comp %.

(4) comp Alxy,...,Zm] >~ comp A.

(5) comp A{xy,...,Zm) =~ comp A.

PROOF. (1) : The projection maps A <— A x B —» B induce an isomor-
phism of semigroups p* +p* : comp A X comp B — comp A x B asany A x B
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representation is the direct sum of an A-representation and a B-representation. If
we take the sum of the two dimension functions, this is an isomorphism as aug-
mented semigroups.

(2) : By the universal property of the free algebra product an n-dimensional
representation of A x B consists of an n-dimensional A- representatlon and an n-

dimensional B- representatlon Therefore the inclusions A ——» AastB s B
induce an isomorphism i* Xy i * : comp A% B —» comp A Xy comp B.

(3) : A nilpotent ideal acts trivially on a semi-simple representation, whence
iss, A= issn%.

(4) : Define a positive gradation on A[z1,...,zx] by deg(a) = 0 for all a € A
and deg(z;) = 1. The gradation induces a C*-action on rep, Alx1,...,zx].
The limiting point for this action is an n-dimensional representation on which
all the z; act trivially, that is a point in rep,, A. Therefore, the inclusion

rep, A —— rep, Alzi,...,xx] gives a one-to-one correspondence between the
connected components.
(5) : Again the gradation argument of part (4). O

ExAMPLE 116. Let A be an affine commutative algebra with correspond-
ing reduced variety X = specA. As A is commutative, the only epimorphisms
A — M, (C) possible are with n = 1. That is, isomorphism classes of simple
A-representations are classified by X. The Jordan-Hélder theorem implies that for
n>1

issp,A=XMW =X x...X/S,
N —
n

the n-th symmetric product of X. If X is connected, or equivalently, if A has no
non-trivial idempotents, then so is X for every n whence comp A ~ N. If A
decomposes as A = A; x ... X Ay with specA; connected, then

comp A ~ comp A; X ... x comp A, ~ NF

EXAMPLE 117. The component semigroup for (m). Because comp C[z] ~ N by
the previous example and

it follows from part (2) of theorem 83 that comp (m) ~ N.
Part (5) of theorem 83 are special cases of a more general result.

THEOREM 84 (Morrison). Let A be an affine alg-smooth algebra such that
comp A ~ N as augmented Abelian semigroups. Then, for any B € alg we have

comp A ® B ~ comp B
PRrROOF. Let p : A® B —— M, (C) be an n-dimensional representation and
let
f=p(-®1) + A— M,(C)
be the induced n-dimensional representation of A. The image R = f(A) is a finite

dimensional algebra so is a semidirect sum R = S & N with S semisimple and N
the radical of R of nilpotency degree k, that is, N¥ = 0.
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We want to deform f to g = wg o f in such a way that all intermediate algebra
morphisms h; have the property that h;(A) C R. Let U = f~1(N) and 4y =
f71(S). Assume by induction we have already constructed an algebra map

fi(N) c N*

fi + A—— R such that
filAo = f|Ao

. . . Pi+1 T
Consider the projections R —»» % - AI?,L-

morphisms

and define the family of algebra

R % a+ur fi(a)+tpir1(fi(u))

This is an algebra morphism since p;1(f;(v)) € Ker m; which is a square zero
ideal. Because A is alg-smooth we can lift ¢; to an algebra morphism

'l)/Jt : A— R

and define f;;1 = vg. Then, f;11(U) C N**L, Tterating we eventually construct an
algebra map fp : A —— R such that f,(U) C N*¥ =0 whence f, = g. Thus, f
can be deformed to g by a sequence of deformations along the affine line.

The semisimple algebra S is of the form M, (C)®...® M,,(C) with > n; = n.
Therefore, the n-dimensional A-module V; defined by g is the direct sum

ngSl@...éBSz

with S; a simple of dimension n; with structure map A —%—~ M,,,(C). Because
comp A ~ N, V lies in the same connected component as the semisimple module
T,, = S®" where S is a one-dimensional simple A-module generating comp A de-

termined by A —5%» C. That is, we can deform each gi and hence (by simultaneous
deformation) g to the representation

A — M,(C) a — e(a)T,

This deformation is taking place inside S and commutes with p(B) so we have a
deformation of p to the n-dimensional representation given by

c: A® B — M,(C) a®b— e(a)o(b)
proving the result. ([l

DEFINITION 84. For an affine algebra A € alg let simpA be the subset of
compA consisting of those connected components containing a simple A-module.
We call simpA the set of simple roots of A.

ExAMPLE 118. The simple roots of (Q).

Let @ be a finite quiver with vertices @, = {v1,...,vx}. We will give some
necessary conditions for a dimension vector « to belong to simp{Q).

For S C Q, we denote with Qg the full subquiver of () having S as its set
of vertices. A full subquiver Qg is said to be strongly connected if and only if for
all v;,v; € S there is an oriented cycle in Qs passing through v; and v;. We can
partition

Q,=51U...U8,

such that the ()s, are maximal strongly connected components of (). Clearly,
the direction of arrows in ) between vertices in S; and S; is the same by the
maximality assumption and can be used to define an orientation between S; and
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ZN

source sink

prism E § focus

FIGURE 1. Vertex terminology

A

S;. The strongly connected component quiver SC(Q) is then the quiver on s vertices
{w1, ..., ws} with w; corresponding to S; and there is one arrow from w; to w; if
and only if there is an arrow in () from a vertex in S; to a vertex in S;. Observe
that when the underlying graph of @ is connected, then so is the underlying graph
of SC(Q) and SC(Q) is a quiver without oriented cycles.

condition 1 : If o = (dy,...,d;) € simp(Q), then Qguppa is a strongly connected
subquiver of ) where suppa = {v; : d; # 0} is the support of the dimension
vector. If not, we consider the strongly connected component quiver SC(Qsuppa)

and by assumption there must be a sink (for vertex-terminology see figure 1) in it

corresponding to a proper subset S Sl Q.. fV € rep, @ we can then construct

a representation W by

e W, =V, forv, e Sand W; =0if v; ¢ S,
e W, =1V, for an arrow a in Qg and W, = 0 otherwise.

One verifies that W is a proper subrepresentation of V', so V' cannot be simple, a
contradiction.
condition 2 : If o € simp(Q), then for all v; € suppa

XQ(avei) < 0
XQ(€i7a) S 0

where ¢; is the dimension vector of the one-dimensional simple concentrated in v;.
Indeed, let V' be a simple representation of @ of dimension vector « = (d1,...,dg),
then

xq(e, ) =d; — Z dj
If xg(€i, ) > 0, then the natural linear map

@Va:VZ—

P v
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has a nontrivial kernel, say K. Consider the representation W of () determined by
o W; =K and W; =0 for all j # 1,
e W,=0forall a €Q,.

then W is a proper subrepresentation of V', a contradiction. Similarly, if x¢(«, €;) =
d; — >, dj >0, then the linear map

Dv: ®vi—v
has an image I which is a proper subspace of V;. The representation W of Q
determined by

o Wy =1and W; =V, for j #1,

e W, =V, for all a € Q).

is a proper subrepresentation of V', a contradiction. These two conditions are not
sufficient as we have the following R
exception : Consider the extended Dynkin quiver of type Ay with cyclic orien-

tation.
Jo=0
©
()
A
020

and dimension vector a = (a,...,a). All arrow matrices must be invertible if
V is simple. In this case, under the action of GL(«), they can be diagonalized.
Therefore, & = (a,...,a) € simpAy, iff a = 1. However, this is the only exceptional
case :

THEOREM 85. o = (dy,...,dr) € simp(Q) if and only if one of the following
two cases holds

(1) suppa = Ay, the extended Dynkin quiver on k vertices with cyclic orien-
tation and d; =1 for all 1 <i <k

O—@
(2) suppa # Ay, Then, suppa is strongly connected and for all 1 <i < k we
have

In either case, simp(Q) is a cone in comp(Q) = N¥.
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PRrROOF. We will use induction, both on the number of vertices k in suppa and
on the total dimension n = Zi d; of the representation. A vertex v; is said to be
large with respect to a dimension vector o = (dy,...,d) whenever d; is maximal
among the d;. The vertex v; is said to be good if v; is large and has no direct
successor which is a large prism nor a direct predecessor which is a large focus. If
suppa has no good vertex, then either suppa must have a large prism having no
large prism direct successors or it must have a large focus having no large focus
direct predecessors. Indeed, if neither of the cases hold, there is an oriented cycle
in suppa consisting of prisms (or consisting of focusses). Assume (v;,,...,v;) is
a cycle of prisms, then the unique incoming arrow of v;; belongs to the cycle. As
suppa # Aj, there is at least one extra vertex v, not belonging to the cycle. But
then, there can be no oriented path from v, to any of the v;;, contradicting the
assumption that suppa is strongly connected.

But then take such a large prism (or focus), then because xg(«,€;) < 0 and
XQ (ei,a) <0 for all 1 < i < k, we have the following subquiver in suppa

/

arge focus large p\

We can reduce to a quiver situation with strictly less vertices by identifying these
two vertices. The resulting quiver is still strongly connected and the dimension
vector still satisfies the Euler condition. Therefore, by assumption there is a simple
representation and we can extend it to a simple representation on suppa by putting
the identity matrix on the connecting arrow, whence we are done in this case.

Therefore, we may assume that suppa has a good vertex v;. If d; = 1 then
all d; =1 for v; € suppa and we can construct a simple representation by taking
Vi, = 1 for all arrows b in suppa. Simplicity follows from the fact that suppa is
strongly connected.

If d; > 1, consider the dimension vector o' = (dy,...,d;—1,d; —1,d;y1,...,dg).
Clearly, suppa’ = suppa is strongly connected and we claim that the Euler-form
conditions still hold for /. The only vertices v; where things might go wrong are
direct predecessors or direct successors of v;. Assume for one of them x¢g (e, &) > 0
holds, then

N

dl:d2> Z dlmzd;:dlfl
@<

But then, d; = d; whence v; is a large vertex of a and has to be also a focus with
end vertex v; (if not, d; > d;), contradicting goodness of v;.

Hence, by induction on n we may assume that there is a simple representation
W € rep,, suppa. Consider the space repy, of representations V' € rep, @) such
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that V' | o/ = W. That is, for every arrow

a Wa,
Va=
U1 e Udj
U1
Va=| w,
Vd;

repy is an affine space consisting of all representations degenerating to W & .S;
where S; is the simple one-dimensional representation concentrated in v;.

As there are simple representations of () having a one-dimensional component at
each vertex in suppa and as the subset of simple representations in rep,, () is open,
we can choose W such that repy;, contains representations V' such that a trace of
an oriented cycle differs from that of W @ S;. As the invariant ring C[rep,, Q]¢%(®)
is generated by traces along oriented cycles and classifies the isomorphism classes
of semi-simple representations, it follows that the Jordan-Holder factors of V' are
different from W and S;. In view of the definition of repy,,, this can only happen
if V is a simple representation, finishing the proof of the theorem. O

Next, we will construct alg-smooth algebras A having as their component
semigroup comp A (almost) any sub semigroup of N. We first need to recall some
facts on Azumaya algebras and their polynomial identities.

DEFINITION 85. The n-th Azumaya locus of an algebra A € alg is the Zariski
open subscheme (possibly empty) azu, A of iss, A consisting of the points £ cor-
responding to n-dimensional simple representations M.

ExXAMPLE 119. If rep, A —"+ iss, A is the quotient map, then we claim that
71 (azu, A) —= azu, A

is a principal PGL,-fibration in the étale topology, that is, determines an element
in H},(azu, A, PGL,).

By assumption, the stabilizer subgroup of x = M¢ in GL,, is C*1,, that is,
PGL,, acts on rep, A with trivial stabilizer in x. Let S, be the slice in = for the
PGL,-action on rep, A. By taking traces of products of a lifted basis from M,,(C)
we find a PG L, -affine open neighborhood afU¢ of £ contained in azu, A and hence
by the slice result a commuting diagram

PGL, x S, 7 HUe)

S, Ue

¢ /PGL,

where ¢ and ¢/ PGL,, are étale maps. That is, 1)/ PGL,, is an étale neighborhood
of ¢ over which = is trivialized. As this holds for all points £ € azu, A the claim
follows.
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In particular, if azu, A = iss, A and if C = C[iss, A this shows that there is
an étale cover {B;} of C such that

/ A®c B; ~ M, (B;)

We will now explain the terminology by proving the connection with the classical
notion of Azumaya algebras.

DEFINITION 86. For C' € commalg an algebra A € alg. is said to be an
Azumaya algebra if and only if

(1) A is a finitely generated projective C-module, and,
(2) the natural multiplication map

A =ARc AP N Endc(A) j(@ ®a’)a=daa”

is an isomorphism in alg.

EXAMPLE 120. If A is a central simple algebra of dimension n? over K we

have seen that A ® x AP ~ M,2(K). Hence, Azumaya algebras over a field K are
precisely the central simple K-algebras.

EXAMPLE 121. If P € projmodC, then the endomorphismring A = Endc(P)
is an Azumaya algebra over C. In particular, if P = C®", then Endc(P) = M, (C)
is an Azumaya algebra. These Azumaya algebras will be called trivial.

If A and A’ are two Azumaya algebras over C one verifies easily that A @ A’
is also an Azumaya algebra over C. We call two C-Azumaya algebras equivalent if
there are P, P’ € projmodC such that

ARc E’I’de(P) ~ A ®c E’I’de(P/)

Observe that this generalizes the equivalence notion on central simple algebras.
Again, the equivalence classes of C-Azumaya algebras form a commutative group
under the tensorproduct, in which the class of Enda(P) is the identity element and
the inverse of the class of A is the class of A°?. This group is called the Brauer
group Br(C) of the commutative algebra C.

ExXAMPLE 122. If C —— (' is a morphism in commalg and if A is an Azumaya
algebra over C, then Acr = A ®c C’ is an Azumaya algebra over C’. Indeed, as
A € projmodC, A®¢c C’ is a finitely projective C’'-module and the maps

AC’ Ko AOC?, ~ (A (Se] AOP)C/ >~ (E’I'de(P))C/ >~ Endc/ (P Kc C/)

give the required isomorphism. Also the notion of trivial Azumaya algebra and of
equivalence is preserved, giving a groupmorphism

Br(C) — Br(C")

on the level of Brauer groups. If C —— C’ is a faithfully flat extension, then
we can descend C’-isomorphisms to C-isomorphisms and C’-projective modules to
C-projective modules. Hence, in that case, if A ®¢c C’ is a C’-Azumaya algebra,
then A is a C-Azumaya algebra.

In particular, let ¢; € C be a set of elements generating the unit ideal in C, or
equivalently, the open sets X(¢;) in the Zariski topology cover specC. Then, the
direct sum of the corresponding sections

®icci
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is faithfully flat over C. Therefore, A is an Azumaya algebra over C if and only if
all A, are Azumaya algebras over C,,. This means that the Azumaya property is
a local property for the Zariski topology (as well as for the étale topology).

We will now investigate the étale local structure of Azumaya algebras. For this
we need to know what the local rings are in the étale topology.

DEFINITION 87. Let p be a prime ideal of C and denote with k, the alge-
braic closure of the field of fractions of A/p. An étale neighborhood of p is an
étale extension B € Cg; such that the diagram below is commutative

C

nat

ky

B
The localization at p for the étale topology is the strict Henselization

Csh = lim B

where the limit is taken over all étale neighborhoods of p.
A local algebra L with maximal ideal m and residue map 7 : L —> L/m = k is
said to be Henselian if for every monic polynomial f € L[t] allowing a decomposition

7(f) = go-ho

in k[t], then f = g.h with 7(g) = go and w(h) = hg. If L is Henselian, tensoring
with k£ induces an equivalence of categories between the étale A-algebras and the
étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if its
residue field is algebraically closed. Thus, a strict Henselian ring has no proper
finite étale extensions and can be viewed as a local algebra for the étale topology.

ExAMPLE 123. Consider the local algebra of Clzy, ..., 24] in the maximal ideal
(21,...,24), then the Henselization and strict Henselization are both equal to

C{xla cee ,de}

the ring of algebraic functions . This is the subalgebra of C[[z1,...,z4]] of for-
mal power-series consisting of those series ¢(x1,...,z4) which are algebraically
dependent on the coordinate functions z; over C. In other words, those ¢
for which there exists a non-zero polynomial f(x;,y) € Clzy,...,zq4,y] with

f(l‘l, .. .,$d7¢(1‘1, .. .,xd)) =0.
These algebraic functions may be defined implicitly by polynomial equations.
Consider a system of equations

filzr, ..., za;91, - Ym) = 0 for f; € Clz;,y;] and 1 <i<m
Suppose there is a solution in C with
z; =0 and y; = y;

such that the Jacobian matrix is non-zero

8fz 0
0,...,0:9%, ..., 40)) #0
ayj( (i Ym)) 7

det (
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Then, the system can be solved uniquely for power series y;(z1,...,zq) with
y;(0,...,0) = y; by solving inductively for the coefficients of the series. One can
show that such implicitly defined series y;(x1,...,xq) are algebraic functions and

that, conversely, any algebraic function can be obtained in this way.

THEOREM 86. Azumaya algebras are locally matrizrings in the étale topology.
In particular, there is a one-to-one correspondence between the pointed set

H},(C,PGL,)
and isomorphism classes of Azumaya algebras over C of rank n?.

PROOF. (Sketch) Let m be a maximal ideal of C' and let Cyy, be the completion
of the local ring Cy, both having residue field k. The strict Hensilization C$" is
then a complete local ring with maximal ideal M residue field the algebraic closure
k of k. If A is an Azumaya algebra over C, then

sh o

C
A®c ﬁm ~ M, (k)

for some n as there are no Azumaya algebras (central simple algebras) over an
algebraically closed field. Then, the idea is to lift a set of matrix units e;; modulo
the various powers of M and by Nakayama’s lemma we still get a set of matrix
units over C3" /M* for all k and can pass to the limit whence

A®c Ch ~ M, (Ch)

But then, as CgP is the limit of étale neighborhoods of m we can take an étale
extension B of C such that A ® B is locally a matrixring of locally constant rank.

If A has constant rank n? the second statement follows as the automorphism
groupscheme of n X n matrices is PGL,,. O

Having a cohomological description of Azumaya algebras of constant rank we
expect a cohomological description of the Brauer group as in the case of fields. This
difficult result was proved by Ofer Gabber [18].

THEOREM 87 (Gabber). For C € commalg, there exists an isomorphism
BT(C) = Hzt(ca Gm)tars

between the Brauer group of C' and the torsion part of the cohomology group
Hgt(ca Gm)

We collect a number of ringtheoretical facts on Azumaya algebras for later use.
In particular, an Azumaya algebra of constant rank n? is an object in alg@n.

THEOREM 88. Let A be an Azumaya algebra over C'. Then
(1) The center of A is C.
(2) For any ideal I <A we have I = AJ where J =1NC and 4 = A®c %
is an Azumaya algebra.
(3) There is a C-linear reduced trace map

A" ¢

which coincides with the usual trace in any splitting A ¢ B ~ M, (B).
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(4) There is a canonical element s =) . a; ® a; € A®c A called the sepa-
rability idempotent such that

tr(a) = Zaiaa; for all a € A.

(5) A is a projective A-bimodule.
(6) There is an equivalence of categories

C —mod ~ A — bimod N+— A°®c N
with inverse for any M € A — bimod
MA={meM|(1®a—a®1)m=0Vac A}

which is Hom A_pinoa (A, M).
(7) If A C B for any C-algebra B, then B = AQ¢ centg(A) where centp(A)
is the centralizer of A in B.

PROOF. (1) : Let B be a faithfully flat splitting of A, that is, A®c B ~ M, (B).
If Z is the center of A, then C C Z and Z ®¢ B is contained in the center of AQc B
which is B.

(2) : To prove I = AJ one extends to B as before and uses the fact that there
is a one-to-one correspondence between ideals of B and of M, (B).

(3) and (4) : One shows that the usual trace M,(B) = A ®: B —— B
maps A to C by verifying the faithfully flat descent criterion using that the two
isomorphisms

A®c (B®c B) —% M, (B ®c B)

are conjugate by an automorphism that leaves the trace invariant.

(5) : Because A ¢ A% ~ Endc(A) it suffices to show that P € projmodC is
also projective over Endq(P). This is a Zariski local condition so we may assume
that C is local and P = C®F is free. But then, Enda(P) = M;(C) of which the
projectives are the columns which are P = C®F.

(6) and (7) : Let left ideal J of A ®¢c A°P annihilating 1 € A is generated by
the elements 1 ® a —a® 1 where a € A. Indeed, if Y, a;b; = (3, a; ®b;)1 = 0 then

Zai ®b; = Z(ai@)l)(l@bi —b;®1)
Because A = A ®c A°P/J the identification Hom A _pioa(A, M) = M4 is given by
¢ — ¢(1). To prove that the natural map

(A®c A%) @c M* = (A®c AP) ®c Hom a—pinea(A, M) — M
is an isomorphism it suffices by faithfully flat descent to prove it for A = M,,(B). O

THEOREM 89 (Razmyslov). There is a multilinear noncommutative polynomial
h(z,y) which is alternating in the x variables and when evaluated in n x n matrices
over a field takes all its values in the center and does not vanish identically.

PROOF. If a noncommutative polynomial f is linear in a variable x; then it is

of the form
f=> arwiby
k
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‘With this notation and for an extra variable z define

A(f) = bkwiar frme = agzby
k k

Evaluating in n X n matrices we obtain from the necklace property of the trace that

tr(zf) =tr(z Z arx;bg) = tr(z; Z brzag) = tr(z;Ai(f)ae,=2)
k k

whence, in particular, tr(f) = tr(z;Ai(f)z,=1). Moreover, we have for any other
variable z; that

tr(zjAi(f)zi=1) = tr(z; Z bray) = tT(Z akiby) = tr(fu;=a;)-
K K

Consider the multilinear and alternating (at least in the x;) noncommutative poly-
nomial F(y1,...,Yn241,%1,...,Ty2) to be

Z 59”(0):91%(1)3/2%(2) - Yn2To(n2)Yn241
0€S, 2
Then we deduce from the above and the alternating property that
tr(F) = tr(z;A;(F)z,=1) Vi#i o tr(z;Ai(F)g,=1) =0.

Define for j # i, hi(x;,y) = Ai(F)g,=1 which for a dual basis (up to the scalar factor
tr(F)) for the non-degenerate trace form on n x n matrices over a field whenever
Z1,...,T,2 are evaluated to be linearly independent n x n matrices. But then, for

”742
h(z,y) = Z ziyohi(z;,y)
i=1

we have the identity
h(z,y) = tr(yo)tr(F)

from which the properties follow except for the non-vanishing. To prove this use
the substitutions

Titn(j—1) 7 €ij Y1 — €11 Ynp241 7 €End

iE LN+l yiem if mio1— e T e

then all monomials appearing in F' vanish under this substitution except for the
monomial corresponding to the identity permutation where it evaluates to e
whence tr(F) = 1 in this case. O

THEOREM 90 (Artin). The following are equivalent for an affine algebra A :

(1) A is an Azumaya algebra of constant rank n? over its center.
(2) A satisfies all polynomial identities of n x n matrices and has no simple
representation of dimension < n.

PROOF. (Schelter) (1) = (2) : Because of the splitting A ®c B ~ M,(B), A
satisfies all polynomial identities of n X n matrices. Let I be the kernel of a simple
representation, then I N C' = m is a maximal ideal of C and A/Am is an Azumaya
algebra of rank n? over C'/m ~ C whence must be M, (C).
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(2) = (1) : Take the polynomial h(x1,...,2,2,y) of the previous theorem and
consider

n2+1
Z (=1 h(z1,..., L5, ..., Tp241, Y)T;
J=1
This is an alternating and multilinear function of 1, ..., 2,241 so it is an identity

of M,,(C) whence of A. For all maximal ideals M < A we have that h does not
vanish on A/M whence the evaluations of h in A generate the unit ideal. Choose
aij, bik, t; € A such that

l
1= Zh(aila v 7ain27bi17 cee ;bzm)tz
=1

For 1 <i<land 1< j<n?define fi; € Homc(4,C) by

s .
flj(a) = (_1)J+n h(aila sy Gggy ey Aip2, A, bila CER) bzm)

Then because h evaluates to central elements and the above equalities we have for

ac A

a = Ez h(ail,...,amz,bil,...,bim)ati
= Zi,j(_l)j+n2h(ai1a T a/;ja sy Ain2, @, bi17 IR bim)aijti
= >ij fij(a)aijt;

which shows that {f;;,a;;t;} are a dual basis for A as a C-module whence A €
projmodC. The dual basis implies the existence of C-endomorphisms of A

bijpg + A—= A a > fij(a)apqgty
which generate Endc(A) as a C-module. As the ¢;;,, are in the image of the
natural map
A®c A% —L+ Endc(A)
this shows that j is surjective. Remains to prove injectivity. Assume j(}° a,®a}) =
0 then )" asaa, =0 for all a € A. Then,

Z as X a; = Zs(zi,j fij (as)aijt,; & a’S)

= (D5 aits) @ (O, fijlas)ay)
= (2 aiti) ® (X4 s digrasdijay) =0
where we denoted f;(a) = >, dijrad;;;,. Whence j is an isomorphism so A is an

Azumaya algebra over C. (]

EXAMPLE 124. Let A be an affine Azumaya algebra of constant rank over its

center C'. We have seen that A € algln and that ¢r(A) = C. Therefore,

C = C[trep, A|L»
and the quotient map

trep, A —» specC
is by the previous theorem a principal PGL,, fiber bundle. Indeed, let £ € specC
be a point, then it determines a trace preserving semi-simple n-dimensional repre-
sentation. However, there are only n-dimensional simples whence 7~ 1(£) consists
of a unique (closed) orbit isomorphic to PGL,,. Moreover, locally we can split the
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quotient map in the étale topology. That is, there is an étale cover {B;} of C
such that

A®c B; ~ My (B;)
whence the fiber product
trep, A Xspecc specB; ~ PGL,, x spech;

specB;

trep, A T = specC

Assume that C' is a regular commutative algebra, then so is B; whence PGL, X
specB; is a smooth variety for all ¢, but then so is trep,, A by étale descent. Com-
bining this with theorem 46 we have that for an affine Azumaya algebra A the
following are equivalent

(1) A is alg@n-smooth.
(2) the center C' is commalg-smooth.
This gives us a large supply of alg@n-smooth algebras.

Azumaya algebras arise further as the trace algebras of the generators of the
semigroup of representation schemes.

ExXAMPLE 125. Let a € compA be a semigroup generator and augmentation 7.
Let rrep, be the component of rrep,, A determined by a then the restriction of
the quotient map

rrep, — rrep, A

'
riss, & riss, A
is a principal PGLy-fibration . Indeed, let M be an n-dimensional A-module in
rep,, then we can deform M to its semisimplification M*® (the sum of the Jordan-
Hélder components). Assume M # M*° and suppose

Msszsl@...@Sl

with the S; simples. Then, o = 81 + ... + (; in compA where f3; is the element
of compA corresponding to the connected component containing the simple factor
S;, contradicting the assumption that « is a semigroup generator. But then, the
corresponding trace algebra

/ A= M,(Clrep,])%"

is an Azumaya algebra of constant rank n? over its center which is C[iss,].

The component semigroup of an alg-smooth algebra can be highly complicated.
We will give some examples of universal localizations A of (m) such that compA is
any additive sub semigroup of N.
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DEFINITION 88. A special affine algebra A has a presentation

Clx1, -y Ta, Y1y -5 Yp)
 (yipi(Ta, . Ta Y1, Yii1) — 1, 1< <b)
where p; is a noncommutative polynomial in the variables x1,...,Zq,y1,...,Yi—1-
The inversion depth idpA of a special affine algebra A is the minimal number
b required in a special presentation of A.

ExAMPLE 126. If A is a special affine algebra, then A is alg-smooth as it is
a universal localization of (a). Further, rep, A is a Zariski open (possibly empty)
subset of rep,,(a) = M and is thus connected (even irreducible). Therefore, compA
is an additive sub semigroup of N. If n is a semigroup generator of compA, then
fn A is an Azumaya algebra of rank n?.

EXAMPLE 127. Let ¢, (21,...,2,) be a central polynomial for n x n matrices
(such as Razmyslov’s polynomials of theorem 89 and consider the special affine
algebra

Clz1,. .-, Ta,y)
(yen(z1,...,2q) — 1)

A:

of inversion depth 1. Then,
compA ={m € N | n <m}

and this semigroup has generators n,n + 1,...,2n — 1 whence

/ A, A, L / A
n n+1 2n—1

are Azumaya algebras. Indeed, compA is the set of natural numbers m such that
rep,,A # 0. From the defining relation of A it follows that rep,, A # () whenever
there are m x m matrices Xy, ..., X, € M,,(C) such that ¢,(X1,...,X,) € GL,,.
By Artin’s theorem we know that m > n and as there are n X m matrices
Aq,..., A, € M,(C) such that ¢,(A41,...,4,) # 0 and in the center (whence in
GL,) we can find the required matrices for all m > n by taking
A; 0
= [0 )
from which the claims follow.

ExaAMPLE 128. Let A be a special affine algebra and n a semigroup generator
of compA. We claim that for any set

mp <mg <...<mg€ compA — {n}

we can find an element a € A such that the image of a is 0 in fn A but is non-zero
in fvaforalllgjgs.
J
Because fn A is an Azumaya algebra, there exist elements R;;,S; € fn A and
central polynomials g; for n x n matrices such that

Lift the elements R;; and S; to elements r;; and s; in A and consider the element

ag=1- Zgi(rij)si €A
i
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By construction, the image of ag is zero in [ A and is equal to 1 for all m; < n
by Artin’s theorem. Let m; be minimal among the m; such that the image of a is
zero in fmt A, then we take

a1 = ag + ¢m, (T1,. .., Z4q)

where ¢, (21, .. .,2,) is a central polynomial for m; x m; matrices (which evaluates
to zero in all f x A with k& < m;. Repeat this procedure until we reach m, and take
a to be the final element a;.

THEOREM 91. Let S be an additive sub semigroup of N with generators n; <
ne < ... < ng. For every integer a > 1 there is a special affine algebra A, with
idpA < a such that

S C compA, and SN0,an1] = compA N [0, any]
In particular, if ged(S) = 1 there is a special affine algebra A such that compA = S.

PROOF. The proof proceeds by induction on a. If a = 1, example 127 with
n = ny gives the required algebra. Assume the result holds for a — 1. That is, we
have a special affine algebra A,_; satisfying

S C compA,_; and SN0, (a—1)n;] = compA,—1 N[0, (a — 1)n,]
Define the set of integers

{m1,...,mp} = ([(a — D)n1,an1] NcompA,_1 ) — ([(a — 1)ng,ani]NS)

Because S and compA,_; are the same set when restricted to [0, (@ — 1)n4] all of
the m; are generators of compA,_1.

By the argument of example 128 there is for each m; an element r; € A, 1
such that the
0 in me Aa—l

A0 in [ AgaViAi

Construct the special affine algebra

image of 7; {

Aa _ Aa,1 * (C[Z]
(2’7"17‘2 Ty — 1)
and check that this algebra satisfies the requirements. O

6.2. The wall.

In this section we introduce the empire of an alg-smooth algebra as a combi-
natorial tool to initiate the study of iso(repA). It is a quiver on the set of simple
roots simpA of A. We will prove that this quiver is fully determined by a (usually
finite) subquiver, the wall, which is the full subquiver on the semigroup generators
of compA. We have seen that fa A is an Azumaya algebra if « is a semigroup
generator.

In this section we will extend this result by showing that fa A determines a
reflexive Azumaya algebra for most o € simpA. These reflexive Azumaya algebras
determine an étale cohomology class on the smooth locus of the corresponding
irreducible component iss,A. In the next section we will give a characterization
of the singular locus of these components.

Although some results extend, we will restrict attention to A an alg-smooth
algebra in this section. Recall that in this case compA is the set of irreducible
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components of repA and that rep A is a smooth affine variety for every o € compA.
As a consequence,

azu, A C iss A

the set of all simple representations in iss, A is a nonempty Zariski open smooth
subscheme for all o« € simpA. Further observe that as rep, A is smooth, the
quotient variety iss,A is normal, that is, fa A = C[iss,A4] is an integrally closed
Noetherian domain.

EXAMPLE 129. (ext(a,3)) Let o # 8 € simpA with dim(a) = n and dim(5) =
m. If A is generated by k elements, there is an affine subvariety

Exta(a, 3) — rep,A x repzA x M5 (C)PF

rep,A X repgA

such that the fiber e=*(V, W) over a point (V,W) € rep,A x repgzA is the vec-
torspace Extl (V,W). Because the fiber dimension is upper-semicontinuous and as
the target space is irreducible, there is a non-empty Zariski open subset ext,;, of
rep, A X repz A where dimc ExtY (V, W) attains its minimal value. We denote this
minimal dimension with ezt(a, 3).

Observe that as «, 3 € simpA there is an open set of couples (V,W) with
V € azu,A and W € azugA such that dimc Extly(V,W) = ext(a,3). Inter-
changing the roles of a and 3 we have that there is also an open subset such that
dime Extl(W,V) = ext(B,a). In fact, we claim

If A is alg-smooth, then for all V € azu, A and all W € azugA we have

dime Extly(V,W) = ext(a, 3) and dime Exty (W, V) = ext(3, a)

Indeed, V& W is a smooth point of rep,, zA with stabilizer subgroup C* x C*.
Computing tangent spaces (or normal spaces to orbits) we have the following equal-
ities

dim rep, A = (n*? — 1)+ dim Extly(V,V)

dim repgA = (m? — 1) + dim Exth (W, W)

and the dimension of rep, 34 is equal to
(n+m)?—2+dim Exty(V,V)+dim Extly(W, W)+dim Ext’y(V,W)+dim Extly (W, V)

Because there is an open subset where Extl(V, W) and ExtY (W, V) both attain
the minimal value we see that these numbers cannot increase whenever V and W
are simple representations, proving the claim.

DEFINITION 89. The empire of the alg-smooth algebra A, emp A, is the quiver
having vertices v, for every simple root o € simp A
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such that for a # [ there are ext(w, 3) directed arrows from v, to vg and there are
dim iss, A loops in every vertex v,.

EXAMPLE 130. emp(m) is the complete quiver K, on infinitely many vertices
Up, € Ny such that the full subquiver on any two vertices v, and vy, is of the form

o] (00 Op

Before we show that empA is controlled by a tiny subquiver, we indicate its
importance in the study of isomorphism classes of finite dimensional representations
of A.

DEFINITION 90. Let 3 € N34 be a dimension vector with finite support
suppf = {a1,...,ax}. With Egpps we denote the full subquiver of empA on the
vertices of suppf. We denote

nullgempA = nullyg Fgupg X azug, A X ... azu,, A

where nullgFgyppp is the nullcone for the basechange action of GL(/3) on the rep-
resentation space reps Egsupps. We have the induced action of GL(3) on the com-
ponent nullg Fgpps and denote the orbits by

iso(nullgempA)
If @ varies over all dimension vectors with finite support, we denote
nullempA = LlnullﬁempA
B

and denote the orbits for the natural GL(3)-actions by iso(nullempA).

THEOREM 92. If A is alg-smooth, there is a natural one-to-one correspondence

iso(repA) < iso(nullempA)
PrOOF. Let M € rep, A with Jordan-Holder decomposition
Me=SPra...@SP

If S; belongs to the irreducible component iss,, A where o; € simpA, then
(S1,...,8k) is a point of azuy, A X ... X azuy, A. If 7 : rep,A — iss, A is
the quotient map, then M € 7=1(¢). By the étale slice theorem we have a GL,,-
equivariant isomorphism

1) ~ GL, xF*) nu11,, Q¢
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in particular, there is a natural one-to-one correspondence between isoclasses of
representations in 771(£) and GL(ag)-orbits in the nullcone of Q.

Remains to prove that if 3 is the dimension vector with support {1, ..., ax}
such that § | supp8 = (e1,...,ex) then Egpps ~ Q¢. But this follows from the
definition of Q¢ and example 129 above. O

This result reduces the study of iso(repA) to (a) the description of the Azu-
maya loci of the Cayley-Hamilton orders fa A for @ € simpA and (b) a purely
quiver-theoretic problem (independent of A) to describe the nullcone of quiverrep-
resentations. We will investigate these nullcones in the last chapter.

We will prove that the structure of empA is determined by a (usually finite)
subquiver, the wall of A. First we need to derive some consequences of the étale
slice theorems in the case of quiver representations.

DEFINITION 91. For a quiver setting (@, a), types,@ will be the set of all
semi-simple representation types of points in iss, Q). That is, 7 € types, @ if and
only if

T=(e1,00;...;€5,Qz)
where e; € Ny are the multiplicities and «; € simp(Q) such that
a=eco;+...+ea,
Theorem 85 gives an algorithm to determine the finite set types Q.
We define two representation types
7= (e1,a1;...5e5a,) and 7' = (e],al;...5el, k)
to be direct successors 7' < 7 if and only if one of the following two cases occurs
e (splitting of one simple) : 2’ = z+1 and for all but one 1 < i < z we have
that (e;, ;) = (€, a}) for a uniquely determined j and for the remaining
19 we have that the remaining couples of 7’ are
(ei,al;e5,00) with o =l + o)

e (combining two simple types) : z’ = z — 1 and for all but one 1 < i < 2’
we have that (e}, ) = (e;, ;) for a uniquely determined j and for the
remaining ¢ we have that the remaining couples of 7 are

(eu,al; ey, al) with e, +e, =€}
The direct successor relation < induces a partial ordering < on types, Q.
THEOREM 93. For any quiver setting (Q,a) we have :
(1) Let & € iss, Q be a point of representation type
T=1t&) = (e1,a1;...,€:,0a,) € types, Q
The normal space N, to the orbit in x € O(M) in rep, Q (where M is

the corresponding semi-simple representation) is determined by the local
quiver setting (Q, a;), that is,

N, ~rep, Q-

where (Q, ;) depends only on 7. More precisely, Q, is the quiver on z
vertices (the number of distinct simple components of Ve ) say {w1, ..., w,}
with

#0200 = —xolaiqa;) fori#j, and
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and a; = (€1,...,€;).
(2) The quotient variety iss, Q has a finite stratification into locally closed
smooth subvarieties

iss, Q = |_| iss,(7)

TEtypes,Q

where issy(T) is the set of points £ € iss, Q such that t(§) = 7. More-
over, if T = (e1,a1;...;e,, ) then
z

dim iss,(T) = Z(l - xq(ai, i)

i=1
(3) The closure inclusion ordering of these locally smooth strata is given by
isse(7') C issy(7) iff T

PROOF. (1) : Take the point (1,z) in the irreducible component GL,, x¢%(<)
rep, Q in rep,(Q) where n = >_7_, |o;| and apply theorem 72. The Euler-form de-
scription follows from theorem 70 and Schur’s lemma stating that Hom ) (S;, Sj) =
0;7C whenever S; and S; are simple representations. Alternatively, one can apply
the Knop-Luna slice theorem directly to the GL(«a)-action on rep, @ and do a
book-keeping calculation similar to the proof of theorem 72, see [42] for more de-
tails.

(2) : Let & € iss,(7) and consider a nearby point &’. By the étale local
description of theorem 72 and part (1) we may assume (by étale descent) that &’
corresponds to a semi-simple a.--dimensional representation of Q.. If some trace of
an oriented cycle in Q. of length > 1 is non-zero, then ¢’ cannot be of representation
type 7. Therefore, if ¢’ € iss,(7) it is determined by the traces of the loops in
Qr. Therefore, locally in the étale topology iss,(7) is an affine space near ¢ of
dimension the number of loops in Q.

(3) : Observe that 7" < 7 if and only if the stabilizer subgroup GL(«;) is
conjugated (in GL(«)) to a subgroup of the stabilizer subgroup GL(a,/). The
statement now follows, either from general theory as in [63, lemma 5.5] or from a
comparison of the local quivers. ([l

DEFINITION 92. For any quiver setting (Q, o) we have that rep, @ is an irre-
ducible variety, whence is is the quotient iss, @. Hence, there is a unique Zariski
open stratum

issa(Tgen)

We call 74, € types,Q the generic semi-simple representation type for (Q, o).

EXAMPLE 131. There is an algorithm to compute the generic semi-simple rep-
resentation type Tgen, :
input : A quiver setting (@, ) and a semi-simple representation type

T = (61,0&1;...;61,061) € typeSaQ

For @ = (ay,...,ax) one can always start with the type (a1,v1;...;ak, U).
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step 1 : Compute the local quiver @), on [ vertices and the dimension vector a.
If the only oriented cycles in @), are vertex-loops, stop and output this type.
If not, proceed.

step 2 : Take a proper oriented cycle C' = (j1,..., ) with r > 2 in @, where j;
is the vertex in @), determined by the dimension vector «;,. Set 8 = a;, +...+a;,,
e} = e; — 0;c where §;c = 1if i € C and is 0 otherwise. replace 7 by the new
semi-simple representation type

= (el, ;... e0,0031, B)

delete the terms (e}, o;) with e} = 0 and set 7 to be the resulting type. goto step
1.

DEFINITION 93. The wall of the algebra A, wallA is the full subquiver of emp A
on the vertices v, where a runs over the semigroup generators of compA

wallA i

Recall that for a semigroup generator «, the Cayley-Hamilton algebra [ A is an
Azumaya algebra, whence azu, A = iss,A.

ExaMpPLE 132. For the path algebra of a quiver @@ on k vertices we have
that comp(Q) ~ N* and hence the semigroup generators are given by the vertex-
dimension vectors ¢;. But then,

ext(0i,65) = —xq(0i,6;) + 0ij
from which it follows that wall(Q) ~ Q.

THEOREM 94. If A is an alg-smooth algebra, then the wallA contains enough
information to determine the quiver structure of the whole empA.

PRrROOF. Let {8; , i € I} be the semigroup generators for compA. First we
have find the vertices of empA, that is, to characterize the set simpA. Assume
« € compA, then

a=e B +...tep
for a finite number of semigroup generators 3;; and e; € N. Take a simple repre-
sentation S; in repg A, then

Me =8P @ ... 0S5 € rep, A

is a closed orbit and by the étale slice results we know that there is étale isomor-
phism between a neighborhood of ¢ € iss,A and a neighborhood of the trivial
representation in iss, Q¢. If a € simpA, then this neighborhood must contain
simple representations, whence ag = (e, ..., ¢e;) is a simple root for the quiver Q¢
which by definition is the full subquiver of wallA on the vertices corresponding to

Bivs - By
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Therefore, simpA is the subset of compA obtained from those positive integer
combinations of the generators a = . e;3; such that the dimension vector e = (e;)
is a simple root of the finite quiver wallA | suppe. Observe that by theorem 85 we
have an algorithm to determine these simple roots.

Next, we have to determine the number of arrows between v, and vg for a, 5 €
simpA. By the foregoing argument we have a finite full subquiver @) of wallA on
the vertices f3;,, ..., 3;, such that a = ) e;3;, and 3 = ) f;3;, with e and f simple
roots of Q. The wallA determines the local structure of rep,,zA in a point of
representation type (e1, Biy;-- -5 €1, By f1, Biys - - -5 f1, Bi,) and as this stratum lies in
the closure of the stratum of points of type (1,a;1,3) we know by the foregoing
discussion on local quivers for path algebras of quivers the local quiver in those
points. Therefore, ext(a, 5) = dap — xo(a, §) and we obtain that the number of
arrows from v, to vg is also determined by wallA. O

The wall also determines the structure of iss,A for a € compA. We will
denote by xw the Euler-form of the possibly infinite quiver wallA but as we will
only apply it to dimension vectors having finite support this causes no problems.

THEOREM 95. Let A be an alg-smooth algebra. For a € comp denote with

typesa the collection of all representation types
T=(e1,01;...;€,,;,) with «; € simpA
then there is a finite stratification into locally closed smooth subvarieties
iss, A = |_| iss,(7)
TEtypesa
where iss,(7) is the set of all points & € iss,A of representation type 7. If
7= (e1,q1;...;e., ;) then this strata is isomorphic to
iss,(7) ~azuy, A X ... X azu, A

and hence has dimension Y :_, dim issqo, A = > (1—xw(7i,7i)) where suppy; =
{Bi1,...,Bir, } a subset of vertices of wallA such that Y v;(j)Bij = .
The local quiver-setting in a point & € iss, A of type T = (e1,01;. .. €2, ;) 18

(Qe, ) = (empA | {a1,..., .}, (e1,...,ez))

and as the right-hand side is fully determined by the wallA, the wall contains
enough information to describe the étale local structure of

j{A and /A

PRrOOF. Follows from the proof of the previous theorem, the results on quo-
tient varieties of quiver representations and the étale local structure of alg-smooth
algebras. O

for all o € compA.

In particular, this result shows that for most a € simpA, the ramification locus

ram, A = iss, A — azu, A
has codimension > 2. In this case, the reflexive closure f:*A of the Cayley-

Hamilton order fa A is a reflexive Azumaya algebra and hence determines an étale
cohomology class.
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DEFINITION 94. Let C' € commalg be a normal affine domain with field of
fractions K. An C-subalgebra A of a central simple K-algebra ¥ of dimension n?
is said to be an order if A is a finitely generated C-module and contains a K-basis
of 3, that is, A.K = ¥. Because C is integrally closed, the reduced trace of ¥ on
elements of A has its values in C. That is, (A,tr4) € alg@n and tr(4) = C. An
order is said to be mazimal if there is no C-order A’ in ¥ properly containing A.

A is said to be a reflexive Azumaya algebra over C' iff the center of A is C, A
is a reflexive V-module, that is

NpAp, =4
where the intersection is taken over all height one prime ideals p of C', and if every
A, is an Azumaya algebra over the discrete valuation ring Cl.

Two reflexive Azumaya algebras (possibly in different central simple K-
algebras) are said to be equivalent if there exist reflexive C-modules M and N
such that

A®p Endc(M) ~ A' @ Endc(N)
where the modified tensor product is the reflexive closure, that is, the intersection
of all localizations at height one prime ideals of C'.

The set of all equivalence classes of reflexive Azumaya algebras, equipped with
the modified tensor product, is an Abelian group called the reflexive Brauer group
of C' and denoted ((C). One can prove, see for example [50], that

B(C) = Npt(p)=1Br(Cy) — Br(K)

That is, one can view the reflexive Brauer group as being the subgroup of Br(K)
consisting of those central simple algebras containing a maximal order with rami-
fication locus having codimension at least two.

ExampLE 133. If C' = C[X] with X an affine smooth curve, then any height
one prime is maximal. Therefore, a reflexive Azumaya algebra is Azumaya and
8(C) = Br(C).

If C' = C[X] with X an affine surface, then there are reflexive Azumaya algebras
which are not Azumaya. For example,

Clz,y, 2z
C:@;ié A= Ende(C @ P)
where C'is the affine cone and P = (z,y) is a ruling. Then, A is an Azumaya algebra
in every point except the top m = (z,y, z). Still, every reflexive Azumaya algebra is
Azumaya over all smooth points. This follows from the fact that reflexive modules
over regular local rings of dimension < 2 are free and because reflexive Azumaya
algebras which are projective are Azumaya. Therefore, if C' is the coordinate ring
of a surface X, then 3(C) = Br(Xs,) where X, is the smooth locus of X.

If C = C[X] and dim X > 3, then a reflexive Azumaya algebra does not have

to be Azumaya on the whole of X,,,. For example, take C = Clz, y, z] and

M=%ker Ca®CbadC.c C

then M is a reflexive module which is not projective in the origin, but then
Endc(M) is a reflexive Azumaya algebra which is not Azumaya in the origin.

ar—x,b—y,c—z
—_—

In general, one has the following important result due to R. Hoobler, see [24]

B(C) = Br(C)
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whenever C' is commalg-smooth. For arbitrary affine normal domains one has the
following cohomological description of the reflexive Brauer group.

THEOREM 96. If C' € commalg is the coordinate ring of a normal affine variety
X, then

ﬁ(c) = Hgt(Xsmme>

PROOF. The singular locus of X determines an ideal I which is of height at
least 2 because C is a normal domain. Therefore, there are ci,co € I such that
ht(Ceci + Ces) = 2. Let U be the open set determined by the ideal C¢; + Ccq, then
U can be covered by two affine open sets Uy = X(¢1) and Uz = X(c2). Because the
reflexive Brauer group is determined by the Brauer groups in height one primes we
obtain G(C) as the pullback

B(C) — B(Cey)

B(CCZ) - ﬁ(cclc2)

Because of Hoobler’s result and the fact that U C X, we can replace three corners
by Brauer groups

BC)

BT(Ul)

BT(UQ) — BT(Ul N Ug)

By Gabber’s result, theorem 87, we know that the Brauer group of any affine scheme
X is equal to HZ, (X, Gy, )iors, the group of torsion elements of HZ (X, G,,). If X
is in addition smooth, then because of the inclusion

He2t(X7 Gm) - Hzt(C(X)aGm) = BT(C(X))

we know that the cohomology group is torsion so we can dispose of the subscript.
That is, we obtain 3(C) as the pullback of the diagram

p(C) HZ, (U1, G)

Hgt(UQaGm) - Hgt(Ul N U27Gm)

Equivalently, this asserts that 3(C) = HZ2,(U,G,,,) ~ Br(U) where the last isomor-
phism follows because Gabber’s result is actually valid for the union of two affine
schemes. Finally, we invoke Grothendieck’s result on cohomological purity of the
Brauer group [21, III.Thm.6.1] to the situation U C X,,,. This asserts that

H%(U,G,,) ~ H%(Xsm,Gn)

and the claim follows. O
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For this reason it is important to determine the smooth locus of iss, A which
we will do in the next section. We can also read off from empA in which points
£ € issyA the order [ A is étale split.

THEOREM 97. Let A be alg-smooth, a € simpA and £ € issy,A a point of
representation type
T=(e1,1;...;€z,0z)
Then, fa A is étale split in € if and only if gcd(eq, ..., e,) = 1.

PRrooOF. Firs observe that the local quiver Q¢ is the full subquiver of empA on
the vertices corresponding to {a1,...,a,}. In the étale topology fa A is locally in
¢ Morita equivalent to the algebra

B= / Q) = Me(Clrep,, Q)H"

(where e = e; + ...+ e.) locally at the trivial representation. Therefore, it suffices
to investigate the splitting behavior of the latter. The quotient map

rep, (Q¢) —+ 1880, (Qe)

is over the Azumaya locus a principal PG L(ag)-fibration, that is, it determines an
element of

H!,(azu, PGL(w))
This pointed set classifies Azumaya algebras over azu with a distinguished em-
bedding of C, = C x ... x C (the vertex-idempotents in B) which are split by
an étale cover on which this embedding is conjugated to the standard embedding
C, C M.(C).

If ged(eq,...,e.) = 1 then B determines the trivial class in the Brauer group.
For, let B’ be an Azumaya localization of B. By assumption, the natural map
between the K-groups

Ko(C2) —» Ko(M,(C))

is surjective, whence the same is true for B’ proving that the class of B’ is split by
a Zariski cover (and not merely an étale one). In other words,

rep,, B’ ~ issa, B’ x PGL(a)

If ged(eq,...,e,) = n > 1, then we form a new quiver @’ by extending Q¢
with an extra vertex vy and having e;/n directed arrows from vy to v;. Further,
consider the extended dimension vector o' = (n,eq,...,e.). There is an open
subset of rep,, Q' where the e;/n maps from vy to v; define an isomorphism from

Vo@ei/ " — V; for all i. This reduces the classification problem for the quiver
setting (@', ') on this set to that of (Qg¢, ae) where each vertex space is in addition
given a fixed representation as the vectorspace V®¢/™ where V is a vectorspace of
dimension n. But this is the same problem as studying a large number of n x n
matrices under simultaneous conjugation. This latter problem is not étale split and
isse Q' is rational over isso, Qe, see [43] also the former cannot be split. O

EXAMPLE 134. (Simple representations of torus knot groups) Consider a solid
cylinder C' with ¢ line segments on its curved face, equally spaced and parallel to
the axis. If the ends of C are identified with a twist of 22 where p is an integer
relatively prime to ¢, we obtain a single curve K, 4 on the surface of a solid torus
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T. If we assume that 7 lies in R? in the standard way, the curve K, , is called the
(p, q) torus knot.

The fundamental group of the complement R3 — K, 4 is called the (p.q)-torus
knot group G, , which has a presentation

Gp,q = 71 (R? — Kpq) ~{a,b | a? =b7)

An important special case is (p,q) = (2, 3) in which case we obtain the three string
braid group, G2 3 ~ Bs.

Recall that the center of G, , is generated by a? and that the quotient group
is the free product of cyclic groups of order p and ¢

Gp.aq
(a?)
As the center acts by scalar multiplication on any irreducible representation, the

representation theory of G), , essentially reduces to that of Z, * Z,. Observe that in
the special case (p,q) = (2, 3) considered above, the quotient group is the modular
group PSLo(Z) ~ Zs % Z3.

Let V be an n-dimensional representation of Zj, * Z,, then the restriction of V'
to the cyclic subgroups Z, and Z, decomposes into eigenspaces

Vg, ~SP"esie.. e Si‘i”l
Vg, ~TP"eTfe.. . eTuh

Gp,q = ~ L x Lg

where ( (resp. §) is a primitive g-th (resp. p-th) root of unity and where S¢: (resp.
Tgi) is the one-dimensional space Cv with action a.v = (*v (resp. b.v = {'v). Using
these decompositions we define linear maps ¢;; as follows

) bij b
S&%, d - T,
A
SPresire.. a8t = Vo= I eTrfe. eTon

This means that we can associate to an n-dimensional representation V' of Z, x Z,
a representation of the full bipartite quiver on p + g vertices

where we put at the left i-th vertex the space S?%‘f’il,
space Tgéjl and the morphism connecting the i-th left vertex to the right j-vertex
is the map ¢;;. That is, to V we associate a representation Vg of dimension vector

a=(a,...,ap;b1,...,by) and of course we have that a;+. . .+a, =n = b1 +...+b,.

on the right j-th vertex the
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If V and W are isomorphic as 7Z, * Z, representation, they have isomorphic
weight space decompositions for the restrictions to Z, and Z, and fixing bases in
these weight spaces gives isomorphic quiver representations Vg ~ Wg. Further,
observe that if V' is a representation of Z, * Z, then the matrix

o11(Vo) .. op(Vo)
m(Vo) = | :

¢1q(VQ) ¢pq(VQ)

is invertible. Consider the universal localization (@), where ¢ corresponds to the
above map ¢. Then the variety of semi-simple n-dimensional representations of
Zy * L4 decomposes into components

iss, Zp*x Ly = |_| issqa (@),
EaiZZ bj=TL

We see that comp(Q)_ is the subsemigroup of ZP4

comp(@), = {(a1,...,ap;b1,...,bq) Zai = ij }
There are some obvious 1-dimensional irreducible representations of Zj, * Z,
Vij =Cv with av = ¢y and b = ¢ 1.

which have dimension vector a;; = (14,...,0pi; 015, ..,0¢;). This shows that the
generators of comp(Q), are given by these p.¢q dimensionvectors.

Hence, wall(Q), is the quiver on i.j vertices v;; (corresponding to the #-stable
representations V;;) such that the number of arrows from v;; to vk is equal to

0ijkt — XQ (v, o)

Given the special form of the full bipartite quiver @ it is easy to verify that

# { a € wall(Q), | @é}:{l if i # k and j # I

0 otherwise.

For example, in the modular case PSLo(Z) = Zg * Z3 the wall has the form

We want to characterize simp(Q)
of simple representations

and the emp(Q)_. We consider the direct sum

o

V=0, v

1J
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that is, the dimension vector of V' is a = Zi, MijaGj. a € simp(Q), is equivalent
to v = (mi1,...,Mpy) being the dimension vector of a simple representation of
wall(Q),. We claim

a=(ar,...,ap;b1,...,bg) with 32, a; =n =73, b; € simp(Q),, iff
n=1 or a;+b;<n
foralll1<i<pandl1l <j<gq.

A moments thought shows that the conditions are necessary. Conversely, assume
the numerical condition is satisfied and consider the semi-simple representation of

(@),
V=, Y P

)

q P
a; = E My and b = E m;i.
j=1 i=1

Let I, € Mp,(C) be the p x p identity matrix and let A, € M,(C) be the p x p
matrix of the form

We note that

0 -1 ... -1 -1
-1 0 ... -1 -1
Ap=| : IR :
1 -1 ... 0 -1
-1 -1 ... =1 0
Then the Euler form of the wall(Q), is the symmetric matrix
I, 4, ... A, A,
Ay, I A, A
Xw = € My (Mp(C)).
A, A, ... I, A,
A, A, .. A T,

When n = 1, we have that V = V7; is obviously a simple representation. When
n = 2, we notice that v is the dimension vector of a simple representation if and
only if

v|supp(y) = (1,1;1,1) because supp(y) = Ay
Now, consider n > 3 and consider the dimension vector v = (mi1,...,Mpe). We
have to verify that v is the dimension vector of a simple representation of wall(Q),,
which, by symmetry of xy, amounts to checking that

xw (7, ert) = xw (€xt,7) <0

forall 1 <k <pand 1 <![<gqwhere ex = (0;;,) are the standard base vectors.
Computing the left hand term this is equivalent to

p q
mg > Y —my <0

k#i=11#£j=1

p p q p
My + Z mip < Z Z mij + Z mip

k#i=1 k#i=11£5=1 k#i=1

or
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Resubstituting the values of a; and b; in this expression we see that this is equivalent

to
p
b < Z a; =n—ay
k#i=1

Therefore, the condition is satisfied if for all 1< k < p and 1 <1 < g we have
ar + b <n.

finishing the proof of the claim.
In the special case of PSLo(Z) = Zo+Z3, our condition on the dimension vector
a = (a1, as; b1, ba, bs) is equivalent to

a; +bj <n=a;+ay whence b;<a,

forall 1 <7< 2and 1< j <3 which was the criterium found by Bruce Westbury
in [66].

6.3. Smooth loci.

In this section we will prove the theorem due to Raf Bocklandt characterizing
the quiver settings (Q, ) such that the ring of polynomial invariants

Cliss, Q] = Clrep, Q]GL(O‘)

is commalg-smooth, see [4],[6] and [5]. By the étale local description in terms of
local quiver settings this characterization can be used to determine the singular
locus of any iss, A for o € compA.

Because Clrep,, @] has a natural gradation by defining the degree of all variable
matrix coordinates to be one. Therefore, the ring of invariants is a positively
graded algebra whence the regularity condition is equivalent to C[iss, Q] being
a polynomial algebra. We begin by relating rings of invariants of different quiver
settings.

THEOREM 98 (Bocklandt). We have the following reductions :
(1) bl : Let (Q, ) be a quiver setting and v a vertex without loops such that

xq(a, e,) >0 or xq(€v, a) > 0.

Define the quiver setting (Q',a’) by composing arrows through v :

(some of the vertices may be the same). Then,
Clissa Q] ~ Clissy Q]

(2) b2 : Let (Q, ) be a quiver setting and v a vertex with k loops such that
a, = 1. Let (Q',«) be the quiver setting where Q' is the quiver obtained
by removing the loops in v, then

Clissa Q] ~ Cliss, Q' ® C[ X1, -, Xk]
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(3) b3 : Let (Q, @) be a quiver setting and v a vertex with one loop such that
a, =k >2 and

xo(a,€,) = =1 or xg(ey, ) = —1.
Define the quiver setting (Q’,«) by changing the quiver as below :

_ '\@i - L ® -

[ e R e |

Clissa Q] ~ Cliss,Q'] ® C[Xq,. .., Xk]

Then,

PRrROOF. (1) : rep, @ can be decomposed as

rep, Q = @ Mat(a)x%(a) C)e @ Mat(u.)xas(u.) (C)® rest

a, s(a)=v a, t(a)=v

arrows starting in v arrows terminating in v
= MES(M:’U Cg(a) Xty C)a M, X3 0y o s (a) (C) @ rest
= Mo, —x(aer)xon (€) & Moy, xor,—x(er,) (C) © Test
GL,,(C) only acts on the first two terms and not on rest. Taking the quotient
corresponding to GL,, (C) involves only the first two terms.

We recall the first fundamental theorem for G L, -invariants , see for example
[36, I1.4.1]. The quotient variety

(Mlxn((c) &) Mnxm)/GLn

where GL,, acts in the natural way, is for all [, n,m € N isomorphic to the space of
all [ x m matrices of rank < n. The projection map is induced by multiplication

Min(C) @ My (C) —— Mixn(C) (A, B)— A.B
In particular, if n > [ and n > m then 7 is surjective and the quotient variety is
isomorphic to Mjxm (C).

By this fundamental theorem and the fact that either xq(a,e,) > 0 or
Xq(€y, ) > 0, the above quotient variety is isomorphic to

Moy, —x(aer) o —x(ew.) (C) D Test
This space can be decomposed as
@ Mat(b) X Qg (a) (C) ©rest = repys Q'
a, t(a)=vb, s(b)=v

Taking quotients for GL(«’) then proves the claim.

(2) : Trivial as GL(«a) acts trivially on the loop-representations in v.

(3) : We only prove this for the first case. Call the loop in the first quiver ¢
and the incoming arrow a. Call the incoming arrows in the second quiver ¢;,i =

0,....k—1.
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There is a map
m:rep, @ — rep, Q x C¥: Vs (V/,Tr(Ve),..., Tr(Vy)) with V! == V/'V,

Suppose (V',z1,...,75) € rep, Q" x CF € such that (x1,...,2;) correspond to
the traces of powers of an invertible diagonal matrix D with k different eigenvalues
(Aiyi = 1,...,k) and the matrix A made of the columns (V,,,i = 0,...,k —1) is
invertible. The image of the representation

-1

A9 Rt A9 okt
Verep, Q:Vo=V, Vi=A[ : : D : : At
X‘,; A’;"l X‘,; A’;"l
under 7 is (V’/,z1,...,xx) because
AT T
Viva=al . .| pi|. . |aw
A Akt -1 Al
=A .
)\
= ‘/Cz
and the traces of V; are the same as those of D. The conditions on (V' x1,...,x),

imply that the image of w, U, is dense, and hence 7 is a dominant map.
There is a bijection between the generators of Cliss,@] and Clissy Q'] ®
ClX1, ..., Xk] by identifying

féi HXhi:la"'ak ,f..‘agi... ’_)fCI7Z:0a7k/’_1

Notice that higher orders of ¢ don’t occur by the Caley Hamilton identity on V;. If
n is the number of generators of C[iss,Q)], we have two maps

¢:ClY1, - Y,] — Cliss,Q)] C Crep,Q],
¢ :C[Y1,---Y,] — Clissa Q'] ® C[X1,. .., X}] C Clrep,, Q" x C*].

Note that ¢'(f)om = ¢(f) and ¢(f)on Ly = ¢'(f)|u. Soif ¢(f) = 0 then also
¢'(f)lu = 0. Because U is zariski-open and dense in rep,, Q" x C?, ¢/(f) =0. A

similar argument holds for the inverse implication whence Ker(¢) = Ker(¢'). O

DEFINITION 95. A quiver setting (@, «) is said to be final iff none of the re-
duction steps b1, b2 or b3 of theorem 98 can be applied. Every quiver setting can
be reduced to a final quiver setting which we denote (Q, ) ~ (Qy, ).

THEOREM 99 (Bocklandt). For a quiver setting (Q, ) with Q = suppa strongly
connected, the following are equivalent :
(1) Clisss Q] = C[rep,, Q]%*®) is commalg-smooth.
(2) (Qf,ay) ~ (Qf,ay) with (Qf,ap) one of the following quiver settings
oI
\
® ® /@-

7 =~
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PROOF. (2) = (1) : Follows from the foregoing theorem and the fact
that the rings of invariants of the three quiver settings are resp. C,
Cltr(X),tr(X?),...,tr(X*)] and C[tr(X), tr(Y), tr(X?), tr(Y?), tr(XY)].

(1) = (2) : Take a final reduction (@, ) ~» (Qf,ay) and to avoid subscripts
rename (Qr,ay) = (Q,a) (observe that the condition of the theorem as well as (1)
is preserved under the reduction steps by the foregoing theorem). That is, we will
assume that (Q, «) is final whence, in particular as bl cannot be applied,

xo(a,€,) <0 xq(€v, ) <0
for all vertices v of . With 1 we denote the dimension vector (1,...,1).

claim 1 : Either (Q,a) = ® or @ has loops. Assume neither, then if o # 1 we
can choose a vertex v with maximal «a,,. By the above inequalities and theorem 85
we have that

T=(la—e¢;l,€) € types, @
As there are no loops in v, we have

xo(la—€y,6,) =x(oye)—1<—1
Xo(ev,a —€,) =x(ep, ) —1 < —1

and the local quiver setting (Q,, ;) contains the subquiver

k
OZ__©®  with k1 >2
l

The invariant ring of the local quiver setting cannot be a polynomial ring as it
contains the subalgebra

Cla, b, ¢, d)

(ab — cd)
where a = x1y1, b = x2y2, ¢ = xz1y2 and d = xoy; are necklaces of length 2 with z;
arrows from w; to wy and y; arrows from ws to wy. This contradicts the assumption
(1) by the étale local structure result.

Hence, o = 1 and because (Q, «) is final, every vertex must have least have two

incoming and two outgoing arrows. Because () has no loops,

dim iss; Q =1 — xg(1,1) = #arrows — #vertices + 1

On the other hand, a minimal generating set for C[iss; Q)] is the set of Euler-

ian necklaces , that is, those necklaces in @Q not re-entering any vertex. By

(1) both numbers must be equal, so we will reach a contradiction by showing

that #euler, the number of Eulerian necklaces is strictly larger than x(Q) =

#arrows — #vertices+ 1. We will do this by induction on the number of vertices.
If #vertices = 2, the statement is true because

k
Q= @@@ whence #euler =kl > x(Q)=k+1—1
]

as both k and [ are at least 2.
Assume #vertices > 2 and that there is a subquiver of the form
k
basic = @//q\\&@

=
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If Kk > 1 and [ > 1 we have seen before that this subquiver and hence ) cannot
have a polynomial ring of invariants.
If k=1 and | =1 then substitute this subquiver by one vertex.

>@i@< — E>@<E

The new quiver Q' is again final without loops because there are at least four
incoming arrows in the vertices of the subquiver and we only deleted two (the same
holds for the outgoing arrows). @’ has one Eulerian necklace less than Q. By
induction, we have that

#euler = #euler +1
> x(Q) +1
=x(Q).

If £ > 1 then one can look at the subquiver Q' of @) obtained by deleting k — 1
of these arrows. If )’ is final, we are in the previous situation and obtain the
inequality as before. If Q' is not final, then @ contains a subquiver of the form

k
2
®v ’

AN

which cannot have a polynomial ring of invariants, as it is reducible to basic with
both k£ and [ at least equal to 2.

Finally, if #vertices > 2 and there is no basic-subquiver, take an arbitrary
vertex v. Construct a new quiver Q' bypassing v

@ | arrows @
=)
a1 %
kl
k arrows | arrows

()’ is again final without loops and has the same number of Eulerian necklaces. By
induction

#euler = #euler’
> #arrows’ — #vertices’ +1
= f#tarrows + (kl — k — 1) — #vertices +1+1

> #farrows — #vertices + 1.

In all cases, we obtain a contradiction with (1) and hence have proved claiml. So
we may assume from now on that @ has loops.

claim 2 : If @ has loops in v, then there is at most one loop in v or (@, ) is
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o

2twobytwo = (&

O

Because (Q, «) is final, we have «, > 2. If a, = a > 3 then there is only one loop
in v. If not, there is a subquiver of the form

4

and its ring of invariants cannot be a polynomial algebra. Indeed, consider its
representation type 7 = (1,k — 1;1,1) then the local quiver is of type basic with
k=1=a—12>2 and we know already that this cannot have a polynomial algebra
as invariant ring. If a,, = 2 then either we are in the 2twobytwo case or there is at
most one loop in v. If not, we either have at least three loops in v or two loops and
a cyclic path through v, but then we can use the reductions

~ CANE ) Q@Q
wl NYS e
N e

The middle quiver cannot have a polynomial ring as invariants because we consider

the type
®%{/@ @Q @(/@
)

The number of arrows between the first and the second simple component equals
1 -1 -1 -1 0

-1 1 0 0 0
—(2 1 1 O) 1 0 1 0 0 =2
-1 0 0 1 1

whence the corresponding local quiver contains basic with k£ = [ = 2 as subquiver.
This proves claim 2. From now on we will assume that the quiver setting (Q, «)
is such that there is precisely one loop in v and that k = «,, > 2. Let

T=(1,1;1,€; 00, — L€y i i0y — 265504, — 1,6,) € types, Q

Here, the second simple representation, concentrated in v has non-zero trace in
the loop whereas the remaining «, — 2 simple representations concentrated in v
have zero trace. Further, 1 € simp(Q) as @ is strongly connected by theorem 85.
We work out the local quiver setting (@, a;). The number of arrows between the
vertices in @, corresponding to simple components concentrated in a vertex is equal
to the number of arrows in @) between these vertices. We will denote the vertex (and
multiplicity) in @, corresponding to the simple component of dimension vector 1
by [1]

The number of arrows between the vertex in @, corresponding to a simple
concentrated in vertex w in @ to[1]is —xq(€éw,1) and hence is one less than the
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number of outgoing arrows from w in Q. Similarly, the number of arrows from the
vertex | 1]to that of the simple concentrated in w is —x (1, €,) and is equal to one
less than the number of incoming arrows in w in Q). But then we must have for all
vertices w in @) that

xg(€w,1) = -1 or xo(l,€p) = —1

Indeed, because (@, «) is final we know that these numbers must be strictly neg-
ative, but they cannot be both < —2 for then the local quiver @), will contain a

subquiver of type
O 1]

contradicting that the ring of invariants is a polynomial ring. Similarly, we must
have

XQ(Gwae'u) Z -1 or XQ(€U7€U)

for all vertices w in @ for which «,, > 2. Let us assume that xg(e,, 1) = —1.
claim 3 : If w; is the unique vertex in @ such that xg(ey,€w,) = —1, then
oy, = 1. If this was not the case there is a vertex corresponding to a simple

representation concentrated in wj in the local quiver Q.. If xo(1,€,,) = 0 then
the dimension of the unique vertex ws with an arrow to w; has strictly bigger
dimension than w,, otherwise xg(a, €,,) > 0 contradicting finality of (Q, ). The
vertex we corresponds again to a vertex in the local quiver. If xo(1,€w,) = 0,
the unique vertex ws with an arrow to ws has strictly bigger dimension than ws.
Proceeding this way one can find a sequence of vertices with increasing dimension,
which attains a maximum in vertex wy. Therefore xg(1,€,,) < —1. This last
vertex is in the local quiver connected with W, so one has a path from 1 to €,.

(N
C) C)

The subquiver of the local quiver @, consisting of the vertices corresponding to
the simple representation of dimension vector 1 and the simples concentrated in
vertex v resp. wjg is reducible via bl to @, at least if xgo(1,6,) < =2, a
contradiction finishing the proof of the claim. But then, the quiver setting (Q, «)
has the following shape in the neighborhood of v

&
76 e

contradicting finality of (@, «) for we can apply b3. In a similar way one proves
that the quiver setting (@, «) has the form
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&
76 T

in a neighborhood of v if xg(1,€,) = —1 and xg(€y,1) < —2, again contradicting
finality.

There remains one case to consider : xg(1l,6,) = —1 and xg(ey,1) = —1.
Suppose w; is the unique vertex in @ such that xq(€y, €w,) = —1 and wy, is the
unique vertex in @ such that xg(ew,,€y) = —1, then we claim :
claim 4 : Either «,, = 1 or ay, = 1. If not, consider the path connecting

wg and wy and call the intermediate vertices w;, 1 < i < k. Starting from w;
we go back the path until a,,, reaches a maximum. at that point we know that
X0 (1, €w, ) < —1, otherwise xq(«, €y, ) > 0. In the local quiver there is a path from
the vertex corresponding to the 1-dimensional simple over the ones corresponding
to the simples concentrated in w; to v. Repeating the argument, starting from wy
we also have a path from the vertex of the simple v-representation over the vertices
of the wj-simples to the vertex of the 1-dimensional simple.

_r) I
\@

The subquiver consisting of 1, €, and the two paths through the ¢, is reducible to

©) and we again obtain a contradiction.
The only way out of these dilemmas is that the final quiver setting (Q, «) is of
the form

A

®

finishing the proof. (I

DEFINITION 96. Let (Q,a) and (Q', ') be two quiver settings such that there
is a vertex v in @ and a vertex v’ in Q' with a,, =1 = «},. We define the connected
sum of the two settings to be the quiver setting

(Q#Q', adta’ )
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v
where Q#(Q is the quiver obtained by identifying the two vertices v and v’
U/

v
and where a#da’ is the dimension vector which restricts to a (resp. ') on @ (resp.
v’
Q).
ExampLE 135. With this notation we have

Cliss , Q#Q'] = ClissaQ] © Clissa (]

Because traces of a necklaces passing more than once through a vertex where the
dimension vector is equal to 1 can be split as a product of traces of necklaces
which pass through this vertex only one time, we see that the invariant ring of the
connected sum is generated by Eulerian necklaces fully contained in  or in Q’.

Theorem 99 gives a procedure to decide whether a given quiver setting (@, @)
has a regular ring of invariants. However, is is not feasible to give a graphtheoretic
description of all such settings in general. Still, in the special (but important) case
of symmetric quivers, there is a nice graphtheoretic characterization.

THEOREM 100 (Bocklandt). Let (Q, «) be a symmetric quiver setting such that
Q is connected and has no loops. Then, the ring of polynomial invariants
ClissaQ] = Clrep, QL@
s a polynomial ring if and only if the following conditions are satisfied

(1) Q is tree-like, that is, if we draw an edge between vertices of Q whenever
there is at least one arrow between them in @, the graph obtained in a
tree.

(2) « is such that in every branching vertex v of the tree we have v, = 1.

(3) The quiver subsetting corresponding to branches of the tree are connected
sums of the following atomic pieces :

10
K
11 tIf@ k<n
1 0 0__®
v gD,

Proor. Using theorem 99 any of the atomic quiver settings has a polynomial
ring of invariants. Type I reduces via bl to



6.3. SMOOTH LOCI. 227

>

where k = min(m,n), type II reduces via bl and b2 to @, type III reduces via
b1, b3, bl and b2 to @O and finally, type IV reduces via bl to

’

By the previous example, any connected sum constructed out of these atomic quiver
settings has a regular ring of invariants. Observe that such connected sums satisfy
the first two requirements. Therefore, any quiver setting satisfying the requirements
has indeed a polynomial ring of invariants.

Conversely, assume that the ring of invariants C[iss,Q)] is a polynomial ring,
then there can be no quiver subsetting of the form

#vertices > 3

For we could look at a semisimplrer fepfésehtétidﬁ type 7 with decomposition
S S
TN

IS0 N AN

The local quiver contains a subquiver (corresponding to the first two components)
of type basic with k and [ > 2 whence cannot give a polynomial ring. That is, Q
is tree-like.

Further, the dimension vector a cannot have components > 2 at a branching
vertex v. For we could consider the semisimple representation type with decompo-

s1tion @Q@(/}@ @Q@Q@

R

and again the local quiver contains a subquiver setting of type basic with k =2 =1
(the one corresponding to the first two components). Hence, « satisfies the second
requirement.

Remains to show that the branches do not contain other subquiver settings than
those made of the atomic components. That is, we have to rule out the following

subquiver settings : PN
OO MBT)

A\ A\
@
with a > 3 and a1 > 2, ag > 2 and
A =N
oECAC)

with as > 2 and a3 > 2,
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whenever ay > 2. These situations are easily ruled out by theorem 99 and we leave
this as a pleasant exercise. ([

ExAMPLE 136. The quiver setting

o_® ®
el
@:@K/ Qé

has a polynomial ring of invariants if and only if & > 2.

EXAMPLE 137. Let (Q®,«) be a marked quiver setting and assume that
{l1,...,1,} are the marked loops in @*. If @ is the underlying quiver forgetting the
markings we have by separating traces that

ClissaQ] =~ ClissoQ°][tr(ly),. .., tr(l,)]

Hence, we do not have to do extra work in the case of marked quivers :

A marked quiver setting (Q°®, @) has a reqular ring of invariants if and only if (Q, @)
can be reduced to a one of the three final quiver settings of theorem 99.

We relate this result to the necklace Lie algebra neckg of section 3.4. Recall
that if @) is a symmetric quiver, we can define symplectic structures * on it which
is a partitioning of the arrows

Q.=LUR such that L*=R

Let Qr, be the subquiver on the arrows from L, then the trace pairing gives a natural
identification

rep, Q < T™rep, Qr,

between the representation space of @ and the cotangent bundle on the representa-
tion space of Q)r,. Therefore, rep, @) comes equipped with a canonical symplectic
structure.

If « = (aq,...,ax), then, for every arrow in L we have an a; X a;
matrix of coordinate functions A,, with 1 <u < a; and 1 < v < a; and for the
adjoined arrow in R an a; X a; matrix of coordinate functions Aj,.

The canonical symplectic structure on rep, @ is induced by the closed 2-form

1<v<a;
1§u§a7'

w= Y dA, NdA,
where the sum is taken over all @ € L. This symplectic structure induces a Poisson
bracket on the coordinate ring Clrep,, ()] by the formula

1<v<a;
1<uZay

_ of g of g
{ray="2> A, 0Ar.  9Ar. 04, )
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The basechange action of GL(«) on the representation space rep, @ is symplectic
which means that for all tangentvectors t,t’ € T rep, @ we have for the induced
GL(«) action that
w(t,t') = w(g.t, g.t')
for all ¢ € GL(«). The infinitesimal GL(«) action gives a Lie algebra homomor-
phism
pgl(a) — Vect,, rep, Q

which factorizes through a Lie algebra morphism H to the coordinate ring making

the diagram below commute
pgl(c
/ \

Clrep, Q] ———— Vect,, rep, Q

where pc is the complex moment map . That is, the map

repa Q Fe g[(Oé) ,uoz(v)z = Z VaVa* - Z Va*Va
GO ®<O
We say that the action of GL(«) on repCY Q@ is Hamiltonian . This makes the ring
of polynomial invariants Clrep,, Q¢ L(®) into a Poisson algebra and we will write

neck, = (Clrepa QY™ {— —})

for the corresponding abstract infinite dimensional Lie algebra. The dual space
of this Lie algebra neck? is then a Poisson manifold equipped with the Kirillov-
Kostant bracket. Evaluation at a point in the quotient variety iss, ) defines a
linear function on neck, and therefore gives an embedding

iss, @ — neck},

as Poisson varieties. That is, the induced map on the polynomial functions is a
morphism of Poisson algebras. The following results are adaptations of an idea due
to Victor Ginzburg [20].

THEOREM 101. Let @ be a symmetric quiver and o a dimension vector such
that iss, @ is smooth. Then, the Poisson embedding

iss, Q < neck],

makes iss, @Q into a closed coadjoint orbit of the infinite dimensional Lie algebra
neck,.

PROOF. In general, if X is a smooth affine variety then the differentials of
polynomial functions on X span the tangent spaces at all points x € X. If X is in
addition symplectic, the infinitesimal Hamiltonian action of the Lie algebra C[X]
(with the natural Poisson bracket) on X is infinitesimally transitive. Therefore, the
infinite dimensional group Ham generated by all Hamiltonian flows on X acts with
open orbits. If X is in addition irreducible, it must be a single orbit. That is, X is
a coadjoint orbit for C[X]. By assumption, iss, @ is an affine smooth irreducible
variety, so the argument applies. [
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Observe that the same argument applies to any affine smooth subvariety Y of
iss, @ (regardless of « being such that the quotient variety is smooth) whenever
the infinitesimal action of neck, on neck}, preserves Y. In particular, this applies
to (deformed) preprojective algebras and associated quiver varieties . We refer the
interested reader to [20], [3] and [39].

We still have to explain the terminology neck,. Recall that the necklace Lie
algebra introduced in section 3.4

Q)
(@), (@)]

is the vectorspace with basis all the necklace words w in the quiver @, that is, all
equivalence classes of oriented cycles in the quiver Q¢, equipped with the Kontsevich
bracket

neckgy = DRy, (Q) =

owy 0 owy 0
{wrwabi = Y (G52 = 5252 ) mod [(Q). Q)]

a€l

The algebra of polynomial quiver invariants Cliss, @] is generated by traces of
necklace words. That is, we have a map

(@)
(@), (@)]

From the definition of the Lie bracket on neck, we see that this map is actually a
Lie algebra map, that is, for all necklace words wy and ws in @ we have the identity

tr {w1,watrx = {tr(wy), tr(ws)}

The image of tr contains a set of algebra generators of Cliss, @], so the elements
tr neckg are enough to separate points in iss, (). Repeating the previous argu-
ment, we obtain :

t
neckg = —+ neck, = C[iss, Q]

THEOREM 102. Let QQ be a symmetric quiver and o a dimension vector such
that iss, @ is a smooth variety. The embeddings

issq Q — neck, — neckg
make issq @ into a coadjoint orbit for the necklace Lie algebra neckg.

One should not read too much into this statement. Recall from theorem 100
that we have a complete characterization of the quiver-settings (Q, ) satisfying the
requirements of the theorem. Consider such a setting, that is an admissible tree,
and consider any proper subtree setting (Q’,a’). Then also iss, Q' is a smooth
variety and therefore also a ’coadjoint’ orbit for neckg. Therefore, these coadjoint
orbits can have proper closed coadjoint suborbits.



CHAPTER 7

Nullcones

”There have been much talk about a theory of non-commutative
algebraic geometry. It is mot my intention here to add to this,
but rather to point out that our preceding theory does give us a
functor from rings to topological spaces which is a simple sum-
mary of the information on possible homomorphisms from the
ring to simple artinian rings. It would be possible to equip this
space with a sheaf of Tings, and to represent modules over the
ring as a sheaf of modules over this sheaf of rings; however, in
the absence of any obvious use for this machinery, I shall leave
it to future mathematicians of greater insight.”
Aidan Schofield in [60].

In this chapter we will describe the nullcones of quiver representations. We
give a representation theoretic interpretation of the Hesselink stratification. It
turns out that non-emptiness of a potential stratum is decided by the existence of
specific semistable representations for an associated quiver setting.

For this reason we investigate moduli spaces of semistable quiverrepresentations
in some detail. In particular we show that a f-stable representations becomes
simple in a universal localization which allows for a local investigation of these
moduli spaces (in particular the description of their singular locus) by means of
local quivers.

These results extend to a large class of alg-smooth algebras using the theory,
due to Aidan Schofield, of localizations at Sylvester rank functions. One covers
ressA, the Abelian category of all finite dimensional semistable representations
of A locally by repAs for certain universal localizations, thereby reducing to the
theory developed in the foregoing chapter.

7.1. Stability structures.

Some algebras just have not enough simple finite dimensional representations
for the previous reductions to have any effect. For example, if A is a finite di-
mensional alg-algebra, then A is Morita equivalent to the path algebra (@) of a
quiver without oriented cycles. The only simple representations of (Q) are the
vertex-simples and therefore emp(Q) ~ @Q. Clearly, all finite dimensional represen-
tations of (@) are nilpotent, whence the statement iso(repA) < iso(nullempA)
is a tautology.

If the alg-smooth algebra A has a shortage of simples, it is better to extend the
foregoing strategy as follows. Let schurA denote the subset of compA consisting of
those irreducible components of repA containing a Schur representation . That is,

231
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a finite dimensional representation M such that Enda(M) ~ C. Next, define the
bigger empire EmpA to be the (usually infinite) quiver with vertices v, corresponding
to the Schur roots o € schurA having ext(a, 3) directed arrows from v, to vg.

In this section we will prove, using the work on semistable representations of
Alexei Rudakov [58], that (with obvious notations) there is a natural one-to-one
correspondence

iso(ressA) < iso(nullEmpA)

where ressA are the finite dimensional representations which are semistable for
some stability structure on repA. This again reduces the study to a purely combi-
natorial part, the description of orbits in nullcones of quiver representations, and
the description of the Azumaya loci of sheaves of orders over the moduli spaces
parametrizing direct sums of stable representations.

However, this study can often be reduced to the setting studied in the foregoing
chapter by universal localization. In this section we will outline the reduction and
we will give ample detail in the special (but important) case of finite dimensional
algebras (or path algebras of quivers without oriented cycles) in the next section.

DEFINITION 97 (Rudakov). For A € alg let repA denote the Abelian category
of all finite dimensional representations of A. A preorder on repA has the property
that for any two non-zero representations V and W we have either V' < W or
W <Vor V=W (Vis confused with W). A preorder id said to be a stability
structure on repA if and only if every short exact sequence in repA

0O—U—V —W —20

satisfies the seesaw property , that is,

either U<V&e&U<Ws VW
or U>VesU>WesV>W
or UxVelUUxWeaeV=xW

A representation V is said to be semistable if V' # 0 and for every non-trivial
subrepresentation U C V we have U <V (that is, U <V or U < V). Equivalently,
V < W for every non-trivial factorrepresentation V- —» W.

A representation V is said to be stable if V' # 0 and for every non-trivial
subrepresentation U C V we have U < V. Equivalently, V" < W for every non-
trivial factorrepresentation V- —s» W.

ExAMPLE 138. We collect some easy consequences of the seesaw-property. For
a short exact sequence

0O—U—V —W—0
in repA and any nonzero M € repA we have

U< Mand W < M = V<M
HU>Mand W > M = V>M
HU=xMand W <M = V=M

More generally, if V has a finite filtration by subrepresentations

OZUn+1CUnC...CU1CU0:V
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with subsequent factorrepresentations W; = U; /U1, then
W, < Mforalll<i<n = V<M
ifW; >Mforalll1<i<n = V>M
W, xMforalll<i<n = V=M

This property we call the center of mass property . If moreover we have that
Wo < Wi < ... < W, and if we denote W;(j) = U;/U;4; then we have that

Wz(]) < Wk(l) = (ij) <lew (kv l)
where <, is the lexicographic ordering.
ExAMPLE 139. We claim that stable representations behave like simples. We

have the following version of Schur’s lemma. If V' > W are semistable representa-

tions with a non-zero morphism V' %+ W. We claim that the following properties
hold

1f W is Stable then ¢ is onto
if V is stable, then ¢ is mono
if V and W are stable, then ¢ is an isomorphism.

(
(
(
(

Indeed, consider the exact sequences

00— Ker¢op—V —Im¢p—>0 0—Im¢op — W — Coker¢p — 0

—_— T —

1
2
3
4

As ¢ £ 0, I'm ¢ a non-trivial factor- resp. subrepresentation whence
VIIm¢ and Im¢p<W whence VW

and therefore V < Im ¢ < W. For (2), if Im ¢ is a proper subrepresentation, then
Im ¢ < W contradicting I'm ¢ < W. (3) is proved similarly and (4) follows.

ExAMPLE 140. If 0 # V C W, then either V is semistable or there is a
semistable subrepresentation V' C V with V/ > V. Indeed, assume V is not
semistable, then there is a V; C V with V; > V. Either V; is semistable and we
are done or we can continue to find a subrepresentation Vo C Vi with Vo > V;. As
all our representations are finite dimensional, this process must finish.

If 0 2 V C W and there exists a semistable subrepresentation U C W with
V' > U then either U C V or there is a subrepresentation V' C V/ C W with
V' > V. Consider the exact sequences

0— VN —U—X—0 0—VCV4+U —>X—0

IfUgZVthenX;éOIfVﬂU;éOthenVﬁUSUwhenceUSX. AsV < U we
have V < X and by the second sequence V <V + U.

ExaMPLE 141. Call a subrepresentation 0 #£ V C W greedy if every semistable
subrepresentation U C W satisfying V' > U is contained in V. We claim that for
any subrepresentation 0 # U C W there is a greedy subrepresentation U C V C W
with U < V.

Indeed if V3 = U does not satisfy the requirement, then there is a semistable
X > Vi not contained in V; whence by the foregoing example there is a V7 C V4
such that V3 < Va. If V5 does not satisfy the requirement, we can repeat this
process and obtain a properly increasing series V4, C Vo C ... C W and by finite
dimensionality of W it must stabilize proving the claim.
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THEOREM 103 (Rudakov). For every W € repA there is a unique semistable
subrepresentation A(W) satisfying the following properties

(1) For every 0 #V C W we have V < A(W).
(2) For every 0 #V C W such that V < A(W) we have V. C A(W).

For every W € repA there is a unique semistable factorrepresentation V(W) sat-
isfying the following properties

(1) For every W —» V # 0 we have V > V(W).
(2) For every W —» V #£0 such that V< V(W) we have V(W) — V.

PROOF. We prove the statement on A(W), that on V(W) follows by duality.
There exists W’ C W satisfying (1). If W does not satisfy (1) there is a subrep-
resentation V' C W such that V' > W but then by the previous example there is
a greedy subrepresentation W7 C W such that Wy >V > W. If for all U C W,
we have U < W7, then Wi satisfies (1). Indeed, let V' C W such that V > Wy,
then either V is semistable or we can extend V to a semistable V' C W such that
V' > V whence V' > W7 but by greediness of W; we would have V' C Wy, a
contradiction.

Otherwise, there is a V' C W such that V' > W; and then we can extend V to
a greedy Wy C Wy such that Wy >V > W;. We can proceed this way and obtain
a strictly decreasing sequence of subrepresentation which must stabilize whence
proving the existence of subrepresentations W/ C W satisfying (1).

Let W be the set of all these W’ and take W{ € W. If W/ does not satisty
(2), there is V.C W with V =< W{ and V' ¢ W] and we may assume that V is
semistable (if not, extend V' to semistable V/ > V but then V' > W/ contradicting
that W] satisfies (1)). Let W4 = W{ + V then we claim that W3 > W{. We have
the sequences

00— VAW, —V —U—0 0— W, — W] +V —> U —> 0

As V is semistable, VN W] <V whence V< U. If W] +V < W] then U < W]
whence V < U < W] contradicting V' =< W{. Therefore, W{ C W3 and W} € W.
Either W} satisfies (2) or we can repeat the argument. This way we obtain a strictly
increasing sequence of subrepresentations which must stabilize in order to give a
subrepresentation A satisfying (1) and (2).

Remains to prove uniqueness. Assume A’ also satisfies (1) and (2), then A < A’
and by (2) both A C A’ and A’ C A. O

THEOREM 104 (Rudakov). There is a Jordan-Holder filtration for semistable
representations. That is, if W is a semistable representation, then there is a filtra-
tion

0=W,ppCcW,C...cWi CcWyg=W
such that the quotients V; = W; /W11 are stable and Vo < Vi < ... < V,.

PROOF. Let W,, be the minimal subrepresentation such that W,, =< W, then
W, is obviously stable. We claim that W/W,, is semistable. By the seesaw property
we have W,, < W < W/W,,. If W/W, is not semistable, there isa W,, CV C W
with V/W,, > W/W,,. But then, W < W/W,, > W/V contradicting semistability
of W as this implies W < W/V. Tterating this process finishes the proof. (I
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THEOREM 105 (Rudakov). There is a Harder-Narasinham filtration for W €
repA. That is, there is a unique filtration
0=Wpaa W, C...CWy CWyg=W
such that the quotients V; = W; /W1 are semistable and Vo < Vi < ... < V.

PRrROOF. Define Uy = 0 and U_; = A(W) and define for higher ¢ the subrepre-
sentation U_(;11) by the property that

U_(i+1) A( w )
U_; U_;
These quotients are semistable and it follows from the seesaw property and the
sequences that

U2 _ Uty

U_(it1) U_;
and hence the sequence U_y CU_5 C ... C U_(y,41) = W satisfies the requirements
of the theorem by example 138. Uniqueness follows from induction on the filtration
length and the following

claim : If0 =W, C W, C...C Wy C Wy =W is such that the quotients
V; = W; /W41 are semistable and Vy < Vi <... < V,, then W,,, = A(W).

We prove this by induction on m. If m = 0 then W is semistable. So assume
by induction that W,,_1/W,, = A(W/W,,) then for any V C W we have that

v Win—1
<
WV = Wy,

As W, is semistable, V NW,, < W,, but then from the center of mass property we
deduce that A < W,,,. That is, W,, satisfies (1) defining A(W). As for (2), assume
that V' is a subrepresentation such that V =< W,,, then

= m71<Vm:Wm

vV
VW,
if this factor is nonzero. But then V < W, =V, > V,,,_1 whence V/(V NW,,) >

Vin—1 a contradiction by induction. Therefore, the factor V/(V NW,,) = 0, that is,
V C W,, and so W, satisfies (2) finishing the proof of the claim. O

VW, <W, <V whence V <

Remains to prove the existence of stability structures on repA.

ExXAMPLE 142. Let ¢,r be two additive functions on repA, that is, for every
short exact sequence

0O—U—V —W —20

we have ¢(V) = ¢(U) + ¢(W) and »(V) = r(U) + r(W). Assume that r(V) > 0 for
all nonzero V (for example, let r be the dimension). The slope is defined to be
(V)

V) =25

We claim that the slope order defined by
V<W < w(V) < p(Ww)
V=w e uV)=pW)
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is a stability structure on repA. Indeed, we have

1 r(W) (W)
V)—pu(W) = ——=
) =W =Sy (V) )
and because r is positive, the slope order is determined by the sign (or zeroing) of
the determinant. Take an exact sequence

0O—U—V —W —20

then by additivity of ¢ and r we have the following equalities between the determi-
nants

(V) C(V)‘ _|r@) + (W) e(U) + (W )‘ r(W) (W )‘
r(U) «U) r(U c(U) r(U)  «U)
(W) (W) ‘ r(W) (W )‘

r(U)+r(W) eU)+cW)|— |r(V) V)

from which the claim follows.

DEFINITION 98 (King). Let A € alg and Ky(A) —%+ R be an additive function
on the Grothendieck group.

A representation V' € repA is said to be 8-semistable if (V) = 0 and every
subrepresentation V' C V satisfies (V') > 0.

A representation V' € repA is said to be 0-stable if V' is f-semistable and the
only subrepresentations V'’ with 6(V’) =0 are 0 and V.

ExAMPLE 143. Every slope stability structure as in example 142 determines
for any V € repA an additive function 6 on the Grothendieck group

Observe that 8(V) = 0 and M is (semi)stable for the slope stability structure if
and only if M is 6-(semi)stable. For we have

(V') >0 s —c(V)+ V r(V') >

c(V

—

(V')
e v S

r

v

EXAMPLE 144. Let Q be a finite quiver on k vertices, then K (Q) = Z* whence
any additive function 6 is determined by a k-tuple (t1,...,tx) € RF. If M € rep, @,
then we define

O(M) =0.a=tras + ...+ tgag
Therefore, M is 6-semistable if for every subrepresentation M’ C M of dimension
vector 3 we have 6.8 > 0 and is 6-stable if the only subrepresentations with (M) =
0 are 0 or M.

On rep(Q) slope stability structures can be defined by taking ¢ = (¢q,...,¢x) €
R* and r = (rq,...,7;) € N§ and defining for M € rep,, Q

(M) = ca and r(M)=r.a

We will outline the interrelation between Schur roots, stability structures and
the notion of Sylvester rank function introduced and studied by Aidan Schofield
[60].

If o € schurA, there is an open set in rep, A of representations such that the
stabilizer subgroup is C*. This open set determines a principal PG L, -fibration and
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therefore a central simple algebra X of dimension n?

have an algebra morphism

over its center. That is, we

A—— % =M (D)

with D a central division algebra of dimension s?> and n = rs. This defines an
additive function

KO(A)L%Z such that  p([4]) =1

by sending the class [P] of the finitely generated projective P (or more generally,
a finitely presented A-module) to p([P]) which is the rank over ¥ of ¥ ® 4 P. This
function has the following properties

(1) p(4) =1

(2) p(M & M") = p(M) + p(M")

(3) p(M”) < p(M'") < p(M) + p(M?) for every exact sequence

M— M — M —0

of finitely presented A-modules.

More generally, let Gp(A) be the Abelian group on the isomorphism classes of
finitely presented A-modules with relations [M & M'] = [M] + [M’] and define an
ordering on Go(A) by specifying a positive cone [M] > 0 for all non-zero finitely
presented modules M and if

M—M — M —0

is an exact sequence, then we define [M'] — [M”] > 0 and [M] — [M'] + [M”] > 0.
A Sylvester module rank function is defined to be an order preserving additive map

Go(A) L+ R such that p(A) =1

If p1,..., pr are Sylvester rank functions, then so is g1p1 +. .. qxpr with ¢; € Q, ¢; >
0 and g1 + ...+ gx = 1. Hence the Sylvester rank functions form a Q-convex subset
in the space of all real valued order preserving morphisms on Go(A). In fact, Aidan
Schofield proved [60, Thm.7.25] that they form an infinite dimensional Q-simplex
as any Sylvester rank function p can be written in a unique way as the weighted
sum of extremal points, that is, functions that do not lie in the linear span of others.
We call the set of all Sylvester rank functions on A the Schofield fractal schof A
of the algebra A. It contains all information about algebra morphisms from A to
simple Artinian algebras (not necessarily finite dimensional over their centers).

Returning to the study of repA we can restrict Sylvester rank functions to
repA and then it turns out that the functions we constructed above from Schur
roots a € schurA are extremal points in schof A. Moreover, any Sylvester rank
function p determines a universal localization A, of A, see [60], and in most cases
Schur representations in rep,A will become simple representations in an affine
intermediate universal localization A, C A, for the Sylvester rank function deter-
mined by a € schurA.

We will prove these claims in full detail in the next section for path algebras
of quivers as they are important to us in the investigation of nullcones of quiver-
representations. First, we prove Schofield’s characterization of schur(Q) based on
his results on general subrepresentations [61] and the theory of compartments due
to Harm Derksen and Jerzy Weyman [13] which can be seen as the part of the
Schofield fractal schof(Q) relevant for finite dimensional quiver-representations.
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To enlarge our cultural luggage, we briefly recall some classical results on
indecomposable representations of quivers due to Victor Kaé¢ [26]. Any quiver-
representation V € rep, () decomposes uniquely into a sum

V=wg.  owd:

of indecomposable representations . This follows from the fact that Endqy(V)
is finite dimensional. Recall also that a representation W of @) is indecompos-
able if and only if Endgy(W) is a finite dimensional local algebra, that is, the
nilpotent endomorphisms in End gy (W) form an ideal of codimension one. Equiv-
alently, the maximal torus of the stabilizer subgroup Stabgra)(W) = Aut gy (W)
is one-dimensional, which means that every semisimple element of Aut (W) lies
in C*(Tgy, - -+, Ty, )-

In general, decomposing a representation V into indecomposables corresponds
to choosing a maximal torus 7" in the stabilizer subgroup Aut gy (V). Decompose
the vertexspaces

Vi=@&,Vi(x) where  Vi(x)={veV, | tv=x({t)vVteT}

where x runs over all characters of T. One verifies that each V(x) = &;Vi(x) is
a subrepresentation of V' giving a decomposition V' = &,V (x). Because T acts
by scalar multiplication on each component V(x), we have that C* is the maximal
torus of Aut gy (V(x)), whence V(x) is indecomposable.

Conversely, if V =W; @ ... W, is a decomposition with the W; indecompos-
able, then the product of all the one-dimensional maximal tori in Aut gy (W;) is a
maximal torus of Aut gy (V).

DEFINITION 99. The Tits form of a quiver @) is the symmetrization of its Euler
form, that is,
Tb(avﬁ):::XQ(aaﬁ)'+;XQ(ﬁaa)
This symmetric bilinear form is described by the Cartan matriz

C11 ... C1E
Co=1": : with ¢;; =20;; —#{O—® }
Ck1 ... Ckk

where we count all arrows connecting v; with v; forgetting the orientation. The
corresponding quadratic form qq(a) = %XQ(a,oz) on QF is

k
qQ(x1, ..., k) = wa - Z T4(a)Th(a)
i=1 a€Qq
Observe that gg(a) = dim GL(a) — dim rep, Q. With I'g we will denote the
underlying graph of Q.

DEFINITION 100. A quadratic form g on Z* is said to be positive definite if
0 # « € Z* implies ¢(a) > 0.

A quadratic form ¢ on ZF is called positive semi-definite if g(a) > 0 for all
a € ZF. The radical of q is rad(q) = {a € Z* | T(a,—) = 0}. If qq is positive
semi-definite, there exist a minimal g > 0 with the property that go(a) = 0 if and
only if & € Qdg if and only if a € rad(qg).

If the quadratic form ¢ is neither positive definite nor semi-definite, it is called
indefinite .
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FIGURE 2. The extended Dynkin diagrams.

THEOREM 106. Let Q be a connected quiver with Tits form qg, Cartan matriz
Cq and underlying graph I'q. Then,

(1) qq is positive definite if and only if I'g is a Dynkin diagram , that is one
of the graphs of figure 1. The number of vertices is m.

(2) qq is semidefinite if and only if T'g is an extended Dynkin diagram, that
is one of the graphs of figure 2 and é¢g is the indicated dimension vector.
The number of vertices is m + 1.

PROOF. Classical, see for example [7]. O
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DEFINITION 101. An indecomposable root of @Q is the dimension vector of an
indecomposable representation of . With ind@ we denote the set of all indecom-
posable roots of Q.

If V € rep, @ has a decomposition into indecomposables

V=wg.  owd:

with «y; the dimension vector of W;, we say that V is of type 7 = (f1,71;. -3 f2,72)-
With itypes, @ we denote the set of all decomposition types which do occur for
a-dimensional representations.

ExaMpPLE 145. The canonical decomposition and generic representations.
For a dimension vector «, we claim that there exists a unique type Teqn =
(e1,P1;...5¢€1,0) € itypes, @ such that the set

rep,(Tean) = {V € rep, Q itype(V) = Tean}

contains a dense open set of rep, (). Indeed, by example 72 we know that for

any dimension vector [ the subset repg‘d Q of indecomposable representations of
dimension 3 is constructible. For 7 = (f1,71,;...; f2,7:) € itypes,Q the subset

rep,(7) ={V €rep, Q | itype(V) =1}
is a constructible subset of rep, @ as it is the image of the constructible set
GL(a) x repg?d Qx...x repfzd Q

under the map sending (g, Wy,...,W.) to g.(Wfo1 ® ... 0 W2, Because of
the uniqueness of the decomposition into indecomposables we have a finite disjoint
decomposition
rep, @ = |_| rep,, (7)
TEitypes,Q

and by irreducibility of rep, @ precisely one of the rep, (7) contains a dense open
set of rep, ). This unique type 7.4y is said to be the canonical decomposition of
a.

Consider the action morphisms GL(a) X rep,, Q o, rep, Q. By Chevalley’s
theorem 48 we know that the function

V — dim StabGL(a)(V)

is upper semi-continuous. Because dim GL(a) = dim Stabgra)(V) + dim O(V)
we conclude that for all m, the subset

rep,(m)={V €rep, Q | dim O(V)>m}

is Zariski open. In particular, rep,(maz), the union of all orbits of maximal di-
mension, is open and dense in rep, Q.
A representation V' € rep, @ lying in the intersection

rep,, (Tean) Nrep, (Mmazx)
is called a generic representation of dimension vector a.

EXAMPLE 146. Finite type quivers are Dynkin. Assume that @ is a connected
quiver of finite representation type , that is, there are only a finite number of isomor-
phism classes of indecomposable representations. Let « be an arbitrary dimension
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vector. Since any representation of ) can be decomposed into a direct sum of in-
decomposables, rep,, @ contains only finitely many orbits. Hence, one orbit O(V)
must be dense and have the same dimension as rep,, (), but then

dim rep, Q@ = dim O(V) < dim GL(«a) —

as any representation has C*(T,,,...,T,) in its stabilizer subgroup. That is, for
every a € N¥ we have gg(a) > 1. Because all off-diagonal entries of the Cartan
matrix Cg are non-positive, it follows that gq is positive definite on Z* whence T'g
must be a Dynkin diagram.

DEFINITION 102. Let ¢; = (61;,...,0r;) be the standard basis of Q*. The
fundamental set of roots is defined to be the set of dimension vectors

Fo={aeN'—0 | To(a,e) <0 and supp(a) is connected }

THEOREM 107. Let o = 31 +...+ 35 € Fg with ; € N¥ —0 for 1 <i < s> 2.
If qo(@) > qo(B1) + ... + qo(Bs), then supp(a) is a tame quiver (its underlying

graph is an extended Dynk’m diagram) and o € Nogypp(a) -

Proor. (1) : Let s =2, 51 = (c1,...,¢,) and By = (dy,...,d) and we may

assume that supp(a) = Q. By assumption T (61, 82) = qo(a) —ao (1) —qq(B2) >
0. Using that Cg is symmetric and o = 31 + B2 we have

0<TQ 51762 chcz 0

2 :CJ 2 : 2 :
= Cija; + = c” azaj

276]
and because T (o, €;) < 0 and ¢;; <0 for all ¢ # j, we deduce that
G_9 for all ¢ # j such that ¢;; # 0
a; a;

Because @ is connected, o and ; are proportional. But then, Tg(a,€;) = 0 and
hence Coa = 0. By the classification result, gg is semidefinite whence I'g is an
extended Dynkin diagram and a € Ndg. Finally, if s > 2, then

To(a,a) = ZTQ(&,@') > ZTQ(@*,@')

whence T (a—f;, 8;) > 0 for some ¢ and then we can apply the foregoing argument
to 61 andozfﬂi. O

DEFINITION 103. If G is an algebraic group acting on a variety Y and if X C Y
is a G-stable subset, then we can decompose X = |J; X(4) where X4 is the union
of all orbits O(z) of dimension d. The number of parameters of X is

w(X) = mazx (dim X (g — d)

where dim X4y denotes the dimension of the Zariski closure of X g).

In the special case of GL(«) acting on rep, (), we denote u(rep,(max)) =
pg(a) and call it the number of parameters of o. For example, if « is a simple root,
then p(a) = dim rep, @ — (dim GL(a) — 1) =1 — gg(a).
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DEFINITION 104. Let v; be a source vertex of @Q and let « = (ay,...,ax) a
dimension vector satisfying Zt( a)=v; h(a) = Gi- Consider the subset

rep, (i) ={V €rep, Q | ®Va:Vi —> Dya)=v; Vs(a) Is injective }

All indecomposable representations are contained in this subset.
The reflected quiver R;Q is obtained from ) by reversing the direction of all
arrows with tail v; making v; into a sink vertex.

The reflected dimension vector R;ae = (rl,..., 1) is defined to be
a; if j#1
ry = o .
Dot(a)=i Bs(a) — @i ifj =i

For the reflected quiver R;Q we have that Zh(a):l- Ti(a) = Ti- Define the subset
rep?%pja(i) ={V €repp,, RiQ | ®Va: Oya)=iVia) — Vi is surjective }

THEOREM 108 (Bernstein-Gel’fand-Ponomarov). Endowing both spaces with
the quotient Zariski topology, there is an homeomorphism

reply”"*(i)/GL(a) — repyy, (i)/GL(R;q)

such that corresponding representations have isomorphic endomorphism rings.

In particular, the number of parameters as well as the number of irreducible
components of mazximal dimension are the same for repg"d Q) and repgﬁfg R;Qa)

for all dimensions d.

PROOF. Let us denote with m = Zt(a):l- i, T€P = Dy(a)yziMa.(w) xar ) (C) and
GL = [1;4 GLa,. If Grassy(l) denotes the Grassmann manifold of k-dimensional
subspaces of C!, then there is a homeomorphism

rep”"(i)/G Ly, —=+ Top x Grass,, (m)

sending a representation V to its restriction in Tep and the image of the map &V,
for all arrows leaving v;.

Similarly, sending a representation V to its restriction in Tep and the kernel of
the sum map @V, for all arrows into v;, we have an homeomorphism

rep?{ia(i)/GLm - Tep X Grass,, (m)

and the first claim follows from figure 3. If V' € rep, Q and V' € repy , R;Q with
images respectively v and v in Tep X Grass,, (m), we have isomorphisms
Stabgrycr, (V) — Staber(v)
Stabgryer, (V) —» Stabgr(v)

from which the claim about endomorphisms follows. O

A similar results holds for sink vertices, hence we can apply these Bernstein-
Gelfand- Ponomarov reflection functors iteratively using a sequence of admissible
vertices (that is, either a source or a sink).

DEFINITION 105. For a vertex v; having no loops in @, we define a reflection
7k s 7k by
ri(a) =a —To(a,€)
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rep (i) rePia ()
rep°"°(i)/GL(c rep%na( )/GL(R;a)
/GL Tep X Grass,, (m)
| / \ |
repmono( /GL ................................ > rep?:fla /GL(R a)

FI1GURE 3. Reflection functor diagram.

The Weyl group of the quiver Q Weyl is the subgroup of GLy (Z) generated by all
reflections 7;.

A root of the quiver Q is a dimension vector a € N¥ such that rep, () contains
indecomposable representations. All roots have connected support. A root is said
to be .

real if p(repi™ Q) =0

imaginary  if p(repi™ Q) > 1
We denote the set of all roots, real roots and imaginary roots respectively by A, A,..
and A;,,. With IT we denote the set {¢; | v; has no loops }.

THEOREM 109 (Ka¢). With notations as before, we have

(1) Ape = Weyly.IIN NF and if o € Ay, then repmd 18 one orbit.
(2) Ay =Weyl.FgN NF and if & € Ay, then

po(a) = p(rep Q) =1 - qq(a)
PRrROOF. For a sketch of the proof we refer to [19, §7], full details can be found
in the lecture notes [37]. O

Having a characterization of ind() we will now determine the canonical decom-
position. We first need a technical result.

THEOREM 110 (Happel—Ringel). (1) fVv=V'"®V” € rep,(max), then
Ext% (VL V7) =
(2) If W, W' are mdecomposables and E:ﬂtl y(W,W’) =0, then any non-zero

map W’ N W is an epimorphism or a monomorphism. In particular,
if W is indecomposable with Extl y(W,W) =0, then Endqy(W) ~ C.

PROOF. (1) : Assume Ext'(V',V”) # 0, that is, there is a non-split exact
sequence

0— V"' — W — V' — 0
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It follows from section 4.4 that O(V) C O(W) — O(W), whence dim O(W) >
dim O(V) contradicting the assumption that V' € rep (maz).
(2) : From the proof of theorem 70 we have the exact diagram

dV
® Homc(V;,W;) =% @ Home(Vya), Wita)) — Extio (VW
& cl ) ey c(Vs(ay: Wi(a)) @ (V.w)

0

v v

d ’
®  Home(Vi, W) X & Homc(Vya), W/yy) — Extioy (V, W) — 0
& el ) ey c(Vs(a)» Witay) @ )

If W —— W’ then the dotted arrow is surjective. By a similar argument, if
W —— W’ then the canonical map Ezt! (W', V) — Exzt!'(W,V) is surjective.
Assume ¢ is neither mono- nor epimorphism then decompose ¢ into

W S Ut W
As € is epi, we have an epimorphism
Extiq,(W/U,W') —s Euxt|q,(W/U,U)

giving a representation V fitting into the exact diagram of extensions

’

0 W v - W' /U > 0
€ € id
0 U L W - W' /U > 0

from which we construct an exact sequence of representations

i

0 — W —=UsV
This sequence cannot split as otherwise we would have W & W’/ ~ U @ V contra-
dicting uniqueness of decompositions, whence Eact%Q> (W, W') # 0, a contradiction.

W —20

For the remaining part, as W is finite dimensional it follows that End (W)
is a (finite dimensional) division algebra whence it must be C. g

DEFINITION 106. Let a = (aq,...,ax) and 8 = (b1,...,br) be two dimension
vectors. Consider the closed subvariety

Homg (o, 8) = M, x5, (C) @ ... & My, xp, (C) © rep, Q ® reps Q

consisting of triples (¢, V, W) where ¢ = (¢1,...,dx) is a morphism V —— W.
Projecting to the two last components we have an onto morphism between affine
varieties

Homg (e, 5) L rep, Q ®reps; Q
The fiber dimension is upper-semicontinuous and as the target space rep, @ @
repy ( is irreducible, it contains a non-empty open subset hom,,;, where the di-
mension of the fibers attains a minimal value. This minimal fiber dimension will

be denoted by hom(a, ).
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Similarly, there is an affine variety Extg(c, §) with fiber over a point (V, W) €
rep, Q@ repy @ the extensions E:ct%@(v, W). Again, there is an open set ext,ip
where the dimension of Ext!(V,W) attains a minimum. This minimal value we
denote by ext(a, 3).

Because hom,,,;, N ext,;, is a non-empty open subset we have the equality

hom(a, B) — ext(a, B) = xq(a, B).
In particular, if hom(a, a+3) > 0, there will be an open subset where the morphism

V N W is a monomorphism. Hence, there will be an open subset of rep,, 5 @
consisting of representations containing a subrepresentation of dimension vector c.
We say that « is a general subrepresentation of o + ( and denote this with
a — a+ .
Similarly, « is a general quotient of o+ 3, and we denote a+ 3 — « if there
is a Zariski open subset of rep,, 5 @ of representations having an a-dimensional
quotient.

EXAMPLE 147. The quiver Grassmannian is the projective manifold
k
Grass,(a+ ) = H Grassg, (a; + b;)
i=1
Consider the following diagram of morphisms of reduced varieties

rep,.s @
pri

repp ™’ Q —— rep, 5 @ X Grassq(a + f)

Grass,(a + ()

which satisfies the following properties :

rep, 5 Q X Grass,(a+ ) is the trivial vectorbundle with fiber rep, , 5 Q over
the projective smooth variety Grass, (a + ) with structural morphism pry.

rep®th (@ is the subvariety of rep, 5 @ X Grassq(a+ B) consisting of couples
(W, V) where V is a subrepresentation of W (observe that for fixed W this is
a linear condition). Because GL(a + (3) acts transitively on the Grassmannian
Grass,(a+3), rep®*? Q is a sub-vectorbundle over Grass, (a+ 3) with structural
morphism p. In particular, rep®*# @ is a reduced variety.

The morphism s is a projective morphism, that is, can be factored via the
natural projection

rep,.5 @ X PN

S
repg"’ﬁ Q — rep,, 5 @
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Here, f is the composition of the inclusion repg+ﬁ Q — rep, 5 @ X Grass,(a+
B) with the natural embedding of Grassmannians in projective spaces Grass, («a +
8) —— Hle P with the Segre embedding Hle P" —— PN In particular, s
is proper by [22, Thm. 11.4.9], that is, maps closed subsets to closed subsets.

THEOREM 111 (Schofield). For W € rep,, 5 Q in the image of the map s of

the foregoing ewvample, let Grass,(W) denote the scheme-theoretic fiber s~ (W).
Let x = (W, V) be a geometric point of Grass, (W), then

W
V)

PRrROOF. The geometric points of Grass, (W) are couples (W, V') where V is an
a-dimensional subrepresentation of W. Whereas Grass, (W) is a projective scheme,
it is in general neither smooth, nor irreducible nor even reduced. Therefore, in order
to compute the tangent space in a point (W, V) of Grass, (W) we have to clarify
the functor it represents on the category commalg of commutative C-algebras.

Let C be a commutative C-algebra, a representation R of the quiver @ over
C consists of a collection R; = P; of projective C-modules of finite rank and a
collection of C-module morphisms for every arrow a in @

R; =P, <~ P =R,

The dimension vector of the representation R is given by the k-tuple
(rkc Ri,...,7kc Ry). A subrepresentation S of R is determined by a collection of
projective sub-summands (and not merely sub-modules) S; <R;. In particular, for
W € rep,, 5 @ we define the representation We of @ over the commutative ring
C by

T, Grasso(W) = Hom gy (V,

We)a =ide @c W,

With these definitions, we can now define the functor represented by Grass, (W) as
the functor assigning to a commutative C-algebra C' the set of all subrepresentations
of dimension vector « of the representation We.

The tangent space in « = (W, V') are the Cle]-points of Grass, (W) lying over

{(Wc)z =C®cW,;

(W, V). Let V N % be a homomorphism of representations of () and consider

a C-linear lift of this map ¢ : V —— W. Consider the C-linear subspace of
Weiq = Cle] ® W spanned by the sets

fv+ep) | veV} and €@V

This determines a Cle]-subrepresentation of dimension vector a of Wy lying over

(W, V) and is independent of the chosen linear lift ).

Conversely, if S is a Cle]-subrepresentation of Wg(q lying over (W, V'), then
% =V —— W. But then, a C-linear complement of €S is spanned by elements
of the form v + ey)(v) where ¥(v) € W and e ® ¢ is determined modulo an element
of e ® V. But then, we have a C-linear map ¢ : V — W and as S is a Cle]-
subrepresentation, 1[1 must be a homomorphism of representations of Q. O

THEOREM 112 (Schofield). The following are equivalent
(1) a = a+g.
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(2) Every representation W € rep, .3 Q has a subrepresentation V' of dimen-
ston .

(3) ext(a,B) =0.

PROOF. (1) = (2): The image of the proper map s : rep®*# Q — rep, 5 @
contains a Zariski open subset. Properness implies that the image of s is a closed
subset of rep,,; @ whence Im s = rep, 5 Q. The implication (2) = (1) is
obvious.

We compute the dimension of the vectorbundle repg*‘ﬁ Q@ over Grass,(a +
B). The dimension of Grassy(l) is k(I — k) and therefore the base has dimension
Zle a;b;. Now, fix a point V —— W in Grass,(«a + (), then the fiber over
it determines all possible ways in which this inclusion is a subrepresentation of

quivers. That is, for every arrow in @ of the form we need to have a
commuting diagram

V. v

W, ——— W,

Here, the vertical maps are fixed. If we modify V' € rep,, @, this gives us the a;a;
entries of the upper horizontal map as degrees of freedom, leaving only freedom for
the lower horizontal map determined by a linear map V‘Z — Wj, that is, having
b;(a; +b;) degrees of freedom. Hence, the dimension of the vectorspace-fibers is

Z (a;aj + bi(a; +b;))

giving the total dimension of the reduced variety rep®*” Q. But then,
k
dim rep®™® Q — dim rep,, 5 @ = Zaibi + Z (a;a; + bi(a; +b;))
i=1
— > (ai+bi)(a; +1b;)
k
= Zaibi - Z aibj = xq(a, B)
i=1

(2) = (3) : The proper map rep®*? — rep, 5 @ is onto and as both varieties

are reduced, the general fiber is a reduced variety of dimension x¢(«, ), whence the

general fiber contains points such that the tangentspace has dimension xqg(«, 3).
. . . . . . W

By the previous theorem, the dimension of this tangentspace is dim Hom ) (V, 37).

But then, because

w

. w .
xq(a, B) = dimc Hom ) (V, 7) — dimc Ezt%@(v, v )
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it follows that Ext!'(V,¥) = 0 for some representation V of dimension vector a
and % of dimension vector 5. But then, ext(«, 3) = 0.

(3) = (2) : Assume ext(a,3) = 0 then, for a general point W € rep,,; @
in the image of s and for a general point in its fiber (W, V) € repi*ﬁ @) we have
dimg Ext%@(‘ﬁ W) = 0 whence dime¢ Homg)(V, %) = xq(a,3). But then, the
general fiber of s has dimension xg(«, () and as this is the difference in dimen-
sion between the two irreducible varieties, the map is generically onto. Finally,
properness of s then implies that it is onto. ([

DEFINITION 107. Homg (e, 3) is the subvariety of the trivial vectorbundle

Homq («, ) = Hom(a, B) x rep, Q X repy Q

rep, Q) X reps @

of triples (¢, V,W) such that V e Wisa morphism of representations of Q.
The fiber @~1(V, W) = Homg)(V,W) and as the fiber dimension is upper semi-
continuous, there is an open subset Homy,;n (, 5) of rep, @ x repy ( consisting of
points (V, W) where dimc Hom ) (V, W) is minimal. For given dimension vector
0 = (dy,...,dy) consider the subset

Homg(a, ,8) = {(¢,V, W) € Homg (e, B) | rk ¢ =6} — Homg(a, §)

which is a constructible subset of Homg(c, 3). There is a unique dimension vec-
tor v such that Homg(c, 8,7) N ® ! (Homy,in (v, B)) is constructible and dense in
&~ (Hom,in(c, B)). This gamma is called the generic rank of morphisms from
rep, @ to reps; @ and will be denoted v = rk hom(«, 3).

®(Homg (ax, 3,7) N @~ (Hompmin (v, 3)))

is constructible and dense in Hom,,;, (V, W). Therefore it contains an open subset
Hom,,,(V,W) consisting of couples (V, W) such that dimcHom ) (V,W) is min-
imal and such that {¢ € Homqy(V,W) | rk¢ = v} is a non-empty Zariski open
subset of Hom ) (V,W).

THEOREM 113 (Schofield). Let v = rk hom(«, 3), then
Ha-—y—a—ry~>p—>[F-vy
(2) e‘rt(aa /6) = _XQ(a - ’775 - ’7) = €£Et(0[ -7 ﬁ - 7)

PROOF. The first statement is obvious from the definitions, for if v =
rk hom(a, ), then a general representation of dimension « will have a quotient-
representation of dimension v (and hence a subrepresentation of dimension « — )
and a general representation of dimension ( will have a subrepresentation of di-
mension 7y (and hence a quotient-representation of dimension 5 — .
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The strategy of the proof of the second statement is to compute the dimension
of the subvariety H/2*°" of Hom(«, ) x rep,, X rep; X rep,, defined by

1% ¢ - W

{(6, VW, X)) | factors as representations }

X=Im¢
in two different ways. Consider the intersection of the open set Hom,,(«, ) of the

previous definition with the open set of couples (V, W) such that dim Ext(V,W) =
ext(a, B) and let (V, W) be a point in this intersection. In theorem 111 we proved

dim Grass,(W) = xq(v,6 —7)
Let H be the subbundle of the trivial vectorbundle over Grass. (V)

H——— Hom(a, W) x Grass, (W)

Grass, (W)

consisting of triples (¢, W,U) with ¢ : &;C%% —— W a linear map such that
Im(¢) is contained in the subrepresentation U < W of dimension 5. That is,
the fiber over (W,U) is Hom(a,U) and therefore has dimension Zle a;c;. With
Hf“! we consider the open subvariety of H of triples (¢, W, U) such that Im ¢ = U.
We have

k
dim B =" aiei + xq (v, 8- 7)
=1

But then, H ®¢*" i the subbundle of the trivial vectorbundle over H/“!

Hfactor c rep,, Q % Hfull

full

consisting of quadruples (V, ¢, W, X) such that V e Wisa morphism of repre-
sentations, with image the subrepresentation X of dimension . The fiber of 7 over

a triple (¢, W, X) is determined by the property that for each arrow
the following diagram must be commutative, where we decompose the vertex spaces
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Vi=X;® K, for K =Ker ¢

where A is fixed, giving the condition B = 0 and hence the fiber has dimension
equal to
Yo (a—c)lag—e)+ Y alag—¢)= Y aila;—c)

This gives our first formula for the dimension of Hfector

k
dim BT =3 "aici + xo(B—1) + Y, aila; —¢))
1=1 a

On the other hand, we can consider the natural map Hf@ctor 2, rep, @ defined
by sending a quadruple (V, ¢, W, X) to V. the fiber in V is given by all quadruples

(V, ¢, W, X) such that V 2, W is a morphism of representations with Im ¢ = X
a representation of dimension vector 7, or equivalently

V)= {V o W | rkd =1}

Now, recall our restriction on the couple (V, W) giving at the beginning of the proof.
There is an open subset max of rep,, @ of such V' and by construction max C Im @,
®~!(max) is open and dense in H/%¢*°" and the fiber ®~1(V) is open and dense
in Homqy(V,W). This provides us with the second formula for the dimension of
Hfactor

dim B/*°*" = dim rep,, Q + hom(a, W) = Z a;a; + hom(ce, )
Equating both formulas we obtain the equality

k
XQ(1:B=7)+> aici— > aic; = hom(a, B)
= 0326)
which is equivalent to
XQ(v: B =) + xq(a,7) = xola, B) = ext(a, B)

Now, for our (V,W) we have that Ext(V,W) = ext(a, ) and we have exact se-
quences of representations

0—S—V—X—0 00— X — W —T—0
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and by theorem 110 this gives a surjection Ext(V,W) —> Ezt(S,T). On the
other hand we always have from the homological interpretation of the Euler form
the first inequality

dimc Ext(S,T) > —xq(a—7,6—7) =xo(, 8 —7) — xq(a, B) + xq(a,7)
= ext(a, B)

As the last term is dimc¢ Ext(V, W), this implies that the above surjection must be
an isomorphism and that

dimc Ext(S,T) = —xg(a—v,8—7) whence dimc Hom(S,T)=0
But this implies that hom(a — 7,8 — ) = 0 and therefore ext(a — 7,8 — 7) =
—Xxq(a =7, — ). Finally,
ext(a —y, 08 —v) =dim Ext(S,T) = dim Ext(V,W) = ext(a, )

finishing the proof. O
THEOREM 114 (Schofield). For dimension vectors o and 3 we have
—_ _ Y
ext(a, B) = , mex xo(a', 6"
B —>> g/
= mar —xole, ")

— mar  —xqla”,)

PROOF. Let V and W be representation of dimension vector a and [ such that
dim Ext(V,W) = ext(a, 8). Let S —— V be a subrepresentation of dimension o’
and W —= T a quotient representation of dimension vector 3’. Then, we have

ext(a, ) = dime Ext(V,W) > dimc Ext(S,T) > —xo(o/, 3')

where the first inequality follows from theorem 110 and the second follows from the
interpretation of the Euler form. Therefore, ext(c, ) is greater or equal than all
the terms in the statement of the theorem. The foregoing theorem asserts the first
equality, as for rk hom(a, 8) = v we do have that ext(o, 3) = —xgla—,8 — 7).

In the proof of the previous theorem, we have found for sufficiently general V'
and W an exact sequence of representations

0O—S—V —W—T—20

where S is of dimension o — v and T of dimension 3 — 7. Moreover, we have a
commuting diagram of surjections

Ext(V,W) - Ext(V,T)

N

Ext(S,W) — Ext(S,T)

and the dashed map is an isomorphism, hence so are all the epimorphisms. There-
fore, we have

ext(a, f —7) < dim Ext(V,T)=dim Ext(V,W) = ext(«, 3)
ext(a —~,0) < dim Ext(S,W) =dim Ext(V,W) = ext(a, )
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Further, let 77 be a sufficiently general representation of dimension 8 — ~, then it
follows from Ext(V,T') — Ext(S,T) that

ext(a — v, 8 — ) < dim Ext(S,T') < dim Ext(V,T') = ext(a, 3 —7)

but the left term is equal to ext(a, 3) by the above theorem. But then, we have
ext(a, 3) = ext(a, B—~). Now, we may assume by induction that the theorem holds
for §—+. That is, there exists §—~ — (” such that ext(a, 3—7) = —xo(®, 5").
Whence, § — 7 and ext(a, §) = —xo(a, 5”) and the middle equality of the
theorem holds. By a dual argument so does the last. O

ExXAMPLE 148. This gives us the following inductive algorithm to find all the
dimension vectors of general subrepresentations. Take a dimension vector o and
assume by induction we know for all § < « the set of general subrepresentations
B —— . Then, 8 — « if and only if

O:&’Et(ﬂ7a—ﬁ): max - X (ﬂ/aa_ﬁ)
B  » 38 Q

where the first equality comes from theorem 112 and the last from the above theo-
rem.

THEOREM 115. (1) a@ € schur(Q) if and only if rep, Q contains a
Zariski open subset of indecomposable representations.
(2) If a € Fg and suppc is not a tame quiver, then o € schur(Q).
(3) If a € schur(Q) and xg(o, ) < 0, then n.a € schur(Q) for all integers
n.

PrOOF. (1) : If V € rep, Q is a Schur representation, V' € rep,(maz) and
therefore all representations in the dense open subset rep,(maz) have endomor-
phism ring C and are therefore indecomposable.

Conversely, let Ind C rep, @ be an open subset of indecomposable rep-
resentations. Assume for V' € Ind we have Stabgr(a)(V) # C* and consider
po € Stabgr(a)(V) —C*. For any g € GL(c) we define the set of fized elements

rep,(9) ={W €rep, @ | g W =W}
and consider the subset of GL(«)
S={geGL() | dim rep,(g) = dim rep,(¢o)
which has no intersection with C*(1y,, ..., Ta, ) as ¢o ¢ C*. Consider the subbundle
of the trivial vectorbundle over S
B={(s,W)eSxrep, Q | s W=W} —» Sxrep, Q —> S
As all fibers have equal dimension, the restriction of p to B is a flat morphism
whence open . In particular, the image of the open subset BN .S x Ind
S'={geS | IWelInd : gW=W}

is an open subset of S. Now, S contains a dense set of semisimple elements, see for
example [37, (2.5)], whence so does S" = UwemaEnd gy (W) N S. But then one of
the W € Ind must have a torus of rank greater than one in its stabilizer subgroup
contradicting indecomposability.

(2) : Let « = 1 + ...+ Bs be the canonical decomposition of « (some §; may
occur with higher multiplicity) and assume that s > 2. By definition, the image of

GL(a) x (reps, @ X ... xreps Q) 2. rep, @
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is dense and ¢ is constant on orbits of the free action of GL(«) on the left hand
side given by h.(g,V) = (gh™1, h.V). But then,

dim GL(a) + Z dim repg, @ — Zdim GL(B;) > dim rep, Q

whence gg(a) > ", qo(8;) and theorem 107 finishes the proof.

(3) : There are infinitely many non-isomorphic Schur representations of dimen-
sion vector a. Pick n distinct of them {Wh,...,W,} and from x¢(a,a) < 0 we
deduce

H0m<Q>(Wi, Wj) = 5@‘@ and El‘t%Q>(Wi7 WJ) 7’5 0

By the proof of theorem 110 we can construct a representation V,, having a filtration

0=VycWcC...cV, with Vs ~W;
Vi1
and such that the short exact sequences 0 — V;_y — V; — W; —— 0 do
not split. By induction on n we may assume that Endg)(V,,—1) = C and we have
that Hom gy (V,—1,W,) = 0. But then, the restriction of any endomorphism ¢ of
V,, to V,,_1 must be an endomorphism of V,,_; and therefore a scalar X1. Hence,
¢—X1€ Endqgy(Vy) is trivial on V,, 1. As Homqy(Wy, V,,—1) = 0, Endqy(W,) =
C and non-splitness of the sequence 0 — V,,_y — V,, — W,, — 0 we must
have ¢ — X1 = 0 whence Endg)(V,) = C, that is, na is a Schur root. O

EXAMPLE 149. Schur roots and Azumaya algebras. If @ = (a1,...,ax) is a
Schur root, then there is a GL(«)-stable affine open subvariety U, of rep, @ such
that generic orbits are closed in U. Indeed, let T}, = C* x...x C* the k-dimensional
torus in GL(«). Consider the semisimple subgroup SL(a) = SL,, X ... X SLg,
and consider the corresponding quotient map

rep, @ 5 rep, Q/SL(a)

As GL(«o) = Ty SL(«v), T}, acts on rep, QQ/SL(a) and the generic stabilizer sub-
group is trivial by the Schur assumption. Hence, there is a Ty-invariant open subset
Uy of rep, Q/SL(«) such that Ti-orbits are closed. But then, according to [28, §2,
Thm.5] there is a Ti-invariant affine open Us in U;. Because the quotient map s
is an affine map, U = ;1 (Us) is an affine GL(«a)-stable open subvariety of rep,, Q.
Let  be a generic point in U, then its orbit

O(z) = GL(o).x = TiSL(er).w = Tu (%5 (¥s(2)) = o5 (T ths (@)

is the inverse image under the quotient map of a closed set, hence is itself closed.

Because U, is affine, we can define the witness algebra ¢ U, to be the ring
of GL(«a)-equivariant maps from U, to M, (C) with n = |a|. Over the Azumaya
locus azum of the order * U, the quotient map

rep, 1% Uy —> iss, 1* Us

is a principal PGL(«)-fibration in the étale topology and so determines an element
of H},(azu, PGL(c)). This pointed set classifies Azumaya algebras over azu with
a distinguished embedding of Cy = C x ... x C which are split by am étale cover
on which this embedding is conjugated to the standard embedding Cy C M, (C).
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DEFINITION 108. We say that a dimension vector « is left orthogonal to 3 and
denote a L 3 if hom(«, 8) = 0 and ext(a, 8) = 0.

An ordered sequence C' = (fi,...,3s) of dimension vectors is said to be a
compartment for @ if and only if

(1) for all 4, §8; € schur(Q) ,
(2) forali<j, 8; L Bj,
(3) for all ¢ < j we have xq(B;,08:) > 0.

THEOREM 116 (Derksen-Weyman). Suppose that C = (B1,...,0s) is a com-
partment for @@ and that there are mon-negative integers ey, ...,es such that o =
e1f1 + ... +esfs. Assume that e; = 1 whenever xo(8;, ;) < 0. Then,

Tean = (el7ﬂ1; .. ~§esyﬁs)

is the canonical decomposition of the dimension vector c.

PRrROOF. Let V be a generic representation of dimension vector o with decom-
position into indecomposables

V=Wr"a...oWe  with dim(W;)=p

we will show that (after possibly renumbering the factors (81, . .., 3s) is a compart-
ment for Q. To start, it follows from theorem 110 that for all ¢ # j we have
Eo:t@)(Wi,Wj) = 0. From theorem 110 we deduce a partial ordering i — j
on the indices whenever Hom gy (W;, W;) # 0. Indeed, any non-zero morphism
W; —— W; is either a mono- or an epimorphism, assume W; —s> W; then there
can be no monomorphism W; —— Wj, as the composition W; —— W}, would be
neither mono nor epi. That is, all non-zero morphisms from W; to factors must be
(proper) epi and we cannot obtain cycles in this way by counting dimensions. If
W; —— W, a similar argument proves the claim. From now on we assume that
the chosen index-ordering of the factors is (reverse) compatible with the partial
ordering i — j, that is Hom(W;, W;) = 0 whenever ¢ < j, that is, 3; is left orthog-
onal to 3; whenever i < j. As Ewt%@(Wj, W;) = 0, it follows that xq(8;,5;) > 0.
As generic representations are open it follows that all reps, @ have an open subset
of indecomposables, proving that the g3; are Schur roots. Finally, it follows from
theorem 115 that a Schur root 8; with xq(8;, 8;) can occur only with multiplicity
one in any canonical decomposition.

Conversely, assume that (01,...,0s) is a compartment for @, a = >, e;05;
satisfying the requirements on multiplicities. Choose Schur representations W; €
repg, (., then we have to prove that

V=Wr"a... owoe

is a generic representation of dimension vector «. In view of the properties of the
compartment we already know that Ext%@(Wi, W;) =0 for all ¢ < j and we need

to show that E;Utl (Wj, W;) = 0. Indeed, if this condition is satisfied we have
dim rep, Q — dim O(V) = dimcExt*(V,V)
—Ze dzm(cEa:t (W, W3) Ze (1—qo(B:)

We know that the Schur representations of dimension vector 3; depend on 1—g¢g(3;)
parameters by Kac s theorem 109 and e, = 1 unless go(8;) = 1. Therefore, the
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union of all orbits of representations with the same Schur-decomposition type as V'
contain a dense open set of rep,, ) and so this must be the canonical decomposition.

If this extension space is nonzero, Hom gy (W;, W;) # 0 as xq(B;,6:) > 0.
But then by theorem 110 any non-zero homomorphism from W; to W; must be
either a mono or an epi. Assume it is a mono, so §; < f;, so in particular a
general representation of dimension 3; contains a subrepresentation of dimension
B; and hence by theorem 112 we have ext(8;,8; — 8;) = 0. Suppose that §; is
a real Schur root, then Ext%@(Wj,Wj) = 0 and therefore also ext(f;,0;) = 0

as Ext%@(Wj,Wj @ (W;/W;)) = 0. If 3 is not a real root, then for a general

representation S € repg, @ take a representation R € repg () in the open set
where Ext%@(s, R) = 0, then there is a monomorphism S —— R. Because

Bt} (S, S) # 0 we deduce from the proof of theorem 110 that Ext g, (R, S) # 0
contradicting the fact that ext(3;, 5;) = 0. If the nonzero morphism W; — W;

is epi one has a similar argument. O

ExAMPLE 150. Algorithm to compute the canonical decomposition. Let @ be
a quiver without oriented cycles then we can order the vertices {v1,..., v} such
that there are no oriented paths from v; to v; whenever ¢ < j (start with a sink of
Q, drop it and continue recursively).

input : quiver @, ordered set of vertices as above, dimension vector o =
(a1,...,ar) and type 7 = (a1,01;...;ak, V) where v; = (8;5); = dim v; is the
canonical basis. By the assumption on the ordering of vertices we have that 7 is
a good type for a. We say that a type (f1,71;---; fs,7s) 18 a good type for « if
a =), fivi and the following properties are satisfies

(1) f; >0 for all i,
(2) = is a Schur root,
(3) for each i < j, ; is left orthogonal to ~;,

(4) fi =1 whenever xq(vi,vi) <O.
A type is said to be excellent provided that, in addition to the above, we also have
that for all ¢ < j, xq(aj,a;) > 0. In view of theorem 116 the purpose of the
algorithm is to transform the good type 7 into the excellent type 7.4,. We will
describe the main loop of the algorithm on a good type (f1,71;---; fs,Vs)-

step 1 : Omit all couples (f;,v;) with f; = 0 and verify whether the remaining
type is excellent. If it is, stop and output this type. If not, proceed.

step 2 : Reorder the type as follows, choose ¢ and j such that j — ¢ is minimal
and xo(B;,0;) < 0. Partition the intermediate entries {¢ +1,...,7 — 1} into the
sets

o {ki,...,kq} such that xq(v;,Vk..) =0,
e {l1,..., 1y} such that xo(vj,7,.) > 0.
Reorder the couples in the type in the sequence

(1,..i— 1, k1, kayis gyt lonj+1,...,8)

define p = v, v = v, p = fi, ¢ = fj, ¢ = pp+ qv and t = —xq(v, 1), then
proceed.
step 3 : Change the part (p, u; ¢, v) of the type according to the following scheme

e If y and v are real Schur roots, consider the subcases
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(1) x@(¢,¢) > 0, replace (p, p, q,v) by (p', '3 ¢'; V') where v/ and v/ are
non-negative combinations of v and u such that p/ is left orthogonal
tov, xo(, i) =t >0and ¢ = p'p’ + ¢’ for non-negative integers
r.q.

(2) xo(¢,¢) =0, replace (p,p;q,v) by (k,¢') with ¢ = k¢’, k positive
integer, and ¢’ an indivisible root.

(3) x@(¢,¢) <0, replace (p, u; q,v) by (1,¢).

e If 11 is a real root and v is imaginary, consider the subcases

(1) If p+ gxq(v,n) > 0, replace (p,p;q,v) by (¢,v — xoW, p)p;p +
axQ(v, p), 1)

(2) If p+gxo(v, p) <0, replace (p, u;q,v) by (1,0).

e If 1 is an imaginary root and v is real, consider the subcases

(1) If ¢ + pxq(v; ) = 0, replace (p,u;q,v) by (¢ + pxo(v, 1), vip, i —
XV, pv).

(2) If ¢ + pxq(v, 1) <0, replace (p, u;q,v) by (1,().

e If 1 and v are imaginary roots, replace (p, u;q,v) by (1,().

then go to step 1.

One can show that in every loop of the algorithm the number ), f; decreases,
so the algorithm must stop, giving the canonical decomposition of . A consequence
of this algorithm is that r(a) + 2i(a) < k where r(«) is the number of real Schur
roots occurring in the canonical decomposition of «, i(«) the number of imaginary
Schur roots and & the number of vertices of ). For more details we refer to [13].

ExaMPLE 151. Fortunately, one can reduce a general quiver setting (@, «) to
one of a quiver without oriented cycles using the bipartite double Qb of Q. We
double the vertex-set of @ in a left and right set of vertices, that is

b l L ,r r
Q. ={vy,..., v, 07,..., 0.}
To every arrow a € Q, from v; to v; we assign an arrow a € Q% from v! to 3.

In addition, we have for each 1 < i < k one extra arrow i in Q% from v! to vf. If
a = (ay,...,a) is a dimension vector for @, the associated dimension vector & for
Q" has components

a=(ay,...,a5,a1,...,0%).
If the canonical decomposition of a for @ is 7eqn = (e1,051;...;€s,0s), then the
canonical decomposition of & for QY is (e1, B31;...;es, 3s) as for a general represen-

tation of Q° of dimension vector & the morphisms corresponding to 7 for 1 < i < k
are all invertible matrices and can be used to identify the left and right vertex sets,
that is, there is an equivalence of categories between representations of Q¥ where all
the maps ¢ are invertible and representations of the quiver Q. Using this reduction,
the foregoing example can be used to compute the canonical decomposition of an
arbitrary quiver-setting.

For some pretty pictures of the fractal nature of the compartment division on
schof(Q) we refer to [13].

7.2. Moduli spaces.

In this section we will study moss, (Q,#), the moduli space of f-semistable a-
dimensional quiver representations. Here, § = (t1,...,t;) € R¥ and M € rep,Q
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FIGURE 4. Free product Q; * Q2 of quivers.

is f-semistable if 6.ac = 0 and for every proper subrepresentation M’ C M with
dimM’ = 3 we have 6.3 > 0. From the general results of Rudakov it follows that
points in moss, (Q, §) parametrize direct sum of f-stable representations. Further
we will prove that f-stable representations become simple in a universal localization
of (Q). As a consequence, moss, (@, ) can be covered by open affine subsets of the
form iss,(Q), and therefore the theory of local quivers, developed in the foregoing
chapters, can be applies to study the local structure (in particular, the singular
locus) of these moduli spaces.

We start with some examples illustrating that moduli spaces of quiver repre-
sentations appear naturally (in disguise) in as different fields as representations of
knot groups, linear dynamical systems and Brauer-Severi varieties. For the latter
two examples we present the classical approach to the local study of these moduli
spaces. Rephrased in quiver terms, it turns out that determinantal semi-invariants
cover these moduli spaces.

EXAMPLE 152. (Free products of quivers) Let Q1 and Q5 are two finite quivers,
then (@Q1) * (Q2) is an alg-smooth algebra. We like to have a concrete description
in quiver-terms of the finite dimensional representations of this algebra.

Let Q1 be a quiver on k vertices {vy,...,vx} and Q2 a quiver on p vertices
{w1,...,wp} and consider the extended quiver Q1 * Q2 of figure 4. That is, we add
one extra arrow from every vertex of ()1 to every vertex of Qs.

Consider the p x k matrix

where x;; denotes the extra arrow from vertex v; to vertex w;. It follows from
the definition of the algebra free product that every n-dimensional representation
of (@1) * {(Q2) is isomorphic to a representation V of the free-product quiver of
dimension vector (a; ) (where we order the vertices (v1,...,vg;wi,...,wp)) with
|a] = n =8| such that M, (M) is invertible. This defines a Zariski open subset of
rep(q,g) @1 * Q2.

Define, with this ordering of vertices, § = (—1,...,—1;1,...,1). We claim that
any V in the open subset is §-semistable. Indeed, (V) = 0 because |a| = n = |3
and for a subrepresentation W of dimension vector (7;0) we have that |y| < |J
as otherwise the linear map M, (W) would have a kernel contradicting invertibility
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of M,(V). Moreover, the only subrepresentations W C V which come from a
representation of the algebra free product (Q1) * (Q2) satisfy (W) = 0. Therefore,
V is a simple (@Q1) * (Q2)-representation if and only if V' lies in the open subset and
is B-stable.

In fact, the representations in the Zariski open subset determined by det M, #
0 are precisely the representations of a universal localization of (@1 x Q2). Let
{Py,..., Py} be the projective left CQ; * Q2-modules corresponding to the vertices
of @, and {Pj,..., PZ/}} those corresponding to the vertices of Q2 and consider the
morphism

P{@...@P;Lplea...@m

determined by the the matrix M,. The required universal localization is (Q1 * Q2),,
Later we will see that in general that -stable representations of a quiver @) be-
come simple representations of a suitable universal localization of (Q) clarifying
the similarity between stable representations and simples mentioned before. We
have already seen in example 134 the concept of free products of quivers applied to
the representation theory of torus knot groups.

EXAMPLE 153. (Linear dynamical systems) A linear time invariant dynamical
system 3 is determined by the system of differential equations

dx

— =2DB A
(7.1) a A

Y =Cz.

Here, u(t) € C™ is the input or control of the system at time ¢, z(¢t) € C™ the
state of the system and y(t) € CP the output of the system X. Time invariance
of ¥ means that the matrices A € Myxm(C), B € M,(C) and C € M,x,(C) are

constant, that is ¥ = (A, B, () is a representation of the quiver @

b

S e S

of dimension vector o = (m,n,p). Recall that the matriz exponential eP* is the

fundamental matrix for the homogeneous differential equation z—f = Bxz. That
is, the columns of eB? are a basis for the n-dimensional space of solutions of the
equation %"t” = Buz.

Motivated by this, we look for a solution to equation (7.1) as the form z(t) =
ePtg(t) for some function g(t). Substitution gives the condition

d T
digt] =e P'Au whence g(7) = g(70) +/ e P Au(t)dt.

70
Observe that z(19) = e®™g(1y) and we obtain the solution of the linear dynamical
system ¥ = (A, B,C) :

z(t) = e By(ry) + fTTO e(T=OB Ay(t)dt

y(r) = CePr—0x(ry) + f:o CelT=9B Ay(t)dt.

Differentiating we see that this is indeed a solution and it is the unique one having
a prescribed starting state x(79). Indeed, given another solution z1(7) we have that
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z1(7) — z(7) is a solution to the homogeneous system % = Bt, but then

z1(7) = (1) + e"Be ™8 (21 (1) — x(70)).

We call the system X completely controllable if we can steer any starting state
x(79) to the zero state by some control function u(t) in a finite time span [rg, 7].
That is, the equation

-

0=x(m0) + / e =DB Ay (t)dt
70

has a solution in 7 and u(t). As the system is time-invariant we may always assume

that 79 = 0 and have to satisfy the equation

(7.2) 0=uxo —|—/ !B Au(t)dt  for every xo € C"
0

Consider the control matriz ¢(X) which is the n x mn matrix

BA || B2A Bn1A

Assume that rk ¢(¥) < n then there is a non-zero state s € C™ such that
s'"¢(X) = 0, where s'" denotes the transpose (row column) of s. Because B sat-
isfies the characteristic polynomial x g (¢), B™ and all higher powers B™ are linear
combinations of {1,, B, B%,..., B""'}. Hence, s'"B™A = 0 for all m. Writing out
the power series expansion of e'? in equation (7.2) this leads to the contradiction
that 0 = sz for all zy € C". Hence, if 7k ¢(X) < n, then ¥ is not completely
controllable.

Conversely, let rk ¢(X) = n and assume that X is not completely controllable.
That is, the space of all states

s(ryu) = /OT e B Au(t)dt

is a proper subspace of C". But then, there is a non-zero state s € C™ such that
s's(t,u) = 0 for all 7 and all functions u(t). Differentiating this with respect to 7
we obtain

(7.3) s'"e P Au(t) =0 whence s"e TPA=0

for any 7 as u(7) can take on any vector. For 7 = 0 this gives s'"A = 0. If we
differentiate (7.3) with respect to 7 we get s'"Be " A = 0 for all 7 and for 7 =0
this gives s'”"BA = 0. Iterating this process we show that s'"B™A = 0 for any m,
whence

cX)=|| A

s"[A BA B?A ... B"'A]=0
contradicting the assumption that rk ¢(X) = n. That is,

A linear time-invariant dynamical system Y determined by the matrices
(A, B,C) is completely controllable if and only if rk ¢(X) is mazimal.

We say that a state z(7) at time 7 is unobservable if Ce(™=9Bz(7) = 0 for all t.
Intuitively this means that the state z(7) cannot be detected uniquely from the
output of the system X. Again, if we differentiate this condition a number of times
and evaluate at £ = 7 we obtain the conditions

Cxz(r) = CBx(r) = ... = CB" 'z(r) = 0.
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We say that X is completely observable if the zero state is the only unobservable
state at any time 7. Consider the observation matriz o(X) of the system ¥ which
is the pn X n matrix

o(£) = [cr (CB)r ... (CB* )"

An analogous argument as before gives us that a linear time-invariant dynamical
system ¥ determined by the matrices (A, B, C) is completely observable if and only
if rk o(¥) is maximal.

Assume we have two systems ¥ and ¥’, determined by matrix triples from
rep, @ = Myxm(C) x M, (C) x Mpx,(C) producing the same output y(t) when
given the same input u(t), for all possible input functions w(t). We recall that the
output function y for a system ¥ = (4, B, C) is determined by

y(1) = CeBr=0)g(7y) —|—/ Cel™ B Au(t)dt.

Differentiating this a number of times and evaluating at 7 = 7 as before equality
of input/output for ¥ and ¥’ gives the conditions

CB'A=C'B"A" foral i
But then, we have for any v € C™" that ¢(X)(v) = 0 < ¢(X')(v) = 0 and we can
decompose CP"* =V @ W such that the restriction of ¢(X) and ¢(X') to V are the
zero map and the restrictions to W give isomorphisms with C™. Hence, there is
an invertible matrix g € GL,, such that ¢(X’) = g¢(X) and from the commutative
diagram

(2 o(X)

cmn ) » C" C crn

), onc o), e

we obtain that also o(¥') = o(X)g~!.
Consider the system %1 = (A1, By, C1) equivalent with ¥ under the base-change
matrix g. That is, ¥; = ¢.¥ = (gA,gBg~',Cg~1). Then,

[A1,BiAy, ..., By A ] = ge(B) = (X)) = [A, B'A’,..., B A]

and so A; = A’. Further, as Bi“Al = Bt A’ we have by induction on 7 that the
restriction of B; on the subspace of B “Im(A’) is equal to the restriction of B’ on
this space. Moreover, as S 1! B'Im(A’) = C" it follows that B, = B’. Because
o(X) = o(X)g~! we also have C; = C’. Therefore,

Let ¥ = (A,B,C) and ¥/ = (A, B',C") be two completely controllable and
completely observable dynamical systems. The following are equivalent

(1) The input/output behavior of ¥ and X' are equal.
(2) The systems ¥ and ¥/ are equivalent, that is, there exists an invertible
matriz g € GL,, such that

A'=gA, B'=g¢gBg ' and C'=Cg '
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Hence, in system identification it is important to classify completely controllable
and observable systems ¥ € rep,, Q under this restricted basechange action. We
will concentrate on the input part and consider completely controllable minisystems,
that is, representations ¥ = (A, B) € rep,, Q for the quiver @

O———C

where @ = (m,n) such that ¢(X) is of maximal rank. Consider § = (—n,m),
then we can connect the notion of #-semistability of quiver representations with
system-theoretic notions :

If ¥ = (A, B) € rep, Q is 0-semistable, then 3 is completely controllable and
m < n.

Indeed, if m > n then (Ker A,0) is a proper subrepresentation of ¥ of dimension
vector § = (dim Im A — m,0) with 8(3) < 0 so ¥ cannot be @-semistable. If
¥ is not completely controllable then the subspace W of C®" spanned by the
images of A, BA,...,B" !'A has dimension k < n. But then, ¥ has a proper
subrepresentation of dimension vector 8 = (m, k) with 6(3) < 0, contradicting the
f-semistability assumption.

However, the restricted basechange action used in system-theory does not fit
in well with the quiver setting. However, for a fixed dimension vector a = (m,n)
we can remedy this by the deframing trick . Consider the quiver @,

having m arrows from the first vertex to the second. If § = (1,n) then there is a
natural one-to-one correspondence

rep, @ < Tepg Qm

defined by splitting the n x m matrix V(a) into its m columns. If 8’ = (—n,1)
then under this correspondence #-semistable representations in rep, () correspond
to #’'-semistable representations in reps Qm. More important, G'L(f)-orbits in
repy Qm correspond to restricted base-change orbits in rep, Q. To investigate the
orbit space we introduce a combinatorial gadget : the Kalman code . 1t is an array
consisting of (n + 1) x m boxes each having a position label (4, j) where 0 <i <n
and 1 < j < m. These boxes are ordered lexicographically that is (i',5") < (4,7) if
and only if either i’ < ¢ or i’ = ¢ and j' < j. Exactly n of these boxes are painted
black subject to the rule that if box (4, ) is black, then so is box (i, j) for all ¢/ < 3.
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That is, a Kalman code looks like

Bkl

1 m

We assign to a completely controllable couple ¥ = (A, B) its Kalman code K(X)
as follows : let A = [Al Ay ... Am], that is A; is the i-th column of A. Paint
the box (i, ) black if and only if the column vector B*A; is linearly independent
of the column vectors B* A4, for all (k,1) < (i, 5).

The painted array K(X) is indeed a Kalman code. Assume that box (4,j) is
black but box (¢, j) white for i’ < 4, then

Bi/Aj = Z alekAl but then, BiAj = Z OélekJ'_i_i,Al
(k,1)<(#,5) (k,1)<(#,5)

and all (k+14—4',1) < (3,1), a contradiction. Moreover, K (X) has exactly n black
boxes as there are n linearly independent columns of the control matrix ¢(¥) when
> is completely controllable.

The Kalman code is a discrete invariant of the orbit O(X) under the restricted
basechange action by GL,,. This follows from the fact that B*A; is linearly inde-
pendent of the B* A, for all (k,1) < (i, j) if and only if gB?A; is linearly independent
of the gB* A; for any g € GL,, and the observation that gB*A; = (¢Bg~1)*(gA);.

With rep’ @ we will denote the open subset of rep, @ of all completely
controllable couples (A, B). We consider the map

P
> M« (n+1)7rL(C)

rep, @

(A,B) — [A BA B?A ... B"'A B"A]

The matrix (A, B) determines a linear map (4, p) : Ccr+tm . C" and (A, B)
is a completely controllable couple if and only if the corresponding linear map
Y(a,B) is surjective. Moreover, there is a linear action of GL,, on M,y (541)m(C)
by left multiplication and the map ¢ is G L,-equivariant.

The Kalman code induces a barcode on (A, B), that is the n x n minor of
Y(A, B) determined by the columns corresponding to black boxes in the Kalman
code. By construction this minor is an invertible matrix ¢! € GL,,. We can choose
a canonical point in the orbit O(X) : ¢.(4, B). It does have the characteristic
property that the n x n minor of its image under 1, determined by the Kalman
code is the identity matrix ‘,. The matrix 1(g.(A, B)) will be denoted by b(A, B)
and is called barcode of the completely controllable pair ¥ = (A4, B). We claim that
the barcode determines the orbit uniquely. The map ) is injective on the open set
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rep!, . Indeed, if
[A BA ... B"A|=[A B'A ... B"A
then A = A’ B| Im(A) = B’ | Im(A) and hence by induction also
B | B'Im(A) = B' | B'Im(A") foralli<n-—1.
But then, B = B’ as both couples (4, B) and (A’, B’) are completely control-

lable. Hence, the barcode b(A, B) determines the orbit O(X) and is a point in the
Grassmannian Grass,(m(n + 1)). We have

c ¥ max
rep, Q — n><m(n+1)((c)

6() X

Grass,(m(n+1))

where 9 is a GL,-equivariant embedding and x the orbit map. Observe that
the barcode matrix b(A, B) shows that the stabilizer of (A4, B) is trivial. Indeed,
the minor of g.b(A, B) determined by the Kalman code is equal to g. Moreover,
continuity of b implies that the orbit O(X) is closed in rep, Q.

Compute the differential of ¢. For all (4, B) € rep, @ and for all (X,Y) €
T(a,B) Tep, @ we have

j—1
i=0
Therefore the differential of 1 in (A, B), di(4,5)(X,Y) is equal to
[X BX+YA B2X+BYA+YBA ... B"X+Y."BYB"174].

Assume di 4, p) (X,Y) is the zero matrix, then X = 0 and substituting in the next
term also YA = 0. Substituting in the third gives Y BA = 0, then in the fourth
YB2A =0 and so on until YB" 1A = 0. But then,

Y[A BA B2A ... B 'A]=0.

If (A, B) is a completely controllable pair, this implies that ¥ = 0 and hence
shows that di 4, py is injective for all (A, B) € repf, Q. Therefore, ¥ is a GL,-
equivariant embedding of rep¢ @ with image a locally closed smooth subvariety
of MTTX“& +1)m((C). The image of this subvariety under the orbit map y is again
smooth as all fibers are equal to GL,,. This concludes the difficult part of the
Kalman theorem :

The orbit space O, = rep’, Q/GLy, of equivalence classes of completely control-
lable couples is a locally closed smooth subvariety of dimension m.n of the Grass-
mannian Grass,(m(n + 1)).

To prove the dimension statement, define repS (K') the set of completely controllable
pairs (A, B) having Kalman code K and let O.(K) be the image under the orbit
map. After identifying rep¢ (K) with its image under 9, the barcode matrix b(A, B)
gives a section O (K) —— rep’ (K). In fact,

GL,, x O.(K) — rep’ (K) (g,2) — g.5(x)
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is a GL,-equivariant isomorphism because the n x n minor of g, b(A, B) determined
by K is g. Consider the generic Kalman code K9 obtained by painting the top boxes
black from left to right until one has n black boxes. Clearly rept (KY) is open in
rep’, () and one deduces

dim O, = dim O.(KY9) = dim rep® (K?) — dim GL,, = mn +n* —n? = mn.

EXAMPLE 154. (Brauer-Severi varieties) Let K be a field and A = (a,b)x the
quaternion algebra determined by a,b € K*. That is,

A=KleKiaKjeKij with i’=a j2=0b and ji=—ij
The norm map on A defines a conic in P% called the Brauer-Severi variety of A
BS(A) = V(2% — ay?® — b2?) — P% = proj K|z,vy,2].

Its characteristic property is that a fieldextension L of K admits an L-rational
point on BS(A) if and only if A ® x L admits zero-divisors and hence is isomorphic
to Mz(L). More generally, using the descent interpretation of étale (or Galois)
cohomology we see that the cohomology pointed set

HY(K,PGL,)
classifies at the same time when K is the algebraic closure of K

e Brauer-Severi K-varieties B.S, which are smooth projective K-varieties
such that BSx = BS x g K ~ IE”E{l.
e Central simple K-algebras A, which are K-algebras of dimension n? such
that A @ x K ~ M, (K).
The one-to-one correspondence between these two sets is given by associating to
a central simple K-algebra A its Brauer-Severi variety BS(A) which represents
the functor associating to a fieldextension L of K the set of left ideals of A @ L
which have L-dimension equal to n. In particular, BS(A) has an L-rational point
if and only if A®g L ~ M, (L) and hence the geometric object BS(A) encodes the
algebraic splitting behavior of A.

Brauer-Severi varieties (and schemes) were later defined for Azumaya algebras
and even for arbitrary Cayley-Hamilton algebras. Historically, these concepts were
introduced and studied by M. Nori [49] who called them noncommutative Hilbert
schemes. We follow here the account of M. Van den Bergh in [12].

Let (A,tra) € alg@n and consider the GL,,(C) action on the product scheme
trep,, A x C" defined by

9.(M,v) = (9.M, gv)
where the action in the first factor is the basechange action on trep,, A and in the
second factor is left multiplication. In this product we consider the set of Brauer
stable points which are defined to be

braverAd = {(M,v) | op(A)v=C"}

where ¢pr : A —— M, (C) is the morphism defining M. This is also the subset of
points with trivial stabilizer subgroup. Hence, every GL, (C)-orbit in brauerA is
closed and we can form the orbit space called the Brauer-Severi scheme of A

bsA = brauer/GL,.

We will see in a moment that this is a projective space bundle over the quotient
variety trep,A/GL, = tiss,A. For arbitrary (A,trs) € alg@n not much can be
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said about these Brauer-Severi schemes. However, if A is alg@n-smooth, we claim

If (A tra) € algln is alg@n-smooth, then the Brauer-Severi scheme bsA is a
smooth variety.

Indeed, as the action of GL,, on brauerA is free, it suffices to prove that brauer A
is a smooth variety. But, brauerA is a Zariski open subset of the smooth variety
trep,, A x C*. We will relate the study of the Brauer-Severi variety to that of 6-
semistable points of a quiver setting. Consider the generic case, that is A = fn (m).
In this case we have that

trep/ (m) x C* =rep, Q

where o = (1,n) and the quiver Q is

where the arrow a corresponds to the C"” component and the m loops give M, =
trep [ (m). Let # = (—n,1), then f-semistable representations in rep, @Q are
precisely the Brauer stable points brauer [ (m). Indeed, let (Ai,...,Ap,v) €
rep, @ be a Brauer stable point. This means that C" is spanned by v and all
vectors of the form A7 ... A{"*v. But then there are no proper subrepresentations
of dimension vector 8 = (1, k) with k& < n. Conversely, a f-semistable representation
is Brauer stable for assume that the subspace spanned by v and the above vectors
is k < n then there is a proper § = (1, k)-dimensional subrepresentation W with
OW)=-n+k<0.

Let us present a concrete description of the Brauer-Severi variety in case m = 2,
that is when @ is

y
For the investigation of the GL,-orbits on rep, @ we introduce a combinatorial
gadget : the Hilbert n-stair . This is the lower triangular part of a square n x n
array of boxes

" I

1 n
filled with go-stones according to the following two rules :

e cach row contains exactly one stone, and
e cach column contains at most one stone of each color.
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For example, the set of all possible Hilbert 3-stairs is given below.

D) ° ° 0 0 0
ol | o o |e] | o] o

To every Hilbert stair o we will associate a sequence of monomials W (o) in the
free algebra (2) = C(x,y). At the top of the stairs we place the identity element 1.
Then, we descend the stairs according to the following rule.

e Every go-stone has a top word T which we may assume we have con-
structed before and a side word S and they are related as indicated below

1 1 1

s = =

0"l © Tl T

3 = 3

For example, for the Hilbert 3-stairs we have the following sequences of non-
commutative words

We evaluate a Hilbert n-stair o with associated sequence of non-commutative words
W(o) = {1,wa(z,y),...,wp(z,y)} on

rep, Q@ = M,(C) @& M,(C) g C"

For a triple (X, Y, v) we replace every occurrence of « in the word w;(x, y) by X and
every occurrence of y by Y to obtain an n x n matrix w; = w;(X,Y) € M, (C) and
by left multiplication on v a column vector w;.v. The evaluation of o on (X,Y,v)
is the determinant of the n x n matrix

o(X,Y,v)=det| v wo.v || ws.v W,V

For a fixed Hilbert n-stair o we denote with rep(o) the subset of triples (X,Y,v)
in rep, @ such that the evaluation o(X,Y,v) # 0. We claim

For every Hilbert n-stair, rep (o) # 0
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Let v be the first basic column vector e;. Let every black stone in the Hilbert stair
o fix a column of X by the rule

L |
T R (o] | _1_ | %
o = X = 0

1 j n J

That is, one replaces every black stone in o by 1 at the same spot in X and fills
the remaining spots in the same column by zeroes. The same rule applies to Y for
white stones. We say that such a triple (X,Y,v) is in o-standard form. With these
conventions one easily verifies by induction that

wi(X,Y)e; =¢; forall2<i<n.

Hence, filling up the remaining spots in X and Y arbitrarily one has that
o(X,Y,v) # 0 proving the claim. Hence, rep(c) is an open subset of rep, Q
(consisting of 6-stable representations) for every Hilbert n-stair . Further, for
every word (monomial) w(z,y) and every g € GL,(C) we have that

w(gXg~ ", gYg ")gv = guw(X,Y)v

and therefore the open sets rep(o) are stable under the GL,-action on rep, Q.
We will give representatives of the orbits in rep(o).

Let W, = {l,z,...,2™ ay,...,y"} be the set of all words in the non-
commuting variables x and y of length < n, ordered lexicographically. For every
triple (X,Y,v) consider the n x m matrix

1/J(X,Y,v):[u Xu X?%u ... Y”u]

where m = 2"*1—1 and the j-th column is the column vector w(X, Y )v with w(z,y)
the j-th word in W,,. Hence, (X,Y,v) € rep(o) if and only if the n x n minor
of ¥(X,Y,v) determined by the word-sequence {1,ws,...,w,} of o is invertible.
Moreover, as

(gXg~' 9V g gu,vg™") = gi(v, X, Y)
we deduce that the G L,-orbit of (X,Y,v) contains a unique triple (X1, Y7, v1) such

that the corresponding minor of (X1, Y1,v1) =1,. Hence, each GL,,(C)-orbit in
rep(o) contains a unique representant in o-standard form. Therefore,

The action of GL,, on rep(o) is free and the orbit space is an affine space of
dimension n® + n.

The dimension is equal to the number of non-forced entries in X, Y and v. As we
fixed n — 1 columns in X or Y this dimension is equal to

E=2n%—(n—1)n=n%+n.

The above argument shows that every GL,-orbit contains a unique triple in o-
standard form so the orbit space is an affine space. We claim,
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The Brauer-Severi variety bs fn (2) is a smooth variety of dimension n? +n
and is covered (in the Zariski topology) by the affine spaces rep(o).

We still have to prove that any Brauer-stable triple (X, Y, v) € rep,Q belongs to at
least one of the open subsets rep(o). Either Xv ¢ Cv or Yv ¢ Cv. Fill the top box
of the stairs with the corresponding stone and define the 2-dimensional subspace
Vo = Cuvy 4+ Cuy where v1 = v and vy = we(X,Y)u with wy the corresponding word
(either = or y). Assume by induction we have been able to fill the first i rows of
the stairs with stones leading to the sequence of words {1, ws(z,y),...,w;(z,y)}
such that the subspace V; = Cvy + ... + Cv; with v; = w;(X,Y)v has dimension
i. Then, either Xu; ¢ V; for some j or Yu; ¢ V; for some j. Fill the j-th box in
the 7 + 1-th row of the stairs with the corresponding stone. Then, the top i + 1
rows of the stairs form a Hilbert ¢ + 1-stair as there can be no stone of the same
color lying in the same column. Define w;1(x,y) = zw;(z,y) (or yw;(z,y)) and
Vi1 = wit+1(X,Y)v. Then, V;y; = Cv1+...4+Cv;41 has dimension i+ 1 continuing
we end up with a Hilbert n-stair o such that (X,Y,v) € rep(o).

In the two previous examples we have seen that the varieties classifying closed
orbits of semistable representations are covered by open sets defined by determi-
nants. We will show that this is true in full generality. Closed orbits of rep-
resentations were described by polynomial invariants, closed orbits of semistable
representations will be described by semi-invariants .

DEFINITION 109. A character of GL(«) is an algebraic group morphism x :
GL(a) — C*. They correspond to integral k-tuples 6 = (t1,...,tx) € ZF by

GL(a) X C* (g1, -, gK) — det(gr)". ... .det(gy)™
For a fixed 6 we can extend the GL(«)-action to the space rep, Q @ C by
GL(a) x rep, QB C — rep, QBT g.(V,e) = (9.Vi x5 (9)0)

The coordinate ring Clrep, Q@C] = C[rep,][t] is graded by defining deg(t) = 1 and

deg(f) =0 for all f € Clrep,, @Q]. As action of GL(«) preserves this gradation, the

ring of invariant polynomial maps Clrep, Q][t]“*(®) is graded with homogeneous

part of degree zero the ring of polynomial invariants C[rep,]“*(®) = C[iss, Q].
An invariant of degree n, say ft" with f € C[rep,, Q)] satisfies

f(gV)=x5(9)f(V)
that is, f is a semi-invariant of weight xj. That is, the graded decomposition of
the invariant ring is
Clrep, Q@& (C]GL(O‘) =Ry®R1®... with R;=Clrep, Q]GL(O‘)’XTLQ

The moduli space of semi-stable quiver representations of dimension « is the
projective variety

mossq(Q,0) = proj Clrep, Q & (C]GL(Q) =proj @or, Clrep, Q]GL(O‘)’XW

A representation V' € rep,, @ is said to be xg-semistable if and only if there is
a semi-invariant f € Clrep,, Q]¢H(@X"? for some n > 1 such that f(V) # 0. The
Zariski open subset of rep, () consisting of all xg-semistable representations will
be denoted by ress,(Q,0).

THEOREM 117 (King). The following are equivalent
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(1) V erep, Q is xg-semistable.

(2) Forc#0, we have O(V,) NV(¢t) = 0.

(3) For every one-parameter subgroup A(t) of GL(a) we have i”% At). Ve ¢
V(1) = rep, Q x {0}.

(4) For every one-parameter subgroup \(t) of GL(«) such that i”% At).V
exists in rep, @ we have §(\) > 0.

Moreover, this occurs only if 0(a) = 0. The moduli space of 0-semistable represen-
tations of rep,, @

moss, (@, 0)

classifies closed GL(«)-orbits in the open subset ressy(Q,0) of all xg-semistable
representations.

ProOF. Lift a representation V' € rep, @ to points V., = (V,¢) € rep, Q ®C
and use GL(«a)-invariant theory on this larger GL(«)-module

/

/

B Vo V(t)

/

Assume that the orbit closure O(V.) does not intersect V(¢t) = rep, @ x {0}.
As both are GL(«a)-stable closed subsets of rep, @ & C the separation prop-
erty of invariant theory yields the existence of a G'L(«)-invariant function g €
Clrep, Q @ C]%L(®) such that g(O(V.)) # 0 but g(V(t)) = 0. We may assume
g to be homogeneous, that is, of the form g = ft" for some n. But then, f is a
semi-invariant on rep, @ of weight xj and V must be xg-semistable. Moreover,
f(a) = Zle t;a; = 0 as the one-dimensional central torus of GL(«)

u(t) = (t,,. .., t,) — GL(a)

acts trivially on rep, @ but acts on C via multiplication with Hle t~4%t_ Hence,
if 6(«) # 0 then O(V.) NV (t) # 0.

It follows from the Hilbert criterium that O(V,) N V(¢) = 0 if and only if for
every one-parameter subgroup A(t) of GL(«) we have that img A(t).V. ¢ V(t). We

can also formulate this in terms of the GL(«a)-action on rep, (). The composition
of a one-parameter subgroup A(t) of GL(«) with the character

C* A(t) GL(O[) X6 C*

is an algebraic group morphism and is therefore of the form ¢ —— ¢ for some
m € Z and we denote this integer by 0(A\) = m. Assume that A\(¢) is a one-parameter
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subgroup such that im(% A(t).V = V' exists in rep, Q. Because A(t).(V,c) =

(A(t).V,t7™¢), (X)) > 0 for the orbitclosure O(V,) not to intersect V(¢).

As for the second assertion, let g = ft" be a homogeneous invariant function for
the GL(a)-action on rep, @ @ C and consider the affine open GL(«)-stable subset
X(g). The construction of the algebraic quotient and the fact that the invariant
ring is graded asserts that the closed GL(«)-orbits in X(g) are classified by the
points of the graded localization at g which is of the form

(Clrep, Q& CI“H ™))y = Ry[h, h™']

for some homogeneous invariant h where Ry is the coordinate ring of the affine
open subset X(f) in moss,(Q, ) determined by the semi-invariant f of weight xj.
The claim follows because the moduli space is covered by such open subsets. ([

THEOREM 118 (King). For V € rep, Q the following are equivalent

(1) V is xg-semistable.
(2) V is 0-semistable.

For a §-semistable representation V € rep,, @) equivalent are

(1) The orbit O(V) is closed in moss,(Q, ).
(2) VWP @...o WP with W; a 0-stable representation.

The geometric points of the moduli space moss,(Q,60) are in natural one-to-one
correspondence with isomorphism classes of a-dimensional representations which
are direct sums of 0-stable subrepresentations. The quotient map

ress,(Q,0) — moss,(Q,0)

maps a 0-semistable representation V to the direct sum of its Jordan-Hélder factors
in the Abelian category of semistable representations.

ProoOF. For A : C* —— GL(«a) a one-parameter subgroup and V € rep, Q
we can decompose for every vertex v; the vertex-space in weight spaces
Vi = ®nezV"
where A(t) acts on the weight space Vi(n)
tion allows us to define a filtration

Vz(zn) — @mzn‘/z‘(m)

as multiplication by ¢". This decomposi-

For every arrow O<————@), A(t) acts on the components of the arrow maps
(n) Va" 1 (m)
by multiplication with ¢*~". That is, a limit i”% Va exists if and only if V" =0

for all m < n, that is, if V, induces linear maps

>n Va >n
Vi(_ ) Vj(_ )

Hence, a limiting representation exists if and only if the vertex-filtration spaces
V;(Z") determine a subrepresentation V,, C V for all n. A one-parameter subgroup

A such that ltim A(t).V exists determines a decreasing filtration of V' by subrepre-

sentations
oDV D Va1 Dl



7.2. MODULI SPACES. 271

Further, the limiting representation is then the associated graded representation

Va
lim A(#).V = &,
Lim A(t) ®ean+1

where of course only finitely many of these quotients can be nonzero. For the given
character 0 = (t1,...,%) and a representation W € rep; @ we denote

O(W) =t1by + ...+ tgby where = (by,...,bx)

Assume that (V) = 0, then with the above notations, we have an interpretation
of 6(\) as

k
o) =Y ;Y ndime VI =3 nb( Va )= 0(Va)
i=1 nez nez Vit nez

(1) = (2) : Let W be a subrepresentation of V' and let A be the one-parameter
subgroup associated to the filtration V-2 W D 0, then {m(@) A(t).V exists whence

by (4) of the previous theorem #(\) > 0, but we have
ON) =0(V)+o0(W)=0(W)
(2) = (1) : Let A be a one-parameter subgroup of GL(«) such that i”% At).V

exists and consider the induced filtration by subrepresentations V,, defined above.
By assumption all 8(V,,) > 0, whence

oA =>_0(Va) >0
nez
and the result follows from the foregoing theorem.

As for the second part. (1) = (2) : Assume that O(V) is closed in ress,(Q,6)
and consider the #-semistable representation W = gr V, the direct sum of the
Jordan-Hélder factors in the Abelian category of #-semistable representations. As
W is the associated graded representation of a filtration on V', there is a one-
parameter subgroup A of GL(«) such that iz_@% A(t).V ~ W, that is O(W) C

O(V)=0(V), whence W ~ V. (2) = (1) : Let O(W) be a closed orbit contained

in O(V) (one of minimal dimension). By the Hilbert criterium there is a one-
parameter subgroup A in GL(«) such that izrré A(t).V ~ W. Hence, there is a finite

filtration of V' with associated graded 6-semistable representation W. As none of
the f-stable components of V' admits a proper quotient which is #-semistable (being
a direct summand of W), this shows that V ~ W and so O(V) = O(W) is closed.
The other statements are clear from this. ([

EXAMPLE 155. Remains to determine the situations (¢, ) such that the cor-
responding moduli space moss, (@, ) is non-empty, or equivalently, such that the
Zariski open subset ress,(Q,0) C rep, @ is non-empty. This follows from the
results on general subrepresentations proved in section 7.1

Let a be a dimension vector such that 6(«) = 0. Then,

(1) ressy(Q, ) is a non-empty Zariski open subset of rep, @ if and only if
for every f —— « we have 6(F) > 0.

(2) The 0-stable representations form a non-empty Zariski open subset of
rep, Q if and only if for every 0 # 3 — a we have 6(3) >0
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E—
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c

FIGURE 5. Left-right bipartite quiver.

We will study the moduli space moss, (@, #) both in the Zariski- and the étale
topology. To understand the first we have to determine the graded algebra of
semi-invariants.

DEFINITION 110. (Determinantal semi-invariants) Let @ be a quiver on the
vertices {vi,...,vx}, fix a dimension vector @ = (ay,...,a;) and a character xg
where 6 = (t1,...,t;) such that 6(«) = 0. We will call a bipartite quiver @’ as in
figure 5 on left vertex-set L = {l1,...,{,} and right vertex-set R = {r1,...,r,} and
a dimension vector 5 = (c1,...,¢p;dy,. .., dq) to be of type (Q, «v, 0) if the following
conditions are met

e All left and right vertices correspond to vertices of ), that is, there are maps
L —l>{111,...,11k}
{R . {v1,..., 01}
possibly occurring with multiplicities, that is there is a map
LUR -+ Ny
such that ¢; = m(l;)a, if I(l;) = v, and d; = m(rj)a, if r(r;) = v,.

e There can only be an arrow if for v, = I(l;) and v; = r(r;) there is

an oriented path
@ ®

in @ allowing the trivial path and loops if v = ;.

e Every left vertex [; is the source of exactly ¢; arrows in Q' and every right-vertex
r; is the sink of precisely d; arrows in Q’.

e Consider the u x u matrix where u = ), ¢; = Zj d; (both numbers are equal
to the total number of arrows in Q') where the i-th row contains the entries of the
i-th arrow in Q' with respect to the obvious left and right bases. Observe that
this is a GL(8) semi-invariant on repg Q' with weight determined by the integral
k+ l-tuple (—1,...,—1;1,...,1). If we fix for every arrow a from /; to r; in Q" an
m(r;) x m(l;) matrix p, of linear combinations of paths in @ from [(l;) to r(r;), we
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obtain a morphism

rep, (Q —* repg Q'
sending a representation V' € rep, @ to the representation W of Q' defined by
W, = po (V). Composing this map with the above semi-invariant we obtain a GL(«)
semi-invariant of rep, @ with weight determined by the k-tuple 6 = (¢1,...,tx)

where
ti=y, m(r)— Y m()
jeEr—1(v;) JEI=1(v;)
. We call such semi-invariants standard determinantal .

THEOREM 119 (Schofield-Van den Bergh). The semi-invariants of the GL(«)-
action on rep, @ are generated by traces of oriented cycles and by standard deter-
minantal semi-invariants.

PROOF. See [62]. Observe that analogous descriptions of the semi-invariants
were obtained in [13] and [15]. O

We will now clarify the relationship between #-stable representations and simple
representations.

THEOREM 120. For V € rep, Q the following are equivalent
(1) V € resso(Q,0), that is, V is 0-semistable.
(2) There is a universal localization (Q), such that (Q), ® V is a simple
a-dimensional representation of (Q), .

PROOF. Fix a character 6§ = (t1,...,t;) and divide the set of vertex-indices
into a left set L = {i1,...,14,} consisting of those 1 <14 < k such that ¢; <0 and a
right set R = {j1,...,j,} consisting of those 1 < j < k such that ¢; > 0 (observe
that LN R may be non-empty). For every vertex v; we consider the indecomposable
projective module P; = (Q)e; spanned by all paths in the quiver @ starting at v;.
As a consequence we have that Hom ) (P;, P;) is spanned by all paths [7,4] in the
quiver @ from vertex v; to vertex i. For a fixed integer n we consider the set Xg(n)
of all {(@)-module morphisms

pETMi g g pPTM % pPrti g g pEnti
1 an J1 Jv
||notation ||notation
o
Pcl@...@PCp PdlEB...EBqu

By the remark above, o can be described by an (p = n> ;) x (¢ = nd_t;,.)
matrix M, all entries of which are linear combinations p;,, of paths in the quiver
Q from vertex vq,, to vertex v.,. For V € rep, @ we can substitute the arrow
matrices V(a) in the definition of p;,;, and obtain a square matrix of size a, X ag4,, -
If we do this for every entry of o we obtain a square matrix as (V) = 0 which we
denote by o(V'). But then, the function

de(V)=det (V) : rep, @ — C

is a semi-invariant of weight nf. By the foregoing theorem, all semi-invariants in
Clrep,, Q)¢ (@)XE are spanned by such determinantal semi-invariants. We define

Xo(a)={V €rep, Q | do(V) # 0}
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Because d,, is a semi-invariant of weight nf it follows that X,(«) consists of 6-
semistable representations. Also remark that X, («) is the variety of a-dimensional
representations of the universal localization (@), .

(1) = (2) : Let V be §-stable and assume that W C V is a proper sub (Q)_-
module of dimension vector 5. Restricting W to a representation of () we see that
W € reps @ and is a subrepresentation of V. Because W € repy (Q), we have
0(B8) = (W) = 0, which is impossible as V is f-stable.

Let (Q), ® V be a simple (Q), representation and assume that W C V is a proper
subrepresentation of dimension vector 3 = (b1, ..., bg) with (W) < 0. If §(W) < 0
then — > nt; b;, > > nt; b, whence o(W) has a kernel but this contradicts the
fact that o(V) is invertible. Hence, (W) = 0 but then (Q), ® W is a proper
subrepresentation of (Q)_, ® V contradicting simplicity. O

ExXAMPLE 156. The quotient map 7y is locally isomorphic to the quotient map
rep, (Q), = Xo(a) —— ressq(Q,0)

issy (@), = Xo(a)/GL(o) = moss,(Q, )

assigning to an a-dimensional (@) -module its semi-simplification, that is, the di-
rect sum of its Jordan-Holder components. Because the affine open sets X, («) cover
ress,(Q, 0), the moduli space of f-semistable quiver representations moss, (Q, «) is
locally isomorphic to quotient varieties iss, (@), for specific universal localizations
of the path algebra, all of which are affine alg-smooth algebras.

We now consider the étale local structure of the moduli spaces moss, (@, 6). As
a consequence we will determine their singular loci.

DEFINITION 111. Let £ € moss,(Q, «) be a geometric point of semistable rep-
resentation type T = (my, fB1;...;my, B;). That is, the unique closed orbit lying in
the fiber 7, (&) is the isomorphism class of a direct sum

Ve=WP™ma...oWP™
with W; a 6-stable representation of dimension vector f3;.

The local quiver setting (Q¢, a¢) associated to £ is defined as follows :

o ()¢ has [ vertices wy, ..., w; corresponding to the distinct #-stable compo-
nents of Vg, and
e the number of arrows from w; to w; is equal to

dij — xq@(Bi, B)

where x¢ is the Euler form of Q.
e the dimension vector ag = (mq,...,my) gives the multiplicities of the
stable summands.

Observe that the local quiver setting depends only on the semistable representation
type.
THEOREM 121. There is an étale isomorphism between
(1) an affine neighborhood of £ in the moduli space moss,(Q, «), and
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(2) an affine neighborhood of the image 0 of the zero representation in the quo-

tient variety issa, Q¢ corresponding to the local quiver setting (Q¢, ae).

Therefore, £ is a smooth point of the moduli space moss,(Q,0) if and only if the
quiver setting (Qg, ce) satisfies the requirements of theorem 99.

PROOF. Let ¢ € moss,(Q, «) with corresponding Ve having a decomposition
into §-stable representations W; as above. We may assume that Ve € X,(a) where
X, (@) is the affine GL(«)-invariant open subvariety of ress,(Q, 6) defined by the
determinantal semi-invariant d,. We have seen that X, (o) ~ rep, (Q), the variety
of a-dimensional representations of the universal localization (Q),. Moreover, if we
define V{ = (Q), ® V¢ and W] = (Q), ® W; we have

VZ _ Wl/EBml D...d VVI/@mz

is a decomposition of the semisimple CQ, representation VE/ into its simple com-
ponents W/. Restricting to the affine smooth variety X, (a) we are in a situation
to apply the Luna slice theorem to the representation scheme of the alg-smooth
algebra (@), as before.

The normal space to the orbit can be identified with the self-extensions

Nyy = Ext%@g(v&’, Vi) =&l Ext%Q)U(Wi/a W)

By Schur’s lemma we know that the stabilizer subgroup of the semisimple module
Vg’ is equal to GL(ag¢) and if we write out the action of this group on the self
extensions we observe that it coincides with the action of the basechangegroup
GL(ag) on the representation space rep,, I' of a quiver I" on [ vertices such that
the number of arrows from vertex w; to vertex w; is equal to the dimension of the
extension group
Ext%@g (Wi, W)

Remains to prove that the quiver I' is our local quiver Q¢. For this we apply a
general homological result valid for universal localizations, [60, Thm 4.7]. If A,
is a universal localization of an algebra A, then the category of left A,-modules is
closed under extensions in the category of left A-modules. Therefore,

Eaxty (M,N) = Exth(M,N)
for A,-modules M and N. Therefore,
Eaxtig, (W], W]) = Extig, (Wi, W;)

Further, as the W, are 6-stable representations of the quiver () we know that
Homqy(W;, W;) = §;;C. Finally, we use the homological interpretation of the
Euler form

XQ(ﬂi, ﬂj) = dimc HO’ITL(Q>(W1', Wj) - dimc Emt%@(Wi, W])
to deduce that I' = Q¢. The last statement follows by étale descent. O

ExaMPLE 157. The foregoing theorem can be used to determine the dimen-
sion vectors of #-stable representations lying in the positive linear span of a set of
dimension vectors of f-stables.

Let B1,...,0; be dimension vectors of 0-stable representations of () and assume
there are integers my,...,my > 0 such that

a=miB + ... +mf
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Then, « is the dimension vector of a 0-stable representation of @ if and only if
o = (my,...,my) is the dimension vector of a simple representation of the quiver

Q' on | vertices wr, ..., w; such that there are exactly
dij — xq(Bi, B;)
arrows from w; to w;.

For, let W; be a f-stable representation of @) of dimension vector [3; and consider
the a-dimensional representation

V=wme. . oewpPm

It is clear from the definition that (Q', o) is the local quiver setting corresponding
to V. As before, there is a semi-invariant d, such that V € X;(a) = rep, (Q),
and (@), ® V is a semi-simple representation of the universal localization CQ,. If
there are f-stable representations of dimension «, then there is an open subset of
X, () consisting of @-stable representations. But we have seen that they become
simple representations of (Q),. This means that every Zariski neighborhood of
V € rep, (@), contains simple a-dimensional representations. By the étale local
isomorphism there are o/-dimensional simple representations of the quiver @’.

Conversely, as any Zariski neighborhood of the zero representation in rep,, @’
contains simple representations, then so does any neighborhood of V' € rep,, (Q), =
X, (a). We have seen before that X, (a) consists of §-semistable representations
and that the f-stables correspond to the simple representations of (Q),, whence
Q@ has f-stable representations of dimension vector a. By theorem 85 the set of 6-
stable dimension vectors can be described by a set of inequalities. For more results
along similar lines we refer the reader to the recent preprint [14] of H. Derksen and
J. Weyman.

7.3. Nullcones of quiverrepresentations.

In this last section we will conclude our approach to the study of iso(repA)
for A an alg-smooth algebra. Recall that if £ € iss, A corresponds to the semi-
simple representation Mg, then the isomorphism classes of all representations M &
rep, A having Jordan-Holder semisimplification Mg are the orbits in the fiber of
the quotient map

rep, A —or iss,A
Using the results on the étale local structure, we know that as G L, -varieties
7€) ~ GL,, xGH@e) null,, Q¢

Therefore, GL,-orbits in the fiber correspond one-to-one to G L,-orbits in the fiber
bundle which, in turn, correspond one-to-one with GL(cg)-orbits in the nullcone
null,, Q.

We will apply general results on nullcones due to Wim Hesselink [23] and
Frances Kirwan [30] to give a representation theoretic description of nullcones of
quiver-representations. First, we will outline the basic ideas in the case of the
free algebra (m) after which the passage to the general case is merely a notational
problem.

EXAMPLE 158. (The generic case) We will outline the basic idea of the Hesselink
stratification of the nullcone [23] in the generic case, that is, the action of GL,, by
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simultaneous conjugation on m-tuples of matrices M* = M,, ® ... ® M,,. With
null]” we denote the nullcone of this action

null?” ={x = (41,...,4n) € M | 0=(0,...,0) € O(x)}
From the Hilbert criterium, theorem 51, we recall that © = (A, ..., A,,) belongs

. . . A
to the nullcone if and only if there is a one-parameter subgroup C* — GL,, such
that

lim A(t).(Ay, ..., Apn) = (0,...,0).

t—0
Any one-parameter subgroup of GL,, is conjugated to one determined by an integral
n-tuple (r1,...,r,) € Z™ and permuting the basis if necessary, we can conjugate this
A to one where the n-tuple if dominant , that is, ry > ro > ... > r,. By applying
permutation Jordan-moves , that is, by simultaneously interchanging certain rows
and columns in all A;, we may therefore assume that the limit-formula holds for a
dominant one-parameter subgroup A of the maximal torus
C1 0
T,~C"x...xC"=/{ | ¢; €C"} — GL,

—_———
n 0 Cn

of GL,. Computing its action on a n X n matrix A we obtain

tr 0 aily ... Qin t—" 0 t" " "ay ... t"TTmag,

0 t' | lap1 ... Gnn 0 t="n t" "ayy ... T ag,

By dominance r; < r; for ¢ > j, the limit is defined only if a;; = 0 for ¢ > j, that
is, when A is a strictly upper triangular matrix.

/

Any m-tuple © = (Ay,...,Ap) € nulll® has a point in its orbit O(x), 2/ =
(A}, ..., AL) with all A strictly upper triangular matrices. In fact permutation
Jordan-moves suffice to arrive at x’.

For specific m-tuples ¢ = (41,...,A,,) it might be possible to improve on this
result. That is, we want to determine the smallest ’corner’ C' in the upper right hand
corner of the matrix, such that all the component matrices A; can be conjugated
simultaneously to matrices A} having only non-zero entries in the corner C

and no strictly smaller corner C’ can be found with this property. We want to
compile a list of the relevant corners and to define an order relation on this set.

Consider the weight space decomposition of M for the action by simultaneous
conjugation of the maximal torus T,

m __ m _ dm
My = @1<ijen My (M — 7)) = @1<i,j<nCr %1,
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where ¢ = diag(c1, ..., c,) € Ty, acts on any element of M (m; — ;) by multiplica-
tion with cl-c;l7 that is, the eigenspace M, (m; — ;) is the space of the (4, j)-entries
of the m-matrices. We call

W= {m-m | 1<i,j<n}

the set of T,,-weights of M]". Let x = (Ai,...,A;) € null?” and consider the
subset E, C W consisting of the elements 7; — 7; such that for at least one of the
matrix components Ay, the (i, j)-entry is non-zero. Repeating the argument above,
we see that if A\ is a one-parameter subgroup of 7, determined by the integral
n-tuple (r1,...,7,) € Z™ such that lim A(t).z = 0 we have

Vr—m; € B, wehave r;—1r; >1
Conversely, let E C W be a subset of weights, we want to determine the subset
{5:(81,...,Sn)€Rn |5¢75j21V7T¢77I’j€E}

and determine a point in this set, minimal with respect to the usual norm

| sll=1/stT+...+s2

Let s = (s1,...,$y) attain such a minimum. We can partition the entries of s in a
disjoint union of strings

{pi7pi + 17"'api +kl}

with k; € N and subject to the condition that all the numbers p;; def p; + j with
0 < j < k; occur as components of s, possibly with a multiplicity that we denote
by a;;. We call a string string; = {p;,p; +1,...,p; +k;} of s balanced if and only if

ki
Z 85 = Zaij(pi +7)=0
§=0

spEstring;
In particular, all balanced strings consists entirely of rational numbers. We claim
Let E C W, then the subset of R™ determined by
Reg={(r1,....r0) | i—7; >1V¥m—m € E}

has a unique point sg = (s1,...,8,) of minimal norm || sg ||. This point is deter-
mined by the characteristic feature that all its strings are balanced. In particular,
SE € @n

Let s be a minimal point for the norm in R’ and consider a string of s and denote

with S the indices k € {1,...,n} such that s € string. Let m; — m; € E, then if

only one of i or j belongs to S we have a strictly positive number a;;
Si—Sj:].-f—?"ij with Tij>0

Take €y > 0 smaller than all r;; and consider the n-tuple

Se =5+ €(d15,...,0ns) with g =11if k € S and 0 otherwise

with | € |< €. Then, s, € R} for if m;; —7; € E and ¢ and j both belong to S or
both do not belong to S then (s¢); — (s¢); = s; —s; > 1 and if one of i or j belong
to S, then

(85)7; — (SE)J‘ =1 +T’1‘j +e Z 1
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by the choice of ¢y. However, the norm of s, is

I se = w 5 +2¢ 3 i+ 248

kesS

Hence, if the string would not be balanced, ), . ¢ sx # 0 and we can choose ¢ small

enough such that || s¢ ||<]| s ||, contradicting minimality of s and proving the claim.
For given n we have an algorithm to compile the list S, of all dominant n-

tuples (s1,...,s,) having all its strings balanced.

e List all Young-diagrams ), = {Y7,...} having < n boxes.

e For every diagram Y] fill the boxes with strictly positive integers subject to the

rules : (1) the total sum is equal to n, (2) no two rows are filled identically and (3)

at most one row has length 1. This gives a list 7,, = {T1, ...} of tableaux.

e For every tableau T} € 7, for each of its rows (as,as,...,ax) find a solution p to

the linear equation

az+as(z+1)+...+ar(x+k)=0
and define the Y a;-tuple of rational numbers

p,...,pp+1,...,p+1,...p4+k,...,p+ k)
———

ai a ag

Repeating this process for every row of 7; we obtain an n-tuple, which we then
order.

The list S,, will be the combinatorial object underlying the relevant corners
and the stratification of the nullcone. To every s = (s1,...,8,) € S, we associate
the following data
e The corner Cy is the subspace of M) consisting of those m tuples of n x n
matrices with zero entries except perhaps at position (¢,j) where s; —s; > 1. A
partial ordering is defined on these corners by the rule

Co<Cs &I <|s]

e The parabolic subgroup Ps which is the subgroup of GL,, consisting of matrices
with zero entries except perhaps at entry (¢,7) when s; —s; > 0.

e The Levi subgroup L which is the subgroup of GL,, consisting of matrices with
zero entries except perhaps at entry (¢,j) when s; —s; = 0. Observe that L, =
[IGLq,, where the a;; are the multiplicities of p; 4 j.

For example, S3 has five types described by

tableau | s s2  s3 ||| s H2

10 -1 2
s SIS T
y =

1]1]

1 30 3 3

0 0 0 0
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The corresponding corners, parabolic and Levi subgroups are respectively,

] H | mm [
N
C,
[ BN BN J [ AN BN J [ AN BN J [ BN BN J [ AN BN J
[ BN )} [ AN BN J [ AN ) [ BN )} [ AN BN ]
ps o [ ] [ BN ) o [ AN BN J
[ ] [ AN} o [ ] [ AN BN J
[ ] [ AN J [ AN J [ ] [ AN BN J
LS [ ] [ ] [ AN J [ ] [ AN BN J

For x = (A4,...,Ap) € nulll?, E, C W determines a unique sg, € Q™ which
up to permuting the entries an element s of S,,. Therefore,

Every x = (Ay,..., An) € nulll? can be brought by permutation Jordan-moves to
an m-tuple ' = (A},..., AL,)) € Cs. Here, s is the dominant reordering of sg, with
E, CW the subset m; —mj determined by the non-zero entries at place (i,j) of one
of the components Ay. The permutation of rows and columns is determined by the
dominant reordering.

The m-tuple s (or sg, ) determines a one-parameter subgroup As of T;, where A
corresponds to the unique n-tuple of integers

(riy,...,rm) ENysNZ® with ged(r;) =1

For any one-parameter subgroup p of T, determined by an integral n-tuple u =
(a1,...,an) € Z"™ and any © = (Ay,...,A,) € null?” we define the integer

m(z, n) = min {a; —a; | x contains a non-zero entry in M"(m; — ;) }

From the definition of R} it follows that the minimal value sg and A, is

s /\SE”” and s As
B, = =5
m(z, Ay, ) m(z, As)
We claim :
Let x = (Ay,..., Ap) € null™ and let p be a one-parameter subgroup contained in

T, such that img At).x =0, then

P
m(@Asg,)  mia,p)

This follows immediately from the observation that —£—~ € R} and the mini-
mality of sg,. Phrased differently, there is no simultaneous reordering of rows and
columns that admit an m-tuple 27 = (A”4,...,A”,,) € Cy for a corner Cy < Cs.

ExXAMPLE 159. It is possible that another point in the orbit O(x) say y =
g.x = (Bi,...,By) can be transformed by permutation Jordan moves in a strictly
smaller corner.
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Consider one 3 x 3 nilpotent matrix of the form

0 a b
z=|0 0 O with ab#0
0 0 0f

Then, E, = {m — ma,m — w3} and the corresponding s = sg, = (%, f%, f%) S0 T

is clearly of corner type
[ ][ |

Cs =
However, x is a nilpotent matrix of rank 1 and by the Jordan-normalform we can
conjugate it in standard form, that is, there is some g € GL3 such that

0 1 0
y=gxr=grg t=10 0 0
0 0 O

For this y we have E, = {m — 72} and the corresponding sp, = (3, —3,0), which
can be brought into standard dominant form s’ = (%, 0, f%) by interchanging the
two last entries. Hence, by interchanging the last two rows and columns, ¥ is indeed

of corner type
[ ]

Oy =

and we have that Cy < Cs. Observe that we used the Jordan-normalform to
produce this example. As there are no known canonical forms for m tuples of n x n
matrices, it is a more difficult to determine the optimal corner type of an element
in null’*.

DEFINITION 112. Let s € S, be determined by the tableau T;. The associated
quiver-setting (Qs, as) and character 05 are defined as follows.
The quiver @, has as many connected components as there are rows in the
tableau T,. If the i-th row in T is
((1/1'07 Ajly ey aiki)
then the corresponding string of entries in s is of the form
{p17apz>p7,+17apl+177pz+kl77p7,+kz}
—_— —

@io @il Ak,

and the i-th component of Qs is defined to be the quiver @); on k; + 1 vertices
having m arrows between the consecutive vertices, that is @; is

O=r—=O=r—=0O—n— -~ ===—0

The dimension vector «; for the i-th component quiver @Q; is equal to the i-th
row of the tableau T, that is

;= (@i07ai1a---aaiki)

and the total dimension vector ay is the collection of these component dimension
vectors.
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The character GL(as) —X°, C* is determined by the integral n-tuple 65 =
(t1,...,tn) € Z™ where if entry k corresponds to the j-th vertex of the i-th compo-
nent of Qs we have

lg = nij = d.(pi +j)
where d is the least common multiple of the numerators of the p;’s for all i. Equiv-
alently, the n;; are the integers appearing in the description of the one-parameter
subgroup A\s = (71, ...,7,) grouped together according to the ordering of vertices
in the quiver Q. Recall that the character y is then defined to be

Xs(g1- -y 0n) = H det(g;)"
=1

or in terms of GL(as) it sends an element g;; € GL(«) to [[, ; det(gi;)™.

ExXAMPLE 160. Define the border B to be the subspace of C, consisting of those
m-tuples of n X n matrices with zero entries except perhaps at entries (4, j) where
s; —s; = 1. Observe that the action of the Levi-subgroup L, = H” GL,,; on the
border By coincides with the base-change action of GL(«as) on the representation
space rep, (. The isomorphism

By — rep, Qs

is given by sending an m-tuple of border Bs-matrices (A41,..., A, ) to the repre-
sentation in rep, Qs where the j-th arrow between the vertices v, and v,41 of
the i-th component quiver @); is given by the relevant block in the matrix A;. We
illustrate this with a few examples from 4 x 4 matrices.

tableau L, By 0 (Qs, s, 05)
) Bolo
° [ |
[ BN ] 5 1 -3
2]1]1] ole (5,1,-3,-3) Oen=—>0<=n=>)
° HHEo
30 [ |
00 B 1 0 -1
[1]2]1] . (1,0,0,—1) @Oem=—@<m—0
0 [ ] ) .
[ JKJ . @@'m:@
1]2] ° 0
1] ° (1,1,0,—2) @

THEOREM 122. Let x = (Ay,...,An) € nulll” be of corner type Cs. Then,
x is of optimal corner type Cs, that is, there is no point y = g.x € O(x) having
corner type Cs with Cy < Cs, if and only if under the natural maps
Cs - Bs i’ repa5 Qs

(the first map forgets the non-border entries) x is mapped to a 0s-semistable repre-
sentation in rep, Q.
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PRrROOF. This is a specialization of the description due to Kirwan [30]. O

If N C M, is the subspace of strictly upper triangular matrices, then the action
map determines a surjection

GL, x N™ %% null)®

Recall that the standard Borel subgroup B is the subgroup of G L,, consisting of all
upper triangular matrices and consider the action of B on GL,, x M, determined
by

b.(g,x) = (gb™ ", b.x)

Then, B-orbits in GL, x N™ are mapped under the action map ac to the same
point in the nullcone null]". Consider the morphisms

GL, x M™ —5» GL,/B x M
which sends a point (g, x) to (¢B, g.z). The quotient GL,,/B is called a flag variety
and is a projective manifold. Its points are easily seen to correspond to complete
flags
F:0CcFCcFC...CF,=C" with dimc F; =1
of subspaces of C". Consider the fiber 7! of a point (g, (B1,...,Bm)) € GL,/B x
M. These are the points

g 'h =beB

hy(A1,..., Am h that
(h (A, Am)) - such tha {bAib_l =g !'Bjg foralll<i<m.

Therefore, the fibers of 7 are precisely the B-orbits in GL,, x M. That is, there
exists a quotient variety for the B-action on GL,, x M, which is the trivial vec-
torbundle of rank mn?

T =GL,/Bx M" —» GL,/B

over the flag variety GL,,/B. We will denote with GL,, x® N™ the image of the
subvariety GL,, x N™ of GL,, x M under this quotient map. That is, we have a
commuting diagram

GL, x N —— GL,, x M]"

GL, xBN™ < GL,/B x M™

Hence, V = GL,, x® N™ is a sub-bundle of rank m.@ of the trivial bundle 7
over the flag variety. Note however that V itself is not trivial as the action of GL,,
does not map N™ to itself.

THEOREM 123. Let U be the open subvariety of m-tuples of strictly upper tri-
angular matrices N™ consisting of those tuples such that one of the component
matrices has rank n — 1. The action map ac induces the commuting diagram of
figure 6. The upper map is an isomorphism of G L, -varieties for the action on fiber
bundles to be left multiplication in the first component.
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GL, xBU = > GL,.U

GL, xB N™

null”

FIGURE 6. Resolution of the nullcone.

Therefore, there is a natural one-to-one correspondence between G L, -orbits in
GL,.U and B-orbits in U. Further, ac is a desingularization of the nullcone and
nulll® is irreducible of dimension

n(n —1)

g

PrOOF. Let A € N be a strictly upper triangular matrix of rank n — 1 and
g € GL,, such that gAg~! € N, then g € B as one verifies by first bringing A into
Jordan-normal form J,(0). This implies that over a point = (Ay,...,A,) € U
the fiber of the action map

(m+1)

GL, x N™ 25 null)’
has dimension “(%~1)

2
"(nT_l).But then, by the dimension formula we have

= dim B. Over all other points the fiber has at least dimen-

sion

n(n —1)
2

Over GL,,.U this map is an isomorphism of GL,-varieties. Irreducibility of null]®
follows from surjectivity of ac as C[null!’] C C[GL,] ® C[N™] and the latter is a
domain. These facts imply that the induced action map

dim null] = dim GL, + dim N™ —dim B = (m + 1)

GL, xP N™ 2% nui1™

is birational and as the former is a smooth variety (being a vectorbundle over the
flag manifold), this is a desingularization. O

This result gives us a complexity-reduction, both in the dimension of the acting
group and in the dimension of the space acted upon, from G L,-orbits in the nullcone
null?, to B-orbits in N at least on the stratum GL,.U described before. The
aim of the Hesselink stratification of the nullcone is to extend this reduction also
to the complement.

DEFINITION 113. Let s € §,, and let Cy be the vectorspace of all m-tuples in
M which are of corner-type Cs. We have seen that there is a Zariski open subset
(but, possibly empty) Us of Cs consisting of m-tuples of optimal corner type Cs.
Observe that the action of conjugation of GL, on M;" induces an action of the
associated parabolic subgroup P, on C.

The Hesselink stratum S, associated to s is the subvariety GL,,.Us where Uy is
the open subset of C consisting of the optimal Cs-type tuples.
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THEOREM 124 (Hesselink). With notations as before we have a commuting

diagram
» S,
GL, xT= C,4 - S,

where ac is the action map, Sy is the Zariski closure of Ss in null™ and the upper
map is an isomorphism of G L, -varieties.

Here, GL,,/Ps is the flag variety associated to the parabolic subgroup Ps and
is a projective manifold. The variety GL,, x= C, is a vectorbundle over the flag
variety GLy, /Ps and is a subbundle of the trivial bundle GL,, x Ps M*.

Therefore, the Hesselink stratum Ss is an irreducible smooth variety of dimen-
sion

GL, x U, =

ac

dim Sy = dim GL,/Ps + 1k GL, x C,
=n? —dim P, + dimec Cj
and there is a natural one-to-one correspondence between the G L., -orbits in Sy and
the Pg-orbits in Us. o
Moreover, the vectorbundle GL, x'+ C is a desingularization of Sy hence feels

the gluing of Ss to the remaining strata. Finally, the ordering of corners has the
geometric interpretation

7

S.c |J s

s 1<l

PROOF. A similar argument as in the proof of theorem 123 using the facts we
collected in previous examples. ([

We have seen that Us = p~! ress,(Qs, 0s) with Cj —%» B, the canonical pro-
jection forgetting the non-border entries. As the action of the parabolic subgroup
Ps restricts to the action of its Levi-part Ls on Bs = rep, () there is a canonical
projection

Us/Ps L MOSSq, (Q87 os)
to the moduli space of fs-semistable representations in rep, @s. As none of the
components of @), admits cycles, these moduli spaces are projective varieties. For
small values of m and n these moduli spaces give good approximations to the study
of the orbits in the nullcone.

EXAMPLE 161. (The nullcone null3) Hanspeter Kraft described the orbits in
null? in [35, p. 202] by brute force. The orbit space decomposes as a disjoint
union of tori is depicted in figure 7 Here, each node corresponds to a torus of
dimension the right-hand side number in the bottom row. A point in this torus
represents an orbit with dimension the left-hand side number. The top letter is
included for classification purposes. That is, every orbit has a unique representant
in the list of couples of 3 x 3 matrices (A, B) given in figure 8. The top letter
gives the torus, the first 2 rows give the first two rows of A and the last two rows
give the first two rows of B, x,y € C*. We will derive this result from the above
description of the Hesselink stratification. To begin, the relevant data concerning
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FIGURE 7. Kraft’s diamond for nullg.
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0/0/0| |O]O]|1] |0O]0OJO| |O|O|1] |O]O]O] |O]1|0) |O]1]O] |O]O]O| (0]O]O
0/0/1} |O]O]JO] |O]|OJ1| |O|O|O| |O]O|O] |O]|OJO| |O]O|O] |O]O]O| (0]O]O
0(1/0| |O|1]|0] |0]|OJ1| |O|1|0| |O[1]|0O] |O]|z|0O| |O|O|O] |O]1]0| (0O]O]O
0/0/0/ |O]O]O] |0]0OJOf |OJO|O] |O]Of1] |O]OJO} |O]O]JO] |O]O]O| [0]O]O

FIGURE 8. Orbit representants in null3.

S3 is summarized in the table of figure 9 For the last four corner types, Bs = Cs
whence the orbit space Uy/Ps is isomorphic to the moduli space mossy’ (Qs, ;).
Consider the quiver-setting

S
(03

If the two arrows are not linearly independent, then the representation contains a
proper subrepresentation of dimension-vector 5 = (1,1) or (1,0) and in both cases
0s(8) < 0 whence the representation is not fs-semistable. If the two arrows are
linearly independent, we can use the GLo-component to bring them in the form

([ﬂ , Ll)] ), whence moss?’ (Qs, ) is reduced to one point, corresponding to the
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tableau Bs,Cs Py (Qs, s, 05)
]i olofe| . )
(I TN T
(1,0,—1) oo OL__G.__©
H olofe| )
oee . —
(1,1 -2 o OL__®
T [e]e]e
oo 2 . — !
(3,-3-1) o] O._ O
1%’\71
H [e[ele O ©)
1[1] oo o
1 (3.0,-3) o ©
oele
eele o
(0,0,0,) olele] ®

FIGURE 9. Hesselink strata for nul1%.

matrix-couple of type [

o O O
o = O

o O O

o O O
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A similar argument, replacing linear independence by common zero-vector shows
that also the quiver-setting corresponding to the tableau has one point as its

moduli space, the matrix-tuple of type k. Next, consider the quiver setting

A representation in rep, Qs is s-semistable if and only if the two maps are not
both zero (otherwise, there is a subrepresentation of dimension § = (1,0) with
05(3) < 0). The action of GL(as) = C* x C* on C? — 0 has a s orbit space P! and
they are represented by matrix-couples

0 0
(1o o
0 0

o o e

o O O

o O O
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with [a : b] € P! giving the types o,p and ¢. Clearly, the stratum consists just
of the zero-matrix, which is type r. Remains to investigate the quiver-setting

Again, one verifies that a representation in rep, @) is s-semistable if and only if
(a,b) # (0,0) # (¢,d) (for otherwise one would have subrepresentations of dimen-
sions (1,1,0) or (1,0,0)). The corresponding G L(«s)-orbits are classified by

moss?® (Qs.05) ~ P! x P!

corresponding to the matrix-couples of types a,b,c,e, f,g,j,k and n

0 ¢ 0 0 d 0
(10 0 a|l,|0 0 b])
00 0 00 0

where [a : b] and [c : d] are points in PL. In this case, however, Cy # B, and we
need to investigate the fibers of the projection

US/PS l" mossfj (st as)

s

Now, Py is the Borel subgroup of upper triangular matrices and one verifies that
the following two couples

0 ¢c O 0 d 0 0 ¢ «x 0 d vy
(10 0 al, [0 0 b]) and ([0 O a| , |0 O b|)
0 0 0 0 0 0 0 0 0 0 0 0

a c
b d
[a : b] # [c:d] in PL. Hence, away from the diagonal p is an isomorphism. On
the diagonal one can again verify by direct computation that the fibers of p are
isomorphic to C, giving rise to the cases d, h and i in the classification.

The connection between this approach and Kraft’s result is depicted in figure 10.
The picture on the left is Kraft’s toric degeneration picture where we enclosed
all orbits belonging to the same Hesselink strata, that is, having the same op-
timal corner type. The dashed region enclosed the orbits which do not come
from the moduli spaces moss}’ (Qs,0s), that is, those coming from the projection
Us/Ps —> moss;’ (Qs,05)). The picture on the right gives the ordering of the
relevant corners.

lie in the same B-orbit if and only if det [ ] # 0, that is, if and only if

EXAMPLE 162. We see that we get most orbits in the nullcone from the moduli
spaces moss}’ (Qs,0,). The reader is invited to work out the orbits in null?. We
list the moduli spaces of the relevant corners in figure 11 Observe that two potential
corners are missing in this list. This is because we have the following quiver setting

for the corner
|| 3 . 1
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corner

o
N

5

.
@/

FiGUurE 10. Nullcone of couples of 3 x 3 matrices.

moss;’ (Qs, 0s)

corner

289

moss?® (Qs, 0s)

P! x P! x P!

P32 UP! x PPt x P!

le

moss}’ (Qs,0s) | corner
]Pal
-
|
P! U S?(PY)
]P>1

FIGURE 11. Moduli spaces appearing in null?.

Pl

IP)O

IP)O

and there are no 6;-semistable representations as the two maps have a common
kernel, whence a subrepresentation of dimension § = (1,0) and 0,(8) < 0. A
similar argument holds for the other missing corner and quiver setting
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For general n, a similar argument proves that the corners associated to the tableaux

and are not optimal for tuples in null}’, ; unless m > n. It is also easy
to see that with m > n all relevant corners appear in null;’, ;, that is all potential
Hesselink strata actually appear for large m.

After this lengthy description of the nullcone in the generic case we now describe
null, @, the nullcone for the basechange action of GL(«) in rep,, @. Fortunately,
the only remaining difficulty is a notational one.

DEFINITION 114. Up to conjugation, any one-parameter subgroup A of GL(«)
lies in the maximal torus 7, with a = |a| and can be represented by an integral

a-tuple (r1,...,7,) € Z*. We have to take the quiver-vertices into account, so we
decompose the integer interval [1,2,...,a] into verter intervals I,, such that
i—1 i
[1,2,...,a) =0}, I, with I, =[> aj+1,....,> aj
j=1 j=1

The weights of T, are isomorphic to Z* having canonical generators 7, for 1 < p < a.
Decompose the representation space into weight spaces

repa Q = @ repa Q(TrPII)
Tpqg=Tq—Tp

where the eigenspace of 7, is non-zero if and only if for p € I, and g € I,;, there
is an arrow

in the quiver Q. Call 7, @ the set of weights m,, which have non-zero eigenspace in
rep, Q. We can write every representation as V = Zp’ 4 Vpq where V), is a vector
of the (p, g)-entries of the maps V'(a) for all arrows a in @ from v; to v;. The action
of T, on rep,, @ is induced by conjugation, hence for A determined by (r1,...,74)

iin% At).V =0 & ry—rp > 1 whenever Vp,, #0
Again, we define the corner type C of the representation V' by defining the subset
of real a-tuples

Eyv ={(z1,...,24) €ER® | g —2, > 1V V,q #0}

and determine a minimal element sy in it, minimal with respect to the usual norm
on R%. Again, sy is a uniquely determined point in Q%, having the characteristic
property that its entries can be partitioned into strings

e, sop+ 1, oo+ 1, oo+ k.o o+ kb with all g, > 1
—_———

alo ay Qg

which are balanced, that is Zﬁi:o aim(pr + m) = 0. We cannot bring sy into
dominant form, as we can only permute base-vectors of the vertex-spaces. That is,
we can only use the action of the vertex-symmetric groups

Say X ... X 8, — S,
to bring sy into vertex dominant form , that is if sy = (s1,...,5,) then

sq < s, whenever p,qc¢ I, for someiand p <gq
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EXAMPLE 163. We compile a list S, of such rational a-tuples by the following
algorithm
e Start with the list S, of matrix corner types.
e For every s € S, consider all permutations o € Sg/(Sq, X ... X S, ) such that
0.5 = (55(1);- - - S0(a)) 15 vertex dominant.
e Take H, to be the list of the distinct a-tuples 0.s which are vertex dominant.
e Remove s € H, whenever there is an s’ € H, such that

T Q={mpg €Ta Q|5 =5, >1} Cmy Q={mpg €7 Q | s, —5,>1}

and | 's [|>[| s |-
e The list S, are the remaining entries s from H,,.

For s € §,, we define associated quiver data similar to the case of matrices
e The corner C is the subspace of rep, ) such that all arrow matrices V3, when
viewed as a X a matrices using the partitioning in vertex-entries, have only non-zero
entries at spot (p,¢) when s, — s, > 1.
e The border B, is the subspace of rep, @ such that all arrow matrices V3, when
viewed as a X a matrices using the partitioning in vertex-entries, have only non-zero
entries at spot (p, ¢) when s, — s, = 1.
e The parabolic subgroup Ps(a) is the intersection of Ps C GL, with GL(a) embed-
ded along the diagonal. Ps(a) is a parabolic subgroup of GL(«), that is, contains
the product of the Borels B(a) = B,, X ... X Bg,.
eThe Levi-subgroup Lg(c) is the intersection of Ly C GL, with GL(a) embedded
along the diagonal.

We say that a representation V' € rep,, @ is of corner type Cs whenever V' € C;.
By permuting the vertex-bases, every representation V' € rep,, () can be brought to
a corner type C for a uniquely determined s which is a vertex-dominant reordering
of Sy .

We solve the problem of optimal corner representations by introducing a new
quiver setting. Fix a type s € S, @ and let Jy,...,J, be the distinct strings
partitioning the entries of s, say with

Jo=Ap--pp+ Lo+ iR+ RS
————
Sii i Sh o bin SF ) bik,

where b; ;,, is the number of entries p € I, such that s, = p; + m. To every string
l we will associate a quiver )5 ; and dimension vector a,; as follows
o The quiver Q,; has k.(k; + 1) vertices labeled (v;,m) with 1 < ¢ < k and 0 <
m < k;. In Qs there are as many arrows from vertex (v;, m) to vertex (v;, m+ 1)
as there are arrows in @) from vertex v; to vertex v;. There are no arrows between
(vi,m) and (vj,m') if m" —m # 1.
o The dimension-component of a,; in vertex (vi,m) is equal to biim.-

The quiver-setting (Qs, as) associated to a type s € S, @ will be the disjoint
union of the string quiver-settings (Qs,1, &) for 1 <1 < u. Again, there are natural
isomorphisms

By ~rep, Qs
Ls(a) =~ GL(ay)

Moreover, the base-change action of GL(«s) on rep, @ coincides under the iso-
morphisms with the action of the Levi-subgroup Ls(«) on the border B.
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In order to determine the representations in rep, s which have optimal
corner type Cs we define the following character on the Levi-subgroup

u

_ k k; Xas *

Lg(Oé) - H xi=1 Xm:O GLb'L',hn C
=1

det gzll%m where the exponents

determined by sending a tuple (g; im)itm — [1
are determined by

ilm

0y = (mi,lm)ilm where mMiim = d(pl + m)

with d the least common multiple of the numerators of the rational numbers p; for
all 1 <l <u.

THEOREM 125. Let V € null, @ of corner type Cs. Then, V is of optimal
corner type Cs if and only if under the natural maps

s >~
Cs - Bs > rePas Qs

V' is mapped to a 0s-semistable representation in rep, Qs. If Us is the open
subvariety of Cs consisting of all representations of optimal corner type Cy, then

U, =n""! ress,, (Qs,0s)

GL(a) x() U, =

ac

For the corresponding Hesselink stratum S = GL(«).Us we have the commuting
GL(o) xT=(®) ¢,

diagram
- S,
~ S5

where ac is the action map, Ss is the Zariski closure of S in null, @ and the
upper map is an isomorphism as GL(«)-varieties.

Here, GL(a)/Ps(«) is the flag variety associated to the parabolic subgroup Ps(c)
and is a projective manifold. The variety GL(a) xP=(@) Oy is a vectorbundle over
the flag variety GL()/Ps() and is a subbundle of the trivial bundle GL(a) x (@)

rep, @.
Hence, the Hesselink stratum S is an irreducible smooth variety of dimension

dim Sy = dim GL(a)/Ps(a) + rk GL(a) xT=(@) ¢

k
= Z a? — dim Py(a) + dime C,
i=1

and there is a natural one-to-one correspondence between the GL(«a)-orbits in S,
and the Ps(a)-orbits in Us.

Moreover, the vectorbundle GL(a)) xP+(®) Cy is a desingularization of Sy hence
’feels’ the gluing of Ss to the remaining strata. The ordering of corners has the
geometric interpretation

0

75 C U Se
lls"II<IIsl]
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O—G

FIGURE 12. Local quiver settings for curve orders.

Finally, because Ps(a) acts on By by the restriction to its subgroup Ls(a) = GL(as)
we have a projection from the orbit space

Uy /Py 2 moss., (Qs, 05)
to the moduli space of 0s-semistable quiver representations.

EXAMPLE 164. Let (A,tr,) € alg@n over an affine curve X = tiss,A and
¢ € smoothA, then the local quiver setting (@, «) is determined by an oriented
cycle @ on k vertices with k£ < n being the number of distinct simple components of
Mg, the dimension vector o = (1,...,1) as in figure 12 and an unordered partition
p = (d1,...,d;) having precisely k parts such that ) .d; = n, determining the
dimensions of the simple components of M.

Fix a cyclic ordering of the k-vertices {vy,..., v}, then the set of weights of
the maximal torus T, = C* x ... x C* = GL(a) occurring in rep,, Q is the set

To Q = {Tk1,T12,T23, .., Th—1k }

_ k-1 k(k—1) . .
Denote K =), i = —5— and consider the one string vector
K K K K K

s=(.k=2- T k-lo o —o I 2 o)

then s is balanced and vertex-dominant, s € S, @ and 7y Q = II. To check whether
the corresponding Hesselink strata in null, ) is nonempty we have to consider the
associated quiver-setting (Qs, as, 8s) which is

-K —K+k —K 42k —K+k> -2k —-K+4+k>—k
Vi Vi1 Vit-2 Vi—2 Vi—1

It is well known and easy to verify that rep, Qs has an open orbit with represen-
tative all arrows equal to 1. For this representation all proper subrepresentations
have dimension vector 8 = (0,...,0,1,...,1) and hence 65(3) > 0. That is, the
representation is f4-stable and hence the corresponding Hesselink stratum S, # 0.
Finally, because the dimension of rep, Qs is k — 1 we have that the dimension of
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k+1+ /"' [ 1]

k41 ‘ ‘

F1GURE 13. Local quiver settings for surface orders.

this component in the representation fiber 7= (x) is equal to
dim GL, — dim GL(a) +dim rep, Qs =n>—k+k—1=n"—1
and we obtain the following characterization of the representation fiber

The representation fiber 7=1(€) has exactly k irreducible components of dimension
n? — 1, each the closure of one orbit. In particular, if A is alg@n-smooth, the
quotient map

trep, A —»» tiss,A =X

is flat (all fibers have the same dimension n®> —1).

EXAMPLE 165. Let (A,trs) € algln over an affine surface S = tiss, A and
let £ € smoothA. The local structure of A is determined by a quiver setting (Q, «)
where o = (1,...,1) and @ is a two-circuit quiver on k + [ +m < n vertices, corre-
sponding to the distinct simple components of M, as in figure 13 and an unordered
partition p = (di,...,dgti+m) of n with k + 1 + m non-zero parts determined by
the dimensions of the simple components of M;. With the indicated ordering of
the vertices we have that

1 <i1<k-1
To @={miit1 | {k+1 <i<k+1-1 }
k+i+1 <i<k+l4+m-—1
U {Th ki1 Thetl k41> Thpltm 1 Thtldm k41)

As the weights of a corner cannot contain all weights of an oriented cycle in Q) we
have to consider the following two types of potential corner-weights IT of maximal
cardinality
e (outer type) : II = m, Q — {m,, ™} where a is an edge in the interval
[v1,...,v;] and b is an edge in the interval [vgy1,. .., Vkti]-
e (inner type) : II = 7, @ — {m.} where ¢ is an edge in the interval

(V41415 Vkgitm]-
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A (lengthy) investigation of all the different cases results in the following result
which we leave as an exercise :

Let & € smoothA be of local type (Agim, ). Then, the representation fiber m=1(€)
has exactly 24 (k—1)(I1—1)+(m—1) irreducible components of which 2+ (k—1)(1—1)
are of dimension n®> —1 and are closure of one orbit and the remaining m — 1 have
dimension n? and are closures of a one-dimensional family of orbits. In particular,
if A is alg@n-smooth, then the algebraic quotient map

trep, A —lor tiss,A=S

s flat if and only if all local quiver settings of A have quiver Ak, with m = 1.

The final example will determine the fibers over smooth points in the quotient
varieties (or moduli spaces) provided the local quiver is symmetric. This computa-
tion is due to Geert Van de Weyer [11].

EXAMPLE 166. (Smooth symmetric settings) Recall from theorem 100 that a
smooth symmetric quiver setting (sss) if and only if it is a tree constructed as a
connected sum of three different types of quivers:

« O 20

where the connected sum is taken in the vertex with dimension 1. We call the
vertices where the connected sum is taken connecting vertices and graphically depict
them by a square vertex 0. We want to study the nullcone of connected sums
composed of more than one of these quivers so we will focus on instances of these
four quivers having at least one vertex with dimension 1:

m
I 0Z__®, withm<n

m

) 0 e 0
e 0 e e

We will call the quiver settings of type I and II forming an sss (Q, «) the terms
of Q.

claim 1: Let (Q, ) be an sss and Q,, a type quiver for Q, then any string quiver
of Qu s either a connected sum of string quivers of type quivers for terms of @ or

a string quiver of type quivers of

®.
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Consider a string quiver (), (;) of Q,. By definition vertices in a type quiver are
only connected if they originate from the same term in (). This means we may
divide the string quiver @, (;) into segments, each segment either a string quiver of
a type quiver of a term of @ (if it contains the connecting vertex) or a level quiver
of a type quiver of the quivers listed above (if it does not contain the connecting
vertex).

The only vertices these segments may have in common are instances of the
connecting vertices. Now note that there is only one instance of each connecting
vertex in @), because the dimension of each connecting vertex is 1. Moreover, two
segments cannot have more than one connecting vertex in common as this would
mean that in the original quiver there is a cycle, proving the claim.

Hence, constructing a type quiver for an sss boils down to patching together
string quivers of its terms. These string quivers are subquivers of the following two
quivers:

I:

II:

Observe that the second quiver has two components. So a string quiver will
either be a tree (possible from all components) or a quiver containing a square. We
will distinguish two different types of squares; S; corresponding to a term of type
II(1) and S corresponding to a term of type II(2).

® O | - ® 0

WS

These squares are the only polygons that can appear in our type quiver. Indeed,
consider a possible polygon

Up

Uy
This polygon corresponds to the following subquiver of Q:

Vi <> TUp
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But @ is a tree, so this is only a subquiver if it collapses to Vi <— Vj <—— Vi .

claim 2 : Let (Q,a) be an sss and Q, a type quiver containing (connected)
squares. If Q, determines a non-empty Hesselink stratum then

(i) the 0-axis in Q, lies between the axes containing the outer vertices of the

squares of type S1;

(ii) squares of type S1 are connected through paths of maximum length 2;

(iii) squares of type S1 that are connected through a path of length 2 are con-
nected to other quivers in top and bottom vertex (and hence originate from
type II(1) terms that are connected to other terms in both their connecting
vertices);

(iv) the string p(i) containing squares of type S connected through a path of
length two equals (...,—2,-1,0,1,2,...).

(v) for a square of type Sa:

Hi
@

Ny
o/<o/ o

with p vertices on its left branch and q vertices on its right branch we have

< <

NS
(IS

Let us call the string quiver of @, containing the squares @ ;) and let 6 € 1(i)Ng
be the character determining this string quiver. Consider the subrepresentation

0; 0Oir1 0o

o

-

This subrepresentation has character (c,,(;)) — ;) (v)8; > 0 where v is the vertex
which dimension we reduced to 0, so #; < 0. But then the subrepresentation

0;  Oiy1  bito

©
gives 0,12 > 0, whence (7). Note that the left vertex of one square can never lie on

an axis right of the right vertex of another square. At most it can lie on the same
axis as the right vertex, in which case this axis is the 0-axis and the squares are
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1

a1 = 1 1
1
1

Qo = 1 2
1
1

a3 = 2 2
1

FI1GURE 14. Possible dimension vectors for squares.

connected by a path of length 2. In order to prove (iii) look at the subrepresentation

-2 -1 0 1 2

This subrepresentation has negative character and hence the original representation
was not semistable. Finally, for (v) we look at the subrepresentation obtained by
reducing the dimension of all dotted vertices by 1:

g
e

having character —((p + 1)u; — ?:1 j) = 0. So p; < &. Mirroring this argument
yields the other inequality p; > —1.

claim 3 : Let (Q, ) be an sss and Q, be a type quiver determining a non-empty
stratum and let Q ;) be a string quiver determined by a segment p(i) not containing
0. Then the only possible dimension vectors for squares of type S1 in Q,,(;) are those

of figure 14.

Top and bottom vertex of the square are constructed from the connecting vertices
so can only be one-dimensional. Left and right vertex of the square are constructed
from a vertex of dimension n. Claim 2 asserts that the leftmost vertex lies on a
negative axis while the rightmost vertex lies on a positive axis. If the left dimension
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is > 2 then the representation splits

V2 ©

with » = m — 2. By semistability the character of V5 must be zero. A similar
argument applies to the right vertex.

claim 4 : Let p be a type determining a non-empty stratum.
(i) When a vertex (v,1i) in Q, determined by a term of type II(1) has o(v,1) >
2 then p; = 0.
(i) When a vertex (v,1) in Q, determined by a term of type I with m arrows
has a(v,i) > m then p; = 0.

Suppose we have a vertex v with dimension ay,;)(v) > 2, then the number of
paths running through this vertex is at most 2: would there be at least three paths
arriving or departing in the vertex, it would be a connecting vertex which is not
possible because of its dimension. Are there two paths arriving and at least one
path departing, it must be a central vertex of a type II(2) term. But then the
only possible subtrees generated from type II(1) terms with vertices of dimension
at least three are (modulo reversing all arrows)

91‘ 91‘ 9,‘

[
() () O,
In the last tree there are no other arrows from the vertex with dimension n. For
each of these trees we have a subrepresentation

0;
®

whence 6; > 0. But if ; > 0, reducing the dimension of the vertex with dimension
> 3 gives a subrepresentation with negative character, so #; = 0. The second part
is proved similarly.

Summarizing these results we obtain the description of the nullcone of a smooth
symmetric quiver-setting.

Let (Q, ) be an sss and pu a type determining a non-empty stratum in null, Q.
Let Q. be the corresponding type quiver and o, the corresponding dimension vector,
then

(i) every connected component Q,,;y of Q. is a connected sum of string quiv-
ers of either terms of QQ or quivers generated from terms of Q by removing
the connecting vertex. The connected sum is taken in the instances of the
connecting vertices and results in a connected sum of trees and quivers of
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(i)
(iv)
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the form
(i)

AN

- O o,
,,‘\Oj \O/ N

For a square of type S1 we have p(i)j—1 < 0 < p(i)j41. Moreover, such
squares cannot be connected by paths longer than two arrows and can only
be connected by paths of this length if pu(2)j41 = 0.

For vertices (v, j) constructed from type II(1) terms we have o, (v, j) < 2
when p; # 0.

For a vertex (v,j) constructed from a type I term with m arrows we have
ay, (v, j) < m when p; # 0.
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