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ABSTRACT: We determine the central simple algebrasΣ over a functionfieldK of trancendence
degree two which admit a model of smooth Cayley-Hamilton algebras. This happens if and only
if there is a smooth modelS of K such that the ramification divisor of a maximalOS-order inΣ

is a disjoint union of smooth curves. Further, we prove that the Brauer-Severi fibration of smooth
models which are maximal orders is a flat morphism.
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One can define noncommutative smooth orders either by homological or by geometrical prop-
erties. The first approach has the advantage that there are enough regular algebras around to have
smooth models at least in central simple algebras over surfaces, see [8]. The second approach,
based on smooth Cayley-Hamilton orders, is already tediousin dimension two but has the advan-
tage of having an étale local description which makes it possible (at least in principle) to generalize
the results in this paper to arbitrary dimensions.
Acknowledgement : This paper is a slightly expanded version of a talk given at the 60th birthday
conference for Claudio Procesi, june 2001 in Roma. I like to thank the organizers for the invitation.

1. Smooth Cayley-Hamilton models

LetK be a functionfield of trancendence degreed over an algebraically closed field of characteristic
zero which we denote byC. Let Σ be a central simpleK-algebra of dimensionn2 and lettr be the
reduced trace ofΣ. LetC be an affine normal domain with function fieldK and letA be aC-order
in Σ, that is,A is an affine algebra with centerC such thatA.K = Σ. BecauseC is integrally
closed it follows that the reduced tracetr onΣ makesA into a Cayley-Hamilton algebra of degree
n, see [17] or [12], such thattr(A) = C.

Let trepn A be the affine scheme of alln-dimensionaltrace preservingrepresentations ofA,
that is, allC-algebra morphismsφ : A - Mn(C) compatible with the trace maps

A
φ- Mn(C)

A

tr

?
φ- Mn(C)

Tr

?

whereTr is the usual trace onMn(C). Clearly, the schemetrepn A comes equipped with a
naturalGLn (actuallyPGLn) action and it follows from [1] and [17] that the geometric points of
the quotient scheme

trissn A = trepn A//GLn
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are in one-to-one correspondence with the isomorphism classes ofn-dimensional semisimple trace
preserving representations ofA. Moreover, we can recover the algebrasC andA from theGLn-
action

C = C[trissn A] A = Mn(C[trepn A])GLn

as respectively the algebra of polynomialGLn-invariants ontrepn A and the algebra ofGLn-
equivariant maps fromtrepn A to Mn(C), see [17].

Definition 1 With notation as before,A is said to be asmoothCayley-Hamilton order if and only
if trepn A is a smoothGLn-scheme (in particular reduced).

In [17] it is shown that this implies thatA satisfies the extension of Grothendieck’s character-
ization of commutative regular algebras (by the universal lifting property modulo nilpotent ideals)
to the category of all algebras satisfying then-th formal Cayley-Hamilton equation.

Definition 2 With notations as before,Σ is said to possess anoncommutative smooth modelif
there is a projective normal varietyX with functionfieldC(X) = K and a sheafA of OX -orders
in Σ such that for an affine cover{Ui} of X the sections

Ai = Γ(Ui,A)

are smooth Cayley-Hamilton orders. That is, there is a smooth GLn-varietytrepn A with alge-
braic quotienttrepn A//GLn = X.

If X is a smooth projective model ofK and if Σ contains a sheaf of AzumayaOX -algebras
A, thenΣ has a noncommutative smooth model astrepn A is a principalPGLn-bundle overX.
Hence, the problem reduces to determining which ramified classes of the Brauer group contain a
noncommutative smooth model.

A natural strategy to prove that every central simpleK-algebraΣ possesses a noncommutative
smooth model would be the following. LetX be a smooth projective model ofK and letA be a
sheaf of maximalOX -orders inΣ and construct the schemetrepn A. Usually, this scheme will
have singularities but we can construct aGLn-equivariant desingularization of it

˜trepn A -- trepn A

X̃

π̃

??
-- X

??

If the GLn-quotient varietyX̃ of this desingularization has an affine open cover{Vi} such that
there areΓ(Vi,OX̃)-ordersAi such that

π̃−1(Vi) ≃ trepn Ai

asGLn-varieties, thenΣ would have a noncommutative smooth model. Unfortunately, this ap-
proach is far too optimistic.
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Example 1 Let A be thequantum planeof order two,

A =
C〈x, y〉

(xy + yx)

One verifies thatu = x2 andv = y2 are central elements ofA and thatA is a free module of rank
4 overC[u, v]. In fact,A is aC[u, v]-order in the quaternion division algebra

Σ =

(
u v

C(u, v)

)

The induced reduced tracetr is the linear map onA such that

{
tr(xiyj) = 0 if either i or j are odd, and

tr(xiyj) = 2xiyj if i andj are even.

In particular, a trace preserving2-dimensional representation is determined by a couple of2 × 2

matrices

(

[
x1 x2

x3 −x1

]
,

[
x4 x5

x6 −x4

]
) with tr(

[
x1 x2

x3 −x1

]
.

[
x4 x5

x6 −x4

]
) = 0

That is,trep2 A is the hypersurface inC6 determined by the equation

trep2A = V(2x1x4 + x2x6 + x3x5) ⊂ - C6

and is therefore irreducible of dimension5 with an isolated singularity atp = (0, . . . , 0).

Consider the blow-up ofC6 atp which is the closed subvariety ofC6 × P5 defined by

C̃6 = V(xiXj − xjXi)

with theXi the projective coordinates ofP5. The strict transform oftrep2 A is the subvariety

˜trep2 A = V(xiXj − xjXi, 2X1X4 + X2X6 + X3X5) ⊂ - C6 × P5

which is a smooth variety. Moreover, there is a naturalGL2-action on it induced by simultaneous
conjugation on the fourtuple of2 × 2 matrices

[
x1 x2

x3 −x1

] [
x4 x5

x6 −x4

] [
X1 X2

X3 −X1

] [
X4 X5

X6 −X4

]

As the projection ˜trep2 A -- trep2A is aGL2-isomorphism outside the exceptional fiber, we
only need to investigate the semi-stable points overp. Take the particular pointx

[
0 0

0 0

] [
0 0

0 0

] [
i 0

0 −i

] [
0 a

−a 0

]
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which is semi-stable and has as stabilizer

Stab(x) = µµµ2 = 〈

[
0 1

1 0

]
〉 ⊂ - PGL2

There is no affineGL2-stable open of ˜trep2 A containingx of the formtrep2 B for some orderB
as this would contradict the fact that the stabilizer subgroup of any finite dimensional representation
is connected.

Therefore, we need a subtler strategy to investigate the obstruction.

2. The strategy

The class[Σ] ∈ Brn(K) = H2
et(K,µµµn) in the (n-torsion part of the) Brauer group ofK can be

found using theconiveau spectral sequence

Ep,q
1 = ⊕x∈X(p)H

q−p
et (C(x),µµµ⊗l−p

n ) ⇒ Hp+q
et (X,µµµ⊗l

n )

whereX is a smooth projective model forK andX(p) is the set of irreducible subvarietiesx of X

of codimensionp with function fieldC(x), see [9]. In low dimensions, the resulting sequence for
the Brauer group can be expressed in terms of ramification data of maximal orders in the central
simple algebra, see for example the Artin-Mumford exact sequence for the Brauer group of a
smooth surface [5]. In caseX has singularities one can extend this using the Bloch-Ogus coniveau
spectral sequence, [6].

To apply this result to our problem we need to have some control on the central singularities
of smooth Cayley-Hamilton orders and on the étale local structure of the smooth order and thereby
on its ramification locus. Both problems can be solved (at least in small dimensions) and we refer
for more details to the papers [12] and [7]. Here, we merely state the results.

Let A be a sheaf of smooth Cayley-HamiltonOX -orders inΣ whereX is a normal pro-
jective variety with affine open cover{Ua} and corresponding sectionsAa = Γ(Ua,A) and
Ca = Γ(Ua,OX). A pointp ∈ Ua determines an isomorphism class of a semisimplen-dimensional
representation ofAa say

Vp = S⊕e1
1 ⊕ . . . ⊕ S⊕ek

k

whereSi is a simple representation of dimensiondi and occurring inVp with multiplicity ei, that
is n =

∑
i diei. The space of self-extensions

Np = Ext1Aa
(Vp, Vp) = ⊕i,jExt1Aa

(Si, Sj)
⊕eiej

= repα Q

is the representation space ofα-dimensional representations withα = (e1, . . . , ek) of the quiverQ
on k vertices{v1, . . . , vk} such that the number of directed arrows betweenvi andvj is equal to
dimC Ext1Aa

(Si, Sj) − δij .
The normal spaceNp to the orbit ofVp in trepn A is the space of trace-preserving self-

extensions and is therefore a linear subspace ofrepα Q which can be described as the represen-
tation space ofα-dimensional representationsrepα Q• of a markedsubquiverQ• of Q. That is,
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some loops ofQ may acquire a marking and the matrices corresponding to these loops have to be
of trace zero inrepα Q•. The stabilizer subgroup ofVp is the groupGL(α) = GLe1 × . . .×GLek

and the action of it on the normalspaceNp coincides with the basechange action onrepα Q•. The
relevance of this description is that by the Luna slice theorems [16] the étale local structure ofX

nearp is isomorphic to that of the marked quiver quotient variety

issα Q• = repα Q•//GL(α)

near the trivial representation0. Also, theGLn-structure oftrepn A near the orbit ofVp is étale
isomorphic to that of the associated fiber bundle

GLn ×GL(α) repα Q•

near the orbit of(rr
n, 0) where the embedding ofGL(α) ⊂ - GLn is determined by thek-tuple

γ = (d1, . . . , dk) of the dimensions of the simple components ofVp.
These facts allow us to describe the completionÂp of the stalk ofA in p as well asÔX,p by

walking through the marked quiver setting(Q•, α) using the results of [14] and [12]. The ring of
polynomial invariantsC[issα Q•] is generated by taking traces of oriented cycles in the quiver Q

andÔX,p is the completion ofC[issα Q•] at the maximal graded ideal. IfMij is theC[issα Q•]-
module of oriented paths fromvi to vj in (Q,α), then we have a block-decomposition

Âp ≃




Md1(M11) Md1×d2(M12) . . . Md1×dk
(M1k)

Md2×d1(M21) Md2(M22) . . . Md2×dk
(M2k)

...
...

. . .
...

Mdk×d1(Mk1) Mdk×d2(Mk2) . . . Mdk
(Mkk)



⊗ ÔX,p

The fact thatA is an order in a central simple algebra translates to the factthat α must be the
dimension vector of a simple representation ofQ. If χQ is the Euler form of the quiverQ (that is
χij = δij −#{arrows fromvi to vj}) then by [14]β is the dimension vector of a simple represen-
tation ofQ iff Q is strongly connected and for all vertex dimensionδi we have

χQ(β, δi) ≤ 0 χQ(δi, β) ≤ 0

(unlessQ = Ãk in which caseβ = (1, . . . , 1)). Under this condition the dimension of the quotient
varietyissα Q• (which must be equal tod, the dimension ofX) is given by

d(α) = 1 − χQ(α,α) − #{marked loops}

We can also read off the étale local structure of the ramification locus ofA in p. If β1, . . . , βl are
dimension vectors of simple representations ofQ and if m1, . . . ,ml ∈ N such thatα = m1β1 +

. . .+mlβl then there is a component of the ramification locus inp of dimensiond(β1)+ . . .+d(βl)

and locally isomorphic to

issβ1 Q• × . . . × issβl
Q•

Working backwards, if we fix the central dimensiond and the indexn of the central simple
algebra, then we have to determine all marked quiver settings (Q•, α) such that
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1. d = d(α) andα is the dimension vector of a simple representation ofQ•.

2. Forα = (e1, . . . , ek) determine allγ = (d1, . . . , dk) ∈ Nk
+ such thate1d1 + . . .+ ekdk = n.

ThenÂp must be of the form described above corresponding to such a triple (Q•, α, γ), its ramifi-
cation locus inp only depends on(Q•, α) as is the étale type ofX in p. In [12] a method is given
to classify all relevant triples(Q•, α, γ) in low dimensions (≤ 4) and in [7] reduction steps were
given to classify all possible central singularities in lowdimensions (≤ 6). As for the singularities,
there are none in dimension≤ 2 and in dimensions3 (resp. 4, 5, 6) there are precisely1 (resp.
3, 10, 53) types of possible singularities for smooth Cayley-Hamilton orders.

These explicit étale local data combined with the Bloch-Ogus spectral sequence description
of then part of the Brauer group should be enough information to determine those central simple
algebrasΣ over K allowing a noncommutative smooth model in low central dimensions. In the
next section we will perform the required calculations whenthe central dimensiond = 2.

3. The case of surfaces

First, we recall the classification of all admissible triples (Q•, α, γ) for d = 2 given in [12,§6]. All
admissible (marked) quiver settings(Q•, α) are of the formAklm, k, l ≥ 0,m > 0

1 1

1

1

1

1

11

1

1

//

??��������

OO

OO

x

__????????

oo

y //

oo

OO

  

{{

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

where we make the obvious changes wheneverk and/or l is zero. If p = k + l + m then the
admissible vectorsγ are the unordered partitionsγ = (d1, . . . , dp) of n having exactlyp parts. This
allows us to determine all possible étale local structuresof smooth Cayley-HamiltonOS-ordersA
in Σ whereS is a normal projective surface with function fieldK. If p ∈ S has corresponding data

(Aklm, (1, . . . , 1), (d1, . . . , dp))
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then using [12, Prop. 6.4] with the indicated arrowsx andy (one can always reduce to this case
using theGL(α)-action) we have

ÔS,p ≃ C[[x, y]]

Âp ≃

@
@

@
@

@
@

@
@

@
@

@
@

@
@

(x)

(x)

(y)

(y)

(1)

(1)
(1)

(1)

(1)

(x)

(y)

(x, y)
︸ ︷︷ ︸

k

︸ ︷︷ ︸
l

︸ ︷︷ ︸
m

⊂ - Mn(C[[x, y]])

where at place(i, j) for 1 ≤ i, j ≤ p there is a block of dimensiondi × dj with entries in the
indicated ideal ofC[[x, y]]. Some immediate consequences can be drawn from these descriptions :

1. p is a smooth point ofS. Hence, the central varietyS must be a smooth projective surface.

2. A is étale splittable inp asÂp is an order inMn(C[[x, y]]).

3. ForA001, Ap is an Azumaya algebra. In all other cases,p is a point of the ramification locus.
There are three possible subcases :

• p is an isolated point of the ramification locus in caseA00m with m > 1.

• p is a smooth point of a one-dimensional branch of the ramification locus throughp in
caseAk01 or A0l1.

• The ramification locus has a normal crossing atp in all other cases.

Therefore we may assume that the central varietyS of a smooth Cayley-HamiltonOS-order
in Σ is a smooth projective variety. In this case the coniveau spectral sequence describing the
Brauer groupBr(K) is known as the Artin-Mumford exact sequence [5]. Consider the sequence
of Abelian groups

0 - Br(S)
i- Br(K)

a- ⊕C H1(C(C), Q/Z)
r- ⊕p µµµ−1 s- µµµ−1 - 0

where the first sum runs over all irreducible curvesC in S and the second over all pointsp ∈ S and
where the maps have the following ringtheoretic interpretation (see [5] or [18] for more details).
The inclusioni is induced by assigning to an AzumayaOS-orderA its central simple ring of
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central quotients. We have already seen that central simplealgebras living in this image do have
noncommutative smooth models.

The mapa is determined by taking the ramification divisor of a maximalOS-orderA in Σ.
Let C be an irreducible curve inS then it determines a discrete valuation ringR in K with residue
field the functionfieldC(C) which has a trivial Brauer group by Tsen’s theorem. But then,

A⊗ R

rad A⊗ R
≃ Ms(L)

whereL is a cyclic field extension ofC(C). The mapa sends the class[Σ] to the class[L] in
H1(C(C), Q/Z) which classifies all cyclic extensions ofC(C). The union of all curvesC for
which the extension is non-trivial is said to be the ramification divisor ofA and becauseA is a
maximal order it coincides with the non-Azumaya locus ofA.

The groupµµµ−1 = ∪n Hom(µµµn, Q/Z) and the mapr measures the ramification of the cyclic
extensionL of C(C) in points c ∈ C, or equivalently, of the ramified cyclic covering of the
normalizationC̃ of C in all pointsc̃ of C̃ lying overc, see [18, p.110]. Finally,s is the sum map.

The Artin-Mumford theorem asserts that the mapsi anda form an exact sequence whenever
S is a smooth projective surface and the full sequence is exactwheneverS is in addition simply
connected. We will use a local version of the Artin-Mumford sequence, thus avoiding the issue of
simple connectivity.

It will turn out that the requirement of being étale splittable at all points is the crucial obstruc-
tion to having a noncommutative smooth model. Therefore, wemay restrict attention to maximal
orders for ifA is a smooth Cayley-HamiltonOS-order inΣ which is everywhere étale splittable,
so is every maximal order containing it.

Start with a smooth modelS of K and takeA0 to be a maximalOS-order inΣ havingD0 as
ramification divisor which may be highly singular. Using embedded resolution of singularities (see
for example [10]) we can construct another smooth modelS̃ of K such that

S̃

D0
⊂ - S

π

??

the inverse imageπ−1(D0) = D̃0 ∪ E (whereD̃0 is the strict transform andE is the exceptional
fiber) has at worst normal crossings.

Next, take a maximalOS̃-orderA in Σ. Its ramification divisorD is a subdivisor ofπ−1(D0)

which (as we will see below) may contain components of the exceptional divisorE. Still, D has at
worst normal crossings as singularities and we will determine the étale local structure ofA in all
pointsp ∈ D to verify where it is a smooth Cayley-Hamilton order. We separate two cases :

case 1 : Let p be a smooth point ofD. ForU = spec C[[x, y]] − V (x) we have thatBrn U = 0

and as this is the étale local structure ofS̃ andD nearp it follows thatA is étale splittable inp.
Moreover, M. Artin determined in [2] the étale local structure of maximal orders over surfaces in a
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smooth point of the ramification divisor. His results assertthatÂp has the block-decomposition

Âp ≃




(1) . . . . . . (1)

(x)
. . .

...
...

. . . . ..
...

(x) . . . (x) (1)




wheren = a.b and allb2 blocks have sizesa× a and entries in the indicated ideal ofC[[x, y]]. But
this étale local structure corresponds to the triple

(Ab−101, (1, . . . , 1), (a, . . . , a))

whenceA is a smooth Cayley-Hamilton order inp.

case 2 : Let p be a normal crossing of the ramification divisorD of A. Let U = spec C[[x, y]] −

V (xy) then the coniveau spectral sequence (or see [3]) gives the exact sequence

0 - Brn U - Zn ⊕ Zn
+- Zn

- 0

and all classes are determined by quantum planesCq[[u, v]] wherevu = quv whereq is ann-th
root of one. As this is the étale local structure ofS̃ andD nearp, a combination with the results
from [2] (or see [8]) asserts that

Âp ≃




Mc(Cq[[u, v]]) . . . . . . Mc(Cq[[u, v]])

Mc(uCq[[u, v]])
.. .

...
...

.. . . ..
...

Mc(uCq[[u, v]]) . . . Mc(uCq[[u, v]]) Mc(Cq[[u, v]])




⊂ - Mac(Cq[[u, v]])

whereq is a primitiveb-th root of one andn = a.b.c. This class corresponds to the local ramifica-
tion data

??
??

??
??

??
??

??
??

? �����������������

•

p

b −b

where the two branches are given classesb and−b in Zn. As a consequence,A is not étale splittable
in p wheneverb 6= 0. This problem cannot be resolved by blowing up the pointp as there is only
one possibility to satisfy the local sum zero condition for the divisor

D̃

D̃

E

b

−b

−b

b
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which means that the exceptional divisorE will be part of the ramification divisor of a maximal
order inΣ over the blow-up.

This concludes the proof of our main theorem :

Theorem 1 LetK be a functionfield of trancendence degree two over an algebraically closed field
of characteristic zero and letΣ be ann2-dimensional central simpleK-algebra. Then,Σ contains
a noncommutative smooth model if and only if there exists a smooth projective surfaceS with
C(S) = K such that the ramification divisor of a maximalOS-orderA in Σ consists of a disjoint
union os smooth irreducible curves.

If K = C(x, y) then the3-dimensional Sklyanin algebra (see for example [4]) definesa max-
imal OP2-orders having as ramification divisor a smooth elliptic curve. As a consequence it is a
noncommutative smooth model of the corresponding divisionalgebra. On the contrary, the triangle
3-dimensional Auslander regular algebra defines a maximalOP2-order with ramification divisor
three projective lines intersecting transversally but with non-trivial ramification data. Therefore, it
cannot be a noncommutative smooth model for the division algebra of the quantum plane. In fact,
this division algebra cannot contain any noncommutative smooth model.

Another class of division algebras overC(x, y) possessing a noncommutative smooth model
are the quaternion algebras from [5] in their construction of unirational non-rational threefolds.
These threefolds are the Brauer-Severi varieties of the corresponding maximal orders over a blow-
up.

4. Brauer-Severi varieties

Assume we are in the setting of section 1, that is,C is a normal affine domain with field of fractions
K andA is aC-order in a central simpleK-algebraΣ of dimensionn2. We will define theBrauer-
Severi schemeBSev A following the account of M. Van den Bergh in [19].

There is a naturalGLn-action on the producttrepn A × Cn defined by

g.(φ, v) = (gφg−1, gv)

With brauer A we will denote the open subset ofBrauer stablepoints of this action

brauer A = {(φ, v) | φ(A)v = Cn}

which is also the set of points with trivial stabilizer subgroup. Hence, everyGLn-orbit inbrauerA

is closed and we can form the orbitspace

BSev A = brauer A/GLn
-- trissn A

which is known to be a projective space bundle over the quotient varietytrissn A(which has
coordinate ringC). In general not much can be said about these Brauer-Severi schemes.

Lemma 1 If A is a smooth Cayley-HamiltonC-order inΣ, then its Brauer-Severi schemeBSev A

is a smooth variety.
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Proof. Becausebrauer A -- BSev A is a principalGLn-bundle it suffices to show that the
total spacebrauer A is smooth. This is clear as it is an open subscheme of the smooth variety
trepn A × Cn.

If X is a normal projective variety with function fieldC(X) = K andA is aOX-order inΣ

we can sheafify the previous construction to obtain a projective space bundle

BSevA
π-- X

with generic fibers isomorphic toPn−1 (in the Azumaya points) and ifA is a noncommutative
smooth model,BSev A is a smooth variety. An important problem is to determine in which cases
π is a flat morphism and to determine the structure of all the fibersπ−1(p) for p ∈ X.

If A is a noncommutative smooth model ofΣ, then the étale local structure ofA and ofX
nearp is fully determined by a triple(Q•, α, γ). This triple also contains enough information to
describe the étale local structure of the fibrationBSev A -- X nearp as the moduli space of a
certain quiver setting which we now recall, more information can be found in [15].

If Q• is a marked quiver on the vertices{v1, . . . , vp} then we denote with̃Q the extended
marked quiver obtained fromQ• by adding an additional vertexv0 and if γ = (d1, . . . , dp) by
adding for each1 ≤ i ≤ p exactlydi directed arrows fromv0 to vi. If α = (e1, . . . , ep) then
we will denote withα̃ the extended dimension vector(1, e1, . . . , ep). Any character ofGL(α̃) =

C∗ × GL(α) - C∗ is of the form(g0, g1, . . . , gp) 7→ det(g0)
t0det(g1)

t1 . . . det(gp)
tp and is

therefore fully determined by thep+1-tuple of integersθ = (t0, t1, . . . , tp). Consider the character
determined by

θ = (−n, d1, . . . , dp)

then clearlyθ.α̃ = 0. In the quiver representation spacerepα̃ Q̃ consider the open subsetrepθ

of θ-semistable representations as defined in [11], that is, allrepresentationsV such that for every
proper subrepresentationW of V we have thatθ.dim(W ) ≥ 0. In this particular case we have that
all θ-semistable representations are actuallyθ-stable, that is, for all proper subrepresentationsW

of V we haveθ.dim(W ) > 0. The corresponding moduli space of quiver representations

repθ/GL(α̃) = moduliθ
α̃ Q̃ -- issα̃ Q̃ = issα Q

is a projective space bundle overissα Q and this bundle is étale isomorphic to the Brauer-Severi
fibration in a neighborhood ofp.

The upshot of this description is that it allows us to calculate the fibersπ−1(p) of the Brauer-
Severi fibration using the isomorphism (in the Zariski topology)

π−1(p) = (nullα̃ Q̃ ∩ repθ)/GL(α̃)

wherenullα̃ Q̃ is the nullcone of quiver representation which can be analyzed by means of the
Hesselink stratification as described in [13].

As an example, let us perform the necessary computations in the case of surfaces and a point
p ∈ S where the triple is of the form

(Q• = Ak01, α = (1, . . . , 1), γ = (d1, . . . , dk+1))
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and γ is a unordered partition ofn having preciselyk + 1 parts. Observe that the étale local
description of M. Artin of maximal orders over surfaces in smooth points of the ramification divisor
is a special case of such a setting having the additional restriction thatd1 = . . . = dk+1. The
extended quiver setting(Q̃, α̃) is of the form

1 1

1

1

11

1

//

??���������

OO qq

__?????????

oo

##

dk+1ccccccccccccccc
ccccccccccccccc

-5ccccccccccccccccccccccc

ccccccccccccccccccccccc

d1llllllllllllll

llllllllllllll

19llllllllllllllllllll

lllllllllllllllllllld2rrrrrrrrr

rrrrrrrrr

5=rrrrrrrrrrrrrr

rrrrrrrrrrrrrr

dk−2

LL
LL

LL
L

LL
LL

LL
L

!)LLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLL

dk−1

RRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRR

%-RRRRRRRRRRRR

RRRRRRRRRRRR

dk

[[[[[[[[[[[[[[[[

[[[[[[[[[[[[[[[[

)1[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[[[[[[[[[[[[[[[[[[

and the character corresponds toθ = (−n, d1, . . . , dk+1). The weights of the maximal torus
T = GL(α̃) occurring in the representation spacerepα̃ Q̃ form the set

{π0i, πii+1 | 1 ≤ i ≤ k + 1}

and we know from [13] that strata in the nullconenullα̃ Q̃ are determined by saturated subsets
of this set of weights. Potential maximal strata correspondto maximal saturated sets which in this
case are exactly the following subsets

Si = {πii+1, πi+1i+2, . . . , πi−2i−1} ∪ {π0j | 1 ≤ j ≤ k + 1}

for every1 ≤ i ≤ k + 1. To determine whether the corresponding Hesselink strata of the nullcone
is non-empty we have to determine whether the associated level quiver hasθi-semistable represen-
tations for a specific characterθi (we refer for all these notions to the paper [13]). Allow us tostate
that the data associated toSi are : the level quiver data(Qi, αi) is of the form

1 1 1 1 1. . . . . .di
+3 // // // //

−k − 1 −k + 1 −k + 3 k − 1 k + 1

where the superscripts indicate the entries of the character θi. Clearly, there areθi-semistable
representations inrepαi

Qi (for example, all arrows equal to1) and in fact the corresponding
moduli space is

moduliθi
αi

Qi ≃ Pdi−1

Hence, the Hesselink strata determined bySi is non-empty and using the description of [13] the
full stratum consists of all representationsrepss

i of the extended quiver̃Qi which is of the form

1 1 1 1. . . . . .di
+3 // // //

di+1

�$

di−1

� 
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such that the part of the representation in the level quiverQi is θi-semistable. That is, there is an
irreducible component ofnullα̃ Q̃ corresponding to each1 ≤ i ≤ k + 1 each being the closure
repss

i which is of dimensionn + k. As every point in the (non-empty) open subset

repss
i ∩ repθ

is θ-stable and hence has stabilizer subgroupC∗ in GL(α̃) which is ak + 2-dimensional torus we
have that the dimension of the irreducible component in the Brauer-Severi fiberπ−1(p) determined
by Si has dimensionn + k − (k + 1) = n− 1 for each of thek + 1 choices ofi. Clearly, the fibers

of the Brauer-Severi fibrationBSev A
π-- S over an Azumaya pointp ∈ S are isomorphic to

Pn−1 and hence are also of dimensionn − 1. This completes the proof of

Theorem 2 LetA be a noncommutative smooth model ofΣ over a smooth surfaceS such that the
ramification locus ofA consists (at worst) of a disjoint union of smooth irreducible curves inS.
Then, the Brauer-Severi fibration

BSevA
π-- S

is a flat morphism and the fiber over a ramified point with corresponding marked quiverAk01 has
exactlyk + 1 irreducible components (each of dimensionn − 1).

Recall that the condition is automatic forA a smooth maximalOS-order hence this result ex-
tends the calculation of Artin and Mumford in [5] for the Brauer-Severi scheme of smooth maximal
orders in specific quaternion algebras.
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schémas”, North-Holland (1968) 46-188

[10] Robin Hartshorne,Algebraic GeometryGTM 52 (1977) Springer-Verlag

[11] Alastair King,Moduli of representations of finite dimensional algebras, Quat. J. Math. Oxford45
(1994) 515-530

[12] Lieven Le Bruyn,Local structure of Schelter-Procesi smooth orders, Trans. AMS352(2000)
4815-4841

[13] Lieven Le Bruyn,Optimal filtrations on representations of finite dimensional algebras, Trans. AMS
353(2001) 411-426

[14] Lieven Le Bruyn and Claudio Procesi,Semi-simple representations of quivers, Trans AMS317(1990)
585-598

[15] Lieven Le Bruyn and George Seelinger,Fibers of generic Brauer-Severi schemes, J. Alg. 214 (1999)
222-234.

[16] Domingo Luna,SlicesétalesBull. Soc. Math. France, Mémoire33 (1973) 81-105
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