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ABSTRACT: In [4] it was shown that the center of Cayley-Hamilton smooth orders is smooth when-
ever the central dimension is at most two and that there may be singularities in higher dimensions.
In this paper, we give methods to classify central singularities of smooth orders up to smooth
equivalence in arbitrary dimension and show that these methods are strong enough to complete the
classification in dimensioft 6. In particular we show that there is exactly one possible singularity
type in dimension three : the conifold singularity. In dimensidrieesp.5,6) there are precisely

(resp.10,53) types of singularities.
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1. Introduction

One can define smoothness for a noncommutative algebra either by extending the homological
(Serre) or the categorical (Grothendieck) characterization of commutative regular algebras to the
noncommutative world. In this paper we follow the second approach, started off by W. ScBielter [
and C. Procesif], as we have agtale local description of theggayley-Hamilton smooth orders
by the results of4]. This local structure then gives restrictions on the central simple algebras
possessing a noncommutative smooth model.

An algebra with trace mag A, tr) is an associative&C-algebra having a linear trace map
tr : A—— A satisfyingtr(ab) = tr(ba), tr(a)b = btr(a) andtr(tr(a)b) = tr(a)tr(b).
Morphisms in the category of algebras with trace are trace prese@+aigebra morphisms. One
has the identity

n n

[t =) => (D)ot

i=1 i=0
where thes; are the elementary symmetric polynomials in #he There is another generating set
of the symmetric polynomials given by the power sumps= > . xf so there are polynomials with
rational coefficientsy, = py (71, 72, ..., 7,) and we define the function, formally on any algebra
with trace(A, tr) to be

or(a) = pr(tr(a), tr(a2), .o tr(a™))
This allows us to define formal n-th Cayley-Hamilton polynomidor (A, tr) by

n

Ynalt) = 3 (<1 ()

=0



and we say thatA, tr) is ann-th Cayley-Hamilton algebra (or that € alg@n) if
tr(l) =n and  xpq(a) =0in Aforalla € A

The archetypical example of anth Cayley-Hamilton algebra is an order over a nhormal domain in
a central simple algebra of degree

A Cayley-Hamilton smooth algebra an affineC-algebra im1g@n satisfying Grothendieck’s
lifting characterization with respect to test-obje¢ts, I') in algen, that is, any trace preserving
algebra map

A ceererrenennn, - B

N\m -

can be lifted to a trace preserving algebra mammpleting the diagram. C. Procesi provedih [
that this categorical condition is equivalent to the geometric statement that the schepned of
trace preserving-dimensional representations 4fis a smooth affine variety (though it may have
several connected components). Moreover, the algebraic quotient variety

tiss, A =trep, A//GL,

with respect to the natural base-change action has as its coordinate ring the central subdldgbra
and its geometric points parametrize the trace preserving semi-sitvgliteensional representa-
tions of A. Of particular interest to us is the case of Cayley-Hamilton smouathrs that is, when
there is a Zariski open subset©fss,, A corresponding to simple-dimensional representations
and (consequently) that(A) = Z(A) the center ofA.

If Aisa Cayley-Hamilton smooth order andis a maximal central ideal, then one can use the
Luna slice theorem to determine the algebra structures ofitlaglic completions (thétale local
structure)

An and  Z(A)
in terms of amarkedquiver setting Q°, «), see fi]. Recall that a quive@) is a finite oriented graph
on a finite sefvy, ..., v} of vertices having;; directed arrows fromy; to v;. The bilinear form
onZF induced by the matrix

m

XQ = (0i — aij)ij € My(Z)
is called theEuler-formof Q. An integral vectorr = (ay,...,a;) € N is called a dimension
vector for@). For a fixed quiver settingQ®, «) the representation spade defined to be the affine

space
arrows

repa Q = Maixaj ((C)

Vg > Uy
The base-change grodpL(a) = GLg, X ... x GL,, acts on this space. if = (g1,...,9%) €

GL(a) andV = (V1,...,V}) € rep, Q with C* Y, ¢ the matrix corresponding to the arrow
Vi —> Uy, then
(9-V)h = g;jVhy; !



The algebraic quotient varietyss, @ = rep, Q//GL(«) classifies isomorphism classescof
dimensional semi-simple representationg)ofFor more details we refer t&].

A marked quiverQ® is a quiverQ (called the underlying quiver) together with a marking of
some of its loops. The representation spaeg, Q° for a fixed marked quiver setting)*®, «) is
the subspace afep,, @ consisting of those representatidris= (V1, ..., V;) such thatr(V},) =0
whenevei}, is the matrix corresponding to a marked loogdh The base-change action@f.(«)
onrep, ( restricts to an action onep,, Q°* and the corresponding quotient varietyss, Q% =
rep, *//GL(«) classifies isomorphism classeseflimensional semi-simple representations of
@ such that traces of matrices correspondin@tare zero. For more details we refer t.[

We can now recall the connection between the local structure of Cayley-Hamilton smooth
orders and marked quiver settings. Letbe the point oftiss,, A corresponding to the trace
preserving semi-simple-dimensional representation

M=S"e.. &8

where theS; are simplel;-dimensional representations 4foccurring with multiplicitye; whence
n = Y e;d;. The subspace obztl (M, M) = @, ;Ext(S;,S;)®¢ consisting of all trace
preserving algebra morphismé —— M,,(Cle]) (whereCle] is the algebra of dual numbers)
can be identified with a marked quiver representation spagg (Q°* where the quiver) hask
vertices (corresponding to the distinct simple component® pind where the dimension vector
a = (e,...,er) (corresponding to the multiplicities). /] it is proved that theG L, -étale
structure oftrep,, A in a neighborhood of the orb®()/) is isomorphic to the associated fiber
bundle

GL, x®) rep_ Q°

whereGL(«) — GL,, is determined by the dimensiods In particular, this implies thad,, is
Morita equivalent to the completion of the algebratdf(«)-equivariant mapsep,, @Q* — M, (C)
at the maximal ideal corresponding to the zero representation anﬁ/(tKa;n is isomorphic to the
completion

Cl[rep, Q)] )

of the ring of polynomial quiver invariants at the maximal graded ideal. This fact allows us to study
the central singularities of Cayley-Hamilton smooth orders.4lritfwas shown that the center is
smooth whenever the Krull dimension of the smooth ordef i2 and that there may be central
singularities possible in dimensions 3. In this paper we will classify the singularities that arise
in this way.

Recall that two commutative local ring$,, and D,, are said to bemooth equivalerif there
are numberg and/ such that

A~ N

Cm[[xl’ s 73’9“ = Dn[[yla cee 7yl]]

A classification of all commutative singularities up to smooth equivalence is a hopeless task. Still,
because central singularities of Cayley-Hamilton smooth orders are determined by quiver invariants
we will give methods to attack this classification problem and illustrate the methods by giving a
full classification in dimensions. 6. The main result of this paper is



Theorem 1 Letd be the dimension of the central varietyss,, A of a Cayley-Hamilton smooth
order A. Then, ifd < 2, tiss,, A is smooth. Ifd = 3 (resp. 4, 5, 6) there are exactly one (resp.
three, ten and fifty three) types of central singularities possible.

In dimension three, the only possible central singularity is the so catleifold singularity

(CHU, U, T, y]]/(uv - a:y)

There is another equivalence on singularities which issthbedding dimensiaoof the singularity,

that is the dimension of the quotient/m? wherem is the maximal ideal of the local algebra.
Although this paper does not classify (marked) quiver quotient singularities under this equivalence,
a lot of information about it can be obtained from our lists in which we added the embedding
dimension between brackets.

In section two we give a general strategy to classify smooth equivalence classes of central
singularities in any dimension, based on the reduction stef$ ioffhe classification of the smooth
quiver settings. In section three we give the proofs of the claims made and in the final two sections
we give the details of the remaining classification result in dimengiarsl6.

2. The strategy

By the étale classification it suffices to classify marked quiver settings up to smooth equivalence,
that is, we want to determine when

Clrep,, Q19" “V[z1,...,24] = Clrep,, Q3] [y1, ...,y

In the case of quivers, a full classification of all the quiver settif@s«) such that the ring of
invariants is a polynomial ring was given iti][ The proof relies on a number of reduction steps
which modify the ring of invariants only up to polynomial extensions. We will recall these reduc-
tion steps as well as their obvious extensions to marked quivers. In the quiver diagrams below, the
vertex-dimension component is depicted in the vertex and the number of multiple arrows between
two vertices is given by a superscript, unless this number &in which case the number of ar-

rows is drawn. In the diagrams below we only depict the quiver-neighborhood of the vertex where
a change is made, the remaining part of the quiver setting is left unchanged.

With ¢, we denote the basevector concentrated in vertemd «,, will denote the vertex
dimension component af in vertexv. There are three types of reduction moves, each with their
own condition and effect on the ring of invariants.

Vertex removal : Let (Q°, o) be a marked quiver setting amdh vertex satisfying the condi-
tion Cy,, that is,v is without (marked) loops and satisfies

xQ(a,€e,) >0 or xg(ey,a) >0



Define the new quiver settir@Q", ') obtained by the operatioR}, which removes the vertex
and composes all arrows throughthe dimensions of the other vertices are unchanged :

v
R \4

wherec;; = a;b; (observe that some of the incoming and outgoing vertices may be the same so
that one obtains loops in the corresponding vertex). In this case we have

Clrep,, Q']GL(Q) ~ Clrep,, Q'I]GL(QI)

loop removal : Let (Q*, ) be a marked quiver setting and vertex satisfying the condition
Cy that the vertex-dimension, = 1 and there aré& > 1 loops inv. Let (Q'/,a) be the quiver
setting obtained by the loop removal operatigh

ST S I

removing one loop i and keeping the dimension vector the same, then
Clrep, Q17" = C[rep, Q*17"a]

Loop removal : Let (Q°*,«) be a marked quiver setting amda vertex satisfying condition
C7, thatis, the vertex dimensian, > 2, v has precisely one (marked) loopdrand

xQ(€p, ) = =1 or xg(a,&)=—1

(that is, there is exactly one other incoming or outgoing arrow from/to a vertex with dimension
1). Let (Q", «) be the marked quiver setting obtained by changing the quiver as indicated below
(depending on whether the incoming or outgoing condition is satisfied and whether there is a loop
or a marked loop in)




and the dimension vector is left unchanged, then we have

Clrep, Q%M [x1,..., 2] (loop)
Clrep, Q¥ 1M [z, ..., x;_1] (marked loop)

Clrep, Q7)™ = {

Definition 1 A marked quiver® is said to be strongly connected if for every pair of vertices
{v,w} there is an oriented path fromto w and an oriented path fronw to v.

A marked quiver settingR®, «) is said to bereducedf and only if there isnho vertexv such
that one of the conditionSY,, C}’ or C7 is satisfied.

Lemma 1 Every marked quiver setting$, ;) can be reduced by a sequence of operations
v, R} and R} to areducedjuiver setting(@3, a2) such that

Clrep,, Q]9 ~ Clrep,, Q3]7" [z, ..., z.]
Moreover, the number of extra indeterminates is determined by the reduction sequence
(Q3,02) = Ry o...0 Ry (QF, 1)

where for everyl < j <u, X; € {V,[, L}. More precisely,

(unmarked) (marked)
2= 1+ > et ) (e )
X;=1 X,=L X,=L

Proof. As any reduction step removes a (marked) loop or a vertex, any sequence of reduction steps
starting with(Q$, o) must eventually end in a reduced marked quiver setting. The statement then
follows from the discussion above.

As the reduction steps have no uniquely determined inverse, there is no a priori reason why
the reduced quiver setting of the previous lemma should be unique. Nevertheless this is true as we
will prove in sectior :

Theorem 2 Every marked quiver setting)$, a;) can be transformed by a sequence of reduction
stepsRy,, R} or R} to auniquely determinededuced marked quiver settin@s, az).



This result shows that it is enough to classi&ducedmarked quiver settings up to smooth
equivalence. We can always assume that the qujv& strongly connected (if not, the ring of
invariants is the tensor product of the rings of invariants of the maximal strongly connected sub-
quivers). Our aim is to classify the reduced quiver singularities up to equivalence, so we need to
determine the Krull dimension of the rings of invariants.

Lemma 2 Let(Q*, «) be a reduced marked quiver setting adstrongly connected. Then,
dim tiss, Q* =1— xg(o,a) —m
wherem is the total number of marked loops@?.
Proof. Becaus€@*, o) is reduced, none of the vertices satisfies condi€ign whence
xQ(ev, ) < =1 and xg(a,e) < —1

for all verticeswv. In particular it follows (becaus@ is strongly connected) frond] that « is the
dimension vector of a simple representatiorfoénd that the dimension of the quotient variety

dim iss, Q =1 — xg(a, )
Finally, separating traces of the loops to be marked gives the required formula.

Applying the main result of]] we have all marked quiver settings having a regular ring of
invariants. This result also describes the smooth locus of the central variety of a Cayley-Hamilton
smooth order using thetale local description of sectidn

Theorem 3 Let (Q*,«) be a marked quiver setting such th@tis strongly connected. Then
tiss, @Q° is smooth if and only if the unique reduced marked quiver setting to wid¢ha)
can be reduced is one of the following five types

e
® C® CeD (o {0

Proof. Because the ring of invariants is graded it suffices to prove smoothness in the origin. Con-
sider the underlying quivep, apply the main result ofl] and separate traces of the marked loops.

The next step is to classify for a given dimensiball reduced marked quiver setting9°, «)
such thatdim tiss, Q° = d. The following result limits the possible cases drastically in low
dimensions.

Lemma 3 Let(Q*, «) be a reduced marked quiver setting o> 2 vertices. Then,

a>1 a>1 a>1 a>1
dim iss, Q° > l—i—Za—i-; (2a—1)+2(2a)+ Z (a® 4 a —2)+
@ Lo (o ()
a>1 a>1 a>1
;(a2+a—1)+2(a2+a)+...+ Y ((k+1-Da*+a—k)+...
v
o) Cel W1

In this sum the contribution of a vertexwith o, = a is determined by the number of (marked)
loops inv. By the reduction steps (marked) loops only occur at vertices where 1.



Proof. We know that the dimension afiss, Q° is equal to
1—xg(,a)—m=1- ZXQ(GU,Q)O@ —-m
v

If there are no (marked) loops af thenxg(ey, a) < —1 (if not we would reduce further) which
explains the first sum. If there is exactly one (marked) loop #ten xqg(e,, o) < —2 for if
xq(€s, &) = —1 then there is just one outgoing arrow to a veriewith «,, = 1 but then we can
reduce the quiver setting further. This explains the second and third sums. If thérenar&ed
loops and ordinary loops inv (and@ has at least two vertices) , then

—xq(€v, a)ay —k > ((k+ Doy —ay + 1)y — k
which explains all other sums.
Observe that the dimension of the quotient variety of the one vertex marked quivers

kC@Q l

is equal to(k + 1 — 1)a? + 1 — k and is singular (fom > 2) unlessk + 1 = 2. We will now
classify the reduced singular settings when there are at least two vertices in low dimensions. By
the previous lemma it follows immediately that

1. the maximal number of vertices in a reduced marked quiver séttifigr) of dimensiond
is d — 1 (in which case all vertex dimensions must be equal to one)

2. ifavertex dimension in a reduced marked quiver settiaghis2, then the dimensiod > 2a.

Lemma 4 Let (Q*,«) be a reduced marked quiver setting such thass, Q° is singular of
dimensiond < 5, thena = (1, ..., 1). Moreover, each vertex must have at least two incoming and
two outgoing arrows and no loops.

Proof. From the lower bound of the sum formula it follows that if some> 1 it must be equal to
2 and must have a unique marked loop and there can only be one otherwestiéx «c,, = 1. If
there arer arrows fromw to v andy arrows fromw to w, then

dim tiss, Q* =2(z+y) —1

whencex or y must be equal td contradicting reducedness. The second statement follows as
otherwise we could perform extra reductions.

Proposition 1 The only reduced marked quiver singularity in dimension 3 is
Beon @©®

The reduced marked quiver singularities in dimension 4 are

o< 0 O
d3q Nv/ dgp k\\ / 4y 1 OZ___—=0
3a - : N\ / :
\\ @/ [ \@ / ————



Proof. All one vertex marked quiver settings with quotient dimensiol are smooth, so we are
in the situation of lemmd. If the dimension is3 there must be two vertices each having exactly
two incoming and two outgoing arrows, whence the indicated type is the only one. The resulting
singularity is theconifold singularity

Cllz,y, u, v]]

(zy — uv)

In dimensiond we can have three or two vertices. In the first case, each vertex must have exactly
two incoming and two outgoing arrows whence the first two cases. If there are two vertices, then
just one of them has three incoming arrows and one has three outgoing arrows.

In dimensionss and6 one can give a classification of all reduced singularities by hand, see
sections and6. This concludes the first step in our strategy, the next will be to distinguish reduced
singularities of the same dimension up &&le) isomorphism.

3. Fingerprinting singularities

In this section we will outline methods to distinguish two reduced marked quiver settfge:)

and (@3, a2) having the same quotient dimensidn Recall from p] that the rings of quiver in-
variants are generated by taking traces along oriented cycles in the quiver (again separating traces
gives the same result for marked quivers). Assume that all vertex dimensions are equal to one, then
one can write any (trace of an) oriented cycle as a product of (tracesigfitive oriented cycles

(that is, those that cannot be decomposed further). From this one deduces immediately :

Lemma5 Let (Q°, «) be a reduced marked quiver setting such thataall= 1. Letm be the
maximal graded ideal of[rep,, Q°]9(@), then a vectorspace basis of

mi
il
is given by the oriented cycles @p which can be written as a product oprimitive cycles but not
as a product of + 1 such cycles.

Clearly, the dimensions of the quotientg /m'*! are @tale) isomorphism invariants. Recall
that the first of these numbers/m? is the embedding dimension of the singularity. Hence, for
d < 5 this simple minded counting method can be used to separate quiver singularities.

Theorem 4 There are precisely three reduced quiver singularities in dimengierd.

Proof. The number of primitive oriented cycles of the three types of reduced marked quiver settings
in dimension four

4 o v 4 . \\ Vi 4o - @ﬁ@
3 \ @{ / 3b \@ // 2 S——

is 5, respectively8 and6. Hence, they give nonisomorphic rings of invariants.



In section5 we will classify the reduced quiver singularities o= 5. If some of the vertex
dimensions arg- 2 we have no easy description of the vectorspaggsni*! and we need a more
refined argument. The idea is to answer the question "what other singularities can the reduced
singularity see ?” by the theory of local quivers 6F.[

Let @ be a quiver (we will indicate the necessary changes to be made for marked quivers
below) andx a dimension vector. An-representation types a datum

T = (61761;' . . ;el7ﬁl)

where thee; are natural numbers 1, the 5; are dimension vectors of simple representationg of
(for which we have a precise description Bf)[such thain = ), e;5;. Any neighborhood of the
trivial representation contains semi-simple representatiogsafftype r for any a-representation
type.

To determine the dimension of the corresponding strata and the nature of their singularities we
construct a new quive®-, thelocal quiver, on! vertices (the number of distinct simple compo-
nents) say{wi, ..., w;} such that the number of oriented arrows (or loops) fronto w; is given
by the number

dij — xQ(Bi; B)

There is anétale local isomorphism between a neighborhood of a semi-sisqolenensional
representation of type and a neighborhood of the trivial representationiek,. @), where
ar = (e1,...,¢) is the dimension vector determined by the multiplicities.

As a consequence we see that the dimension of the corresponding strata is equal to the number
of loops in@,. Now, assume thaitss, . @), has a singularity, then the couple

(dimension of strata, type of singularjty

is a characteristic feature of the singularityiek, Q and one can often distinguish types by these
couples. In the case of a marked quiver one proceeds as before for the underlying quiver and in the
final result compensates for the markings (that is, one marks as many loops in the local quiver in
the vertices giving a non-zero contribution to the original marked vertex).

Recall from p] that there is a partial ordering < 7' on thea-representation types induced
by degeneration of representations. Thmgerprint of a reduced quiver singularity will be the
Hasse diagram of thogerepresentation typessuch that the local marked quiver settif@?, o)
can be reduced to a reduced quiver singularity (necessarily occurring in lower dimension and the
difference between the two dimensions gives the dimension of the stratum).

Clearly, this method fails in case the marked quiver singularity is@lated singularity For-
tunately, we have a complete classification of such singularities by the wokk of |

Theorem 5 [2] The only reduced marked quiver settingg®, «) such that the quotient variety is

—-10-—



an isolated singularity are of the form

where( has! vertices and alk; > 2. The dimension of the corresponding quotient is
d=> ki+l-1

and theunordered-tuple{k1, ..., k;} is an @tale) isomorphism invariant of the ring of invariants.

Not only does this result distinguish among isolated reduced quiver singularities, but it also
shows that in all other marked quiver settings we will have additional families of singularities. We
will illustrate the method in some detail to separate the reduced marked quiver settings in dimension
6 having one vertex of dimension two.

Proposition 2 The reduced singularities of dimensiérsuch thatn contains a component equal
to 2 are pairwise non-equivalent.

Proof. In section6 we will show that the relevant reduced marked quiver setting are the following

@\ type A type B
‘} .
\ / ()
O __~0 oo "0
type C type D
[ )
T

We will order the vertices such thag = 2.

type A : There are three different representation types= (1, (2;1,1,0);1,(0;0,0,1)) (and
permutations of thé-vertices). The local quiver setting has the form

Al
\_,,Oi\‘_‘\_//

because fop; = (2;1,1,0) andfz = (0;0,0, 1) we have thatg (51, 61) = =2, xo(B1,562) =
-2, xo(B2,01) = —2 andx(f2,32) = 1. These three representation types each give a three
dimensional family of conifold (typ8.,,) singularities.

—-11 -



Further, there are three different representation types (1, (1;1,1,0);1,(1;0,0,1)) (and
permutations) of which the local quiver setting is of the form

g

as with3; = (1;1,1,0) and 32 = (1;0,0,1) we havexq (61, 51) = —1, xo(b1,02) = -2,
xq(B2,51) = —2 andxq(f2, 52) = 0. These three representation types each give a three dimen-
sional family of conifold singularities.

Finally, there are the three representation types
3 = (1,(1;1,0,0);1,(1;0,1,0);1,(0;0,0,1))

(and permutations) with local quiver setting

R
e

AN \\ ;
Y

These three types each give a two dimensional family of reduced singularities dktype

The degeneration order on representation types gives 73 andm» < 73 (but for different
permutations) and thiingerprintof this reduced singularity can be depicted as

3CO’I’L 30071

type B : There is one representation type = (1,(1;1,0);1,(1;0,1)) giving as above a three
dimensional family of conifold singularities, one representation type (1, (1;1,1);1,(1;0,0))
giving a three dimensional family of conifolds and finally one representation type

73 = (1,(1;0,0);1,(1;0,0); 1, (05 1,1); 1, (0; 0, 1))
of which the local quiver setting has the form

s

0
\

T

~N~N—N

- 12 —



(the loop in the downright corner is removed to compensate for the marking) giving rise to a one-
dimensional family of five-dimensional singularities of typg. This gives the fingerprint

type C : We have a three dimensional family of conifold singularities coming from the representa-
tion type(1, (1;1);1,(1;0)) and a two-dimensional family of typg,, singularities corresponding
to the representation tyge, (1;0); 1, (1,0);1, (0; 1)). Therefore, the fingerprint is depicted as

Beon — 434 — ®

type D . We have just one three-dimensional family of conifold singularities determined by the
representation typél, (1); 1, (1)) so the fingerprint i8$.,, — e. As fingerprints are isomor-
phism invariants of the singularity, this finishes the proof.

We claim that the minimal humber of generators for these invariant rings The structure
of the invariant ring of thre@ x 2 matrices upto simultaneous conjugation was determined by Ed
Formanek 8] who showed that it is generated by elements

{tT(Xl), tT(XQ), tT’(Xg), det(Xl), det(XQ), det(Xg), t?”(XlXQ), tT(Xng), t?”(XQXg), tT(XlXQXQ,)}

and even gave the explicit quadratic polynomial satisfiedrfy; X X3) with coefficients in the
remaining generators. The rings of invariants of the four cases of interest to us are quotients of this
algebra by the ideal generated by three of its generators : forayide (det(X1), det(X2), det(X3)),
fortype B : (det(X1),tr(Xs),det(X3)), fortypeC : (det(Xy),tr(X2),tr(Xs)) and for typeD :
(tr(X1),tr(Xa), tr(X3)).

4. Unigueness of reduced setting

In this section we will prove theorerd We will say that a vertex is reducibleif one of the
conditionsCy, (vertex removal)C} (loop removal in vertex dimension one) 6f (one (marked)
loop removal) is satisfied. If we let the specific condition unspecified we will sayutsatisfies
C% and denoteRs; for the corresponding marked quiver setting reduction. The resulting marked
quiver setting will be denoted by

R%(Q*, )
If w # v is another vertex ird)* we will denote the corresponding vertex/iti, (Q*) also withw.
The proof of the uniqueness result relies on three claims :

1. If w # v satisfiesRy in (Q°, o), thenw virtually always satisfiesty’ in R% (Q°, «).

2. If v satisfiesRY andw satisfiesRy’, thenR% (RY(Q°, a)) = RY(R% (Q°, ).

—-13-—



3. The previous two facts can be used to prove the result by induction on the minimal length of
the reduction chain.

By theneighborhoodf a vertexv in Q* we mean the (marked) subquiver on the vertices connected
to v. A neighborhood of a set of vertices is the union of the vertex-neighborhdmatsmingresp.
outgoingneighborhoods are defined in the natural manner.

Lemma 6 Letv # w be vertices iNQ°*, «).

1. Ifv satisfiesCy, in (Q°, «) andw satisfiesC'y, thenv satisfiesCy? in R (Q°, ) unless the
neighborhood of v, w} looks like

anda, = «,,. Observe that in this cask], (Q*, a) = Ry (Q*, a).
2. Ifv satisfiesC} andw satisfiesC'y then therw satisfiesC} in R (Q°, o).
3. Ifv satisfiesCy, andw satisfiesCy then therw satisfiesC], in R (Q°, «).

Proof. (1) : If X = [ thenRY; does not change the neighborhood)afo Cy, holds inR}”(Q°, «).

If X = L thenRY; does not change the neighborhoodvainlesse, = 1 andxg(ew, €,) = —1
(resp.xq(ev, €w) = —1) depending on whethep satisfies the in- or outgoing conditi@r’. We
only consider the first case, the latter is similar. Thesannot satisfy the outgoing form 6f, in
(Q*, o) so the incoming condition is satisfied. BecauseZtemove does not change the incoming
neighborhood of, CY; still holds forv in RY (Q°, o).

If X =V andv andw have disjoint neighborhoods thé, trivially remains true inR{; (Q°, o).
Hence assume that there is at least one arrow framw (the case where there are only arrows
from w to v is similar). If o, < a, then the incoming conditio@’y, must hold (outgoing is impos-
sible) and hence does not appear in the incoming neighborhood.dBut thenR;; preserves the
incoming neighborhood af andCy, remains true in the reduction. df, > «,, then the outgoing
conditionC{? must hold and hence does not appear in the incoming neighborhood.o5o if
the incoming conditiorCy, holds in(Q*, «) it will still hold after the application ofR{;. If the
outgoing conditionCy{, holds, the neighborhoods ofandw in (Q°, «) andv in R{)(Q°, «) are
depicted in figurel Let A be the set of arrows i® and A’ the set of arrows in the reduction, then
becaus@aeA’s(a):w Qy(q) < Qqp (the incoming condition fotv) we have

Z 04(@): Z Qt(a) T Z Z Ot (a)

€A, = a€cA, acA cA, —
@ S(a) v s(a)=v,t(a)F#w t(a):w,s(a):va ’S(a) w
S S
acA, acA
s(a)=v,t(a)#w t(a)=w,s(a)=w
= ). w@<m
a€A,s(a)=v
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Figure 1: Neighborhoods of andw

and therefore the outgoing conditidif, also holds inR{;(Q°, «). Finally if o, = o, it may be
that Cf, does not hold inR{;(Q°, «). In this casex(e,, ) < 0 andx(«,€,) < 0 (Cy, is false
in R{Y(Q°®, «)). Also x(«a,€,) > 0 andyx(ey,, ) > 0 (otherwiseCy does not hold fow or w

in (Q*,«)). This implies that we are in the situation described in the lemma and the conclusion
follows.

(2) : None of theR;-moves removes a loop innor changesy, = 1.

(3) : Assume that the incoming conditi@rf holds in(Q*, «) but not inRY (Q°, ), thenw must
be the unique vertex which has an arromwtand X = V. Becausey,, = 1 < «,, the incoming
conditionCy? holds. This means that there is also only one arrow arriving and this arrow is
coming from a vertex with dimensioh Therefore after applyind?i?, v will still have only one
incoming arrow starting in a vertex with dimensidbnA similar argument holds for the outgoing
conditionC?}.

Lemma 7 Suppose that # w are vertices in(Q°, «) and thatC%, and C{/ are satisfied. [T
holds inRY(Q*, o) andC{ holds inR% (Q*, ) then

xRy (Q%, ) = Ry Rx(Q*, )

Proof. If X,Y € {I, L} this is obvious, so let us assume tiat= V. If Y = V as well, we can
calculate the Euler forrmR;;vaQ(ex, €y). Because

XR}’/Q(Exa €y) = XQ(Exa €y) - XQ(eoca ev)XQ(Evv ey)

—15—



it follows that

XRe Ry, Q €z, €y) = XRY,Q (€, €y) — XRYQ(€xs €w) X Ry, Q (€0, €y)
= Xxq(€x; €y) — Xq(€x; €)X (€v, €y)
— (xqQ(€zs €w) — XQ(€xr €0)XQ(€vs €w)) (XQ(€w, €y) — XQ(€w, €v)XQ(€v, €y))
= xQ €z, €y) — XQ(€xs €0)XQ(€vs €y) — XQ(€xs €w) XQ(€w) €y)
— XQ (€, €0)xQ(€vs €w)XQ (€w, €0)xQ (v, €y)
+ xQ (€, €w)XQ(€w; €)X Q(€v, €y) + XQ (€5 €0) XQ (€, €w)XQ(€ws €y)

This is symmetric inv andw and therefore the ordering &, and Ry, is irrelevant.
If Y = [ we have the following equalities

XRe Ry Q(€xs €4) = XRY.Q (€2, €y) — Owaduy
= xQ(€x> €y) — XQ(€z, €0)XQ (€0, €y) — Owzluy
= XQ(€x; €y) — Owaduwy — (XQ(€x, €v) — dwzduww) (XQ(€v; €y) — duwwvduy)
= XrrQ(€z, €y) — XRrQ(€xs €0)XRrQ (€0, €y)
= XRYR¥Q-
If Y = L, an RY-move commutes with th&;, move because it does not change the neighbor-

hood ofv except wherw is the unique vertex of dimensiohconnected tav. In this case the
neighborhood of looks like

O] O]

In this case the reduction ais equivalent to a reduction at(i.e. the lower vertex) which certainly
commutes withRYy.

We are now in a position to prove theorémn

Theorem 6 If (Q°, «) is a strongly connected marked quiver setting &84, 1) and (Q3$, a2)
are two reduced marked quiver setting obtained by applying reduction moyés ta) then

(QF, 1) = (Q3, a2)

Proof. We do induction on the length of the reduction chai®; reducing(Q°®, «) to (@, a1). If
l; =0, then(Q*, «) has no reducible vertices so the result holds trivially. Assume the result holds
for all lengths< I;. There are two cases to consider.

There exists a vertex satisfying a loop removal conditiofy,, X = [ or L. Then, there is a
R%--move in both reduction chaing; andR,. This follows from lemméb and the fact that none
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of the vertices iQ3, a1) and(Q3, az2) are reducible. By the commutation relations from lemma
7, we can bring this reduction to the first position in both chains and use induction.

If there is a vertex satisfying conditionC’y,, either both chains will contain aRy,-move or
the neighborhood af looks like the figure in lemmaé (1). Then,R; can contain ak{,-move and
R, an R{>-move. But then we change th; move into aky, move, because they have the same
effect. The concluding argument is similar to that above.

5. Dimension5 singularities

In this section we classify the reduced marked quiver singularities in dimedsien5 up to
isomorphism. First, we classify all reduced marked quiver settings.

Proposition 3 The reduced marked quiver settings fioe= 5 are

=

4 =
e
93¢ - N\ J 930 N N\ /
’Z’;% _m——
U i
3c d
N N
= >0 < >
) () ] | e | ]
- O O O >
@mcb\ 00
54d Z<< &\ 5461T l
O =0 ®©®

Proof. We are in the situation of lemm&aand hence know that all vertex-dimensions are equal to
one, every vertex has at least two incoming and two outgoing arrows and the total number of arrows
is equal tob — 1 + k wherek is the number of arrows which can be at mést

k = 2: There are arrows and as there must be at least two incoming arrows in each vertex, the
only possibilities are types,, and5q.

k = 3: There are seven arrows. Hence every two vertices are connected, otherwise one needs at
least8 arrows:
FoTZ0.
There is one vertex with incoming arrows and one vertex wistoutgoing arrows. If these vertices
are equal<£ v), there are no triple arrows. Callthe vertex with2 arrows coming from andy the
other one. Because there are already two incoming arrowsya (e,, €;) = 0. This also implies

that x(ey, €v) = —2 andxg(ez, €») = xQ(€x, €y) = —1. This gives us settings,. If the two
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vertices are different, we can delete one arrow between them, which leaves us with a singularity of
dimensiond = 4 (because now all vertices have 2 incoming and 2 outgoing vertices). So starting
from the typests,_; and adding one extra arrow we obtain three new typgs;.

k = 4 : There are8 arrows so each vertex must have exactly two incoming and two outgoing
arrows. First consider the cases having no double arrows. Fix a verteare is at least one vertex
connected ta in both directions. This is because there amemaining vertices and four arrows
connected tav (two incoming and two outgoing). If there are two such vertiaesandw,, the
remaining vertexvs is not connected to. Because there are no double arrows we must be in case
544 If there is only one such vertex, the quiver contains two disjoint cycles of lengthis leads

to typebyy,.

If there is precisely one double arrow (fromto w), the two remaining vertices must be
contained in a cycle of length(if not, there would be arrows leaving). This leads to typé...

If there are two double arrows, they can be consecutive or disjoint. In the first case, all arrows
must be double (if not, there are three arrows leaving one vertex), so this i5ypk the latter
case, let; andwvs be the starting vertices of the double arrows andandw, the end points. As
there are no consecutive double arrows, the two arrows leawvimgust go to different vertices not
equal towy. An analogous condition holds for the arrows leavingand therefore we are in type
D4e-

Next, we have to separate the corresponding rings of invariants up to isomorphism. This is
done with the methods of secti@ The proofs of the claims are left to the reader but are similar
to the proof of propositior2.

Theorem 7 There are exactly ten reduced marked quiver singularities in dimenkierb. Only
the typess, and5,. have an isomorphic ring of invariants.

Proof. Recall that the dimension of./m? is given by the number of primitive cycles @. These
numbers are

type | dim m/m? || type | dim m/m?
D2q 8 Dda 6

534 8 S4c 9

Hap 7 54d 16

53¢ 12 Dge 8

534 10

Type 54, can be separated from type, because,, contains2 + 4 twodimensional families of
conifold singularities corresponding to representation types of the form

{

1100
and4 x 15 @ g7y-

= O
OO O
& &b
OO —O
= =
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whereas typé,;, has onlyl + 4 such families as the decomposition
01910

is not a valid representation type.
Type 59, andby, are both isolated singularities because we have no non- trivial representation
types, whereas typés., ands,. are not as they have representation types of the form

01 10 4 00
00D oo P11

giving local quivers smooth equivalent to typg, (in the case of typé,.) and to type3, (in the
case ofs.).

Finally, as we know the algebra generators of the rings of invariants (the primitive cycles) it
is not difficult to compute these rings explicitly. Typg, and type5,. have a ring of invariants

isomorphic to
C[X;,Y;,Z45:1<i,5<2]
(Z11Z22=212721,X1Y1Z22=X1Y2Z21=X2Y1Z12=X2Y27Z11)

6. Dimension6 singularities

In this section we will classify all reduced quiver singularities in dimensien 6. First, we need
some information on the reduced marked quiver settings.

Lemma 8 Let (Q°®, «) be a reduced marked quiver setting on at least two vertices such that the
dimension of the quotient varietyss, Q° is 6. Then, the maximal vertex dimensior2iand the
only settings having such a vertex dimension are the quizgréz, 6¢ or 6 of section3.

Proof. From the formula of lemmafollows that the maximal vertex dimensiondignd fore,, > 3,

there cannot be a (marked) loop«n But then, there can be just one other vertex with = 1.
Reducedness then forces the dimension of the quotient variety to be largér th#mere are two
vertices witha, = «,, = 2, then at most one of them can have a marked loop (in which case
there are no other vertices and reducedness implies again that the diménsi®nif neither has

a marked loop there can be just one more vetiath o, = 1 and again we obtaid > 6 if we
impose reducedness. So, there is at most one venésh «,, = 2 and we can have at most three
remaining vertices all of vertex dimension one.

four vertices : There can be no (marked) loopdmand we need thatg(e,, a) = x@(«, €,) for

all verticesw giving type6 4.

three vertices : There can be at most one marked loop iim which case we must be in tyig;.

If there is no marked loop im, there must be at least three incoming and three outgoing arrows
from v giving a lower bound of seven for the quotient variety.

two vertices : There are at most two marked loopsuinn which case we must be in tygig.

If there is one (marked) loop in, there must be at least two incoming and two outgoing arrows
from/tow (if not we haveC?y,) giving a lower bound of seven for the quotient variety.

Next, we have to classify all reduced quiver settings such that all vertex dimensions are equal
to one. In this case, each vertex must have at least two incoming and two outgoing arrows, the
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maximal number of vertices is bounded®gnd the total number of arrows is equabte k£ where
k is the number of vertices. The case= 2 is easy.

4 5
620 (12) : OO 62 (10) : OO

where the number between brackets gives the number of primitive cycles. Th& cages 5 can

be classified either by ad-hoc methods as in the previous section or by usingtthgrocedure of
PORTA6] which is an efficient method to find all integral points satisfying a set of (in)equalities.
Here, the inequalities are given by the conditions that the number of incoming (outgoing) arrows
is at least two and the equality states that the total number of arrows-i&. Taking quiver-
isomorphism classes of the obtained list of integral solutions then gives the lists below.

In these lists we indicate the type of singularity, the number of primitive cycles (the embedding
dimension) and the fingerprint. Some of these quiver settings give a non-isomorphic quiver setting
when we reversall arrows. As this operation has no effect on the ring of invariants we did not list
the reversed cases.

The reduced quiver settings ford = 6 on three vertices.
634 (9) o= 5

2a 3
e .

635 (10) 0= =0 5o 3
NN
\\@/(/ \ ] /

63 (10) 0= =0

NS 4 o2
\\ // \ /
N/
[ ]

634 (9) @\//"':“‘"%/@ 4y 52a
¢\
6. (10) @f’“’"‘“”ﬁ@ 49 3

N \/
635 (11) -0

( 45 3

con

con

con

con

@

63, (15) =0 3con
N
N 4 y
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63 (12) %®? Bcon
\ / l
N !

63; (18) @%\gf»ﬁ%@ .

635 (16) © R O .
\ /
635 (8) U020 3con
NG
631 (12) @%M@ ]2
N\ /
\N@ / !
63, (14) 49

’\\\ // l

635 (10) O =0 49 59

%7” e

The reduced quiver settings ford = 6 on four vertices.

644 (8) @\\\/ \ 3con 49
\ L\l ;o W |
OO A3, 53p 3b 93b

NP

f@)\v 3c0n 42 42 42 42 3con
DAV S s S g
D 53p \53b % 93b
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64c (9) @@@ 3con

644 (12) 7@ 4o

( )
@V(D
646 (10) ®ﬂ@ 3co

64y (8) @Q/’E@\ 3eon
) N\
64 (10) @@q 3con
<®©®} \ . /
64n, (18) o Q@ 43y,
)
(@g;@” |
64; (24) OO,
)
L
64; (20) O ©) 3co
)
64% (9) oglipo) 3




64; (16)

64m (8)

640 (11)

64p (14)

64q (8)

64, (13)
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645 (11) QO 4y 3con
N
%éii;? \\\\\J 93¢
0/
64z (8) ;D\R@\ 4o 49 49 3eon 3
XL N
~— 93b 93b
N
64u (8) ®»\/_\® 3con 3con 3co
B T
~— 534 93a 93a 52b
640 (9) {DA®> 3con 3co
\@X@ ia ‘
\.
64w (9) 7@@@ 3o 49
TN /
~ 93a 93d
642 (8) Q. —® 49 49 49 3con 3co
Y 93b 93b 93a
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~— 93b 434
\ |
49 49

The reduced quiver settings ford = 6 on five vertices.

65a (8) 3

ﬂ\\ /7\\ ﬂ
\®/ \w .

655 (16) @:>® 3¢

1<

N
.ﬁg

65c (12) 3con
n @/f \ l(?))
Yy
5d (9)
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3COTL

65m (7) 3con
] \\\ [k
%7 i
ﬂ5
°
Theorem 8 There are exactl$3 nonisomorphic reduced marked quiver singularities in dimension

d = 6.
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Proof. Using the above lists, combined with the fingerprints of secfidgand teh fact that these
algebras have seven generators) we fail to separate the following sets of marked quiver settings by
their number of primitive cycles (the minimal number of generators) and their fingerprints

{63k, 647,64m} {63c, 64,649} {631,640} {64g,64.}

The first set is easily seen to be isomorphic comparing cycles, the second and third sets are isomor-
phic because they are extensions of the isomorphism in dimension 5 and the last set is isomorphic
because the settings are obtained from interchanging two vertices. Counting the remaining cases
yields the result.
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