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ABSTRACT: In [4] it was shown that the center of Cayley-Hamilton smooth orders is smooth when-
ever the central dimension is at most two and that there may be singularities in higher dimensions.
In this paper, we give methods to classify central singularities of smooth orders up to smooth
equivalence in arbitrary dimension and show that these methods are strong enough to complete the
classification in dimension≤ 6. In particular we show that there is exactly one possible singularity
type in dimension three : the conifold singularity. In dimensions4 (resp.5,6) there are precisely3
(resp.10,53) types of singularities.
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1. Introduction

One can define smoothness for a noncommutative algebra either by extending the homological
(Serre) or the categorical (Grothendieck) characterization of commutative regular algebras to the
noncommutative world. In this paper we follow the second approach, started off by W. Schelter [8]
and C. Procesi [7], as we have ańetale local description of theseCayley-Hamilton smooth orders
by the results of [4]. This local structure then gives restrictions on the central simple algebras
possessing a noncommutative smooth model.

An algebra with trace map(A, tr) is an associativeC-algebra having a linear trace map
tr : A - A satisfyingtr(ab) = tr(ba), tr(a)b = btr(a) and tr(tr(a)b) = tr(a)tr(b).
Morphisms in the category of algebras with trace are trace preservingC-algebra morphisms. One
has the identity

n∏
i=1

(t− xi) =
n∑

i=0

(−1)iσit
n−i

where theσi are the elementary symmetric polynomials in thexi. There is another generating set
of the symmetric polynomials given by the power sumsτk =

∑
i x

k
i , so there are polynomials with

rational coefficientsσk = pk(τ1, τ2, . . . , τn) and we define the functionσk formally on any algebra
with trace(A, tr) to be

σk(a) = pk(tr(a), tr(a2), . . . , tr(an))

This allows us to define aformaln-th Cayley-Hamilton polynomialfor (A, tr) by

χn,a(t) =
n∑

i=0

(−1)iσi(a)tn−i
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and we say that(A, tr) is ann-th Cayley-Hamilton algebra (or thatA ∈ alg@n) if

tr(1) = n and χn,a(a) = 0 in A for all a ∈ A

The archetypical example of ann-th Cayley-Hamilton algebra is an order over a normal domain in
a central simple algebra of degreen.

A Cayley-Hamilton smooth algebrais an affineC-algebra inalg@n satisfying Grothendieck’s
lifting characterization with respect to test-objects(B, I) in alg@n, that is, any trace preserving
algebra mapφ

A ....................
φ̃

- B

@
@

@
@

@
φ

R
B
I

??

can be lifted to a trace preserving algebra mapφ̃ completing the diagram. C. Procesi proved in [7]
that this categorical condition is equivalent to the geometric statement that the schemetrepn A of
trace preservingn-dimensional representations ofA is a smooth affine variety (though it may have
several connected components). Moreover, the algebraic quotient variety

tissn A = trepn A//GLn

with respect to the natural base-change action has as its coordinate ring the central subalgebratr(A)
and its geometric points parametrize the trace preserving semi-simplen-dimensional representa-
tions ofA. Of particular interest to us is the case of Cayley-Hamilton smoothorders, that is, when
there is a Zariski open subset oftissn A corresponding to simplen-dimensional representations
and (consequently) thattr(A) = Z(A) the center ofA.

If A is a Cayley-Hamilton smooth order andm is a maximal central ideal, then one can use the
Luna slice theorem to determine the algebra structures of them-adic completions (théetale local
structure)

Âm and Ẑ(A)m

in terms of amarkedquiver setting(Q•, α), see [4]. Recall that a quiverQ is a finite oriented graph
on a finite set{v1, . . . , vk} of vertices havingaij directed arrows fromvi to vj . The bilinear form
onZk induced by the matrix

χQ = (δij − aij)i,j ∈ Mk(Z)

is called theEuler-formof Q. An integral vectorα = (a1, . . . , ak) ∈ Nk is called a dimension
vector forQ. For a fixed quiver setting(Q,α) the representation spaceis defined to be the affine
space

repα Q =
arrows⊕

vi
- vj

Mai×aj (C)

The base-change groupGL(α) = GLa1 × . . . × GLak
acts on this space. Ifg = (g1, . . . , gk) ∈

GL(α) andV = (V1, . . . , Vl) ∈ repα Q with Cai
Vh- Caj the matrix corresponding to the arrow

vi
- vj , then

(g.V )h = gjVhg−1
i
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The algebraic quotient varietyissα Q = repα Q//GL(α) classifies isomorphism classes ofα-
dimensional semi-simple representations ofQ. For more details we refer to [5].

A marked quiverQ• is a quiverQ (called the underlying quiver) together with a marking of
some of its loops. The representation spacerepα Q• for a fixed marked quiver setting(Q•, α) is
the subspace ofrepα Q consisting of those representationsV = (V1, . . . , Vl) such thattr(Vh) = 0
wheneverVh is the matrix corresponding to a marked loop inQ•. The base-change action ofGL(α)
onrepα Q restricts to an action onrepα Q• and the corresponding quotient varietytissα Qα =
repα Q•//GL(α) classifies isomorphism classes ofα-dimensional semi-simple representations of
Q such that traces of matrices corresponding inQ• are zero. For more details we refer to [4].

We can now recall the connection between the local structure of Cayley-Hamilton smooth
orders and marked quiver settings. Letm be the point oftissn A corresponding to the trace
preserving semi-simplen-dimensional representation

M = S⊕e1
1 ⊕ . . .⊕ S⊕ek

k

where theSi are simpledi-dimensional representations ofA occurring with multiplicityei whence
n =

∑
eidi. The subspace ofExt1A(M,M) = ⊕i,jExt1A(Si, Sj)⊕eiej consisting of all trace

preserving algebra morphismsA - Mn(C[ε]) (whereC[ε] is the algebra of dual numbers)
can be identified with a marked quiver representation spacerepα Q• where the quiverQ hask

vertices (corresponding to the distinct simple components ofM ) and where the dimension vector
α = (e1, . . . , ek) (corresponding to the multiplicities). In [4] it is proved that theGLn-étale
structure oftrepn A in a neighborhood of the orbitO(M) is isomorphic to the associated fiber
bundle

GLn ×GL(α) repα Q•

whereGL(α) ⊂ - GLn is determined by the dimensionsdi. In particular, this implies that̂Am is
Morita equivalent to the completion of the algebra ofGL(α)-equivariant mapsrepα Q• - Mn(C)
at the maximal ideal corresponding to the zero representation and thatẐ(A)m is isomorphic to the
completion

C[[repα Q•]]GL(α)

of the ring of polynomial quiver invariants at the maximal graded ideal. This fact allows us to study
the central singularities of Cayley-Hamilton smooth orders. In [4] it was shown that the center is
smooth whenever the Krull dimension of the smooth order is≤ 2 and that there may be central
singularities possible in dimensions≥ 3. In this paper we will classify the singularities that arise
in this way.

Recall that two commutative local ringsCm andDn are said to besmooth equivalentif there
are numbersk andl such that

Ĉm[[x1, . . . , xk]] ' D̂n[[y1, . . . , yl]]

A classification of all commutative singularities up to smooth equivalence is a hopeless task. Still,
because central singularities of Cayley-Hamilton smooth orders are determined by quiver invariants
we will give methods to attack this classification problem and illustrate the methods by giving a
full classification in dimensions≤ 6. The main result of this paper is
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Theorem 1 Let d be the dimension of the central varietytissn A of a Cayley-Hamilton smooth
order A. Then, ifd ≤ 2, tissn A is smooth. Ifd = 3 (resp. 4, 5, 6) there are exactly one (resp.
three, ten and fifty three) types of central singularities possible.

In dimension three, the only possible central singularity is the so calledconifold singularity

C[[u, v, x, y]]/(uv − xy)

There is another equivalence on singularities which is theembedding dimensionof the singularity,
that is the dimension of the quotientm/m2 wherem is the maximal ideal of the local algebra.
Although this paper does not classify (marked) quiver quotient singularities under this equivalence,
a lot of information about it can be obtained from our lists in which we added the embedding
dimension between brackets.

In section two we give a general strategy to classify smooth equivalence classes of central
singularities in any dimension, based on the reduction steps of [1] in the classification of the smooth
quiver settings. In section three we give the proofs of the claims made and in the final two sections
we give the details of the remaining classification result in dimensions5 and6.

2. The strategy

By the étale classification it suffices to classify marked quiver settings up to smooth equivalence,
that is, we want to determine when

C[repα1
Q•

1]
GL(α1)[x1, . . . , xk] ' C[repα2

Q•
2]

GL(α2)[y1, . . . , yl]

In the case of quivers, a full classification of all the quiver settings(Q,α) such that the ring of
invariants is a polynomial ring was given in [1]. The proof relies on a number of reduction steps
which modify the ring of invariants only up to polynomial extensions. We will recall these reduc-
tion steps as well as their obvious extensions to marked quivers. In the quiver diagrams below, the
vertex-dimension component is depicted in the vertex and the number of multiple arrows between
two vertices is given by a superscript, unless this number is≤ 3 in which case the number of ar-
rows is drawn. In the diagrams below we only depict the quiver-neighborhood of the vertex where
a change is made, the remaining part of the quiver setting is left unchanged.

With εv we denote the basevector concentrated in vertexv and αv will denote the vertex
dimension component ofα in vertexv. There are three types of reduction moves, each with their
own condition and effect on the ring of invariants.

Vertex removal : Let (Q•, α) be a marked quiver setting andv a vertex satisfying the condi-
tion Cv

V , that is,v is without (marked) loops and satisfies

χQ(α, εv) ≥ 0 or χQ(εv, α) ≥ 0
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Define the new quiver setting(Q•′ , α′) obtained by the operationRv
V which removes the vertexv

and composes all arrows throughv, the dimensions of the other vertices are unchanged :

/.-,()*+u1 · · · /.-,()*+uk

/.-,()*+αv

b1

aaDDDDDDDDDD bk

==zzzzzzzzzz

/.-,()*+i1

a1

=={{{{{{{{{{ · · · '&%$ !"#il

al

aaCCCCCCCCCC


Rv

V-



/.-,()*+u1 · · · /.-,()*+uk

/.-,()*+i1

c11

OO

c1k

<<yyyyyyyyyyyyyyyyyyyyy · · · '&%$ !"#il

clk

OO

cl1

bbEEEEEEEEEEEEEEEEEEEEE


.

wherecij = aibj (observe that some of the incoming and outgoing vertices may be the same so
that one obtains loops in the corresponding vertex). In this case we have

C[repα Q•]GL(α) ' C[repα′ Q•′ ]GL(α′)

loop removal : Let (Q•, α) be a marked quiver setting andv a vertex satisfying the condition
Cv

l that the vertex-dimensionαv = 1 and there arek ≥ 1 loops inv. Let (Q•′ , α) be the quiver
setting obtained by the loop removal operationRv

l[
��������1

k

��

]
Rv

l-

[
��������1

k−1

��

]
.

removing one loop inv and keeping the dimension vector the same, then

C[repα Q•]GL(α) ' C[repα Q•′ ]GL(α)[x]

Loop removal : Let (Q•, α) be a marked quiver setting andv a vertex satisfying condition
Cv

L, that is, the vertex dimensionαv ≥ 2, v has precisely one (marked) loop inv and

χQ(εv, α) = −1 or χQ(α, εv) = −1

(that is, there is exactly one other incoming or outgoing arrow from/to a vertex with dimension
1). Let (Q•′ , α) be the marked quiver setting obtained by changing the quiver as indicated below
(depending on whether the incoming or outgoing condition is satisfied and whether there is a loop
or a marked loop inv)


'&%$ !"#k

�� ((QQQQQQQQQQQQQQQQQQ
��

��������1

>>~~~~~~~~~~ /.-,()*+u1 · · · /.-,()*+um

 Rv
L-


'&%$ !"#k

�� ((QQQQQQQQQQQQQQQQQQ

��������1

k

:B~~~~~~~~~

~~~~~~~~~ /.-,()*+u1 · · · /.-,()*+um
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•
��

��������1
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L-
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�� ((QQQQQQQQQQQQQQQQQQ

��������1

k
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and the dimension vector is left unchanged, then we have

C[repα Q•]GL(α) =

{
C[repα Q•′ ]GL(α)[x1, . . . , xk] (loop)

C[repα Q•′ ]GL(α)[x1, . . . , xk−1] (marked loop)

Definition 1 A marked quiverQ• is said to be strongly connected if for every pair of vertices
{v, w} there is an oriented path fromv to w and an oriented path fromw to v.

A marked quiver setting(Q•, α) is said to bereducedif and only if there isno vertexv such
that one of the conditionsCv

V , Cv
l or Cv

L is satisfied.

Lemma 1 Every marked quiver setting(Q•
1, α1) can be reduced by a sequence of operations

Rv
V , Rv

l andRv
L to a reducedquiver setting(Q•

2, α2) such that

C[repα1
Q•

1]
GL(α1) ' C[repα2

Q•
2]

GL(α2)[x1, . . . , xz]

Moreover, the numberz of extra indeterminates is determined by the reduction sequence

(Q•
2, α2) = R

viu
Xu

◦ . . . ◦R
vi1
X1

(Q•
1, α1)

where for every1 ≤ j ≤ u, Xj ∈ {V, l, L}. More precisely,

z =
∑
Xj=l

1 +
(unmarked)∑

Xj=L

αvij
+

(marked)∑
Xj=L

(αvij
− 1)

Proof.As any reduction step removes a (marked) loop or a vertex, any sequence of reduction steps
starting with(Q•

1, α1) must eventually end in a reduced marked quiver setting. The statement then
follows from the discussion above.

As the reduction steps have no uniquely determined inverse, there is no a priori reason why
the reduced quiver setting of the previous lemma should be unique. Nevertheless this is true as we
will prove in section4 :

Theorem 2 Every marked quiver setting(Q•
1, α1) can be transformed by a sequence of reduction

stepsRv
V , Rv

l or Rv
L to auniquely determinedreduced marked quiver setting(Q•

2, α2).
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This result shows that it is enough to classifyreducedmarked quiver settings up to smooth
equivalence. We can always assume that the quiverQ is strongly connected (if not, the ring of
invariants is the tensor product of the rings of invariants of the maximal strongly connected sub-
quivers). Our aim is to classify the reduced quiver singularities up to equivalence, so we need to
determine the Krull dimension of the rings of invariants.

Lemma 2 Let (Q•, α) be a reduced marked quiver setting andQ strongly connected. Then,

dim tissα Q• = 1− χQ(α, α)−m

wherem is the total number of marked loops inQ•.

Proof.Because(Q•, α) is reduced, none of the vertices satisfies conditionCv
V , whence

χQ(εv, α) ≤ −1 and χQ(α, εv) ≤ −1

for all verticesv. In particular it follows (becauseQ is strongly connected) from [5] that α is the
dimension vector of a simple representation ofQ and that the dimension of the quotient variety

dim issα Q = 1− χQ(α, α)

Finally, separating traces of the loops to be marked gives the required formula.

Applying the main result of [1] we have all marked quiver settings having a regular ring of
invariants. This result also describes the smooth locus of the central variety of a Cayley-Hamilton
smooth order using théetale local description of section1.

Theorem 3 Let (Q•, α) be a marked quiver setting such thatQ is strongly connected. Then
tissα Q• is smooth if and only if the unique reduced marked quiver setting to which(Q•, α)
can be reduced is one of the following five types

'&%$ !"#k '&%$ !"#k:: ��������2:: dd ��������2:: •dd ��������2• :: •dd

Proof. Because the ring of invariants is graded it suffices to prove smoothness in the origin. Con-
sider the underlying quiverQ, apply the main result of [1] and separate traces of the marked loops.

The next step is to classify for a given dimensiond all reduced marked quiver settings(Q•, α)
such thatdim tissα Q• = d. The following result limits the possible cases drastically in low
dimensions.

Lemma 3 Let (Q•, α) be a reduced marked quiver setting onk ≥ 2 vertices. Then,

dim issα Q• ≥ 1 +
a≥1∑

��������a

a +
a>1∑

��������a• ::

(2a− 1) +
a>1∑

��������a::

(2a) +
a>1∑

��������a• :: •dd

(a2 + a− 2)+

a>1∑
��������a• :: dd

(a2 + a− 1) +
a>1∑

��������a:: dd

(a2 + a) + . . . +
a>1∑

��������a•k :: ldd

((k + l − 1)a2 + a− k) + . . .

In this sum the contribution of a vertexv with αv = a is determined by the number of (marked)
loops inv. By the reduction steps (marked) loops only occur at vertices whereαv > 1.
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Proof.We know that the dimension oftissα Q• is equal to

1− χQ(α, α)−m = 1−
∑

v

χQ(εv, α)αv −m

If there are no (marked) loops atv, thenχQ(εv, α) ≤ −1 (if not we would reduce further) which
explains the first sum. If there is exactly one (marked) loop atv then χQ(εv, α) ≤ −2 for if
χQ(εv, α) = −1 then there is just one outgoing arrow to a vertexw with αw = 1 but then we can
reduce the quiver setting further. This explains the second and third sums. If there arek marked
loops andl ordinary loops inv (andQ has at least two vertices) , then

−χQ(εv, α)αv − k ≥ ((k + l)αv − αv + 1)αv − k

which explains all other sums.

Observe that the dimension of the quotient variety of the one vertex marked quivers

��������a•k :: ldd

is equal to(k + l − 1)a2 + 1 − k and is singular (fora ≥ 2) unlessk + l = 2. We will now
classify the reduced singular settings when there are at least two vertices in low dimensions. By
the previous lemma it follows immediately that

1. the maximal number of vertices in a reduced marked quiver setting(Q•, α) of dimensiond
is d− 1 (in which case all vertex dimensions must be equal to one)

2. if a vertex dimension in a reduced marked quiver setting isa ≥ 2, then the dimensiond ≥ 2a.

Lemma 4 Let (Q•, α) be a reduced marked quiver setting such thattissα Q• is singular of
dimensiond ≤ 5, thenα = (1, . . . , 1). Moreover, each vertex must have at least two incoming and
two outgoing arrows and no loops.

Proof.From the lower bound of the sum formula it follows that if someαv > 1 it must be equal to
2 and must have a unique marked loop and there can only be one other vertexw with αw = 1. If
there arex arrows fromw to v andy arrows fromv to w, then

dim tissα Q• = 2(x + y)− 1

whencex or y must be equal to1 contradicting reducedness. The second statement follows as
otherwise we could perform extra reductions.

Proposition 1 The only reduced marked quiver singularity in dimension 3 is

3con : ��������1
&. ��������1fn

The reduced marked quiver singularities in dimension 4 are

43a :

��������1
**

��

��������1jj

vv��������1

66VV

43b :

��������1
&. ��������1

rz��������1

RZ

42 : ��������1
&. ��������1Udo
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Proof. All one vertex marked quiver settings with quotient dimension≤ 5 are smooth, so we are
in the situation of lemma4. If the dimension is3 there must be two vertices each having exactly
two incoming and two outgoing arrows, whence the indicated type is the only one. The resulting
singularity is theconifold singularity

C[[x, y, u, v]]
(xy − uv)

In dimension4 we can have three or two vertices. In the first case, each vertex must have exactly
two incoming and two outgoing arrows whence the first two cases. If there are two vertices, then
just one of them has three incoming arrows and one has three outgoing arrows.

In dimensions5 and6 one can give a classification of all reduced singularities by hand, see
sections5 and6. This concludes the first step in our strategy, the next will be to distinguish reduced
singularities of the same dimension up to (étale) isomorphism.

3. Fingerprinting singularities

In this section we will outline methods to distinguish two reduced marked quiver settings(Q•
1, α1)

and(Q•
2, α2) having the same quotient dimensiond. Recall from [5] that the rings of quiver in-

variants are generated by taking traces along oriented cycles in the quiver (again separating traces
gives the same result for marked quivers). Assume that all vertex dimensions are equal to one, then
one can write any (trace of an) oriented cycle as a product of (traces of)primitive oriented cycles
(that is, those that cannot be decomposed further). From this one deduces immediately :

Lemma 5 Let (Q•, α) be a reduced marked quiver setting such that allαv = 1. Let m be the
maximal graded ideal ofC[repα Q•]GL(α), then a vectorspace basis of

mi

mi+1

is given by the oriented cycles inQ which can be written as a product ofi primitive cycles but not
as a product ofi + 1 such cycles.

Clearly, the dimensions of the quotientsmi/mi+1 are (́etale) isomorphism invariants. Recall
that the first of these numbersm/m2 is the embedding dimension of the singularity. Hence, for
d ≤ 5 this simple minded counting method can be used to separate quiver singularities.

Theorem 4 There are precisely three reduced quiver singularities in dimensiond = 4.

Proof.The number of primitive oriented cycles of the three types of reduced marked quiver settings
in dimension four

43a :

��������1
**

��

��������1jj

vv��������1

66VV

43b :

��������1
&. ��������1

rz��������1

RZ

42 : ��������1
&. ��������1Udo

is 5, respectively8 and6. Hence, they give nonisomorphic rings of invariants.
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In section5 we will classify the reduced quiver singularities ford = 5. If some of the vertex
dimensions are≥ 2 we have no easy description of the vectorspacesmi/mi+1 and we need a more
refined argument. The idea is to answer the question ”what other singularities can the reduced
singularity see ?” by the theory of local quivers of [5].

Let Q be a quiver (we will indicate the necessary changes to be made for marked quivers
below) andα a dimension vector. Anα-representation typeis a datum

τ = (e1, β1; . . . ; el, βl)

where theei are natural numbers≥ 1, theβi are dimension vectors of simple representations ofQ

(for which we have a precise description by [5]) such thatα =
∑

i eiβi. Any neighborhood of the
trivial representation contains semi-simple representations ofQ of typeτ for anyα-representation
type.

To determine the dimension of the corresponding strata and the nature of their singularities we
construct a new quiverQτ , the local quiver, on l vertices (the number of distinct simple compo-
nents) say{w1, . . . , wl} such that the number of oriented arrows (or loops) fromwi to wj is given
by the number

δij − χQ(βi, βj)

There is anétale local isomorphism between a neighborhood of a semi-simpleα-dimensional
representation of typeτ and a neighborhood of the trivial representation ofissατ Qτ where
ατ = (e1, . . . , el) is the dimension vector determined by the multiplicities.

As a consequence we see that the dimension of the corresponding strata is equal to the number
of loops inQτ . Now, assume thatissατ Qτ has a singularity, then the couple

(dimension of strata, type of singularity)

is a characteristic feature of the singularity ofissα Q and one can often distinguish types by these
couples. In the case of a marked quiver one proceeds as before for the underlying quiver and in the
final result compensates for the markings (that is, one marks as many loops in the local quiver in
the vertices giving a non-zero contribution to the original marked vertex).

Recall from [5] that there is a partial orderingτ < τ ′ on theα-representation types induced
by degeneration of representations. Thefingerprint of a reduced quiver singularity will be the
Hasse diagram of thoseα-representation typesτ such that the local marked quiver setting(Q•

τ , ατ )
can be reduced to a reduced quiver singularity (necessarily occurring in lower dimension and the
difference between the two dimensions gives the dimension of the stratum).

Clearly, this method fails in case the marked quiver singularity is anisolated singularity. For-
tunately, we have a complete classification of such singularities by the work of [2].

Theorem 5 [2] The only reduced marked quiver settings(Q•, α) such that the quotient variety is
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an isolated singularity are of the form

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

kl +3

k1
;C�����

�����

k2

KS
k3

[c?????
?????

k4

ks

$$

whereQ hasl vertices and allki ≥ 2. The dimension of the corresponding quotient is

d =
∑

i

ki + l − 1

and theunorderedl-tuple{k1, . . . , kl} is an (́etale) isomorphism invariant of the ring of invariants.

Not only does this result distinguish among isolated reduced quiver singularities, but it also
shows that in all other marked quiver settings we will have additional families of singularities. We
will illustrate the method in some detail to separate the reduced marked quiver settings in dimension
6 having one vertex of dimension two.

Proposition 2 The reduced singularities of dimension6 such thatα contains a component equal
to 2 are pairwise non-equivalent.

Proof. In section6 we will show that the relevant reduced marked quiver setting are the following

��������1

����������1
'' ��������2gg ''

GG

��������1gg

type A

��������1
'' ��������2gg ''

•
�� ��������1gg

type B

��������1
'' ��������2gg

•

��

•

\\

type C

��������2 •dd• ::

•
��

type D

We will order the vertices such thatα1 = 2.

type A : There are three different representation typesτ1 = (1, (2; 1, 1, 0); 1, (0; 0, 0, 1)) (and
permutations of the1-vertices). The local quiver setting has the form

��������1
&.��

:: ZZ ��������1fn

because forβ1 = (2; 1, 1, 0) andβ2 = (0; 0, 0, 1) we have thatχQ(β1, β1) = −2, χQ(β1, β2) =
−2, χQ(β2, β1) = −2 andχ(β2, β2) = 1. These three representation types each give a three
dimensional family of conifold (type3con) singularities.
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Further, there are three different representation typesτ2 = (1, (1; 1, 1, 0); 1, (1; 0, 0, 1)) (and
permutations) of which the local quiver setting is of the form

��������1
&.-- MM ��������1fn dd

as withβ1 = (1; 1, 1, 0) andβ2 = (1; 0, 0, 1) we haveχQ(β1, β1) = −1, χQ(β1, β2) = −2,
χQ(β2, β1) = −2 andχQ(β2, β2) = 0. These three representation types each give a three dimen-
sional family of conifold singularities.

Finally, there are the three representation types

τ3 = (1, (1; 1, 0, 0); 1, (1; 0, 1, 0); 1, (0; 0, 0, 1))

(and permutations) with local quiver setting

��������1
**

��

-- ��������1jj

vv

qq

��������1

66VV

These three types each give a two dimensional family of reduced singularities of type43a.

The degeneration order on representation types givesτ1 < τ3 andτ2 < τ3 (but for different
permutations) and thefingerprintof this reduced singularity can be depicted as

3con

E�)
EEEEEEE

EEEEEEE

EEEEEEE 3con

yu� yyyyyyy

yyyyyyy

yyyyyyy

43a

�
�
•

type B : There is one representation typeτ1 = (1, (1; 1, 0); 1, (1; 0, 1)) giving as above a three
dimensional family of conifold singularities, one representation typeτ2 = (1, (1; 1, 1); 1, (1; 0, 0))
giving a three dimensional family of conifolds and finally one representation type

τ3 = (1, (1; 0, 0); 1, (1; 0, 0); 1, (0; 1, 1); 1, (0; 0, 1))

of which the local quiver setting has the form

��������1
**

��

-- ��������1jj

����������1
**

GG

��������1jj

GG
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(the loop in the downright corner is removed to compensate for the marking) giving rise to a one-
dimensional family of five-dimensional singularities of type54a. This gives the fingerprint

3con

""E
EE

EE
EE

E 3con

||yy
yy

yy
yy

54a

��
•

type C : We have a three dimensional family of conifold singularities coming from the representa-
tion type(1, (1; 1); 1, (1; 0)) and a two-dimensional family of type43a singularities corresponding
to the representation type(1, (1; 0); 1, (1, 0); 1, (0; 1)). Therefore, the fingerprint is depicted as

3con
- 43a

- •

type D : We have just one three-dimensional family of conifold singularities determined by the
representation type(1, (1); 1, (1)) so the fingerprint is3con

- •. As fingerprints are isomor-
phism invariants of the singularity, this finishes the proof.

We claim that the minimal number of generators for these invariant rings is7. The structure
of the invariant ring of three2 × 2 matrices upto simultaneous conjugation was determined by Ed
Formanek [3] who showed that it is generated by10 elements

{tr(X1), tr(X2), tr(X3), det(X1), det(X2), det(X3), tr(X1X2), tr(X1X3), tr(X2X3), tr(X1X2X3)}

and even gave the explicit quadratic polynomial satisfied bytr(X1X2X3) with coefficients in the
remaining generators. The rings of invariants of the four cases of interest to us are quotients of this
algebra by the ideal generated by three of its generators : for typeA it is (det(X1), det(X2), det(X3)),
for typeB : (det(X1), tr(X2), det(X3)), for typeC : (det(X1), tr(X2), tr(X3)) and for typeD :
(tr(X1), tr(X2), tr(X3)).

4. Uniqueness of reduced setting

In this section we will prove theorem2. We will say that a vertexv is reducible if one of the
conditionsCv

V (vertex removal),Cv
l (loop removal in vertex dimension one) orCv

L (one (marked)
loop removal) is satisfied. If we let the specific condition unspecified we will say thatv satisfies
Cv

X and denoteRv
X for the corresponding marked quiver setting reduction. The resulting marked

quiver setting will be denoted by
Rv

X(Q•, α)

If w 6= v is another vertex inQ• we will denote the corresponding vertex inRv
X(Q•) also withw.

The proof of the uniqueness result relies on three claims :

1. If w 6= v satisfiesRw
Y in (Q•, α), thenw virtually always satisfiesRw

Y in Rv
X(Q•, α).

2. If v satisfiesRv
X andw satisfiesRw

Y , thenRv
X(Rw

Y (Q•, α)) = Rw
Y (Rv

X(Q•, α)).
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3. The previous two facts can be used to prove the result by induction on the minimal length of
the reduction chain.

By theneighborhoodof a vertexv in Q• we mean the (marked) subquiver on the vertices connected
to v. A neighborhood of a set of vertices is the union of the vertex-neighborhoods.Incomingresp.
outgoingneighborhoods are defined in the natural manner.

Lemma 6 Letv 6= w be vertices in(Q•, α).

1. If v satisfiesCv
V in (Q•, α) andw satisfiesCw

X , thenv satisfiesCw
V in Rw

X(Q•, α) unless the
neighborhood of{v, w} looks like

/.-,()*+i1

��:
::

::
: /.-,()*+u1

...
��������v // '&%$ !"#w

AA�������

��;
;;

;;
;;

...

/.-,()*+ik

BB������ /.-,()*+ul

or

/.-,()*+i1

��;
;;

;;
; /.-,()*+u1

...
'&%$ !"#w // ��������v

AA�������

��:
::

::
::

...

/.-,()*+ik

AA������ /.-,()*+ul

andαv = αw. Observe that in this caseRv
V (Q•, α) = Rw

V (Q•, α).

2. If v satisfiesCv
l andw satisfiesCw

X then thenv satisfiesCv
l in Rw

X(Q•, α).

3. If v satisfiesCv
V andw satisfiesCw

X then thenv satisfiesCv
V in Rw

X(Q•, α).

Proof. (1) : If X = l thenRw
X does not change the neighborhood ofv soCv

V holds inRw
l (Q•, α).

If X = L thenRw
X does not change the neighborhood ofv unlessαv = 1 andχQ(εw, εv) = −1

(resp.χQ(εv, εw) = −1) depending on whetherw satisfies the in- or outgoing conditionCw
L . We

only consider the first case, the latter is similar. Thenv cannot satisfy the outgoing form ofCv
V in

(Q•, α) so the incoming condition is satisfied. Because theRw
L -move does not change the incoming

neighborhood ofv, Cv
V still holds forv in Rw

L(Q•, α).
If X = V andv andw have disjoint neighborhoods thenCv

V trivially remains true inRw
V (Q•, α).

Hence assume that there is at least one arrow fromv to w (the case where there are only arrows
from w to v is similar). Ifαv < αw then the incoming conditionCv

V must hold (outgoing is impos-
sible) and hencew does not appear in the incoming neighborhood ofv. But thenRw

V preserves the
incoming neighborhood ofv andCv

V remains true in the reduction. Ifαv > αw then the outgoing
conditionCw

V must hold and hencew does not appear in the incoming neighborhood ofv. So if
the incoming conditionCv

V holds in(Q•, α) it will still hold after the application ofRw
V . If the

outgoing conditionCv
V holds, the neighborhoods ofv andw in (Q•, α) andv in Rw

V (Q•, α) are
depicted in figure1 Let A be the set of arrows inQ• andA′ the set of arrows in the reduction, then
because

∑
a∈A,s(a)=w αt(a) ≤ αw (the incoming condition forw) we have∑

a∈A′,s(a)=v

α′t(a) =
∑
a∈A,

s(a)=v,t(a) 6=w

αt(a) +
∑
a∈A

t(a)=w,s(a)=v

∑
a∈A,s(a)=w

αt(a)

≤
∑
a∈A,

s(a)=v,t(a) 6=w

αt(a) +
∑
a∈A

t(a)=w,s(a)=w

αw

=
∑

a∈A,s(a)=v

αt(a) ≤ αv
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76540123uv
1

...

/.-,()*+iv1

��:
::

::
::

::
76540123uv

m
76540123uw

1

...
��������v //

JJ������������������������

@@��������� '&%$ !"#w

@@���������

��<
<<

<<
<<

<<
...

/.-,()*+ivk

AA��������� /.-,()*+iv1

@@��������� 76540123uw
l

...

/.-,()*+ivn

JJ������������������������

Rw
V-

76540123uv
1

...

/.-,()*+iv1

��:
::

::
::

::
76540123uv

m
76540123uw

1

...
��������v

44jjjjjjjjjjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTTTTTTTTTT

JJ������������������������

@@��������� ...

/.-,()*+ivk

AA��������� 76540123iw1
76540123uw

l

... · · ·

/.-,()*+iwn

Figure 1: Neighborhoods ofv andw

and therefore the outgoing conditionCv
V also holds inRw

V (Q•, α). Finally if αv = αw, it may be
that Cv

V does not hold inRw
V (Q•, α). In this caseχ(εv, α) < 0 andχ(α, εw) < 0 (Cv

V is false
in Rw

V (Q•, α)). Also χ(α, εv) ≥ 0 andχ(εw, α) ≥ 0 (otherwiseCV does not hold forv or w

in (Q•, α)). This implies that we are in the situation described in the lemma and the conclusion
follows.

(2) : None of theRw
X -moves removes a loop inv nor changesαv = 1.

(3) : Assume that the incoming conditionCv
L holds in(Q•, α) but not inRw

X(Q•, α), thenw must
be the unique vertex which has an arrow tov andX = V . Becauseαw = 1 < αv, the incoming
conditionCw

V holds. This means that there is also only one arrow arriving inw and this arrow is
coming from a vertex with dimension1. Therefore after applyingRw

V , v will still have only one
incoming arrow starting in a vertex with dimension1. A similar argument holds for the outgoing
conditionCv

L.

Lemma 7 Suppose thatv 6= w are vertices in(Q•, α) and thatCv
X andCw

Y are satisfied. IfCv
X

holds inRw
Y (Q•, α) andCw

Y holds inRv
X(Q•, α) then

Rv
XRw

Y (Q•, α) = Rw
Y Rv

X(Q•, α)

Proof. If X, Y ∈ {l, L} this is obvious, so let us assume thatX = V . If Y = V as well, we can
calculate the Euler formχRw

V Rv
V Q(εx, εy). Because

χRv
V Q(εx, εy) = χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)
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it follows that

χRw
V Rv

V Q(εx, εy) = χRv
V Q(εx, εy)− χRv

V Q(εx, εw)χRv
V Q(εv, εy)

= χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)

− (χQ(εx, εw)− χQ(εx, εv)χQ(εv, εw)) (χQ(εw, εy)− χQ(εw, εv)χQ(εv, εy))

= χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)− χQ(εx, εw)χQ(εw, εy)

− χQ(εx, εv)χQ(εv, εw)χQ(εw, εv)χQ(εv, εy)

+ χQ(εx, εw)χQ(εw, εv)χQ(εv, εy) + χQ(εx, εv)χQ(εv, εw)χQ(εw, εy)

This is symmetric inv andw and therefore the ordering ofRv
V andRw

V is irrelevant.
If Y = l we have the following equalities

χRw
l Rv

V Q(εx, εy) = χRv
V Q(εx, εy)− δwxδwy

= χQ(εx, εy)− χQ(εx, εv)χQ(εv, εy)− δwxδwy

= χQ(εx, εy)− δwxδwy − (χQ(εx, εv)− δwxδwv)(χQ(εv, εy)− δwvδwy)

= χRw
l Q(εx, εy)− χRw

l Q(εx, εv)χRw
l Q(εv, εy)

= χRv
V Rw

l Q.

If Y = L, anRw
L -move commutes with theRv

V move because it does not change the neighbor-
hood ofv except whenv is the unique vertex of dimension1 connected tow. In this case the
neighborhood ofv looks like

'&%$ !"#w
��

~~~~
~~

~~
~~

1

��

. . .

aaDDDDDDDDD

��������1

or '&%$ !"#w
��

!!D
DD

DD
DD

DD

1

>>~~~~~~~~ . . .

��������1

OO

In this case the reduction atv is equivalent to a reduction atv′ (i.e. the lower vertex) which certainly
commutes withRw

L .

We are now in a position to prove theorem2.

Theorem 6 If (Q•, α) is a strongly connected marked quiver setting and(Q•
1, α1) and (Q•

2, α2)
are two reduced marked quiver setting obtained by applying reduction moves to(Q•, α) then

(Q•
1, α1) = (Q•

2, α2)

Proof.We do induction on the lengthl1 of the reduction chainR1 reducing(Q•, α) to (Q•
1, α1). If

l1 = 0, then(Q•, α) has no reducible vertices so the result holds trivially. Assume the result holds
for all lengths< l1. There are two cases to consider.

There exists a vertexv satisfying a loop removal conditionCv
X , X = l or L. Then, there is a

Rv
X -move in both reduction chainsR1 andR2. This follows from lemma6 and the fact that none
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of the vertices in(Q•
1, α1) and(Q•

2, α2) are reducible. By the commutation relations from lemma
7, we can bring this reduction to the first position in both chains and use induction.

If there is a vertexv satisfying conditionCv
V , either both chains will contain anRv

V -move or
the neighborhood ofv looks like the figure in lemma6 (1). Then,R1 can contain anRv

V -move and
R2 anRw

V -move. But then we change theRw
V move into aRv

V move, because they have the same
effect. The concluding argument is similar to that above.

5. Dimension5 singularities

In this section we classify the reduced marked quiver singularities in dimensiond = 5 up to
isomorphism. First, we classify all reduced marked quiver settings.

Proposition 3 The reduced marked quiver settings ford = 5 are

52a :
��������1

&. ��������1

4

fn
52b : ��������1

U$/ ��������1Udo

53a :

��������1
**

��

��������1

rz��������1

66RZ

53b :

��������1
&.

��

��������1jj

vv��������1

66VV

53c :

��������1
U$/ ��������1

rz��������1

RZ

53d :

��������1
&. ��������1

rz

jj

��������1

RZ

54a :

��������1
**

��

��������1jj

����������1
**

GG

��������1jj

GG

54b :

��������1
**

��

��������1jj

����������1
**

88ppppppppppppp ��������1jj

ffNNNNNNNNNNNNN
54c :

��������1
&. ��������1

xxppppppppppppp

����������1
**

OO

��������1jj

ffNNNNNNNNNNNNN

54d :

��������1
&. ��������1

����������1

CK

��������1fn

54e :

��������1
&. ��������1jj

����������1
**

OO

��������1fn

Proof. We are in the situation of lemma4 and hence know that all vertex-dimensions are equal to
one, every vertex has at least two incoming and two outgoing arrows and the total number of arrows
is equal to5− 1 + k wherek is the number of arrows which can be at most4.

k = 2 : There are6 arrows and as there must be at least two incoming arrows in each vertex, the
only possibilities are types52a and52b.

k = 3 : There are seven arrows. Hence every two vertices are connected, otherwise one needs at
least8 arrows:

��������1
#+ ��������1

#+
ck ��������1ck .

There is one vertex with3 incoming arrows and one vertex with3 outgoing arrows. If these vertices
are equal (= v), there are no triple arrows. Callx the vertex with2 arrows coming fromv andy the
other one. Because there are already two incoming arrows inx, χQ(εy, εx) = 0. This also implies
thatχQ(εy, εv) = −2 andχQ(εx, εv) = χQ(εx, εy) = −1. This gives us setting53a. If the two
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vertices are different, we can delete one arrow between them, which leaves us with a singularity of
dimensiond = 4 (because now all vertices have 2 incoming and 2 outgoing vertices). So starting
from the types43a−b and adding one extra arrow we obtain three new types53b−d.

k = 4 : There are8 arrows so each vertex must have exactly two incoming and two outgoing
arrows. First consider the cases having no double arrows. Fix a vertexv, there is at least one vertex
connected tov in both directions. This is because there are3 remaining vertices and four arrows
connected tov (two incoming and two outgoing). If there are two such vertices,w1 andw2, the
remaining vertexw3 is not connected tov. Because there are no double arrows we must be in case
54a. If there is only one such vertex, the quiver contains two disjoint cycles of length2. This leads
to type54b.

If there is precisely one double arrow (fromv to w), the two remaining vertices must be
contained in a cycle of length2 (if not, there would be3 arrows leavingv). This leads to type54c.

If there are two double arrows, they can be consecutive or disjoint. In the first case, all arrows
must be double (if not, there are three arrows leaving one vertex), so this is type54d. In the latter
case, letv1 andv2 be the starting vertices of the double arrows andw1 andw2 the end points. As
there are no consecutive double arrows, the two arrows leavingw1 must go to different vertices not
equal tow2. An analogous condition holds for the arrows leavingw2 and therefore we are in type
54e.

Next, we have to separate the corresponding rings of invariants up to isomorphism. This is
done with the methods of section3. The proofs of the claims are left to the reader but are similar
to the proof of proposition2.

Theorem 7 There are exactly ten reduced marked quiver singularities in dimensiond = 5. Only
the types53a and54e have an isomorphic ring of invariants.

Proof.Recall that the dimension ofm/m2 is given by the number of primitive cycles inQ. These
numbers are

type dim m/m2 type dim m/m2

52a 8 54a 6
52b 9 54b 6
53a 8 54c 9
53b 7 54d 16
53c 12 54e 8
53d 10

Type54a can be separated from type54b because54a contains2 + 4 twodimensional families of
conifold singularities corresponding to representation types of the form{

1 1
0 0 ⊕ 0 0

1 1

1 0
1 0 ⊕ 0 1

0 1

and4× 1 1
1 0 ⊕ 0 0

0 1 .
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whereas type54b has only1 + 4 such families as the decomposition

0 1
0 1 ⊕ 1 0

1 0

is not a valid representation type.
Type52a and52b are both isolated singularities because we have no non- trivial representation

types, whereas types54c, and54e are not as they have representation types of the form

0 1
0 0 ⊕ 1 0

0 0 ⊕ 0 0
1 1

giving local quivers smooth equivalent to type43b (in the case of type54c) and to type3a (in the
case of53e).

Finally, as we know the algebra generators of the rings of invariants (the primitive cycles) it
is not difficult to compute these rings explicitly. Type53a and type54e have a ring of invariants
isomorphic to

C[Xi,Yi,Zij :1≤i,j≤2]
(Z11Z22=Z12Z21,X1Y1Z22=X1Y2Z21=X2Y1Z12=X2Y2Z11)

6. Dimension6 singularities

In this section we will classify all reduced quiver singularities in dimensiond = 6. First, we need
some information on the reduced marked quiver settings.

Lemma 8 Let (Q•, α) be a reduced marked quiver setting on at least two vertices such that the
dimension of the quotient varietytissα Q• is 6. Then, the maximal vertex dimension is2 and the
only settings having such a vertex dimension are the quivers6A, 6B, 6C or 6D of section3.

Proof.From the formula of lemma3 follows that the maximal vertex dimension is4 and forαv ≥ 3,
there cannot be a (marked) loop inv. But then, there can be just one other vertex withαw = 1.
Reducedness then forces the dimension of the quotient variety to be larger than6. If there are two
vertices withαv = αw = 2, then at most one of them can have a marked loop (in which case
there are no other vertices and reducedness implies again that the dimensiond > 6), if neither has
a marked loop there can be just one more vertexu with αu = 1 and again we obtaind > 6 if we
impose reducedness. So, there is at most one vertexv with αv = 2 and we can have at most three
remaining vertices all of vertex dimension one.
four vertices : There can be no (marked) loop inv and we need thatχQ(εv, α) = χQ(α, εw) for
all verticesw giving type6A.
three vertices : There can be at most one marked loop inv in which case we must be in type6B.
If there is no marked loop inv, there must be at least three incoming and three outgoing arrows
from v giving a lower bound of seven for the quotient variety.
two vertices : There are at most two marked loops inv in which case we must be in type6C .
If there is one (marked) loop inv, there must be at least two incoming and two outgoing arrows
from/tow (if not we haveCv

V ) giving a lower bound of seven for the quotient variety.

Next, we have to classify all reduced quiver settings such that all vertex dimensions are equal
to one. In this case, each vertex must have at least two incoming and two outgoing arrows, the
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maximal number of vertices is bounded by5 and the total number of arrows is equal to5+k where
k is the number of vertices. The casek = 2 is easy.

62a (12) : ��������1

4
#+ ��������1O`l 62b (10) : ��������1

5
#+ ��������1ck

where the number between brackets gives the number of primitive cycles. The cases2 < k ≤ 5 can
be classified either by ad-hoc methods as in the previous section or by using thevint procedure of
PORTA[6] which is an efficient method to find all integral points satisfying a set of (in)equalities.
Here, the inequalities are given by the conditions that the number of incoming (outgoing) arrows
is at least two and the equality states that the total number of arrows is5 + k. Taking quiver-
isomorphism classes of the obtained list of integral solutions then gives the lists below.

In these lists we indicate the type of singularity, the number of primitive cycles (the embedding
dimension) and the fingerprint. Some of these quiver settings give a non-isomorphic quiver setting
when we reverseall arrows. As this operation has no effect on the ring of invariants we did not list
the reversed cases.

The reduced quiver settings ford = 6 on three vertices.

63a (9) ��������1
U$/

��

��������1jj

vv��������1

VV 66 52a

�$
BB

BB
BB

B

BB
BB

BB
B

3con

}}{{
{{

{{
{{

•

63b (10) ��������1
&.

��

��������1fn

vv��������1

VV 66 52b

�$
AA

AA
AA

A

AA
AA

AA
A

3con

}}{{
{{

{{
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•

63c (10) ��������1
&.

��

��������1jj

rz��������1

VV 66 42

�#
@@

@@
@@

@

@@
@@

@@
@

52b

~~}}
}}

}}
}}

•

63d (9) ��������1
&.

��

��������1jj

vv��������1

VV 2: 42

�#
@@

@@
@@

@

@@
@@

@@
@

52a

~~||
||

||
||

•

63e (10) ��������1
&. ��������1jj

rz��������1

VV 2: 42

��@
@@

@@
@@

3con

}}{{
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{{
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•

63f (11) ��������1
U$/ ��������1jj

rz��������1

VV 66 42

��@
@@

@@
@@

3con

}}{{
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{{

•

63g (15) ��������1
U$/ ��������1jj

rz��������1

RZ 3con

��
•
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63h (12) ��������1
&. ��������1fn

rz��������1

RZ 3con
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The reduced quiver settings ford = 6 on five vertices.

65a (8) ��������1

��?
??

??

		

��������1

�

��������1

??�����

����
��

�

��������1

EM

��������1

II

__?????

3con

��
•

65b (16) ��������1 +3 ��������1

����
��

�

��

��������1

__?????

��?
??

??

��������1

OO

??����� ��������1ks

3con

��3
33

33
33

33
33

33
33

43b

��
•

65c (12) ��������1

��?
??

??
// ��������1

����
��

�

		

��������1

����
��

�

��?
??

??

��������1

KS

��������1oo

II 3con

(3)

��

3con

����
��

��
��

��
��

��
�

43a

��3
33

33
33

33
33

33
33

43b

��
54c

��
•

65d (9) ��������1

		

// ��������1

����
��

�

		

��������1

__?????

��?
??

??

��������1

II

??����� ��������1oo

II

– 25 –



3con

""F
FFFFFFF 3con

��

3con

||xxxxxxxx

""F
FFFFFFF 3con

��

3con

||xxxxxxxx

""F
FFFFFFF 3con

��

3con

||xxxxxxxx

43a

""F
FFFFFFF 43a

""F
FFFFFFF

||xxxxxxxx
43a

||xxxxxxxx

54b

##G
GG

GG
GG

GG
54b

{{ww
ww

ww
ww

w

•

65e (10) ��������1

		

��?
??

??
��������1oo

		

��������1

??�����

��?
??

??

��������1

II

??����� ��������1oo

II 3con

��

3con

��

43b

��
53a

##G
GG

GG
GG

GG
53a

��

54c

x� xx
xx

xx
xx

xx
xx

xx
xx

•

65f (10) ��������1

��qq��������1

��0
00

00
00

00

11

��������1

yysssssssssssssss

__

��������1 +3 ��������1

FF���������

eeKKKKKKKKKKKKKKK

3con

""F
FFFFFFF 3con

��

3con

||xxxxxxxx

""F
FFFFFFF 3con

��

3con

||xxxxxxxx

43a

��4
44

44
44

44
44

44
44

4 43a

��



























43b

||xxxxxxxx

��
54b

{{ww
ww

ww
ww

w
54b

uukkkkkkkkkkkkkkkkkk

•

65g (14) ��������1

#+OOOOOOOOO

OOOOOOOOO

��������1

3;ooooooooo

ooooooooo ��������1

����
��
��
��
�

oo

��������1
))

XX000000000 ��������1em

3con

��3
33

33
33

33
33

33
33

43b

��
•

65h (9) ��������1

��qq��������1

��0
00

00
00

00

11

��������1oo

__

��������1
%- ��������1ii

FF���������

3con

��3
33

33
33

33
33

33
33

3con

""F
FFFFFFF

))RRRRRRRRRRRRRRRRR 3con

||xxxxxxxx

��

3con

��uulllllllllllllllll

43a

##G
GG

GG
GG

GG
54e

��

54e

{{ww
ww

ww
ww

w

•

– 26 –



65i (32) ��������1

#+OOOOOOOOO

OOOOOOOOO

��������1

3;ooooooooo

ooooooooo ��������1

�
 �
��
��
��
�

��
��
��
��

��������1

T\00000000

00000000 ��������1ks

•

65j (13) ��������1

#+OOOOOOOOO

OOOOOOOOO

��������1

3;ooooooooo

ooooooooo ��������1

����
��
��
��
�

yysssssssssssssss

��������1

XX000000000
)) ��������1

eeKKKKKKKKKKKKKKK
ii

3con

��
33

33
33

33
33

33
33

3

33
33

33
33

33
33

33
3

54d

��
•

65k (7) ��������1

��qq��������1

11

��

��������1

__

}}��������1

QQ

)) ��������1

==

ii

3con

(10)
��

43b

(10)

��
54a

(5)

��
•

65l (7) ��������1

qq ����������1

11

%%KKKKKKKKKKKKKKK ��������1

__

yysssssssssssssss

��������1

XX000000000
)) ��������1

FF���������
ii

3con

""F
FFFFFFF 3con

��

3con

||xxxxxxxx

""F
FFFFFFF

))RRRRRRRRRRRRRRRRR 3con

�� ))RRRRRRRRRRRRRRRRR 3con

||xxxxxxxx

))RRRRRRRRRRRRRRRRR 3con

||xxxxxxxx

��

3con

uulllllllllllllllll

��

3con

||xxxxxxxx

uulllllllllllllllll

43a

""F
FFFFFFF

++WWWWWWWWWWWWWWWWWWWWWWWWWWW 43a

||xxxxxxxx

++WWWWWWWWWWWWWWWWWWWWWWWWWW 43a

�� ))RRRRRRRRRRRRRRRRR 43a

""F
FFFFFFF 43a

��
54b 54b 54a

65m (7) ��������1

''OOOOOOOOO

��*
**

**
**

**
**

**

��������1

77ooooooooo // ��������1

����
��
��
��
�

yysssssssssssssss

��������1

II�������������

XX000000000 ��������1oo

eeKKKKKKKKKKKKKKK

3con

5
��

53a

5

��
•

Theorem 8 There are exactly53 nonisomorphic reduced marked quiver singularities in dimension
d = 6.
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Proof. Using the above lists, combined with the fingerprints of section3 (and teh fact that these
algebras have seven generators) we fail to separate the following sets of marked quiver settings by
their number of primitive cycles (the minimal number of generators) and their fingerprints

{63k, 64f , 64m} {63e, 64e, 64g} {63l, 64d} {64q, 64z}

The first set is easily seen to be isomorphic comparing cycles, the second and third sets are isomor-
phic because they are extensions of the isomorphism in dimension 5 and the last set is isomorphic
because the settings are obtained from interchanging two vertices. Counting the remaining cases
yields the result.
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