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NONCOMMUTATIVE SMOOTHNESS AND COADJOINT ORBITS

LIEVEN LE BRUYN

For Claudio Procesi on his 60th birthday.

Abstract. In [3] R. Bocklandt and the author proved that certain quotient
varieties of representations of deformed preprojective algebras are coadjoint

orbits for the necklace Lie algebra NQ of the corresponding quiver ~Q. A
conjectural ringtheoretical explanation of these results was given in terms of
noncommutative smoothness in the sense of C. Procesi [17]. In this paper we
prove these conjectures. The main tool in the proof is the étale local description
due to W. Crawley-Boevey [5]. Along the way we determine the smooth locus
of the Marsden-Weinstein reductions for quiver representations.

1. Introduction.

In [2] Yu. Berest and G. Wilson asked whether the Calogero-Moser phase space
is a coadjoint orbit for a central extension of the automorphism group of the Weyl
algebra. This is indeed the case as was first proved by V. Ginzburg [8] and sub-
sequently generalized independently by V. Ginzburg [9] and R. Bocklandt and the
author [3] to certain quiver-varieties. Both proofs use noncommutative symplectic
geometry as outlined by M. Kontsevich [10] in an essential way.

Recall that a quiver ~Q is a finite directed graph on a set of vertices Qv =
{v1, . . . , vk} and having a finite set of arrows Qa = {a1, . . . , al} where we allow
both multiple arrows between vertices and loops in vertices. The double quiver Q̄

of the quiver ~Q is the quiver obtained by adjoining to every arrow a ∈ Qa an arrow
a∗ in the opposite direction. Two oriented cycles in Q̄ are equivalent if they are
equal up to a cyclic permutation of the arrow components. A necklace word w for
Q̄ is an equivalence class of oriented cycles in Q̄. The necklace Lie algebra NQ of

the quiver ~Q has as basis the set of all necklace words w for Q̄ and with Lie bracket
[w1, w2] determined by figure 1. That is, for every arrow a ∈ Qa we look for an
occurrence of a in w1 and of a∗ in w2. We then open up the necklaces by removing
these factors and regluing the open ends together to form a new necklace word.
We repeat this operation for all occurrences of a (in w1) and a∗ (in w2). We then
replace the roles of a∗ and a and redo this operation with a minus sign. Finally, we
add up all these obtained necklace words for all arrows a ∈ Qa.

The path algebra CQ̄ has as C-basis the set of all oriented paths p = aiu
. . . ai1 of

length u ≥ 1 together with the vertex-idempotents ei considered as paths of length
zero. Multiplication in CQ̄ is induced by concatenation (on the left) of paths. Let
V = C × . . . × C be the k-dimensional semisimple subalgebra generated by the
vertex-idempotents. In [3] the noncommutative relative differential forms Ωi

V CQ̄

(introduced and studied by J. Cuntz and D. Quillen in [6]) were used to describe
the noncommutative relative deRham (or Karoubi) complex

dR0
V CQ

d- dR1
V CQ

d- dR2
V CQ

d- . . .
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Figure 1. Lie bracket [w1, w2] in NQ.

where we define the vectorspace quotients dividing out the super-commutators

dRn
V CQ =

Ωn
V CQ

∑n
i=0[ Ωi

V CQ, Ωn−i
V CQ ]

In particular, the noncommutative functions dR0
V CQ̄ coincide with NQ. A noncom-

mutative symplectic structure is defined on CQ̄ by the element ω =
∑

a∈Qa
da∗da ∈

dR2
V CQ̄ and we have a noncommutative version of the classical result in symplectic

geometry relating the Lie algebra of functions to Hamiltonian vectorfields : there
is a central extension of Lie algebras

0 - V - NQ
- Derω CQ̄ - 0

where Derω CQ̄ is the Lie algebra of symplectic derivations, that is, θ ∈ DerV CQ̄

such that Lθω = 0 where Lθ is the degree preserving derivation on the relative
differential forms determined by Lθ(a) = θ(a) and Lθ(da) = dθ(a), see [3, Thm.
4.2]. As Derω CQ̄ corresponds to the group of V -automorphisms of CQ̄ preserving

the element m =
∑

a∈Qa
[a, a∗] it is natural to consider for λ =

∑k

i=1 λiei with
λi ∈ Q the deformed preprojective algebra

Πλ(Q̄) =
CQ̄

(m − λ)

For a given dimension vector α = (a1, . . . , ak) ∈ Nk one defines the affine scheme
repα Πλ of α-dimensional representations of Πλ. There is a natural action of

the basechange group GL(α) =
∏k

i=1 GLai
on this scheme and the correspond-

ing quotient variety issα Πλ represents the isomorphism classes of semisimple
α-dimensional representations of Πλ. The main coadjoint orbit result of [9] and [3,
Thm. 5.5] is

Theorem 1.1. If α is a minimal element of Σλ, the set of dimension vectors of

simple representations of Πλ, then issα Πλ is a coadjoint orbit for the necklace Lie

algebra NQ.

The first description of Σλ is due to W. Crawley-Boevey [4]. In [14] the author
gave an alternative characterization. In [3] we gave a conjectural ringtheoretical
explanation for these coadjoint orbit results in terms of noncommutative notions of
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smoothness which we will recall in the next section. The main result of this paper
is the following affirmative solution to this conjecture.

Theorem 1.2. The following are equivalent

1. α is a minimal element of Σλ.

2. issα Πλ is a coadjoint orbit for NQ.

3. issα Πλ is a smooth variety.

4.
∫

α
Πλ is an Azumaya algebra over the smooth variety issα Πλ.

5. Πλ is α-smooth in the sense of Procesi [17].

The outline of this paper, as well as the proof of this result is summarized in the
following picture
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2. Noncommutative smoothness

Path algebras of quivers are examples of formally smooth algebras as defined and
studied in [6], that is they have the lifting property for algebra morphisms modulo
nilpotent ideals. As a consequence they have a good theory of differential forms, see
for example [3]. If A is a formally smooth V -algebra, then for each dimension vector
α the scheme of α-dimensional representations repα A is smooth and noncommu-
tative (relative) differential forms of A induce ordinary GL(α)-invariant differential
forms on these manifolds and hence on the corresponding quotient varieties issα A.

On the other hand we will see in the next sections that the deformed preprojective
algebra Πλ is not formally smooth as many of the representation schemes repα Πλ

are singular. The quotient CQ̄ -- Πλ indicates that Πλ corresponds to a singular
noncommutative subscheme of the noncommutative manifold corresponding to the
formally smooth algebra CQ̄. As a consequence, the differential forms of CQ̄, when
restricted to the singular subvariety Πλ, may have rather unpredictable behavior.

Still, it may be that the induced GL(α)-invariant differential forms on some
of the representation schemes repα Πλ have desirable properties, in particular if
repα Πλ is a smooth variety. For this reason we need a notion of noncommutative
smoothness relative to a specific dimension vector α. This notion was introduced
by C. Procesi in [17] and investigated further in [13]. We briefly recall the definition
and main results from [17].

With alg@α we denote the category of V -algebras C equipped with a V -linear

trace map C
t- C satisfying t(ab) = t(ba), t(a)b = bt(a), t(t(a)b) = t(a)t(b)

for all a, b ∈ C and such that t(ei) = ai if α = (a1, . . . , ak) and C satisfies the
formal Cayley-Hamilton identity of degree n where n =

∑

i ai. To explain the last
definition, consider the characteristic polynomial χM (t) of a general n × n matrix
M which is a polynomial in a central variable t with coefficients which can be
expressed as polynomials with rational coefficients in Tr(M), T r(M2), . . . , T r(Mn).
Replacing M by a and Tr(M i) by t(ai) we have a formal characteristic polynomial
χa(t) ∈ C[t] and we require that χa(a) = 0 for all a ∈ C. Morphisms in alg@α are
V -algebra morphisms which are trace preserving.



4 LIEVEN LE BRUYN

An algebra C in alg@α is said to be α-smooth if it satisfies the lifting property
for morphisms modulo nilpotent ideals in alg@α. That is, every diagram

B
π -- B

I
I
..............

∃φ̃

C

φ

6

with B, B
I

in alg@α, I a nilpotent ideal and π and φ trace preserving maps, can be

completed with a trace preserving algebra map φ̃.
The forgetful functor alg@α - alg has a left inverse

∫

α
which assigns to

a V -algebra A the algebra
∫

α
A obtained by formally adjoining traces to A and

then modding out all Cayley-Hamilton identities of degree n. From [17] we recall
geometric reconstruction results for

∫

α
A and its central subalgebra

∮

α
A = t

∫

α
A

as well as the characterization of α-smoothness.

Theorem 2.1 (C. Procesi). With notations as above we have

1. The algebra
∫

α
A is the ring of GL(α)-equivariant maps from repα A to

Mn(C) where GL(α) acts on the latter by conjugation via the diagonal em-

bedding GL(α) ⊂ - GLn, that is,
∫

α

A = Mn(C[repα A])GL(α)

2. The image of the trace map on
∫

α
A is the ring of GL(α)-invariant polynomial

functions on repα A, that is
∮

α

A = C[issα A]

3. A is α-smooth in the sense of Procesi, that is,
∫

α
A is α-smooth in alg@α if

and only if repα A is a smooth variety.

Recall that an algebra C in alg@α is said to be an Azumaya algebra if and
only if every trace preserving morphism C - Mn(C) is an epimorphism. If we
start with a V -algebra A, then a trace preserving algebra map

∫

α
A - Mn(C)

corresponds one-to-one to a V -algebra map A - Mn(C) hence to a geometric
point of repα A. The Azumaya property for

∫

α
A is therefore equivalent to saying

that the quotient map

repα A
π-- issα A

is a principal PGL(α)-fibration in the étale topology. For, in general a geometric
point in issα A determines an isomorphism class of a semi-simple α-dimensional
representation of A and the map π sends an α-dimensional representation to the
direct sum of its Jordan-Hölder factors.

Proposition 2.2. The following implications of theorem 1.1 hold :

(1) ⇒ (4) : If α is a minimal element of Σλ, then
∫

α
Πλ is an Azumaya algebra

over the smooth variety issα Πλ.

(4) ⇒ (5) : If
∫

α
Πλ is an Azumaya algebra over the smooth variety issα Πλ,

then Πλ is α-smooth in the sense of Procesi.
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Proof. (1) ⇒ (4) : Consider the complex moment map

repα Q̄
µC- M0

α(C) V 7→
∑

a∈Qa

[Va, Va∗ ]

where M0
α(C) is the subspace of k-tuples (m1, . . . , mk) ∈ Ma1

(C) ⊕ . . . ⊕ Mak
(C)

such that
∑

i tr(mi) = 0. For λ = (λ1, . . . , λk) ∈ Qk such that
∑

i aiλi = 0
we consider the element λ = (λ1

rr
n1

, . . . , λk
rr

nk
) in M0

α(C). The inverse image
µ−1

C
(λ) = repα Πλ. By a result of M. Artin [1] one knows that the geometric

points of the quotient scheme issα Πλ are the isomorphism classes of α-dimensional
semi-simple representations of Πλ. Because α is a minimal element of Σλ all α-
dimensional representations of Πλ must be simple (consider the dimension vectors
of Jordan-Hölder components) so each fiber of the quotient map π is isomorphic
to PGL(α). The fact that µ−1

C
(λ) is smooth if α is a minimal non-zero element of

Σλ follows from computing the differential of the complex moment map, see also

[4, lemma 5.5]. Because repα Πλ
π-- issα Πλ is a principal PGL(α)-fibration,

∫

α
A is an Azumaya algebra and as the total space repα Πλ is smooth it follows

that also the base space issα Πλ is smooth.
(4) ⇒ (5) : If

∫

α
Πλ is an Azumaya algebra, it follows that

repα Πλ
π-- issα Πλ

is a principal PGL(α)-fibration. If in addition the basespace is smooth, so is the
top space repα Πλ. The assertion follows from Procesi’s characterization of α-
smoothness, theorem 2.1.

3. Central singularities

Clearly, if issα Πλ is a coadjoint orbit of NQ it is a smooth variety. In this
section we will show that unless α is a minimal element of Σλ the quotient variety
issα Πλ always has singularities. The crucial ingredient in the proof is the étale
local description of issα Πλ due to W. Crawley-Boevey [5].

Let χQ be the Euler-form of the quiver ~Q, that is, the bilinear form

χQ : Z × Z - Z

is determined by the matrix (χij)i,j ∈ Mk(Z) where χij = δij − #{a ∈
Qa starting at vi and ending in vj }. We denote the symmetrization of χQ by TQ

(the Tits form) and p(α) = 1 − χQ(α, α) for every dimension vector α.
Throughout we assume that α ∈ Σλ and we consider a geometric point ξ ∈

issα Πλ which determines an isomorphism class of a semisimple α-dimensional
representation of Πλ say

Mξ = S⊕e1

1 ⊕ . . . ⊕ S⊕eu

u

where the Si are distinct simple representations of Πλ with dimension vectors βi

and occurring in Mξ with multiplicity ei, that is, α =
∑u

i=1 eiβi. We say that ξ is
of representation type τ = (e1, β1; . . . ; eu, βu).

Construct a new (symmetric) quiver Γτ on u vertices {v′1, . . . , v
′
u} (corresponding

to the distinct simple components) such that there are

• 2p(βi) loops in vertex v′i, and
• −TQ(βi, βj) directed arrows from v′i to v′j .

We also consider the dimension vector ατ = (e1, . . . , eu) for Γτ .
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Theorem 3.1 (W. Crawley-Boevey). With notations as above there is an étale

isomorphism between

1. a neighborhood of ξ in issα Πλ(Q̄), and

2. a neighborhood of the trivial representation 0 in issατ
Π0(Γτ )

where Π0(Γτ ) is the preprojective algebra corresponding to the double quiver Γτ .

In particular it follows that issα Πλ is smooth in all points ξ of representation
type τ = (1, α) (the so called Azumaya locus) and that the dimension of issα Πλ is
equal to 2p(α). In [5, Prop 8.6] it was proved that issα Π0(Q̄) has singularities in

case ~Q is a quiver without loops and α is an imaginary indivisible root of Σ0. Recall
that a dimension vector is said to be indivisible if the greatest common divisor of
its components is one.

Theorem 3.2. For α ∈ Σλ, the smooth locus of issα Πλ coincides with the Azu-

maya locus.

In particular, if α is not a minimal element of Σλ, then issα Πλ is singular,

that is, implication (3) ⇒ (1) of theorem 1.2 holds.

Proof. With issα(τ) we will denote the locally closed subvariety of issα Πλ con-
sisting of all geometric points ξ of representation type τ . Observe that there is a
natural ordering on the set of representation types

τ ≤ τ ′ ⇐⇒ issα(τ) ⊂ issα(τ ′)

where the closure is with respect to the Zariski topology. Clearly, if we can prove
that all points of issα(τ ′) are singular then so are those of issα(τ).

Let ξ be a point outside of the Azumaya locus of representation type τ =
(e1, β1; . . . ; eu, βu) then by theorem 3.1 is suffices to prove that issατ

Π0(Γτ ) is
singular in 0.

Assume that Γτ has 2p(βi) > 0 loops in the vertex v′i where ei > 1. This
means that there are infinitely many nonisomorphic simple Πλ-representations of
dimension vector βi, but then τ < τ ′ where

τ ′ = (e1, β1; . . . ; ei−1, βi−1; 1, βi; . . . ; 1, βi
︸ ︷︷ ︸

ei

; ei+1, βi+1; . . . ; eu, βu)

and by the above remark it suffices to prove singularity for τ ′. That is, we may
assume that the quiver setting (Γτ , ατ ) is such that the symmetric quiver Γτ has
loops only at vertices v′i where the dimension ei = 1.

Assume moreover that ατ is indivisible (which by the above can be arranged
once we start from a type τ such that Γτ has loops). Recall from [15] that in-
variants of quivers are generated by traces along oriented cycles in the quiver. As
a consequence we have algebra generators of the coordinate ring C[issατ

Π0(Γτ )]
which is a graded algebra by homogeneity of the defining relations of the prepro-
jective algebra Π0(Γτ ). To prove singularity it therefore suffices to prove that the
coordinate ring is not a polynomial ring. Let Γ′

τ be the quiver obtained from Γτ by
removing all loops (which by the above reduction exist only at vertices where the
dimension is one). Because the relations of the preprojective algebra are irrelevant
for loops in such vertices we have that C[issατ

Π0(Γτ )] is a polynomial ring (in
the variables corresponding to the loops) over C[issατ

Π0(Γ
′
τ )]. By [5, Prop 8.6]

we know that issατ
Π0(Γ

′
τ ) is singular, finishing the proof in this case.
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The remaining case is when Γτ contains no loops (that is, all βi are real roots

for ~Q) and when ατ is divisible. Because ατ is the dimension vector of a simple
representation of Π0(Γτ ) we know from [14] that the quiver setting (Γτ , ατ ) is such
that Γτ contains a subquiver say on the vertices T = {v′i1 , . . . , v

′
iz
} which is the

double of a tame quiver such that (ατ | T ) ≥ δ where δ = (di1 , . . . , diz
) is the

imaginary root of this tame subquiver. Consider the representation type of ατ for
Π0(Γτ )

γ = (1, δ; e1, ǫ1; . . . ; ei1 − di1 , ǫi1 , . . . ; eix
− dix

, ǫix
; . . . ; eu, ǫu)

If we can show that a points is the γ-stratum of issατ
Π0(Γτ ) is singular, then the

quotient scheme is singular in the trivial representation and we are done. Consider
the quiver Γγ , then it has loops in the vertex corresponding to (1, δ). Moreover, αγ

is indivisible so we can repeat the argument above. The fact that ατ was assumed to
be divisible asserts that γ is not the Azumaya type (1, ατ ), finishing the proof.

4. Noncommutative singularities

We can refine the notion of α-smoothness to allow for noncommutative singu-
larities with respect to the dimension vector α. Let A be a V -algebra and consider
the quotient map

repα A
π-- issα A

and consider the open subvariety smα A of issα A consisting of those geometric
points ξ such that repα A is smooth along the fiber π−1(ξ) and call smα A the
α-smooth locus of A. In particular, A is α-smooth in the sense of Procesi if and
only if smα A = issα A.

Returning to Πλ it is clear from the foregoing that the Azumaya locus is con-
tained in the α-smooth locus for α ∈ Σλ. We will show in this section that this
these loci are actually identical showing that deformed preprojective algebras are as
singular as possible. This result should be compared to a similar result on quantum
groups at roots of unity [12].

Using the notations needed in theorem 3.1 we observe that the method of proof
actually proves a stronger result which is a symplectic version of Luna slices [16],
see also [7, §41].

Theorem 4.1. There is a GL(α)-equivariant étale isomorphism between

1. a neighborhood of the orbit of Mξ in repα Πλ, and

2. a neighborhood of the orbit of (rrα, 0) in the principal fiber bundle

GL(α) ×GL(ατ) repατ
Π0(Γτ )

We are now in a position to prove the final implication of theorem 1.2.

Theorem 4.2. If α ∈ Σλ, then the α-smooth locus of Πλ coincides with the Azu-

maya locus.

In particular, if Πλ is α-smooth in the sense of Procesi, then there is only one

representation type (1, α), that is, α is a minimal element of Σλ. Hence, (5) ⇒ (1)
of theorem 1.2 holds.

Proof. Assume that ξ ∈ smα Πλ and of representation type τ = (e1, β1; . . . ; eu, βu).
Then, repα Πλ is smooth in a neighborhood of the closed GL(α)-orbit of the
semisimple representation Mξ (closedness follows from [1]). By a result of Voigt
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[11] we know that the normalspace Nξ to the orbit in repα Πλ is equal to the space
of self-extensions

Ext1Πλ
(Mξ, Mξ) = ⊕u

i,j=1Ext1Πλ
(Si, Sj)

⊕eiej

As a consequence we can identify this space with the representation space repατ
∆τ

where ∆τ is the quiver on u vertices {w′
1, . . . , w

′
u} having

• dim Ext1Πλ
(Si, Si) loops in vertex w′

i, and

• dim Ext1Πλ
(Si, Sj) directed arrows from w′

i to w′
j

Moreover, the action of the stabilizer subgroup of Mξ (which is GL(ατ )) on the
normal; space is the basechange action of this group on repατ

∆τ . By the Luna
slice theorem [16] we have a GL(α)-equivariant étale isomorphism between

1. a neighborhood of the orbit of Mξ in repα Πλ, and

2. a neighborhood of the orbit of (rrα, 0) in the principal fiber bundle

GL(α) ×GL(ατ) repατ
∆τ

Combining this étale description with the one from theorem 4.1 we deduce an
étale GL(ατ )-isomorphism between the representation scheme repατ

Π0(Γτ ) (in a
neighborhood of the trivial representation) and the representation space repατ

∆τ

(in a neighborhood of the trivial representation).
But then 0 ∈ smατ

Π0(Γτ ) and in [3, Thm. 6.3] it was shown that for a pre-
projective algebra the smooth locus coincides with the Azumaya algebra. The only
way the trivial representation can be a simple representation of Π0(Γτ ) (or indeed,
even of CΓτ ) is when Γτ has only one vertex and the dimension vector is ατ = 1.
But then the representation type of ξ is (1, α) finishing the proof.
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