X a smooth projective curve of genus g. $\pi_1(X)$ fundamental group

$$\frac{\langle x_1, \dots, x_g, y_1, \dots, y_g \rangle}{[x_1, y_1] \dots [x_g, y_g]}$$

 $M = M_X^{ss}(0, n)$ the moduli space of semi-stable vector bundles over X of rank n and degree 0.

$$\pi_1(X) \longrightarrow U_n(\mathbb{C})$$

stable bundle \leftrightarrow simple representation. Determines smooth open subset M^s of M.

 $x \in M - M^s \leftrightarrow$ semi-simple representation. Unless (g, n) = (2, 2), x is a singularity of M (C.S. Seshadri).

Question : natural desingularization $N \longrightarrow M$

(Seshadri) : semi-stable bundles V of rank n^2 and degree 0 such that End(V) is a degeneration of $M_n(\mathbb{C})$ in alg_{n^2} .

 $N = M_X^{ps}(0, n^2)$ moduli space of such 'parabolic stable' bundles. If $V \in N$

$$gr(V) = \underbrace{W \oplus \ldots \oplus W}_{n}$$

with W a direct sum of stable bundles of total rank n.

Birational projective map $N \longrightarrow M$ by $V \mapsto W$.

 $N \longrightarrow M$ is desingularization iff $\overline{\mathcal{O}(M_n(\mathbb{C}))}$ is smooth in alg_{n^2} . This is true for n = 2.

(Le Bruyn-Reichstein) $\overline{\mathcal{O}(A)}$ is smooth in alg_m iff A is m-dimensional 2-nilpotent or generalized Kronecker or m = 3 or 4 and

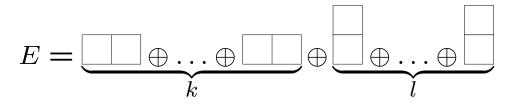
$$A = \mathbb{C} \times \mathbb{C} \times \mathbb{C} \quad \text{or} \quad A = M_2(\mathbb{C})$$

Paradigm shift : In the commalg-world, M is hopelessly singular. However, in the assocworld, M is a smooth (noncommutative) manifold.

today : What are worlds ? world-manifolds ?

tomorrow : Local study and classification of world-manifolds.

Also global study of (nice)world-manifolds : differential forms, necklace Lie algebras etc. (cfr. V. Ginzburg). world = cyclic quadratic operad. (V. Ginzburg,M. Kapranov, M. Kontsevich a. many o.)



k commutative products $(a,b)_i = (b,a)_i$, $1 \le i \le k$. *l* alternating products $[a,b]_j = -[b,a]_j$, $1 \le j \le l$.

 $E_{(3)}$ vectorspace on all different 2-brackets in variables x_1, x_2, x_3 . For example, $([x_1, x_2]_i, x_3)_j$

$$= (x_3, [x_1, x_2]_i)_j = -(x_3, [x_2, x_1]_i)_j = \dots$$

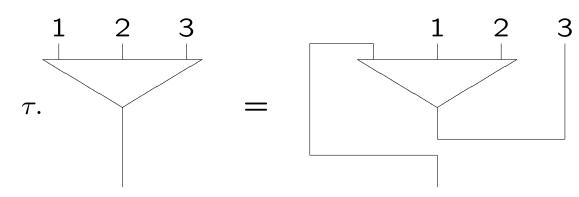
Permuting the x_i gives S_3 -action

$$E_{(3)} = Ind_{S_2}^{S_3}(E)^{\oplus k+l}$$

2-brackets \leftrightarrow labeled binary 3-trees

$$(x_1, [x_2, x_3]_j)_i \leftrightarrow (i)$$
 (i)

Have S_4 -action on $E_{(3)}$. $\tau = (0123)$, define



for example

$$\tau.([x_3, x_1], x_2) = [(x_1, x_3), x_2]$$

world = (E, R) with $R \triangleleft_{S_4} E_{(3)}$.

world-algebra = \mathbb{C} -vectorspace V with maps

$$S^2 V \xrightarrow{(i)} V$$
 and $\wedge^2 V \xrightarrow{[j]} V$

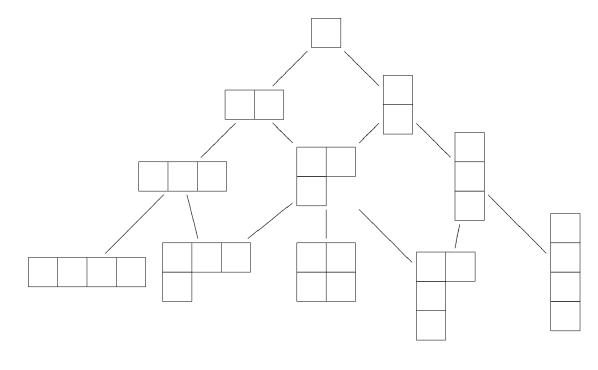
satisfying all relations in R.

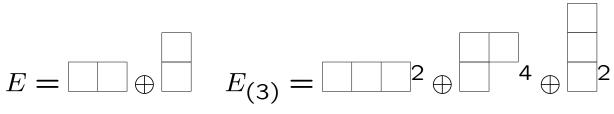
Example : assoc-algebras are determined by a map

$$V \otimes V = S^2 \ V \oplus \wedge^2 \ V \xrightarrow{()+[]} V$$

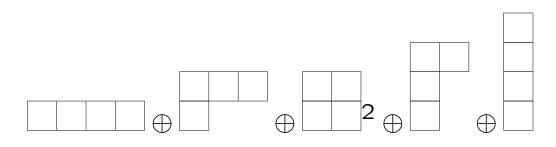
whence corresponding $E = \Box \oplus \Box$.

induction-restriction diagram

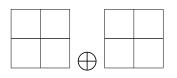




among the options one calculates that the S_4 -action on $E_{(3)}$ splits

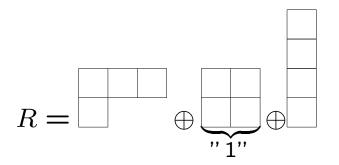


rescaling products gives torus action with two point orbits 0, ∞ and one open orbit 1 on the \mathbb{P}^1 of S_4 -submodules of



(Getzler-Kapranov) : there are precisely 80 different worlds for $E = \Box \oplus \Box$.

Example : assoc is the E-world with relations



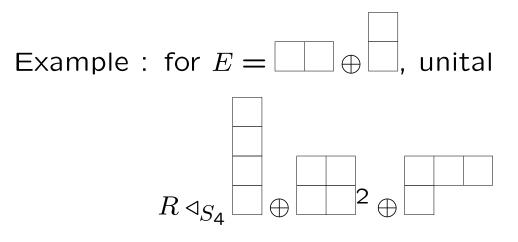
world-algebra V with unit $1 \in V$ satisfying

 $[1, v]_j = 0$ and $(1, v)_i = v$

substituting 1 for x_1, x_2, x_3 gives maps

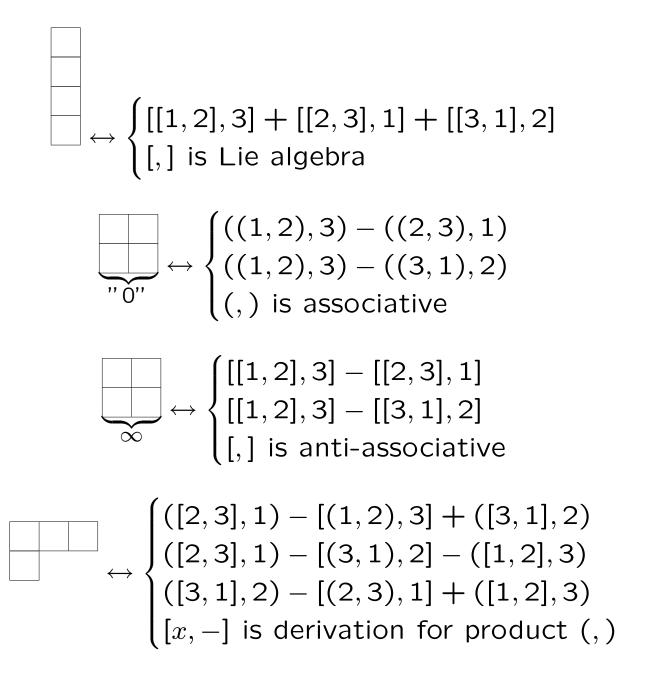
$$E_{(3)} \xrightarrow{s_1, s_2, s_3} E$$

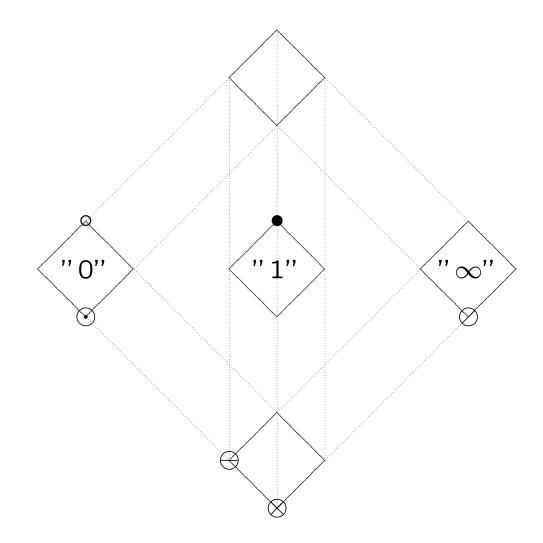
unital world (E, R) such that $s_i(R) = 0$ for $1 \le i \le 3$



there are precisely 20 unital *E*-worlds.

relations for unital *E*-worlds.





• = assoc, \circ = poisson, \odot = commalg, \ominus = lie, \otimes = inproduct, \oslash = mock-comm.

Question : Study $w - alg_n$ (*n*-dim world-algebras) and classify the smooth orbit closures.

T target algebra iff T fin. dml. w-alg with

$$T \otimes T \xrightarrow{B} \mathbb{C}$$

which is non-degenerate and invariant

$$\begin{cases} B((x,y)_i,z) = B(x,(y,z)_i) \\ B([x,y]_j,z) = B(x,[y,z]_j) \end{cases}$$

T unital then trace tr(x) = B(x, 1). AuT all *B*-invariant w-alg autos of T (T simple, often reductive).

Example: $T = M_n(\mathbb{C})$ in assoc_1 , then B(x, y) = tr(xy) and $AuT = PGL_n$.

A f.g. world-algebra gen. a_1, \ldots, a_k .

 $T\mathchar`-representations of <math display="inline">A$

 $rep_T(A) = w - alg(A, T) \longrightarrow T \times \ldots \times T$

have AuT-action with quotient space

$$iss_T(A) = rep_T(A)/AuT$$

the semisimple reps in T.

(d'apres V. Popov) if $E = \Box \oplus \Box$ and T simple generated by $\leq k$ elements, then 'traces' separate generic AuT-orbits in $rep_T(A)$.

Question : General result ? Generators of invariants ?

A is T-smooth iff $rep_T(A)$ is smooth. A worldsmooth iff T-smooth for all targets T (possibly wrt. base B).

Example : assoc if A is formally smooth (Cuntz-Quillen), then assoc-smooth. e.g. $A = \mathbb{C}Q$ or $\mathbb{C}[X]$, X smooth affine curve, free products etc. $T = M_n(\mathbb{C})$ and B vertices of Q, then

$$\begin{cases} rep_T(\mathbb{C}Q) = rep_n \ Q = \bigsqcup \ GL_n \times^{GL(\alpha)} rep_\alpha \ Q \\ rep_{T,B}(\mathbb{C}Q) = rep_\alpha \ Q \end{cases}$$

when $B \subseteq M_n(\mathbb{C})$ have ranks = dim vector.

Moduli problem $X \longrightarrow M$ is **world-manifold** iff locally isomorphic to quotients

 $rep_{T,B}(A) \longrightarrow iss_{T,B}(A)$

for A a world-smooth algebra (or T-smooth). good points \leftrightarrow simple T-reps. **Example :** Q cycle-free quiver having θ -stables of dim α , then

$M^{ss}_{\alpha}(Q,\theta)$

is a projective assoc-manifold.

determinental semi-invariants σ determine universal localizations $\mathbb{C}Q_{\sigma}$ of $\mathbb{C}Q$ such that

 θ – stable \leftrightarrow simple repr. of $\mathbb{C}Q_{\sigma}$

Example : X projective smooth curve of genus g, then

$$M_X^{ss}(0,n)$$

is a projective assoc-manifold.

(A. Schofield) semistable bundles of degree 0 and rank n are locally determined by representations of dimension vector (n, gn) of the formally smooth algebra

$$\begin{bmatrix} \mathbb{C} & A \\ \mathbf{0} & A \end{bmatrix}$$

where A is affine piece of X. A universal localization does the job.

world : (E, R) with $R \triangleleft_{S_4} E_{(3)}$.

target : $T \in w - alg$ with invariant nondegenerate bilinear form (trace). AuT invariant automorphisms (reductive).

smooth algebra : $A \in w-alg$ such that $rep_T(A) = w - alg(A, T)$ is smooth (for all targets).

world manifold : moduli problem $X \longrightarrow M$ which is locally iso to

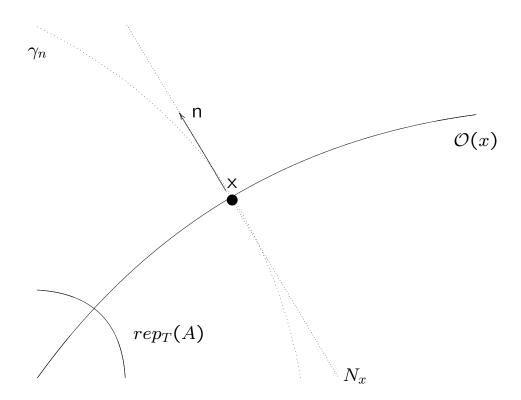
 $rep_T(A) \longrightarrow iss_T(A) = rep_T(A)/AuT$

and good orbits correspond to simple T-reps.

today : local classification and study of worldmanifolds. A is a T-smooth world-alg, $rep_T(A)$ smooth with AuT-action.

 $\xi \in iss_T(A)$, want to describe analytic local structure of $iss_T(A)$ near ξ .

 ξ determines a unique **closed** orbit $\mathcal{O}(x)$ in $rep_T(A)$. $G_{\xi} = Stab_x(AuT)$ is reductive.

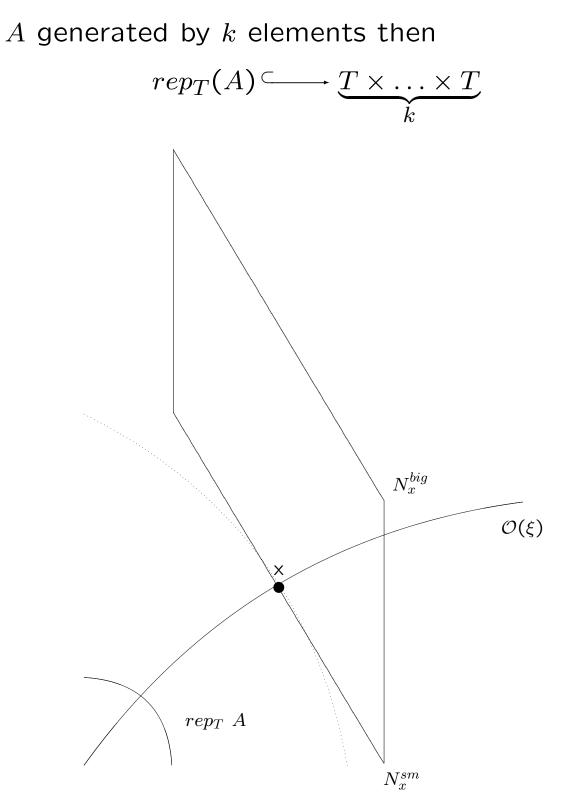


Luna's slice theorem :

There is an analytic (étale) local isomorphism between

- a neighborhood of ξ in $iss_T(A)$ and
- a neighborhood of $\overline{0}$ in the quotient variety N_x/G_{ξ} .

aim : Have to classify all pairs (G_{ξ}, N_x) which can appear for arbitrary *T*-smooth world algebras *A*. **problem** : no control on *T*-smooth world-algebras.



$$G = Stab_{AuT}(x)$$
 is reductive so $N_x^{sm} \triangleleft_G N_x^{big}$

general point in N_x^{sm} must have trivial G-stabilizer.

method :

- describe all types τ of semi-simples in $T \times \dots \times T$ under simultaneous action of AuTand their stabilizers $G(\tau)$.
- describe the isotypical decomposition of the $G(\tau)$ representations $N(\tau) = N_x^{big}$.
- describe the subsummands S which have generic trivial $G(\tau)$ stabilizer.
- classify all obtained $(S, G(\tau))$ according to the dimension of $S/G(\tau)$.

classification for world manifolds : For given dimension d and target T there are finitely many classes of (analytic/étale) local behavior for world manifolds.

compare with comm-manifolds : for every dimension d just 1 analytic type \mathbb{A}^d .

now : apply method to assoc. will show ubiquity of quiver-representations for noncommutative geometry.

assoc-classification.

A formally smooth algebra, $T = M_n(\mathbb{C})$, $AuT = PGL_n$, $rep_T(A) = rep_n(A)$ is smooth affine PGL_n -variety.

Artin-Voigt : $\xi \in iss_n(A) = rep_n(A)/PGL_n$ is an isoclass of *n*-dml semisimple *A*-representation,

$$M_x = S_1^{\oplus e_1} \oplus \ldots \oplus S_k^{\oplus e_k}$$

 S_i simple A-representation of dimension d_i occurring with multiplicity e_i , $n = \sum_i d_i e_i$.

Stabilizer : $Stab_x(PGL_n) = PGL(\alpha)$ with $\alpha = (e_1, \ldots, e_k)$ and embedding coming from $\begin{bmatrix} GL_{e_1}(\mathbb{C} \otimes 1_{d_1}) & 0 & \cdots & 0 \\ 0 & GL_{e_2}(\mathbb{C} \otimes 1_{d_2}) & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & GL_{e_z}(\mathbb{C} \otimes 1_{d_z}) \end{bmatrix}$ in GL_n . Gabriel : normal space to the orbit is

$$N_x = Ext^1_A(M_x, M_x) = \bigoplus_{i,j=1}^k Ext^1_A(S_i, S_j)^{\oplus e_i e_j}$$

As a $Stab_x = PGL(\alpha)$ -representation N_x is a quiver-situation

$$N_x = rep_\alpha \ Q_\xi$$

with the **local quiver** Q_{ξ} on k vertices v_1, \ldots, v_k (corresponding to distinct simple components S_1, \ldots, S_k) and

$$j \rightarrow i$$
 = $dim_{\mathbb{C}} Ext^{1}_{A}(S_{i}, S_{j})$

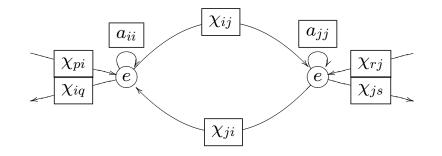
when is α dimension vector of simple representation ? what is dimension of quotient variety $rep_{\alpha} Q_{\xi}/PGL(\alpha) = iss_{\alpha} Q_{\xi}$? (Le Bruyn-Procesi) χ Euler-form of Q_{ξ} , then α is dim-vector of simple representation iff Q_{ξ} is strongly connected and

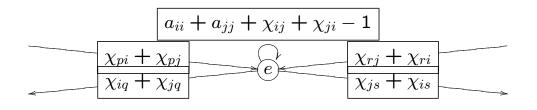
$$\chi(\alpha,\epsilon_i) \leq 0$$
 and $\chi(\epsilon_i,\alpha) \leq 0$

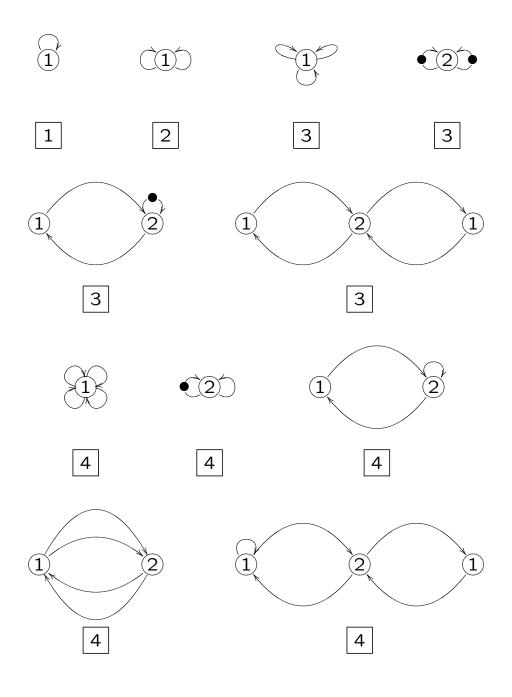
for all $1 \leq i \leq k$ unless $Q_{\xi} = \tilde{A}_k$ then $\alpha = (1, \ldots, 1)$. In this case

$$dim \ iss_{\alpha} \ Q_{\xi} = 1 - \chi(\alpha, \alpha)$$

Shrinking to simplest form







moduli space $M_X^{ss}(0, n)$.

local quiver-situation Q_V in point

$$V = W_1^{\oplus e_1} \oplus \ldots \oplus W_k^{\oplus e_k}$$

 W_i stable of rank d_i , so $\alpha_i = (d_i, gd_i)$.

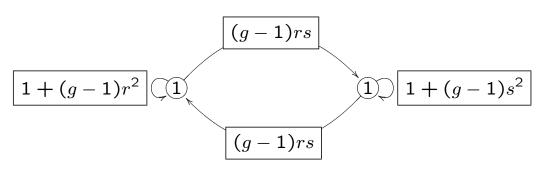
$j = \delta_{ij} - \chi(\alpha_i, \alpha_j) = \delta_{ij} + (g-1)d_id_j$ and $\alpha_V = (e_1, \dots, e_k).$

Example : $V = \mathcal{O} \oplus \ldots \oplus \mathcal{O}$, then $Q_V = \bigotimes^9$ hence local isomorphic to

$$\underbrace{M_n \oplus \ldots \oplus M_n}_{g} / PGL_n$$

(C.S. Seshadri).

Example : $V = W \oplus W'$, rk(W) = r, rk(W') = s



singular unless invariants (traces along oriented cycles) form polynomial algebra : (g-1)rs = 1, i.e. g = 2, r + s = n = 2.

C.S. Seshadri : $M^{sing} = M - M^s$ unless (g, n) = (2, 2) in which case M is smooth.

isoclasses of semistable W s.t. gr(W) = V =orbit-structure of **nullcone** of Q_V .

Example : 2 copies of $\mathbb{P}^{(g-1)rs-1}$ together with one point.

preprojective algebra $\Pi_0(Q)$.

Crawley-Boevey : S_i, S_j two simple Π_0 -reps of dimension α_i, α_j

dim $Ext_{\Pi_0}^1(S_i, S_j) = 2\delta_{ij} - T_Q(\alpha_i, \alpha_j)$ and dim $iss_{\alpha}(\Pi_0) = 2(1 - \chi_Q(\alpha, \alpha))$ (when $\alpha \in \Sigma_0$).

 $V = S_1^{\oplus e_1} \oplus \ldots \oplus S_k^{\oplus e_k}$ has local quiver-situation of dimension type $\dim iss_{\alpha}(\Pi_0)$ iff k = 1 and e = 1 i.e. when V is simple.

$$\alpha - Smoothlocus(\Pi_0) = iss^s_{\alpha}(\Pi_0)$$

Example : Q extended Dynkin, $\alpha = \delta_Q$. Kleinian singularity remains singular in assoc.

deformed preprojective $\Pi_{\lambda}(Q)$.

Equivalent are :

- Π_{λ} is α -smooth.
- α is minimal element of Σ_{λ} .
- $iss_{\alpha}(\Pi_{\lambda})$ is coadjoint orbit for neclace Lie algebra \mathbb{N}_Q .

noncommutative functions $\mathbb{N}_Q=\frac{\mathbb{C}\tilde{Q}}{[\mathbb{C}\tilde{Q},\mathbb{C}\tilde{Q}]}$ has basis the necklaces in \tilde{Q}

$$0 \longrightarrow V \longrightarrow \mathbb{N}_Q \longrightarrow Der_\omega \ \mathbb{C}\tilde{Q} \longrightarrow 0$$

exact as Lie algebras, with Lie bracket on \mathbb{N}_Q the noncommutative Poisson bracket.

