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Preface

This is an example of an unnumbered chapter which can be used for a Preface
or Foreword.

The purpose of this paper is to establish a relationship between an infinite-
dimensional Grassmannian and arbitrary algebraic vector bundles of any rank de-
fined over an arbitrary complete irreducible algebraic curve, which generalizes the
known connection between the Grassmannian and line bundles on algebraic curves.

Author Name
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alg @n

noncommutative geometry @n is the study of families of (commutative) al-
gebraic varieties (with specified connecting morphisms) which are locally controlled
by noncommutative algebras. In the next two chapters we will clarify the latter
part of this dogmatic statement.

Define the category algtr of (not necessarily commutative) C-algebras equipped
with a C-linear map tr : A - A which is a formal trace, that is, satisfies for
all a, b ∈ A

tr(a)b = btr(a) tr(ab) = tr(ba) and tr(tr(a)b) = tr(a)tr(b).

Morphisms in algtr are C-algebra morphisms compatible with the trace structure.
The forgetful functor to the category of all C-algebras has a left adjoint

alg
tr- algtr A 7→ Atr

where Atr is obtained by formally adjoining traces to cyclic words in a generating
set of A. For a ∈ Atr and a fixed natural number n, we can define the formal Cayley-
Hamilton polynomial χ(n)

a (t) ∈ Atr[t] of degree n by expressing f(t) =
∏n
i=1(t−λi)

(in the commuting variables λi) as a polynomial in t with all coefficients polynomials
in the Newton functions

∑n
i=1 λ

k
i and replacing each occurrence of

∑n
i=1 λ

k
i by

tr(ak). The level n approximation of the algebra A is defined to be the quotient
algebra

A @n =
Atr

(tr(1)− n, χ(n)
a (a) ∀a ∈ Atr)

The main results, theorems 1.28 and 2.38, assert that we can recover the alge-
bra A @n and its central subalgebra tr A @n from geometric data. If A is an
affine C-algebra with generating set {a1, . . . , am}, then the representation space
rep

n
A of all n-dimensional representations of A is a closed subscheme of m-tuples

of n × n matrices Mm
n = Mn ⊕ . . . ⊕Mn and is stable under the GLn-action on

Mm
n by simultaneous conjugation. The GLn-orbits in rep

n
A are the isomorphism

classes of representations and an orbit is closed if and only if the corresponding
representation is semisimple. Geometric invariant theory asserts the existence of
an algebraic quotient issn A = rep

n
A/GLn classifying the isomorphism classes of

n-dimensional semisimple representations of A. We recover A @n as the algebra of
GLn-equivariant polynomial maps from rep

n
A to Mn and the central subalgebra

tr A @n as the coordinate ring of the quotient variety issn A.
A family (Xi)i∈I of (commutative) algebraic varieties is said to be locally con-

trolled by a set of noncommutative algebras A if every Xi is locally isomorphic
to an irreducible component of issn A for some n ∈ N and A ∈ A. When A is

1



2 alg @n

a collection of Quillen-smooth algebras (which implies that all rep
n
A are smooth

varieties) we will determine the étale local structure of the Xi in the next part.



CHAPTER 1

Generic Matrices.

1.1. Conjugacy classes of matrices

We denote by Mn the space of all n × n matrices Mn(C) and by GLn the
general linear group GLn(C). A matrix A ∈ Mn determines by left multiplication
a linear operator on the n-dimensional vectorspace Vn = Cn of column vectors . If
g ∈ GLn is the matrix describing the base change from the canonical basis of Vn
to a new basis, then the linear operator expressed in this new basis is represented
by the matrix gAg−1. For a given matrix A we want to find an suitable basis such
that the conjugated matrix gAg−1 has a simple form.

Consider the linear action of GLn on the n2-dimensional vectorspace Mn

GLn ×Mn
- Mn (g,A) 7→ g.A = gAg−1.

The orbit O(A) = {gAg−1 | g ∈ GLn } of A under this action is called the
conjugacy class of A. We look for a particularly nice representative in a given
conjugacy class. The answer to this problem is, of course, given by the Jordan
normal form of the matrix.

With eij we denote the matrix whose unique non-zero entry is 1 at entry (i, j).
Recall that the group GLn is generated by the following three classes of matrices :

• the permutation matrices pij = rr
n + eij + eji − eii − ejj for all i 6= j,

• the addition matrices aij(λ) = rr
n + λeij for all i 6= j and 0 6= λ, and

• the multiplication matrices mi(λ) = rr
n + (λ− 1)eii for all i and 0 6= λ.

Conjugation by these matrices determine the three types of Jordan moves on n×n
matrices, where the altered rows and columns are dashed.

i j

i

type p

j

����

dd

zz

i j

i

type a

j

−λ.

��

+λ.

dd

i

type m

i

λ−1.

��

λ.__

Therefore, it suffices to consider sequences of these moves on a given n× n matrix
A ∈ Mn. The characteristic polynomial of A is defined to be the polynomial of

3



4 1. GENERIC MATRICES.

degree n in the variable t

χA(t) = det(trrn −A) ∈ C[t].

As C is algebraically closed, χA(t) decomposes as a product of linear terms
e∏
i=1

(t− λi)di

where the {λ1, . . . , λe} are called the eigenvalues of the matrix A. Observe that λi
is an eigenvalue of A if and only if there is a non-zero eigenvector v ∈ Vn = Cn
with eigenvalue λi, that is, A.v = λiv. In particular, the rank ri of the matrix
Ai = λi

rr
n − A satisfies n − di ≤ ri < n. A nice inductive procedure using Jordan

moves given in [23] gives a proof of the following Jordan-Weierstrass theorem .

Theorem 1.1 (Jordan-Weierstrass). Let A ∈ Mn with characteristic polyno-
mial χA(t) =

∏e
i=1(t− λi)di . Then, A determines unique partitions

pi = (ai1, ai2, . . . , aimi
) of di

associated to the eigenvalues λi of A such that A is conjugated to a unique (up to
permutation of the blocks) block-diagonal matrix

J(p1,...,pe) =



B1

B2

. . .

Bm


with m = m1 + . . . + me and exactly one block Bl of the form Jaij

(λi) for all
1 ≤ i ≤ e and 1 ≤ j ≤ mi where

Jaij (λi) =


λi 1

λi
. . .
. . . 1

λi

 ∈Maij (C)

Let us prove uniqueness of the partitions pi of di corresponding to the eigen-
value λi of A. Assume A is conjugated to another Jordan block matrix J(q1,...,qe),
necessarily with partitions qi = (bi1, . . . , bim′

i
) of di. To begin, observe that for a

Jordan block of size k we have that

rk Jk(0)l = k − l for all l ≤ k and if µ 6= 0 then rk Jk(µ)l = k

for all l. As J(p1,...,pe) is conjugated to J(q1,...,qe) we have for all λ ∈ C and all l

rk (λrr
n − J(p1,...,pe))l = rk (λrr

n − J(q1,...,qe))l

Now, take λ = λi then only the Jordan blocks with eigenvalue λi are important in
the calculation and one obtains for the ranks

n−
l∑

h=1

#{j | aij ≥ h} respectively n−
l∑

h=1

#{j | bij ≥ h}.
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Now, for any partition p = (c1, . . . , cu) and any natural number h we see that the
number z = #{j | cj ≥ h}

c1

c2

cz

cz+1

cu
h

is the number of blocks in the h-th row of the dual partition p∗ which is defined to
be the partition obtained by interchanging rows and columns in the Young diagram
of p. Therefore, the above rank equality implies that p∗i = q∗i and hence that
pi = qi. As we can repeat this argument for the other eigenvalues we have the
required uniqueness. Hence, the Jordan normal form shows that the classification
of GLn-orbits in Mn consists of two parts : a discrete part choosing

• a partition p = (d1, d2, . . . , de) of n, and for each di,
• a partition pi = (ai1, ai2, . . . , aimi

) of di,
determining the sizes of the Jordan blocks and a continuous part choosing

• an e-tuple of distinct complex numbers (λ1, λ2, . . . , λe).
fixing the eigenvalues. Moreover, this e-tuple (λ1, . . . , λe) is determined only up to
permutations of the subgroup of all permutations π in the symmetric group Se such
that pi = pπ(i) for all 1 ≤ i ≤ e. Whereas this gives a satisfactory set-theoretical
description of the orbits we cannot put an Hausdorff topology on this set due to the
existence of non-closed orbits in Mn. For example, if n = 2, consider the matrices

A =
[
λ 1
0 λ

]
and B =

[
λ 0
0 λ

]
which are in different normal form so correspond to distinct orbits. For any ε 6= 0
we have that [

ε 0
0 1

]
.

[
λ 1
0 λ

]
.

[
ε−1 0
0 1

]
=

[
λ ε
0 λ

]
belongs to the orbit of A. Hence if ε - 0, we see that B lies in the closure ofO(A).
As any matrix in O(A) has trace 2λ, the orbit is contained in the 3-dimensional
subspace [

λ+ x y
z λ− x

]
⊂ - M2

In this space, the orbit-closure O(A) is the set of points satisfying x2 + yz = 0 (the
determinant has to be λ2), which is a cone having the origin as its top : The orbit
O(B) is the top of the cone and the orbit O(A) is the complement, see figure 1.

Still, for general n we can try to find the best separated topological quotient
space for the action of GLn on Mn. We will prove that this space coincide with the
quotient variety determined by the invariant polynomial functions.



6 1. GENERIC MATRICES.

Figure 1. Orbit closure for 2× 2 matrices

If two matrices are conjugated A ∼ B, then A and B have the same unordered
n-tuple of eigenvalues {λ1, . . . , λn} (occurring with multiplicities). Hence any sym-
metric function in the λi will have the same values in A as in B. In particular this
is the case for the elementary symmetric functions σl

σl(λ1, . . . , λl) =
∑

i1<i2<...<il

λi1λi2 . . . λil .

Observe that for every A ∈Mn with eigenvalues {λ1, . . . , λn} we have

n∏
j=1

(t− λj) = χA(t) = det(trrn −A) = tn +
n∑
i=1

(−1)iσi(A)tn−i

Developing the determinant det(trrn −A) we see that each of the coefficients σi(A)
is in fact a polynomial function in the entries of A. A fortiori, σi(A) is a complex
valued continuous function on Mn. The above equality also implies that the func-
tions σi : Mn

- C are constant along orbits. We now construct the continuous
map

Mn
π- Cn

sending a matrix A ∈Mn to the point (σ1(A), . . . , σn(A)) in Cn. Clearly, if A ∼ B
then they map to the same point in Cn. We claim that π is surjective. Take any
point (a1, . . . , an) ∈ Cn and consider the matrix A ∈Mn

(1.1) A =


0 an
−1 0 an−1

. . . . . .
...

−1 0 a2

−1 a1


then we will show that π(A) = (a1, . . . , an), that is,

det(trrn −A) = tn − a1t
n−1 + a2t

n−2 − . . .+ (−1)nan.



1.1. CONJUGACY CLASSES OF MATRICES 7

Indeed, developing the determinant of trrn −A along the first column we obtain

0

...

0

0

0

t

1

0

0

0

0

t

. . .

. . .

. . .

1

0

0

0

...

t

1

−an

−a
n-1

−a
n-2

...
−a

2

t− a
1

1

−

t07162534

0

...

0

0

0

t

1

0

0

0

0

t

. . .

. . .

. . .

1

0

0

0

...

t

1

−an

−a
n-1

−a
n-2

...
−a

2

t− a
1

t

107162534

Here, the second determinant is equal to (−1)n−1an and by induction on n the first
determinant is equal to t.(tn−1 − a1t

n−2 + . . .+ (−1)n−1an−1), proving the claim.
Next, we will determine which n×n matrices can be conjugated to a matrix in

the canonical form A as above. We call a matrix B ∈Mn cyclic if there is a (column)
vector v ∈ Cn such that Cn is spanned by the vectors {v,B.v,B2.v, . . . , Bn−1.v}.
Let g ∈ GLn be the basechange transforming the standard basis to the ordered
basis

(v,−B.v,B2.v,−B3.v, . . . , (−1)n−1Bn−1.v).
In this new basis, the linear map determined by B (or equivalently, g.B.g−1) is
equal to the matrix in canonical form

0 bn
−1 0 bn−1

. . . . . .
...

−1 0 b2
−1 b1


where Bn.v has coordinates (bn, . . . , b2, b1) in the new basis. Conversely, any matrix
in this form is a cyclic matrix.

We claim that the set of all cyclic matrices in Mn is a dense open subset. To
see this take v = (x1, . . . , xn)τ ∈ Cn and compute the determinant of the n × n
matrix

v Bv . . .
B

n-1
v

This gives a polynomial of total degree n in the xi with all its coefficients polynomial
functions cj in the entries bkl of B. Now, B is a cyclic matrix if and only if at least
one of these coefficients is non-zero. That is, the set of non-cyclic matrices is exactly
the intersection of the finitely many hypersurfaces

Vj = {B = (bkl)k,l ∈Mn | cj(b11, b12, . . . , bnn) = 0}
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in the vectorspace Mn.

Theorem 1.2. The best continuous approximation to the orbit space is given
by the surjection

Mn
π -- Cn

mapping a matrix A ∈Mn(C) to the n-tuple (σ1(A), . . . , σn(A)).

Let f : Mn
- C be a continuous function which is constant along conjugacy

classes. We will show that f factors through π, that is, f is really a continuous
function in the σi(A). Consider the diagram

Mn
f - C

Cn

s

6

π

?.....
.....

.....
.....

.....
.....

.

f
′ =
f◦
s

-

where s is the section of π (that is, π ◦ s = idCn) determined by sending a point
(a1, . . . , an) to the cyclic matrix in canonical form A as in equation (1.1). Clearly,
s is continuous, hence so is f ′ = f ◦ s. The approximation property follows if we
prove that f = f ′ ◦π. By continuity, it suffices to check equality on the dense open
set of cyclic matrices in Mn.

There it is a consequence of the following three facts we have proved before :
(1) : any cyclic matrix lies in the same orbit as one in standard form, (2) : s is a
section of π and (3) : f is constant along orbits.

Example 1.3. Orbits in M2.
A 2×2 matrix A can be conjugated to an upper triangular matrix with diagonal

entries the eigenvalues λ1, λ2 of A. As the trace and determinant of both matrices
are equal we have

σ1(A) = tr(A) and σ2(A) = det(A).

The best approximation to the orbitspace is therefore given by the surjective map

M2
π-- C2

[
a b
c d

]
7→ (a+ d, ad− bc)

The matrix A has two equal eigenvalues if and only if the discriminant of the
characteristic polynomial t2−σ1(A)t+σ2(A) is zero, that is when σ1(A)2−4σ2(A) =
0. This condition determines a closed curve C in C2 where

C = {(x, y) ∈ C2 | x2 − 4y = 0}.

C
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•2

•

•2

0

Figure 2. Orbit closures of 2× 2 matrices

Observe that C is a smooth 1-dimensional submanifold of C2. We will describe the
fibers (that is, the inverse images of points) of the surjective map π .

If p = (x, y) ∈ C2 − C, then π−1(p) consists of precisely one orbit (which is
then necessarily closed in M2) namely that of the diagonal matrix[

λ1 0
0 λ2

]
where λ1,2 =

−x±
√
x2 − 4y

2

If p = (x, y) ∈ C then π−1(p) consists of two orbits,

O24λ 1
0 λ

35 and O24λ 0
0 λ

35
where λ = 1

2x. We have seen that the second orbit lies in the closure of the first.
Observe that the second orbit reduces to one point in M2 and hence is closed.
Hence, also π−1(p) contains a unique closed orbit.

To describe the fibers of π as closed subsets of M2 it is convenient to write any
matrix A as a linear combination

A = u(A)
[

1
2 0
0 1

2

]
+ v(A)

[
1
2 0
0 − 1

2

]
+ w(A)

[
0 1
0 0

]
+ z(A)

[
0 0
1 0

]
.

Expressed in the coordinate functions u, v, w and z the fibers π−1(p) of a point
p = (x, y) ∈ C2 are the common zeroes of{

u = x

v2 + 4wz = x2 − 4y

The first equation determines a three dimensional affine subspace ofM2 in which the
second equation determines a quadric. If p /∈ C this quadric is non-degenerate and
thus π−1(p) is a smooth 2-dimensional submanifold of M2. If p ∈ C, the quadric is
a cone with top lying in the point x

2
rr
2. Under the GL2-action, the unique singular

point of the cone must be clearly fixed giving us the closed orbit of dimension 0
corresponding to the diagonal matrix. The other orbit is the complement of the top
and hence is a smooth 2-dimensional (non-closed) submanifold of M2. The graphs
in figure 2 represent the orbit-closures and the dimensions of the orbits.

Example 1.4. Orbits in M3.
We will describe the fibers of the surjective map M3

π-- C3. If a 3×3 matrix
has multiple eigenvalues then the discriminant d = (λ1 − λ2)2(λ2 − λ3)2(λ3 − λ1)2
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Figure 3. Representation strata for 3× 3 matrices.

is zero. Clearly, d is a symmetric polynomial and hence can be expressed in terms
of σ1, σ2 and σ3. More precisely,

d = 4σ3
1σ3 + 4σ3

2 + 27σ2
3 − σ2

1σ
2
2 − 18σ1σ2σ3

The set of points in C3 where d vanishes is a surface S with singularities. These
singularities are the common zeroes of the ∂d

∂σi
for 1 ≤ i ≤ 3. One computes that

these singularities form a twisted cubic curve C in C3, that is,

C = {(3c, 3c2, c3) | c ∈ C}.

The description of the fibers π−1(p) for p = (x, y, z) ∈ C3 is as follows. When
p /∈ S, then π−1(p) consists of a unique orbit (which is therefore closed in M3), the
conjugacy class of a matrix with paired distinct eigenvalues. If p ∈ S − C, then
π−1(p) consists of the orbits of

A1 =

λ 1 0
0 λ 0
0 0 µ

 and A2 =

λ 0 0
0 λ 0
0 0 µ


Finally, if p ∈ C, then the matrices in the fiber π−1(p) have a single eigenvalue
λ = 1

3x and the fiber consists of the orbits of the matrices

B1 =

λ 1 0
0 λ 1
0 0 λ

 B2 =

λ 1 0
0 λ 0
0 0 λ

 B3 =

λ 0 0
0 λ 0
0 0 λ


We observe that the strata with distinct fiber behavior (that is, C3 −S, S −C and
C) are all submanifolds of C3, see figure 3.

The dimension of an orbit O(A) in Mn is computed as follows. Let CA be the
subspace of all matrices in Mn commuting with A. Then, the stabilizer subgroup
of A is a dense open subset of CA whence the dimension of O(A) is equal to
n2 − dim CA.
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Performing these calculations for the matrices given above, we obtain the fol-
lowing graphs representing orbit-closures and the dimensions of orbits

C3 − S

•6

•

•

•6

4

0

OB1

OB2

OB3

•

•6

4

OA1

OA2

S − C C

Returning to Mn, the set of cyclic matrices is a Zariski open subset of Mn. For,
consider the generic matrix of coordinate functions and generic column vector

X =

x11 . . . x1n

...
...

xn1 . . . xnn

 and v =

v1...
vn


and form the square matrix[

v X.v X2.v . . . Xn−1.v
]
∈Mn(C[x11, x12, . . . , xnn, v1, . . . , vn])

Then its determinant can be written as
∑z
l=1 pl(xij)ql(vk) where the ql are poly-

nomials in the vk and the pl polynomials in the xij . Let A ∈ Mn be such that at
least one of the pl(A) 6= 0, then the polynomial d =

∑
l pl(A)ql(vk) ∈ C[v1, . . . , vk]

is non-zero. But then there is a c = (c1, . . . , cn) ∈ Cn such that d(c) 6= 0 and hence
cτ is a cyclic vector for A. The converse implication is obvious.

Theorem 1.5. Let f : Mn
- C is a regular (that is, polynomial) function

on Mn which is constant along conjugacy classes, then

f ∈ C[σ1(X), . . . , σn(X)]

Proof. Consider again the diagram

Mn
f - C

Cn

s

6

π

?.....
.....

.....
.....

.....
.....

.

f
′ =
f◦
s

-

The function f ′ = f ◦ s is a regular function on Cn whence is a polynomial in the
coordinate functions of Cm (which are the σi(X)), so

f ′ ∈ C[σ1(X), . . . , σn(X)] ⊂ - C[Mn].

Moreover, f and f ′ are equal on a Zariski open (dense) subset of Mn whence they
are equal as polynomials in C[Mn]. �

The ring of polynomial functions on Mn which are constant along conjugacy
classes can also be viewed as a ring of invariants. The group GLn acts as algebra
automorphisms on the polynomial ring C[Mn]. The automorphism φg determined
by g ∈ GLn sends the variable xij to the (i, j)-entry of the matrix g−1.X.g which
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is a linear form in C[Mn]. This action is determined by the property that for all
g ∈ GLn, A ∈ A and f ∈ C[Mn] we have that

φg(f)(A) = f(g.A.g−1)

The ring of polynomial invariants is the algebra of polynomials left invariant under
this action

C[Mn]GLn = {f ∈ C[Mn] | φg(f) = f for all g ∈ GLn}
and hence is the ring of polynomial functions on Mn which are constant along
orbits. The foregoing theorem determines the ring of polynomials invariants

C[Mn]GLn = C[σ1(X), . . . , σn(X)]

We will give an equivalent description of this ring below.
Consider the variables λ1, . . . , λn and consider the polynomial

fn(t) =
n∏
i=1

(t− λi) = tn +
n∑
i=1

(−1)iσitn−i

then σi is the i-th elementary symmetric polynomial in the λj . We know that
these polynomials are algebraically independent and generate the ring of symmetric
polynomials in the λj , that is,

C[σ1, . . . , σn] = C[λ1, . . . , λn]Sn

where Sn is the symmetric group on n letters acting by automorphisms on the
polynomial ring C[λ1, . . . , λn] via π(λi) = λπ(i) and the algebra of polynomials
which are fixed under these automorphisms are precisely the symmetric polynomials
in the λj .

Consider the symmetric Newton functions si = λi1 + . . . + λin, then we claim
that this is another generating set of symmetric polynomials, that is,

C[σ1, . . . , σn] = C[s1, . . . , sn].

To prove this it suffices to express each σi as a polynomial in the sj . More precisely,
we claim that the following identities hold for all 1 ≤ j ≤ n
(1.2) sj − σ1sj−1 + σ2sj−2 − . . .+ (−1)j−1σj−1s1 + (−1)jσj .j = 0

For j = n this identity holds because we have

0 =
n∑
i=1

fn(λi) = sn +
n∑
i=1

(−1)iσisn−i

if we take s0 = n. Assume now j < n then the left hand side of equation 1.2
is a symmetric function in the λi of degree ≤ j and is therefore a polynomial
p(σ1, . . . , σj) in the first j elementary symmetric polynomials. Let φ be the algebra
epimorphism

C[λ1, . . . , λn]
φ-- C[λ1, . . . , λj ]

defined by mapping λj+1, . . . , λj to zero. Clearly, φ(σi) is the i-th elementary
symmetric polynomial in {λ1, . . . , λj} and φ(si) = λi1 + . . . + λij . Repeating the
above j = n argument (replacing n by j) we have

0 =
j∑
i=1

fj(λi) = φ(sj) +
j∑
i=1

(−1)iφ(σi)φ(sn−i)
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(this time with s0 = j). But then, p(φ(σ1), . . . , φ(σj)) = 0 and as the φ(σk) for
1 ≤ k ≤ j are algebraically independent we must have that p is the zero polynomial
finishing the proof of the claimed identity.

If λ1, . . . , λn are the eigenvalues of an n×n matrix A, then A can be conjugated
to an upper triangular matrix B with diagonal entries (λ1, . . . , λ1). Hence, the trace
tr(A) = tr(B) = λ1+ . . .+λn = s1. In general, Ai can be conjugated to Bi which is
an upper triangular matrix with diagonal entries (λi1, . . . , λ

i
n) and hence the traces

of Ai and Bi are equal to λi1 + . . .+ λin = si. Concluding, we have

Theorem 1.6. Consider the action of conjugation by GLn on Mn. Let X be
the generic matrix of coordinate functions on Mn

X =

x11 . . . xnn
...

...
xn1 . . . xnn


Then, the ring of polynomial invariants is generated by the traces of powers of X,
that is,

C[Mn]GLn = C[tr(X), tr(X2), . . . , tr(Xn)]

Proof. The result follows from theorem 1.5 and the fact that

C[σ1(X), . . . , σn(X)] = C[tr(X), . . . , tr(Xn)]

�

1.2. Simultaneous conjugacy classes.

It will be crucial to extend what we have done for conjugacy classes of matrices
to simultaneous conjugacy classes of m-tuples of matrices . Consider the mn2-
dimensional complex vectorspace

Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

of m-tuples (A1, . . . , Am) of n × n-matrices Ai ∈ Mn. On this space we let the
group GLn act by simultaneous conjugation, that is

g.(A1, . . . , Am) = (g.A1.g
−1, . . . , g.Am.g

−1)

for all g ∈ GLn and allm-tuples (A1, . . . , Am). Unfortunately, there is no substitute
for the Jordan normalform result in this more general setting. Still, for small m
and n one can work out the GLn-orbits by ad hoc methods.

Example 1.7. Orbits in M2
2 = M2 ⊕M2.

We can try to mimic the geometric approach to the conjugacy class problem,
that is, we will try to approximate the orbitspace via polynomial functions on
M2

2 which are constant along orbits. For (A,B) ∈ M2
2 = M2 ⊕ M2 clearly the

polynomial functions we have encountered before tr(A), det(A) and tr(B), det(B)
are constant along orbits. However, there are more : for example tr(AB). Later,
we will show that these five functions generate all polynomials functions which are
constant along orbits. Here, we will show that the map M2

2 = M2 ⊕M2
π- C5

defined by
(A,B) 7→ (tr(A), det(A), tr(B), det(B), tr(AB))
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is surjective such that each fiber contains precisely one closed orbit. In the next
chapter, we will see that this property characterizes the best polynomial approxi-
mation to the (non-existent) orbit space.

First, we will show surjectivity of π, that is, for every (x1, . . . , x5) ∈ C5 we
will construct a couple of 2 × 2 matrices (A,B) (or rather its orbit) such that
π(A,B) = (x1, . . . , x5). Consider the open set where x2

1 6= 4x2. We have seen that
this property characterizes those A ∈M2 such that A has distinct eigenvalues and
hence diagonalizable. Hence, we can take a representative of the orbit O(A,B) to
be a couple

(
[
λ 0
0 µ

]
,

[
c1 c2
c3 c4

]
)

with λ 6= µ. We need a solution to the set of equations
x3 = c1 + c4

x4 = c1c4 − c2c3
x5 = λc1 + µc4

Because λ 6= µ the first and last equation uniquely determine c1, c4 and substitution
in the second gives us c2c3. Analogously, points of C5 lying in the open set x2

3 6= x4

lie in the image of π. Finally, for a point in the complement of these open sets, that
is when x2

1 = x2 and x2
3 = 4x4 we can consider a couple (A,B)

(
[
λ 1
0 λ

]
,

[
µ 0
c µ

]
)

where λ = 1
2x1 and µ = 1

2x3. Observe that the remaining equation x5 = tr(AB) =
2λµ+ c has a solution in c.

Now, we will describe the fibers of π. Assume (A,B) is such that A and B
have a common eigenvector v. Simultaneous conjugation with a g ∈ GLn express-
ing a basechange from the standard basis to {v, w} for some w shows that the
orbit O(A,B) contains a couple of upper-triangular matrices. We want to describe
the image of these matrices under π. Take an upper triangular representative in
O(A,B)

(
[
a1 a2

0 a3

]
,

[
b1 b2
0 b3

]
).

with π-image (x1, . . . , x5). The coordinates x1, x2 determine the eigenvalues a1, a3

of A only as an unordered set (similarly, x3, x4 only determine the set of eigenvalues
{b1, b3} of B). Hence, tr(AB) is one of the following two expressions

a1b1 + a3b3 or a1b3 + a3b1

and therefore satisfies the equation

(tr(AB)− a1b1 − a3b3)(tr(AB)− a1b3 − a3b1) = 0.

Recall that x1 = a1 + a3, x2 = a1a3, x3 = b1 + b3, x4 = b1b3 and x5 = tr(AB) we
can express this equation as

x2
5 − x1x3x5 + x2

1x4 + x2
3x2 − 4x2x4 = 0.

This determines an hypersurface H ⊂ - C5. If we view the left-hand side as a
polynomial f in the coordinate functions of C5 we see that H is a four dimensional
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subset of C5 with singularities the common zeroes of the partial derivatives
∂f

∂xi
for 1 ≤ i ≤ 5

These singularities for the 2-dimensional submanifold S of points of the form
(2a, a2, 2b, b2, 2ab). We now claim that the smooth submanifolds C5 − H, H − S
and S of C5 describe the different types of fiber behavior. In chapter 6 we will
see that the subsets of points with different fiber behavior (actually, of different
representation type) are manifolds for m-tuples of n× n matrices.

If p /∈ H we claim that π−1(p) is a unique orbit, which is therefore closed in
M2

2 . Let (A,B) ∈ π−1 and assume first that x2
1 6= 4x2 then there is a representative

in O(A,B) of the form

(
[
λ 0
0 µ

]
,

[
c1 c2
c3 c4

]
)

with λ 6= µ. Moreover, c2c3 6= 0 (for otherwise A and B would have a common
eigenvector whence p ∈ H) hence we may assume that c2 = 1 (eventually after
simultaneous conjugation with a suitable diagonal matrix diag(t, t−1)). The value
of λ, µ is determined by x1, x2. Moreover, c1, c3, c4 are also completely determined
by the system of equations 

x3 = c1 + c4

x4 = c1c4 − c3
x5 = λc1 + µc4

and hence the point p = (x1, . . . , x5) completely determines the orbit O(A,B). Re-
mains to consider the case when x2

1 = 4x2 (that is, when A has a single eigenvalue).
Consider the couple (uA+ vB,B) for u, v ∈ C∗. To begin, uA+ vB and B do not
have a common eigenvalue. Moreover, p = π(A,B) determines π(uA+ vB,B) as

tr(uA+ vB) = utr(A) + vtr(B)
det(uA+ vB) = u2det(A) + v2det(B) + uv(tr(A)tr(B)− tr(AB))
tr((uA+ vB)B) = utr(AB) + v(tr(B)2 − 2det(B))

Assume that for all u, v ∈ C∗ we have the equality tr(uA+ vB)2 = 4det(uA+ vB)
then comparing coefficients of this equation expressed as a polynomial in u and v we
obtain the conditions x2

1 = 4x2, x2
3 = 4x4 and 2x5 = x1x3 whence p ∈ S ⊂ - H,

a contradiction. So, fix u, v such that uA + vB has distinct eigenvalues. By the
above argument O(uA+ vB,B) is the unique orbit lying over π(uA+ vB,B), but
then O(A,B) must be the unique orbit lying over p.

Let p ∈ H − S and (A,B) ∈ π−1(p), then A and B are simultaneous upper
triangularizable, with eigenvalues a1, a2 respectively b1, b2. Either a1 6= a2 or b1 6=
b2 for otherwise p ∈ S. Assume a1 6= a2, then there is a representative in the orbit
O(A,B) of the form

(
[
ai 0
0 aj

]
,

[
bk b
0 bl

]
)

for {i, j} = {1, 2} = {k, l}. If b 6= 0 we can conjugate with a suitable diagonal matrix
to get b = 1 hence we get at most 9 possible orbits. Checking all possibilities we
see that only three of them are distinct, those corresponding to the couples

(
[
a1 0
0 a2

]
,

[
b1 1
0 b2

]
) (

[
a1 0
0 a2

]
,

[
b1 0
0 b2

]
) (

[
a2 0
0 a1

]
,

[
b1 1
0 b2

]
)
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Clearly, the first and last orbit have the middle one lying in its closure. Observe
that the case assuming that b1 6= b2 is handled similarly. Hence, if p ∈ H − S then
π−1(p) consists of three orbits, two of dimension three whose closures intersect in
a (closed) orbit of dimension two.

Finally, consider the case when p ∈ S and (A,B) ∈ π−1(p). Then, both A and
B have a single eigenvalue and the orbit O(A,B) has a representative of the form

(
[
a x
0 a

]
,

[
b y
0 b

]
)

for certain x, y ∈ C. If either x or y are non-zero, then the subgroup of GL2 fixing
this matrix consists of the matrices of the form

Stab

[
c 1
0 c

]
= {

[
u v
0 u

]
| u ∈ C∗, v ∈ C}

but these matrices also fix the second component. Therefore, if either x or y is
nonzero, the orbit is fully determined by [x : y] ∈ P1. That is, for p ∈ S, the fiber
π−1(p) consists of an infinite family of orbits of dimension 2 parameterized by the
points of the projective line P1 together with the orbit of

(
[
a 0
0 a

]
,

[
b 0
0 b

]
)

which consists of one point (hence is closed in M2
2 ) and lies in the closure of each

of the 2-dimensional orbits.
Concluding, we see that each fiber π−1(p) contains a unique closed orbit (that of

minimal dimension). The orbitclosure and dimension diagrams have the following
shapes

C5 −H

•3 //////////

����������•

• •3 3

2

H − S

•

• •77777777777

�����������0

2 2
P1

S

1.3. Matrix invariants and necklaces

In this section we will determine the ring of all polynomial maps

Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

f- C

which are constant along orbits under the action of GLn on Mm
n by simultaneous

conjugation. The strategy we will use is classical in invariant theory.
• First, we will determine the multilinear maps which are constant along

orbits, equivalently, the linear maps

M⊗mn = Mn ⊗ . . .⊗Mn︸ ︷︷ ︸
m

- C



1.3. MATRIX INVARIANTS AND NECKLACES 17

which are constant along GLn-orbits where GLn acts by the diagonal
action, that is,

g.(A1 ⊗ . . .⊗Am) = gA1g
−1 ⊗ . . .⊗ gAmg−1.

• Afterwards, we will be able to obtain from them all polynomial invariant
maps by using polarization and restitution operations.

First, we will translate our problem into one studied in classical invariant theory of
GLn.

Let Vn ' Cn be the n-dimensional vectorspace of column vectors on which GLn
acts naturally by left multiplication

Vn =


C
C
...
C

 with action g.


ν1
ν2
...
νn


In order to define an action on the dual space V ∗n = Hom(Vn,C) ' Cn of covectors
(or, row vectors) we have to use the contragradient action

V ∗n =
[
C C . . . C

]
with action

[
φ1 φ2 . . . φn

]
.g−1

Observe, that we have an evaluation map V ∗n × Vn - C which is given by the
scalar product f(v) for all f ∈ V ∗n and v ∈ Vn

[
φ1 φ2 . . . φn

]
.


ν1
ν2
...
νn

 = φ1ν1 + φ2ν2 + . . .+ φnνn

which is invariant under the diagonal action of GLn on V ∗n × Vn. Further, we have
the natural identification

Mn = Vn ⊗ V ∗n =


C
C
...
C

⊗ [
C C . . . C

]
.

Under this identification, a pure tensor v ⊗ f corresponds to the rank one matrix
or rank one endomorphism of Vn defined by

v ⊗ f : Vn - Vn with w 7→ f(w)v

and observe that the rank one matrices span Mn. The diagonal action of GLn on
Vn ⊗ V ∗n is then determined by its action on the pure tensors where it is equal to

g.


ν1
ν2
· · ·
νn

⊗ [
φ1 φ2 . . . φn

]
.g−1

and therefore coincides with the action of conjugation on Mn. Now, let us consider
the identification

(V ∗⊗mn ⊗ V ⊗mn )∗ ' End(V ⊗mn )
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obtained from the nondegenerate pairing

End(V ⊗mn )× (V ∗⊗mn ⊗ V ⊗mn ) - C
given by the formula

〈λ, f1 ⊗ . . .⊗ fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(λ(v1 ⊗ . . .⊗ vm))

GLn acts diagonally on V ⊗mn and hence again by conjugation on End(V ⊗mn ) after
embedding GLn ⊂ - GL(V ⊗mn ) = GLmn. Thus, the above identifications are iso-
morphism as vectorspaces with GLn-action. But then, the space of GLn-invariant
linear maps

V ∗⊗mn ⊗ V ⊗mn
- C

can be identified with the space EndGLn
(V ⊗mn ) of GLn-linear endomorphisms of

V ⊗mn . We will now give a different presentation of this vectorspace relating it to
the symmetric group.

Apart from the diagonal action of GLn on V ⊗mn given by

g.(v1 ⊗ . . .⊗ vm) = g.v1 ⊗ . . .⊗ g.vm
we have an action of the symmetric group Sm on m letters on V ⊗mn given by

σ.(v1 ⊗ . . .⊗ vm) = vσ(1) ⊗ . . .⊗ vσ(m)

These two actions commute with each other and give embeddings of GLn and Sm
in End(V ⊗mn ). The subspace of V ⊗mn spanned by the image of GLn will be denoted
by 〈GLn〉. Similarly, with 〈Sm〉 we denote the subspace spanned by the image of
Sm.

Theorem 1.8. With notations as above we have :
(1) 〈GLn〉 = EndSm

(V ⊗mn )
(2) 〈Sm〉 = EndGLn

(V ⊗mn )

Proof. (1) : Under the identification End(V ⊗mn ) = End(Vn)⊗m an element
g ∈ GLn is mapped to the symmetric tensor g ⊗ . . . ⊗ g. On the other hand, the
image of EndSm

(V ⊗mn ) in End(Vn)⊗m is the subspace of all symmetric tensors in
End(V )⊗m. We can give a basis of this subspace as follows. Let {e1, . . . , en2} be a
basis of End(Vn), then the vectors ei1⊗. . .⊗eim form a basis of End(Vn)⊗m which is
stable under the Sm-action. Further, any Sm-orbit contains a unique representative
of the form

e⊗h1
1 ⊗ . . .⊗ e⊗hn2

n2

with h1 + . . .+ hn2 = m. If we denote by r(h1, . . . , hn2) the sum of all elements in
the corresponding Sm-orbit then these vectors are a basis of the symmetric tensors
in End(Vn)⊗m.

The claim follows if we can show that every linear map λ on the symmetric
tensors which is zero on all g ⊗ . . . ⊗ g with g ∈ GLn is the zero map. Write
e =

∑
xiei, then

λ(e⊗ . . .⊗ e) =
∑

xh1
1 . . . x

hn2

n2 λ(r(h1, . . . , hn2))

is a polynomial function on End(Vn). As GLn is a Zariski open subset of End(V )
on which by assumption this polynomial vanishes, it must be the zero polynomial.
Therefore, λ(r(h1, . . . , hn2)) = 0 for all (h1, . . . , hn2) finishing the proof.

(2) : Recall that the groupalgebra CSm of Sm is a semisimple algebra . Any
epimorphic image of a semisimple algebra is semisimple. Therefore, 〈Sm〉 is a
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semisimple subalgebra of the matrixalgebra End(V ⊗mn ) ' Mnm. By the double
centralizer theorem (see for example [63]), it is therefore equal to the centralizer of
EndSm(V ⊗mm ). By the first part, it is the centralizer of 〈GLn〉 in End(V ⊗mn ) and
therefore equal to EndGLn

(V ⊗mn ). �

Because EndGLn(V ⊗mn ) = 〈Sm〉, every GLn-endomorphism of V ⊗mn can be
written as a linear combination of the morphisms λσ describing the action of σ ∈ Sm
on V ⊗mn . Our next job is to trace back these morphisms λσ through the canonical
identifications until we can express them in terms of matrices.

To start let us compute the linear invariant

µσ : V ∗⊗mn ⊗ V ⊗mn
- C

corresponding to λσ under the identification (V ∗⊗mn ⊗ V ⊗mn )∗ ' End(V ⊗mn ). By
the identification we know that µσ(f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm) is equal to

〈λσ, f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(vσ(1) ⊗ . . . vσ(m))
=

∏
i fi(vσ(i))

That is, we have proved

Proposition 1.9. Any multilinear GLn-invariant map

γ : V ∗⊗mn ⊗ V ⊗mn
- C

is a linear combination of the invariants

µσ(f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm) =
∏
i

fi(vσ(i))

for σ ∈ Sm.

Using the identification Mn(C) = Vn ⊗ V ∗⊗n a multilinear GLn-invariant map

(V ∗n ⊗ V )⊗mn = V ∗⊗mn ⊗ V ⊗mn
- C

corresponds to a multilinear GLn-invariant map

Mn(C)⊗ . . .⊗Mn(C) - C
We will now give a description of the generating maps µσ in terms of matrices.
Under the identification, matrix multiplication is induced by composition on rank
one endomorphisms and here the rule is given by

v ⊗ f.v′ ⊗ f ′ = f(v′)v ⊗ f ′ν1...
νn

⊗ [
φ1 . . . φn

]
.

ν
′
1
...
ν′n

⊗ [
φ′1 . . . φ′n

]
=

ν1...
νn

 f(v′)⊗
[
φ′1 . . . φ′n

]
.

Moreover, the trace map on Mn is induced by that on rank one endomorphisms
where it is given by the rule

tr(v ⊗ f) = f(v)

tr(

ν1...
νn

⊗ [
φ1 . . . φn

]
) = tr(

ν1φ1 . . . ν1φn
...

. . .
...

νnφ1 . . . νnφn

) =
∑
i

νiφi = f(v)

With these rules we can now give a matrix-interpretation of the GLn-invariant
maps µσ.
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Proposition 1.10. Let σ = (i1i2 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ) be a decom-
position of σ ∈ Sm into cycles (including those of length one). Then, under the
above identification we have

µσ(A1 ⊗ . . .⊗Am) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ
)

Proof. Both sides are multilinear hence it suffices to verify the equality for
rank one matrices. Write Ai = vi ⊗ fi, then we have that

µσ(A1 ⊗ . . .⊗Am) = µσ(v1 ⊗ . . . vm ⊗ f1 ⊗ . . .⊗ fm)
=

∏
i fi(vσ(i))

Consider the subproduct

fi1(vi2)fi2(vi3) . . . fiα−1(viα) = S

Now, look at the matrixproduct

vi1 ⊗ fi1 .vi2 ⊗ fi2 . . . . .viα ⊗ fiα
which is by the product rule equal to

fi1(vi2)fi2(vi3) . . . fiα−1(viα)vi1 ⊗ fiα
Hence, by the trace rule we have that

tr(Ai1Ai2 . . . Aiα) =
α∏
j=1

fij (vσ(ij)) = S

�

Having found a description of the multilinear invariant polynomial maps

Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

- C

we will now describe all polynomial maps which are constant along orbits by po-
larization. The coordinate algebra C[Mm

n ] is the polynomial ring in mn2 variables
xij(k) where 1 ≤ k ≤ m and 1 ≤ i, j ≤ n. Consider the m generic n× n matrices

k = Xk =

x11(k) . . . x1n(k)
...

...
xn1(k) . . . xnn(k)

 ∈Mn(C[Mm
n ]).

The action of GLn on polynomial maps f ∈ C[Mm
n ] is fully determined by the

action on the coordinate functions xij(k). As in the case of one n × n matrix we
see that this action is given by

g.xij(k) = (g−1.Xk.g)ij .

We see that this action preserves the subspaces spanned by the entries of any of
the generic matrices. Hence, we can define a gradation on C[Mm

n ] by deg(xij(k)) =
(0, . . . , 0, 1, 0, . . . , 0) (with 1 at place k) and decompose

C[Mm
n ] =

⊕
(d1,...,dm)∈Nm

C[Mm
n ](d1,...,dm)

where C[Mm
n ](d1,...,dm) is the subspace of all multihomogeneous forms f in the

xij(k) of degree (d1, . . . , dm), that is, in each monomial term of f there are exactly
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dk factors coming from the entries of the generic matrix Xk for all 1 ≤ k ≤ m. The
action of GLn stabilizes each of these subspaces, that is,

if f ∈ C[Mm
n ](d1,...,dm) then g.f ∈ C[Mm

n ](d1,...,dm) for all g ∈ GLn.
In particular, if f determines a polynomial map on Mm

n which is constant along
orbits, that is, if f belongs to the ring of invariants C[Mm

n ]GLn then each of its mul-
tihomogeneous components is also an invariant and therefore it suffices to determine
all multihomogeneous invariants.

Let f ∈ C[Mm
n ](d1,...,dm) and take for each 1 ≤ k ≤ m dk new variables

t1(k), . . . , tdk
(k). Expand

f(t1(1)A1(1) + . . .+ td1Ad1(1), . . . , t1(m)A1(m) + . . .+ tdm
(m)Adm

(m))

as a polynomial in the variables ti(k), then we get an expression∑
t1(1)s1(1) . . . tsd1 (1)

d1
. . . t1(m)s1(m) . . . tdm

(m)sdm (m).

f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m))(A1(1), . . . , Ad1(1), . . . , A1(m), . . . , Adm
(m))

such that for all 1 ≤ k ≤ m we have
∑dk

i=1 si(k) = dk. Moreover, each of the
f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m)) is a multi-homogeneous polynomial function on

Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
d1

⊕Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
d2

⊕ . . .⊕Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
dm

of multi-degree (s1(1), . . . , sd1(1), . . . , s1(m), . . . , sdm
(m)). Observe that if f is an

invariant polynomial function on Mm
n , then each of these multi homogeneous func-

tions is an invariant polynomial function on MD
n where D = d1 + . . .+ dm.

In particular, we consider the multi-linear function

f1,...,1 : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C

which we call the polarization of the polynomial f and denote with Pol(f). Observe
that Pol(f) in symmetric in each of the entries belonging to a block Mdk

n for every
1 ≤ k ≤ m. If f is invariant under GLn, then so is the multilinear function Pol(f)
and we know the form of all such functions by the results given before (replacing
Mm
n by MD

n ).
Finally, we want to recover f back from its polarization. We claim to have the

equality

Pol(f)(A1, . . . , A1︸ ︷︷ ︸
d1

, . . . , Am, . . . , Am︸ ︷︷ ︸
dm

) = d1! . . . dm!f(A1, . . . , Am)

and hence we recover f . This process is called restitution . The claim follows from
the observation that

f(t1(1)A1 + . . .+ td1(1)A1, . . . , t1(m)Am + . . .+ tdm
(m)Am) =

f((t1(1) + . . .+ td1(1))A1, . . . , (t1(m) + . . .+ tdm(m))Am) =

(t1(1) + . . .+ td1(1))d1 . . . (t1(m) + . . .+ tdm
(m))dmf(A1, . . . , Am)

and the definition of Pol(f). Hence we have proved that any multi-homogeneous
invariant polynomial function f on Mm

n of multidegree (d1, . . . , dm) can be obtained
by restitution of a multilinear invariant function

Pol(f) : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C
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If we combine this fact with our description of all multilinear invariant functions
on Mn ⊕ . . .⊕Mn we finally obtain :

Theorem 1.11 (First fundamental theorem of matrix invariants). Any polyno-
mial function Mm

n

f- C which is constant along orbits under the action of GLn
by simultaneous conjugation is a polynomial in the invariants

tr(Xi1 . . . Xil)

where Xi1 . . . Xil run over all possible noncommutative polynomials in the generic
matrices {X1, . . . , Xm}.

We will call the algebra C[Mm
n ] generated by these invariants the necklace

algebra Nmn = C[Mm
n ]GLn . The terminology is justified by the observation that the

generators
tr(Xi1Xi2 . . . Xil)

are only determined up to cyclic permutation of the factors Xj . They correspond
to a necklace word w
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where each i-colored bead i corresponds to a generic matrix Xi. To obtain an
invariant, these bead-matrices are cyclicly multiplied to obtain an n × n matrix
with coefficients in Mn(C[Mm

n ]). The trace of this matrix is called tr(w) and
theorem 1.11 asserts that these elements generate the ring of polynomial invariants.

1.4. The trace algebra.

In this section we will prove a bound on the length of the necklace words w
necessary for the tr(w) to generate Nmn . In the last section, after we have determined
the relations between these necklaces tr(w), we will be able to improve this bound.

First, we will characterize all GLn-equivariant maps from Mm
n to Mn, that is

all polynomial maps Mm
n

f- Mn such that for all g ∈ GLn the diagram below is
commutative

Mm
n

f - Mn

Mm
n

g.g−1

?
f - Mn

g.g−1

?

With pointwise addition and multiplication in the target algebra Mn, these polyno-
mial maps form a noncommutative algebra Tmn called the trace algebra. Obviously,
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the trace algebra is a subalgebra of the algebra of all polynomial maps from Mm
n

to Mn, that is,
Tmn ⊂ - Mn(C[Mm

n ])
Clearly, using the diagonal embedding of C in Mn any invariant polynomial on Mm

n

determines a GLn-equivariant map. Equivalently, using the diagonal embedding of
C[Mm

n ] in Mn(C[Mm
n ]) we can embed the necklace algebra

Nmn = C[Mm
n ]GLn ⊂ - Tmn

Another source of GLn-equivariant maps are the coordinate maps

Xi : Mm
n = Mn ⊕ . . .⊕Mm

n
- Mn (A1, . . . , Am) 7→ Ai

Observe that the coordinate map Xi is represented by the generic matrix i = Xi

in Mn(C[Mm
n ]).

Proposition 1.12. As an algebra over the necklace algebra Nmn , the trace al-
gebra Tmn is generated by the elements {X1, . . . , Xm}.

Proof. Consider a GLn-equivariant map Mm
n

f- Mn and associate to it
the polynomial map

Mm+1
n = Mm

n ⊕Mn
tr(fXm+1) - C

defined by sending (A1, . . . , Am, Am+1) to tr(f(A1, . . . , Am).Am+1). For all g ∈
GLn we have that f(g.A1.g

−1, . . . , g.Am.g
−1) is equal to g.f(A1, . . . , Am).g−1 and

hence

tr(f(g.A1.g
−1, . . . , g.Am.g

−1).g.Am+1.g
−1) = tr(g.f(A1, . . . , Am).g−1.g.Am+1.g

−1)

= tr(g.f(A1, . . . , Am).Am+1.g
−1)

= tr(f(A1, . . . , Am).Am+1)

so tr(fXm+1) is an invariant polynomial function onMm+1
n which is linear inXm+1.

By theorem 1.11 we can therefore write

tr(fXm+1) =
∑

gi1...il︸ ︷︷ ︸
∈Nm

n

tr(Xi1 . . . XilXm+1)

Here, we used the necklace property allowing to permute cyclicly the trace terms
in which Xm+1 occurs such that Xm+1 occurs as the last factor. But then,
tr(fXm+1) = tr(gXm+1) where

g =
∑

gi1...ilXi1 . . . Xil .

Finally, using the nondegeneracy of the trace map on Mn (that is, if A,B ∈ Mn

such that tr(AC) = tr(BC) for all C ∈Mn, then A = B) it follows that f = g. �

If we give each of the generic matrices Xi degree one, we see that the trace
algebra Tmn is a connected positively graded algebra

Tmn = T0 ⊕ T1 ⊕ T2 ⊕ . . . with T0 = C.

Our aim is to bound the length of the monomials in the Xi necessary to generate
Tmn as a module over the necklace algebra Nmn . Before we can do this we need to
make a small detour in one of the more exotic realms of noncommutative algebra :
the Nagata-Higman problem .
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Theorem 1.13 (Nagata-Higman). Let R be an associative algebra without a
unit element. Assume there is a fixed natural number n such that xn = 0 for all
x ∈ R. Then, R2n−1 = 0, that is

x1.x2. . . . x2n−1 = 0

for all xj ∈ R.

Proof. We use induction on n, the case n = 1 being obvious. Consider for all
x, y ∈ R

f(x, y) = yxn−1 + xyxn−2 + x2yxn−3 + . . .+ xn−2yx+ xn−1y.

Because for all c ∈ C we must have that

0 = (y + cx)n = xncn + f(x, y)cn−1 + . . .+ yn

it follows that all the coefficients of the ci with 1 ≤ i < n must be zero, in particular
f(x, y) = 0. But then we have for all x, y, z ∈ R that

0 = f(x, z)yn−1 + f(x, zy)yn−2 + f(x, zy2)yn−3 + . . .+ f(x, zyn−1)

= nxn−1zyn−1 + zf(y, xn−1) + xzf(y, xn−2) + x2zf(y, xn−3) + . . .+ xn−2zf(y, x)

and therefore xn−1zyn−1 = 0. Let I / R be the twosided ideal of R generated by
all elements xn−1, then we have that I.R.I = 0. In the quotient algebra R = R/I
every element x satisfies xn−1 = 0.

By induction we may assume that R
2n−1−1

= 0, or equivalently that R2n−1−1

is contained in I. But then,

R2n−1 = R2(2n−1−1)+1 = R2n−1−1.R.R2n−1−1 ⊂ - I.R.I = 0

finishing the proof. �

Proposition 1.14. The trace algebra Tmn is spanned as a module over the
necklace algebra Nmn by all monomials in the generic matrices

Xi1Xi2 . . . Xil

of degree l ≤ 2n − 1.

Proof. By the diagonal embedding of Nmn in Mn(C[Mm
n ]) it is clear that Nmn

commutes with any of the Xi. Let T+ and N+ be the strict positive degrees of Tmn
and Nmn and form the graded associative algebra (without unit element)

R = T+/N+.T+

Observe that any element t ∈ T+ satisfies an equation of the form

tn + c1t
n−1 + c2t

n−2 + . . .+ cn = 0

with all of the ci ∈ N+. Indeed we have seen that all the coefficients of the char-
acteristic polynomial of a matrix can be expressed as polynomials in the traces of
powers of the matrix. But then, for any x ∈ R we have that xn = 0.

By the Nagata-Higman theorem we know that R2n−1 = (R1)2
n−1 = 0. Let

T′ be the graded Nmn -submodule of Tmn spanned by all monomials in the generic
matrices Xi of degree at most 2n − 1, then the above can be reformulated as

Tmn = T′ + N+.Tmn .
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We claim that Tnm = T′. Assume not, then there is a homogeneous t ∈ Tmn of
minimal degree d not contained in T′ but still we have a description

t = t′ + c1.t1 + . . .+ cs.ts

with t′ and all ci, ti homogeneous elements. As deg(ti) < d, ti ∈ T′ for all i but
then is t ∈ T′ a contradiction. �

Finally we are in a position to bound the length of the necklaces generating
Nmn as an algebra.

Theorem 1.15. The necklace algebra Nmn is generated by all necklaces tr(w)
where w is a necklace word in the bead-matrices {X1, . . . , Xm} of length l ≤ 2n.

Proof. Let T′ be the C-subalgebra of Tmn generated by the generic matrices
Xi. Then, tr(T′+) generates the ideal N+. Let S be the set of all monomials in theXi

of degree at most 2n−1. By the foregoing proposition we know that T′ ⊂ - Nmn .S.
The trace map

tr : Tmn - Nmn
is Nmn -linear and therefore, because T′+ ⊂ T′.(CX1 + . . .+ CXm) we have

tr(T′+) ⊂ tr(Nmn .S.(CX1 + . . .+ CXm)) ⊂ Nmn .tr(S′)

where S′ is the set of monomials in the Xi of degree at most 2n. If N′ is the C-
subalgebra of Nmn generated by all tr(S′), then we have tr(T′+) ⊂ Nmn .N′+. But
then, we have

N+ = Nmn tr(T+) ⊂ Nmn N′+ and thus Nmn = N′ + Nmn N′+
from which it follows that Nmn = N′ by a similar argument as in the foregoing
proof. �

Example 1.16. The algebras N2
2 and T2

2.
When working with 2× 2 matrices, the following identities are often helpful

0 = A2 − tr(A)A+ det(A)

A.B +B.A = tr(AB)− tr(A)tr(B) + tr(A)B + tr(B)A

for all A,B ∈ M2. Let N′ be the subalgebra of N2
2 generated by tr(X1), tr(X2),

det(X1), det(X2) and tr(X1X2). Using the two formulas above and N2
2-linearity of

the trace on T2
2 we see that the trace of any monomial in X1 and X2 of degree

d ≥ 3 can be expressed in elements of N′ and traces of monomials of degree ≤ d−1.
Hence, we have

N2
2 = C[tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)].

Observe that there can be no algebraic relations between these generators as we have
seen that the induced map π : M2

2
- C5 is surjective. Another consequence of

the above identities is that over N2
2 any monomial in the X1, X2 of degree d ≥ 3 can

be expressed as a linear combination of 1, X1, X2 and X1X2 and so these elements
generate T2

2 as a N2
2-module. In fact, they are a basis of T2

2 over N2
2. Assume

otherwise, there would be a relation say

X1X2 = αI2 + βX1 + γX2
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with α, β, γ ∈ C(tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)). Then this relation
has to hold for all matrix couples (A,B) ∈M2

2 and we obtain a contradiction if we
take the couple

A =
[
0 1
0 0

]
B =

[
0 0
1 0

]
whence AB =

[
1 0
0 0

]
.

Concluding, we have the following description of N2
2 and T2

2 as a subalgebra of
C[M2

2 ] respectively M2(C[M2
2 ]){

N2
2 = C[tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)]

T2
2 = N2

2.I2 ⊕ N2
2.X1 ⊕ N2

2.X2 ⊕ N2
2.X1X2

Observe that we might have taken the generators tr(X2
i ) rather than det(Xi) be-

cause det(Xi) = 1
2 (tr(Xi)2− tr(Xi)2) as follows from taking the trace of character-

istic polynomial of Xi.

1.5. The symmetric group.

Let Sd be the symmetric group of all permutations on d letters. The group
algebra C Sd is a semisimple algebra. In particular, any simple Sd-representation
is isomorphic to a minimal left ideal of C Sd which is generated by an idempotent
. We will now determine these idempotents.

To start, conjugacy classes in Sd correspond naturally to partitions λ =
(λ1, . . . , λk) of d, that is, decompositions in natural numbers

d = λ1 + . . .+ λk with λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1

The correspondence associates to a partition λ = (λ1, . . . , λk) the conjugacy class
of a permutation consisting of disjoint cycles of lengths λ1, . . . , λk. It is traditional
to assign to a partition λ = (λ1, . . . , λk) a Young diagram with λi boxes in the i-th
row, the rows of boxes lined up to the left. The dual partition λ∗ = (λ∗1, . . . , λ

∗
r)

to λ is defined by interchanging rows and columns in the Young diagram of λ. For
example, to the partition λ = (3, 2, 1, 1) of 7 we assign the Young diagram

λ = λ∗ =

with dual partition λ∗ = (4, 2, 1). A Young tableau is a numbering of the boxes
of a Young diagram by the integers {1, 2, . . . , d}. For example, two distinct Young
tableaux of type λ are

1 2 3
4 5
6
7

1 3 5
2 4
6
7

Now, fix a Young tableau T of type λ and define subgroups of Sd by

Pλ = {σ ∈ Sd | σ preserves each row }

Qλ = {σ ∈ Sd | σ preserves each column }
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For example, for the second Young tableaux given above we have that{
Pλ = S{1,3,5} × S{2,4} × {(6)} × {(7)}
Qλ = S{1,2,6,7} × S{3,4} × {(5)}

Observe that different Young tableaux for the same λ define different subgroups
and different elements to be defined below. Still, the simple representations we will
construct from them turn out to be isomorphic.

Using these subgroups, we define the following elements in the groupalgebra
CSd

aλ =
∑
σ∈Pλ

eσ , bλ =
∑
σ∈Qλ

sgn(σ)eσ and cλ = aλ.bσ

The element cλ is called a Young symmetrizer . The next result gives an explicit one-
to-one correspondence between the simple representations of CSd and the conjugacy
classes in Sd (or, equivalently, Young diagrams).

Theorem 1.17. For every partition λ of d the left ideal CSd.cλ = Vλ is a simple
Sd-representations and, conversely, any simple Sd-representation is isomorphic to
Vλ for a unique partition λ.

Proof. (sketch) Observe that Pλ∩Qλ = {e} (any permutation preserving rows
as well as columns preserves all boxes) and so any element of Sd can be written in
at most one way as a product p.q with p ∈ Pλ and q ∈ Qλ. In particular, the Young
symmetrizer can be written as cλ =

∑
±eσ with σ = p.q for unique p and q and

the coefficient ±1 = sgn(q). From this it follows that for all p ∈ Pλ and q ∈ Qλ we
have

p.aλ = aλ.p = aλ , sgn(q)q.bλ = bλ.sgn(q)q = bλ , p.cλ.sgn(q)q = cλ

Moreover, we claim that cλ is the unique element in CSd (up to a scalar factor)
satisfying the last property. This requires a few preparations.

Assume σ /∈ Pλ.Qλ and consider the tableaux T ′ = σT , that is, replacing the
label i of each box in T by σ(i). We claim that there are two distinct numbers which
belong to the same row in T and to the same column in T ′. If this were not the
case, then all the distinct numbers in the first row of T appear in different columns
of T ′. But then we can find an element q′1 in the subgroup σ.Qλ.σ

−1 preserving
the columns of T ′ to take all these elements to the first row of T ′. But then, there
is an element p1 ∈ Tλ such that p1T and q′1T

′ have the same first row. We can
proceed to the second row and so on and obtain elements p ∈ Pλ and q′ ∈ σ.Qλ, σ−1

such that the tableaux pT and q′T ′ are equal. Hence, pT = q′σT entailing that
p = q′σ. Further, q′ = σ.q.σ−1 but then p = q′σ = σq whence σ = p.q−1 ∈ Pλ.Qλ,
a contradiction. Therefore, to σ /∈ Pλ.Qλ we can assign a transposition τ = (ij)
(replacing the two distinct numbers belonging to the same row in T and to the
same column in T ′) for which p = τ ∈ Pλ and q = σ−1.τ.σ ∈ Qλ.

After these preliminaries, assume that c′ =
∑
aσeσ is an element such that

p.c′.sgn(q)q = c′ for all p ∈ Pλ, q ∈ Qλ
We claim that aσ = 0 whenever σ /∈ Pλ.Qλ. For take the transposition τ found
above and p = τ , q = σ−1.τ.σ, then p.σ.q = τ.σ.σ−1.τ.σ = σ. However, the
coefficient of σ in c′ is aσ and that of p.c′.q is −aσ proving the claim. That is,

c′ =
∑
p,q

apqep.q
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but then by the property of c′ we must have that apq = sgn(q)ae whence c′ = aecλ
finishing the proof of the claimed uniqueness of the element cλ.

As a consequence we have for all elements x ∈ CSd that cλ.x, cλ = αxcλ for
some scalar αx ∈ C and in particular that c2λ = nλcλ, for,

p.(cλ.x.cλ).sgn(q)q = p.aλ.bλ.x.aλ.bλ.sgn(q)q
= aλ.bλ.x.aλ.bλ = cλ.x.cλ

and the statement follows from the uniqueness result for cλ.
Define Vλ = CSd.cλ then we have cλ.Vλ ⊂ Ccλ. We claim that Vλ is a simple

Sd-representation. Let W ⊂ Vλ be a simple subrepresentation, then being a left
ideal of CSd we can write W = CSd.x with x2 = x (note that W is a direct
summand). Assume that cλ.W = 0, then W.W ⊂ CSd.cλ.W = 0 implying that
x = 0 whence W = 0, a contradiction. Hence, cλ.W = Ccλ ⊂W , but then

Vλ = CSd.cλ ⊂W whenceVλ = W

is simple. Remains to show that for different partitions, the corresponding simple
representations cannot be isomorphic.

We put a lexicographic ordering on the partitions by the rule that

λ > µ if the first nonvanishing λi − µi is positive

We claim that if λ > µ then aλ.CSd.bµ = 0. It suffices to check that aλ.σ.bµ = 0
for σ ∈ Sd. As σ.bµ.σ−1 is the ”b-element” constructed from the tableau b.T ′ where
T ′ is the tableaux fixed for µ, it is sufficient to check that aλ.bµ = 0. As λ > µ
there are distinct numbers i and j belonging to the same row in T and to the same
column in T ′. If not, the distinct numbers in any fixed row of T must belong to
different columns of T ′, but this can only happen for all rows if µ ≥ λ. So consider
τ = (ij) which belongs to Pλ and to Qµ, whence aλ.τ = aλ and τ.bµ = −bµ. But
then,

aλ.bµ = aλ.τ, τ, bµ = −aλ.bµ
proving the claim.

If λ 6= µ we claim that Vλ is not isomorphic to Vµ. Assume that λ > µ and φ
a CSd-isomorphism with φ(Vλ) = Vµ, then

φ(cλVλ) = cλφ(Vλ) = cλVµ = cλCSdcµ = 0

Hence, cλVλ = Ccλ 6= 0 lies in the kernel of an isomorphism which is clearly absurd.
Summarizing, we have constructed to distinct partitions of d, λ and µ noniso-

morphic simple CSd-representations Vλ and Vµ. As we know that there are as many
isomorphism classes of simples as there are conjugacy classes in Sd (or partitions),
the Vλ form a complete set of isomorphism classes of simple Sd-representations,
finishing the proof of the theorem. �

1.6. Necklace relations.

In this section we will prove that all the relations holding among the elements of
the necklace algebra Nmn are formal consequences of the Cayley-Hamilton equation.
First, we will have to set up some notation to clarify what we mean by this.

For technical reasons it is sometimes convenient to have an infinite supply of
noncommutative variables {x1, x2, . . . , xi, . . .}. Two monomials of the same degree
d in these variables

M = xi1xi2 . . . xid and M ′ = xj1xj2 . . . xjd
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are said to be equivalent if M ′ is obtained from M by a cyclic permutation, that is,
there is a k such that i1 = jk and all ia = jb with b = k + a− 1 mod d. That is, if
they determine the same necklace word
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with each of the beads one of the noncommuting variables i = xi. To each
equivalence class we assign a formal variable that we denote by

t(xi1xi2 . . . xid).

The formal necklace algebra N∞ is then the polynomial algebra on all these (in-
finitely many) letters. Similarly, we define the formal trace algebra T∞ to be the
algebra

T∞ = N∞ ⊗C C〈x1, x2, . . . , xi, . . .〉
that is, the free associative algebra on the noncommuting variables xi with coeffi-
cients in the polynomial algebra N∞.

Crucial for our purposes is the existence of an N∞-linear formal trace map

t : T∞ -- N∞

defined by the formula

t(
∑

ai1...ikxi1 . . . xik) =
∑

ai1...ikt(xi1 . . . xik)

where ai1...ik ∈ N∞.
In an analogous manner we will define infinite versions of the necklace and trace

algebras. Let M∞n be the space of all ordered sequences (A1, A2, . . . , Ai, . . .) with
Ai ∈Mn and all but finitely many of the Ai are the zero matrix. Again, GLn acts
on M∞n by simultaneous conjugation and we denote the infinite necklace algebra
N∞n to be the algebra of polynomial functions f

M∞n
f- C

which are constant along orbits. Clearly, N∞n is generated as C-algebra by the in-
variants tr(M) where M runs over all monomials in the coordinate generic matrices
Xk = (xij(k))i,j belonging to the k-th factor of M∞n . Similarly, the infinite trace
algebra T∞n is the algebra of GLn-equivariant polynomial maps

M∞n - Mn.

Clearly, T∞n is the C-algebra generated by N∞n and the generic matrices Xk for
1 ≤ k <∞. Observe that T∞n is a subalgebra of the matrixring

T∞n ⊂ - Mn(C[M∞n ])
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and as such has a trace map tr defined on it and from our knowledge of the gener-
ators of N∞n we know that tr(T∞n ) = N∞n .

Now, there are natural algebra epimorphisms

T∞ τ-- T∞n and N∞ ν-- N∞n
defined by τ(t(xi1 . . . xik)) = ν(t(xi1 . . . xik)) = tr(Xi1 . . . Xik) and τ(xi) = Xi.
That is, ν and τ are compatible with the trace maps

T∞ τ -- T∞n

N∞

t

??
ν -- N∞n

tr

??

We are interested in describing the necklace relations , that is, the kernel of ν. In
the next section we will describe the trace relations which is the kernel of τ . Note
that we obtain the relations holding among the necklaces in Nmn by setting all xi = 0
with i > m and all t(xi1 . . . xik) = 0 containing a variable with ij > m.

In the description a map T : CSd - N∞ will be important. Let Sd be the
symmetric group of permutations on {1, . . . , d} and let

σ = (i1i1 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ)

be a decomposition of σ ∈ Sd into cycles including those of length one. The map
T assigns to σ a formal necklace Tσ(x1, . . . , xd) defined by

Tσ(x1, . . . , xd) = t(xi1xi2 . . . xiα)t(xj1xj2 . . . xjβ ) . . . t(xz1xz2 . . . xzζ
)

Let V = Vn be again the n-dimensional vectorspace of column vectors, then Sd acts
naturally on V ⊗d via

σ.(v1 ⊗ . . .⊗ vd) = vσ(1) ⊗ . . .⊗ vσ(d)

hence determines a linear map λσ ∈ End(V ⊗d). Recall from section 3 that under
the natural identifications

(M⊗dn )∗ ' (V ∗⊗d ⊗ V ⊗d)∗ ' End(V ⊗d)

the map λσ defines the multilinear map

µσ : Mn ⊗ . . .⊗Mn︸ ︷︷ ︸
d

- C

defined by (using the cycle decomposition of σ as before)

µσ(A1 ⊗ . . .⊗Ad) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ
) .

Therefore, a linear combination
∑
aσTσ(x1, . . . , xd) is a necklace relation (that is,

belongs to Ker ν) if and only if the multilinear map
∑
aσµσ : M⊗dn - C is zero.

This, in turn, is equivalent to the endomorphism
∑
aσλσ ∈ End(V ⊗m), induced by

the action of the element
∑
aσeσ ∈ CSd on V ⊗d, being zero. In order to answer the

latter problem we have to understand the action of a Young symmetrizer cλ ∈ CSd
on V ⊗d.
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Let λ = (λ1, λ2, . . . , λk) be a partition of d and equip the corresponding Young
diagram with the standard tableau (that is, order first the boxes in the first row
from left to right, then the second row from left to right and so on).

1

d

//
//

//

The subgroup Pλ of Sd which preserves each row then becomes

Pλ = Sλ1 × Sλ2 × . . .× Sλk
⊂ - Sd.

As aλ =
∑
p∈Pλ

ep we see that the image of the action of aλ on V ⊗d is the subspace

Im(aλ) = Symλ1 V ⊗ Symλ2 V ⊗ . . .⊗ Symλk V ⊂ - V ⊗d .

Here, Symi V denotes the subspace of symmetric tensors in V ⊗i.
Similarly, equip the Young diagram of λ with the tableau by ordering first the

boxes in the first column from top to bottom, then those of the second column from
top to bottom and so on.

1 d

��

�� ��

Equivalently, give the Young diagram corresponding to the dual partition of λ

λ∗ = (µ1, µ2, . . . , µl)

the standard tableau. Then, the subgroup Qλ of Sd which preserves each row of λ
(or equivalently, each column of λ∗) is

Qλ = Sµ1 × Sµ2 × . . .× Sµl
⊂ - Sd

As bλ =
∑
q∈Qλ

sgn(q)eq we see that the image of bλ on V ⊗d is the subspace

Im(bλ) =
µ1∧

V ⊗
µ2∧

V ⊗ . . .⊗
µl∧

V ⊂ - V ⊗d .

Here,
∧i

V is the subspace of all anti-symmetric tensors in V ⊗i. Note that
∧i

V =
0 whenever i is greater than the dimension dim V = n. That is, the image of the
action of bλ on V ⊗d is zero whenever the dual partition λ∗ contains a row of
length ≥ n+ 1, or equivalently, whenever λ has ≥ n+ 1 rows. Because the Young
symmetrizer cλ = aλ.bλ ∈ C Sd we have proved the first result on necklace relations.

Theorem 1.18 (Second fundamental theorem of matrix invariants). A formal
necklace ∑

σ∈Sd

aσTσ(x1, . . . , xd)
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is a necklace relation (for n× n matrices) if and only if the element∑
aσeσ ∈ CSd

belongs to the ideal of CSd spanned by the Young symmetrizers cλ relative to par-
titions λ = (λ1, . . . , λk)

n

with a least n+ 1 rows, that is, k ≥ n+ 1.

Example 1.19. (Fundamental necklace and trace relation.) Consider the par-
tition λ = (1, 1, . . . , 1) of n+ 1, with corresponding Young tableau

n+1

...

2
1

Then, Pλ = {e}, Qλ = Sn+1 and we have the Young symmetrizer

aλ = 1 bλ = cλ =
∑

σ∈Sn+1

sgn(σ)eσ.

The corresponding element is called the fundamental necklace relation

fundn(x1, . . . , xn+1) =
∑

σ∈Sn+1

sgn(σ)Tσ(x1, . . . , xn+1).

Clearly, F(x1, . . . , xn+1) is multilinear of degree n+1 in the variables {x1, . . . , xn+1}.
Conversely, any multilinear necklace relation of degree n + 1 must be a scalar
multiple of F(x1, . . . , xn+1). This follows from the proposition as the ideal described
there is for d = n+ 1 just the scalar multiples of

∑
σ∈Sn+1

sgn(σ)eσ.
Because F(x1, . . . , xn+1) is multilinear in the variables xi we can use the cyclic

permutation property of the formal trace t to write it in the form

F(x1, . . . , xn+1) = t(CH(x1, . . . , xn)xn+1) with CH(x1, . . . , xn) ∈ T∞

Observe that CH(x1, . . . , xn) is multilinear in the variables xi. Moreover, by the
nondegeneracy of the trace map tr and the fact that F(x1, . . . , xn+1) is a neck-
lace relation, it follows that CH(x1, . . . , xn) is a trace relation. Again, any mul-
tilinear trace relation of degree n in the variables {x1, . . . , xn} is a scalar multi-
ple of CH(x1, . . . , xn). This follows from the corresponding uniqueness result for
F(x1, . . . , xn+1).

We can give an explicit expression of this fundamental trace relation

CH(x1, . . . , xn) =
n∑
k=0

(−1)k
∑

i1 6=i2 6=...6=ik

xi1xi2 . . . xik
∑
σ∈SJ

sgn(σ)Tσ(xj1 , . . . , xjn−k
)
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where J = {1, . . . , n} − {i1, . . . , ik}. In a moment we will see that CH(x1, . . . , xn)
and hence also F(x1, . . . , xn+1) is obtained by polarization of the Cayley-Hamilton
identity for n× n matrices.

We will explain what we mean by the Cayley-Hamilton polynomial for an el-
ement of T∞. Recall that when X ∈ Mn(A) is a matrix with coefficients in a
commutative C-algebra A its characteristic polynomial is defined to be

χX(t) = det(trrn −X) ∈ A[t]

and by the Cayley-Hamilton theorem we have the basic relation that χX(X) = 0.
We have seen that the coefficients of the characteristic polynomial can be expressed
as polynomial functions in the tr(Xi) for 1 ≤ i ≤ n.

For example if n = 2, then the characteristic polynomial can we written as

χX(t) = t2 − tr(X)t+
1
2
(tr(X)2 − tr(X2)).

For general n the method for finding these polynomial functions is based on the
formal recursive algorithm expressing elementary symmetric functions in term of
Newton functions , usually expressed by the formulae

f(t) =
n∏
i=1

(t− λi),

f ′(t)
f(t)

=
d log f(t)

dt
=

n∑
i=1

1
t− λi

=
∞∑
k=0

1
tk+1

(
n∑
i=1

λki )

Note, if λi are the eigenvalues of X ∈ Mn, then f(t) = χX(t) and
∑n
i=1 λ

k
i =

tr(Xk). Therefore, one can use the formulae to express f(t) in terms of the elements∑n
i=1 λ

k
i . To get the required expression for the characteristic polynomial of X one

only has to substitute
∑n
i=1 λ

k
i with tr(Xk).

This allows us to construct a formal Cayley-Hamilton polynomial χx(x) ∈ T∞
of an element x ∈ T∞ by replacing in the above characteristic polynomial the term
tr(Xk) with t(xk) and tl with xl. If x is one of the variables xi then χx(x) is
an element of T∞ homogeneous of degree n. Moreover, by the Cayley-Hamilton
theorem it follows immediately that χx(x) is a trace relation. Hence, if we fully
polarize χx(x) (say, using the variables {x1, . . . , xn}) we obtain a multilinear trace
relation of degree n. By the argument given in the example above we know that
this element must be a scalar multiple of CH(x1, . . . , xn). In fact, one can see that
this scale factor must be (−1)n as the leading term of the multilinearization is∑
σ∈Sn

xσ(1) . . . xσ(n) and compare this with the explicit form of CH(x1, . . . , xn).

Example 1.20. Consider the case n = 2. The formal Cayley-Hamilton poly-
nomial of an element x ∈ T∞ is

χx(x) = x2 − t(x)x+
1
2
(t(x)2 − t(x2)) .

Polarization with respect to the variables x1 and x2 gives the expression

x1x2 + x2x1 − t(x1)x2 − t(x2)x1 + t(x1)t(x2)− t(x1x2)
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which is CH(x1, x2). Indeed, multiplying it on the right with x3 and applying the
formal trace t to it we obtain

t(x1x2x3)+t(x2x1x3)−t(x1)t(x2x3)−t(x2)t(x1x3)+t(x1)t(x2)t(x3)−t(x1x2)t(x3)

= T(123)(x1, x2, x3) + T(213)(x1, x2, x3)− T(1)(23)(x1, x2, x3)− T(2)(13)(x1, x2, x3)

+ T(1)(2)(3)(x1, x2, x3)− T(12)(3)(x1, x2, x3)

=
∑
σ∈S3

Tσ(x1, x2, x3) = F(x1, x2, x3)

as required.

Theorem 1.21. The necklace relations Ker ν is the ideal of N∞ generated by
all the elements

F(m1, . . . ,mn+1)

where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}.

Proof. Take a homogeneous necklace relation f ∈ Ker ν of degree d and
polarize it to get a multilinear element f ′ ∈ N∞. Clearly, f ′ is also a necklace
relation and if we can show that f ′ belongs to the described ideal, then so does f
as the process of restitution maps this ideal into itself.

Therefore, we may assume that f is multilinear of degree d. A priori f may
depend on more than d variables xk, but we can separate f as a sum of multilinear
polynomials fi each depending on precisely d variables such that for i 6= j fi and fj
do not depend on the same variables. Setting some of the variables equal to zero,
we see that each of the fi is again a necklace relation.

Thus, we may assume that f is a multilinear necklace identity of degree d
depending on the variables {x1, . . . , xd}. But then we know from theorem 1.18 that
we can write

f =
∑
τ∈Sd

aτTτ (x1, . . . , xd)

where
∑
aτeτ ∈ CSd belongs to the ideal spanned by the Young symmetrizers of

Young diagrams λ having at least n+ 1 rows.
We claim that this ideal is generated by the Young symmetrizer of the partition

(1, . . . , 1) of n + 1 under the natural embedding of Sn+1 into Sd. Let λ be a
Young diagram having k ≥ n + 1 boxes and let cλ be a Young symmetrizer with
respect to a tableau where the boxes in the first column are labeled by the numbers
I = {i1, . . . , ik} and let SI be the obvious subgroup of Sd. As Qλ = SI × Q′

we see that bλ = (
∑
σ∈SI

sgn(σ)eσ).b′ with b′ ∈ CQ′. Hence, cλ belongs to the
twosided ideal generated by cI =

∑
σ∈SI

sgn(σ)eσ but this is also the twosided ideal
generated by ck =

∑
σ∈Sk

sgn(σ)eσ as one verifies by conjugation with a partition
sending I to {1, . . . , k}. Moreover, by induction one shows that the twosided ideal
generated by ck belongs to the twosided ideal generated by cd =

∑
σ∈Sd

sgn(σ)eσ,
finishing the proof of the claim.

From this claim, we can write∑
τ∈Sd

aτeτ =
∑

τi,τj∈Sd

aijeτi .(
∑

σ∈Sn+1

sgn(σ)eσ).eτj
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and therefore it suffices to analyze the form of the necklace identity associated to
an element of the form

eτ .(
∑

σ∈Sn+1

sgn(σ)eσ).eτ ′ with τ, τ ′ ∈ Sd

Now, if a groupelement
∑
µ∈Sd

bµeµ corresponds to the formal necklace polynomial
G(x1, . . . , xd), then the element eτ .(

∑
µ∈Sd

bµeµ).eτ−1 corresponds to the formal
necklace polynomial G(xτ(1), . . . , xτ(d)).

Therefore, we may replace the element eτ .(
∑
σ∈Sn+1

sgn(σ)eσ).eτ ′ by the ele-
ment

(
∑

σ∈Sn+1

sgn(σ)eσ).eη with η = τ ′.τ ∈ Sd

We claim that we can write η = σ′.θ with σ′ ∈ Sn+1 and θ ∈ Sd such that each cycle
of θ contains at most one of the elements from {1, 2, . . . , n + 1}. Indeed assume
that η contains a cycle containing more than one element from {1, . . . , n+ 1}, say
1 and 2, that is

η = (1i1i2 . . . ir2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

then we can express the product (12).η in cycles as

(1i1i2 . . . ir)(2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

Continuing in this manner we reduce the number of elements from {1. . . . , n + 1}
in every cycle to at most one.

But then as σ′ ∈ Sn+1 we have seen that (
∑
sgn(σ)eσ).eσ′ =

sgn(σ′)(
∑
sgn(σ)eσ) and consequently

(
∑

σ∈Sn+1

sgn(σ)eσ).eη = ±(
∑

σ∈Sn+1

sgn(σ)eσ).eθ

where each cycle of θ contains at most one of {1, . . . , n+ 1}. Let us write

θ = (1i1 . . . iα)(2j1 . . . jβ) . . . (n+ 1s1 . . . sκ)(t1 . . . tλ) . . . (z1 . . . zζ)

Now, let σ ∈ Sn+1 then the cycle decomposition of σ.θ is obtained as follows
: substitute in each cycle of σ the element 1 formally by the string 1i1 . . . iα,
the element 2 by the string 2j1 . . . jβ , and so on until the element n + 1 by the
string n + 1s1 . . . sκ and finally adjoin the cycles of θ in which no elements from
{1, . . . , n+ 1} appear.

Finally, we can write out the formal necklace element corresponding to the
element (

∑
σ∈Sn+1

sgn(σ)eσ).eθ as

F(x1xi1 . . . xiα , x2xj1 . . . xjβ , . . . , xn+1xs1 . . . xsκ
)t(xt1 . . . xtλ) . . . t(xz1 . . . xzζ

)

finishing the proof of the theorem. �

1.7. Trace relations.

We will again use the non-degeneracy of the trace map to deduce the trace
relations, that is, Ker τ from the description of the necklace relations.

Theorem 1.22. The trace relations Ker τ is the twosided ideal of the formal
trace algebra T∞ generated by all elements

F(m1, . . . ,mn+1) and CH(m1, . . . ,mn)
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where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}.

Proof. Consider a trace relation H(x1, . . . , xd) ∈ Ker τ . Then, we have a
necklace relation of the form

t(H(x1, . . . , xd)xd+1) ∈ Ker ν

By theorem 1.21 we know that this element must be of the form∑
ni1...in+1F(mi1 , . . . ,min+1)

where the mi are monomials, the ni1...in+1 ∈ N∞ and the expression must be linear
in the variable xd+1. That is, xd+1 appears linearly in each of the terms

nF(m1, . . . ,mn+1)

so appears linearly in n or in precisely one of the monomials mi. If xd+1 appears
linearly in n we can write

n = t(n′.xd+1) where n′ ∈ T∞.

If xd+1 appears linearly in one of the monomials mi we may assume that it does so
in mn+1, permuting the monomials if necessary. That is, we may assume mn+1 =
m′n+1.xd+1.m”n+1 with m,m′ monomials. But then, we can write

nF(m1, . . . ,mn+1) = nt(CH(m1, . . . ,mn).m′n+1.xd+1.m”n+1)
= t(n.m”n+1.CH(m1, . . . ,mn).m′n+1.xd+1)

using N∞-linearity and the cyclic permutation property of the formal trace t. But
then, separating the two cases, one can write the total expression

t(H(x1, . . . , xd)xd+1) = t([
∑
i

n′i1...in+1
F(mi1 , . . . ,min+1)

+
∑
j

nj1...jn+1 .m”jn+1 .CH(mj1 , . . . ,mjn).m′jn+1
] xd+1)

Finally, observe that two formal trace elements H(x1, . . . , xd) and K(x1, . . . , xd) are
equal if the formal necklaces

t(H(x1, . . . , xd)xd+1) = t(K(x1, . . . , xd)xd+1)

are equal, finishing the proof. �

We will give another description of the necklace relations Ker τ which is better
suited for the categorical interpretation of T∞n to be given in the next chapter.
Consider formal trace elements m1,m2, . . . ,mi, . . . with mj ∈ T∞. The formal
substitution

f 7→ f(m1,m2, . . . ,mi, . . .)
is the uniquely determined algebra endomorphism of T∞ which maps the variable
xi to mi and is compatible with the formal trace t. That is, the substitution sends a
monomial xi1xi1 . . . xik to the element gi1gi2 . . . gik and an element t(xi1xi2 . . . xik)
to the element t(gi1gi2 . . . gik). A substitution invariant ideal of T∞ is a twosided
ideal of T∞ that is closed under all possible substitutions as well as under the
formal trace t. For any subset of elements E ⊂ T∞ there is a minimal substitution
invariant ideal containing E. This is the ideal generated by all elements obtained
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from E by making all possible substitutions and taking all their formal traces. We
will refer to this ideal as the substitution invariant ideal generated by E.

Recall the definition of the formal Cayley-Hamilton polynomial χx(x) of an
element x ∈ T∞ given in the previous section.

Theorem 1.23. The trace relations Ker τ is the substitution invariant ideal
of T∞ generated by the formal Cayley-Hamilton polynomials

χx(x) for all x ∈ T∞

Proof. The result follows from theorem 1.22 and the definition of a substi-
tution invariant ideal once we can show that the full polarization of χx(x), which
we have seen is CH(x1, . . . , xn), lies in the substitution invariant ideal generated by
the χx(x).

This is true since we may replace the process of polarization with the process
of multilinearization, whose first step is to replace, for instance

χx(x) by χx+y(x+ y)− χx(x)− χy(y).
The final result of multilinearization is the same as of full polarization and the
claim follows as multilinearizing a polynomial in a substitution invariant ideal, we
remain in the same ideal. �

We will use our knowledge on the necklace and trace relations to improve the
bound of 2n−1 in the Nagata-Higman problem to n2. Recall that this problem asks
for a number N(n) with the property that if R is an associative C-algebra without
unit such that rn = 0 for all r ∈ R, then we must have for all ri ∈ R the identity

r1r2 . . . rN(n) = 0 in R.

We start by reformulating the problem. Consider the positive part F+ of the free
C-algebra generated by the variables {x1, x2, . . . , xi, . . .}

F+ = C〈x1, x2, . . . , xi, . . .〉+
which is an associative C-algebra without unit. Let T (n) be the twosided ideal of
F+ generated by all n-powers fn with f ∈ F+. Note that the ideal T (n) is invariant
under all substitutions of F+. The Nagata-Higman problem then asks for a number
N(n) such that the product

x1x2 . . . xN(n) ∈ T (n).

We will now give an alternative description of the quotient algebra F+/T (n). Let
N+ be the positive part of the infinite necklace algebra N∞n and T+ the positive
part of the infinite trace algebra T∞n . Consider the quotient associative C-algebra
without unit

T+ = T+/(N+T∞n ).
Observe the following facts about T+ : as a C-algebra it is generated by the variables
X1, X2, . . . as all the other algebra generators of the form t(xi1 . . . xir ) of T∞ are
mapped to zero in T+. Further, from the form of the Cayley-Hamilton polynomial it
follows that every t ∈ T+ satisfies tn = 0. That is, we have an algebra epimorphism

F+/T (n) -- T+

and we claim that it is also injective. To see this, observe that the quotient
T∞/N∞+ T∞ is just the free C-algebra on the variables {x1, x2, . . .}. To obtain T+

we have to factor out the ideal of trace relations. Now, a formal Cayley-Hamilton
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polynomial χx(x) is mapped to xn in T∞/N∞+ T∞. That is, to obtain T+ we factor
out the substitution invariant ideal (observe that t is zero here) generated by the
elements xn, but this is just the definition of F+/T (n).

Therefore, a reformulation of the Nagata-Higman problem is to find a number
N = N(n) such that the product of the first N generic matrices

X1X2 . . . XN ∈ N∞+ T∞n or, equivalently that tr(X1X2 . . . XNXN+1)

can be expressed as a linear combination of products of traces of lower degree. Using
the description of the necklace relations given in theorem 1.18 we can reformulate
this conditions in terms of the group algebra CSN+1. Let us introduce the following
subspaces of the groupalgebra :

• A will be the subspace spanned by all N + 1 cycles in SN+1,
• B will be the subspace spanned by all elements except N + 1 cycles,
• L(n) will be the ideal of CSN+1 spanned by the Young symmetrizers

associated to partitions

n

L(n)

with ≤ n rows, and
• M(n) will be the ideal of CSN+1 spanned by the Young symmetrizers

associated to partitions

n

M(n)

having more than n rows.
With these notations, we can reformulate the above condition as

(12 . . . NN + 1) ∈ B +M(n) and consequently CSN+1 = B +M(n)

Define an inner product on the groupalgebra CSN+1 such that the groupelements
form an orthonormal basis, then A and B are orthogonal complements and also L(n)
and M(n) are orthogonal complements. But then, taking orthogonal complements
the condition can be rephrased as

(B +M(n))⊥ = A ∩ L(n) = 0.

Finally, let us define an automorphism τ on CSN+1 induced by sending eσ to
sgn(σ)eσ. Clearly, τ is just multiplication by (−1)N on A and therefore the above
condition is equivalent to

A ∩ L(n) ∩ τL(n) = 0.
Moreover, for any Young tableau λ we have that τ(aλ) = bλ∗ and τ(bλ) = aλ∗ .
Hence, the automorphism τ sends the Young symmetrizer associated to a partition
to the Young symmetrizer of the dual partition. This gives the following character-
ization
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• τL(n) is the ideal of CSN+1 spanned by the Young symmetrizers associ-
ated to partitions

n

τL(n)

with ≤ n columns.

Now, specialize to the case N = n2. Clearly, any Young diagram having n2 + 1
boxes must have either more than n columns or more than n rows

n

and consequently we indeed have for N = n2 that

A ∩ L(n) ∩ τL(n) = 0

finishing the proof of the promised refinement of the Nagata-Higman bound

Theorem 1.24. Let R be an associative C-algebra without unit element. As-
sume that rn = 0 for all r ∈ R. Then, for all ri ∈ R we have

r1r2 . . . rn2 = 0

Theorem 1.25. The necklace algebra Nmn is generated as a C-algebra by all
elements of the form

tr(Xi1Xi2 . . . Xil)

with l ≤ n2 + 1. The trace algebra Tmn is spanned as a module over the necklace
algebra Nmn by all monomials in the generic matrices

Xi1Xi2 . . . Xil

of degree l ≤ n2.

1.8. Cayley-Hamilton algebras.

In this section we introduce the category alg @n of Cayley-Hamilton algebras
of degree n. A trace map on an (affine) C-algebra A is a C-linear map

tr : A - A

satisfying the following three properties for all a, b ∈ A :

(1) tr(a)b = btr(a),
(2) tr(ab) = tr(ba) and
(3) tr(tr(a)b) = tr(a)tr(b).
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Note that it follows from the first property that the image tr(A) of the trace map is
contained in the center of A. Consider two algebras A and B equipped with a trace
map which we will denote by trA respectively trB . A trace morphism φ : A - B
will be a C-algebra morphism which is compatible with the trace maps, that is, the
following diagram commutes

A
φ - B

A

trA

?
φ - B

trB

?

This definition turns algebras with a trace map into a category, denoted by algt .
We will say that an algebra A with trace map tr is trace generated by a subset of
elements I ⊂ A if the C-algebra generated by B and tr(B) is equal to A where B
is the C-subalgebra generated by the elements of I. Note that A does not have to
be generated as a C-algebra by the elements from I.

Observe that for T∞ the formal trace t : T∞ -- N∞ ⊂ - T∞ is a trace map.
Property (1) follows because N∞ commutes with all elements of T∞, property (2)
is the cyclic permutation property for t and property (3) is the fact that t is a
N∞-linear map. The formal trace algebra T∞ is trace generated by the variables
{x1, x2, . . . , xi, . . .} but not as a C-algebra.

Actually, T∞ is the free algebra in the generators {x1, x2, . . . , xi, . . .} in the
category of algebras with a trace map, algt. That is, if A is an algebra with trace
tr which is trace generated by {a1, a2, . . .}, then there is a trace preserving algebra
epimorphism

T∞ π-- A .

For example, define π(xi) = ai and π(t(xi1 . . . xil)) = tr(π(xi1) . . . π(xil)). Also,
the formal trace algebra Tm, that is the subalgebra of T∞ trace generated by
{x1, . . . , xm}, is the free algebra in the category of algebras with trace that are
trace generated by at most m elements.

Given a trace map tr on A, we can define for any a ∈ A a formal Cayley-
Hamilton polynomial of degree n . Indeed, express

f(t) =
n∏
i=1

(t− λi)

as a polynomial in t with coefficients polynomial functions in the Newton functions∑n
i=1 λ

k
i . Replacing the Newton function

∑
λki by tr(ak) we obtain the Cayley-

Hamilton polynomial of degree n

χ(n)
a (t) ∈ A[t] .

Definition 1.26. An (affine) C-algebra A with trace map tr : A - A is
said to be a Cayley-Hamilton algebra of degree n if the following two properties are
satisfied :

(1) tr(1) = n, and
(2) For all a ∈ A we have χ(n)

a (a) = 0 in A.
alg @n is the category of Cayley-Hamilton algebras of degree n with trace preserv-
ing morphisms.
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Observe that if R is a commutative C-algebra, then Mn(R) is a Cayley-
Hamilton algebra of degree n. The corresponding trace map is the composition
of the usual trace with the inclusion of R -- Mn(R) via scalar matrices. As a
consequence, the infinite trace algebra T∞n has a trace map induced by the natural
inclusion

T∞n ⊂ - Mn(C[M∞n ])

N∞n

tr

?

................
⊂ - C[M∞n ]

tr

?

which has image tr(T∞n ) the infinite necklace algebra N∞n . Clearly, being a trace
preserving inclusion, T∞n is a Cayley-Hamilton algebra of degree n. With this
definition, we have the following categorical description of the trace algebra T∞n .

Theorem 1.27. The trace algebra T∞n is the free algebra in the generic ma-
trix generators {X1, X2, . . . , Xi, . . .} in the category of Cayley-Hamilton algebras of
degree n.

For any m, the trace algebra Tmn is the free algebra in the generic matrix gener-
ators {X1, . . . , Xm} in the category alg @n of Cayley-Hamilton algebras of degree
n which are trace generated by at most m elements.

Proof. Let Fn be the free algebra in the generators {y1, y2, . . .} in the category
alg @n, then by freeness of T∞ there is a trace preserving algebra epimorphism

T∞ π- Fn with π(xi) = yi.

By the universal property of Fn, the ideal Ker π is the minimal ideal I of T∞ such
that T∞/I is Cayley-Hamilton of degree n.

We claim that Ker π is substitution invariant. Consider a substitution endo-
morphism φ of T∞ and consider the diagram

T∞ φ - T∞

T∞/Ker χ
?

.................
⊂ - Fn

π

??

.................................
χ

-

then Ker χ is an ideal closed under traces such that T∞/Ker χ is a Cayley-
Hamilton algebra of degree n (being a subalgebra of Fn). But then Ker π ⊂ Ker χ
(by minimality of Ker π) and therefore χ factors over Fn, that is, the substitution
endomorphism φ descends to an endomorphism φ : Fn - Fn meaning thatKer π
is left invariant under φ, proving the claim. Further, any formal Cayley-Hamilton
polynomial χ(n)

x (x) of degree n of x ∈ T∞ maps to zero under π. By substitution
invariance it follows that the ideal of trace relations Ker τ ⊂ Ker π. We have
seen that T∞/Ker τ = T∞n is the infinite trace algebra which is a Cayley-Hamilton
algebra of degree n. Thus, by minimality of Ker π we must have Ker τ = Ker π
and hence Fn ' T∞n . The second assertion follows immediately. �

Let A be a Cayley-Hamilton algebra of degree n which is trace generated by
the elements {a1, . . . , am}. We have a trace preserving algebra epimorphism pA
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defined by p(Xi) = ai

Tmn
pa -- A

Tmn

tr

?
pa -- A

trA

?

and hence a presentation A ' Tmn /TA where TA / Tmn is the ideal of trace relations
holding among the generators ai. We recall that Tmn is the ring of GLn-equivariant
polynomial maps Mm

n

f- Mn, that is,

Mn(C[Mm
n ])GLn = Tmn

where the action of GLn is the diagonal action on Mn(C[Mm
n ]) = Mn ⊗ C[Mm

n ].
Observe that if R is a commutative algebra, then any twosided ideal I /Mn(R)

is of the form Mn(J) for an ideal J / R. Indeed, the subsets Jij of (i, j) entries of
elements of I is an ideal of R as can be seen by multiplication with scalar matrices.
Moreover, by multiplying on both sides with permutation matrices one verifies that
Jij = Jkl for all i, j, k, l proving the claim.

Applying this to the induced ideal Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) /Mn(C[Mm
n ])

we find an ideal NA / C[Mm
n ] such that

Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) = Mn(NA)

Observe that both the induced ideal and NA are stable under the respective GLn-
actions.

Assume that V and W are two (not necessarily finite dimensional) C-
vectorspaces with a locally finite GLn-action (that is, every finite dimensional sub-
space is contained in a finite dimensional GLn-stable subspace) and that V

f- W
is a linear map commuting with the GLn-action. In section 2.5 we will see that we
can decompose V and W uniquely in direct sums of simple representations and in
their isotypical components (that is, collecting all factors isomorphic to a given sim-
ple GLn-representation) and prove that V(0) = V GLn respectively W(0) = WGLn

where (0) denotes the trivial GLn-representation. We obtain a commutative dia-
gram

V
f - W

V GLn

R

??
f0 - WG

R

??

where R is the Reynolds operator , that is, the canonical projection to the isotypical
component of the trivial representation. Clearly, the Reynolds operator commutes
with the GLn-action. Moreover, using complete decomposability we see that f0 is
surjective (resp. injective) if f is surjective (resp. injective).
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Because NA is a GLn-stable ideal of C[Mm
n ] we can apply the above in the

situation

Mn(C[Mm
n ])

π -- Mn(C[Mm
n ]/NA)

Tmn

R

??
π0 -- Mn(C[Mm

n ]/NA)GLn

R

??

and the bottom map factorizes through A = Tmn /TA giving a surjection

A -- Mn(C[Mm
n ]/NA)GLn .

In order to verify that this map is injective (and hence an isomorphism) it suffices
to check that

Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) ∩ Tmn = TA.

Using the functoriality of the Reynolds operator with respect to multiplication in
Mn(C[M∞n ]) with an element x ∈ Tmn or with respect to the trace map (both
commuting with the GLn-action) we deduce the following relations :

• For all x ∈ Tmn and all z ∈ Mn(C[M∞n ]) we have R(xz) = xR(z) and
R(zx) = R(z)x.

• For all z ∈Mn(C[M∞n ]) we have R(tr(z)) = tr(R(z)).

Assume that z =
∑
i tixini ∈ Mn(C[Mm

n ]) TA Mn(C[Mm
n ]) ∩ Tmn with mi, ni ∈

Mn(C[Mm
n ]) and ti ∈ TA. Now, consider Xm+1 ∈ T∞n . Using the cyclic property of

traces we have

tr(zXm+1) =
∑
i

tr(mitiniXm+1) =
∑
i

tr(niXm+1miti)

and if we apply the Reynolds operator to it we obtain the equality

tr(zXm+1) = tr(
∑
i

R(niXm+1mi)ti)

For any i, the term R(niXm+1mi) is invariant so belongs to Tm+1
n and is linear in

Xm+1. Knowing the generating elements of Tm+1
n we can write

R(niXm+1mi) =
∑
j

sijXm+1tij +
∑
k

tr(uikXm+1)vik

with all of the elements sij , tij , uik and vik in Tmn . Substituting this information
and again using the cyclic property of traces we obtain

tr(zXm+1) = tr((
∑
i,j,k

sijtijti + tr(vikti))Xm+1)

and by the nondegeneracy of the trace map we again deduce from this the equality

z =
∑
i,j,k

sijtijti + tr(vikti)

Because ti ∈ TA and TA is stable under taking traces we deduce from this that
z ∈ TA as required.
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Because A = Mn(C[Mm
n ]/NA)GLn we can apply functoriality of the Reynolds

operator to the setting

Mn(C[Mm
n ]/NA)

tr --
� ⊃ C[Mn]/NA

A

R

?? trA --
� ⊃ (C[Mn]/NA)GLn

R

??

Concluding we also have the equality

trA(A) = (C[Mm
n ]/JA)GLn .

Summarizing, we have proved the following invariant theoretic reconstruction result
for Cayley-Hamilton algebras.

Theorem 1.28. Let A be a Cayley-Hamilton algebra of degree n, with trace map
trA, which is trace generated by at most m elements. Then , there is a canonical
ideal NA / C[Mm

n ] from which we can reconstruct the algebras A and trA(A) as
invariant algebras

A = Mn(C[Mm
n ]/NA)GLn and trA(A) = (C[Mm

n ]/NA)GLn

A direct consequence of the above proof is the following universal property of
the embedding

A ⊂
iA- Mn(C[Mm

n ]/NA).
Let R be a commutative C-algebra, then Mn(R) with the usual trace is a Cayley-
Hamilton algebra of degree n. If f : A - Mn(R) is a trace preserving morphism,
we claim that there exists a natural algebra morphism f : C[Mm

n ]/NA - R such
that the diagram

A
f- Mn(R)

Mn(C[Mm
n ]/NA)

iA

?

∩

.....
.....

.....
.....

.....
.....

.....

M
n
(f

)
-

where Mn(f) is the algebra morphism defined entrywise. To see this, consider
the composed trace preserving morphism φ : Tmn -- A

f- Mn(R). Its image
is fully determined by the images of the trace generators Xk of Tmn which are
say mk = (mij(k))i,j . But then we have an algebra morphism C[Mm

n ]
g- R

defined by sending the variable xij(k) to mij(k). Clearly, TA ⊂ Ker φ and after
inducing to Mn(C[Mm

n ]) it follows that NA ⊂ Ker g proving that g factors through
C[Mm

n ]/JA - R. This morphism has the required universal property.
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CHAPTER 2

Reconstructing Algebras.

2.1. Representation spaces.

For a noncommutative affine algebra A with generating set {a1, . . . , am}, there
is an epimorphism

C〈x1, . . . , xm〉
φ-- A

defined by φ(xi) = ai. That is, a presentation of A as

A ' C〈x1, . . . , xm〉/IA
where IA is the twosided ideal of relations holding among the ai. For example, if
A = C[x1, . . . , xm], then IA is the twosided ideal of C〈x1, . . . , xm〉 generated by the
elements xixj − xjxi for all 1 ≤ i, j ≤ m.

An n-dimensional representation of A is an algebra morphism

A
ψ- Mn

from A to the algebra of n× n matrices over C. If A is generated by {a1, . . . , am},
then ψ is fully determined by the point

(ψ(a1), ψ(a2), . . . , ψ(am)) ∈Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

.

We claim that repn(A), the set of all n-dimensional representations of A, forms a
Zariski closed subset of Mm

n . To begin, observe that

repn(C〈x1, . . . , xm〉) = Mm
n

as any m-tuple of n× n matrices (A1, . . . , Am) ∈Mm
n determines an algebra mor-

phism C〈x1, . . . , xm〉
ψ- Mn by taking ψ(xi) = Ai.

Given a presentation A = C〈x1, . . . , xm〉/IA an m-tuple (A1, . . . , Am) ∈ Mm
n

determines an n-dimensional representation of A if (and only if) for every noncom-
mutative polynomial r(x1, . . . , xm) ∈ IA / C〈x1, . . . , xm〉 we have that

r(A1, . . . , Am) =

0 . . . 0
...

...
0 . . . 0

 ∈Mn.

Hence, consider the ideal IA(n) of C[Mm
n ] = C[xij(k) | 1 ≤ i, j ≤ n, 1 ≤ k ≤ m]

generated by all the entries of the matrices in Mn(C[Mm
n ]) of the form

r(X1, . . . , Xm) for all r(x1, . . . , xm) ∈ IA.
We see that the reduced representation variety repn A is the set of simultaneous
zeroes of the ideal IA(n), that is,

repn A = V(IA(n)) ⊂ - Mm
n

47
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proving the claim, where V denotes the closed set in the Zariski topology Zariski
topology determined by an ideal, the complement of which we will denote with
X). Observe that even when A is not finitely presented, the ideal IA(n) is finitely
generated as an ideal of the commutative polynomial algebra C[Mm

n ].
Often, the ideal IA(n) contains more information than the closed subset

repn(A) = V(IA(n)) which only determines the radical ideal of IA(n). This forces
us to consider also the representation variety (or scheme) rep

n
A.

Example 2.1. It may happen that repn A = ∅. For example, consider the
Weyl algebra

A1(C) = C〈x, y〉/(xy − yx− 1)

If a couple of n× n-matrices (A,B) ∈ repn A1(C) then we must have

A.B −B.A = rr
n ∈Mn

However, taking traces on both sides gives a contradiction as tr(AB) = tr(BA) and
tr(rrn) = n 6= 0.

In the foregoing chapter we studied the action of GLn by simultaneous conju-
gation on Mm

n . We claim that repn A ⊂ - Mm
n is stable under this action, that is,

if (A1, . . . , Am) ∈ repn A, then also (gA1g
−1, . . . , gAmg

−1) ∈ repn A. This is clear
by composing the n-dimensional representation ψ of A determined by (A1, . . . , Am)
with the algebra automorphism of Mn given by conjugation with g ∈ GLn,

A
ψ - Mn

Mn

g.g−1

?

...............................

g.ψ

-

That is, repn A is a GLn-variety . We will give an interpretation of the orbits
under this action.

Recall that a left A-module M is a vectorspace on which elements of A act on
the left as linear operators satisfying the conditions

1.m = m and a.(b.m) = (ab).m

for all a, b ∈ A and all m ∈M . An A-module morphismM
f- N between two left

A-modules is a linear map such that f(a.m) = a.f(m) for all a ∈ A and all m ∈M .
An A-module automorphism is an A-module morphism M

f- N such that there
is an A-module morphism N

g- M such that f ◦ g = idM and g ◦ f = idN .
Assume the A-module M has complex dimension n, then after fixing a basis

we can identify M with Cn (column vectors). For any a ∈ A we can represent
the linear action of a on M by an n × n matrix ψ(a) ∈ Mn. The condition that
a.(b.m) = (ab).m for all m ∈ M asserts that ψ(ab) = ψ(a)ψ(b) for all a, b ∈
A, that is, ψ is an algebra morphism A

ψ- Mn and hence M determines an
n-dimensional representation of A. Conversely, an n-dimensional representation
A

ψ- Mn determines an A-module structure on Cn by the rule

a.v = ψ(a)v for all v ∈ Cn.
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Hence, there is a one-to-one correspondence between the n-dimensional representa-
tions of A and the A-module structures on Cn. We call the reduced variety repn A
the reduced representation variety of A. If two n-dimensional A-module structures
M and N on Cn are isomorphic (determined by a linear invertible map g ∈ GLn)
then for all a ∈ A we have the commutative diagram

M
g - N

M

a.

?
g - N

a.

?

Hence, if the action of a on M is represented by the matrix A, then the action of
a on M is represented by the matrix g.A.g−1. Therefore, two A-module structures
on Cn are isomorphic if and only if the points of repn A corresponding to them
lie in the same GLn-orbit. Concluding, studying n-dimensional A-modules up to
isomorphism is the same as studying the GLn-orbits in the reduced representation
variety repn A.

If the defining ideal IA(n) is a radical ideal, the above suffices. In general,
the scheme structure of the representation variety rep

n
A will be important. By

definition, the scheme rep
n
A is the functor assigning to any (affine) commutative

C-algebra R, the set

rep
n
A(R) = AlgC(C[Mm

n ]/IA(n), R)

of C-algebra morphisms C[Mm
n ]

IA(n)

ψ- R. Such a map ψ is determined by the image
ψ(xij(k)) = rij(k) ∈ R. That is, ψ ∈ rep

n
A(R) determines an m-tuple of n × n

matrices with coefficients in R

(r1, . . . , rm) ∈Mn(R)⊕ . . .⊕Mn(R)︸ ︷︷ ︸
m

where rk =

r11(k) . . . r1n(k)
...

...
rn1(k) . . . rnn(k)

 .
Clearly, for any r(x1, . . . , xm) ∈ IA we must have that r(r1, . . . , rm) is the zero
matrix in Mn(R). That is, ψ determines uniquely an R-algebra morphism

ψ : R⊗C A - Mn(R) by mapping xk 7→ rk.

Alternatively, we can identify the set rep
n
(R) with the set of left R ⊗ A-module

structures on the free R-module R⊕n of rank n.

2.2. Some algebraic geometry.

Throughout this book we assume that the reader has some familiarity with
algebraic geometry, as contained in the first two chapters of the textbook [28]. In
this section we restrict to the dimension formulas and the relation between Zariski
and analytic closure, illustrating them with examples from representation varieties.
We will work only with reduced varieties in this section.

A morphism X
φ- Y between two affine irreducible varieties (that is, the

coordinate rings C[X] and C[Y ] are domains) is said to be dominant if the image
φ(X) is Zariski dense in Y . On the level of the coordinate algebras dominance is
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equivalent to φ∗ : C[Y ] - C[X] being injective and hence inducing a fieldexten-
sion φ∗ : C(Y ) ⊂ - C(X) between the functionfields. Indeed, for f ∈ C[Y ] the
function φ∗(f) is by definition the composition

X
φ- Y

f- C

and therefore φ∗(f) = 0 iff f(φ(X)) = 0 iff f(φ(X)) = 0.
A morphism X

φ- Y between two affine varieties is said to be finite if under
the algebra morphism φ∗ the coordinate algebra C[X] is a finite C[Y ]-module. An
important property of finite morphisms is that they are closed , that is the image
of a closed subset is closed. Indeed, we can replace without loss of generality Y by
the closed subset φ(X) = VY (Ker φ∗) and hence assume that φ∗ is an inclusion
C[Y ] ⊂ - C[X]. The claim then follows from the fact that in a finite extension
there exists for any maximal ideal N / C[Y ] a maximal ideal M / C[X] such that
M ∩ C[Y ] = C[X].

Example 2.2. Let X be an irreducible affine variety of dimension d. By the
Noether normalization result C[X] is a finite module over a polynomial subalgebra
C[f1, . . . , fd]. But then, the finite inclusion C[f1, . . . , fd] ⊂ - C[X] determines a
finite surjective morphism

X
φ-- Cd

An important source of finite morphisms is given by integral extensions. Recall
that, if R ⊂ - S is an inclusion of domains we call S integral over R if every s ∈ S
satisfies an equation

sn =
n−1∑
i=0

ris
i with ri ∈ R.

A normal domain R has the property that any element of its field of fractions
which is integral over R belongs already to R. If X

φ- Y is a dominant morphism
between two irreducible affine varieties, then φ is finite if and only if C[X] in integral
over C[Y ] for the embedding coming from φ∗.

Proposition 2.3. Let X
φ- Y be a dominant morphism between irreducible

affine varieties. Then, for any x ∈ X and any irreducible component C of the fiber
φ−1(φ(z)) we have

dim C ≥ dim X − dim Y.

Moreover, there is a nonempty open subset U of Y contained in the image φ(X)
such that for all u ∈ U we have

dim φ−1(u) = dim X − dim Y.

Proof. Let d = dim X − dim Y and apply the Noether normalization result
to the affine C(Y )-algebra C(Y )C[X]. Then, we can find a function g ∈ C[Y ] and
algebraic independent functions f1, . . . , fd ∈ C[X]g (g clears away any denominators
that occur after applying the normalization result) such that C[X]g is integral over
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C[Y ]g[f1, . . . , fd]. That is, we have the commutative diagram

XX(g)
ρ -- XY (g)× Cd

X
?

∩

φ - Y � ⊃ XY (g)

pr1

??

where we know that ρ is finite and surjective. But then we have that the open
subset XY (g) lies in the image of φ and in XY (g) all fibers of φ have dimension
d. For the first part of the statement we have to recall the statement of Krull’s
Hauptideal result : if X is an irreducible affine variety and g1, . . . , gr ∈ C[X] with
(g1, . . . , gr) 6= C[X], then any component C of VX(g1, . . . , gr) satisfies the inequality

dim C ≥ dim X − r.

If dim Y = r apply this result to the gi determining the morphism

X
φ- Y -- Cr

where the latter morphism is the one from example 2.2. �

In fact, a stronger result holds. Chevalley’s theorem asserts the following.

Theorem 2.4. Let X
φ- Y be a morphism between affine varieties, the

function
X - N defined by x 7→ dimx φ

−1(φ(x))

is upper-semicontinuous. That is, for all n ∈ N, the set

{x ∈ X | dimx φ
−1(φ(x)) ≤ n}

is Zariski open in X.

Proof. Let Z(φ, n) be the set {x ∈ X | dimx φ
−1(φ(x)) ≥ n}. We will prove

that Z(φ, n) is closed by induction on the dimension of X. We first make some
reductions. We may assume that X is irreducible. For, let X = ∪iXi be the
decomposition of X into irreducible components, then Z(φ, n) = ∪Z(φ | Xi, n).
Next, we may assume that Y = φ(X) whence Y is also irreducible and φ is a
dominant map. Now, we are in the setting of proposition 2.3. Therefore, if n ≤
dim X − dim Y we have Z(φ, n) = X by that proposition, so it is closed. If
n > dimX−dim Y consider the open set U in Y of proposition 2.3. Then, Z(φ, n) =
Z(φ | (X−φ−1(U)), n). the dimension of the closed subvarietyX−φ−1(U) is strictly
smaller that dim X hence by induction we may assume that Z(φ | (X−φ−1(U)), n)
is closed in X − φ−1(U) whence closed in X. �

An immediate consequence of the foregoing proposition is that for any mor-
phism X

φ- Y between affine varieties, the image φ(X) contains an open dense
subset of φ(Z) (reduce to irreducible components and apply the proposition).

Example 2.5. Let A be an affine C-algebra and M ∈ repn A. We claim that
the orbit

O(M) = GLn.M is Zariski open in its closure O(M).
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Consider the ’orbit-map’ GLn
φ- repn A defined by g 7→ g.M . then, by the above

remark O(M) = φ(GLn) contains a Zariski open subset U of O(M) contained in
the image of φ which is O(M). But then,

O(M) = GLn.M = ∪g∈GLn
g.U

is also open in O(M). Next, we claim that O(M) contains a closed orbit. Indeed,
assume O(M) is not closed, then the complement CM = O(M)−O(M) is a proper
Zariski closed subset whence dim C < dim O(M). But, C is the union of GLn-
orbits O(Mi) with dim O(Mi) < dim O(M). Repeating the argument with the Mi

and induction on the dimension we will obtain a closed orbit in O(M).

Next, we want to relate the Zariski closure with the C-closure (that is, the usual
complex or analytic topology). Whereas they are usually not equal (for example,
the unit circle in C1), we will show that they coincide for the important class of
constructible subsets. A subset Z of an affine variety X is said to be locally closed
if Z is open in its Zariski closure Z. A subset Z is said to be constructible if
Z is the union of finitely many locally closed subsets. Clearly, finite unions, finite
intersections and complements of constructible subsets are again constructible. The
importance of constructible sets for algebraic geometry is clear from the following
result.

Proposition 2.6. Let X
φ- Y be a morphism between affine varieties. If Z

is a constructible subset of X, then φ(Z) is a constructible subset of Y .

Proof. Because every open subset of X is a finite union of special open sets
which are themselves affine varieties, it suffices to show that φ(X) is constructible.
We will use induction on dim φ(X). There exists an open subset U ⊂ φ(X) which is
contained in φ(X). Consider the closed complement W = φ(X)−U and its inverse
image X ′ = φ−1(W ). Then, X ′ is an affine variety and by induction we may assume
that φ(X ′) is constructible. But then, φ(X) = U ∪ φ(X ′) is also constructible. �

Example 2.7. Let A be an affine C-algebra. The subset indn A ⊂ - repn A
of the indecomposable n-dimensional A-modules is constructible. Indeed, define for
any pair k, l such that k + l = n the morphism

GLn × repk A× repl A - repn A

by sending a triple (g,M,N) to g.(M⊕N). By the foregoing result the image of this
map is constructible. The decomposable n-dimensional A-modules belong to one
of these finitely many sets whence are constructible, but then so is its complement
which in indn A.

Apart from being closed, finite morphisms often satisfy the going-down property
. That is, consider a finite and surjective morphism

X
φ- Y

where X is irreducible and Y is normal (that is, C[Y ] is a normal domain). Let
Y ′ ⊂ - Y an irreducible Zariski closed subvariety and x ∈ X with image φ(x) =
y′ ∈ Y ′. Then, the going-down property asserts the existence of an irreducible
Zariski closed subvariety X ′ ⊂ - X such that x ∈ X ′ and φ(X ′) = Y ′. In
particular, the morphism X ′

φ- Y ′ is again finite and surjective and in particular
dim X ′ = dim Y ′.
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Lemma 2.8. Let x ∈ X an irreducible affine variety and U a Zariski open
subset. Then, there is an irreducible curve C ⊂ - X through x and intersecting
U .

Proof. If d = dim X consider the finite surjective morphism X
φ- Cd of

example 2.2. Let y ∈ Cd − φ(X − U) and consider the line L through y and φ(x).
By the going-down property there is an irreducible curve C ⊂ - X containing x
such that φ(C) = L and by construction C ∩ U 6= ∅. �

Proposition 2.9. Let X
φ- Y be a dominant morphism between irreducible

affine varieties any y ∈ Y . Then, there is an irreducible curve C ⊂ - X such that
y ∈ φ(C).

Proof. Consider an open dense subset U ⊂ - Y contained in the image
φ(X). By the lemma there is a curve C ′ ⊂ - Y containing y and such that
C ′ ∩ U 6= ∅. Then, again applying the lemma to an irreducible component of
φ−1(C ′) not contained in a fiber, we obtain an irreducible curve C ⊂ - X with
φ(C) = C ′. �

Any affine varietyX ⊂ - Ck can also be equipped with the induced C-topology
(or analytic topology) from Ck which is much finer than the Zariski topology . Usu-
ally there is no relation between the closure Z

C
of a subset Z ⊂ - X in the

C-topology and the Zariski closure Z.

Lemma 2.10. Let U ⊂ Ck containing a subset V which is Zariski open and
dense in U . Then,

U
C

= U

Proof. By reducing to irreducible components, we may assume that U is
irreducible. Assume first that dim U = 1, that is, U is an irreducible curve in
Ck. Let Us be the subset of points where U is a complex manifold, then U − Us is
finite and by the implicit function theorem in analysis every u ∈ Us has a C-open
neighborhood which is C-homeomorphic to the complex line C1, whence the result
holds in this case.

If U is general and x ∈ U we can take by the lemma above an irreducible curve
C ⊂ - U containing z and such that C ∩ V 6= ∅. Then, C ∩ V is Zariski open and
dense in C and by the curve argument above x ∈ (C ∩ V )

C
⊂ U

C
. We can do this

for any x ∈ U finishing the proof. �

Consider the embedding of an affine variety X ⊂ - Ck, proposition 2.6 and
the fact that any constructible set Z contains a subset U which is open and dense
in Z we deduce from the lemma at once the next result.

Proposition 2.11. If Z is a constructible subset of an affine variety X, then

Z
C

= Z

Example 2.12. Let A be an affine C-algebra and M ∈ repn A. We have proved
in example 2.5 that the orbit O(M) = GLn.M is Zariski open in its closure O(M).
Therefore, the orbit O(M) is a constructible subset of repn A. By the proposition
above, the Zariski closure O(M) of the orbit coincides with the closure of O(M) in
the C-topology.
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2.3. The Hilbert criterium.

A one parameter subgroup of a linear algebraic group G is a morphism

λ : C∗ - G

of affine algebraic groups. That is, λ is both a groupmorphism and a morphism
of affine varieties. The set of all one parameter subgroup of G will be denoted by
Y (G).

If G is commutative algebraic group, then Y (G) is an Abelian group with
additive notation

λ1 + λ2 : C∗ - G with (λ1 + λ2)(t) = λ1(t).λ2(t)

Recall that an n-dimensional torus is an affine algebraic group isomorphic to

C∗ × . . .× C∗︸ ︷︷ ︸
n

= Tn

the closed subgroup of invertible diagonal matrices in GLn.

Lemma 2.13. Y (Tn) ' Zn. The correspondence is given by assigning to
(r1, . . . , rn) ∈ Zn the one-parameter subgroup

λ : C∗ - Tn given by t 7→ (tr1 , . . . , trn)

Proof. For any two affine algebraic groups G and H there is a canonical
bijection Y (G × H) = Y (G) × Y (H) so it suffices to verify that Y (C∗) ' Z with
any λ : C∗ - C∗ given by t 7→ tr for some r ∈ Z. This is obvious as λ induces
the algebra morphism

C[C∗] = C[x, x−1]
λ∗- C[x, x−1] = C[C∗]

which is fully determined by the image of x which must be an invertible element.
Now, any invertible element in C[x, x−1] is homogeneous of the form cxr for some
r ∈ Z and c ∈ C∗. The corresponding morphism maps t to ctr which is only
a groupmorphism if it maps the identity element 1 to 1 so c = 1, finishing the
proof. �

Proposition 2.14. Any one-parameter subgroup λ : C∗ - GLn is of the
form

t 7→ g−1.

t
r1 0

. . .
0 trn

 .g
for some g ∈ GLn and some n-tuple (r1, . . . , rn) ∈ Zn.

Proof. Let H be the image under λ of the subgroup µ∞ of roots of unity in
C∗. We claim that there is a basechange matrix g ∈ GLn such that

g.H.g−1 ⊂ -

C∗ 0
. . .

0 C∗


Assume h ∈ H not a scalar matrix, then h has a proper eigenspace decomposition
V ⊕W = Cn. We use that hl = rr

n and hence all its Jordan blocks must have size
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one as for any λ 6= 0 we have
λ 1 0

. . . . . .
. . . 1

λ


l

=


λl lλl−1 ∗

. . . . . .
. . . lλl−1

λl

 6= rr
n

Because H is commutative, both V and W are stable under H. By induction on
n we may assume that the images of H in GL(V ) and GL(W ) are diagonalizable,
but then the same holds in GLn.

As µ∞ is infinite, it is Zariski dense in C∗ and because the diagonal matrices
are Zariski closed in GLn we have

g.λ(C∗).g−1 = g.H.g−1 ⊂ - Tn

and the result follows from the lemma above �

Let V be a general GLn-representation considered as an affine space with GLn-
action, let X be a GLn-stable closed subvariety and consider a point x ∈ X. A
one-parameter subgroup C∗ λ- GLn determines a morphism

C∗ λx- X defined by t 7→ λ(t).x

Observe that the image λx(C∗) lies in the orbit GLn.x of x. Assume there is a
continuous extension of this map to the whole of C. We claim that this extension
must then be a morphism. If not, the induced algebra morphism

C[X]
λ∗x- C[t, t−1]

does not have its image in C[t], so for some f ∈ C[Z] we have that

λ∗x(f) =
a0 + a1t+ . . .+ azt

z

ts
with a0 6= 0 and s > 0

But then λ∗x(f)(t) - ± ∞ when t goes to zero, that is, λ∗x cannot have a
continuous extension, a contradiction.

So, if a continuous extension exists there is morphism λx : C - X. Then,
λx(0) = y and we denote this by

lim
t→0

λ(t).x = y

Clearly, the point y ∈ X must belong to the orbitclosure GLn.x in the Zariski
topology (or in the C-topology as orbits are constructible). Conversely, one might
ask whether if y ∈ GLn.x we can always approach y via a one-parameter subgroup.
The Hilbert criterium gives situations when this is indeed possible.

The only ideals of the formal power series C[[t]] are principal and generated by
tr for some r ∈ N+. With C((t)) we will denote the field of fractions of the domain
C((t)).

Lemma 2.15. Let V be a GLn-representation, v ∈ V and a point w ∈ V lying
in the orbitclosure GLn.v. Then, there exists a matrix g with coefficients in the
field C((t)) and det(g) 6= 0 such that

(g.v)t=0 is well defined and is equal to w
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Proof. Note that g.v is a vector with coordinates in the field C((t)). If all
coordinates belong to C[[t]] we can set t = 0 in this vector and obtain a vector in
V . It is this vector that we denote with (g.v)t=0.

Consider the orbit map µ : GLn - V defined by g′ 7→ g′.v. As w ∈ GLn.v
we have seen that there is an irreducible curve C ⊂ - GLn such that w ∈ µ(C).
We obtain a diagram of C-algebras

C[GLn] - C[C] ⊂ - C(C)

C[V ]

µ∗

6

- C[µ(C)]

µ∗

∪

6

⊂ - C[C ′]
∪

6

Here, C[C] is defined to be the integral closure of C[µ(C)] in the functionfield
C(C) of C. Two things are important to note here : C ′ - µ(C) is finite, so
surjective and take c ∈ C ′ be a point lying over w ∈ µ(C). Further, C ′ having
an integrally closed coordinate ring is a complex manifold. Hence, by the implicit
function theorem polynomial functions on C can be expressed in a neighborhood
of c as power series in one variable, giving an embedding C[C ′] ⊂ - C[[t]] with
(t) ∩ C[C ′] = Mc. This inclusion extends to one on the level of their fields of
fractions. That is, we have a diagram of C-algebra morphisms

C[GLn] - C(C) = C(C ′) ⊂ - C((t))

C[V ]

µ∗

6

- C[µ(C)]
∪

6

⊂ - C[C ′]
∪

6

⊂ - C[[t]]
∪

6

The upper composition defines an invertible matrix g(t) with coefficients in C((t)),
its (i, j)-entry being the image of the coordinate function xij ∈ C[GLn]. Moreover,
the inverse image of the maximal ideal (t)/C[[t]] under the lower composition gives
the maximal ideal Mw / C[V ]. This proves the claim. �

Lemma 2.16. Let g be an n×n matrix with coefficients in C((t)) and det g 6= 0.
Then there exist u1, u2 ∈ GLn(C[[t]]) such that

g = u1.

t
r1 0

. . .
0 trn

 .u2

with ri ∈ Z and r1 ≤ r2 ≤ . . . ≤ rn.

Proof. By multiplying g with a suitable power of t we may assume that
g = (gij(t))i,j ∈ Mn(C[[t]]). If f(t) =

∑∞
i=0 fit

i ∈ C[[t]] define v(f(t)) to be the
minimal i such that ai 6= 0. Let (i0, j0) be an entry where v(gij(t)) attains a
minimum, say r1. That is, for all (i, j) we have gij(t) = tr1trf(t) with r ≥ 0 and
f(t) an invertible element of C[[t]].

By suitable row and column interchanges we can take the entry (i0, j0) to
the (1, 1)-position. Then, multiplying with a unit we can replace it by tr1 and by
elementary row and column operations all the remaining entries in the first row and
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column can be made zero. That is, we have invertible matrices a1, a2 ∈ GLn(C[[t]])
such that

g = a1.

[
tr1 0τ

0 g1

]
.a2

Repeating the same idea on the submatrix g1 and continuing gives the result. �

We can now state and prove the Hilbert criterium which allows us to study
orbit-closures by one parameter subgroups.

Theorem 2.17. Let V be a GLn-representation and X ⊂ - V a closed GLn-
stable subvariety. Let O(x) = GLn.x be the orbit of a point x ∈ X. Let Y ⊂ - O(x)
be a closed GLn-stable subset. Then, there exists a one-parameter subgroup λ :
C∗ - GLn such that

lim
t→0

λ(t).x ∈ Y

Proof. It suffices to prove the result for X = V . By lemma 2.15 there is an
invertible matrix g ∈Mn(C((t))) such that

(g.x)t=0 = y ∈ Y
By lemma 2.16 we can find u1, u2 ∈ GLn(C[[t]]) such that

g = u1.λ
′(t).u2 with λ′(t) =

t
r1 0

. . .
0 trn


a one-parameter subgroup. There exist xi ∈ V such that u2.x =

∑∞
i=0 zit

i in
particular u2(0).x = x0. But then,

(λ′(t).u2.x)t=0 =
∞∑
i=0

(λ′(t).xiti)t=0

= (λ′(t).x0)t=0 + (λ′(t).x1t)t=0 + . . .

But one easily verifies (using a basis of eigenvectors of λ′(t)) that

lim
s→0

λ
′−1(s).(λ′(t)xiti)t=0 =

{
(λ′(t).x0)t=0 if i = 0,
0 if i 6= 0

As (λ′(t).u2.x)t=0 ∈ Y and Y is a closed GLn-stable subset, we also have that

lim
s - 0

λ
′−1(s).(λ′(t).u2.x)t=0 ∈ Y that is, (λ′(t).x0)t=0 ∈ Y

But then, we have for the one-parameter subgroup λ(t) = u2(0)−1.λ′(t).u2(0) that

lim
t→0

λ(t).x ∈ Y

finishing the proof. �

An important special case occurs when x ∈ V belongs to the nullcone , that is,
when the orbit closure O(x) contains the fixed point 0 ∈ V . The original Hilbert
criterium asserts the following.

Proposition 2.18. Let V be a GLn-representation and x ∈ V in the nullcone.
Then, there is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).x = 0
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In the statement of theorem 2.17 it is important that Y is closed. In particular,
it does not follow that any orbit O(y) ⊂ - O(x) can be reached via one-parameter
subgroups, see example 2.21 below.

2.4. Semisimple modules

In this section we will characterize the closed GLn-orbits in the representation
variety repn A for an affine C-algebra A. We have seen that any point ψ ∈ repn A,
that is any n-dimensional representation A

ψ- Mn, determines an n-dimensional
A-module which we will denote with Mψ.

A finite filtration F on an n-dimensional module M is a sequence of A-
submodules

F : 0 = Mt+1 ⊂Mt ⊂ . . . ⊂M1 ⊂M0 = M.

The associated graded A-module is the n-dimensional module

grF M = ⊕ti=0Mi/Mi+1.

We have the following ringtheoretical interpretation of the action of one-parameter
subgroups of GLn on the representation variety repn A.

Lemma 2.19. Let ψ, ρ ∈ repn A. Equivalent are,

(1) There is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).ψ = ρ

(2) There is a finite filtration F on the A-module Mψ such that

grF Mψ 'Mρ

as A-modules.

Proof. (1) ⇒ (2) : If V is any GLn-representation and C∗ λ- GLn a
one-parameter subgroup, we have an induced weight space decomposition of V

V = ⊕iVλ,i where Vλ,i = {v ∈ V | λ(t).v = tiv,∀t ∈ C∗}.
In particular, we apply this to the underlying vectorspace of Mψ which is V = Cn
(column vectors) on which GLn acts by left multiplication. We define

Mj = ⊕i>jVλ,i
and claim that this defines a finite filtration on Mψ with associated graded A-
module Mρ. For any a ∈ A (it suffices to vary a over the generators of A) we can
consider the linear maps

φij(a) : Vλ,i ⊂ - V = Mψ
a.- Mψ = V -- Vλ,j

(that is, we express the action of a in a blockmatrix Φa with respect to the de-
composition of V ). Then, the action of a on the module corresponding to λ(t).ψ is
given by the matrix Φ′a = λ(t).Φa.λ(t)−1 with corresponding blocks

Vλ,i
φij(a)- Vλ,j

Vλ,i

λ(t)−1

6

φ′ij(a)
- Vλ,j

λ(t)

?
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that is φ′ij(a) = tj−iφij(a). Therefore, if limt→0λ(t).ψ exists we must have that

φij(a) = 0 for all j < i.

But then, the action by a sends any Mk = ⊕i>kVλ,i to itself, that is, the Mk are
A-submodules of Mψ. Moreover, for j > i we have

lim
t→0

φ′ij(a) = lim
t→0

tj−iφij(a) = 0

Consequently, the action of a on ρ is given by the diagonal blockmatrix with blocks
φii(a), but this is precisely the action of a on Vi = Mi−1/Mi, that is, ρ corresponds
to the associated graded module.

(2)⇒ (1) : Given a finite filtration on Mψ

F : 0 = Mt+1 ⊂ . . . ⊂M1 ⊂M0 = Mψ

we have to find a one-parameter subgroup C∗ λ- GLn which induces the filtration
F as in the first part of the proof. Clearly, there exist subspaces Vi for 0 ≤ i ≤ t
such that

V = ⊕ti=0Vi and Mj = ⊕tj=iVi.
Then we take λ to be defined by λ(t) = tiIdVi

for all i and it verifies the claims. �

Example 2.20. Let Mψ we the 2-dimensional C[x]-module determined by the
Jordan block and consider the canonical basevectors[

λ 1
0 λ

]
e1 =

[
1
0

]
e2 =

[
0
1

]
Then, Ce1 is a C[x]-submodule of Mψ and we have a filtration

0 = M2 ⊂ Ce1 = M1 ⊂ Ce1 ⊕ Ce2 = M0 = Mψ

Using the conventions of the second part of the above proof we then have

V1 = Ce1 V2 = Ce2 hence λ(t) =
[
t 0
0 1

]
Indeed, we then obtain that[

t 0
0 1

]
.

[
λ 1
0 λ

]
.

[
t−1 0
0 1

]
=

[
λ t
0 λ

]
and the limit t - 0 exists and is the associated graded module grF Mψ = Mρ

determined by the diagonal matrix.

Consider two modules Mψ,Mψ ∈ repn A. Assume that O(Mρ) ⊂ - O(Mψ)
and that we can reach the orbit of Mρ via a one-parameter subgroup. Then,
lemma 2.19 asserts that Mρ must be decomposable as it is the associated graded
of a nontrivial filtration on Mψ. This gives us a criterium to construct examples
showing that the closedness assumption in the formulation of Hilbert’s criterium is
essential.

Example 2.21. (Nullcone of M2
3 = M3 ⊕M3)

In chapter 6 we will describe a method to determine the nullcones of m-tuples
of n×n matrices. The special case of 2 3×3 matrices has been worked out by H.P.
Kraft in [44, p.202]. The orbits are depicted in figure 1 In this picture, each node
corresponds to a torus. The right hand number is the dimension of the torus and
the left hand number is the dimension of the orbit represented by a point in the
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Figure 1. Kraft’s diamond describing the nullcone of M2
3 .

torus. The solid or dashed lines indicate orbitclosures. For example, the dashed
line corresponds to the following two points in M2

3 = M3 ⊕M3

ψ = (

0 0 1
0 0 1
0 0 0

 ,
0 1 0

0 0 0
0 0 0

) ρ = (

0 0 1
0 0 0
0 0 0

 ,
0 1 0

0 0 0
0 0 0

)

We claim that Mρ is an indecomposable 3-dimensional module of C〈x, y〉. Indeed,
the only subspace of the column vectors C3 left invariant under both x and y is
equal to C

0
0


hence Mρ cannot have a direct sum decomposition of two or more modules. Next,
we claim that O(Mρ) ⊂ - O(Mψ). Indeed, simultaneous conjugating ψ with the
invertible matrix1 ε−1 − 1 0

0 1 0
0 0 ε−1

 we obtain the couple (

0 0 1
0 0 ε
0 0 0

 ,
0 1 0

0 0 0
0 0 0

)

and letting ε - 0 we see that the limiting point is ρ.

The Jordan-Hölder theorem , see for example [63, 2.6] asserts that any finite
dimensional A-module M has a composition series , that is, M has a finite filtration

F : 0 = Mt+1 ⊂Mt ⊂ . . . ⊂M1 ⊂M0 = M

such that the successive quotients Si = Mi/Mi+1 are all simple A-modules for
0 ≤ i ≤ t. Moreover, these composition factors S and their multiplicities are
independent of the chosen composition series, that is, the set {S0, . . . , St} is the
same for every composition series. In particular, the associated graded module for
a composition series is determined only up to isomorphism and is the semisimple
n-dimensional module

gr M = ⊕ti=0Si
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Theorem 2.22. Let A be an affine C-algebra and M ∈ repn A.
(1) The orbit O(M) is closed in repn A if and only if M is an n-dimensional

semisimple A-module.
(2) The orbitclosure O(M) contains exactly one closed orbit, corresponding to

the direct sum of the composition factors of M .
(3) The points of the quotient variety of repn A under GLn parameterize the

isomorphism classes of n-dimensional semisimple A-modules. We will
denote the quotient variety by issn A.

Proof. (1) : Assume that the orbit O(M) is Zariski closed. Let gr M be
the associated graded module for a composition series of M . From lemma 2.19 we
know that O(gr M) is contained in O(M) = O(M). But then gr M ' M whence
M is semisimple.

Conversely, assumeM is semisimple. We know that the orbitclosure O(M) con-
tains a closed orbit, say O(N). By the Hilbert criterium we have a one-parameter
subgroup C∗ λ- GLn such that

lim
t→0

λ(t).M = N ′ ' N.

By lemma 2.19 this means that there is a finite filtration F on M with associated
graded module grF M ' N . For the semisimple module M the only possible
finite filtrations are such that each of the submodules is a direct sum of simple
components, so grF M 'M , whence M ' N and hence the orbit O(M) is closed.

(2) : Remains only to prove uniqueness of the closed orbit in O(M). This
either follows from the Jordan-Hölder theorem or, alternatively, from the separation
property of the quotient map to be proved in the next section.

(3) : We will prove in the next section that the points of a quotient variety
parameterize the closed orbits. �

Example 2.23. Recall the description of the orbits in M2
2 = M2 ⊕M2 given

in the previous chapter.

C5 −H

•3 ////////

��������•

• •3 3

2

H − S

•

• •777777777

���������0

2 2
P1

S

and each fiber contains a unique closed orbit. The one over a point in H − S
corresponding to the matrix couple

(
[
a1 0
0 a2

]
,

[
b1 0
0 b2

]
)

which is indeed a semi-simple module of C〈x, y〉 (the direct sum of the two 1-
dimensional simple representations determined by x 7→ ai and y 7→ bi). In case
a1 = a2 and b1 = b2 these two simples coincide and the semi-simple module having
this factor with multiplicity two is the unique closed orbit in the fiber of a point in
S.
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Example 2.24. Assume A is a finite dimensional C-algebra. Then, there are
only a finite number, say k, of nonisomorphic n-dimensional semisimple A-modules.
Hence issn A is a finite number of k points, whence repn A is the disjoint union of
k connected components, each consisting of all n-dimensional A-modules with the
same composition factors. Connectivity follows from the fact that the orbit of the
sum of the composition factors lies in the closure of each orbit.

Example 2.25. Let A be an affine commutative algebra with presentation A =
C[x1, . . . , xm]/IA and let X be the affine variety V(IA). Observe that any simple
A-module is one-dimensional hence corresponds to a point in X. (Indeed, for any
algebra A a simple k-dimensional module determines an epimorphism A -- Mk

and Mk is only commutative if k = 1). Applying the Jordan-Hölder theorem we
see that

issn A ' X(n) = X × . . .×X︸ ︷︷ ︸
n

/Sn

the n-th symmetric product of X.

2.5. Some invariant theory.

The results in this section hold for any reductive algebraic group. Because we
work with GLn (or later with products GL(α) = GLa1 × . . .×GLak

) we include a
proof in this case. Our first aim is to prove that GLn is a reductive group , that is,
all GLn-representations are completely reducible. Consider the unitary group

Un = {A ∈ GLn | A.A∗ = rr
n}

where A∗ is the Hermitian transpose of A. Clearly, Un is a compact Lie group.
Any compact Lie group has a so called Haar measure which allows one to integrate
continuous complex valued functions over the group in an invariant way. That is,
there is a linear function assigning to every continuous function f : Un - C its
integral

f 7→
∫
Un

f(g)dg ∈ C

which is normalized such that
∫
Un
dg = 1 and is left and right invariant, which

means that for all u ∈ Un we have the equalities∫
Un

f(gu)dg =
∫
Un

f(g)dg =
∫
Un

f(ug)dg.

This integral replaces the classical idea in representation theory of averaging func-
tions over a finite group.

Proposition 2.26. Every Un-representation is completely reducible.

Proof. Take a finite dimensional complex vectorspace V with a Un-action and
assume that W is a subspace of V left invariant under this action. Extending a
basis of W to V we get a linear map V

φ-- W which is the identity on W . For
any v ∈ V we have a continuous map

Un - W g 7→ g.φ(g−1.v)
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(use that W is left invariant) and hence we can integrate it over Un (integrate the
coordinate functions). Hence we can define a map φ0 : V - W by

φ0(v) =
∫
Un

g.φ(g−1.v)dg.

Clearly, φ0 is linear and is the identity on W . Moreover,

φ0(u.v) =
∫
Un

g.φ(g−1u.v)dg = u.

∫
Un

u−1g.φ(g−1u.v)dg

∗=u.
∫
Un

gφ(g−1.v)dg = u.φ0(v)

where the starred equality uses the invariance of the Haar measure. Hence, V =
W ⊕Ker φ0 is a decomposition as Un-representations. Continuing whenever one
of the components has a nontrivial subrepresentation we arrive at a decomposition
of V into simple Un-representations. �

We claim that for any n, Un is Zariski dense in GLn. Let Dn be the group of
all diagonal matrices in GLn. The Cartan decomposition for GLn asserts that

GLn = Un.Dn.Un

For, take g ∈ GLn then g.g∗ is an Hermitian matrix and hence diagonalizable by
unitary matrices. So, there is a u ∈ Un such that

u−1.g.g∗.u =

α1

. . .
αn

 = s−1.g.s︸ ︷︷ ︸
p

. s−1.g∗.s︸ ︷︷ ︸
p∗

Then, each αi > 0 ∈ R as αi =
∑n
j=1 ‖ pij ‖2. Let βi =

√
αi and let d the diagonal

matrix diag(β1, . . . , βn). Clearly,

g = u.d.(d−1.u−1.g) and we claim v = d−1.u−1.g ∈ Un.

Indeed, we have

v.v∗ =(d−1.u−1.g).(g∗.u.d−1) = d−1.(u−1.g.g∗.u).d−1

=d−1.d2.d−1 = rr
n

proving the Cartan decomposition. Now, Dn = C∗ × . . . × C∗ and Dn ∩ Un =
U1 × . . .× U1 and because U1 = µ is Zariski dense (being infinite) in D1 = C∗, we
have thatDn is contained in the Zariski closure of Un. By the Cartan decomposition
we then have that the Zariski closure of Un is GLn.

Theorem 2.27. GLn is a reductive group. That is, all GLn-representations
are completely reducible.

Proof. Let V be a GLn-representation having a subrepresentation W . In
particular, V and W are Un-representations, so by the foregoing proposition we
have a decomposition V = W ⊕W ′ as Un-representations. Consider the subgroup

N = NGLn
(W ′) = {g ∈ GLn | g.W ′ ⊂W ′}

then N is a Zariski closed subgroup of GLn containing Un. As the Zariski closure
of Un is GLn we have N = GLn and hence that W ′ is a representation of GLn.
Continuing gives a decomposition of V in simple GLn-representations. �
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Let S = SGLn
be the set of isomorphism classes of simple GLn-representations.

If W is a simple GLn-representation belonging to the isomorphism class s ∈ S, we
say that W is of type s and denote this by W ∈ s. Let X be a complex vectorspace
(not necessarily finite dimensional) with a linear action of GLn. We say that the
action is locally finite on X if, for any finite dimensional subspace Y of X, there
exists a finite dimensional subspace Y ⊂ Y ′ ⊂ X which is a GLn-representation.
The isotypical component of X of type s ∈ S is defined to be the subspace

X(s) =
∑
{W |W ⊂ X,W ∈ s}.

If V is a GLn-representation, we have seen that V is completely reducible. Then,
V = ⊕V(s) and every isotypical component V(s) ' W⊕es for W ∈ s and some
number es. Clearly, es 6= 0 for only finitely many classes s ∈ S. We call the
decomposition V = ⊕s∈SV(s) the isotypical decomposition of V and we say that the
simple representation W ∈ s occurs with multiplicity es in V .

If V ′ is another GLn-representation and if V
φ- V ′ is a morphism of GLn-

representations (that is, a linear map commuting with the action), then for any
s ∈ S we have that φ(V(s)) ⊂ V ′(s). If the action of GLn on X is locally finite, we
can reduce to finite dimensional GLn-subrepresentation and obtain a decomposition

X = ⊕s∈SX(s),

which is again called the isotypical decomposition of X.
Let V be a GLn-representation of some dimension m. Then, we can view V

as an affine space Cm and we have an induced action of GLn on the polynomial
functions f ∈ C[V ] by the rule

V
f - C

V

g.

?.....
.....

.....
.....

.....
.....

..

g.
f

-

that is (g.f)(v) = f(g−1.v) for all g ∈ GLn and all v ∈ V . If C[V ] = C[x1, . . . , xm] is
graded by giving all the xi degree one, then each of the homogeneous components of
C[V ] is a finite dimensional GLn-representation. Hence, the action of GLn on C[V ]
is locally finite. Indeed, let {y1, . . . , yl} be a basis of a finite dimensional subspace
Y ⊂ C[V ] and let d be the maximum of the deg(yi). Then Y ′ = ⊕di=0C[V ]i is a
GLn-representation containing Y .

Therefore, we have an isotypical decomposition C[V ] = ⊕s∈SC[V ](s). In par-
ticular, if 0 ∈ S denotes the isomorphism class of the trivial GLn-representation
(Ctriv = Cx with g.x = x for every g ∈ GLn) then we have

C[V ](0) = {f ∈ C[V ] | g.f = f,∀g ∈ GLn} = C[V ]GLn

the ring of polynomial invariants , that is, of polynomial functions which are con-
stant along orbits in V .

Lemma 2.28. Let V be a GLn-representation.
(1) Let I / C[V ] be a GLn-stable ideal, that is, g.I ⊂ I for all g ∈ GLn, then

(C[V ]/I)GLn ' C[V ]GLn/(I ∩ C[V ]GLn).
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(2) Let J / C[V ]GLn be an ideal, then we have a lying-over property

J = JC[V ] ∩ C[V ]GLn .

Hence, C[V ]GLn is Noetherian, that is, every increasing chain of ideals
stabilizes.

(3) Let Ij be a family of GLn-stable ideals of C[V ], then

(
∑
j

Ij) ∩ C[V ]GLn =
∑
j

(Ij ∩ C[V ]GLn).

Proof. (1) : As I has the induced GLn-action which is locally finite we have
the isotypical decomposition I = ⊕I(s) and clearly I(s) = C[V ](s) ∩ I. But then
also, taking quotients we have

⊕s(C[V ]/I)(s) = C[V ]/I = ⊕sC[V ](s)/I(s).

Therefore, (C[V ]/I)(s) = C[V ](s)/I(s) and taking the special case s = 0 is the
statement.

(2) : For any f ∈ C[V ]GLn left-multiplication by f in C[V ] commutes with the
GLn-action, whence f.C[V ](s) ⊂ C[V ](s). That is, C[V ](s) is a C[V ]GLn -module.
But then, as J ⊂ C[V ]GLn we have

⊕s(JC[V ])(s) = JC[V ] = ⊕sJC[V ](s).

Therefore, (JC[V ])(s) = JC[V ](s) and again taking the special value s = 0 we
obtain JC[V ] ∩ C[V ]GLn = (JC[V ])(0) = J . The Noetherian statement follows
from the fact that C[V ] is Noetherian (the Hilbert basis theorem).

(3) : For any j we have the decomposition Ij = ⊕s(Ij)(s). But then, we have

⊕s(
∑
j

Ij)(s) =
∑
j

Ij =
∑
j

⊕s(Ij)(s) = ⊕s
∑
j

(Ij)(s).

Therefore, (
∑
j Ij)(s) =

∑
j(Ij)(s) and taking s = 0 gives the required statement.

�

Theorem 2.29. Let V be a GLn-representation. Then, the ring of polynomial
invariants C[V ]GLn is an affine C-algebra.

Proof. Because the action of GLn on C[V ] preserves the gradation, the ring
of invariants is also graded

C[V ]GLn = R = C⊕R1 ⊕R2 ⊕ . . . .

From lemma 2.28(2) we know that C[V ]GLn is Noetherian and hence the ideal
R+ = R1 ⊕ R2 ⊕ . . . is finitely generated R+ = Rf1 + . . . + Rfl by homogeneous
elements f1, . . . , fl. We claim that as a C-algebra C[V ]GLn is generated by the fi.
Indeed, we have R+ =

∑l
i=1 Cfi +R2

+ and then also

R2
+ =

l∑
i,j=1

Cfifj +R3
+

and iterating this procedure we obtain for all powers m that

Rm+ =
∑

P
mi=m

Cfm1
1 . . . fml

l +Rm+1
+ .
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Now, consider the subalgebra C[f1, . . . , fl] of R = C[V ]GLn , then we obtain for any
power d > 0 that

C[V ]GLn = C[f1, . . . , fl] +Rd+.

For any i we then have for the homogeneous components of degree i

Ri = C[f1, . . . , fl]i + (Rd+)i.

Now, if d > i we have that (Rd+)i = 0 and hence that Ri = C[f1, . . . , fl]i. As this
holds for all i we proved the claim. �

Choose generating invariants f1, . . . , fl of C[V ]GLn , consider the morphism

V
φ- Cl defined by v 7→ (f1(v), . . . , fl(v))

and define W to be the Zariski closure φ(V ) in Cl. Then, we have a diagram

V
φ - Cl

W
∪

6

π

-

and an isomorphism C[W ]
π∗- C[V ]GLn . More general, let X be a closed GLn-

stable subvariety of V , then X = VV (I) for some GLn-stable ideal I of C[V ]. From
lemma 2.28(1) we obtain

C[X]GLn = (C[V ]/I)GLn = C[V ]GLn/(I ∩ C[V ]GLn)

whence C[X]GLn is also an affine algebra (and generated by the images of the fi).
Define Y to be the Zariski closure of φ(X) in Cl, then we have a diagram

X
φ - Cl

Y
∪

6

π

-

and an isomorphism C[Y ]
π- C[X]GLn . We call the morphism X

π- Y an
algebraic quotient of X under GLn. We will now prove some important properties
of this quotient.

Proposition 2.30 (universal property). If X
µ- Z is a morphism which is

constant along GLn-orbits in X, then there exists a unique factoring morphism µ

X
π - Y

Z
�...

.....
.....

.....
.....

.....
....

µ
µ

-
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Proof. As µ is constant along GLn-orbits in X, we have an inclusion
µ∗(C[Z]) ⊂ C[X]GLn . We have the commutative diagram

C[X]

C[X]GLn

∪

6

C[Z] ............................................
µ∗

-
µ
∗

-

-

C[Y ]

�

π ∗

�

'

from which the existence and uniqueness of µ follows. �

As a consequence, an algebraic quotient is uniquely determined up to isomor-
phism (that is, we might have started from other generating invariants and still
obtain the same quotient variety up to isomorphism).

Proposition 2.31 (onto property). The algebraic quotient X
π- Y is sur-

jective. Moreover, if Z ⊂ - X is a closed GLn-stable subset, then π(Z) is closed
in Y and the morphism

πX | Z : Z - π(Z)
is an algebraic quotient, that is, C[π(Z)] ' C[Z]GLn .

Proof. Let y ∈ Y with maximal ideal My / C[Y ]. By lemma 2.28(2) we
have MyC[X] 6= C[X] and hence there is a maximal ideal Mx of C[X] containing
MyC[X], but then π(x) = y. Let Z = VX(I) for a G-stable ideal I of C[X], then
π(Z) = VY (I ∩C[Y ]). That is, C[π(Z)] = C[Y ]/(I ∩C[Y ]). However, we have from
lemma 2.28(1) that

C[Y ]/(C[Y ] ∩ I) ' (C[X]/I)GLn = C[Z]GLn

and hence C[π(Z)] = C[Z]GLn . Finally, surjectivity of π | Z is proved as above. �

An immediate consequence is that the Zariski topology on Y is the quotient
topology of that on X. For, take U ⊂ Y with π−1(U) Zariski open in X. Then,
X − π−1(U) is a GLn-stable closed subset of X. Then, π(X − π−1(U)) = Y −U is
Zariski closed in Y .

Proposition 2.32 (separation property). The quotient X
π- Y separates

disjoint closed GLn-stable subvarieties of X.

Proof. Let Zj be closed GLn-stable subvarieties of X with defining ideals
Zj = VX(Ij). Then, ∩jZj = VX(

∑
j Ij). Applying lemma 2.28(3) we obtain

π(∩jZj) = VY ((
∑
j

Ij) ∩ C[Y ]) = VY (
∑
j

(Ij ∩ C[Y ]))

= ∩jVY (Ij ∩ C[Y ]) = ∩jπ(Zj)

The onto property implies that π(Zj) = π(Zj) from which the statement follows.
�
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It follows from the universal property that the quotient variety Y determined
by the ring of polynomial invariants C[Y ]GLn is the best algebraic approximation
to the orbit space problem. From the separation property a stronger fact follows.

Proposition 2.33. The algebraic quotient X
π- Y is the best continuous

approximation to the orbit space. That is, points of Y parameterize the closed GLn-
orbits in X. In fact, every fiber π−1(y) contains exactly one closed orbit C and we
have

π−1(y) = {x ∈ X | C ⊂ GLn.x}

Proof. The fiber F = π−1(y) is a GLn-stable closed subvariety of X. Take
any orbit GLn.x ⊂ F then either it is closed or contains in its closure an orbit
of strictly smaller dimension. Induction on the dimension then shows that G.x
contains a closed orbit C. On the other hand, assume that F contains two closed
orbits, then they have to be disjoint contradicting the separation property. �

2.6. Geometric reconstruction

In this section we will give a geometric interpretation of the reconstruction
result of theorem 1.28. Let A be a Cayley-Hamilton algebra of degree n, with
trace map trA, which is generated by at most m elements a1, . . . , am. We will give
a functorial interpretation to the affine scheme determined by the canonical ideal
NA / C[Mm

n ] in the formulation of theorem 1.28. First, let us identify the reduced
affine variety V(NA). A point m = (m1, . . . ,mm) ∈ V(NA) determines an algebra
map fm : C[Mm

n ]/NA - C and hence an algebra map φm

A .......................
φm
- Mn(C)

Mn(C[Mm
n ]/NA)
?

∩

M
n
(f

m
)

-

which is trace preserving. Conversely, from the universal property it follows that
any trace preserving algebra morphism A - Mn(C) is of this form by considering
the images of the trace generators a1, . . . , am of A. Alternatively, the points of
V(NA) parameterize n-dimensional trace preserving representations of A. That is,
n-dimensional representations for which the morphism A - Mn(C) describing
the action is trace preserving. For this reason we will denote the variety V(NA) by
reptrn A and call it the trace preserving reduced representation variety of A.

Assume that A is generated as a C-algebra by a1, . . . , am (observe that this is
no restriction as trace affine algebras are affine) then clearly IA(n) ⊂ NA. That is,

Lemma 2.34. For A a Cayley-Hamilton algebra of degree n generated by
{a1, . . . , am}, the reduced trace preserving representation variety

reptrn A ⊂ - repn A

is a closed subvariety of the reduced representation variety.

It is easy to determine the additional defining equations. For, write any trace
monomial out in the generators

trA(ai1 . . . aik) =
∑

αj1...jlaj1 . . . ajl
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then for a point m = (m1, . . . ,mm) ∈ repn A to belong to reptrn A, it must satisfy
all the relations of the form

tr(mi1 . . .mik) =
∑

αj1...jlmj1 . . .mjl

with tr the usual trace on Mn(C). These relations define the closed subvariety
reptrn (A). Usually, this is a proper subvariety.

Example 2.35. Let A be a finite dimensional semi-simple algebra A =
Md1(C)⊕. . .⊕Mdk

(C), then A has precisely k distinct simple modules {M1, . . . ,Mk}
of dimensions {d1, . . . , dk}. Here, Mi can be viewed as column vectors of size di
on which the component Mdi(C) acts by left multiplication and the other factors
act as zero. Because A is semi-simple every n-dimensional A-representation M is
isomorphic to

M = M⊕e11 ⊕ . . .⊕M⊕ek

k

for certain multiplicities ei satisfying the numerical condition

n = e1d1 + . . .+ ekdk

That is, repn A is the disjoint union of a finite number of (closed) orbits each
determined by an integral vector (e1, . . . , ek) satisfying the condition called the
dimension vector of M .

repn A '
⊔

(e1,...,ek)

GLn/(GLe1 × . . . GLek
)

Let fi ≥ 1 be natural numbers such that n = f1d1 + . . . fkdk and consider the
embedding of A into Mn(C) defined by

(a1, . . . , ak) ∈ A -



a1 0
. . .

0 a1


︸ ︷︷ ︸

f1

. . .
fk︷ ︸︸ ︷ak 0
. . .

0 ak




∈Mn(C)

Via this embedding, A becomes a Cayley-Hamilton algebra of degree n when
equipped with the induced trace tr from Mn(C).

Let M be the n-dimensional A-representation with dimension vector
(e1, . . . , ek) and choose a basis compatible with this decomposition. Let Ei be
the idempotent of A corresponding to the identity matrix Idi

of the i-th factor.
Then, the trace of the matrix defining the action of Ei on M is clearly eidi.In. On
the other hand, tr(Ei) = fidi.In, hence the only trace preserving n-dimensional A-
representation is that of dimension vector (f1, . . . , fk). Therefore, reptrn A consists
of the single closed orbit determined by the integral vector (f1, . . . , fk).

reptrn A ' GLn/(GLf1 × . . .×GLfk
)
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Consider the scheme structure of the trace preserving representation variety
reptr

n
A. The corresponding functor assigns to a commutative affine C-algebra R

reptr
n

(R) = AlgC(C[Mm
n ]/NA, R).

An algebra morphism ψ : C[Mm
n ]/NA - R determines uniquely an m-tuple of

n× n matrices with coefficients in R by

rk =

ψ(x11(k)) . . . ψ(x1n(k))
...

...
ψ(xn1(k)) . . . ψ(xnn(k))


Composing with the canonical embedding

A .......................
φ
- Mn(R)

Mn(C[Mm
n ]/NA)
?

∩

M
n
(ψ

)

-

determines the trace preserving algebra morphism φ : A - Mn(R) where the
trace map on Mn(R) is the usual trace. By the universal property any trace pre-
serving map A - Mn(R) is also of this form.

Lemma 2.36. Let A be a Cayley-Hamilton algebra of degree n which is generated
by {a1, . . . , am}. The trace preserving representation variety reptr

n
A represents the

functor
reptr

n
A(R) = {A φ- Mn(R) | φ is trace preserving }

Moreover, reptr
n
A is a closed subscheme of rep

n
A.

Recall that there is an action of GLn on C[Mm
n ] and from the definition of the

ideals IA(n) and NA it is clear that they are stable under the GLn-action. That is,
there is an action by automorphisms on the quotient algebras C[Mm

n ]/IA(n) and
C[Mm

n ]/NA. But then, their algebras of invariants are equal to{
C[rep

n
A]GLn = (C[Mm

n ]/IA(n))GLn = Nm
n

(IA(n)∩Nm
n )

C[reptr
n
A]GLn = (C[Mm

n ]/NA)GLn = Nm
n

(NA∩Nm
n )

That is, these rings of invariants define closed subschemes of the affine (reduced)
variety associated to the necklace algebra Nmn . We will call these schemes the
quotient schemes for the action of GLn and denote them respectively by

issn A = rep
n
A/GLn and isstrn A = reptr

n
A/GLn.

We have seen that the geometric points of the reduced variety issn A of the affine
quotient scheme issn A parameterize the isomorphism classes of n-dimensional
semisimple A-representations. Similarly, the geometric points of the reduced variety
isstrn A of the quotient scheme isstrn A parameterize isomorphism classes of trace
preserving n-dimensional semisimple A-representations.

Proposition 2.37. Let A be a Cayley-Hamilton algebra of degree n with trace
map trA. Then, we have that

trA(A) = C[isstrn A],
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the coordinate ring of the quotient scheme isstrn A. In particular, maximal ideals
of trA(A) parameterize the isomorphism classes of trace preserving n-dimensional
semi-simple A-representations.

By definition, a GLn-equivariant map between the affine GLn-schemes

reptr
n
A

f- Mn = Mn

means that for any commutative affine C-algebra R the corresponding map

reptr
n
A(R)

f(R)- Mn(R)

commutes with the action of GLn(R). Alternatively, the ring of all morphisms
reptr

n
A - Mn is the matrixalgebra Mn(C[Mm

n ]/NA) and those that commute
with the GLn action are precisely the invariants. That is, we have the following
description of A.

Theorem 2.38. Let A be a Cayley-Hamilton algebra of degree n with trace map
trA. Then, we can recover A as the ring of GLn-equivariant maps

A = {f : reptr
n
A - Mn equivariant }

of affine GLn-schemes.

Summarizing the results of this and the previous section we have

Theorem 2.39. The functor

alg @n
rept

- GLn − aff

which assigns to a Cayley-Hamilton algebra A of degree n the GLn-affine scheme
reptr

n
A of trace preserving n-dimensional representations has a left inverse. This

left inverse functor

GLn − aff
wit- alg @n

assigns to a GLn-affine scheme X its witness algebra Mn(C[X])GLn which is a
Cayley-Hamilton algebra of degree n.

Note however that this functor is not an equivalence of categories. For, there
are many affine GLn-schemes having the same witness algebra as we will see in the
next section.

We will give an application of the algebraic reconstruction result, theorem 1.28,
to finite dimensional algebras. First, we define a norm map for algebras in alg @n.

Let A be a Cayley-Hamilton algebra of degree n wit trace map tr, then we can
define a norm map on A by defining

N(a) = σn(a) for all a ∈ A.

Recall that the elementary symmetric function σn is a polynomial function
f(t1, t2, . . . , tn) in the Newton functions ti =

∑n
j=1 x

i
j . Then, σ(a) =

f(tr(a), tr(a2), . . . , tr(an)). Because, we have a trace preserving embedding
A ⊂ - Mn(C[reptr

n
A]) and the norm map N coincides with the determinant

in this matrix-algebra, we have that

N(1) = 1 and ∀a, b ∈ A N(ab) = N(a)N(b).
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Furthermore, the norm map extends to a polynomial map on A[t] and we have that
χ

(n)
a (t) = N(t − a), in particular we can obtain the trace by polarization of the

norm map. Consider a finite dimensional semi-simple C-algebra

A = Md1(C)⊕ . . .⊕Mdk
(C),

then all the Cayley-Hamilton structures of degree n on A with trace values in C
are given by the following result.

Lemma 2.40. Let A be a semi-simple algebra as above and tr a trace map on A
making it into a Cayley-Hamilton algebra of degree n with tr(A) = C. Then, there
exist a dimension vector α = (m1, . . . ,mk) ∈ Nk+ such that n =

∑k
i=1midi and for

any a = (A1, . . . , Ak) ∈ A with Ai ∈Mdi
(C) we have that

tr(a) = m1Tr(A1) + . . .+mkTr(Ak)

where Tr are the usual trace maps on matrices.

Proof. The norm-map N on A defined by the trace map tr induces a group
morphism on the invertible elements of A

N : A∗ = GLd1(C)× . . .×GLdk
(C) - C∗

that is, a character. Now, any character is of the following form, let Ai ∈ GLdi(C),
then for a = (A1, . . . , Ak) we must have

N(a) = det(A1)m1det(A2)m2 . . . det(Ak)mk

for certain integers mi ∈ Z. Since N extends to a polynomial map on the whole of
A we must have that all mi ≥ 0. By polarization it then follows that

tr(a) = m1Tr(A1) + . . .mkTr(Ak)

and it remains to show that no mi = 0. Indeed, if mi = 0 then tr would be the zero
map on Mdi

(C), but then we would have for any a = (0, . . . , 0, A, 0, . . . , 0) with
A ∈Mdi(C) that

χ(n)
a (t) = tn

whence χ(n)
a (a) 6= 0 whenever A is not nilpotent. This contradiction finishes the

proof. �

We can extend this to all finite dimensional C-algebras. Let A be a finite
dimensional algebra with radical J and assume there is a trace map tr on A making
A into a Cayley-Hamilton algebra of degree n and such that tr(A) = C. We claim
that the norm map N : A - C is zero on J . Indeed, any j ∈ J satisfies jl = 0
for some l whence N(j)l = 0. But then, polarization gives that tr(J) = 0 and we
have that the semisimple algebra

Ass = A/J = Md1(C)⊕ . . .⊕Mdk
(C)

is a semisimple Cayley-hamilton algebra of degree n on which we can apply the
foregoing lemma. Finally, note that A ' Ass⊕J as C-vectorspaces. This concludes
the proof of

Proposition 2.41. Let A be a finite dimensional C-algebra with radical J and
semisimple part

Ass = A/J = Md1(C)⊕ . . .⊕Mdk
(C).
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If tr : A - C ⊂ - A is a trace map such that A is a Cayley-Hamilton algebra
of degree n, there exists a dimension vector α = (m1, . . . ,mk) ∈ Nk+ such that for
all a = (A1, . . . , Ak, j) with Ai ∈Mdi(C) and j ∈ J we have

tr(a) = m1Tr(A1) + . . .mkTr(Ak)

with Tr the usual traces on Mdi
(C) and

∑
imidi = n.

Fix a trace map tr on A determined by a dimension vector α = (m1, . . . ,mk) ∈
Nk. Then, the trace preserving variety reptr

n
A is the scheme of A-modules of

dimension vector α, that is, those A-modules M such that

Mss = S⊕m1
1 ⊕ . . .⊕ S⊕mk

k

where Si is the simple A-module of dimension di determined by the i-th factor in
Ass. An immediate consequence of the reconstruction theorem 2.38 is

Proposition 2.42. Let A be a finite dimensional algebra with trace map tr :
A - C determined by a dimension vector α = (m1, . . . ,mk) as before with all
mi > 0. Then, A can be recovered from the GLn-structure of the affine scheme
reptr

n
A of all A-modules of dimension vector α.

Still, there can be other trace maps on A making A into a Cayley-Hamilton
algebra of degree n. For example let C be a finite dimensional commutative C-
algebra with radical N , then A = Mn(C) is finite dimensional with radical J =
Mn(N) and the usual trace map tr : Mn(C) - C makes A into a Cayley-
Hamilton algebra of degree n such that tr(J) = N 6= 0. Still, if A is semi-simple,
the center Z(A) = C⊕ . . .⊕ C (as many terms as there are matrix components in
A) and any subring of Z(A) is of the form C ⊕ . . . ⊕ C. In particular, tr(A) has
this form and composing the trace map with projection on the j-th component we
have a trace map trj on which we can apply lemma 2.40.

2.7. The Gerstenhaber-Hesselink theorem.

In this section we will give examples of distinct GLn-affine schemes having
the same witness algebra, proving that the left inverse of theorem 2.39 is not an
equivalence of categories. We will study the orbits in repn C[x] or, equivalent,
conjugacy classes of n× n matrices.

It is sometimes convenient to relax our definition of partitions to include zeroes
at its tail. That is, a partition p of n is an integral n-tuple (a1, a2, . . . , an) with
a1 ≥ a2 ≥ . . . ≥ an ≥ 0 with

∑n
i=1 ai = n. As before, we represent a partition by a

Young diagram by omitting rows corresponding to zeroes.
If q = (b1, . . . , bn) is another partition of n we say that p dominates q and

write

p > q if and only if
r∑
i=1

ai ≥
r∑
i=1

bi for all 1 ≤ r ≤ n.

For example, the partitions of 4 are ordered as indicated below

> > > >
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Note however that the dominance relation is not a total ordering whenever n ≥ 6.
For example, the following two partition of 6

are not comparable. The dominance order is induced by the Young move of throw-
ing a row-ending box down the diagram. Indeed, let p and q be partitions of n such
that p > q and assume there is no partition r such that p > r and r > q. Let i be
the minimal number such that ai > bi. Then by the assumption ai = bi + 1. Let
j > i be minimal such that aj 6= bj , then we have bj = aj + 1 because p dominates
q. But then, the remaining rows of p and q must be equal. That is, a Young move
can be depicted as

p =

i

j

−→ q =

i

j

For example, the Young moves between the partitions of 4 given above are as
indicated

.
→

.
→

.

→

.

→

A Young p-tableau is the Young diagram of p with the boxes labeled by integers
from {1, 2, . . . , s} for some s such that each label appears at least ones. A Young
p-tableau is said to be of type q for some partition q = (b1, . . . , bn) of n if the
following conditions are met :

• the labels are non-decreasing along rows,
• the labels are strictly increasing along columns, and
• the label i appears exactly bi times.

For example, if p = (3, 2, 1, 1) and q = (2, 2, 2, 1) then the p-tableau below

4

3

2

1 1 3

2

is of type q (observe that p > q and even p → q). In general, let p = (a1, . . . , an)
and q = (b1, . . . , bn) be partitions of n and assume that p → q. Then, there is a
Young p-tableau of type q. For, fill the Young diagram of q by putting 1’s in the
first row, 2’s in the second and so on. Then, upgrade the fallen box together with
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its label to get a Young p-tableau of type q. In the example above

4

3
=⇒

2

1 1

2

3'&%$ !"#

•OO

4

3

2

1 1 3

2

Conversely, assume there is a Young p-tableau of type q. The number of boxes
labeled with a number ≤ i is equal to b1 + . . . + bi. Further, any box with label
≤ i must lie in the first i rows (because the labels strictly increase along a column).
There are a1 + . . .+ ai boxes available in the first i rows whence

i∑
j=1

bi ≤
i∑

j=1

ai for all 1 ≤ i ≤ n

and therefore p > q. After these preliminaries on partitions, let us return to nilpo-
tent matrices.

Let A be a nilpotent matrix of type p = (a1, . . . , an), that is, conjugated to a
matrix with Jordan blocks (all with eigenvalue zero) of sizes ai. We have seen before
that the subspace Vl of column vectors v ∈ Cn such that Al.v = 0 has dimension

l∑
h=1

#{j | aj ≥ h} =
l∑

h=1

a∗h

where p∗ = (a∗1, . . . , a
∗
n) is the dual partition of p. Choose a basis {v1, . . . , vn} of

Cn such that for all l the first a∗1 + . . .+ a∗l base vectors span the subspace Vl. For
example, if A is in Jordan normal form of type p = (3, 2, 1, 1)

0 1 0
0 0 1
0 0 0

0 1
0 0

0
0


then p∗ = (4, 2, 1) and we can choose the standard base vectors ordered as follows

{e1, e4, e6, e7︸ ︷︷ ︸
4

, e2, e5︸ ︷︷ ︸
2

, e3︸︷︷︸
1

}.

Take a partition q = (b1, . . . , bn) with p → q (in particular, p > q), then for the
dual partitions we have q∗ → p∗ (and thus q∗ > p∗). But then there is a Young
q∗-tableau of type p∗. In the example with q = (2, 2, 2, 1) we have q∗ = (4, 3) and
p∗ = (4, 2, 1) and we can take the Young q∗-tableau of type p∗

2 2 3

1 1 1 1
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Now label the boxes of this tableau by the base vectors {v1, . . . , vn} such that the
boxes labeled i in the Young q∗-tableau of type p∗ are filled with the base vectors
from Vi − Vi−1. Call this tableau T . In the example, we can take

T = e2 e5 e3

e1 e4 e6 e7

Define a linear operator F on Cn by the rule that F (vi) = vj if vj is the label of
the box in T just above the box labeled vi. In case vi is a label of a box in the
first row of T we take F (vi) = 0. Obviously, F is a nilpotent n× n matrix and by
construction we have that

rk F l = n− (b∗1 + . . .+ b∗l )

That is, F is nilpotent of type q = (b1, . . . , bn). Moreover, F satisfies F (Vi) ⊂ Vi−1

for all i by the way we have labeled the tableau T and defined F .
In the example above, we have F (e2) = e1, F (e5) = e4, F (e3) = e6 and all

other F (ei) = 0. That is, F is the matrix

0 1
0 0

0 0
0 1
0 0

1 0
0


which is seen to be of type (2, 2, 2, 1) after performing a few Jordan moves.

Returning to the general case, consider for all ε ∈ C the n× n matrix :

Fε = (1− ε)F + εA.

We claim that for all but finitely many values of ε we have Fε ∈ O(A). Indeed,
we have seen that F (Vi) ⊂ Vi−1 where Vi is defined as the subspace such that
Ai(Vi) = 0. Hence, F (V1) = 0 and therefore

Fε(V1) = (1− ε)F + εA(V1) = 0.

Assume by induction that F iε (Vi) = 0 holds for all i < l, then we have that

F lε(Vl) = F l−1
ε ((1− ε)F + εA)(Vl)

⊂ F l−1
ε (Vl−1) = 0

because A(Vl) ⊂ Vl−1 and F (Vl) ⊂ Vl−1. But then we have for all l that

rk F lε ≤ dim Vl = n− (a∗1 + . . .+ a∗l ) = rk Al
def
= rl.

Then for at least one rl × rl submatrix of F lε its determinant considered it as a
polynomial of degree rl in ε is not identically zero (as it is nonzero for ε = 1). But
then this determinant is non-zero for all but finitely many ε. Hence, rk F lε = rk Al

for all l for all but finitely many ε. As these numbers determine the dual partition
p∗ of the type of A, Fε is a nilpotent n × n matrix of type p for all but finitely
many values of ε, proving the claim. But then, F0 = F which we have proved to
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be a nilpotent matrix of type q belongs to the closure of the orbit O(A). That is,
we have proved the difficult part of the Gerstenhaber-Hesselink theorem .

Theorem 2.43. Let A be a nilpotent n×n matrix of type p = (a1, . . . , an) and
B nilpotent of type q = (b1, . . . , bn). Then, B belongs to the closure of the orbit
O(A), that is,

B ∈ O(A) if and only if p > q

in the domination order on partitions of n.

To prove the theorem we only have to observe that if B is contained in the
closure of A, then Bl is contained in the closure of Al and hence rk Al ≥ rk Bl

(because rk Al < k is equivalent to vanishing of all determinants of k × k minors
which is a closed condition). But then,

n−
l∑
i=1

a∗i ≥ n−
l∑
i=1

b∗i

for all l, that is, q∗ > p∗ and hence p > q. The other implication was proved above
if we remember that the domination order was induced by the Young moves and
clearly we have that if B ∈ O(C) and C ∈ O(A) then also B ∈ O(A).

Example 2.44. Nilpotent matrices for small n.
We will apply theorem 2.43 to describe the orbit-closures of nilpotent matrices

of 8×8 matrices. The following table lists all partitions (and their dual in the other
column)

The partitions of 8.

a (8) v (1,1,1,1,1,1,1,1)
b (7,1) u (2,1,1,1,1,1,1)
c (6,2) t (2,2,1,1,1,1)
d (6,1,1) s (3,1,1,1,1,1)
e (5,3) r (2,2,2,1,1)
f (5,2,1) q (3,2,1,1,1)
g (5,1,1,1) p (4,1,1,1,1)
h (4,4) o (2,2,2,2)
i (4,3,1) n (3,2,2,1)
j (4,2,2) m (3,3,1,1)
k (3,3,2) k (3,3,2)
l (4,2,1,1) l (4,2,1,1)

The domination order between these partitions can be depicted as follows where
all the Young moves are from left to right

a�������� b�������� c��������
d��������

e��������
f��������

g��������

h��������
i�������� j��������

k��������

l��������
m�������� n��������

o��������

p��������
q��������

r��������
s��������

t�������� u�������� v��������
??

?? ���� ??
??

??
??

??
?? ����

??
??

??
??

����

����
����

����
����

Of course, from this graph we can read off the dominance order graphs for partitions
of n ≤ 8. The trick is to identify a partition of n with that of 8 by throwing in
a tail of ones and to look at the relative position of both partitions in the above
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picture. Using these conventions we get the following graph for partitions of 7

b�������� d�������� f��������
g��������

i��������
l��������

m��������

p��������

n��������
q��������

r��������

s��������
t�������� u�������� v��������

�����

OOOOOOOOO
OOOOOOOOO

�����

�����

OOOOOOOOO ooooooooo

??
??

? ooooooooo

??
??

?
??

??
?

ooooooooo

and for partitions of 6 the dominance order is depicted as follows
c�������� g�������� l��������

p��������
m��������

q��������
s��������

r��������
t�������� u�������� v��������

??
??

??

??
??

?? ������

������

The dominance order on partitions of n ≤ 5 is a total ordering.

The Gerstenhaber-Hesselink theorem can be applied to describe the module
varieties of the algebras C[x]

(xr) .

Example 2.45. The representation variety repn
C[x]
(xr) .

Any algebra morphism C[x] - Mn is determined by the image of x, whence
repn(C[x]) = Mn. We have seen that conjugacy classes in Mn are classified by the
Jordan normalform. Let A is conjugated to a matrix in normalform

J1

J2

. . .

Js


where Ji is a Jordan block of size di, hence n = d1 + d2 + . . . + ds. Then, the
n-dimensional C[x]-module M determined by A can be decomposed uniquely as

M = M1 ⊕M2 ⊕ . . .⊕Ms

where Mi is a C[x]-module of dimension di which is indecomposable , that is, cannot
be decomposed as a direct sum of proper submodules.

Now, consider the quotient algebra R = C[x]/(xr), then the ideal IR(n) of
C[x11, x12, . . . , xnn] is generated by the n2 entries of the matrixx11 . . . x1n

...
...

xn1 . . . xnn


r

.

For example if r = m = 2, then the ideal is generated by the entries of the matrix[
x1 x2

x3 x4

]2

=
[
x2

1 + x2x3 x2(x1 + x4)
x3(x1 + x4) x2

4 + x2x3

]
That is, the ideal with generators

IR = (x2
1 + x2x3, x2(x1 + x4), x3(x1 + x4), (x1 − x4)(x1 + x4))

The variety V(IR) ⊂ - M2 consists of all matrices A such that A2 = 0. Conjugat-
ing A to an upper triangular form we see that the eigenvalues of A must be zero,
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hence

rep2 C[x]/(x2) = O(
[
0 1
0 0

]
) ∪ O(

[
0 0
0 0

]
)

and we have seen that this variety is a cone with top the zero matrix and defining
equations

V(x1 + x4, x
2
1 + x2x3)

and we see that IR is properly contained in this ideal. Still, we have that

rad(IR) = (x1 + x4, x
2
1 + x3x4)

for an easy computation shows that x1 + x4
3 = 0 ∈ C[x1, x2, x3, x4]/IR. Therefore,

even in the easiest of examples, the representation variety does not have to be
reduced.

For the general case, observe that when J is a Jordan block of size d with
eigenvalue zero an easy calculation shows that

Jd−1 =


0 . . . 0 d− 1

. . . 0
. . .

...
0

 and Jd =


0 . . . . . . 0
...

...
...

...
0 . . . . . . 0


Therefore, we see that the representation variety repn C[x]/(xr) is the union of all
conjugacy classes of matrices having 0 as only eigenvalue and all of which Jordan
blocks have size ≤ r. Expressed in module theoretic terms, any n-dimensional
R = C[x]/(xr)-module M is isomorphic to a direct sum of indecomposables

M = I⊕e11 ⊕ I⊕e22 ⊕ . . .⊕ I⊕er
r

where Ij is the unique indecomposable j-dimensional R-module (corresponding to
the Jordan block of size j). Of course, the multiplicities ei of the factors must
satisfy the equation

e1 + 2e2 + 3e3 + . . .+ rer = n

In M we can consider the subspaces for all 1 ≤ i ≤ r − 1

Mi = {m ∈M | xi.m = 0}

the dimension of which can be computed knowing the powers of Jordan blocks
(observe that the dimension of Mi is equal to n− rank(Ai))

ti = dimC Mi = e1 + 2e2 + . . . (i− 1)ei + i(ei + ei+1 + . . .+ er)

Observe that giving n and the r − 1-tuple (t1, t2, . . . , tn−1) is the same as giving
the multiplicities ei because

2t1 = t2 + e1

2t2 = t3 + t1 + e2

2t3 = t4 + t2 + e3
...

2tn−2 = tn−1 + tn−3 + en−2

2tn−1 = n+ tn−2 + en−1

n = tn−1 + en
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Let n-dimensional C[x]/(xr)-modules M and M ′ (or associated matrices A and A′)
be determined by the r − 1-tuples (t1, . . . , tr−1) respectively (t′1, . . . , t

′
r−1) then we

have that

O(A′) ⊂ - O(A) if and only if t1 ≤ t′1, t2 ≤ t′2, . . . , tr−1 ≤ t′r−1

Therefore, we have an inverse order isomorphism between the orbits in
repn(C[x]/(xr)) and the r − 1-tuples of natural numbers (t1, . . . , tr−1) satisfying
the following linear inequalities (which follow from the above system)

2t1 ≥ t2, 2t2 ≥ t3 + t1, 2t3 ≥ t4 + t2, . . . , 2tn−1 ≥ n+ tn−2, n ≥ tn−2.

Let us apply this general result in a few easy cases. First, consider r = 2, then
the orbits in repn C[x]/(x2) are parameterized by a natural number t1 satisfying
the inequalities n ≥ t1 and 2t1 ≥ n, the multiplicities are given by e1 = 2t1 − n
and e2 = n− t1. Moreover, the orbit of the module M(t′1) lies in the closure of the
orbit of M(t1) whenever t1 ≤ t′1.

That is, if n = 2k+ δ with δ = 0 or 1, then repn C[x]/(x2) is the union of k+1
orbits and the orbitclosures form a linear order as follows (from big to small)

Iδ1 ⊕ I⊕k2 I⊕δ+2
1 ⊕ I⊕k−1

2 . . . I⊕n1

If r = 3, orbits in repn C[x]/(x3) are determined by couples of natural numbers
(t1, t2) satisfying the following three linear inequalities


2t1 ≥ t2
2t2 ≥ n+ t1

n ≥ t2

For example, for n = 8 we obtain the following situation

2t1 = t2
2t2 = 8 + t1

t2 = 8

• •
• • •

• • •• •
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Therefore, rep8 C[x]/(x3) consists of 10 orbits with orbitclosure diagram as below
(the nodes represent the multiplicities [e1e2e3]).

[800]

[610]

[420]

[501]
????

[040]
����

[121]
����

[202]

[012]

[420]

[230]
����

[311]
����

[121]
????

[230]

[040]
????

Here we used the equalities e1 = 2t1 − t2, e2 = 2t2 − n − t1 and e3 = n − t2. For
general n and r this result shows that repn C[x]/(xr) is the closure of the orbit of
the module with decomposition

Mgen = I⊕er ⊕ Is if n = er + s

We are now in a position to give the promised examples of affine GLn-schemes
having the same witness algebra.

Example 2.46. Consider the action of GLn on Mn by conjugation and take
a nilpotent matrix A. All eigenvalues of A are zero, so the conjugacy class of A is
fully determined by the sizes of its Jordan blocks. These sizes determine a partition
λ(A) = (λ1, λ2, . . . , λk) of n with λ1 ≥ λ2 ≥ . . . ≥ λk. Moreover, we have given
an algorithm to determine whether an orbit O(B) of another nilpotent matrix B is
contained in the orbit closure O(A), the criterium being that

O(B) ⊂ O(A)⇐⇒ λ(B)∗ ≥ λ(A)∗.

where λ∗ denotes the dual partition. We see that the witness algebra of O(A) is
equal to

Mn(C[O(A)])GLn = C[X]/(Xk)

where k is the number of columns of the Young diagram λ(A).
Hence, the orbit closures of nilpotent matrices such that their associated Young

diagrams have equal number of columns have the same witness algebras. For ex-
ample, if n = 4 then the closures of the orbits corresponding to

and
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have the same witness algebra, although the closure of the second is a proper closed
subscheme of the closure of the first.

Recall the orbitclosure diagram of conjugacy classes of nilpotent 8×8 matrices
given by the Gerstenhaber-Hesselink theorem. In the picture below, the closures of
orbits corresponding to connected nodes of the same colour have the same witness
algebra.

◦ • ◦
◦
•
•
•

◦
◦ ◦

•

◦
• •

◦

◦
•
◦
•
◦ ◦ •

?? �� ??

??

?? ��

??

??

��

��

��

�� ��

2.8. The real moment map.

In this section we will give another interpretation of the algebraic quotient vari-
ety isstrn A with methods coming from symplectic geometry. We have an involution

GLn
i- GLn defined by g - (g∗)−1

where A∗ is the adjoint matrix of g, that is, the conjugate transpose

M =

m11 . . . m1n

...
...

mn1 . . . mnn

 M∗ =

m11 . . . mn1

...
...

m1n . . . mnn


The real points of this involution, that is

(GLn)i = {g ∈ GLn | g = (g∗)−1} = Un = {u ∈ GLn | uu∗ = rr
n}

is the unitary group . On the level of Lie algebras, the involution i gives rise to the
linear map

Mn
di- Mn defined by M - −M∗

corresponding to the fact that the Lie algebra of the unitary group, that is, the
kernel of di, is the space of skew-Hermitian matrices

Lie Un = {M ∈Mn | M = −M∗} = iHermn

Consider the standard Hermitian inproduct on Mn defined by

(A,B) = tr(A∗B) which satisfies


(cA,B) = c(A,B)
(A, cB) = c(A,B)
(B,A) = (A,B)

As a subgroup of GLn, Un acts on Mn by conjugation and because (uAu∗, uBu∗) =
tr(uA∗u∗uBu∗) = tr(A∗B), the inproduct is invariant under the Un-action. The
action of Un on Mn induces an action of Lie Un on Mn given for all h ∈ Lie Un
and M ∈Mn

h.M = hM +Mh∗ = hM −Mh

Using this action, we define the real moment map µ for the action of Un on Mn as
the map from Mn to the linear dual of the Lie algebra

Mn
µ- (iLie Un)∗ M - (h 7→ i(h.M,M))
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We will identify the inverse image of the zero map 0 : Lie Un - 0 under µ.
Because

(h.M,M) = tr((h.M −M.h)∗M)

= tr(M∗h∗M − h∗M∗M)

= tr(h∗(MM∗ −M∗M))

and using the nondegeneracy of the Killing form on Lie Un we have the identifica-
tion

µ−1(0) = {M ∈Mn | MM∗ = M∗M} = Norn

the space of normal matrices . Alternatively, we can define the real moment map
to be determined by

Mn
µR- Lie Un M - i(MM∗ −M∗M) = i[M,M∗]

Recall that a matrix M ∈ Mn(C) is said to be normal if its commutes with its
adjoint. For example, diagonal matrices are normal as are unitary matrices. Fur-
ther, it is clear that if M is normal and u unitary, then the conjugated matrix
uMu−1 = uMu∗ is again a normal matrix, that is we have an action of the com-
pact Lie group Un on the subset Norn ⊂ - Mn(C) of normal matrices. We recall
the proof of the following classical result

Theorem 2.47. Every Un orbit in Norn contains a diagonal matrix. This
gives a natural one-to-one correspondence

µ−1(0)/Un = Norn/Un ←→Mn/GLn

between the Un-orbits in Norn and the closed GLn-orbits in Mn.

Proof. Equip Cn with the standard Hermitian form, that is,

〈v, w〉 = vτ .w = v1w1 + . . .+ vnwn

Take a non-zero eigenvector v of M ∈ Norn and normalize it such that 〈v, v〉 =
1. Extend v = v1 to an orthonormal basis {v1, . . . , vn} of Cn and let u be the
basechange matrix from the standard basis. With respect to the new basis, the
linear map determined by M and M∗ are represented by the normal matrices

M1 = uMu∗ =


a11 a12 . . . a1n

0 a22 . . . a2n

...
...

...
0 an2 . . . ann

 M∗1 = uM∗u∗ =


a11 0 . . . 0
a12 a22 . . . an2

...
...

...
a1n a2n . . . ann


Because M is normal, so is M1. The left hand corner of M∗1M1 is a11a11 whereas
that of M1M

∗
1 is a11a11 + a12a12 + . . .+ a1na1n, whence

a12a12 + . . .+ a1na1n = 0

but as all a1ia1i =‖ a1i ‖≥ 0, this implies that all a1i = 0, whence

M1 =


a11 0 . . . 0
0 a22 . . . a2n

...
...

...
0 an2 . . . ann


and induction finishes the claim. Because permutation matrices are unitary we
see that the diagonal entries are determined up to permutation, so every Un-orbit
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determines a unique conjugacy class of semi-simple matrices, that is, a closed GLn-
orbit in Mn. �

We will generalize this classical result to m-tuples of n × n matrices, Mm
n ,

and then by restriction to trace preserving representation varieties. Take A =
(A1, . . . , Am) and B = (B1, . . . , Bm) in Mm

n and define an Hermitian inproduct on
Mm
n by

(A,B) = tr(A∗1B1 + . . .+A∗mBm)

which is again invariant under the action of Un by simultaneous conjugation on
Mm
n . The induced action of Lie Un on Mm

n is given by

h.A = (hA1 −A1h, . . . , hAm −Amh)

This allows us to define the real moment map µ for the action of Un on Mm
n to be

the assignment

Mm
n

µ- (iLie Un)∗ A - (h 7→ i(h.A,A))

and again using the nondegeneracy of the Killing form on Lie Un we have the
identification

µ−1(0) = {A ∈Mm
n |

m∑
i=1

(AiA∗i −A∗iAi) = 0}

Again, the real moment map is determined by

Mm
n

µR- Lie Un A = (A1, . . . , Am) 7→ i[A,A∗] = i

m∑
j=1

[Aj , A∗j ]

We will show that there is a natural one-to-one correspondence between Un-orbits
in the set µ−1(0) and closed GLn-orbits in Mm

n . We first consider the properties
of the real valued function pA defined as the norm on the orbit of any A ∈Mm

n

GLn
pA- R+ g - ‖g.A‖2

Because the Hermitian inproduct is invariant under Un we have pA(ug) = pA(g) for
any u ∈ Un. If Stab(A) denotes the stabilizer subgroup of A ∈ GLn, then for any
s ∈ Stab(A) we also have pA(gs) = pA(g) hence pA is constant along UngStab(A)-
cosets. We aim to prove that the critical points of pA are minima and that the
minimum is attained if and only if O(A) is a closed GLn-orbit.

Consider the restriction of pA to the maximal torus Tn ⊂ - GLn of invertible
diagonal matrices. Then, Tn ∩ Un = K = U1 × . . .× U1 is the subgroup

K = {

k1 0
. . .

0 kn

 where |ki| = 1 }

The action by conjugation of Tn on Mm
n decomposes this space into weight spaces

Mm
n = Mm

n (0)⊕
n⊕

i,j=1

Mm
n (πi − πj)

where Mm
n (πi − πj) = {A ∈ Mm

n | diag(t1, . . . , tn).A = tit
−1
j A}. It follows from

the definition of the Hermitian inproduct on Mm
n that the different weightspaces
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are orthogonal to each other. We decompose A ∈ Mm
n into eigenvectors for the

Tn-action as

A = A(0) +
n∑

i,j=1

A(i, j) with

{
A(0) ∈Mm

n (0)
A(i, j) ∈Mm

n (πi − πj)

With this convention we have for t = diag(t1, . . . , tn) ∈ Tn that

pA(t) = ‖A(0) +
n∑

i,j=1

tit
−1
j A(i, j)‖2

= ‖A(0)‖2 +
n∑

i,j=1

t2i t
−2
j ‖A(i, j)‖2

where the last equality follows from the orthogonality of the different weight spaces.
Further, remark that the stabilizer subgroup StabT (A) of A in T can be identified
with

StabT (A) = {t = diag(t1, . . . , tn) | ti = tj if A(i, j) 6= 0}.
As before, pA induces a function on double cosets K\Tn/StabT (A), in particular
pM determines a real valued function on K\Tn ' Rn (the isomorphism is given by
the map diag(t1, . . . , tn)

log- (log |t1|, . . . , log |tn|)). That is,

Tn
log-- K\Tn ' Rn

R+

pA

?
�

pA”

�

p
′
A

K\Tn/StabT (A)

??

where the function p′M is the special function

p′A(r1, . . . , rn) = e2log ‖A(0)‖ +
n∑

i,j:A(i,j) 6=0

e2log ‖A(i,j)‖+2xi−2xj

and where K\Tn/StabT (A) is the quotient space of Rn by the subspace VA which
is the image of StabT (A) under log

VA =
∑

i: 6∃A(i,j) 6=0

Rei +
∑

i,j:A(i,j) 6=0

R(ei − ej)

where ei are the standard basis vectors of Rn. Let {i1, . . . , ik} be the minimal
elements of the non-empty equivalence classes induced by the relation i ∼ j iff
A(i, j) 6= 0, then{

K\Tn/StabT (A) '
∑k
j=1 Reij

pA”(y1, . . . , yk) = c0 +
∑k
j=1(

∑
l(j) cl(j)e

al(j)yj )

for certain positive real numbers c0, cl(j) and real numbers al(j). But then, elemen-
tary calculus shows that the k × k matrix

∂2pA”
∂y1∂y1

(m) . . . ∂2pA”
∂y1∂yk

(m)
...

...
∂2pA”
∂yk∂y1

(m) . . . ∂2pA”
∂yk∂yk

(m)
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is a positive definite diagonal matrix in every point m ∈ Rk. That is, pA” is a
strictly convex Morse function and if it has a critical point m0 (that is, if all
∂pA”
∂yi

(m0) = 0), it must be a unique minimum. Lifting this information from the
double coset space K\Tn/StabT (A) to Tn we have proved

Proposition 2.48. Let Tn be the maximal torus of invertible diagonal matrices
in GLn and consider the restriction of the function GLn

pA- R+ to Tn for A ∈
Mm
n , then

(1) Any critical point of pA is a point where pA obtains its minimal value.
(2) If pA obtains a minimal value, then

• the set V where pA obtains this minimum consists of a single K −
StabT (A) coset in Tn and is connected.
• the second order variation of pA at a point of V in any direction not

tangent to V is positive.

The same proof applies to all maximal tori T of GLn which are defined over R.
Recall the Cartan decomposition of GLn which we proved before theorem 2.27 : any
g ∈ GLn can be written as g = udu′ where u, u′ ∈ Un and d is a diagonal matrix
with positive real entries. Using this fact we can now extend the above proposition
to GLn.

Theorem 2.49. Consider the function GLn
pA- R+ for A ∈Mm

n .

(1) Any critical point of pA is a point where pA obtains its minimal value.
(2) If pA obtains its minimal value, it does so on a single Un−Stab(A)-coset.

Proof. (1) : Because for any h ∈ GLn we have that ph.A(g) = pA(gh) we may
assume that rr

n is the critical point of pA. We have to prove that pA(g) ≥ pA(rrn) for
all g ∈ GLn. By the Cartan decomposition g = udu′ whence g = u”t where u” =
uu′ ∈ Un and t = u′−1du′ ∈ T a maximal torus of GLn defined over R. Because the
Hermitian inproduct is invariant under Un we have that pA(g) = pA(t). Because
rr
n is a critical point for the restriction of pA to T we have by proposition 2.48 that
pA(t) ≥ pA(rrn), proving the claim.

(2) : Because for any h ∈ GLn, ph.A(g) = pA(gh) and Stab(h.A) =
hStab(A)h−1 we may assume that pA obtains its minimal value at rr

n. If V de-
notes the subset of GLn where pA obtains its minimal value we then have that
UnStab(A) ⊂ V and we have to prove the reverse inclusion. Assume g ∈ V and
write as before g = u”t with u” ∈ Un and t ∈ T a maximal torus defined over R.
Then, by unitary invariance of the inproduct, t is a point of T where the restriction
of pA to T obtains its minimal value pA(rrn). By proposition 2.48 we conclude that
t ∈ KTStabT (A) where KT = Un ∩ T . But then,

V ⊂ Un(
⋃
T

KTStabT (A)) ⊂ UnStab(A)

where T runs over all maximal tori of GLn which are defined over R, finishing the
proof. �

Proposition 2.50. The function pA : GLn - R+ obtains a minimal value
if and only if O(A) is a closed orbit in Mm

n , that is, determines a semi-simple
representation.
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Proof. If O(A) is closed then pA clearly obtains a minimal value. Conversely,
assume that O(A) is not closed, that is, A does not determine a semi-simple n-
dimensional representation M of C〈x1, . . . , xm〉. By choosing a basis in M (that
is, possibly going to another point in the orbit O(A)) we have a one-parameter
subgroup C∗ ⊂

λ- Tn ⊂ - GLn corresponding to the Jordan-Hölder filtration of
M with lim

t→0
λ(t)A = B with B corresponding to the semi-simplification of M . Now

consider the restriction of p′A to U1\C∗ ' R, then as before we can write it uniquely
in the form

p′A(x) =
∑
i

aie
lix ai > 0, l1 < l2 < . . . < lz

for some real numbers li and some z. Because the above limit exists, the limit

lim
x - −∞

p′A(x) ∈ R

and hence none of the li are negative. Further, because O(A) 6= O(B) at least
one of the li must be positive. Therefore, p′A is a strictly increasing function on R
whence never obtains a minimal value, whence neither does pA. �

Finally, we have to clarify the connection between the function pA and the real
moment map {

Mm
n

µ- (Lie Un)∗ A - (h 7→ (h.A,A))

Mn
n

µR- Lie Un A - i[A,A∗]

Assume A ∈ Mm
n is such that pA has a critical point, which we may assume to be

rr
n by an argument as in the proof of theorem 2.49. Then, the differential in rr

n

(dpA)rr
n

: Mn = Trr
n
GLn - R satisfies (dpA)rr

n
(h) = 0 ∀h ∈Mn

Let us work out this differential
pA(rrn) + ε(dpA)rr

n
(h) = tr((A∗ + ε(A∗h∗ − h∗A∗)(A+ ε(hA−Ah))

= tr(A∗A) + εtr(A∗hA−A∗Ah+A∗h∗A− h∗A∗A)

= tr(A∗A) + εtr((AA∗ −A∗A)(h− h∗))
But then, vanishing of the differential for all h ∈ Mn is equivalent by the nonde-
generacy of the Killing form on Lie Un to

AA∗ −A∗A =
m∑
i=1

AiA
∗
i −A∗iAi = 0

that is, to A ∈ µ−1
R (0). This concludes the proof of the main result on the real

moment map for Mm
n .

Theorem 2.51. There are natural one-to-one correspondences between
(1) isomorphism classes of semi-simple n-dimensional representations of

C〈x1, . . . , xm〉,
(2) closed GLn-orbits in Mm

n ,
(3) Un-orbits in the subset µ−1

R (0) = {A ∈Mm
n |

∑m
i=1[Ai, A

∗
i ] = 0}.

Let A ∈ alg @n be an affine Cayley-Hamilton algebra of degree n, then we can
embed the reduced variety of reptr

n
A in Mm

n and obtain as a consequence :

Theorem 2.52. For A ∈ alg @n, there are natural one-to-one correspondences
between
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(1) isomorphism classes of semi-simple n-dimensional trace preserving repre-
sentations of A,

(2) closed GLn-orbits in the representation variety reptr
n
A,

(3) Un-orbits in the intersection reptr
n
A ∩ µ−1

R (0).
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top @n

The natural topology for noncommutative geometry @n is the étale topol-
ogy. Let A be an affine C-algebra and ξ ∈ issn A with corresponding semi-simple
n-dimensional representation Mξ. We say that ξ is a smooth point for the level
n approximation A @n if the representation space rep

n
A is smooth in Mξ. The

main result, theorem 4.24, asserts that we can recover the étale local structure of
issn A and of the algebra A @n near a smooth point ξ from combinatorial data.

Let Mξ = S⊕e11 ⊕ . . . ⊕ S⊕ek

k be the decomposition of Mξ into distinct simple
components Si of dimension di and occurring in Mξ with multiplicity ei. We
construct a quiver Qξ with k vertices {v1, . . . , vk} (where vi corresponds to the
simple component Si) and the number of oriented arrows from vi to vj is given by

# ��������j ��������ioo = dimC Ext1A(Si, Sj)

Further, we define the dimension vector αξ = (e1, . . . , ek) describing the multiplic-
ities of the simple components in Mξ. Assigning to every vertex vi the space Cei

and to every arrow ��������j ��������ioo a matrix Cei - Cej we obtain the representa-
tion space repαξ

Qξ on which the basechange group GL(αξ) = GLe1 × . . .×GLek

acts with quotient variety issαξ
Qξ classifying αξ-dimensional semi-simple Qξ-

representations.
The coordinate ring Nα of the quotient variety issαξ

Qξ is generated by traces
along oriented cycles in the quiver Qξ and the ring Tα of GL(α)-equivariant maps
repαξ

Qξ - Mm(C) where m =
∑
i ei has a block-decomposition with (i, j)-

entry the Nα-module of oriented paths from vi to vj in Qξ. The completions of Nα
and Tα with respect to the maximal graded ideal of Nα will be denoted by N̂α and
T̂α respectively.

Let m be the maximal ideal of the coordinate ring N = trA @n of issn A and
denote T = A @n, then we have the étale local description

N̂m ' N̂α and T̂m ∼
Morita

T̂α

where the Morita equivalence is determined by the embedding GL(α) ⊂ - GLn
given by the dimensions di of the simple components. An extension of this local
description to points ξ ∈ issn A which are not smooth for A @n will involve the
canonical A∞-structure on Ext∗A(Mξ,Mξ).

A smooth manifold in noncommutative geometry @n, that is a family
(Xi)i∈I of algebraic varieties locally controlled by a set A of Quillen-smooth al-
gebras, can therefore be studied locally by the combinatorics of quiver representa-
tions.
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CHAPTER 3

Etale Cohomology.

3.1. Etale topology.

A closed subvariety X ⊂ - Cm can be equipped with the Zariski topology or
with the much finer analytic topology . A major disadvantage of the coarseness of
the Zariski topology is the failure to have an implicit function theorem in algebraic
geometry. Etale morphisms are introduced to bypass this problem. These mor-
phisms determine the étale topology which is no longer a topology determined by
subsets but rather a Grothendieck topology determined by covers .

Definition 3.1. A finite morphism A
f- B of commutative C-algebras is

said to be étale if and only if B = A[t1, . . . , tk]/(f1, . . . , fk) such that the Jacobian
matrix 

∂f1
∂t1

. . . ∂f1
∂tk

...
...

∂fk

∂t1
. . . ∂fk

∂tk


has a determinant which is a unit in B.

With spec A we denote the prime ideal spectrum or the affine scheme of
a commutative C-algebra A. That is, spec A is the set of all prime ideals of A
equipped with the Zariski topology , that is the open subset are of the form

X(I) = {P ∈ spec A | I 6⊂ P}

for some ideal I/A. If A is an affine C-algebra, the points of the corresponding affine
variety correspond to the maximal ideals of A and the induced Zariski topology
coincides with the one introduced before. In this chapter, however, not all C-
algebras will be affine.

Example 3.2. Consider the morphism C[x, x−1] ⊂ - C[x, x−1][ n
√
x] and the induced

map on the affine schemes

spec C[x, x−1][ n
√
x]

ψ- spec C[x, x−1] = C− {0}.

Clearly, every point λ ∈ C−{0} has exactly n preimages λi = ζi
n
√
λ. Moreover, in a neighborhood

of λi, the map ψ is a diffeomorphism. Still, we do not have an inverse map in algebraic geometry

as n
√
x is not a polynomial map. However, C[x, x−1][ n

√
x] is an étale extension of C[x, x−1]. In this

way étale morphisms can be seen as an algebraic substitute for the failure of an inverse function

theorem in algebraic geometry.

Proposition 3.3. Etale morphisms satisfy ’sorite’, that is, they satisfy the
commutative diagrams of figure 1. In these diagrams, et denotes an étale morphism,
f.f. denotes a faithfully flat morphism and the dashed arrow is the étale morphism
implied by ’sorite’.

91
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A′ ............
et
- A′ ⊗A B

A

6

et - B

6

B

A ..................................................
et

-

et

-

C

et

-

(basechange) (composition)

A′
et- A′ ⊗A B

A

f.f.

6

....................
et

- B

6

A

B .................................................
et

A−alg
-

�

et

B′

et

-

(descent) (morphisms)

Figure 1. Sorite for étale morphisms

With these properties we can define a Grothendieck topology on the collection
of all étale morphisms.

Definition 3.4. The étale site of A, which we will denote by Aet is the
category with

• objects : the étale extensions A
f- B of A

• morphisms : compatible A-algebra morphisms

A

B1
φ -

�

f1

B2

f
2

-

By proposition 3.3 all morphisms in Aet are étale. We can turn Aet into a
Grothendieck topology by defining

• cover : a collection C = {B fi- Bi} in Aet such that

spec B = ∪i Im (spec Bi
f- Spec B )

Definition 3.5. An étale presheaf of groups on Aet is a functor

G : Aet - groups

In analogy with usual (pre)sheaf notation we denote for each
• object B ∈ Aet the global sections Γ(B,G) = G(B)
• morphism B

φ- C in Aet the restriction map ResBC = G(φ) :
G(B) - G(C) and g | C = G(φ)(g).
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An étale presheaf G is an étale sheaf provided for every B ∈ Aet and every cover
{B - Bi} we have exactness of the equalizer diagram

0 - G(B) -
∏
i

G(Bi)
--

∏
i,j

G(Bi ⊗B Bj)

Example 3.6. Constant sheaf.
If G is a group, then

G : Aet
- groups B 7→ G⊕π0(B)

is a sheaf where π0(B) is the number of connected components of Spec B.

Example 3.7. Multiplicative group Gm.
The functor

Gm : Aet
- groups B 7→ B∗

is a sheaf on Aet.

A sequence of sheaves of Abelian groups on Aet is said to be exact

G′ f- G g- G”

if for every B ∈ Aet and s ∈ G(B) such that g(s) = 0 ∈ G”(B) there is a cover
{B - Bi} in Aet and sections ti ∈ G′(Bi) such that f(ti) = s | Bi.

Example 3.8. Roots of unity µn.
We have a sheaf morphism

Gm
(−)n

- Gm
and we denote the kernel with µn. As A is a C-algebra we can identify µn with the constant sheaf

Zn = Z/nZ via the isomorphism ζi 7→ i after choosing a primitive n-th root of unity ζ ∈ C.

Lemma 3.9. The Kummer sequence of sheaves of Abelian groups

0 - µn - Gm
(−)n

- Gm
- 0

is exact on Aet (but not necessarily on spec A with the Zariski topology).

Proof. We only need to verify surjectivity. Let B ∈ Aet and b ∈ Gm(B) = B∗.
Consider the étale extension B′ = B[t]/(tn − b) of B, then b has an n-th root over
in Gm(B′). Observe that this n-th root does not have to belong to Gm(B). �

If p is a prime ideal of A we will denote with kp the algebraic closure of the
field of fractions of A/p. An étale neighborhood of p is an étale extension B ∈ Aet
such that the diagram below is commutative

A
nat - kp

B

et

?

-

The analogue of the localization Ap for the étale topology is the strict Henselization

Ashp = lim- B

where the limit is taken over all étale neighborhoods of p.
Recall that a local algebra L with maximal ideal m and residue map π :

L -- L/m = k is said to be Henselian if the following condition holds. Let
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f ∈ L[t] be a monic polynomial such that π(f) factors as g0.h0 in k[t], then f
factors as g.h with π(g) = g0 and π(h) = h0. If L is Henselian then tensoring
with k induces an equivalence of categories between the étale A-algebras and the
étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if its
residue field is algebraically closed. Thus, a strict Henselian ring has no proper
finite étale extensions and can be viewed as a local algebra for the étale topology.

Example 3.10. The algebraic functions C{x1, . . . , xd}
Consider the local algebra of C[x1, . . . , xd] in the maximal ideal (x1, . . . , xd), then the

Henselization and strict Henselization are both equal to

C{x1, . . . , xd}
the ring of algebraic functions . That is, the subalgebra of C[[x1, . . . , xd]] of formal power-

series consisting of those series φ(x1, . . . , xd) which are algebraically dependent on the coordi-

nate functions xi over C. In other words, those φ for which there exists a non-zero polynomial
f(xi, y) ∈ C[x1, . . . , xd, y] with f(x1, . . . , xd, φ(x1, . . . , xd)) = 0.

These algebraic functions may be defined implicitly by polynomial equations. Consider a
system of equations

fi(x1, . . . , xd; y1, . . . , ym) = 0 for fi ∈ C[xi, yj ] and 1 ≤ i ≤ m

Suppose there is a solution in C with

xi = 0 and yj = yoj

such that the Jacobian matrix is non-zero

det (
∂fi

∂yj
(0, . . . , 0; yo1 , . . . , y

0
m)) 6= 0

Then, the system can be solved uniquely for power series yj(x1, . . . , xd) with yj(0, . . . , 0) = yoj
by solving inductively for the coefficients of the series. One can show that such implicitly defined

series yj(x1, . . . , xd) are algebraic functions and that, conversely, any algebraic function can be

obtained in this way.

If G is a sheaf on Aet and p is a prime ideal of A, we define the stalk of G in
p to be

Gp = lim- G(B)

where the limit is taken over all étale neighborhoods of p. One can verify mono-
epi- or isomorphisms of sheaves by checking it in all the stalks.

If A is an affine algebra defined over an algebraically closed field, then it suffices
to verify it in the maximal ideals of A.

Before we define cohomology of sheaves on Aet let us recall the definition of
derived functors . Let A be an Abelian category . An object I of A is said to be
injective if the functor

A - abelian M 7→ HomA(M, I)

is exact. We say that A has enough injectives if, for every object M in A, there is
a monomorphism M ⊂ - I into an injective object.

If A has enough injectives and f : A - B is a left exact functor from A
into a second Abelian category B, then there is an essentially unique sequence of
functors

Ri f : A - B i ≥ 0
called the right derived functors of f satisfying the following properties

• R0 f = f
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• Ri I = 0 for I injective and i > 0
• For every short exact sequence in A

0 - M ′ - M - M” - 0

there are connecting morphisms δi : Ri f(M”) - Ri+1 f(M ′) for i ≥ 0
such that we have a long exact sequence

. . . - Ri f(M) - Ri f(M”)
δi

- Ri+1 f(M ′) - Ri+1 f(M) - . . .

• For any morphismM - N there are morphisms Ri f(M) - Ri f(N)
for i ≥ 0

In order to compute the objects Ri f(M) define an objectN inA to be f -acyclic
if Ri f(M) = 0 for all i > 0. If we have an acyclic resolution of M

0 - M - N0
- N1

- N2
- . . .

by f -acyclic object Ni, then the objects Ri f(M) are canonically isomorphic to the
cohomology objects of the complex

0 - f(N0) - f(N1) - f(N2) - . . .

One can show that all injectives are f -acyclic and hence that derived objects of M
can be computed from an injective resolution of M .

Now, let Sab(Aet) be the category of all sheaves of Abelian groups on Aet. This
is an Abelian category having enough injectives whence we can form right derived
functors of left exact functors. In particular, consider the global section functor

Γ : Sab(Aet) - Ab G 7→ G(A)

which is left exact. The right derived functors of Γ will be called the étale coho-
mology functors and we denote

Ri Γ(G) = Hi
et(A,G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 - G′ - G - G” - 0, then we have a long exact cohomology se-
quence

. . . - Hi
et(A,G) - Hi

et(A,G”) - Hi+1
et (A,G′) - . . .

If G is a sheaf of non-Abelian groups (written multiplicatively), we cannot
define cohomology groups. Still, one can define a pointed set H1

et(A,G) as follows.
Take an étale cover C = {A - Ai} of A and define a 1-cocycle for C with values
in G to be a family

gij ∈ G(Aij) with Aij = Ai ⊗A Aj
satisfying the cocycle condition

(gij | Aijk)(gjk | Aijk) = (gik | Aijk)
where Aijk = Ai ⊗A Aj ⊗A Ak.

Two cocycles g and g′ for C are said to be cohomologous if there is a family
hi ∈ G(Ai) such that for all i, j ∈ I we have

g′ij = (hi | Aij)gij(hj | Aij)−1

This is an equivalence relation and the set of cohomology classes is written as
H1
et(C,G). It is a pointed set having as its distinguished element the cohomology

class of gij = 1 ∈ G(Aij) for all i, j ∈ I.
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We then define the non-Abelian first cohomology pointed set as

H1
et(A,G) = lim- H1

et(C,G)

where the limit is taken over all étale coverings of A. It coincides with the previous
definition in case G is Abelian.

A sequence 1 - G′ - G - G” - 1 of sheaves of groups on Aet is
said to be exact if for every B ∈ Aet we have

• G′(B) = Ker G(B) - G”(B)
• For every g” ∈ G”(B) there is a cover {B - Bi} in Aet and sections
gi ∈ G(Bi) such that gi maps to g” | B.

Proposition 3.11. For an exact sequence of groups on Aet

1 - G′ - G - G” - 1

there is associated an exact sequence of pointed sets

1 - G′(A) - G(A) - G”(A)
δ- H1

et(A,G′) -

- H1
et(A,G) - H1

et(A,G”) ........- H2
et(A,G′)

where the last map exists when G′ is contained in the center of G (and therefore is
Abelian whence H2 is defined).

Proof. The connecting map δ is defined as follows. Let g” ∈ G”(A) and let
C = {A - Ai} be an étale covering of A such that there are gi ∈ G(Ai) that map
to g | Ai under the map G(Ai) - G”(Ai). Then, δ(g) is the class determined by
the one cocycle

gij = (gi | Aij)−1(gj | Aij)
with values in G′. The last map can be defined in a similar manner, the other maps
are natural and one verifies exactness. �

The main applications of this non-Abelian cohomology to non-commutative
algebra is as follows. Let Λ be a not necessarily commutative A-algebra and M an
A-module. Consider the sheaves of groups Aut(Λ) resp. Aut(M) on Aet associated
to the presheaves

B 7→ AutB−alg(Λ⊗A B) resp. B 7→ AutB−mod(M ⊗A B)

for all B ∈ Aet. A twisted form of Λ (resp. M) is an A-algebra Λ′ (resp. an
A-module M ′) such that there is an étale cover C = {A - Ai} of A such that
there are isomorphisms {

Λ⊗A Ai
φi- Λ′ ⊗A Ai

M ⊗A Ai
ψi- M ′ ⊗A Ai

of Ai-algebras (resp. Ai-modules). The set of A-algebra isomorphism classes (resp.
A-module isomorphism classes) of twisted forms of Λ (resp. M) is denoted by
TwA(Λ) (resp. TwA(M)). To a twisted form Λ′ one associates a cocycle on C

αΛ′ = αij = φ−1
i ◦ φj

with values in Aut(Λ). Moreover, one verifies that two twisted forms are isomorphic
as A-algebras if their cocycles are cohomologous. That is, there are embeddings{

TwA(Λ) ⊂ - H1
et(A,Aut(Λ))

TwA(M) ⊂ - H1
et(A,Aut(M))
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In favorable situations one can even show bijectivity. In particular, this is the case
if the automorphisms group is a smooth affine algebraic group-scheme.

For example, consider Λ = Mn(A), then the automorphism group is PGLn and
twisted forms of Λ are classified by elements of the cohomology group

H1
et(A,PGLn)

These twisted forms are precisely the Azumaya algebras of rank n2 with center A.
When A is an affine commutative C-algebra and Λ is an A-algebra with center A,
then Λ is an Azumaya algebra of rank n2 if and only if

Λ
λmΛ

'Mn(C)

for every maximal ideal m of A.
We will often encounter Azumaya algebras as follows. Let A be this time a

noncommutative affine C-algebra and assume that the following two conditions are
satisfied

• A has a simple representation of dimension n,
• rep

n
A is an irreducible variety.

Then trA @n = C[rep
n
A]GLn is a domain (whence issn A is irreducible) and we

have an onto trace preserving algebra map corresponding to the simple representa-
tion

A @n
φ-- Mn(C)

Lift the standard basis eij of Mn(C) to elements aij ∈ A @n and consider the
determinant d of the n2 × n2 matrix (tr(aijakl))ij,kl with values in trA @n. Then
d 6= 0 and consider the Zariski open affine subset of issn A

X(d) = {A @n
ψ- Mn(C) | ψ semisimple and det(tr(ψ(aij)ψ(akl))) 6= 0}

If ψ ∈ X(d), then ψ : A @n
- Mn(C) is onto as the ψ(aij) form a basis of

Mn(C) whence ψ determines a simple n-dimensional representation.

Proposition 3.12. With notations as above,

(1) The localization of A @n at the central multiplicative set {1, d, d2, . . .} is
an affine Azumaya algebra with center C[X(d)] which is the localization of
trA @n at this multiplicative set.

(2) The restriction of the quotient map rep
n
A

π-- issn A to the open set
π−1(X(d)) is a principal PGLn-fibration and determines an element in

H1
et(C[X(d)],PGLn)

giving the class of the Azumaya algebra.

Proof. (1) : If m = Ker ψ is the maximal ideal of C[X(d)] corresponding to
the semisimple representation ψ : A @n

- Mn(C), then we have seen that the
quotient

A @n

A @nmA @n
'Mn(C)

whence A @n ⊗trA @n C[X(d)] is an Azumaya algebra. (2) will follow from the
theory of Knop-Luna slices and will be proved in section 4.5. �
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An Azumaya algebra over a field is a central simple algebra. Under the above
conditions we have that

A @n ⊗trA @n C(issn A)

is a central simple algebra over the functionfield of issn A and hence determines
a class in its Brauer group, which is an important birational invariant. In the
following section we recall the cohomological description of Brauer groups of fields.

3.2. Central simple algebras

Let K be a field of characteristic zero, choose an algebraic closure K with
absolute Galois group GK = Gal(K/K).

Lemma 3.13. The following are equivalent
(1) K - A is étale
(2) A⊗K K ' K× . . .×K
(3) A =

∏
Li where Li/K is a finite field extension

Proof. Assume (1), then A = K[x1, . . . , xn]/(f1, . . . , fn) where fi have invert-
ible Jacobian matrix. Then A⊗K is a smooth algebra (hence reduced) of dimension
0 so (2) holds.

Assume (2), then

HomK−alg(A,K) ' HomK−alg(A⊗K,K)

has dimK(A⊗K) elements. On the other hand we have by the Chinese remainder
theorem that

A/Jac A =
∏
i

Li

with Li a finite field extension of K. However,

dimK(A⊗K) =
∑
i

dimK(Li) = dimK(A/Jac A) ≤ dimK(A)

and as both ends are equal A is reduced and hence A =
∏
i Li whence (3).

Assume (3), then each Li = K[xi]/(fi) with ∂fi/∂xi invertible in Li. But then
A =

∏
Li is étale over K whence (1). �

To every finite étale extension A =
∏
Li we can associate the finite set rts(A) =

HomK−alg(A,K) on which the Galois group GK acts via a finite quotient group.
If we write A = K[t]/(f), then rts(A) is the set of roots in K of the polynomial f
with obvious action by GK . Galois theory, in the interpretation of Grothendieck,
can now be stated as

Proposition 3.14. The functor

Ket
rts(−)- finite GK − sets

is an anti-equivalence of categories.

We will now give a similar interpretation of the Abelian sheaves on Ket. Let G
be a presheaf on Ket. Define

MG = lim- G(L)

where the limit is taken over all subfields L ⊂ - K which are finite over K. The
Galois group GK acts on G(L) on the left through its action on L whenever L/K
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is Galois. Hence, GK acts an MG and MG = ∪MH
G where H runs through the open

subgroups (that is, containing a normal subgroup having a finite quotient) of GK .
That is, MG is a continuous GK-module .

Conversely, given a continuous GK-module M we can define a presheaf GM on
Ket such that

• GM (L) = MH where H = GL = Gal(K/L).
• GM (

∏
Li) =

∏
GM (Li).

One verifies that GM is a sheaf of Abelian groups on Ket.

Theorem 3.15. There is an equivalence of categories

S(Ket)
-

� GK −mod

induced by the correspondences G 7→ MG and M 7→ GM . Here, GK −mod is the
category of continuous GK-modules.

Proof. A GK-morphism M - M ′ induces a morphism of sheaves
GM

- GM ′ . Conversely, if H is an open subgroup of GK with L = KH ,
then if G φ- G′ is a sheafmorphism, φ(L) : G(L) - G′(L) commutes with
the action of GK by functoriality of φ. Therefore, lim- φ(L) is a GK-morphism
MG - MG′ .

One verifies easily that HomGK
(M,M ′) - Hom(GM ,GM ′) is an isomor-

phism and that the canonical map G - GMG is an isomorphism. �

In particular, we have that G(K) = G(K)GK for every sheaf G of Abelian
groups on Ket and where G(K) = MG. Hence, the right derived functors of Γ and
(−)G coincide for Abelian sheaves.

The category GK −mod of continuous GK-modules is Abelian having enough
injectives. Therefore, the left exact functor

(−)G : GK −mod - abelian

admits right derived functors. They are called the Galois cohomology groups and
denoted

Ri MG = Hi(GK ,M)

Therefore, we have.

Proposition 3.16. For any sheaf of Abelian groups G on Ket we have a group
isomorphism

Hi
et(K,G) ' Hi(GK ,G(K))

Therefore, étale cohomology is a natural extension of Galois cohomology to
arbitrary algebras.

The following definition-characterization of central simple algebras is classical,
see for example [63].

Proposition 3.17. Let A be a finite dimensional K-algebra. The following are
equivalent :

(1) A has no proper twosided ideals and the center of A is K.
(2) AK = A⊗K K 'Mn(K) for some n.
(3) AL = A ⊗K L ' Mn(L) for some n and some finite Galois extension

L/K.
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(4) A 'Mk(D) for some k where D is a division algebra of dimension l2 with
center K.

The last part of this result suggests the following definition. Call two central
simple algebras A and A′ equivalent if and only if A ' Mk(∆) and A′ ' Ml(∆)
with ∆ a division algebra. From the second characterization it follows that the
tensorproduct of two central simple K-algebras is again central simple. Therefore,
we can equip the set of equivalence classes of central simple algebras with a product
induced from the tensorproduct. This product has the class [K] as unit element
and [∆]−1 = [∆opp], the opposite algebra as ∆ ⊗K ∆opp ' EndK(∆) = Ml2(K).
This group is called the Brauer group and is denoted Br(K). We will quickly recall
its cohomological description, all of which is classical.

GLr is an affine smooth algebraic group defined over K and is the automor-
phism group of a vectorspace of dimension r. It defines a sheaf of groups on Ket that
we will denote by GLr. Using the fact that the first cohomology classifies twisted
forms of vectorspaces of dimension r we have :

Lemma 3.18.
H1
et(K,GLr) = H1(GK , GLr(K)) = 0

In particular, we have ’Hilbert’s theorem 90’

H1
et(K,Gm) = H1(GK ,K∗) = 0

Proof. The cohomology group classifies K-module isomorphism classes of
twisted forms of r-dimensional vectorspaces overK. There is just one such class. �

PGLn is an affine smooth algebraic group defined over K and it is the au-
tomorphism group of the K-algebra Mn(K). It defines a sheaf of groups on Ket
denoted by PGLn. By proposition 3.17 we know that any central simple K-algebra
∆ of dimension n2 is a twisted form of Mn(K). Therefore,

Lemma 3.19. The pointed set of K-algebra isomorphism classes of central sim-
ple algebras of dimension n2 over K coincides with the cohomology set

H1
et(K,PGLn) = H1(GK , PGLn(K))

Theorem 3.20. There is a natural inclusion

H1
et(K,PGLn) ⊂ - H2

et(K,µn) = Brn(K)

where Brn(K) is the n-torsion part of the Brauer group of K. Moreover,

Br(K) = H2
et(K,Gm)

is a torsion group.

Proof. Consider the exact commutative diagram of sheaves of groups on Ket
of figure 2. Taking cohomology of the second exact sequence we obtain

GLn(K)
det- K∗ - H1

et(K, SLn) - H1
et(K,GLn)

where the first map is surjective and the last term is zero, whence

H1
et(K, SLn) = 0

Taking cohomology of the first vertical exact sequence we get

H1
et(K, SLn) - H1

et(K,PGLn) - H2
et(K,µn)

from which the first claim follows.
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1 1

1 - µn
?

- Gm

?
(−)n

- Gm
- 1

||

1 - SLn
?

- GLn
?

det - Gm
- 1

PGLn
?

= PGLn
?

1
?

1
?

Figure 2. Brauer group diagram.

As for the second assertion, taking cohomology of the first exact sequence we
get

H1
et(K,Gm) - H2

et(K,µn) - H2
et(K,Gm)

n.- H2
et(K,Gm)

By Hilbert 90, the first term vanishes and hence H2
et(K,µn) is equal to the n-torsion

of the group
H2
et(K,Gm) = H2(GK ,K∗) = Br(K)

where the last equality follows from the crossed product result, see for example
[63]. �

So far, the field K was arbitrary. If K is of transcendence degree d, this will
put restrictions on the ’size’ of the Galois group GK . In particular this will enable
us to show in section 3.6 that Hi(GK , µn) = 0 for i > d.

3.3. Quiver orders.

In this section and the next we will construct a large class of central simple
algebras controlled by combinatorial data, using the setting of proposition 3.12.

Recall that a quiver Q is a directed graph determined by
• a finite set Qv = {v1, . . . , vk} of vertices , and
• a finite set Qa = {a1, . . . , al} of arrows where we allow multiple arrows

between vertices and loops in vertices.

Every arrow ��������i��������j
aoo has a starting vertex s(a) = i and a terminating vertex

t(a) = j. Multiplication in the path algebra CQ is induced by (left) concatenation
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of paths. More precisely, 1 = v1 + . . . + vk is a decomposition of 1 into mutually
orthogonal idempotents and further we define

• vj .a is always zero unless ��������j ��������aoo in which case it is the path a,

• a.vi is always zero unless ��������i�������� aoo in which case it is the path a,

• ai.aj is always zero unless ���������������� ��������aioo ajoo in which case it is the
path aiaj .

Path algebras of quivers are the archetypical examples of Quillen smooth algebras
which are the basic building blocks to construct noncommutative manifolds.

Definition 3.21. A C-algebra A is said to be Quillen smooth if it satisfies the
following lifting property. Let T be a C-algebra and I /T a nilpotent ideal. If there
is a C-algebra morphism A

κ- T/I then there exists a C-algebra lift A
λ- T

A

T --
�...

.....
.....

.....
.....

.....
....

∃
λ

T/I

κ

?

making the diagram commutative.

This definition is rather restrictive. In particular, a commutative smooth alge-
bra does not have to satisfy this lifting property.

Example 3.22. consider the polynomial algebra C[x1, . . . , xd] and the 4-dimensional non-

commutative local algebra

T =
C〈x, y〉

(x2, y2, xy + yx)
= C⊕ Cx⊕ Cy ⊕ Cxy

Consider the one-dimensional nilpotent ideal I = C(xy−yx) of T , then the 3-dimensional quotient
T
I

is commutative and we have a morphism C[x1, . . . , xd]
φ- T

I
by x1 7→ x, x2 7→ y and xi 7→ 0

for i ≥ 2. This morphism admits no lift to T as for any potential lift the commutator

[φ̃(x), φ̃(y)] 6= 0 in T .

Therefore, C[x1, . . . , xd] can only be Quillen smooth if d = 1.

Consider the commutative C-algebra

Ck = C[e1, . . . , ek]/(e2i − ei, eiej ,
k∑
i=1

ei − 1).

Ck is the universal C-algebra in which 1 is decomposed into k orthogonal idem-
potents, that is, if R is any C-algebra such that 1 = r1 + . . . + rk with ri ∈ R
idempotents satisfying rirj = 0, then there is an embedding Ck ⊂ - R sending ei
to ri.

Proposition 3.23. Ck is Quillen smooth. That is, if I be a nilpotent ideal
of a C-algebra T and if 1 = e1 + . . . + ek is a decomposition of 1 into orthogonal
idempotents ei ∈ T/I. Then, we can lift this decomposition to 1 = e1 + . . . + ek

for orthogonal idempotents ei ∈ T such that π(ei) = ei where T
π-- T/I is the

canonical projection.
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Proof. Assume that I l = 0, clearly any element 1− i with i ∈ I is invertible
in T as

(1− i)(1 + i+ i2 + . . .+ il−1) = 1− il = 1.

If e is an idempotent of T/I and x ∈ T such that π(x) = e. Then, x − x2 ∈ I
whence

0 = (x− x2)l = xl − lxl+1 +
(
l
2

)
xl+2 − . . .+ (−1)lx2l

and therefore xl = axl+1 where a = l−
(
l
2

)
x+ . . .+ (−1)l−1xl−1 and so ax = xa.

If we take e = (ax)l, then e is an idempotent in T as

e2 = (ax)2l = al(alx2l) = alxl = e

the next to last equality follows from xl = axl+1 = a2xl+2 = . . . = alx2l. Moreover,

π(e) = π(a)lπ(x)l = π(a)lπ(x)2l = π(alx2l) = π(x)l = e.

If f is another idempotent in T/I such that ef = 0 = fe then as above we can lift
f to an idempotent f ′ of T . As f ′e ∈ I we can form the element

f = (1− e)(1− f ′e)−1f ′(1− f ′e).

Because f ′(1−f ′e) = f ′(1−e) one verifies that f is idempotent, π(f) = f and e.f =
0 = f.e. Assume by induction that we have already lifted the pairwise orthogonal
idempotents e1, . . . , ek−1 to pairwise orthogonal idempotents e1, . . . , ek−1 of R, then
e = e1 + . . .+ ek−1 is an idempotent of T such that eek = 0 = eke. Hence, we can
lift ek to an idempotent ek ∈ T such that eek = 0 = eke. But then also

eiek = (eie)ek = 0 = ek(eei) = ekei.

Finally, as e1 + . . .+ ek − 1 = i ∈ I we have that

e1 + . . .+ ek − 1 = (e1 + . . .+ ek − 1)l = il = 0

finishing the proof. �

Proposition 3.24. For any quiver Q, the path algebra CQ is Quillen smooth.

Proof. Take an algebra T with a nilpotent twosided ideal I / T and consider

T -- T

I

CQ

φ

6

�...............................

?φ̃

The decomposition 1 = φ(v1)+ . . .+φ(vk) into mutually orthogonal idempotents in
T
I can be lifted up the nilpotent ideal I to a decomposition 1 = φ̃(v1) + . . .+ φ̃(vk)
into mutually orthogonal idempotents in T . But then, taking for every arrow a

��������j ��������i
aoo an arbitrary element φ̃(a) ∈ φ̃(vj)(φ(a) + I)φ̃(vi)

gives a required lifted algebra morphism CQ φ̃- T . �
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The description of the quiver Q can be encoded in an integral k × k matrix

χQ =

χ11 . . . χ1k

...
...

χk1 . . . χkk

 with χij = δij −# { ��������i��������j oo }

Example 3.25. Consider the quiver Q

�������� ��������
��������

// ��

88 FF

2 3

1

Then, with the indicated ordering of the vertices we have that the integral matrix is

χQ =

24 1 0 0
−2 1 −1

0 0 0

35
and the path algebra of Q is isomorphic to the block-matrix algebra

CQ′ '

24C C⊕ C 0
0 C 0

0 C[x] C[x]

35
where x is the loop in vertex v3.

The subspace CQvi has as basis the paths starting in vertex vi and because
CQ = ⊕iCQvi, CQvi is a projective left ideal of CQ. Similarly, viCQ has as
basis the paths ending at vi and is a projective right ideal of CQ. The subspace
viCQvj has as basis the paths starting at vj and ending at vi and CQviCQ is the
twosided ideal of CQ having as basis all paths passing through vi. If 0 6= f ∈ CQvi
and 0 6= g ∈ viCQ, then f.g 6= 0 for let p be a longest path occurring in f and q a
longest path in g, then the coefficient of p.q in f.g cannot be zero. As a consequence
we have

Lemma 3.26. The projective left ideals CQvi are indecomposable and pairwise
non-isomorphic.

Proof. If CQvi is not indecomposable, then there exists a projection idem-
potent f ∈ HomCQ(CQvi,CQvi) ' viCQvi. But then, f2 = f = f.vi whence
f.(f−vi) = 0, contradicting the remark above. Further, for any left CQ-module M
we have that HomCQ(CQvi,M) ' viM . So, if CQvi ' CQvj then the isomorphism
gives elements f ∈ viCQvj and g ∈ vjCQvi such that f.g = vi and g.f = vj . But
then, vi ∈ CQvjCQ, a contradiction unless i = j as this space has basis all paths
passing through vj . �

Example 3.27. Let Q be a quiver, then the following properties hold :

(1) CQ is finite dimensional if and only if Q has no oriented cycles.

(2) CQ is prime (that is, I.J 6= 0 for all twosided ideals I, J 6= 0) if and only if Q is strongly
connected, that is, for all vertices vi and vj there is a path from vi to vj .

(3) CQ is Noetherian (that is, satisfies the ascending chain condition on left (or right)

ideals) if and only if for every vertex vi belonging to an oriented cycle there is only one
arrow starting at vi and only one arrow terminating at vi.

(4) The radical of CQ has as basis all paths from vi to vj for which there is no path from

vj to vi.
(5) The center of CQ is of the form C× . . .×C×C[x]× . . .×C[x] with one factor for each

connected component C of Q (that is, connected component for the underlying graph

forgetting the orientation) and this factor is isomorphic to C[x] if and only if C is one
oriented cycle.
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Recall that a representation V of the quiver Q is given by
• a finite dimensional C-vector space Vi for each vertex vi ∈ Qv, and
• a linear map Vj �Va

Vi for every arrow ��������i��������j
aoo in Qa.

If dim Vi = di we call the integral vector α = (d1, . . . , dk) ∈ Nk the dimension
vector of V and denote it with dim V . A morphism V

φ- W between two
representations V and W of Q is determined by a set of linear maps

Vi
φi- Wi for all vertices vi ∈ Qv

satisfying the following compatibility conditions for every arrow ��������i��������j
aoo in Qa

Vi
Va - Vj

Wi

φi

?
Wa - Wj

φj

?

Clearly, composition of morphisms V
φ- W

ψ- X is given by the rule that (ψ ◦
φ)i = ψi◦ψi and one readily verifies that this is again a morphism of representations
of Q. In this way we form a category rep Q of all finite dimensional representations
of the quiver Q.

Proposition 3.28. The category rep Q is equivalent to the category of finite
dimensional CQ-representations CQ−mod.

Proof. Let M be an n-dimensional CQ-representation. Then, we construct a
representation V of Q by taking

• Vi = viM , and for any arrow ��������i��������j
aoo in Qa define

• Va : Vi - Vj by Va(x) = vjax.
Observe that the dimension vector dim(V ) = (d1, . . . , dk) satisfies

∑
di = n. If

φ : M - N is CQ-linear, then we have a linear map Vi = viM
φi- Wi = viN

which clearly satisfies the compatibility condition.
Conversely, let V be a representation of Q with dimension vector dim(V ) =

(d1, . . . , dk). Then, consider the n =
∑
di-dimensional space M = ⊕iVi which

we turn into a CQ-representation as follows. Consider the canonical injection and
projection maps Vj ⊂

ij- M
πj-- Vj . Then, define the action of CQ by fixing the

action of the algebra generators vj and al to be{
vjm = ij(πj(m))
alm = ij(Va(πi(m)))

for all arrows ��������i��������j
aloo . A computation verifies that these two operations are

inverse to each other and induce an equivalence of categories. �

Let A be a C-algebra and let M and N be two A-representations of dimensions
say m and n. An A-representation P of dimension m+n is said to be an extension
of N by M if there exists a short exact sequence of left A-modules

e : 0 - M - P - N - 0
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We define an equivalence relation on extensions (P, e) of N by M : (P, e) ∼= (P ′, e′)
if and only if there is an isomorphism P

φ- P ′ of left A-modules such that the
diagram below is commutative

e : 0 - M - P - N - 0

e′ : 0 - M

idM

?
- P ′

φ

?
- N

idN

?
- 0

The set of equivalence classes of extensions of N by M will be denoted by
Ext1A(N,M).

An alternative description of Ext1A(N,M) is as follows. Let ρ : A - Mm

and σ : A - Mn be the representations defining M and N . For an extension
(P, e) we can identify the C-vectorspace with M ⊕N and the A-module structure
on P gives a algebra map µ : A - Mm+n and we can represent the action of a
on P by left multiplication of the block-matrix

µ(a) =
[
ρ(a) λ(a)
0 σ(a)

]
,

where λ(a) is an m× n matrix and hence defines a linear map

λ : A - HomC(N,M).

The condition that µ is an algebra morphism is equivalent to the condition

λ(aa′) = ρ(a)λ(a′) + λ(a)σ(a′)

and we denote the set of all liner maps λ : A - HomC(N,M) by Z(N,M)
and call it the space of cycle . The extensions of N by M corresponding to two
cycles λ and λ′ from Z(N,M) are equivalent if and only if we have an A-module
isomorphism in block form[

idM β
0 idN

]
with β ∈ HomC(N,M)

between them. A-linearity of this map translates into the matrix relation[
idM β
0 idN

]
.

[
ρ(a) λ(a)
0 σ(a)

]
=

[
ρ(a) λ′(a)
0 σ(a)

]
.

[
idM β
0 idN

]
for all a ∈ A

or equivalently, that λ(a)−λ′(a) = ρ(a)β−βσ(a) for all a ∈ A. We will now define
the subspace of Z(N,M) of boundaries B(N,M)

{δ ∈ HomC(N,M) | ∃β ∈ HomC(N,M) : ∀a ∈ A : δ(a) = ρ(a)β − βσ(a)}.

We then have the description Ext1A(N,M) = Z(N,M)
B(N,M) .

The Euler form of the quiver Q is the bilinear form on Zk

χQ(., .) : Zk × Zk - Z defined by χQ(α, β) = α.χQ.β
τ

for all row vectors α, β ∈ Zk.

Theorem 3.29. Let V and W be two representations of Q, then

dimC HomCQ(V,W )− dimC Ext1CQ(V,W ) = χQ(dim(V ), dim(W ))



3.3. QUIVER ORDERS. 107

Proof. We claim that there exists an exact sequence of C-vectorspaces

0 - HomCQ(V,W )
γ- ⊕vi∈Qv HomC(Vi,Wi)

dV
W-

dV
W- ⊕a∈Qa

HomC(Vs(a),Wt(a))
ε- Ext1CQ(V,W ) - 0

Here, γ(φ) = (φ1, . . . , φk) and dVW maps a family of linear maps (f1, . . . , fk) to the
linear maps µa = ft(a)Va−Wafs(a) for any arrow a in Q, that is, to the obstruction
of the following diagram to be commutative

Vs(a)
Va - Vt(a)

Ws(a)

fs(a)

?
Wa- Wt(a)

ft(a)

?

.............................

µ
a

-

By the definition of morphisms between representations of Q it is clear that the
kernel of dVW coincides with HomCQ(V,W ).

Further, the map ε is defined by sending a family of maps (g1, . . . , gs) =
(ga)a∈Qa to the equivalence class of the exact sequence

0 - W
i- E

p- V - 0

where for all vi ∈ Qv we have Ei = Wi⊕Vi and the inclusion i and projection map
p are the obvious ones and for each generator a ∈ Qa the action of a on E is defined
by the matrix

Ea =
[
Wa ga
0 Va

]
: Es(a) = Ws(a) ⊕ Vs(a) - Wt(a) ⊕ Vt(a) = Et(a)

Clearly, this makes E into a CQ-module and one verifies that the above short exact
sequence is one of CQ-modules. Remains to prove that the cokernel of dVW can be
identified with Ext1CQ(V,W ).

A set of algebra generators of CQ is given by {v1, . . . , vk, a1, . . . , al}. A cycle
is given by a linear map λ : CQ - HomC(V,W ) such that for all f, f ′ ∈ CQ we
have the condition

λ(ff ′) = ρ(f)λ(f ′) + λ(f)σ(f ′)

where ρ determines the action on W and σ that on V . First, consider vi then the
condition says λ(v2

i ) = λ(vi) = pWi λ(vi) + λ(vi)pVi whence λ(vi) : Vi - Wi but
then applying again the condition we see that λ(vi) = 2λ(vi) so λ(vi) = 0. Similarly,
using the condition on a = vt(a)a = avs(a) we deduce that λ(a) : Vs(a) - Wt(a).
That is, we can identify ⊕a∈QaHomC(Vs(a),Wt(a)) with Z(V,W ) under the map ε.
Moreover, the image of δ gives rise to a family of morphisms λ(a) = ft(a)Va−Wafs(a)
for a linear map f = (fi) : V - W so this image coincides precisely to
the subspace of boundaries B(V,W ) proving that indeed the cokernel of dVW is
Ext1CQ(V,W ) finishing the proof of exactness of the long sequence of vectorspaces.
But then, if dim(V ) = (r1, . . . , rk) and dim(W ) = (s1, . . . , sk), we have that
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dim Hom(V,W )− dim Ext1(V,W ) is equal to∑
vi∈Qv

dim HomC(Vi,Wi)−
∑
a∈Qa

dim HomC(Vs(a),Wt(a))

=
∑
vi∈Qv

risi −
∑
a∈Qa

rs(a)st(a)

= (r1, . . . , rk)MQ(s1, . . . , sk)τ = χQ(dim(V ), dim(W ))

finishing the proof. �

Fix a dimension vector α = (d1, . . . , dk) ∈ Nk and consider the set repα Q of all
representations V of Q such that dim(V ) = α. Because V is completely determined
by the linear maps

Va : Vs(a) = Cds(a) - Cdt(a) = Vt(a)

we see that repα Q is the affine space

repα Q =
⊕

��������i��������j
aoo

Mdj×di(C) ' Cr

where r =
∑
a∈Qa

ds(a)dt(a). On this affine space we have an action of the algebraic
group GL(α) = GLd1 × . . . × GLdk

by conjugation. That is, if g = (g1, . . . , gk) ∈
GL(α) and if V = (Va)a∈Qa then g.V is determined by the matrices

(g.V )a = gt(a)Vag
−1
s(a).

If V and W in repα Q are isomorphic as representations of Q, such an isomorphism
is determined by invertible matrices gi : Vi - Wi ∈ GLdi

such that for every
arrow ��������i��������j

aoo we have a commutative diagram

Vi
Va - Vj

Wi

gi

?
Wa - Wj

gj

?

or equivalently, gjVa = Wagi. That is, two representations are isomorphic if and
only if they belong to the same orbit under GL(α). In particular, we see that

StabGL(α) V ' AutCQ V

and the latter is an open subvariety of the affine space EndCQ(V ) = HomCQ(V, V )
whence they have the same dimension. The dimension of the orbit O(V ) of V in
repα Q is equal to

dim O(V ) = dim GL(α)− dim StabGL(α) V.

But then we have a geometric reformulation of the above theorem.

Lemma 3.30. Let V ∈ repα Q, then

dim repα Q− dim O(V ) = dim EndCQ(V )− χQ(α, α) = dim Ext1CQ(V, V )
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Proof. We have seen that dim repα Q− dim O(V ) is equal to∑
a

ds(a)dt(a) − (
∑
i

d2
i − dim EndCQ(V )) = dim EndCQ(V )− χQ(α, α)

and the foregoing theorem asserts that the latter term is equal to dim Ext1CQ(V, V ).
�

In particular it follows that the orbit O(V ) is open in repα Q if and only if V
has no self-extensions. Moreover, as repα Q is irreducible there can be at most one
isomorphism class of a representation without self-extensions.

For every dimension vector α = (d1, . . . , dk) we will construct a quiver order
TαQ which is a Cayley-Hamilton algebra of degree n where n = d1 + . . .+dk. First,
we describe the n-dimensional representations of the Quillen-smooth algebra Ck.

Proposition 3.31. Let Ck = C[e1, . . . , ek]/(e2i − ei, eiej ,
∑k
i=1 ei − 1), then

rep
n
Ck is reduced and is the disjoint union of the homogeneous varieties

rep
n
Ck =

⋃
α

GLn/(GLd1 × . . .×GLdk
)

where the union is taken over all α = (d1, . . . , dk) such that n =
∑
i di.

Proof. As Ck is Quillen smooth we will see in section 4.4 that all its represen-
tation spaces rep

n
Ck are smooth varieties hence in particular reduced. Therefore,

it suffices to describe the points. For any n-dimensional representation

Ck
φ- Mn(C)

the image is a commutative semi-simple algebra with orthogonal idempotents fi =
φ(ei) of rank di. Because

∑
i ei = rr

n we must have that
∑
i di = n. Alternatively,

the corresponding n-dimensional representation M = ⊕iMi where Mi = eiCn has
dimension di. The stabilizer subgroup of M is equal to GL(α) = GLd1×. . .×GLdk

,
proving the claim. �

The algebra embedding Ck
φ- CQ obtained by φ(ei) = vi determines a

morphism

rep
n

CQ π- rep
n
Ck = ∪αO(α) = ∪αGLn/GL(α)

where the disjoint union is taken over all the dimension vectors α = (d1, . . . , dk)
such that n =

∑
di. Consider the point pα ∈ O(α) determined by sending the

idempotents ei to the canonical diagonal idempotentsPi
l=1 di∑

j=
Pi−1

l=1 dl+1

ejj ∈Mn(C)

We denote by Ck(α) this semi-simple commutative subalgebra ofMn(C). As repα Q
can be identified with the variety of n-dimensional representations of CQ in block
form determined by these idempotents we see that repα Q = π−1(p).

We define the quiver trace algebra TQ to be the path algebra of Q over the
polynomial algebra R in the variables tp where p is a word in the arrows aj ∈ Qa
and is determined only up to cyclic permutation. As a consequence we only retain
the variables tp where p is an oriented cycle in Q (as all the others have a cyclic
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permutation which is the zero element in CQ). We define a formal trace map tr on
TQ by tr(p) = tp if p is an oriented cycle in Q and tr(p) = 0 otherwise.

For a fixed dimension vector α = (d1, . . . , dk) with
∑
i di = n we define Tα Q

to be the quotient

TαQ =
TQ

(χ(n)
a (a), tr(vi)− di)

by dividing out the substitution invariant twosided ideal generated by all the eval-
uations of the formal Cayley-Hamilton algebras of degree n, χ(n)

a (a) for a ∈ TQ
together with the additional relations that tr(vi) = di. Tα Q is a Cayley-Hamilton
algebra of degree n with a decomposition 1 = e1 + . . . + ek into orthogonal idem-
potents such that tr(ei) = di.

More generally, let A be a Cayley-Hamilton algebra of degree n with decom-
position 1 = a1 + . . .+ an into orthogonal idempotents such that tr(ai) = di ∈ N+

and
∑
di = n. Then, we have a trace preserving embedding Ck(α) ⊂

i- A
making A into a Ck(α) = ×ki=1C-algebra. We have a trace preserving embed-

ding Ck(α) ⊂
i′- Mn(C) by sending the idempotent ei to the diagonal idempotent

Ei ∈Mn(C) with ones on the diagonal from position
∑i−1
j=1 dj − 1 to

∑i
j=1 di. This

calls for the introduction of a restricted representation space of all trace preserving
algebra morphisms χ such that the diagram below is commutative

A
χ- Mn(C)

Ck(α)

i

∪

6

⊂

i
′

-

that is, such that χ(ai) = Ei. This again determines an affine scheme repres
α

A

which is in fact a closed subscheme of reptr
n
A. The functorial description of the

restricted module scheme is as follows. Let C be any commutative C-algebra, then
Mn(C) is a Ck(α)-algebra and the idempotents Ei allow for a block decomposition

Mn(C) = ⊕i,jEiMn(C)Ej =

E1Mn(C)E1 . . . E1Mn(C)Ek
...

...
EkMn(C)E1 . . . EkMn(C)Ek

 .
The scheme repres

α
A assigns to the algebra C the set of all trace preserving algebra

maps

A
φ- Mn(B) such that φ(ai) = Ei.

Equivalently, the idempotents ai decompose A into block form A = ⊕i,jaiAaj
and then repres

α
A(C) are the trace preserving algebra morphisms A - Mn(B)

compatible with the block decompositions.
Still another description of the restricted representation scheme is therefore

that repres
α

A is the scheme theoretic fiber π−1(pα) of the point pα under the GLn-
equivariant morphism

reptr
n
A

π- reptr
n
Ck(α).
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Hence, the stabilizer subgroup of p acts on repres
α

A. This stabilizer is the subgroup
GL(α) = GLm1 × . . .×GLmk

embedded in GLn along the diagonal

GL(α) =

GLm1

. . .
GLmk

 ⊂ - GLn.

Clearly, GL(α) acts via this embedding by conjugation on Mn(C).

Theorem 3.32. Let A be a Cayley-Hamilton algebra of degree n such that 1 =
a1 + . . .+ak is a decomposition into orthogonal idempotents with tr(ai) = mi ∈ N+.
Then, A is isomorphic to the ring of GL(α)-equivariant maps

repres
α

A - Mn.

Proof. We know that A is the ring ofGLn-equivariant maps reptr
n
A - Mn.

Further, we have a GLn-equivariant map

reptr
n
A

π- rep
n
tr Ck(α) = GLn.p ' GLn/GL(α)

Thus, the GLn-equivariant maps from reptr
n
A to Mn coincide with the Stab(p) =

GL(α)-equivariant maps from the fiber π−1(p) = repres
α

A to Mn. �

That is, we have a block matrix decomposition for A. Indeed, we have

A ' (C[repres
α

A]⊗Mn(C))GL(α)

and this isomorphism is clearly compatible with the block decomposition and thus
we have for all i, j that

aiAaj ' (C[repres
α

A]⊗Mmi×mj (C))GL(α)

where Mmi×mj (C) is the space of rectangular mi×mj matrices M with coefficients
in C on which GL(α) acts via

g.M = giMg−1
j where g = (g1, . . . , gk) ∈ GL(α).

If we specialize this result to the case of quiver orders we have

repres
α

TαQ ' repα Q

as GL(α)-varieties and we deduce

Theorem 3.33. With notations as before,

(1) Tα Q is the algebra of GL(α)-equivariant maps from repα Q to Mn, that
is,

Tα Q = Mn(C[repα Q])GL(α)

(2) The quiver necklace algebra

Nα Q = C[repα Q]GL(α)

is generated by traces along oriented cycles in the quiver Q of length
bounded by n2 + 1.
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A concrete realization of these algebras is as follows. To an arrow ��������j ��������i
a

oo

corresponds a dj × di matrix of variables from C[repα Q]

Ma =

 x11(a) . . . . . . x1di(a)
...

...
xdj1(a) . . . . . . xdjdi

(a)


where xij(a) are the coordinate functions of the entries of Va of a representation
V ∈ repα Q. Let p = a1a2 . . . ar be an oriented cycle in Q, then we can compute
the following matrix

Mp = Mar . . .Ma2Ma1

over C[repα Q]. As we have that s(ar) = t(a1) = vi, this is a square di × di matrix
with coefficients in C[repα Q] and we can take its ordinary trace

Tr(Mp) ∈ C[repα Q].

Then, Nα Q is the C-subalgebra of C[repα Q] generated by these elements. Consider
the block structure of Mn(C[repα Q]) with respect to the idempotents ei

Md1(S) . . . . . . Md1×dk
(S)

...
...

... Mdj×di
(S)

...
Mdk×di

(S) . . . . . . Mdk
(S)


where S = C[repα Q]. Then, we can also view the matrix Ma for an arrow��������j ��������i

a
oo as a block matrix in Mn(C[repα Q])


0 . . . . . . 0
...

...
... Ma

...
0 . . . . . . 0


Then, Tα Q is the Ck(α)-subalgebra of Mn(C[repα Q]) generated by Nα Q and
these block matrices for all arrows a ∈ Qa. Tα Q itself has a block decomposition

Tα Q =


P11 . . . . . . P1k

...
...

... Pij
...

Pk1 . . . . . . Pkk


where Pij is the Nα Q-module spanned by all matrices Mp where p is a path from
vi to vj of length bounded by n2.
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Example 3.34. Consider the path algebra M of the quiver

e(/).*-+,

f(/).*-+,

y

qq

x

--

u

EE

v

��

and take as dimension vector α = (n, 1). The total dimension is in this case n = n + 1 and we

fix the embedding C2 = C × C ⊂ - M given by the decomposition 1 = e + f . Then, the above
realization of Tα M consists in taking the following n× n matrices

en =

26664
1 0

. . .
...

1 0

0 . . . 0 0

37775 fn =

26664
0 . . . 0 0
...

...
...

0 . . . 0 0
0 . . . 0 1

37775 xn =

26664
x11 . . . x1n 0
...

...
...

xn1 . . . xnn 0
0 . . . 0 0

37775

yn =

26664
y11 . . . y1n 0
...

...
...

yn1 . . . ynn 0

0 . . . 0 0

37775 un =

26664
0 . . . 0 u1

...
...

...
0 . . . 0 un
0 . . . 0 0

37775 vn =

26664
0 . . . 0 0
...

...
...

0 . . . 0 0
v1 . . . vn 0

37775
In order to determine the ring of GL(α)-polynomial invariants of repα M we have to consider the

traces along oriented cycles in the quiver. Any nontrivial such cycle must pass through the vertex
e and then we can decompose the cycle into factors x, y and uv (observe that if we wanted to

describe circuits based at the vertex f they are of the form c = vc′u with c′ a circuit based at

e and we can use the cyclic property of traces to bring it into the claimed form). That is, all
relevant oriented cycles in the quiver can be represented by a necklace word w

�

�''

�;;
� SS� cc

�
uu

�
��

�

�

00

�
II

�[[ �kk

���

��

x
w

where each bead is one of the elementst
= x

d
= y and H = uv

In calculating the trace, we first have to replace each occurrence of x, y, u or v by the relevant

n × n-matrix above. This results in replacing each of the beads in the necklace by one of the

following n× n matrices

t
=

2664
x11 . . . x1n

.

..
.
..

xn1 . . . xnn

3775 d
=

2664
y11 . . . y1n
.
..

.

..
yn1 . . . ynn

3775 H =

2664
u1v1 . . . u1vn

...
...

unv1 . . . unvn

3775
and taking the trace of the n×n matrix obtained after multiplying these bead-matrices cyclicly in

the indicated orientation. This concludes the description of the invariant ring Nα Q. The algebra

Tα M of GL(α)-equivariant maps from repα M to Mn is then the subalgebra of Mn(C[repα M])

generated as C2(α)-algebra (using the idempotent n × n matrices corresponding to e and f) by

Nα M and the n× n-matrices corresponding to x, y, u and v.
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3.4. Simple roots.

In this section we will use proposition 3.12 to construct quiver orders TαQ which
determine central simple algebras over the functionfield of the quotient variety
issα Q = repα Q/GL(α). With PGL(α) we denote the groupscheme corresponding
to the algebraic group

PGL(α) = GL(α)/C∗(rrd1 , . . . ,
rr
dk

)

If C is a commutative C-algebra, then using the embedding PGL(α) ⊂ - PGLn,
the pointed cohomology set

H1
et(C,PGL(α)) ⊂ - H1

et(C,PGLn)

classifies Azumaya algebras A over C with a distinguished embedding Ck ⊂ - A
that are split by an étale cover such that on this cover the embedding of Ck in
matrices is conjugate to the standard embedding Ck(α). Modifying the argument
of proposition 3.12 we have

Proposition 3.35. If α is the dimension vector of a simple representation of
Q, then

TαQ⊗NαQ C(issα Q)
is a central simple algebra over the function field of the quotient variety issα Q.

Remains to classify the simple roots α, that is, the dimension vectors of simple
representations of the quiver Q. Consider the vertex set Qv = {v1, . . . , vk}. To a
subset S ⊂ - Qv we associate the full subquiver QS of Q, that is, QS has as set
of vertices the subset S and as set of arrows all arrows ��������i��������j

aoo in Qa such that
vi and vj belong to S. A full subquiver QS is said to be strongly connected if and
only if for all vi, vj ∈ V there is an oriented cycle in QS passing through vi and vj .
We can partition

Qv = S1 t . . . t Ss
such that the QSi

are maximal strongly connected components of Q. Clearly,
the direction of arrows in Q between vertices in Si and Sj is the same by the
maximality assumption and can be used to define an orientation between Si and
Sj . The strongly connected component quiver SC(Q) is then the quiver on s vertices
{w1, . . . , ws} with wi corresponding to Si and there is one arrow from wi to wj if
and only if there is an arrow in Q from a vertex in Si to a vertex in Sj . Observe
that when the underlying graph of Q is connected, then so is the underlying graph
of SC(Q) and SC(Q) is a quiver without oriented cycles.

Vertices with specific in- and out-going arrows are given names as in figure 3
If α = (d1, . . . , dk) is a dimension vector, we define the support of α to be

supp(α) = {vi ∈ Qv | di 6= 0}.

Lemma 3.36. If α is the dimension vector of a simple representation of Q, then
Qsupp(α) is a strongly connected subquiver.

Proof. If not, we consider the strongly connected component quiver
SC(Qsupp(α)) and by assumption there must be a sink in it corresponding to a

proper subset S ⊂
6=- Qv. If V ∈ repα Q we can then construct a representation

W by
• Wi = Vi for vi ∈ S and Wi = 0 if vi /∈ S,
• Wa = Va for an arrow a in QS and Wa = 0 otherwise.
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��������
source

;;wwwwwwwwwwwwww
33gggggggggggg

++WWWWWWWWWWWW

##G
GGGGGGGGGGGGG ��������

sink

##GGGGGGGGGGGGGG

++WWWWWWWWWWWW

33gggggggggggg

;;
wwwwwwwwwwwwww

��������
prism

;;wwwwwwwwwwwwww
33gggggggggggg

++WWWWWWWWWWWW

##G
GGGGGGGGGGGGG// ��������

focus

##GGGGGGGGGGGGGG

++WWWWWWWWWWWW

33gggggggggggg

;;
wwwwwwwwwwwwww

//

Figure 3. Vertex terminology

One verifies that W is a proper subrepresentation of V , so V cannot be simple, a
contradiction. �

The second necessary condition involves the Euler form of Q. With εi be denote
the dimension vector of the simple representation having a one-dimensional space
at vertex vi and zero elsewhere and all arrows zero matrices.

Lemma 3.37. If α is the dimension vector of a simple representation of Q, then{
χQ(α, εi) ≤ 0
χQ(εi, α) ≤ 0

for all vi ∈ supp(α).

Proof. Let V be a simple representation of Q with dimension vector α =
(d1, . . . , dk). One verifies that

χQ(εi, α) = di −
∑

��������i��������j
aoo

dj

Assume that χQ(εi, α) > 0, then the natural linear map⊕
��������i��������j

aoo

Va : Vi -
⊕

��������i��������j
aoo

Vj

has a nontrivial kernel, say K. But then we consider the representation W of Q
determined by

• Wi = K and Wj = 0 for all j 6= i,
• Wa = 0 for all a ∈ Qa.

It is clear that W is a proper subrepresentation of V , a contradiction.
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Similarly, assume that χQ(α, εi) = di−
∑

��������j��������i
aoo

dj > 0, then the linear map

⊕
��������j��������i

aoo

Va :
⊕

��������j��������i
aoo

Vj - Vi

has an image I which is a proper subspace of Vi. The representation W of Q
determined by

• Wi = I and Wj = Vj for j 6= i,
• Wa = Va for all a ∈ Qa.

is a proper subrepresentation of V , a contradiction finishing the proof. �

Example 3.38. The necessary conditions of the foregoing two lemmas are not sufficient.
Consider the extended Dynkin quiver of type Ãk with cyclic orientation.

a(/).*-+, a(/).*-+,
a(/).*-+,
a(/).*-+,

a(/).*-+,a(/).*-+,

//
??���

OO

__???
oo

��

and dimension vector α = (a, . . . , a). For a simple representation all arrow matrices must be

invertible but then, under the action of GL(α), they can be diagonalized. Hence, the only simple

representations (which are not the trivial simples concentrated in a vertex) have dimension vector

(1, . . . , 1).

Nevertheless, we will show that these are the only exceptions. A vertex vi is said
to be large with respect to a dimension vector α = (d1, . . . , dk) whenever di is
maximal among the dj . The vertex vi is said to be good if vi is large and has
no direct successor which is a large prism nor a direct predecessor which is a large
focus.

Lemma 3.39. Let Q be a strongly connected quiver, not of type Ãk, then one
of the following hold

(1) Q has a good vertex, or,
(2) Q has a large prism having no direct large prism successors, or
(3) Q has a large focus having no direct large focus predecessors.

Proof. If neither of the cases hold, we would have an oriented cycle in Q
consisting of prisms (or consisting of focusses). Assume (vi1 , . . . , vil) is a cycle of
prisms, then the unique incoming arrow of vij belongs to the cycle. As Q 6= Ãk
there is at least one extra vertex va not belonging to the cycle. But then, there can
be no oriented path from va to any of the vij , contradicting the assumption that Q
is strongly connected. �

If we are in one of the two last cases, let a be the maximum among the com-
ponents of the dimension vector α and assume that α satisfies χQ(α, εi) ≤ 0 and
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χQ(εi, α) ≤ 0 for all 1 ≤ i ≤ k, then we have the following subquiver in Q

��������a ��������a

large focus large prism

##G
GG

GG
GG

GG
GG

GG
G

++WWWWWWWWWWW

33ggggggggggg
;;wwwwwwwwwwwwww

//

77oooooooooooo //

''OOOOOOOOOOOO

We can reduce to a quiver situation with strictly less vertices.

Lemma 3.40. Assume Q is strongly connected and we have a vertex vi which
is a prism with unique predecessor the vertex vj, which is a focus. Consider the
dimension vector α = (d1, . . . , dk) with di = dj = a 6= 0. Then, α is the dimension
of a simple representation of Q if and only if

α′ = (d1, . . . , di−1, di+1, . . . , dk) ∈ Nk−1

is the dimension vector of a simple representation of the quiver Q′ on k−1 vertices,
obtained from Q by identifying the vertices vi and vj, that is, the above subquiver
in Q is simplified to the one below in Q′

��������a
##G

GG
GG

GG
GG

GG
GG

G

++WWWWWWWWWWW

33ggggggggggg
;;wwwwwwwwwwwwww

77oooooooooooo //

''OOOOOOOOOOOO

Proof. If b is the unique arrow from vj to vi and if V ∈ repα Q is a simple
representation then Vb is an isomorphism, so we can identify Vi with Vj and obtain a
simple representation of Q′. Conversely, if V ′ ∈ repα′ Q′ is a simple representation,
define V ∈ repα Q by Vi = V ′j and Vz = V ′z for z 6= i, Vb′ = V ′b′ for all arrows b′ 6= b
and Vb = rr

a. Clearly, V is a simple representation of Q. �

Theorem 3.41. α = (d1, . . . , dk) is the dimension vector of a simple represen-
tation of Q if and only if one of the following two cases holds

(1) supp(α) = Ãk, the extended Dynkin quiver on k vertices with cyclic ori-
entation and di = 1 for all 1 ≤ i ≤ k

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

""
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(2) supp(α) 6= Ãk. Then, supp(α) is strongly connected and for all 1 ≤ i ≤ k
we have {

χQ(α, εi) ≤ 0
χQ(εi, α) ≤ 0

Proof. We will use induction, both on the number of vertices k in supp(α)
and on the total dimension n =

∑
i di of the representation. If supp(α) does not

possess a good vertex, then the above lemma finishes the proof by induction on k.
Observe that the Euler-form conditions are preserved in passing from Q to Q′ as
di = dj .

Hence, assume vi is a good vertex in supp(α). If di = 1 then all dj = 1 for
vj ∈ supp(α) and we can construct a simple representation by taking Vb = 1 for
all arrows b in supp(α). Simplicity follows from the fact that supp(α) is strongly
connected.

If di > 1, consider the dimension vector α′ = (d1, . . . , di−1, di−1, di+1, . . . , dk).
Clearly, supp(α′) = supp(α) is strongly connected and we claim that the Euler-form
conditions still hold for α′. the only vertices vl where things might go wrong are
direct predecessors or direct successors of vi. Assume for one of them χQ(εl, α) > 0
holds, then

dl = d′l >
∑

��������l��������m
aoo

d′m ≥ d′i = di − 1

But then, dl = di whence vl is a large vertex of α and has to be also a focus with
end vertex vi (if not, dl > di), contradicting goodness of vi.

Hence, by induction on n we may assume that there is a simple representation
W ∈ repα′ Q. Consider the space repW of representations V ∈ repα Q such that
V | α′ = W . That is, for every arrow

��������i��������j
aoo Va =

Wa

v1 . . . vdj

��������j��������i
aoo Va =

v1

Wa

...
vdj

Hence, repW is an affine space consisting of all representations degenerating to
W ⊕ Si where Si is the simple one-dimensional representation concentrated in vi.
As χQ(α′, εi) < 0 and χQ(εi, α′) < 0 we have that Ext1(W,Si) 6= 0 6= Ext1(Si,W )
so there is an open subset of representations which are not isomorphic to W ⊕ Si.

As there are simple representations of Q having a one-dimensional component
at each vertex in supp(α) and as the subset of simple representations in repα′ Q
is open, we can choose W such that repW contains representations V such that a
trace of an oriented cycle differs from that of W ⊕ Si. Hence, by the description
of the invariant ring C[repα Q]GL(α) as being generated by traces along oriented
cycles and by the identification of points in the quotient variety as isomorphism
classes of semi-simple representations, it follows that the Jordan-Hölder factors of
V are different from W and Si. In view of the definition of repW , this can only
happen if V is a simple representation, finishing the proof of the theorem. �
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Still, the central simple algebras constructed from quivers are very special ex-
amples as we will see in section 4.8. In the next sections we will show that the
Brauer groups of function fields are huge objects but first we need to recall some
facts about spectral sequences.

3.5. Spectral sequences

Let A,B and C be Abelian categories such that A and B have enough injectives
and consider left exact functors

A f- B g- C

Let the functors be such that f maps injectives of A to g-acyclic objects in B, that
is Ri g(f I) = 0 for all i > 0. Then, there are connections between the objects

Rp g(Rq f(A)) and Rn gf(A)

for all objects A ∈ A. These connections can be summarized by giving a spectral
sequence

Theorem 3.42. Let A,B, C be Abelian categories with A,B having enough in-
jectives and left exact functors

A f- B g- C

such that f takes injectives to g-acyclics.
Then, for any object A ∈ A there is a spectral sequence

Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A)

In particular, there is an exact sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) - . . .

Moreover, if f is an exact functor, then we have

Rp gf(A) ' Rp g(f(A))

A spectral sequence Ep.q2 =⇒ En (or Ep,q1 =⇒ En) consists of the following
data

(1) A family of objects Ep,qr in an Abelian category for p, q, r ∈ Z such that
p, q ≥ 0 and r ≥ 2 (or r ≥ 1).

(2) A family of morphisms in the Abelian category

dp.qr : Ep.qr - Ep+r,q−r+1
r

satisfying the complex condition

dp+r,q−r+1
r ◦ dp,qr = 0
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and where we assume that dp.qr = 0 if any of the numbers p, q, p + r or
q − r + 1 is < 1. At level one we have the following

Ep,q1 =
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At level two we have the following

Ep,q2 =
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(3) The objects Ep,qr+1 on level r+1 are derived from those on level r by taking
the cohomology objects of the complexes, that is,

Epr+1 = Ker dp,qr / Im dp−r,q+r−1
r

At each place (p, q) this process converges as there is an integer r0 de-
pending on (p, q) such that for all r ≥ r0 we have dp.qr = 0 = dp−r,q+r−1

r .
We then define

Ep,q∞ = Ep,qr0 (= Ep,qr0+1 = . . .)

Observe that there are injective maps E0,q
∞

⊂ - E0,q
2 .

(4) A family of objects En for integers n ≥ 0 and for each we have a filtration

0 ⊂ Enn ⊂ Enn−1 ⊂ . . . ⊂ En1 ⊂ En0 = En

such that the successive quotients are given by

Enp / E
n
p+1 = Ep,n−p∞
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That is, the terms Ep,q∞ are the composition terms of the limiting terms
Ep+q. Pictorially,

Ep,q∞ =

6
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q

pE0 E1 E2 E3 E4

For small n one can make the relation between En and the terms Ep,q2 explicit.
First note that

E0,0
2 = E0,0

∞ = E0

Also, E1
1 = E1,0

∞ = E1,0
2 and E1/E1

1 = E0,1
∞ = Ker d0,1

2 . This gives an exact
sequence

0 - E1,0
2

- E1 - E0,1
2

d0,1
2- E2,0

2

Further, E2 ⊃ E2
1 ⊃ E2

2 where

E2
2 = E2,0

∞ = E2,0
2 / Im d0,1

2

and E2
1/E

2
2 = E1,1

∞ = Ker d1,1
2 whence we can extend the above sequence to

. . . - E0,1
2

d0,1
2- E2,0

2
- E2

1
- E1,1

2

d1,1
2- E3,0

2

as E2/E2
1 = E0,2

∞
⊂ - E0,2

2 we have that E2
1 = Ker (E2 - E0,2

2 ). If we
specialize to the spectral sequence Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A) we obtain
the exact sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) -

- E2
1

- R1 g(R1 f(A)) - R3 g(f(A))
where E2

1 = Ker (R2 gf(A) - g(R2 f(A))).
An important example of a spectral sequence is the Leray spectral sequence .

Assume we have an algebra morphism A
f- A′ and a sheaf of groups G on A′et.

We define the direct image of G under f to be the sheaf of groups f∗ G on Aet
defined by

f∗ G(B) = G(B ⊗A A′)
for all B ∈ Aet (recall that B ⊗A A′ ∈ A′et so the right hand side is well defined).

This gives us a left exact functor

f∗ : Sab(A′et) - Sab(Aet)

and therefore we have right derived functors of it Ri f∗. If G is an Abelian sheaf
on A′et, then Ri f∗G is a sheaf on Aet. One verifies that its stalk in a prime ideal
p is equal to

(Ri f∗G)p = Hi
et(A

sh
p ⊗A A′,G)
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where the right hand side is the direct limit of cohomology groups taken over all
étale neighborhoods of p. We can relate cohomology of G and f∗G by the following

Theorem 3.43. (Leray spectral sequence) If G is a sheaf of Abelian groups on
A′et and A

f- A′ an algebra morphism, then there is a spectral sequence

Ep,q2 = Hp
et(A,R

q f∗G) =⇒ Hn
et(A,G)

In particular, if Rj f∗G = 0 for all j > 0, then for all i ≥ 0 we have isomorphisms

Hi
et(A, f∗G) ' Hi

et(A
′,G)

3.6. Tsen and Tate fields

Definition 3.44. A field K is said to be a Tsend-field if every homogeneous
form of degree deg with coefficients in K and n > degd variables has a non-trivial
zero in K.

For example, an algebraically closed field K is a Tsen0-field as any form in
n-variables defines a hypersurface in Pn−1

K . In fact, algebraic geometry tells us a
stronger story

Lemma 3.45. Let K be algebraically closed. If f1, . . . , fr are forms in n variables
over K and n > r, then these forms have a common non-trivial zero in K.

Proof. Each fi defines a hypersurface V (fi) ⊂ - Pn−1
K . The intersection of

r hypersurfaces has dimension ≥ n− 1− r from which the claim follows. �

We want to extend this fact to higher Tsen-fields. The proof of the following
result is technical unenlightening inequality manipulation, see for example [74].

Proposition 3.46. Let K be a Tsend-field and f1, . . . , fr forms in n variables
of degree deg. If n > rdegd, then they have a non-trivial common zero in K.

For our purposes the main interest in Tsen-fields comes from :

Theorem 3.47. Let K be of transcendence degree d over an algebraically closed
field C, then K is a Tsend-field.

Proof. First we claim that the purely transcendental field C(t1, . . . , td) is a
Tsend-field. By induction we have to show that if L is Tsenk, then L(t) is Tsenk+1.

By homogeneity we may assume that f(x1, . . . , xn) is a form of degree deg with
coefficients in L[t] and n > degk+1. For fixed s we introduce new variables y(s)

ij with
i ≤ n and 0 ≤ j ≤ s such that

xi = y
(s)
i0 + y

(s)
i1 t+ . . .+ y

(s)
is t

s

If r is the maximal degree of the coefficients occurring in f , then we can write

f(xi) = f0(y
(s)
ij ) + f1(y

(s)
ij )t+ . . .+ fdeg.s+r(y

(s)
ij )tdeg.s+r

where each fj is a form of degree deg in n(s + 1)-variables. By the proposition
above, these forms have a common zero in L provided

n(s+ 1) > degk(ds+ r + 1)⇐⇒ (n− degi+1)s > degi(r + 1)− n
which can be satisfied by taking s large enough. the common non-trivial zero in L
of the fj , gives a non-trivial zero of f in L[t].
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By assumption, K is an algebraic extension of C(t1, . . . , td) which by the above
argument is Tsend. As the coefficients of any form over K lie in a finite extension
E of C(t1, . . . , td) it suffices to prove that E is Tsend.

Let f(x1, . . . , xn) be a form of degree deg in E with n > degd. Introduce new
variables yij with

xi = yi1e1 + . . . yikek

where ei is a basis of E over C(t1, . . . , td). Then,

f(xi) = f1(yij)e1 + . . .+ fk(yij)ek

where the fi are forms of degree deg in k.n variables over C(t1, . . . , td). Because
C(t1, . . . , td) is Tsend, these forms have a common zero as k.n > k.degd. Finding a
non-trivial zero of f in E is equivalent to finding a common non-trivial zero to the
f1, . . . , fk in C(t1, . . . , td), done. �

A direct application of this result is Tsen’s theorem :

Theorem 3.48. Let K be the functionfield of a curve C defined over an alge-
braically closed field. Then, the only central simple K-algebras are Mn(K). That
is, Br(K) = 1.

Proof. Assume there exists a central division algebra ∆ of dimension n2 over
K. There is a finite Galois extension L/K such that ∆⊗L = Mn(L). If x1, . . . , xn2

is a K-basis for ∆, then the reduced norm of any x ∈ ∆,

N(x) = det(x⊗ 1)

is a form in n2 variables of degree n. Moreover, as x ⊗ 1 is invariant under the
action of Gal(L/K) the coefficients of this form actually lie in K.

By the main result, K is a Tsen1-field and N(x) has a non-trivial zero whenever
n2 > n. As the reduced norm is multiplicative, this contradicts N(x)N(x−1) = 1.
Hence, n = 1 and the only central division algebra is K itself. �

If K is the functionfield of a surface, we also have an immediate application :

Proposition 3.49. Let K be the functionfield of a surface defined over an
algebraically closed field. If ∆ is a central simple K-algebra of dimension n2, then
the reduced norm map

N : ∆ - K

is surjective.

Proof. Let e1, . . . , en2 be a K-basis of ∆ and k ∈ K, then

N(
∑

xiei)− kxnn2+1

is a form of degree n in n2+1 variables. Since K is a Tsen2 field, it has a non-trivial
solution (x0

i ), but then, δ = (
∑
x0
i ei)x

−1
n2+1 has reduced norm equal to k. �

From the cohomological description of the Brauer group it is clear that we need
to have some control on the absolute Galois group GK = Gal(K/K). We will see
that finite transcendence degree forces some cohomology groups to vanish.

Definition 3.50. The cohomological dimension of a group G, cd(G) ≤ d if
and only if Hr(G,A) = 0 for all r > d and all torsion modules A ∈ G-mod.
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Definition 3.51. A field K is said to be a Tated-field if the absolute Galois
group GK = Gal(K/K) satisfies cd(G) ≤ d.

First, we will reduce the condition cd(G) ≤ d to a more manageable one. To
start, one can show that a profinite group G (that is, a projective limit of finite
groups, see [74] for more details) has cd(G) ≤ d if and only if

Hd+1(G,A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we can
decompose the cohomology in its p-primary parts and relate their vanishing to the
cohomological dimension of the p-Sylow subgroups Gp of G. This problem can then
be verified by computing cohomology of finite simple Gp-modules of p-power order,
but for a profinite p-group there is just one such module namely Z/pZ with the
trivial action.

Combining these facts we have the following manageable criterium on cohomo-
logical dimension.

Proposition 3.52. cd(G) ≤ d if Hd+1(G,Z/pZ) = 0 for the simple G-modules
with trivial action Z/pZ.

We will need the following spectral sequence in Galois cohomology

Proposition 3.53. (Hochschild-Serre spectral sequence) If N is a closed nor-
mal subgroup of a profinite group G, then

Ep,q2 = Hp(G/N,Hq(N,A)) =⇒ Hn(G,A)

holds for every continuous G-module A.

Now, we are in a position to state and prove Tate’s theorem

Theorem 3.54. Let K be of transcendence degree d over an algebraically closed
field, then K is a Tated-field.

Proof. Let C denote the algebraically closed basefield, then K is algebraic
over C(t1, . . . , td) and therefore

GK ⊂ - GC(t1,...,td)

Thus, K is Tated if C(t1, . . . , td) is Tated. By induction it suffices to prove

If cd(GL) ≤ k then cd(GL(t)) ≤ k + 1

Let L be the algebraic closure of L and M the algebraic closure of L(t). As L(t)
and L are linearly disjoint over L we have the following diagram of extensions and
Galois groups

L ⊂ - L(t) ⊂
GL(t) - M

L

GL

∪

6

⊂ - L(t)

GL

∪

6

⊂

GL
(t
)

-

where GL(t)/GL(t) ' GL.
We claim that cd(GL(t)) ≤ 1. Consider the exact sequence of GL(t)-modules

0 - µp - M∗ (−)p

- M∗ - 0
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where µp is the subgroup (of C∗) of p-roots of unity. As GL(t) acts trivially on
µp it is after a choice of primitive p-th root of one isomorphic to Z/pZ. Taking
cohomology with respect to the subgroup GL(t) we obtain

0 = H1(GL(t),M∗) - H2(GL(t),Z/pZ) - H2(GL(t),M∗) = Br(L(t))

But the last term vanishes by Tsen’s theorem as L(t) is the functionfield of a curve
defined over the algebraically closed field L. Therefore, H2(GL(t),Z/pZ) = 0 for all
simple modules Z/pZ, whence cd(GL(t)) ≤ 1.

By the inductive assumption we have cd(GL) ≤ k and now we are going to use
exactness of the sequence

0 - GL - GL(t)
- GL(t)

- 0

to prove that cd(GL(t)) ≤ k+ 1. For, let A be a torsion GL(t)-module and consider
the Hochschild-Serre spectral sequence

Ep,q2 = Hp(GL,Hq(GL(t), A)) =⇒ Hn(GL(t), A)

By the restrictions on the cohomological dimensions of GL and GL(t) the level two
term has following shape

Ep,q2 =

6
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where the only non-zero groups are lying in the lower rectangular region. Therefore,
all Ep,q∞ = 0 for p+q > k+1. Now, all the composition factors of Hk+2(GL(t), A) are
lying on the indicated diagonal line and hence are zero. Thus, Hk+2(GL(t), A) = 0
for all torsion GL(t)-modules A and hence cd(GL(t)) ≤ k + 1. �

Theorem 3.55. If A is a constant sheaf of an Abelian torsion group A on Ket,
then

Hi
et(K,A) = 0

whenever i > trdegC(K).

3.7. Coniveau spectral sequence

Consider the setting

A
i - K

k

π

?
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where A is a discrete valuation ring in K with residue field A/m = k. As always, we
will assume that A is a C-algebra. By now we have a grip on the Galois cohomology
groups

Hi
et(K,µ

⊗l
n ) and Hi

et(k, µ
⊗l
n )

and we will use this information to compute the étale cohomology groups

Hi
et(A,µ

⊗l
n )

Here, µ⊗ln = µn ⊗ . . .⊗ µn︸ ︷︷ ︸
l

where the tensorproduct is as sheafs of invertible Zn =

Z/nZ-modules.
We will consider the Leray spectral sequence for i and hence have to compute

the derived sheaves of the direct image

Lemma 3.56. (1) R0 i∗µ
⊗l
n ' µ⊗ln on Aet.

(2) R1 i∗µ
⊗l
n ' µ⊗l−1

n concentrated in m.
(3) Rj i∗µ⊗ln ' 0 whenever j ≥ 2.

Proof. The strict Henselizations of A at the two primes {0,m} are resp.

Ash0 ' K and Ashm ' k{t}

where K (resp. k) is the algebraic closure of K (resp. k). Therefore,

(Rj i∗µ⊗ln )0 = Hj
et(K, µ⊗ln )

which is zero for i ≥ 1 and µ⊗ln for j = 0. Further, Ashm ⊗AK is the field of fractions
of k{t} and hence is of transcendence degree one over the algebraically closed field
k, whence

(Rj i∗µ⊗ln )m = Hj
et(L, µ

⊗l
n )

which is zero for j ≥ 2 because L is Tate1.
For the field-tower K ⊂ L ⊂ K we have that GL = Ẑ = lim� µm because the

only Galois extensions of L are the Kummer extensions obtained by adjoining m
√
t.

But then,

H1
et(L, µ

⊗l
n ) = H1(Ẑ, µ⊗ln (K)) = Hom(Ẑ, µ⊗ln (K)) = µ⊗l−1

n

from which the claims follow. �

Theorem 3.57. We have a long exact sequence

0 - H1(A,µ⊗ln ) - H1(K,µ⊗ln ) - H0(k, µ⊗l−1
n ) -

H2(A,µ⊗ln ) - H2(K,µ⊗ln ) - H1(k, µ⊗l−1
n ) - . . .

Proof. By the foregoing lemma, the second term of the Leray spectral se-
quence for i∗µ⊗ln looks like
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0 0 0 . . .

H0(k, µ⊗l−1
n ) H1(k, µ⊗l−1

n ) H2(k, µ⊗l−1
n ) . . .

H0(A,µ⊗ln ) H1(A,µ⊗ln ) H2(A,µ⊗ln ) . . .

with connecting morphisms

Hi−1
et (k, µ⊗l−1

n )
αi- Hi+1

et (A,µ⊗ln )

The spectral sequences converges to its limiting term which looks like

0 0 0 . . .

Ker α1 Ker α2 Ker α3 . . .

H0(A,µ⊗ln ) H1(A,µ⊗ln ) Coker α1 . . .

and the Leray sequence gives the short exact sequences

0 - H1
et(A,µ

⊗l
n ) - H1

et(K,µ
⊗l
n ) - Ker α1

- 0

0 - Coker α1
- H2

et(K,µ
⊗l
n ) - Ker α2

- 0
0 - Coker αi−1

- Hi
et(K,µ

⊗l
n ) - Ker αi - 0

and gluing these sequences gives us the required result. �

In particular, if A is a discrete valuation ring of K with residue field k we have
for each i a connecting morphism

Hi
et(K,µ

⊗l
n )

∂i,A- Hi−1
et (k, µ⊗l−1

n )

Like any other topology, the étale topology can be defined locally on any
scheme X. That is, we call a morphism of schemes

Y
f- X

an étale extension (resp. cover) if locally f has the form

fa | Ui : Ai = Γ(Ui,OX) - Bi = Γ(f−1(Ui),OY )

with Ai - Bi an étale extension (resp. cover) of algebras.
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Figure 4. Coniveau spectral sequence

Again, we can construct the étale site of X locally and denote it with Xet.
Presheaves and sheaves of groups on Xet are defined similarly and the right derived
functors of the left exact global sections functor

Γ : Sab(Xet) - abelian

will be called the cohomology functors and we denote

Ri Γ(G) = Hi
et(X,G)

From now on we restrict to the case when X is a smooth, irreducible projec-
tive variety of dimension d over C. In this case, we can initiate the computation
of the cohomology groups Hi

et(X,µ
⊗l
n ) via Galois cohomology of functionfields of

subvarieties using the coniveau spectral sequence

Theorem 3.58. Let X be a smooth irreducible variety over C. Let X(p) denote
the set of irreducible subvarieties x of X of codimension p with functionfield C(x),
then there exists a coniveau spectral sequence

Ep.q1 =
⊕

x∈X(p)

Hq−p
et (C(x), µ⊗l−pn ) =⇒ Hp+q

et (X,µ⊗ln )

In contrast to the spectral sequences used before, the existence of the coniveau
spectral sequence by no means follows from general principles. In it, a lot of heavy
machinery on étale cohomology of schemes is encoded. In particular,

• cohomology groups with support of a closed subscheme, see for example
[61, p. 91-94], and
• cohomological purity and duality, see [61, p. 241-252]

a detailed exposition of which would take us too far afield. For more details we
refer the reader to [12].

Using the results on cohomological dimension and vanishing of Galois cohomol-
ogy of µ⊗kn when the index is larger than the transcendence degree, we see that the
coniveau spectral sequence has shape as in figure 4 where the only non-zero terms
are in the indicated region.



3.8. THE ARTIN-MUMFORD EXACT SEQUENCE 129

Let us understand the connecting morphisms at the first level, a typical instance
of which is ⊕

x∈X(p)

Hi(C(x), µ⊕l−pn ) -
⊕

y∈X(p+1)

Hi−1(C(y), µ⊕l−p−1
n )

and consider one of the closed irreducible subvarieties x of X of codimension p and
one of those y of codimension p+ 1. Then, either y is not contained in x in which
case the component map

Hi(C(x), µ⊕l−pn ) - Hi−1(C(y), µ⊕l−p−1
n )

is the zero map. Or, y is contained in x and hence defines a codimension one
subvariety of x. That is, y defines a discrete valuation on C(x) with residue field
C(y). In this case, the above component map is the connecting morphism defined
above.

In particular, letK be the functionfield ofX. Then we can define the unramified
cohomology groups

F i,ln (K/C) = Ker Hi(K,µ⊗ln )
⊕∂i,A- ⊕Hi−1(kA, µ⊗l−1

n )

where the sum is taken over all discrete valuation rings A of K (or equivalently, the
irreducible codimension one subvarieties of X) with residue field kA. By definition,
this is a (stable) birational invariant of X. In particular, if X is (stably) rational
over C, then

F i,ln (K/C) = 0 for all i, l ≥ 0

3.8. The Artin-Mumford exact sequence

In this section S will be a smooth irreducible projective surface.

Definition 3.59. S is called simply connected if every étale cover Y - S
is trivial, that is, Y is isomorphic to a finite disjoint union of copies of S.

The first term of the coniveau spectral sequence of S has following shape

µn 0 0 0

0 0

0

00 0 0

H1(C(S), µn) ⊕C Zn

H2(C(S), µn) ⊕P µ−1
n⊕CH

1(C(S), Zn)

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

where C runs over all irreducible curves on S and P over all points of S.

Lemma 3.60. For any smooth S we have H1(C(S), µn) -- ⊕C Zn. If S is
simply connected, H1

et(S, µn) = 0.
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Proof. Using the Kummer sequence 1 - µn - Gm
(−)- Gm

- 1
and Hilbert 90 we obtain that

H1
et(C(S), µn) = C(S)∗/C(S)∗n

The first claim follows from the exact diagram describing divisors of rational func-
tions

µn ' µn 0

0 - C∗
?

- C(S)∗
?

div- ⊕CZ
?

- 0

0 - C∗
?

- C(S)∗

(−)n

?
div- ⊕CZ

n.

?
- 0

0
?

⊕CZn
?

' ⊕CZn
?

By the coniveau spectral sequence we have that H1
et(S, µn) is equal to the kernel of

the morphism

H1
et(C(S), µn)

γ- ⊕C Zn
and in particular, H1(S, µn) ⊂ - H1(C(S), µn).

As for the second claim, an element in H1(S, µn) determines a cyclic extension
L = C(S) n

√
f with f ∈ C(S)∗/C(S)∗n such that in each fieldcomponent Li of L

there is an étale cover Ti - S with C(Ti) = Li. By assumption no non-trivial
étale covers exist whence f = 1 ∈ C(S)∗/C(S)∗n. �

If we invoke another major tool in étale cohomology of schemes, Poincaré
duality , see for example [61, VI,§11], we obtain the following information on the
cohomology groups for S.

Proposition 3.61. (Poincaré duality for S) If S is simply connected, then
(1) H0

et(S, µn) = µn
(2) H1

et(S, µn) = 0
(3) H3

et(S, µn) = 0
(4) H4

et(S, µn) = µ−1
n

Proof. The third claim follows from the second as both groups are dual to
each other. The last claim follows from the fact that for any smooth irreducible
projective variety X of dimension d one has that

H2d
et (X,µn) ' µ⊗1−d

n

�

We are now in a position to state and prove the important
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Theorem 3.62. (Artin-Mumford exact sequence) If S is a simply connected
smooth projective surface, then the sequence

0 - Brn(S) - Brn(C(S)) - ⊕C C(C)∗/C(C)∗n -

- ⊕P µ−1
n

- µ−1
n

- 0

is exact.

Proof. The top complex in the first term of the coniveau spectral sequence
for S was

H2(C(S), µn)
α- ⊕C H1(C(C),Zn)

β- ⊕P µn
The second term of the spectral sequence (which is also the limiting term) has the
following form

µn 0 0 0

0 0

0

00 0 0

Ker γ Coker γ

Ker α Coker βKer β/Im α

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

By the foregoing lemma we know that Coker γ = 0. By Poincare duality we know
that Ker β = Im α and Coker β = µ−1

n . Hence, the top complex was exact in its
middle term and can be extended to an exact sequence

0 - H2(S, µn) - H2(C(S), µn) - ⊕C H1(C(C),Zn) -

⊕Pµ−1
n

- µ−1
n

- 0

As Zn ' µn the third term is equal to ⊕CC(C)∗/C(C)∗n by the argument given
before and the second term we remember to be Brn(C(S). The identification of
Brn(S) with H2(S, µn) will be explained below. �

Some immediate consequences can be drawn from this : For a smooth simply
connected surface S, Brn(S) is a birational invariant (it is the birational invariant
F 2,1
n (C(S)/C) of the foregoing section. In particular, if S = P2 we have that
Brn(P2) = 0 and as

0 - Brn C(x, y) - ⊕C C(C)∗/C(C)∗n - ⊕P µ−1
n

- µn - 0

we obtain a description of Brn C(x, y) by a certain geo-combinatorial package which
we call a Zn-wrinkle over P2. A Zn-wrinkle is determined by

• A finite collection C = {C1, . . . , Ck} of irreducible curves in P2, that is,
Ci = V (Fi) for an irreducible form in C[X,Y, Z] of degree di.

• A finite collection P = {P1, . . . , Pl} of points of P2 where each Pi is either
an intersection point of two or more Ci or a singular point of some Ci.
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• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ
and {1, . . . , iP } the different branches of C in P . These numbers must
satisfy the admissibility condition∑

i

bi = 0 ∈ Zn

for every P ∈ P
• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C which is compatible with the branch-data.
That is, if Q ∈ C̃ corresponds to a C-branch bi in P , then D is ramified
in Q with stabilizer subgroup

StabQ = 〈bi〉 ⊂ Zn
For example, a portion of a Z4-wrinkle can have the following picture

@@�� B
B
B
B
B�
�
�
�
�

��@@
@@��

@@��
��@@

��@@ �
�
�
�
�B
B
B
B
B

0

2

1

3

D

C̃
0 2 1
• • •

It is clear that the cover-data is the most untractable part of a Zn-wrinkle,
so we want to have some control on the covers D -- C̃. Let {Q1, . . . , Qz} be
the points of C̃ where the cover ramifies with branch numbers {b1, . . . , bz}, then D
is determined by a continuous module structure (that is, a cofinite subgroup acts
trivially) of

π1(C̃ − {Q1, . . . , Qz}) on Zn
where the fundamental group of the Riemann surface C̃ with z punctures is known
(topologically) to be equal to the group

〈u1, v1, . . . , ug, vg, x1, . . . , xz〉/([u1, v1] . . . [ug, vg]x1 . . . xz)

where g is the genus of C̃. The action of xi on Zn is determined by multiplication
with bi. In fact, we need to use the étale fundamental group, see [61], but this group
has the same finite continuous modules as the topological fundamental group.

Example 3.63. Covers of P1 and elliptic curves.
(1) If C̃ = P1 then g = 0 and hence π1(P1 − {Q1, . . . , Qz} is zero if z ≤ 1 (whence no

covers exist) and is Z if z = 2. Hence, there exists a unique cover D -- P1 with

branch-data (1,−1) in say (0,∞) namely with D the normalization of P1 in C( n
√
x).

(2) If C̃ = E an elliptic curve, then g = 1. Hence, π1(C) = Z⊕Z and there exist unramified

Zn-covers. They are given by the isogenies

E′ -- E
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where E′ is another elliptic curve and E = E′/〈τ〉 where τ is an n-torsion point on E′.

Any n-fold cover D -- C̃ is determined by a function f ∈ C(C)∗/C(C)∗n.
This allows us to put a group-structure on the equivalence classes of Zn-wrinkles.
In particular, we call a wrinkle trivial provided all coverings Di

-- C̃i are trivial
(that is, Di is the disjoint union of n copies of C̃i). The Artin-Mumford theorem
for P2 can now be stated as

Theorem 3.64. If ∆ is a central simple C(x, y)-algebra of dimension n2, then
∆ determines uniquely a Zn-wrinkle on P2. Conversely, any Zn-wrinkle on P2

determines a unique division C(x, y)- algebra whose class in the Brauer group has
order n.

Example 3.65. If S is not necessarily simply connected, any class in Br(C(S))n still

determines a Zn-wrinkle.

Example 3.66. If X is a smooth irreducible rational projective variety of dimension d,

the obstruction to classifying Br(C(X))n by Zn-wrinkles is given by H3
et(X,µn).

We will give a ringtheoretical interpretation of the maps in the Artin-Mumford
sequence. Observe that nearly all maps are those of the top complex of the first term
in the coniveau spectral sequence for S. We gave an explicit description of them
using discrete valuation rings. The statements below follow from this description.

Let us consider a discrete valuation ring A with field of fractions K and residue
field k. Let ∆ be a central simple K-algebra of dimension n2.

Definition 3.67. An A-subalgebra Λ of ∆ will be called an A-order if it is a
free A-module of rank n2 with Λ.K = ∆. An A-order is said to be maximal if it is
not properly contained in any other order.

In order to study maximal orders in ∆ (they will turn out to be all conjugated),
we consider the completion Â with respect to the m-adic filtration where m = At
with t a uniformizing parameter of A. K̂ will denote the field of fractions of Â and
∆̂ = ∆⊗K K̂.

Because ∆̂ is a central simple K̂-algebra of dimension n2 it is of the form

∆̂ = Mt(D)

where D is a division algebra with center K̂ of dimension s2 and hence n = s.t. We
call t the capacity of ∆ at A.

In D we can construct a unique maximal Â-order Γ, namely the integral closure
of Â in D. We can view Γ as a discrete valuation ring extending the valuation v
defined by A on K. If v : K̂ - Z, then this extended valuation

w : D - n−2Z is defined as w(a) = (K̂(a) : K̂)−1v(NK̂(a)/K̂(a))

for every a ∈ D where K̂(a) is the subfield generated by a and N is the norm map
of fields.

The image of w is a subgroup of the form e−1Z ⊂ - n−2.Z. The number
e = e(D/K̂) is called the ramification index of D over K̂. We can use it to
normalize the valuation w to

vD : D - Z defined by vD(a) =
e

n2
v(ND/K̂(a))

With these conventions we have that vD(t) = e.
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The maximal order Γ is then the subalgebra of all elements a ∈ D with vD(a) ≥
0. It has a unique maximal ideal generated by a prime element T and we have that
Γ = Γ

T Γ is a division algebra finite dimensional over Â/tÂ = k (but not necessarily
having k as its center).

The inertial degree of D over K̂ is defined to be the number f = f(D/K̂) =
(Γ : k) and one shows that

s2 = e.f and e | s whence s | f

After this detour, we can now take Λ = Mt(Γ) as a maximal Â-order in ∆̂.
One shows that all other maximal Â-orders are conjugated to Λ. Λ has a unique
maximal ideal M with Λ = Mt(Γ).

Definition 3.68. With notations as above, we call the numbers e = e(D/K̂),
f = f(D/K̂) and t resp. the ramification, inertia and capacity of the central simple
algebra ∆ at A. If e = 1 we call Λ an Azumaya algebra over A, or equivalently, if
Λ/tΛ is a central simple k-algebra of dimension n2.

Now let us consider the case of a discrete valuation ring A in K such that the
residue field k is Tsen1. The center of the division algebra Γ is a finite dimensional
field extension of k and hence is also Tsen1 whence has trivial Brauer group and
therefore must coincide with Γ. Hence,

Γ = k(a)

a commutative field, for some a ∈ Γ. But then, f ≤ s and we have e = f = s and
k(a) is a cyclic degree s field extension of k.

Because s | n, the cyclic extension k(a) determines an element of H1
et(k,Zn).

Definition 3.69. Let Z be a normal domain with field of fractions K and let
∆ be a central simple K-algebra of dimension n2. A Z-order B is a subalgebra
which is a finitely generated Z-module. It is called maximal if it is not properly
contained in any other order. One can show that B is a maximal Z-order if and
only if Λ = Bp is a maximal order over the discrete valuation ring A = Zp for every
height one prime ideal p of Z.

Return to the situation of an irreducible smooth projective surface S. If ∆ is a
central simple C(S)-algebra of dimension n2, we define a maximal order as a sheaf
A of OS-orders in ∆ which for an open affine cover Ui ⊂ - S is such that

Ai = Γ(Ui,A) is a maximal Zi = Γ(Ui,OS) order in ∆

Any irreducible curve C on S defines a discrete valuation ring on C(S) with residue
field C(C) which is Tsen1. Hence, the above argument can be applied to obtain
from A a cyclic extension of C(C), that is, an element of C(C)∗/C(C)∗n.

Definition 3.70. We call the union of the curves C such that A determines a
non-trivial cyclic extension of C(C) the ramification divisor of ∆ (or of A).

The map in the Artin-Mumford exact sequence

Brn(C(S)) -
⊕
C

H1
et(C(C), µn)

assigns to the class of ∆ the cyclic extensions introduced above.
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Definition 3.71. An S-Azumaya algebra (of index n) is a sheaf of maximal
orders in a central simple C(S)-algebra ∆ of dimension n2 such that it is Azumaya
at each curve C, that is, such that [∆] lies in the kernel of the above map.

Observe that this definition of Azumaya algebra coincides with the one given
in the discussion of twisted forms of matrices. One can show that if A and A′ are
S-Azumaya algebras of index n resp. n′, then A⊗OS

A′ is an Azumaya algebra of
index n.n′. We call an Azumaya algebra trivial if it is of the form End(P) where
P is a vectorbundle over S. The equivalence classes of S-Azumaya algebras can be
given a group-structure called the Brauer-group Br(S) of the surface S.
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More details on étale cohomology can be found in the textbook of J.S. Milne
[61] . The classification of simple dimension vectors and invariants of quivers is due
to L. Le Bruyn and C. Procesi [58] . The material of Tsen and Tate fields is based
on the lecture notes of S. Shatz [74]. For more details on the coniveau spectral
sequence we refer to the paper [12]. The description of the Brauer group of the
functionfield of a surface is due to M. Artin and D. Mumford [5] .





CHAPTER 4

Etale Slices.

4.1. C∞ slices.

Let A be an affine C-algebra and ξ ∈ issn A a point in the quotient space
corresponding to an n-dimensional semi-simple representation Mξ of A. In this
chapter we will present a method to study the étale local structure of issn A near
ξ and the étale local GLn-structure of the representation variety rep

n
A near the

closed orbit O(Mξ) = GLn.Mξ. In this section we will outline the main idea in the
setting of differential geometry.

Let M be a compact C∞-manifold on which a compact Lie group G acts dif-
ferentially. By a usual averaging process we can define a G-invariant Riemannian
metric on M . For a point m ∈M we define

• The G-orbit O(m) = G.m of m in M ,
• the stabilizer subgroup H = StabG(m) = {g ∈ G | g.m = m} and
• the normal space Nm defined to be the orthogonal complement to the

tangent space in m to the orbit in the tangent space to M . That is, we
have a decomposition of H-vectorspaces

Tm M = Tm O(m)⊕Nm

The normal spaces Nx when x varies over the points of the orbit O(m) define a
vectorbundle N p-- O(m) over the orbit. We can identify the bundle with the
associated fiber bundle

N ' G×H Nm

Any point n ∈ N in the normal bundle determines a geodesic

γn : R - M defined by

{
γn(0) = p(n)
dγn

dt (0) = n

Using this geodesic we can define a G-equivariant exponential map from the normal
bundle N to the manifold M via

N exp- M where exp(n) = γn(1)

137
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•

YY222222

n

x

γn

O(m)

Nx

M

Now, take ε > 0 and define the C∞ slice Sε to be

Sε = {n ∈ Nm | ‖ n ‖< ε }

then G×H Sε is a G-stable neighborhood of the zero section in the normal bundle
N = G×H Nm. But then we have a G-equivariant exponential

G×H Sε
exp- M

which for small enough ε gives a diffeomorphism with a G-stable tubular neighbor-
hood U of the orbit O(m) in M .

Nm

0•

ε

−ε

G/H

exp-

•m

O(m)

U

Nx

M

If we assume moreover that the action of G on M and the action of H on Nm
are such that the orbit-spaces are manifolds M/G and Nm/H, then we have the
situation

G×H Sε
exp

'
- U ⊂ - M

Sε/H

??

'
- U/G

??
⊂ - M/G

??

giving a local diffeomorphism between a neighborhood of 0 in Nm/H and a neigh-
borhood of the point m in M/G corresponding to the orbit O(m).
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Returning to the setting of the orbit O(Mξ) in rep
n
A we would equally like

to define a GLn-equivariant morphism from an associated fiber bundle

GLn ×GL(α) Nξ
e- rep

n
A

where GL(ξ) is the stabilizer subgroup of Mξ and Nξ is a normal space to the orbit
O(Mξ). Because we do not have an exponential-map in the setting of algebraic
geometry, the map e will have to be an étale map. Before we come to the description
of these étale slices we will first study the tangent spaces to rep

n
A and give a

ringtheoretical interpretation of the normal space Nξ.

4.2. Normal spaces.

In this section we will determine the normal space to the orbit in a representa-
tion space. We recall some standard facts about tangent spaces first. Let X be a
not necessarily reduced affine variety with coordinate ring C[X] = C[x1, . . . , xn]/I.
If the origin o = (0, . . . , 0) ∈ V(I), elements of I have no constant terms and we
can write any p ∈ I as

p =
∞∑
i=1

p(i) with p(i) homogeneous of degree i.

The order ord(p) is the least integer r ≥ 1 such that p(r) 6= 0. Define the following
two ideals in C[x1, . . . , xn]

Il = {p(1) | p ∈ I} and Im = {p(r) | p ∈ I and ord(p) = r}.
The subscripts l (respectively m) stand for linear terms (respectively, terms of
minimal degree).

The tangent space to X in o , To(X) is by definition the subscheme of Cn
determined by Il. Observe that

Il = (a11x1 + . . .+ a1nxn, . . . , al1x1 + . . .+ alnxn)

for some l×n matrix A = (aij)i,j of rank l. That is, we can express all xk as linear
combinations of some {xi1 , . . . , xin−l

}, but then clearly

C[To(X)] = C[x1, . . . , xn]/Il = C[xi1 , . . . , xin−l
]

In particular, To(X) is reduced and is a linear subspace of dimension n − l in Cn
through the point o.

Next, consider an arbitrary geometric point x of X with coordinates
(a1, . . . , an). We can translate x to the origin o and the translate of X is then
the scheme defined by the ideal

(f1(x1 + a1, . . . , xn + an), . . . , fk(x1 + a1, . . . , xn + an))

Now, the linear term of the translated polynomial fi(x1 + a1, . . . , xn + an) is equal
to

∂fi
∂x1

(a1, . . . , an)x1 + . . .+
∂fi
∂xn

(a1, . . . , an)xn

and hence the tangent space to X in x , Tx(X) is the linear subspace of Cn defined
by the set of zeroes of the linear terms

Tx(X) = V(
n∑
j=1

∂f1
∂xj

(x)xj , . . . ,
n∑
j=1

∂fk
∂xj

(x)xj) ⊂ - Cn.
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In particular, the dimension of this linear subspace can be computed from the
Jacobian matrix in x associated with the polynomials (f1, . . . , fk)

dim Tx(X) = n− rk


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

...
∂fk

∂x1
(x) . . . ∂fk

∂xn
(x)

 .
Let C[ε] be the algebra of dual numbers , that is, C[ε] ' C[y]/(y2). Consider a
C-algebra morphism

C[x1, . . . , xn]
φ- C[ε] defined by xi 7→ ai + ciε.

Because ε2 = 0 it is easy to verify that the image of a polynomial f(x1, . . . , xn)
under φ is of the form

φ(f(x1, . . . , xn)) = f(a1, . . . , an) +
n∑
j=1

∂f

∂xj
(a1, . . . , an)cjε

Therefore, φ factors through I, that is φ(fi) = 0 for all 1 ≤ i ≤ k, if and only
if (c1, . . . , cn) ∈ Tx(X). Hence, we can also identify the tangent space to X in x

with the algebra morphisms C[X]
φ- C[ε] whose composition with the projection

π : C[ε] -- C (sending ε to zero) is the evaluation in x = (a1, . . . , an). That is,
let evx ∈ X(C) be the point corresponding to evaluation in x, then

Tx(X) = {φ ∈ X(C[ε]) | X(π)(φ) = evx}.

The following two examples compute the tangent spaces to the (trace preserving)
representation varieties.

Example 4.1. Let A be an affine C-algebra generated by {a1, . . . am} and ρ :

A - Mn(C) an algebra morphism, that is, ρ ∈ repn A. We call a linear map A
D- Mn(C)

a ρ-derivation if and only if for all a, a′ ∈ A we have that

D(aa′) = D(a).ρ(a′) + ρ(a).D(a′).

We denote the vectorspace of all ρ-derivations of A by Derρ(A). Observe that any ρ-derivation is
determined by its image on the generators ai, hence Derρ(A) ⊂Mm

n . We claim that

Tρ(repn A) = Derρ(A).

Indeed, we know that rep
n
A(C[ε]) is the set of algebra morphisms

A
φ- Mn(C[ε])

By the functorial characterization of tangentspaces we have that Tρ(repn A) is equal to

{D : A - Mn(C) linear | ρ+Dε : A - Mn(C[ε]) is an algebra map}.

Because ρ is an algebra morphism, the algebra map condition

ρ(aa′) +D(aa′)ε = (ρ(a) +D(a)ε).(ρ(a′) +D(a′)ε)

is equivalent to D being a ρ-derivation.

Example 4.2. Let A be a Cayley-Hamilton algebra of degree n with trace map trA and
trace generated by {a1, . . . , am}. Let ρ ∈ reptrn A, that is, ρ : A - Mn(C) is a trace preserving

algebra morphism. Because reptr
n
A(C[ε]) is the set of all trace preserving algebra morphisms

A - Mn(C[ε]) (with the usual trace map tr on Mn(C[ε])) and the previous example one

verifies that

Tρ(rep
tr
n
A) = Dertrρ (A) ⊂ Derρ(A)
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the subset of trace preserving ρ-derivations D, that is, those satisfying

D ◦ trA = tr ◦D

A
D- Mn(C)

A

trA

?
D- Mn(C)

tr

?

Again, using this property and the fact that A is trace generated by {a1, . . . , am} a trace preserving

ρ-derivation is determined by its image on the ai so is a subspace of Mm
n .

The tangent cone to X in o , TCo(X), is by definition the subscheme of Cn
determined by Im, that is,

C[TCo(X)] = C[x1, . . . , xn]/Im.

It is called a cone because if c is a point of the underlying variety of TCo(X), then
the line l = −→oc is contained in this variety because Im is a graded ideal. Further,
observe that as Il ⊂ Im, the tangent cone is a closed subscheme of the tangent
space at X in o. Again, if x is an arbitrary geometric point of X we define the
tangent cone to X in x , TCx(X) as the tangent cone TCo(X ′) where X ′ is the
translated scheme of X under the translation taking x to o. Both the tangent space
and tangent cone contain local information of the scheme X in a neighborhood of
x.

Let mx be the maximal ideal of C[X] corresponding to x (that is, the ideal of
polynomial functions vanishing in x). Then, its complement Sx = C[X] − mx is
a multiplicatively closed subset and the local algebra Ox(X) is the correspond-
ing localization C[X]Sx

. It has a unique maximal ideal mx with residue field
Ox(X)/mx = C. We equip the local algebra Ox = Ox(X) with the mx-adic fil-
tration that is the increasing Z-filtration

Fx : ... ⊂ mi ⊂ mi−1 ⊂ . . . ⊂ m ⊂ Ox = Ox = . . . = Ox = . . .

with associated graded algebra

gr(Ox) = . . .⊕ mi
x

mi+1
x

⊕ mi−1
x

mi
x

⊕ . . .⊕ mx

m2
x

⊕ C⊕ 0⊕ . . .⊕ 0⊕ . . .

Proposition 4.3. If x is a geometric point of the affine scheme X, then
(1) C[Tx(X)] is isomorphic to the polynomial algebra C[mx

m2
x
].

(2) C[TCx(X)] is isomorphic to the associated graded algebra gr(Ox(X)).

Proof. After translating we may assume that x = o lies in V(I) ⊂ - Cn.
That is,

C[X] = C[x1, . . . , xn]/I and mx = (x1, . . . , xn)/I.
(1) : Under these identifications we have

mx

m2
x

' mx

m2
x

' (x1,...,xn)
(x1,...,xn)2+I

' (x1,...,xn)
(x1,...,xn)2+Il

and as Il is generated by linear terms it follows that the polynomial algebra on
mx

m2
x

is isomorphic to the quotient algebra C[x1, . . . , xn]/Il which is by definition the
coordinate ring of the tangent space.



142 4. ETALE SLICES.

(2) : Again using the above identifications we have

gr(Ox) ' ⊕∞i=0
mi

x

mi+1
x

' ⊕∞i=0
mi

x

mi+1
x

' ⊕∞i=0
(x1,...,xn)i

(x1,...,xn)i+1+(I∩(x1,...,xn)i)

' ⊕∞i=0
(x1,...,xn)i

(x1,...,xn)i+1+Im(i)

where Im(i) is the homogeneous part of Im of degree i. On the other hand, the i-th
homogeneous part of C[x1, . . . , xn]/Im is equal to

(x1, . . . , xn)i

(x1, . . . , xn)i+1 + Im(i)

we obtain the required isomorphism. �

This gives a third interpretation of the tangent space as

Tx(X) = HomC(
mx

m2
x

,C) = HomC(
mx

m2
x

,C).

Hence, we can also view the tangent space Tx(X) as the space of point derivations
Derx(Ox) on Ox(X) (or of the point derivations Derx(C[X]) on C[X]). That is,

C-linear maps D : Ox - C (or D : C[X] - C) such that for all functions f, g
we have

D(fg) = D(f)g(x) + f(x)D(g).

If we define the local dimension of an affine scheme X in a geometric point x
dimx X to be the maximal dimension of irreducible components of the reduced

variety X passing through x, then

dimx X = dimo TCx(X).

We say that X is nonsingular at x (or equivalently, that x is a nonsingular
point of X) if the tangent cone to X in x coincides with the tangent space to X
in x. An immediate consequence is

Proposition 4.4. If X is nonsingular at x, then Ox(X) is a domain. That
is, in a Zariski neighborhood of x , X is an irreducible variety.

Proof. If X is nonsingular at x, then

gr(Ox) ' C[TCx(X)] = C[Tx(X)]

the latter one being a polynomial algebra whence a domain. Now, let 0 6= a, b ∈ Ox
then there exist k, l such that a ∈ mk − mk+1 and b ∈ ml − ml+1, that is a is a
nonzero homogeneous element of gr(Ox) of degree −k and b one of degree −l. But
then, a.b ∈ mk+l −mk+l−1 hence certainly a.b 6= 0 in Ox.

Now, consider the natural map φ : C[X] - Ox. Let {P1, . . . , Pl} be the
minimal prime ideals of C[X]. All but one of them, say P1 = φ−1(0), extend to the
whole ring Ox. Taking the product of f functions fi ∈ Pi nonvanishing in x for
2 ≤ i ≤ l gives the Zariski open set X(f) containing x and whose coordinate ring
is a domain, whence X(f) is an affine irreducible variety. �
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When restricting to nonsingular points we reduce to irreducible affine varieties.
From the Jacobian condition it follows that nonsingularity is a Zariski open con-
dition on X and by the implicit function theorem, X is a complex manifold in a
neighborhood of a nonsingular point.

Let X
φ- Y be a morphism of affine varieties corresponding to the algebra

morphism C[Y ]
φ∗- C[X]. Let x be a geometric point of X and y = φ(x). As

φ∗(my) ⊂ mx, φ induces a linear map my

m2
y

- mx

m2
x

and taking the dual map gives
the differential of φ in x which is a linear map

dφx : Tx(X) - Tφ(x)(Y ).

Assume X a closed subscheme of Cn and Y a closed subscheme of Cm and let
φ be determined by the m polynomials {f1, . . . , fm} in C[x1, . . . , xn]. Then, the
Jacobian matrix in x

Jx(φ) =


∂f1
∂x1

(x) . . . ∂fm

∂x1
(x)

...
...

∂f1
∂xn

(x) . . . ∂fm

∂xn
(x)


defines a linear map from Cn to Cm and the differential dφx is the induced linear
map from Tx(X) ⊂ Cn to Tφ(x)(Y ) ⊂ Cm. Let D ∈ Tx(X) = Derx(C[X]) and
xD the corresponding element of X(C[ε]) defined by xD(f) = f(x) +D(f)ε, then
xD ◦ φ∗ ∈ Y (C[ε]) is defined by

xD ◦ φ∗(g) = g(φ(x)) + (D ◦ φ∗)ε = g(φ(x)) + dφx(D)ε

giving us the ε-interpretation of the differential

φ(x+ vε) = φ(x) + dφx(v)ε

for all v ∈ Tx(X).

Proposition 4.5. Let X
φ- Y be a dominant morphism between irreducible

affine varieties. There is a Zariski open dense subset U ⊂ - X such that dφx is
surjective for all x ∈ U .

Proof. We may assume that φ factorizes into

X
ρ-- Y × Cd

Y

prY

?

φ

-

with φ a finite and surjective morphism. Because the tangent space of a product is
the sum of the tangent spaces of the components we have that d(prW )z is surjective
for all z ∈ Y × Cd, hence it suffices to verify the claim for a finite morphism φ.
That is, we may assume that S = C[Y ] is a finite module over R = C[X] and let
L/K be the corresponding extension of the function fields. By the principal element
theorem we know that L = K[s] for an element s ∈ L which is integral over R with
minimal polynomial

F = tn + gn−1t
n−1 + . . .+ g1t+ g0 with gi ∈ R
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Consider the ring S′ = R[t]/(F ) then there is an element r ∈ R such that the
localizations S′r and Sr are isomorphic. By restricting we may assume that X =
V(F ) ⊂ - Y × C and that

X = V(F ) ⊂ - Y × C

Y

prY

?

φ

-

Let x = (y, c) ∈ X then we have (again using the identification of the tangent space
of a product with the sum of the tangent spaces of the components) that

Tx(X) = {(v, a) ∈ Ty(Y )⊕ C | c∂F
∂t

(x) + vgn−1c
n−1 + . . .+ vg1c+ vg0 = 0}.

But then, dφx i surjective whenever ∂F
∂t (x) 6= 0. This condition determines a non-

empty open subset of X as otherwise ∂F
∂t would belong to the defining ideal of X

in C[Y ×C] (which is the principal ideal generated by F ) which is impossible by a
degree argument �

Example 4.6. Let X be a closed GLn-stable subscheme of a GLn-representation V and

x a geometric point of X. Consider the orbitclosure O(x) of x in V . Because the orbit map

µ : GLn -- GLn.x ⊂ - O(x)

is dominant we have that C[O(x)] ⊂- C[GLn] and therefore a domain, so O(x) is an irreducible

affine variety. We define the stabilizer subgroup Stab(x) to be the fiber µ−1(x), then Stab(x) is a

closed subgroup of GLn. We claim that the differential of the orbit map in the identity matrix
e = rr

n

dµe : gln
- Tx(X)

satisfies the following properties

Ker dµe = stab(x) and Im dµe = Tx(O(x)).

By the proposition we know that there is a dense open subset U of GLn such that dµg is surjective

for all g ∈ U . By GLn-equivariance of µ it follows that dµg is surjective for all g ∈ GLn, in

particular dµe : gln
- Tx(O(x)) is surjective. Further, all fibers of µ over O(x) have the same

dimension. But then it follows from the dimension formula of proposition that

dim GLn = dim Stab(x) + dim O(x)

(which, incidentally gives us an algorithm to compute the dimensions of orbitclosures). Combining

this with the above surjectivity, a dimension count proves that Ker dµe = stab(x), the Lie algebra

of Stab(x).

Example 4.7. Let A be an affine C-algebra generated by {a1, . . . , am} and ρ :
A - Mn(C) an algebra morphism, that is, ρ ∈ repn A determines an n-dimensional A-
representation M . We claim to have the following description of the normal space to the orbit-

closure Cρ = O(ρ) of ρ

Nρ(repn A)
def
=

Tρ(repn A)

Tρ(Cρ)
= Ext1A(M,M).

We have already seen that the space of cycles Z(M,M) is the space of ρ-derivations of A in

Mn(C), Derρ(A), which we know to be the tangent space Tρ(repn A). Moreover, we know that

the differential dµe of the orbit map GLn
µ- Cρ ⊂ - Mm

n

dµe : gln = Mn - Tρ(Cρ)
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is surjective. Now, ρ = (ρ(a1), . . . , ρ(am)) ∈ Mm
n and the action of action of GLn is given by

simultaneous conjugation. But then we have for any A ∈ gln = Mn that

(In +Aε).ρ(ai).(In −Aε) = ρ(ai) + (Aρ(ai)− ρ(ai)A)ε.

Therefore, by definition of the differential we have that

dµe(A)(a) = Aρ(a)− ρ(a)A for all a ∈ A.

that is, dµe(A) ∈ B(M,M) and as the differential map is surjective we have Tρ(Cρ) = B(M,M)

from which the claim follows.

Example 4.8. Let A be a Cayley-Hamilton algebra with trace map trA and trace gener-
ated by {a1, . . . , am}. Let ρ ∈ reptrn A, that is, ρ : A - Mn(C) is a trace preserving algebra

morphism. Any cycle λ : A - Mn(C) in Z(M,M) = Derρ(A) determines an algebra morphism

ρ+ λε : A - Mn(C[ε])

We know that the tangent space Tρ(reptrn A) is the subspace Dertrρ (A) of trace preserving ρ-

derivations, that is, those satisfying

λ(trA(a)) = tr(λ(a)) for all a ∈ A

Observe that for all boundaries δ ∈ B(M,M), that is, such that there is an m ∈ Mn(C) with

δ(a) = ρ(a).m−m.ρ(a) are trace preserving as

δ(trA(a)) = ρ(trA(a)).m−m.ρ(trA(a)) = tr(ρ(a)).m−m.tr(ρ(a))

= 0 = tr(m.ρ(a)− ρ(a).m) = tr(δ(a))

Hence, we can define the space of trace preserving self-extensions

ExttrA (M,M) =
Dertrρ (A)

B(M,M)

and obtain as before that the normal space to the orbit closure Cρ = O(ρ) is equal to

Nρ(rep
tr
n
A)

def
=

Tρ(reptrn A)

Tρ(Cρ)
= ExttrA (M,M)

4.3. Knop-Luna slices.

The results of this section hold for any reductive algebraic group G. We will
apply them only in the case G = GLn or GL(α) = GLa1 × . . .×GLak

, so restrict
to the case of GLn. We fix the setting : X and Y are (not necessarily reduced)
affine GLn-varieties, ψ is a GLn-equivariant map

x = ψ(y) ` X � ψ
Y a y

X/GLn

πX

??
Y /GLn

πY

??

and we assume the following restrictions :
• ψ is étale in y,
• the GLn-orbits O(y) in Y and O(x) in X are closed. For example, in

representation varieties, we restrict to semi-simple representations,
• the stabilizer subgroups are equal Stab(x) = Stab(y). In the case of

representation varieties, for a semi-simple n-dimensional representation
with decomposition

M = S⊕e11 ⊕ . . .⊕ S⊕ek

k
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into distinct simple components, this stabilizer subgroup is

GL(α) =

GLe1(C⊗
rr
d1)

. . .
GLek

(C⊗ rr
dk

)

 ⊂ - GLn

where di = dim Si. In particular, the stabilizer subgroup is again reduc-
tive.

In algebraic terms : consider the coordinate rings R = C[X] and S = C[Y ] and the
dual morphism R

ψ∗- S. Let I / R be the ideal describing O(x) and J / S the
ideal describing O(y). With R̂ we will denote the I-adic completion lim

←
R
In of R

and with Ŝ the J-adic completion of S.

Lemma 4.9. The morphism ψ∗ induces for all n an isomorphism
R

In
ψ∗- S

Jn

In particular, R̂ ' Ŝ.

Proof. Let Z be the closed GLn-stable subvariety of Y where ψ is not étale.
By the separation property, there is an invariant function f ∈ SGLn vanishing on Z
such that f(y) = 1 because the two closed GLn-subschemes Z and O(y) are disjoint.
Replacing S by Sf we may assume that ψ∗ is an étale morphism. Because O(x) is
smooth, ψ−1 O(x) is the disjoint union of its irreducible components and restricting
Y if necessary we may assume that ψ−1 O(x) = O(y). But then J = ψ∗(I)S and
as O(y)

'- O(x) we have R
I '

S
J so the result holds for n = 1.

Because étale maps are flat, we have ψ∗(In)S = In ⊗R S = Jn and an exact
sequence

0 - In+1 ⊗R S - In ⊗R S - In

In+1
⊗R S - 0

But then we have
In

In+1
=

In

In+1
⊗R/I

S

J
=

In

In+1
⊗R S '

Jn

Jn+1

and the result follows from induction on n and the commuting diagram

0 - In

In+1
- R

In+1
- R

In
- 0

0 - Jn

Jn+1

'

?

- S

Jn+1

?

............

- S

Jn

'

?

- 0

�

For an irreducible GLn-representation s and a locally finite GLn-module X we
denote its s-isotypical component by X(s).

Lemma 4.10. Let s be an irreducible GLn-representation. There are natural
numbers m ≥ 1 (independent of s) and n ≥ 0 such that for all k ∈ N we have

Imk+n ∩R(s)
⊂ - (IGLn)kR(s)

⊂ - Ik ∩R(s)
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Proof. Consider A = ⊕∞i=0I
ntn ⊂ - R[t], then AGLn is affine so certainly

finitely generated as RGLn -algebra say by

{r1tm1 , . . . , rzt
mz} with ri ∈ R and mi ≥ 1.

Further, A(s) is a finitely generated AGLn -module, say generated by

{s1tn1 , . . . , syt
ny} with si ∈ R(s) and ni ≥ 0.

Take m = max mi and n = max ni and r ∈ Imk+n ∩R(s), then rtmk+n ∈ A(s) and

rtmk+n =
∑
j

pj(r1tm1 , . . . , rzt
mz )sjtnj

with pj a homogeneous polynomial of t-degree mk + n − nj ≥ mk. But then
each monomial in pj occurs at least with ordinary degree mk

m = k and therefore is
contained in (IGLn)kR(s)t

mk+n. �

Let R̂GLn be the IGLn -adic completion of the invariant ring RGLn and let ŜGLn

be the JGLn-adic completion of SGLn .

Lemma 4.11. The morphism ψ∗ induces an isomorphism

R⊗RGLn R̂GLn
'- S ⊗ SGLn ŜGLn

Proof. Let s be an irreducible GLn-module, then the IGLn -adic completion
of R(s) is equal to R̂(s) = R(s) ⊗RGLn R̂GLn . Moreover,

R̂(s) = lim
←

(
R

Ik
)(s) = lim

←

R(s)

(Ik ∩R(s))

which is the I-adic completion of R(s). By the foregoing lemma both topologies
coincide on R(s) and therefore

R̂(s) = R̂(s) and similarly Ŝ(s) = Ŝ(s)

Because R̂ ' Ŝ it follows that R̂(s) ' Ŝ(s) from which the result follows as the
foregoing holds for all s. �

Theorem 4.12. Consider a GLn-equivariant map Y
ψ- X, y ∈ Y , x = ψ(y)

and ψ étale in y. Assume that the orbits O(x) and O(y) are closed and that ψ is
injective on O(y). Then, there is an affine open subset U ⊂ - Y containing y such
that

(1) U = π−1
Y (πY (U)) and πY (U) = U/GLn.

(2) ψ is étale on U with affine image.

(3) The induced morphism U/GLn
ψ- X/GLn is étale.

(4) The diagram below is commutative

U
ψ - X

U/GLn

πU

??
ψ- X/GLn

πX

??
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GLn ×H Nx � GLn×Hφ
GLn ×H S

ψ - X

Nx/H

??
� φ/H

S/H

??
ψ/GLn - X/GLn

π

??

Figure 1. Etale slice diagram

Proof. By the foregoing lemma we have R̂GLn ' ŜGLn which means that
ψ is étale in πY (y). As étaleness is an open condition, there is an open affine
neighborhood V of πY (y) on which ψ is étale. If R = R ⊗RGLn SGLn then the
above lemma implies that

R⊗SGLn ŜGLn ' S ⊗SGLn ŜGLn

Let SGLn

loc be the local ring of SGLn in JGLn , then as the morphism SGLn

loc
- ŜGLn

is faithfully flat we deduce that

R⊗SGLn S
GLn

loc ' S ⊗SGLn S
GLn

loc

but then there is an f ∈ SGLn − JGLn such that Rf ' Sf . Now, intersect V with
the open affine subset where f 6= 0 and let U ′ be the inverse image under πY of
this set. Remains to prove that the image of ψ is affine. As U ′

ψ- X is étale, its
image is open and GLn-stable. By the separation property we can find an invariant
h ∈ RGLn such that h is zero on the complement of the image and h(x) = 1. But
then we take U to be the subset of U ′ of points u such that h(u) 6= 0. �

Theorem 4.13 (Slice theorem). Let X be an affine GLn-variety with quotient
map X

π-- X/GLn. Let x ∈ X be such that its orbit O(x) is closed and its
stabilizer subgroup Stab(x) = H is reductive. Then, there is a locally closed affine
subscheme S ⊂ - X containing x with the following properties

(1) S is an affine H-variety,
(2) the action map GLn × S - X induces an étale GLn-equivariant mor-

phism GLn ×H S
ψ- X with affine image,

(3) the induced quotient map ψ/GLn is étale

(GLn ×H S)/GLn ' S/H
ψ/GLn- X/GLn

and the right hand side of figure 1 is commutative.
If we assume moreover that X is smooth in x, then we can choose the slice S such
that also the following properties are satisfied

(1) S is smooth,
(2) there is an H-equivariant morphism S

φ- Tx S = Nx with φ(x) = 0
having an affine image,

(3) the induced morphism is étale

S/H
φ/H- Nx/H

and the left hand side of figure 1 is commutative.
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Proof. Choose a finite dimensional GLn-subrepresentation V of C[X] that
generates the coordinate ring as algebra. This gives a GLn-equivariant embedding

X ⊂
i- W = V ∗

Choose in the vectorspace W an H-stable complement S0 of gln.i(x) = Ti(x) O(x)
and denote S1 = i(x) + S0 and S2 = i−1(S1).Then, the diagram below is commu-
tative

GLn ×H S2
⊂ - GLn ×H S1

X

ψ

?
⊂

i - W

ψ0

?

By construction we have that ψ0 induces an isomorphism between the tangent
spaces in (1, i(x)) ∈ GLn×H S0 and i(x) ∈W which means that ψ0 is étale in i(x),
whence ψ is étale in (1, x) ∈ GLn ×H S2. By the fundamental lemma we ge an
affine neighborhood U which must be of the form U = GLn ×H S giving a slice S
with the required properties.

Assume that X is smooth in x, then S1 is transversal to X in i(x) as

Ti(x) i(X) + S0 = W

Therefore, S is smooth in x. Again using the separation property we can find an
invariant f ∈ C[S]H such that f is zero on the singularities of S (which is a H-stable
closed subscheme) and f(x) = 1. Then replace S with its affine reduced subvariety
of points s such that f(s) 6= 0. Let m be the maximal ideal of C[S] in x, then we
have an exact sequence of H-modules

0 - m2 - m
α- N∗x - 0

Choose a H-equivariant section φ∗ : N∗x - m ⊂ - C[S] of α then this gives
an H-equivariant morphism S

φ- Nx which is étale in x. Applying again the
fundamental lemma to this setting finishes the proof. �

4.4. Smoothness.

Definition 4.14. Let cat be a category of C-algebras. An object A ∈ Ob(cat)
is said to be cat-smooth if it satisfies the following lifting property. For B ∈
Ob(cat), a nilpotent ideal I/B such that B/I ∈ Ob(cat) and a C-algebra morphism
A

κ- B/I in Mor(cat), there exist a lifting

A

B ��
�...

.....
.....

.....
.....

.....
...

∃
λ

B

I

κ

?

with λ ∈ Mor(cat) making the diagram commutative. alg-smooth is called
Quillen-smooth , comm-smooth is called Grothendieck-smooth and alg @n-smooth
is called Cayley-smooth .
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We will show that the categorical notion of comm-smoothness coincides with
geometric smoothness. Let X be a possibly non-reduced affine variety and x a
geometric point of X. As we are interested in local properties of X near x, we may
assume (after translation) that x = o in Cn and that we have a presentation

C[X] = C[x1, . . . , xn]/I with I = (f1, . . . , fm) and mx = (x1, . . . , xn)/I.

Denote the polynomial algebra P = C[x1, . . . , xn] and consider the map

d : I - (Pdx1 ⊕ . . .⊕ Pdxn)⊗P C[X] = C[X]dx1 ⊕ . . .⊕ C[X]dxn

where the dxi are a formal basis of the free module of rank n and the map is defined
by

d(f) = (
∂f

∂x1
, . . . ,

∂f

∂xn
) mod I.

This gives a C[X]-linear mapping I
I2

d- C[X]dx1 ⊕ . . . ⊕ C[X]dxn. Extending
to the local algebra Ox at x and then quotient out the maximal ideal mx we get
a C = Ox/mx- linear map I

I2

d(x)- Cdx1 ⊕ . . . ⊕ Cdxn Clearly, x is a nonsingular
point of X if and only if the C-linear map d(x) is injective. This is equivalent to
the existence of a C-section and by the Nakayama lemma also to the existence of a
Ox-linear splitting sx of the induced Ox-linear map dx

I

I2

⊂
dx-

��
sx

Oxdx1 ⊕ . . .⊕Oxdxn

satisfying sx ◦ dx = id I
I2

A C-algebra epimorphism (between commutative algebras) R
π-- S with

square zero kernel is called an infinitesimal extension of S . It is called a trivial
infinitesimal extension if π has an algebra section σ : S ⊂ - R satisfying π◦σ = idS .
An infinitesimal extension R

π-- S of S is said to be versal if for any other
infinitesimal extension R′

π′-- S of S there is a C-algebra morphism

R
π -- S

R′

π
′

--
...............................

∃
g

-

making the diagram commute. From this universal property it is clear that versal
infinitesimal extensions are uniquely determined up to isomorphism. Moreover, if
a versal infinitesimal extension is trivial, then so is any infinitesimal extension. By
iterating, S is Grothendieck-smooth if and only if it has the lifting property with
respect to nilpotent ideals I with square zero. Therefore, assume we have a test
object (T, I) with I2 = 0, then we have a commuting diagram

S ×T/I T
pr1 -- S

T

pr2

??

p
-- T/I

κ

?
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where we define the pull-back algebra S ×T/I T = {(s, t) ∈ S × T | κ(s) = p(t)}.
Observe that pr1 : S×T/I T -- S is a C-algebra epimorphism with kernel 0×T/I I
having square zero, that is, it is an infinitesimal extension of S. Moreover, the
existence of a lifting λ of κ is equivalent to the existence of a C-algebra section

σ : S - S ×T/I T defined by s 7→ (s, λ(s)).

Hence, S is Grothendieck-smooth if and only if a versal infinitesimal extension of
S is trivial.

Returning to the situation of interest to us, we claim that the algebra epi-
morphism Ox(Cn)/I2

x

cx-- Ox is a versal infinitesimal extension of Ox. Indeed,
consider any other infinitesimal extension R

π-- Ox then we define a C-algebra
morphism Ox(Cn)/I2

x
- R as follows : let ri ∈ R such that π(ri) = cx(xi) and

define an algebra morphism C[x1, . . . , xn] - R by sending the variable xi to ri.
As the image of any polynomial non-vanishing in x is a unit in R, this algebra map
extends to one from the local algebra Ox(Cn) and it factors over Ox(Cn)/I2

x as the
image of Ix lies in the kernel of π which has square zero, proving the claim. Hence,
Ox is Grothendieck-smooth if and only if there is a C-algebra section

Ox(Cn)/I2
x

cx --
�
rx

⊃ Ox

satisfying cx ◦ rx = idOx .

Proposition 4.15. The affine scheme X is non-singular at the geometric point
x if and only if the local algebra Ox(X) is Grothendieck-smooth.

Proof. The result will follow once we prove that there is a natural one-to-one
correspondence between Ox-module splittings sx of dx and C-algebra sections rx of
cx. This correspondence is given by assigning to an algebra section rx the map sx
defined by

sx(dxi) = (xi − rx ◦ cx(xi)) mod I2
x

�

If X is an affine scheme which is smooth in all of its geometric points, then we
have seen before that X = X must be reduced, that is, an affine variety. Restricting
to its disjoint irreducible components we may assume that

C[X] = ∩x∈XOx.

Clearly, if C[X] is Grothendieck-smooth, so is any of the local algebras Ox. Con-
versely, if all Ox are Grothendieck-smooth and C[X] = C[x1, . . . , xn]/I one knows
that the algebra epimorphism

C[x1, . . . , xn]/I2 c-- C[X]

has local sections in every x, but then there is an algebra section. Because c is clearly
a versal infinitesimal deformation of C[X], it follows that C[X] is Grothendieck-
smooth.

Proposition 4.16. Let X be an affine scheme. Then, C[X] is Grothendieck-
smooth if and only if X is non-singular in all of its geometric points. In this case,
X is a reduced affine variety.
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As comm = alg @1, we will generalize the foregoing to Cayley-smooth al-
gebras. Let B be a Cayley-Hamilton algebra of degree n with trace map trB and
trace generated by m elements say {b1, . . . , bm}. Then, we can write

B = Tmn /TB with TB closed under traces.

Now, consider the extended ideal

EB = Mn(C[Mm
n ]).TB .Mn(C[Mm

n ]) = Mn(NB)

and we have seen that C[reptr
n
B] = C[Mm

n ]/NB . We need the following technical
result.

Lemma 4.17. With notations as above, we have for all k that

Ekn
2

B ∩ Tmn ⊂ T kB .

Proof. Let Tmn be the trace algebra on the generic n × n matri-
ces {X1, . . . , Xm} and Tl+mn the trace algebra on the generic matrices
{Y1, . . . , Yl, X1, . . . , Xm}. Let {U1, . . . , Ul} be elements of Tmn and consider the
trace preserving map Tl+mn

u- Tmn induced by the map defined by sending Yi to
Ui. Then, by the universal property we have a commutative diagram of Reynold
operators

Mn(C[M l+m
n ])

ũ- Mn(C[Mm
n ])

Tl+mn

R

?
u - Tmn

R

?

.

Now, let A1, . . . , Al+1 be elements from Mn(C[Mm
n ]), then we can calculate

R(A1U1A2U2A3 . . . AlUlAl+1) by first computing

r = R(A1Y1A2Y2A3 . . . AlYlAl+1)

and then substituting the Yi with Ui. The Reynolds operator preserves the degree
in each of the generic matrices, therefore r will be linear in each of the Yi and is
a sum of trace algebra elements. By our knowledge of the generators of necklaces
and the trace algebra we can write each term of the sum as an expression

tr(M1)tr(M2) . . . tr(Mz)Mz+1

where each of the Mi is a monomial of degree ≤ n2 in the generic matrices
{Y1, . . . , Yl, X1, . . . , Xm}. Now, look at how the generic matrices Yi are distributed
among the monomials Mj . Each Mj contains at most n2 of the Yi’s, hence the
monomial Mz+1 contains at least l − vn2 of the Yi where v ≤ z is the number of
Mi with i ≤ z containing at least one Yj .

Now, assume all the Ui are taken from the ideal TB /Tmn which is closed under
taking traces, then it follows that

R(A1U1A2U2A3 . . . AlUlAl+1) ∈ T v+(l−vn2)
B ⊂ T kB

if we take l = kn2 as v + (k − v)n2 ≥ k. But this finishes the proof of the required
inclusion. �
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Let B be a Cayley-Hamilton algebra of degree n with trace map trB and I a
twosided ideal of B which is closed under taking traces. We will denote by E(I)
the extended ideal with respect to the universal embedding, that is,

E(I) = Mn(C[reptr
n
B])IMn(C[reptr

n
B]).

Then, for all powers k we have the inclusion E(I)kn
2 ∩B ⊂ Ik.

Theorem 4.18. Let A be a Cayley-Hamilton algebra of degree n with trace map
trA. Then, A is Cayley-smooth if and only if the trace preserving representation
variety reptr

n
A is non-singular in all points (in particular, reptr

n
A is reduced).

Proof. Let A be Cayley-smooth, then we have to show that C[reptr
n
A] is

Grothendieck-smooth. Take a commutative test-object (T, I) with I nilpotent and
an algebra map κ : C[reptr

n
A] - T/I. Composing with the universal embedding

iA we obtain a trace preserving morphism µ0

A ...............................................
µ1

- Mn(T )

Mn(C[reptr
n
A])

iA

?

∩

Mn(κ)
- Mn(T/I)

??

µ0

-

Because Mn(T ) with the usual trace is a Cayley-Hamilton algebra of degree n
and Mn(I) a trace stable ideal and A is Cayley-smooth there is a trace preserving
algebra map µ1. But then, by the universal property of the embedding iA there
exists a C-algebra morphism

λ : C[reptr
n
A] - T

such that Mn(λ) completes the diagram. The morphism λ is the required lift.
Conversely, assume that C[reptr

n
A] is Grothendieck-smooth. Assume we have a

Cayley-Hamilton algebra of degree n with trace map trT and a trace-stable nilpotent
ideal I of T and a trace preserving C-algebra map κ : A - T/I. If we combine
this test-data with the universal embeddings we obtain a diagram

T ⊂
iT- Mn(C[reptr

n
T ])

A
κ -.....

.....
.....

.....
.....

.....
.....

..

?∃
λ

-

T/I

??
⊂
iT/I- Mn(C[reptr

n
T/I])

??
=Mn(C[reptr

n
T ]/J)

Mn(C[reptr
n
A])

iA

?

∩

.........
.........

.........
.........

.........
.........

......

Mn
(α)

-

Here, J = Mn(C[reptr
n
T ])IMn(C[reptr

n
T ]) and we know already that J ∩ T = I.

By the universal property of the embedding iA we obtain a C-algebra map

C[reptr
n
A]

α- C[reptr
n
T ]/J
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which we would like to lift to C[reptr
n
T ]. This does not follow from Grothendieck-

smoothness of C[reptr
n
A] as J is usually not nilpotent. However, as I is a nilpotent

ideal of T there is some h such that Ih = 0. As I is closed under taking traces we
know by the remark preceding the theorem that

E(I)hn
2
∩ T ⊂ Ih = 0.

Now, by definition E(I) = Mn(C[reptr
n
T ])IMn(C[reptr

n
T ]) which is equal to

Mn(J). That is, the inclusion can be rephrased as Mn(J)hn
2 ∩ T = 0, whence

there is a trace preserving embedding T ⊂ - Mn(C[reptr
n
T ]/Jhn

2
). Now, we have

the following situation

T ⊂ - Mn(C[reptr
n
T ]/Jkn

2
)

A
κ -.....

.....
.....

.....
.....

.....
.....

..

λ

-

T/I

??
⊂
iT/I- Mn(C[reptr

n
T ]/J)

??

Mn(C[reptr
n
A])

iA

?

∩

......
......

......
......

......
......

......
......

......
......

......
......

......
......

.-

Mn
(α)

-

This time we can lift α to a C-algebra morphism

C[reptr
n
A] - C[reptr

n
T ]/Jhn

2
.

This in turn gives us a trace preserving morphism

A
λ- Mn(C[reptr

n
T ]/Jhn

2
)

the image of which is contained in the algebra of GLn-invariants. Because
T ⊂ - Mn(C[reptr

n
T ]/Jhn

2
) and by surjectivity of invariants under surjective

maps, the GLn-equivariants are equal to T , giving the required lift λ. �

For an affine C-algebra A recall the construction of its level n approximation

A@n =
Atr

(tr(1)− n, χ(n)
a (a) ∀a ∈ A)

In general, it may happen that A@n = 0 for example if A has no n-dimensional
representations. The characteristic feature of A@n is that any C-algebra map
A - B with B a Cayley-Hamilton algebra of degree n factors through A@n

A
φ - B

A@n

.....
.....

.....
.....

.....
.....

.

∃φ
n

-
can

-

with φn a trace preserving algebra morphism. From this universal property we
deduce
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Proposition 4.19. If A is Quillen-smooth, then for every integer n, the
Cayley-Hamilton algebra of degree n, A@n, is Cayley-smooth. Moreover,

rep
n
A ' reptr

n
A@n

is a smooth affine GLn-variety.

This result allows us to study a Quillen-smooth algebra locally in the étale
topology. We know that the algebra A@n is given by the GLn-equivariant maps
from repn A = reptrn A@n to Mn(C). As this representation variety is smooth we
can apply the full strength of the slice theorem to determine the local structure of
the GLn-variety reptrn A@n and hence of A@n. In the next section we will prove
that this local structure is fully determined by a quiver setting. That is, the étale
local study of Quillen-smooth algebras can be reduced to that of the subclass of
path algebras of quivers.

4.5. Local structure.

In this section we give some applications of the slice theorem to the local
structure of quotient varieties of representation spaces. We will first handle the
case of an affine C-algebra A leading to a local description of A @n. Next, we will
refine this slightly to prove similar results for an arbitrary affine C-algebra B in
alg @n.

When A is an affine C-algebra generated by m elements {a1, . . . , am}, its level
n approximation A@n is trace generated by m determining a trace preserving
epimorphism Tmn -- A@n. Thus we have a GLn-equivariant closed embedding
of affine schemes

rep
n
A = reptr

n
A@n

⊂
ψ- reptr

n
Tmn = Mm

n

Take a point ξ of the quotient scheme issn A = reptr
n
A@n/GLn. We know that ξ

determines the isomorphism class of a semi-simple n-dimensional representation of
A, say

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct simple A-representations, say of dimension di and occur-
ring in Mξ with multiplicity ei. These numbers determine the representation type
τ(ξ) of ξ (or of the semi-simple representation Mξ), that is

τ(ξ) = (e1, d1; e2, d2; . . . ; ek, dk)

Choosing a basis of Mξ adapted to this decomposition gives us a point x =
(X1, . . . , Xm) in the orbit O(Mξ) such that each n× n matrix Xi is of the form

Xi =


m

(i)
1 ⊗

rr
e1 0 . . . 0

0 m
(i)
2 ⊗

rr
e2 . . . 0

...
...

. . .
...

0 0 . . . m
(i)
k ⊗

rr
ek


where each m

(i)
j ∈ Mdj (C). Using this description we can compute the stabilizer

subgroup Stab(x) of GLn consisting of those invertible matrices g ∈ GLn com-
muting with every Xi. That is, Stab(x) is the multiplicative group of units of the
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22

22
22

22
22

22
2

x

O(Mξ)

Nsm
x

Nbig
x

rep
n
A

Nsm
x =

Tx repn A

Tx O(Mξ)
/ N big

x =
Tx M

m
n

Tx O(Mξ)

Figure 2. Big and small normal spaces to the orbit.

centralizer of the algebra generated by the Xi. It is easy to verify that this group
is isomorphic to

Stab(x) ' GLe1 ×GLe2 × . . .×GLek
= GL(αξ)

for the dimension vector αξ = (e1, . . . , ek) determined by the multiplicities and with
embedding Stab(x) ⊂ - GLn given by

GLe1(C⊗
rr
d1) 0 . . . 0

0 GLe2(C⊗
rr
d2) . . . 0

...
...

. . .
...

0 0 . . . GLek
(C⊗ rr

dk
)


A different choice of point in the orbit O(Mξ) gives a subgroup of GLn conjugated
to Stab(x).

We know that the normal space Nsm
x can be identified with the self-extensions

Ext1A(M,M) and we will give a quiver-description of this space. The idea is to
describe first the GL(α)-module structure of N big

x , the normal space to the or-
bit O(Mξ) in Mm

n (see figure 2) and then to identify the direct summand Nsm
x .

The description of N big
x follow from a book-keeping operation involving GL(α)-

representations. For x = (X1, . . . , Xm), the tangent space Tx O(Mxi) in Mm
n to

the orbit is equal to the image of the linear map

gln = Mn
- Mn ⊕ . . .⊕Mn = Tx M

m
n

A 7→ ([A,X1], . . . , [A,Xm])
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Observe that the kernel of this map is the centralizer of the subalgebra generated
by the Xi, so we have an exact sequence of Stab(x) = GL(α)-modules

0 - gl(α) = Lie GL(α) - gln = Mn
- Tx O(x) - 0

Because GL(α) is a reductive group every GL(α)-module is completely reducible
and so the sequence splits. But then, the normal space in Mm

n = Tx M
m
n to the

orbit is isomorphic as GL(α)-module to

N big
x = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m−1

⊕gl(α)

with the action of GL(α) (embedded as above in GLn) is given by simultaneous
conjugation. If we consider the GL(α)-action on Mnd1d2

︸ ︷︷ ︸
d1

︸ ︷︷ ︸
d2

we see that it decomposes into a direct sum of subrepresentations
• for each 1 ≤ i ≤ k we have d2

i copies of the GL(α)-module Mei
on which

GLei acts by conjugation and the other factors of GL(α) act trivially,
• for all 1 ≤ i, j ≤ k we have didj copies of the GL(α)-module Mei×ej on

which GLei
×GLej

acts via g.m = gimg
−1
j and the other factors of GL(α)

act trivially.
These GL(α) components are precisely the modules appearing in representation
spaces of quivers.

Theorem 4.20. Let ξ be of representation type τ = (e1, d1; . . . ; ek, dk) and let
α = (e1, . . . , ek). Then, the GL(α)-module structure of the normal space N big

x in
Mm
n to the orbit of the semi-simple n-dimensional representation O(Mξ) is isomor-

phic to
repα Q

big
ξ

where the quiver Qbigξ has k vertices (the number of distinct simple summands of
Mξ) and the subquiver on any two vertices vi, vj for 1 ≤ i 6= j ≤ k has the following
shape

ei8?9>:=;< ej8?9>:=;< (m− 1)d
2
j + 1(m− 1)d

2
i + 1

(m− 1)didj

))

(m− 1)didj

ii77 gg

That is, in each vertex vi there are (m− 1)d2
i + 1-loops and there are (m− 1)didj

arrows from vertex vi to vertex vj for all 1 ≤ i 6= j ≤ k.
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Example 4.21. If m = 2 and n = 3 and the representation type is τ = (1, 1; 1, 1; 1, 1)

(that is, Mξ is the direct sum of three distinct one-dimensional simple representations) then the

quiver Qξ is

18?9>:=;< 18?9>:=;<

18?9>:=;<

**
jj

<<

||

SS

��
--
MM

qq
QQ

qq--

We have GLn-equivariant embeddings O(Mξ) ⊂ - reptr
n
A@n

⊂ - Mm
n and

corresponding embeddings of the tangent spaces in x

Tx O(Mξ) ⊂ - Tx rep
tr
n
A@n

⊂ - Tx M
m
n

Because GL(α) is reductive we then obtain that the normal spaces to the orbit is
a direct summand of GL(α)-modules.

Nsm
x =

Tx rep
tr
n
A@n

Tx O(Mξ)
/ N big

x =
Tx M

m
n

Tx O(Mξ)

As we know the isotypical decomposition of N big
x as the GL(α)-module repα Qξ this

allows us to control Nsm
x . We only have to observe that arrows in Qξ correspond to

simple GL(α)-modules, whereas a loop at vertex vi decomposes as GL(α)-module
into the simples

Mei
= M0

ei
⊕ Ctriv

where Ctriv is the one-dimensional simple with trivial GL(α)-action and M0
ei

is
the space of trace zero matrices in Mei . Any GL(α)-submodule of N big

x can be
represented by a marked quiver using the dictionary

• a loop at vertex vi corresponds to the GL(α)-module Mei on which GLei

acts by conjugation and the other factors act trivially,
• a marked loop at vertex vi corresponds to the simple GL(α)-module M0

ei

on which GLei
acts by conjugation and the other factors act trivially,

• an arrow from vertex vi to vertex vj corresponds to the simple GL(α)-
module Mei×ej

on which GLei
× GLej

acts via g.m = gimg
−1
j and the

other factors act trivially,
Combining this with the calculation that the normalspace is the space of self-
extensions Ext1A(Mξ,Mξ) or the trace preserving self-extensions ExttrB (Mξ,Mxi)
(in case B ∈ Ob(alg @n)) we have.

Theorem 4.22. Consider the marked quiver on k vertices such that the full
marked subquiver on any two vertices vi 6= vj has the form

ei8?9>:=;< ej8?9>:=;<
ajjaii

mjjmii

aij

))

aji

ii
��

•

DD

��

•

ZZ

where these numbers satisfy aij ≤ (m−1)didj and aii+mii ≤ (m−1)d2
i +1. Then,
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GLn ×GL(α) Nsm
x

�GLn×GL(α)φ
GLn ×GL(α) Sx

ψ - rep
n
A

Nsm
x /GL(α)

??
� φ/GL(α)

Sx/GL(α)

??
ψ/GL(α) - issn A

??

Figure 3. Slice diagram for representation space.

(1) Let A be an affine C-algebra generated by m elements, let Mξ be
an n-dimensional semisimple A-module of representation-type τ =
(e1, d1; . . . ; ek, dk) and let α = (e1, . . . , ek). Then, the normal space Nsm

x

in a point x ∈ O(Mξ) to the orbit with respect to the representation
space rep

n
A is isomorphic to the GL(α)-module of quiver-representations

repα Qξ of above type with
• aii = dimC Ext1A(Si, Si) and mii = 0 for all 1 ≤ i ≤ k.
• aij = dimC Ext1A(Si, Sj) for all 1 ≤ i 6= j ≤ n.

(2) Let B be a Cayley-Hamilton algebra of degree n, trace generated by m
elements, let Mξ be a trace preserving n-dimensional semisimple B-module
of representation type τ = (e1, d1; . . . ; ek, dk) and let α = (e1, . . . , ek).
Then, the normal space N tr

x in a point x ∈ O(Mξ) to the orbit with respect
to the trace preserving representation space reptr

n
B is isomorphic to the

GL(α)-module of marked quiver-representations repα Q•ξ of above type
with
• aij = dimC Ext1B(Si, Sj) for all 1 ≤ i 6= j ≤ k.

and the (marked) vertex loops further determine the structure of
ExttrB (Mξ,Mξ).

By a marked quiver-representation we mean a representation of the underlying
quiver (that is, forgetting the marks) subject to the condition that the matrices
corresponding to marked loops have trace zero.

Consider the slice diagram of figure 3 for the representation space rep
n
A. The

left hand side exists when x is a smooth point of rep
n
A, the right hand side exists

always. The horizontal maps are étale and the upper ones GLn-equivariant.

Definition 4.23. A point ξ ∈ issn A is said to belong to the n-smooth locus
of A iff the representation space rep

n
A is smooth in x ∈ O(Mξ). The n-smooth

locus of A will be denoted by Smn(A).

The quiver necklace algebra Nα Qξ is the coordinate ring of Nx/GL(α). Recall
that Nα Qξ is a graded algebra and is generated by all traces along oriented cycles in
the quiver Qξ. Let m0 be the graded maximal ideal of Nα Qξ, that is corresponding
to the closed orbit of the trivial representation. With T̂ξ (respectively N̂α) we
will denote the m0-adic filtration of the quiver-order Tα Qξ (respectively of the
quiver necklace algebra Nα Qξ). Recall that the quiver-order Tα Qξ has a block-
decomposition determined by oriented paths in the quiver Qξ. A consequence of
the slice theorem and the description of Cayley-Hamilton algebras and their algebra
of traces by geometric data we deduce.



160 4. ETALE SLICES.

Theorem 4.24. Let ξ ∈ Smn(A). Let N = trA @n, let m be the maximal ideal
of N corresponding to ξ and denote T = A @n, then we have the isomorphism and
Morita equivalence

N̂m ' N̂α and T̂m ∼
Morita

T̂α

We have an explicit description of the algebras on the right in terms of the
quiver setting (Qξ, α) and the Morita equivalence is determined by the embedding
GL(α) ⊂ - GLn.

Let Q• be a marked quiver with underlying quiver Q and let α = (d1, . . . , dk) be
a dimension vector. We define the marked quiver-necklace algebra Nα Q• to be the
ring of GL(α)-polynomial invariants on the representation space repα Q•, that is,
Nα Q• is the coordinate ring of the quotient variety repα Q•/GL(α). The marked
quiver-order Tα Q• is defined to be the algebra of GL(α)-equivariant polynomial
maps from repα Q

• to Md(C) where d =
∑
i di. Because we can separate traces, it

follows that

Nα Q• =
Nα Q

(tr(m1), . . . , tr(ml))
and Tα Q• =

Tα Q
(tr(m1), . . . , tr(ml))

where {m1, . . . ,ml} is the set of all marked loops in Q•.
LetB be a Cayley-Hamilton algebra of degree n and letMξ be a trace preserving

semi-simple B-representation of type τ = (e1, d1; . . . ; ek, dk) corresponding to the
point ξ in the quotient variety isstrn B.

Definition 4.25. A point ξ ∈ isstrn B is said to belong to the smooth locus of
B iff the trace preserving representation space reptr

n
B is smooth in x ∈ O(Mξ).

The smooth locus of the Cayley-Hamilton algebra B of degree n will be denotes by
Smtr(B).

Applying the slice theorem to the trace preserving representation space, we
obtain with the obvious modifications in notation.

Theorem 4.26. Let ξ ∈ Smtr(B) and N = tr B. Let m be the maximal ideal
of N corresponding to ξ, then we have the isomorphism and Morita equivalence

N̂m ' N̂•α and B̂m ∼
Morita

T̂•α

where we have an explicit description of the algebras on the right in terms of the
quiver setting (Qξ, α) and where the Morita equivalence is determined by the em-
bedding GL(α) ⊂ - GL(n).

Even if the left hand sides of the slice diagrams are not defined when ξ is not
contained in the smooth locus, the dimension of the normal spaces (that is, the
(trace preserving) self-extensions of Mξ) allow us to have a numerical measure of
the ’badness’ of this noncommutative singularity.

Definition 4.27. Let A be an affine C-algebra and ξ ∈ issn A of type τ =
(e1, d1; . . . ; ek, dk). The measure of singularity in ξ is given by the non-negative
number

ms(ξ) = n2 + dimC Ext1A(Mξ,Mξ)− e21 − . . .− e2k − dimMξ
rep

n
A

Let B be a Cayley-Hamilton algebra of degree n and ξ ∈ isstrn B of type τ =
(e1, d1; . . . ; ek, dk). The measure of singularity in ξ is given by the non-negative
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number

ms(ξ) = n2 + dimC ExttrB (Mξ,Mξ)− e21 − . . .− e2k − dimMξ
reptr

n
A

Clearly, ξ ∈ Smn(A) (respectively, ξ ∈ Smtr(B)) if and only if ms(ξ) = 0.

As an application to the slice theorem, let us prove the connection between
Azumaya algebras and principal fibrations. The Azumaya locus of an algebra A
will be the open subset UAz of issn A consisting of the points ξ of type (1, n). Let
rep

n
A

π-- issn A be teh quotient map.

Proposition 4.28. The quotient π−1(UAz) -- UAz is a principal PGLn-
fibration in the étale topology, that is determines an element in H1

et(UAz, PGLn).

Proof. Let ξ ∈ UAz and x = Mξ a corresponding simple representation. Let
Sx be the slice in x for the PGLn-action on rep

n
A. By taking traces of products

of a lifted basis from Mn(C) we find a PGLn-affine open neighborhood Uξ of ξ
contained in UAz and hence by the slice result a commuting diagram

PGLn × Sx
ψ - π−1(Uξ)

Sx

??

ψ/PGLn

- Uξ

π

??

where ψ and ψ/PGLn are étale maps. That is, ψ/PGLn is an étale neighborhood
of ξ over which π is trivialized. As this holds for all points ξ ∈ UAz the result
follows. �

4.6. A∞-algebras.

The category alg has a topological origin. Consider the tiny interval operad
D1, that is, let D1(n) be the collection of all configurations

i1 i2 in

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

consisting of the unit interval with n closed intervals removed, each gap given a
label ij where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n). Clearly, D1(n) is a
real 2n-dimensional C∞-manifold having n! connected components, each of which is
a contractible space. The operad structure comes from the collection of composition
maps

D1(n)× (D1(m1)× . . . D1(mn))
m(n,m1,...,mn)- D1(m1 + . . .+mn)

defined by resizing the configuration in the D1(mi)-component such that it fits
precisely in the i-th gap of the configuration of the D1(n)-component, see figure 4.
We obtain a unit interval having m1+. . .+mn gaps which are labeled in the natural
way, that is the first m1 labels are for the gaps in the D1(m1)-configuration fitted
in gap 1, the next m2 labels are for the gaps in the D1(m2)-configuration fitted in
gap 2 and so on. The tiny interval operad D1 consists of

• a collection of topological spaces D1(n) for n ≥ 0,
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i1

j1 j2 jmi1

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

k1 k2 kmi2

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

l1 l2 lmin

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

i2 in

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

Figure 4. The tiny interval operad.

• a continuous action of Sn on D1(n) by relabeling, for every n,
• an identity element id ∈ D1(1),
• the continuous composition maps m(n,m1,...,mn) which satisfy associativity

and equivariance with respect to the symmetric group actions.
By taking the homology groups of these manifolds D1(n) we obtain a linear operad
assoc. Because D1(n) has n! contractible components we can identify assoc(n)
with the subspace of the free algebra C〈x1, . . . , xn〉 spanned by the multilinear
monomials. assoc(n) has dimension n! with basis xσ(1) . . . xσ(n) for σ ∈ Sn. Each
assoc(n) has a natural action of Sn and as Sn-representation it is isomorphic to
the regular representation. The composition maps m(n,m1,...,mn) induce on the
homology level linear composition maps

assoc(n)⊗ assoc(m1)⊗ . . .⊗ assoc(mn)
γ(n,m1,...,mn)- assoc(m1 + . . .+mn)

obtained by substituting the multilinear monomials φi ∈ assoc(mi) in the place of
the variable xi into the multilinear monomial ψ ∈ assoc(n).

In general, a C-linear operad P consists of a family of vectorspaces P(n) each
equipped with an Sn-action, P(1) contains an identity element and there are com-
position linear morphisms

P(n)⊗ P(m1)⊗ . . .⊗ P(mn)
c(n,m1,...,mn)- P(m1 + . . .+mn)

satisfying the same compatibility relations as the maps γ(n,m1,...,mn) above. An
example is the endomorphism operad endV for a vectorspace V defined by taking

endV (n) = HomC(V ⊗n, V )

with compositions and Sn-action defined in the obvious way and unit element rr
V ∈

endV (1) = End(V ). A morphism of linear operads P
f- P′ is a collection of
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linear maps which are equivariant with respect to the Sn-action, commute with the
composition maps and take the identity element of P to the identity element of P′.

Definition 4.29. Let P be a C-linear operad. A P-algebra is a vectorspace A
equipped with a morphism of operads P

f- endA.

For example, assoc-algebras are just associative C-algebras, explaining the
topological origin of alg. Instead of considering the homology operad assoc of the
tiny intervals D1 we can consider its chain operad chain. For a topological space
X, let chains(X) be the complex concentrated in non-positive degrees, whose −k-
component consists of the finite formal additive combinations

∑
ci.fi where ci ∈ C

and fi : [0, 1]k - X is a continuous map (a singular cube in X ) modulo the
following relations

• For any σ ∈ Sk acting on [0, 1]k by permutation, we have f ◦ σ = sg(σ)f .
• For prkk−1 : [0, 1]k

k−1-- the projection on the first k − 1 coordinates and

any continuous map [0, 1]k−1 f ′- X we have f ′ ◦ prkk−1 = 0.
Then, chain is the collection of complexes chains(D1(n)) and is an operad in
the category of complexes of vectorspaces with cohomology the homology operad
assoc. Again, we can consider chain-algebras, this time as complexes of vec-
torspaces. These are the A∞-algebras.

Definition 4.30. An A∞-algebra is a Z-graded complex vectorspace

B = ⊕p∈ZBp

endowed with homogeneous C-linear maps

mn : B⊗n - B

of degree 2− n for all n ≥ 1, satisfying the following relations
• We have m1 ◦m1 = 0, that is (B,m1) is a differential complex

. . .
m1- Bi−1

m1- Bi
m1- Bi+1

m1- . . .

• We have the equality of maps B ⊗B - B

m1 ◦m2 = m2 ◦ (m1 ⊗ rr + rr⊗m1)

where rr is the identity map on the vectorspace B. That is, m1 is a
derivation with respect to the multiplication B ⊗B m2- B.

• We have the equality of maps B ⊗B ⊗B - B

m2 ◦ (rr⊗m2 −m2 ⊗ rr)

= m1 ◦m3 +m3 ◦ (m1 ⊗ rr⊗ rr + rr⊗m1 ⊗ 1 + rr⊗ rr⊗m1)

where the right second expression is the associator for the multiplication
m2 and the first is a boundary of m3, implying that m2 is associative up
to homology.
• More generally, for n ≥ 1 we have the relations∑

(−1)i+j+kml ◦ (rr⊗i ⊗mj ⊗ rr⊗k) = 0

where the sum runs over all decompositions n = i + j + k and where
l = i+ 1 + k. These identities are pictorially represented in figure 5.
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∑
± = 0

��������
��������

��������
�������� ��������

��������

��������
��������

b1
�����

bi+1
oooooooooooo OOOOOOOOOOOO

//
//

/

mj

ml

Figure 5. A∞-identities.

Observe that an A∞-algebra B is in general not associative for the multiplica-
tion m2, but its homology

H∗ B = H∗(B,m2)
is an associative graded algebra for the multiplication induced by m2. Further, if
mn = 0 for all n ≥ 3, then B is an associative differentially graded algebra and
conversely every differentially graded algebra yields an A∞-algebra with mn = 0
for all n ≥ 3.

Let A be an associative C-algebra and M a left A-module. Choose an injective
resolution of M

0 - M - I0 - I1 - . . .

with the Ik injective left A-modules and denote by I• the complex

I• : 0 - I0 d- I1 d- . . .

Let B = HOM•A(I•, I•) be the morphism complex. That is, its n-th component
are the graded A-linear maps I• - I• of degree n. This space can be equipped
with a differential

d(f) = d ◦ f − (−1)nf ◦ d for f in the n-th part

Then, B is a differentially graded algebra where the multiplication is the natural
composition of graded maps. The homology algebra

H∗ B = Ext∗A(M,M)

is the extension algebra of M . Generalizing the description of Ext1A(M,M) given
in section 3.3, an element of ExtkA(M,M) is an equivalence class of exact sequences
of A-modules

0 - M - P1
- P2

- . . . - Pk - M - 0

and the algebra structure on the extension algebra is induced by concatenation of
such sequences. This extension algebra has a canonical structure of A∞-algebra
with m1 = 0 and m2 he usual multiplication.

Now, let M1, . . . ,Mk be A-modules (for example, finite dimensional represen-
tations) and with filt(M1, . . . ,Mk) we denote the full subcategory of all A-modules
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whose objects admit finite filtrations with subquotients among the Mi. We have
the following result, for a proof and more details we refer to the excellent notes by
B. Keller [35, §6].

Theorem 4.31. Let M = M1 ⊕ . . . ⊕ Mk. The canonical A∞-structure on
the extension algebra Ext∗A(M,M) contains enough information to reconstruct the
category filt(M1, . . . ,Mk).

If we specialize to the case when M is a semi-simple n-dimensional representa-
tion of A of representation type τ = (e1, d1; . . . ; ek, dk) say with decomposition

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

Then, the first two terms of the extension algebra Ext∗A(Mξ,Mξ) are
• Ext0A(Mξ,Mξ) = EndA(Mξ) = Me1(C)⊕. . .⊕Mek

(C) because by Schur’s
lemma HomA(Si, Sj) = δijC. Hence, the 0-th part of Ext∗A(Mξ,Mξ)
determine the dimension vector α = (e1, . . . , ek).
• Ext1A(Mξ,Mξ) = ⊕ki,j=1Mej×ei(Ext

1
A(Si, Sj)) and we have seen that

dimC Ext1A(Si, Sj) is the number of arrows from vertex vi to vj in the
local quiver Qξ.

Summarizing the results of the previous section, we have :

Proposition 4.32. Let ξ ∈ Smn(A), then the first two terms of the exten-
sion algebra Ext∗A(Mξ,Mξ) contain enough information to determine the étale local
structure of rep

n
A and issn A near Mξ.

If one wants to extend this result to noncommutative singular points ξ /∈
Smn(A), one will have to consider the canonical A∞-structure on the full extension
algebra Ext∗A(Mξ,Mξ).

4.7. Indecomposable roots.

Throughout, Q will be a quiver on k vertices {v1, . . . , vk} with Euler form χQ.
For a dimension vector α = (d1, . . . , dk), any V ∈ repα Q decomposes uniquely into

V = W⊕f11 ⊕ . . .⊕W⊕fz
z

where the Wi are indecomposable representations . This follows from the fact that
End(V ) is finite dimensional. Recall also that a representation W of Q is indecom-
posable if and only if End(W ) is a local algebra , that is, the nilpotent endomor-
phisms in EndCQ(W ) form an ideal of codimension one. Equivalently, the maximal
torus of the stabilizer subgroup StabGL(α)(W ) = AutCQ(W ) is one-dimensional,
which means that every semisimple element of AutCQ(W ) lies in C∗(rrd1 , . . . ,

rr
dk

).
More generally, decomposing a representation V into indecomposables corresponds
to choosing a maximal torus in the stabilizer subgroup AutCQ(V ). Let T be such
a maximal torus, we define a decomposition of the vertexspaces

Vi = ⊕χVi(χ) where Vi(χ) = {v ∈ Vi | t.v = χ(t)v ∀t ∈ T}
where χ runs over all characters of T . One verifies that each V (χ) = ⊕iVi(χ) is a
subrepresentation of V giving a decomposition V = ⊕χV (χ). Because T acts by
scalar multiplication on each component V (χ), we have that C∗ is the maximal torus
of AutCQ(V (χ)), whence V (χ) is indecomposable. Conversely, if V = W1⊕ . . .⊕Wr

is a decomposition with the Wi indecomposable, then the product of all the one-
dimensional maximal tori in AutCQ(Wi) is a maximal torus of AutCQ(V ).
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In this section we will give a classification of the indecomposable roots , that is,
the dimension vectors of indecomposable representations. As the name suggests,
these dimension vectors will form a root system .

The Tits form of a quiver Q is the symmetrization of its Euler form, that is,

TQ(α, β) = χQ(α, β) + χQ(β, α)

This symmetric bilinear form is described by the Cartan matrix

CQ =

c11 . . . c1k
...

...
ck1 . . . ckk

 withcij = 2δij −# { ��������i��������j }

where we count all arrows connecting vi with vj forgetting the orientation. The
corresponding quadratic form qQ(α) = 1

2χQ(α, α) on Qk is defined to be

qQ(x1, . . . , xk) =
k∑
i=1

x2
i −

∑
a∈Qa

xt(a)xh(a)

Hence, qQ(α) = dim GL(α)−dim repα Q. With ΓQ we denote the underlying graph
of Q, that is, forgetting the orientation of the arrows. The following classification
result is classical, see for example [9]. A quadratic form q on Zk is said to be positive
definite if 0 6= α ∈ Zk implies q(α) > 0. It is called positive semi-definite if q(α) ≥ 0
for all α ∈ Zk. The radical of q is rad(q) = {α ∈ Zk | T (α,−) = 0}. Recall that
when Q is a connected and α ≥ 0 is a non-zero radical vector, then α is sincere
(that is, all components of α are non-zero) and qQ is positive semi-definite. There
exist a minimal δQ ≥ 0 with the property that qQ(α) = 0 if and only if α ∈ QδQ
if and only if α ∈ rad(qQ). If the quadratic form q is neither positive definite nor
semi-definite, it is called indefinite.

Theorem 4.33. Let Q be a connected quiver with Tits form qQ, Cartan matrix
CQ and underlying graph ΓQ. Then,

(1) qQ is positive definite if and only if ΓQ is a Dynkin diagram , that is one
of the graphs of figure 6. The number of vertices is m.

(2) qQ is semidefinite if and only if ΓQ is an extended Dynkin diagram, that
is one of the graphs of figure 7 and δQ is the indicated dimension vector.
The number of vertices is m+ 1.

Let V ∈ repα Q be decomposed into indecomposables

V = W⊕f11 ⊕ . . .⊕W⊕fz
z

If dim(Wi) = γi we say that V is of type (f1, γ1; . . . ; fz, γz).

Proposition 4.34. For any dimension vector α, there exists a unique type
τcan = (e1, β1; . . . ; el, βl) with α =

∑
i eiβi such that the set repα(τcan) =

{V ∈ repα Q | V 'W⊕e11 ⊕ . . .⊕W⊕el

l , dim(Wi) = βi, Wi is indecomposable }
contains a dense open set of repα Q.

Proof. Recall from example 2.7 that for any dimension vector β the subset
repindβ Q of indecomposable representations of dimension β is constructible. Con-
sider for a type τ = (f1, γ1, ; . . . ; fz, γz) the subset repα(τ) =

{V ∈ repα Q | V 'W⊕f11 ⊕ . . .⊕W⊕fz
z , dim(Wi) = γi,Wi indecomposable }



4.7. INDECOMPOSABLE ROOTS. 167

Am , m ≥ 1 �������� �������� �������� �������� �������� ��������

Dm , m ≥ 4 �������� �������� �������� �������� �������� ��������
��������

E6 �������� �������� �������� �������� ��������
��������

E7 �������� �������� �������� �������� �������� ��������
��������

E8 �������� �������� �������� �������� �������� �������� ��������
��������

Figure 6. The Dynkin diagrams.
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��������2

��������1

Ẽ7 �������� �������� �������� �������� �������� �������� ��������
��������

��������1 ��������2 ��������3 ��������4 ��������3 ��������2 ��������1

��������2

Ẽ8 �������� �������� �������� �������� �������� �������� �������� ��������
��������

��������2 ��������4 ��������6 ��������5 ��������4 ��������3 ��������2 ��������1

��������3

Figure 7. The extended Dynkin diagrams.

then repα(τ) is a constructible subset of repα Q as it is the image of the constructible
set

GL(α)× repindγ1 Q× . . .× repindγz
Q

under the map sending (g,W1, . . . ,Wz) to g.(W⊕f11 ⊕ . . . ⊕ W⊕fz
z ). Because of

the uniqueness of the decomposition into indecomposables we have a finite disjoint
decomposition

repα Q =
⊔
τ

repα(τ)

and by irreducibility of repα Q precisely one of the repα(τ) contains a dense open
set of repα Q. �
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We call τcan the canonical decomposition of α. In the next section we will
give an algorithm to compute the canonical decomposition. Consider the action
morphisms GL(α) × repα Q

φ- repα Q. By Chevalley’s theorem 2.4 we know
that the function

V 7→ dim StabGL(α)(V )

is upper semi-continuous. Because dim GL(α) = dim StabGL(α)(V ) + dim O(V )
we conclude that for all m, the subset

repα(m) = {V ∈ repα Q | dim O(V ) ≥ m}

is Zariski open. In particular, repα(max) the union of all orbits of maximal di-
mension is open and dense in repα Q. A representation V ∈ repα Q lying in the
intersection

repα(τcan) ∩ repα(max)

is called a generic representation of dimension α.
Assume that Q is a connected quiver of finite representation type , that is, there

are only a finite number of isomorphism classes of indecomposable representations.
Let α be an arbitrary dimension vector. Since any representation of Q can be
decomposed into a direct sum of indecomposables, repα Q contains only finitely
many orbits. Hence, one orbit O(V ) must be dense and have th same dimension as
repα Q, but then

dim repα Q = dim O(V ) ≤ dim GL(α)− 1

as any representation has C∗(rra1 , . . . ,
rr
ak

) in its stabilizer subgroup. That is, for
every α ∈ Nk we have qQ(α) ≥ 1. Because all off-diagonal entries of the Cartan
matrix CQ are non-positive, it follows that qQ is positive definite on Zk whence ΓQ
must be a Dynkin diagram. It is well known that to a Dynkin diagram one associates
a simple Lie algebra and a corresponding root system . We will generalize the notion
of a root system to an arbitrary quiver Q.

Let εi = (δ1i, . . . , δki) be the standard basis of Qk. The fundamental set of
roots is defined to be the following set of dimension vectors

FQ = {α ∈ Nk − 0 | TQ(α, εi) ≤ 0 and supp(α) is connected }

Recall that it follows from the description of dimension vectors of simple represen-
tations given in section 3.4 that any simple root lies in the fundamental set.

Lemma 4.35. Let α = β1 + . . .+βs ∈ FQ with βi ∈ Nk−0 for 1 ≤ i ≤ s ≥ 2. If
qQ(α) ≥ qQ(β1)+. . .+qQ(βs), then supp(α) is a tame quiver (that is, its underlying
graph is an extended Dynkin diagram) and α ∈ Nδsupp(α).

Proof. Let s = 2, β1 = (c1, . . . , ck) and β2 = (d1, . . . , dk) and we may assume
that supp(α) = Q. By assumption TQ(β1, β2) = qQ(α) − qQ(β1) − qQ(β2) ≥ 0.
Using that CQ is symmetric and α = β1 + β2 we have

0 ≤ TQ(β1, β2) =
∑
i,j

cijcidi

=
∑
j

cjdj
aj

∑
i

cijai +
1
2

∑
i 6=j

cij(
ci
ai
− cj
aj

)2aiaj
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and because TQ(α, εi) ≤ 0 and cij ≤ 0 for all i 6= j, we deduce that
ci
ai

=
cj
aj

for all i 6= j such that cij 6= 0

Because Q is connected, α and β1 are proportional. But then, TQ(α, εi) = 0 and
hence CQα = 0. By the classification result, qQ is semidefinite whence ΓQ is an
extended Dynkin diagram and α ∈ NδQ. Finally, if s > 2, then

TQ(α, α) =
∑
i

TQ(α, βi) ≥
∑
i

TQ(βi, βi)

whence TQ(α−βi, βi) ≥ 0 for some i and then we can apply the foregoing argument
to βi and α− βi. �

Definition 4.36. If G is an algebraic group acting on a variety Y and if
X ⊂ - Y is a G-stable subset, then we can decompose X =

⋃
dX(d) where X(d)

is the union of all orbits O(x) of dimension d. The number of parameters of X is

µ(X) = max
d

(dim X(d) − d)

where dim X(d) denotes the dimension of the Zariski closure of X(d).
In the special case of GL(α) acting on repα Q, we denote µ(repα(max)) =

pQ(α) and call it the number of parameters of α. For example, if α is a Schur root,
then p(α) = dim repα Q− (dim GL(α)− 1) = 1− qQ(α).

Recall that a matrix m ∈Mn(C) is unipotent if some power mk = rr
n. It follows

from the Jordan normal form that GL(α) and PGL(α) = GL(α)/C∗ contain only
finitely many conjugacy classes of unipotent matrices.

Theorem 4.37. If α lies in the fundamental set and supp(α) is not tame, then

pQ(α) = µ(repα(max)) = µ(repindα Q) = 1− qQ(α) > µ(repindα (d))

for all d > 1 where repindα (d) is the union of all indecomposable orbits of dimension
d.

Proof. A representation V ∈ repα Q is indecomposable if and only if its
stabilizer subgroup StabGL(α)(V ) is a unipotent group , that is all its elements are
unipotent elements. By proposition 4.47 we know that repα(max) ⊂ - repindα Q
and that pQ(α) = µ(repα(max)) = 1 − qQ(α). Denote repα(sub) = repα Q −
repα(max). We claim that for any unipotent element u 6= rr we have that

dim repα(sub)(u)− dim cenGL(α)(u) + 1 < 1− qQ(α)

where repα(sub)(g) denotes the representations in repα(sub) having g in their sta-
bilizer subgroup. In fact, for any g ∈ GL(α)− C∗ we have

dim cenGL(α)(g)− dim repα(g) > qQ(α)

Indeed, we may reduce to g being a semisimple element, see [47, lemma 3.4]. then,
if α = α1 + . . .+αs is the decomposition of α obtained from the eigenspace decom-
positions of g (we have s ≥ 2 as g /∈ C∗), then

cenGL(α)(g) =
∏
i

GL(αi) and repα(g) =
∏
i

repαi
(g)
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whence dim cenGL(α)(g) − dim repα(g) =
∑
i qQ(αi) > qQ(α), proving the claim.

Further, we claim that

µ(repα(sub)) ≤ max
u

(dim repα(sub)(u)− dim cenGL(α)(u) + 1)

Let Z = repα(sub) and consider the closed subvariety of PGL(α)× Z
L = {(g, z) | g.z = z}

For z ∈ Z we have pr−1
1 (z) = StabPGL(α)(z)×{z} and if z is indecomposable with

orbit dimension d then dim StabPGL(α)(z) = dim PGL(α)− d, whence

dim pr−1
1 (repindα )(d) = dim (repindα )(d) + dim PGL(α)− d

But then,

pQ(α) = max
d

(dim (repindα )(d) − d)

= −dim PGL(α) +max
d

dim pr−1
1 ((repindα )(d))

= −dim PGL(α) + dim pr−1
1 (repindα Q)

By the characterization of indecomposables, we have pr−1
1 (repindα Q) ⊂ pr−1

2 (U)
where U consists of the (finitely many) conjugacy classes Cu of conjugacy classes
of unipotent u ∈ PGL(α). But then,

pQ(α) ≤ −dim PGL(α) +max
u

dim pr−1
2 (Cu)

= −dim PGL(α) +max
u
dim repα(sub)(u) + dim PGL(α)− dim cenPGL(α)(u)

proving the claim. Finally, as dim repα(sub) − dim PGL(α) < dim repα Q −
dim GL(α) + 1 < 1− qQ(α), we are done. �

We will now extend this result to arbitrary roots using reflection functors . Let
vi be a source vertex of Q and let α = (a1, . . . , ak) be a dimension vector such that∑
t(a)=vi

ah(a) ≥ ai, then we can consider the subset

repmonoα (i) = {V ∈ repα Q | ⊕Va : Vi - ⊕t(a)=vi
Vs(a) is injective }

Clearly, all indecomposable representations are contained in repmonoα (i). Construct
the reflected quiver RiQ obtained from Q by reversing the direction of all arrows
with tail vi. The reflected dimension vector Riα = (r1, . . . , rk) is defined to be

rj =

{
aj if j 6= i∑
t(a)=i as(a) − ai if j = i

then clearly we have in the reflected quiver RiQ that
∑
h(a)=i rt(a) ≥ ri and we

define the subset

repepiRiα
(i) = {V ∈ repRiα RiQ | ⊕Va : ⊕s(a)=iVt(a) - Vi is surjective }

Before stating the main result on reflection functors, we need to recall the definition
of the Grassmann manifolds.

Let k ≤ l be integers, then the points of the Grassmannian Grassk(l) are in
one-to-one correspondence with k-dimensional subspaces of Cl. For example, if
k = 1 then Grass1(l) = Pl−1. We know that projective space can be covered by
affine spaces defining a manifold structure on it. Also Grassmannians admit a cover
by affine spaces.
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Let W be a k-dimensional subspace of Cl then fixing a basis {w1, . . . , wk} of
W determines an k × l matrix M having as i-th row the coordinates of wi with
respect to the standard basis of Cl. Linear independence of the vectors wi means
that there is a barcode design I on M

w1

...
wk

i1 i2 . . . ik

where I = 1 ≤ i1 < i2 < . . . < ik ≤ l such that the corresponding k × k minor MI

of M is invertible. Observe that M can have several such designs.
Conversely, given a k × l matrix M of rank k determines a k-dimensional sub-

space of l spanned by the transposed rows. Two k × l M and M ′ matrices of rank
k determine the same subspace provided there is a basechange matrix g ∈ GLk
such that gM = M ′. That is, we can identify Grassk(l) with the orbit space of the
linear action of GLk by left multiplication on the open set Mmax

k×l (C) of Mk×l(C)
of matrices of maximal rank. Let I be a barcode design and consider the subset
of Grassk(l)(I) of subspaces having a matrix representation M having I as bar-
code design. Multiplying on the left with M−1

I the GLk-orbit OM has a unique
representant N with NI = rr

k. Conversely, any matrix N with NI = rr
k determines

a point in Grassk(l)(I). Thus, Grassk(l)(I) depends on k(l − k) free parameters
(the entries of the negative of the barcode)

w1

...
wk

i1 i2 . . . ik

and we have an identification Grassk(l)(I)
πI- Ck(l−k). For a different barcode

design I ′ the image πI(Grassk(l)(I) ∩ Grassk(l)(I ′)) is an open subset of Ck(l−k)
(one extra nonsingular minor condition) and πI′ ◦ π−1

I is a diffeomorphism on this
set. That is, the maps πI provide us with an atlas and determine a manifold
structure on Grassk(l).

Theorem 4.38. For the quotient Zariski topology, we have an homeomorphism

repmonoα (i)/GL(α)
'- repepiRiα

(i)/GL(Riα)

such that corresponding representations have isomorphic endomorphism rings.
In particular, the number of parameters as well as the number of irreducible

components of maximal dimension coincide for (repindα Q)(d) and repindRiα
RiQ)(d)

for all dimensions d.

Proof. Let m =
∑
t(a)=i ai, rep = ⊕t(a) 6=iMas(a)×at(a)(C) and GL =∏

j 6=iGLaj
. We have the following isomorphisms

repmonoα (i)/GLai

'- rep×Gassai
(m)

defined by sending a representation V to its restriction to rep and im ⊕t(a)=i Va.
In a similar way, sending a representation V to its restriction and ker ⊕s(a)=i Va
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repmonoα (i) repepiRiα
(i)

repmonoα (i)/GL(α)

??
repepiRiα

(i)/GL(Riα)

??

rep×Grassai
(m)

�

''

-

repmonoα (i)/GL(α)

/GL

??
.................................-

�
repepiRiα

(i)/GL(Riα)

/GL

??-

Figure 8. Reflection functor diagram.

we have
repepiRiα

(i)/GLri

'- rep×Grassai(m)
But then, the first claim follows from the diagram of figure 8. If V ∈ repα Q and
V ′ ∈ repRiα RiQ with images respectively v and v′ in rep×Grassai

(m), we have
isomorphisms StabGL×GLai

(V )
'- StabGL(v)

StabGL×GLri
(V ′)

'- StabGL(v′)

from which the claim about endomorphisms follows. �

A similar results holds for sink vertices, hence we can apply these Bernstein-
Gelfand- Ponomarev reflection functors iteratively using a sequence of admissible
vertices (that is, either a source or a sink).

To a vertex vi in which Q has no loop, we define a reflection Zk ri- Zk by

ri(α) = α− TQ(α, εi)

The Weyl group of the quiver Q WeylQ is the subgroup of GLk(Z) generated by
all reflections ri.

A root of the quiver Q is a dimension vector α ∈ Nk such that repα Q contains
indecomposable representations. All roots have connected support. A root is said
to be {

real if µ(repindα Q) = 0
imaginary if µ(repindα Q) ≥ 1

For a fixed quiver Q we will denote the set of all roots, real roots and
imaginary roots respectively by ∆,∆re and ∆im. With Π we denote the set
{εi | vi has no loops }. the main result on indecomposable representations is
due to V. Kac .

Theorem 4.39. With notations as before, we have
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(1) ∆re = WeylQ.Π ∩ Nk and if α ∈ ∆re, then repindα Q is one orbit.
(2) ∆im = Weyl.FQ ∩ Nk and if α ∈ ∆im then

pQ(α) = µ(repindα Q) = 1− qQ(α)

For a sketch of the proof we refer to [23, §7], full details can be found in the
lecture notes [47].

4.8. Canonical decomposition.

In this section we will determine the canonical decomposition. We need a
technical result.

Lemma 4.40. Let W -- W ′ be an epimorphism of CQ-representations.
Then, for any CQ-representation V we have that the canonical map

Ext1CQ(V,W ) -- Ext1CQ(V,W ′)

is surjective. If W ⊂ - W ′ is a monomorphism of CQ-representations, then the
canonical map

Ext1CQ(W ′, V ) -- Ext1CQ(W,V )
is surjective.

Proof. From the proof of theorem 3.29 we have the exact diagram

⊕
vi∈Qv

HomC(Vi,Wi)
dV

W- ⊕
a∈Qa

HomC(Vs(a),Wt(a)) - Ext1CQ(V,W ) - 0

⊕
vi∈Qv

HomC(Vi,W ′i )

??
dV

W ′- ⊕
a∈Qa

HomC(Vs(a),W ′t(a))

??
- Ext1CQ(V,W ′)

?

...............
- 0

and applying the snake lemma gives the result. The second part is proved similarly.
�

Lemma 4.41. If V = V ′ ⊕ V ” ∈ repα(max), then Ext1CQ(V ′, V ”) = 0.

Proof. Assume Ext1(V ′, V ”) 6= 0, that is, there is a non-split exact sequence

0 - V ” - W - V ′ - 0

then it follows from section 2.3 that O(V ) ⊂ O(W )−O(W ), whence dim O(W ) >
dim O(V ) contradicting the assumption that V ∈ repα(max). �

Lemma 4.42. If W,W ′ are indecomposable representation with
Ext1CQ(W,W ′) = 0, then any non-zero map W ′

φ- W is an epimorphism or a
monomorphism. In particular, if W is indecomposable with Ext1CQ(W,W ) = 0,
then EndCQ(W ) ' C.

Proof. Assume φ is neither mono- nor epimorphism then decompose φ into

W ′
ε-- U ⊂

µ- W

As ε is epi, we get a surjection from lemma 4.40

Ext1CQ(W/U,W ′) -- Ext1CQ(W/U,U)
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giving a representation V fitting into the exact diagram of extensions

0 - W ′
µ′ - V - W ′/U - 0

0 - U

ε

??
µ - W

ε′

?
- W ′/U

id

?
- 0

from which we construct an exact sequence of representations

0 - W ′

24 ε
−µ′

35
- U ⊕ V

h
µ ε′

i
- W - 0

This sequence cannot split as otherwise we would have W ⊕W ′ ' U ⊕ V contra-
dicting uniqueness of decompositions, whence Ext1CQ(W,W ′) 6= 0, a contradiction.

For the second part, as W is finite dimensional it follows that EndCQ(W ) is a
(finite dimensional) division algebra whence it must be C. �

Definition 4.43. A representation V ∈ repα Q is said to be a Schur repre-
sentation if EndCQ(V ) = C. The dimension vector α of a Schur representation is
said to be a Schur root .

Theorem 4.44. α is a Schur root if and only if there is a Zariski open subset
of repα Q consisting of indecomposable representations.

Proof. If V ∈ repα Q is a Schur representation, V ∈ repα(max) and therefore
all representations in the dense open subset repα(max) have endomorphism ring
C and are therefore indecomposable. Conversely, let Ind ⊂ - repα Q be an open
subset of indecomposable representations and assume that for V ∈ Ind we have
StabGL(α)(V ) 6= C∗ and consider φ0 ∈ StabGL(α)(V )− C∗. For any g ∈ GL(α) we
define the set of fixed elements

repα(g) = {W ∈ repα Q | g.W = W}

Define the subset of GL(α)

S = {g ∈ GL(α) | dim repα(g) = dim repα(φ0)

which has no intersection with C∗(rrd1 , . . . ,
rr
dk

) as φ0 /∈ C∗. Consider the subbundle
of the trivial vectorbundle over S

B = {(s,W ) ∈ S × repα Q | s.W = W} ⊂ - S × repα Q
p-- S

As all fibers have equal dimension, the restriction of p to B is a flat morphism
whence open . In particular, the image of the open subset B ∩ S × Ind

S′ = {g ∈ S | ∃W ∈ Ind : g.W = W}

is an open subset of S. Now, S contains a dense set of semisimple elements, see for
example [47, (2.5)], whence so does S′ = ∪W∈IndEndCQ(W ) ∩ S. But then one of
the W ∈ Ind must have a torus of rank greater than one in its stabilizer subgroup
contradicting indecomposability. �

Schur roots give rise to principal PGL(α) = GL(α)/C∗-fibrations, and hence
to quiver orders and division algebras.
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Proposition 4.45. If α = (a1, . . . , ak) is a Schur root, then there is a GL(α)-
stable afine open subvariety Uα of repα Q such that generic orbits are closed in
U .

Proof. Let Tk = C∗×. . .×C∗ the k-dimensional torus in GL(α). Consider the
semisimple subgroup SL(α) = SLa1 × . . . × SLak

and consider the corresponding
quotient map

repα Q
πs-- repα Q/SL(α)

AsGL(α) = TkSL(α), Tk acts on repα Q/SL(α) and teh generic stabilizer subgroup
is trivial by teh Schurian condition. Hence, there is a Tk-invariant open subset U1

of repα Q/SL(α) such that Tk-orbits are closed. But then, according to [36, §2,
Thm.5] there is a Tk-invariant affine open U2 in U1. Because the quotient map ψs
is an affine map, U = ψ−1

s (U2) is an affine GL(α)-stable open subvariety of repα Q.
Let x be a generic point in U , then its orbit

O(x) = GL(α).x = TkSL(α).x = Tk(ψ−1
s (ψs(x))) = ψ−1

s (Tk.ψs(x))

is the inverse image under teh quotient map of a closed set, hence is itself closed. �

If we define Tsα Q to be the ring of GL(α)-equivariant maps from Uα to
Mn(C), then this Schurian quiver order has simple α-dimensional representations.
Then, extending teh argument of proposition 4.28 we have that the quotient map
repα Q -- issα Q is a principal PGL(α)-fibration in the étale topology over teh
Azumaya locus of the Schurian quiver order Tsα Q. Recall that H1

et(X,PGL(α))
classifies twisted forms of Mn(C) (where n =

∑
a ai) as Ck-algebra. That is, Azu-

maya algberas over X with a distinguished embedding of Ck that are split by an
étale cover on which this embedding is conjugate to teh standard α-embedding of
Ck in Mn(C). The class in teh Brauer group of teh functionfield of issα Tsα Q
determined by teh quiver order Tsα Q is rather special.

Proposition 4.46. If α = (a1, . . . , ak) is a Schur root of Q such that
gcd(a1, . . . , ak) = 1, then Tsα Q determines the trivial class in the Brauer group.

Proof. Let A be an Azumaya localization of Tsα Q. By assumption, the
natural map between teh K-groups K0(Ck) - K0(Mn(C)) is surjective, whence
teh same is true for A proving that the class of A is split by a Zariski cover, that
is repα Q ' X × PGL(α) where X = issα A. �

Proposition 4.47. If α lies in the fundamental region FQ and supp(α) is not
a tame quiver. then, α is a Schur root.

Proof. Let α = β1 + . . . + βs be the canonical decomposition of α (some βi
may occur with higher multiplicity) and assume that s ≥ 2. By definition, the
image of

GL(α)× (repβ1 Q× . . .× repβs
Q)

φ- repα Q

is dense and φ is constant on orbits of the free action of GL(α) on the left hand
side given by h.(g, V ) = (gh−1, h.V ). But then,

dim GL(α) +
∑
i

dim repβi
Q−

∑
i

dim GL(βi) ≥ dim repα Q

whence qQ(α) ≥
∑
i qQ(βi) and lemma 4.35 finishes the proof. �
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Next, we want to describe morphisms between quiver-representations. Let α =
(a1, . . . , ak) and β = (b1, . . . , bk) and V ∈ repα Q, W ∈ repβ Q. Consider the
closed subvariety

HomQ(α, β) ⊂ - Ma1×b1 ⊕ . . .⊕Mak×bk
⊕ repα Q⊕ repβ Q

consisting of the triples (φ, V,W ) where φ = (φ1, . . . , φk) is a morphism of quiver-
representations V - W . Projecting to the two last components we have an onto
morphism between affine varieties

HomQ(α, β)
h-- repα Q⊕ repβ Q

In theorem 2.4 we have proved that the dimension of fibers is an upper-
semicontinuous function. That is, for every natural number d, the set

{Φ ∈ HomQ(α, β) | dimΦ h−1(h(Φ)) ≤ d}

is a Zariski open subset of HomQ(α, β). As the target space repα Q ⊕ repβ Q is
irreducible, it contains a non-empty open subset hommin where the dimension of
the fibers attains a minimal value. This minimal fiber dimension will be denoted
by hom(α, β).

Similarly, we could have defined an affine variety ExtQ(α, β) where the fiber
over a point (V,W ) ∈ repα Q⊕ repβ Q is given by the extensions Ext1CQ(V,W ). If
χQ is the Euler-form of Q we recall that for all V ∈ repα Q and W ∈ repβ Q we
have

dimC HomCQ(V,W )− dimC Ext1Q̧(V,W ) = χQ(α, β)

Hence, there is also an open set extmin of repα Q ⊕ repβ Q where the dimension
of Ext1(V,W ) attains a minimum. This minimal value we denote by ext(α, β). As
hommin ∩ extmin is a non-empty open subset we have the numerical equality

hom(α, β)− ext(α, β) = χQ(α, β).

In particular, if hom(α, α+β) > 0, there will be an open subset where the morphism
V

φ- W is a monomorphism. Hence, there will be an open subset of repα+β Q
consisting of representations containing a subrepresentation of dimension vector
α. We say that α is a general subrepresentation of α + β and denote this with
α ⊂ - α+ β. We want to characterize this property. To do this, we introduce the
quiver-Grassmannians

Grassα(α+ β) =
k∏
i=1

Grassai
(ai + bi)

which is a projective manifold.
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Consider the following diagram of morphisms of reduced varieties
repα+β Q

repα+β
α Q ⊂ -

s

-

repα+β Q×Grassα(α+ β)

pr1

66

Grassα(α+ β)

pr2

??

p

--

with the following properties
• repα+β Q×Grassα(α+β) is the trivial vectorbundle with fiber repα+β Q

over the projective smooth variety Grassα(α + β) with structural mor-
phism pr2.
• repα+β

α Q is the subvariety of repα+β Q × Grassα(α + β) consisting of
couples (W,V ) where V is a subrepresentation of W (observe that this is
for fixed W a linear condition). Because GL(α + β) acts transitively on
the Grassmannian Grassα(α+ β) (by multiplication on the right) we see
that repα+β

α Q is a sub-vectorbundle over Grassα(α+ β) with structural
morphism p. In particular, repα+β

α Q is a reduced variety.
• The morphism s is a projective morphism, that is, can be factored via the

natural projection

repα+β Q× PN

repα+β
α Q

s -

f

-

repα+β Q

π2

??

where f is the composition of the inclusion repα+β
α Q ⊂ - repα+β Q ×

Grassα(α+ β) with the natural inclusion of Grassmannians in projective
spaces recalled in the previous section Grassα(α+β) ⊂ - ∏k

i=1 Pni with
the Segre embedding

∏k
i=1 Pni ⊂ - PN . In particular, s is proper by [28,

Thm. II.4.9], that is, maps closed subsets to closed subsets.
We are interested in the scheme-theoretic fibers of s. If W ∈ repα+β Q lies in
the image of s, we denote the fiber s−1(W ) by Grassα(W ). Its geometric points
are couples (W,V ) where V is an α-dimensional subrepresentation of W . Whereas
Grassα(W ) is a projective scheme, it is in general neither smooth, nor irreducible
nor even reduced. Therefore, in order to compute the tangent space in a point
(W,V ) of Grassα(W ) we have to clarify the functor it represents on the category
commalg of commutative C-algebras.

Let C be a commutative C-algebra, a representation R of the quiver Q over
C consists of a collection Ri = Pi of projective C-modules of finite rank and a
collection of C-module morphisms for every arrow a in Q

��������i��������j
aoo Rj = Pj �Ra

Pi = Ri
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The dimension vector of the representation R is given by the k-tuple
(rkC R1, . . . , rkC Rk). A subrepresentation S of R is determined by a collection of
projective sub-summands (and not merely sub-modules) Si /Ri. In particular, for
W ∈ repα+β Q we define the representation WC of Q over the commutative ring
C by {

(WC)i = C ⊗C Wi

(WC)a = idC ⊗C Wa

With these definitions, we can now define the functor represented by Grassα(W ) as
the functor assigning to a commutative C-algebra C the set of all subrepresentations
of dimension vector α of the representation WC .

Lemma 4.48. Let x = (W,V ) be a geometric point of Grassα(W ), then

Tx Grassα(W ) = HomCQ(V,
W

V
)

Proof. The tangent space in x = (W,V ) are the C[ε]-points of Grassα(W )
lying over (W,V ). To start, let V

ψ- W
V be a homomorphism of representations

of Q and consider a C-linear lift of this map ψ̃ : V - W . Consider the C-linear
subspace of WC[ε] = C[ε]⊗W spanned by the sets

{v + ε⊗ ψ̃(v) | v ∈ V } and ε⊗ V

This determines a C[ε]-subrepresentation of dimension vector α of WC[ε] lying over
(W,V ) and is independent of the chosen linear lift ψ̃.

Conversely, if S is a C[ε]-subrepresentation of WC[ε] lying over (W,V ), then
S
εS = V ⊂ - W . But then, a C-linear complement of εS is spanned by elements
of the form v+ εψ(v) where ψ(v) ∈W and ε⊗ψ is determined modulo an element
of ε ⊗ V . But then, we have a C-linear map ψ̃ : V - W

V and as S is a C[ε]-
subrepresentation, ψ̃ must be a homomorphism of representations of Q. �

Theorem 4.49. The following are equivalent

(1) α ⊂ - α+ β.
(2) Every representation W ∈ repα+β Q has a subrepresentation V of dimen-

sion α.
(3) ext(α, β) = 0.

Proof. Assume 1. , then the image of the proper map s :
repα+β

α Q - repα+β Q contains a Zariski open subset. As properness im-
plies that the image of s must also be a closed subset of repα+β Q it follows that
Im s = repα+β Q, that is 2. holds. Conversely, 2. clearly implies 1. so they are
equivalent.

We compute the dimension of the vectorbundle repα+β
α Q over Grassα(α+β).

Using that the dimension of a Grassmannians Grassk(l) is k(l − k) we know that
the base has dimension

∑k
i=1 aibi. Now, fix a point V ⊂ - W in Grassα(α+ β),

then the fiber over it determines all possible ways in which this inclusion is a
subrepresentation of quivers. That is, for every arrow in Q of the form ��������i��������j

aoo
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we need to have a commuting diagram

Vi - Vj

Wi

?

∩

- Wj

?

∩

Here, the vertical maps are fixed. If we turn V ∈ repα Q, this gives us the aiaj
entries of the upper horizontal map as degrees of freedom, leaving only freedom for
the lower horizontal map determined by a linear map Wi

Vi

- Wj , that is, having
bi(aj + bj) degrees of freedom. Hence, the dimension of the vectorspace-fibers is∑

��������i��������j
aoo

(aiaj + bi(aj + bj))

giving the total dimension of the reduced variety repα+β
α Q. But then,

dim repα+β
α Q− dim repα+β Q =

k∑
i=1

aibi +
∑

��������i��������j
aoo

(aiaj + bi(aj + bj))

−
∑

��������i��������j
aoo

(ai + bi)(aj + bj)

=
k∑
i=1

aibi −
∑

��������i��������j
aoo

aibj = χQ(α, β)

Assume that 2. holds, then the proper map repα+β
α

s-- repα+β Q is onto and
as both varieties are reduced, the general fiber is a reduced variety of dimension
χQ(α, β), whence the general fiber contains points such that their tangentspaces
have dimension χQ(α, β). By the foregoing lemma we can compute the dimension
of this tangentspace as dim HomCQ(V, WV ). But then, as

χQ(α, β) = dimC HomCQ(V,
W

V
)− dimC Ext1CQ(V,

W

V
)

it follows that Ext1(V, WV ) = 0 for some representation V of dimension vector α
and W

V of dimension vector β. But then, ext(α, β) = 0, that is, 3. holds.
Conversely, assume that ext(α, β) = 0. Then, for a general pointW ∈ repα+β Q

in the image of s and for a general point in its fiber (W,V ) ∈ repα+β
α Q we have

dimC Ext1CQ(V, WV ) = 0 whence dimC HomCQ(V, WV ) = χQ(α, β). But then, the
general fiber of s has dimension χQ(α, β) and as this is the difference in dimen-
sion between the two irreducible varieties, the map is generically onto. Finally,
properness of s then implies that it is onto, giving 2. and finishing the proof. �

Proposition 4.50. Let α be a Schur root such that χQ(α, α) < 0, then for any
integer n we have that nα is a Schur root.
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Proof. There are infinitely many non-isomorphic Schur representations of di-
mension vector α. Pick n of them {W1, . . . ,Wn} and from χQ(α, α) < 0 we deduce

HomCQ(Wi,Wj) = δijC and Ext1CQ(Wi,Wj) 6= 0

By lemma 4.40 we can construct a representation Vn having a filtration

0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn with
Vj
Vj−1

'Wj

and such that the short exact sequences 0 - Vj−1
- Vj - Wj

- 0 do
not split. By induction on n we may assume that EndCQ(Vn−1) = C and we have
that HomCQ(Vn−1,Wn) = 0. But then, the restriction of any endomorphism φ of
Vn to Vn−1 must be an endomorphism of Vn−1 and therefore a scalar λrr. Hence,
φ−λrr ∈ EndCQ(Vn) is trivial on Vn−1. As HomCQ(Wn, Vn−1) = 0, EndCQ(Wn) =
C and non-splitness of the sequence 0 - Vn−1

- Vn - Wn
- 0 we

must have φ− λrr = 0 whence EndCQ(Vn) = C, that is, nα is a Schur root. �

We say that a dimension vector α is left orthogonal to β if hom(α, β) = 0 and
ext(α, β) = 0.

Definition 4.51. An ordered sequence C = (β1, . . . , βs) of dimension vectors
is said to be a compartment for Q if and only if

(1) for all i, βi is a Schur root,
(2) for al i < j, βi is left orthogonal to βj ,
(3) for all i < j we have χQ(βj , βi) ≥ 0.

Theorem 4.52. Suppose that C = (β1, . . . , βs) is a compartment for Q and that
there are non-negative integers e1, . . . , es such that α = e1β1 + . . .+ esβs. Assume
that ei = 1 whenever χQ(βi, βi) < 0. Then,

τcan = (e1, β1; . . . ; es, βs)

is the canonical decomposition of the dimension vector α.

Proof. Let V be a generic representation of dimension vector α with decom-
position into indecomposables

V = W⊕e11 ⊕ . . .⊕W⊕es
s with dim(Wi) = βi

we will show that (after possibly renumbering the factors (β1, . . . , βs) is a com-
partment for Q. To start, it follows from lemma 4.41 that for all i 6= j we have
Ext1CQ(Wi,Wj) = 0. From lemma 4.42 we deduce a partial ordering i→ j on the in-
dices whenever HomCQ(Wi,Wj) 6= 0. Indeed, any non-zero morphism Wi

- Wj

is either a mono- or an epimorphism, assume Wi
-- Wj then there can be

no monomorphism Wj
⊂ - Wk as the composition Wi

- Wk would be nei-
ther mono nor epi. That is, all non-zero morphisms from Wj to factors must be
(proper) epi and we cannot obtain cycles in this way by counting dimensions. If
Wi

⊂ - Wj , a similar argument proves the claim. From now on we assume that
the chosen index-ordering of the factors is (reverse) compatible with the partial
ordering i→ j, that is Hom(Wi,Wj) = 0 whenever i < j, that is, βi is left orthog-
onal to βj whenever i < j. As Ext1CQ(Wj ,Wi) = 0, it follows that χQ(βj , βi) ≥ 0.
As generic representations are open it follows that all repβi Q have an open sub-
set of indecomposables, proving that the βi are Schur roots. Finally, it follows
from proposition 4.50 that a Schur root βi with χQ(βi, βi) can occur only with
multiplicity one in any canonical decomposition.
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Conversely, assume that (β1, . . . , βs) is a compartment for Q, α =
∑
i eiβi

satisfying the requirements on multiplicities. Choose Schur representations Wi ∈
repβi Q, then we have to prove that

V = W⊕e11 ⊕ . . .⊕W⊕es
s

is a generic representation of dimension vector α. In view of the properties of the
compartment we already know that Ext1CQ(Wi,Wj) = 0 for all i < j and we need
to show that Ext1CQ(Wj ,Wi) = 0. Indeed, if this condition is satisfied we have

dim repα Q− dim O(V ) = dimCExt
1(V, V )

=
∑
i

e2i dimCExt
1(Wi,Wi) =

∑
i

e2i (1− qQ(βi)

We know that the Schur representations of dimension vector βi depend on 1−qQ(βi)
parameters by Kac s theorem 4.39 and ei = 1 unless qQ(βi) = 1. Therefore, the
union of all orbits of representations with the same Schur-decomposition type as V
contain a dense open set of repα Q and so this must be the canonical decomposition.

If this extension space is nonzero, HomCQ(Wj ,Wi) 6= 0 as χQ(βj , βi) ≥ 0.
But then by lemma 4.42 any non-zero homomorphism from Wj to Wi must be
either a mono or an epi. Assume it is a mono, so βj < βi, so in particular a
general representation of dimension βi contains a subrepresentation of dimension
βj and hence by theorem 4.49 we have ext(βj , βi − βj) = 0. Suppose that βj
is a real Schur root, then Ext1CQ(Wj ,Wj) = 0 and therefore also ext(βj , βi) = 0
as Ext1CQ(Wj ,Wj ⊕ (Wj/Wi)) = 0. If β is not a real root, then for a general
representation S ∈ repβj

Q take a representation R ∈ repβi
Q in the open set

where Ext1CQ(S,R) = 0, then there is a monomorphism S ⊂ - R. Because
Ext1CQ(S, S) 6= 0 we deduce from lemma 4.40 that Ext1CQ(R,S) 6= 0 contradict-
ing the fact that ext(βi, βj) = 0. If the nonzero morphism Wj

- Wi is epi one
has a similar argument. �

This result can be used to obtain a fairly efficient algorithm to compute the
canonical decomposition in case the quiver Q has no oriented cycles. Fortunately,
one can reduce the general problem to that of quiver without oriented cycles using
the bipartite double Qb of Q. We double the vertex-set of Q in a left and right set
of vertices, that is

Qbv = {vl1, . . . , vlk, vr1, . . . , vrk}

To every arrow a ∈ Qa from vi to vj we assign an arrow ã ∈ Qba from vli to vrj .
In addition, we have for each 1 ≤ i ≤ k one extra arrow ĩ in Qba from vli to vri . If
α = (a1, . . . , ak) is a dimension vector for Q, the associated dimension vector α̃ for
Qb has components

α̃ = (a1, . . . , ak, a1, . . . , ak).
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Example 4.53. Consider the quiver Q and dimension vector α = (a, b) on the left hand

side, then

b(/).*-+,

a(/).*-+,

y

qq

x

--

u

EE

v

��

b(/).*-+,

a(/).*-+,

b(/).*-+,

a(/).*-+,

2̃ //

1̃ //

ũ

??

ṽ

��

x̃

&&
ỹ 88

the bipartite quiver situation Qb and α̃ is depicted on the right hand side.

If the canonical decomposition of α for Q is τcan = (e1, β1; . . . ; es, βs), then the
canonical decomposition of α̃ for Qb is (e1, β̃1; . . . ; es, β̃s) as for a general represen-
tation of Qb of dimension vector α̃ the morphisms corresponding to ĩ for 1 ≤ i ≤ k
are all invertible matrices and can be used to identify the left and right vertex sets,
that is, there is an equivalence of categories between representations of Qb where
all the maps ĩ are invertible and representations of the quiver Q. That is, the al-
gorithm below can be applied to (Qb, α̃) to obtain the canonical decomposition of
α for an arbitrary quiver Q.

Let Q be a quiver without oriented cycles then we can order the vertices
{v1, . . . , vk} such that there are no oriented paths from vi to vj whenever i < j
(start with a sink of Q, drop it and continue recursively). For example, for the
bipartite quiver Qb we first take all the right vertices and then the left ones.

input : quiver Q, ordered set of vertices as above, dimension vector α =
(a1, . . . , ak) and type τ = (a1, ~v1; . . . ; ak, ~vk) where ~vi = (δij)j = dim vi is the
canonical basis. By the assumption on the ordering of vertices we have that τ is
a good type for α. We say that a type (f1, γ1; . . . ; fs, γs) is a good type for α if
α =

∑
i fiγi and the following properties are satisfies

(1) fi ≥ 0 for all i,
(2) γi is a Schur root,
(3) for each i < j, γi is left orthogonal to γj ,
(4) fi = 1 whenever χQ(γi, γi) < 0.

A type is said to be excellent provided that, in addition to the above, we also have
that for all i < j, χQ(αj , αi) ≥ 0. In view of theorem 4.52 the purpose of the
algorithm is to transform the good type τ into the excellent type τcan. We will
describe the main loop of the algorithm on a good type (f1, γ1; . . . ; fs, γs).

step 1 : Omit all couples (fi, γi) with fi = 0 and verify whether the remaining
type is excellent. If it is, stop and output this type. If not, proceed.
step 2 : Reorder the type as follows, choose i and j such that j − i is minimal
and χQ(βj , βi) < 0. Partition the intermediate entries {i + 1, . . . , j − 1} into the
sets

• {k1, . . . , ka} such that χQ(γj , γkm
) = 0,

• {l1, . . . , lb} such that χQ(γj , γlm) > 0.
Reorder the couples in the type in the sequence

(1, . . . , i− 1, k1, . . . , ka, i, j, l1, . . . , lb, j + 1, . . . , s)
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define µ = γi, ν = γj , p = fi, q = fj , ζ = pµ + qν and t = −χQ(ν, µ), then
proceed.
step 3 : Change the part (p, µ; q, ν) of the type according to the following scheme

• If µ and ν are real Schur roots, consider the subcases
(1) χQ(ζ, ζ) > 0, replace (p, µ, q, ν) by (p′, µ′; q′; ν′) where ν′ and ν′ are

non-negative combinations of ν and µ such that µ′ is left orthogonal
to ν′, χQ(ν′, µ′) = t ≥ 0 and ζ = p′µ′+ q′ν′ for non-negative integers
p′, q′.

(2) χQ(ζ, ζ) = 0, replace (p, µ; q, ν) by (k, ζ ′) with ζ = kζ ′, k positive
integer, and ζ ′ an indivisible root.

(3) χQ(ζ, ζ) < 0, replace (p, µ; q, ν) by (1, ζ).
• If µ is a real root and ν is imaginary, consider the subcases

(1) If p + qχQ(ν, µ) ≥ 0, replace (p, µ; q, ν) by (q, ν − χQ(ν, µ)µ; p +
qχQ(ν, µ), µ).

(2) If p+ qχQ(ν, µ) < 0, replace (p, µ; q, ν) by (1, ζ).
• If µ is an imaginary root and ν is real, consider the subcases

(1) If q + pχQ(ν, µ) ≥ 0, replace (p, µ; q, ν) by (q + pχQ(ν, µ), ν; p, µ −
χQ(ν, µ)ν).

(2) If q + pχQ(ν, µ) < 0, replace (p, µ; q, ν) by (1, ζ).
• If µ and ν are imaginary roots, replace (p, µ; q, ν) by (1, ζ).

then go to step 1.

One can show that in every loop of the algorithm the number
∑
i fi decreases,

so the algorithm must stop, giving the canonical decomposition of α. A consequence
of this algorithm is that r(α) + 2i(α) ≤ k where r(α) is the number of real Schur
roots occurring in the canonical decomposition of α, i(α) the number of imaginary
Schur roots and k the number of vertices of Q. For more details we refer to [20].
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loc @n

In this part we study the étale local structure of noncommutative varieties. If
A @n is an order in a central simple algebra of dimension n2 over the functionfield
of a variety of dimension d, we show that there are only a finite number of types
of étale local Cayley-smooth behavior. In section 5.3 we classify them for small
dimensions d. This result is a noncommutative analogon of the classical fact that
manifolds of dimension d have only one type of local analytic behavior.

Combining the classification (giving in particular information about the local
splitting behavior of A @n) with the description of Brauer classes using étale coho-
mology one can then characterize the central simple algebras admitting a Cayley-
smooth model. In the case of surfaces, we prove in section 5.5 that every Brauer
class has a model with at most finitely many noncommutative singularities, all of
which analytically quantum plane singularities. One cannot resolve these remaining
singularities while staying in the category of representation spaces of algebras. The
Brauer classes admitting a smooth model are those where all the branch-data are
trivial, that is, where one can construct a maximal order such that all irreducible
components of the ramification divisor are smooth and disjoint.

When A is not Quillen-smooth, the Cayley smooth locus of A @n will often be
as small as possible. We illustrate this in the case of quantum groups and deformed
preprojective algebras. In the latter case the description of the exceptional α-
smooth cases is important as they will reappear in the final chapter as coadjoint
orbits under the necklace Lie algebra.

When A@n is Cayley-smooth in a point ξ ∈ issn A, we describe the fiber of the
quotient map repn A -- issn A in ξ, that is, we describe the isomorphism classes
of n-dimensional A-representations having a fixed Jordan-Hölder decomposition.
This description depends on the Hesselink stratification of the nullcone. The usually
hard problem to characterize the non-empty strata is solved by representation-
theoretic means using θ-semistable quiver representations.
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CHAPTER 5

Classification.

5.1. Type stratification.

We fix a quiver Q and dimension vector α. Closed GL(α)-orbits is repα Q
correspond to isomorphism classes of semi-simple representations of Q of dimension
vector α. We have a quotient map

repα Q
π-- repα Q/GL(α) = issα Q

and we know that the coordinate ring C[issα Q] is generated by traces along ori-
ented cycles in the quiver Q. Consider a point ξ ∈ issα Q and assume that the
corresponding semi-simple representation Vξ has a decomposition

Vξ = V ⊕e11 ⊕ . . .⊕ V ⊕ez
z

into distinct simple representations Vi of dimension vector say αi and occurring in
Vξ with multiplicity ei. We then say that ξ is a point of representation-type

τ = t(ξ) = (e1, α1; . . . , ez, αz) with α =
z∑
i=1

eiαi

We want to apply the slice theorem to obtain the étale GL(α)-local structure of the
representation space repα Q in a neighborhood of Vξ and the étale local structure
of the quotient variety issα Q in a neighborhood of ξ. We have to calculate the
normal space Nξ to the orbit O(Vξ) as a representation over the stabilizer subgroup
GL(α)ξ = StabGL(α)(Vξ).

Denote ai =
∑k
j=1 aij where αi = (ai1, . . . , aik), that is, ai = dim Vi. We will

choose a basis of the underlying vectorspace

⊕vi∈Qv
C⊕eiai of Vξ = V ⊕e11 ⊕ . . .⊕ V ⊕ez

z

as follows : the first e1a1 vectors give a basis of the vertex spaces of all simple
components of type V1, the next e2a2 vectors give a basis of the vertex spaces of all
simple components of type V2, and so on. If n =

∑k
i=1 eidi is the total dimension

of Vξ, then with respect to this basis, the subalgebra of Mn(C) generated by the
representation Vξ has the following block-decomposition

Ma1(C)⊗ rr
e1 0 . . . 0

0 Ma2(C)⊗ rr
e2 0

...
. . .

...
0 0 . . . Maz

(C)⊗ rr
ez


But then, the stabilizer subgroup

StabGL(α)(Vξ) ' GLe1 × . . .×GLez

187
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embedded in GL(α) with respect to this particular basis as
GLe1(C⊗

rr
a1) 0 . . . 0

0 GLe2(C⊗
rr
a2) 0

...
. . .

...
0 0 . . . GLez

(C⊗ rr
az

)


The tangentspace to the GL(α)-orbit in Vξ is equal to the image of the natural
linear map

Lie GL(α) - repα Q

sending a matrix m ∈ Lie GL(α) ' Me1 ⊕ . . . ⊕Mek
to the representation deter-

mined by the commutator [m,Vξ] = mVξ − Vξm. By this we mean that the matrix
[m,Vξ]a corresponding to an arrow a is obtained as the commutator in Mn(C) using
the canonical embedding with respect to the above choice of basis. The kernel of
this linear map is the centralizer subalgebra. That is, we have an exact sequence
of GL(α)ξ-modules

0 - CMn(C)(Vξ) - Lie GL(α) - TVξ
O(Vξ) - 0

where

CMn(C)(Vξ) =


Me1(C⊗

rr
a1) 0 . . . 0

0 Me2(C⊗
rr
a2) 0

...
. . .

...
0 0 . . . Mez

(C⊗ rr
az

)


and the action of GL(α)Vξ

is given by conjugation on Mn(C) via the above em-
bedding. We will now engage in a book-keeping operation counting the factors of
the relevant GL(α)ξ-spaces. We identify the factors by the action of the GLei

-
components of GL(α)ξ

(1) The centralizer CMn(C)(Vξ) decomposes as a GL(α)ξ-module into
• one factor Mei on which GLe1 acts via conjugation and the other

factors act trivially,
...

• one factor Mez
on which GLez

acts via conjugation and the other
factors act trivially.

(2) Recall the notation αi = (ai1, . . . , aik),then the Lie algebra Lie GL(α)
decomposes as a GL(α)ξ-module into
•

∑k
j=1 a

2
1j factors Me1 on which GLe1 acts via conjugation and the

other factors act trivially,

...

•
∑k
j=1 a

2
zj factors Mez on which GLez acts via conjugation and the

other factors act trivially,
•

∑k
j=1 a1ja2j factors Me1×e2 on which GLe1×GLe2 acts via γ1.m.γ

−1
2

and the other factors act trivially,

...
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•
∑k
j=1 azjaz−1 j factors Mez×ez−1 on which GLez

× GLez−1 acts via
γz.m.γ

−1
z−1 and the other factors act trivially.

(3) The representation space repα Q decomposes as a GL(α)ξ-modulo into

the following factors, for every arrow ��������i��������j
aoo in Q (or every loop in

vi by setting i = j in the expressions below) we have
• a1ia1j factors Me1 on which GLe1 acts via conjugation and the other

factors act trivially,
• a1ia2j factors Me1×e2 on which GLe1 ×GLe2 acts via γ1.m.γ

−1
2 and

the other factors act trivially,

...

• aziaz−1 j factorsMez×ez−1 on whichGLez
×GLez−1 act via γz.m.γ−1

z−1

and the other factors act trivially,
• aziazj factors Mez

on which GLez
acts via conjugation and the other

factors act trivially.

Removing the factors of 1. from those of 2. we obtain a description of the tan-
gentspace to the orbit TVξ

O(Vξ). But then, removing these factors from those of
3. we obtain the description of the normal space NVξ

as a GL(α)ξ-module as there
is an exact sequence of GL(α)ξ-modules

0 - TVξ
O(Vξ) - repα Q - NVξ

- 0

This proves that the normal space to the orbit in Vξ depends only on the represen-
tation type τ = t(ξ) of the point ξ and can be identified with the representation
space of a local quiver Qτ .

Theorem 5.1. Let ξ ∈ issα Q be a point of representation type

τ = t(ξ) = (e1, α1; . . . , ez, αz)

Then, the normal space NVξ
to the orbit, as a module over the stabilizer subgroup,

is identical to the representation space of a local quiver situation

NVξ
' repατ

Qτ

where Qτ is the quiver on z vertices (the number of distinct simple components of
Vξ) say {w1, . . . , wz} such that in Qτ

# ��������i��������j
aoo = −χQ(αi, αj) for i 6= j, and

# ��������i
��

= 1− χQ(αi, αi)

and such that the dimension vector ατ = (e1, . . . , ez) (the multiplicities of the simple
components in Vξ).

We can repeat this argument in the case of a marked quiver Q•. The only
difference is the description of the factors of repα Q• where we need to replace the
factors Mej

in the description of a loop in vi by M0
ei

(trace zero matrices) in case
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the loop gets a mark in Q•. We define the Euler form of the marked quiver Q•

χ1
Q• =


1− a11 χ12 . . . χ1k

χ21 1− a22 . . . χ2k

...
...

. . .
...

χk1 χk2 . . . 1− akk

 χ2
Q• =


−m11

−m22

. . .
−mkk


such that χQ = χ1

Q• + χ2
Q• where Q is the underlying quiver of Q•.

Theorem 5.2. Let ξ ∈ issα Q• be a point of representation type

τ = t(ξ) = (e1, α1; . . . , ez, αz)

Then, the normal space NVξ
to the orbit, as a module over the stabilizer subgroup,

is identical to the representation space of a local marked quiver situation

NVξ
' repατ

Q•τ

where Q•τ is the quiver on z vertices (the number of distinct simple components of
Vξ) say {w1, . . . , wz} such that in Q•τ

# ��������i��������j
aoo = −χQ(αi, αj) for i 6= j, and

# ��������i
��

= 1− χ1
Q•(αi, αi)

# ��������i

•

��
= −χ2

Q•(αi, αi)

and such that the dimension vector ατ = (e1, . . . , ez) (the multiplicities of the simple
components in Vξ).

Proposition 5.3. If α = (d1, . . . , dk) is the dimension vector of a simple
representation of Q•, then the dimension of the quotient variety issα Q• is equal
to

1− χ1
Q•(α, α)

Proof. There is a Zariski open subset of issα Q• consisting of points ξ such
that the corresponding semi-simple module Vξ is simple, that is, ξ has representation
type τ = (1, α). But then the local quiver setting (Qτ , ατ ) is

��������1 • bdda ::

where a = 1 − χ1
Q•(α, α) and b = −χ2

Q•(α, α). The corresponding representation
space has coordinate ring

C[repατ
Q•τ ] = C[x1, . . . , xa]

on which GL(ατ ) = C∗ acts trivially. That is, the quotient variety is

repατ
Q•τ/GL(ατ ) = repατ

Q•τ ' Ca

By the slice theorem, issα Q• has the same local structure near ξ as this quotient
space near the origin and the result follows. �
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We can extend the classifications of simple roots of a quiver to the setting
of marked quivers. Let Q be the underlying quiver of a marked quiver Q•. If
α = (a1, . . . , ak) is a simple root of Q and if l is a marked loop in a vertex vi with
ai > 1, then we can replace the matrix Vl of a simple representation V ∈ repα Q
by V ′l = Vl − 1

di

rr
di

and retain the property that V ′ is a simple representation.
Things are different, however, for a marked loop in a vertex vi with ai = 1 as this
1× 1-matrix factor is removed from the representation space. That is, we have the
following characterization result.

Theorem 5.4. α = (a1, . . . , ak) is the dimension vector of a simple represen-
tation of a marked quiver Q• if and only if α = (a1, . . . , ak) is the dimension vector
of a simple representation of the quiver Q′ obtained from the underlying quiver Q
of Q• after removing the loops in Q which are marked in Q• in all vertices vi where
ai = 1.

We draw some consequences from the description of the local quiver. We
state all results in the setting of marked quivers. Often, the quotient varieties
issα Q• = repα Q•/GL(α) classifying isomorphism classes of semi-simple α-
dimensional representations have singularities. Still, we can decompose these quo-
tient varieties in smooth pieces according to representation types.

Proposition 5.5. Let issα Q•(τ) be the set of points ξ ∈ issα Q• of represen-
tation type

τ = (e1, α1; . . . ; ez, αz)

Then, issα Q•(τ) is a locally closed smooth subvariety of issα Q• and

issα Q
• =

⊔
τ

issα Q
•(τ)

is a finite smooth stratification of the quotient variety.

Proof. Let Q•τ be the local marked quiver in ξ. Consider a nearby point ξ′.
If some trace of an oriented cycles of length > 1 in Q•τ is non-zero in ξ′, then
ξ′ cannot be of representation type τ as it contains a simple factor composed of
vertices of that cycle. That is, locally in ξ the subvariety issα Q•(τ) is determined
by the traces of unmarked loops in vertices of the local quiver Q•τ and hence is
locally in the étale topology an affine space whence smooth. All other statements
are direct. �

Given a stratification of a topological space , one wants to determine which
strata make up the boundary of a given stratum. For the above stratification of
issα Q• we have a combinatorial solution to this problem. Two representation
types

τ = (e1, α1; . . . ; ez, αz) and τ ′ = (e′1, α
′
1; . . . ; e

′
z′ , α

′
z′)

are said to be direct successors τ < τ ′ if and only if one of the following two cases
occurs

• (splitting of one simple) : z′ = z+1 and for all but one 1 ≤ i ≤ z we have
that (ei, αi) = (e′j , α

′
j) for a uniquely determined j and for the remaining

i0 we have that the remaining couples of τ ′ are

(ei, α′u; ei, α
′
v) with αi = α′u + α′v
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• (combining two simple types) : z′ = z − 1 and for all but one 1 ≤ i ≤ z′

we have that (e′i, α
′
i) = (ej , αj) for a uniquely determined j and for the

remaining i we have that the remaining couples of τ are

(eu, α′i; ev, α
′
i) with eu + ev = e′i

This direct successor relation < induces an ordering which we will denote with <<.
Observe that τ << τ ′ if and only if the stabilizer subgroup GL(α)τ is conjugated to
a subgroup of GL(α)τ ′ . The following result either follows from general theory, see
for example [73, lemma 5.5], or from the description of the local marked quivers.

Proposition 5.6. The stratum issα Q•(τ ′) lies in the closure of the stratum
issα Q

• if and only if τ << τ ′.

Proposition 5.3 gives us the dimensions of the different strata issα Q•(τ).

Proposition 5.7. Let τ = (e1, α1; . . . ; ez, αz) a representation type of α. Then,

dim issα Q
•(τ) =

z∑
j=1

(1− χ1
Q•(αj , αj))

Because repα Q• and hence issα Q• is an irreducible variety, there is a unique
representation type τ ssgen such that issα Q•(τ ssgen) is Zariski open in the quotient
variety issα Q•. We call τ ssgen the generic semi-simple representation type for α.
The generic semi-simple representation type can be determined by the following
algorithm.

input : A quiver Q, a dimension vector α = (a1, . . . , ak) and a semi-simple
representation type

τ = (e1, α1; . . . ; el, αl)

with α =
∑

+i = 1leiαi and all αi simple roots for Q. For example, ne can always
start with the type (a1, ~v1; . . . ; ak, ~vk).

step 1 : Compute the local quiver Qτ on l vertices and the dimension vector ατ .
If the only oriented cycles in Qτ are vertex-loops, stop and output this type.
If not, proceed.
step 2 : Take a proper oriented cycle C = (j1, . . . , jr) with r ≥ 2 in Qτ where js
is the vertex in Qτ determined by the dimension vector αjs . Set β = αj1 + . . .+αjr ,
e′i = ei − δiC where δiC = 1 if i ∈ C and is 0 otherwise. replace τ by the new
semi-simple representation type

τ ′ = (e′1, α1; . . . ; e′l, αl; 1, β)

delete the terms (e′i, αi) with e′i = 0 and set τ to be the resulting type. goto step
1.

The same algorithm extends to marked quivers with the modified construction
of the local marked quiver Q•τ in that case. We can give an A∞-interpretation
of the characterization of the canonical decomposition and the generic semi-simple
representation type . Let

τ = (e1, α1; . . . ; ez, αz) α =
z∑
i=1

eiαi
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be a decomposition of α with all the αi roots. We define ατ = (e1, . . . , ez) and
construct two quivers Q0

τ and Q1
τ on z vertices determined by the rules

in Q0
τ : # ��������i��������j

aoo = dimC HomCQ(Vi, Vj)

in Q1
τ : # ��������i��������j

aoo = dimC Ext1CQ(Vi, Vj)

where Vi is a general representation of Q of dimension vector αi.

Theorem 5.8. With notations as above, we have :

(1) The canonical decomposition τcan is the unique type τ =
(e1, α1; . . . ; ez, αz) such that all αi are Schur roots, Q0

τ has no (non-loop)
oriented cycles and Q1

τ has no arrows and loops only in vertices where
ei = 1.

(2) The generic semi-simple representation type τ ssgen is the unique type τ =
(e1, α1; . . . ; ez, αz) such that all αi are simple roots, Q0

τ has only loops and
Q1
τ has no (non-loop) oriented cycles.

5.2. Cayley-smooth locus.

Let A be a Cayley-Hamilton algebra of degree n equipped with a trace map
A

tr- A and consider the quotient map

reptr
n
A

π-- isstrn A

Let ξ be a geometric point of he quotient scheme isstrn A with corresponding n-
dimensional trace preserving semi-simple representation Vξ with decomposition

Vξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct simple representations of A of dimension di such that
n =

∑k
i=1 diei.

Definition 5.9. The Cayley-smooth locus of A is the subset of isstrn A

Smtr A = {ξ ∈ isstrn A | isstrn A is smooth along π−1(ξ) }

As the singular locus of isstrn A is a GLn-stable closed subscheme of isstrn A this is
equivalent to

Smtr A = {ξ ∈ isstrn A | isstrn A is smooth in Vξ }

We will give some numerical conditions on ξ to be in the smooth locus Smtr A.
To start, reptr

n
A is smooth in Vξ if and only if the dimension of the tangent space

in Vξ is equal to the local dimension of reptr
n
A in Vξ. From example 4.2 we know

that the tangent space is the set of trace preserving derivations A
D- Mn(C)

satisfying
D(aa′) = D(a)ρ(a′) + ρ(a)D(a′)

where A
ρ- Mn(C) is the C-algebra morphism determined by the action of A on

Vξ. The C-vectorspace of such derivations is denoted by Dertρ A. Therefore,

ξ ∈ Smtr A⇐⇒ dimC Dertρ A = dimVξ
reptr

n
A
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Next, if ξ ∈ Smtr A, then we know from the slice theorem that the local GLn-
structure of reptr

n
A near Vξ is determined by a local marked quiver setting (Q•ξ , αξ)

as defined in theorem 4.22. We have local étale isomorphisms between the varieties

GLn ×GL(αξ) repαξ
Q•ξ

et←→ reptr
n
A and repαξ

Q•ξ/GL(αξ)
et←→ isstrn A

Which gives us the following numerical restrictions on ξ ∈ Smtr A :

Proposition 5.10. ξ ∈ Smtr A if and only if the following two equalities hold{
dimVξ

reptr
n
A = n2 − (e21 + . . .+ e2k) + dimC ExttrA (Vξ, Vξ)

dimξ iss
tr
n A = dim0 repαξ

Q•ξ/GL(αξ) = dim0 issαξ
Q•ξ

Moreover, if ξ ∈ Smtr A, then reptr
n
A is a normal variety (that is, the coordinate

ring is integrally closed) in a neighborhood of ξ

Proof. The last statement follows from the fact that C[repαξ
Q•ξ ]

GL(αξ) is
integrally closed and this property is preserved under the étale map. �

In general, the difference between these numbers gives a measure for the non-
commutative singularity of A in ξ.

Example 5.11. Consider the affine C-algebra A =
C〈x,y〉

(xy+yx)
then u = x2 and v = y2 are

central elements of A and A is a free module of rank 4 over C[u, v]. In fact, A is a C[u, v]-order in

the quaternion division algebra

∆ =

„
u v

C(u, v)

«
and the reduced trace map on ∆ makes A into a Cayley-Hamilton algebra of degree 2. More
precisely, tr is the linear map on A such that(

tr(xiyj) = 0 if either i or j are odd, and

tr(xiyj) = 2xiyj if i and j are even.

In particular, a trace preserving 2-dimensional representation is determined by a couple of 2 × 2
matrices

ρ = (

»
x1 x2

x3 −x1

–
,

»
x4 x5

x6 −x4

–
) with tr(

»
x1 x2

x3 −x1

–
.

»
x4 x5

x6 −x4

–
) = 0

That is,reptr
2
A is the hypersurface in C6 determined by the equation

reptr
2
A = V(2x1x4 + x2x6 + x3x5) ⊂ - C6

and is therefore irreducible of dimension 5 with an isolated singularity at p = (0, . . . , 0). The

image of the trace map is equal to the center of A which is C[u, v] and the quotient map

reptr
2
A

π-- isstr2 A = C2 π(x1, . . . , x6) = (x2
1 + x2x3, x

2
4 + x5x6)

There are three different representation types to consider. Let ξ = (a, b) ∈ C2 = isstr2 A with

ab 6= 0, then π−1(ξ) is a closed GL2-orbit and a corresponding simple A-module is given by the
matrixcouple

(

»
i
√
a 0

0 −i
√
a

–
,

»
0

√
b

−
√
b 0

–
)

That is, ξ is of type (1, 2) and the stabilizer subgroup are the scalar matrixes C∗rr2
⊂ - GL2.

So, the action on both the tangentspace to reptr
2
A and the tangent space to the orbit are trivial.

As they have respectively dimension 5 and 3, the normalspace corresponds to the quiver setting

Nξ = ��������1
## {{
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which is compatible with the numerical restrictions. Next, consider a point ξ = (0, b) (or similarly,

(a, 0)), then ξ is of type (1, 1; 1, 1) and the corresponding semi-simple representation is given by

the matrices

(

»
0 0

0 0

–
,

»
i
√
b 0

0 −i
√
b

–
)

The stabilizer subgroup is in this case the maximal torus of diagonal matrices C∗×C∗ ⊂- GL2.

The tangent space in this point to reptr
2
A are the 6-tuples (a1, . . . , a6) such that

tr (

»
0 0

0 0

–
+ ε

»
a1 a2

a3 −a1

–
).(

»
i
√
b 0

0 −i
√
b

–
+ ε

»
b4 b5
b6 −b4

–
) = 0 where ε2 = 0

This leads to the condition a1 = 0, so the tangentspace are the matrix couples

(

»
0 a2

a3 0

–
,

»
a4 a5

a6 −a4

–
) on which the stabilizer

»
λ 0
0 µ

–
acts via conjugation. That is, the tangentspace corresponds to the quiver setting

��������1 ��������1
'' ��

^^ gg cc

Moreover, the tangentspace to the orbit is the image of the linear map

(rr2 + ε

»
m1 m2

m3 m4

–
).(

»
0 0

0 0

–
,

»√
b 0

0 −
√
b

–
), (rr2 −

»
m1 m2

m3 m4

–
)

which is equal to

(

»
0 0

0 0

–
,

»√
b 0

0 −
√
b

–
+ ε

»
0 −2m2

√
b

2m3

√
b 0

–
)

on which the stabilizer acts again via conjugation giving the quiver setting

��������1 ��������1
''gg

Therefore, the normal space to the orbit corresponds to the quiver setting

��������1 ��������1
��

^^ cc

which is again compatible with the numerical restrictions. Finally, consider ξ = (0, 0) which is

of type (2, 1) and whose semi-simple representation corresponds to the zero matrix-couple. The
action fixes this point, so the stabilizer is GL2 and the tangent space to the orbit is the trivial

space. Hence, the tangent space to reptr
2
A coincides with the normalspace to the orbit and both

spaces are acted on by GL2 via simultaneous conjugation leading to the quiver setting

Nξ = ��������2

•

��

•

[[

This time, the data is not compatible with the numerical restriction as

5 = dim reptr
2
A 6= n2 − e2 + dim repα Q

• = 4− 4 + 6

consistent with the fact that the zero matrix-couple is a (in fact, the only) singularity on rept
2
A.

We will put additional conditions on the Cayley-Hamilton algebra A. Let X
be a normal affine variety with coordinate ring C[X] and functionfield C(X). Let
∆ be a central simple C(X)-algebra of dimension n2 which is a Cayley-Hamilton
algebra of degree n using the reduced trace map tr. Let A be a C[X]-order in ∆,
that is, the center of A is C[X] and A⊗C[X] C(X) ' ∆. Because C[X] is integrally
closed, the restriction of the reduced trace tr to A has its image in C[X], that is,
A is a Cayley-Hamilton algebra of degree n and

tr(A) = C[X]
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Consider the quotient morphism for the representation variety

reptr
n
A

π-- isstrn A

then the above argument shows that X ' isstrn A and in particular the quotient
scheme is reduced.

Proposition 5.12. Let A be a Cayley-Hamilton order of degree n over C[X].
Then, its smooth locus Smtr A is a nonempty Zariski open subset of X. In par-
ticular, the set Xaz of Azumaya points, that is, of points x ∈ X = isstrn A of
representation type (1, n) is a non-empty Zariski open subset of X and its intersec-
tion with the Zariski open subset Xreg of smooth points of X satisfies

Xaz ∩Xreg
⊂ - Smtr A

Proof. Because AC(X) = ∆, there is an f ∈ C[X] such that Af = A ⊗C[X]

C[X]f is a free C[X]f -module of rank n2 say with basis {a1, . . . , an2}. Consider the
n2 × n2 matrix with entries in C[X]f

R =

 tr(a1a1) . . . tr(a1an2)
...

...
tr(an2a1) . . . tr(an2an2)


The determinant d = det R is nonzero in C[X]f . For, let K be the algebraic
closure of C(X) then Af ⊗C[X]f K ' Mn(K) and for any K-basis of Mn(K) the
corresponding matrix is invertible (for example, verify this on the matrixes eij).
As {a1, . . . , an2} is such a basis, d 6= 0. Next, consider the Zariski open subset
U = X(f) ∩ X(d) ⊂ - X. For any x ∈ X with maximal ideal mx / C[X] we claim
that

A

AmxA
'Mn(C)

Indeed, the images of the ai give a C-basis in the quotient such that the n2 × n2-
matrix of their product-traces is invertible. This property is equivalent to the
quotient being Mn(C). The corresponding semi-simple representation of A is sim-
ple, proving that Xaz is a non-empty Zariski open subset of X. But then, over U
the restriction of the quotient map

reptr
n
A | π−1(U) -- U

is a principal PGLn-fibration. In fact, this restricted quotient map determines an
element in H1

et(U,PGLn) determining the class of the central simple C(X)-algebra
∆ in H1

et(C(X), PGLn). Restrict this quotient map further to U ∩Xreg, then the
PGLn-fibration

reptr
n
A | π−1(U ∩Xreg) -- U ∩Xreg

has a smooth base and therefore also the total space is smooth. But then, U ∩Xreg

is a non-empty Zariski open subset of Smtr A. �

Observe that the normality assumption on X is no restriction as the quotient
scheme is locally normal in a point of Smtr A. Our next result limits the local
dimension vectors αξ.
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Proposition 5.13. Let A be a Cayley-Hamilton order and ξ ∈ Smtr A such
that the normal space to the orbit of the corresponding semi-simple n-dimensional
representation is

Nξ = repαξ
Q•ξ

Then, αξ is the dimension vector of a simple representation of Q•ξ .

Proof. Let Vξ be the semi-simple representation of A determined by ξ. Let Sξ
be the slice variety in Vξ then by the slice theorem we have the following diagram
of étale GLn-equivariant maps

GLn ×GL(αξ) Sξ

GLn ×GL(αξ) repαξ
Q•ξ

�

et

reptr
n
A

et

-

linking a neighborhood of Vξ with one of (rrn, 0). Because A is an order, every Zariski
neighborhood of Vξ in reptr

n
A contains simple n-dimensional representations, that

is, closed GLn-orbits with stabilizer subgroup isomorphic to C∗. Transporting this
property via the GLn-equivariant étale maps, every Zariski neighborhood of (rrn, 0)
contains closed GLn-orbits with stabilizer C∗. By the correspondence of orbits is
associated fiber bundles, every Zariski neighborhood of the trivial representation
0 ∈ repαξ

Q•ξ contains closed GL(αξ)-orbits with stabilizer subgroup C∗. We
have seen that closed GL(αξ)-orbits correspond to semi-simple representations of
Q•ξ . However, if the stabilizer subgroup of a semi-simple representation is C∗ this
representation must be simple. �

Theorem 5.14. Let A be a Cayley-Hamilton order of degree n with center
C[X], X a normal variety of dimension d. For ξ ∈ X = isstrn A with corresponding
semi-simple representation

Vξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

and normal space to the orbit O(Vξ) isomorphic to repαξ
Q•ξ as GL(αξ)-modules

where αξ = (e1, . . . , ek). Then, ξ ∈ Smtr A if and only if the following two condi-
tions are met{

αξ is the dimension vector of a simple representation of Q•, and
d = 1− χQ(αξ, αξ)−

∑k
i=1mii

where Q is the underlying quiver of Q•ξ and mii is the number of marked loops in
Q•ξ in vertex vi.

Proof. By the slice theorem we have étale maps

repαξ
Q•ξ/GL(αξ) �et Sξ/GL(αξ)

et- isstrn A = X

connecting a neighborhood of ξ ∈ X with one of the trivial semi-simple represen-
tation 0. By definition of the Euler-form of Q we have that

χQ(αξ, αξ) = −
∑
i 6=j

eiejχij +
∑
i

e2i (1− aii −mii)
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On the other hand we have

dim repα Q
•
αξ

=
∑
i 6=j

eiejχij +
∑
i

e2i (aii +mii)−
∑
i

mii

dim GL(αξ) =
∑
i

e2i

As any Zariski open neighborhood of ξ contains an open set where the quotient
map is a PGL(αξ) = GL(αξ)

C∗ -fibration we see that the quotient variety repαξ
Q•ξ

has dimension equal to

dim repαξ
Q•ξ − dim GL(αξ) + 1

and plugging in the above information we see that this is equal to 1−χQ(αξ, αξ)−∑
imii. �

Example 5.15. The quantum plane.

We will generalize the discussion of example 5.11 to the algebra

A =
C〈x, y〉

(yx− qxy)

where q is a primitive n-th root of unity. Let u = xn and v = yn then it is easy to see that A is a
free module of rank n2 over its center C[u, v] and is a Cayley-Hamilton algebra of degree n with

the trace determined on the basis

tr(xiyj) =

(
0 when either i or j is not a multiple of n,

nxiyj when i and j are multiples of n,

Let ξ ∈ issn A = C2 be a point (an, b) with a.b 6= 0, then ξ is of representation type (1, n) as the

corresponding (semi)simple representation Vξ is determined by (if m is odd, for even n we replace
a by ia and b by −b)

ρ(x) =

26664
a

qa

. . .

qn−1a

37775 and ρ(y) =

26666664
0 1 0 . . . 0

0 0 1 0
...

...
. . .

0 0 0 . . . 1
b 0 0 . . . 0

37777775
One computes that Ext1A(Vξ, Vξ) = C2 where the algebra map A

φ- Mn(C[ε]) corresponding

to (α, β) is given by (
φ(x) = ρ(x) + ε αrr

n

φ(y) = ρ(y) + ε βrr
n

and all these algebra maps are trace preserving. That is, Ext1A(Vξ, Vξ) = ExttrA (Vξ, Vξ) and as
the stabilizer subgroup is C∗ the marked quiver-setting (Q•ξ , αξ) is

��������1
!! pp

and d = 1 − χQ(α, α) −
P
imii as 2 = 1 − (−1) + 0, compatible with the fact that over these

points the quotient map is a principal PGLn-fibration.
Next, let ξ = (an, 0) with a 6= 0 (or, by a similar argument (0, bn) with b 6= 0). Then, the

representation type of ξ is (1, 1; . . . ; 1, 1) because

Vξ = S1 ⊕ . . .⊕ Sn

where the simple one-dimensional representation Si is given by(
ρ(x) = qia

ρ(y) = 0

One verifies that

Ext1A(Si, Si) = C and Ext1A(Si, Sj) = δi+1,j C
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and as the stabilizer subgroup is C∗ × . . .× C∗, the Ext-quiver setting is

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

$$

qq

YY YY

mm

����

The algebra map A
φ- Mn(C[ε]) corresponding to the extension (α1, β1, . . . , αn, βn) ∈

Ext1A(Vξ, Vξ) is given by8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

φ(x) =

2666664
a+ ε α1

qa+ ε α2

. . .

qn−1a+ ε αn

3777775

φ(y) = ε

266666664

0 β1 0 . . . 0

0 0 β2 0

...
...

. . .
...

0 0 0 βn−1

βn 0 0 . . . 0

377777775
The conditions tr(xj) = 0 for 1 ≤ i < n impose n− 1 linear conditions among the αj , whence the
space of trace preserving extensions ExttrA (Vξ, Vξ) corresponds to the quiver setting

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

$$

qq

The Euler-form of this quiver Q• is given by the n× n matrix26666664
0 −1 0 . . . 0

1 −1 0

. . .
. . .

1 −1
−1 1

37777775
giving the numerical restriction as αξ = (1, . . . , 1)

1− χQ(α, α)−
X
i

mii = 1− (−1)− 0 = 2 = dim isstrn A

so ξ ∈ Smtr A. Finally, the only remaining point is ξ = (0, 0). This has representation type (n, 1)

as the corresponding semi-simple representation Vξ is the trivial one. The stabilizer subgroup is
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GLn and the (trace preserving) extensions are given by

Ext1A(Vξ, Vξ) = Mn ⊕Mn and ExttrA (Vξ, Vξ) = M0
n ⊕M0

n

determined by the algebra maps A
φ- Mn(C[ε]) given by(

φ(x) = ε m1

φ(y) = ε m2

That is, the relevant quiver setting (Q•ξ , αξ) is in this point

��������n

• "" •
pp

This time, ξ /∈ Smtr A as the numerical condition fails

1− χQ(α, α)−
X
i

mii = 1− (−n2)− 0 6= 2 = dim isstrn A

unless n = 1. That is, Smtr A = C2 − {(0, 0)}.

5.3. Local classification.

If we want to study the local structure of Cayley-Hamilton orders A of degree n
over a central normal variety X of dimension d, we have to compile a list of admis-
sible marked quiver settings, that is couples (Q•, α) satisfying the two properties{

α is the dimension vector of a simple representation of Q•, and
d = 1− χQ(α, α)−

∑
imi

In this section, we will give the first steps in such a classification project
The basic idea that we use is to shrink a marked quiver-setting to its simplest

form and classify these simplest forms for given d. By shrinking we mean the
following process. Assume α = (e1, . . . , ek) is the dimension vector of a simple
representation of Q• and let vi and vj be two vertices connected with an arrow
such that ei = ej = e. That is, locally we have the following situation

e8?9>:=;< e8?9>:=;<
χij

((

χji

hh

aii

��

•
mii

WW

ajj

��

•
mjj

WW

χpi
WWWWW

++WWWWW

χiq
ggggg

ssggggg

χrj
ggggg

ssggggg

χjs
WWWWW

++WWWWW

We will use one of the arrows connecting vi with vj to identify the two vertices. That
is, we form the shrinked marked quiver-setting (Q•s, αs) where Q•s is the marked
quiver on k − 1 vertices {v1, . . . , v̂i, . . . , vk} and αs is the dimension vector with ei
removed. Q•s has the following form in a neighborhood of the contracted vertex

e8?9>:=;<
aii + ajj + χij + χji − 1

��

•
mii +mjj

WW

χpi + χpj
\\\\\\\\\\\\\\

--\\\\\\\\\\\\\\

χiq + χjq
bbbbbbbbbbbbbb

qqbbbbbbbbbbbbbb

χrj + χri
bbbbbbbbbbbbbb

qqbbbbbbbbbbbbbb

χjs + χis
\\\\\\\\\\\\\\

--\\\\\\\\\\\\\\

In Q•s we have for all k, l 6= i, j that χskl = χkl, askk = akk, ms
kk = mkk and the

number of arrows and (marked) loops connected to vj are determined as follows
• χsjk = χik + χjk
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• χskj = χki + χkj
• asjj = aii + ajj + χij + χji − 1
• ms

jj = mii +mjj

Lemma 5.16. α is the dimension vector of a simple representation of Q• if and
only if αs is the dimension vector of a simple representation of Q•s. Moreover,

dim repα Q
•/GL(α) = dim repαs Q

•
s/GL(αs)

Proof. Fix an arrow ��������i��������j
aoo . As ei = ej = e there is a Zariski open subset

U ⊂ - repα Q
• of points V such that Va is invertible. By basechange in either vi

or vj we can find a point W in its orbit such that Wa = rr
e. If we think of Wa as

identifying Cei with Cej we can view the remaining maps ofW as a representation in
repαs

Q•s and denote it by W s. The map U - repαs
Q•s is well-defined and maps

GL(α)-orbits to GL(αs)-orbits. Conversely, given a representation W ′ ∈ repαs
Q•s

we can uniquely determine a representation W ∈ U mapping to W ′. Both claims
follow immediately from this observation. �

A marked quiver-setting can uniquely be shrinked to its simplified form , which
has the characteristic property that no arrow-connected vertices can have the same
dimension. The shrinking process has a converse operation which we will call split-
ting of a vertex . However, this splitting operation is usually not uniquely deter-
mined.

Before compiling a lists of marked-quiver settings in simplified form for a spe-
cific base-dimension d, we bound the components of α.

Proposition 5.17. Let α = (e1, . . . , ek) be the dimension vector of a simple
representation of Q and let 1 − χQ(α, α) = d = dim repα Q/GL(α). Then, if
e = max ei, we have that d ≥ e+ 1.

Proof. By lemma 5.16 we may assume that (Q,α) is brought in its simplified
form, that is, no two arrow-connected vertices have the same dimension. Let χii
denote the number of loops in a vertex vi, then

−χQ(α, α) =

{∑
i ei (

∑
j χijej − ei)∑

i ei (
∑
j χjiej − ei)

and observe that the bracketed terms are positive by the requirement that α is
the dimension vector of a simple representation. We call them the incoming ini,
respectively outgoing outi, contribution of the vertex vi to d. Let vm be a vertex
with maximal vertex-dimension e.

inm = e(
∑
j 6=m

χjmej + (χii − 1)e) and outm = e(
∑
j 6=m

χijej + (χii − 1)e)

If there are loops in vm, then inm ≥ 2 or outm ≥ 2 unless the local structure of Q
is

��������1 ��������e ��������1// //��

in which case inm = e = outm. Let vi be the unique incoming vertex of vm, then
we have outi ≥ e− 1. But then,

d = 1− χQ(α, α) = 1 +
∑
j

outj ≥ 2e
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If vm has no loops, consider the incoming vertices {vi1 , . . . , vis}, then

inm = e(
s∑
j=1

χijmeij − e)

which is ≥ e unless
∑
χijmeij = e, but in that case we have

s∑
j=1

outij ≥ e2 −
s∑
j=1

e2ij ≥ e

the last inequality because all eij < e. In either case we have that d = 1−χQ(α, α) =
1 +

∑
i outi = 1 +

∑
i ini ≥ e+ 1. �

Example 5.18. In a list of simplified marked quivers we are only interested in repα Q•

as GL(α)-module and we call two setting equivalent if they determine the same GL(α)-module.

For example, the marked quiver-settings

��������1 ��������2
((hh

•

����
and ��������1 ��������2

((hh
��

determine the same C∗ ×GL2-module, hence are equivalent.

Theorem 5.19. Let A be a Cayley-Hamilton order of degree n over a central
normal variety X of degree d. Then, the local quiver of A in a point ξ ∈ X = isstrn A
belonging to the smooth locus Smtr A can be shrinked to one of a finite list of
equivalence classes of simplified marked quiver-settings. For d ≤ 4, the complete
list is given in figure 1 where the boxed value is the dimension d of X.

An immediate consequence is a noncommutative analogon of the fact that com-
mutative smooth varieties have only one type of analytic (or étale) local behavior.

Theorem 5.20. There are only finitely many types of étale local behaviour of
smooth Cayley-Hamilton orders of degree n over a central variety of dimension d.

Proof. The foregoing reduction shows that for fixed d there are only a finite
number of marked quiver-settings shrinked to their simplified form. As

∑
ei ≤ n,

we can apply the splitting operations on vertices only a finite number of times. �

5.4. Low dimensional orders.

W. Schelter has proved in [68] that in dimension one, Cayley-smooth orders
are hereditary. We give an alternative proof of this result using the étale local clas-
sification. The next result follows also by splitting the dimension 1 case in figure 1.
We give a direct proof illustrating the type-stratification result of section 5.1.

Theorem 5.21. Let A be a Cayley-Hamilton order of degree n over an affine
curve X = isstrn A. If ξ ∈ Smtr A, then the étale local structure of A in ξ is
determined by a marked quiver-setting which is an oriented cycle on k vertices with
k ≤ n and an unordered partition p = (d1, . . . , dk) having precisely k parts such that∑
i di = n determining the dimensions of the simple components of Vξ, see figure 2.

Proof. Let (Q•, α) be the corresponding local marked quiver-setting. Because
Q• is strongly connected, there exist oriented cycles in Q•. Fix one such cycle of
length s ≤ k and renumber the vertices of Q• such that the first s vertices make
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��������1
��

1

��������1
$$ zz

2

��������1
"" ||
ZZ

3

��������2•
$$

•
zz

3

��������1 ��������2
&&

ff
��

3

��������1 ��������2 ��������1
&&

ff ff
&&

3

��������1
�� qqQQ11

4

��������2•
$$ zz

4

��������1 ��������2
&&

ff
��

4

��������1 ��������2
))ii
$$

dd

4

��������1 ��������2 ��������1
&&

ff ff
&&��

4

Figure 1. The simplified local quivers for d ≤ 4

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

//

??���������

OO

__?????????

oo

!!

...

Figure 2. Cayley-smooth curve types.

up the cycle. If α = (e1, . . . , ek), then there exist semi-simple representations in
repα Q

• with composition

α1 = (1, . . . , 1︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
k−s

)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕es−1

s ⊕ ε⊕es+1
s+1 ⊕ . . .⊕ ε⊕ek

k

where εi stands for the simple one-dimensional representation concentrated in ver-
tex vi. There is a one-dimensional family of simple representations of dimension
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vector α1, hence the stratum of semi-simple representations in issα Q• of repre-
sentation type τ = (1, α1; e1 − 1, ε1; . . . ; es − 1, εs; es+1, εs+1; ek, εk) is at least one-
dimensional. However, as dim issα Q

• = 1 this can only happen if this semi-simple
representation is actually simple. That is, when α = α1 and k = s. �

If Vξ is the semi-simple n-dimensional representation of A corresponding to ξ,
then

Vξ = S1 ⊕ . . .⊕ Sk with dim Si = di

and the stabilizer subgroup is GL(α) = C∗ × . . . × C∗ embedded in GLn via the
diagonal embedding

(λ1, . . . , λk) - diag(λ1, . . . , λ1︸ ︷︷ ︸
d1

, . . . , λk, . . . , λk︸ ︷︷ ︸
dk

)

Further, using basechange in repα Q• we can bring every simple α-dimensional
representation of Qα in standard form

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

1 //

1
??������

x

OO
1

__??????
1

oo

!!

where x ∈ C∗ is the arrow from vk to v1. That is, C[repα Q•]GL(α) ' C[x] proving
that the quotient (or central) variety X must be smooth in ξ by the slice result.
Moreover, as Âξ ' T̂α we have, using the numbering conventions of the vertices)
the following block decomposition

Âξ '



Md1(C[[x]]) Md1×d2(C[[x]]) . . . Md1×dk
(C[[x]])

Md2×d1(xC[[x]]) Md2(C[[x]]) . . . Md2×dk
(C[[x]])

...
...

. . .
...

Mdk×d1(xC[[x]]) Mdk×d2(xC[[x]]) . . . Mdk
(C[[x]])


From the local description of hereditary orders given in [67, Thm. 39.14] we deduce
that Aξ is an hereditary order. That is, we have the following characterization of
the smooth locus

Proposition 5.22. Let A be a Cayley-Hamilton order of degree n over a central
affine curve X. Then, Smtr A is the locus of points ξ ∈ X such that Aξ is an
hereditary order (in particular, ξ must be a smooth point of X).

Theorem 5.23. Let A be a Cayley-Hamilton central OX-order of degree n
where X is a projective curve. Equivalent are
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1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

//

??��������

OO

OO

__????????

oo

//

oo

OO

��

}}

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

...

Figure 3. Cayley-smooth surface types.

(1) A is a sheaf of Cayley-smooth orders
(2) X is smooth and A is a sheaf of hereditary OX-orders

We now turn to orders over surfaces. The next result can equally be proved
using splitting and the classification of figure 1.

Theorem 5.24. Let A be a Cayley-Hamilton order of degree n over an affine
surface X = isstrn A. If ξ ∈ Smtr A, then the étale local structure of A in ξ is
determined by a marked local quiver-setting Aklm on k + l + m ≤ n vertices and
an unordered partition p = (d1, . . . , dk+l+m) of n with k + l + m non-zero parts
determined by the dimensions of the simple components of Vξ as in figure 3.

Proof. Let (Q•, α) be the marked quiver-setting on r vertices with α =
(e1, . . . , er) corresponding to ξ. As Q• is strongly connected and the quotient
variety is two-dimensional, Q• must contain more than one oriented cycle, hence it
contains a sub-quiver of type Aklm, possibly degenerated with k or l equal to zero.
Order the first k + l + m vertices of Q• as indicated. One verifies that Aklm has
simple representations of dimension vector (1, . . . , 1). Assume that Aklm is a proper
subquiver and denote s = k + l + m + 1 then Q• has semi-simple representations
in repα Q• with dimension-vector decomposition

α1 = (1, . . . , 1︸ ︷︷ ︸
k+l+m

, 0, . . . , 0)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕ek+l+m−1

k+l+m ⊕ ε⊕es
s ⊕ . . .⊕ ε⊕er

r
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Applying the formula for the dimension of the quotient variety shows that
iss(1,...,1) Aklm has dimension 2 so there is a two-dimensional family of such semi-
simple representation in the two-dimensional quotient variety issα Q•. This is only
possible if this semi-simple representation is actually simple, whence r = k+ l+m,
Q• = Aklm and α = (1, . . . , 1). �

If Vξ is the semi-simple n-dimensional representation of A corresponding to ξ,
then

Vξ = S1 ⊕ . . .⊕ Sr with dim Si = di

and the stabilizer subgroup GL(α) = C∗ × . . .× C∗ embedded diagonally in GLn

(λ1, . . . , λr) 7→ diag(λ1, . . . , λ1︸ ︷︷ ︸
d1

, . . . , λr, . . . , λr︸ ︷︷ ︸
dr

)

By basechange in repα Aklm we can bring every simple α-dimensional representation
in the following standard form

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
1 //

1
??�����

1
OO

1
OO

x

__?????
1
oo

y //

1
oo

OO

!!

{{

with x, y ∈ C∗ and as C[issα Aklm] = C[repα Aklm]GL(α) is the ring generated
by traces along oriented cycles in Aklm, it is isomorphic to C[x, y]. From the slice
result one deduces that ξ must be a smooth point of X and because Âξ ' T̂α we
deduce it must have the following block-decomposition

Âξ '

@
@

@
@

@
@

@
@

@
@

@
@

@
@

(x)

(x)

(y)

(y)

(1)

(1)
(1)

(1)

(1)

(x)

(y)

(x, y)︸ ︷︷ ︸
k

︸ ︷︷ ︸
l

︸ ︷︷ ︸
m

⊂ - Mn(C[[x, y]])

where at spot (i, j) with 1 ≤ i, j ≤ k + l +m there is a block of dimension di × dj
with entries the indicated ideal of C[[x, y]].
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1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
1 //

1
??�����

1
OO

1
OO

x

__?????
1
oo

OO

!!
1(/).*-+, 1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,1
OO

1
OO
y //

1
oo

OO

{{

Figure 4. Proper semi-simples of Aklm.

Definition 5.25. Let A be a Cayley-Hamilton central C[X]-order of degree n
in a central simple C(X)- algebra ∆ of dimension n2.

(1) A is said to be étale locally split in ξ if and only if Âξ is a central ÔX,x-order
in Mn(ÔX,x ⊗OX,x

C(X)).
(2) The ramification locus ramA of A is the locus of points ξ ∈ X such that

A

mξAmξ
6'Mn(C)

The complement X − ramA is the Azumaya locus Xaz of A.

Theorem 5.26. Let A be a Cayley-smooth central OX-order of degree n over
a projective surface X. Then,

(1) X is smooth.
(2) A is étale locally split in all points of X.
(3) The ramification divisor ramA ⊂ - X is either empty or consists of a

finite number of isolated (possibly embedded) points and a reduced divisor
having as its worst singularities normal crossings.

Proof. (1) and (2) follow from the above local description of A. As for (3)
we have to compute the local quiver-settings in proper semi-simple representations
of repα Aklm. As simples have a strongly connected support, the decomposition
types of these proper semi-simples are depicted in figure 4 with x, y ∈ C∗. By the
description of local quivers given in section 3 we see that they are respectively of the
forms in figure 5. The associated unordered partitions are defined in the obvious
way, that is, to the looped vertex one assigns the sum of the di belonging to the loop-
contracted circuit and the other components of the partition are preserved. Using
the étale local isomorphism between X in a neighborhood of ξ and of issα Aklm in
a neighborhood of the trivial representation, we see that the local picture of quiver-
settings of A in a neighborhood of ξ is described in figure 6 The Azumaya points
are the points in which the quiver-setting is A001 (the two-loop quiver). From this
local description the result follows if we take care of possibly degenerated cases. �
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1(/).*-+,

1(/).*-+,

1(/).*-+,

A0l1

JJ����������
__????

99
yy

1(/).*-+, 1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

Ak01

WW///////

KK��������������

ee

//

oo

##

Figure 5. Local quivers for Aklm.

���������������� Ak01

XX
��
bb

�������� ��������A0l1
��

XX<<

�������� ����������������
Aklm

��
XXXX
��

��������
A001

}}..

•
••

•//

OO
yysssssss

__????????????

Figure 6. Local picture for Aklm.

Example 5.27. An isolated point in ξ can occur if the quiver-setting in ξ is of type A00m

with m ≥ 2, that is,

1��������
1��������

1��������
1��������

OO

OO

OO

vv((

In the case of curves and surfaces, the central variety X of a Cayley-smooth
model A had to be smooth and that A is étale locally split in every point ξ ∈ X.
Both of these properties are no longer valid in higher dimensions.

Lemma 5.28. For dimension d ≥ 3, the center Z of a Cayley-smooth order of
degree n can have singularities.
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1(/).*-+, 1(/).*-+,a
''

b

  

c

gg

d

__

Figure 7. Central singularities can arise.

Proof. Consider the marked quiver-setting of figure 7 which is allowed for
dimension d = 3 and degree n = 2. The quiver-invariants are generated by the
traces along oriented cycles, that is by ac, ad, bc and bd. The coordinate ring is

C[issα Q] ' C[x, y, z, v]
(xv − yz)

having a singularity in the origin. This example can be extended to dimensions
d ≥ 3 by adding loops in one of the vertices.

1(/).*-+, 1(/).*-+,a
''

b

  

c

gg

d

__d− 3 99

�

Lemma 5.29. For dimension d ≥ 3, a Cayley-smooth algebra does not have to
be locally étale split in every point of its central variety.

Proof. Consider the following allowable quiver-setting for d = 3 and n = 2

2(/).*-+,•
%%

•
yy

The corresponding Cayley-smooth algebra A is generated by two generic 2×2 trace
zero matrices, say A and B. From the description of the trace algebra T2

2 we see
that its center is generated by A2 = x, B2 = z and AB + BA = z. Alternatively,
we can identify A with the Clifford-algebra over C[x, y, z] of the non-degenerate
quadratic form [

x y
y z

]
This is a noncommutative domain and remains to be so over the formal power
series C[[x, y, z]]. That is, A cannot be split by an étale extension in the origin.
More generally, whenever the local marked quiver contains vertices with dimen-
sion ≥ 2, the corresponding Cayley-smooth algebra cannot be split by an étale
extension as the local quiver-setting does not change and for a split algebra all
vertex-dimensions have to be equal to 1. In particular, the Cayley-smooth algebra
of degree 2 corresponding to the quiver-setting

2(/).*-+,•k
%%

l
yy

cannot be split by an étale extension in the origin. Its corresponding dimension is

d = 3k + 4l − 3
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whenever k + l ≥ 2 and all dimensions d ≥ 3 are obtained. �

5.5. Noncommutative smooth surfaces.

Let X be a projective surface, in this section we will characterize the central
simple C(X)-algebras ∆ allowing a Cayley-smooth model . We first need to perform
a local calculation. Consider the ring of algebraic functions in two variables C{x, y}
and let Xloc = Spec C{x, y}. There is only one codimension two subvariety :
m = (x, y). Let us compute the coniveau spectral sequence for Xloc. If K is
the field of fractions of C{x, y} and if we denote with kp the field of fractions of
C{x, y}/p where p is a height one prime, we have as its first term

0 0 0 0 . . .

H2(K,µn) ⊕p H1(kp,Zn) µ−1
n 0 . . .

H1(K,µn) ⊕pZn 0 0 . . .

µn 0 0 0 . . .

Because C{x, y} is a unique factorization domain, we see that the map

H1
et(K,µn) = K∗/(K∗)n

γ- ⊕p Zn

is surjective. Moreover, all fields kp are isomorphic to the field of fractions of C{z}
whose only cyclic extensions are given by adjoining a root of z and hence they are
all ramified in m. Therefore, the component maps

Zn = H1
et(kp,Zn)

βL- µ−1

are isomorphisms. But then, the second (and limiting) term of the spectral sequence
has the form

0 0 0 0 . . .

Ker α Ker β/Im α 0 0 . . .

Ker γ 0 0 0 . . .

µn 0 0 0 . . .
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Finally, we use the fact that C{x, y} is strict Henselian whence has no proper
étale extensions. But then,

Hi
et(Xloc, µn) = 0 for i ≥ 1

and substituting this information in the spectral sequence we obtain that the top
sequence of the coniveau spectral sequence

0 - Brn K
α- ⊕p Zn - Zn - 0

is exact. From this sequence we immediately obtain the following

Lemma 5.30. With notations as before, we have

(1) Let U = Xloc − V (x), then Brn U = 0
(2) Let U = Xloc − V (xy), then Brn U = Zn with generator the quantum-

plane algebra

Cζ [u, v] =
C〈u, v〉

(vu− ζuv)
where ζ is a primitive n-th root of one

Let ∆ be a central simple algebra of dimension n2 over a field L of transcendence
degree 2. We want to determine when ∆ admits a Cayley-smooth model A, that
is, a sheaf of Cayley-smooth OX -algebras where X is a projective surface with
functionfield C(X) = L. It follows from theorem 5.26 that, if such a model exists,
X must be a smooth projective surface. We may assume that X is a (commutative)
smooth model for L. By the Artin-Mumford exact sequence 3.62 the class of ∆ in
Brn C(X) is determined by the following geo-combinatorial data

• A finite collection C = {C1, . . . , Ck} of irreducible curves in X.
• A finite collection P = {P1, . . . , Pl} of points of X where each Pi is either

an intersection point of two or more Ci or a singular point of some Ci.
• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ

and {1, . . . , iP } the different branches of C in P . These numbers must
satisfy the admissibility condition∑

i

bi = 0 ∈ Zn

for every P ∈ P
• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C which is compatible with the branch-data.

If A is a maximal OX -order in ∆, then the ramification locus ramA coincides with
the collection of curves C. We fix such a maximal OX -order A and investigate its
Cayley-smooth locus.

Proposition 5.31. Let A be a maximal OX-order in ∆ with X a projective
smooth surface and with geo-combinatorial data (C,P, b,D) determining the class
of ∆ in Brn C(X).

If ξ ∈ X lies in X − C or if ξ is a non-singular point of C, then A is Cayley-
smooth in ξ.
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Proof. If ξ /∈ C, then Aξ is an Azumaya algebra over OX,x. As X is smooth in
ξ, A is Cayley-smooth in ξ. Alternatively, we know that Azumaya algebras are split
by étale extensions, whence Âξ 'Mn(C[[x, y]]) which shows that the behaviour of
A near ξ is controlled by the local data

1(/).*-+,%% yy . . .︸ ︷︷ ︸
n

and hence ξ ∈ Smtr A. Next, assume that ξ is a nonsingular point of the ramifica-
tion divisor C. Consider the pointed spectrum Xξ = Spec OX,ξ − {mξ}. The only
prime ideals are of height one, corresponding to the curves on X passing through
ξ and hence this pointed spectrum is a Dedekind scheme. Further, A determines
a maximal order over Xξ. But then, tensoring A with the strict henselization
OshX,ξ ' C{x, y} determines a sheaf of hereditary orders on the pointed spectrum
X̂ξ = Spec C{x, y} − {(x, y)} and we may choose the local variable x such that x
is a local parameter of the ramification divisor C near ξ.

Using the characterization result for hereditary orders over discrete valuation
rings, given in [67, Thm. 39.14] we know the structure of this extended sheaf of
hereditary orders over any height one prime of X̂ξ. Because Aξ is a reflexive (even
a projective) OX,ξ-module, this height one information determines Ashξ or Âξ. This
proves that Ashξ must be isomorphic to the following blockdecomposition

Md1(C{x, y}) Md1×d2(C{x, y}) . . . Md1×dk
(C{x, y})

Md2×d1(xC{x, y}) Md2(C{x, y}) . . . Md2×dk
(C{x, y})

...
...

. . .
...

Mdk×d1(xC{x, y}) Mdk×d2(xC{x, y}) . . . Mdk
(C{x, y})


for a certain partition p = (d1, . . . , dk) of n having k parts. In fact, as we started
out with a maximal order A one can even show that all these integers di must be
equal. This local form corresponds to the following quiver-setting

1(/).*-+, 1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

Ak01

WW///////

KK��������������

ee

//

oo

##
p = (d1, . . . , dk)
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whence ξ ∈ Smtr A as this is one of the allowed surface settings. �

A maximal OX -order in ∆ can have at worst noncommutative singularities in
the singular points of the ramification divisor C. Theorem 5.26 a Cayley-smooth
order over a surface has as ramification-singularities at worst normal crossings. We
are always able to reduce to normal crossings by the following classical result on
commutative surfaces, see for example [28, V.3.8].

Theorem 5.32 (Embedded resolution of curves in surfaces). Let C be any curve
on the surface X. Then, there exists a finite sequence of blow-ups

X ′ = Xs
- Xs−1

- . . . - X0 = X

and, if f : X ′ -- X is their composition, then the total inverse image f−1(C) is
a divisor with normal crossings.

Fix a series of blow-ups X ′
f-- X such that the inverse image f−1(C) is a

divisor on X ′ having as worst singularities normal crossings. We will replace the
Cayley-Hamilton OX -order A by a Cayley-Hamilton OX′ -order A′ where A′ is a
sheaf of OX′ -maximal orders in ∆. In order to determine the ramification divisor
of A′ we need to be able to keep track how the ramification divisor C of ∆ changes
if we blow up a singular point p ∈ P.

Lemma 5.33. Let X̃ -- X be the blow-up of X at a singular point p of C,
the ramification divisor of ∆ on X. Let C̃ be the strict transform of C and E the
exceptional line on X̃. Let C′ be the ramification divisor of ∆ on the smooth model
X̃. Then,

(1) Assume the local branch data at p distribute in an admissible way on C̃,
that is, ∑

i at q

bi,p = 0 for all q ∈ E ∩ C̃

where the sum is taken only over the branches at q. Then, C′ = C̃.
(2) Assume the local branch data at p do not distribute in an admissible way,

then C′ = C̃ ∪ E.

Proof. Clearly, C̃ ⊂ - C′ ⊂ - C̃ ∪ E. By the Artin-Mumford sequence
applied to X ′ we know that the branch data of C′ must add up to zero at all points
q of C̃ ∩ E. We investigate the two cases

1. : Assume E ⊂ C′. Then, the E-branch number at q must be zero for all
q ∈ C̃ ∩ E. But there are no non-trivial étale covers of P1 = E so ram(∆) gives
the trivial element in H1

et(C(E), µn), a contradiction. Hence C′ = C̃.

??
??

??
??

??
??

??
??

? �����������������

•
p

a −a

E

a

−a

−a

a
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2. : If at some q ∈ C̃ ∩ E the branch numbers do not add up to zero, the only
remedy is to include E in the ramification divisor and let the E-branch number be
such that the total sum is zero in Zn. �

Theorem 5.34. Let ∆ be a central simple algebra of dimension n2 over a field
L of transcendence degree two. Then, there exists a smooth projective surface S with
functionfield C(S) = L such that any maximal OS-order AS in ∆ has at worst a
finite number of isolated noncommutative singularities. Each of these singularities
is locally étale of quantum-plane type.

Proof. We take any projective smooth surface X with functionfield C(X) =
L. By the Artin-Mumford exact sequence, the class of ∆ determines a geo-
combinatorial set of data

(C,P, b,D)

as before. In particular, C is the ramification divisor ram(∆) and P is the set of
singular points of C. We can separate P in two subsets

• Punr = {P ∈ P where all the branch-data bP = (b1, . . . , biP ) are trivial,
that is, all bi = 0 in Zn}
• Pram = {P ∈ P where some of the branch-data bP = (b1, . . . , biP ) are

non-trivial, that is, some bi 6= 0 in Zn}

After a finite number of blow-ups we get a birational morphism S1
π-- X such that

π−1(C) has as its worst singularities normal crossings and all branches in points of P
are separated in S. Let C1 be the ramification divisor of ∆ in S1. By the foregoing
argument we have

• If P ∈ Punr, then we have that C′ ∩ π−1(P ) consists of smooth points of
C1,
• If P ∈ Pram, then π−1(P ) contains at least one singular points Q of C1

with branch data bQ = (a,−a) for some a 6= 0 in Zn.
In fact, after blowing-up singular points Q′ in π−1(P ) with trivial branch-data we
obtain a smooth surface S -- S1

-- X such that the only singular points of the
ramification divisor C′ of ∆ have non-trivial branch-data (a,−a) for some a ∈ Zn.
Then, take a maximal OS-order A in ∆. By the local calculation of Brn C{x, y}
performed in the last section we know that locally étale A is of quantum-plane type
in these remaining singularities. As the quantum-plane is not étale locally split, A
is not Cayley-smooth in these finite number of singularities. �

In fact, the above proof gives a complete classification of the central simple
algebras admitting a Cayley-smooth model.

Theorem 5.35. Let ∆ be a central simple C(X)-algebra of dimension n2 de-
termined by the geo-combinatorial data (C,P, b,D) given by the Artin-Mumford
sequence. Then, ∆ admits a Cayley-smooth model if and only if all branch-data are
trivial.

Proof. If all branch-data are trivial, the foregoing proof constructs a Cayley-
smooth model of ∆. Conversely, if A is a Cayley-smooth OS-order in ∆ with S
a smooth projective model of C(X), then A is locally étale split in every point
s ∈ S. But then, so is any maximal OS-order Amax containing A. By the foregoing
arguments this can only happen if all branch-data are trivial. �
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5.6. Complex moment map.

We fix a quiver Q on k vertices {v1, . . . , vk} and define the opposite quiver Qo

the quiver on {v1, . . . , vk} obtained by reversing all arrows in Q. That is, there

is an arrow ��������i��������j
a∗ // in Qo for each arrow ��������i��������j

aoo in the quiver Q. Fix a
dimension vector α = (a1, . . . , ak), using the trace pairings

Mai×aj
×Maj×ai

- C (Va∗ , Va) 7→ tr(Va∗Va)

we can identify the representation space repα Qo with the dual space (repα Q)∗ =
HomC(repα Q,C). Observe that the base change action of GL(α) on repα Qo

coincides with the action dual to that of GL(α) on repα Q.
The dual quiver Qd is the superposition of the quivers Q and Qo. Clearly, for

an dimension vector α we have

repα Q
d = repα Q⊕ repα Qo = repα Q⊕ (repα Q)∗

whence repα Qd can be viewed as the cotangent bundle T ∗repα Q on repα Q with
structural morphism projection on the first factor. Cotangent bundles are equipped
with a canonical symplectic structure, see [17, Example 1.1.3] or chapter 8 for more
details. The natural action of GL(α) on repα Q extends to an action of GL(α) on
T ∗repα Q preserving the symplectic structure and it coincides with the basechange
action of GL(α) on repα Qd. Such an action on the cotangent bundle gives rise to
a complex moment map

T ∗repα Q
µC- (Lie GL(α))∗

Recall that Lie GL(α) = Mα(C) = Ma1(C)⊕. . .⊕Mak
(C). Using the trace pairings

on both sides, the complex moment map is the mapping

repα Q
d µC- Mα(C)

defined by
µC(V )i =

∑
a∈Qa
t(a)=i

VaVa∗ −
∑
a∈Qa
s(a)=i

Va∗Va

Observe that the image of the complex moment map is contained in M0
α(C) where

M0
α(C) = {(M1, . . . ,Mk) ∈Mα(C) |

∑
i

tr(Mi) = 0} = Lie PGL(α)

corresponding to the fact that the action of GL(α) on T ∗repα Q is really a
PGL(α) = GL(α)/C∗ action.

Definition 5.36. Elements of Ck = CQv are called weights . If λ is a weight,
one defines the deformed preprojective algebra of the quiver Q to be

Πλ(Q)
dfn
= Πλ =

CQd

c− λ
where c is the commutator element

c =
∑
a∈Qa

[a, a∗]

in CQd and where λ = (λ1, . . . , λk) is identified with the element
∑
i λivi ∈ CQd.

the algebra Π(Q) = Π is known as the preprojective algebra of the quiver Q.
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Lemma 5.37. The ideal (c−λ) /CQd is the same as the ideal with a generator∑
a∈Qa
t(a)=i

aa∗ −
∑
a∈Qa
s(a)=i

a∗a− λivi

for each vertex vi ∈ Qv.

Proof. These elements are of the form vj(c−λ)vi, so they belong to the ideal
(c−λ). As c−λ is also the sum of them, the ideal they generate contains c−λ. �

That is, α-dimensional representations of the deformed preprojective algebra
Πλ coincide with representations V ∈ repα Qd which satisfy∑

a∈Qa
t(a)=i

VaVa∗ −
∑
a∈Qa
s(a)=i

Va∗Va = λi
rr
ai

for each vertex vi. That is, we have an isomorphism between the scheme theoretic
fiber of the complex moment map and the representation space

rep
α

Πλ = µ−1
C (λ)

As the image of µC is contained in M0
α(C) we have in particular

Lemma 5.38. If λ.α =
∑
i λiai 6= 0, then there are no α-dimensional represen-

tations of Πλ.

Because we have an embedding Ck ⊂ - Πλ, the n-dimensional representations
of the deformed preprojective algebra decompose into disjoint subvarieties

rep
n

Πλ =
⊔

α:
P

i ai=n

GLn ×GL(α) rep
α

Πλ

Hence, in studying Cayley-smoothness of Πλ we may reduce to the distinct com-
ponents and hence to the study of α-Cayley-smoothness , that is, smoothness
in the category of Ck(α)-algebras which are Cayley-Hamilton algebras of degree
n =

∑
i ai. Again, one can characterize this smoothness condition in a geometric

way by the property that the restricted representation scheme rep
α

is smooth. In
the next section we will investigate this property for the preprojective algebra Π0,
in chapter 8 we will be able to extend these results to arbitrary Πλ. In this sec-
tion we will compute the dimension of these representation schemes. First, we will
investigate the fibers of the structural map of the cotangent bundle, that is, the
projection

T ∗repα Q ' repα Qd - repα Q

Proposition 5.39. If V ∈ repα Q, then there is an exact sequence

0 - Ext1CQ(V, V )∗ - repα Q
o c- Mα(C)

t- HomCQ(V, V )∗ - 0

where c maps W = (Wa∗)a∗ ∈ repα Qo to
∑
a∈Qa

[Va,Wa∗ ] and t maps M =
(Mi)i ∈ M|alpha(C) to the linear map HomCQ(V, V ) - C sending a morphism
N = (Ni)i to

∑
i tr(MiNi).

Proof. There is an exact sequence

0 - HomCQ(V, V ) - Mα(C)
f- repα Q - Ext1CQ(V, V ) - 0
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where f sends M = (Mi)i ∈ Mα(C) to V ′ = (V ′a)a with V ′a = Mt(a)Va − VaMs(a).
By definition, the kernel of f is HomCQ(V, V ) and by the Euler form interpretation
of theorem 3.29 we have

dimC HomCQ(V, V )−dimC Ext
1
CQ(V, V ) = χQ(α, α) = dimC Mα(C)−dimC repα Q

so the cokernel of f has the same dimension as Ext1CQ(V, V ) and using the standard
projective resolution of V one can show that it is naturally isomorphic to it. The
required exact sequence follows by dualizing, using the trace pairing to identify
repα Q

o with (repα Q)∗ and Mα(C) with its dual. �

This result allows us to give a characterization of the dimension vectors α such
that rep

α
Q 6= ∅.

Theorem 5.40. For a weight λ ∈ Ck and a representation V ∈ repα Q the
following are equivalent

(1) V extends to an α-dimensional representation of the deformed preprojec-
tive algebra Πλ.

(2) For all dimension vectors β of direct summands W of V we have λ.β = 0.
Moreover, if V ∈ repα Q does lift, then π−1(V ) ' (Ext1CQ(V, V ))∗.

Proof. If V lifts to a representation of Πλ, then there is a representation
W ∈ repα Qo mapping under c of proposition 5.39 to λ. But then, by exactness
of the sequence in proposition 5.39 λ must be in the kernel of t. In particular,
for any morphism N = (Ni)i ∈ HomCQ(V, V ) we have that

∑
i λitr(Ni) = 0. In

particular, letW be a direct summand of V (as Q-representation) and let N = (Ni)i
be the projection morphism V -- W ⊂ - V , then

∑
i λitr(Ni) =

∑
i λibi where

β = (b1, . . . , bk) is the dimension vector of W .
Conversely, it suffices to prove the liftability of any indecomposable representa-

tion W having a dimension vector β satisfying λ.β = 0. Because the endomorphism
ring of W is a local algebra, any endomorphism N = (Ni)i of W is the sum of a
nilpotent matrix and a scalar matrix whence

∑
i λitr(Ni) = 0. But then consid-

ering the sequence of proposition 5.39 for β and considering λ as an element of
M|beta(C), it lies in the kernel of t whence in the image of c and therefore W can
be extended to a representation of Πλ.

The last statement follows again from the exact sequence of proposition 5.39.
�

In particular, if α is a root for Q satisfying λ.α = 0, then there are α-
dimensional representations of Πλ. Recall the definition of the number of parameters
given in definition 4.36

µ(X) = max
d

(dim X(d) − d)

where X(d) is the union of all orbits of dimension d. We denote µ(repindα Q) for
the GL(α)-action on the indecomposables of repα Q by pQ(α). Recall that part of
Kac’s theorem 4.39 asserts that

pQ(α) = 1− χQ(α, α)

We will apply these facts to the determination of the dimension of the fibers of the
complex moment map.
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Lemma 5.41. Let U be a GL(α)-stable constructible subset of repα Q contained
in the image of the projection map repα Qd

π-- repα Q. Then,

dim π−1(U) = µ(U) + α.α− χQ(α, α)

If in addition U = O(V ) is a single orbit, then π−1(U) is irreducible of dimension
α.α− χQ(α, α).

Proof. Let V ∈ U(d), then by theorem 5.40, the fiber π−1(V ) is isomorphic to
(Ext1CQ(V, V ))∗ and has dimension dimCEnd(V )− χQ(α, α) by theorem 3.29 and

dimC End(V ) = dim GL(α)− dim O(V ) = α.α− d.

Hence, dim π−1(U(d)) = (dim U(d) − d) + α.α − χQ(α, α). If we now vary d, the
result follows.

For the second assertion, suppose that π−1(U) � ⊃ Z1 tZ2 with Zi a GL(α)-
stable open subset, but then π−1(V ) ∩ Zi are non-empty disjoint open subsets of
the irreducible variety π−1(V ), a contradiction. �

Theorem 5.42. Let λ be a weight and α a dimension vector such that λ.α = 0.
Then,

dim rep
α

Πλ = dim µ−1
C (λ) = α.α− χQ(α, α) +m

where m is the maximum number among all

pQ(β1) + . . .+ pQ(βr)

with r ≥ 1, all βi are (positive) roots such that λ.βi = 0 and α = β1 + . . .+ βr.

Proof. Decompose repα Q =
⊔
τ repα(τ) where repα(τ) are the represen-

tations decomposing as a direct sum of indecomposables of dimension vector
τ = (β1, . . . , βr). By Kac’s theorem 4.39 we have that

µ(repα(τ)) = pQ(β1) + . . .+ pQ(βr)

If some of the βi are such that λ.βi 6= 0, and µ−1
C (λ)

π- repα Q is the projection
then π−1(repα(τ)) = ∅ by lemma 5.38. Combining this with lemma 5.41 the result
follows. �

Definition 5.43. The set of λ-Schur roots Sλ is defined to be the set of α ∈ Nk
such that pQ(α) ≥ pQ(β1) + . . .+ pQ(βr) for all decompositions α = β1 + . . .+ βr
with βi positive roots satisfying λ.βi = 0.

S0 is the set of α ∈ Nk such that pQ(α) ≥ pQ(β1) + . . . + pQ(βr) for all
decompositions α = β1 + . . .+ βr with βi ∈ Nk

Observe that S0 consists of Schur roots for Q, for if

τcan = (e1, β1; . . . ; es, βs) = (γ1, . . . , γt)
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(the γj possibly occurring with multiplicities) is the canonical decomposition of α
with t ≥ 2 we have

pQ(α) = 1− χQ(α, α)

= 1−
∑
i,j

χQ(γi, γj)

=
∑
i

(1− χQ(γi, γi))−
∑
i 6=j

χQ(γi, γj)− (t− 1)

>
∑
i

pQ(γi)

whence α /∈ S0. This argument also shows that in the definition of S0 we could
have taken all decompositions in positive roots, replacing the components βi by
their canonical decompositions.

Theorem 5.44. For α ∈ Nk, the following are equivalent :

(1) The complex moment map repα Qd
µC- repα Q is flat.

(2) rep
α

Π0 = µ−1
C (0) has dimension α.α− 1 + 2pQ(α).

(3) α ∈ S0.

Proof. The dimensions of the relevant representation spaces are
dim repα Q = α.α− χQ(α, α) = α.α− 1 + pQ(α)
dim repα Q

d = 2α.α− 2χQ(α, α) = 2α.α− 2 + 2pQ(α)
dim M0

α(C) = α.α− 1

so the relative dimension of the complex moment map is d = α.α− 1 + 2pQ(α).
(1)⇒ (2) : Because µC os flat, its image U is an open subset of M0

α(C) which
obviously contains 0, but then the dimension of µ−1

C (0) is equal to the relative
dimension d.

(2)⇒ (3) : Assume pQ(α) <
∑
i pQ(βi) for some decomposition α = β1+. . .+βs

with βi ∈ Nk. Replacing each βi by its canonical decomposition, we may assume
that the βi are actually positive roots. But then, theorem 5.42 implies that µ−1

C (0)
has dimension greater than d.

(3)⇒ (1) : We have that α is a Schur root. We claim that repα Qd
µC- M0

α(C)
is surjective. Let V ∈ repα Q be a general representation, then HomCQ(V, V ) = C.
But then, the map c in proposition 5.39 has a one-dimensional cokernel. But as the
image of c is contained in M0

α(C), this shows that

repα Q
0 c-- M0

α(C)

is surjective from which the claim follows. Let M = (Mi)i ∈ M0
α(C) and consider

the projection
µ−1

C (M)
π̃- repα Q

If U is a constructible GL(α)-stable subset of repα Q, then by an argument as in
lemma 5.41 we have that

dim π̃−1(U) ≤ µ(U) + α.α− χQ(α, α)

But then, decomposing repα Q into types τ of direct sums of indecomposables, it
follows from the assumption that µ−1

C (M) has dimension at most d. But then by
the dimension formula it must be equidimensional of dimension d whence flat. �
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5.7. Preprojective algebras.

In this section we will determine the n-smooth locus of the preprojective algebra
Π0. By the étale local description of section 4.5 it is clear that we need to control
the Ext1-spaces of representations of Π0.

Proposition 5.45. Let V and W be representations of Π0 of dimension vectors
α and β, then we have

dimC Ext1Π0
(V,W ) = dimC HomΠ0(V,W ) + dimC HomΠ0(W,V )− TQ(α, β)

Proof. It is easy to verify by direct computation that V has a projective
resolution as Π0-module which starts as

. . . -
⊕
i∈Qv

Π0vi⊗viV
f-

⊕
��������i��������j

a
oo

a∈Qd
a

Π0vj⊗viV
g-

⊕
i∈Qv

Π0vi⊗viV
h- V - 0

where f is defined by

f(
∑
i

pi ⊗mi) =
∑

��������i��������j
a
oo

a∈Qa

(pia∗ ⊗mi − pj ⊗ a∗mj)a − (pja⊗mj − pi ⊗ ami)a∗

where pi ∈ Π0vi and mi ∈ viV . The map g is defined on the summand correspond-
ing to an arrow ��������i��������j

a
oo in Qd by

g(pa⊗m) = (pa⊗m)i − (p⊗ am)j

for p ∈ Π0vj and m ∈ viV . the map h is the multiplication map. If we compute
homomorphisms to W and use the identification

HomΠ0(Π0vj ⊗ viV,W ) = HomC(viV, vjW )

we obtain a complex

0 -
⊕
i∈Qv

HomC(viV, viW ) -
⊕

��������i��������j
a
oo

a∈Qd
a

HomC(viV, vjW ) -
⊕
i∈Qv

HomC(viV, viW )

in which the left hand cohomology is HomΠ0(V,W ) and the middle cohomology
is Ext1Π0

(V,W ). Moreover, the alternating sum of the dimensions of the terms is
TQ(α, β). It remains to prove that the cokernel of the right hand side map has the
same dimension as HomΠ0(W,V ). But using the trace pairing to identify

HomC(M,N)∗ = HomC(N,M)

we obtain that the dual of this complex is⊕
i∈Qv

HomC(viW, viV ) -
⊕

��������i��������j
a
oo

a∈Qd
a

HomC(viW, vjV ) -
⊕
i∈Qv

HomC(viW, viV ) - 0

and, up to changing the sign of components in the second direct sum corresponding
to arrows which are not in Q, this is the same complex as the complex arising with
V and W interchanged. From this the result follows. �
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In order to determine the n-smooth locus we observe that the representation
space decomposes into a disjoint union and we have quotient morphisms

rep
n

Π0
=-

⊔
α=(a1,...,ak)
a1+...+ak=n

GLn ×GL(α) rep
α

Π0

issn Π0

πn

??
= -

⊔
α=(a1,...,ak)
a1+...+ak=n

issα Π0

tπα

??

Hence if ξ ∈ issα Π0 for ξ ∈ Smn Π0 it is necessary and sufficient that rep
α

Π0 is
smooth along O(Mξ) where Mξ is the semi-simple α-dimensional representation of
Π0 corresponding to ξ. Assume that ξ is of type τ = (e1, α1; . . . ; ez, αz), that is,

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ez
z

with Si a simple Π0-representation of dimension vector αi. Again, the normal
space to the orbit O(Mξ) is determined by Ext1Πo

(Mξ,Mξ) and can be depicted
by a local quiver setting (Qξ, αξ) where Qξ is a quiver on z vertices and where
αξ = ατ = (e1, . . . , ez). Repeating the arguments of section 4.5 we have

Lemma 5.46. With notations as above, ξ ∈ Smn Π0 if and only if

dim GL(α)×GL(αξ) Ext1Π0
(Mξ,Mξ) = dimMξ

rep
α

Π0

As we have enough information to compute both sides, we can prove :

Theorem 5.47. If ξ ∈ issα Π0 with α = (a1, . . . , ak) ∈ S0 and
∑
i ai = n, then

ξ ∈ Smn Π0 if and only if Mξ is a simple n-dimensional representation of Π0.

Proof. Assume that ξ is a point of semi-simple representation type τ =
(e1, α1; . . . ; ez, αz), that is,

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ez
z with dim(Si) = αi

and Si a simple Π0-representation. Then, by proposition 5.45 we have{
dimC Ext1Π0

(Si, Sj) = −TQ(αi, αj) i 6= j

dimC Ext1Π0
(Si, Si) = 2− TQ(αi, αi)

But then, the dimension of Ext1Π0
(Mξ,Mξ) is equal to

z∑
i=1

(2− TQ(αi, αi))e2i +
∑
i 6=j

eiej(−TQ(αi, αj) = 2
z∑
i=1

ei − TQ(α, α)

from which it follows immediately that

dim GL(α)×GL(αξ) Ext1Π0
(Mξ,Mξ) = α.α+

z∑
i=1

e2i − TQ(α, α)

On the other hand, as α ∈ S0 we know from theorem 5.44 that

dim rep
α

Π0 = α.α− 1 + 2pQ(α) = α.α− 1 + 2 + 2χQ(α, α) = α.α+ 1− TQ(α, α)

But then, equality occurs if and only if
∑
i e

2
i = 1, that is, τ = (1, α) or Mξ is a

simple n-dimensional representation of Π0. �
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In particular it follows that the preprojective algebra Π0 is never Quillen-
smooth. Further, as ~vi = (0, . . . , 1, 0, . . . , 0) are dimension vectors of simple repre-
sentations of Π0 it follows that Π0 is α-smooth if and only if α = ~vi for some i. In
chapter 8 we will determine the dimension vectors of simple representations of the
(deformed) preprojective algebras.

Example 5.48. Let Q be an extended Dynkin diagram and δQ the corresponding dimen-
sion vector. Then, we will show that δQ is the dimension vector of a simple representation and

δQ ∈ S0. Then, the dimension of the quotient variety

dim issδQ
Π0 = dim repδQ

Π0 − δQ.δQ + 1

= 2pQ(δQ) = 2

so it is a surface. The only other semi-simple δQ-dimensional representation of Π0 is the trivial

representation. By the theorem, this must be an isolated singular point of issδQ
Q. In fact, one

can show that issδQ
Π0 is the Kleinian singularity corresponding to the extended Dynkin diagram

Q.

5.8. Quantum groups.

In this section we will give another class of interesting noncommutative algebras
which are as singular as possible : quantum groups at root of unity. Throughout
we will use structural results on quantum groups which can be found in [19].

Let g be a semi-simple Lie algebra over C of rank r with Cartan matrix
C = (aij) ∈ Mr(Z) and vector d = (d1, . . . , dr) ∈ Nr+ of relative prime integers
such that d.C is symmetric.

The (simply connected form of the) quantised enveloping algebra Uε(g) is the
C-algebra with generators

{Ei, Fi,K±1
i | 1 ≤ i, j ≤ r}

satisfying the following relations for all 1 ≤ i, j ≤ r :

KiKj = KjKi KiK
−1
i = 1 = K−1

i Ki

KiEj = εdiaijEjKi

KiFj = ε−diaijFjKi

EiFj − FjEi = δij
Ki−K−1

i

εdi−ε−di

1−aij∑
s=0

(−1)s
[
1− aij
s

]
di

E
1−aij−s
i EjE

s
i = 0

1−aij∑
s=0

(−1)s
[
1− aij
s

]
di

F
1−aij−s
i FjF

s
i = 0

where the symbols in squarebrackets denote Gaussian binomial coefficients for
the parameter ε, see [19].

The Hopf structure on this algebra is given by defining for all 1 ≤ i ≤ r

∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei,∆(F ) = Fi ⊗K−1
i + 1⊗ Fi,∆(Ki) = Ki ⊗Ki

S(Ei) = −K−1
i Ei, S(F ) = −FiKi, S(Ki) = K−1

i

ε(Ei) = 0, ε(Fi) = 0, ε(Ki) = 1.
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Now, let ε be a primitive l-th root of unity, where l is odd and prime to 3 if g
contains components of type G2. We recall the following structural results on Uε(g)
from [19].

Uε(g) is an order with integrally closed center Zε in a central simple algebra of
dimension l2N where N is the number of positive roots of g. The commutator in
Uq(g) induces a nontrivial Poisson structure on Zε.

There exists a Poisson subalgebra Z0 of Zε satisfying the following properties :
(1) Z0 is a sub-Hopf algebra of Uε(g).
(2) Uε(g) is a free Z0-module of rank l2N+r.
(3) Zε is a free Z0-module of rank lr.

That is, we have the following inclusions

Uε(g)

Zε

�

l 2N

⊃

Z0

ldim g

∪

6

⊂

l
r

-

Being an affine commutative Hopf algebra, Z0 ' C[H] for an algebraic group
H which can be described in the following way. Let T be a maximal torus of the
simply connected Lie group G corresponding to g, and B± the corresponding Borel
subgroups. Then, we have a fiber diagram

H - B+

B−
?

pr−1
−

-- T

pr+

??

where pr± are the projections and pr−1
− = (−)−1 ◦pr−. The connection between H

and G is given by the map

σ : H -- G0 (h−, h+) 7→ h−1
− h+

which is an unramified cover of the big cell G0 of G of degree 2r.
There is an (infinite dimensional) group G̃ of analytic automorphisms of H

such that its orbits in H are of the form

σ−1(C ∩G0)

where C is the conjugacy class of a non-central element in G. These orbits are also
the symplectic leaves of H induced by the Poisson structure on Z0 = C[H].

In this section we investigate to what extend the inclusion of Hopf algebras
C[H] ⊂ - Uε(g) differs from a finite Hopf algebra extension between the coordinate
rings of irreducible algebraic groups.
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Recall the commutative situation. Let G be an irreducible algebraic group with
coordinate ring C[G]. Consider a subHopf algebra C[H] such that C[G] is a finite
C[H]-module. Corresponding to the inclusion of Hopf algebras C[H] ⊂ - C[G]
is a projection of varieties (or group-schemes) G -- H which is a finite étale
morphism, that is, unramified and smooth.

Since there is no suitable substitute for the variety corresponding to Uε(g), we
will give a different geometric description of the extension C[H] ⊂ - C[G] which
can be generalized to the non-commutative setting.

Consider the trace map tr on the finite Galois extension of degree d between
the function fields C(H) ⊂ - C(G). As C[G] and C[H] are integrally closed, tr
restricts to a linear map on C[G] with image tr C[G] = C[H]. Remark that tr
satisfies the formal Cayley-Hamilton identity for d× d matrices. That is, C[G] is a
Cayley-Hamilton algebra of degree d with a trace map tr such that tr C[G] = C[H].

Consider the affine algebraic variety reptr
d

C[G] with points the trace preserving

algebra maps C[G]
ρ- Md(C).

By the reconstruction results of section 2 we can recover C[G] and C[H] from
the GLd-variety reptr

d
C[G].

(1) C[H] is the ring of polynomial invariants C[reptr
d

C[G]]GLd .
(2) C[G] is the ring of GLd-equivariant maps reptr

d
C[G] - Md(C).

By the first fact, we have an algebraic quotient map

reptr
d

C[G]
π-- H

Consider h ∈ H with corresponding maximal ideal mh / C[H]. The fiber π−1(h)
contains a unique closed orbit which is the orbit of the unique (trace preserving)
d-dimensional semi-simple C[G]/mhC[G]-module. The full fiber π−1(h) consists of
all d-dimensional (trace preserving) C[G]/mhC[G]-modules.

Because G -- H is an étale map, C[G]/mhC[G] ' C⊕. . .⊕C (d components)
is a semi-simple algebra and thus π−1(h) is a single orbit isomorphic to GLd/Td
where Td is a maximal torus of GLd. Hence, reptr

d
C[G] is a principal fibration over

H with fibres the homogeneous space GLd/Td.

Proposition 5.49. Let C[H] ⊂ - C[G] be a finite Hopf algebra extension of
degree d, then reptr

d
C[G] is a smooth (in particular, reduced) GLd-variety with

algebraic (even geometric) quotient variety H.

We will investigate whether this result remains true if we replace C[G] by a
non-commutative Hopf algebra such as Uε(g).

We can define a trace map on Uε(g) by taking the composition of the reduced
trace map and the trace map of the extension C[H] ⊂ - Zε. Again, using the fact
that both Zε and Z0 = C[H] are integrally closed, this trace map tr is well defined
with image tr Uε(g) = C[H]. This time, tr satisfies the formal Cayley-Hamilton
identity for d× d matrices where d = lN+r.

Again, we define the affine algebraic variety reptr
d
Uε(g) of trace preserving

algebra maps Uε(g)
ρ- Md(C). This variety has a natural GLd-action and orbits

correspond to isomorphism classes of d-dimensional trace preserving Uε(g)-modules.
We recover Uε(g) and C[H] from the GLd-variety XUε(g).

(1) C[H] is the ring of polynomial invariants C[reptr
d
Uε(g)]GLd .
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(2) Uε(g) is the ring of GLd-equivariant maps reptr
d
Uε(g) - Md(C).

We have an algebraic quotient variety

reptr
d
Uε(g)

π-- H

and the description of the fibers π−1(h) is as above : it consists of all d-dimensional
trace preserving Uh = Uε(g)/mhUε(g)-modules and there is a unique closed orbit
corresponding to a semi-simple Uε(g)-module which we denote by

Mss
h = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si is a simple Uε(g)-module of dimension di occurring in Mss
h with

multiplicity ei. Clearly, d =
∑
diei.

Recall that h is said to be a d-smooth point of Uε(g) if and only if reptr
d
Uε(g)

is smooth along π−1(h), or equivalently, is smooth in Mss
h .

The d-smooth locus Smtr Uε(g) of Uε(g) over C[H] is the subset of all h ∈ H
such that Uε(g) is smooth in h.

An alternative geometric description of Uε(g) is as follows. Because Uε(g) is a
free C[H]-module of rank t = ldim g, every Uh is a C-algebra of dimension t. This
determines a map

H
φ- Algt

where Algt is the variety of (structure constants of) t-dimensional associative al-
gebras with unit. One can recover Uε(g) from φ by taking φ∗ of the generic
t-dimensional algebra over Algt.

For sufficiently general h we have that Uh 'MN (C)⊕ . . .⊕MN (C) (r copies)
a semi-simple algebra. This entails that φ(H) is contained in the irreducible com-
ponent of Algt which is the closure of the GLt-orbit O of MN (C) ⊕ . . . ⊕MN (C).
We define φ−1(O) as the separability locus of Uε(g) over C[H] and denote it with
Sep Uε(g)/C[H]. Clearly, it is the Zariski open subset ofH consisting of those h such
that Uh is a semi-simple algebra (and hence isomorphic to MN (C)⊕ . . .⊕MN (C)).
As the terminology suggests, it is also the locus over which Uε(g) is a separable
C[H]-algebra. Observe that this is a natural extension of the notion of the Azu-
maya locus.

As in the commutative case, we see that π−1(h) consists of a single orbit when
h ∈ Sep Uε(g)/C[H] and that this orbit is the homogeneous space GLd/Tr where Tr
is the center of GLN × . . .×GLN ⊂ - GLd. Hence, XUε(g) is a principal fibration
and therefore smooth over Sep Uε(g)/C[H]. Thus,

Sep Uε(g)/C[H] ⊂ - Smtr Uε(g)/C[H].

For general Hopf algebras, one expects the smooth locus to be larger. For example,
if Uε(b) is the quantum Borel of sl2 it follows from example 5.15 that its smooth
locus is the whole of B. However, we will prove :

Theorem 5.50. The quantised enveloping algebra Uε(g) is as singular as pos-
sible. That is,

Sm Uε(g)/C[G] = Sep Uε(g)/C[H]

A similar result holds for Oε(G), that is, the quantum function algebra of G.
We will outline the strategy of proof in the case of Uε(g). Assume that Uε(g) is

smooth in h then the normal space to O(Mss
h ) is given by a certain quiver setting

(Qh, αh). Because the quotient variety issd Uε(g) = H is smooth in h it follows
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from the slice results that the ring of polynomial invariants C[repαh
Qh]GL(αh) of

this quiver setting must be a polynomial algebra.
The problem to determine all coregular (marked) quiver situations is a hard

one. However, we will prove the following rough classification.

Theorem 5.51. Let Q• be a strongly connected marked quiver and α =
(a1, . . . , ak) a dimension vector.
If the ring of polynomial invariants C[repα Q•]GL(α) is a polynomial ring, then we
are in one of the following situations :

(1) type 1 : mini ai ≤ 1 or
(2) type 2 : mini ai = 2 and Q• has the form Ãk(+1) :

(/).*-+, (/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,(/).*-+,

(/).*-+,

(/).*-+,
//

??�����

OO

__?????

oo

����
��

�

��

��?
??

??

����
��
��
��
��
��
��
��
�

that is, the extended Dynkin diagram with cyclic orientation and one extra
arrow (which may degenerate to a cycle and loop or to two loops, possibly
marked), or

(3) type 3 : mini ai ≥ 2 and the marked quiver Q• is the extended Dynkin
diagram Ãk with cyclic orientation

(/).*-+, (/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,(/).*-+,

(/).*-+,

(/).*-+,
//

??�����

OO

__?????

oo

����
��

�

��

��?
??

??

(which may degenerate to one loop possibly marked).

Proof. Let us assume that mini ai ≥ 2. Because Q• is strongly connected
(1, . . . , 1) is the dimension vector of a simple representation and there are infinitely
many isoclasses of such representations.
Hence, in repα Q• there are semi-simple representations of type

τ = (1, (1, . . . , 1); 1, (1, . . . , 1); a1 − 2, δ1; . . . ; ak − 2, δk)

The local marked quiver Q•τ has at most k + 2 vertices and the full subquiver on
the first two vertices is of the following form

18?9>:=;< 18?9>:=;<
uu

mm

a

))

a

ii
��

•

DD

��

•

ZZ
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where there are a directed arrows between the vertices with

a = −χQ((1, . . . , 1), (1, . . . , 1)) =
∑
i

(
∑
j

aij + aii +mii − 1)

and u (resp. m) loops (resp. marked loops) in the vertices where

u = 1− χ1
Q•((1, . . . , 1), (1, . . . , 1)) =

∑
i,j aij +

∑
i aii − k + 1

m = −χ2
Q•((1, . . . , 1), (1, . . . , 1)) =

∑
imii

and the dimension vector ατ | {w1, w2} = (1, 1). We claim that∑
i

(
∑
j

aij + aii +mii − 1) ≤ 1

If not, we have the following subquiver B in Q•τ :

1(/).*-+, 1(/).*-+,u
''

v

  

x

gg

y

__

and we would have in C[repατ
Q•τ ]

GL(ατ ) the invariants ux, uy, vx and vy which
satisfy the relation (ux)(vy) = (uy)(vx). But then, the ring of invariants of (Q•τ , ατ )
cannot be a polynomial ring hence neither can that be of (Q•, α) by the slice results.

Therefore, at most one of the
∑
j aij + aii +mii − 1 can be equal to one. Let

us consider the different possibilities.

(a): There is just one vertex, in which case a11 +m11 − 1 ≤ 1 and we have the
one or two loop quiver (one or both of the loops may be marked). If there is one
(marked) loop there is no restriction on the dimension vector α = (a1). If there
are two (marked) loops, it is well known that the ring of polynomial invariants is a
polynomial ring if and only if a1 ≤ 2, for example by an adaptation of the argument
given below.

(b) : There are at least two vertices and all terms
∑
j aij + aii +mii − 1 = 0.

As Q• is strongly connected this implies that all aii = mii = 0 and for each i there
is a unique arrow to another vertex.

Hence, we are in the case Q• = Ãk (k ≥ 2) and there are no restrictions on the
dimension vector for the invariants to be a polynomial ring.

(c) : There are at least two vertices and for a unique vertex vi the sum
∑
i aij+

aii +mii − 1 = 1, then we are in the case that Q• = Ãk(+1) with the extra arrow
possibly a (marked) loop starting in vi.

In this case we still have to prove that minj aj ≤ 2. The case of an extra
(marked) loop in vi reduces easily to the two loop case treated before. So we may
assume that there is a unique i′ 6= i with vi′ the end point of the extra arrow.

First we reduce to the case of Ã4(+1). Fix the following four vertices : z1 = vi,
z3 = vi′ , z2 the vertex vu on the oriented path from vi to vi′ where au is minimal
and likewise z4 is the vertex vu′ on the oriented path from vi′ to vi where au′ is
minimal.

Observe that degenerate cases are possible if either ai or ai′ is minimal but this
only simplifies the argument given below. Let β = (ai, au, ai′ , au′) then we claim
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that
C[repα Ãk(+1)]GL(α) ' C[repβ Ã4(+1)]GL(β)

Indeed, classical invariant theory (see for example [45, Thm. II.4.1]) tells us that

(Ma×b(C)⊕Mb×cC))/GLb 'Ma×c(C)

if b ≥ min(a, c). Iterating this reduction we obtain the claim.
Therefore, we only have to exclude the special case when Q• is of the following

form

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+, ::uuuuuuuuuuuu

ddIIIIIIIIIIIIzzuuuuuuuuuuuu

$$I
IIIIIIIIIII

��

with χ =


1 −1 −1 0
0 1 −1 0
0 0 1 −1
−1 0 0 1



and the dimension vector β = (b1, b2, b3, b4) satisfies min bi ≥ 3.
Then, one verifies that (2, 1, 2, 2) and (1, 1, 1, 1) are dimension vectors of simple

representations and by assumption there are semi-simple representations in repβ Q•

of type

τ = (1, (2, 1, 2, 2); 1, (1, 1, 1, 1); b1 − 3, δ1; b2 − 2, δ2; b3 − 3, δ3; b4 − 3, δ4)

Calculating the local quiver Q•τ we observe that it again contains a subquiver of
the form B and we can repeat the argument given above to exclude this case. �

Clearly, the first case is the hardest to classify. Even when all the dimension
components are equal to one, a full classification of the settings where the ring of
invariants is a polynomial ring is unknown at the moment.

This result drastically restricts the shapes of the strongly connected components
of the quiver Qh and of the dimension vector αh.

Let Xε be the affine variety determined by the center Zε of Uε(g) and let
{x1, . . . , xl} be the set of points of Xε lying over h. One can prove, see [57, §4] that
each xi determines a strongly connected component qi of Qh and that the restriction
of αh to this component encodes the multiplicity of pi over h. In particular, if xi
has multiplicity ni over h then all components of αh | qi are multiples of ni.

From this one can then show that only the first case of theorem 5.51 can occur
and only if the multiplicity of pi is equal to one, that is, if pi is unramified over h.
Therefore, we have

Theorem 5.52. With notations as above

Sep Uε(g)/C[H] ⊂ - Sm Uε(g)/C[H] ⊂ - Sm Zε/C[H]

Here, Sm Zε/C[H] is the usual smooth locus of the commutative extension
C[H] ⊂ - Zε. Therefore, if Uε(g) is smooth in h, then there are precisely lr points
of Xε lying over h and Xε is smooth in all of them.

K. Brown and K. Goodearl have proved in [10] that the smooth locus of Xε

coincides with the Azumaya locus of Uε(g) over Zε. But then, Uh 'MN (C)⊕ . . .⊕
MN (C) (s copies) whence Uε(g) is separable over C[H] in h, finishing the (outline)
of the proof of theorem 5.50. For more details we refer to [57].
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CHAPTER 6

Nullcones.

6.1. Cornering matrices.

In this section we will outline the main idea of the Hesselink stratification of
the nullcone [30] in the generic case, that is, the action of GLn by simultaneous
conjugation on m-tuples of matrices Mm

n = Mn⊕ . . .⊕Mn. With Nullmn we denote
the nullcone of this action

Nullmn = {x = (A1, . . . , Am) ∈Mm
n | 0 = (0, . . . , 0) ∈ O(x)}

It follows from the Hilbert criterium 2.17 that x = (A1, . . . , Am) belongs to the
nullcone if and only if there is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).(A1, . . . , Am) = (0, . . . , 0).

We recall from proposition 2.14 that any one-parameter subgroup of GLn is conju-
gated to one determined by an integral n-tuple (r1, . . . , rn) ∈ Zn by

λ(t) =

t
r1 0

. . .
0 trn


Moreover, permuting the basis if necessary, we can conjugate this λ to one where
the n-tuple if dominant , that is, r1 ≥ r2 ≥ . . . ≥ rn. By applying permutation
Jordan-moves , that is, by simultaneously interchanging certain rows and columns
in all Ai, we may therefore assume that the limit-formula holds for a dominant
one-parameter subgroup λ of the maximal torus

Tn ' C∗ × . . .× C∗︸ ︷︷ ︸
n

= {

c1 0
. . .

0 cn

 | ci ∈ C∗ } ⊂ - GLn

of GLn. Computing its action on a n× n matrix A we obtaint
r1 0

. . .
0 trn


a11 . . . a1n

...
...

an1 . . . ann


t
−r1 0

. . .
0 r−rn

 =

t
r1−r1a11 . . . tr1−rna1n

...
...

trn−r1an1 . . . trn−rnann


But then, using dominance ri ≤ rj for i ≥ j, we see that the limit is only defined
if aij = 0 for i ≥ j, that is, when A is a strictly upper triangular matrix. We have
proved the first ’cornering’ result.

Lemma 6.1. Any m-tuple x = (A1, . . . , Am) ∈ Nullmn has a point in its orbit
O(x) under simultaneous conjugation x′ = (A′1, . . . , A

′
m) with all A′i strictly upper

triangular matrices. In fact permutation Jordan-moves suffice to arrive at x′.

231
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For specific m-tuples x = (A1, . . . , Am) it might be possible to improve on
this result. That is, we want to determine the smallest ’corner’ C in the upper
right hand corner of the matrix, such that all the component matrices Ai can be
conjugated simultaneously to matrices A′i having only non-zero entries in the corner
C

C =

and no strictly smaller corner C ′ can be found with this property. Our first task will
be to compile a list of the relevant corners and to define an order relation on this
set. Consider the weight space decomposition of Mm

n for the action by simultaneous
conjugation of the maximal torus Tn,

Mm
n = ⊕1≤i,j≤nM

m
n (πi − πj) = ⊕1≤i,j≤nC⊕mπi−πj

where c = diag(c1, . . . , cn) ∈ Tm acts on any element of Mm
n (πi−πj) by multiplica-

tion with cic−1
j , that is, the eigenspace Mm

n (πi−πj) is the space of the (i, j)-entries
of the m-matrices. We call

W = {πi − πj | 1 ≤ i, j ≤ n}

the set of Tn-weights of Mm
n . Let x = (A1, . . . , Am) ∈ Nullmn and consider the

subset Ex ⊂ W consisting of the elements πi − πj such that for at least one of the
matrix components Ak the (i, j)-entry is non-zero. Repeating the argument above,
we see that if λ is a one-parameter subgroup of Tn determined by the integral
n-tuple (r1, . . . , rn) ∈ Zn such that lim λ(t).x = 0 we have

∀ πi − πj ∈ Ex we have ri − rj ≥ 1

Conversely, let E ⊂ W be a subset of weights, we want to determine the subset

{s = (s1, . . . , sn) ∈ Rn | si − sj ≥ 1 ∀ πi − πj ∈ E }

and determine a point in this set, minimal with respect to the usual norm

‖ s ‖=
√
s21 + . . .+ s2n

Let s = (s1, . . . , sn) attain such a minimum. We can partition the entries of s in a
disjoint union of strings

{pi, pi + 1, . . . , pi + ki}

with ki ∈ N and subject to the condition that all the numbers pij
def
= pi + j with

0 ≤ j ≤ ki occur as components of s, possibly with a multiplicity that we denote
by aij . We call a string stringi = {pi, pi+1, . . . , pi+ki} of s balanced if and only if

∑
sk∈stringi

sj =
ki∑
j=0

aij(pi + j) = 0

In particular, all balanced strings consists entirely of rational numbers. We have
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Lemma 6.2. Let E ⊂ W, then the subset of Rn determined by

RnE = { (r1, . . . , rn) | ri − rj ≥ 1 ∀ πi − πj ∈ E}

has a unique point sE = (s1, . . . , sn) of minimal norm ‖ sE ‖. This point is deter-
mined by the characteristic feature that all its strings are balanced. In particular,
sE ∈ Qn.

Proof. Let s be a minimal point for the norm in RnE and consider a string of s
and denote with S the indices k ∈ {1, . . . , n} such that sk ∈ string. Let πi−πj ∈ E,
then if only one of i or j belongs to S we have a strictly positive number aij

si − sj = 1 + rij with rij > 0

Take ε0 > 0 smaller than all rij and consider the n-tuple

sε = s+ ε(δ1S , . . . , δnS) with δkS = 1 if k ∈ S and 0 otherwise

with | ε |≤ ε0. Then, sε ∈ RnE for if πi − πj ∈ E and i and j both belong to S or
both do not belong to S then (sε)i − (sε)j = si − sj ≥ 1 and if one of i or j belong
to S, then

(sε)i − (sε)j = 1 + rij ± ε ≥ 1

by the choice of ε0. However, the norm of sε is

‖ sε ‖=
√
‖ s ‖ +2ε

∑
k∈S

sk + ε2#S

Hence, if the string would not be balanced,
∑
k∈S sk 6= 0 and we can choose ε small

enough such that ‖ sε ‖<‖ s ‖, contradicting minimality of s. �

For given n we have the following algorithm to compile the list Sn of all
dominant n-tuples (s1, . . . , sn) (that is, si ≤ sj whenever i ≥ j) having all its
strings balanced.

• List all Young-diagrams Yn = {Y1, . . .} having ≤ n boxes.
• For every diagram Yl fill the boxes with strictly positive integers subject

to the rules
(1) the total sum is equal to n
(2) no two rows are filled identically
(3) at most one row has length 1

This gives a list Tn = {T1, . . .} of tableaux.
• For every tableau Tl ∈ Tn, for each of its rows (a1, a2, . . . , ak) find a

solution p to the linear equation

a1x+ a2(x+ 1) + . . .+ ak(x+ k) = 0

and define the
∑
ai-tuple of rational numbers

(p, . . . , p︸ ︷︷ ︸
a1

, p+ 1, . . . , p+ 1︸ ︷︷ ︸
a2

, . . . p+ k, . . . , p+ k︸ ︷︷ ︸
ak

)

Repeating this process for every row of Tl we obtain an n-tuple, which we
then order.

The list Sn will be the combinatorial object underlying the relevant corners
and the stratification of the nullcone.
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Example 6.3. (Sn for small n)
For n = 2, we have 1 1 giving ( 1

2
,− 1

2
) and 2 giving (0, 0). For n = 3 we have five types

S3 =

tableau s1 s2 s3 ‖ s ‖2

1 1 1 1 0 −1 2

1 2 1
3

1
3

− 2
3

2
3

2 1 2
3

− 1
3

− 1
3

2
3

1 1
1 1

2
0 − 1

2
1
2

3 0 0 0 0

S4 has eleven types

S4 =

tableau s1 s2 s3 s4 ‖ s ‖2

1 1 1 1 3
2

1
2

− 1
2

− 3
2

5

2 1 1 5
4

1
4

− 3
4

− 3
4

11
4

1 1 2 3
4

3
4

− 1
4

− 5
4

11
4

1 2 1 1 0 0 −1 2

2 2 1
2

1
2

− 1
2

− 1
2

1

3 1 3
4

− 1
4

− 1
4

− 1
4

3
4

1 3 1
4

1
4

1
4

− 3
4

3
4

1 2
1 1

3
1
3

0 − 2
3

2
3

2 1
1 2

3
0 − 1

3
− 1

3
2
3

1 1
2 1

2
0 0 − 1

2
1
2

4 0 0 0 0 0

Observe that we ordered the elements in Sn according to ‖ s ‖. The reader is invited to verify

that S5 has 28 different types.

To every s = (s1, . . . , sn) ∈ Sn we associate the following data
• the corner Cs is the subspace of Mm

n consisting of those m tuples of
n × n matrices with zero entries except perhaps at position (i, j) where
si − sj ≥ 1. A partial ordering is defined on these corners by the rule

Cs′ < Cs ⇔ ‖ s′ ‖ < ‖ s ‖

• the parabolic subgroup Ps which is the subgroup of GLn consisting of
matrices with zero entries except perhaps at entry (i, j) when si− sj ≥ 0.
• the Levi subgroup Ls which is the subgroup of GLn consisting of matrices

with zero entries except perhaps at entry (i, j) when si− sj = 0. Observe
that Ls =

∏
GLaij where the aij are the multiplicities of pi + j.

Example 6.4. Using the sequence of types in the previous example, we have that the

relevant corners and subgroup for 3× 3 matrices are

Cs

Ps

t t tt tt t t tt t tt t t tt tt t t t tt tt t t tt t tt t t
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Ls

t t t t tt t t t t tt t t t t t t tt t tt t t
For 4× 4 matrices the relevant corners are

Returning to the corner-type of an m-tuple x = (A1, . . . , Am) ∈ Nullmn , we have
seen that Ex ⊂ W determines a unique sEx

∈ Qn which up to permuting the entries
an element s of Sn. As permuting the entries of s translates into permuting rows
and columns in Mn(C) we have

Theorem 6.5. Every x = (A1, . . . , Am) ∈ Nullmn can be brought by permuta-
tion Jordan-moves to an m-tuple x′ = (A′1, . . . , A

′
m) ∈ Cs. Here, s is the dominant

reordering of sEx
with Ex ⊂ W the subset πi−πj determined by the non-zero entries

at place (i, j) of one of the components Ak. The permutation of rows and columns
is determined by the dominant reordering.

The m-tuple s (or sEx) determines a one-parameter subgroup λs of Tn where
λ corresponds to the unique n-tuple of integers

(r1, . . . , rn) ∈ N+s ∩ Zn with gcd(ri) = 1

For any one-parameter subgroup µ of Tn determined by an integral n-tuple µ =
(a1, . . . , an) ∈ Zn and any x = (A1, . . . , An) ∈ Nullmn we define the integer

m(x, µ) = min {ai − aj | x contains a non-zero entry in Mm
n (πi − πj) }

From the definition of RnE it follows that the minimal value sE and λsE
is

sEx
=

λsEx

m(x, λsEx
)

and s =
λs

m(x, λs)

We can now state to what extend λs is an optimal one-parameter subgroup of Tn.

Theorem 6.6. Let x = (A1, . . . , Am) ∈ Nullmn and let µ be a one-parameter
subgroup contained in Tn such that lim

t→0
λ(t).x = 0, then

‖ λsEx
‖

m(x, λsEx
)
≤ ‖ µ ‖
m(x, µ)

The proof follows immediately from the observation that µ
m(x,µ) ∈ RnEx

and
the minimality of sEx

. Phrased differently, there is no simultaneous reordering of
rows and columns that admit an m-tuple x” = (A”1, . . . , A”m) ∈ Cs′ for a corner
Cs′ < Cs. In section 4 we will improve this result.
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6.2. General subrepresentations.

In the study of the Hesselink stratification of the nullcone and several moduli
space problems, it is crucial to determine the dimension vectors of general subrep-
resentations . It follows from theorem 4.49 that this problem is equivalent to the
calculation of ext(α, β). An inductive algorithm to do this was discovered by A.
Schofield [70].

Recall that α ⊂ - β iff a general representation W ∈ repβ Q contains a
subrepresentation S ⊂ - W of dimension vector α. Similarly, we denote β -- γ
if and only if a general representation W ∈ repβ Q has a quotient-representation
W -- T of dimension vector γ. As before, Q will be a quiver on k-vertices
{v1, . . . , vk} and we denote dimension vectors α = (a1, . . . , ak), β = (b1, . . . , bk)
and γ = (c1, . . . , ck). We will first determine the rank of a general homomorphism
V - W between representations V ∈ repα Q and W ∈ repβ Q. We denote

Hom(α, β) = ⊕ki=1Mbi×ai
and Hom(V, β) = Hom(α, β) = Hom(α,W )

for any representations V and W as above. With these conventions we have

Lemma 6.7. There is an open subset Homm(α, β) ⊂ - repα Q× repβ Q and

a dimension vector γ
def
= rk hom(α, β) such that for all (V,W ) ∈ Hommin(α, β)

• dimC HomCQ(V,W ) is minimal, and
• {φ ∈ HomCQ(V,W ) | rk φ = γ} is a non-empty Zariski open subset of
HomCQ(V,W ).

Proof. Consider the subvariety HomQ(α, β) of the trivial vectorbundle

HomQ(α, β) ⊂- Hom(α, β)× repα Q× repβ Q

repα Q× repβ Q

pr

??

Φ

-

of triples (φ, V,W ) such that V
φ- W is a morphism of representations of Q.

The fiber Φ−1(V,W ) = HomCQ(V,W ). As the fiber dimension is upper semi-
continuous, there is an open subset Hommin(α, β) of repα Q×repβ Q consisting of
points (V,W ) where dimC HomCQ(V,W ) is minimal. For given dimension vector
δ = (d1, . . . , dk) we consider the subset

HomQ(α, β, δ) = {(φ, V,W ) ∈ HomQ(α, β) | rk φ = δ} ⊂ - HomQ(α, β)

This is a constructible subset of HomQ(α, β) and hence there is a dimension vector
γ such that HomQ(α, β, γ) ∩ Φ−1(Hommin(α, β)) is constructible and dense in
Φ−1(Hommin(α, β)). But then,

Φ(HomQ(α, β, γ) ∩ Φ−1(Hommin(α, β)))

is constructible and dense in Hommin(V,W ). Therefore it contains an open subset
Homm(V,W ) satisfying the requirements of the lemma. �

Lemma 6.8. Assume we have short exact sequences of representations of Q{
0 - S - V - X - 0
0 - Y - W - T - 0
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then there is a natural onto map

Ext1CQ(V,W ) -- Ext1CQ(S, T )

Proof. By lemma 4.40 we have surjective maps

Ext1CQ(V,W ) -- Ext1CQ(V, T ) -- Ext1CQ(S, T )

from which the assertion follows. �

Theorem 6.9. Let γ = rk hom(α, β) (with notations as in lemma 6.7), then

(1) α− γ ⊂ - α -- γ ⊂ - β -- β − γ
(2) ext(α, β) = −χQ(α− γ, β − γ) = ext(α− γ, β − γ)

Proof. The first statement is obvious from the definitions, for if γ =
rk hom(α, β), then a general representation of dimension α will have a quotient-
representation of dimension γ (and hence a subrepresentation of dimension α− γ)
and a general representation of dimension β will have a subrepresentation of di-
mension γ (and hence a quotient-representation of dimension β − γ.

The strategy of the proof of the second statement is to compute the dimension
of the subvariety of Hom(α, β)× repα × repβ × repγ defined by

Hfactor = {(φ, V,W,X) |

V
φ - W

X = Im φ
⊂

-

--

factors as representations }

in two different ways. Consider the intersection of the open set Homm(α, β) deter-
mined by lemma 6.7 with the open set of couples (V,W ) such that dim Ext(V,W ) =
ext(α, β) and let (V,W ) lie in this intersection. In the previous section we have
proved that

dim Grassγ(W ) = χQ(γ, β − γ)

Let H be the subbundle of the trivial vectorbundle over Grassγ(W )

H ⊂ - Hom(α,W )×Grassγ(W )

Grassγ(W )

??
--

consisting of triples (φ,W,U) with φ : ⊕iC⊕ai - W a linear map such that
Im(φ) is contained in the subrepresentation U ⊂ - W of dimension γ. That is,
the fiber over (W,U) is Hom(α,U) and therefore has dimension

∑k
i=1 aici. With

Hfull we consider the open subvariety of H of triples (φ,W,U) such that Im φ = U .
We have

dim Hfull =
k∑
i=1

aici + χQ(γ, β − γ)
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But then, Hfactor is the subbundle of the trivial vectorbundle over Hfull

Hfactor ⊂- repα Q×Hfull

Hfull

??

π

--

consisting of quadruples (V, φ,W,X) such that V
φ- W is a morphism of repre-

sentations, with image the subrepresentation X of dimension γ. The fiber of π over
a triple (φ,W,X) is determined by the property that for each arrow ��������i��������j

aoo

the following diagram must be commutative, where we decompose the vertex spaces
Vi = Xi ⊕Ki for K = Ker φ

Xi ⊕Ki

24A B
C D

35
- Xj ⊕Kj

Xi

hrr
ci

0
i

??

A
- Xj

hrr
cj

0
i

??

where A is fixed, giving the condition B = 0 and hence the fiber has dimension
equal to ∑

��������i��������j
aoo

(ai − ci)(aj − cj) +
∑

��������i��������j
aoo

ci(aj − cj) =
∑

��������i��������j
aoo

ai(aj − cj)

This gives our first formula for the dimension of Hfactor

Hfactor =
k∑
i=1

aici + χQ(γ, β − γ) +
∑

��������i��������j
aoo

ai(aj − cj)

On the other hand, we can consider the natural map Hfactor Φ- repα Q defined
by sending a quadruple (V, φ,W,X) to V . the fiber in V is given by all quadruples
(V, φ,W,X) such that V

φ- W is a morphism of representations with Im φ = X
a representation of dimension vector γ, or equivalently

Φ−1(V ) = {V φ- W | rk φ = γ}

Now, recall our restriction on the couple (V,W ) giving at the beginning of the
proof. There is an open subset max of repα Q of such V and by construction
max ⊂ - Im Φ, Φ−1(max) is open and dense in Hfactor and the fiber Φ−1(V )
is open and dense in HomCQ(V,W ). This provides us with the second formula for
the dimension of Hfactor

dim Hfactor = dim repα Q+ hom(α,W ) =
∑

��������i��������j
aoo

aiaj + hom(α, β)
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Equating both formulas we obtain the equality

χQ(γ, β − γ) +
k∑
i=1

aici −
∑

��������i��������j
aoo

aicj = hom(α, β)

which is equivalent to

χQ(γ, β − γ) + χQ(α, γ)− χQ(α, β) = ext(α, β)

Now, for our (V,W ) we have that Ext(V,W ) = ext(α, β) and we have exact se-
quences of representations

0 - S - V - X - 0 0 - X - W - T - 0

and using lemma 6.8 this gives a surjection Ext(V,W ) -- Ext(S, T ). On the
other hand we always have from the homological interpretation of the Euler form
the first inequality

dimC Ext(S, T ) ≥ −χQ(α− γ, β − γ) = χQ(γ, β − γ)− χQ(α, β) + χQ(α, γ)

= ext(α, β)

As the last term is dimC Ext(V,W ), this implies that the above surjection must be
an isomorphism and that

dimC Ext(S, T ) = −χQ(α− γ, β − γ) whence dimC Hom(S, T ) = 0

But this implies that hom(α − γ, β − γ) = 0 and therefore ext(α − γ, β − γ) =
−χQ(α− γ, β − γ). Finally,

ext(α− γ, β − γ) = dim Ext(S, T ) = dim Ext(V,W ) = ext(α, β)

finishing the proof. �

Theorem 6.10. For all dimension vectors α and β we have

ext(α, β) = max
α′ ⊂ - α
β -- β′

− χQ(α′, β′)

= max
β -- β”

− χQ(α, β”)

= max
α” ⊂ - α

− χQ(α”, β)

Proof. Let V and W be representation of dimension vector α and β such that
dim Ext(V,W ) = ext(α, β). Let S ⊂ - V be a subrepresentation of dimension α′

and W -- T a quotient representation of dimension vector β′. Then, we have

ext(α, β) = dimC Ext(V,W ) ≥ dimC Ext(S, T ) ≥ −χQ(α′, β′)

where the first inequality is lemma 6.8 and the second follows from the interpreta-
tion of the Euler form. Therefore, ext(α, β) is greater or equal than all the terms
in the statement of the theorem. The foregoing theorem asserts the first equality,
as for rk hom(α, β) = γ we do have that ext(α, β) = −χQ(α− γ, β − γ).

In the proof of the above theorem, we have found for sufficiently general V and
W an exact sequence of representations

0 - S - V - W - T - 0
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where S is of dimension α − γ and T of dimension β − γ. Moreover, we have a
commuting diagram of surjections

Ext(V,W ) -- Ext(V, T )

Ext(S,W )

??
-- Ext(S, T )

??

...............................-

and the dashed map is an isomorphism, hence so are all the epimorphisms. There-
fore, we have{

ext(α, β − γ) ≤ dim Ext(V, T ) = dim Ext(V,W ) = ext(α, β)
ext(α− γ, β) ≤ dim Ext(S,W ) = dim Ext(V,W ) = ext(α, β)

Further, let T ′ be a sufficiently general representation of dimension β − γ, then it
follows from Ext(V, T ′) -- Ext(S, T ) that

ext(α− γ, β − γ) ≤ dim Ext(S, T ′) ≤ dim Ext(V, T ′) = ext(α, β − γ)

but the left term is equal to ext(α, β) by the above theorem. But then, we have
ext(α, β) = ext(α, β−γ). Now, we may assume by induction that the theorem holds
for β−γ. That is, there exists β−γ -- β” such that ext(α, β−γ) = −χQ(α, β”).
Whence, β -- β” and ext(α, β) = −χQ(α, β”) and the middle equality of the
theorem holds. By a dual argument so does the last. �

This gives us the following inductive algorithm to find all the dimension vectors
of general subrepresentations. Take a dimension vector α and assume by induction
we know for all β < α the set of general subrepresentations β′ ⊂ - β. Then,
β ⊂ - α if and only if

0 = ext(β, α− β) = max
β′ ⊂ - β

− χQ(β′, α− β)

where the first equality comes from theorem 4.49 and the last from the above
theorem.

6.3. Semistable representations.

Let Q be a quiver on k vertices {v1, . . . , vk} and fix a dimension vector α. So
far, we have considered the algebraic quotient map

repα Q -- issα Q

classifying closed GL(α)-orbits in repα Q, that is, isomorphism classes of semi-
simple representations of dimension α. We have seen that the invariant polynomial
maps are generated by traces along oriented cycles in the quiver. Hence, if Q has no
oriented cycles, the quotient variety issα Q is reduced to one point corresponding
to the semi-simple

S⊕a1
1 ⊕ . . .⊕ S⊕ak

k

where Si is the trivial one-dimensional simple concentrated in vertex vi. Still, in
these cases one can often classify nice families of representations.
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Example 6.11. Consider the quiver setting

��������1��������1

x

$$y //

z

::

Then, repα Q = C3 and the action of GL(α) = C∗×C∗ is given by (λ, µ).(x, y, z) = (λ
µ
x, λ
µ
y, λ
µ
z).

The only closed GL(α)-orbit in C3 is (0, 0, 0) as the one-parameter subgroup λ(t) = (t, 1) has the

property
lim
t→0

λ(t).(x, y, z) = (0, 0, 0)

so (0, 0, 0) ∈ O(x, y, z) for any representation (x, y, z). Still, if we trow away the zero-
representation, then we have a nice quotient map

C3 − {(0, 0, 0)} π-- P2 (x, y, z) 7→ [x : y : z]

and as O(x, y, z) = C∗(x, y, z) we see that every GL(α)-orbit is closed in this complement C3 −
{(0, 0, 0)}. We will generalize such settings to arbitrary quivers.

A character of GL(α) is an algebraic group morphism χ : GL(α) - C∗.
They are fully determined by an integral k-tuple θ = (t1, . . . , tk) ∈ Zk where

GL(α)
χθ- C∗ (g1, . . . , gk) 7→ det(g1)t1 . . . . .det(gk)tk

For a fixed θ we can extend the GL(α)-action to the space repα ⊕ C by

GL(α)× repα Q⊕ C - repα Q⊕ C g.(V, c) = (g.V, χ−1
θ (g)c)

The coordinate ring C[repα Q ⊕ C] = C[repα][t] can be given a Z-gradation by
defining deg(t) = 1 and deg(f) = 0 for all f ∈ C[repα Q]. The induced action of
GL(α) on C[repα Q⊕ C] preserves this gradation. Therefore, the ring of invariant
polynomial maps

C[repα Q⊕ C]GL(α) = C[repα Q][t]GL(α)

is also graded with homogeneous part of degree zero the ring of invariants
C[repα]GL(α). An invariant of degree n, say ftn with f ∈ C[repα Q] has the
characteristic property that

f(g.V ) = χnθ (g)f(V )

that is, f is a semi-invariant of weight χnθ . That is, the graded decomposition of
the invariant ring is

C[repα Q⊕ C]GL(α) = R0 ⊕R1 ⊕ . . . with Ri = C[repα Q]GL(α),χnθ

Definition 6.12. With notations as above, the moduli space of semi-stable
quiver representations of dimension α is the projective variety

Mss
α (Q, θ) = proj C[repα Q⊕ C]GL(α) = proj ⊕∞n=0 C[repα Q]GL(α),χnθ

Recall that for a positively graded affine commutative C-algebra R = ⊕∞i=0Ri,
the geometric points of the projective scheme proj R correspond to graded-maximal
ideals m not containing the positive part R+ = ⊕∞i=1Ri. Intersecting m with the
part of degree zero R0 determines a point of spec R0, the affine variety with
coordinate ring R0 and defines a structural morphism

proj R - spec R0

The Zariski closed subsets of proj R are of the form

V(I) = {m ∈ proj R | I ⊂ m}
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for a homogeneous ideal I / R. Further, recall that proj R can be covered by affine
varieties of the form X(f) with f a homogeneous element in R+. The coordinate
ring of this affine variety is the part of degree zero of the graded localization Rgf .
We refer to [28, II.2] for more details.

Example 6.13. Consider again the quiver-situation

��������1��������1

x

$$y //

z

::

and character θ = (−1, 1), then the three coordinate functions x, y and z of C[repα Q] are semi-
invariants of weight χθ. It is clear that the invariant ring is equal to

C[repα Q⊕ C]GL(α) = C[xt, yt, zt]

where the three generators all have degree one. That is,

Mss
α (Q, θ) = Proj C[xt, yt, zt] = P2

as desired,

We will now investigate which orbits in repα Q are parameterized by the moduli
space Mss

α (Q, θ).

Definition 6.14. We say that a representation V ∈ repα Q is χθ-semistable
if and only if there is a semi-invariant f ∈ C[repα Q]GL(α),χnθ for some n ≥ 1 such
that f(V ) 6= 0.

The subset of repα Q consisting of all χθ-semistable representations will be
denoted by repssα (Q, θ).

Observe that repssα (Q, θ) is Zariski open (but it may be empty for certain (α, θ)).
We can lift a representation V ∈ repα Q to points Vc = (V, c) ∈ repα Q ⊕ C and
use GL(α)-invariant theory on this larger GL(α)-module

������������� ��
��
��
��
��
��
�

•

•

V(f)

V0

Vc

V(t)

Let c 6= 0 and assume that the orbit closure O(Vc) does not intersect V(t) =
repα Q × {0}. As both are GL(α)-stable closed subsets of repα Q ⊕ C we know
from the separation property of invariant theory, proposition 2.32, that this is
equivalent to the existence of a GL(α)-invariant function g ∈ C[repα Q ⊕ C]GL(α)

such that g(O(Vc)) 6= 0 but g(V(t)) = 0.
We have seen that the invariant ring is graded, hence we may assume g to be ho-

mogeneous, that is, of the form g = ftn for some n. But then, f is a semi-invariant
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on repα Q of weight χnθ and we see that V must be χθ-semistable. Moreover, we
must have that θ(α) =

∑k
i=1 tiai = 0, for the one-dimensional central torus of

GL(α)
µ(t) = (trra1 , . . . , t

rr
ak

) ⊂ - GL(α)

acts trivially on repα Q but acts on C via multiplication with
∏k
i=1 t

−aiti hence if
θ(α) 6= 0 then O(Vc) ∩ V(t) 6= ∅.

More generally, we have from the strong form of the Hilbert criterium proved in
theorem 2.17 that O(Vc)∩V(t) = ∅ if and only if for every one-parameter subgroup
λ(t) of GL(α) we must have that lim

t→0
λ(t).Vc /∈ V(t). We can also formulate this

in terms of the GL(α)-action on repα Q. The composition of a one-parameter
subgroup λ(t) of GL(α) with the character

C∗ λ(t)- GL(α)
χθ- C∗

is an algebraic group morphism and is therefore of the form t - tm for some
m ∈ Z and we denote this integer by θ(λ) = m. Assume that λ(t) is a one-parameter
subgroup such that lim

t→0
λ(t).V = V ′ exists in repα Q, then as

λ(t).(V, c) = (λ(t).V, t−mc)

we must have that θ(λ) ≥ 0 for the orbitclosure O(Vc) not to intersect V(t).
That is, we have the following characterization of χθ-semistable representations.

Proposition 6.15. The following are equivalent

(1) V ∈ repα Q is χθ-semistable.
(2) For c 6= 0, we have O(Vc) ∩ V(t) = ∅.
(3) For every one-parameter subgroup λ(t) of GL(α) we have lim

t→0
λ(t).Vc /∈

V(t) = repα Q× {0}.
(4) For every one-parameter subgroup λ(t) of GL(α) such that lim

t→0
λ(t).V

exists in repα Q we have θ(λ) ≥ 0.

Moreover, these cases can only occur if θ(α) = 0.

Assume that g = ftn is a homogeneous invariant function for the GL(α)-
action on repα Q⊕C and consider the affine open GL(α)-stable subset X(g). The
construction of the algebraic quotient and the fact that the invariant rings here are
graded asserts that the closed GL(α)-orbits in X(g) are classified by the points of
the graded localization at g which is of the form

(C[repα Q⊕ C]GL(α))g = Rf [h, h−1]

for some homogeneous invariant h and where Rf is the coordinate ring of the affine
open subset X(f) in Mss

α (Q, θ) determined by the semi-invariant f of weight χnθ .
Because the moduli space is covered by such open subsets we have

Proposition 6.16. The moduli space of θ-semistable representations of repα Q

Mss
α (Q, θ)

classifies closed GL(α)-orbits in the open subset repssα (Q, θ) of all χθ-semistable
representations of Q of dimension vector α.
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Example 6.17. In the foregoing example repssα (Q, θ) = C3 − {(0, 0, 0)} as for all these

points one of the semi-invariant coordinate functions is non-zero. For θ = (−1, 1) the lifted

GL(α) = C∗ × C∗-action to repα Q⊕ C = C4 is given by

(λ, µ).(x, y, z, t) = (
µ

λ
x,
µ

λ
y,
µ

λ
z,
λ

µ
t)

We have seen that the ring of invariants is C[xt, yt, zt]. Consider the affine open set X(xt) of C4,
then the closed orbits in X(xt) are classified by

C[xt, yt, zt]gxt = C[
y

x
,
z

x
][xt,

1

xt
]

and the part of degree zero C[ y
x
, z
x
] is the coordinate ring of the open set X(x) in P2.

We have seen that closed GLn-orbits in repn A correspond to semi-simple
n-dimensional representations. We will now give a representation theoretic inter-
pretation of closed GL(α)-orbits in repssα (Q, θ).

Again, the starting point is that one-parameter subgroups λ(t) of GL(α) cor-
respond to filtrations of representations. Let us go through the motions one more
time. For λ : C∗ - GL(α) a one-parameter subgroup and V ∈ repα Q we can
decompose for every vertex vi the vertex-space in weight spaces

Vi = ⊕n∈ZV
(n)
i

where λ(t) acts on the weight space V (n)
i as multiplication by tn. This decomposi-

tion allows us to define a filtration

V
(≥n)
i = ⊕m≥nV (m)

i

For every arrow ��������i��������j
aoo , λ(t) acts on the components of the arrow maps

V
(n)
i

Vm,n
a - V

(m)
j

by multiplication with tm−n. That is, a limit lim
t→0

Va exists if and only if V m,na = 0
for all m < n, that is, if Va induces linear maps

V
(≥n)
i

Va- V
(≥n)
j

Hence, a limiting representation exists if and only if the vertex-filtration spaces
V

(≥n)
i determine a subrepresentation Vn ⊂ - V for all n. That is, a one-parameter

subgroup λ such that lim
t→

λ(t).V exists determines a decreasing filtration of V by
subrepresentations

. . . � ⊃ Vn � ⊃ Vn+1
� ⊃ . . .

Further, the limiting representation is then the associated graded representation

lim
t→0

λ(t).V = ⊕n∈Z
Vn
Vn+1

where of course only finitely many of these quotients can be nonzero. For the given
character θ = (t1, . . . , tk) and a representation W ∈ repβ Q we denote

θ(W ) = t1b1 + . . .+ tkbk where β = (b1, . . . , bk)

Assume that θ(V ) = 0, then with the above notations, we have an interpretation
of θ(λ) as

θ(λ) =
k∑
i=1

ti
∑
n∈Z

ndimC V
(n)
i =

∑
n∈Z

nθ(
Vn
Vn+1

) =
∑
n∈Z

θ(Vn)
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Definition 6.18. A representation V ∈ repα Q is said to be
• θ-semistable if θ(V ) = 0 and for all subrepresentations W ⊂ - V we have
θ(W ) ≥ 0.

• θ-stable if V is θ-semistable and if the only subrepresentations W ⊂ - V
such that θ(W ) = 0 are V and 0.

Proposition 6.19. For V ∈ repα Q the following are equivalent
(1) V is χθ-semistable.
(2) V is θ-semistable.

Proof. (1)⇒ (2) : Let W be a subrepresentation of V and let λ be the one-
parameter subgroup associated to the filtration V � ⊃ W � ⊃ 0, then lim

t→0
λ(t).V

exists whence by proposition 6.15.4 we have θ(λ) ≥ 0, but we have

θ(λ) = θ(V ) + θ(W ) = θ(W )

(2) ⇒ (1) : Let λ be a one-parameter subgroup of GL(α) such that lim
t→0

λ(t).V
exists and consider the induced filtration by subrepresentations Vn defined above.
By assumption all θ(Vn) ≥ 0, whence

θ(λ) =
∑
n∈Z

θ(Vn) ≥ 0

and again proposition 6.15.4 finishes the proof. �

Lemma 6.20. Let V ∈ repα Q and W ∈ repβ Q be both θ-semistable and

V
f- W

a morphism of representations. Then, Ker f , Im f and Coker f are θ-semistable
representations.

Proof. Consider the two short exact sequences of representations of Q{
0 - Ker f - V - Im f - 0
0 - Im f - W - Coker f - 0

As θ(−) is additive, we have 0 = θ(V ) = θ(Ker f) + θ(Im f) and as both are sub-
representations of θ-semistable representations V resp. W , the right-hand terms
are ≥ 0 whence are zero. But then, from the second sequence also θ(Coker f) = 0.
Being submodules of θ-semistable representations, Ker f and Im f also sat-
isfy θ(S) ≥ 0 for all their subrepresentations U . Finally, a subrepresentation
T ⊂ - Coker f can be lifted to a subrepresentation T ′ ⊂ - W and θ(T ) ≥ 0
follows from the short exact sequence 0 - Im f - T ′ - T - 0. �

That is, the full subcategory repss(Q, θ) of rep Q consisting of all θ-semistable
representations is an Abelian subcategory and clearly the simple objects in
repss(Q, θ) are precisely the θ-stable representations. As this Abelian subcategory
has the necessary finiteness conditions, one can prove a version of the Jordan-Hölder
theorem. That is, every θ-semistable representation V has a finite filtration

V = V0
� ⊃ V1

� ⊃ . . . � ⊃ Vz = 0

of subrepresentation such that every factor Vi

Vi+1
is θ-stable. Moreover, the un-

ordered set of these θ-stable factors are uniquely determined by V .
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Theorem 6.21. For a θ-semistable representation V ∈ repα Q the following
are equivalent

(1) The orbit O(V ) is closed in repssα (Q,α).
(2) V 'W⊕e11 ⊕ . . .⊕W⊕el

l with every Wi a θ-stable representation.
That is, the geometric points of the moduli space Mss

α (Q, θ) are in natural one-
to-one correspondence with isomorphism classes of α-dimensional representations
which are direct sums of θ-stable subrepresentations. The quotient map

repssα (Q, θ) -- Mss
α (Q, θ)

maps a θ-semistable representation V to the direct sum of its Jordan-Hölder factors
in the Abelian category repss(Q, θ).

Proof. Assume that O(V ) is closed in repssα (Q, θ) and consider the θ-
semistable representation W = grss V , the direct sum of the Jordan-Hölder factors
in repss(Q, θ). As W is the associated graded representation of a filtration on V ,
there is a one-parameter subgroup λ of GL(α) such that lim

t→0
λ(t).V ' W , that is

O(W ) ⊂ O(V ) = O(V ), whence W ' V and 2. holds.
Conversely, assume that V is as in 2. and let O(W ) be a closed orbit contained

in O(V ) (one of minimal dimension). By the Hilbert criterium there is a one-
parameter subgroup λ in GL(α) such that lim

t→0
λ(t).V 'W . Hence, there is a finite

filtration of V with associated graded θ-semistable representation W . As none of
the θ-stable components of V admits a proper quotient which is θ-semistable (being
a direct summand of W ), this shows that V ' W and so O(V ) = O(W ) is closed.
The other statements are clear from this. �

Remains to determine the situations (α, θ) such that the corresponding moduli
space Mss

α (Q, θ) is non-empty, or equivalently, such that the Zariski open subset
repssα (Q, θ) ⊂ - repα Q is non-empty.

Theorem 6.22. Let α be a dimension vector such that θ(α) = 0. Then,
(1) repssα (Q,α) is a non-empty Zariski open subset of repα Q if and only if

for every β ⊂ - α we have that θ(β) ≥ 0.
(2) The θ-stable representations repsα(Q,α) are a non-empty Zariski open sub-

set of repα Q if and only if for every 0 6= β ⊂ - α we have that θ(β) > 0

The algorithm at the end of the last section gives an inductive procedure to
calculate these conditions.

The graded algebra C[repα⊕C]GL(α) of all semi-invariants on repα Q of weight
χnθ for some n ≥ 0 has as degree zero part the ring of polynomial invariants
C[repα Q]GL(α). This embedding determines a proper morphism

Mss
α (Q, θ)

π- issα Q

which is onto whenever repssα (Q,α) is non-empty. In particular, if Q is a quiver
without oriented cycles, then the moduli space of θ-semistable representations of
dimension vector α, Mss

α (Q, θ), is a projective variety.

6.4. Optimal corners.

We have proved that one can transform an m-tuple x = (A1, . . . , Am) ∈ Nullmn
by interchanging rows and columns to an m-tuple in corner-form Cs. However, it
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is possible that another point in the orbit O(x) say y = g.x = (B1, . . . , Bm) can be
transformed by permutation Jordan moves in a strictly smaller corner.

Example 6.23. Consider one 3× 3 nilpotent matrix of the form

x =

240 a b
0 0 0

0 0 0

35 with ab 6= 0

Then, Ex = {π1 − π2, π1 − π3} and the corresponding s = sEx = ( 2
3
,− 1

3
,− 1

3
) so x is clearly of

corner type

Cs =

However, x is a nilpotent matrix of rank 1 and by the Jordan-normalform we can conjugate it in

standard form, that is, there is some g ∈ GL3 such that

y = g.x = gxg−1 =

240 1 0

0 0 0

0 0 0

35
For this y we have Ey = {π1−π2} and the corresponding sEy = ( 1

2
,− 1

2
, 0), which can be brought

into standard dominant form s′ = ( 1
2
, 0,− 1

2
) by interchanging the two last entries. Hence, by

interchanging the last two rows and columns, y is indeed of corner type

Cs′ =

and we have that Cs′ < Cs.

We required the Jordan-normalform to produce this example. As there are no
known canonical forms for m tuples of n × n matrices, it is a difficult problem to
determine the optimal corner type in general.

Definition 6.24. We say that x = (A1, . . . , Am) ∈ Nullmn is of optimal corner
type Cs if after reordering rows and columns, x is of corner type Cs and there is
no point y = g.x in the orbit which is of corner type Cs′ with Cs′ < Cs.

We can give an elegant solution to the problem of determining the optimal
corner type of an m-tuple in Nullmn by using the results on θ-semistable repre-
sentations proved in the foregoing section. We assume that x = (A1, . . . , Am) is
brought into corner type Cs with s = (s1, . . . , sn) ∈ Sn. We will associate a quiver-
representation to x. As we are interested in checking whether we can transform x
to a smaller corner-type, it is intuitively clear that the border region of Cs will be
important.

• the border Bs is the subspace of Cs consisting of those m-tuples of n× n
matrices with zero entries except perhaps at entries (i, j) where si−sj = 1.

Example 6.25. For 3× 3 matrices we have the following corner-types Cs having border-

regions Bs and associated Levi-subgroups Ls

Cs

Bs

d

Ls

t t t t tt t t t t tt t t t t t t tt t tt t t
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Cs =

Bs =

d dd d d dd d

Ls =

t t t t
t t t tt t

t tt t t t
t t tt t t

t tt t t tt t
t t t tt t tt t t

Cs =

Bs =

Ls =

t t tt t tt t t t
t tt t t t

t t t tt t
t t tt t t

t t t tt t t tt t t tt t t t
Figure 1. Corners and borders for 4× 4 matrices.

For 4× 4 matrices the relevant data are given in figure 1

From these examples, it is clear that the action of the Levi-subgroup Ls on the
border Bs is a quiver-setting. In general, let s ∈ Sn be determined by the tableau
Ts, then the associated quiver-setting (Qs, αs) is

• Qs is the quiver having as many connected components as there are rows
in the tableau Ts. If the i-th row in Ts is

(ai0, ai1, . . . , aiki)

then the corresponding string of entries in s is of the form

{pi, . . . , pi︸ ︷︷ ︸
ai0

, pi + 1, . . . , pi + 1︸ ︷︷ ︸
ai1

, . . . , pi + ki, . . . , pi + ki︸ ︷︷ ︸
aiki

}

and the i-th component of Qs is defined to be the quiver Qi on ki + 1
vertices having m arrows between the consecutive vertices, that is Qi is

0 1 2 ki

�������� �������� �������� ��������. . .m // m // m // m //

• the dimension vector αi for the i-th component quiver Qi is equal to the
i-th row of the tableau Ts, that is

αi = (ai0, ai1, . . . , aiki
)

and the total dimension vector αs is the collection of these component
dimension vectors.
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• the character GL(αs)
χs- C∗ is determined by the integral n-tuple θs =

(t1, . . . , tn) ∈ Zn where if entry k corresponds to the j-th vertex of the
i-th component of Qs we have

tk = nij
def= d.(pi + j)

where d is the least common multiple of the numerators of the pi’s for all
i. Equivalently, the nij are the integers appearing in the description of
the one-parameter subgroup λs = (r1, . . . , rn) grouped together according
to the ordering of vertices in the quiver Qs. Recall that the character χs
is then defined to be

χs(g1. . . . , gn) =
n∏
i=1

det(gi)ti

or in terms ofGL(αs) it sends an element gij ∈ GL(αs) to
∏
i,j det(gij)

nij .

Proposition 6.26. The action of the Levi-subgroup Ls =
∏
i,j GLaij

on the
border Bs coincides with the base-change action of GL(αs) on the representation
space repαs

Qs. The isomorphism

Bs - repαs
Qs

is given by sending an m-tuple of border Bs-matrices (A1, . . . , Am) to the represen-
tation in repαs

Qs where the j-th arrow between the vertices va and va+1 of the i-th
component quiver Qi is given by the relevant block in the matrix Aj.

Example 6.27. We illustrate these definitions with a few of examples for 4× 4 matrices

tableau Ls Bs θs (Qs, αs, θs)

2 1 1

t t t tt t
d d

(5, 1,−3,−3)

5 1 −3��������1 ��������1 ��������2moo moo

1 2 1

t t tt t t
d

(1, 0, 0,−1)

1 0 −1��������1 ��������2 ��������1moo moo

1 2
1

t tt t t t
(1, 1, 0,−2)

1 −2

0

��������2 ��������1

��������1

moo

Using these conventions we can now state the main result of this section, giving
a solution to the problem of optimal corners.

Theorem 6.28. Let x = (A1, . . . , Am) ∈ Nullmn be of corner type Cs. Then, x
is of optimal corner type Cs if and only if under the natural maps

Cs -- Bs
'- repαs

Qs

(the first map forgets the non-border entries) x is mapped to a θs-semistable repre-
sentation in repαs Qs.
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6.5. Hesselink stratification.

Every orbit in Nullmn has a representative x = (A1, . . . , Am) with all Ai strictly
upper triangular matrices. That is, if N ⊂ Mn is the subspace of strictly upper
triangular matrices, then the action map determines a surjection

GLn ×Nm ac-- Nullmn

Recall that the standard Borel subgroup B is the subgroup of GLn consisting of all
upper triangular matrices and consider the action of B on GLn ×Mm

n determined
by

b.(g, x) = (gb−1, b.x)

Then, B-orbits in GLn × Nm are mapped under the action map ac to the same
point in the nullcone Nullmn . Consider the morphisms

GLn ×Mm
n

π-- GLn/B ×Mm
n

which sends a point (g, x) to (gB, g.x). The quotient GLn/B is called a flag variety
and is a projective manifold. Its points are easily seen to correspond to complete
flags

F : 0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn = Cn with dimC Fi = i

of subspaces of Cn. For example, if n = 2 then GL2/B ' P1. Consider the fiber
π−1 of a point (g, (B1, . . . , Bm)) ∈ GLn/B ×Mm

n . These are the points

(h, (A1, . . . , Am)) such that

{
g−1h = b ∈ B
bAib

−1 = g−1Big for all 1 ≤ i ≤ m.

Therefore, the fibers of π are precisely the B-orbits in GLn ×Mm
n . That is, there

exists a quotient variety for the B-action on GLn ×Mm
n which is the trivial vec-

torbundle of rank mn2

T = GLn/B ×Mm
n

p-- GLn/B

over the flag variety GLn/B. We will denote with GLn ×B Nm the image of the
subvariety GLn ×Nm of GLn ×Mm

n under this quotient map. That is, we have a
commuting diagram

GLn ×Nm ⊂ - GLn ×Mm
n

GLn ×B Nm

??
⊂- GLn/B ×Mm

n

??

Hence, V = GLn ×B Nm is a sub-bundle of rank m.n(n−1)
2 of the trivial bundle T

over the flag variety. Note however that V itself is not trivial as the action of GLn
does not map Nm to itself.

Theorem 6.29. Let U be the open subvariety of m-tuples of strictly upper
triangular matrices Nm consisting of those tuples such that one of the component
matrices has rank n − 1. The action map ac induces the commuting diagram of
figure 2. The upper map is an isomorphism of GLn-varieties for the action on fiber
bundles to be left multiplication in the first component.
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GLn ×B U
' - GLn.U

GLn ×B Nm

?

∩

ac - Nullmn

?

∩

Figure 2. Resolution of the nullcone.

Therefore, there is a natural one-to-one correspondence between GLn-orbits in
GLn.U and B-orbits in U . Further, ac is a desingularization of the nullcone and
Nullmn is irreducible of dimension

(m+ 1)
n(n− 1)

2
.

Proof. Let A ∈ N be a strictly upper triangular matrix of rank n − 1 and
g ∈ GLn such that gAg−1 ∈ N , then g ∈ B as one verifies by first bringing A into
Jordan-normal form Jn(0). This implies that over a point x = (A1, . . . , Am) ∈ U
the fiber of the action map

GLn ×Nm ac-- Nullmn

has dimension n(n−1)
2 = dim B. Over all other points the fiber has at least dimen-

sion n(n−1)
2 .But then, by the dimension formula we have

dim Nullmn = dim GLn + dim Nm − dim B = (m+ 1)
n(n− 1)

2
Over GLn.U this map is an isomorphism of GLn-varieties. Irreducibility of Nullmn
follows from surjectivity of ac as C[Nullmn ] ⊂ - C[GLn]⊗C[Nm] and the latter is
a domain. These facts imply that the induced action map

GLn ×B Nm ac- Nullmn

is birational and as the former is a smooth variety (being a vectorbundle over the
flag manifold), this is a desingularization. �

Example 6.30. Let n = 2 and m = 1. We have seen in chapter 3 that Null12 is a cone in
3-space with the singular top the orbit of the zero-matrix and the open complement the orbit of»

0 1
0 0

–
In this case the flag variety is P1 and the fiber bundle GL2 ×B N has rank one. The action map

is depicted in figure 3 and is a GL2-isomorphism over the complement of the fiber of the top.

Theorem 6.29 gives us a complexity-reduction, both in the dimension of the
acting group and in the dimension of the space acted upon, from

• GLn-orbits in the nullcone Nullmn , to
• B-orbits in Nm.

at least on the stratum GLn.U described before. The aim of the Hesselink stratifi-
cation of the nullcone is to extend this reduction also to the complement.

Let s ∈ Sn and let Cs be the vectorspace of all m-tuples in Mm
n which are of

corner-type Cs. We have seen that there is a Zariski open subset (but, possibly
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Figure 3. Resolution of Null12.

empty) Us of Cs consisting of m-tuples of optimal corner type Cs. Observe that the
action of conjugation of GLn on Mm

n induces an action of the associated parabolic
subgroup Ps on Cs.

Definition 6.31. The Hesselink stratum Ss associated to s is the subvariety
GLn.Us where Us is the open subset of Cs consisting of the optimal Cs-type tuples.

The results of the foregoing section imply, similar to the proof of theorem 6.29,
the complexity-reduction

Theorem 6.32. With notations as before we have a commuting diagram

GLn ×Ps Us
' - Ss

GLn ×Ps Cs

?

∩

ac - Ss

?

∩

where ac is the action map, Ss is the Zariski closure of Ss in Nullmn and the upper
map is an isomorphism of GLn-varieties.

Here, GLn/Ps is the flag variety associated to the parabolic subgroup Ps and
is a projective manifold. The variety GLn ×Ps Cs is a vectorbundle over the flag
variety GLn/Ps and is a subbundle of the trivial bundle GLn ×Ps Mm

n .
Therefore, the Hesselink stratum Ss is an irreducible smooth variety of dimen-

sion
dim Ss = dim GLn/Ps + rk GLn ×Ps Cs

= n2 − dim Ps + dimC Cs

and there is a natural one-to-one correspondence between the GLn-orbits in Ss and
the Ps-orbits in Us.

Moreover, the vectorbundle GLn×PsCs is a desingularization of Ss hence ’feels’
the gluing of Ss to the remaining strata. Finally, the ordering of corners has the
geometric interpretation

Ss ⊂
⋃

‖s′‖≤‖s‖

Ss′



6.5. HESSELINK STRATIFICATION. 253

We have seen that Us = p−1 repssαs
(Qs, θs) where Cs

p-- Bs is the canonical
projection forgetting the non-border entries. As the action of the parabolic sub-
group Ps restricts to the action of its Levi-part Ls on Bs = repαs

Q we have a
canonical projection

Us/Ps
p-- Mss

αs
(Qs, θs)

to the moduli space of θs-semistable representations in repαs
Qs. As none of the

components of Qs admits cycles, these moduli spaces are projective varieties. For
small values of m and n these moduli spaces give good approximations to the study
of the orbits in the nullcone.

Example 6.33. (Nullcone of m-tuples of 2× 2 matrices)
In chapter 3 we have proved by brute force that the orbits in Null22 correspond to points on

P1 together with one extra orbit, the zero representation. For arbitrary m, the relevant strata-
information for Nullm2 is contained in the following table

tableau s Bs = Cs Ps (Qs, αs, θs)

1 1 ( 1
2
,− 1

2
)

t tt 1 −1��������1 ��������1moo

2 (0, 0)

t tt t 0��������2

Because Bs = Cs we have that the orbit space Us/Ps ' Mss
αs

(Qs, θs). For the first stratum,

every representation in repαs Qs is θs-semistable except the zero-representation (as it contains

a subrepresentation of dimension β = (1, 0) and θs(β) = −1 < 0. The action of Ls = C∗ × C∗

on Cm − 0 has as orbit space Pm−1, classifying the orbits in the maximal stratum. The second

stratum consists of one point, the zero representation.

Example 6.34. A more interesting application, illustrating all of the general phenomena,
is the description of orbits in the nullcone of two 3×3 matrices. H. Kraft described them in [44, p.

202] by brute force. The orbit space decomposes as a disjoint union of tori and can be represented
by the picture

r
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4 0
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g
7 0

h
6 1

i
6 1

j
7 0

b
7 1

c
7 1

d
6 2

e
7 1

f
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a
7 2

kkkkkkkkkkkkk

wwwww
GGGGG

SSSSSSSSSSSSS

44
4

((
((
((
((
((
(











 44

4
44

4






��
��
��
��
��
�

??
??

??

OOOOOOOOOOOOO

��
��

��
??

??
??

��
��

��
??

??
??

ooooooooooooo

��
��

��

44
44

44
44

44 44
4





























 44

4

44
4







Here, each node corresponds to a torus of dimension the right-hand side number in the bottom

row. A point in this torus represents an orbit with dimension the left-hand side number. The top

letter is included for classification purposes. That is, every orbit has a unique representant in the
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following list of couples of 3 × 3 matrices (A,B). The top letter gives the torus, the first 2 rows

give the first two rows of A and the last two rows give the first two rows of B, x, y ∈ C∗

a
0 1 0
0 0 1
0 x 0
0 0 y

b
0 1 0
0 0 1
0 0 0
0 0 x

c
0 1 0
0 0 1
0 x 0
0 0 0

d
0 1 0
0 0 1
0 x y
0 0 x

e
0 1 0
0 0 1
0 x 0
0 0 0

f
0 0 0
0 0 1
0 1 0
0 0 x

g
0 1 0
0 0 0
0 0 0
0 0 1

h
0 1 0
0 0 1
0 0 x
0 0 0

i
0 0 x
0 0 0
0 1 0
0 0 1

j
0 0 0
0 0 1
0 1 0
0 0 0

k
0 0 1
0 0 0
0 1 0
0 0 0

l
0 0 0
0 0 1
0 0 1
0 0 0

m
0 0 1
0 0 0
0 1 0
0 0 0

n
0 0 0
0 0 0
0 1 0
0 0 1

o
0 1 0
0 0 0
0 x 0
0 0 0

p
0 1 0
0 0 0
0 0 0
0 0 0

q
0 0 0
0 0 0
0 1 0
0 0 0

r
0 0 0
0 0 0
0 0 0
0 0 0

We will now derive this result from the above description of the Hesselink stratification. To begin,
the relevant data concerning S3 is summarized in the following table

tableau s Bs, Cs Ps (Qs, αs, θs)

1 1 1 (1, 0,−1)

t t t tt tt 1 0 −1��������1 ��������1 ��������1ff
xx

ff
xx

1 2 ( 1
3
, 1
3
,− 2

3
)

t t tt t tt 1 −2��������2 ��������1ff
xx

2 1 ( 2
3
,− 1

3
,− 1

3
)

t t tt tt t 2 −1��������1 ��������2ff
xx

1 1
1 ( 1

2
, 0,− 1

2
)

t t tt tt
1 −1

0

��������1 ��������1

��������1

ff
xx

3 (0, 0, 0, )

t t tt t tt t t 0��������3

For the last four corner types, Bs = Cs whence the orbit space Us/Ps is isomorphic to the moduli

space Mss
αs

(Qs, θs). Consider the quiver-setting

1 −2

��������2 ��������1hhvv

If the two arrows are not linearly independent, then the representation contains a proper sub-
representation of dimension-vector β = (1, 1) or (1, 0) and in both cases θs(β) < 0 whence the

representation is not θs-semistable. If the two arrows are linearly independent, we can use the

GL2-component to bring them in the form (

»
0
1

–
,

»
1
0

–
), whence Mss

αs
(Qs, αs) is reduced to one

point, corresponding to the matrix-couple of type l

(

240 0 0
0 0 1
0 0 0

35 ,

240 0 1
0 0 0

0 0 0

35 )

A similar argument, replacing linear independence by common zero-vector shows that also the

quiver-setting corresponding to the tableau 2 1 has one point as its moduli space, the matrix-

tuple of type k. Incidentally, this shows that the corners corresponding to the tableaux 2 1 or
1 2 cannot be optimal when m = 1 as then the row or column vector always has a kernel or
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cokernel whence cannot be θs-semistable. This of course corresponds to the fact that the only

orbits in Null13 are those corresponding to the Jordan-matrixes240 1 0

0 0 1

0 0 0

35 240 1 0

0 0 0

0 0 0

35 240 0 0

0 0 0

0 0 0

35

which are respectively of corner type 1 1 1 ,

1 1
1 and 3 , whence the two other types do not

occur. Next, consider the quiver setting

1 −1

0

��������1 ��������1

��������1

hhvv

A representation in repαs Qs is θs-semistable if and only if the two maps are not both zero
(otherwise, there is a subrepresentation of dimension β = (1, 0) with θs(β) < 0). The action of

GL(αs) = C∗ × C∗ on C2 − 0 has a s orbit space P1 and they are represented by matrix-couples

(

240 0 a
0 0 0

0 0 0

35 ,

240 0 b
0 0 0

0 0 0

35 )

with [a : b] ∈ P1 giving the types o,p and q. Clearly, the stratum 3 consists just of the zero-matrix,

which is type r. Remains to investigate the quiver-setting

1 0 −1

��������1 ��������1 ��������1

b

hh
a

vv

d

hh
c

vv

Again, one easily verifies that a representation in repαs Qs is θs-semistable if and only if (a, b) 6=
(0, 0) 6= (c, d) (for otherwise one would have subrepresentations of dimensions (1, 1, 0) or (1, 0, 0)).
The corresponding GL(αs)-orbits are classified by

Mss
αs

(Qs.θs) ' P1 × P1

corresponding to the matrix-couples of types a, b, c, e, f, g, j, k and n

(

240 c 0

0 0 a
0 0 0

35 ,

240 d 0

0 0 b
0 0 0

35 )

where [a : b] and [c : d] are points in P1. In this case, however, Cs 6= Bs and we need to investigate
the fibers of the projection

Us/Ps
p-- Mss

αs
(Qs, αs)

Now, Ps is the Borel subgroup of upper triangular matrices and one verifies that the following
two couples

(

240 c 0

0 0 a
0 0 0

35 ,

240 d 0

0 0 b
0 0 0

35 ) and (

240 c x

0 0 a
0 0 0

35 ,

240 d y

0 0 b
0 0 0

35 )

lie in the same B-orbit if and only if det

»
a c

b d

–
6= 0, that is, if and only if [a : b] 6= [c : d] in

P1. Hence, away from the diagonal p is an isomorphism. On the diagonal one can again verify by

direct computation that the fibers of p are isomorphic to C, giving rise to the cases d, h and i in
the classification.

The connection between this approach and Kraft’s result is depicted in figure 4. The picture on

the left is Kraft’s toric degeneration picture where we enclosed all orbits belonging to the same

Hesselink strata, that is, having the same optimal corner type. The dashed region enclosed the

orbits which do not come from the moduli spaces Mss
αs

(Qs, θs), that is, those coming from the
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Figure 4. Nullcone of couples of 3× 3 matrices.

projection Us/Ps -- Mss
αs

(Qs, θs)). The picture on the right gives the ordering of the relevant

corners.

Example 6.35. We see that we get most orbits in the nullcone from the moduli spaces

Mss
αs

(Qs, θs). The reader is invited to work out the orbits in Null24. We list here the moduli
spaces of the relevant corners

corner Mss
αs

(Qs, θs) corner Mss
αs

(Qs, θs) corner Mss
αs

(Qs, θs)

P1 × P1 × P1 P1 P1

P3 t P1 × P1 t P1 × P1 P1 t S2(P1) P0

P1 P1 P0

Observe that two potential corners are missing in this list. This is because we have the following

quiver setting for the corner

3 −1

��������1 ��������3

d

hh
c

vv

and there are no θs-semistable representations as the two maps have a common kernel, whence a
subrepresentation of dimension β = (1, 0) and θs(β) < 0. A similar argument holds for the other
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missing corner and quiver setting

1 −3

��������3 ��������1

d

hh
c

vv

For general n, a similar argument proves that the corners associated to the tableaux
1 n and n 1 are not optimal for tuples in Nullmn+1 unless m ≥ n. It is also easy
to see that with m ≥ n all relevant corners appear in Nullmn+1, that is all potential
Hesselink strata are non-empty.

6.6. Cornering quiver representations.

In this section we generalize the results on matrices to representation of arbi-
trary quivers. In the final section we will see that we can reduce the study of the
orbits in the fibers of

rep
n
A -- issn A

over a point ξ ∈ Smn A to a nullcone problem for the local quiver setting. Let
Q be a (marked) quiver on k vertices {v1, . . . , vk} and fix a dimension vector α =
(a1, . . . , ak) and denote the total dimension

∑k
i=1 ai by a. A representation V ∈

repα Q is said to belong to the nullcone Nullα Q if the trivial representation
0 ∈ O(V ). Equivalently, all polynomial invariants are zero when evaluated in
V , that is, the traces of all oriented cycles in Q are zero in V . By the Hilbert
criterium 2.17 for GL(α), V ∈ Nullα Q if and only if there is a one-parameter
subgroup

C∗ λ- GL(α) =

GLa1

. . .
GLak

 ⊂ - GLa

such that lim
→

λ(t).V = 0. Up to conjugation in GL(α), or equivalently, replacing

V by another point in the orbit O(V ), we may assume that λ lies in the maximal
torus Ta of GL(α) (and of GLa) and can be represented by an integral a-tuple
(r1, . . . , ra) ∈ Za such that

λ(t) =

t
r1

. . .
tra


We have to take the vertices into account, so we decompose the integer interval
[1, 2, . . . , a] into vertex intervals Ivi such that

[1, 2, . . . , a] = tki=1 Ivi
with Ivi

= [
i−1∑
j=1

aj + 1, . . . ,
i∑

j=1

aj ]

If we recall that the weights of Ta are isomorphic to Za having canonical generators
πp for 1 ≤ p ≤ a we can decompose the representation space into weight spaces

repα Q =
⊕

πpq=πq−πp

repα Q(πpq)
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where the eigenspace of πpq is non-zero if and only if for p ∈ Ivi
and q ∈ Ivj

, there
is an arrow ��������i��������j oo

in the quiver Q. Call πα Q the set of weights πpq which have non-zero eigenspace in
repα Q. Using this weight space decomposition we can write every representation
as V =

∑
p,q Vpq where Vpq is a vector of the (p, q)-entries of the maps V (a) for

all arrows a in Q from vi to vj . Using the fact that the action of Ta on repα Q is
induced by conjugation, we deduce as before that for λ determined by (r1, . . . , ra)

lim
t→0

λ(t).V = 0 ⇔ rq − rp ≥ 1 whenever Vpq 6= 0

Again, we define the corner type C of the representation V by defining the subset
of real a-tuples

EV = {(x1, . . . , xa) ∈ Ra | xq − xp ≥ 1 ∀ Vpq 6= 0}
and determine a minimal element sV in it, minimal with respect to the usual norm
on Ra. Similar to the case of matrices considered before, it follows that sV is a
uniquely determined point in Qa, having the characteristic property that its entries
can be partitioned into strings

{pl, . . . , pl︸ ︷︷ ︸
al0

, pl + 1, . . . , pl + 1︸ ︷︷ ︸
al1

, . . . , pl + kl, . . . , pl + kl︸ ︷︷ ︸
alkl

} with all alm ≥ 1

which are balanced, that is
∑kl

m=0 alm(pl +m) = 0.
Note however that this time we are not allowed to bring sV into dominant form,

as we can only permute base-vectors of the vertex-spaces. That is, we can only use
the action of the vertex-symmetric groups

Sa1 × . . .× Sak
⊂ - Sa

to bring sV into vertex dominant form , that is if sV = (s1, . . . , sa) then

sq ≤ sp whenever p, q ∈ Ivi
for some i and p < q

We compile a list Sα of such rational a-tuples by the following algorithm

• Start with the list Sa of matrix corner types.
• For every s ∈ Sa consider all permutations σ ∈ Sa/(Sa1 × . . .× Sak

) such
that σ.s = (sσ(1), . . . , sσ(a)) is vertex dominant.
• Take Hα to be the list of the distinct a-tuples σ.s which are vertex domi-

nant.
• Remove s ∈ Hα whenever there is an s′ ∈ Hα such that

πs Q = {πpq ∈ πα Q | sq − sp ≥ 1} ⊂ πs′ Q = {πpq ∈ πα Q | s′q − s′p ≥ 1}

and ‖ s ‖>‖ s′ ‖.
• The list Sα are the remaining entries s from Hα.

For s ∈ Sα, we define associated data similar to the case of matrices
• The corner Cs is the subspace of repα Q such that all arrow matrices Vb,

when viewed as a × a matrices using the partitioning in vertex-entries,
have only non-zero entries at spot (p, q) when sq − sp ≥ 1.
• The border Bs is the subspace of repα Q such that all arrow matrices Vb,

when viewed as a × a matrices using the partitioning in vertex-entries,
have only non-zero entries at spot (p, q) when sq − sp = 1.
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• The parabolic subgroup Ps(α) is the intersection of Ps ⊂ GLa with GL(α)
embedded along the diagonal. Ps(α) is a parabolic subgroup of GL(α),
that is, contains the product of the Borels B(α) = Ba1 × . . .×Bak

.
• The Levi-subgroup Ls(α) is the intersection of Ls ⊂ GLa with GL(α)

embedded along the diagonal.

We say that a representation V ∈ repα Q is of corner type Cs whenever V ∈ Cs.

Theorem 6.36. By permuting the vertex-bases, every representation V ∈
repα Q can be brought to a corner type Cs for a uniquely determined s which
is a vertex-dominant reordering of sV .

Example 6.37. Consider the following quiver setting

2(/).*-+,

1(/).*-+,

y

qq

x

--

u

EE

v

��

Then, the relevant corners have the following block decomposition

(1, 0,−1) (0,−1, 1) (1,−1, 0) ( 1
3 ,

1
3 ,−

2
3 ) ( 1

3 ,−
2
3 ,

1
3 ) ( 2

3 ,−
1
3 ,−

1
3 )

(− 1
3 ,−

1
3 ,

2
3 ) ( 1

2 , 0,−
1
2 ) (0,− 1

2 ,
1
2 ) ( 1

2 ,−
1
2 , 0) (0, 0, 0)

Again, we solve the problem of optimal corner representations by introducing
a new quiver setting.

Fix a type s ∈ Sα Q and let J1, . . . , Ju be the distinct strings partitioning the
entries of s, say with

Jl = {pl, . . . , pl︸ ︷︷ ︸Pk
i=1 bi,l0

, pl + 1, . . . , pl + 1︸ ︷︷ ︸Pk
i=1 bi,l1

, . . . , pl + kl, . . . , pl + kl︸ ︷︷ ︸Pk
i=1 bi,lkl

}

where bi,lm is the number of entries p ∈ Ivi
such that sp = pl +m. To every string

l we will associate a quiver Qs,l and dimension vector αs,l as follows

• Qs,l has k.(kl+1) vertices labeled (vi,m) with 1 ≤ i ≤ k and 0 ≤ m ≤ kl.
• In Qs,l there are as many arrows from vertex (vi,m) to vertex (vj ,m+ 1)

as there are arrows in Q from vertex vi to vertex vj . There are no arrows
between (vi,m) and (vj ,m′) if m′ −m 6= 1.
• The dimension-component of αs,l in vertex (vi,m) is equal to bi,lm.
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Example 6.38. For the above quiver, all component quivers Qs,l are pieces of the quiver

below

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,
. . .

,, 22 ,,22 ,,22 ++ 33??�������������� ��?
??

??
??

??
??

??
? ??�������������� ��?

??
??

??
??

??
??

? ??�������������� ��?
??

??
??

??
??

??
? ??��������������� ��?

??
??

??
??

??
??

??

Clearly, we only need to consider that part of the quiver Qs,l where the dimensions of the vertex

spaces are non-zero.

The quiver-setting (Qs, αs) associated to a type s ∈ Sα Q will be the disjoint
union of the string quiver-settings (Qs,l, αs,l) for 1 ≤ l ≤ u.

Theorem 6.39. With notations as before, for s ∈ Sα Q we have isomorphisms{
Bs ' repαs Qs

Ls(α) ' GL(αs)

Moreover, the base-change action of GL(αs) on repαs
Qs coincides under the iso-

morphisms with the action of the Levi-subgroup Ls(α) on the border Bs.

In order to determine the representations in repαs
Qs which have optimal corner

type Cs we define the following character on the Levi-subgroup

Ls(α) =
u∏
l=1

×ki=1 ×
kl
m=0 GLbi,lm

χθs- C∗

determined by sending a tuple (gi,lm)ilm - ∏
ilm det g

mi,lm

i,lm where the exponents
are determined by

θs = (mi,lm)ilm where mi,lm = d(pl +m)

with d the least common multiple of the numerators of the rational numbers pl for
all 1 ≤ l ≤ u.

Theorem 6.40. Consider a representation V ∈ Nullα Q of corner type Cs.
Then, V is of optimal corner type Cs if and only if under the natural maps

Cs
π-- Bs

'- repαs
Qs

V is mapped to a θs-semistable representation in repαs Qs. If Us is the open
subvariety of Cs consisting of all representations of optimal corner type Cs, then

Us = π−1 repssαs
(Qs, θs)

For the corresponding Hesselink stratum Ss = GL(α).Us we have the commuting
diagram

GL(α)×Ps(α) Us
' - Ss

GL(α)×Ps(α) Cs

?

∩

ac - Ss

?

∩

where ac is the action map, Ss is the Zariski closure of Ss in Nullα Q and the
upper map is an isomorphism as GL(α)-varieties.
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Here, GL(α)/Ps(α) is the flag variety associated to the parabolic subgroup Ps(α)
and is a projective manifold. The variety GL(α) ×Ps(α) Cs is a vectorbundle over
the flag variety GL(α)/Ps(α) and is a subbundle of the trivial bundle GL(α)×Ps(α)

repα Q.
Hence, the Hesselink stratum Ss is an irreducible smooth variety of dimension

dim Ss = dim GL(α)/Ps(α) + rk GL(α)×Ps(α) Cs

=
k∑
i=1

a2
i − dim Ps(α) + dimC Cs

and there is a natural one-to-one correspondence between the GL(α)-orbits in Ss
and the Ps(α)-orbits in Us.

Moreover, the vectorbundle GL(α)×Ps(α) Cs is a desingularization of Ss hence
’feels’ the gluing of Ss to the remaining strata. The ordering of corners has the
geometric interpretation

Ss ⊂
⋃

‖s′‖≤‖s‖

Ss′

Finally, because Ps(α) acts on Bs by the restriction to its subgroup Ls(α) = GL(αs)
we have a projection from the orbit space

Us/Ps
p-- Mss

αs
(Qs, θs)

to the moduli space of θs-semistable quiver representations.

Example 6.41. Above we have listed the relevant corner-types for the nullcone of the
quiver-setting

2(/).*-+,

1(/).*-+,

y

qq

x

--

u

EE

v

��
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In the table below we list the data of the three irreducible components of Nullα Q/GL(α) corre-

sponding to the three maximal Hesselink strata :

Cs, Bs Ls (Qs, αs, θs) Mss
αs

(Qs, θs)

t
(1, 0,−1)

t t t −1

0 1

1��������

0��������

0��������

1��������

0��������

1��������**44??�������� P1

t
(0,−1, 1)

t t t
−1 0

1

0��������

1��������

0��������

1��������

1��������

0��������**44

��?
??

??
??

?

P1

t
(1,−1, 0)

t t t
−1

0

1

0��������

1��������

1��������

0��������

0��������

1��������

��?
??

??
??

? ??�������� P0

There are 6 other Hesselink strata consisting of precisely one orbit. Finally, two possible corner-

types do not appear as there are no θs-semistable representations for the corresponding quiver
setting

Cs, Bs Ls (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
3 ,

1
3 ,−

2
3 )

t tt t t −2

1

1��������

0��������

0��������

2��������??�������� ∅

(− 1
3 ,−

1
3 ,

2
3 )

t tt t t
−1

2

0��������

2��������

1��������

0��������

��?
??

??
??

?

∅

6.7. Simultaneous conjugacy classes.

We have come a long way from our bare hands description of the simultaneous
conjugacy classes of couples of 2 × 2 matrices in sectionSimultaneousConjugacy-
ClassesSection. In this section we will summarize what we have learned so far to
approach this hopeless problem.

Having studied the nullcone of arbitrary quiver settings, we want to use these
results to study the representations of Quillen-smooth algebras. Let A be an affine
C-algebra and Mξ is a semi-simple n-dimensional module such that the represen-
tation variety rep

n
A@n is smooth in Mξ, that is ξ ∈ Smn A. Let Mξ be of
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representation type τ = (e1, d1; . . . ; ek, dk), that is,

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

with distinct simple components Si of dimension di and occurring in Mξ with
multiplicity ei, then the GL(α) = Stab Mξ-structure on the normal space Nξ to
the orbit O(Mξ) is isomorphic to that of the representation space

repα Q
•

of a certain marked quiver on k vertices. The slice theorem asserts the existence of
a slice Sξ

φ- Nξ and a commuting diagram

GLn ×GL(α) Sξ

GLn ×GL(α) Nξ
�

GL
n
×

GL(α
) φ

rep
n
A@n

ψ

-

Sξ/GL(α)

??

Nξ/GL(α)

π2

?? �
φ/
GL

(α
)

issn A@n

π1

??

ψ/GL
n

-

in a neighborhood of ξ ∈ issn A@n on the right and a neighborhood of the image 0
of the trivial representation in Nξ/GL(α) on the left. In this diagram, the vertical
maps are the quotient maps, all diagonal maps are étale and the upper ones are
GLn-equivariant. In particular, there is a GLn-isomorphism between the fibers

π−1
2 (0) ' π−1

1 (ξ)

Because π−1
2 (0) ' GLn ×GL(α) π−1(0) with π is the quotient morphism for the

marked quiver representations Nξ = repα Q
• π-- issα Q

• = Nx/GL(α) we have
a GLn-isomorphism

π−1
1 (ξ) ' GLn ×GL(α) π−1(0)

That is, there is a natural one-to-one correspondence between
• GLn-orbits in the fiber π−1

1 (ζ), that is, isomorphism classes of n-
dimensional representations of A with Jordan-Hölder decomposition Mξ,
and
• GL(α)-orbits in π−1(0), that is, the nullcone of the marked quiver
Nullα Q

•.
Summarizing we have the following

Theorem 6.42. Let A be an affine Quillen-smooth C-algebra and Mξ a semi-
simple n-dimensional representation of A. Then, the isomorphism classes of n-
dimensional representations of A with Jordan-Hölder sum isomorphic to Mξ are
given by the GL(α)-orbits in the nullcone Nullα Q• of the local marked quiver
setting.
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The problem of classifying simultaneous conjugacy classes of m-tuples of n ×
n matrices, is the same as n-dimensional representations of the Quillen-smooth
algebra C〈x1, . . . , xm〉. To study semi-simple representations, one considers the
quotient map

Mm
n = repnC〈x1, . . . , xm〉

π-- issn C〈x1, . . . , xm〉 = issmn

Fix a point ξ ∈ issmn and assume that the corresponding semi-simple n-dimensional
representation Mξ is of representation type τ = (e1, d1; . . . ; ek, dk).

We have shown that the coordinate ring C[issmn ] = Nmn is the necklace algebra ,
that is, is generated by traces of monomials in the generic n×nmatricesX1, . . . , Xm

of length bounded by n2 + 1. Further, if we collect all Mξ with representation type
τ in the subset issmn (τ), then

issn =
⊔
τ

issmn (τ)

is a finite stratification of issmn into locally closed smooth algebraic subvarieties.
We have an ordering on the representation types τ ′ < τ indicating that the

stratum issmn (τ ′) is contained in the Zariski closure of ossmn (τ). This order relation
is induced by the direct ordering

τ ′ = (e′1, d
′
1; . . . ; e

′
k′ , d

′
k′) <

dir τ = (e1, d1; . . . ; ek, dk)

if there is a permutation σ of [1, 2, . . . , k′] and there are numbers

1 = j0 < j1 < j2 . . . < jk = k′

such that for every 1 ≤ i ≤ k we have the following relations{
eidi =

∑ji
j=ji−1+1 e

′
σ(j)d

′
σ(j)

ei ≤ e′σ(j) for all ji−1 < j ≤ ji

Example 6.43. The order relation on the representation types of dimension n = 4 has

the following Hasse diagram.

4 1

1 1 3 1 2 1 2 1

1 1 1 1 2 1

1 1 1 1 1 1 1 1 1 2 2 1 2 2

1 2 1 1 1 1

1 3 1 1 1 2 1 2

1 4

oooo OOOO

OOOO oooo

??
??

??
??

oooo OOOO

OOOO oooo

oooo OOOO ��
��

��
��

OOOO
oooo

Because issmn is irreducible, there is an open stratum corresponding to the
simple representations, that is type (1, n). The sub-generic strata are all of the
form

τ = (1,m1; 1,m2) with m1 +m2 = n.

The (in)equalities describing the locally closed subvarieties issmn (τ) can (in prin-
ciple) be deduced from the theory of trace identities. Remains to study the local
structure of the quotient variety issmn near ξ and the description of the fibers π−1(ξ).
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Both problems can be tackled by studying the local quiver setting (Qξ, αξ)
corresponding to ξ which describes the GL(αξ) = Stab(Mξ)-module structure of the
normal space to the orbit ofMξ. If ξ is of representation type τ = (e1, d1; . . . ; ek, dk)
then the local quiver Qξ has k-vertices {v1, . . . , vk} corresponding the the k distinct
simple components S1, . . . , Sk of Mξ and the number of arrows (resp. loops) from
vi to vj (resp. in vi) are given by the dimensions

dimCExt
1(Si, Sj) resp. dimCExt

1(Si, Si)

and these numbers can be computed from the dimensions of the simple components,
# ��������i��������j

aoo = (m− 1)didj

# ��������i
��

= (m− 1)d2
i + 1

Further, the local dimension vector αξ is given by the multiplicities (e1, . . . , ek).
The étale local structure of issmn in a neighborhood of ξ is the same as that of the
quotient variety issαξ

Qξ in a neighborhood of 0. The local algebra of the latter is
generated by traces along oriented cycles in the quiver Qξ. A direct application is

Proposition 6.44. For m ≥ 2, ξ is a smooth point of issmn if and only if Mξ is
a simple representation, unless (m,n) = (2, 2) in which case iss22 ' C5 is a smooth
variety.

Proof. If ξ is of representation type (1, n), the local quiver setting (Qξ, αξ) is

��������1

d

��

where d = (m− 1)n2 + 1, whence the local algebra is the formal power series ring
in d variables and so issmn is smooth in ξ. Because the singularities form a Zariski
closed subvariety of issmn , the result follows if we prove that all points ξ lying in
sub-generic strata, say of type (1,m1; 1,m2) are singular. In this case the local
quiver setting is equal to

��������1 ��������1

a

&&

a

ffl1 :: l2dd

where a = (m − 1)m1m2 and li = (m − 1)m2
i + 1. Let us denote the arrows from

v1 to v2 by x1, . . . , xa and those from v2 to v1 by y1, . . . , ya. If (m,n) 6= (2, 2) then
a ≥ 2, but then we have traces along cycles

{xiyj | 1 ≤ i, j ≤ a}
that is, the polynomial ring of invariants is the polynomial algebra in l1 + l2 vari-
ables (the traces of the loops) over the homogeneous coordinate ring of the Segre
embedding

Pa−1 × Pa−1 ⊂ - Pa
2−1

which has a singularity at the top (for example we have equations of the form
(x1y2)(x2y1) − (x1y1)(x2y2)). Thus, the local algebra of issmn cannot be a formal
power series ring in ξ whence issmn is singular in ξ. We have seen in section 1.2 that
for the exceptional case iss22 ' C5. �
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To determine the fibers of the quotient map Mm
n

π-- issmn we have to study
the nullcone of this local quiver setting, Nullαξ

Qξ. Observe that the quiver Qξ has
loops in every vertex and arrows connecting each ordered pair of vertices, whence we
do not have to worry about potential corner-type removals. Denote

∑
ei = z ≤ n

and let Cz be the set of all s = (s1, . . . , sz) ∈ Qz which are disjoint unions of strings
of the form

{pi, pi + 1, . . . , pi + ki}
where li ∈ N, all intermediate numbers pi + j with j ≤ ki do occur as components
in s with multiplicity aij ≥ 1 and pi satisfies the balance-condition

ki∑
j=0

aij(pi + j) = 0

for every string in s. For fixed s ∈ Cz we can distribute the components si over
the vertices of Qξ (ej of them to vertex vj) in all possible ways modulo the action
of the small Weyl group Se1 × . . . Sek

⊂ - Sz. That is, we can rearrange the si’s
belonging to a fixed vertex such that they are in decreasing order. This gives us the
list Sαξ

or Sτ of all corner-types in Nullαξ
Qξ. For each s ∈ Sαξ

we then construct
the corner-quiver setting

(Qξ s, αξ s, θξ s)

and study the Hesselink strata Ss which actually do appear, which is equivalent
to verifying whether there are θξ s-semistable representations in repαξ s

Qξ s. We
have given a purely combinatorial way to settle this (in general quite hard) problem
of optimal corner-types.

That is, we can determine which Hesselink strata Ss actually occur in π−1(ξ) '
Nullαxi

Qξ. The GL(αξ s)-orbits in the stratum Ss are in natural one-to-one
correspondence with the orbits under the associated parabolic subgroup Ps acting
on the semistable representations

Us = π−1 repssαξ s
(Qξ s, θξ s)

and there is a natural projection morphism from the corresponding orbit-space

Us/Ps
ps-- Mss

αξ s
(Qξ s, θξ s)

to the moduli space of θξ s-semistable representations. The remaining (hard) prob-
lem in the classification of m-tuples of n×n matrices under simultaneous conjuga-
tion is the description of the fibers of this projection map ps.

Example 6.45. (m-tuples of 2× 2 matrices)

There are three different representation types τ of 2-dimensional representations of
C〈x1, . . . , xm〉 with corresponding local quiver settings (Qτ , ατ ) given in figure 5 The defining

(in)equalities of the strata issm2 (τ) are given by k×k minors (with k ≤ 4 of the symmetric m×m
matrix 2664

tr(x0
1x

0
1) . . . tr(x0

1x
0
m)

...
...

tr(x0
mx

0
1) . . . tr(x0

mx
0
m)

3775
where x0

i = xi − 1
2
tr(xi) is the generic trace zero matrix. These facts follow from the description

of the trace algebras Tm2 as polynomial algebras over the generic Clifford algebras of rank ≤ 4
(determined by the above symmetric matrix) and the classical matrix decomposition of Clifford
algebras over C. For more details we refer to [48].
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type τ (Qτ , ατ )

2a (1, 2) ��������1

4m− 3

��

2b (1, 1; 1, 1) ��������1 ��������1

m− 1
((

m− 1

hhm ;; mcc

2c (2, 1) ��������2

m

��

Figure 5. Local quiver settings for 2× 2 matrices.

s Bs, Cs (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
2
,− 1

2
)

−1

1

1��������

0��������

0��������

1��������
m− 1

���

??���

Pm−2

(− 1
2
, 1
2
)

−1

1

0��������

1��������

1��������

0��������
m− 1

??

��?
???

Pm−2

(0, 0)

0

0

1��������

1��������

P0

Figure 6. Moduli spaces for type 2b.

To study the fibers Mm
2

-- issm2 we need to investigate the different Hesselink strata in the
nullcones of these local quiver settings. Type 2a has just one potential corner type corresponding

to s = (0) ∈ S1 and with corresponding corner-quiver setting

0

��������1

which obviously has P0 (one point) as corresponding moduli (and orbit) space. This corresponds
to the fact that for ξ ∈ issm2 (1, 2), Mξ is simple and hence the fiber π−1(ξ) consists of the closed
orbit O(Mξ).

For type 2b the list of figure 6 gives the potential corner-types Cs together with their asso-
ciated corner-quiver settings and moduli spaces (note that as Bs = Cs in all cases, these moduli
spaces describe the full fiber) That is, for ξ ∈ issm2 (1, 1; 1, 1), the fiber π−1(ξ) consists of the

unique closed orbit O(Mξ) (corresponding to the P0) and two families Pm−2 of non-closed orbits.

Observe that in the special case m = 2 we recover the two non-closed orbits found in section 1.2.
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type τ (Qτ , ατ )

3a (1, 3) ��������1

9m− 8

��

3b (1, 2; 1, 1) ��������1 ��������1

2m− 2
((

2m− 2

hh4m− 3 ;; mcc

3c (1, 1; 1, 1; 1, 1) ��������1 ��������1

��������1

m− 1
((

m− 1

hh

m− 1

77

m− 1

ww

m− 1

��

m− 1

RR

m

MM

m

QQ

m

��

3d (2, 1; 1, 1) ��������2 ��������1

m− 1
((

m− 1

hhm ;; mcc

3e (3, 1) ��������3

m

��

Figure 7. Local quiver settings for 3× 3 matrices.

Finally, for type 2c, the fibers are isomorphic to the nullcones of m-tuples of 2× 2 matrices.
We have the following list of corner-types, corner-quiver settings and moduli spaces. Again, as

Bs = Cs in all cases, these moduli spaces describe the full fiber.

s Bs, Cs (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
2
,− 1

2
)

−1 1

1�������� 0��������m // Pm−1

(0, 0)

0

2�������� P0

whence the fiber π−1(ξ) consists of the closed orbit, together wit a Pm−1-family of non-closed

orbits. Again, in the special case m = 2, we recover the P1-family found in section 1.2.

Example 6.46. (m-tuples of 3× 3 matrices)

There are 5 different representation-types for 3-dimensional representations. Their associated
local quiver settings are given in figure 7 For each of these types we can perform an analysis of the

nullcones as before. We leave the details to the interested reader and mention only the end-result

• For type 3a the fiber is one closed orbit.
• For type 3b the fiber consists of the closed orbit together with two P2m−3-families of

non-closed orbits.
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• For type 3c the fiber consists of the closed orbit together with twelve Pm−2 × Pm−2-

families and one Pm−2-family of non-closed orbits.

• For type 3d the fiber consists of the closed orbit together with four Pm−1 × Pm−2-
families, one Pm−2 × Pm−2-family, two Pm−2-families, one Pm−1-family and two M -

families of non-closed orbits determined by moduli spaces of quivers, where M is the

moduli space of the following quiver setting

−1 2

��������2 ��������1m− 1 //

together with some additional orbits coming from the projection maps ps.

• For type 3e we have to study the nullcone of m-tuples of 3× 3 matrices, which can be
done as in the case of couples but for m ≥ 3 the two extra strata do occur.

We see that in this case the only representation-types where the fiber is not fully determined by

moduli spaces of quivers are 3d and 3e.

6.8. Representation fibers.

Let A be a Cayley-Hamilton algebra of degree n and consider the algebraic
quotient map

reptr
n
A

π-- isstrn A

from the variety of n-dimensional trace preserving representations to the variety
classifying isomorphism classes of trace preserving n-dimensional semi-simple rep-
resentations. Assume ξ ∈ Smtr A ⊂ - isstrn A. That is, the representation variety
reptr

n
A is smooth along the GLn-orbit of Mξ where Mξ is the semi-simple repre-

sentation determined by ξ ∈ isstrn A. We have seen that the local structure of A
and reptr

n
A near ξ is fully determined by a local marked quiver setting (Q•ξ , αξ).

That is, we have a GLn-isomorphism between the fiber of the quotient map, that
is, the n-dimensional trace preserving representation degenerating to Mξ

π−1(ξ) ' GLn ×GL(αξ) Nullαξ
Qξ

and the nullcone of the marked quiver-setting. In this section we will apply the
results on nullcones to the study of these representation fibers π−1(ξ).

Observe that all the facts on nullcones of quivers extend verbatim to marked
quivers Q• using the underlying quiver Q with the proviso that we drop all loops
in vertices with vertex-dimension 1 which get a marking in Q•. This is clear as
nilpotent quiver representations obviously have zero trace along each oriented cycle,
in particular in each loop.

The examples given before illustrate that a complete description of the nullcone
is rather cumbersome. For this reason we restrict here to the determination of
the number of irreducible components and their dimensions in the representation
fibers. Modulo the GLn-isomorphism above this study amounts to describing the
irreducible components of Nullαξ

Qξ which are determined by the maximal corner-
types Cs, that is such that the set of weights in Cs is maximal among subsets of
παxi

Qξ (and hence ‖ s ‖ is maximal among Sαξ
Qξ.

To illustrate our strategy, consider the case of curve orders. In section 5.4
we proved that if A is a Cayley-Hamilton order of degree n over an affine curve
X = isstn A and if ξ ∈ Smtr A, then the local quiver setting (Q,α) is determined
by an oriented cycle Q on k vertices with k ≤ n being the number of distinct
simple components of Mξ, the dimension vector α = (1, . . . , 1) as in figure 8 and
an unordered partition p = (d1, . . . , dk) having precisely k parts such that

∑
i di =
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1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

&&

...

Figure 8. Local quiver settings for curve orders.

n, determining the dimensions of the simple components of Mξ. Fixing a cyclic
ordering of the k-vertices {v1, . . . , vk} we have that the set of weights of the maximal
torus Tk = C∗ × . . .× C∗ = GL(α) occurring in repα Q is the set

πα Q = {πk1, π12, π23, . . . , πk−1k}

Denote K =
∑k−1
i=0 i = k(k−1)

2 and consider the one string vector

s = ( . . . , k − 2− K

k
, k − 1− K

k
,−K

k︸︷︷︸
i

, 1− K

k
, 2− K

k
, . . . )

then s is balanced and vertex-dominant, s ∈ Sα Q and πs Q = Π. To check whether
the corresponding Hesselink strata in Nullα Q is nonempty we have to consider the
associated quiver-setting (Qs, αs, θs) which is

−K −K + k −K + 2k −K + k2 − 2k −K + k2 − k

vi vi+1 vi+2 vi−2 vi−1

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .// // // // //

It is well known and easy to verify that repαs
Qs has an open orbit with represen-

tative all arrows equal to 1. For this representation all proper subrepresentations
have dimension vector β = (0, . . . , 0, 1, . . . , 1) and hence θs(β) > 0. That is, the
representation is θs-stable and hence the corresponding Hesselink stratum Ss 6= ∅.
Finally, because the dimension of repαs

Qs is k − 1 we have that the dimension of
this component in the representation fiber π−1(x) is equal to

dim GLn − dim GL(α) + dim repαs
Qs = n2 − k + k − 1 = n2 − 1

which completes the proof of the following

Theorem 6.47. Let A be a Cayley-Hamilton order of degree n over an affine
curve X such that A is smooth in ξ ∈ X. Then, the representation fiber π−1(ξ) has
exactly k irreducible components of dimension n2−1, each the closure of one orbit.
In particular, if A is Cayley-smooth over X, then the quotient map

rept
n
A

π-- isstn A = X

is flat, that is, all fibers have the same dimension n2 − 1.
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1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//

??�����

OO

OO

__?????

oo

//

oo

OO

##

yy

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

...

Figure 9. Local quiver settings for surface orders.

For Cayley-Hamilton orders over surfaces, the situation is slightly more com-
plicated. From section 5.4 we recall that if A is a Cayley-Hamilton order of degree
n over an affine surface S = isstn A and if A is smooth in ξ ∈ X, then the local
structure of A is determined by a quiver setting (Q,α) where α = (1, . . . , 1) and Q
is a two-circuit quiver on k+l+m ≤ n vertices, corresponding to the distinct simple
components of Mξ as in figure 9 and an unordered partition p = (d1, . . . , dk+l+m)
of n with k + l + m non-zero parts determined by the dimensions of the simple
components of Mξ. With the indicated ordering of the vertices we have that

πα Q = {πi i+1 |


1 ≤ i ≤ k − 1
k + 1 ≤ i ≤ k + l − 1
k + l + 1 ≤ i ≤ k + l +m− 1

}

∪ {πk k+l+1, πk+l k+l+1, πk+l+m 1, πk+l+m k+1}
As the weights of a corner cannot contain all weights of an oriented cycle in Q we
have to consider the following two types of potential corner-weights Π of maximal
cardinality

• (outer type) : Π = πα Q − {πa, πb} where a is an edge in the interval
[v1, . . . , vk] and b is an edge in the interval [vk+1, . . . , vk+l].
• (inner type) : Π = πα Q − {πc} where c is an edge in the interval

[vk+l+1, vk+l+m].
There are 2 + (k − 1)(l − 1) different subsets Π of outer type, each occurring as
the set of weights of a corner Cs, that is Π = πs Q for some s ∈ Sα Q. The two
exceptional cases correspond to{

Π1 = πα Q− {πk+l+m 1, πk+l k+l+1}
Π2 = πα Q− {πk+l+m k+1, πk k+l+1}

which are of the form πsi
Q with associated border quiver-setting (Qsi

, αsi
, θsi

)
where αsi = (1, . . . , 1), Qsi are the full line subquivers of Q given in figure 10 with
starting point v1 (resp. vk+1). The corresponding si ∈ Sα Q is a single string with
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Qs1

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//

??�����

OO

OO

oo

//

OO

##

yy

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

Qs1

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//

OO

OO

__?????

oo

oo

OO

##

yy

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

Figure 10. Border quiver settings.

minimal entry

−
∑k+l+m−1
i=0 i

k + l +m
= −k + l +m− 1

2
at place

{
1
k + 1

and going with increments equal to one along the unique path. Again, one verifies
that repαs Qs has a unique open and θs-stable orbit, whence these Hesselink strata
do occur and the border Bs is the full corner Cs. The corresponding irreducible
component in π−1(ξ) has therefore dimension equal to n2 − 1 and is the closure of
a unique orbit. The remaining (k−1)(l−1) subsets Π of outer type are of the form

Πij = πα Q− {πi i+1, πj j+1}

with 1 ≤ i ≤ k − 1 and k + 1 ≤ j ≤ k + l − 1. We will see in a moment that they
are again of type πs Q for some s ∈ Sα Q with associated border quiver-setting
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(Qs, αs, θs) where αs = (1, . . . , 1) and Qs is the full subquiver of Q

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

i+1

i

j+1

j

//

??�������

OO

OO

__???????

oo

//

oo

OO��

!!

xx

��

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

If we denote with Al the directed line quiver on l + 1 vertices, then Qs can be
decomposes into full line subquivers

(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,

(/).*-+,
(/).*-+,

Aa
OOOOOO

Ab
OOOOOO

Ab oooooo

Ac
Ad oooooo
Ad

OOOOOO

Ae
OOOOOO

but then we consider the one string s ∈ Sα Q with minimal entry equal to − x
k+l+m

where with notations as above

x =
a∑
i=1

i+ 2
b∑
i=1

(a+ i) +
c∑
i=1

(a+ b+ i)

+ 2
d∑
i=1

(a+ b+ c+ i) +
e∑
i=1

(a+ b+ c+ d+ i)

where the components of s are given to the relevant vertex-indices. Again, there is
a unique open orbit in repαs

Qs which is a θs-stable representation and the border
Bs coincides with the corner Cs. That is, the corresponding Hesselink stratum
occurs and the irreducible component of π−1(ξ) it determines had dimension equal
to

dim GLn − dim GL(α) + dim repαs Qs = n2 − (k + l +m) + (k + l +m− 1)

= n2 − 1



274 6. NULLCONES.

There are m−1 different subsets Πu of inner type, where for k+l+1 ≤ u < k+l+m
we define Πu = πα Q− {πu u+1}, that is dropping an edge in the middle

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,
1(/).*-+,

//

??�������

OO

OO

__???????

oo

//

oo

OO

OO

vu

vu+1

  

{{

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

First assume that k = l. In this case we can walk through the quiver (with notations
as before)

(/).*-+, (/).*-+, (/).*-+, (/).*-+,Aa

Ab

Ab

Ac

and hence the full subquiver of Q is part of a corner quiver-setting (Qs, αs, θs)
where α = (1, . . . , 1) and where s has as its minimal entry − x

k+l+m where

x =
a∑
i=1

i+ 2
b∑
i=1

(a+ i) +
c∑
i=1

(a+ b+ i)

In this case we see that repαs
Qs has θs-stable representations, in fact, there is a

P1-family of such orbits. The corresponding Hesselink stratum is nonempty and
the irreducible component of π−1(ξ) determined by it has dimension

dim GLn − dim GL(α) + dim repαs
Qs = n2 − (k + l +m) + (k + l +m) = n2

If l < k, then Πu = πs Q for some s ∈ Sα Q but this time the border quiver-setting
(Qs, αs, θs) is determined by αs = (1, . . . , 1) and Qs the full subquiver of Q by also
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dropping the arrow corresponding to πk+l+1 k+l, that is

(/).*-+, (/).*-+,
(/).*-+,

(/).*-+, (/).*-+, (/).*-+,

Aa
Ab oooooooo
Ab

OOOOOOOO

AcOOO
AdOOO
��

vu+1 vk+l+m

vk+l

vk+l+1

vu

If Qs is this quiver (without the dashed arrow) then Bs = repαs Qs and it contains
an open orbit of a θs-stable representation. Observe that s is determines as the one
string vector with minimal entry − x

k+l+m where

x =
a∑
i=1

i+ 2
b∑
i=1

(a+ i) +
c∑
i=1

(a+ b+ i) +
d∑
i=1

(a+ b+ c+ i)

However, in this case Bs 6= Cs and we can identify Cs with repαs Q
′
s where Q′s is

Qs together with the dashed arrow. There is an A1-family of orbits in Cs mapping
to the θs-stable representation. In particular, the Hesselink stratum exists and the
corresponding irreducible component in π−1(ξ) has dimension equal to

dim GLn − dim GL(α) + dim Cs = n2 − (k + l +m) + (k + l +m) = n2.

This concludes the proof of the description of the representation fibers of smooth
orders over surfaces, summarized in the following result.

Theorem 6.48. Let A be a Cayley-Hamilton order of degree n over an affine
surface X = isstn A and assume that A is smooth in ξ ∈ X of local type (Aklm, α).
Then, the representation fiber π−1(ξ) has exactly 2 + (k − 1)(l − 1) + (m − 1)
irreducible components of which 2 + (k− 1)(l− 1) are of dimension n2 − 1 and are
closure of one orbit and the remaining m − 1 have dimension n2 and are closures
of a one-dimensional family of orbits. In particular, if A is Cayley-smooth, then
the algebraic quotient map

rept
n
A

π-- isstn A = X

is flat if and only if all local quiver settings of A have quiver Aklm with m = 1.
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Having studied the local structure of noncommutative manifolds, we will
present some classes of examples in this part. Sum-varieties are families (Xn)n
of commutative varieties which are locally controlled by noncommutative algebras
and are connected with morphisms

Xn1 × . . .×Xnl

+- XP
ni

Such families often appear in moduli space problems of vectorbundles, with Xn

the moduli space of semistable rank n bundles (with additional invariants) and
the connecting morphisms induced by the direct sum of bundles. A related class
of examples are the moduli spaces Mss

α (Q, θ) of θ-semistable representations of a
quiver Q. In particular, if Q has no oriented cycles, each of these moduli spaces is
a projective variety. As an example we associate to the problem of describing all
finite dimensional representations of the torus knot groups (for example, the braid
group B3) a sum family of projective varieties and study their local properties with
the tools developed before.

The Quillen-smooth algebras controlling an object in geo @n are often derived
(for example, by universal localization) from a fixed Quillen-smooth algebra A. We
develop the formal theory of noncommutative differential forms, de Rham coho-
mology, symplectic structures etc. for a Quillen-smooth algebra A. In particular,
for the path algebra CQd of the double of a quiver, the noncommutative functions
dR0 are equipped with a natural Poisson-bracket. This infinite dimensional Lie
algebra is called the necklace Lie algebra because the necklace words in the quiver
Qd form a vectorspace bases and the Lie bracket is determined by opening and re-
assembling the necklaces. These Lie algebras are associated to infinite dimensional
automorphism groups acting naturally on certain moduli spaces.

In the final chapter we present a second possibility to construct noncommuta-
tive manifolds. Among the quotient varieties of the deformed preprojective alge-
bras, we characterize those which are coadjoint orbits for the necklace Lie algebra.
Deformed preprojective algebras are never Quillen-smooth but some of their approx-
imations at specific dimension vectors are α-smooth. The corresponding issα Πθ

are these coadjoint orbits. Presumably, families of these coadjoint orbits can be re-
assembled to form nice infinite dimensional cellular spaces. We present the example
of the adelic Grassmannian Grad (important in the study of dynamical systems)
which decomposes under the coadjoint action of a necklace Lie algebra in coadjoint
orbits Grad(n) each of which is the quotient variety of a deformed preprojective
algebra. These quotient varieties also have a physical interpretation as the phase
spaces of Calogero particles.
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CHAPTER 7

Noncommutative Geometry

7.1. Formal structure.

Objects in noncommutative geometry @n are families of varieties (Xi)i
which are locally controlled by a set of noncommutative algebras A. That is,
Xi is locally the quotient variety of a representation variety repn A for some n
and some C-algebra A ∈ A. In section 2.7 we have seen that the representation
varieties form a somewhat mysterious subclass of the category of all (affine) GLn-
varieties. For this reason it is important to equip them with additional structures
that may make them stand out among the GLn-varieties. In this section we define
the formal structure on representation varieties, extending in a natural way the
formal structure introduced by M. Kapranov on smooth affine varieties. Let us
give an illustrative example of this structure.

Consider the affine space Ad with coordinate ring C[x1, . . . , xd] and order the
coordinate functions x1 < x2 < . . . < xd. Let fd be the free Lie algebra on
Cx1 ⊕ . . .⊕ Cxd which has an ordered basis B = ∪k≥1Bk defined as follows. B1 is
the ordered set {x1, . . . , xd} and B2 = {[xi, xj ] | j < i}, ordered such that B1 < B2

and [xi, xj ] < [xk, xl] iff j < l or j = l and i < k. Having constructed the ordered
sets Bl for l < k we define

Bk = {[t, w] | t = [u, v] ∈ Bl, w ∈ Bk−l such that v ≤ w < t for l < k}.

For l < k we let Bl < Bk and Bk is ordered by [t, w] < [t′.w′] iff w < w′ or w = w′

and t < t′.
It is well known that B is an ordered C-basis of the Lie algebra fd and that its

enveloping algebra

U(fd) = C〈x1, . . . , xd〉

is the free associative algebra on the xi. We number the elements of ∪k≥2Bk ac-
cording to the order {b1, b2, . . .} and for bi ∈ Bk we define ord(bi) = k − 1 (the
number of brackets needed to define bi). Let Λ be the set of all functions with
finite support λ : ∪k≥2Bk - N and define ord(λ) =

∑
λ(bi)ord(bi). Rephras-

ing the Poincaré-Birkhoff-Witt result for U(fd) we have that any noncommutative
polynomial p ∈ C〈x1, . . . , xd〉 can be written uniquely as a finite sum

p =
∑
λ∈Λ

[[fλ]] Mλ

where [[fλ]] ∈ C[x1, . . . , xd] = S(B1) and Mλ =
∏
i b
λ(bi)
i . In particular, for every

λ, µ, ν ∈ Λ, there is a unique bilinear differential operator with polynomial coeffi-
cients

Cνλµ : C[x1, . . . , xd]⊗C C[x1, . . . , xd] - C[x1, . . . , xd]
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defined by expressing the product [[f ]] Mλ. [[g]] Mµ in C〈x1, . . . , xd〉 uniquely as∑
ν∈Λ[[Cνλµ(f, g)]] Mν .

By associativity of C〈x1, . . . , xd〉 the Cνλµ satisfy the associativity constraint ,
that is, we have equality of the trilinear differential operators∑

µ1

Cνµ1λ3
◦ (Cµ1

λ1λ2
⊗ id) =

∑
µ2

Cνλ1µ2
◦ (id⊗ Cµ2

λ2λ3
)

for all λ1, λ2, λ3, ν ∈ Λ. That is, one can define the algebra C〈x1, . . . , xd〉[[ab]] to be
the C-vectorspace of possibly infinite formal sums

∑
λ∈Λ[[fλ]] Mλ with multiplication

defined by the operators Cνλµ.
Let Ad(C) be the d-th Weyl algebra , that is, the ring of differential operators

with polynomial coefficients on Ad. Let OAd be the structure sheaf on Ad then it is
well-known that the ring of sections OAd(U) on any Zariski open subset U ⊂ - Ad

is a left Ad(C)-module. Define a sheaf OfAd of noncommutative algebras on Ad by
taking as its sections over U the algebra

OfAd(U) = C〈x1, . . . , xd〉[[ab]] ⊗
C[x1,...,xd]

OAd(U)

that is the C-vectorspace of possibly infinite formal sums
∑
λ∈Λ[[fλ]] Mλ with fλ ∈

OAd(U) and the multiplication is given as before by the action of the bilinear
differential operators Cνλµ on the left Ad(C)-module OAd(U), that is, for all f, g ∈
OAd(U) we have

[[f ]] Mλ.[[g]] Mµ =
∑
ν

[[Cνλµ(f, g)]] Mν

This sheaf of noncommutative algebras OfAd is called the formal structure on Ad.
We will now define such structures on arbitrary affine smooth varieties. Let R

be an associative C-algebra, RLie its Lie structure and RLiem the subspace spanned
by the expressions [r1, [r2, . . . , [rm−1, rm] . . .] containingm−1 instances of Lie brack-
ets. The commutator filtration of R is the (increasing) filtration by ideals (F k R)k∈Z
with F k R = R for d ∈ N and

F−k R =
∑
m

∑
i1+...+im=k

RRLiei1 R . . . RRLieim R

Observe that all C-algebra morphisms preserve the commutator filtration. The as-
sociated graded algebra grF R is a (negatively) graded commutative Poisson algebra
with part of degree zero, the abelianization Rab = R

[R,R] . If R = C〈x1, . . . , xd〉, then
the commutator filtration has components

F−k C〈x1, . . . , xd〉 = {
∑
λ

[[fλ]] Mλ,∀λ : ord(λ) ≥ k}

Definition 7.1. Denote with nilk the category of associative C-algebras R
such that F−kR = 0 (in particular, nil1 = commalg the category of commutative
C-algebras). An algebra A ∈ Ob(nilk) is said to be k-smooth if and only if for
all T ∈ Ob(nilk, all nilpotent twosided ideals I / T and all C-algebra morphisms
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A
φ- T

I there exist a lifted C-algebra morphism

T -- T

I

A

φ

6

�................................

∃φ̃

making the diagram commutative. Alternatively, an algebra is k-smooth if and
only if it is nilk-smooth.

For example, the quotient C〈x1,...,xd〉
F−k C〈x1,...,xd〉 is k-smooth using the lifting property

of free algebras and the fact that algebra morphisms preserve the commutator
filtration. Generalizing this, if A is Quillen-smooth then the quotient

A(k) =
A

F−k A

is k-smooth.
Kapranov proves [34, Thm 1.6.1] that an affine commutative Grothendieck-

smooth algebra C has a unique (upto C-algebra isomorphism identical on C) k-
smooth thickening C(k) with C

(k)
ab ' C. The inverse limit (connecting morphisms

are given by the unicity result)

Cf = lim
←

C(k)

is then called the formal completion of C. Clearly, one has Cfab = C. For example,

C[x1, . . . , xd]f = lim
←

C〈x1, . . . , xd〉
F−k C〈x1, . . . , xd〉

' C〈x1, . . . , xd〉[[ab]].

If X is an affine smooth (commutative) variety, one can use the formal comple-
tion C[X]f to define a sheaf of noncommutative algebras OfX defining the formal
structure on X.

The fact that C is Grothendieck-smooth is essential to construct and prove
uniqueness of the formal completion. At present, no sufficiently functorial extension
of formal completion is known for arbitrary commutative C-algebras. It is not true
that any (non affine) smooth variety can be equipped with a formal structure. In
fact, the obstruction gives important new invariants of a smooth variety related to
Atiyah classes . We refer to [34, §4] for more details.

We recall briefly the algebraic construction of microlocalization. Let R be a
filtered algebra with a separated filtration {Fn}n∈Z and let S be a multiplicatively
closed subset of R containing 1 but not 0. For any r ∈ Fn − Fn−1 we denote its
principal character σ(r) to be the image of r in the associated graded algebra gr(R).
We assume that the set σ(S) is a multiplicatively closed subset of gr(R). We define
the Rees ring R̃ to be the graded algebra

R̃ = ⊕n∈ZFntn ⊂ - R[t, t−1]

where t is an extra central variable. If σ(s) ∈ gr(R)n then we define the element
s̃ = stn ∈ R̃n. The set S̃ = {s̃, s ∈ S} is a multiplicatively closed subset of
homogeneous elements in R̃.
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Assume that σ(S) is an Ore set in gr(R) = R̃
(t) , then for every n ∈ N0 the image

πn(S̃) is an Ore set in R̃
(tn) where R̃ -- R̃

(tn) is the quotient morphism. Hence,
we have an inverse system of graded localizations and can form the inverse limit in
the graded sense

Qµ
S̃
(R̃) = lim

←
g πn(S̃)−1 R̃

(tn)
The element t acts torsionfree on this limit and hence we can form the filtered
algebra

QµS(R) =
Qµ
S̃
(R̃)

(t− 1)Qµ
S̃
(R̃)

which is the micro-localization of R at the multiplicatively closed subset S. We
recall that the associated graded algebra of the microlocalization can be identified
with the graded localization

gr(QµS(R)) = σ(S)−1gr(R).

Let R be a C-algebra with Rab = R
[R,R] = C. We assume that the commutator

filtration (F k)k∈Z is a separated filtration on R. Observe that this is not always
the case (for example consider U(g) for g a semi-simple Lie algebra) but often one
can repeat the argument below replacing R with R

∩Fn .
Observe that gr(R) is a negatively graded commutative algebra with part of

degree zero C. Take a multiplicatively closed subset Sc of C, then S = Sc + [R,R]
is a multiplicatively closed subset of R with the property that σ(S) = Sc and
clearly Sc is an Ore set in gr(R). Therefore, S̃ is a multiplicatively closed set of
the Rees ring R̃ consisting of homogeneous elements of degree zero. Observing that
(tn)0 = F−ntn for all n ∈ N0 we see that

QµS(R) = lim
←

πn(S)−1 R

F−n

where R
πn-- R

Fn is the quotient morphism and QµS is filtered again by the com-
mutator filtration and has as associated graded algebra

gr(QµS(R)) = S−1
c gr(R).

One can define a microstructure sheaf OµR on the affine scheme X of C by taking
as its sections over the affine Zariski open set X(f)

Γ(X(f),OµR) = QµSf
(R)

where S = {1, f, f2, . . .} + [R,R]. For C a Grothendieck-smooth affine commuta-
tive algebra this sheaf of noncommutative algebras is the formal structure on X
introduced by M. Kapranov.

An important remark to make is that one really needs microlocalization to
construct a sheaf of noncommutative algebras on X. If by some fluke we would
have that all the Sf are already Ore sets in R, we might optimistically assume that
taking as sections over X(f) the Ore localization S−1

f R we would define a sheaf OR
over X. This is in general not the case as the Ore set Sg need no longer be Ore in
a localization S−1

f R !
Still one can remedy this by defining a noncommutative Zariski topology on X

using words in the Ore sets Sf , see [79, §1.3]. Whereas we do not need this to
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define formal structures it seems to me inevitable that at a later stage in the devel-
opment of noncommutative geometry we will need to resort to such noncommutative
Grothendieck topologies on usual commutative schemes.

Having define a formal structure on affine smooth varieties, we will now ex-
tend it to arbitrary representation varieties. The starting point is that for every
associative algebra A the functor

alg
Homalg(A,Mn(−)) - sets

is representable in alg. That is, there exists an associative C-algebra n
√
A such that

there is a natural equivalence between the functors

Homalg(A,Mn(−)) ∼
n.e.

Homalg( n
√
A,−).

In other words, for every associative C-algebra B, there is a functorial one-to-one
correspondence between the sets{

algebra maps A - Mn(B)
algebra maps n

√
A - B

We call n
√
A the n-th root algebra of A .

Example 7.2. If A = C〈x1, . . . , xd〉, then it is easy to see that n
√
A is the free algebra

C〈x11,1, . . . , xnn,d〉 on dn2 variables. For, given an algebra map A
φ- Mn(B) we obtain an

algebra map n
√
A - B by sending the free variable xij,k to the (i, j)-entry of the matrix φ(xk) ∈

Mn(B). Conversely, to an algebra map n
√
A

ψ- B we assign the algebra map A - Mn(B)

by sending xk to the matrix (ψ(xij,k))i,j ∈ Mn(B). Clearly, these operations are each others

inverses.

To define n
√
A in general, consider the free algebra product A ∗ Mn(C) and

consider the subalgebra

n
√
A = A ∗Mn(C)Mn(C) = {p ∈ A ∗Mn(C) | p.(1 ∗m) = (1 ∗m).p ∀m ∈Mn(C)}

Before we can prove the universal property of n
√
A we need to recall a property

that Mn(C) shares with any Azumaya algebra : if Mn(C)
φ- R is an algebra

morphism and if RMn(C) = {r ∈ R | r.φ(m) = φ(m).r ∀m ∈Mn(C)}, then we have
R 'Mn(C)⊗C R

Mn(C).
In particular, if we apply this to R = A ∗ Mn(C) and the canonical map

Mn(C)
φ- A∗Mn(C) where φ(m) = 1∗m we obtain that Mn(

n
√
A) = Mn(C)⊗C

n
√
A = A ∗Mn(C).

Hence, if n
√
A

f- B is an algebra map we can consider the composition

A
idA∗1- A ∗Mn(C) 'Mn(

n
√
A)

Mn(f)- Mn(B)

to obtain an algebra map A - Mn(B). Conversely, consider an algebra map
A

g- Mn(B) and the canonical map Mn(C)
i- Mn(B) which centralizes B

in Mn(B). Then, by the universal property of free algebra products we have an
algebra map A ∗Mn(C)

g∗i- Mn(B) and restricting to n
√
A we see that this maps
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factors
A ∗Mn(C)

g∗i- Mn(B)

n
√
A

∪

6

...................- B
∪

6

and one verifies that these two operations are each others inverses.
It follows from the functoriality of the n

√
. construction that

C〈x1, . . . , xd〉 -- A implies that n
√

C〈x1, . . . , xd〉 -- n
√
A. Therefore, if

A is affine and generated by ≤ d elements, then n
√
A is also affine and generated

by ≤ dn2 elements.
These properties allow us define a formal completion of C[repn A] in a functorial

way for any associative algebra A. Equip n
√
A with the commutator filtration

. . . ⊂ - F−2
n
√
A ⊂- F−1

n
√
A ⊂ - n

√
A = n

√
A = . . .

Because algebra morphisms are commutator filtration preserving, it follows from
the universal property of n

√
A that

n√
A

F−k
n√
A

is the object in nilk representing the
functor

nilk
Homalg(A,Mn(−)) - sets.

In particular, because the categories commalg and nil1 are naturally equivalent,
we deduce that

n
√
Aab =

n
√
A

[ n
√
A, n
√
A]

=
n
√
A

F−1
n
√
A
' C[repn A]

because both algebras represent the same functor. We now define

n
√
A[[ab]] = lim

←

n
√
A

F−k
n
√
A
.

Assume that A is Quillen-smooth, then so is n
√
A because we have seen before

that
Mn(

n
√
A) ' A ∗Mn(C)

and the class of Quillen-smooth algebras is easily seen to be closed under free
products and matrix algebras.

As a consequence, we have for every k ∈ N that the quotient
n√
A

F−k
n√
A

is k-
smooth. Moreover, we have that

(
n
√
A

F−k
n
√
A

)ab '
n
√
A

[ n
√
A, n
√
A]
' C[repn A].

Because C[repn A] is an affine commutative Grothendieck-smooth algebra, we de-
duce from the uniqueness of k-smooth thickenings that

C[repn A](k) '
n
√
A

F−k
n
√
A

and consequently that the formal completion of C[repn A] can be identified with

C[repn A]f ' n
√
A[[ab]].
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Therefore, if we define for an arbitrary C-algebra A the formal completion of
C[repn A] to be n

√
A[[ab]] we have a canonical extension of the formal structure on

affine Grothendieck-smooth commutative algebras to the class of coordinate rings
of representation spaces on which it is functorial in the algebras.

There is a natural action of GLn by algebra automorphisms on n
√
A. Let uA

denote the universal morphism A
uA- Mn(

n
√
A) corresponding to the identity map

on n
√
A. For g ∈ GLn we can consider the composed algebra map

A
uA- Mn(

n
√
A)

Mn(
n
√
A)

g.g−1

?

ψ
g

-

Then g acts on n
√
A via the automorphism n

√
A

φg- n
√
A corresponding the the

composition ψg. It is easy to verify that this defines indeed a GLn-action on n
√
A.

The formal structure sheaf Ofrepn A defined over repn A constructed from n
√
A

will be denoted by Ofn√
A
. We see that it actually has a GLn-structure which is

compatible with the GLn-action on repn A.

7.2. Semi invariants.

A major source of examples of noncommutative varieties are moduli spaces of
θ-semistable representations of quivers. Because the moduli space Mss

α (Q, θ) is by
definition the projective scheme of the graded algebra of semi-invariants of weight
χnθ for some n

Mss
α (Q, θ) = proj ⊕∞n=0 C[repα Q]GL(α),χnθ

we need some control on these semi-invariants of quivers.
In this section we will give a generating set of semi-invariants. The strategy of

proof should be clear by now. First, we will describe a large set of semi-invariants.
Then we use classical invariant theory to describe all multilinear semi-invariants of
GL(α), or equivalently, all multilinear invariants of SL(α) = SLa1× . . .×SLak

and
describe them in terms of these determinantal semi-invariants. Finally, we show
by polarization and restitution that these semi-invariants do indeed generate all
semi-invariants.

Let Q be a quiver on k vertices {v1, . . . , vk}. We introduce the additive C-
category add Q generated by the quiver. For every vertex vi we introduce an
indecomposable object which we denote by  '!&"%#$07162534i . An arbitrary object in add Q is
then a sum of these  '!&"%#$071625341

⊕e1 ⊕ . . .⊕  '!&"%#$07162534k
⊕ek

That is we can identify add Q with Nk. Morphisms in the category add Q are
defined by the rules

Homadd Q(  '!&"%#$07162534i ,  '!&"%#$07162534j ) = ��������i��������j
~~

Homadd Q(  '!&"%#$07162534i ,  '!&"%#$07162534i ) = ��������i
��
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where the right hand sides are the C-vectorspaces spanned by all oriented paths
from vi to vj in the quiver Q, including the idempotent (trivial) path ei when i = j.

Clearly, for any k-tuples of positive integers α = (u1, . . . , uk) and β =
(v1, . . . , vk)

Homadd Q(  '!&"%#$071625341
⊕u1 ⊕ . . .⊕  '!&"%#$07162534k

⊕uk
,  '!&"%#$071625341

⊕v1 ⊕ . . .⊕  '!&"%#$07162534k
⊕vk )

is defined by matrices and composition arises via matrix multiplication

Mv1×u1( ��������1
��

) . . . Mv1×uk
( ��������k��������1
~~

)

...
. . .

...

Mvk×u1( ��������1��������k
~~

) . . . Mvk×uk
( ��������k
��

)


Fix a dimension vector α = (a1, . . . , ak) and a morphism φ in add Q

 '!&"%#$071625341
⊕u1 ⊕ . . .⊕  '!&"%#$07162534k

⊕uk φ-  '!&"%#$071625341
⊕v1 ⊕ . . .⊕  '!&"%#$07162534k

⊕vk

For any representation V ∈ repα Q we can replace each occurrence of an arrow��������i��������j
aoo of Q in φ by the aj × ai-matrix Va. This way we obtain a rectangular

matrix
V (φ) ∈MPk

i=1 aivi×
Pk

i=1 aiui
(C)

If we are in a situation where
∑
aivi =

∑
aiui, then we can define a semi-invariant

polynomial function on repα Q by

Pα,φ(V ) = det V (φ)

We call such semi-invariants determinantal semi-invariants . One verifies that Pφ,α
is a semi-invariant of weight χθ where θ = (u1−v1, . . . , uk−vk). We will show that
such determinantal semi-invariant together with traces along oriented cycles in the
quiver Q generate all semi-invariants.

Because semi-invariants for the GL(α)-action on repα Q are the same as in-
variants for the restricted action of SL(α) = SLa1 × . . . × SLak

, we will describe
the multilinear SL(α)-invariants from classical invariant theory. Because

repα Q =
⊕

��������i��������j
aoo

Maj×ai
(C)

=
⊕

��������i��������j
aoo

Cai ⊗ C∗aj

we have to consider multilinear SL(α)-invariants of⊗
��������i��������j oo

Cai ⊗ C∗aj =
⊗

��������i

[
⊗

��������i��������oo
Cai ⊗

⊗
����������������i oo

C∗ai ]
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Hence, any multilinear SL(α)-invariant can be written as f =
∏k
i=1 fi where fi is

a SLai-invariant of ⊗
��������i��������oo

Cai ⊗
⊗

����������������i oo
C∗ai

To increase our cultural luggage let us recall the classical description of mul-
tilinear SLn-invariants on M⊕in ⊕ V ⊕jn ⊕ V ∗⊕zn , that is, the SLn-invariant linear
maps

Mn ⊗ . . .⊗Mn︸ ︷︷ ︸
i

⊗Vn ⊗ . . .⊗ Vn︸ ︷︷ ︸
j

⊗V ∗n ⊗ . . .⊗ V ∗n︸ ︷︷ ︸
z

f- C

By the identification Mn = Vn⊗V ∗n we have to determine the SLn-invariant linear
maps

V ⊗i+jn ⊗ V ∗⊗i+zn

f- C
The description of such invariants is given by classical invariant theory, see [81,
II.5,Thm. 2.5.A].

Theorem 7.3. The multilinear SLn-invariants f are linear combinations of
invariants of one of the following two types

(1) For (i1, . . . , in, h1, . . . , hn, . . . , t1, . . . , tn, s1, . . . , sr) a permutation of the
i + j vector indices and (u1, . . . , ur) a permutation of the i + z covector
indices, consider the SLn-invariant

[vi1 , . . . , vin ] [vh1 , . . . , vhn
] . . . [vt1 , . . . , vtn ] φu1(vs1) . . . φur

(vsr
)

where the brackets are the determinantal invariants

[va1 , . . . , van ] = det
[
va1 va2 . . . van

]
(2) For (i1, . . . , in, h1, . . . , hn, . . . , t1, . . . , tn, s1, . . . , sr) a permutation of the

i + z covector indices and (u1, . . . , ur) a permutation of the i + j vector
indices, consider the SLn-invariant

[φi1 , . . . , φin ]∗ [φh1 , . . . , φhn
]∗ . . . [φt1 , . . . , φtn ]∗ φu1(vs1) . . . φur

(vsr
)

where the cobrackets are the determinantal invariants

[φa1 , . . . , φan
]∗ = det

φa1

...
φan


Observe that we do not have at the same time brackets and cobrackets, due to

the relation

[v1, . . . , vn] [φ1, . . . , φn] = det

φ1(v1) . . . φ1(vn)
...

...
φn(v1) . . . φn(vn)


We can give a matrix-interpretation of these basic invariants. Let us consider the
case of a bracket of vectors (the case of cobrackets is similar)

[vi1 , . . . , vin ]

If all the indices {i1, . . . , in} are original vector-indices (and so do not come from
the matrix-terms) we save this term and go to the next factor. Otherwise, if say i1
is one of the matrix indices, Ai1 = φi1 ⊗ vi1 , then the covector φi1 must be paired
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up in a scalar product φi1(vu1) with a vector vu1 . Again, two cases can occur. If
u1 is a vector index, we have that

φi1(vu1)[vi1 , . . . , vin ] = [Ai1vu1 , vi2 , . . . , vin ] = [v′i1 , vi2 , . . . , vin ]

Otherwise, we can keep on matching the matrix indices and get an expression

φi1(vu1) φu1(vu2) φu2(vu3) . . .

until we finally hit again a vector index, say ul, but then we have the expression

φi1(vu1) φu1(vz1) . . . φul−1(vul
) [vi1 , . . . , vin ] = [Mvul

, vi2 , . . . , vin ]

where M = Ai1Au1 . . . Aul−1 . One repeats the same argument for all vectors in the
brackets. As for the remaining scalar product terms, we have a similar procedure of
matching up the matrix indices and one verifies that in doing so one obtains factors
of the type

φ(Mv) and tr(M)

where M is a monomial in the matrices. As we mentioned, the case of covector-
brackets is similar except that in matching the matrix indices with a covector φ,
one obtains a monomial in the transposed matrices.

Having found these interpretations of the basic SLn-invariant linear terms, we
can proceed by polarization and restitution processes to prove

Theorem 7.4. The SLn-invariants of W = repα Q
′ where Q′ is the quiver

n(/).*-+,m(/).*-+, p(/).*-+,
k

��
// //

are generated by the following four types of functions, where we write a typical
element in W as

(A1, . . . , Ak︸ ︷︷ ︸
k

, v1, . . . , vm︸ ︷︷ ︸
m

, φ1, . . . , φp︸ ︷︷ ︸
p

)

with the Ai the matrices corresponding to the loops, the vj making up the rows of
the n×m matrix and the φj the columns of the p× n matrix.

• tr(M) where M is a monomial in the matrices Ai,
• scalar products φj(Mvi) where M is a monomial in the matrices Ai,
• brackets [M1vi1 ,M2vi2 , . . . ,Mnvin ] where the Mj are monomials in the

matrices Ai,
• cobrackets [M1φ

τ
i1
, . . . ,Mnφ

τ
in

] where the Mj are monomials in the matri-
ces Ai,

Returning to the special case under consideration, that is, of SLm-invariants on
⊗BCm⊗⊗CC∗m, it follows from this that the linear SLm-invariants are determined
by the following three sets

• traces, that is, for each pair (b, c) we have Cm ⊗ C∗m = Mm(C)
Tr- C.

• brackets, that is, for each m-tuple (b1, . . . , bm) we have an invariant
⊗bj

Cm - C defined by

vb1 ⊗ . . .⊗ vbm
7→ det

[
vb1 . . . vbm

]
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• cobrackets, that is, for each m-tuple (c1, . . . , cm) we have an invariant
⊗ciC∗m - C defined by

φc1 ⊗ . . .⊗ φcm
7→ det

φc1...
φcm


Multilinear SLm-invariants of ⊗BCm ⊗ ⊗CC∗m are then spanned by invariants
constructed from the following data. Take three disjoint index-sets I, J and K and
consider surjective maps {

B
µ-- I tK

C
ν-- J tK

subject to the following conditions{
# µ−1(k) = 1 = # ν−1(k) for all k ∈ K.
# µ−1(i) = m = # ν−1(j) for all i ∈ I and j ∈ J .

To this data γ = (µ, ν, I, J,K) we can associate a multilinear SLm-invariant
fγ(⊗Bvb ⊗⊗Cφc) defined by

∏
k∈K

φν−1(k)(vµ−1(k))
∏
i∈I

det
[
vb1 . . . vbm

] ∏
j∈J

det

φc1...
φcm


where µ−1(i) = {b1, . . . , bm} and ν−1(j) = {c1, . . . , cm}. Observe that fγ is deter-
mined only up to a sign by the data γ.

But then, we also have a spanning set for the multilinear SL(α)-invariants on

repα Q =
⊗

��������v

[
⊗

��������v��������oo Cav ⊗
⊗

����������������v oo
C∗av ]

determined by quintuples Γ = (µ, ν, I, J,K) where we have disjoint index-sets par-
titioned over the vertices v ∈ {v1, . . . , vk} of Q

I =
⊔
v Iv

J =
⊔
v Jv

K =
⊔
v Kv

together with surjective maps from the set of all arrows A of Q{
A

µ-- I tK
A

ν-- J tK

where we have for every arrow ��������v��������w
aoo that{

µ(a) ∈ Iv tKv

ν(a) ∈ Jw tKw

and these maps µ and ν are subject to the numerical restrictions{
# µ−1(k) = 1 = # ν−1(k) for all k ∈ K.
# µ−1(i) = av = # ν−1(j) for all i ∈ Iv and all j ∈ Jv.
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Such a quintuple Γ = (µ, ν, I, J,K) determines for every vertex v a quintuple

γv = (µv = µ | { ��������v�������� aoo }, νv = ν | { ����������������v
aoo }, Iv, Jv,Kv)

satisfying the necessary numerical restrictions to define the SLav
-invariant fγv

de-
scribed before. Then, the multilinear SL(α)-invariant on repα Q determined by Γ
is defined to be

fγ =
∏
v

fγv

and we have to show that these semi-invariants lie in the linear span of the deter-
minantal semi-invariants.

First, consider the case where the index set K is empty. If we denote the total
number of arrows in Q by n, then the numerical restrictions imposed give us two
expressions for n ∑

v

av.# Iv = n =
∑
v

av.# Jv

Every arrow ��������v��������w
aoo determines a pair of indices µ(a) ∈ Iv and ν(a) ∈ Jw. To

the quintuple Γ we assign a map ΦΓ in add Q

 '!&"%#$071625341
⊕I1 ⊕ . . .⊕  '!&"%#$07162534k

⊕Ik ΦΓ-  '!&"%#$071625341
⊕J1 ⊕ . . .⊕  '!&"%#$07162534k

⊕Jk

which decomposes as a block-matrix in blocks Mv,w ∈ Hom(  '!&"%#$07162534v
⊕Iv

,  '!&"%#$07162534w
⊕Jw ) of

which the (i, j) entry is given by the sum of arrows∑
µ(a)=i
ν(a)=j

��������v��������w
aoo

For a representation V ∈ repα Q, V (ΦΓ) is an n × n matrix and the determinant
defines the determinantal semi-invariant PΦα,Γ which we claim to be equal to the
basic invariant fΓ possibly up to a sign.

We introduce a new quiver situation. Let Q′ be the quiver with vertices the
elements of I t J and with arrows the set A of arrows of Q, but this time w take
the starting point of the arrow ���������������� aoo in Q to be µ(a) ∈ I and the terminating
vertex to be ν(a) ∈ J . That is, Q′ is a bipartite quiver

I J

8?9>:=;<µ(a)

8?9>:=;<ν(a)

a

77ooooooooooooooo

On Q′ we have the quintuple Γ′ = (µ′, ν′, I ′, J ′,K ′) where K ′ = ∅,

I ′ =
⊔
i∈I

I ′i =
⊔
i∈I
{i} J ′ =

⊔
j∈J

J ′j =
⊔
j∈J
{j}
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and µ′ = µ, ν′ = ν. We define an additive functor add Q′
s- add Q by

 '!&"%#$07162534i s-  '!&"%#$07162534v  '!&"%#$07162534j
s-  '!&"%#$07162534w ���������������� aoo s- ���������������� aoo

for all i ∈ Iv and all j ∈ Jw. The functor s induces a functor rep Q
s- rep Q′

defined by V
s- V ◦ s. If V ∈ repα Q then s(V ) ∈ repα′ Q′ where

α′ = (c1, . . . , cp︸ ︷︷ ︸
# I

, d1, . . . , dq︸ ︷︷ ︸
# J

) with

{
ci = av if i ∈ Iv
dj = aw if j ∈ Jw

That is, the characteristic feature of Q′ is that every vertex i ∈ I is the source of
exactly ci arrows (follows from the numerical condition on µ) and that every vertex
j ∈ J is the sink of exactly dj arrows in Q′. That is, locally Q′ has the following
form ��������c c // or ��������dd //

There are induced maps

repα Q
s- repα′ Q

′ GL(α)
s- GL(α′)

where the latter follows from functoriality by considering GL(α) as the automor-
phism group of the trivial representation in repα Q. These maps are compatible
with the actions as one checks that s(g.V ) = s(g).s(V ). Also s induces a map on
the coordinate rings C[repα Q]

s- C[repα′ Q′] by s(f) = f ◦ s. In particular, for
the determinantal semi-invariants we have

s(Pα′,φ′) = Pα,s(φ′)

and from the compatibility of the action it follows that when f is a semi-invariant
the GL(α′) action on repα′ Q

′ with character χ′, then s(f) is a semi-invariant for
the GL(α)-action on repα Q with character s(χ) = χ′ ◦ s. In particular we have
that

s(Pα′,ΦΓ′ ) = Pα,s(ΦΓ′ )
= Pα,ΦΓ and s(fΓ′) = fΓ

Hence in order to prove our claim, we may replace the triple (Q,α,Γ) by the triple
(Q′, α′,Γ′). We will do this and forget the dashes from here on.

In order to verify that fΓ = ±Pα,ΦΓ it suffices to check this equality on the
image of

W =
⊕

��������j��������i
a //

Cci ⊕ C∗dj in
⊗

��������j��������i
a //

Cci ⊗ C∗dj

One verifies that both fΓ and Pα,ΦΓ are GL(α)-semi-invariants on W of weight χθ
where

θ = (1, . . . , 1︸ ︷︷ ︸
# I

,−1, . . . ,−1︸ ︷︷ ︸
# J

)

Using the characteristic local form of Q = Q′, we see that W is isomorphic to the
GL(α)- module

W '
⊕
i∈I

(Cci ⊕ . . .⊕ Cci︸ ︷︷ ︸
ci

)⊕
⊕
j∈J

(C∗dj ⊕ . . .⊕ C∗dj︸ ︷︷ ︸
dj

) '
⊕
i∈I

Mci
(C)⊕

⊕
j∈J

Mdj
(C)

and the i factors of GL(α) act by inverse right-multiplication on the component
Mci

(and trivially on all others) and the j factors act by left-multiplication on the
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component Mdj
(and trivially on the others). That is, GL(α) acts on W with an

open orbit, say that of the element

w = (rrc1 , . . . ,
rr
cp ,

rr
d1 , . . . ,

rr
dq ) ∈W

One verifies immediately from the definitions that that both fΓ and Pα,ΦΓ evaluate
to ±1 in w. Hence, indeed, fΓ can be expressed as a determinantal semi-invariant.

Remains to consider the case when K is non-empty. For k ∈ K two situations
can occur

• µ−1(k) = a and ν−1(k) = b are distinct, then k corresponds to replacing
the arrows a and b by their concatenation

��������k�������� ��������
b

oo
a

oo

• µ−1(k) = a = ν−1(k) then a is a loop in Q and k corresponds

��������k

a

��

to taking the trace of a.
This time we construct a new quiver Q” with vertices {w1, . . . , wn} corresponding
to the set A of arrows in Q. The arrows in Q” will correspond to elements of K,
that is if k ∈ K we have the arrow (or loop) in Q” with notations as before

��������a��������b koo or ��������a
k

��

We consider the connected components of Q”. They are of the following three types
• (oriented cycle) : To an oriented cycle C in Q” corresponds an oriented

cycle C ′C in the original quiver Q. We associate to it the trace tr(C ′C) of
this cycle.
• (open paths) : An open path P in Q” corresponds to an oriented path P ′P

in Q which may be a cycle. To P we associate the corresponding path P ′P
in Q.
• (isolated points) : They correspond to arrows in Q.

We will now construct a new quiver Q′ having the same vertex set {v1, . . . , vk}
as Q but with arrows corresponding to the set of paths P ′P described above. The
starting and ending vertex of the arrow corresponding to P ′P are of course the
starting and ending vertex of the path PP in Q. Again, we define an additive
functor add Q′

s- add Q by the rules

 '!&"%#$07162534v
s-  '!&"%#$07162534v and ��������i��������j

P ′Poo s- ��������i��������j

P ′P

~~

If the path P ′P is the concatenation of the arrows ad ◦ . . . ◦ a1 in Q, we define the
maps {

µ′(P ′P ) = µ(a1)
ν′(P ′P ) = ν(ad)

whence

{
{P ′P }

µ-- I ′

{P ′P }
ν-- J ′
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L R

8?9>:=;<li

8?9>:=;<rj

22eeeeeeeeeeeeeeee //

,,YYYYYYYYYYYYYYYY

,,YYYYYYYYYYYYYYY

//

Figure 1. Left-right bipartite quiver.

that is, a quintuple Γ′ = (µ′, ν′, I ′, J ′,K ′ = ∅) for the quiver Q′. One then verifies
that

fΓ = s(fΓ′)
∏
C

tr(C ′C) = s(Pα,ΦΓ′ )
∏
C

tr(C ′C)

= Pα,s(ΦΓ′ )

∏
C

tr(C ′C)

finishing the proof of the fact that multilinear semi-invariants lie in the linear span
of determinantal semi-invariants (and traces of oriented cycles).

The arguments above can be reformulated in a more combinatorial form which
is often useful in constructing semi-invariants of a specific weight, as is necessary
in the study of the moduli spaces Mss

α (Q, θ). Let Q be a quiver on the vertices
{v1, . . . , vk}, fix a dimension vector α = (a1, . . . , ak) and a character χθ where
θ = (t1, . . . , tk) such that θ(α) = 0. We will call a bipartite quiver Q′ as in figure 1
on left vertex-set L = {l1, . . . , lp} and right vertex-set R = {r1, . . . , rq} and a
dimension vector β = (c1, . . . , cp; d1, . . . , dq) to be of type (Q,α, θ) if the following
conditions are met

• All left and right vertices correspond to vertices of Q, that is, there are
maps {

L
l- {v1, . . . , vk}

R
r- {v1, . . . , vk}

possibly occurring with multiplicities, that is there is a map

L ∪R m- N+

such that ci = m(li)az if l(li) = vz and dj = m(rj)az if r(rj) = vz.
• There can only be an arrow (/).*-+,rj(/).*-+,li // if for vk = l(li) and vl = r(ri)

there is an oriented path

(/).*-+,vl(/).*-+,vk

  

in Q allowing the trivial path and loops if vk = vl.
• Every left vertex li is the source of exactly ci arrows in Q′ and every

right-vertex rj is the sink of precisely dj arrows in Q′.
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• Consider the u × u matrix where u =
∑
i ci =

∑
j dj (both numbers are

equal to the total number of arrows in Q′) where the i-th row contains the
entries of the i-th arrow in Q′ with respect to the obvious left and right
bases. Observe that this is a GL(β) semi-invariant on repβ Q′ with weight
determined by the integral k + l-tuple (−1, . . . ,−1; 1, . . . , 1). If we fix for
every arrow a from li to rj in Q′ an m(rj) × m(li) matrix pa of linear
combinations of paths in Q from l(li) to r(rj), we obtain a morphism

repα Q - repβ Q
′

sending a representation V ∈ repα Q to the representationW ofQ′ defined
by Wa = pa(V ). Composing this map with the above semi-invariant we
obtain a GL(α) semi-invariant of repα Q with weight determined by the
k-tuple θ = (t1, . . . , tk) where

ti =
∑

j∈r−1(vi)

m(rj)−
∑

j∈l−1(vi)

m(lj)

.

We call such semi-invariants standard determinantal . Summarizing the arguments
of this section we have proved after applying polarization and restitution processes

Theorem 7.5. The semi-invariants of the GL(α)-action on repα Q are gen-
erated by traces of oriented cycles and by standard determinantal semi-invariants.

7.3. Universal localization.

In order to prove that the moduli spaces Mss
α (Q, θ) are locally controlled by

Quillen-smooth algebras, we need to recall the notion of universal localization . We
refer to the monograph by A. Schofield [69] for full details.

Let A be a C-algebra and projmod A the category of finitely generated projec-
tive left A-modules. Let Σ be some class of maps in this category (that is some left
A-module morphisms between certain projective modules). Then, there exists an
algebra map A

jΣ- AΣ with the universal property that the maps AΣ ⊗A σ have
an inverse for all σ ∈ Σ. AΣ is called the universal localization of A with respect to
the set of maps Σ.

Proposition 7.6. When A is Quillen-smooth, then so is AΣ.

Proof. Consider a test-object (T, I) in alg, then we have the following dia-
gram

T -- T

I

A

ψ

6
.................

jΣ
- AΣ

φ

6

�...............................

φ̃

where ψ exists by Quillen-smoothness of A. By Nakayama’s lemma all maps σ ∈ Σ
become isomorphisms under tensoring with ψ. Then, φ̃ exists by the universal
property of AΣ. �
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Consider the special case when A is the path algebra CQ of a quiver on k
vertices. Then, we can identify the isomorphism classes in projmod CQ with the
opposite category of add Q introduced in the foregoing section. To each vertex
vi corresponds an indecomposable projective left CQ-ideal Pi = CQei having as
C-vectorspace basis all paths in Q starting at vi. For the homomorphisms we have

HomCQ(Pi, Pj) =
⊕

��������i ��������j
poo o/ o/ o/ o/

Cp = Homadd Q(  '!&"%#$07162534j ,  '!&"%#$07162534i )

where p is an oriented path in Q starting at vj and ending at vi. Therefore, any
A-module morphism σ between two projective left modules

Pi1 ⊕ . . .⊕ Piu
σ- Pj1 ⊕ . . .⊕ Pjv

can be represented by an u× v matrix Mσ whose (p, q)-entry mpq is a linear com-
bination of oriented paths in Q starting at vjq and ending at vip .

Now, form an v × u matrix Nσ of free variables ypq and consider the algebra
CQσ which is the quotient of the free product CQ∗C〈y11, . . . , yuv〉 modulo the ideal
of relations determined by the matrix equations

Mσ.Nσ =

vi1 0
. . .

0 viu

 Nσ.Mσ =

vj1 0
. . .

0 vjv


Equivalently, CQσ is the path algebra of a quiver with relations where the quiver
is Q extended with arrows ypq from vip to vjq for all 1 ≤ p ≤ u and 1 ≤ q ≤ v and
the relations are the above matrix entry relations.

Repeating this procedure for every σ ∈ Σ we obtain the universal localization
CQΣ. This proves

Proposition 7.7. If Σ is a finite set of maps, then the universal localization
CQΣ is an affine C-algebra.

It is easy to verify that the representation space repn CQσ is an affine Zariski
open subscheme (but possibly empty) of repn CQ. Indeed, if V = (Va)a ∈ repα Q,
then V determines a point in repn CQΣ if and only if the matrices Mσ(V ) in which
the arrows are all replaced by the matrices Va are invertible for all σ ∈ Σ.

In particular, this induces numerical conditions on the dimension vectors α such
that repα QΣ 6= ∅. Let α = (a1, . . . , ak) be a dimension vector such that

∑
ai = n

then every σ ∈ Σ say with

P⊕e11 ⊕ . . .⊕ P⊕ek

k

σ- P⊕f11 ⊕ . . .⊕ P⊕fk

k

gives the numerical condition

e1a1 + . . .+ ekak = f1a1 + . . .+ fkak.

These numerical restrictions will be used to relate θ-stable representations of Q to
simple representations of universal localizations of CQ.

Fix a character θ = (t1, . . . , tk) ∈ Zk and divide the set of indices 1 ≤ i ≤ k
into the left set L = {i1, . . . , iu} consisting of those i such that ti ≤ 0 and the right
set R = {j1, . . . , jv} consisting of those j such that tj ≥ 0. Consider a dimension
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vector α such that θ.α = 0, then θ determines the character

GL(α)
χθ- C∗ (g1, . . . , gk) 7→

∏
i

det(gi)ti

Next, consider the sets of morphisms

Σθ =
⋂
z∈N+

Σθ(z)

where Σθ(z) is the set of all morphisms

P
⊕−zti1
i1

⊕ . . .⊕ P⊕−ztiu
iu

σ- P
⊕ztj1
j1

⊕ . . .⊕ P⊕ztjv
jv

With notation as before, it follows that

dσ(V ) = det Mσ(V ) V ∈ repα Q
is a semi-invariant on repα Q of weight zχθ. This semi-invariant determines the
Zariski open subset of repα Q

Xσ(α) = {V ∈ repα Q | dσ(V ) 6= 0}
It is clear from the results of section 6.3 that Xσ(α) consists of θ-semistable repre-
sentations. We can characterize the θ-stable representations in this open set.

Lemma 7.8. For V ∈ Xσ(α) the following are equivalent
(1) V is a θ-stable representation.
(2) V is a simple α-dimensional representation of the universal localization

CQσ.

Proof. Let W be a β-dimensional subrepresentation of V with β =
(b1, . . . , bk), then for W to be a β-dimensional representation of the universal lo-
calization CQσ it must satisfy the numerical restriction

−ti1bi1 − . . .− tiubiu = tj1bj1 + . . .+ tjvbjv that is θ.β = 0

Hence, if V is θ-stable, there are no proper subrepresentations of V as a CQσ-
representation. Conversely, if V is an α-dimensional subrepresentation of CQσ we
must have that dσ(V ) 6= 0. But then, if W is a β-dimensional Q-subrepresentation
of V we must have that

∑
a−tiabia ≤

∑
b tjbbib (if not, σ(V ) would have a kernel)

whence θ.β ≥ 0. If W is a subrepresentation such that θ.β = 0, then W would be a
proper CQσ subrepresentation of V , a contradiction. Therefore, V is θ-stable. �

Theorem 7.9. The moduli space of θ-semistable representations of the quiver
Q

Mss
α (Q, θ)

is locally controlled by the set of Quillen-smooth algebras {CQσ | σ ∈ Σθ }.

Proof. By the results of the foregoing section we know that the quotient
varieties of the Zariski open affine subsets Xσ(α) cover the moduli space Mss

α (Q, θ).
Further, by lemma 7.8 we have a canonical isomorphism

Xσ(α)/GL(α) ' issα CQσ
Finally, because

repn CQσ = tαGLn ×GL(α) repα CQσ
where the disjoint union is taken over all α = (a1, . . . , ak) such that

∑
i ai = n, we

have that issα CQσ is an irreducible component of issn CQσ finishing the proof. �
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Lemma 7.8 also allows us to study the moduli spaces Mss
α (Q, θ) locally by

the local quiver settings associated to semi-simple representations. That is, let
ξ ∈Mss

α (Q, θ) be the point corresponding to

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ez
z

where Si is a θ-stable representation of dimension vector βi occurring in Mξ with
multiplicity ei.

Theorem 7.10. With notations as above, the étale local structure of the moduli
space Mss

α (Q, θ) near ξ is that of the quotient variety issβ Qξ where β = (e1, . . . , ez)
and Qξ is the quiver on z vertices such that

# ��������i��������j
aoo = −χQ(βi, βj)

# ��������i
��

= 1− χQ(βi, βi)

near the trivial representation.

Proof. In view of the above results and the slice theorems, we only have
to compute the ext-spaces Ext1CQσ

(Si, Sj). From [69, Thm. 4.7] we recall that
the category of CQσ representations is closed under extensions in the category of
representations of Q. Therefore, we have for all CQσ-representations V and W that

Ext1CQ(V,W ) ' Ext1CQσ
(V,W )

from which the result follows using theorem 3.29. �

In the following section we will give some applications of this result. Universal
localizations can also be used to determine the formal structure on representation
spaces of quivers.

Let Q be a quiver on k vertices and consider the extended quiver Q(n)

Q

��������1

��������i

��������k

��������0

n
zzzzz

<<zzzzz

ndddd
22dddd

n

DD
DD

D

""D
DD

DD

That is, we add to the vertices and arrows of Q one extra vertex v0 and for every
vertex vi in Q we add n directed arrows from v0 to vi. We will denote the j-th
arrow 1 ≤ j ≤ n from v0 to vi by xij .

Consider the morphism between projective left CQ(n)-modules

P1 ⊕ P2 ⊕ . . .⊕ Pk
σ- P0 ⊕ . . .⊕ P0︸ ︷︷ ︸

n

determined by the matrix

Mσ =

x11 . . . . . . x1n

...
...

xk1 . . . . . . xkn

 .
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We consider the universal localization CQ(n)
σ , that is, we add for each vertex vi in

Q another n arrows yij with 1 ≤ j ≤ n from vi to v0.
With these arrows yij one forms the n× k matrix

Nσ =


y11 . . . yk1
...

...
...

...
y1n . . . ykn


and the universal localization CQ(n)

σ is described by the relations

Mσ.Nσ =

v1 0
. . .

0 vk

 and Nσ.Mσ =


v0 0

. . .
. . .

0 v1

 .

We will depict this quiver with relations by the picture Q(n)
σ

Q

��������1

��������i

��������k

��������0
||

n
zzzzz

<<zzzzz

rr ndddd
22dddd

bb

n

DD
DD

D

""D
DD

DD

From the discussion above it follows that there is a canonical isomorphism

repm
n
√

CQ ' repm CQ(n)
σ .

In fact we can even identify

n
√

CQ = v0 CQ(n)
σ v0.

Indeed, the right hand side is generated by all the oriented cycles in Q
(n)
σ starting

and ending at v0 and is therefore generated by the yipxiq and the yipaxjq where a
is an arrow in Q starting in vj and ending in vi. If we have an algebra morphism

CQ φ- Mn(B)

then we have an associated algebra morphism

v0 CQ(n)
σ v0

ψ- B

defined by sending yipaxjq to the (p, q)-entry of the n×n matrix φ(a) and yipxiq to
the (p, q)-entry of φ(vi). The defining relations among the xip and yiq introduced
before imply that ψ is indeed an algebra morphism.
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Example 7.11. Let A = C〈a, b〉, that is A is the path algebra of the quiver

��������1

a

��

b

[[

In order to describe n
√
A we consider the quiver with relations

��������1��������0

a

��

b

[[
n
x

66
n
y

vv : yixj = δijv0,
X
i

xiyi = v1.

We see that the algebra of oriented cycles in v0 in this quiver with relations is isomorphic to the
free algebra in 2n2 free variables

C〈y1ax1, . . . , ynaxn, y1bx1, . . . , ynbxn〉

which coincides with our knowledge of n
p

C〈a, b〉.

There is some elementary calculus among the n-th roots of algebras. For exam-
ple, it follows from the universal property of n

√
A that there is a natural morphism

k1

√
k2

√
. . .

kz
√
A � k

√
A

where k =
∏
ki. When A = CQ we can represent this morphism graphically by

the picture

Q

��������1

��������i

��������k

����������������0 �������� . . . ||

kz

zzzzz

<<zzzzz

rr kzdddd
22dddd

bb

kz

DDD
DD

""D
DDD

D

oo k1 // oo k2 // oo kz−1 // -

Q

��������1

��������i

��������k

��������0
||

k
zzzzz

<<zzzzz

rr kdddd
22dddd

bb

k

DD
DD

D

""D
DD

DD

where the map is given by composing paths from v0 to vi. Also observe that we
used the isomorphisms in the rightmost part of the left quiver to remove additional
arrows from the extra vertices to vi at each stage.

Probably more important are the connecting morphisms
k1
√
A ∗ k2

√
A ∗ . . . ∗ kz

√
A �c(k1,...,kz) k

√
A

with k =
∑
ki obtained from the universal property of n

√
A by composing algebra

morphisms A
φi- Mki

(B) to an algebra morphism

A

266664
φ1 0

. . .
0 φz

377775
- Mk(B).

Observing that the ordering of the factors is important (but only up to isomorphism
of the representations).



300 7. NONCOMMUTATIVE GEOMETRY

Q
1

Q
2

��������1

��������k

��������1

��������i

��������p

33ggggggggggggg

++WWWWWWWWWWWWWW

��?
??

??
??

??
??

??
??

??
?

??������������������

77ooooooooooooooo

++WWWWWWWWWWWWW

Figure 2. Free product of quivers.

We need to have a quiver interpretation of the free product CQ1 ∗ CQ2 of
two path algebras (at least as far as finite dimensional representations are con-
cerned). Let Q1 be a quiver on k vertices {v1, . . . , vk} and Q2 a quiver on p vertices
{w1, . . . , wp} and consider the extended quiver Q1 ∗Q2 of figure 2. That is, we add
one extra arrow from each vertex of Q1 to each arrow of Q2.

Let {P1, . . . , Pk} be the projective left CQ1 ∗ Q2-modules corresponding to
the vertices of Q1 and {P ′1, . . . , P ′p} those corresponding to the vertices of Q2 and
consider the morphism

P ′1 ⊕ . . .⊕ P ′p
σ- P1 ⊕ . . .⊕ Pk

determined by the p× k matrix

Mσ =

x11 . . . x1k

...
...

xp1 . . . xpk


where xij denotes the extra arrow from vertex vj to vertex wi.

Let Q1 ∗Q2σ denote the quiver with relations one obtains by inverting this
map (as above). Then, it is fairly easy to see that

repn CQ1 ∗Q2 ' repn Q1 ∗Q2σ

where the right-hand side denote the subscheme of n-dimensional representations
of the quiver Q1 times the n-dimensional representations of Q2 where the extra
arrows determine an isomorphism of the representations.

Using this interpretation of the free product one can now give a graphical
interpretation of the connecting morphisms in the case of the two loop quiver (the
general case is similar).

�������� �������� ��������

�������� �������� ��������

. . .��
k1

OO

��
k2

OO

��
kz

OO

// // //

## {{ ## {{ ## {{

- ��������

��������

��
k

OO
## {{

obtained by ’grafting’ the bottom tree. Observe that again we used the isomor-
phisms given by the ki bundles to eliminate adding extra arrows in the free products.
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7.4. Compact manifolds.

geo @n is the study of families of algebraic varieties (with specified connecting
morphisms) which are local controlled by a set of noncommutative algebras. If
this set of algebras consists of Quillen-smooth algebras we say that the family
of varieties is a noncommutative manifold . If all varieties in the family are in
addition projective (possibly with singularities) we say that the family is a compact
noncommutative manifold .

So far, we have mot specified the properties of the connecting morphisms. In
this section we present a first class of examples, the sum families. In the next
chapter we will encounter another possibility coming from the theory of completely
integrable dynamical systems.

Definition 7.12. A sum family is an object (Xn)n in geo @n indexed over
the positive integers such that for each n there is a GLn-variety Yn and a quotient
morphism

Yn -- Yn/GLn ' Xn

and Yn is locally of the form repn A for an affine C-algebra A belonging to a set A
of algebras. Moreover, there are equivariant connecting sum-maps

Ym × Yn
⊕- Ym+n

for all m,n ∈ N+ where equivariance means with respect to the group GLm×GLn
embedded diagonally in GLm+n. If the set A consists of Quillen-smooth algebras,
we call (Xn)n a sum manifold .

Theorem 7.13. For a quiver Q on k vertices and a fixed character θ ∈ Zk, the
family of varieties

(
⊔

α=(a1,...,ak)P
i ai=n

Mss
α (Q, θ) )n

is a sum manifold in geo @n. If Q has no oriented cycles, then this family is a
compact sum manifold.

Proof. In view of theorem 7.10 we only need to construct equivariant-sum
maps. They are induced from the direct sums of representations

repα Q× repβ Q
⊕- repα+β Q (V,W ) 7→ V ⊕W

and the required properties are clearly satisfied. �

Example 7.14. Let MP2 (n; 0, n) be the moduli space of semi-stable vectorbundles of rank

n over the projective plane P2 with Chern numbers c1 = 0 and c2 = n. Using results of K. Hulek
[31] one can identify this moduli space with

MP2 (n; 0, n) 'Mss
(n,n)(Q, θ)

where Q and θ are the following quiver-setting

����������������
−1 1

$$ //;;

Therefore, the family of moduli spaces (MP2 (n; 0, n))n is a compact sum manifold in geo @n.

Let C be a smooth projective curve of genus g and let MC(n, 0) be the moduli space of

semi-stable vectorbundles of rank n and degree 0 over C. We expect that the family of moduli

spaces (MC(n, 0))n is a compact sum manifold.
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In this section we will investigate another class of examples : representations
of the torus knot groups . Consider a slid cylinder C with m line segments on its
curved face, equally spaced and parallel to the axis. If the ends of C are identified
with a twist of 2π n

m where n is an integer relatively prime to m, we obtain a single
curve Km,n on the surface of a solid torus T . If we assume that the torus T lies in
R3 in the standard way, the curve Km,n is called the (m,n) torus knot .

Computing the fundamental group of the complement R3 −Km,n one obtains
the (m,n)-torus knot group

π1(R3 −Km,n) = Gm,n ' 〈 a, b | am = bn 〉

An important example is the three string braid group.

Example 7.15. Consider Artin’s braid group B3 on three strings. B3 has the presentation

B3 ' 〈L,R | LR−1L = R−1LR−1〉

where L and R are the fundamental 3-braids

L R

If we let S = LR−1L and T = R−1L, an algebraic manipulation shows that

B3 = 〈S, T | T 3 = S2〉

is an equivalent presentation for B3. The center of B3 is the infinite cyclic group generated by

the braid

Z = S2 = (LR−1L)2 = (R−1L)3 = T 3

It follows from the second presentation of B3 that the quotient group modulo the center is iso-

morphic to

B3

〈Z〉
' 〈s, t | s2 = 1 = t3〉 ' Z2 ∗ Z3

the free product of the cyclic group of order 2 (with generator s) and the cyclic group of order 3
(with generator t). This group is isomorphic to the modular group PSL2(Z) via

L -
»
1 1

0 1

–
and R -

»
1 0

1 1

–
It is well known that the modular group PSL2(Z) acts on the upper half-plane H2 by left multi-

plication in the usual way, that is»
a b
c d

–
: H2 - H2 given by z - az + b

cz + d

The fundamental domain H2/PSL2(Z) for this action is the hyperbolic triangle
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and the action defines a quilt-tiling on the hyperbolic plane, indexed by elements of PSL2(Z) =

Z2 ∗ Z3

We want to study the irreducible representations of the torus knot group Gm,n.
We recall that the center of Gm,n is generated by am and that the quotient group
is the free product group

Gm,n =
Gm,n
〈 am 〉

= 〈 x, y | xm = 1 = yn 〉 = Zm ∗ Zn

of the cyclic groups of order m and n. As the center acts by scalar multiplication
on an irreducible representation by Schur’s lemma the representation theory of
Gm,n essentially reduces to that of the quotient Gm,n. The latter can be studied
b noncommutative geometry as the group algebra CGm,n is Quillen-smooth. This
follows from

CGm,n = CZm ∗ Zn ' CZm ∗ CZn ' C× . . .× C︸ ︷︷ ︸
m

∗C× . . .× C︸ ︷︷ ︸
n

and as both factors of the free algebra product on the right are Quillen-smooth (in
fact, semisimple) so is the product by the universal property. Further, as both
factors are the path algebras of quivers on m resp. n vertices without arrows,
we know that the representation theory of the free algebra product, and hence of
CGm,n can be reduced to θ-semistable representations the quiver Qm,n

��������1

��������m

��������1

��������i

��������n

33ggggggggggggg

++WWWWWWWWWWWWWW

��?
??

??
??

??
??

??
??

??
?

??������������������

77oooooooooooooo

++WWWWWWWWWWWWW

where θ = (−1, . . . ,−1︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
n

), by the results of the foregoing section. The left

vertex spaces Si, 1 ≤ i ≤ m for a Gm,n-representation are the eigenspaces for the
restricted Zm-action and the left vertex spaces Tj , 1 ≤ j ≤ n are the eigenspaces
for the restricted Zn-action.
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Example 7.16. Consider the modular group PSL2(Z) ' Z2 ∗ Z3, the free product of the

cyclic groups of order two and three with generators σ resp. τ . Let S be an n-dimensional simple

representation of PSL2(Z). Let ξ be a 3-rd root of unity, then restricting S to these finite Abelian
subgroups we have (

S ↓Z2 ' S⊕a11 ⊕ S⊕a2−1

S ↓Z3 ' T⊕b11 ⊕ T⊕b2ξ ⊕ T⊕b3
ξ2

where Sx resp. Tx are the one-dimensional representations on which σ resp. τ acts via multipli-

cation with x. Observe that a1 + a2 = b1 + b2 + b3 = n and we associate to S a representation V

of the quiver situation

(/).*-+,a2

(/).*-+,a1

(/).*-+,b3

(/).*-+,b2

(/).*-+,b177oooooooooo

''OOOOOOOOOO

��4
44

44
44

44
44

44
44

44
44

DD




















77oooooooooo

''OOOOOOOOOO

with V1i = S
⊕ai
i and V2j = T

⊕bj
j and where the linear map corresponding to an arrow

(/).*-+,ai(/).*-+,bj
aij // is the composition of

Vaij : S
⊕ai
i

⊂ - S ↓Z2= V ↓Z3
-- T

⊕bj
j

of the canonical injections and projections. If α = (a1, a2, b1, b2, b3) then we take as θ =

(−1,−1,+1,+1,+1). Observe that ⊕i,jVaij : Cn - Cn is a linear isomorphism. If

W ⊂ - V is a subrepresentation, then θ(W ) ≥ 0. Indeed, if the dimension vector of W is

β = (c1, c2, d1, d2, d3) and assume that θ(W ) < 0, then k = c1 + c2 > l = d1 + d2 + d3, but

then the restriction of ⊕Vaij to W gives a linear map Ck -- Cl having a kernel which is im-

possible. Hence, V is a θ-semistable representation of the quiver. In fact, V is even θ-stable, for

consider a subrepresentation W ⊂ - V with dimension vector β as before and θ(W ) = 0, that

is, c1 + c2 = d1 + d2 + d3 = m, then the isomorphism ⊕i,jVaij | W and the decomposition into

eigenspaces of Cm with respect to the Z2 and Z3-action, makes Cm into an m-dimensional repre-

sentation of PSL2(Z) which is a subrepresentation of S. S being simple then implies that W = V

or W = 0, whence V is θ-stable. The underlying reason is that the group algebra CPSL2(Z) is a

universal localization of the path algebra CQ of the above quiver.

As irreducible Gm,n-representations correspond to θ-stable representations of
the quiver Qm,n we need to determine the dimension vectors α of θ-stables. In
section 6.3 we have given an inductive algorithm to determine them. However,
using the fact that the moduli spaces are locally controlled and hence are determined
locally by local quivers we can apply the easier classification of simple roots given
in section 3.4 so solve this problem.

Example 7.17. With Sij we denote the simple 1-dimensional representation of PSL2(Z)

determined by

Sij ↓Z2= Si and Sij ↓Z3

Let n = x1+. . .+x6 and we aim to study the local structure of repn CPSL2(Z) in a neighborhood

of the semi-simple n-dimensional representation

Vξ = S⊕x1
11 ⊕ S⊕x2

12 ⊕ S⊕x3
13 ⊕ S⊕x4

21 ⊕ S⊕x5
22 ⊕ S⊕x6

23
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To determine the structure of Qξ we have to compute dim Ext1(Sij , Skl). To do this we view

the Sij as representations of the quiver Q2,3 in the example above. For example S12 is the

representation

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

1

''OOOOOO

of dimension vector (1, 0; 0, 1, 0).For representations of Q2,3, the dimensions of Hom and Ext-

groups are determined by the bilinear form

χQ =

266664
1 0 −1 −1 −1
0 1 −1 −1 −1

0 0 1 0 0
0 0 0 1 0

0 0 0 0 1

377775
If V ∈ repα Q and W ∈ repβ Q where α = (a1, a2; b1, b2, b3) with a1 + a2 = b1 + b2 + b3 = k and

β = (c1, c2; d1, d2, d3) with c1 + c2 = d1 + d2 + d3 = l we have

dim Hom(V,W )− dim Ext1(V,W ) = χQ(α, β) = kl − (a1c1 + a2c2 + b1d1 + b2d2 + b3d3)

As Hom(Sij , Skl) = C⊕δikδjl we have that

dim Ext1(Sij , Skl) =

(
1 if i 6= k and j 6= l

0 otherwise

But then, the local quiver setting (Qξ, αξ) is

(/).*-+,x1

(/).*-+,x6(/).*-+,x5

(/).*-+,x2(/).*-+,x3

(/).*-+,x4

66

vv

��

HH

VV

��vv

66

��

HH

VV

��

We want to determine whether the irreducible component of repn CPSL2(Z) containing Vξ con-

tains simple PSL2(Z)-representations, or equivalently, whether αξ is the dimension vector of a

simple representation of Qξ, that is,

χQξ
(αξ, εj) ≤ 0 and χQξ

(εj , αξ) for all 1 ≤ j ≤ 6

The Euler-form of Qξ is determined by the matrix where we number the vertices cyclicly

χQ•
ξ

=

26666664

1 −1 0 0 0 −1

−1 1 −1 0 0 0
0 −1 1 −1 0 0

0 0 −1 1 −1 0

0 0 0 −1 1 −1
−1 0 0 0 −1 1

37777775
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leading to the following set of inequalities8><>:
x1 ≤ x5 + x6

x2 ≤ x4 + x6

x3 ≤ x4 + x5

8><>:
x4 ≤ x2 + x3

x5 ≤ x1 + x3

x6 ≤ x1 + x2

Finally, observe that Vξ corresponds to a Q2,3-representation of dimension vector (x1 + x2 +

x3, x4 + x5 + x6;x1 + x4, x2 + x5, x3 + x6). If we write this dimension vector as (a1, a2; b1, b2, b3)

then the inequalities are equivalent to the conditions

ai ≥ bj for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3

which gives us the desired restriction on the quintuples

(/).*-+,a2

(/).*-+,a1

(/).*-+,b3

(/).*-+,b2

(/).*-+,b1

at least when ai ≥ 3 and bj ≥ 2. The remaining cases are handled similarly.

Observe that we can use a similar strategy to determine the restrictions on
irreducible representations of any torus knot group quotient Gm,n ' Zm ∗ Zn.
Having the classification of the dimension vectors α of θ-semistable representations
of Qm,n we can use the local quiver settings to study these projective varieties
Mss
α (Qm,n, θ), in particular to determine the α for which this moduli space is a

projective smooth variety.

Example 7.18. For example, iss4 PSL2(Z) has several components of dimension 3 and

2. For one of the three 3-dimensional components, the one corresponding to α = (2, 2; 2, 1, 1),
the different types of semi-simples Mξ and corresponding local quivers Qξ are listed in figure 3.

To verify whether issn PSL2(Z) is smooth in ξ it suffices to prove that the traces along oriented

cycle for the quiver-setting (Qξ, αξ) generate a polynomial algebra. For example, consider a point
ξ ∈ iss4 PSL2(Z) of type

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1

(/).*-+,0

⊕ (/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1
⊕2

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

��������1 ��������2 ��������1

»
a
b

–
%%

ˆ
c d

˜ee

ˆ
e f

˜
%%

»
g
h

–ee

Then, the traces along oriented cycles in Qξ are generated by the following three algebraic inde-
pendent polynomials 8><>:

x = ac+ bd

y = eg + fh

z = (cg + dh)(ea+ fb)

and hence iss4 PSL2(Z) is smooth in ξ. The other cases being easier, we see that this component

of iss4 PSL2(Z) is a smooth compact manifold.

A further application of our local quiver-settings (Qξ, αξ) is that one can often
describe large families of irreducible Gm,n-representations, starting from knowing
only rather trivial ones.
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Figure 3. Local quiver settings for Mss
α (Q2,3, θ) for α = (2, 2; 2, 1, 1).

Example 7.19. Consider the semisimple PSL2(Z)-representation ξ of type

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0
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⊕ (/).*-+,0

(/).*-+,1
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(/).*-+,1

(/).*-+,0

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,0

(/).*-+,1

��������1 ��������1 ��������1 ��������1

a

##

b

cc

c

##

d

cc

e

##

f

cc

Then, Mξ is determined by the following matrices

(

2664
1 0 0 0

0 −1 0 0

0 0 1 0
0 0 0 −1

3775 ,

2664
1 0 0 0
0 ζ2 0 0

0 0 ζ 0
0 0 0 1

3775)

The quiver-setting (Qξ, αξ) implies that any nearby orbit is determined by a matrix-couple

(

2664
1 b1 0 0

a1 −1 d1 0

0 c1 1 f1
0 0 e1 −1

3775 ,

2664
1 b2 0 0

a2 ζ2 d2 0

0 c2 ζ f2
0 0 e2 1

3775)
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and as there is just one arrow in each direction these entries must satisfy

0 = a1a2 = b1b2 = c1c2 = d1d2 = e1e2 = f1f2

As the square of the first matrix must be the identity matrix rr
4, we have in addition that

0 = a1b1 = c1d1 = e1f1

Hence, we get several sheets of 3-dimensional families of representations (possibly, matrix-couples

lying on different sheets give isomorphic PSL2(Z)-representations, as the isomorphism holds in the
étale topology and not necessarily in the Zariski topology). One of the sheets has representatives

(

2664
1 0 0 0
a −1 d 0

0 0 1 0

0 0 e −1

3775 ,

2664
1 b 0 0
0 ζ2 0 0

0 c ζ f

0 0 0 1

3775)

From the description of dimension vectors of semi-simple quiver representations it follows that

such a representation is simple if and only if

ab 6= 0 cd 6= 0 and ef 6= 0

Moreover, these simples are not-isomorphic unless their traces ab, cd and ef evaluate to the same

numbers.

Finally, one can use the local quiver-settings (Qξ, αξ) to determine the isomor-
phism classes of Gm,n-representations having a specified Jordan-Hölder sequence.
For this we apply the theory on nullcones developed in the foregoing chapter.

Example 7.20. In the above example, this nullcone problem is quite trivial. A represen-

tation has Mξ as Jordan-Hölder sum if and only if all traces vanish, that is,

ab = cd = ef = 0

Under the action of the group GL(αξ) = C∗ × C∗ × C∗ × C∗, these orbits are easily seen to be

classified by the arrays

a c e
b d f

filled with zeroes and ones subject to the rule that no column can have two 1’s, giving 27 = 33-

orbits.

7.5. Differential forms.

In this section we will define the complex of noncommutative differential forms
of an arbitrary C-algebra A and deduce some extra features in case A is Quillen-
smooth. In the following section we will compute the noncommutative deRham
cohomology spaces which will be of crucial importance in the final chapter.

Let us recall briefly the classical (commutative) case. When A is a commutative
C-algebra, the A-module of Kähler differentials Ω1

A is generated by the C-linear
symbols da for a ∈ A satisfying the relations

d(ab) = adb+ bda ∀a, b ∈ A

and the map A
d- Ω1

A is the universal derivation. By convention we define{
Ω0
A = A

ΩnA = ∧nA Ω1
A

where the exterior product is taken over A (not over C). Observe that it is spanned
by the elements a0da1 ∧ . . . ∧ dan that we usually write a0da1 . . . dan.
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The exterior differential operator

ΩnA
d- Ωn+1

A

is defined by
d(a0da1 . . . dan) = da0da1 . . . dan

and gives rise to a sequence

A = Ω0
A

d- Ω1
A

d- . . .
d- ΩnA

d- Ωn+1
A

d- . . .

which is a complex (that is, d ◦ d = 0) called the deRham complex . The homology
groups of this complex

HndR A =
Ker ΩnA

d- Ωn+1
A

Im Ωn−1
A

d- ΩnA
are called the de Rham cohomology groups of A (over C).

We will extend this to noncommutative C-algebras. We denote by dgalg the
category of differential graded C-algebras , that is, an object R ∈ dgalg is a Z-
graded C-algebra

R = ⊕i∈ZRi

endowed with a differential d of degree one

. . .
d- Ri−1

d- Ri
d- Ri+1

d- . . .

such that d ◦ d = 0 and for all r ∈ Ri and s ∈ R we have

d(rs) = (dr)s+ (−1)ir(ds).

Clearly, morphisms in dgalg are C-algebra morphisms R
φ- S which are graded

and commute with the differentials.
To a C-algebra A we will now associate the differential graded algebra Ω A of

noncommutative differential forms . Denote the quotient vector space A/C.1 with
A and define

Ωn A = A⊗A⊗ . . .⊗A︸ ︷︷ ︸
n

for n ≥ 0 and Ωn A = 0 for n < 0. For ai ∈ A we denote the image of a0⊗a1⊗. . .⊗an
in Ωn A by

(a0, . . . , an).
Consider the vectorspace Ω A = ⊕n∈Z Ωn A and define a product on it by

(a0, . . . , an)(an+1, . . . , am) =
n∑
i=0

(−1)n−i(a0, . . . , ai−1, aiai+1, ai+2, . . . , am).

Further, define an operator d of degree one

. . .
d- Ωn−1 A

d- Ωn A
d- Ωn+1 A

d- . . .

by the rule
d(a0, . . . , an) = (1, a0, . . . , an).

Theorem 7.21. These formulas define the unique dgalg structure on Ω A
such that

a0da1 . . . dan = (a0, a1, . . . , an).
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Proof. In any R = ⊕iRi ∈ dgalg containing A as an even degree subalgebra
we have the following identities

d(a0da1 . . . dan) = da0da1 . . . dan

(a0da1 . . . dan)(an+1dan+2 . . . dam) = (−1)na0a1da2 . . . dam

+
∑n
i=1(−1)n−ia0da1 . . . d(aiai+1) . . . dam

which proves uniqueness.
To prove existence, we define d on Ω A as above making the Z-graded C-

vectorspace Ω A into a complex as d ◦ d = 0. Consider the graded endomorphism
ring of the complex

End = ⊕n∈ZEndn = ⊕n∈ZHomcomplex(Ω• A,Ω•+n A).

With the composition as multiplication, End is a Z-graded C-algebra and we make
it into an object in dgalg by defining a differential

. . .
D- Endn−1

D- Endn
D- Endn+1

D- . . .

by the formula on any homogeneous φ

Dφ = d ◦ φ− (−1)deg φφ ◦ d.

Now define the morphism A
l- End0 which assigns to a ∈ A the left multiplica-

tion operator
la(a0, . . . , an) = (aa0, . . . , an)

and extend it to a map

Ω A
l∗- End by l∗(a0, . . . , an) = la0 ◦D la1 ◦ . . . ◦D lan.

Applying the general formulae given at the beginning of the proof to the subalgebra
l(A) ⊂ - End we see that the image of l∗ is a differential graded subalgebra of
End and is the differential graded subalgebra generated by l(A).

Define an evaluation map End
ev- Ω A by ev(φ) = φ(1). Because

D lai(1, ai+1, . . . , an) = d(ai, ai−1, . . . , an)− laid(1, ai+1, . . . , an)
= (1, ai, . . . , an)

we have that
ev(la0 ◦D la1 ◦ . . . ◦D lan) = (a0, . . . , an)

showing that ev is a left inverse for l∗ whence l∗ in injective.
Hence we can use the isomorphism Ω A ' Im(l∗) to transport the dgalg

structure to Ω A finishing the proof. �

Example 7.22. Noncommutative differential forms of C× C.
Let A = C× C and e and f the idempotents corresponding to the two factors. The quotient

space A = A/C1 can be identified with Ce and therefore

Ωn C× C = (C× C)⊗ Ce⊗n = (C× C)den.

The differential d is defined by the formula

d((αe+ βf)den) = (α− β)den+1

and the product of Ω C× C is defined by the rule

(αe+ βf)den(γe+ δf)dem =

(
(αγe+ βδf)den+m when n is even

(αδe+ βγf)den+m when n is odd



7.5. DIFFERENTIAL FORMS. 311

We will relate the algebra structure of Ω A to that of A. The trick is to define
another multiplication on Ω A making it only into a filtered algebra. We then
prove that this filtered algebra is isomorphic to the I-adic filtration of an algebra
constructed from A and we recover the dgalg multiplication on Ω A by taking the
associated graded algebra.

We introduce the universal algebra LA with respect to based linear maps from
A to C-algebras. A based linear map is a C-linear map

A
ρ- R

where R is a C-algebra and ρ(1) = 1. The curvature of ρ is then defined to be the
bilinear map A×A ω- R defined by

ω(a, a′) = ρ(aa′)− ρ(a)ρ(a′)
that is, it is a measure for the failure of ρ to be an algebra map. Observe that ω
vanishes if either a or a′ is 1 so it can be viewed as a linear map

A⊗A ω- R.

Let T (A) = ⊕n≥0A
⊗n be the tensor algebra of the vectorspace A and define

LA =
T (A)

T (A)(1− 1A)T (A)

where 1A is the identity of A consider as a 1-tensor in T (A), then we have a based
linear map

A
ρun

- LA a 7→ a

where a is the image in LA of the 1-tensor a in T (A). The map ρun is universal for

based linear maps A
ρ- R, that is, there is a unique algebra morphism LA

φρ- R
making the diagram commute

LA

A
ρ -

ρ
u
n

-

R

∃φρ

?

In particular, there is a canonical algebra map LA
φid-- A corresponding to the

identity map on A. We define

IA = Ker φid / LA
and equip LA with the IA-adic filtration.

For an arbitrary R ∈ dgalg we define the Fedosov product on R to be the one
induced by defining on homogeneous r, s ∈ R the product

r.s = rs− (−1)deg rdrds

One easily checks that the Fedosov product is associative. Observe that if we
decompose R = Rev ⊕ Rodd into its homogeneous components of even (resp. odd)
degree, then this new multiplication is compatible with this decomposition and
makes R into a Z/2Z-graded algebra.

We will now investigate the Fedosov product on Ω A. Let ωun be the curvature
of the universal based linear map A

ρun

- LA.
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Theorem 7.23. There is an isomorphism of algebras

LA ' (Ωev A , . )

between LA and the even forms Ωev A equipped with the Fedosov product given by

ρun(a0)ωun(a1, a2) . . . ωun(a2n−1, a2n) - a0da1 . . . da2n

Under this isomorphism we have the correspondence

InA ' ⊕k≥nΩ2k A

The associated graded algebra gives an isomorphism

grIA
LA = ⊕ InA

In+1
A

' Ωev A

with even forms equipped with the dgalg structure.

Proof. Consider the based linear map A
ρ- Ωev A given by inclusion, then

its curvature is given by

ω(a, a′) = aa′ − a.a′ = dada′.

By the universal property of LA there is an algebra morphism

LA
φ- (Ωev A , . )

such that φ(ρun(a)) = a and φ(ωun(a, a′)) = dada′. Observe that the Fedosov
product coincides with the usual dgalg product when one of the terms is closed ,
that is d r = 0. Therefore, we have

φ(ρun(a0)ωun(a1, a2) . . . ωun(a2n−1, a2n)) = a0da1 . . . da2n

On the other hand, as Ω2n A = A⊗A⊗2n
we have a well defined map Ωev A

ψ- LA
given by

ψ(a0da1 . . . da2n) = ρun(a0)ωun(a1, a2) . . . ρun(a2n−1, a2n)

and it remains to prove that this map is surjective. The image of ψ is closed under
left multiplication as it is closed under left multiplication by elements ρun(a) (and
they generate LA) as

ρun(a).ρun(a0)ωun(a1, a2) . . . ωun(a2n−1, a2n)
= ρun(aa0)ωun(a1, a2) . . . ωun(a2n−1, a2n)− ωun(a, a0)ωun(a1, a2) . . . ωun(a2n−1, a2n)

Because the image contains 1 this proves the claim and the isomorphism.
Identify via this isomorphism LA with Ωev A. Because dada′ ∈ IA we have

Ω2k A ⊂ - InA for all k ≥ n. Thus, Fn = ⊕k≥nΩ2k A ⊂ - IA. Conversely,
IA = F1 and hence

InA = (F1)n ⊂ - Fn

by the definition of the Fedosov product. Therefore, InA = Fn and the claim over
the associated graded follows. �

Example 7.24. Even differential forms of C× C.
As before, let e and f be the idempotents of A = C×C corresponding to the two components.

By definition,

LC×C =
T (Ce+ Cf)

(1− e− f)
=

C〈E,F 〉
(1− E − F )

' C[E]
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The universal based linear map is given by

C× C ρun
- C[E]

(
e 7→ E

f 7→ 1− E

and the curvature on A = Ce is given by

ωun(e, e) = E − E2

Therefore the isomorphism between Ωev A and LA = C[E] is given by

(αe+ βf)de2n
ψ- (αE + β(1− E))(E − E2)n.

The Fedosov product on Ωev A is given by the formula (using the multiplication formulas we

found above)

(αe+ βf)de2n.(γe+ δf)de2m = (αγe+ βδf)de2n+2m − (α− β)(γ − δ)de2n+2m+2

In order to check that ψ is indeed an algebra morphism we need to verify that in C[E] we have
the equality

(αE + β(1− E))(E − E2)n(γE + δ(1− E))(E − E2)m

= (αγE + βδ(1− E))(E − E2)n+m − (α− β)(γ − δ)(E − E2)n+m+1

which is indeed the case.

Further, IA = C[E](E − E2) and indeed
C[E]

(E−E2)
' C × C. Finally, under the identification

ψ we obtain the usual multiplication of noncommutative differential forms from

Ω2n A× Ω2m A =
(E − E2)n

(E − E2)n+1
×

(E − E2)m

(E − E2)m+1
- (E − E2)n+m

(E − E2)n+m+1
= Ω2n+2m A.

We now turn to all noncommutative differential forms Ω A. Observe that this
algebra has an involution σ which is the identity on even forms and is minus the
identity on odd forms. σ is an algebra automorphism both for the usual dgalg-
algebra structure as for the Fedosov product. Algebras with an involution are called
super-algebras .

We want to construct an algebra universal for algebra morphisms from A to a
super-algebra. Consider the free product A ∗A which is defined as follows. Let B1

be a vectorspace basis for A − C.1 and B2 a duplicate of it. As a C-vectorspace
A ∗A has a basis consisting of words

w = a1b1a2b2 . . . akbk or w = a1b1a2b2 . . . ak

for some k where the ai’s all belong to B1 or all to B2 and the bj ’s all belong to
the other base set. On this vectorspace one defines a C-algebra structure in the
obvious way, that is by concatenating words and if necessary (if the end term of
the first word lies in the same base-set as the beginning term of the second) use the
multiplication table in A to reduce to a linear combination of allowed words.
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The algebra A ∗A is universal with respect to pairs of algebra maps A
f-

g
- R

from A to R. That is, there is a unique algebra map γ
R

A ∗A

∃γ

6

A
f

-

i1

-

A

�

g

�

i2

making the diagram commute. Here, i1 is the inclusion of A in A ∗ A using only
syllables in B1 and i2 is defined similarly. The construction of γ clearly is induced
by sending a ∈ B1 to f(a) and b ∈ B2 to g(b).

Further, interchanging the bases B1
τ- B2 equips A ∗ A with an involution,

or if you prefer, makes A ∗ A a super-algebra. Now, let S be a super-algebra with
involution σS and let A

f- S be an algebra morphism, then there is a unique
morphism of super-algebras ψ making the diagram commute

A ∗A

A
f -

i1

-

S

∃ψ

?

ψ is the universal map corresponding to the pair of algebra maps A
f-

σS◦f
- S.

For any a ∈ A we define the elements in A ∗A :{
p(a) = 1

2 (i1(a) + i2(a))
q(a) = 1

2 (i1(a)− i2(a))

and we define QA / A ∗ A to be the ideal of A ∗ A generated by the elements q(a)
for a ∈ A, then clearly

A ' A ∗A
QA

We now have an analog of the previous theorem for all differential forms.

Theorem 7.25. There is an isomorphism of super-algebras

A ∗A ' (Ω A , . )

between A ∗ A and the noncommutative differential forms Ω A equipped with the
Fedosov product given by

p(a0)q(a1) . . . q(an) - a0da1 . . . dan

Under this isomorphism we have the correspondence

Qn
A ' ⊕k≥nΩn A
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and the associated graded algebra is isomorphic to Ω A with the usual dgalg struc-
ture.

Proof. We have an algebra map A
u- Ω A equipped with the Fedosov

product given by a 7→ a+ da because

(a+ da).(a′ + da′) = aa′ − dada′ + ada′ + daa′ + dada′

= aa′ + d(aa′)

By the universal property of A ∗A there is a super-algebra morphism

A ∗A ψ- Ω A ψ(p(a)) = a and ψ(q(a)) = da

But then using that the Fedosov product coincides with the usual product when
one of the forms is closed we have

ψ(p(a0)q(a1) . . . q(an)) = a0da1 . . . dan

Conversely, we have a section to ψ defined by

Ω A
φ- A ∗A a0da1 . . . dan 7→ p(a0)q(a1) . . . q(an)

and we only have to prove that φ is surjective. The image Im φ is closed under left
multiplication by p(a) and q(a) as p(1) = 1 and{

p(a)p(a0)q(a1) . . . q(an) = p(aa0)q(a1) . . . q(an)− q(a)q(a0)q(a1) . . . q(an)
q(a)p(a0)q(a1) . . . q(an) = q(aa0)q(a1) . . . q(an)− p(a)q(a0)q(a1) . . . q(an)

Because the elements p(a) and q(a) generate A ∗ A, the image Im φ is a left ideal
containing 1, whence ψ is surjective.

The claims about the ideals Qn
A and about the associated graded algebra follow

as in the proof for even forms. �

Example 7.26. Noncommutative differential forms of C〈x, y〉.
The noncommutative free algebra in two variables C〈x, y〉 is the path algebra of the quiver

(/).*-+,
y

qq

x

--

Clearly we have C〈x, y〉 ∗ C〈x, y〉 = C〈x1, y1, x2, y2〉 and the maps(
p(x) = 1

2
(x1 + x2) q(x) = 1

2
(x1 − x2)

p(y) = 1
2
(y1 + y2) q(y) = 1

2
(y1 − y2)

It is easy to compute the maps p and q on any monomial in x and y using the formulae holding

in any A ∗A (
p(aa′) = p(a)p(a′) + q(a)q(a′)

q(aa′) = p(a)q(a′) + q(a)p(a′)

Further note that it follows from this that QC〈x,y〉 = (x1−x2, y1−y2) and we have all the required

tools to calculate (in principle) with Ω C〈x, y〉.

Example 7.27. Noncommutative differential forms of C× C.
The infinite dihedral group D∞ is the group with presentation

D∞ = 〈a, b | a2 = 1 = b2〉

that is, an arbitrary element in D∞ is a word of the form

aibabab . . . ababj

where i, j = 0 or 1. Multiplication is given by concatenation of words, using the relations a2 =

1 = b2 when necessary.
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The group algebra C[D∞] is the vectorspace with basis D∞ and with multiplication induced

by the groupmultiplication in D∞. We now claim that

(C× C) ∗ (C× C) ' C[D∞]

Indeed, C × C ' C[Z2] the group algebra of the cyclic group of order two, that is C[Z2] =
C[x]/(x2 − 1), the isomorphism being given by

e - 1

2
(1 + x) f - 1

2
(1− x)

One also has the obvious notion of a free product in the category of groups and from the definition

it is clear that

Z2 ∗ Z2 ' D∞

and therefore also on the level of group algebras

C[Z2] ∗ C[Z2] ' C[D∞]

The relevant maps C× C
p-
q
- C[D∞] are given by

(
p(e) = 1

2
+ 1

4
(a+ b) q(e) = 1

4
(a− b)

p(f) = 1
2
− 1

4
(a+ b) q(f) = − 1

4
(a− b)

and so QC×C = (a− b) / C[D∞]. Again, this information allows us to calculate with Ω C× C by

referring all computations to the more familiar group algebra C[D∞].

The above definitions and results are valid for every C-algebra A. We will
indicate a few extra properties provided the algebra A is Quillen-smooth.

We have the universal lifting algebra LA for based linear maps from A to C-
algebras and the ideal IA such that

A �φid

'
LA
IA
.

The IA-adic completion of LA is by definition the inverse limit

L̂A = lim�
n

LA
IA

Assume that A is formally smooth, then for every k we have an algebra map
lifting φid

−1

LA
IkA

A
φid

−1
-

φk

-

LA
IA

??

These compatible lifts define an algebra lift A
lun

- L̂A. This map can be used to
construct algebra lifts modulo nilpotent ideals in a systematic way. Assume I / R
is such that Ik = 0 and there is an algebra map A

µ- R
I . We can lift µ to R as
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a based linear map, say ρ. Now we have the following situation

LA
can - L̂A

R

φ̂ρ

?

φ
ρ

-

A

ρun

6

µ -

l
u
n

-

ρ

-

R

I

??

Here, φρ is the algebra map coming from the universal lifting property of LA and
φ̂ρ is its extension to the completion. But then, µ̃ = φ̂ρ ◦ lun is an algebra lift of µ.
That is,

Proposition 7.28. A is formally smooth if and only if there is an algebra
section A - L̂A to the projection L̂A -- A defined by mapping out IA.

We will give an explicit construction of the embedding A
lun

- L̂A. By formal
smoothness we have an algebra lift

A⊕ Ω2 A =
LA
I2A

A
id

-

l2

-

A =
LA
IA

??

which is of the form l2(a) = a−φ(a) for a linear map A
φ- Ω2 A. As LA is freely

generated by the a ∈ A− C1, we can define a derivation on LA defined by

LA
D- LA D(a) = φ(a) ∀a ∈ A.

This derivation is called the Yang-Mills derivation of A.
Clearly D(LA) ⊂ - IA and we have

D(dada′) = D(aa′ − a.a′)
= D(aa′)−D(a).a′ − a.D(a′)

= φ(aa′)− φ(a).a′ − a.φ(a′)

≡ aa′ − a.a′ mod I2A
≡ dada′ mod I2A

the next to last equality coming from the fact that l2 is an algebra map. Hence,
D = id on IA

I2A
= Ω2 A.

Further, D(InA) ⊂ - InA and so D induces a derivation on the associated graded
grIA

LA. As this derivation is zero on A = LA

IA
and one on IA

I2A
it is n on In

A

In+1
A

. But



318 7. NONCOMMUTATIVE GEOMETRY

then we have by induction

(D − n)...(D − 1)D(LA) ⊂ - In+1
A

Therefore, LA

In+1
A

decomposes into eigenspaces of D corresponding to the eigenval-
ues 0, 1, . . . , n and because D is a derivation this decomposition defines a grading
compatible with the product.

Hence, we obtain an isomorphism of LA

In+1
A

with its associated graded algebra by

lifting Ik
A

Ik+1
A

to the eigenspace of D on Ik
A

In+1
A

corresponding to the eigenvalue k.

Taking the inverse limit as n - ∞ we obtain an algebra isomorphism of L̂A
with the completion of its associated graded algebra, that is,

Ω̂ev A =
∏
n

Ω2n A ' L̂A

In particular, the kernel of D is a subalgebra of L̂A mapped isomorphically onto A
by the canonical surjection L̂A -- A. Hence, this subalgebra gives the desired
universal lift A ⊂

lun

- L̂A.
We can even give an explicit formula for lun. Let L be the degree two operator

on Ωev A defined by

L(a0da1 . . . da2n) = φ(a0)da1 . . . da2n +
2n∑
j=1

a0da1 . . . daj−1dφ(aj)daj+1 . . . da2n

and let H denote the degree zero operator on even forms which is multiplication
by n on Ω2n A. Then, we have the relations

[H,L] = L and D = H + L

whence we have on Ω̂ev A that

e−LHeL = H + e−L[H, eL] = H +
∫ 1

0

e−tL[H,L]etLdt = D

Therefore, the universal lift for all a ∈ A is given by

lun(a) = e−La = a− φ(a) +
1
2
Lφ(a)− . . .

Example 7.29. The universal lift for C× C.
Recall the correspondence between Ωev C× C and LC×C = C[E] given by

(αe+ βf)de2n - (αE + β(1− E))(E − E2)n

Lifting e to L
I2 we have to compute

(2− E)2E2 = E + (2E − 1)(E − E2) + (E − E2)2

whence φ(e) = (1 − 2E)(E − E2) and as f = 1 − e we have φ(f) = (2E − 1)(E − E2). The
Yang-Mills derivation D on C[E] is hence the one determined by

C[E]
D- C[E] D(E) = (1− 2E)(E − E2).

To determine the universal lift of e we have to compute

lun(e) = e− Le+
1

2
L2e−

1

6
L3e+ . . .
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and we have

L(e) = φ(e) = (f − e)de2

L2(e) = L(f − e)de2 = −6(f − e)de4

L3(e) = −6L(f − e)de4 = 60(f − e)de6

L4(e) = ...

and therefore

lun(e) = E + (2E − 1)(E − E2) + 3(2E − 1)(E − E2)2 + 10(2E − 1)(E − E2)3 + . . .

Another characteristic feature of formally smooth algebras is the existence of
connections on Ω1 A. If E is an A-bimodule, then a connection on E consists of
two operators

• A right connection : E
∇r- E ⊗A Ω1 A satisfying

∇r(aea′) = a(∇re)a′ + aeda′,

• A left connection : E
∇l- Ω1 A⊗A E satisfying

∇l(aea′) = a(∇le)a′ + daea′

Given a right connection ∇r there is a bimodule splitting sr of the right multipli-
cation map mr

E ⊗A A
mr-�
sr

E

given by the formula

sr(e) = e⊗ 1− j(∇re) where j(e⊗ da) = ea⊗ 1− e⊗ a
Similarly, a left connection gives a bimodule splitting sl to the left multiplication
map. Consequently, if a connection exists on E, then E must be a projective
bimodule.

Consider the special bimodule of noncommutative 1-forms Ω1 A, then as
Ω1 A⊗A Ω1 A = Ω2 A a connection on Ω1 A is the datum of three maps

Ω1 A

∇l-
d-
∇r-

Ω2 A

satisfying the following properties

∇l(aea′) = a∇l(e)a′ +(da)ea′

d(aea′) = a(de)a′ +(da)ea′ −ae(da′)
∇r(aea′) = a∇r(e)a′ +ae(da′)

Hence, if ∇r is a right connection then d + ∇r is a left connection and if ∇l is a
left connection then ∇l − d is a right connection. Therefore, onesided connections
exist on Ω1 A if and only if connections exist and hence if and only if Ω1 A is a
projective bimodule.

But then we have an A-bimodule splitting of the exact sequence

0 - Ω2 A
j- Ω1 A⊗A

m- Ω1 A - 0

where j(ωda) = ωa⊗ 1− ω ⊗ a and m(ω ⊗ a) = ωa.

Proposition 7.30. A connection exists on Ω1 A if and only if A is formally
smooth.
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Proof. A bimodule splitting of the above map is determined by a retraction
bimodule map p for j. As Ω1 A⊗A ' A⊗A⊗A, a bimodule map p

Ω‘ A⊗A
p- Ω2 A

is equivalent to a map A
φ- Ω2 A via p(a0da1 ⊗ a2) = a0φ(a1a2). But then we

have
pj(da1da2) =p((da1)a2 ⊗ 1− da1 ⊗ da2)

=p(d(a1a2)⊗ 1− a1(da2)⊗ 1− da1 ⊗ a2)

=φ(a1a2)− a1φ(a2)− φ(a1)a2)

and splitting of the map means pj = id that is that φ satisfies

φ(aa′) = aφ(a′) + φ(a)a′ + dada′

which is equivalent to an algebra lift

A
φ∗- LA

IA
= A⊕ Ω2 A

Now, assume we have an algebra morphism

A
f- R

I
with I2 = 0

and lift f to a based linear map A
ρ- R. By the universal property of LA we

have an algebra lift

LA
ρ∗- R

living over f . Therefore ρ∗(IA) ⊂ I and therefore ρ∗ is zero on I2A giving an algebra
morphism

LA
I2A

f∗- R

living over f . But then the existence of an algebra map φ∗ as above gives a desired
lifting f∗ ◦ φ∗ of f , finishing the proof. �

For a map A
φ- Ω2 A as above, a connection is given by the formulae

∇r(ada′) = aφ(a′) and ∇r(ada′) = aφ(a′) + dada′

Example 7.31. Connection on C〈x, y〉.
Clearly we have Ω1 C〈x, y〉 = C〈x, y〉⊗Cx+Cy⊗C〈x, y〉 which is the free bimodule generated

by dx and dy. There is a canonical connection with(
φ(x) = 0 and ∇l(dx) = ∇r(dx) = 0

φ(y) = 0 and ∇l(dy) = ∇r(dy) = 0

The image of φ on any word z1 . . . zn with zi = x or y is given by the formula

φ(z1 . . . zn) =∇rd(z1 . . . zn)

=∇r(
nX
i=1

z1 . . . zi−1(dzi)zi+1 . . . zn)

=

n−1X
i=1

z1 . . . zi−1(dzi)d(zi+1 . . . zn)
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Example 7.32. Connection on C× C.

We have calculated above that the lifting map φ is determined by

φ(e) = (1− 2E)(E − E2) = (f − e)de2

Therefore the corresponding left and right connections are given by(
∇r((αe+ βf)de) = (βf − αe)de2

∇l((αe+ βf)de) = (αf − βe)de2

7.6. deRham cohomology.

In this section we will compute various sorts of noncommutative deRham co-
homology . We have for an arbitrary C-algebra A the complex of noncommutative
differential forms

A = Ω0 A
d- Ω1 A

d- . . .
d- Ωn A

d- Ωn+1 A
d- . . .

A first attempt to define noncommutative de Rham cohomology is to take the
homology groups of this complex, we call these the big noncommutative de Rham
cohomology

Hn
big A =

Ker Ωn A
d- Ωn+1 A

Im Ωn−1 A
d- Ωn A

Example 7.33. Big de Rham cohomology of C× C.

We have seen before that Ωn C× C = (C× C)den and that the differential is given by

Ωn C× C d- Ωn+1 C× C
(αe+ βf)den 7→ (α− β)den+1

From which it is immediately clear that(
H0
big C× C = C

Hn
big C× C = 0

for all n ≥ 1. This is not quite the answer H0 C × C = C ⊕ C we would expect from the

commutative case.

For a general C-algebra A it is usually very difficult to compute these cohomol-
ogy groups. In case of free algebras we can use the graded structure of the complex
together with the Euler derivation to compute them, a trick we will use later in
greater generality.

Example 7.34. Big de Rham cohomology of C〈x, y〉.
Define the Euler derivation E on C〈x, y〉 by

E(x) = x and E(y) = y

Observe that if w is a word in x and y of degree k, then we have the Eulerian property that

E(w) = kw

as one easily verifies.
We can define a degree preserving derivation LE on the differentially graded algebra Ω C〈x, y〉

by the rules

LE(a) = E(a) and LE(da) = dE(a) ∀a ∈ C〈x, y〉
Further we introduce the degree −1 contraction operator iE which is the super-derivation on

Ω C〈x, y〉 , that is,

iE(ωω′) = iE(ω)ω′ + (−1)iωiE(ω′) for ω ∈ Ωi C〈x, y〉

defined by the rules

iE(a) = 0 iE(da) = E(a) ∀a ∈ C〈x, y〉.
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That is, we have the following situation

Ωn−1 Ωn Ωn+1

LE

YY

LE

ZZ

LE

YY

d

''

iE

gg

d

''

iE

gg

These operators satisfy the equation

LE = iE ◦ d+ d ◦ iE

as both sides are derivations on Ω C〈x, y〉 and coincide on the generators a and da for a ∈ C〈x, y〉
of this differentially graded algebra.

We claim that LE is a total degree preserving linear automorphism on

Ωn C〈x, y〉 for n ≥ 1.

For if wi for 0 ≤ i ≤ n are words in x and y of degree ki with ki ≥ 1 for i ≥ 1, then we have

LE(w0dw1 . . . dwn) = (k0 + . . .+ kn)w0dw1 . . . dwn.

Using the words in x and y as a basis for A we see that the kernel and image of the differential d
must be homogeneous. But then, if ω is a multi-homogeneous element in Ωn C〈x, y〉 and in Ker d

we have for some integer k 6= 0 that

kω = LE(ω) = (iE ◦ d+ d ◦ iE)ω = d(iE ω)

and hence ω lies in Im d. Therefore, we have proved(
H0
big C〈x, y〉 = C

Hn
big C〈x, y〉 = 0

for all n ≥ 1.

The examples show that the differentially graded algebra Ω A is formal for
A = C × C or C〈x, y〉. Recall that for an arbitrary A∞-algebra Ω (in particular
for Ω ∈ dgalg), the homology algebra H∗ Ω has a canonical A∞-structure . That
is, we have m1 = 0, m2 is induced by the ’multiplication’ m2 on Ω and there is a
quasi-isomorphism of A∞-algebras H∗ Ω - Ω lifting the identity of H∗ Ω.

The A∞-algebra Ω is said to be formal if the canonical structure makes H∗ Ω
into an ordinary associative graded algebra (that is, such that all mn = 0 for n ≥ 3).
In particular, if Ω = Ω A and if the big deRham cohomology is concentrated in
degree zero, then the degree properties of mn imply that mn = 0 for n ≥ 3 and
hence that Ω A is formal.

Let A be an arbitrary C-algebra and θ ∈ DerC A, the Lie algebra of C-algebra
derivations of A, then we define a degree preserving derivation Lθ and a degree −1
super-derivation iθ on Ω A

Ωn−1 A Ωn A Ωn+1 A

Lθ

XX

Lθ

YY

Lθ

XX

d

%%

iθ

ee

d

%%

iθ

ee

defined by the rules {
Lθ(a) = θ(a) Lθ(da) = d θ(a)
iθ(a) = 0 iθ(da) = θ(a)
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for all a ∈ A. In this generality we again have the fundamental identity

Lθ = iθ ◦ d+ d ◦ iθ
as both sides are degree preserving derivations on Ω A and they agree on all the
generators a and da for a ∈ A.

Lemma 7.35. Let θ, γ ∈ DerC A, then we have on Ω A the following identities
of operators {

Lθ ◦ iγ − iγ ◦ Lθ = [Lθ, iγ ] = i[θ,γ] = iθ◦γ−γ◦θ

Lθ ◦ Lγ − Lγ ◦ Lθ = [Lθ, Lγ ] = L[θ,γ] = Lθ◦γ−γ◦θ

Proof. Consider the first identity. By definition both sides are degree −1
super-derivations on Ω A so it suffices to check that they agree on generators.
Clearly, both sides give 0 when evaluated on a ∈ A and for da we have

(Lθ ◦ iγ − iγ ◦ Lθ)da = Lθ γ(a)− iγ d θ(a) = θ γ(a)− γ θ(a) = i[θ,γ](da)

A similar argument proves the second identity. �

Let Q be a quiver on k vertices {v1, . . . , vk}, then we can define an Euler
derivation E on CQ by the rules that

E(vi) = 0 ∀1 ≤ i ≤ k and E(a) = a ∀a ∈ Qa
By induction on the length l(p) of an oriented path p in the quiver Q one easily
verifies that E(p) = l(p)p. By the lemma above we have all the necessary ingredients
to redo the argument in example 7.34.

Theorem 7.36. For a quiver Q on k vertices, the noncommutative differential
forms Ω CQ is formal. In fact, we have for the big deRham cohomology{

H0
big CQ ' C× . . .× C (k factors)

Hn
big CQ ' 0 ∀n ≥ 1

For ω ∈ Ωi A and ω′ ∈ Ωj A we define the super-commutator to be

[ω, ω′] = ωω′ − (−1)ijω′ω

That is, it is the usual commutator unless both i and j are odd in which case it is
the sum ωω′ + ω′ω.

As the differential d is a super-derivation on Ω A we have that

d([ω, ω′]) = [dω, ω′] + (−1)i[ω, dω′]

and therefore the differential maps the subspaces of super-commutators to subspaces
of super-commutators. Therefore, if we define

DRn A =
Ωn A∑n

i=0[Ωi A,Ωn−i A]

Then the dgalg-structure on Ω A induces one on the complex

DR0 A
d- DR1 A

d- DR2 A
d- . . .

which is called the Karoubi complex of A.
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We define the noncommutative de Rham cohomology groups of A to be the
homology of the Karoubi complex, that is

Hn
dR A =

Ker DRn A
d- DRn+1 A

Im DRn−1 A
d- DRn A

Example 7.37. Noncommutative de Rham cohomology of C× C.

Recall that the product on Ω C× C is given by the formula

(αe+ βf)den(γe+ δf)dem =

(
(αγe+ βδf)den+m when n is even

(αδe+ βγf)den+m when n is odd

If m is odd, then we deduce from this that the commutator

[αe+ βf, (γe+ δf)dem] = (α− β)(γe− δf)dem

and hence we can write any element of Ωm C×C = (C×C)dem as a (super) commutator, whence

DRm C× C = 0 when m is odd.

On the other hand, if m is even then any commutator with k even

[(αe+ βf)dek, (γe+ δf)dem−k] = 0

whereas if k is odd we have

[(αe+ βf)dek, (γe+ δf)dem−k] = (αδ + βγ)dem

As a consequence the space of super-commutators in Ωm C× C is one dimensional and therefore

DRm C× C = C when m is even and > 0.

Thus, the Karoubi complex of C× C has the following form

C× C d- 0
d- C d- 0

d- C d- 0
d- . . .

and therefore we have for the noncommutative de Rham cohomology groups

HndR C× C =

8><>:
C× C when n = 0

0 when n is odd

C when n is even and > 0.

Example 7.38. Noncommutative de Rham cohomology of C〈x, y〉.
Consider again the Eulerian derivation E on C〈x, y〉 and the operators LE and iE on Ω C〈x, y〉.

Repeating the above argument that d is compatible with the subspaces of super-commutators for

iE and LE we see that we have induced operations

DRn−1 DRn DRn+1

LE

YY

LE

ZZ

LE

YY

d

''

iE

gg

d

''

iE

gg

We have again that LE is an isomorphism on DRn C〈x, y〉 whenever n ≥ 1 and again we deduce

from the equality LE = iE ◦ d+ d ◦ iE that

HndR C〈x, y〉 =

(
C when n = 0 ,

0 when n ≥ 1.

Theorem 7.39. Let Q be a quiver on k vertices, then the Karoubi complex of
CQ is acyclic. In particular,{

H0
dR CQ ' C× . . .× C (k factors)

Hn
dR CQ ' 0 ∀n ≥ 1
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So far we have considered differential forms with respect to the basefield C.
Sometimes it is useful to consider only the relative differential forms on A with
respect to a subalgebra B. These can be defined as follows.

Let AB be the cokernel of the inclusion B ⊂ - A in the category B −bimod
of bimodules over B. We define the space of relative differential forms of degree n
with respect to B to be

ΩnB A = A⊗B AB ⊗B . . .⊗B AB︸ ︷︷ ︸
n

By definition ΩnB A is the quotient space of Ωn A by the relations

(a0, . . . , ai−1b, ai, . . . , an) =(a0, . . . , ai−1, bai, . . . , an)

(a0, . . . , ai−1, s, ai+1, . . . , an) =0

for all b ∈ B and 1 ≤ i ≤ n. One verifies that the multiplication and differential
defined on Ω A are compatible with these relations, making ΩB A an object in
dgalg. Moreover, there is a canonical epimorphism

Ω A -- ΩB A in dgalg.

We will now determine the kernel. First we give the universal property for ΩB A.
Given Γ = ⊕Γn in dgalg and an algebra map A

f- Γ0 such that d(f B) = 0,
then there is a unique morphism in dgalg making the diagram commute

ΩB A ................
∃f∗

- Γ

A
∪

6

f - Γ0
∪

6

Indeed, by the universal property of Ω A there is a unique morphism Ω A
f∗- Γ

in dgalg extending f given by

f∗(a0da1 . . . dan) = f(a0)d(f(a1)) . . . d(f(an)).

If d(f B) = 0 then one verifies that f∗ is compatible with the relations defining
ΩB A, proving the universal property.

Proposition 7.40. For a subalgebra B of A we have an isomorphism in dgalg

ΩB A =
Ω A

Ω A d(B) Ω A

Proof. The ideal generated by d(B) is closed under d and therefore the quo-
tient is an object in dgalg with the same universal property as ΩB A. �

An important special case is when B = C × . . . × C is the subalgebra of CQ
generated by the vertex-idempotents. In this case we will denote

Ωrel CQ = ΩB CQ

and call it the relative differential forms on Q.
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Lemma 7.41. Let Q be a quiver on k vertices, then a basis for Ωnrel CQ is given
by the elements

p0dp1 . . . dpn

where pi is an oriented path in the quiver such that length p0 ≥ 0 and length pi ≥ 1
for 1 ≤ i ≤ n and such that the starting point of pi is the endpoint of pi+1 for all
1 ≤ i ≤ n− 1.

Proof. Clearly l(pi) ≥ 1 when i ≥ 1 or pi would be a vertex-idempotent
whence in B. Let v be the starting point of pi and w the end point of pi+1 and
assume that v 6= w, then

pi ⊗B pi+1 = piv ⊗B wpi+1 = pivw ⊗B pi+1 = 0

from which the assertion follows. �

We define the big relative de Rham cohomology groups of A with respect to B
to be the cohomology of the complex

Ω0
B A

d- Ω1
B A

d- Ω2
B A

d- . . .

that is,

Hn
B A =

Ker Ωn A
d- Ωn+1 A

Im Ωn−1 A
d- Ωn A

In the case of path algebras of quivers, we can use the grading by length op paths
and the Eulerian derivation to compute these relative de Rham groups.

Example 7.42. Big relative de Rham cohomology.

Let M (resp. C× C) be the path algebras of the quivers

e(/).*-+,

f(/).*-+,

y

qq

x

--

u

EE

v

��
resp.

e(/).*-+,

f(/).*-+,
The Eulerian derivation E on M is defined by

E(e) = E(f) = 0 E(x) = x E(y) = y E(u) = u and E(v) = v.

Observe that E respects all relation holding in M and so is indeed a C× C- derivation of M.

As before we define a degree preserving derivation LE and a degree −1 super-derivation iE
on Ωrel M = ΩC×C M by the rules(

LE(a) = E(a) LE(da) = dE(a)

iE(a) = 0 iE(da) = E(a)

for all a ∈ M. We have the equality

LE = iE ◦ d+ d ◦ iE
and arguing as before we obtain that

Hnrel M =

(
C× C when n = 0,

0 when n ≥ 1.
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Theorem 7.43. Let Q be a quiver on k vertices, then the relative differential
forms Ωrel CQ is a formal differentially graded algebra. In fact,{

H0
rel CQ ' C× . . .× C (k factors)

Hn
rel CQ ' 0 ∀n ≥ 1

We can repeat the construction of the Karoubi complex verbatim for relative
differential operators and define a relative Karoubi complex

DR0
B A

d- DR1
B A

d- DR2
B A

d- . . .

where

DRnB A =
ΩnB A∑n

i=0 [ ΩiB A,Ωn−iB A ]
Clearly , we then define the noncommutative relative de Rham cohomology groups
of A with respect to B to be the homology of this complex

HnB,dR A =
Ker DRnB A

d- DRn+1
B A

Im DRn−1
B A

d- DRnB A

Let θ ∈ DerB A, that is θ is a C-derivation on A such that θ(b) = 0 for every
b ∈ B. Then, as

Lθ(db) = d θ(b) = 0 and iθ(db) = θ(b) = 0

we see that the operators Lθ and iθ can be defined on the relative forms

ΩB A =
Ω A

Ω A dB Ω A

and also on the relative Karoubi complex. Again, these induced operators satisfy
the identities of lemma 7.35. In the special case of the Eulerian derivation E on
the path algebra CQ we see that E ∈ DerB CQ and hence we have the following
result.

Theorem 7.44. Let Q be a quiver on k vertices. Then, the relative Karoubi
complex is acyclic. That is,{

H0
rel,dR CQ ' C× . . .× C (k factors)

Hn
rel,dR CQ ' 0 ∀n ≥ 1

7.7. Symplectic structure.

Let Q be a quiver on k vertices {v1, . . . , vk}. We will determine the first terms
in the relative Karoubi complex. Define

dRnrel CQ =
Ωnrel CQ∑n

i=0[ Ωirel CQ,Ωn−i CQ ]

In the commutative case, dR0 are the functions on the manifold and dR1 the 1-
forms. We will characterize the noncommutative functions and noncommutative
1-forms in the case of quivers.

Recall that a necklace word w in the quiver Q is an equivalence class of an
oriented cycle c = a1 . . . al of length l ≥ 0 in Q, where c ∼ c′ if c′ is obtained from
c by cyclicly permuting the composing arrows ai.



328 7. NONCOMMUTATIVE GEOMETRY

Lemma 7.45. A C-basis for the noncommutative functions

dR0
rel CQ ' CQ

[ CQ,CQ ]

are the necklace words in the quiver Q.

Proof. Let W be the C-space spanned by all necklace words w in Q and define
a linear map

CQ n-- W

{
p 7→ wp if p is a cycle
p 7→ 0 if p is not

for all oriented paths p in the quiver Q, where wp is the necklace word in Q deter-
mined by the oriented cycle p. Because wp1p2 = wp2p1 it follows that the commu-
tator subspace [CQ,CQ] belongs to the kernel of this map. Conversely, let

x = x0 + x1 + . . .+ xm

be in the kernel where x0 is a linear combination of non-cyclic paths and xi for
1 ≤ i ≤ m is a linear combination of cyclic paths mapping to the same necklace
word wi, then n(xi) = 0 for all i ≥ 0. Clearly, x0 ∈ [CQ,CQ] as we can write every
noncyclic path p = a.p′ = a.p′−p′.a as a commutator. If xi = a1p1+a2p2+. . .+alpl
with n(pi) = wi, then p1 = q.q′ and p2 = q′.q for some paths q, q′ whence p1 − p2

is a commutator. But then, xi = a1(p1 − p2) + (a2 − a1)p2 + . . .+ alpl is a sum of
a commutator and a linear combination of strictly fewer elements. By induction,
this shows that xi ∈ [CQ,CQ]. �

If we fix a dimension vector α, then taking traces defines a map

dR0 CQ tr- C[repα Q]

whence noncommutative functions determine GL(α)-invariant commutative func-
tions on the representation space repα Q and hence commutative functions on the
quotient varieties issα Q. In fact, we have seen that the image tr(dR0 CQ) gener-
ates the ring of polynomial invariants C[repα Q]GL(α) = C[issα Q].

Lemma 7.46. dR1
rel CQ is isomorphic as C-space to

⊕
j(/).*-+, i(/).*-+,aoo

vi.CQ.vj da =
⊕

j(/).*-+, i(/).*-+,aoo

i(/).*-+, j(/).*-+,��
d j(/).*-+, i(/).*-+,aoo

Proof. If p.q is not a cycle, then pdq = [p, dq] and so vanishes in dR1
rel CQ so

we only have to consider terms pdq with p.q an oriented cycle in Q. For any three
paths p, q and r in Q we have the equality

[p.qdr] = pqdr − qd(rp) + qrdp

whence in dR1
rel CQ we have relations allowing to reduce the length of the differ-

ential part

qd(rp) = pqdr + qrdp
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so dR1
rel CQ is spanned by terms of the form pda with a ∈ Qa and p.a an oriented

cycle in Q. Therefore, we have a surjection

Ω1
rel CQ --

⊕
j(/).*-+, i(/).*-+,aoo

vi.CQ.vj da

By construction, it is clear that [Ω0
rel CQ,Ω1

rel CQ] lies in the kernel of this map and
using an argument as in the lemma above one shows also the converse inclusion. �

Example 7.47. dRirel M.
Take the path algebra M of the quiver of example 7.42. Noncommutative functions on M are

the 0-forms, which is by definition the quotient space

dR0
rel M =

M
[ M,M ]

If p is an oriented path of length ≥ 1 in the quiver with different begin- and endpoint, then we can

write p as a concatenation p = p1p2 with pi an oriented path of length ≥ 0 such that p2p1 = 0
in M. As [p1, p2] = p1p2 − p2p1 = 0 in dR0

rel M we deduce that the space of noncommutative

functions on M has as C-basis the necklace words w

�

�''''

�;;;;

� SSSS� cccc

�
uuu

u

�
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��

�

�

00
00

�
III

I

�[[[[ �kkkk

�����

����

x
w

where each bead is this time one of the elementst
= x

d
= y and H = uv

together with the necklace words of length zero e and f . Each necklace word w corresponds to

the equivalence class of the words in M obtained from multiplying the beads in the indicated

orientation and and two words in {x, y, u, v} in M are said to be equivalent if they are identical
up to cyclic permutation of the terms.

Substituting each bead with the n × n matrices specified before and taking traces we get a

map

dR0
rel M =

M
[ M,M ]

tr- C[repα M]

Hence, noncommutative functions on M induce ordinary functions on all the representation spaces

repα M and these functions are GL(α)-invariant. Moreover, the image of this map generates the

ring of polynomial invariants as we mentioned before.
Next, we consider noncommutative 1-forms on M which are by definition elements of the

space

dR1
rel M =

Ω1
rel M

[ M,Ω1
rel M ]

Recall that Ω1
rel M is spanned by the expressions p0dp1 with p0 resp. p1 oriented paths in the

quiver of length ≥ 0 resp. ≥ 1 and such that the starting point of p0 is the end point of p1. To
form dR1

rel M we have to divide out expressions such as

[ p, p0dp1 ] = pp0dp1 + p0p1dp− p0d(p1p)

That is, if we have connecting oriented paths p2 and p1 both of length ≥ 1 we have in dR1
rel M

p0d(p1p2) = p2p0dp1 + p0p1dp2
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and by iterating this procedure whenever the differential term is a path of length ≥ 2 we can

represent each class in dR1
rel M as a combination from

Me dx+ Me dy + Me du+ Mf dv

Now, Me = eMe+ fMe and let p ∈ fMe. Then, we have in dR1
rel M

d(xp) = p dx+ x dp

but by our description of Ω1 M the left hand term is zero as is the second term on the right,

whence p dx = 0. A similar argument holds replacing x by y. As for u, let p ∈ eMe, then we have

in dR1
rel M

d(up) = p du+ u dp

and again the left-hand and the second term on the right are zero whence p du = 0. An analogous
result holds for v and p ∈ fMf . Therefore, we have the description of noncommutative 1-forms

on M
dR1

rel M = eMe dx+ eMe dy + fMe du+ eMf dv

That is, in graphical terms

dR1
rel M = e(/).*-+,�� d e(/).*-+,

x

��
+ e(/).*-+,�� d e(/).*-+,

y

��
+

f(/).*-+, e(/).*-+,��
d e(/).*-+, f(/).*-+,uoo + e(/).*-+, f(/).*-+,��

d f(/).*-+, e(/).*-+,voo

Using the above descriptions of dRirel CQ for i = 0, 1 and the differential
dR0

rel CQ d- dR1
rel CQ we can define partial differential operators associated to

any arrow j(/).*-+, i(/).*-+,aoo in Q.

∂

∂a
: dR0

rel CQ - viCQvj by df =
∑
a∈Qa

∂f

∂a
da

To take the partial derivative of a necklace word w with respect to an arrow a, we
run through w and each time we encounter a we open the necklace by removing
that occurrence of a and then take the sum of all the paths obtained.

Example 7.48. For the path algebra M we have the partial differential operators
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Recall that a symplectic structure on a (commutative) manifold M is given
by a closed differential 2-form. The non-degenerate 2-form ω gives a canonical
isomorphism

T M ' T ∗ M
that is, between vector fields on M and differential 1-forms. Further, there is a
unique C-linear map from functions f on M to vectorfields ξf by the requirement
that −df = iξf

ω where iξ is the contraction of n-forms to n − 1-forms using the
vectorfield ξ. We can make the functions on M into a Poisson algebra by defining

{f, g} = ω(ξf , ξg)

and one verifies that this bracket satisfies the Jacobi and Leibnitz identities.
The Lie derivative Lξ with respect to ξ is defined by the Cartan homotopy

formula
Lξ ϕ = iξdϕ+ diξϕ

for any differential form ϕ. A vectorfield ξ is said to be symplectic if it preserves
the symplectic form, that is, Lξω = 0. In particular, for any function f on M we
have that ξf is symplectic. Moreover the assignment

f - ξf

defines a Lie algebra morphism from the functions O(M) on M equipped with the
Poisson bracket to the Lie algebra of symplectic vectorfields, V ectω M . Moreover,
this map fits into the exact sequence

0 - C - O(M) - V ectω M - H1
dR M - 0

Recall the definition of the double quiver Qd of a quiver Q given in section 5.6
by assigning to every arrow a ∈ Qa an arrow a∗ in Qd in the opposite direction.

Definition 7.49. The canonical noncommutative symplectic structure on the
double quiver Qd is given by the element

ω =
∑
a∈Qa

dada∗ ∈ dR2
rel CQd

We will use ω to define a correspondence between the noncommutative 1-forms
dR1

rel CQd and the noncommutative vectorfields which are define to be B = CQv -
derivations of the path algebra CQd. Recall that if θ ∈ DerB CQd we define
operators Lθ and iθ on Ω CQd and on dR CQd by the rules{

Lθ(a) = θ(a) Lθ(da) = dθ(a)
iθ(a) = 0 iθ(da) = θ(a)

and that the following identities are satisfied for all θ, γ ∈ DerB CQd

[Lθ, Lγ ] = L[θ,γ] and [iθ, iγ ] = i[θ,γ]

These operators allow us to define a linear map

DerB CQ τ- dR1
rel CQ by τ(θ) = iθ(ω)

We claim that this is an isomorphism. Indeed, every B-derivation θ on CQd is fully
determined by its image on the arrows in Qd which satisfy if a = j(/).*-+, i(/).*-+,aoo

θ(a) = θ(vjavi) = vjθ(a)vi ∈ vjCQdvi
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so determines an element θ(a)da∗ ∈ dR1
rel CQd. Further, we compute

iθ(ω) =
∑
a∈Qa

iθ(da)da∗ − iθ(da∗)da

=
∑
a∈Qa

θ(a)da∗ − θ(a∗)da

which lies in dR1
rel CQd. As both B-derivations and 1-forms are determined by

their coefficients, τ is indeed bijective.

Example 7.50. For the path algebra of the double quiver M,the analogon of the classical
isomorphism T M ' T ∗ M is the isomorphism

DerC×C M i.ω- dR1
rel M

as for any C× C-derivation θ we have

iθ ω = iθ(dx)dy − dxiθ(dy) + iθ(du)dv − duiθ(dv)

= θ(x)dy − dxθ(y) + θ(u)dv − duθ(v)

≡ θ(x)dy − θ(y)dx+ θ(u)dv − θ(v)du

and using the relations in M we can easily prove that any C× C derivation on M must satisfy

θ(x) ∈ eMe θ(y) ∈ eMe θ(u) ∈ eMf θ(v) ∈ fMe

so the above expression belongs to dR1
rel M. Conversely, any θ defined by its images on the

generators x, y, u and v by

−θ(y)dx+ θ(x)dy − θ(v)du+ θ(u)dv ∈ dR1
rel M

induces a derivation on M.

In analogy with the commutative case we define a derivation θ ∈ DerB CQd to
be symplectic if and only if Lθω = 0 ∈ dR2

rel CQd. We will denote the subspace of
symplectic derivations by Derω CQ. It follows from the noncommutative analogon
of the Cartan homotopy equality

Lθ = iθ ◦ d+ d ◦ iθ

and the fact that ω is a closed form, that θ ∈ Derω CQd implies

Lθω = diθω = τ(θ) = 0

That is, τ(θ) is a closed form which by the acyclicity of the Karoubi complex shows
that it must be an exact form. That is we have an isomorphism of exact sequences
of C-vectorspaces

0 - B - dR0
rel CQd d- (dR1

rel CQ)exact - 0

0 - B

=

?
- CQd

[CQd,CQd]

'
?

- Derω CQd

τ−1

?
- 0

n the next section we will show that this is in fact an exact sequence of Lie algebras.
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Figure 4. Kontsevich bracket {w1, w2}K .

7.8. Necklace Lie algebras.

Let Q be a quiver on k vertices, Qd its double and ω =
∑
a∈Qa

dada∗ the
canonical symplectic form on CQd. Recall from last section the definition of the
partial differential operators ∂

∂a for an arrow a in Qd.

Definition 7.51. The Kontsevich bracket on the necklace words in Qd,
dR0

rel CQd is defined to be

{w1, w2}K =
∑
a∈Qa

(
∂w1

∂a

∂w2

∂a∗
− ∂w1

∂a∗
∂w2

∂a
) mod [CQd,CQd]

That is, to compute {w1, w2}K we consider for every arrow a ∈ Qa all oc-
currences of a in w1 and a∗ in w2. We then open up the necklaces removing these
factors and gluing the open ends together to form a new necklace word. We then re-
place the roles of a∗ and a and redo this operation (with a minus sign), see figure 4.
Finally, we add all the obtained necklace words.

Example 7.52. For the path algebra M the canonical symplectic form is ω = dxdy+dudv.

Using the above graphical description we have that the Kontsevich bracket {w1, w2}K is equal to
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Using this graphical description of the Kontsevich bracket, it is an enjoyable
exercise to verify that the bracket turns dR0

rel CQd into a Lie algebra. That is, for
all necklace words wi, the bracket satisfies the Jacobi identity

{{w1, w2}K , w3}K + {{w2, w3}K , w1}K + {{w3, w1}K , w2}K = 0

see figure 5.
Recall the exact commutative diagram from last section

0 - B - dR0
rel CQd d- (dR1

rel CQ)exact - 0

0 - B

=

?
- CQd

[CQd,CQd]

'
?

- Derω CQd

τ−1

?
- 0

Clearly, the symplectic derivations Derω CQd are equipped with a Lie algebra
structure via [θ1, θ2] = θ1 ◦ θ2 − θ2 ◦ θ1.

For every necklace word w we have a derivation θw = τ−1dw which is defined
by {

θw(a) = ∂w
∂a∗

θw(a∗) = −∂w∂a
With this notation we get the following interpretations of the Kontsevich bracket

{w1, w2}K = iθw1
(iθw2

ω) = Lθw1
(w2) = −Lθw2

(w1)

where the next to last equality follows because iθw2
ω = dw2 and the fact that

iθw1
(dw) = Lθw1

(w) for any w. More generally, for any B-derivation θ and any
necklace word w we have the equation

iθ(iθw
ω) = Lθ(w)

By the commutation relations for the operators Lθ and iθ we have for all B-
derivations θi the equalities

Lθ1iθ2iθ3ω − iθ2iθ3Lθ1ω = [Lθ1 , iθ2 ]iθ3ω + iθ2Lθ1iθ3ω

− iθ2Lθ1iθ3ω + iθ2 [Lθ1 , iθ3 ]ω
= i[θ1,θ2]iθ3ω + iθ2i[θ1,θ3]ω
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Figure 5. Jacobi identity for the Kontsevich bracket. Term 1a
vanishes against 2c, term 1b against 3d, 1c against 3a, 1d against
2b, 2a against 3c and 2d against 3b.
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By the homotopy formula we have Lθw
ω = 0 for every necklace word w, whence we

get
Lθw1

iθ2iθ3ω = i[θw1 ,θ2]
iθ3ω + iθ2i[θw1 ,θ3]

ω

Take θ2 = θw2 , then the left hand side is equal to
Lθw1

iθw2
iθ3ω = −Lθw1

iθ3iθw2
ω

= −Lθw1
Lθ3w2

whereas the last term on the right equals
iθw2

i[θw1 ,θ3]
ω = −i[θw1 ,θ3]

iθw2
ω

= −L[θw1 ,θ3]
w2 = −Lthetaw1

Lθ3w2 + Lθ3Lθw1
w2

and substituting this we obtain that
i[θw1 ,θw2 ]iθ3ω = −Lθw1

Lθ3w2 + Lθw1
Lθ3w2 − Lθ3Lθw1

w2

= −Lθ3Lθw1
w2 = −Lθ3{w1, w2}K

= −iθ3iθ{w1,w2}K
ω = iθ{w1,w2}K

iθ3ω

Finally, if we take θ = [θw1 , θw2 ]−θ{w1,w2}K
we have that iθω is a closed 1-form and

that iθiθ3ω = −iθ3iθω = 0 for all θ3. But then by the homotopy formula Lθ3iθω = 0
whence iθω = 0, which finally implies that θ = 0. This concludes the proof of :

Theorem 7.53. With notations as before, the necklace words dR0
rel CQd is a

Lie algebra for the Kontsevich bracket, and the sequence

0 - B - dR0
rel CQd τ−1d- Derω CQd - 0

is an exact sequence (hence a central extension) of Lie algebras.

This result will be crucial in the study of coadjoint orbits in the final chapter.
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CHAPTER 8

Moduli Spaces

8.1. Moment maps.

In section 2.8 we have studied in some detail the real moment map of m-tuples
of n × n matrices. In this section we will first describe the obvious extension to
representation spaces of quivers and then to prove the properties of the real moment
map for moduli spaces of θ-semistable representations.

We fix a quiver Q on k vertices {v1, . . . , vk} and a dimension vector α =
(a1, . . . , ak) ∈ Nk. We take the standard Hermitian inproduct on each of the
vertex spaces C⊕ai and this induces the standard operator inner product on every
arrow-component of repα Q. That is, for every arrow

��������i��������j
aoo we define (Va,Wa) = tr(VaW ∗a )

on the component HomC(C⊕ai ,C⊕aj ) for all V,W ∈ repα and where W ∗a is the
adjoint matrix (wji)i,j of Wa = (wij)i,j . The Hermitian inproduct on repα Q is
defined to be

(V,W ) =
∑
a∈Qa

tr(VaW ∗a )

The maximal compact subgroup of the basechange group GL(α) =
∏k
i=1GLai

is the
multiple unitary group

U(α) =
k∏
i=1

Uai

which preserves the Hermitian inproduct under the basechange action as subgroup
of GL(α). The Lie algebra Lie U(α) is the algebra of multiple skew-Hermitian
matrices

Lie U(α) =
k⊕
j=1

iHermaj = { h = (h1, . . . , hk) | hj = −h∗j }

and the induced action of Lie U(α) on repα Q is given by the rule

(h.V )a = hjVa − Vahi for ��������i��������j
aoo

for all V ∈ repα Q. This action allows us to define the real moment map µ for the
action of U(α) on the representation space repα Q by the assignment

repα Q
µ- (iLie U(α))∗ V - (h 7→ i(h.V, V ))

337
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That is, the moment map is determined by

(h.V, V ) =
∑

��������i��������j
aoo

tr(hjVaV ∗a − VahiV ∗a )

=
∑
vi∈Qv

tr(hi(
∑

����������������i
aoo

VaV
∗
a −

∑
��������i�������� aoo
V ∗a Va ))

Using the nondegeneracy of the Killing form on Lie U(α) we have the identification

µ−1(0) = {V ∈ repα Q |
∑

����������������i
aoo

VaV
∗
a =

∑
��������i�������� aoo
V ∗a Va ∀vi ∈ Qv}

The real moment map µR is then defined to be

repα Q
µR- Lie U(α) V 7→ i[V, V ∗] = i(

∑
����������������j

aoo

VaV
∗
a −

∑
��������j�������� aoo
V ∗a Va)j

Reasoning as in section 2.8 we can prove the following moment map description of
the isomorphism classes of semi-simple α-dimensional representations of Q.

Theorem 8.1. There are natural one-to-one correspondences between
(1) points of issα Q, and
(2) U(α)-orbits in µ−1

R (0).

Next, we will prove a similar result to describe the points of Mss
α (Q, θ), the

moduli space of θ-semistable α-dimensional representations of Q, introduced and
studied in section 6.3. Fix, an integral k-tuple θ = (t1, . . . , tk) ∈ Zk with associated
character

GL(α)
χθ- C∗ g = (g1, . . . , gk) 7→

k∏
i=1

det(gi)ti

We have seen in section 6.3 that in order to describe Mss
α (Q, θ) we consider the

extended representation space repα Q ⊕ C. We introduce a function N on this
extended space replacing the norm in the above discussion.

repα Q⊕ C N- R+ (V, z) 7→ |z|e
1
2‖V ‖

2

where ‖V ‖ is the norm coming from the Hermitian inproduct on repα Q. Some-
times, the function N is called the Kähler potential for the inproduct on repα Q.
We will investigate the properties of N .

Lemma 8.2. Let X be a closed subvariety of repα Q⊕C disjoint from rep′α Q =
{(V, 0) | V ∈ repα Q} ⊂ - repα Q⊕C. Then, the restriction of N to X is proper
and therefore achieves its minimum.

Proof. Because X and rep′α Q are disjoint closed subvarieties of repα Q⊕C,
there is a polynomial f ∈ C[repα Q⊕C] = C[repα Q][z] such that f | X = 1 and
f | rep′α Q = 0. That is, X is contained in the hypersurface

V(f − 1) = V(zP1(V ) + . . .+ znPn(V )− 1) ⊂ - repα Q⊕ C

where the Pi ∈ C[repα Q].
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Now, N is proper if the inverse images N−1([0, r]) are compact for all r ∈ R+,
that is, there exist constants r1 and r2 depending on X and r such that

N(z, V ) ≤ r implies |z| ≤ r1 and ‖V ‖ ≤ r2.

We can always take r1 = r so we only need to bound ‖V ‖. If |z| ≤ re−
1
2‖V ‖

2
, then

we have that

|zP1(V ) + . . .+ znPn(V )| ≤ r|P1(V )|e−
1
2‖V ‖

2
+ . . .+ rn|Pn(V )|e−

n
2 ‖V ‖

2

Choose r2, depending on r and Pi such that the condition

‖V ‖ > r2 implies that |Pi(V )| < 1
nr
−ie

i
2‖V ‖

2
∀1 ≤ i ≤ n

But then if ‖V ‖ > r2, we have |zP1(V )+ . . .+ znPn(V )| < 1 and so (V, z) does not
belong to X. �

Recall that GL(α) acts on the extended representation space repα Q⊕ C via

g.(V, z) = (g.V, χ−1
θ (g)z)

Lemma 8.3. Let O be a GL(α)-orbit in the extended representation space
repα Q ⊕ C which is disjoint from rep′α Q. Then, if the restriction of N to O
achieves its minimum, then O is a closed orbit.

Proof. Assume that N achieves its minimum in the point Vz = (V, z) ∈ O.
If O is not a closed orbit we can by the Hilbert criterium find a one-parameter
subgroup λ of GL(α) such that

lim
t7→0

λ(t).Vz /∈ O

and the limit exists in repα Q ⊕ C. Decompose the representation V =
∑
n∈Z Vn

into eigenspaces with respect to the one-parameter subgroup λ, that is,

λ(t).V =
∑
n∈Z

tnVn

Because the limit exists, we have that Vn = 0 whenever n < 0 and θ(λ) ≤ 0. Because
the limit is not contained in O we have that Vn 6= 0 for some n > 0. Further, by
conjugating λ if necessary we may assume that the weightspace decomposition
V =

∑
n Vn is orthogonal with respect to the inproduct in repα Q.

Using these properties we then have that

N(λ(t).(V, z)) = |z|e
1
2 |V0|2 |t|−θ(λ)e

1
2

P
n>0|t|

n‖Vn‖2

This expression will decrease when t approaches zero, contradicting the assumption
that the minimum of N | O was achieved in (V, z). This contradiction implies
that O must be a closed orbit. �

Recall from section 6.3 that an orbit O(V, z) is closed and disjoint from rep′α Q
for some z ∈ C∗ if and only if V is the direct sum of θ-stable representations of Q.
Recall the real moment map

repα Q
µ- (iLie U(α))∗

And consider the special real valued function dχθ on Lie U(α) which is the restric-
tion to Lie U(α) of the differential of GL(α)

χθ- C∗ at the identity element (which
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takes real values). In fact, for any m = (m1, . . . ,mk) ∈ Lie GL(α) = Mα(C) we
have that

dχθ(m) =
∑
vj∈Qv

tjtr(mj) =
∑
vj∈Qv

tr(mjtj
rr
aj )

With these notations we have the promised extension to moduli spaces of θ-
semistable representations.

Theorem 8.4. There are natural one-to-one correspondences between
(1) points of Mss

α (Q, θ), and
(2) U(α)-orbits in µ−1(dχθ).

Proof. Let Vz = (V, z) ∈ repα Q⊕C with z 6= 0. For any h = (h1, . . . , hk) in
iLie U(α) we define the functions

mV (h) =
d

dt
|t=0 log N(eth.Vz)

= (h.V, V )− dχθ(h)

m
(2)
V (h) =

d

dt
|t=0 log N(eth.Vz)

= 2‖h.V ‖2

The function mV is the zero map if and only if the restriction of N to the orbit
O(Vz) has a critical point at Vz. As the basechange action of U(α) on the extended
representation space repα Q ⊕ C preserves the Kähler potential N , N induces a
function on the quotientO(Vz)/U(α). The formula form(2)

V shows that this function
is strictly convex (except in directions along the fibers {(V, c) | c ∈ C} where it
is linear). Hence, a critical point is a minimum and there can be at most one
such critical point. From the lemmas above we have that N has a minimum on
O(Vz) if and only if O(Vz) is a closed orbit, which in its turn is equivalent to V
being the direct sum of θ-stable representations, whence determining a point of
Mss
α (Q, θ). �

Finally, for any h ∈ iLie U(α) we have the formulas

µ(V )(h) = i
∑
vi∈Qv

tr(hi(
∑

����������������i
aoo

VaV
∗
a −

∑
��������i�������� aoo
V ∗a Va ))

dχθ(h) =
∑
vi∈Qv

tr(hitir
r
ai)

whence by nondegeneracy of the Killing form, the equality µ(V ) = dχθ is equivalent
to the conditions ∑

����������������j
aoo

VaV
∗
a −

∑
��������j�������� aoo
V ∗a Va = itj

rr
aj
∀vj ∈ Qv

We can assign to θ = (t1, . . . , tk) ∈ Zk the element iθrr
α = (it1rr

a1 , . . . , itk
rr
ak

) ∈
Lie U(α). We then can rephrase the results of this section as

Theorem 8.5. There are natural identification between the spaces

issα Q←→ µ−1
R (0)/U(α)
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and between the spaces

Mss
α (Q, θ)←→ µ−1

R (iθrr
α)/U(α)

8.2. Dynamical systems.

In this chapter we will illustrate what we have learned on the simplest wild
quiver Q which is neither Dynkin nor extended Dynkin

(/).*-+, (/).*-+, bee
a //

In this section we will show that the representation theory of this quiver is of
importance in system theory.

A linear time invariant dynamical system Σ is determined by the following
system of differential equations

dx

dt
= Bx+Au

y = Cx.
(8.1)

Here, u(t) ∈ Cm is the input or control of the system at tome t, x(t) ∈ Cn the
state of the system and y(t) ∈ Cp the output of the system Σ. Time invariance
of Σ means that the matrices A ∈ Mn×m(C), B ∈ Mn(C) and C ∈ Mp×n(C) are
constant, that is Σ = (A,B,C) is a representation of the quiver Q̃

(/).*-+, (/).*-+, (/).*-+,
b

��a // c //

of dimension vector α = (m,n, p). The system Σ can be represented as a black box

u(t) y(t)

x(t)

• •// //

which is in a certain state x(t) that we can try to change by using the input controls
u(t). By reading the output signals y(t) we can try to determine the state of the
system.

Recall that the matrix exponential eB of any n× n matrix B is defined by the
infinite series

eB = rr
n +B +

B2

2!
+ . . .+

Bm

m!
+ . . .

The importance of this construction is clear from the fact that eBt is the funda-
mental matrix for the homogeneous differential equation dx

dt = Bx. That is, the
columns of eBt are a basis for the n-dimensional space of solutions of the equation
dx
dt = Bx.

Motivated by this, we look for a solution to equation (8.1) as the form x(t) =
eBtg(t) for some function g(t). Substitution gives the condition

dg

dt
= e−BtAu whence g(τ) = g(τ0) +

∫ τ

τ0

e−BtAu(t)dt.



342 8. MODULI SPACES

Observe that x(τ0) = eBτ0g(τ0) and we obtain the solution of the linear dynamical
system Σ = (A,B,C) :{

x(τ) = e(τ−τ0)Bx(τ0) +
∫ τ
τ0
e(τ−t)BAu(t)dt

y(τ) = CeB(τ−τ0)x(τ0) +
∫ τ
τ0
Ce(τ−t)BAu(t)dt.

Differentiating we see that this is indeed a solution and it is the unique one having
a prescribed starting state x(τ0). Indeed, given another solution x1(τ) we have that
x1(τ)− x(τ) is a solution to the homogeneous system dx

dt = Bt, but then

x1(τ) = x(τ) + eτBe−τ0B(x1(τ0)− x(τ0)).

We call the system Σ completely controllable if we can steer any starting state
x(τ0) to the zero state by some control function u(t) in a finite time span [τ0, τ ].
That is, the equation

0 = x(τ0) +
∫ τ

τ0

e(τ0−t)BAu(t)dt

has a solution in τ and u(t). As the system is time-invariant we may always assume
that τ0 = 0 and have to satisfy the equation

(8.2) 0 = x0 +
∫ τ

0

etBAu(t)dt for every x0 ∈ Cn

Consider the control matrix c(Σ) which is the n×mn matrix

c(Σ) = A BA B2A Bn-1A. . .

Assume that rk c(Σ) < n then there is a non-zero state s ∈ Cn such that
strc(Σ) = 0, where str denotes the transpose (row column) of s. Because B sat-
isfies the characteristic polynomial χB(t), Bn and all higher powers Bm are linear
combinations of {rrn, B,B2, . . . , Bn−1}. Hence, strBmA = 0 for all m. Writing out
the power series expansion of etB in equation (8.2) this leads to the contradiction
that 0 = strx0 for all x0 ∈ Cn. Hence, if rk c(Σ) < n, then Σ is not completely
controllable.

Conversely, let rk c(Σ) = n and assume that Σ is not completely controllable.
That is, the space of all states

s(τ, u) =
∫ τ

0

e−tBAu(t)dt

is a proper subspace of Cn. But then, there is a non-zero state s ∈ Cn such that
strs(τ, u) = 0 for all τ and all functions u(t). Differentiating this with respect to τ
we obtain

(8.3) stre−τBAu(τ) = 0 whence stre−τBA = 0

for any τ as u(τ) can take on any vector. For τ = 0 this gives strA = 0. If we
differentiate (8.3) with respect to τ we get strBe−τBA = 0 for all τ and for τ = 0
this gives strBA = 0. Iterating this process we show that strBmA = 0 for any m,
whence

str
[
A BA B2A . . . Bn−1A

]
= 0

contradicting the assumption that rk c(Σ) = n. That is, we have proved :
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Proposition 8.6. A linear time-invariant dynamical system Σ determined by
the matrices (A,B,C) is completely controllable if and only if rk c(Σ) is maximal.

We say that a state x(τ) at time τ is unobservable if Ce(τ−t)Bx(τ) = 0 for all
t. Intuitively this means that the state x(τ) cannot be detected uniquely from the
output of the system Σ. Again, if we differentiate this condition a number of times
and evaluate at t = τ we obtain the conditions

Cx(τ) = CBx(τ) = . . . = CBn−1x(τ) = 0.

We say that Σ is completely observable if the zero state is the only unobservable
state at any time τ . Consider the observation matrix o(Σ) of the system Σ which
is the pn× n matrix

o(Σ) =
[
Ctr (CB)tr . . . (CBn−1)tr

]tr
An analogous argument as in the proof of proposition 8.6 gives us that a linear time-
invariant dynamical system Σ determined by the matrices (A,B,C) is completely
observable if and only if rk o(Σ) is maximal.

Assume we have two systems Σ and Σ′, determined by matrix triples from
repα Q = Mn×m(C) ×Mn(C) ×Mp×n(C) producing the same output y(t) when
given the same input u(t), for all possible input functions u(t). We recall that the
output function y for a system Σ = (A,B,C) is determined by

y(τ) = CeB(τ−τ0)x(τ0) +
∫ τ

τ0

Ce(τ−t)BAu(t)dt.

Differentiating this a number of times and evaluating at τ = τ0 as in the proof of
proposition 8.6 equality of input/output for Σ and Σ′ gives the conditions

CBiA = C ′B
′iA′ for all i.

But then, we have for any v ∈ Cmn that c(Σ)(v) = 0 ⇔ c(Σ′)(v) = 0 and we can
decompose Cpn = V ⊕W such that the restriction of c(Σ) and c(Σ′) to V are the
zero map and the restrictions to W give isomorphisms with Cn. Hence, there is
an invertible matrix g ∈ GLn such that c(Σ′) = gc(Σ) and from the commutative
diagram

Cmn c(Σ)-- Cn ⊂
o(Σ)- Cpn

‖ ‖

Cmn c(Σ′)-- Cn

g

?
⊂

o(Σ′)- Cpn

we obtain that also o(Σ′) = o(Σ)g−1.
Consider the system Σ1 = (A1, B1, C1) equivalent with Σ under the base-change

matrix g. That is, Σ1 = g.Σ = (gA, gBg−1, Cg−1). Then,[
A1, B1A1, . . . , B

n−1
1 A1

]
= gc(Σ) = c(Σ′) =

[
A′, B′A′, . . . , B

′n−1A′
]

and so A1 = A′. Further, as Bi+1
1 A1 = B

′i+1A′ we have by induction on i that the
restriction of B1 on the subspace of B

′iIm(A′) is equal to the restriction of B′ on
this space. Moreover, as

∑n−1
i=0 B

′iIm(A′) = Cn it follows that B1 = B′. Because
o(Σ′) = o(Σ)g−1 we also have C1 = C ′. This finishes the proof of :
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Proposition 8.7. Let Σ = (A,B,C) and Σ′ = (A′, B′, C ′) be two completely
controllable and completely observable dynamical systems. The following are equiv-
alent

(1) The input/output behavior of Σ and Σ′ are equal.
(2) The systems Σ and Σ′ are equivalent, that is, there exists an invertible

matrix g ∈ GLn such that

A′ = gA, B′ = gBg−1 and C ′ = Cg−1.

Hence, in system identification it is important to classify completely controllable
and observable systems Σ ∈ repα Q̃ under this restricted basechange action. We
will concentrate on the input part and consider completely controllable minisystems,
that is, representations Σ = (A,B) ∈ repα Q where α = (m,n) such that c(Σ) is of
maximal rank. First, we relate the system theoretic notion to that of θ-semistability
for θ = (−n,m) (observe that θ(α) = 0).

Lemma 8.8. If Σ = (A,B) ∈ repα Q is θ-semistable, then Σ is completely
controllable and m ≤ n.

Proof. If m > n then (Ker A, 0) is a proper subrepresentation of Σ of di-
mension vector β = (dim Im A−m, 0) with θ(β) < 0 so Σ cannot be θ-semistable.
If Σ is not completely controllable then the subspace W of C⊕n spanned by the
images of A,BA, . . . , Bn−1A has dimension k < n. But then, Σ has a proper sub-
representation of dimension vector β = (m, k) with θ(β) < 0, contradicting the
θ-semistability assumption. �

We introduce a combinatorial gadget : the Kalman code . It is an array con-
sisting of (n+ 1)×m boxes each having a position label (i, j) where 0 ≤ i ≤ n and
1 ≤ j ≤ m. These boxes are ordered lexicographically that is (i′, j′) < (i, j) if and
only if either i′ < i or i′ = i and j′ < j. Exactly n of these boxes are painted black
subject to the rule that if box (i, j) is black, then so is box (i′, j) for all i′ < i. That
is, a Kalman code looks like

0

n

1 m

We assign to a completely controllable couple Σ = (A,B) its Kalman code K(Σ)
as follows : let A =

[
A1 A2 . . . Am

]
, that is Ai is the i-th column of A. Paint

the box (i, j) black if and only if the column vector BiAj is linearly independent
of the column vectors BkAl for all (k, l) < (i, j).
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ψ(A,B)

Figure 1. Kalman code and barcode.

The painted array K(Σ) is indeed a Kalman code. Assume that box (i, j) is
black but box (i′, j) white for i′ < i, then

Bi
′
Aj =

∑
(k,l)<(i′,j)

αklB
kAl but then, BiAj =

∑
(k,l)<(i′,j)

αklB
k+i−i′Al

and all (k + i− i′, l) < (i, l), a contradiction. Moreover, K(Σ) has exactly n black
boxes as there are n linearly independent columns of the control matrix c(Σ) when
Σ is completely controllable.

The Kalman code is a discrete invariant of the orbit O(Σ) under the restricted
basechange action by GLn. This follows from the fact that BiAj is linearly inde-
pendent of the BkAl for all (k, l) < (i, j) if and only if gBiAj is linearly independent
of the gBkAl for any g ∈ GLn and the observation that gBkAl = (gBg−1)k(gA)l.

With repcα Q we will denote the open subset of repα Q of all completely con-
trollable couples (A,B). We consider the map

repα Q
ψ - Mn×(n+1)m(C)

(A,B) 7→
[
A BA B2A . . . Bn−1A BnA

]
The matrix ψ(A,B) determines a linear map ψ(A,B) : C(n+1)m - Cn and (A,B)
is a completely controllable couple if and only if the corresponding linear map
ψ(A,B) is surjective. Moreover, there is a linear action of GLn on Mn×(n+1)m(C)
by left multiplication and the map ψ is GLn-equivariant.

The Kalman code induces a barcode on ψ(A,B), that is the n × n minor of
ψ(A,B) determined by the columns corresponding to black boxes in the Kalman
code, see figure 1 By construction this minor is an invertible matrix g−1 ∈ GLn.
We can choose a canonical point in the orbit O(Σ) : g.(A,B). It does have the
characteristic property that the n × n minor of its image under ψ, determined by
the Kalman code is the identity matrix rr

n. The matrix ψ(g.(A,B)) will be denoted
by b(A,B) and is called barcode of the completely controllable pair Σ = (A,B).
We claim that the barcode determines the orbit uniquely.

The map ψ is injective on the open set repcα Q. Indeed, if[
A BA . . . BnA

]
=

[
A′ B′A′ . . . B

′nA′
]

then A = A′, B | Im(A) = B′ | Im(A) and hence by induction also

B | BiIm(A) = B′ | B
′iIm(A′) for all i ≤ n− 1.

But then, B = B′ as both couples (A,B) and (A′, B′) are completely control-
lable. Hence, the barcode b(A,B) determines the orbit O(Σ) and is a point in the
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Grassmannian Grassn(m(n+ 1)). We have

Vc ⊂
ψ- Mmax

n×m(n+1)(C)

Grassn(m(n+ 1))

χ

??

b(.)

-

where ψ is a GLn-equivariant embedding and χ the orbit map. Observe that
the barcode matrix b(A,B) shows that the stabilizer of (A,B) is trivial. Indeed,
the minor of g.b(A,B) determined by the Kalman code is equal to g. Moreover,
continuity of b implies that the orbit O(Σ) is closed in repcα Q.

Consider the differential of ψ. For all (A,B) ∈ repα Q and (X,Y ) ∈
T(A,B) repα Q ' repα Q we have

(B + εY )j(A+ εX) = BnA+ ε (BnX +
j−1∑
i=0

BiY Bn−1−iA).

Therefore the differential of ψ in (A,B) ∈ repα Q, dψ(A,B)(X,Y ) is equal to[
X BX + Y A B2X +BY A+ Y BA . . . BnX +

∑n−1
i=0 B

iY Bn−1−iA
]
.

Assume dψ(A,B)(X,Y ) is the zero matrix, then X = 0 and substituting in the next
term also Y A = 0. Substituting in the third gives Y BA = 0, then in the fourth
Y B2A = 0 and so on until Y Bn−1A = 0. But then,

Y
[
A BA B2A . . . Bn−1A

]
= 0.

If (A,B) is a completely controllable pair, this implies that Y = 0 and hence shows
that dψ(A,B) is injective for all (A,B) ∈ repcα Q. By the implicit function theorem,
ψ induces a GLn-equivariant diffeomorphism between repcα Q and a locally closed
submanifold of Mmax

n×(n+1)m(C). The image of this submanifold under the orbit map
χ is again a manifold as all fibers are equal to GLn. This concludes the difficult
part of the Kalman theorem :

Theorem 8.9. The orbit space Oc = repcα Q/GLn of equivalence classes of
completely controllable couples is a locally closed submanifold of dimension m.n

of the Grassmannian Grassn(m(n + 1)). In fact repcα Q
b-- Oc is a principal

GLn-bundle.

To prove the dimension statement, consider repcα(K) the set of completely
controllable pairs (A,B) having Kalman code K and let Oc(K) be the image under
the orbit map. After identifying repcα(K) with its image under ψ, the barcode
matrix b(A,B) gives a section Oc(K) ⊂

s- repcα(K). In fact,

GLn ×Oc(K) - Vc(K) (g, x) 7→ g.s(x)

is a GLn-equivariant diffeomorphism because the n × n minor determined by K
of g.b(A,B) is g. Consider the generic Kalman code Kg of figure 2 obtained by
painting the top boxes black from left to right until one has n black boxes. Clearly
repcα(Kg) is open in repcα and one deduces

dim Oc = dim Oc(Kg) = dim Vc(Kg)− dim GLn = mn+ n2 − n2 = mn.
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0

n

1 m

Figure 2. Generic Kalman code.

The Kalman orbit space also naturally defines an order over the moduli space
Mss
α (Q, θ). First, observe that whenever m ≤ n we have θ-stable representations

of dimension vector α = (m,n) for θ = (−n,m). Then,

dimMss
α (Q, θ) = dim repα Q−dim GL(α)+1 = n2+mn−n2−m2+1 = m(n−m)+1

By the lemma we have that repssα Q is an open subset of repcα Q and let Oss be the
open subset of Oc it determines. Then, the natural quotient map

Oss -- Mss
α (Q, θ)

is generically a principal PGLm-fibration, so determines a central simple algebra
over the function field of Mss

α (Q, θ).
In particular, if m = 1 then Oss ' Mss

α (Q, θ) and both are isomorphic to An
and the orbits are parametrized by an old acquaintance, the companion matrix and
its canonical cyclic vector

A =


1
0
. . .
0
0

 B =


0 xn
−1 0 xn−1

. . . . . .
...

−1 0 x2

−1 x1


Trivial as this case seems, we will see that it soon gets interesting if we consider its
extension to the double quiver Qd and to deformed preprojective algebras.

8.3. Deformed preprojective algebras.

Recall the construction of deformed preprojective algebras given in section 5.6.
Let Q be a quiver on k vertices and Qd its double quiver , that is to each arrow
a ∈ Qa we add an arrow a∗ with the reverse orientation in Qda and define the
commutator element c =

∑
a∈Qa

[a, a∗] in the path algebra CQd. For a weight
λ = (λ1, . . . , λk) ∈ Ck we define the deformed preprojective algebra

Πλ =
CQd

c− λ
In this section we will give an outline of the determination of the dimension vectors
of simple Πλ-representations due to W. Crawley-Boevey [14].
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We know already that a dimension vector α = (a1, . . . , ak) can be the dimension
vector of a Πλ-representation only if λ.α = 0, so we will denote this subset of Nk
by Nkλ. With ∆+

λ we will denote the subset of positive roots α of Q lying in Nkλ and
with N∆+

λ the additive semigroup they generate.

If vi is a loop-free vertex of Q we have defined the reflexion Zk ri- Zk by

ri(α) = α− TQ(α, εi)

and we define its dual reflexion Ck si- Ck by the formula

si(λ)j = λj − TQ(εi, εj)λi

Clearly, we have si(λ).α = λ.ri(α). We say that a loop-free vertex vi in Q is
admissible for (λ, α) (or for λ) if λi 6= 0. We define an equivalence relation ∼
on pairs (λ, α) ∈ Ck × Zk induced by (λ, α) ∼ (si(λ), ri(α)) whenever vi is an
admissible vertex for (λ, α). We want to relate the representation theory of Πλ to
that of Πsi(λ).

Theorem 8.10. If vi is an admissible vertex for λ, then there is an equivalence
of categories

Πλ − rep
Ei- Πsi(λ) − rep

that acts as the reflection ri on the dimension vectors.

Proof. Because the definition of Πλ des not depend on the orientation of the
quiver Q we may assume that there are no arrows in Q having starting vertex vi.
Let V ∈ repα Πλ and consider V as a representation of the double quiver Qd.
Consider the vectorspace

V⊕ =
⊕

��������j��������i
aoo

Vj

where the sum is taken over all arrows a ∈ Qa terminating in vi. Let µa and πa be
the inclusion and projection between Vj and V⊕ and define maps Vi

µ- V⊕ and

V⊕
π- Vi by the formulas

π =
1
λi

∑
����������������i

aoo

Va ◦ πa and µ =
∑

����������������i
aoo

µa ◦ Va

then π ◦ µ = rr
Vi

whence µ ◦ π is an idempotent endomorphism on V⊕.
We define the representation V ′ of Qd by the following data : V ′j = Vj for j 6= i,

V ′a = Va and V ′a∗ = Va∗ whenever the terminating vertex of a is not vi. Further,

V ′i = Im rr− µ ◦ π = Ker π

and for an arrow ��������j��������i
aoo in Q we define{

V ′a = −λi(rr− µ ◦ π) ◦ µa : V ′j - V ′i
V ′a∗ = πa | V ′i : V ′i - V ′j

We claim that V ′ is a representation of Πsi(λ). Indeed, for a vertex vi we have∑
����������������i

aoo

V ′aV
′
a∗ =

∑
����������������i

aoo

− λi(rr− µ ◦ π) ◦ µa ◦ πa | V ′i = −λi(rr− µ ◦ π) | V ′i = −λirrV ′i
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and (siλ)i = −λi. Further, for an arrow ��������j��������i
aoo in Q then

V ′a∗V
′
a = πa ◦ (−λi(rr−µ◦π)◦µa) = −λiπa ◦µa+λiπa ◦µ◦π ◦µa = −λirrVj

+Va∗Va

but then, whenever j 6= i we have the equality∑
����������������j

aoo

V ′aV
′
a∗ −

∑
��������j�������� aoo
V ′a∗V

′
a =

∑
����������������j

aoo

VaVa∗ −
∑

��������j�������� aoo
Va∗Va − TQ(εj , εi)λir

r
Vj

because there are −TQ(εj , εi) arrows from vj to vi. Then, this reduces to

λj
rr
Vj − TQ(εj , εi)λir

r
Vi = (siλ)jr

r
Vj

The assignment V 7→ V ′ extends to a functor Ei and the exact sequence

0 - V ′i - V⊕
π- Vi - 0

shows that it acts as ri on the dimension vectors. Finally, the reflection also defines
a functor E′i : Πsi(λ) − rep - Πλ − rep and one shows that there is a natural
equivalence V - E′i(Ei(V )) finishing the proof. �

Recall from section 5.6 that for a fixed dimension vector α we have the complex
moment map

repα Q
d µα- Mα µα(V )i =

∑
��������i�������� aoo
VaVa∗ −

∑
����������������i

aoo

Va∗Va

and that we have the identification rep
α

Πλ = µ−1
α (λ). A geometric interpreta-

tion of the proof of the foregoing theorem tells us that the schemes µ−1
α (λ) and

µ−1
ri(α)(si(λ)) have the same number of irreducible components and that

dim µ−1
α (λ)− α.α = dim µ−1

ri(α)(si(λ))− ri(α).ri(α)

see [14, lemma 1.2] for full details. The set of λ-Schur roots Sλ was defined to be
the set of α ∈ Nk such that

pQ(α) ≥ pQ(β1) + . . .+ pQ(βr)

for all decompositions α = β1 + . . .+ βr with the βi ∈ ∆+
λ . If we demand a proper

inequality > for all decompositions we get a subset Σλ and call it the set of λ-simple
roots . Recall that Sλ and hence Σλ consists of Schur roots of Q.

As in the case of Kac’s theorem where one obtains the set of all roots from the
subsets Π = {εi | vi has no looops} and the fundamental set of roots FQ = {α ∈
Nk − 0 | TQ(α, εi) ≤ 0 and supp(α) is connected }, we can use the above reflection
functors Ei to reduce pairs (λ, α) under the equivalence relation ∼ to a particularly
nice form, see [14, Thm. 4.8].

Theorem 8.11. If α ∈ Σλ, then (λ, α) ∼ (λ′, α′) with{
α′ ∈ Π if α is a real root,
α′ ∈ FQ if α is an imaginary root.

Proposition 8.12. If (λ, α) is such that α ∈ Σλ, then rep
α

Πλ = µ−1
α (λ) is

irreducible and
dim µ−1

α (λ) = α.α− 1 + 2pQ(α)
In particular, µ−1

α (λ) is a complete intersection.
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Proof. If α ∈ Σλ, then we know by theorem 5.42 that

dim µ−1
α (λ) = α.α− χQ(α, α) + pQ(α) = α.α− 1 + 2pQ(α)

as pQ(α) = 1 − χQ(α, α). Moreover, this number is also the relative dimension of
the complex moment map µα. Therefore, µ−1

α (λ) is equidimensional and we only
have to prove that it is irreducible.

By theorem 8.11 and the geometric interpretation of the reflexion functor equiv-
alence we may reduce to the case where α is either a coordinate vector or lies in the
fundamental region. The former case being trivial, we assume α ∈ FQ. Consider
the projection map

µ−1
α (λ)

π- repα Q

then the image of π is described in theorem 5.40 and any non-empty fiber π−1(V ) '
(Ext1CQ(V, V ))∗ is irreducible. As in the proof of theorem 5.42 we can decompose
repα Q according to representation types in repα(τ). Because α ∈ Σλ we have that
dim π−1(repα(τ)) < d = α.α− 1 + 2pQ(α). for all τ 6= (1, α).

Because α is a Schur root, repα(1, α) is an open set and π−1(repα Q −
repα(1, α)) has dimension less than d, whence it is sufficient to prove that
π−1(repα(1, α)) is irreducible. Because it is an open subset of µ−1

α (λ) it is equidi-
mensional of dimension d and every fiber is irreducible. But, if X - Y is a
dominant map with Y irreducible and all fibers irreducible of the same dimension,
then X is irreducible, finishing the proof. �

The term λ-simple roots for Σλ is justified by the following result.

Theorem 8.13. Let (λ, α) be such that α ∈ Σλ. Then, rep
α

Πλ = µ−1
α (λ) is

a reduced and irreducible complete intersection of dimension d = α.α− 1 + 2pQ(α)
and the general element of µ−1

α (λ) is a simple representation of Πλ.
In particular, issα Πλ s an irreducible variety of dimension 2pQ(α).

Proof. We know that µ−1
|alpha(λ) is irreducible of dimension d. By the type

stratification, it is enough to prove the existence of one simple representation of
dimension vector α. The reflection functors being equivalences of categories, we
may assume that α is either in Π or in FQ. Clearly, for α a dimension vector, there
is a simple representation, whence assume α ∈ FQ.

Assume there is no simple α-dimensional representation of Πλ. Because
rep

α
Πλ is irreducible, there is a dimension vector β < α and an open subset

of representations containing a subrepresentation of dimension vector β. As the
latter condition is closed, every α-dimensional representation of Πλ contains a β-
dimensional subrepresentation.

Because α is a Schur root for Q, the general α-dimensional representation of Q
extends to Πλ and hence contains a subrepresentation of dimension vector β, that
is β ⊂

Q- α. Applying the same argument to the quiver Qo we also have β ⊂
Qo

- α.
If we now consider duals,this implies that the general α-dimensional represen-

tation of Q has a subrepresentation of dimension vector α − β. But then, by the
results of section 6.2 we have ext(β, α − β) = 0 = ext(α − β, β) whence a general
α-dimensional representation of Q decomposes as a direct sum of representations
of dimension β and α − β, contradicting the fact that α is a Schur root. Hence,
there are α-dimensional simple representations of Πλ.
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Let V be a simple representation in µ−1
α (λ), then computing differentials it

follows that µα is smooth at V , whence µ−1
α (λ) is generically reduced. But then,

being a complete intersection, it is Cohen-Macaulay and therefore reduced. �

This finishes the proof of the easy part of the characterization of simple roots
for Πλ due to W. Crawley-Boevey, [14].

Theorem 8.14. The following are equivalent

(1) Πλ has α-dimensional simple representations.
(2) α ∈ Σλ.

The proof of [14] involves a lengthy case-by-case study and awaits a more
transparent argument, perhaps along the lines of hyper-Kähler reduction as in
section 8.5.

If α ∈ Σλ, then Πλ(α) is an order in a central simple algebra over the function-
field of issα Πλ.

8.4. Hilbert schemes.

In this section we will illustrate some of the foregoing results in the special case
of the quiver Q coming from the study of linear dynamical systems, and its double
quiver Qd

(/).*-+, (/).*-+, bee
a // and (/).*-+, (/).*-+,

b

qq

b∗

QQ

a

""

a∗

bb

In order to avoid heavy use of stars, we denote as in the previous chapters, a = u,
a∗ = v, b = x and b∗ = y, so the path algebra of the double Qd

(/).*-+, (/).*-+,
x

qq

y

QQ

u

""

v

bb

is the algebra M considered before. We fix the dimension vector α = (1, n) and the
character θ = (−n, 1) and recall from section 8.2 that the moduli space Mss

α (Q, θ) '
Cn.

We say that u is a cyclic vector for the matrix-couple (X,Y ) ∈ Mn(C) ⊕
Mn(C) if there is no proper subspace of Cn containing u which is stable under left
multiplication by X and Y .

Lemma 8.15. A representation V = (X,Y, u, v) ∈ repα M is θ-semistable if and
only if u is a cyclic vector for (X,Y ). Moreover, in this case V is even θ-stable.

Proof. If there is a proper subspace of Cn of dimension k containing u and
stable under the multiplication with X and Y then V contains a subrepresentation
of dimension β = (1, k) and θ(β) < 0. If u is cyclic for (X,Y ) then the only proper
subrepresentations of V are of dimension (0, k) for some k, but for those θ(β) > 0
whence V is θ-stable. �
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The complex moment map µ = µα for this situation is

repα Q
d = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗ µ - C⊕Mn(C)

(X,Y, u, v) 7→ (−v.u, [Y,X] + u.v)

Observe that the image is contained in M0
α(C) = {(c,M) | c + tr(M) = 0}. The

differential dµ in the point (X,Y, u, v) is equal to

dµ(X,Y,u,v) (A,B, c, d) = (−v.c− d.u, [B,X] + [Y,A] + u.d+ c.v).

Lemma 8.16. The second component of the differential dµ is surjective in
(X,Y, u, v) if u is a cyclic vector for (X,Y ).

Proof. Consider the nondegenerate symmetric bilinear form tr(MN) on
Mn(C) With respect to this inproduct on Mn(C) the space orthogonal to the image
of (the second component of) dµ(X,Y,u,v) is equal to

{M ∈Mn(C) | tr([B,X]M + [Y,A]M + u.dM + c.vM) = 0,∀(A,B, c, d)}

Because the trace does not change under cyclic permutations and is nondegenerate
we see that this space is equal to

{M ∈Mn(C) | [M,X] = 0 [Y,M ] = 0 Mu = 0 and vM = 0}

But then, the kernel ker M is a subspace of Cn containing u and stable under left
multiplication by X and Y . By the cyclicity assumption this implies that ker M =
Cn or equivalently that M = 0. As dµ⊥(X,Y,u,v) = 0 and tr is nondegenerate, this
implies that the differential is surjective. �

Let repssα Qd = repsα Qd = repsα M be the open variety of θ-(semi)stable
representations.

Proposition 8.17. For every matrix (c,M) ∈M0
α(C) in the image of the map

repsα M µ- M0
α(C)

the inverse image µ−1(M) is a submanifold of repα M of dimension n2 + 2n.

This is a special case of theorem 5.44. Observe that for the quiver Q we have
pQ(m,n) = mn+ 1−m2. As any decomposition of α = (1, n) is of the form

(1, n) = (1, a1) + (0, a2) + . . .+ (0, ak) with
∑
i

ai = n

we have that pQ(α) = n ≥
∑
i pQ(βi) = a1 + 1 + . . . + 1 and equality only occurs

for (1, 1) + (0, 1) + . . .+ (0, 1). Therefore α ∈ S0.
We now turn to the description of the moduli space Mss

α (Qd, θ). In this par-
ticular case we clearly have.

Lemma 8.18. For α = (1, n) and θ = (−n, 1) there is a natural one-to-one
correspondence between

(1) GL(α)-orbits in repsα M, and
(2) GLn-orbits in repsα M under the induced action.
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For the investigation of the GLn(C)-orbits on repsα M we introduce a combi-
natorial gadget : the Hilbert n-stair. This is the lower triangular part of a square
n× n array of boxes

1

n

1 n

filled with go-stones according to the following two rules :
• each row contains exactly one stone, and
• each column contains at most one stone of each color.

For example, the set of all possible Hilbert 3-stairs is given below.ue u u u e eu e e e u
To every Hilbert stair σ we will associate a sequence of monomials W (σ) in the free
noncommutative algebra C〈x, y〉, that is W (σ) is a sequence of words in x and y.

At the top of the stairs we place the identity element 1. Then, we descend the
stairs according to the following rule.

• Every go-stone has a top word T which we may assume we have con-
structed before and a side word S and they are related as indicated below

T

S

1

T

xT

1

•

T

yT

1

◦

For example, for the Hilbert 3-stairs we have the following sequences of non-
commutative words

ue
1

x

y

u u
1

x

x2

u e
1

x

yx

eu
1

y

x

e e
1

y

y2

e u
1

y

xy

We will evaluate a Hilbert n-stair σ with associated sequence of non-commutative
words W (σ) = {1, w2(x, y), . . . , wn(x, y)} on

repα M = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗

For a quadruple (X,Y, u, v) we replace every occurrence of x in the word wi(x, y) by
X and every occurrence of y by Y to obtain an n×nmatrix wi = wi(X,Y ) ∈Mn(C)
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and by left multiplication on u a column vector wi.v. The evaluation of σ on
(X,Y, u, v) is the determinant of the n× n matrix

σ(X,Y, u, v) = det u w2.u w3.u wn.u. . .

For a fixed Hilbert n-stair σ we denote with rep(σ) the subset of quadruples
(X,Y, u, v) in repα M such that the evaluation σ(v,X, Y ) 6= 0.

Theorem 8.19. For every Hilbert n-stair, rep (σ) 6= ∅

Proof. Let u be the basic column vector

e1 =


1
0
...
0


Let every black stone in the Hilbert stair σ fix a column of X by the rule

i

j

1

n

1 n

•

X =

1i

j

0

0

.

.

.

0

0

.

.

.

That is, one replaces every black stone in σ by 1 at the same spot in X and fills
the remaining spots in the same column by zeroes. The same rule applies to Y for
white stones. We say that such a quadruple (X,Y, u, v) is in σ-standard form.

With these conventions one easily verifies by induction that

wi(X,Y )e1 = ei for all 2 ≤ i ≤ n.

Hence, filling up the remaining spots in X and Y arbitrarily one has that
σ(X,Y, u, v) 6= 0 proving the claim. �

Hence, rep (σ) is an open subset of repα M (and even of repsα M) for ev-
ery Hilbert n-stair σ. Further, for every word (monomial) w(x, y) and every
g ∈ GLn(C) we have that

w(gXg−1, gY g−1)gv = gw(X,Y )v

and therefore the open sets rep (σ) are stable under the GLn(C)-action on repα M.
We will give representatives of the orbits in rep (σ).

Let Wn = {1, x, . . . , xn, xy, . . . , yn} be the set of all words in the non-
commuting variables x and y of length ≤ n, ordered lexicographically.

For every quadruple (X,Y, u, v) ∈ repα M consider the n×m matrix

ψ(X,Y, u, v) =
[
u Xu X2u . . . Y nu

]
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where m = 2n+1 − 1 and the j-th column is the column vector w(X,Y )v with
w(x, y) the j-th word in Wn.

Hence, (X,Y, u, v) ∈ rep (σ) if and only if the n × n minor of ψ(X,Y, u, v)
determined by the word-sequence {1, w2, . . . , wn} of σ is invertible. Moreover, as

ψ(gXg−1, gY g−1, gu, vg−1) = gψ(v,X, Y )

we deduce that the GLn(C)-orbit of (X,Y, u, v) ∈ repα M contains a unique quadru-
ple (X1, Y1, u1, v1) such that the corresponding minor of ψ(X1, Y1, u1, v1) = rr

n.
Hence, each GLn(C)-orbit in rep (σ) contains a unique representant in σ-

standard form. Therefore,

Proposition 8.20. The action of GLn(C) on rep (σ) is free and the orbit
space

rep (σ)/GLn(C)
is an affine space of dimension n2 + 2n.

Proof. The dimension is equal to the number of non-forced entries in X, Y
and v. As we fixed n− 1 columns in X or Y this dimension is equal to

k = 2n2 − (n− 1)n+ n = n2 + 2n.

The argument above shows that every GLn(C)-orbit contains a unique quadruple
in σ-standard form so the orbit space is an affine space. �

Theorem 8.21. For α = (1, n) and θ = (−n, 1), the moduli space

Mss
α (Qd, θ) = Mss

α (M, θ)

is a complex manifold of dimension n2 + 2n and is covered by the affine spaces
rep (σ).

Proof. Recall that repsα M is the open submanifold consisting of quadruples
(x, Y, u, v) such that u is a cyclic vector of (X,Y ) or equivalently such that

C〈X,Y 〉u = Cn

where C〈X,Y 〉 is the not necessarily commutative subalgebra of Mn(C) generated
by the matrices X and Y .

Hence, clearly rep (σ) ⊂ repn M for any Hilbert n-stair σ. Conversely, we
claim that a quadruple (X,Y, u, v) ∈ repsα M belongs to at least one of the open
subsets rep (σ).

Indeed, either Xu /∈ Cu or Y u /∈ Cu as otherwise the subspace W = Cu
would contradict the cyclicity assumption. Fill the top box of the stairs with the
corresponding stone and define the 2-dimensional subspace V2 = Cu1 + Cu2 where
u1 = u and u2 = w2(X,Y )u with w2 the corresponding word (either x or y).

Assume by induction we have been able to fill the first i rows of the stairs
with stones leading to the sequence of words {1, w2(x, y), . . . , wi(x, y)} such that
the subspace Vi = Cu1 + . . .+ Cui with ui = wi(X,Y )v has dimension i.

Then, eitherXuj /∈ Vi for some j or Y uj /∈ Vi (if not, Vi would contradict cyclic-
ity). Then, fill the j-th box in the i+ 1-th row of the stairs with the corresponding
stone. Then, the top i+1 rows of the stairs form a Hilbert i+1-stair as there can be
no stone of the same color lying in the same column. Define wi+1(x, y) = xwi(x, y)
(or ywi(x, y)) and ui+1 = wi+1(X,Y )u. Then, Vi+1 = Cu1 + . . . + Cui+1 has
dimension i+ 1.
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Continuing we end up with a Hilbert n-stair σ such that (X,Y, u, v) ∈ rep (σ).
This concludes the proof. �

Example 8.22. The moduli space Mss
α (Qd, θ) when n = 3.

Representatives for the GL3(C)-orbits in rep (σ) are given by the following quadruples for σ
a Hilbert 3-stair :td t t t d dt d d d t
X

240 a b
1 c d

0 e f

35 240 0 a
1 0 b

0 1 c

35 240 a b

1 c d
0 e f

35 240 a b

0 c d
1 e f

35 24a b c

d e f
g h i

35 24a 0 b

c 0 d
e 1 f

35

Y

240 g h

0 i j

1 k l

35 24d e f

g h i

j k l

35 24g 0 h

i 0 j

k 1 l

35 240 g h

1 i j

0 k l

35 240 0 j

1 0 k

0 1 l

35 240 g h

1 i j

0 k l

35

u

241

0
0

35 241

0
0

35 241

0
0

35 241

0
0

35 241

0
0

35 241

0
0

35
v

ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜
We now turn to the deformed preprojective algebras. Let λ = (−nλ, λrr

n) ∈
M0
α(C) for λ ∈ C. Then,

Πλ =
M

(v.u+ λv1, [Y,X] + u.v − λv2)
then if we denote by Mss

α (Πλ, θ) the moduli space of θ-semistable representations
of Πλ, then we have the following situation

µ−1(λ) ∩ repsα M ⊂ - repsα M

Mss
α (Πλ, θ)

??
⊂ - Mss

α (M, θ)

??

and from the theorem above we obtain :

Theorem 8.23. For a λ ∈ M0
α(C), the orbit space of θ-semistable representa-

tions of the deformed preprojective algebra

Mss
α (Πλ, θ)

is a submanifold of Mss
α (M, θ) of dimension 2n.

We will identify the special case of the preprojective algebra (that is λ = 0 with
the Hilbert scheme of n points in the plane .

Consider a codimension n ideal i / C[x, y] and fix a basis {v1, . . . , vn} of the
quotient space

Vi =
C[x, y]

i
= Cv1 + . . .+ Cvn.

Multiplication by x on C[x, y] induces a linear operator on the quotient Vi and hence
determines a matrix Xi ∈ Mn(C) with respect to the chosen basis {v1, . . . , vn}.
Similarly, multiplication by y determines a matrix Yi ∈Mn(C).
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Moreover, the image of the unit element 1 ∈ C[x, y] in Vi determines with
respect to the basis {v1, . . . , vn} a column vector u ∈ Cn = Vi. Clearly, this vector
and matrices satisfy :

[Xi, Yi] = 0 and C[Xi, Yi]u = Cn.

Here, C[Xi, Yi] is the n-dimensional subalgebra of Mn(C) generated by the two
matrices Xi and Yi. In particular, u is a cyclic vector for the matrix-couple (X,Y ).

Conversely, if (X,Y, u) ∈ Mn(C) ⊕ Mn(C) ⊕ Cn is a cyclic triple such that
[X,Y ] = 0, then C〈X,Y 〉 = C[X,Y ] is an n-dimensional commutative subalgebra
of Mn(C), then the kernel of the natural epimorphism

C[x, y] -- C[X,Y ] x 7→ X y 7→ Y

is a codimension n ideal i of C[x, y].
However, there is some redundancy in the assignment i - (Xi, Yi, ui) as it

depends on the choice of basis of Vi. If we choose a different basis {v′1, . . . , v′n} with
basechange matrix g ∈ GLn(C), then the corresponding triple is

(X ′i , Y
′
i , u
′
i) = (g.Xi.g

−1, g.Yi.g
−1, gui)

The above discussion shows that there is a one-to-one correspondence between
• codimension n ideals i of C[x, y], and
• GLn(C)-orbits of cyclic triples (X,Y, u) in Mn(C)⊕Mn(C)⊕Cn such that

[X,Y ] = 0.

Example 8.24. The Hilbert scheme Hilb2.
Consider a triple (X,Y, u) ∈M2(C)⊕M2(C)⊕C2 and assume that either X or Y has distinct

eigenvalues (type a). As

[

»
ν1 0
0 ν2

–
,

»
a b
c d

–
] =

»
0 (ν1 − ν2)b

(ν2 − ν1)c 0

–
we have a representant in the orbit of the form

(

»
λ1 0

0 λ2

–
,

»
µ1 0

0 µ2

–
,

»
u1

u2

–
)

where cyclicity of the column vector implies that u1u2 6= 0.

The stabilizer subgroup of the matrix-pair is the group of diagonal matrices C∗ ×
C∗ ⊂ - GL2(C), hence the orbit has a unique representant of the form

(

»
λ1 0

0 λ2

–
,

»
µ1 0

0 µ2

–
,

»
1

1

–
)

The corresponding ideal i / C[x, y] is then

i = {f(x, y) ∈ C[x, y] | f(λ1, µ1) = 0 = f(λ2, µ2)}

hence these orbits correspond to sets of two distinct points in C2.

The situation is slightly more complicated when X and Y have only one eigenvalue (type b).
If (X,Y, u) is a cyclic commuting triple, then either X or Y is not diagonalizable. But then, as

[

»
ν 1
0 ν

–
,

»
a b
c d

–
] =

»
c d− a
0 c

–
we have a representant in the orbit of the form

(

»
λ α
0 λ

–
,

»
µ β
0 µ

–
,

»
u1

u2

–
)

with [α : β] ∈ P1 and u2 6= 0. The stabilizer of the matrixpair is the subgroup

{
»
c d

0 c

–
| c 6= 0} ⊂ - GL2(C)
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and hence we have a unique representant of the form

(

»
λ α

0 λ

–
,

»
µ β

0 µ

–
,

»
0

1

–
)

The corresponding ideal i / C[x, y] is

i = {f(x, y) ∈ C[x, y] | f(λ, µ) = 0 and α
∂f

∂x
(λ, µ) + β

∂f

∂y
(λ, µ) = 0}

as one proves by verification on monomials because»
λ α

0 λ

–k »
µ β

0 µ

–l »
0

1

–
=

»
kαλk−1µl + lβλkµl−1

λkµl

–
Therefore, i corresponds to the set of two points at (λ, µ) ∈ C2 infinitesimally attached to each

other in the direction α ∂
∂x

+ β ∂
∂y

. For each point in C2 there is a P1 family of such fat points.

Thus, points of Hilb2 correspond to either of the following two situations :

type a

C2

•

•

p

p’

type b

C2

p
•��

The Hilbert-Chow map Hilb2
π- S2 C2 (where S2 C2 is the symmetric power of C2, that is

S2 = Z/2Z orbits of couples of points from C2) sends a point of type a to the formal sum [p]+ [p′]
and a point of type b to 2[p]. Over the complement of (the image of) the diagonal, this map is a

one-to-one correspondence.

However, over points on the diagonal the fibers are P1 corresponding to the directions in

which two points can approach each other in C2. As a matter of fact, the symmetric power S2 C2

has singularities and the Hilbert-Chow map Hilb2
π-- S2 C2 is a resolution of singularities.

Theorem 8.25. Let repα M µ- M0
α(C) be the complex moment map, then

Hilbn 'Mss
α (Π0, θ)

and is therefore a complex manifold of dimension 2n.

Proof. We identify the triples (X,Y, u) ∈Mn(C)⊕Mn(C)⊕ Cn such that u
is a cyclic vector of (X,Y ) and [X,Y ] = 0 with the subspace

{(X,Y, u, 0) | [X,Y ] = 0 and u is cyclic } ⊂ - repsα M

which is clearly contained in µ−1(0). To prove the converse inclusion assume that
(X,Y, u, v) is a cyclic quadruple such that

[X,Y ] + uv = 0.

Let m(x, y) be any word in the noncommuting variables x and y. We claim that

v.m(X,Y ).u = 0.

We will prove this by induction on the length l(m) of the word m(x, y). When
l(m) = 0 then l(x, y) = 1 and we have

v.l(X,Y ).u = v.u = tr(u.v) = tr([X,Y ]) = 0.
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Assume we proved the claim for all words of length < l and take a word of the form
m(x, y) = m1(x, y)yxm2(x, y) with l(m1) + l(m2) + 2 = l. Then, we have

wm(X,Y ) = wm1(X,Y )Y Xm2(X,Y )
= wm1(X,Y )([Y,X] +XY )m2(X,Y )
= (wm1(X,Y )v).wm2(X,Y ) + wm1(X,Y )XYm2(X,Y )
= wm1(X,Y )XYm2(X,Y )

where we used the induction hypotheses in the last equality (the bracketed term
vanishes).

Hence we can reorder the terms in m(x, y) if necessary and have that
wm(X,Y ) = wX l1Y l2 with l1 + l2 = l and l1 the number of occurrences of x
in m(x, y). Hence, we have to prove the claim for X l1Y l2 .

wX l1Y l2v = tr(X l1Y l2vw)
= −tr(X l1Y l2 [X,Y ])
= −tr([X l1Y l2 , X]Y )
= −tr(X l1 [Y l2 , X]Y )

= −
∑l2−1
i=0 tr(X l1Y i[Y,X]Y l2−i)

= −
∑l2−1
i=0 tr(Y l2−iX l1Y i[Y,X]

= −
∑l2−1
i=0 tr(Y l2−iX l1Y iv.w

= −
∑l2−1
i=0 wY m2−iX l1Y iv

But we have seen that wY l2−iX l1Y i = wX l1Y l2 hence the above implies that
wX l1Y l2v = −l2wX l1Y l2v. But then wX l1Y l2v = 0, proving the claim.

Consequently, w.C〈X,Y 〉.v = 0 and by the cyclicity condition we have w.Cn =
0 hence w = 0. Finally, as v.w + [X,Y ] = 0 this implies that [X,Y ] = 0 and we
can identify the fiber µ−1(0) with the indicated subspace. From this the result
follows. �

We can use the affine covering of Mss
α (M, θ) by Hilbert stairs, to cover the

Hilbert scheme Hilbn by the intersections Hilb(σ) = rep(σ) ∩Hilbn.

Example 8.26. The Hilbert scheme Hilb2.

Consider Hilb2 (
t

). Because

[

»
0 a
1 b

–
,

»
c d
e f

–
] =

»
ae− d af − ac− bd

c+ be− f d− ae

–
this subset can be identified with C4 using the equalities

d = ar and f = c+ be.

Similarly, Hilb2 (
d

) ' C4.

Example 8.27. The Hilbert scheme Hilb3.

Up to change of colors there are three 3-stairs to considertd t t t d
.

We claim that

Hilb3 (

td
) ' C6.
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For consider the commutator

[

240 a b

1 c d
0 e f

35 ,
240 g h

0 i j
1 k k

35 ] =

24b− g ai+ bk − cg − eh aj + bl− dg − fh

d− i g + dk − ej h+ cj + dl− di− fj
f − k −a− ck − el + ei+ fk −b− dk + ej

35
Taking the Groebner basis of these relations one finds the following relations8>>>>>>>><>>>>>>>>:

f = k

g = ej − ik

d = i

h = i2 − cj + jk − il

b = g

a = ei− ck + k2 − el

from which the claim follows. In a similar manner one proves that

Hilb3 (

t t
) ' C6.

However, the situation for

Hilb3 (

t d
)

is more complicated.

Theorem 8.28. The Hilbert scheme Hilbn of n points in C2 is a complex
connected manifold of dimension 2n.

Proof. The symmetric power Sn C1 parametrizes sets of n-points on the line
C1 and can be identified with Cn. Consider the map

Hilbn
π-- Sn C1

defined by mapping a cyclic triple (X,Y, u) with [X,Y ] = 0 in the orbit correspond-
ing to the point of Hilbn to the set {λ1, . . . , λn} of eigenvalues of X. Observe that
this map does not depend on the point chosen in the orbit.

Let ∆ be the big diagonal in Sn C1, that is, Sn C1 − ∆ is the space of all
sets of n distinct points from C1. Clearly, Sn C1 −∆ is a connected n-dimensional
manifold. We claim that

π−1(Sn C1 −∆) ' (Sn C1 −∆)× Cn

and hence is connected.
Indeed, take a matrix X with n distinct eigenvalues {λ1, . . . , λn}. We may

diagonalize X. But then, as

[

λ1

. . .
λn

 ,
y11 . . . y1n

...
...

yn1 . . . ynn

] =

(λ1 − λ1)y11 . . . (λ1 − λn)y1n
...

...
(λn − λ1)yn1 . . . (λn − λn)ynn


we see that also Y must be a diagonal matrix with entries (µ1, . . . , µn) ∈ Cn where
µi = yii. But then the cyclicity condition implies that all coordinates of v must be
non-zero.

Now, the stabilizer subgroup of the commuting (diagonal) matrix-pair (X,Y )
is the maximal torus Tn = C∗ × . . . × C∗ of diagonal invertible n × n matrices.
Using its action we may assume that all coordinates of v are equal to 1. That is,
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the points in π−1({λ1, . . . , λn}) with λi 6= λj have unique (up to permutation as
before) representatives of the form

(


λ1

λ2

. . .
λn

 ,

µ1

µ2

. . .
µn

 ,


1
1
...
1

)

that is π−1({λ1, . . . , λn} can be identified with Cn, proving the claim.
Next, we claim that all the fibers of π have dimension at most n. Let

{λ1, . . . , λn} ∈ Sn C1 then there are only finitely many X in Jordan normalform
with eigenvalues {λ1, . . . , λn}. Fix such an X, then the subset T (X) of cyclic triples
(X,Y, u) with [X,Y ] = 0 has dimension at most n+ dim C(X) where C(X) is the
centralizer of X in Mn(C), that is,

C(X) = {Y ∈Mn(C) | XY = Y X}.

The stabilizer subgroup Stab(X) = {g ∈ GLn(C) | gXg−1 = X} is an open subset
of the vectorspace C(X) and acts freely on the subset T (X) because the action of
GLn(C) on µ−1(0) ∩ repsα M has trivial stabilizers.

But then, the orbitspace for the Stab(X)-action on T (X) has dimension at
most

n+ dim C(X)− dim Stab(X) = n.

As we only have to consider finitely many X this proves the claim. The diagonal ∆
has dimension n−1 in Sn C1 and hence by the foregoing we know that the dimension
of π−1(∆) is at most 2n−1. Let H be the connected component of Hilbn containing
the connected subset π−1(Sn C1−∆). If π−1(∆) were not entirely contained in H,
then Hilbn would have a component of dimension less than 2n, which we proved
not to be the case. This finishes the proof. �

We can give a representation theoretic interpretation of the resolution of sin-
gularities Hilbert-Chow morphism

Hilbn
π-- Sn C2

Σ0 = {(1, 0), (0, 1)}, that is the only simple Π0-representations are one-dimensional.
Any semi-simple representation of Π0 of dimension vector α = (1, n) therefore de-
composes as T0 ⊕ S⊕e11 ⊕ . . . ⊕ S⊕er

r with T0 the unique simple (1, 0)-dimensional
representation and the Si in the two-dimensional family of (0, 1)-simple represen-
tations of Π0 (corresponding to couples (λi, µi) ∈ C2). Therefore we have the
projective bundle morphism

Hilbn = Mss
α (Π0, θ)

π′- issα Π0 = Sn C2

where the mapping sends a point of Hilbn determined by a cyclic triple (X,Y, u)
to the n-tuple of eigenvalues (λi, µi) of X and Y .

8.5. Hyper Kähler structure.

Again, Q is a quiver on k vertices and Qd its double. We fix a dimension
vector α = (a1, . . . , ak) ∈ Nk and a character θ = (t1, . . . , tk) ∈ Zk and a weight
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λ = (λ1, . . . , λk) ∈ Ck such that the numerical conditions

θ(α) =
k∑
i=1

tiai = 0 and λ(α) =
n∑
i=1

λiai = 0

are satisfied. The first is required to have θ-semistable representations, the second
for λ to lie in the image of the complex moment map

repα Q
d µC- M0

α(C) V 7→
∑

���������������� aoo
a∈Qa

[Va, Va∗ ]

where a∗ is the arrow in Qda corresponding to a ∈ Qa (that is with the opposite
direction).

Recall that the quaternion algebra H is the 4-dimensional division algebra over
R defined by

H = R.1⊕ R.i⊕ R.j ⊕ R.k i2 = j2 = k2 = −1 k = ij = −ji

Definition 8.29. A C∞ (real) manifold M is said to be a hyper-Kähler man-
ifold if H acts on H by diffeomorphisms.

Lemma 8.30. For any quiver Q, the representation space repα Qd is a hyper-
Kähler manifold.

Proof. We have to specify the actions. They are defined as follows, for V ∈
repα Q

d for all arrows b ∈ Qda and all arrows a ∈ Qa

(i.V )b = iVb

(j.V )a = −V †a∗ (j.V )a∗ = V †a

(k.V )a = −iV †a∗ (k.V )a∗ = iV †a

where this time we denote the Hermitian adjoint of a matrixM byM† to distinguish
it from the star-operation on the arrows of Qd. A calculation shows that these
operations satisfy the required relations. �

In section 8.1 we introduced the real moment map for quiver representations.
If we apply this to the double quiver Qd we can take

repα Q
d µR- Lie U(α) V 7→

∑
���������������� boo

b∈Qd
a

i

2
[Vb, V

†
b ]
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We will use the action by non-zero elements of H to obtain C∞-diffeomorphisms
between certain subsets of repα Qd. Let h = i−k√

2
then we have

µC(h.V ) =
1
2

∑
a∈Qa

[iVa + iV †a∗ , iVa∗ − iV †a ]

=
1
2

∑
a∈Qa

( −[Va, Va∗ ] + [Va, V †a ]− [V †a∗ , Va∗ ] + [V †a∗ , V
†
a ] )

=
1
2

∑
a∈Qa

( [Va, Va∗ ]† − [Va, Va∗ ] ) +
1
2

∑
a∈Qa

( [Va, V †a ] + [Va∗ , V
†
a∗ ] )

=
1
2
(µC(V )† − µC(V ))− iµR(V )

and

µR(h.V ) =
i

4
(

∑
a∈Qa

[iVa + iV †a∗ ,−iV †a − iVa∗ ] +
∑
a∈Qa

[iVa∗ − iV †a ,−iV
†
a∗ + iVa] )

=
i

4

∑
a∈Qa

( [Va, V †a ] + [Va, Va∗ ] + [V †a∗ , V
†
a ] + [V †a∗ , Va∗ ]

+ [Va∗ , V
†
a∗ ]− [Va∗ , Va]− [V †a , V

†
a∗ ] + [V †a , Va] )

=
i

4
(2µC(V ) + 2µC(V )†)

In particular we have

Proposition 8.31. If λ ∈ Rk, then we have a homeomorphism between the
real varieties

µ−1
C (λrr

α) ∩ µ−1
R (0)

h.- µ−1
C (0) ∩ µ−1

R (iλrr
α)

Moreover, the hyper-Kähler structure commutes with the base-change action of
U(α), whence we have a natural one-to-one correspondence between the quotient
spaces

(µ−1
C (λrr

α) ∩ µ−1
R (0))/U(α)

h.- (µ−1
C (0) ∩ µ−1

R (iλrr
α))/U(α)

By the results of section 8.1 we can identify both sides. To begin, by definition
of the complex moment map µC we have that

µ−1
C (0) = rep

α
Π0 and µ−1

C (λrr
α) = rep

α
Πλ

Moreover, applying theorem 8.5 to the double quiver Qd we have

issα Q
d ' µ−1

R (0)/U(α) and Mss
α (Qd, λ) ' µ−1

R (iλrr
α)/U(α)

when λ ∈ Zk. This concludes the proof of

Theorem 8.32. For a character θ = (t1, . . . , tk) ∈ Zk such that θ(α) = 0, there
is a natural one-to-one correspondence between

issα Πθ
h.- Mss

α (Π0, θ)

which is an homeomorphism in the (induced) real topology.
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Note however that this bijection does not respect the complex structures of
these varieties. This is already clear from the fact that issα Πθ is an affine complex
variety and Mss

α (Π0, θ) is a projective bundle over issα Π0.
If V ∈ repα Qd belongs to µ−1

R (0) we know that V is a semisimple representa-
tion, that is,

V = S⊕e11 ⊕ . . .⊕ S⊕er
r

with the Si simple representations of dimension vector βi. Further, if W ∈
rep−1

α (iθrr
α), then W is a direct sum of θ-stable representations, that is,

W = T⊕f11 ⊕ . . .⊕ T⊕fs
s

with the Ti θ-stable representations of dimension vector γi. By the explicit form of
the map, we have that if W = h.V that r = s, ei = fi and βi = γi. That is,

Proposition 8.33. Let θ be a character such that θ(α) = 0, then the deformed
preprojective algebra Πθ has semi-simple representations of dimension vector α of
representation type τ = (e1, β1; . . . ; er, βr) if and only if the preprojective algebra
Π0 has θ-stable representations of dimension vectors βi for all 1 ≤ i ≤ r.

In particular, Πθ has a simple representation of dimension vector α if and only
if Π0 has a θ-stable representation of dimension vector α.

The variety Mss
α (Π0, θ) is locally controlled by noncommutative algebras. In-

deed, as in the case of moduli spaces of θ-semistable quiver-representations, it is
locally isomorphic to issα (Π0)Σ for some universal localization of Π0. We can
determine the α-smooth locus of the corresponding sheaf of Cayley-Hamilton alge-
bras.

Proposition 8.34. Let α ∈ Σθ, then the α-smooth locus of Mss
α (Π0, θ) is the

open subvariety Ms
α(Π0, θ) of θ-stable representations of Π0.

In particular, if the sheaf of Cayley-Hamilton algebras over Mss
α (Π0, θ) is a

sheaf of α-smooth algebras if and only if α is a minimal dimension vector in Σθ.

Proof. As α ∈ Σθ we know that issα Πθ has dimension 2pQ(α) = 2−TQ(α, α).
By the hyper-Kähler correspondence so is the dimension of Mss

α (Π0, θ), whence the
open subset of µ−1

C (0) consisting of θ-semistable representations has dimension

α.α− 1 + 2pQ(α)

as there are θ-stable representations in it. Take a GL(α)-closed orbit O(V ) in this
open set. That is, V is the direct sum of θ-stable subrepresentations

V = S⊕e11 ⊕ . . .⊕ S⊕er
r

with Si a θ-stable representation of Π0 of dimension vector βi occurring in V with
multiplicity ei whence α =

∑
i eiβi.

As all Si are Π0-representations we can determine the local quiver QV by the
knowledge of all Ext1Π0

(Si, Sj) from proposition 5.45

Ext1Π0
(Si, Sj) = 2δij − TQ(βi, βj)

But then the dimension of the normal space to the orbit is

dim Ext1Π0
(V, V ) = 2

r∑
i=1

ei − TQ(α, α)
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whence the étale local structure in an n-smooth point is of the form GL(α) ×G
L(τ)Ext1(V, V ) where τ = (e1, . . . , er) and is therefore of dimension

α.α+
2∑
i=1

e2i − TQ(α, α)

This number is equal to the dimension of the subvariety of θ-semistable represen-
tations of Π0 which has dimension α.α− 1 + 2− TQ(α, α) if and only if r = 1 and
e1 = 1, that is if V is θ-stable. �

Even in points of Mss
α (Π0, θ) which are not in the α-smooth locus we can use

the local quiver to deduce combinatorial properties of the set of dimension vectors
Σθ of simple representations of Πθ.

Proposition 8.35. Let α, β ∈ Σθ, then
(1) If T (α, β) ≤ −2 then α+ β ∈ Σθ,
(2) If T (α, β) ≥ −1 then α+ β /∈ Σθ.

Proof. The property that α and β are Schur roots of Q such that TQ(α, β) ≤
−2 ensures that γ = α+β is a Schur root of Q and hence that µ−1

C (θrr
γ has dimen-

sion γ.γ − 1 + 2pQ(γ), whence so is the subvariety of θ-semistable γ-dimensional
representations of Π0. We have to prove that Π0 has a θ-stable γ-dimensional
representation.

Let V = S ⊕ T with S resp. T a θ-stable representation of Π0 of dimension
vector α resp. β (they exist by the hyper-Kähler correspondence). But then the
local quiver QV has the following form

18?9>:=;< 18?9>:=;<
−TQ(α, β)

((

−TQ(α, β)

hh2pQ(α) 77 2pQ(β)gg

and by a calculation similar to the one in the foregoing proof we see that the image
of the slice morphism in the space GL(γ) ×C∗×C∗ rep(1,1) QV has codimension 1.
However, as TQ(α, β) ≤ −2 there are at least 3 algebraically independent new
invariants coming from the non-loop cycles in QV , so they cannot all vanish on the
image. This means that (1, α; 1, β) cannot be the generic type for θ-semistables of
dimension γ, so by the stratification result, there must exist θ-stables of dimension
γ.

For the second assertion, assume that γ = α + β is the dimension vector of a
simple representation of Πθ, then issγ Πθ has dimension 2pQ(γ) = 2−TQ(α, β, α+
β) = 2pQ(α) + 2pQ(β) whence so is the dimension of Mss

γ (Π0, θ). By assumption
(1, α; 1, β) cannot be the generic type for θ-semistable representations, but the
stratum consisting of direct sums S⊕T with S ∈Ms

α(Π0, θ) and T ∈Ms
β(Q, θ) has

the same dimension as the total space, a contradiction. �

The first part of the foregoing proof can also be used to show that usually the
moduli spaces Mss

α (Π), θ) and the quotient varieties issα Πθ have lots of singulari-
ties.

Proposition 8.36. Let α ∈ |sigmaθ such that α = β+γ with β, γ ∈ Σθ. Then,

Mss
α (Π0, θ) and issα Πθ

is singular along the stratum of points of type (1, β; 1, γ).
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Proof. The quotient space of the local quiver situation (as in the foregoing
proof) contains singularities at the trivial representations which remain singularities
in any codimension one subvariety. �

Still, if α is a minimal dimension vector in Σθ, the varieties Mss
α (Π0, θ) and

issα Πθ are smooth. In fact, we will show in section 8.7 that the affine smooth
variety issα Πθ is in fact a coadjoint orbit.

8.6. Calogero particles.

The Calogero system is a classical particle system of n particles on the real line
with inverse square potential.

• • •
x1 x2 xn

That is, if the i-th particle has position xi and velocity (momentum) yi, then the
Hamiltonian is equal to

H =
1
2

n∑
i=1

y2
i +

∑
i<j

1
(xi − xj)2

The Hamiltonian equations of motions is the system of 2n differential equations
dxi
dt

=
∂H

∂yi

dyi
dt

= −∂H
∂xi

This defines a dynamical system which is integrable .
A convenient way to study this system is as follows. Assign to a position defined

by the 2n vector (x1, y1; . . . , xn, yn) the couple of Hermitian n× n matrices

X =


x1

. . .

xn

 and Y =



y1
i

x1−x2
. . . . . . i

x1−xn

i
x2−x1

y2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . i

xn−1−xn
i

xn−x1
. . . . . . i

xn−xn−1
yn


Physical quantities are given by invariant polynomial functions under the action
of the unitary group Un(C) under simultaneous conjugation. In particular one
considers the functions

Fj = tr
Y j

j

For example,{
tr(Y ) =

∑
yi the total momentum

1
2 tr(Y

2) = 1
2

∑
y2
i −

∑
i<j

1
(xi−xj)2

the Hamiltonian

We can now consider the Un(C)-translates of these matrix couples. This is shown
to be a manifold with a free action of Un(C) such that the orbits are in one-to-one
correspondence with points (x1, y1; . . . ;xn, yn) in the phase space (that is, we agree



8.6. CALOGERO PARTICLES. 367

that two such 2n tuples are determined only up to permuting the couples (xi, yi).
The n-functions Fj give a completely integrable system on the phase space via
Liouville’s theorem , see for example [1].

In the classical case, all points are assumed to lie on the real axis and the
potential is repulsive so that collisions do not appear. G. Wilson [82] considered an
alternative where the points are assumed to lie in the complex numbers and such
that the potential is attractive (to allow for collisions), that is, the Hamiltonian is
of the form

H =
1
2

∑
i

y2
i −

∑
i<j

1
(xi − xj)2

giving again rise to a dynamical system via the equations of motion. One recov-
ers the classical situation back if the particles are assumed only to move on the
imaginary axis.

•
•

•

x1

x2

xn

In general, we want to extend the phase space of n distinct points analytically to
allow for collisions.

When all the points are distinct, that is, if all eigenvalues of X are distinct
we will see in a moment that there is a unique GLn(C)-orbit of couples of n × n
matrices (up to permuting the n couples (xi, yi)).

X =

x1

. . .
xn

 and Y =



y1
1

x1−x2
. . . . . . 1

x1−xn

1
x2−x1

y2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 1

xn−1−xn
1

xn−x1
. . . . . . 1

xn−xn−1
yn


For matrix couples in this standard form one verifies that

[Y,X] +

1 . . . 1
...

. . .
...

1 . . . 1

 = rr
n

This equality suggests an approach to extend the phase space of n distinct complex
Calogero particles to allow for collisions.
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Assign the representation (X,Y, u, v) ∈ repα M where α = (1, n) and M is the
path algebra of the quiver Qd is

(/).*-+, (/).*-+,
x

qq

y

QQ

u

""

v

bb

where X and Y are the matrices above and where

u =


1
1
...
1

 v =
[
1 1 . . . 1

]
Recall that the complex moment map for this quiver-setting is defined to be

repα Q
d = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗ µ - C⊕Mn(C)

(X,Y, u, v) 7→ (−v.u, [Y,X] + u.v)

Therefore, the above equation entails that (X,Y, u, v) ∈ µ−1
C (θrr

α) where θ =
(−n, 1), that is (X,Y, u, v) ∈ repα Πθ. Observe that α = (1, n) ∈ Σθ (in fact,
α is a minimal element in Σθ), whence theorem 8.13, repα Πθ is an irreducible
complete intersection of dimension d = n2 +2n and there are α-dimensional simple
representations of Πθ. In particular, issα Πθ is an irreducible variety of dimension
2n.

We can define the phase space for Calogero collisions of n particles to be the
quotient space

Calon = issα Πθ

In a moment we will show that this is actually an orbit-space and :

Theorem 8.37. The phase space Calon of Calogero collisions of n-particles is
a connected complex manifold of dimension 2n.

Theorem 8.38. Let repα M µC- M0
α(C) be the complex moment map, then

any V = (X,Y, u, v) ∈ repα Πθ is a θ-stable representation. Therefore,

Calon = µ−1
C (θrr

α)/GL(α) = issα Πθ ' (µ−1
C (θrr

α) ∩ repsα M)/GL(α) = Ms
α(Πθ, θ)

and is therefore a complex manifold of dimension 2n, which is connected by theo-
rem 8.13.

Proof. The result will follow if we can prove that any Calogero quadruple
(X,Y, u, v) has the property that u is a cyclic vector, that is, lies in repsα M.

Assume that U is a subspace of Cn stable under X and Y and containing u. U
is then also stable under left multiplication with the matrix

A = [X,Y ] + rr
n

and we have that tr(A | U) = tr(rrn | U) = dim U . On the other hand, A = u.v
and therefore

A.

c1...
cn

 =

u1

...
un

 . [v1 . . . vn
]
.

c1...
cn

 = (
n∑
i=1

vici)

u1

...
un
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Hence, if we take a basis for U containing u, then we have that

tr(A | U) = a

where A.u = au, that is a =
∑
uivi.

But then, tr(A | U) = dim U is independent of the choice of U . Now, Cn is
clearly a subspace stable under X and Y and containing u, so we must have that
a = n and so the only subspace U possible is Cn proving cyclicity of u with respect
to the matrix-couple (X,Y ). �

Again, it follows that we can cover the phase space Calon by open subsets

Calon (σ) = {(X,Y, u, v) in σ-standard form such that [Y,X] + u.v = rr
n }

where σ runs over the Hilbert n-stairs.
Example 8.39. The phase space Calo2.

Consider Calo2 (
d

). Because

[

»
0 a
1 b

–
,

»
c d
e f

–
] +

»
1
0

–
.
ˆ
g h

˜
− rr

2 =

»
g − d+ ae− 1 h+ af − ac− bd
c− f + be d− ae− 1

–
We obtain after taking Groebner bases that the defining equations are8>>>><>>>>:

g = 2

h = b

f = c+ eh

d = 1 + ae

In particular we find

Calo2 (
d

) = {(
»
0 a
1 b

–
,

»
c 1 + ae
e c+ be

–
,

»
1
0

–
,
ˆ
2 b

˜
) | a, b, c, e ∈ C} ' C4

and a similar description holds for Calo2 (
t

).

Example 8.40. The phase space Calo3.

We claim that

Calo3 (

dt
) ' C6

For, if we compute the 3× 3 matrix

[

240 a b
1 c d
0 e f

35 ,
240 g h

0 i j

1 k l

35] +

241
0

0

35 . ˆm n o
˜
− rr

3

then the Groebner basis for its entries gives the following defining equations8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

m = 3

n = c+ k

o = i+ l

f = k

d = o− l

g = 2 + b

l = g − ej − kl + ko

h = 2jk + 2l2 − jn− 3lo+ o2

a = 2k2 − 2el − kn+ eo

In a similar manner one can show that

Calo3 (

d d
) ' C6 but Calo3 (

d t
)

is again more difficult to describe.
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We can identify the classical Calogero situations as an open subset of Calon.

Proposition 8.41. Let (X,Y, u, v) ∈ repα Πθ and suppose that X is diagonal-
izable. Then

(1) all eigenvalues of X are distinct, and
(2) the GL(α)-orbit contains a representative such that

X =

λ1

. . .
λn

 Y =



α1
1

λ1−λ2
. . . . . . 1

λ1−λn

1
λ2−λ1

α2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 1

λn−1−λn
1

λn−λ1
. . . . . . 1

λn−λn−1
αn



u =


1
1
...
1

 v =
[
1 1 . . . 1

]
and this representative is unique up to permutation of the n couples
(λi, αi).

Proof. Choose a representative withX a diagonal matrix as indicated. Equat-
ing the diagonal entries in [Y,X] + u.v = rr

n we obtain that for all 1 ≤ i ≤ n we
have uivi = 1. Hence, none of the entries of

[X,Y ] + rr
n = u.v

is zero. Consequently, by equating the (i, j)-entry it follows that λi 6= λj for i 6= j.
The representative with X a diagonal matrix is therefore unique up to the

action of a diagonal matrix D and of a permutation. The freedom in D allows us
to normalize u and v as indicated, the effect of the permutation is described in the
last sentence.

Finally, the precise form of Y can be calculated from the normalized forms of
X, u and v and the equation [Y,X] + u.v = rr

n. �

Invoking the hyper-Kähler structure on repα M we have by theorem 8.32an
homeomorphism, in fact in this case a C∞-diffeomorphism between the Calogero
phase-space and the Hilbert scheme

Calon = issα Πθ
h.- Mss

α (Π0, θ) = Hilbn

8.7. Coadjoint orbits.

In this section we will give an important application of geo @n developed in
the foregoing chapter. If α is a minimal dimension vector in Σθ we will prove that
the quotient variety issα Πθ is smooth and a coadjoint orbit for the dual of the
necklace algebra. In particular, the phase space of Calogero particles is a coadjoint
orbit.

We fix a quiver Q on k vertices, a dimension vector α ∈ Nk and a character
θ ∈ Zk such that θ(α) = 0 with corresponding weight θrr

α. Recall that Σθ is the
subset of dimension vectors α such that

pQ(α) > pQ(β1) + . . .+ pQ(βr)
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for all decompositions α = β1 + . . .+ βr with the βi ∈ ∆+θ, that is, βi is a positive
root for the quiver Q and θ(βi) = 0. With Σminθ we will denote the subset of
minimal dimension vectors in Σθ, that is, such that for all β < α we have β /∈ Σθ.

Proposition 8.42. If α ∈ Σminθ , then the deformed preprojective algebra Πθ is
α-smooth, that is repα Πθ is a smooth GL(α)-variety of dimension d = α.α − 1 +
2pQ(α).

Moreover, the quotient variety issα Πθ is a smooth variety of dimension 2pQ(α),
and the quotient map

repα Πθ
-- issα Πθ

is a principal PGL(α)-fibration, so determines a central simple algebra.

Proof. Let V ∈ repα Πθ and let V ss be its semisimplification. As Σθ is the
set of simple dimension vectors of Πθ by theorem 8.14 and α is a minimal dimension
vector in this set, V ss must be simple. As V ss is the direct sum of the Jordan-
Hölder components of V , it follows that V ' V ss is simple and hence its orbit O(V )
is closed. As the stabilizer subgroup of V is C∗rrα computing the differential of the
complex moment map shows that V is a smooth point of µ−1

C (θrr
α = repα Πθ.

Therefore, repα Πθ is a smooth GL(α)-variety whence Πθ is α-smooth. Because
each α-dimensional representation is simple, the quotient map

repα Πθ
π-- issα Πθ

is a principal PGL(α)-fibration in the étale topology. The total space being smooth,
so is the basespace issα Πθ. �

The trace pairing identifies repα Qd with the cotangent bundle T ∗ repα Q and
as such it comes equipped with a canonical symplectic structure . More explicit,
for every arrow ��������i��������j

aoo in Q we have an aj × ai matrix of coordinate functions
Auv with 1 ≤ u ≤ aj and 1 ≤ v ≤ ai and for the adjoined arrow ��������i��������j

a∗
// in Qd

an ai × aj matrix of coordinate functions A∗vu. The canonical symplectic structure
on repα Qd is then induced by the closed 2-form

ω =

1≤v≤ai
1≤u≤aj∑

��������i��������j
aoo

dAuv ∧ dA∗vu

This symplectic structure induces a Poisson bracket on the coordinate ring
C[repα Qd] by the formula

{f, g} =

1≤v≤ai
1≤u≤aj∑

��������i��������j
aoo

(
∂f

∂Auv

∂g

∂A∗vu
− ∂f

∂A∗vu

∂g

∂Auv
)

The basechange action of GL(α) on the representation space repα Qd is symplectic
which means that for all tangentvectors t, t′ ∈ T repα Q

d we have for the induced
GL(α) action that

ω(t, t′) = ω(g.t, g.t′)

for all g ∈ GL(α).
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The infinitesimal GL(α) action gives a Lie algebra homomorphism

Lie PGL(α) - V ectω repα Q
d

which factorizes through a Lie algebra morphism H to the coordinate ring making
the diagram below commute

Lie PGL(α)

C[repα Qd]
f 7→ξf

-
�

H
=
µ
∗

C

V ectω repα Q
d

-

where µC is the complex moment map introduced before. We say that the action
of GL(α) on repα M is Hamiltonian .

This makes the ring of polynomial invariants C[repα Qd]GL(α) into a Poisson
algebra and we will write

lie = (C[repα Qd]GL(α), {−,−})
for the corresponding abstract infinite dimensional Lie algebra.

The dual space of this Lie algebra lie∗ is then a Poisson manifold equipped
with the Kirillov-Kostant bracket .

Evaluation at a point in the quotient variety issα Qd defines a linear function
on lie and therefore evaluation gives an embedding

issα Q
d ⊂ - lie∗

as Poisson varieties. That is, the induced map on the polynomial functions is a
morphism of Poisson algebras.

Let us return to the setting of deformed preprojective algebras. So let θ be a
character with θ(α) = 0 and corresponding weight θrr

α ∈ Lie PGL(α).

Theorem 8.43. Let α ∈ Σminθ , then issα Πθ is an affine symplectic manifold
and the Poisson embeddings

issα Πθ
⊂ - issα Q

d ⊂ - lie∗

make issα Πθ into a closed coadjoint orbit of the infinite dimensional Lie algebra
lie∗.

Proof. We know from proposition 8.42 that issα Πθ is a smooth affine variety
and that PGL(α) acts freely on µ−1

C (θrr
α) = repα Πθ. Moreover, the infinitesimal

coadjoint action of lie on lie∗ preserves issα Πθ and therefore C[issα Πθ] is a quotient
Lie lie algebra (for the induced bracket) of lie.

In general, if X is a smooth affine variety, then the differentials of polynomial
functions on X span the tangent spaces at all points x of X. Therefore, if X is in
addition symplectic, the infinitesimal Hamiltonian action of the Lie algebra C[X]
(with the natural Poisson bracket) on X is infinitesimally transitive. But then, the
evaluation map makes X a coadjoint orbit of the dual Lie algebra C[X]∗.

Hence, the quotient variety ossα Πθ is a coadjoint orbit in lie
∗
. Therefore, the

infinite dimensional group Ham generated by all Hamiltonian flows on issα Πθ acts
with open orbits.

By proposition 8.42 issα Πθ is an irreducible variety, whence is a single Ham-
orbit, finishing the proof. �
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The Lie algebra lie depends on the dimension vector α. By the general principle
of geo @n we would like to construct a noncommutative variety from a family of
coadjoint quotient spaces of deformed preprojective algebras. For this reason we
need a larger Lie algebra, the necklace Lie algebra.

Recall that the necklace Lie algebra introduced in section 7.8

neck = dR0
rel CQd =

CQd

[CQd,CQd]

is the vectorspace with basis all the necklace words w in the quiver Qd, that is, all
equivalence classes of oriented cycles in the quiverQd, equipped with the Kontsevich
bracket

{w1, w2}K =
∑
a∈Qa

(
∂w1

∂a

∂w2

∂a∗
− ∂w1

∂a∗
∂w2

∂a
) mod [CQd,CQd]

We recall that the algebra of polynomial quiver invariants C[issα Qd] =
C[repα Qd]GL(α) is generated by traces of necklace words. That is, we have a
map

neck =
CQd

[CQd,CQd]
tr- lie = C[issα Qd]

Recalling the definition of the Lie bracket on lie we see that this map is actually
a Lie algebra map, that is, for all necklace words w1 and w2 in Qd we have the
identity

tr {w1, w2}K = {tr(w1), tr(w2)}
Now, the image of tr contains a set of algebra generators of C[issα Qd], so the ele-
ments tr neck are enough to separate points in issα Qd and in the closed subvariety
issα Πθ. That is, the composition

issα Πθ
⊂ - issα Q

d tr∗- neck∗

is injective. Again, the differentials of functions on issα Πθ obtained by restricting
traces of necklace words span the tangent spaces at all points if the affine variety
issα Πθ is smooth. That is, we have :

Theorem 8.44. Let α ∈ Σminθ . Then, the quotient variety of the preprojective
algebra issα Πθ is an affine smooth manifold and the embeddings

issα Πθ
⊂ - issα Q

d ⊂ - lie∗ ⊂ - neck∗

make issα Πθ into a closed coadjoint orbit in the dual of the necklace Lie algebra
neck.

We have proved in section 7.8 that there is an exact sequence of Lie algebras

0 - C⊕ . . .⊕ C︸ ︷︷ ︸
k

- neck - Derω CQd - 0

That is, the necklace Lie algebra neck is a central extension of the Lie algebra of
symplectic derivations of CQd. This Lie algebra corresponds to the automorphism
group of all B = C × . . . × C-automorphisms of the path algebra CQd preserving
the moment map element, the commutator

c =
∑
a∈Qa

[a, a∗]
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That is, we expect a transitive action of an extension of this automorphism group
on the quotient varieties of deformed preprojective algebras issα Πθ when α ∈
Σminθ . Further, it should be observed that these coadjoint cases are precisely the
situations were the preprojective algebra Πθ is α-smooth. That is, whereas the
Lie algebra of vectorfields of the smooth noncommutative variety corresponding
to CQd has rather unpredictable behavior on the singular noncommutative closed
subvariety corresponding to the quotient algebra Πθ, it behaves as expected on
those α-dimensional components where Πθ is α-smooth.

8.8. Adelic Grassmannian.

At the moment of writing it is unclear which coadjoint orbits issα Πθ should
be taken together to form an object in geo @n, for a general quiver Q. In this
section we will briefly recall how the phase spaces Calon of Calogero particles can
be assembled together to form an infinite dimensional cellular complex, the adelic
Grassmannian Grad.

Let λ ∈ C, a subset V ⊂ C[x] is said to be λ-primary if there is some power
r ∈ N+ such that

(x− λ)rC[x] ⊂ V ⊂ C[x]
A subset V ⊂ C[x] is said to be primary decomposable if it is the finite intersection

V = Vλ1 ∩ . . . ∩ Vλr

with λi 6= λj if i 6= j and Vλi
is a λi-primary subset. Let kλi

be the codimension of
Vλi

in C[x] and consider the polynomial

pV (x) =
r∏
i=1

(x− λi)kλi

Finally, take W = pV (x)−1V , then W is a vectorsubspace of the rational function-
field C(x) in one variable.

Definition 8.45. The adelic Grassmannian Grad is the se of subspaces W ⊂
C(x) that arise in this way.

We can decompose Grad in affine cells as follows. For a fixed λ ∈ C we define

Grλ = {W ∈ Grad | ∃k, l ∈ N : (x− λ)kC[x] ⊂W ⊂ (x− λ)−lC[x]}
Then, we can write every element w ∈W as a Laurent series

w = αs(x− λ)s + higher terms

Consider the increasing set of integers S = {s0 < s1 < . . .} consisting of all degrees
s of elements w ∈W . Now, define natural numbers

vi = i− si then v0 ≥ v1 ≥ . . . ≥ vz = 0 = vz+1 = . . .

That is, to W ∈ Grλ we can associate a partition

p(W ) = (v0, v1, . . . , vz−1)

Conversely, if p is a partition of some n, then the set of all W ∈ Grλ with associated
partition pW = p form an affine space An of dimension n. Hence, Grλ has a cellular
structure indexed by the set of all partitions.

As Grad =
∏′
λ∈C Grλ because for any W ∈ Grad there are uniquely determined

W (λi) ∈ Grλi
such that W = W (λ1) ∩ . . . ∩W (λr), there is a natural number n
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associated to W where n = |pi| where pi = p(W (λi)) is the partition determined by
W (λi). Again, allW ∈ Grad with corresponding (λ1, p1; . . . ;λr, pr) for an affine cell
An of dimension n. In his way, the adelic Grassmannian Grad becomes an infinite
cellular space with the cells indexed by r-tuples of complex numbers and partitions
for all r ≥ 0. The adelic Grassmannian is an important object in the theory of
dynamical systems as it parametrizes rational solutions of the KP hierarchy . A
surprising connection between Grad and the Calogero system was discovered by G.
Wilson in [82].

Theorem 8.46. Let Grad(n) be the collection of all cells of dimension n in
grad, then there is a set-theoretic bijection

Grad(n)←→ Calon

between Grad(n) and the phase space of n Calogero particles.

The adelic Grassmannian also appears in the study of right ideals of the first
Weyl algebra

A1(C) =
C〈x, y〉

(xy − yx− 1)
which is an infinite dimensional simple C-algebra, having no finite dimensional
representations. Consider right ideals of A1(C) under isomorphism, that is

p ' p′ iff f.p = g.p′ for some f, g ∈ A1(C).

If we denote with D1(C) the Weyl skewfield , that is, the field of fractions of A1(C),
then the foregoing can also be expressed as

p ' p′ iff p = h.p′ for some h ∈ D1(C).

The set of isomorphism classes will be denoted by Weyl.
The connection between right ideals of A1(C) and grad is contained (in dis-

guise) in the paper of R. Cannings and M. Holland [11]. A1(C) acts as differential
operators on C[x] and for every right ideal I of A1(C) they show that I.C[x] is
primary decomposable. Conversely, if V ⊂ C[x] is primary decomposable, they
associate the right ideal

IV = {θ ∈ A1(C) | θ.C[x] ⊂ V }
of A1(C) to it. Moreover, isomorphism classes of right ideals correspond to studying
primary decomposable subspaces under multiplication with polynomials. Hence,

Grad 'Weyl

The group Aut A1(C) of C-algebra automorphisms of A1(C) acts on the set of right
ideals of A1(C) and respects the notion of isomorphism whence acts on Weyl. The
group Aut A1(C) is generated by automorphisms σfi defined by{

σf1 (x) = x+ f(y)
σf1 (y) = y

with f ∈ C[y],

{
σf2 (x) = x

σf2 (y) = y + f(x)
with f ∈ C[x]

We claim that for any polynomial in one variable f(z) ∈ C[z] we have that

f(xy).xn = xn.f(xy − n) and f(xy).yn = yn.f(xy + n)

Indeed, we have (xy).x = x.(yx) = x.(xy − 1) and therefore

f(xy).x = x.f(xy − 1)
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from which the claim follows by recursion. In particular, as xn.yn =
xn−1(xy)yn−1 = xn−1yn−1(xy + n− 1) we get by recurrence that

xnyn = xy(xy + 1)(xy + 2) . . . (xy + n− 1)

In calculations with the Weyl algebra it is often useful to decompose A1(C) in
weight spaces. For t ∈ Z let us define

A1(C)(t) = { f ∈ A1(C) | [xy, f ] = tf }
then the foregoing asserts that A1(C) = ⊕t∈ZA1(C)(t) where A1(C)(t) is equal to{

ytC[xy] = C[xy]yt for t ≥ 0
x−tC[xy] = C[xy]x−t for t < 0.

For a natural number n ≥ 1 we define the n-th canonical right ideal of A1(C) to be

pn = xn+1A1(C) + (xy + n)A1(C).

Lemma 8.47. The weight space decomposition of pn is given for t ∈ Z

pn(t) = xn+1A1(C)(t+ n+ 1) + (xy + n)A1(C)(t)

which is equal to 
(xy + n)C[xy]yt for t ≥ 0,
(xy + n)C[xy]x−t for −n ≤ t < 0,
C[xy]x−t for t < −n.

Proof. Let t = −1, then pn(−1) is equal to

xn+1C[xy]yn + (xy + n)C[xy]x

Using xn+1yn+1 = xy(xy + 1) . . . (xy + n) this is equal to

xy(xy + 1) . . . (xy + n)C[xy]y−1 + (xy + n)C[xy]x

The first factor is (xy + 1) . . . (xy + n)C[xy]x from which the claim follows. For all
other t the calculations are similar. �

One can show that pn 6' pm whenever n 6= m so the isomorphism classes [pn]
are distinct points in Weyl for all n. We define

Weyln = Aut A1(C).[pn] = { [σ(pn)] ∀σ ∈ Aut A1(C)}
the orbit in Weyl of the point [pn] under the action of the automorphism group.

Example 8.48. The Weyl right ideals Weyl1.
For a point (a, b) ∈ C2 we define a right ideal of A1(C) by

pa,b = (x+ a)2A1(C) + ((x+ a)(y + b) + 1)A1(C).

Observe that p1 = p0,0. Consider the action of the automorphism σf2 on these right ideals. As

f ∈ C[x] we can write

f = f(−a) + (x+ a)f1 with f1 ∈ C[x].

Then, recalling the definition of σf2 we have

σf2 (pa,b) = (x+ a)2A1(C) + ((x+ a)(y + b+ f(−a) + (x+ a)f1) + 1)A1(C)

= (x+ a)2A1(C) + ((x+ a)(y + b+ f(−a)) + 1)A1(C) = pa,b+f(−a)

Now, consider the action of an automorphism σf1 . We claim that

pa,b = A1(C) ∩ (y + b)−1(x+ a)A1(C)
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This is easily verified on the special case p1 using the above lemma, the arbitrary case follows by

changing variables. We have

pa,b = A1(C) ∩ (y + b)−1(x+ a)A1(C)

' (x+ a)−1(y + b)A1(C) ∩A1(C) (multiply with h = (x+ a)−1(y + b))

= (y + b)2A1(C) + ((y + b)(x+ a)− 1)A1(C)
def
= qb,a

Writing f = f(−b) + (y + b)f1 with f1 ∈ C[y] we then obtain by mimicking the foregoing

σf1 (pa,b) ' σf1 (qb,a)

= qb,a+f(−b)

' pa+f(−b),b

and therefore there is an h ∈ D1(C) such that σf1 (pa,b) = hpa+f(−b),b.

As the group Aut A1(C) is generated by the automorphisms σf1 and σf2 we see that

Weyl1 = Aut A1(C).[p1] ⊂ - { [pa,b | a, b ∈ C }

Moreover, this inclusion is clearly surjective by the above arguments. Finally, we claim that

Weyl1 ' C2. That is we have to prove that if

pa,b = h.pa′,b′ ⇒ (a, b) = (a′, b′).

Observe that A1(C) ⊂- C(x)[y, δ] where this algebra is the differential polynomial algebra over
the field C(x) and is hence a right principal ideal domain. That is, we may assume that the

element h ∈ D1(C) actually lies in C(x)[y, δ]. Now, induce the filtration by y-degree on C(x)[y, δ]

to the subalgebra A1(C). This is usually called the Bernstein filtration . Because A1(C) and
C(x)[y, δ] are domains we have for all f ∈ A1(C) that

deg(h.f) = deg(h) + deg(f).

Now, as both pa,b and pa′.b′ contain elements of degree zero x2 + a resp. x2 + a′ we must have
that h ∈ C(x).

View y as the differential operator − ∂
∂x

on C[x] and define for every right ideal p of A1(C)
its evaluation to be the subspace of polynomials

ev(p) = { D.f | D ∈ p , f ∈ C[x] }

where D.f is the evaluation of the differential operator on f . One calculates that

ev(pa,b) = C(1 + b(x+ a)) + (x+ a)2C[x]

and as from pa,b = h.pa′,b′ and h ∈ C(x) follows that

ev(pa,b) = hev(pa′,b′ )

we deduce that h ∈ C∗ and hence that pa,b = pa′,b′ and (a, b) = (a′, b′).

Yu. Berest and G. Wilson proved in [6] that the Cannings-Holland correspon-
dence respects the automorphism orbit decomposition.

Theorem 8.49. We have Weyl =
⊔
n Weyln and there are set-theoretic bijec-

tions

Weyln ←→ Grad(n)

whence also with Calon.
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Example 8.50. Consider the special case n = 1. As is the only partition of 1, for

every λ ∈ C, grλ is a one-dimensional cell A1, whence Grad(1) ' A2. In fact we have

•

•

Grλ

pλ,µ

p1

where the origin corresponds to the canonical right ideal p1 and the right ideal corresponding to
(λ, µ) is pλ,µ = (x− λ)2A1(C) + ((x− λ)(y − µ) + 1)A1(C).

Finally, let us verify that pn should correspond to a point in Grad(n). As pn = xn+1A1(C)+

(xy + n)A1(C) we have that

pn.C[x] = C + Cx+ . . .+ Cxn−1 + (xn+1)C[x]

whence (xn+1)C[x] ⊂ pn.C[x] ⊂ C[x] and converting this to Grad the corresponding subspace is

(xn)C[x] ⊂ x−1pn.C[x] ⊂ x−1C[x]

The associated sequence of degrees is (−1, 0, 1, . . . , n − 2, n, . . .) giving rise to the partition p =

(1, 1, . . . , 1| {z }
n

) proving the claim.

If we trace the action of Aut A1(C) on Weyln through all the identifications,
we get a transitive action of Aut A1(C) on Calon. However, this action is non-
differentiable hence highly non-algebraic. Berest and Wilson asked whether it is
possible to identify Calon with a coadjoint orbit in some infinite dimensional Lie
algebra. We have seen before that this is indeed the case if we consider the necklace
Lie algebra.

It is our hope that similar results are true for more general quivers and certain
families of coadjoint orbits coming from quotient varieties of deformed preprojective
algebras.

References.
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Birkhäuser, Basel Boston Berlin, 1989, pp. 89–114.

77. Allen Tannenbaum, Invariance and system theory : Algebraic and geometric aspects, Lecture

Notes Mathematics, vol. 845, Springer-Verlag Berlin Heidelberg New York, 1981.
78. Michel VandenBergh, The Brauer-Severi scheme of the trace ring of generic matrices, Per-

spectives in Ring Theory (Fred VanOystaeyen and Lieven LeBruyn, eds.), NATO ASI Series,

vol. C 233, Kluwer Academic Publishers, Dordrecht Boston London, 1988, pp. 333–338.
79. Fred VanOystaeyen, Algebraic geometry for associative algebras, Marcel Dekker, Inc., 2000.

80. Bruce W. Westbury, On the character varieties of the modular group, preprint, Nottingham,
1995.

81. Herman Weyl, The classical groups, Princeton University Press, 1946.
82. George Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent.

Math. 133 (1998), 1–41.





Index

GLn
variety, 48

algt, 40

alg @n, 40

proj, 241

Abelian category, 94

abelianization, 280

action

contragradient, 17

free, 175

locally finite, 64

acyclic

object, 95

resolution, 95

additive category

of quiver, 285

adelic Grassmannian, 374

adjoint matrix, 82

admissible vertex, 348

affine scheme, 91

algbera

quantum enveloping, 222

algebra

A∞, 322

n-th root, 283

algebraic functions, 94

associated graded, 141, 280

Azumaya, 97, 135

center, 40

connected graded, 23

deformed preprojective, 215

differential graded, 309

differentially graded, 164

dual numbers, 140

extension, 164

formal necklace, 29

formal trace, 29

free product, 300, 313

free trace-, 40

group, 303

Henselian, 93

Hopf, 222

infinite necklace, 29

infinite trace, 29

infinitesimal extension, 150

local, 141, 165

marked quiver-necklace, 160

necklace, 22

path, 101

Poisson, 280, 331

preprojective, 215

pull-back, 151

quaternion, 362

Quillen smooth, 102

quiver trace, 109

Rees, 281

semisimple, 18

strict Henselian, 94

super, 313

variety, 225

Weyl, 280, 375

Weyl-, 48

with trace, 40

witness, 71

algebraic group, 224

algebraic quotient, 66

analytic topology, 91

Artin, M., 88, 135, 229

Artin-Mumford exact sequence, 131

associated graded algebra, 141, 280

associated quiver setting, 248

associativity constraint, 280

Atiyah class, 281

Azumaya algebra, 97, 135

Azumaya locus, 161

balanced coweight, 232

barcode, 345

based linear map, 311

Berest, Y., 377, 378

Bernstein filtration, 377

Berstein-Gelfand-Ponomarev

reflection functor, 172

bimodule, 325

bipartite double, 181

Birkes, D., 88

Bockland, R., 229, 336, 378

383



384 INDEX

border, 247, 258

border of corner, 247

Borel subgroup, 250

boundary, 106

bracker invariant, 287

Brauer group, 100

Calogero system, 366

Cannings, R., 375, 378

canonical

A∞-structure, 322

canonical decomposition, 168, 192

canonical right ideal, 376

capacity, 134

Cartan

decomposition, 63

matrix, 166

Cartan homotopy formula, 331

Cartan matrix, 222

category

Abelian, 94

Cayley-Hamilton

algebra, 40

formal polynomial, 33, 40

theorem, 33

Cayley-smooth

α-, 216

locus, 193

model, 210, 211

center of algebra, 40

character, 241, 296, 338

characteristic polynomial, 3, 33

Chern numbers, 301

Chevalley

theorem, 168

theorem of, 51

Chinese remainder theorem, 98

closed form, 312

cobracker invariant, 287

cohomology

dimension, 123

etale, 95

Galois, 99

pointed set, 96

commutator element, 215, 347

commutator filtration, 280

compact subgroup, 337

compartment, 180

completion

lifting algebra, 316

complex moment map, 215

composition factors, 60

multiplicities, 60

composition series, 60

cone

tangent, 141

coniveau spectral sequence, 128

connecting morphism, 299

connecting sum map, 301

connection, 319

constant sheaf, 93

constructible set, 52

continuous module, 99

contraction operator, 321

coordinate map, 23

coregular quiver spaces, 226

corner, 234, 258

border, 247

optimal, 247

corner type, 259

cotangent bundle, 215

covector, 17

covers, 91

Crawley-Boevey, W., 183, 229, 378

Cuntz, J., 336

curvature, 311

cycles, 106

cyclic vector, 347

deformed preprojective algebra, 215

deRham

cohomology groups, 309

complex, 309

deRham cohomology

big, 321

big relative, 326

noncommutative, 321, 324

noncommutative relative, 327

derivation

point, 142

trace preserving, 141

with respect to morphism, 140

derived functor, 94

right, 94

Derksen, H., 183, 336

differential, 143

differential form

noncommutative, 309

relative, 325

differential graded, 309

differential operator

exterior, 309

differentially graded algebra, 164

dimension

local, 142

dimension formula, 144

dimension vector, 69, 73, 105

minimal, 371

sincere, 166

supprt, 114

direct image, 121

direct order, 264

discriminant, 9

divisor

ramification, 134

dominance order, 73, 74



INDEX 385

dominant weight, 231

Domokos, M., 336

double centralizer theorem, 19
double quiver, 347

dual numbers, 140

dual partition, 26
Dynkin diagram, 166

equalizer diagram, 93
equivalent

marked quiver, 202

equivariant map, 22
etale

cohomology functor, 95

locally split, 207
morphism, 91

neighborhood, 93

presheaf, 92
sheaf, 93

site, 92

stalk, 94
topology, 91

Euler derivation, 321
Euler form, 106

evaluation map, 17

extension, 105
extension algebra, 164

exterior product, 308

Fedosov product, 311

field

Tate, 124
Tsen, 122

filtration

adic, 141
finite, 58

fixed elements, 174

flag variety, 250
formal

A∞-algebra, 322

Cayley-Hamilton polynomial, 33, 40
necklace algebra, 29

substitution, 36

trace algebra, 29
trace map, 29

formal completion, 281, 284, 285
formal structure, 279–281, 297
formal structure sheaf, 285

Formanek, E., 45
free action, 175

free product, 300
algebra, 303
group, 303

free product algebra, 313

function
algebraic, 94
elementary symmetric, 6

Morse, 86
polynomial, 6

special, 85
functor

derived, 94

fundamental group, 302
fundamental set of roots, 168

Gabriel, P., 183
Galois

absolute -group, 98

cohomology, 99
general subrepresentation, 236

generic representation, 168

generic semi-simple type, 192
Gerstenhaber, 77

Ginzburg, V., 336, 378

global section, 92
going-down propoerty, 52

good vertex, 116
graded localization, 242

Grassmann variety, 346

Grassmannian
adelic, 374

Grothendieck topology, 91, 92

grothendieck topology
noncommutative, 283

group

Brauer, 100
cohomological dimension, 123

multiplicative, 93

reductive, 62
unitary, 62, 82

group algebra, 303
Gurevich, G.B., 44

Haar measure, 62

Hamilton equations, 366
Hamiltonian action, 372

Hamiltonian flow, 372

Happel, D., 183
Hazewinkel, M., 88
Henselian

strict, 94

Henselian algebra, 93

Henselization
strict, 93

Hermitian
inproduct, 82
skew -matrices, 82

transpose, 62

Hermitian inproduct, 337
Hesselink stratification, 251

Hesselink stratum, 252
Hesselink, W., 77, 251, 275
Hilbert

criterium, 55, 57

theorem 90, 100
Hilbert scheme, 356

Hilbert-Chow map, 361
Hochschild-Serre spectral sequence, 124



386 INDEX

Holland, M., 229, 375, 378

homology groups, 162

Hopf algebra, 222

Hulek, K., 301

ideal

maximal, 91

of relations, 47

prime, 91

trace relations, 42

idempotent, 26

implicit function, 91

implicit function theorem, 53

indecomposable

representation, 165

roots, 166

indecomposable projective, 295

index

ramification, 133

inertia, 134

inertial degree, 134

infinitesimal extension

of algebra, 150

trivial, 150

versal, 150

injective

object, 94

resolution, 95, 164

integrable system, 366

integral extension, 50

invariant

polynomial, 12, 64

isotypical

component, 64

decomposition, 64

Gcomponent, 146

Jacobi identity, 334

Jacobian matrix, 91, 140

Jordan
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