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Week 1
ArtGallery.

Below a solution for a gallery having 38 vertices needing at most 11 guards
placed at the marked vertices.




1 ArtGallery.

The ’ArtGallery theorem’ asserts that this can always be done with < [ %]
guards. The theorem was first proved by V. Chataval in 1975 and we will
give the computational proof found by S. Fisk.

We start by fixing some terminology. A polygon is a region P of the plane
R? bounded by a finite collection of line segments forming a simple closed
curve, that is homeomorphic to the circle. The Jordan curve theorem as-
serts that every simple plane curve divides the plane into two parts : the
interior and exterior of the curve. To make the notion of visibility precise,
we say that a point 2 can see point y iff the closed segment zy is nowhere
exterior to the polygon P. A set of guards is said to cover a polygon if every
point in the polygon is visible to some guard. To begin, let us give an ex-
ample of a gallery where the bound is attained : a gallery with 12 vertices
requiring 4 guards :

A diagonal of a polygon P is a line segment between two of its vertices a and
b that are visible to each other, that is, ab N 0P = {a,b} where 0P denotes
the boundary of P. We call two diagonals noncrossing if their intersection
is a subset of their endpoints (that is, they share no interior point). A
triangulation of a polygon P is a covering of the interior by triangles all of
whose sides are either sides of the polygon or noncrossing diagonals.

A k-coloring of a graph G is an assignment of < k colors to the vertices of G
such that no two vertices connected by an edge are assigned the same color.
If G has n vertices and if G can be k-colored than at least one of the & colors
colors at most | %] vertices. This is a variant of the pigeon-hole principle : if
n objects are placed into & pigeon holes, then at least one hole must contain
no more than % objects.

Fisk’s proof of the ArtGallery theorem is based on the following facts (which
we will prove later)
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1a Triangulation and Three-coloring.

o Every polygon can be triangulated.
o The graph of the sides of the triangulation can be 3-colored.

For example, in the example above we have the following triangulation and
3-coloring

Let black, grey and white be the three colors needed with black the one
coloring the least vertices (in the example, black colors 11 vertices, grey 13
and white 14). Now, place guards in all the black vertices. Every triangle
in he triangulation of P must have vertices of each of the three colors, so
contains one black vertex. Clearly, a guard posted in that vertex can see
every point in the triangle. As the triangles cover the whole of the interior
this finishes the proof of the ArtGallery theorem.

la Triangulation and Three-coloring.

We will now prove the claims needed in the proof of the ArtGallery theorem.
A vertex of a polygon is called reflex if its internal angle is > 7 and is called
convex if its internal angle is < .

Lemma 1.1. Every polygon has at least one convex vertex.
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4 | 1 ArtGallery.

Proof. Walk around the edge of the polygon in counter-clockwise direc-
tion, then the interior is always on your left side. Let v be the vertex with
minimal y-value and if there are more such vertices, take the one most to

the right.

Consider the line L extending the edge coming into v, then the interior of P
must be above L and also the edge following v must lie above L. Therefore,
one makes a left-turn at v which happens precisely at convex vertices. O

Lemma 1.2. Every polygon on n > 4 vertices has a diagonal.

Proof. Let v be a convex vertex and a and b the vertices adjacent to v.
Either ab is a diagonal or the triangle Aavb contains at least one other
vertex of P. Now, move a line L parallel towards the line ab and let « be the
first vertex hitting L

¥

The region of P strictly below L cannot contain points of 0 P, so vz intersects
1 OP only at the endpoints so is a diagonal. O
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1la Triangulation and Three-coloring.

Theorem 1.3. (Triangulation) Every polygon P on n vertices can be par-
titioned into triangles by the addition of (zero or more) diagonals. Such a
triangulation uses n — 3 diagonals and consists of n — 2 triangles.

Proof. By induction. If n = 3, then P is a triangle and the result is
obvious. If n > 4, let d = ab be a diagonal of P, then d partitions P into two
polygons each having fewer than n vertices say n;,n, with ny +n, =n + 2.
Applying induction to the two subpolygons we get a triangulation. Again
by induction, the subpolygons are triangulated using n; — 3 and n, — 3
diagonals, so we need n; — 3 + n; — 3 + 1 = n — 3 diagonals and have n; —
2+ ny — 2 =n — 2 triangles. O

The dual T of a triangulation of a polygon is a graph with a vertex associ-
ated to each triangle and an edge between two vertices iff their triangles

share a diagonal.

Lemma 1.4. The dual T of a triangulation is a tree with the degree of each
vertex at most 3. ‘

Proof. If T is not a tree, it must contain a cycle C. We can draw this cycle
as a path C’ in the interior of P by straight lines connecting the dots with
the midpoints of diagonals shared by the triangles whose vertices make up
C. This path must enclose some polygon vertices (one endpoint for each
diagonal crossed by C’. But then C’ also encloses points exterior to P as all
vertices lie on 9P. But by the Jordan curve theorem this contradicts the
simplicity of the polygon. Clearly the degree of each vertex can be at most
3 as a triangle has at most 3 sides to share. O

We call three consecutive vertices a, b, c of a polygon P an ear of the polygon
if ac is a diagonal, b is then called the ear tip.
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1 ArtGallery.

Theorem 1.5. (Meister’s TwoEars theorem) Every polygon on n > 4
vertices has at least two non-overlapping ears.

Proof. Consider the dual T for a triangulation of P. It is a tree with n — 2
vertices. Now, any tree with at least 2 vertices has at least 2 vertices of

degree 1 (the leaves of the tree). A leaf node in T corresponds to an ear of
P. O

Theorem 1.6. (Three-coloring) The triangulation graph of a polygon P
can be three-colored.

Proof. Induction on the number of vertices n. If n = 3 then we are done.
If n > 4, then P has an ear Aabc with ear tip b. Consider the polygon P’
obtained by cutting off the ear (that is, ac C dP’). P' has n —1 vertices so by
induction the triangulation graph of P’ (which is a subgraph of that of P)
can be 3-colored. Now, put the ear back and color b with the color not used
by a and c. O
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Solutions 1

1a Exercises

1. An example is given by the situation

L

2. In a triangulation of P there are n — 2 triangles each contributing =
to the internal angles.

3. By induction : suppose that the binary tree with two connected leaves
dropped is the dual to a triangulation of a polygon P. The vertex
connecting the dropped leaves corresponds to a triangle in the trian-
gulation having 2 external edges. One can then glue appropriately
small triangles to these two edges. :

1b Homework

1. (Stijn S. + Wim M.) Som van binnen- en buitenhoeken is 27n. Som
van de binnenhoeken is (n — 2)m, dus is de som van de buitenhoeken

(n+2)7.




2. (Sam R. + Tom H.) Het antwoord is ja, neem gewoon hetzelfde bewijs.
Het enige probleem dat zich kan voordoen is een situatie als

4

want in dit geval heeft een bewaker in 1 geen clear visibility over |2, 3].
Dit is echter onmogelijk want [1,3] is een diagonaal en dus kan 2 er
niet op liggen (anders namen we in ons bewijs de diagonaal [1,2] om
te trianguleren).

3. (Tom H.) 1. P heeft twee opeenvolgende vertices waar we twee keer
achter elkaar naar links (naar rechts) draaien.
bewijs : indien niet dan is de som van de binnenhoeken

S>|= 3m

2 5l +5) =512 > (n=2)r

2. Dus komt er ergens een situatie als beneden links voor en dan zijn
er twee megelijkheden : 1 of 2

In het geval 1 zijn we klaar, in geval 2 moeten we om van 4 naar 5 te
gaan twee keer naar links draaien en krijgen we dus weer ergens een
situatie als voorheen (boven links). Dit proces blijven we herhalen en
aangezien we telkens minder vertices beschouwen zal er ergens een
boxed ear voorkomen en zal he proces stoppen.
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Week 2

ConvexHull.

In[1l] :=<<DiscreteMath'ComputationalGeometry"
In[2]:=data2D={{4,14},{6,15},{6,12},{2,11},{9,14},
{13,11},{10,12},{6,9},{3,7}.,{0,5},{5,2},
{8,4}),{11,9},{13,7},{12,3},{11,1}};

In[3] :=convexhull=ConvexHull [data2D]

Out[3]:={14,6,5,2,1,4,10,11,16,15}

In[4] :=PlanarGraphPlot[data2D, convexhull]




- 2 ConvexHull.

2a QuickHull.

The most ubiquitous structure in computational geometry is the convex
hull. Recall that a set S is said to be convex if z € S and y € S implies that
the closed segment zy C S. A convex combination of points p;,...,pr 18 a
sum of the form

opr+...oppr with 0, >0 and a1 +...+ap=1

Here, points p; can live in any affine space R%. The convex hull of a set of
points S is the set of all convex combinations of 5. If § C RY, then it is the
set of all convex combinations of d + 1 (or fewer) points of S.

If S is a set of points in the plane, then the convex hull of S is the smallest
convex polygon P that encloses S. We will give a few algorithms to compute
the ConvexHull of a set of plane points.

The basic intuition of the ’QuickHull’ algorithm proposed in the late 1970s
is : for 'most’ sets of points, it is easy to discard many points as definitely
interior to the hull and then concentrate on those closer to the hull bound-
ary. The first step is to find the points extreme in the four compass di-
rections : highest, lowest, leftmost and rightmost points. Connect these
extreme points with a polygon (usually a 4-gon) then all the points of S on
the boundary or inside this polygon may be discarded from further consid-
eration. :

The problem is reduced to finding the hulls in each of the four remaining
triangular regions exterior to the 4-gon. QuickHull finds these by finding
an extreme point in the triangle, discarding points and recursing to two
smaller sets of points.
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2b Graham’s algorithm.

At any stage we know two points ¢ and b on the hull and a set of points 5
strictly to the right of «b. We then find a point ¢ € S extreme in the direction
orthogonal to ab and form the triangle Aacb. We can then discard all points
on the edges or inside this triangle (apart from the vertices) and repeat the
procedure on the points A right of ac and the set of points B right of cb.

€ L 9

The essence of the algorithm is a recursive function that takes as input a,b
and S

function QuickHull (a,b,S)

if S={a,b} then return (a,b)

else _
¢ <- point of max distance from ab
A <- points right of (a,c)
B <- points right of (c¢,b)
return QuickHull (a,c,A) concatenated with

QuickHull (¢, b, B)

The complexity of the QuickHull algorithm is O(n?), that is quadratic.

2b Graham’s algorithm.

In 1972 R. Graham found an algorithm to construct the convex hull with
complexity O(n log n). Assume we are given a point z interior to the hull
and assume that no three points of the set are collinear. Sort the points by
angle, counterclockwise about z. The points are processed in their sorted
order and the hull grows incrementally.
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2 ConvexHull.

The hull-so-far is maintained in a stack S of points. Initially, the stack
contains the first two points S = (a, ) with b on top.

We continue according to the following rules :

e the next point is added on top whenever we make a left turn at the
last point, '

¢ when we make a right turn we drop points from the stack until we
make a left turn.

In the example we get (q, b, ¢) but then d would be a right turn at ¢ so we
drop c and as we make a left turn in b we keep b and have (a,b, d).

If we are so fortunate as in the example and our first point « is on the hull,
the convex chain will close naturally. We will see below how this and other
problems discarded in the above simplifications can be avoided.

We started with a point z lying in the interior of the hull. We can sim-
plify by starting with the lowest point which must be on the hull. If there
are several points with minimal y-coordinate we take the rightmost one
of them : call this p, and sort the other points around p, calling them
D1y .., Pn_1 as in the picture below. There are no problems to end the pro-
cedure as both p, and p; must belong to the hull as does p,_; (the last point
in the sorting). There is also no possible start-up problem (which might
arise otherwise when the stack is (a,b) and we make a right turn to reach
¢, then we must pop b from the stack but there do not remain at least two
points to declare left from right turns). We now initialize the stack to be
S = (pn—1,p0), then the stack will always contain two points.

The other problem of having collinearities when sorting points around po
can be solved by enumerating two points with the same angle according to
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2b Graham’s algorithm. 5

their distance from pg.

9

0

The only remaining problem is that of collinearities along the hull. This is
solved by requiring a strict left turn (p;_1,p:, p;) to push p; onto the stack
having p; and p,_; as its top two points and if p, is collinear with p,_, and p;
it will be deleted.

Algorithm Graham
find rightmost lowest point : p(0)
sort other point angularly about p(0)
break ties in favor of closeness to p(0)
label p(l),p(2),...,p(n-1)
stack S=(p(n-1),p(0))=(p(t-1),p(t) ; t indexes top
i=1
while i<n do
if p(i) is strictly left of (p(t-1),p(t))
then push(S,i) and set i <- i+l
else pop(S)
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Exercises 2.

1. Give a method to determine whether a point c lies to the left or right
of ab.

2. Give algorithm to determine the point ¢ of maximal distance to ab.

3. What will be the output of the Graham algorithm when all points are
collinear ?

4. (Convex deficiency tree) . Let P be a polygon and H(P) its convex hull.
Define the convex deficiency D(P) of P to be the set of points H(P)—P.
In general there will be several disconnected components called bays.
The closure of each of these bays is again a polygon.
Define the deficience tree T(P) for a polygon as follows. The root of
T(P) is a node associated to P. The children of the root are nodes as-
sociated with the distinct bays of D(P). In general if P’ is the polygon
corresponding to a node of T'(P), the children of this node correspond
to the bays of D(P').

e Prove that T'(P) is a finite tree.

¢ For a polygon on n vertices, what is the largest possible degree of
anode in T'(P) ? Give a worst case example.

Homework 2.

1. @ @ : Design an algorithm to find a line L such that

¢ L has all points of a given set to one side.

¢ [ minimizes the sum of the perpendicular distances of the points
of the set to L.

You may assume existence of a ConvexHull algorithm.

2. @ @ : For each n construct a set of points such that the Graham
algorithm needs the largest number of iterations to finish.

3. ® @ @ : Can every tree be relized as a convex deficiency tree T'(P)
of some polygon P ? Why (not).
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Week 3

DelaunayTriangulation.

In[1l] :=<<DiscreteMath'ComputationalGeometry"

In[2]:=data2D={{4,14},{6,15},{6,12},{2,11},{9,14},
{13,11},{10,12},¢6,9},{3,7},{0,5},{5,2},
{8,4},{11,9},{13,7},{12,3},{11,1}};

In[3]:=delaynay=DelaunayTriangulation[data2D]

out[3]1:={{1,{4,3,2}},{2,{2,3,5}},{(3,{2,1,4,8,7,5}},
{4,{10,9,8,3,13},{5,{2,3,7,6}},{6,{5,7,13,14}},{7,{5,3,8,13,6}},
{7,{5,3,8,13,6}},{8,{3,4,9,12,13,7}},4{9,{4,10,11,12,8}},
{10,4{11,9,4%}},{11,{16,12,9,10}},{12,{8,9,11,16,15,14,13}},
{13,¢{7,8,12,14,6}},{14,{6,13,12,15}},{15,{14,12,16}},
{16, {15,12,11}}}

In[4] :=PlanarGraphPlot[data2D,delaynay]




3 DelaunayTriangulation.

The importance of the Delaunay triangulation will become clear when we
will encounter the Voronoi diagrams next weeks. For the moment we for-
malize

Definition 8.1. Let P be a set of points in the plane. The Delaunay tri-
angulation D(P) is a triangulation of the points P having the following
property : for every triangle in D(P) the circumscribed circle

does not contain any other points of P either on its boundary or in its inte-
rior.

3a EdelsbrunnerSeidel.

In 1986, H. Edelsbrunner and R. Seidel discovered a beautiful connection
between Delaunay triangulations and convex hulls of points in R®. As these
convex hulls can be calculated in O(n log n) time, this gives a very efficient
algorithm to compute these triangulations.
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3a EdelsbrunnerSeidel.

Consider the paraboloid in R® with equation
r=a+y?

Given points P = {pi,...,p,} in the plane we project them upwards until
they hit the paraboloid, that is, we map every point as follows

(372",%') - (:U,“, yi,xz? + %2)

In the example above, we obtain the following points (each represented by
a cuboid) on the first quadrant of the paraboloid.

Take the convex hull in R?® of this set of 3-dimensional points P’ =
{p},...,p,} and discard the ’top’ faces of this convex hull (that is, all those
faces whose outward pointing normal vector points upward, in the sense of
having a positive scalar product with the (0,0,1) vector). What we get is
the ’bottom shell’ of the triangulation.

The claim is that the projection to the zy-plane of this bottom shell is the
Delaunay triangulation ! We will now prove this stunning connection.

Consider a point (a,b) € R?, then the equatioh of the tangent plane T to the
paraboloid @ in the point (a, b, a® + b%) (the point lying over (a,b)) is

T : z=2az+2by—(a*+0)

Shift this tangent plane upwards by r? for some r € R, then this plane T,
has the equation

T. : z=2az+2by—(a®+b")+1r?
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3 DelaunayTriangulation.

In order to see the intersection T, N Q) we have to solve the system

2 = .’E2 + y2
z = 2azx + 2by — (a? + b%) + r?
which reduces to the equality
(z—a)l?+(y—b2=r’ and z=2az+2by— (a®+b°) +7°

Hence, the shifted tangent plane T, intersects the paraboloid ¢ in a curve
(actually an ellipse) that projects to the zy-plane to a circle with center
(a,b) and radius r. All of this can be visualized in the following picture

Now, consider a plane 7" through 3 points on the paraboloid that form a face
A = A(p}, p}, p},) of the convex hull in 3 dimensions. Now, translate 7" par-
allel downwards then at some point it will cease to intersect the paraboloid
Q.

Let us call last point it touches (a, b, a® + b?), then it is the tangent plane T
in this point and 7" = T, for some shift amount r2.

Since A is a lower face of the convex hull in 3-dimensions, all the other
points p!, of P’ lie above 7" and hence they are more than r* above T'. There-
fore, these points project to the zy-plane outside of the circle of radius r
with center (q,b) in the zy-plane.

On the other hand, the three points {p}, p}, p}} lie on @ N T" and so they are
projected down to points on this circle. Therefore, the triangle A(p;, p;, px)
in the zy-plane is circumscribed by the circle with center (a,b) and radius r
which contains no other points from P either in its interior or on its bound-
ary. Therefore, the triangle A(p;,p;,px) is part of the Delaunay triangu-
lation. Repeating this procedure for the other faces of the 3-dimensional
complex hull we have proved : ‘
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3a EdelsbrunnerSeidel. 5

Theorem 3.2. (Edelsbrunner-Seidel) The Delaunay triangulation of a
set of points P = {py,...,p,} in the plane is precisely the projection to the ry-
plane of the bottom shell of the convex hull in R of the transformed points
P' = {p},...,p.}, transformed by mapping upwards to the paraboloid Q
with defining equation z = z% + y%
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Exercises 3.

1. Design a set of n points, no four cocircular, such that one vertex of the
Delaunay triangulation has degree n — 1.

2. A triangulation of a set of plane points P is called a Pitteway triangu-
lation if, for each triangle T = A(a, b, ¢) every point in T has one of a,b
or ¢ as its nearest neighbor among the points of P.

Show by example that not every Delaunay triangulation is a Pitteway
triangulation.

Homework 3.

1. @ : If p; is a nearest neighbor of p; among the set of plane points P,
then the edge p;p; is an edge of the Delaunay triangulation.

2. ® ® @ : Characterize those Delaunay triangulations that are also
Pitteway triangulations (see above for definitions).

3. ® ® ® ® : Given two sets of plane points A and B. Design an
algorithm for finding (if it exists) a closed disc that encloses every
point of A but excludes every point of B.
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Week 4
VoronoiDiagram.

Inf[l)]:=<<DiscreteMath'ComputationalGeometry"

In[2]:=data2D={{4,14},{6,15),(6,12},(2,11},{9,14},
{13,113,{(10,12},{6,9).(3,7},(0,5}, (5,2},
{8,43,{12,9},{13,7},{12,3}, (11,1} };

In[3):=voronoi=Voronoibiagram(data2D]

out3]:= \IN({{{\(-0.0714285714285714285714268*13.17\),
8.3571428571428571428571424°14.8165}, {
2.8157894736842105263157877 14 .8051,
4.0263157894736842105263144°14.6786}, (
3.6428571428571428571428571"14.4056,
9.2857142857142857142857142'14 .4457}, {
3.8999999999999999999999973+14.3786,
11.899999999999999999999999°14 4113}, {4.25'14.2289, 10.5'14.2233}, (
5.1842105263157894736842096'14.606,
4.973684210526315789473680514.5937}, {5.5%14.1964, 13.5'14.1879}, {
5.8157894736842105263157874°14.6115,
6.0263157894736842105263154°14.5202}, {
7.16666666666666666666666714.0831, 13.5%14.096), (7.9°14.8458,
0.8999999999999999999999999°14.0979}, (
7.9999999999999999999999996 14,4743,
10.4999999999999999999999994°14.4809), {8.'14.2892, 12.25'14.2648}, {
8.499999999999999999999997814.4483,
9.833333333333333333333332°14.4232}, (
8.4999999999999999999999992°14.6348,
7.0999999999999999999999987°14.6394}, {
9.833333333333333333333333°14.3591,
2.8333333333333333333333332'14.2424}, (10.125'14.3744,
6.125000000000000000000001114.3245}, {
10.499999999999999999999999214.6066,
5.4999999999999999999999993114.5054}, {11.25%*14.1809,
10.75%14.1748), {12.499999999999999999966569°14.0531,
14.499999999999999999984638°14.0272}, {13.%14.1935, 9.'14.1805},
Ray[{5.5'14.1964, 13.5'14.1879}, {4.°12.6894, 16.5'13.001}],
Ray [{3.8999999999999999999999973414.3786,
11.89999999999999999999999914.4113), {\(-4.'-10.5544*"-24\),
14 .5000000000000000000000028°15.5458} ],
Ray[{7.166666666666666666666667'14.0831, 13.5'14.086}, {
8.4999999999999999259851312.7843,
17.4999999999999997779554112.6192}],
Ray[{\(-0.0714285714285714285714268'13.17\),
8.357142857142857142857142414.8165}, (
\(-6.071428571428571428571425*14.7575\),
10.3571428571428571428571413'15.2811}],
Ray[{12.49999999999999999996656914.0531,
14.499999999999999999984638°14.0272}, {
15.49999999999999999996075°13.0641,
18.49999999999999999987943113.0131}],
Ray[{13.414.1935, 9.'14.1805}, {17.'13.3668, 9.715.3648}1,
Ray[{2.8157894736842105263157877"14.8051,
4.0263157894736842105263144°14.6786}, (
\ (~0.5000000000000000000041624*13.2817\),
\(-1.500000000000000000004161*13.5109\)}],
Ray[{7.9'14.8458, 0.8999999999999999999999999°14.0979), {
6.899999999999999999999998°13.3781,
\ (~5.1000000000000000000000112.4662\)}1,
Ray[{10.4999999999999999999999992*14.6066,
5.4999999999999999999999993414.5054}, {
16.49999999999999999999999613.9418,
4.000000000000000000000002°13.8935)],




2 4 VoronoiDiagram.

Ray[{9.833333333333333333333333'14.3591,

2.8333333333333333333333332°14.2424), (
13.4999999999999994078810513.5078,
1.000000000000000296059475°12.671}13}, {{1, (4, 7, 21, 22}}, {

2, {7, 9, 23, 21¥}, {3, {7, 4. 5, 11, 12, 93}, {

4, {1, 3, 5, 4, 22, 24}), (5, {9, 12, 19, 25, 23}}, {

6, {19, 18, 20, 26, 25}}, (7, (12, 11, 13, 18, 18}}, {

8, {5, 3, 8, 14, 13, 11}), (92, {1, 2, 6, 8, 3}}, {

10, {2, 1, 24, 273}, {11, (10, 6, 2, 27, 28}), (

12, {8, 6, 10, 15, 17, 16, 14}}, {13, (13, 14, 16, 20, 18}}, {

14, {20, 16, 17, 29, 26)}, {15, {17, 15, 30, 29}}, {

16, {15, 10, 28, 30}}}}\)

In{4]:=DiagramPlot[data2D]

The Voronoi diagram of a collection P = {p,...,p,} in the plane is the
collection of 'nearest neighborhoods’ for each of the points in P. That is
we partition the plane by assigning each point in the plane to the nearest
point in P. All the points assigned to p; form the Voronoi region V(p;). Its
formal definition is

— 2. Jln. : L
V(pi) = {p € R*: d(p;,p) < d(pj,z) Vj#i}
Each of these regions is closed. Some points in the plane do not have
a unique nearest neighbor. The set of all points that have more than
one nearest neighbor form the Voronoi diagram V(P) of the set of points
P. While DelaynayTriangulate need only specify the connections between
points, VoronoiDiagram must specify both a set of diagram vertices and
the connections between those vertices. Another difference between the
uia 1999 lieven le bruyn



4a Fortune.

two functions is that while a triangulation consists of segments, a Voronoi
diagram consists of both segments and rays.

These considerations make the output of VoronoiDiagram more complex
than that of DelaunayTriangulation. The diagram is given as a list of dia-
gram vertices followed by a diagram vertex adjacency list. The finite ver-
tices of the diagram are listed first in the vertex list. The vertices lying at
infinity have head Ray and are listed last.

Consider two points p; and p; from P and let B;; be the perpendicular bisec-
tor of the segment p;p;. Let H(p;,p;) be the closed halfplane with boundary
B;; and containing p;. Elementary geometry then tells us that

V(p:) =i # iH(pi,p;)

where the intersection is taken over all 1 < j < n such that: # 5. In
particular this shows :

Proposition 4.1. The Voronoi regions V(p;) of a finite set of points P all
have polygonal boundaries.

This gives already an algorithm to construct the Voronoi diagram by con-
structing each Voronoi region separately by intersecting n — 1 halfplanes.
This algorithm has a complexity of O(n? log n).

4a Fortune.

In 1985, S. Fortune invented a clever plane-sweep algorithm to construct
VoronoiDiagram with complexity O(n log n). Plane-sweep algorithms pass
a sweep line over the plane, leaving at any time the problem solved for the
portion of the plane already swept, and unsolved for the portion not yet
reached. At first this seems impossible as Voronoi edges of a region V(p)
would be encountered by the sweep line L before L encounters the point
p responsible for the region. S. Fortune surmounted this difficulty by the
following clever idea.

Imagine the points lying on the zy-plane in R® and construct for each point
p; € P a cone with apex p; and whose side slopes are at 45°. If —z is viewed
as time, then the cone under p represents a circle around p expanding about
p at unit velocity : after ¢ units of time, its radius is ¢.

Consider two nearby cones under p; and p;. They intersect in a curve in
space which lies entirely in a vertical plane which is the vertical plane on
the bisector of p;p,. Thus, although the intersection of the cones is curved

lieven le bruyn
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4 VoronoiDiagram.

in R3, it projects to a straight line in‘the zy-plane

Now we come to the main idea of Fortune’s algorithm. His algorithm
sweeps the cones with a slanted plane 7, slanted at 45° to the zy-plane.
the sweep line L is then the intersection of 7 with the zy-plane.

Let us assume that L is parallel to the y-axis and that the z-coordinate of
L is . Imagine that = as well as all the cones are opaque and view the
configuration from » = +oo.

To the 2 > [ side of L only 7 will be visible from above as it cuts above the
zy-plane. To the z < [ side of L, the Voronoi diagram is visible up to the
intersection of m with the ’frontier’ of cones. The intersection of = with any
of the cones is a parabola and so the intersection of 7 with the right frontier
projects to the ry-plane as a ‘parabolic front’ a curve composed of pieces of
parabolas. :

Two parabolas join at a spot where = meets two cones and from the discus-
sion above on the intersection of two cones, this must be a Voronoi edge. So
the sweeping algorithm does not precisely construct the Voronoi diagram

uia 1999
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4a Fortune. 5

at all times to the left of L, but it is at all times constructed above 7, which
means that it is constructed to the left of L up to the parabolic front which
lags L a bit.

What is maintained at all times by the algorithm is the parabolic front,
whose joints trace out the Voronoi diagram over time, since these kinks all
lie on Voronoi edges. The algorithm only needs to store the parabolic front
which is of size O(n) and often of size O(T/}. This is a significant advantage
of Fortune’s algorithm when n is large : the storage needed at one time is
often much smaller than the size of the diagram.
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Exercises 4.

1. Describe the Voronoi diagram for the vertices of a regular polygon.

2. Describe the number of combinatorial different Voronoi diagrams of n
vertices for n < 4.

3. Prove that the number of edges in a Voronoi polygon, averaged over
all polygons in any set of n points, does not exceed 6.

Homework 4.

1. ® : A one-dimensional Voronoi diagram for a set of points P =
{p1,...,pn} on a line is a set of points V(P) = {z1,...,2,—1} such that
z; is the midpoint of p;p;.;.
Given a set X = {z;,...,2,_1}, design criteria to decide whether or
not X is a one-dimensional Voronoi diagram of a set of points P, and
if so determine P.

2. @ @ : Prove that V(p;) is unbounded if and only if p; is on the convex
hull of the set of points P.

3. ® ® @ @ : Imagine a set of n points moving in the plane, each with
a fixed velocity and direction. Let V(%) be the Voronoi diagram of the
points at time ¢. Find a set of n moving points such that V(t) ¢changes
its graphical structure n? times.

4. ® @ ® ® ® : (open) As in the previous exercise, find a set of n mov-
ing points that have more than n? changes in the graphical structure
of V(1).
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Week 5

Delaunay vs. Voronoi.

Consider a finite set P = {py,...,p.} of points in the plane. In 1934, De-
launay proved that when the dual graph of the VoronoiDiagram V(P) is
drawn with straight lines, it produces a planar triangulation of P which is
now called the DelaunayTriangulation D(P).

In[l] :=<<DiscreteMath'ComputationalGeometry"

In[2] :=data2D={{4,14},{6,15},{6,12},{2,11},{9,14},
{13,11},{10,12},{6,9},{3,7},{0,5},{5,2},
{8,4},{11,9},{13,7},{12,3},{11,1}3;

In[3] :=delaunay=DelaunayTriangulation[data2D];

In[4] :=Show[PlanarGraphPlot[data2D, delaunay],DiagramPlot [data2D]]




5 Delaunay vs. Voronoi.

da

Pi'operties of DelaunayTriangulation.

As the DelaunayTriangulation and the VoronoiDiagram are dual struc-
tures, each contains the same information, but represented in a different
format. We will now list the more properties of the DelaunayTriangulation
for a fixed set P = {p1,...,pn}

1.
2.

© ® N e oA W

D(P) is the straight-line dual of V(P).

D(P) is a triangulation if no four points of P are cocircular (Delau-
nay’s theorem). In this case every face is a triangle and they are
called Delaunay triangles.

Each face of D(P) corresponds to a vertex of V(P).

Each edge of D(P) correspohds to an edge of V(P).

Each vertex of D(P) correspond to a region in V(P).

The boundary of D(P) is the convex hull of P.

The interior of each face of D(P) contains no point of P.

If p; is the nearest neighbor of p; in P, then p;p; is an edge of D(P).

The edge p;p; is an edge of D(P) iff there exists a circle through p; and
p; such that the closed disc bounded by the circle contains no points
of P other than p; and p;.

5b Properties of VoronoiDiagram.

Similarly, we can give a formal list of the main properties of the VoronoiDi-
agram of a fixed set P = {p,...,p,} of points in the plane.

1.
2.
3.

Each Voronoi cell is a convex polygon.
The region V(p;) is unbounded iff p; is on the convex hull of P.

If v is a Voronoi vertex at the junction of V(p;), V(p;) and V(px), then
v is the center of the circle C'(v) determined by p;.p; and p.

The Voronoi circle C(v) is the circumscribed circle for the Delaunay
triangle corresponding to v.

The interior of the Voronoi circle C(v) contains no points of P.

If p; is the nearest neighbor of p; in P, then p;p; is an edge of D(P).

uia 1999
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5b Properties of VoronoiDiagram.

We will now prove the more important of these properties. Throughout
we make the assumption that P = {pi,...,p.} contains no fourtuple of
cocircular points. We glanced over this subtlety earlier. In fact, the formal
definition of DelaunayTriangulation we gave before does only make sense
in this case. On the level of VoronoiDiagrams this condition asserts that
there are no 4 Voronoi regions touching each other in a point. That is, we
only consider the situations on the left and not those on the right.

The attentive reader will have noticed that this condition was also needed
in the EidelsbrunnerSeidel algorithm. Indeed, p; = (z;,y;) for ¢ = 1,2,3,4
will be cocircular if and.only if the modified points p} = (z;,y;, 2? + y?) all lie
on the same plane (and of course also on the paraboloid).

Still, we can generalize the definition of a DelaunayTriangulation to the
general case.

Definition 5.1. A DelaunayCovering D(P) of a set of points P in the plane
is the straight-line dual of the VoronoiDiagram V(P) of P.

Theorem 5.2. The edge p;p; € D(P) iff there is a circle through p; and p;
such that the closed disk bounded by this circle contains no other points

than p; and p;.

Proof. If p;p; is an edge of D(P) then V(p;) and V(p;) share an edge
e € V(P) of positive length (the definition of the dual graph). Let = be
an interior point of this edge e and let C(z) be a circle with center z and
radius equal to the distance d(z, p;) (which is equal to the distance d(z, p;)
because z € V(p;) NV (p;)).

There can be no other point p € P lying in or on C(z) for otherwise z € V(p)
as well and by taking z an interior point of ¢ we made sure that = belongs
only to the Voronoi regions V' (p;) and V(p;).

lieven le bruyn
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5 Delaunay vs. Voronoi.

Conversely, assume that there is a circle C(z) with center = going through p;
and p; and empty of other points from P. We have to prove that p;p; € D(P).

Because z is equidistant from p; and p; we have that = € V(p) N V(p:)
for p; cannot belong to any other V(p) for the disc closed by C(z) does not
contain p. Because there are no other points on the boundary of C(z) (which
amounts to the fact that z is not the crossing of two Voronoi edges) we have
some freedom to wiggle z a bit along the bisector B;; while maintaining
emptiness of the circles.

Therefore, z lies on a positive length Voronoi edge (a certain subset of the
bisector B;;) shared between V(pz) and V/(p;) and therefore p;p; is a straight-
line dual edge in D(P). O

Using similar arguments, the other properties of DelaunayTriangulation
and of VoronoiDiagram can be proved as exercises. Do it!

5¢ PatternRecognition.

We give here an immediate application (more will be presented over the
next two weeks). A technique frequently employed in the field of pattern
recognition is to map a set of target objects into a feature space by reducing
the objects to points whose coordinates are feature measurements. The
identity of an object of unknown affiliation then can be assigned the nearest
target object in a feature space.

Let us give a concrete example. Assume we have a fixed set of rectangular
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5¢ PatternRecognition. 5

objects of five different flavors

16,12 21,15 1514 1515 198

where we indicated the length of the longest and of the shortest side. Sup-
pose that a vision system focuses on a particular object and measures the
sizes of the two sides to be 15.3 and 12.7.

15312.7

Knowing that there are always measurement inaccuracies, how would we
make the best guess of the flavor of the object ? We can represent all flavors

by points in the plane, namely
{(16,12), (21,15), (15, 14), (15,15), (19, 8)}

and determine the VoronoiDiagram of this set of points

where we indicated the location of the measurement by o. Therefore, it is
most likely an object of type (16,12).
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Week 6

Applications.

This week we present some applications of DelaunayTriangulation and
VoronoiDiagram.

6a LargestEmptyCircle

Another application is to locate a nuclear reactor as far away as possible
from a collection of cities. We now examine the largest empty circle prob-
lem in some detail. First, we need to put restrictions on the center of this
largest empty circle as there are always arbitrarily large circles outside a
finite set of points. We rephrase the problem as :

Let p be a point in the plane and imagine inflating a circle from p until it
first bumps into one of the finite list of points P = {p,...,p,}. Call f(p) the




6 Applications.

radius of this circle which we denote by C(p).

If there is just one p; on the boundary of C(p), then f(p) cannot be a max-
imum because if p is moved along the ray p;p away from p; a bit we get a
strictly larger f(p).

pi

If there are precisely two points p; and p; from P on the boundary of C(p),
then f(p) can also not be a maximum. For if p is moved along the bisector
B;; a bit away from p;p; we get a strictly larger circle.

pk
&

It is only when there are three points p;, p; and p; on the bounaary of C(p)
that the radius f(p) could be at a maximum. This proves

Lemma 6.1. If the center p of a LargestEmptyCircle is strictly interior in
the convex hull of P, then p must be a Voronoi vertex (that is, a crossing
point of three of more boundaries of Voronoi regions).

The problem with points p lying on the convex hull of p is that when we
move to the neighboring point p’ in the foregoing argument, p’ may be out-
side the convex hull. Still, if p lies on the convex hull of P it must lie in the
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6b MinimumSpanningTree.

interior of one of the edges of Convez Hull( P). Assume the boundary of C(p)
contains just one p; then f(p) cannot be maximal as we could move p a little
bit on this boundary edge to increase the distance to p; without hitting new
points from P. But, if C(p) contains two points p; and p; it may very well
be that in order to increase the diameter we have to move outside of the
convex hull. That is, we have :

Lemma 6.2. Ifthe center p of a LargestEmptyCircle lies on the convex hull
of P, then p must lie on a Voronoi edge.

We have now found a finite set of points that are potential centers of
LargestEmptyCircles,

¢ the Voronoi vertices,
e intersections of Voronoi edges with the ConvexHull(P).

and we have the following algorithm.
LargestEmptyCircle

Compute the Voronoi diagram of P.
Compute the ConvexHull(P) = H.
for each Voronoili vertex v do

if v is inside H then

compute radius of C(v) and update max.

for each Voronoi edge e do

compute intersection p of e with H.

compute radius of C(p) and update max.
return max.

6b MinimumSpanningTree.

For example, many local area networks take the form of a tree spanning
the host nodes. The MinimalSpanningTree is the network topology that
minimizes total wire length, which usually minimizes both cost and time
delays. -
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6 Applications.

First construct the complete graph on P, that is we connect each couple of
points p;, p; from P with a straight line in the plane. The algorithm is based
on the intuition that a minimal spanning tree should be composed of the
shortest edges. This suggests that such a tree can be built up incrementally
by adding the shortest edge not yet explored subject to the condition that
is maintains tree-ness (acyclicity of the graph).

Let T be the tree incrementally constructed and let the notation 7'+ ¢ mean
the tree T union the edge e. In 1956 Kruskal gave the following algorithm
to solve the MinimalSpanningTree problem.

Kruskal

sort all edges of G by length : el,e2,...
initialize T to be empty, i <- 1.
while T is not spanning do
if T+ei is acyclic
then T <- T+ei
i <- i+1

As there are g edges in the complete graph on n points, the complexity

of the sorting step is O(n? log n). The following important result reduces
this complexity to O(n log n).

Theorem 6.3. A minimal spanning tree on a set of points P in the plane
is a subset of the edges of the Delaunay triangulation of P.

Proof. Assume that the edge p;p; is in the MinimalSpanningTree but is
not an edge of the DelaunayTriangulation. We have seen before that an
edge belongs to the Delaunay triangulation if and only if there is an empty
circle through p; and p;. Therefore, there is no empty circle through p; and
pj-

In particular, the circle with diameter p;p; must contain a point p; in it or
on its boundary. But then, we have

d(pi,pr) < d(pi,p;) and d(pj,pr) < d(pi,p;)-

If we remove the edge p;p; from the MinimalSpanningTree T, then T' dis-
connects in two trees T; containing p; and 7 containing p;.

Assume without loss of generality that the point p; lies in tree 7;. Now,
form the new tree

T'=T: + prp; + T;
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6b MinimumSpanningTree.

that is, we have the following situation :

Now, 7" is again a connected tree spanning all points but as d(px,p;) <
d(pi, p;) is has strictly smaller length. That is, we have a contradiction and
therefore the edge p;p; must be an edge in the DelaunayTriangulation. O

Therefore, computing first DelaunayTriangulation of P before applying the
sorting part of the Kruskal algorithm will drastically decrease the time
needed for large n.
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Week 7
GameOfLife.

The GameOfLife is an important example of a class of mathematical ob-
jects called cellular automata. A cellular automaton consists of a number
of things

1. A positive integer n which is the dimension of the cellular automaton.
n = 2 in GameOfLife. '

2. A finite set S of states having at least two elements. S = {live, dead}
in GameOfLife.

3. A state for the whole cellular automaton is obtained by assigning an
element of S to each point of the n-dimensional lattice Z™ (where Z are
the integers). The points of Z” are usually called cells.

4. A definition of neighborhood. The neighborhood N of the origin is
some finite non-empty subset of Z”. the neighborhood of any other
cell is obtained in the obvious way by translating that of the origin.
In GameOfLife the neighborhood of a cell (denoted with o) consists of
the 8 cells denoted z together with o




2 7 GameOfLife.
XXX
X0x
XXX
5. A transition rule which is a specified function
SN — S
that is, for each possible state of the neighborhood N the transition
rule specifies the state of the cell. In GameOfLi fe the transition func-
tion is given by
{live,dead}® — {live,dead}
specified by sending (so; 81, . .., ss) Where sq is the state of the middle
cell to
live iff o= 1liveand #{s;=1live}=2or3or
sp = dead and #{s; = live} = 3.
dead iff so=liveand #{s; =1live}<1lor>4or
so = dead and #{s; = live} # 3
The state of the cellular automaton evolves in discrete time, with the
state of each cell at time ¢ + 1 being determined by the state of its
neighborhood at time ¢ in accordance with the transition rule.
In order to appreciate the richness of GameOfLife one has to experiment
with it. Fortunately, there are several excellent Java-applets and PC- or
Mac-shareware available on the net. A good starting point is
http://www.cs.jhu.edu/“callahan/lifepage.html
Another excellent source of information on GameOfLife is the 100p+ "Life
Lexicon” compiled by Stephen A. Silver which can be found at
http://www.cs.jhu.edu/"callahan/lexiconf.html
We will briefly indicate some of the more mathematically interesting no-
tions and results. We expect that you experiment with GameOfLife.
uia 1999 lieven le bruyn



7a Oscillators. 3

7a Oscillators.

The blinker is the simplest example of a configuration whose life history
repeats itself with period > 1

.0, e .0.
Q00 .0O. (e]ele] .0,
.0. . . .0O.

Such positions are called oscillators. A cellular automaton is said to be
omniperiodic if it has oscillators of all periods. At this moment it is not
known that GameOfLife is omniperiodic although there is good evidence
that it must be. If you want to do some Life-research, at this moment the
only periods for which no oscillator is known are

19,23,27,31,37,38,41,43,49 and 53

For example, Dave Buckingham discovered the burloaferimeter which has

period /7 ’-}

...........

e e 00. ...

7b SpaceShips.

A SpaceShip is a finite pattern that reappears (without additions or losses)
after a finite number of generations and displaced by a non-zero amount.
One of the most common spaceships that occurs during random experi-
ments is the glider which was found by Conway’s group in 1970

[e]e}e;
O..
.0,
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4 _ 7 GameOfLife.

It is known that there exists spaceships travelling in all rational directions
and at arbitrarily slow speeds. They come under various pretty names such
as : brain, dart, ecologist, flotilla, fly, snail, swan ... Here a picture of the
spider which was found by David Bell in 1997

...... o} 000.....000 O

...00.00000.00...00.00000.00...

0.00.0..... 0.0.0.0..... 0.00.0

O 0.0...00000.00000...0.0 (o}
000..... 00...00..... 000

O OQ.000. ..t iatacss 000.0 o
[0 S I I o}

The theoretical importance of SpaceShips is that they can be used to make
GameofLife into a universal Turing machine. This was proved by Bill
Gosper and John Conway and the proofis outlined in

E.R. Berlekamp, J.H. Conway and R. Guy
"Winning ways for your mathematical plays, volume 2"

7¢c GardenOfEden.

There are GameOfLife configurations that can arise only as the initial
state, because they have no ancestors. Such configurations are called gar-
den of Eden configurations.

Theorem 7.1. Garden of Eden configurations must exist in GameOfLife.

Proof. Consider a 5n x 5n square B and divide it into n five by five squares
as below
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7c GardenOfEden.

Consider the inscribed 5n — 2 x 5n — 2 square S. On S there are exactly

2(5n—2)2 — 225n2-—20n+4

different GameOfLife configurations. If such a generation c has an ancestor
p, then the rules imply that p must be a configuration constrained to B. If
one of the n? little 5 x 5 squares is empty we can replace it by

..........
..........
.....
..........

..........

as this does not affect the next generation. Therefore, there are at most
225 _ 1 relevant positions in the 5 x 5 squares to consider. This gives a

maximum bound of

(225 _ 1)712 — 224,‘9999999570043366436125280757383320943...n2

possible ancestor-configurations in B. Now, we have to find an » such that
the number of ancestors is strictly smaller than that of the configurations

in S.
24.9999999570043366436125280757383320943...n% < 25n% — 20n + 4
This quadratic equation has two approximate roots
oy ~ 0.20000000008599 and a; ~ 4.65163191590336296 10°

therefore we can take n = 465163192 and there is a garden of Eden configu-
rations lying in

2325815958 x 2325815958

square ! d

More careful counting reduces the size down to a square of side 1400. In
1971 a first explicit example was constructed by Roger Banks et al. at MIT.
Their example of a garden of Eden configuration lives on a 9 x 33 square.

At this moment, the smallest known garden of Eden configuration (in terms
ofthe number of live cells) is the following having 143 lives
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7 GameOfLife.

00.0.0.0.00.0.
0.000.000.00.0
0000.000.00.0.
000.0.0.0.0000
.000.0.000.00.
0000000.0000.0
.0.0.00000000.
0.000.00.0.0.0
000000 .000000.
0.00.00000.0.0
000 .000000000.
.000.0.0.0.000
000.0.0.0.00.0
O .000000000000
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Week 8
StillLife.

If you experiment with GameOfLife you find that the terminal positions
consist of a few oscillators (usually of period 2) and some stable configura-
tions (or oscillators of period one). It is therefore important to classify/study
such stable configurations.

8a Enumerating StillLife.

For the purposes of enumerating StillLifes the definition is unsatisfactory
because any pair of smaller still lifes separated by some space is a StillLife.
As the block

.00,
.00.

.« .

is a 4-cell StillLife there would therefore be an infinite number of 8-cell
StillLifes. For this reason a stricter definition is often used, counting a
stable pattern as a StillLife only if its islands cannot be divided into two
nonempty sets both of which are stable in their own right. A polyplet is a
finite collection of orthogonally or diagonally connected cells. An island is




8 Stilll.ife.

" a connected component of a StillLife in the polyplet-topology, that is, those

parts of a StillLife that a chess-king can cover without having to pass via a
dead cell.

The requirement that a StillLife cannot be decomposed into two separate
stable parts is a bit arbitrary as it does not rule out the possibility that it
might be decomposable into more than two such patterns. For example, in
1998 Matthew Cook found the 33-cell StillLife

..00.00....

that can be broken into three stable pieces but not into two.

StillLifes have been enumerated by John Conway (4 to 7 cells), Robert
Wainwright (8 to 10 cells), Dave Buckingham (11 to 13 cells), Peter Rayn-
ham (14 cells) and Mark Niemiec (15 to 24 cells). The resulting numbers
are

cells StillLifes cells StillLifes
4 2 13 240
5 1 14 619
6 5 15 1353
7 4 16 3286
8 9 17 7773
9 10 18 19044
10 25 - 19 45759
11 46 20 112243
12 121 21 273188
22 672172
23 1646147
24 4051711

For a listing of these StillLifes one should consult the web-page of Mark
Niemiec

http://home. interserv.com/“mniemiec/lifepage.htm

If you want to construct new StillLifes you should experiment with the
Java-applet written by Calahan (see last week).
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8b StillLife Conjecture.

8b StillLife Conjecture.

After these excursions in GameOfLife it is about time to backtrack to com-
putational geometry. We aim to present Noam Elkies’ proof of the StillLife

Conjecture.

First, it is easy to make an infinite StillLife out of any finite StillLife con-
figuration. If the finite StillLife F is contained in a k x [ square, then we
can tile the plane with k+2 x [+ 2 squares were the extra rows and columns

are filled with dead cells.
There are infinite StillLifes which have density 1. Let us define density.

Let B, be the square
B, ={(z,y) €Z*:|z |<r,|y|< ]}
The density of a GameOfLife configuration S is defined to be the number

#(B, N S)
P T HB,

Here are two examples (in fact the second theme gives an infinite number
of examples) of density ; StillLifes

0000000000 ..00..000..... OO. ..
.......... (o]e] (e]e] 00000 000
0000000000 (e]e 000..... (e]@)
.......... (e]e®) (e]e] 00000 [e]ele;
0000000000 oo 000..... (oo

.......... 00..00...00000..000

Verify on a few examples that an infinite StillLife obtained by tiling a finite
StillLife have densities < 1.

The connection between such a density problem and the theory of Voronoi
diagrams relies on the following observation.

Lemma 8.1. Let S C Z? be such that every s € S has a Voronoi region of
finite area. If the average area of a Voronoi region is al least k, then the
density of the configuration

1
6(5) < Z

lieven le bruyn
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8 StillLife.

Proof. Let us denote with a(S5) the average area of a Voronoi region of the
points s € S. The square B, has area 4r? = #B,. Further, in the limit we
can also compute the area of B, by summing over the areas of the Voronoi
region V(s) of the points s € S contained in B,, that is,

#B, = 4% = Area(B,) = Y AreaV(s)~ #(B, N S5)a(S)

seESNB,

from which the claim follows. O

Because all the points of S lie on the square lattice Z?, the Voronoi cells
of GameOfLife configuration have usually a very distinctive shape. For
example, the Voronoi cells of the garden of Eden configuration given last
week are

To avoid some rare anomalies we will slightly change the definition of the
VoronoiDiagram when working with GameOfLife configurations. Remem-
ber that we defined Voronoi regions using the usual Euclidian metric in R2.
If all our points lie on a square lattice it might be better to use square norm
where

| (2,Y) loo=maz(| z || y |)

the problem with this norm is that the Voronoi cells can have thick in-
tersections because if two points have the same z-coordinate (or the same
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lieven le bruyn




8b StillLife Conjecture.

y-coordinate) then their Voronoi cells have an intersection of infinite area.
In order to avoid this problem we replace in this case the new halfplanes
by the usual halfplanes on the Euclidian bisector. Mathematically a more
elegant way is to define an e¢-norm by

| (z,9) le=maz(|z |,y [) + emin(|z|,|y )

where ¢ is a positive infinitesimal and then to define the Voronoi region of
a point s € S as the closure of

V(s)={p € R*|p—o [ p—slo V' €S}

The relevance of these changes is that we will work with the small Voronoi
regions which is the intersection of the (new) Voronoi region of a point s =
(z,y) with the 2 x 2 square bounded by the 8 neighbors of s, that is

Vo(s) = V(s) Nz — 1,2 +1] x [y — Ly + 1l
What we want is that the shape and size of these small Voronoi regions

depend only on the neighbors of s and is not influenced by other points of
S. A typical example where things are different is a position like

O.0

X
OO0

then the small Voronoi region of the point labeled z is in the usual Euclid-
ian metric

(observe the two small cuts in the upper regions of the neighborhood due
to the two cells not belonging to the neighborhood itself. In the new metric,
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8 StillLife.

the small Voronoi cells of the same configuration are

and we no longer have this problem. Using these small Voronoi cells we
will prove a strong version of the StillLife conjecture. In dense Game-
OfLife configurations, there is almost no distinction between old and new
Voronoi regions or between small and big Voronoi regions. Here, the small
Voronoi regions of the garden of Eden configuration. Compare with the
usual Voronoi picture.
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Week 9

DensityConjecture.

This week we begin the proof of a strong form of the StillLife Conjecture
following the strategy with the modified small Voronoi diagrams outlined
last time.

9a VoronoiNeighborhoods.

First we make a list of all possible small Voronoi neighborhoods that can
appear under this assumption. As mentioned before this neighborhood
V°(s) depends only on the neighbors of s in S. Also, using the e-norm we see
that all the boundary lines of the Voronoi regions V(s) are all of the form

2c=c¢c or 2y=c or zkxy=c

for some ¢ € Z. Hence, the V(s) are unions of isosceles triangles from a
fixed tiling of the plane of which the fundamental neighborhood looks like

Each of these triangles has area § so the areas of V(s) and of V°(s) must be
multiples of . As we aim to prove that the average area of V(s) or even of




2 , - 9 DensityConjecture.

VO(s) is > 2 it makes sense to introduce the following integer to measure
the deviation from our goal

a(s) = 8.(Area V(s) —2) and o°(s) = 8.(Area V°(s) — 2).

9a.1 At most one neighbor.

In the following table we list the possible small Voronoi diagrams V°(s)
which is the intersection of the fundamental neighborhood (dashed lines
where visible) with the region around the central point s of the fundamen-
tal neighborhood. Moreover, we indicate the neighborhood diagram (thick
lines joining the center s to its neighbours) which explains the mnemotech-
nic name for this neighborhood and we give the value of o°(s).

mnemo zero side hal fdiagonal
area 4 3 33
a®(s) 16 8 12
9a.2 Two neighbors.
i ! |
1 X ]
| ! :
¢ b—r—
i ! i
L]
I 1 |
mnemo diagonal line quarter
area 3 2 3
a®(s) 8 0 8

uia 1999 lieven le bruyn




9a VoronoiN eighborhoods.

------- . N
mnemo rectangular acute obtuse
: 1 7 1
area 25 25 25
a®(s) 2 7 4
9a.3 Three neighbors.
mnemo  Diagonal Line Quarter Rectangular
area 21 11 2 12
a(s) 4 —4 0 -2
------- A L
mnemo Ajcute Aycute Ascute
1 3 7
area 23 23 lg
a®(s) 2 3 -1
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9 DensityConjecture.

mnemo _{licute &cute Agcute
3 1 3"

area 2§ 2§ 22

a°(s) 3 1 6

9b VoronoiBlocks.

We see that most of the small Voronoi region have already area > 2. Only
those of type

Line Rectangle and Ascute

may cause problems. The strategy in those cases is to prove that neighbor-
ing vertices of s must have types such that when averaging the total area
over these local patches P we obtain > 2, or equivalently,

> a(t)>0.

teP

An example will illustrate this idea. Assume we have a vertex z € S of type
L, then the vertex y not lying on the big line must be of type A¢ (asnos € S
can have more than three neighbors. If we then take P to be the union of
the small Voronoi regions of z and y we obtain

a(P) > o®(z) +o®(y) = —4+6=2>0.

As any L-vertex has a unique neighboring As-vertex (and conversely), we
can pair the L’s and A3’s in the local patches P and remove the L-problem.

Remains to consider the Rectangle and Ascute vertices. Again, we will put
them in good local patches but we will have more cases to consider. We will
give here the easier of cases and refer to the original paper

Noam D. Elkies
"The still-Life density problem and its generalizations"
ftp://ftp.math.harvard.edu/elkies/MISC/still.ps.Z
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9b VoronoiBlocks. 5

for full details. We expect you to work through at least one of the remaining
cases.

Let z be a vertex of type Ascute, then « has a unique pair {z’,z”} of neigh-
bors in S adjacent to each other. Let z’ be the vertex lying on the big line.
Assume that z’ has two neighbors, then it must be of type rectangle. Then,
the vertex z” must be one of the following types

acute Azcute Ascute or Aycute.

If we then make a patch P consisting of the Voronoi cells of {z,z',2”} we
obtain that o(P) is at least equal to

a®(a)
0 0 a®(Az) _ 3
a®(As) +°(r) + oAy 14244, =20
OtO(A4) 3

with the worst possible case corresponding to the situation

® ¥
[ ® ®
H %'

When z’ has three neighbors a lot more cases must be considered and big-
ger patches used.

Another use of these considerations is to classify the StillLife configura-
tions having exactly density % Then we must group the patches P every-
where such that a(P) = o°(P) = 0 which allows us to exclude several types
immediately such as

d ¢ a o and Ay

and that a vertex of type D must have one or two neighbors of type R. The
case of two R neighbors leads to the density  ’onions’
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6 ‘ , ‘ 9 DensityConjecture.

P & N & N © L © N
000 .0000.0000.0000.000
..0.0..0.0..0.0..0.0..
..0.0..0.0..0.0..0.0..
000 .0000.0000.0000.000
& B ¢ N & PN ©
000..000..000..000..00
0..000..000..000..000.
R L & I ¢ N O
00 .0000.0000.0000.0000
.0.0..0.0..0.0..0.0..0
.0.0..0.0..0.0..0.0..0
00.0000.0000.0000.0000
c.0....0....0....0....
00..000..000..000..000
. .000..000..000..000..
O0....0....0....0....0.
. 0000 .0000.0000.0000.0
.0..0.0..0.0..0.0..0.0

and a probably complete list of density 1 StillLifes is compiled with this
local patch method. For more details we again refer to Elkies’ paper.
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Week 10

CombinatorialGames.

Voronoi regions also play an important part in some games where there is
a struggle for space, the most classical example being go. This week we
introduce another such game where the methods described before can be
used. We will also give a very quick introduction to the theory of Combina-
torialGames.

10a ColeringGame.

As each move simplifies the game, we can compute the value of a position
G recursively. A position will be denoted by ’

G=(Gh, .. Gl |G, ... G

where G (resp. Gf4) are the optional position for Left (resp. Right). For
example

O oe0 |10
=(LLJ® Il @)

?

Now any of the three Left options is a very simple position, as for instance

O @

=(010)< 0




10 CombinatorialGames.

(and the others have the same value). In computing the value of a position
we certainly can skip repeating positions of equal value, so

O
=(0]0)¥ 1.
Every position has a negative which is defined recursively by
—G=(=Gf,. . =GR | -G, ... ~G")

where of course —f = ) and —0 = 0. In Colering the negative of a position
is the position obtained by changing the colors. Therefore,

O o
= =00 = -

In general, a position G = (GL | G%) is a number provided

e All G% and G are numbers or (),

e No G% is larger or equal than some G and

e No G% is smaller or equal than some G%:.

The value of a number-position is then the simplest value in the binary tree

/\
N N

-1

/\ / N\ /\ /\

-3 an -14 14

/\ ANVANRVARYA A A A

strictly greater than any of the G and strictly smaller than any of the
GFi. Many positions in Colering are such dyadic numbers but not

all. For example,
[1=([®][Cly=(0|0)% «

which is an example of a fuzzy position, that is a position G such that nei-
ther 0 < G nor G < 0. The relevance of the value of a position G is the
following
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10b ColeringDensity.

e If G = 0 then the 2nd player wins.

¢ If G > 0 then L wins no matter who starts.
¢ If G < 0 then R wins no matter who starts.
o If G is fuzzy then the 1st player wins.

If you want a challenge : try to prove (by recursion) the following

Theorem 10.1. (Conway,Guy) Any position G in Colering has the
value

z or zx=(z|z)

for x some dyadic integer.

10b ColeringDensity.

Let us apply what we learned to prove the maximal density of a legal
Colering position on an infinite board and to classify those positions that
attain this maximal density. The strategy will be similar. First for each
go-stone we classify the possible neighborhood-stones and compute the o°-
value which is 8.(Area V°(s) — 2) where V°(s) is the small Voronoi region of
the stone s. One encounters only the following situations with < 3 neigh-
" bors

O O O

o ® o e 0 AV
mnemo zero halfdia side  obtuse
a®(s) 16 12 8 4

O O T
e | [OeO | e | |Oe e
O O Ha e

mnemo diag line quart Quart
a(s) 8 0 8 0
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10 CombinatorialGames.

the only new neighborhood possibility has 4 neighbors, we remember it as
Cross and its small Voronoi diagram has the following shape

O

Therefore, the area of V°(s) = 2 and consequently o® = 0. Repeating the
argument for the StillLife configurations these computations prove

Theorem 10.2. Every legal Coloring position has density < 1.

Moreover this density can be reached by an infinite tiling of the following
pattern

O @0e

We can also classify the positions of density 1 as in them every stone must
have a neighborhood of type line, Quart or Cross. Apart from the infinite
pattern given above (where each line can be colored in 2 different ways)
we obtain a variety of Chicken wire positions. The stones are placed in the
following positions

0.0.0.0.
.0.0.0.0
.0.0.0.0
.0.0.0.0
0.0.0.0.
.0.0.0.0
.0.0.0.0
0.0.0.0.
.0.0.0.0
0.0.0.0.

where in each section the size of the hole is arbitrary (in this case they are
of size ...,3,2,1,... . Observe that we also encounter these configurations.
in StillLife but then the sizes of all holes must be > 1. Also observe that
coloring one stone dictates the colors of the other stones. Further, each of
these positions has value 0 as no player has a remaining move. In short,
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10b ColeringDensity.

Theorem 10.3. All legal Coloring positions of density ; are ChickenWire
configurations with the size of the holes 1,2,...,00. each of these configura-
tions gives rise to exactly two legal positions (except when some holes are

oo). All maximal density positions have value 0.
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