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These are notes of a talk given at the "'Workshop in noncommutative geometry’
held at the Max-Planck Institute in Bonn from June 25th till July 3rd 1999.
In contains a proposal to construct global noncommutative manifolds using the
setting of [3] which in turn is based on ideas of Kapranov [1] and of Kontsevich
and Rosenberg [2].

1 noncommutative geometry

In developing a noncommutative (algebraic) geometry one should first fix
ones points of interest. It is conceivable that if you are interested in graded
quadratic algebras you will end up with another ’geometry’ than someone in-
terested in finite dimensional algebras or in enveloping algebras. So let me get
my priorities straight. I am interested in a geometry in which the manifolds
are pieced together locally from quasi free algebras and are equipped with gen-
eralizations of the formal structures Kapranov puts on commutative manifolds.
Let me briefly recall these notions.

1.1 Quasi-free algebras

In the naive setup where we declare noncommutative affine schemes to be
things associated to affine associative C-algebras (always with a unit), there
is some agreement based on work of Cuntz and Quillen that the affine smooth
varieties ought to correspond to quasi-free algebras.

|affine schemes| | affine manifolds| | offine spaces

affine algebras| | quasi-friee algebras | | path algebras |

Recall that an algebra is quasi-free if it has the lifting property for algebra mor-
phisms modulo nilpotent ideals. Just as a commutative n-dimensional mani-
fold is locally affine n-space we would like to have a manageable analytic local
description of these quasi-free algebras. I will argue that these local forms are
given by the subclass of path algebras of quivers.
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The paradigmatic example is the noncommutative space X of a quasi-free al-
gebra A. In that case we have

NC
OrepnA

X, = rep,A

where rep,, A is the affine scheme of n-dimensional representations of A which
is verified to be smooth. As such we can equip rep,, A with the canonical Kapra-
nov formal structure. The connecting morphisms ¢, are given by taking direct
sums of representations

[EP,, A X ... X €D, A —2» [6P5 , . A.

which is clearly compatible for sequence refinements and compatibility of the
formal structures will be given below.

2 noncommutative geometry@,

Before formalizing what level n geometric objects are we will indicate to what
extend path algebras of quivers can be seen as affine spaces describing the
local structure of quasi-free algebras, we will describe how to calculate with
the formal structures in the case of path algebras and extend these formal
structures to arbitrary algebras.

2.1 The baby version

Let A be an affine C-algebra, then rep,, 4 is the affine scheme representing the
functor

commalg — sets B — Homqg(A, M, (B)).

There is a natural action of GL, on this scheme by conjugation in the target
space. In fact we have the following situation (most results here are due to C.
Procesi)

M, (OrepnA) l OA@,,

rep, A fac, A

Here, fac, A is the GL,-quotient scheme, the points of which correspond to iso-
morphism classes of semi-simple n-dimensional representations. The universal
map

A4 M, (Clrep, 4])
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If A is quasi-free, then so is /A as M, ({/4) = A » M,,(C) and by the essential
uniqueness result of formal structures on affine smooth varieties we have in
this case

054 = 0%z

and therefore can extend the formal structure in a functorial way to all affine
representation schemes rep, A.
For arbitrary A we have by the universal property canonical algebra mor-

phisms
l'IniA_> " "(/ nvz

A — "YAx VA, .. x WA

Taking one dimensional representations with respect to the latter one gives us
the required connecting morphisms

SPECA@y, X ... X SPECA@y, —=» SPECA@s 4.

Universal constructions such as {/4 are only as useful as one can compute with
them. In particular we must have a description of </C() when @ is a quiver on
k vertices. Consider the extended quiver

o

where we add to the vertices and arrows of () one extra vertex 0 and for every
vertex ¢ in @ we add n directed arrows z;; from 0 to ; and n directed arrows y;;
for i to 0. We then consider the matrices

Y1 - Yma
11 +evv oo Tin . .
My =] : and N, =
Tkl ve oo Tkn
Yin ... Ykn
and impose the conditions
Vo 0
v 0
M, N, = and N, .M, =
0 Vg
0 Vo

where v; is the idempotent in the path algebra corresponding to vertex 0 < j <
k.

Using these conventions we can then identify /CQ as the algebra of oriented
loops based at vertex 0 in this quiver with relations.




For example if X is a surface, then the only quiver-data that can occur are

O—0—0

?

possibly with one or both of the circuits reduced to a loop. Invariant theory of
quivers and étale descent then implies the following restrictions on X, A and
A

¢ X must be smooth,
o the ramification divisor of .4 has only normal crossings as singularities,

¢ A is étale locally splittable.

This information can then be combined with the Artin-Mumford sequence de-
scribing the Brauer group Br(C(X)) to determine the classes of A admitting
an order .4 such that rep,, A is a smooth GL,,-scheme over X. The étale local
structure of maximal orders over surfaces due to Artin then actually provides
the orders .4. The strategy in higher dimension is similar (but substantially
harder). For more details we refer to [4].

This provides us with a huge class of settings

M, ((’)rep,,A)

rep, A X

which can be seen as a level n extensions of smooth projective varieties. How-
ever, as in the commutative case not all of these will carry a global formal
structure. I have not worked out the obstruction yet but they are expected to
be GL,-equivariant variations of the obstructions found by Kapranov. Still, it
is reasonable to expect that many of the above setting actually give a mani-
fold in geometry@, (for example if A4 is an Azumaya algebra over a smooth
manifold X having a formal structure).

Assume we have a collection of integers n; and manifolds in geometry@,, as
above

M'ﬂ ((’)Mni Bi) Ogi(n)
Mn(Orep, 4;)
rep,, A Y,




