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Motivation.

This book is all about smooth noncommutative algebras and combinatorial tools
to study them. It is an old result, due to A. Grothendieck, that when A is a
commutative affine C-algebra, A is the coordinate ring of a smooth affine variety
if and only if A satisfies the following lifting property. For every test-object (B,T)
where B is a commutative C-algebra and I <R is a nilpotent ideal and any C-algebra
morphism ¢ : A — £ there is a C-algebra lift ¢

~I

making the diagram commute. As this is a purely categorical characterization of
smooth affine commutative algebras, it can be extended to more general settings
where we restrict the test-objects and morphisms to a specified category of C-
algebras. In this book we focuss on two such settings.

If we take the category alg with objects all (not necessarily commutative) C-
algebras and as morphisms all C-algebra morphisms, then algebras satisfying the
above lifting property with respect to test-objects in alg are called (formally) smooth
algebras or Quillen-smooth algebras. The importance of this class of algebras is
that they are often associated to natural families of moduli problems. Examples
of Quillen-smooth algebras include : semi-simple C-algebras (as we can lift idem-
potents modulo nilpotent ideals), free algebras C(x, ..., z), path algebras CQ of
quivers (oriented graphs) as well as more exotic algebras constructed from these by
universal constructions such as the free product A; * Ao, the n-th root YA and so
on. However, the coordinate ring of an affine smooth variety is Quillen-smooth if
and only if the variety is a curve. To see at least one implication of this equivalence
it suffices by reasoning locally to verify the lifting property for the formal power
series ring Cl[z1, ..., zx]]. Take the 4-dimensional noncommutative algebra

Clz,y)

T=_— I
(22,92, zy + yx)

=CaCxepCyec Cay

then the quotient modulo the nilpotent ideal I = (zy — yz) is a 3-dimensional
commutative ring and we have an algebra map z; — x, 2 — y and z; — 0 for
i > 3 which is verified not to allow a lift unless k = 1, the curve case.

The second category we will consider is CH(n), the category of all Cayley-
Hamilton algebras of degree n. Its objects are C-algebras A equipped with a linear
trace map tr : A — A satistying tr(a)b = btr(a), tr(ab) = tr(ba) and tr(tr(a)b) =
tr(a)tr(b) for all a,b € A. The formal Cayley-Hamilton polynomial of degree n
of an element a € A is defined by expressing [[;_,(t — ;) as a polynomial in ¢
with coefficients which (being symmetric functions) can be expressed as polynomial

functions in the Newton functions ) z!*. Replacing >z by tr(a™) we obtain



the Cayley-Hamilton polynomial Xfln)(t) € A[t]. A is said to be a Cayley-Hamilton
algebra of degree n provided ¢r(1) = n and Xgn) (a) = 0 for all @ € A. Naturally,
morphisms in CH (n) must be trace preserving. A C-algebra A € CH(n) with the
above lifting property for test-objects (B, I), where B € CH (n) and I < B nilpotent
such that tr(I) C I (making £ € CH(n)) and where ¢ : A —— £ as well as
its lift ¢ : A —— B must be trace preserving, is called a Cayley-smooth algebra
(of degree n). Examples include semi-simple algebras M, (C) & ... ® M, (C) with
n = Y .n; (equipped with the sum of the natural traces) as well as many nice
C[X]-orders in central simple C(X)-algebras of dimension n? where X is an affine
normal variety. An important subclass are the so called Azumaya algebras over
X, such as M, (C[X]), when X is smooth. The more interesting examples include
ramified orders where the central variety X is allowed to have singularities. We
will give a complete étale local classifications of Cayley-smooth orders and of the
central singularities.

In the next two chapters we motivate the study of these noncommutative smooth
algebras. In chapter 1 we study Calogero particles which is a classical n-particle
system in C with positions z; € C and velocities y; € C and Hamiltonian
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This is a completely integrable dynamical system via the equations of motion. If
the n particles are distinct (that is z; # x; for ¢ # j) the corresponding point in the
phase space is the 2n-tuple (21, y1;. . . ; Tn, yn) under the proviso that two such tuples
are the same when we permute the n couples (x;,y;). As the system is attractive,
collisions will occur and one wants to extend the phase space analytically. This was
done by G. Wilson in [33] who showed that the extended phase space Calo,, is the
2n-dimensional connected manifold of G L, -orbits of quadruples

(X,Y,u,v) € M,(C)® M,(C) »C" ® C™ such that [X,Y]+wuv="T,

where the action is given by ¢.(X,Y,u,v) = (¢Xg~',gY g™ ', gu,vg~!). This phase
space Calo,, should be compared with the 2n-dimensional Hilbert scheme Hilb,, of
n points in C2. Whereas H4lb,, decomposes in strata according to the multiplicities
of the points, Calo, was shown by V. Ginzburg [§] to be a coadjoint orbit for an
infinite dimensional Lie algebra, which is independent of n.

The Lie algebra is naturally associated to a Quillen-smooth algebra M which is
the path algebra of the quiver

We will define noncommutative functions, differential forms and symplectic struc-
tures on Quillen-smooth algebras. They have the characteristic property of induc-
ing corresponding G L,,-invariant classical structures on the representation varieties
rep, A of these algebras. In the case of path algebras such as M, these represen-
tation spaces decompose according to the dimensions of the vertex spaces. In the
special case of dimension vector a = (n, 1) we have

repa M = M, (C)® M,(C)® C" e C™



with the GL(a) = GL, x C*-action given by (g,A).(X,Y,u,v) =
(9Xg~t,gYg L gur=t, Avg™1). To this action we associate the moment map

repe M —» M,(C)@® C (X,Y,u,v) —» ([X,Y] + v, —v.u)

and one proves that Calo, is equal to p=!(1,, —n)/GL(a) and that Hilb, is an
open subvariety of u=1(0,,0)/GL(a). The infinite dimensional Lie algebra men-
tioned before is associated to the group of C-algebra morphisms of M preserving
the moment-map element [x,y] + [u, v].

In analogy with the commutative case, one would expect that the difference
in behaviour between Calo,, and Hilb,, is caused by the fact that the fiber-algebra
associated to Calo, is Quillen-smooth whereas that associated to Hilb,, is not (con-
tains noncommutative singularities).

Calon Hilby,

sing
repa M/GL(a) : /

/

/
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A natural definition of these noncommutative fiber algebras are the deformed pre-
projective algebras introduced and studied by W. Crawley-Boevey and M.P. Holland
in [6]. In the case under consideration, the fiber algebra of Calo,, (resp. Hilby) is
M; (resp. My) where for any A € C we define

M
([, 4] + [u, 0] = AMe = nf))

One verifies that for every A € C the fiber-algebra M is not Quillen-smooth, so
apparently there is no difference between M; and M.

However, if one focusses on Calo,, or Hilb, for a specific value of n, these fiber-
algebras are a bit too big and it is more natural to consider algebras associated
to M, and the dimension vector & = (n,1). First, we define the algebra M(n) to
be the C-subalgebra of M, 1(C[rep, M]) generated by the polynomial invariants
Clrepa ML) (embedded as scalar matrices) and the following matrices

M, =

1 0 0 0 0 11 oo T1n 0
e, = : fo= | Do €, = :
0 0 0 0 0 1 0 0 0
Y11 ... Yin O 0 ... 0 0O ... 0 O
o] I R e
0 0 0 0O ... 0 0 v ... v, O

The usual trace map on M, +1(C[rep, M]) makes M(n) a Cayley-Hamilton algebra
of degree n 4+ 1 and it is even a Cayley-smooth algebra of degree n + 1. The closed



affine subscheme 7=(X1,, —n\) has as its defining ideal of relations Iy the entries
in the n + 1 x n + 1 matrix

X, O
[T, Yn] + [tn, vn] — |: 0 _n)\]

By invariant theory we have that the defining ideal of the quotient scheme
= (X, —nA)/GL(a) is Jy = In N Clrep, M]E(®). The restricted fiber-algebra

we are interested in is

Mi(n)
M(n)JAM(n)
Again, M, (n) is a Cayley-Hamilton algebra of degree n+1. The distinction between
Calo,, and Hilb,, is a consequence of the fact that

M)\(TL) =

M;(n) is Cayley-smooth of degree n + 1,
Mjy(n) is not Cayley-smooth of degree n + 1

and the last fact holds even when we restrict to the open subvariety Hilb, of
1~ 1(0,,,0). The homogeneous character of Calo,, follows from the fact that M (n)
is an Azumaya algebra over Calo,. That is, to every point in the extended phase
space corresponds a simple n + 1-dimensional representation. In chapter 12 we will
generalize these results to fiber-algebras for the moment map of arbitrary quiver
settings.

In chapter 1 we will give an outline of the main ingredients going into the
proof of Ginzburg’s result on coadjointness of Calo,, in particular the acyclicity of
the Karoubi complex and noncommutative symplectic geometry identifying tangent
vectors (derivations) with noncommutative 1-forms. More details will be given in
chapters 9,10 and 12.

The investigation of Cayley-smooth algebras has also a more classical motivation
as we will recall in chapter 2. Let X be a projective normal variety with function
field C(X). An important birational invariant of X is the Brauer group Br C(X).
The elements of Br C(X) are equivalence classes of central simple C(X)-algebras A.
That is, the center of A is C(X'), A has no proper twosided ideals and dimc(xy A =
n? for some integer n. Two such algebras A and A’ are equivalent if M (A) ~
M;(A) for certain k,I and the isomorphism is as C(X)-algebras. Then, tensor
product over C(X) induces a group structure on Br C(X). In chapter 2 we will recall
the necessary ingredients from étale cohomology to outline the proof of the coniveau
spectral sequence which gives us a handle on the n-torsion part of Br C(X). This
result also shows that the collection of all central simple C(X)-algebras of degree n
is huge.

For example, a subset of the n-torsion part of Br C(x,y) is given by the following
geometrical data. Let C and C’ be two smooth irreducible projective curves in P?,
intersecting each other transversally in the points {Py,..., P;}. Let a; € Z/nZ for
every 1 < ¢ < k such that Zle a; = 0. Now, take a cyclic Z/nZ-cover of smooth
curves

D—C and D' — ('

such that D (resp. D’) are ramified only in the points P; with ramification deter-
mined by the class a; € Z/nZ (resp. —a; € Z/nZ). One can control such coverings
using the fundamental group of the Riemann surfaces C' (and C”) with k punctures.
For example, if C' has genus g, then the collection of such covers is in one-to-one
correspondence with group morphisms

m(C—{Pr,..., Pi}) = ¢ (1,03, 00010g 0 B0, Tk) Aut Z/nZ.
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mapping z; to the multiplication by a; (and similarly for ¢’ mapping the z; to mul-
tiplication by —a;). To every such data corresponds a class of order n in Br C(z,y)
which often corresponds to a central simple C(z, y)-algebra of degree n, that is, of
dimension n? over C(z,y).

Returning to the general setting of a projective normal variety X, let A be a
central simple C(X)-algebra of degree n. If K is the algebraic closure of C(X), then
A ®¢(xy K ~ M,(K) and by Galois descent the usual trace on M, (K) induces a
trace map on A making it a Cayley-Hamilton algebra of degree n. An important
class of Cayley-Hamilton algebras of degree n is given by section algebras of Ox-
orders in A. That is, let A be a sheaf of Ox-algebras over X such that for every
affine open subset U —— X we have

I(U, AT(U,0x) = A

Because I'(U, Ox) is integrally closed, the trace map on A determines a trace map
on the section algebra I'(U,.A4) making it a Cayley-Hamilton algebra of degree n.
We call a sheaf A of Ox-orders in A to be a noncommutative smooth model for A
if all affine section algebras are Cayley-smooth of degree n.

The archetypical example of such a noncommutative smooth model is given
by the Artin-Mumford counterexamples to the Liiroth problem [3] , that is the
construction of certain unirational non-rational threefolds. Let C and C’ be two
smooth elliptic curves in P? intersecting transversally in {Py,..., Py}, let all a; =0
and consider two unramified Z/2Z-covers D — C and D’ — C’. Then, D
and D’ are again elliptic curves and the covers are given by dividing out a point of
order two. Let A be the corresponding central simple algebra over C(x,y) which
is a quaternion algebra. Next, let X —> P? be the rational projective surface
obtained by blowing up the P; and let A be a maximal Ox-order in A. M. Artin
and D.Mumford are able to calculate the local description of A. If z € X not lying
on CUC" then A, is an Azumaya algebra and if z € C UC’ (the strict transforms),

then
2

1 =a
Ay = Ox,3 ®Ox 01D Ox ) ® Oxgij with 52 =bt
ji = —ij

where a and b are units in Ox , and ¢t = 0 is a local equation for C UC’ near z.
Extending the classical notion of Brauer-Severi varieties of central simple algebras
to these orders they define BS(.A) which is a projective space bundle over X

T

BS(A) T X

Using the local description of A they show that BS(A) is a smooth variety, = is
a flat morphisms and the geometric fibers are isomorphic to P! (resp. to P! v P!)
whenever 2z ¢ C U C’ (resp. = € C UC"). For specific starting configurations
they then show that the threefold BS(A) is unirational but non-rational. With
hindsight, the characteristic property of A allowing a local description, a smooth
Brauer-Severi scheme and a description of the fibers is that A is a noncommutative
smooth model for A. In this book we will generalize these computations both to
higher degree central simple algebras and higher dimensional base varieties.

In chapter 6 we will give a complete characterization of the central simple al-
gebras A over C(S) where S is a projective smooth surface such that A allows a
noncommutative smooth model. For example, among the subclass of Br, C(z,y)
described before by two curves and ramified covers those allowing a smooth model
are precisely the configurations where all a; = 0, that is, such that the covers are
unramified. In fact, for such a A an explicit smooth model is obtained by taking



a maximal order A in A where X is the surface obtained after blowing up all the
intersection points P;. In this generality we will be able in chapter 5 and 6 to
determine the étale local structure of A, in z € C'UC’ (in all other points it is
an Azumaya algebra). If A is of degree n it is determined by combinatorial data
consisting of a circuit on k < n vertices ordered starting in the vertex having an
extra loop

and an unordered partition p = (p1,...,px) of n having exactly k parts. The m,-
adic completion of A, is then isomorphic to the subalgebra of M,,(C[[z, y]]) for local
coordinates (x,y) near z having the following block form

Mpl((c[[$7y]]) Mplxpz((x)) Mpmm((x))
o @l M) M (@)
Moo (Cllz, 1) mpsscon Cllzgl)) - Moy (Clla )

The combinatorial data is constant along C and a possibly different data is constant
along C’. We will show in chapter 2 that for such orders the Brauer-Severi scheme
BS(A) is a smooth variety. In chapter 8 we will give a combinatorial method
to describe the fibers of the structural morphism BS(A) — X. Consider the
quiver-data

That is, we add a vertex vy and connect it to vertex v; with p; arrows. We will
prove in chapter 8 that the fiber is the moduli space of #-semistable representa-
tions in the nullcone of this quiver with dimension vector (1,1,...,1) and where
0 = (n,—p1,—p2,...,—pr). That is, we have to classify isomorphism classes of
representations such that at least one of the arrows in the circuit is zero and such
that the representation contains no proper subrepresentation of dimension vector



(1,n1,n9,...,n;) with all n; = 0 or 1 such that n — >, p;n; > 0. In chapter 7
we will give more details on such moduli spaces and the combinatorial aspects of
f-semistable representations.



Chapter 1

Calogero Systems.

One motivation to study noncommutative geometry comes from physics. One wants
to understand the behaviour of n-particle systems when n —— oco. In this chapter
we will give an illustrative example : collisions of Calogero particles.

We will first describe the phase space of collisions of n Calogero particles Calo,,
using invariant theory. Its description is closely related to that of the Hilbert scheme
of n points in the plane, Hilb,. In fact, Nakajima [2I] and G. Wilson [33] have
shown that there is a diffeomorphism of C* (real) manifolds between the two spaces.
However, this diffeomorphism does not respect the complex structure and, in fact,
both spaces have fundamentally different properties. Recent work of Y. Berest
and G. Wilson [4] relating the phase space of Calogero particles to the study of
isomorphism classes of right ideals in the Weyl algebra suggests that Calo, is a
coadjoint orbit of some infinite dimensional algebraic group. This conjecture was
recently proved by V. Ginzburg [§] using noncommutative symplectic geometry.

We will briefly indicate the main steps in Ginzburg’s proof (more details will be
given in chapter 12). The phase space Calo,, turns out to be a fiber of the moment
map on the representation space of a noncommutative smooth algebra. Following
the lead of M. Karoubi [II] and J. Cuntz and D. Quillen [7] one defines differential
forms and de Rham cohomology for noncommutative algebras. In the case of the
smooth algebra M under consideration the de Rham complex is shown to be acyclic,
a result first proved by M. Kontsevich [13] for the free algebra. Moreover, there
is a natural symplectic structure on M giving a natural one-to-one correspondence
between 1-forms and derivations (vector fields). Ginzburg’s result then follows from
a noncommutative version of the classical exact sequence in symplectic geometry
describing Hamiltonian vector fields.

Similarly, the Hilbert scheme Hilb,, is (part of) a fiber of the moment map but
one knows that this space cannot be a coadjoint orbit. The distinction between the
two cases comes from investigating noncommutative algebras, finite modules over
their centers, associated to these fibers. It turns out that the algebra corresponding
to Calo,, is a smooth order (in fact it is even an Azumaya algebra over Calo, ),
whereas that corresponding to Hilb, is not. The description and study of such
smooth orders will be one of the main goals of this book. In chapter 12, we will be
able to extend the above results to general quiver varieties.

9
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1.1 Calogero particles.

The Calogero system is a classical particle system of n particles on the real line with
inverse square potential.

T T2 Tn

That is, if the i-th particle has position z; and velocity (momentum) y;, then the
Hamiltonian is equal to

1 & 1
H=3) %+ Gy
i=1 i<j <t

The Hamiltonian equations of motions is the system of 2n differential equations

dt N ayl
dy. _ OH

This defines a dynamical system which is integrable.
A convenient way to study this system is as follows. Assign to a position defined

by the 2n vector (z1,y1;...,%n,yn) the couple of Hermitian or self-adjoint n x n
matrices
_ ; PR
U1 T1—12 . e T1i—2r
Ty
i
To—71 Y2
X — : : and Y =
b
Tn—1—"Tn
i i Tn
Lzn—1 T ®p—Tpoa Yn o]

Physical quantities are given by invariant polynomial functions under the action
of the unitary group U,(C) under simultaneous conjugation. In particular one
considers the functions

X
F_] =tr —_—
J
For example,
tr(X) => v the total momentum
str(X%) =1>y? - i< m the Hamiltonian

We can now consider the U, (C)-translates of these matrix couples. This is shown
to be a manifold with a free action of U, (C) such that the orbits are in one-to-
one correspondence with points (z1,y1;...;%n,y,) in the phase space (that is, we
agree that two such 2n tuples are determined only up to permuting the couples
(2i,yi). The n-functions F} give a completely integrable system on the phase space
via Liouville’s theorem, see for example [I].

In the classical case, all points are assumed to lie on the real axis and the
potential is repulsive so that collisions do not appear. G. Wilson [33] considered an
alternative where the points are assumed to lie in the complex numbers and such
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that the potential is attractive (to allow for collisions), that is, the Hamiltonian is

of the form ) )
H=-=- 2 I —
D

1<J
giving again rise to a dynamical system via the equations of motion. One recov-
ers the classical situation back if the particles are assumed only to move on the
imaginary axis.

Ty

€2

Tn

In general, we want to extend the phase space of n distinct points analytically to
allow for collisions. When all the points are distinct, that is, if all eigenvalues of Y
are distinct we will see in a moment that there is a unique G L, (C)-orbit of couples
of n x n matrices (up to permuting the n couples (z;,y;)).

- 1 1 -
Y1 -7 . . Ti—z,
1 . .
To—x1 Y2 : : Ty
1 Ln
i 1 Tn—1—Tn
LZn—21 e e Tn—Tn—1 Yn m

For matrix couples in this standard form one verifies that

1 ... 1
XY+ |t . =1,
1 ... 1

This equality suggests an approach to extend the phase space of n distinct complex
Calogero particles to allow for collisions.
Consider the 2n? + 2n-dimensional vectorspace (the notation will be explained
later)
repa M= M, (C)® M,(C)® C" & C™

(where C™ is the space of row-vectors). Consider the subvariety CALO,, of quadru-
ples (X,Y, u,v) such that
(X, Y] +uov="1,

There is an action of GL,(C) on the vectorspace defined by
9-(X,Y,u,v) = (9Xg~" gY g™, gu,vg™")

which preserves CALO,, and which we will show to be free.
We can define the phase space for Calogero collisions of n particles to be the
orbit space
Calo, = CALO,,/GL,(C)

the space of orbits of GL,(C) on CALO,,. In a moment we will show :
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Theorem 1.1 The phase space Calo, of Calogero collisions of n-particles is a
connected complex manifold of dimension 2n.

1.2 The moment map.

The moment map for the G L, (C)-action on M, (C)® M, (C)® C" & C™* is defined
to be

M, (C) & M,(C) ®C" & C™ - M, (C)

(X,Y,u,v) — (X, Y]+ uw

We will be interested in the differential dp of this map which we can compute by
the e-method : [(X + €A), (Y + €B)] + (u+ ec).(v + ed) is equal to

(X, Y] +uwv)+e([X,B]+ [AY] + u.d+ cov)
whence the differential du in the point (X, Y, u,v) is equal to
A x,v,uw) (A,B,c,d) =[X,B]+ [A, Y] +u.d+ co.

We say that u is a cyclic vector for the matrix-couple (X,Y) € M,,(C) ® M,,(C) if
there is no proper subspace of C™ containing u which is stable under left multipli-
cation by X and Y.

Lemma 1.2 The differential du is surjective in (X,Y,u,v) if u is a cyclic vector
for (X,Y).

Proof. Consider the nondegenerate symmetric bilinear form on M, (C)

M, (C) x M,(C) —— C

(M,N)  — tr(MN)

Nondegeneracy means that tr(MN) = 0,VN € M, (C) is equivalent to M = 0.
With respect to this inproduct on M, (C) the space orthogonal to the image of
dp(x,v,u,v) 18 equal to

{M € Mp(C) | tr([X,B]M + [A,Y]M +w.dM + coM) = 0,%(A, B, c,d)}

Because the trace does not change under cyclic permutations and is nondegenerate
we see that this space is equal to

{MeM,(C)| [M,X]=0 [Y,M]=0 Mu=0 and oM =0}

But then, the kernel ker M is a subspace of C™ containing v and stable under
left multiplication by X and Y. By the cyclicity assumption this implies that
ker M = C" or equivalently that M = 0.

As dué-X7Y7u7v) = 0 and ¢r is nondegenerate, this implies that the differential is
surjective. O

It follows from the implicit function theorem that the image of the moment map
is open in M, (C). If we denote by reps, M (again, we will explain the terminology
later) the open submanifold of M, (C) ® M,,(C) ®C" & C™* consisting of quadruples
(X,Y,u,v) such that u is a cyclic vector for (X,Y) then we obtain
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Proposition 1.3 For every matriz M € M, (C) in the image of the map
repl, Ml —"— M, (C)
the inverse image p~—t(M) is a submanifold of M,(C) ® M,(C) & C* & C™ of

dimension n? + 2n.

1.3 Hilbert stairs.

For the investigation of the GL,,(C)-orbits on rep?, M we introduce a combinatorial
gadget : the Hilbert n-stair. This is the lower triangular part of a square n X n
array of boxes

1 n

filled with go-stones according to the following two rules :
e cach row contains exactly one stone, and
e cach column contains at most one stone of each color.

For example, the set of all possible Hilbert 3-stairs is given below.

o [ ] o O O O
ol | o o |e] | o] o

To every Hilbert stair o we will associate a sequence of monomials W (o) in the free
noncommutative algebra C(x,y), that is W (o) is a sequence of words in x and y.

At the top of the stairs we place the identity element 1. Then, we descend the
stairs according to the following rule.

e Every go-stone has a top word T which we may assume we have constructed
before and a side word S and they are related as indicated below

1 1 1

L. . .

O s, ® Tl O - Ter

3 3 3

For example, for the Hilbert 3-stairs we have the following sequences of non-
commutative words

1 1 1 1 1 1

@ = @ =x ® | = Ol v Ol v Ol v
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We will evaluate a Hilbert n-stair ¢ with associated sequence of non-commutative
words W (o) = {1, wa(z,y),...,wy(x,y)} on

repe M = M, (C) ® M,(C)eC" e C™*

For a quadruple (X, Y, u, v) we replace every occurrence of z in the word w;(z,y) by
X and every occurrence of y by Y to obtain an n xn matrix w; = w;(X,Y) € M, (C)
and by left multiplication on w a column vector w;.v. The evaluation of o on
(X,Y,u,v) is the determinant of the n x n matrix

o(X,Y,u,v) =det| u wo.u || ws.u Wy U

For a fixed Hilbert n-stair o we denote with rep(c) the subset of quadruples
(X,Y,u,v) in rep, M such that the evaluation o(v, X,Y") # 0.

Theorem 1.4 For every Hilbert n-stair, rep (o) # ()

Proof. Let u be the basic column vector

Let every black stone in the Hilbert stair ¢ fix a column of X by the rule

: I g
1 J n J
That is, one replaces every black stone in ¢ by 1 at the same spot in X and fills
the remaining spots in the same column by zeroes. The same rule applies to Y for
white stones. We say that such a quadruple (X, Y, w,v) is in o-standard form.
With these conventions one easily verifies by induction that

wi(X,Y)e; =¢; forall2<i<n.

Hence, filling up the remaining spots in X and Y arbitrarily one has that
o(X,Y,u,v) # 0 proving the claim. a

Hence, rep (o) is an open subset of rep, M (and even of rep?, M) for every Hilbert
n-stair o. Further, for every word (monomial) w(z,y) and every g € GL,(C) we
have that

w(gXg™',gYg™)gv = gw(X,Y)v

and therefore the open sets rep (o) are stable under the G L, (C)-action on rep, M.
We will give representatives of the orbits in rep (o).
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Let W, = {1,z,...,2™, xy,...,y"} be the set of all words in the non-commuting
variables x and y of length < n, ordered lexicographically.
For every quadruple (X, Y, u,v) € rep, M consider the n x m matrix

V(X Yuv)=[u Xu X?u ... Y7"u

where m = 2"+t —1 and the j-th column is the column vector w(X,Y )v with w(z,y)
the j-th word in W,,.

Hence, (X,Y,u,v) € rep (o) if and only if the n x n minor of ¥(X,Y,u,v)
determined by the word-sequence {1, ws,...,w,} of o is invertible. Moreover, as

V(gXg ' gY gt gu,vgTt) = gv(v, X, Y)

we deduce that the GL,,(C)-orbit of (X, Y, u,v) € rep, M contains a unique quadru-
ple (X1,Y7,u1,v1) such that the corresponding minor of (X1, Y1, uy,v1) = T1,.

Hence, each GL,(C)-orbit in rep (o) contains a unique representant in o-
standard form. Therefore,

Proposition 1.5 The action of GL,(C) on rep (o) is free and the orbit space
rep (0)/GLn(C)
is an affine space of dimension n? + 2n.

Proof. The dimension is equal to the number of non-forced entries in X, Y and v.
As we fixed n — 1 columns in X or Y this dimension is equal to

k=2n%—(n—1)n+n=n?+2n.

The argument above shows that every G L, (C)-orbit contains a unique quadruple
in o-standard form so the orbit space is an affine space. (Il

Theorem 1.6 The orbit space
repe, M/GL,(C)

is a complex manifold of dimension n? + 2n and is covered by the affine spaces
rep (o).

Proof.  Recall that rep;, M is the open submanifold consisting of quadruples
(z,Y,u,v) such that u is a cyclic vector of (X,Y) or equivalently such that

C(X,Y)u=Cn"

where C(X,Y") is the not necessarily commutative subalgebra of M, (C) generated
by the matrices X and Y.

Hence, clearly rep (o) C rep, M for any Hilbert n-stair o. Conversely, we claim
that a quadruple (X,Y,u,v) € rep, M belongs to at least one of the open subsets
rep (o).

Indeed, either Xu ¢ Cu or Yu ¢ Cu as otherwise the subspace W = Cu
would contradict the cyclicity assumption. Fill the top box of the stairs with the
corresponding stone and define the 2-dimensional subspace Vo = Cuy + Cus where
up = u and ug = wo(X,Y)u with ws the corresponding word (either z or y).

Assume by induction we have been able to fill the first ¢ rows of the stairs with
stones leading to the sequence of words {1,ws(z,y),...,w;(z,y)} such that the
subspace V; = Cuy + ... + Cu; with u; = w;(X,Y)v has dimension i.
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Then, either Xu; ¢ V; for some j or Yu; ¢ V; (if not, V; would contradict cyclic-
ity). Then, fill the j-th box in the i + 1-th row of the stairs with the corresponding
stone. Then, the top i+ 1 rows of the stairs form a Hilbert i+ 1-stair as there can be
no stone of the same color lying in the same column. Define w;1(x,y) = zw;(z,y)
(or yw;(z,y)) and w;iy1 = wi41(X,Y)u. Then, V41 = Cuy + ... + Cu;yq has
dimension ¢ + 1.

Continuing we end up with a Hilbert n-stair o such that (X,Y,u,v) € rep (o).
This concludes the proof. O

Example 1.7 Orbits when n = 3.

Representatives for the GL3(C)-orbits in rep (o) are given by the following quadruples for o a
Hilbert 3-stair :

° (@] (@] (O] (O] (O]
o | o o] o | o] o
0 b 0 0 a 0 a b 0 a b a b ¢ a 0 b
X 1 ¢ d 1 0 b 1 ¢ d 0 ¢ d d e f c 0 d
0 e f 0 1 ¢ 0 e f 1 e f g h 1 e 1 f

1
S oQ
TS0
— .
T =9
= o o
—, >
[ I
—
o = O
I =9
—. >
— 1
———
o = O
= o o
—_

I
—
o = O
T =9
~, >
=

v [m n O} [m n O] [m n 0] [m n O] [m n O] [m n O]

Let A = XT, be a scalar matrix in M, (C) and hence fixed under the action
by conjugation of G L, (C). Then, the subvariety u~*(\) of rep, M is GL,,-stable.
Because the GL, (C)-action is free on rep? M we have the following situation

p (N Nreps, M < > reps, M

(= (N) Nrepl, M)/G L (C) = rep], M/GL,(C)

and we obtain :

Theorem 1.8 For a scalar matriz A € M,(C) lying in the image of u, the orbit
space
(1™ (N) Nrep;, M)/GL,(C)

is a submanifold of rep?, M/GL,(C) of dimension 2n.

We will now investigate two of these manifolds : the Hilbert scheme of n points
in the plane and the phase space of collisions of n Calogero particles.

1.4 The Hilbert scheme Hilb,,.

Consider n distinct points in the complex plane C2. Identifying C? with R* we
can view these points as particles in (flat) space-time. Particles have a tendency to
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collide with each other and we want to construct a manifold describing all possible
collisions.

To a point p = (a,b) € C? corresponds a maximal ideal m = (x — a, y — b) of the
polynomial algebra Clz,y]. To a set of n distinct points P = {p1,...,pn} we can
associate a codimension n ideal

ip=myN...Nnm, <Clzx,y]

Now, consider an arbitrary codimension n ideal i<C[z, y] and fix a basis {v1,...,v,}
in the quotient space

‘/i: (C[Ji’y] :(Cvl—l—...—i—(C’Un.

Multiplication by x on C[z, y] induces a linear operator on the quotient V; and hence
determines a matrix X; € M, (C) with respect to the chosen basis {v1,...,v,}.
Similarly, multiplication by y determines a matrix Y; € M,,(C).

Moreover, the image of the unit element 1 € C|x, y] in V; determines with respect
to the basis {v1,...,v,} a column vector v € C* = V;. Clearly, this vector and
matrices satisfy :

[Xi, Y1] =0 and C[Xi, K]’u =C".

Here, C[X;,Y] is the n-dimensional subalgebra of M, (C) generated by the two
matrices X; and Y;. In particular, u is a cyclic vector for the matrix-couple (X,Y).
We have seen that to a codimension n ideal i corresponds a cyclic triple
(ui, X;,Y7) such that X; and Y; commute with each other.
Conversely, if (X,Y,u) € M,(C) & M,(C) @ C™ is a cyclic triple such that
[X,Y] = 0, then C(X,Y) = C[X,Y] is an n-dimensional commutative subalgebra
of M,,(C) and the kernel of the natural epimorphism

Clz,y] — C[X,Y] z—X y—Y
is a codimension n ideal i of C[z,y]. Indeed, the linear map

Clz,y] 2 C"

defined by sending a polynomial f(z,y) € C[x,y] to the vector f(X,Y).u is surjec-
tive by the cyclicity assumption.

However, there is some redundancy in the assignment i —— (X, Y, w;) as it
depends on the choice of basis of V;. If we choose a different basis {v],..., v} with
basechange matrix g € GL,,(C), then the corresponding triple is

(X{,Y! w) = (9-Xi.97 1, 9.Yig ™ gui)
That is, we have an action of GL,(C) on the space of all triples

GL,(C) x (M,,(C)e M,(C)eC") — M,(C)® M,(C)pC"”
(9, (X,Y,u))  —  (9Xg ' 9Yg ' gu)

The above discussion shows that there is a one-to-one correspondence between
e codimension n ideals i of C[z,y], and

e GL,(C)-orbits of cyclic triples (X,Y,u) in M,(C) & M, (C) & C™ such that
[X,Y] = 0.
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Example 1.9 The Hilbert scheme Hilb;.

The space of all triples when n =1 is (X,Y,u) € C® C @ C. Clearly, they are all commuting and
u is a cyclic vector for (X,Y) if and only if u # 0.
The basechange group in this case is GL1(C) = C* and it acts on the space of triples via

g-(X,Y,u) = (X, Y, gu)
Therefore, the GL1(C) orbits of the cyclic (commuting) triples are parameterized by the points
{X,Y, 1) eCe®C@C} ~C?

The ideal i of codimension one corresponding to (X,Y,1) are the polynomials vanishing in the
point p = (X,Y) € C2. Hence, Hilb; ~ C?.

Example 1.10 The Hilbert scheme Hilbs.

Consider a triple (X,Y,u) € M2(C) @ M2(C) ® C? and assume that either X or Y has distinct

cigenvalues (type a). As
[{'/01 192} ’ {Z Z}} = [(Vz Bw)c 1 _()V2)b]

we have a representant in the orbit of the form

( A1 0 ni 0 u1l )
0 X2|’|0 pa2|’ |u
where cyclicity of the column vector implies that ujuz # 0.

The stabilizer subgroup of the matrix-pair is the group of diagonal matrices C* X
C* & GL2(C), hence the orbit has a unique representant of the form

( A1 0 n1 0 1 )
0 X|'|0 w1
The corresponding ideal i< C[z, y] is then

i={f(z,y) €Clz,y] | f(A1, 1) = 0= f(A2, p2)}

hence these orbits correspond to sets of two distinct points in C2.
The situation is slightly more complicated when X and Y have only one eigenvalue (type b).
If (X,Y,u) is a cyclic commuting triple, then either X or Y is not diagonalizable. But then, as

o 2 e ah=16 42

we have a representant in the orbit of the form

0 A0 w|’|u2
with [a : 8] € P! and ug # 0. The stabilizer of the matrixpair is the subgroup

{5 rer o — an@

and hence we have a unique representant of the form

o 5105 2B

The corresponding ideal i< C[z, y] is

i= {f(e,y) € Cle,y] | FO, ) =0 and a2l (3, ) +ﬁg—£(x,u> — 0}

as one proves by verification on monomials because
X oal® [ B1H[0] | [kak—1lul 418Xk ul—1
0 X [0 w| |1]~ AF gt

Therefore, i corresponds to the set of two points at (A, ) € C? infinitesimally attached to each
other in the direction a% + B(% For each point in C? there is a P! family of such fat points.
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Thus, points of Hilba correspond to either of the following two situations :

C? Cc?

type a type b

The Hilbert-Chow map Hilbs s 52 2 (where S? C? is the symmetric power of C2, that is
S2 = Z,/27 orbits of couples of points from C2) sends a point of type a to the formal sum [p] + [p’]
and a point of type b to 2[p]. Over the complement of (the image of) the diagonal, this map is a
one-to-one correspondence.

However, over points on the diagonal the fibers are P! corresponding to the directions in which
two points can approach each other in C2. As a matter of fact, the symmetric power S2 C? has

singularities and the Hilbert-Chow map Hilba D 82 C2 is a resolution of singularities.

Theorem 1.11 Let rep, M —r M, (C) be the moment map, then
Hilb, ~ (p~1(0) Nreps, M)/GL,(C)
and is therefore a complexr manifold of dimension 2n.

Proof. We identify the triples (X,Y,u) € M,(C) ® M, (C) ® C" such that u is a
cyclic vector of (X,Y) and [X,Y] = 0 with the subspace

{(X,Y,u,0) | [X,Y]=0 and uis cyclic } — rep;, M

which is clearly contained in z~1(0). To prove the converse inclusion assume that
(X,Y,u,v) is a cyclic quadruple such that

(X, Y]+ uv=0.
Let m(x,y) be any word in the noncommuting variables  and y. We claim that
vom(X,Y).u=0.

We will prove this by induction on the length I(m) of the word m(z,y). When
I(m) = 0 then I(z,y) = 1 and we have

vI(X,Y)u=vu=tr(uv)=tr([X,Y]) =0.

Assume we proved the claim for all words of length < [ and take a word of the form
m(z,y) = mq(x,y)yzma(z,y) with [(my) 4+ I(m2) + 2 = I. Then, we have

wm(X,Y) = wmy (X, Y)Y Xmq(X,Y)
= wmi (X, Y)([Y, X] + XY )ma(X,Y)
= (wmi(X,Y)v).wma(X,Y) +wmi(X,Y)XYme(X,Y)
= wm (X, Y)XYmo(X,Y)

where we used the induction hypotheses in the last equality (the bracketed term
vanishes).
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Hence we can reorder the terms in m(z,y) if necessary and have that
wm(X,Y) = wXBY!"2 with I; + I, = [ and I; the number of occurrences of x
in m(z,y). Hence, we have to prove the claim for X1 Y2,

wXyly = tr(XhYhow)
—tr(XhY"([X,Y))
= —tr([(X"Y'", X]Y)

—tr(Xn Y2, X]Y)
= =Yt (XhYY, X))
= Y ter(vlkrixhyily, X|

212 1151"(Y12 iXhyiyw
= =Y twymemixhyiy

But we have seen that wY®?*X1Y? = wX"Y" hence the above implies that

wXhYly = —lhwXh Yy, But then wX"' Y20y = 0, proving the claim.
Consequently, w.C(X,Y).v = 0 and by the cyclicity condition we have w.C™ = 0
hence w = 0. Finally, as v.w + [X,Y] = 0 this implies that [X,Y] = 0 and we can
identify the fiber 4 =1(0) with the indicated subspace. From this the result follows.
([l

We can cover the subset (X, Y, u,0) such that [X,Y] = 0 and u a cyclic vector
by their intersections with the rep (o) for o a Hilbert n-stair. In particular, we can
cover Hilb, by open subsets

Hilb, (o) ={(X,Y,u,0) in o-standard form such that [X,Y] = 0}.

Example 1.12 The Hilbert scheme Hilbs.

Consider Hilba ( o] ). Because
[[O a} [c }]7{ ae —d af —ac—bd
1 b|’]e c+be—f d—ae
this subset can be identified with C* using the equalities
d=ar andf =c+ be.
Similarly, Hilby ([O]) ~ C*.

Example 1.13 The Hilbert scheme Hilbs.

Up to change of colors there are three 3-stairs to consider

° ° °
ol | o ol

We claim that

Hilbs (1Ol ]) ~ 6.

For consider the commutator

0 a b 0 g h b—g ai + bk —cg —eh aj +bl —dg— fh
[ 11 ¢ d|,|0 & j| ]=]|d—1 g+dk —ej h+cj+dl—di— fj
0 e f 1 k k f—k —a—ck—el+ei+ fk —b—dk+ej
Taking the Groebner basis of these relations one finds the following relations
[ o=k

g =-ej—ik

d =i

h =i —cj+jk—il
b =g

a =ei—ck+k?—el
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from which the claim follows. In a similar manner one proves that

[ J
Hilbs (|_1®]) ~ 6.

However, the situation for

[ J
Hilbs ([_1O])

is more complicated.

Observe that some of these intersections may be empty. For example, for the
Hilbert 5-stair

o]
O
[ J
Hilbs (L 1o T 1y=9¢
Indeed, the associated series of words is
{L,z,y,zy, yz}

whence o(X,Y,u,0) = 0 whenever [X,Y] = 0. Hence all Hilbert stairs ¢ containing
this stair (that is, if we recover the 5-stair after removing certain rows and columns)
satisfy Hilb, (o) = 0.

We have shown that Hilb, is a manifold of dimension 2n. A priori it may have
many connected components (all of dimension 2n). We will now show that Hilb,
is connected.

Theorem 1.14 The Hilbert scheme Hilb, of n points in C2 is a complex connected
manifold of dimension 2n.

Proof. The symmetric power S™ C! parametrizes sets of n-points on the line C!
and can be identified with C”. Consider the map

Hilb,, —~ S™ C!

defined by mapping a cyclic triple (X, Y, w) with [X,Y] = 0 in the orbit correspond-
ing to the point of Hilb,, to the set {\1,..., A} of eigenvalues of X. Observe that
this map does not depend on the point chosen in the orbit.

Let A be the big diagonalin S™ C!, that is, S® C! — A is the space of all sets of n
distinct points from C!. Clearly, S™ C! — A is a connected n-dimensional manifold.
We claim that

718" Ct—A)~ (S" C' —A) x C"

and hence is connected.
Indeed, take a matrix X with n distinct eigenvalues {\1,...,A\,}. We may
diagonalize X. But then, as

AL Yii .-+ Yin ()\1 - )\1)1/11 cee (>\1 - )‘n)yln
we see that also Y must be a diagonal matrix with entries (u1,. .., uy,) € C* where

i = yi;- But then the cyclicity condition implies that all coordinates of v must be
Nnon-zero.

Now, the stabilizer subgroup of the commuting (diagonal) matrix-pair (X,Y)
is the mazimal torus T,, = C* x ... x C* of diagonal invertible n x n matrices.
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Using its action we may assume that all coordinates of v are equal to 1. That is,
the points in 7= ({\1,...,A\n}) with A; # A\; have unique (up to permutation as
before) representatives of the form

)\1 H1 1
)\2 /4L2

—_

)‘" Hn, 1

that is 7= 1({\1,..., A\, } can be identified with C", proving the claim.

Next, we claim that all the fibers of m have dimension at most n. Let
{M,...,An} € S™ C! then there are only finitely many X in Jordan normalform
with eigenvalues {A1, ..., A\, }. Fix such an X, then the subset T'(X) of cyclic triples
(X,Y,u) with [X,Y] = 0 has dimension at most n + dim C(X) where C(X) is the
centralizer of X in M, (C), that is,

C(X)={Y € M,(C) | XY =YX}

The stabilizer subgroup Stab(X) = {g € GL,(C) | gXg~! = X} is an open subset
of the vectorspace C(X) and acts freely on the subset T'(X) because the action of
GL,(C) on p=1(0) Nreps, M has trivial stabilizers.

But then, the orbitspace for the Stab(X)-action on T'(X) has dimension at most

n+ dim C(X) — dim Stab(X) = n.

As we only have to consider finitely many X this proves the claim. The diagonal A
has dimension n—1 in S™ C' and hence by the foregoing we know that the dimension
of 771(A) is at most 2n—1. Let H be the connected component of Hilb,, containing
the connected subset 77 1(S™ C! — A). If 77 1(A) were not entirely contained in H,
then Hilb, would have a component of dimension less than 2n, which we proved
not to be the case. This finishes the proof. O

1.5 The phase space Cualo,.
Recall that Calogero quadruples were defined to be
CALO, ={(X,Y,u,v) | [X,Y]+uv="1,}

and that the phase space of collisions of n Calogero particles is the orbit space

Calo, = CALO,,/GL,(C).

Theorem 1.15 Let rep, M SN M,,(C) be the moment map, then
Calo,, ~ u'(1,)/GL,(C) = (1 ' (1,) Nrep, M)/GL,(C)
and is therefore a complexr manifold of dimension 2n.

Proof. The result will follow if we can prove that any Calogero quadruple (X, Y, u,v)
has the property that u is a cyclic vector, that is, lies in rep?, M.

Assume that U is a subspace of C" stable under X and Y and containing u. U
is then also stable under left multiplication with the matrix

A=[Y,X]+1,
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and we have that tr(A | U) = tr(1, | U) = dim U. On the other hand, A = u.v
and therefore

C1 Uy C1

A= v oo wa] | :(Zvici)

Cn Up, Cn - Up,

Uy

Hence, if we take a basis for U containing u, then we have that
tr(A|U)=a

where A.u = au, that is a = Y u;v;.

But then, ¢r(A | U) = dim U is independent of the choice of U. Now, C" is
clearly a subspace stable under X and Y and containing u, so we must have that
a = n and so the only subspace U possible is C™ proving cyclicity of v with respect
to the matrix-couple (X,Y). O

Again, it follows that we can cover the phase space Calo, by open subsets
Caloy, (0) = {(X,Y,u,v) in o-standard form such that [X.Y]+u.v ="1, }

where o runs over the Hilbert n-stairs.

Example 1.16 The phase space Calos.

Consider Caloz ( o] ). Because

0 a c d 1 _lg—d4+ae—-1 h+af—ac—bd
[{1 b}’[e fﬁ*[o]'[g M= "0 f b d—ae—1

We obtain after taking Groebner bases that the defining equations are

g =2
h =b
f =c+eh
d =1+4ae

In particular we find

oazOQ(@)z{(ﬁ’ Z][g 11‘;:}{(1)}[2 b)) | a,b,ce € C}~C

and a similar description holds for Calos ( (0] ).

Example 1.17 The phase space Calos.

We claim that

(@]
Caloz (1O ‘)266
For, if we compute the 3 X 3 matrix

0 a b 0 g h 1
[{1 c d],[o i j:|]+|:0:|.[m n o] —Ts
0 e f| |1 k I 0

then the Groebner basis for its entries gives the following defining equations
m =3

n =c+k

=141

k

=o0—1

=2+0b

=g—ej—kl+ ko

= 2jk + 212 — jn — 3lo + 02

=2k? —2el — kn +eo

Q@ > T Q % ©°
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In a similar manner one can show that

[ ]
Calos ( o )~ S but Calos ( ol )

is again more difficult to describe.

We will prove that Calo, is connected by a strategy similar to that used for
Hilb,.

Proposition 1.18 Let (X,Y,u,v) € CALO,, and suppose that X is diagonalizable.
Then

1. all eigenvalues of X are distinct, and

2. the GL,(C)-orbit contains a representative such that

_al 1 1 -

Ve vl Ve
1 «a .
7)\1 A2—A1 2
X = Y =
_)\n . 1
. An—1—An
1 1
L XX Xn—An_1 An
1
1
u=|. v = [1 1 1}
1

and this representative is unique up to permutation of the n couples (A, o).

Proof. Choose a representative with X a diagonal matrix as indicated. Equating
the diagonal entries in [X,Y] + u.v =1, we obtain that for all 1 < i < n we have
u;v; = 1. Hence, none of the entries of

Y. X]+71, =uwv

is zero. Consequently, by equating the (¢, j)-entry it follows that A; # A; for ¢ # j.
The representative with X a diagonal matrix is therefore unique up to the action
of a diagonal matrix D and of a permutation. The freedom in D allows us to
normalize u and v as indicated, the effect of the permutation is described in the
last sentence.
Finally, the precise form of Y can be calculated from the normalized forms of
X, u and v and the equation [X,Y] 4+ u.v =1,. a

Consider the map
Calo, —> S™ C!

by mapping a point in CALQO,, to the set of the eigenvalues of X (and as this does
not depend on the point in the orbit this map factors through Calo,,).

The foregoing proposition describe 7=1(S™ C! — A) where A is the big diagonal
and hence the subset of Calo,, with X diagonalizable is connected as it coincides
with (S™ C! — A) x C™. The identification is made through the parameters \; and
«; of the proposition.

Theorem 1.19 The phase space Calo, is a complex connected manifold of dimen-
ston 2n.
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Proof. Reasoning as in the proof for the Hilbert scheme, the result will follow once
we prove that all the fibers of m have dimension at most n.
Consider the projection to the last two factors

CALO,, -2~ C**

For a fixed matrix X € M, (C) we claim that the subset CALO, (X) (Calogero
quadruples with fixed X) maps under p into an n-dimensional subvariety of C2".

Because p is GL,(C)-equivariant we may assume that X is in Jordan normal
form. Consider first the case of one block, that is

A1
x=|

1

A

Then, in [Y, X] every diagonal below the main diagonal has entries that add up to
0 as one verifies. On the other hand, for a rank one matrix, the lowest nonvanishing
diagonal can have just one non-zero entry.

Therefore, the rank one matrix [Y, X] + 71, = w.v is upper triangular and there
is just one non-zero entry (which must be equal to n by taking traces) on the main
diagonal. If the first non-zero entry of v occurs at place ¢ then the last non-zero
entry of v must also occur in place ¢ and the product of both must be equal to
n. In this way, the possible pairs (u,v) fall into n families (indexed by i) each of
dimension n. This proves the claim in the case of one Jordan block.

For the general case X = ®;X; one writes Y, u and v in the corresponding block
forms, and one sees that

Yigs X5 + T = uj.0;
and one repeats the above argument for each of the blocks, proving the claim.

Now, define Calo,(O) to be the subset of Calo, represented by quadruples
(X,Y, u,v) such that X belongs to a fixed conjugacy class O in M,,(C). We claim
that Calo,(O) has dimension at most n.

Fix a matrix X € O, then Calo,,(O) = CALO, (X)/G where G is the centralizer
of X in GL,(C). Now, the part of CALO,,(X) lying over a fixed (u,v) € C*" is
parametrized by the Lie algebra Lie(G) and so by the foregoing claim

dim CALO,(X) <n-+dim G

Finally, the action of G is free and we have proved that all the fibers of 7 have
dimension at most n. O

1.6 The noncommutative smooth algebra M.

We will now bring in some noncommutative algebras. Consider the following quiver
(that is, directed graph) on two vertices
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We define M to be the path algebra of this quiver. That is, as a C-vectorspace
M has as basis the oriented paths in the quiver, including those of length zero
corresponding to the two vertices. We agree that we write paths from right to left
(as we do with compositions of morphisms). To each vertex there is a path of length
zero. An associative algebra structure on M is induced by concatenation of paths
when possible and zero otherwise.

That is, M is the algebra on 6 noncommuting generators

e, f the paths of length zero
z,y,u,v the paths of length one

Concatenation of paths induces the following defining relations for M

e2=e fP=f e+f=1

ex=z ey=y eu=u ev=>_0
re=x ye=y ue=0 ve=v
fx=0 fy=0 fu=0 fo=v
z.f=0 y.f=0 uf=u v.f=0
zv=0 uzx=0

yv=0 uy=0

vu=0 vwv=0

Horrible as these relations may seem, the algebra M has one important property, it
is (formally) smooth. That is, if A is any C-algebra having a twosided ideal I with
I? = 0, then we can lift C-algebra morphisms

from the quotient to A. The relevance of this notion will become clear when we
study differential forms and connections on noncommutative manifolds.
This lifting property can be seen as follows. Let a € A be such that 7(a) = ¢(e),
then one verifies that
E=(2-a)%?

is an idempotent of A such that 7(F) = ¢(e). Define a lift 6 by sending e — E,
f— F=1-E and

x +— any element of E.(¢(z)+I).E
y — any element of F.(¢(y) +I).E,
u +— any element of E.(¢(u) + I).F

v — any element of F.(¢p(v) +I).E.

and one immediately verifies that all the relations holding in M are preserved under
¢ whence ¢ is an algebra morphism lifting ¢.

A representation of a quiver assigns to each vertex a finite dimensional vec-
torspace and to each arrow a linear map between the corresponding vertex-spaces.
The dimension-vector of a representation is then the integral vector containing the
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dimensions of the vertex-spaces. Fixing a dimension-vector and a basis in each
vertex-space we see that the representations form an affine space.

For the quiver described above, the set of representations of dimension vector
a = (m,n) can be identified with the affine space

Tepa(M) = Mn((c) S2) Mn((c) 52 Mnxm((c) 2] men((c)

the factors corresponding respectively to the arrows z,y, v and v. On this affine
space there is a natural action of the algebraic group

GL(a) = GL,(C) x GL,,(C)
given by base-change in the vertex-spaces. That is, (g,h) € GL(a) acts as
(9,:h).(X,Y,U,V) = (9Xg~',9Y g~ gUR™ RV g™").

Two representations are said to be isomorphic if and only if they belong to the same
GL(«)-orbit.

We will now relate the vectorspaces rep, M and the action of GL(«) on it to
the study of finite dimensional representations of M. For an integer m € N, an
m-dimensional representation of M is a C-algebra morphism

M —2+ My(C)

and two T-dimensional representations ¢; and ¢ are said to be isomorphic (or
equivalent) iff there is a g € GL7z(C) such that the diagram below commutes

M
M(C) % » Mz(C)

where ¢, is conjugation by g on Mz(C). Because M is an affine C-algebra, the
set of all m-dimensional representations is an affine variety repy M. Indeed, any
representation is determined by the images of the generators e, f, u, v,z and y. That
is,

repy Ml —— MW(C)696

is the closed subvariety where the ideal of relations is generated by the entries of
the matrix identities determined by the defining relations for M.

Clearly, conjugation on Mz(C) defines an action of GL7(C) on the affine variety
repz M. For a = (n,m) let @ = n + m and consider the diagonal embedding of
GL(a) in GL7(C)

GL,(C) 0
[ 0 GL,,(C)

Using this embedding there is a natural GL(«) action on the product GL7(C) x
rep, M given by

} <+ GLz(C).

-1

(9.h).(G, X,Y,U,V) = (G {90

0 B T
hl] L9Xg ™' gYg T gURT Vg™

and the space of GL(«a)-orbits is called the associated fiber bundle and denoted by
GL#(C) xGE@) pep, M

Left multiplication defines a G L7 (C)-action on the product G L7 (C) x rep, M which
commutes with the action of GL(«) and hence induces an action on the associated
fiber bundle.
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Lemma 1.20 The representation spaces repmz M are affine manifolds and

repr M ~ I_l GL7(C) xFH @ pep, M
a=(n,m)
ntm=m

as manifolds with G L#(C)-action.

Proof. Given a representation M _®, Mz=(C), the images ¢(e) and ¢(f) give an
orthogonal decomposition of ‘7 into idempotents. If the rank of ¢(e) is n, then
the rank of ¢(f) is m = 7 — n and under simultaneous conjugation by an element
G € GL7(C) we reduce to the case that

qs(e):[ﬂ; 8} and ¢(f)={8 ﬂ(ﬂ

But then using equations such as exze = x and euf = u we deduce that the images
of the other generators are of the following matrix shape in Mz(C)

rnfi 3 ow-i 3 w-p Y wo [t

and hence correspond to a point in rep, M for a = (n,m). The assertion is now
easy to verify. O

In chapter 5 we will prove that the representation spaces repz A of any formally
smooth algebra are affine manifolds and even have an analytic local description by
quiver representations.

For applications to Calogero particles and Hilbert schemes, we specialize to the
case m = 1, that is, « = (n,1) and @ = n + 1 and recover the vectorspace rep, M
of the previous section.

Lemma 1.21 There is a natural one-to-one correspondence between
e GL, x C*-orbits in rep, M = M, (C) ® M, (C) & C" & C™
o GL,-orbits in M, (C) ® M, (C) & C"™ @ C™ as in the previous section

Proof.  One implication is obvious by taking (g,1) € GL(a) = GL,, x C*. Con-
versely, assume that the quadruples (X,Y,u,v) and (X', Y’ «/,v") belong to the
same GL(«a)-orbit in rep, M. Then there is a g € GL,, and A € C* such that

gXg'=X" gYg'=Y" gux'=4 and g '=v

Then, taking the matrix ¢’ = g.(A\™11,) € GL, we see that these quadruples also
belong to the same G L,-orbit. ]

Therefore, we would like to construct an orbit space for the GL(«)-action on
rep, M. However, such an orbit-space would have horrible topological properties
(such as being non-Hausdorff) as there are GL(«)-orbits which are not closed. For
example, if o = (2, 1) consider the representation

b R ey en
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t 0
0 1
quadruple gives the representation

0 ¢ 0 0 0
v v el o
whence if ¢ —— 0 we see that the zero representation lies in the closure of the
GL(«)-orbit.

and consider the elements G = ([ } ,1) € GL(«), then the action on the above

1.7 Invariant theory and rep, M.

Invariant theory provides us with the best Hausdorff approximation to the orbit
space problem, that is a classifying space for the closed orbits. We will prove in
chapter 4 that closed G L7(C)-orbits in the representation space repz A for an arbi-
trary affine C-algebra A are in one-to-one correspondence with isomorphism classes
of semi-simple m-dimensional representations of A. Recall that a representation is
simple if it has no proper (non-zero) subrepresentations and is semi-simple if it is
the direct sum of simple representations.

Our first job is to find a criterium on the dimension vector o = (n,m) to ensure
that rep, M contains simple representations. A necessary condition is m < n

m

n

Indeed, if m > n then any representation (X,Y,U, V) contains as non-trivial sub-
representation the trivial representation (all matrices zero-matrices) of dimension
vector (dim Ker U,0). In chapter 6 we will give a combinatorial description of
the dimension vectors of simple representations of quivers which implies that for
the quiver under consideration this necessary condition is also sufficient. In partic-
ular, for @« = (1,n) there is an open submanifold of rep, M consisting of simple
representations.

Invariant theory learns us that closed orbits can be separated by invariant poly-
nomial functions. We will focuss here on the special case of interest a = (n,1)
although the arguments hold more generally as we will prove in chapter 4. The
coordinate ring of rep, M is the polynomial algebra

C[Tepa M] = C[Illa e Tns Y11y - Ynn,y Uy - ooy Un, U1y - e e 71)71/]

where the x;j,¥;,u; and v; with 1 < 4,5 < n are the coordinate functions of the
matrices (X,Y,u,v). The group GL(a) acts on this algebra by automorphisms as
follows, let G = (g,\) € GL(a) = GL,, x C* then )¢ is the automorphism sending

(211 ... zin

e x;; to the (7,7) entry of the matrix g | : ClgTh
(Tn1 oo Tpn
(11 ... Yin

e y;; to the (i, ) entry of the matrix g | : e
[ Ynl -+ Ynn
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e u; to the (i,1) entry of the matrix g | : | A™1,
U,

e v; to the (1,7) entry of the matrix A [vl vn] g L.

The ring of polynomial invariants C[rep, M]“L(®) is the subalgebra consisting of
polynomials P such that ¢g(P) = P for all G € GL(«). We will prove in chapter
5 that this algebra is generated by traces along oriented cycles in the quiver. That

is, consider all necklace words w

/ 0
e b
i d

O /
\D\D/D

where each bead is one of the following n x n matrices

11 N A Y11 oo Yin U101 oo ULYy
Tpnl -+ Tpn Ynl -+ Ynn UnpV1 ... UpUp

Multiplying these bead-matrices cyclicly in the indicated orientation and taking the
trace of the n x n matrix obtained gives a polynomial ¢tr(w) of C[rep, M] which is
clearly left invariant under the G L(«)-action. The assertion is that these invariants
generate all the invariant functions. We will even show that it suffices to take
necklace words having at most (n + 1) + 1 beads.

Assume there are s distinct necklace words of length < (n+1)2+1, then we can
evaluate tr(w) at a representation (X,Y,u,v) € rep, M by substituting the entries
for the coordinate functions and obtain a map

repa M —— C°

The image of m will be shown to be the affine variety corresponding to the ring of in-
variant polynomials. It is called the quotient variety and is denoted rep, M/GL(«).
If ¢ € Im 7 then 7~1(£) contains a unique closed orbit. In particular, if two semi-
simple representations (X1, Y1, u1,v1) and (Xa, Ya, us,v2) have all their necklace-
invariants equal then they belong to the same orbit.

These quotients varieties are in general not manifolds. In fact, we will give in
chapter 6 combinatorial tools to determine the singularities and to describe the
analytic local structure of the quotient variety near these singularities. Applying
these results we will see that rep, M/GL(«) always has singularities except in the
trivial case a = (1,1) where the quotient variety is easily seen to be C3.

When studying rep, M for a specific dimension vector o = (n, 1), working with
M is overdoing things. We will construct another noncommutative algebra M(n)
which is a finite module over the ring of polynomial invariants C[rep, M]%E (@), We

have a canonical morphism M e, M(n) with the property that a-dimensional
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representation of M (with the images of e and f fixed) factors through t,,. One way
to define M(n) is as the ring of equivariant maps from rep, M to M, 11(C).
Embed GL(«) diagonally in GL,11(C), that is

GL(0) = [GLS((C) (g*] —— GLp1(C)

then GL(«) acts on M,,1(C) via the conjugation action of GL,,11(C). A polynomial
map

rep, M L, M, 1+1(C)

is said to be GL(«a)-equivariant if it is compatible with the GL(«a)-action on source
and target space. That is, for all (g, ) € GL(a) and all (X,Y,u,v) € rep,(C) we
have

_ _ _ _ 0 1 0
plgXg™h gYg™h gun™! dug™h) = [g /\] p(X,Y,u,v) [go ,\1}

Addition and multiplication in the target space M, 11(C) define a C-algebra struc-
ture on the equivariant maps.

A concrete realization of this ring M(n) can be given as follows. Consider the
matrix algebra M, +1(C[rep, M]), then M(n) is the C-subalgebra generated by
the polynomial invariants C[rep, M]“%(®) (embedded as scalar matrices) and the
following matrices

1 0 0O ... 00 11 ... Xip O
- 1 PR EE S B L
0 0 0 0 0 1 0 0 0
Y11 Yin O 0 0 uy 0 0 0
U= | : : Up = : : vy = | - Do
Ynl -+ Ynn O 0O ... 0 u, 0O ... 0 O
o ... 0 O 0O ... 0 O v ... v, O

Clearly, Clrep, M]%L(®) is a central subring of M(n) and from the generation of
the polynomial invariants by traces of necklace words we see that the restriction of
the usual trace tr on M,,11(C[rep, M]) to the subring M(n) defines a trace map on

M(n), that is a map ¢
M(n)\ ! - M(n)

Clrepa M]EH)

satisfying t(ab) = t(ba), t(a)b = bt(a),t(t(a)b) = t(a)t(b) and ¢(1) = n. It is a rather
straightforward consequence of the Cayley-Hamilton equation that M(n) is a finite
module over its center which is equal to C[rep, M]SL(®). The factorizing property
for representations in rep, M mentioned above follows.

1.8 de Rham cohomology for M.

Formally smooth algebras should be viewed as the coordinate rings of affine noncom-
mutative manifolds. Associated to them is a well developed theory of differential
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forms, de Rham cohomology groups, connections and so on. We will introduce
and study all these concepts in chapter 9 in great detail. Here, we merely sketch
these notions for the formally smooth algebra M as they are crucial in the proof of
Ginzburg’s result.

Recall that M (resp. C x C) is the path algebra of the quiver

S0 ©
u | v

@ resp. @

As the images of § = C x C is fixed in any representation of rep, M, we are
interested in relative differential forms of M with respect to the subalgebra C x C.
Let M be the S-bimodule cokernel of the inclusion S —— M, then we define the
space of relative differential forms of degree n to be

n M:M®3M®s...®sM
—_—

rel

n

We will denote a tensor ag® @ ®...®a, € Q,; M with all a; € M by aopda; . ..da,.

It is easy to see that a basis for 27, M is given by the elements

podps . .. dpn

where p; is an oriented path in the quiver such that length py > 0 and length p; > 1
for 1 <7 < n and such that the starting point of p; is the endpoint of p; 1 for all
1 <i<n-—1 We define an algebra structure on Q.o M = ®,, Q";, M by the
product rule

(apday .. .dap)(ant1dants ... day) =
Z?ZO(—l)”*laodal Ce dai_ld(aiai+1)dai+2 .odam,

and we make this into a differential graded C-algebra by defining a differential of
degree one

.i»Qn_lMi»QfelM—d»Q"+lM—d>

rel rel

by the rule that d(aoda; ...day,) = dapda; ...da,. Clearly dod = 0 and d is a
super-derivation meaning that

d(rs) = (dr)s + (=1)'r(ds)

when 7 € Q% , M. For w € Qi , M and ' € Q/_, M we define the super-commutator
to be

[w,w] = ww — (=1)Yw'w
and following M. Karoubi [II] we define the space of noncommutative differential
forms of degree ¢ on M to be the quotient space

, Qi M
AR}, M = — rel —
S [, M,Q M

7=0 rel rel
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and one verifies that the differential d induces a differential on the Karoubi complex
of M
0 d 1 d 2 d
dR,g M — dR,,; M — dR;,;, M — ...

An important result we will prove in chapter 9 is that this complex is acyclic, that
is, if we define the i-th de Rham cohomology group of M to be the i-th homology of
the Karoubi complex

. Ker dRi, M —4+ dR" M
I'm dR' M —+ dRi, M

rel rel

then we will prove that

CxC wheni=0,

Hip M =
an {O when ¢ > 1.

We will compute the first few terms in the Karoubi complex. Noncommutative
functions on M are the 0-forms, which is by definition the quotient space

M
dRV, M = ————
rel [M,M]

If p is an oriented path of length > 1 in the quiver with different begin- and endpoint,
then we can write p as a concatenation p = p;ps with p; an oriented path of length
> 0 such that pap; = 0 in M. As [py1,p2] = pip2 — p2p1 = 0 in dR?,; M we deduce
that the space of noncommutative functions on M has as C-basis the necklace words
w

o—1U ~

e ]

/ 0
e b
i {

O /
\D\D/D

where each bead is this time one of the elements

o], @:y and [Y]= w0

together with the necklace words of length zero e and f. Each necklace word w
corresponds to the equivalence class of the words in M obtained from multiplying
the beads in the indicated orientation and and two words in {z,y,u,v} in M are
said to be equivalent if they are identical up to cyclic permutation of the terms.
Substituting each bead with the n x n matrices specified before and taking traces

we get a map
M

tr
M, M ] — Clrep, M]

dR%, M =
Hence, noncommutative functions on M induce ordinary functions on all the rep-
resentation spaces rep, M and these functions are GL(«)-invariant. Moreover, the
image of this map generates the ring of polynomial invariants as we mentioned
before.
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Next, we consider noncommutative 1-forms on M which are by definition ele-
ments of the space

QL M
de M = rel
rel [M,QL, M ]

rel
Recall that Q! , M is spanned by the expressions podp; with py resp. p; oriented
paths in the quiver of length > 0 resp. > 1 and such that the starting point of pg

is the end point of p;. To form dRiel M we have to divide out expressions such as

[ p,podp1 | = ppodp1 + pop1dp — pod(p1p)
That is, if we have connecting oriented paths po and p; both of length > 1 we have
in dR},, M
pod(p1p2) = p2podp1 + pop1dp:

and by iterating this procedure whenever the differential term is a path of length

> 2 we can represent each class in dR}_; M as a combination from

Me dx + Me dy + Me du + Mf dv
Now, Me = eMe + fMe and let p € fMe. Then, we have in dR!_; M
d(xp) =pdr+x dp

but by our description of Q' M the left hand term is zero as is the second term on
the right, whence p dr = 0. A similar argument holds replacing x by y. As for u,
let p € eMe, then we have in dR!; M

d(up) =p du+u dp

and again the left-hand and the second term on the right are zero whence p du = 0.
An analogous result holds for v and p € fMf. Therefore, we have the description
of noncommutative 1-forms on M

dR:, M = eMe dz + eMe dy + fMe du + eMf dv

rel
That is, in graphical terms

dRielM @yd8+ @}/ngr
& 00+ & 000

1.9 Symplectic geometry on M.

Recall that a symplectic structure on a (commutative) manifold M is given by a
closed differential 2-form. The non-degenerate 2-form w gives a canonical isomor-
phism

TM~T"M

that is, between vector fields on M and differential 1-forms. Further, there is a
unique C-linear map from functions f on M to vectorfields {; by the requirement
that —df = i¢,w where i¢ is the contraction of n-forms to n — 1-forms using the
vectorfield £. We can make the functions on M into a Poisson algebra by defining

{f,9} = w(&: &)
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and one verifies that this bracket satisfies the Jacobi and Leibnitz identities.
The Lie derivative L¢ with respect to £ is defined by the Cartan homotopy
formula
L§ Y = Z'Ed(p + digg&
for any differential form ¢. A vectorfield £ is said to be symplectic if it preserves
the symplectic form, that is, Lew = 0. In particular, for any function f on M we
have that {; is symplectic. Moreover the assignment

f— &

defines a Lie algebra morphism from the functions O(M) on M equipped with the
Poisson bracket to the Lie algebra of symplectic vectorfields, Vect, M. Moreover,
this map fits into the exact sequence

00— C—> OM) — Vecty M — Hjpz M — 0
It is this sequence that we will generalize to the noncommutative algebra M.
We say that a noncommutative symplectic structure on M is given by a 2-form
wedR?, M suchthat dw=0¢€dR, M

Given the shape of the defining quiver, a natural choice of symplectic structure is
taking
w=dzx dy + du dv

By a (relative) vectorfield on M we understand a C x C-derivation on M. That is,

a linear map M LN Y such that
O(ab) = 6(a)b + ab(b) and O(e) =0=10(f).

For a given 6 we define a degree preserving derivation Ly and a degree —1 super-
derivation ig on @ M

T T T

Ol M Qr M Ol M
Ly ig Ly ig Ly
defined by the rules

{Le(@) =0(a)  Ly(da) =d 0(a)
(a)=0 ig(da) = 0(a)

for all a € M. We will prove in chapter 10 an analog for the Cartan homotopy
formula

i

Lo =1god+doig

and that these operators induce operators on the Karoubi complex dR M. The
analog of the isomorphism 7" M ~ T* M is the isomorphism

Dercye M =% dRY,, M
as for any C x C-derivation 6 we have

tp w = 1g(da)dy — dwig(dy) + is(du)dv — duig(dv)
= 0(z)dy — dzb(y) + 6(u)dv — dub(v)
= 0(x)dy — 0(y)dz + 0(u)dv — O(v)du
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and using the relations in Ml we can easily prove that any C x C derivation on M
must satisfy

O(xz) € eMe O(y) € eMe O(u) € eMf 6(v)e€ fMe

1

so the above expression belongs to dR,,

on the generators z,y,u and v by

M. Conversely, any 6 defined by its images

—0(y)dz + 0(z)dy — O(v)du + O(u)dv € dR},, M

induces a derivation on M.
In analogy with the classical case we define a derivation 6 to be symplectic if
and only if Lyw = 0 in dR?,, M. We denote these derivations by Der, M. From

rel

the homotopy formula it follows that
0 € Der, M <= d(igw) =0 in dR?, M

But then, using the above identification Dercyc M ~ dRiel M and the fact that
Hj, M = 0 we obtain an analog of the map f — & from functions to symplectic
vectorfields in the classical case

M 0 d 1 i,w71
m = dRTel M —_— (dR’I“el M)closed I De'r'w M

which fits into the exact sequence, using our knowledge of the de Rham cohomology
of M

M
0 — CxC— ——— —— Der, M — 0
X [M’M] €er

which we claim to be an exact sequence of Lie algebras. Hence we need to define a
Poisson bracket on the noncommutative functions %. We want to mimic the

Poisson bracket on Clx, y, u, v] determined by dz A dy + du A dv which is

_(9f 0 of 0 af o of 9
{f:9y = Gz-5y — 5y-92) + (a0 — 55-0)

but then we need a substitute for these partial derivatives. Using our description of

dR}., M we have for any f € dR°,, M == W%hﬂl\’f[] uniquely defined partial derivatives
Oa Oa Oda OJa . M

- .M

dx’ dy’ du’ dv * [MM]
)

by the formula
do=3@r+3toy+toutfo

We have to specify these on necklace words w. Using the calculation rules in dR},, M
one verifies that the partial derivatives of w are the sums of the oriented paths in
the quiver one obtains by cyclicly running through the remaining path by deleting
occurrences of the differentiating arrow. That is,

0—0 0—0

e AN e AN
F % F %
ow X ow X
a0 % B 528 @ B
] 1 3 I 3

AN e AN e

o—0 o—0
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O—0 0—0
~ N - N
O O O O
P / \ ) / X
\ \ /
KA 5 KA o
N - N ~
O—0 O—0

by

{wi, wot i = (Gr w2 _ Owy Oway y (Gwr Ows _ Jwn Gw2) modulo [ M, M |

In particular, if the w; are necklace words, the Poisson bracket {wy,ws}x is a sum
of necklace words. Using the above graphical description we have that {wq,ws} is
equal to

_ O
D/D D\D/D/ ~0
/ T & \
I L S S
[s}o] 0 O 0
N e AN s
0—0O O—0oO
_ O
D/D D\D/D/ ~0
/ 1 £ \
- > O o 0 0 -
\ w1 \ZT E wa /
[l G o o
~o—o” 0O—0O
B D/D\D
O O / \
/ \ 0
* 2 R @ Py &
EZETY RS : o o
~o—o” 0O—0O
_ O
o-o 5-Peg
O O \)(\ \
/ X
\ oy | |
[(v].[a] 4 O O O
AN e AN /
0—0O O—0oO

1.10 Fibers of the moment map.

After this excursion to the symplectic geometry of the noncommutative manifold M
it is time to return to the study of the phase space Calo,. Observe that the center
C* = (X,, \) = GL(«) acts trivially on rep, M so the relevant acting group is
rather

GL(a)

PGL(a) = T
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There is an open subset in rep, M of representations such that the stabilizer
subgroup of PGL(«) is trivial. This is the case for all simple representations
by Schur’s lemma. However, there are others. For example any representation
(X,Y,u,0) € Hilb, has trivial stabilizer, but none of them are simple representa-
tions of M as they always have a nontrivial subrepresentation of dimension vector
(1,0) determined by a common eigenvector of X and Y (which exists because X
and Y commute with each other). We will denote the open set of representations
with trivial stabilizer by rep?, M and call any (X,Y,u,v) € rep5, M a Schur repre-
sentation of the quiver.
Remark that the Lie algebra of PGL(«) is the vectorspace

Lie PGL(a) = M2(C) = { (M,c) € M,,(C)®&C | tr(M)+c=0}

The relevant moment map for the action of (P)GL(«) on the representation space
repo M is
repa M " > Lie PGL(«)

(X7Y7U7’U) = ([X,Y]+UU, *Uu)
Fix A € C, then A = (XT,, —n)) € MJ(C) and is fixed under conjugation by GL(c).
Therefore, its preimage

7)) = {(X,Y,u,v) € repa M | [X,Y] +uv = M, and vu =n\ }

is a closed affine subscheme of rep, M stable under the action of GL(«). In partic-
ular we have that
CALO,, = 7 (1).

We will now associate noncommutative algebras to the fibers 7=(\). These are
special examples of the deformed preprojective algebras introduced by W. Crawley-
Boevey and M.P. Holland in [6]. For A € C we define

M
([#,y] + [u, 0] = Ale = nf))

and by an argument similar to that of M we see that ;~*()) is the space of n + 1-

M, =

dimensional representations M N M, 4+1(C) such that

R

The closed affine subscheme 7~1()) has as its defining ideal of relations I, the
entries in the n + 1 x n 4+ 1 matrix

and  $(f) = [8 (f] .

XT, O
[(Eruyn] + [Un,’l]n] - |: O —Tl)\:|

We consider the ring of polynomial invariants C[~'())]“%(®) and its corresponding
affine scheme p~'(\)/GL(«). The natural algebra morphisms give the following
geometric picture

pt(Qd) < > repa M

pH(A)/GL(a) = repa M/GL(a)
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Invariant theory tells us that the defining ideal of the closed subscheme
p~t(\)/GL(a) is Jy = I N Clrep, M]SL(@) . Again. points in p~'(\)/GL(a)
are in one-to-one correspondence with isomorphism classes of n + 1-dimensional
semi-simple representations of the algebra M) with specified ranks of the images of
e and f.

Analogous to the construction of the algebra M(n) we construct an algebra
M (n) which is a finite module over its center by dividing out the centrally generated
ideal of M determined by J)

M(n)

M) = ) Iy M)

Again, one verifies that the a-dimensional representations of M factor through
My (n). The trace map ¢ on M(n) introduced before defines a trace map on My (n).
Clearly, this trace satisfies the Cayley-Hamilton identities for n+1 x n+ 1 matrices
and (1) =n + 1.

We define a category CH(n + 1) of all C-algebras A equipped with a trace map

A "+ A such that ta(l) = n+1 and ¢4 satisfies all Cayley-Hamilton identities

holding for n + 1 x n + 1 matrices. Morphisms A %+ B CH(n + 1) are C-
algebra morphisms compatible with the trace maps, that is, making the diagram
below commute

A ¢ + B

A ¢ - B
We say that an algebra S in CH(n + 1) is smooth in CH(n + 1) if it has the
lifting property with respect to nilpotent ideals in CH(n + 1). That is, for all
A€ CH(n+1), I<A anilpotent ideal in A such that t4(/) C I and a morphism )
in CH(n + 1) we can complete the diagram below by a morphism ¢ in CH(n + 1)

~

We will prove in chapter 5 that this property is equivalent to the geometric for-
mulation that the space of trace preserving n + 1-dimensional representations of
S is a smooth variety. Here, a trace preserving representation is a morphism

s 2. M, 4+1(C) in CH(n + 1) where M,41(C) is equipped with the usual trace.

For example, the algebra M(n) is smooth in CH(n + 1) as its space of trace
preserving n+ 1-dimensional representations is G L, 1(C) x ¢ (@) rep,, M. Similarly,
the space of trace preserving n + 1-dimensional representations of the fiber algebra
M\ (n) is equal to the fiber bundle

GLy41(C) xFH =1 ()

and is therefore smooth in CH(n + 1) if and only if the fiber x=!()) is a smooth
submanifold of rep, M. In particular, because CALO,, = p~1(1) we deduce
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Theorem 1.22 The fiber algebra M (n) corresponding to the phase space Calo, is
a smooth algebra in CH(n + 1). In fact, it is an Azumaya algebra over Calo, =

~H1)/GL(a).

Proof. The first statement follows from the fact that CALO,, is a submanifold
of rep, M. Further, we know that the GL,-action on CALO,, is free, hence the
GL(«a)-action has all its stabilizer subgroups equal to the center C*. But then,
CALO,, — Calo,, is a principal PGL(«)-fibration. We will see in chapter 5 that
then the ring of PGL(«)-equivariant maps

CALO,, — M, 1(C)

(which is equal to the fiber algebra Mj(n) is an Azumaya algebra with a specified
embedding of the idempotents. |

This result gives a ringtheoretical interpretation of the uniformity of the phase
space Calo,. FEach point in the phase space corresponds to a simple n + 1-
dimensional representation of M (n).

In contrast, the fiber algebra My(n) corresponding to Hilb, is not smooth in
CH (n+1). Indeed, the fiber 1=1(0) is not even irreducible but even the irreducible
component determined by Hilb,, contains singularities.

1.11  Ginzburg’s theorem for Calo,.

We have now all the necessary ingredients to sketch the proof of Ginzburg’s result
that C'alo, is the coadjoint orbit of some infinite dimensional Lie algebra. To begin,
we equip rep, M with the symplectic structure induced by the 2-form

n
Z dzi; N dys; + Z du; A dv;
1<i,j<n i=1

The induced Poisson bracket {—.—},, on the ring of polynomial functions Clrep, M]
is defined to be

n
_ af o 2]
{f.9}a = Z (B2s; By — ay” am” Z (7u; avz avl afl)

1<ij<n

The action of GL(«) on rep, M is symplectic meaning that

wa (t, ') = wa(gt, gt')

for all ¢,t" € T(x,y,uv) rePa M in all points (X, Y, u,v) and for all g € GL(a). The
infinitesimal GL(«a) action gives a Lie algebra homomorphism

Lie PGL(a) — Vect,, repa M

which factorizes through a Lie algebra morphism H to the coordinate ring making
the diagram below commute

Lie PGL(«x

/\

Vect,,, repa M

7" epa
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We say that the action of GL(«) on rep, M is Hamiltonian.
This makes the ring of polynomial invariants C[rep, M]“%(®) into a Poisson
algebra and we will write

Liey = (Clrepe M]SL(®) {— —},)

for the corresponding abstract infinite dimensional Lie algebra. The dual space of
this Lie algebra Lie} is then a Poisson manifold equipped with the Kirillov-Kostant
bracket. Evaluation at a point in the quotient variety rep, M/GL(a) defines a
linear function on Lie; and therefore evaluation gives an embedding

repa M/GL(a) = Lie]

as Poisson varieties. That is, the induced map on the polynomial functions is a
morphism of Poisson algebras.
Let A € C and let A = (XT,,, —n\) € Lie PGL(«). Then, we have

Theorem 1.23 Assume that p=1()) is a smooth variety on which PGL(c) acts
freely. Then, the quotient variety p~*(A)/GL(«) is an affine symplectic manifold
and the Poisson embeddings

“1()\)/GL(a) — rep, M/GL(a) — Lie}
makes each connected component of p=1(\)/GL(c) a closed coadjoint orbit of Lies.

Proof.  (sketch) Because the action of the reductive group PGL(«) is free on
the smooth affine variety m=1()), the quotient variety p~'(A)/GL(«) is smooth
and affine. Moreover, the infinitesimal coadjoint action of Lie; on Liej preserves
~1()\)/GL(a) and factors through the quotient Lie algebra L}el
In general, if X is a smooth affine variety, then the differentials of polynomial
functions on X span the tangent spaces at all points x of X. Therefore, if X is in
addition symplectic, the infinitesimal Hamiltonian action of the Lie algebra C[X]
(with the natural Poisson bracket) on X is infinitesimally transitive. But then, the
evaluation map makes X a coadjoint orbit of the dual Lie algebra C[X]*.
Hence, p~'(\)/GL(a) is a coadjoint orbit in C[u~1())/GL(a)]*. There-
fore, the infinite dimensional group Ham generated by all Hamiltonian flows on
~1()\)/GL(a) acts with open orbits. Being connected, each irreducible component
of n=1(\)/GL(«) is a single Ham-orbit finishing the proof. O

Observe that the conditions hold for A = 1, that is, C'alo,, is a coadjoint orbit in
Lie}. In contrast, the fiber corresponding to Hilb,, that is, A = 0 does not satisfy
the requirements.

The drawback is that the Lie algebra Lie; still depends on n and we want a
similar result holding for all n. We will now show that all C'alo,, are coadjoint orbits
in the dual of a central extension of the Lie algebra Der, M.

The central extension in question is given by the exact sequence of Lie algebras
we found when investigating the noncommutative deRham cohomology of M

M
—CxC— ——— —— Der, M ——
0 X [V, M ] er 0

Moreover, we have seen that both T and Lie; are generated by necklace words.

M M ]
the crucial point to note is now that

M r
Lie = W # (C[?“epa M]GL(OZ) = Liel
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obtained by mapping a necklace word w to its trace tr(w) using the n+ 1 xn+1
matrices X, Yn, un and v, introduced before, is a Lie algebra morphism where we
equip Lie with the Poisson bracket determined by the partial derivations determined
from our description of dR' M and Lie; is equipped with the Poisson bracket
{—, —}a. That is, we have for all necklace words w; and wy the identity

{tr wy,tr wate = tr {wi, watk

Because the tr w generate the ring of polynomial invariants Clrep, M]“H(®) it
follows that the elements ¢r % separate points of Calo, = p~1(1)/GL(«) as
subset of rep, M/GL(«). That is, the composition

tr M N
Calo, — repo, M/GL(a) — (W)
is injective. Analogously, the differentials of functions on C'alo,, obtained by restrict-
ing traces of necklace words viewed as linear functions on Lie] span the cotangent
spaces at all points of Calo,,, concluding the proof of

Theorem 1.24 For all n, the phase space Calo,, is a coadjoint orbit in the dual of
the Lie algebra % which is a central extension of the Lie algebra Der,, M.



Chapter 2

Brauer-Severi Varieties.

Let K be a field and A = (a,b)x the quaternion algebra determined by a,b € K*.
That is,

A=Kl1eoKioKj® Kij with i2=a j°=0b and ji=—ij
The norm map on A defines a conic in P% called the Brauer-Severi variety of A
BS(A) = V(2% — ay? — bz?) — P% = Proj K|z,y, z].

Its characteristic property is that a fieldextension L of K admits an L-rational point
on BS(A) if and only if A ® L admits zero-divisors and hence is isomorphic to
My (L).

More generally, let K be the algebraic closure of K. We will see that the Galois
cohomology pointed set

H*(Gal(K/K), PGL,(K))

classifies at the same time the isomorphism classes of the following geometric and
algebraic objects

e Brauer-Severi K-varieties BS, which are smooth projective K-varieties such
that BSk ~ Pp .

e Central simple K-algebras A, which are K-algebras of dimension n? such that

The one-to-one correspondence between these two sets is given by associating to
a central simple K-algebra A its Brauer-Severi variety BS(A) which represents
the functor associating to a fieldextension L of K the set of left ideals of A @ L
which have L-dimension equal to n. In particular, BS(A) has an L-rational point
if and only if A ® x L ~ M, (L) and hence the geometric object BS(A) encodes the
algebraic splitting behaviour of A.

Now restrict to the case when K is the functionfield C(X) of a projective variety
X and let A be a central simple C(X)-algebra of dimension n?. Let A be a sheaf
of Ox-orders in A then we will see that there is a Brauer-Severi scheme BS(A)
which is a projective space bundle over X with general fiber isomorphic to P"~1(C)
embedded in PV(C) where N = (" "} ~') — 1. Over an arbitrary point of z the fiber
may degenerate, for example if n = 2 the P1(C) embedded as a conic in P?(C) can
degenerate into a pair of P!(C)’s. The special case when BS(A) is a P"~!(C)-bundle
corresponds to the case when A is a sheaf of Azumaya algebras over X.

For arbitrary orders, the geometric structure of BS(.A) can be fairly complicated.
However, when A is a sheaf of smooth orders we will prove in chapter 8 that BS(.A)

43
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is a smooth variety and indicate how one can compute the fibers over X explicitly.
The motivating class of such examples are the unirational non-rational threefolds
constructed by M. Artin and D. Mumford [3] in 1972 as Brauer-Severi varieties of
maximal orders in specified quaternion algebras (the restrictions impose that these
maximal orders are indeed smooth orders). A major step in their construction is the
description of the Brauer group of a simply connected projective surface using étale
cohomology. We will outline this result in some detail as it gives us the opportunity
to introduce some basic results on étale extentions, étale cohomology and étale
descent. Roughly speaking, étale extensions give us an algebraic alternative for the
implicit function theorem in differential geometry. In this book we will give several
applications of étale descent. For example, we will give an étale local description
of smooth orders which will allow us to deduce from the Artin-Mumford exact
sequence which central simple algebras over a smooth projective surface allow a
noncommutative smooth model, see chapter 6.

2.1 Unirational non-rational threefolds.

In this section we will outline the major steps in the Artin-Mumford construction
of unirational non-rational threefolds. We use this class of examples as motivation
for introducing étale cohomology and smooth orders. For more details we refer to
the original paper [3].

Consider P? = P?(C). We want to describe all central simple algebras A over
the functionfield C(z,y). In this chapter we will prove that this is a huge collection.
The Artin-Mumford result describes them by a certain geo-combinatorial package
which we call a Z,,-wrinkle over P? = P?(C). A Z,-wrinkle is determined by

e A finite collection C = {C4,...,Cy} of irreducible curves in P2, that is, C; =
V(F;) for an irreducible form in C[X,Y, Z] of degree d;.

e A finite collection P = {P,..., P;} of points of P? where each P; is either an
intersection point of two or more C; or a singular point of some Cj.

e For each P € P the branch-data bp = (b1,...,b;,) with b; € Z,, = Z/nZ and
{1,...,ip} the different branches of C in P. These numbers must satisfy the
admissibility condition

> bi=0¢Z,

for every P € P

e for each C' € C we fix a cyclic Z,,-cover of smooth curves

D—C

of the desingularization C of C which is compatible with the branch-data.
That is, if @ € C corresponds to a C-branch b; in P, then D is ramified in @
with stabilizer subgroup

Stabg = (b;) C Zy,
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For example, a portion of a Z4-wrinkle can have the following picture
0

3
(@}

@ A
2

It is clear that the cover-data is the most untractable part of a Z,-wrinkle, so
we want to have some control on the covers D —s C. Let {Q1,...,Q.} be the
points of C' where the cover ramifies with branch numbers {b1,...,b,}, then D
is determined by a continuous module structure (that is, a cofinite subgroup acts
trivially) of )

m(C —{Q1,...,Q.}) on Z,

where the fundamental group of the Riemann surface C' with z punctures is known
(topologically) to be equal to the group

(U1, V15« Ugy Vg, T1y - - -, 20/ ([ur, v1] - - [ug, vglar .. 22)

where g is the genus of C. The action of z; on Z, is determined by multiplication
with b;. In fact, we need to use the étale fundamental group, see [20], but this group
has the same finite continuous modules as the topological fundamental group.

Example 2.1 Covers of P! and elliptic curves.

1. If C = P! then g = 0 and hence 7 (P* —{Q1,...,Q.} is zero if z < 1 (whence
no covers exist) and is Z if z = 2. Hence, there exists a unique cover D —» P!
with branch-data (1,—1) in say (0,00) namely with D the normalization of

P! in C({/z).

2. If C' = F an elliptic curve, then g = 1. Hence, 71 (C) = Z ® Z and there exist
unramified Z,-covers. They are given by the isogenies

E — E

where E’ is another elliptic curve and E = E’/(r) where 7 is an n-torsion
point on E’.

We will show that any n-fold cover D —» C is determined by a function
f e C(C)*/C(C)*™. This allows us to put a group-structure on the equivalence
classes of Z,-wrinkles. In particular, we call a wrinkle trivial provided all coverings
D; —» C; are trivial (that is, D; is the disjoint union of n copies of C‘Z)

One of the main results we will prove in this chapter is the Artin-Mumford exact
sequence for Brauer groups of simply connected surfaces. In the case of C(z,y) this
result can be phrased as

Theorem 2.2 If A is a central simple C(x,y)-algebra of dimension n?, then A
determines uniquely a Z,-wrinkle on P?. Conversely, any Z,-wrinkle on P? deter-
mines a unique division C(x,y)- algebra whose class in the Brauer group has order
n.
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Specialize to the case of quaternion algebras, that is n = 2. Consider E; and F5
two elliptic curves in P? and take C = {E1, B>} and P = { P4, ... Py} the intersection
points and all the branch data zero. Let E! be a twofold unramified cover of E;
as in the example above given by modding our a 2-torsion point from E]. By
the Artin-Mumford result there is a quaternion algebra A corresponding to this
Zo-wrinkle.

Next, blow up the intersection points to get a surface S with disjoint elliptic
curves C; and Cy. Now take a maximal Og order in A then we will see that the
relevance of the curves C; is that they are the locus of the points s € S where
A, % M, (C), the so called ramification locus of the order A. The local structure of
Ain a point s € S is

e when s ¢ C; U Cy, then Ay is an Azumaya Og s-algebra in A,
e when s € C;, then A = 0575.1 D 0575.7; D Os7s.j D OS’S.ij with

(2 =a
j2 =0t
Ji =iy

where ¢ = 0 is a local equation for C; and a and b are units in Og ;.

In chapter 6 we will see that this is the local description of a smooth order over a
smooth surface in a quaternion algebra. Artin and Mumford then define the Brauer-
Severi scheme of A as representing the functor which assigns to an S-scheme S’ the
set of left ideals of A ®p, Og/ which are locally free of rank 2. Using the local
description of A they show that BS(A) is a projective space bundle over S

N —

with the properties that BS(.A) is a smooth variety and the projection morphism

BS(A) —» S is flat, all of the geometric fibers being isomorphic to P! (resp. to
P! v P!) whenever s ¢ C; U Cy (resp. s € C, UCy).

Finally, for specific starting configurations F; and FEs, they prove that the ob-
tained Brauer-Severi variety BS(A) cannot be rational because there is torsion in
H*(BS(A), Zs3), whereas BS(A) can be shown to be unirational for these specific
configurations.
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2.2 Etale morphisms and sheaves.

In the next few sections we will introduce the basic tools from étale topology leading
to a sketch of the Artin-Mumford exact sequence.

Definition 2.3 A finite morphism A —+ B of commutative C-algebras is said to
be étale if and only if

ofi
3xj

B=Alty,...,t])/(f1,-.., fr) such that det ( )i,j € B*
Example 2.4 Consider the morphism C[z,z~!] —— Clx,z7!][{/z] and the in-
duced map on the affine varieties

Var Clz,z™ [ /7] e Var Clz,z ' = C — {0}.

Clearly, every point A € C — {0} has exactly n preimages \; = (* /A. Moreover,
in a neighborhood of \;, the map 1 is a diffeomorphism. Still, we do not have
an inverse map in algebraic geometry as {/z is not a polynomial map. However,
Clx, 2z~ Y[ /] is an étale extension of Clx,z~!]. That is, étale morphisms can be
seen as an algebraic substitute for the nonexistence of an inverse function theorem
in algebraic geometry.

Proposition 2.5 FEtale morphisms satisfy ’sorite’, that is

A e » A o4 B B
/ \
et et
A B A e - C
(basechange) (composition)
A — % AN ouB A
N / \
et et
R ~ B 2 S -~ B
A—alg
(descent) (morphisms)

Here et means an étale morphism and f.f. stands for a faithfully flat morphism.

Definition 2.6 The étale site of A, which we will denote by Ag; is the category
with

e objects : the étale extensions A Sy of A

e morphisms : compatible A-algebra morphisms

B1 > B2
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Observe that by the foregoing proposition all morphisms in A.; are étale. We can
put on A.; a (Grothendieck) topology by defining

e cover : a collection C = {B LN B;} in A such that
Spec B =U; I'm (Spec B; AN Spec B )

where Spec is the prime spectrum of a commutative algebra, that is the col-
lection of all its prime ideals equipped with the Zariski topology.

An étale presheaf of groups on A.; is a functor
G : Ay — Groups
In analogy with usual (pre)sheaf notation we denote for each
e object B € A : T'(B,G) =G(B)

e morphism B s Cin Aet o ResB =G(¢) : G(B) — G(C)and g | C =
G(¢)(9)-

A presheaf G is a sheaf provided for every B € A.; and every cover {B — B;}
we have exactness of the equalizer diagram

0 —> G(B) — [[GB:) — [][G(Bi®s B;)

.3

Example 2.7 Constant sheaf.
If G is a group, then

G: A, — Groups B GO™(B)

is a sheaf where m(B) is the number of connected components of Spec B.

Example 2.8 Multiplicative group G,.
The functor
Gy : Agg — Ab B+— B*

is a sheaf on A.;.
A sequence of sheaves of Abelian groups on A.; is said to be exact
G/ f G 9 @

if for every B € A.: and s € G(B) such that g(s) = 0 € G”(B) there is a cover
{B — B;} in A.: and sections t; € G'(B;) such that f(t;) = s | B;.

Example 2.9 Roots of unity pi,.
We have a sheaf morphism

Gm s G
and we denote the kernel with p,. As A is a C-algebra we can identify u, with the

constant sheaf Z,, = Z/nZ via the isomorphism (* i after choosing a primitive
n-th root of unity ¢ € C.
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Lemma 2.10 The (Kummer)-sequence of sheaves of Abelian groups

(_ n

00— pp — G, — G, — 0
is exact on Agy (but not necessarily on Azqy ).

Proof. We only need to verify surjectivity. Let B € A, and b € G,,(B) = B*.
Consider the étale extension B’ = B[t]/(t™ —b) of B, then b has an n-th root over
in G,,(B’). Observe that this n-th root does not have to belong to G,,(B). O

If p is a prime ideal of A we will denote with k, the algebraic closure of the field
of fractions of A/p. An étale neighborhood of p is an étale extension B € A.; such
that the diagram below is commutative

nat

A

ky

B

The analogue of the localization A, for the étale topology is the strict Henselization
At = lim B

where the limit is taken over all étale neighborhoods of p.

Recall that a local algebra L with maximal ideal m and residue map 7 :
L — L/m = k is said to be Henselian if the following condition holds. Let
f € L[t] be a monic polynomial such that 7(f) factors as gg.ho in k[t], then f
factors as g.h with 7(g) = go and w(h) = ho. If L is Henselian then tensoring
with k induces an equivalence of categories between the étale A-algebras and the
étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if its residue
field is algebraically closed. Thus, a strict Henselian ring has no proper finite
étale extensions and can be viewed as a local algebra for the étale topology.

Example 2.11 The algebraic functions C{z1,...,z4}
Consider the local algebra of C[z1,..., 4] in the maximal ideal (z1,...,24),
then the Henselization and strict Henselization are both equal to

C{x1,...,zq}

the ring of algebraic functions. That is, the subalgebra of C[[z1,...,z4]] of for-
mal power-series consisting of those series ¢(z1,...,24) which are algebraically
dependent on the coordinate functions x; over C. In other words, those ¢
for which there exists a non-zero polynomial f(z;,y) € Clzy,...,24,y] with
flz1, ..., xq,0(x1,...,2q)) = 0.

These algebraic functions may be defined implicitly by polynomial equations.
Consider a system of equations

filz, ..., za;91, - Ym) = 0 for f; € Clz;,y;] and 1 <i<m
Suppose there is a solution in C with

r;=0and y; =y
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such that the Jacobian matrix is non-zero

ofi
det (5(0,..., 039, ..,ym)) # 0
8yj
Then, the system can be solved uniquely for power series y;(z1,...,zq) with
y;(0,...,0) = y; by solving inductively for the coeflicients of the series. One can
show that such implicitly defined series y;(z1,...,2q) are algebraic functions and

that, conversely, any algebraic function can be obtained in this way.

If G is a sheaf on A.; and p is a prime ideal of A, we define the stalk of G in p
to be
Gy, = lim G(B)

where the limit is taken over all étale neighborhoods of p. One can verify mono-
epi- or isomorphisms of sheaves by checking it in all the stalks.

If A is an affine algebra defined over an algebraically closed field, then it suffices
to verify in the maximal ideals of A.

2.3 Etale cohomology

Before we define cohomology of sheaves on A.; let us recall the definition of derived
functors. Let A be an Abelian category. An object I of A is said to be injective if
the functor

A— Ab M — Homa(M,I)

is exact. We say that A has enough injectives if, for every object M in A, there is
a monomorphism M <— [ into an injective object.

If A has enough injectives and f : A —— B is a left exact functor from A into a
second Abelian category B, then there is an essentially unique sequence of functors

Rf:A—+B i>0
called the right derived functors of f having the following properties
«ROf=7f
e R' I =0 for I injective and i > 0
e For every short exact sequence in A
0O— M — M — M — 0

there are connecting morphisms 6 : R® f(M”) — RiTY f(M') for i > 0
such that we have a long exact sequence

e R A(M) — R F(M?) 2 R (M) — R (M) — ...

e For any morphism M —— N there are morphisms R* f(M) — R’ f(N)
fori >0

In order to compute the objects R f(M) define an object N in A to be f-acyclic
if R® f(M) =0 for all i > 0. If we have a resolution of M

0—>M—» Ny —> N, —> Ny ——> ...
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by f-acyclic object N;, then the objects R f(M) are canonically isomorphic to the
cohomology objects of the complex

0 — f(No) —> f(N1) — f(N2) — ...

One can show that all injectives are f-acyclic and hence that derived objects of M
can be computed from an injective resolution of M.

Now, let S?(A.;) be the category of all sheaves of Abelian groups on A;. This
is an Abelian category having enough injectives whence we can form right derived
functors of left exact functors. In particular, consider the global section functor

I:8%A.) — Ab G — G(A)

which is left exact. The right derived functors of I' will be called the étale coho-
mology functors and we denote

R'T(G) = H',(A,G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 — G —— G —— G” —— 0, then we have a long exact cohomology se-
quence

. — H,(A,G) — H'(A,G") — H'['(A,G') — ...

If G is a sheaf of non-Abelian groups (written multiplicatively), we cannot define
cohomology groups. Still, one can define a pointed set H, (A, G) as follows. Take
an étale cover C = {A — A;} of A and define a 1-cocycle for C with values in G
to be a family

Gij € G(A”) with Aij = Az ®Xa Aj

satisfying the cocycle condition
(95 | Aijr) (i | Aijr) = (gir | Aijr)

where A;jp = A; ®4 Aj @4 Ay.
Two cocycles g and ¢’ for C are said to be cohomologous if there is a family
h; € G(4;) such that for all 4, j € I we have

géj = (hi | Aij)gij(hj | Aij)_l

This is an equivalence relation and the set of cohomology classes is written as
HL(C,G). It is a pointed set having as its distinguished element the cohomology
class of g;; =1 € G(A;;) for all i,j € I.

We then define the non-Abelian first cohomology pointed set as

HL(A,G)= lim HL(C,G)

where the limit is taken over all étale coverings of A. It coincides with the previous
definition in case G is Abelian.

A sequence 1 —— G’ ——+ G —— G” —— 1 of sheaves of groups on A is
said to be exact if for every B € A.; we have

o G'(B) = Ker G(B) — G”(B)

e For every g° € G”(B) there is a cover {B —— B;} in A.; and sections
gi € G(B;) such that g; maps to ¢g” | B.
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Proposition 2.12 For an exact sequence of groups on Ae:
1—>G — G —G — 1
there is associated an exact sequence of pointed sets
1 —— G/(A) —> G(A) —> G"(A) —» HL(A,G') —
- Helt(A7G) - Helt(A,G”) """" > Hth(AvGI)

where the last map exists when G’ is contained in the center of G (and therefore is

Abelian whence H? is defined).

Proof. The connecting map ¢ is defined as follows. Let ¢ € G”(A) and let
C ={A —— A;} be an étale covering of A such that there are g; € G(A;) that
map to g | A; under the map G(4;) — G”(A4;). Then, d(g) is the class determined
by the one cocycle

9ij = (9: | Aij) (g | Aij)
with values in G’. The last map can be defined in a similar manner, the other maps
are natural and one verifies exactness. O

The main applications of this non-Abelian cohomology to non-commutative al-
gebra is as follows. Let A be a not necessarily commutative A-algebra and M an
A-module. Consider the sheaves of groups Aut(A) resp. Aut(M) on A, associated
to the presheaves

B Autp_q1g(A ®4 B) resp. B — Autp_mod(M @4 B)

for all B € Ag. A twisted form of A (resp. M) is an A-algebra A’ (resp. an
A-module M’) such that there is an étale cover C = {A —— A;} of A such that
there are isomorphisms

A©aA; -2 N @4 A resp. M @4 A Lo M @4 A;

of A;-algebras (resp. A;-modules). The set of A-algebra isomorphism classes (resp.
A-module isomorphism classes) of twisted forms of A (resp. M) is denoted by
Twa(A) (resp. Twa(M)). To a twisted form A’ one associates a cocycle on C

—1
apn = Qip = ¢; 0@

with values in Aut(A). Moreover, one verifies that two twisted forms are isomorphic
as A-algebras if their cocycles are cohomologous. That is, there is an embedding

Twa(A) — HL (A, Aut(A)) and similarly Twa (M) — HL (A, Aut(M))

In favorable situations one can even show bijectivity. In particular, this is the case
if the automorphisms group is a smooth affine algebraic group-scheme.

For example, consider A = M,,(A), then the automorphism group is PGL,, and
twisted forms of A are classified by elements of the cohomology group

HY(A, PGL,)

These twisted forms are precisely the Azumaya algebras of rank n? with center A.
When A is an affine commutative C-algebra and B is an A-algebra with center A,
then B is an Azumaya algebra of rank n? if and only if

B
— ~ M,
BmB n(©)

for every maximal ideal m of A. For example, the fiber algebra M; (n) introduced in
the foregoing chapter is an Azumaya algebra of rank (n + 1)? over its center which
is C[Calo,].
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2.4 Central simple algebras

Let K be a field of characteristic zero, choose an algebraic closure K with absolute
Galois group Gk = Gal(K/K).

Lemma 2.13 The following are equivalent
1. K — A is étale
2. A K~Kx...xK
3. A=1]]L; where L;/K is a finite field extension

Proof. Assume (1), then A = K[z1,...,2,]/(f1,..., fn) where f; have invertible
Jacobian matrix. Then A ® K is a smooth algebra (hence reduced) of dimension 0
so (2) holds.

Assume (2), then

Hompg_q4(A,K) ~ Homg_q4(A @ K, K)

has dimg (A ® K) elements. On the other hand we have by the Chinese remainder
theorem that

AfJac A=]]Li
with L; a finite field extension of K. However,

dimg(A@K) =Y dimg (L;) = dimx (A Jac A) < dimg (A)

and as both ends are equal A is reduced and hence A = [[, L; whence (3).
Assume (3), then each L; = K{[z;]/(f;) with 0f;/0x; invertible in L;. But then
A =T]L; is étale over K whence (1). O

To every finite étale extension A = [[ L; we can associate the finite set rts(A) =
Hompg —a14(A,K) on which the Galois group G acts via a finite quotient group.
If we write A = K[t]/(f), then rts(A) is the set of roots in K of the polynomial f
with obvious action by G. Galois theory, in the interpretation of Grothendieck
can now be stated as

Proposition 2.14 The functor

Koy ris(z) finite G — sets

is an anti-equivalence of categories.

We will now give a similar interpretation of the Abelian sheaves on K. Let G
be a presheaf on K.;. Define

Mg = lim G(L)

where the limit is taken over all subfields . —— K that are finite over K. The
Galois group Gk acts on G(L) on the left through its action on L whenever L/K
is Galois. Hence, Gi acts an Mg and Mg = UMéf where H runs through the open
subgroups of Gx. That is, Mg is a continuous G g-module.

Conversely, given a continuous G g-module M we can define a presheaf G,; on
K. such that
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e Gy(L) = M where H =G = Gal(K/L).

o Gu([TLi) = [TGum(Ly).

One verifies that G, is a sheaf of Abelian groups on K.;.

Theorem 2.15 There is an equivalence of categories
S(K.t) — Gk — mod

induced by the correspondences G — Mg and M — Gjps. Here, Gx — mod is the
category of continuous G g -modules.

Proof. A Gg-morphism M —— M’ induces a morphism of sheaves Gy — G-
Conversely, if H is an open subgroup of Gx with L = K, then if G 2, G’ is
a sheafmorphism, ¢(L) : G(L) —— G'(L) commutes with the action of G by
functoriality of ¢. Therefore, lim ¢(L) is a Gg-morphism Mg — Mg

One verifies easily that Homg, (M, M') —— Hom(Gps,Gyyr) is an isomor-
phism and that the canonical map G —— Gy, is an isomorphism. ([l

In particular, we have that G(K) = G(K)“% for every sheaf G of Abelian groups
on K. and where G(K) = Mg. Hence, the right derived functors of I and (—)¢
coincide for Abelian sheaves.

The category G — mod of continuous G g-modules is Abelian having enough
injectives. Therefore, the left exact functor

(-)¢: Gk —mod — Ab

admits right derived functors. They are called the Galois cohomology groups and
denoted

R' M® = H(Gk, M)

Therefore, we have.

Proposition 2.16 For any sheaf of Abelian groups G on K. we have a group
isomorphism
H (K, G) ~ H'(Gk,G(K))

Therefore, étale cohomology is a natural extension of Galois cohomology to
arbitrary algebras.

The following definition-characterization of central simple algebras is classical

Proposition 2.17 Let A be a finite dimensional K-algebra. The following are
equivalent :

1. A has no proper twosided ideals and the center of A is K.
2. Ax = A®k K~ M, (K) for some n.
3. AL = A®k L ~ M, (L) for some n and some finite Galois extension L/K.

4. A ~ My(D) for some k where D is a division algebra of dimension 1> with
center K.
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The last part of this result suggests the following definition. Call two central
simple algebras A and A’ equivalent if and only if A ~ My(A) and A" ~ M;(A)
with A a division algebra. From the second characterization it follows that the
tensorproduct of two central simple K-algebras is again central simple. Therefore,
we can equip the set of equivalence classes of central simple algebras with a product
induced from the tensorproduct. This product has the class [K] as unit element
and [A]~! = [A°P], the opposite algebra as A @ A%P ~ Endg(A) = Mp(K).
This group is called the Brauer group and is denoted Br(K). We will quickly recall
its cohomological description, all of which is classical.

G L, is an affine smooth algebraic group defined over K and is the automorphism
group of a vectorspace of dimension r. It defines a sheaf of groups on K,; that we
will denote by GL,. Using the general results on twisted forms of the foregoing
chapter we have

Lemma 2.18

HY(K,GL,) = H(Gk,GL.(K)) =0
In particular, we have ’Hilbert’s theorem 90’

HL(K,G,,) = H (Gg,K*) =0

Proof. The cohomology group classifies K-module isomorphism classes of twisted
forms of r-dimensional vectorspaces over K. There is just one such class. (I

PGL, is an affine smooth algebraic group defined over K and it is the automor-
phism group of the K-algebra M, (K). It defines a sheaf of groups on K.; denoted
by PGL,. By the proposition we know that any central simple K-algebra A of
dimension n? is a twisted form of M, (K). Therefore,

Lemma 2.19 The pointed set of K-algebra isomorphism classes of central simple
algebras of dimension n? over K coincides with the cohomology set

HY(K,PGL,) = H (Gk, PGL,(K))

Theorem 2.20 There is a natural inclusion
H\(K,PGLy) — HZ,(K, pn) = Br,,(K)
where Br,(K) is the n-torsion part of the Brauer group of K. Moreover,
Br(K) = H2(K.G,,)

1S a torsion group.
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Proof. Consider the exact commutative diagram of sheaves of groups on K.

1 1
Y 4 (_)n
1 > lin > G, > G, > 1
|
' ' det
1 » SL, » GL, — G -1
Y Y
PGL, = PGL,
Y Y
1 1

Taking cohomology of the second exact sequence we obtain

det

GL,(K) — K* — H!(K,SL,) — H(K,GL,)

where the first map is surjective and the last term is zero, whence
H},(K,SLy) =0
Taking cohomology of the first vertical exact sequence we get
Hy(K,SLn) — Hey (K, PGLyn) — HZ(K, pin)

from which the first claim follows.
As for the second, taking cohomology of the first exact sequence we get

Helt(Ka G’m) - Hezt(Kv :u’n) - Hth(Ka Gm) 4”’ Hth(Kv Gm)

By Hilbert 90, the first term vanishes and hence HZ, (K, 11,,) is equal to the n-torsion
of the group
H?(K,G,,) = H*(Gg,K*) = Br(K)

where the last equality follows from the crossed product result, see for example
[23]. O

So far, the field K was arbitrary. If K is of transcendence degree d, this will put
restrictions on the ’size’ of the Galois group G. In particular this will enable us
to show that H* (G, pu,) = 0 for i > d. Before we can prove this we need to refresh
our memory on spectral sequences.

2.5 Spectral sequences
Let A, B and C be Abelian categories such that A and B have enough injectives and

consider left exact functors ;
A-L-B2s¢
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Let the functors be such that f maps injectives of A to g-acyclic objects in B, that
is R g(f I) = 0 for all i > 0. Then, there are connections between the objects

RP g(R? f(A)) and R" gf(A)

for all objects A € A. These connections can be summarized by giving a spectral
sequence

Theorem 2.21 Let A, B,C be Abelian categories with A, B having enough injectives
and left exact functors

At 9 ¢

such that f takes injectives to g-acyclics.
Then, for any object A € A there is a spectral sequence

EyT =R’ g(R? f(A)) = R" gf(4)
In particular, there is an exact sequence
0 —= R' g(f(A)) — R' gf(4) —= g(R" f(A)) — R? g(f(4)) — ...
Moreover, if f is an exact functor, then we have
R" gf(A) ~ RP g(f(A))
A spectral sequence EY'Y = E™ (or E}"! = E™) consists of the following data

1. A family of objects EP*? in an Abelian category for p,q,r € Z such that
p,g>0and r>2 (or r > 1).

2. A family of morphisms in the Abelian category
. . q—r+1
db?: EPY —» EPETOTTE

satisfying the complex condition

dzra+r,qfr+1 odli =0

and where we assume that dP'? = 0 if any of the numbers p, ¢, p+ror g—r+1
is < 1. At level one we have the following

y 4

o —>0—>0—>0— > 00—
—>0—>0— > 00— > 00—
—>0—0— > 00— > 00—

—>0—>0— > 0— > 00—

D,q —
EPY = e e e e .
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At level two we have the following

Pq
E5 =

3. The objects Effl on level r + 1 are derived from those on level r by taking
the cohomology objects of the complexes, that is,

E? = Ker d?? | Im d?~ "0t 1

At each place (p, ¢) this process converges as there is an integer rg depending
on (p,q) such that for all r > ry we have d?9 = 0 = d?~"9t"=1. We then
define

ELS = BRI (= BV, = . )

Observe that there are injective maps E%4 —— Eg’q.
4. A family of objects E™ for integers n > 0 and for each we have a filtration
OCE)CE) C...CElCEy=E"
such that the successive quotients are given by
E) | Ep = ERP

That is, the terms E2:¢ are the composition terms of the limiting terms EP19.
Pictorially,

For small n one can make the relation between E™ and the terms E5? explicit.
First note that
0,0 _ 70,0 _ 0
Jo ey,
Also, B} = EL0 = E)? and E'/E} = E%! = Ker dy'. This gives an exact
sequence

401
0 E;’O Bl ESJ 2 Eg’o
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Further, E? D Ef D E3 where
E2=FE% =E° ) Im dy*
and E?/E2 = EL! = Ker dé’l whence we can extend the above sequence to

0,1 1,1
0,1 dy 2,0 1,1 dy’ 3,0
. — Ey 2> By — E12 — B, 2> Ey

as E2/E? = E%% — E9? we have that E? = Ker (B2 — E3?). If we specialize
to the spectral sequence E5'? = RP g(R? f(A)) = R™ gf(A) we obtain the exact
sequence

0 — R' g(f(4)) — R' gf(A) — g(R" f(A)) — R? g(f(4)) —
— BY — R' g(R' f(4)) — R’ g(f(A))
where E? = Ker (R? gf(A) — g(R? f(A))).

An important example of a spectral sequence is the Leray spectral sequence.

Assume we have an algebra morphism A Lo A and a sheaf of groups G on A’,.
We define the direct image of G under f to be the sheaf of groups f. G on A
defined by

f. G(B)=G(B®a A)

for all B € A.; (recall that B®4 A’ € AL, so the right hand side is well defined).
This gives us a left exact functor

forS™(AL) — S™(Au)

and therefore we have right derived functors of it R’ f,. If G is an Abelian sheaf
on A’,, then R® f,G is a sheaf on A.;. One verifies that its stalk in a prime ideal p
is equal to

(R £.G), = Hiy(AS" 94 A',G)

where the right hand side is the direct limit of cohomology groups taken over all
étale neighborhoods of p. We can relate cohomology of G and f,G by the following

Theorem 2.22 (Leray spectral sequence) If G is a sheaf of Abelian groups on A,

and A N A’ an algebra morphism, then there is a spectral sequence
Ey? = Hg (AR £.G) = H;(A,G)
In particular, if 7 f.G =0 for all j > 0, then for all i > 0 we have isomorphisms

Hét(Aa f*G) = H(Zt(Al7 G)

2.6 Tsen and Tate fields

Definition 2.23 A field K is said to be a Tsen®field if every homogeneous form
of degree deg with coefficients in K and n > deg? variables has a non-trivial zero
in K.

For example, an algebraically closed field K is a T'sen’-field as any form in
n-variables defines a hypersurface in ]P’%_l. In fact, algebraic geometry tells us a
stronger story

Lemma 2.24 Let K be algebraically closed. If f1,..., fr are forms in n variables
over K and n > r, then these forms have a common non-trivial zero in K.
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Proof. Each f; defines a hypersurface V(f;) —— P%ﬁl. The intersection of r
hypersurfaces has dimension > n — 1 — r from which the claim follows. ]

We want to extend this fact to higher Tsen-fields. The proof of the following
result is technical unenlightening inequality manipulation, see for example [30].

Proposition 2.25 Let K be a Tsen®-field and fi,..., f, forms in n variables of
degree deg. If n > rdeg?, then they have a non-trivial common zero in K.

For our purposes the main interest in Tsen-fields comes from :

Theorem 2.26 Let K be of transcendence degree d over an algebraically closed
field C, then K is a Tsen®-field.

Proof. First we claim that the purely transcendental field C(ty,...,tq) is a T'sen-
field. By induction we have to show that if L is T'sen®, then L(t) is T'sen®*1.

By homogeneity we may assume that f(z1,...,z,) is a form of degree deg with
k+1

. For fixed s we introduce new variables ygs-) with

coefficients in L[t] and n > deg y

i <n and 0 < j < s such that

=y Sty

If r is the maximal degree of the coefficients occurring in f, then we can write

Fl@) = o)) + AL+ o+ Faegosir(yl) edesst

where each f; is a form of degree deg in n(s + 1)-variables. By the proposition
above, these forms have a common zero in L provided

n(s+1) > deg®(ds + 1 + 1) <= (n — deg™™')s > deg’(r +1) —n

which can be satisfied by taking s large enough. the common non-trivial zero in L
of the f;, gives a non-trivial zero of f in L[t].

By assumption, K is an algebraic extension of C(¢1,...,ts) which by the above
argument is T'sen®. As the coefficients of any form over K lie in a finite extension
E of C(t,...,tq) it suffices to prove that F is T'sen?.

Let f(z1,...,2,) be a form of degree deg in E with n > deg?. Introduce new
variables y;; with

Ti = Y€1 + ... Yikek

where e; is a basis of E over C(ty,...,tq). Then,

f(xi) = fi(yij)er + ...+ fi(vij)ex

where the f; are forms of degree deg in k.n variables over C(ty,...,tq). Because
C(ty,...,tq) is Tsen?, these forms have a common zero as k.n > k.deg?. Finding a
non-trivial zero of f in F is equivalent to finding a common non-trivial zero to the
fisoooy [ in C(ty,...,tq), done. O

A direct application of this result is Tsen’s theorem :

Theorem 2.27 Let K be the functionfield of a curve C defined over an alge-
braically closed field. Then, the only central simple K-algebras are M, (K). That
is, Br(K) = 1.
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Proof. Assume there exists a central division algebra A of dimension n? over K.

There is a finite Galois extension L/K such that A ® L = M, (L). If z1,..., 2,2 is
a K-basis for A, then the reduced norm of any = € A,

N(x) =det(x ®1)

is a form in n? variables of degree n. Moreover, as x ® 1 is invariant under the

action of Gal(L/K) the coefficients of this form actually lie in K.

By the main result, K is a T'sen'-field and N () has a non-trivial zero whenever
n? > n. As the reduced norm is multiplicative, this contradicts N(z)N(z~1) = 1.
Hence, n = 1 and the only central division algebra is K itself. ]

If K is the functionfield of a surface, we also have an immediate application :

Proposition 2.28 Let K be the functionfield of a surface defined over an alge-
braically closed field. If A is a central simple K-algebra of dimension n?, then the
reduced norm map

N : A—K
18 surjective.

Proof. Let eq,...,e,2 be a K-basis of A and k € K, then
N(Z Tie;) — kxya

is a form of degree n in n?+1 variables. Since K is a T'sen? field, it has a non-trivial

solution (z), but then, § = (3 2¥e;)x.,, | has reduced norm equal to k. O

From the cohomological description of the Brauer group it is clear that we need
to have some control on the absolute Galois group Gx = Gal(K/K). We will see
that finite transcendence degree forces some cohomology groups to vanish.

Definition 2.29 The cohomological dimension of a group G, ¢d(G) < d if and only
it H"(G, A) =0 for all > d and all torsion modules A € G-mod.

Definition 2.30 A field K is said to be a Tate?field if the absolute Galois group
Gk = Gal(K/K) satisfies cd(G) < d.

First, we will reduce the condition ¢d(G) < d to a more manageable one. To
start, one can show that a profinite group G (that is, a projective limit of finite
groups, see [30] for more details) has ¢d(G) < d if and only if

H¥(@G, A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we can
decompose the cohomology in its p-primary parts and relate their vanishing to the
cohomological dimension of the p-Sylow subgroups G,, of G'. This problem can then
be verified by computing cohomology of finite simple G,-modules of p-power order,
but for a profinite p-group there is just one such module namely Z/pZ with the
trivial action.

Combining these facts we have the following manageable criterium on cohomo-
logical dimension.

Proposition 2.31 cd(G) < d if HY(G,Z/pZ) = 0 for the simple G-modules with
trivial action Z/pZ.
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We will need the following spectral sequence in Galois cohomology

Proposition 2.32 (Hochschild-Serre spectral sequence) If N is a closed normal
subgroup of a profinite group G, then

EY? = HP(G/N,HY(N,A)) = H"(G, A)
holds for every continuous G-module A.

Now, we are in a position to state and prove Tate’s theorem

Theorem 2.33 Let K be of transcendence degree d over an algebraically closed
field, then K is a Tate?-field.

Proof. Let C denote the algebraically closed basefield, then K is algebraic over
C(t1,...,tq) and therefore
Gr — Gey,....ta)

Thus, K is Tate? if C(ty,...,tq) is Tate?. By induction it suffices to prove
If cd(Gr) < k then cd(Grp)) < k+1

Let L be the algebraic closure of L and M the algebraic closure of L(t). As L(t)
and LL are linearly disjoint over L we have the following diagram of extensions and

Galois groups
L
G {
L

where G +)/GL) ~ GL.
We claim that cd(Gr)) < 1. Consider the exact sequence of G'1;)-modules

Gr(e)

t) - M

> ]L(
Gr OV@
(

S

— Up —* —_ e

where y1, is the subgroup (of C*) of p-roots of unity. As Gp ) acts trivially on
tp it is after a choice of primitive p-th root of one isomorphic to Z/pZ. Taking
cohomology with respect to the subgroup G,y we obtain

0= H"'(Gru),M*) — H*(Gru), Z/pZ) — H*(Gr),M*) = Br(L(t))

But the last term vanishes by Tsen’s theorem as IL(¢) is the functionfield of a curve
defined over the algebraically closed field L. Therefore, H? (GL), Z/pZ) = 0 for all
simple modules Z/pZ, whence cd(Gy)) < 1.

By the inductive assumption we have ¢d(G) < k and now we are going to use
exactness of the sequence

0 — G — Grp) — GLyy — 0

to prove that cd(Gp ) < k+ 1. For, let A be a torsion G'(4)-module and consider
the Hochschild-Serre spectral sequence

EY? = HP(Gr, H' (G, A)) = H" (Grw), A)
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By the restrictions on the cohomological dimensions of G, and Gy the level two
term has following shape

1 4
[ ] [ ] [ ]
20 [ ] [ ]
[ ] [ ] [ ]
Eg,q _ . _ p

@ @ —>
k

where the only non-zero groups are lying in the lower rectangular region. Therefore,
all B2 = 0 for p+q > k+1. Now, all the composition factors of H*+2 (Gr),A) are
lying on the indicated diagonal line and hence are zero. Thus, Hk+2(GL(t), A)=0
for all torsion G'(y)-modules A and hence cd(Gp ) < k+ 1. O

Theorem 2.34 If A is a constant sheaf of an Abelian torsion group A on K,
then ‘
H,(K,A)=0

whenever i > trdege (K).

2.7 Coniveau spectral sequence

Consider the setting

A K

k

where A is a discrete valuation ring in K with residue field A/m = k. As always, we
will assume that A is a C-algebra. By now we have a grip on the Galois cohomology
groups

Hét(Kv H%l) and Heit(k’ :U‘gl)

and we will use this information to compute the étale cohomology groups
Hgt (Aa :U/g)l)

Here, u®' = p, ® ... ® p, where the tensorproduct is as sheafs of invertible Z,, =
—_——

l
Z/nZ-modules.

We will consider the Leray spectral sequence for ¢ and hence have to compute
the derived sheaves of the direct image

Lemma 2.35 1. RO i,.u®! ~ u®! on Agy.
2. RY i u® ~ pu®'=1 concentrated in m.

3. R i, u® ~ 0 whenever j > 2.
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Proof. The strict Henselizations of A at the two primes {0, m} are resp.
At ~ K and A" ~ k{t}
where K (resp. k) is the algebraic closure of K (resp. k). Therefore,
(B il o = HL (K, 1))
which is zero for 4 > 1 and u%l for j = 0. Further, Aff; ® 4 K is the field of fractions

of k{t} and hence is of transcendence degree one over the algebraically closed field
k, whence

(Rj i*:u%l)m = Hgt(La/iS?l)

which is zero for j > 2 because L is Tatel.
For the field-tower K C L C K we have that G, = Z = lim tm because the

only Galois extensions of L are the Kummer extensions obtained by adjoining %/t.
But then,

HY(L,p$") = HY(Z, p'(K)) = Hom(Z, p$"(K)) = p'

n

from which the claims follow. O

Theorem 2.36 We have a long exact sequence
0 — H'(A,pd") — H' (K, pi") —= HO(k, p' ™) —
H2 (A, ") — H* (K, p) — H' (k™) — ...

Proof. By the foregoing lemma, the second term of the Leray spectral sequence for
i, u®! looks like

HO (e, it 0) | H (e, 1) | H? (e, )

HOA, u") | HY(A,pd') | H*(A,p3)

n

with connecting morphisms
Hi (ke pt ™) = HE (A )

The spectral sequences converges to its limiting term which looks like
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Ker oq Ker as Ker as

HO(A, u3Y) | H'(A, p5t) | Coker on

and the Leray sequence gives the short exact sequences
0 — HY(A,pd) — HY(K, pS') — Ker ay — 0
0 — Coker oy — HZ(K,u®") — Ker ag — 0
0 — Coker oy — H',(K, u®") — Ker a; — 0

and gluing these sequences gives us the required result. O

In particular, if A is a discrete valuation ring of K with residue field k& we have
for each ¢ a connecting morphism

i 9;, i _
Het(Kvlj’;gL)l) — Het l(kﬂlu‘gl 1)

Like any other topology, the étale topology can be defined locally on any scheme
X. That is, we call a morphism of schemes
y L. x
an étale extension (resp. cover) if locally f has the form
f1 Ui Ay =T (U3, Ox) — By =T(f~1(U;), Oy)

with A; — B; an étale extension (resp. cover) of algebras.

Again, we can construct the étale site of X locally and denote it with X,;.
Presheaves and sheaves of groups on X.; are defined similarly and the right derived
functors of the left exact global sections functor

r:S8"(X.) — Ab
will be called the cohomology functors and we denote
R'T(G) = H.,(X,G)

From now on we restrict to the case when X is a smooth, irreducible projec-
tive variety of dimension d over C. In this case, we can initiate the computation
of the cohomology groups H{, (X, u®!) via Galois cohomology of functionfields of
subvarieties using the coniveau spectral sequence

Theorem 2.37 Let X be a smooth irreducible variety over C. Let X ) denote the
set of irreducible subvarieties x of X of codimension p with functionfield C(x), then
there exists a coniveau spectral sequence

EM = @D HLP(C(x), u&P) = HE(X, 1u2)
reX ()
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In contrast to the spectral sequences used before, the existence of the coniveau
spectral sequence by no means follows from general principles. In it, a lot of heavy
machinery on étale cohomology of schemes is encoded. In particular,

e cohomology groups with support of a closed subscheme, see for example [20,
p. 91-94], and

e cohomological purity and duality, see [20, p. 241-252]

a detailed exposition of which would take us too far afield. For more details we
refer the reader to [5].

Using the results on cohomological dimension and vanishing of Galois cohomol-
ogy of u®* when the index is larger than the transcendence degree, we see that the
coniveau spectral sequence has the following shape

1 4
¢ —>0—0 e O ——> 00—
de—>e—»e ---0—»o@ .
o —>0—»0 S O——— O —>
o —0 >0 O — 0 —>
Ef’q = e ~>0———>0 - 0—>0—»>

p
where the only non-zero terms are in the indicated region.

Let us understand the connecting morphisms at the first level, a typical instance
of which is

D #C@) ) — P HTCw,

zeX(p) ye X (p+1)

and consider one of the closed irreducible subvarieties z of X of codimension p and
one of those y of codimension p 4+ 1. Then, either y is not contained in x in which
case the component map

Hi((C(.’E)’lulg?l—p) ., Hi_l((C(y),,u,g?l_p_l)

is the zero map. Or, y is contained in x and hence defines a codimension one
subvariety of x. That is, y defines a discrete valuation on C(z) with residue field
C(y). In this case, the above component map is the connecting morphism defined
above.

In particular, let K be the functionfield of X. Then we can define the unramified
cohomology groups

©0;,a
—

Fi!(K/C) = Ker H'(K, ") © H'™ (ki)

where the sum is taken over all discrete valuation rings A of K (or equivalently, the
irreducible codimension one subvarieties of X) with residue field k4. By definition,
this is a (stable) birational invariant of X. In particular, if X is (stably) rational
over C, then

FAY(K/C) =0 foralli,l >0
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2.8 The Artin-Mumford exact sequence

In this section S will be a smooth irreducible projective surface.

Definition 2.38 S is called simply connected if every étale cover Y —— §' is
trivial, that is, Y is isomorphic to a finite disjoint union of copies of S.

The first term of the coniveau spectral sequence of S has following shape

0 0 0 0
H2(C(8), pn) | BcH(C(S),2Zn) ®p uyt 0
HY(C(S), un) ®c In 0 0

Hn 0 0 0]

where C runs over all irreducible curves on S and P over all points of S.
Lemma 2.39 For any smooth S we have HY(C(S), pn) —> ®cZy. If S is simply
connected, HY, (S, pu,) = 0.

(

Proof. Using the Kummer sequence 1 — p,, — Gy, O, G, — 1 and
Hilbert 90 we obtain that

H,(C(S), un) = C(8)*/C(S)™

The first claim follows from the exact diagram describing divisors of rational func-
tions

Hn = Hn 0
v Y g Y
0 -~ C* - C(S) —2 ®eZ 0
=)r n
v Y g Y
0 -~ C* - C(S) —2 ®eZ 0
Y Y Y
0 EBCZTL =~ EBCZn

By the coniveau spectral sequence we have that HL, (S, u1,) is equal to the kernel of
the morphism

Hét(C(S)v,un) Y Dc Zn
and in particular, H'(S, ju,,) — H(C(S), i)-
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As for the second claim, an element in H'(S, u,,) determines a cyclic extension
L = C(S)/f with f € C(S)*/C(S)*™ such that in each fieldcomponent L; of L
there is an étale cover T; — S with C(T;) = L;. By assumption no non-trivial
étale covers exist whence f =1 € C(5)*/C(S5)*". O

If we invoke another major tool in étale cohomology of schemes, Poincaré du-
ality, see for example [20, VI,§11], we obtain the following information on the co-
homology groups for S.

Proposition 2.40 (Poincaré duality for S) If S is simply connected, then

1. HY,(S, ptn) = pin

2. Hlt(S [in) =
HE,(S, pin) =

4. HZ (S, pn) = pyt

Proof. The third claim follows from the second as both groups are dual to each
other. The last claim follows from the fact that for any smooth irreducible projective
variety X of dimension d one has that

HZNX, ) =~ pt

We are now in a position to state and prove the important

Theorem 2.41 (Artin-Mumford exact sequence) If S is a simply connected smooth
projective surface, then the sequence

0 — Br,(S) — Bry,(C(5)) — & C(C)*/C(C)" —

18 exact.

Proof. The top complex in the first term of the coniveau spectral sequence for .S
was
a B
Hz((C(S),/Ln) — Dc HI(C(C)vzn) — Dp lin
The second term of the spectral sequence (which is also the limiting term) has the
following form

0 0 0 0
Ker o Ker B/Im o Coker 3 0
Ker v Coker v 0 0

Kn 0 0 0
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By the foregoing lemma we know that Coker v = 0. By Poincare duality we know
that Ker 3 = Im « and Coker 3 = pu,!. Hence, the top complex was exact in its
middle term and can be extended to an exact sequence

00— Hz(S’/’LTL) - HQ(C(S)vl’Ln) — @c¢ Hl((C(C),Zn) -

14»0

Sply — liy

As Zp ~ p, the third term is equal to ®cC(C)*/C(C)*™ by the argument given
before and the second term we remember to be Br,(C(S). The identification of
Br,,(S) with H?(S, u1,,) will be explained below. O

Some immediate consequences can be drawn from this :

e For a smooth simply connected surface S, Br,(5) is a birational invariant (it
is the birational invariant F1(C(S)/C) of the foregoing section.

e In particular, if S = P? we have that Br, (P?) = 0 and we obtain the descrip-
tion of Br,(C(z,y)) by Z,-wrinkles as

0 — Br, C(z,y) — @®¢c C(C)*/C(C)*"" — @p ;' —> iy —> 0

Example 2.42 If S is not necessarily simply connected, show that any class in
Br(C(S)),, determines a Z,-wrinkle.

Example 2.43 If X is a smooth irreducible rational projective variety of dimension
d, show that the obstruction to classifying Br(C(X)), by Z,-wrinkles is given by
H3,(X, pn).

We will give a ringtheoretical interpretation of the maps in the Artin-Mumford
sequence. Observe that nearly all maps are those of the top complex of the first term
in the coniveau spectral sequence for S. We gave an explicit description of them
using discrete valuation rings. The statements below follow from this description.

Let us consider a discrete valuation ring A with field of fractions K and residue

field k. Let A be a central simple K-algebra of dimension n2.

Definition 2.44 An A-subalgebra A of A will be called an A-order if it is a free
A-module of rank n? with A.K = A. An A-order is said to be maximal if it is not
properly contained in any other order.

In order to study maximal orders in A (they will turn out to be all conjugated),
we consider the completion A with respect to the m-adic filtration where m = At
with ¢ a uniformizing parameter of A. K will denote the field of fractions of A and
A =AQg [% .

Because A is a central simple K-algebra of dimension n? it is of the form

A = M, (D)

where D is a division algebra with center K of dimension s2 and hence n = s.t. We
call ¢ the capacity of A at A.

In D we can construct a unique maximal A-order I', namely the integral closure
of Ain D. We can view I as a discrete valuation ring extending the valuation v
defined by A on K. If v : K — 7, then this extended valuation

w: D — n"27Z is defined as w(a) = (K(a) : K)_lv(NK(a)/R(a))
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for every a € D where K (a) is the subfield generated by a and N is the norm map
of fields.

The image of w is a subgroup of the form e !'Z —— n~2.Z. The number
e = e(D/K) is called the ramification index of D over K. We can use it to normalize
the valuation w to

vp : D —— Z defined by vp(a) = %U(ND/R((Z))

With these conventions we have that vp(t) = e.

The maximal order I' is then the subalgebra of all elements a € D with vp(a) >
0. It has a unique maximal ideal generated by a prime element 7" and we have that
T = % is a division algebra finite dimensional over A / tA =k (but not necessarily
having k as its center).

The inertial degree of D over K is defined to be the number f = f(D/K) = (T :
k) and one shows that

s> =e.f and e | s whence s | f

After this detour, we can now take A = M;(I') as a maximal A-order in A.
One shows that all other maximal A-orders are conjugated to A. A has a unique
maximal ideal M with A = M, ().

Definition 2.45 With notations as above, we call the numbers e = e(D/K), f =
f (D/K ) and ¢ resp. the ramification, inertia and capacity of the central simple
algebra A at A. If e = 1 we call A an Azumaya algebra over A, or equivalently, if
A/tA is a central simple k-algebra of dimension n?.

Now let us consider the case of a discrete valuation ring A in K such that the
residue field k is T'sen'. The center of the division algebra T is a finite dimensional
field extension of k£ and hence is also T'sen! whence has trivial Brauer group and
therefore must coincide with T'. Hence,

T =k(a)

a commutative field, for some a € I'. But then, f < s and we have e = f = s and
k(@) is a cyclic degree s field extension of k.
Because s | n, the cyclic extension k(a) determines an element of HY,(k,Z,,).

Definition 2.46 Let Z be a normal domain with field of fractions K and let A be
a central simple K-algebra of dimension n2. A Z-order B is a subalgebra which is a
finitely generated Z-module. It is called maximal if it is not properly contained in
any other order. One can show that B is a maximal Z-order if and only if A = B,
is a maximal order over the discrete valuation ring A = Z,, for every height one
prime ideal p of Z.

Return to the situation of an irreducible smooth projective surface S. If A is a
central simple C(S)-algebra of dimension n?, we define a maximal order as a sheaf
A of Og-orders in A which for an open affine cover U; —— S is such that

A; =T(U;, A) is a maximal Z; = T'(U;, Og) order in A

Any irreducible curve C on S defines a discrete valuation ring on C(.S) with residue
field C(C) which is T'sen'. Hence, the above argument can be applied to obtain
from A a cyclic extension of C(C), that is, an element of C(C)*/C(C)*™.

Definition 2.47 We call the union of the curves C such that A determines a non-
trivial cyclic extension of C(C) the ramification divisor of A (or of A).
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The map in the Artin-Mumford exact sequence
Br,(C(8)) — EDHL(C(C), 1n)
c

assigns to the class of A the cyclic extensions introduced above.

Definition 2.48 An S-Azumaya algebra (of index n) is a sheaf of maximal orders
in a central simple C(S)-algebra A of dimension n? such that it is Azumaya at each
curve C, that is, such that [A] lies in the kernel of the above map.

Observe that this definition of Azumaya algebra coincides with the one given
in the discussion of twisted forms of matrices. One can show that if A and A’ are
S-Azumaya algebras of index n resp. n’/, then A ®p, A’ is an Azumaya algebra of
index n.n’. We call an Azumaya algebra trivial if it is of the form End(P) where
P is a vectorbundle over S. The equivalence classes of S-Azumaya algebras can be
given a group-structure called the Brauer-group Br(.S) of the surface S.

2.9 Brauer-Severi schemes

Now that we have some control over the central simple algebras over functionfields,
we will generalize the classical notion of Brauer-Severi variety of a central simple
algebra to the setting of (maximal) orders.

Fix a projective normal variety X with function field C(X) and let A be a
central simple C(X)-algebra of dimension n?. Let A be a sheaf of O x-algebras. We
call A an Ox-order in A if and only if for every affine open subset U —— X we
have that the sections A(U) =T'(U,.A) is a finite module over the integrally closed
domain R(U) = I'(U, Ox) such that

AU) ®rw) C(X) ~ A

We will define the Brauer-Severi scheme BS(A) of A locally so we fix an affine
open set U and denote A = A(U) and R = R(U). Let K be the algebraic closure of
C(X), then we have the natural inclusions

A N A @K ~ M,(K)

Rc C(X) © K

By Galois descent we can define a linear trace map A . C(X) such that for all
deA
t(o) =tr(d®1)

with ¢r the usual trace map on M, (K). That is, A —'s Ais a trace map on the
order A satisfying the Cayley-Hamilton identities of n x n matrices such that the
image of the trace map is the center R..

One of the major results we will prove in chapter 4 is that this allows to re-
construct both the order A and the center R from geometrical data. Consider the
affine scheme of all n-dimensional trace preserving representations of A,

rept, A={A —L+ M,(C) | trodp=¢ot}

where ¢r is the ordinary trace map on M, (C). Conjugation by GL,,(C) in the target
space M, (C) induces a GL,,(C)-action on rep!, A. We will show in chapter 4 that
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e A is the ring of GL,,(C)-equivariant maps from rep!, A to M, (C), and

n
e R is the ring of polynomial G L, (C)-invariants on rept, A.

We use these representation spaces to define the Brauer-Severi scheme BS(A) in a
fashion very similar to the Hilbert scheme construction in the previous chapter. In
fact, historically these varieties were introduced and studied by M. Nori [22] who
called them noncommutative Hilbert schemes. We follow here the account of M.
Van den Bergh in [31].

Consider the GL, (C) action on the product scheme rep!, A x C" given by
9-(¢,v) = (9 ¢ 97", gv)
In this product we consider the set of Brauer stable points which are
Brauer®(A) = {(¢,v) | ¢(A)v=C"}

which is also the subset of points with trivial stabilizer subgroup. Hence, every
GL,(C)-orbit in Brauer®(A) is closed and we can form the orbit space which we
call the Brauer-Severi scheme of the order A

BS(A) = Brauer®(A)/GL,(C).

This is shown to be a projective space bundle over the quotient variety
rept, A/GL,(C) which by the above is the variety corresponding to R, that is,
the chosen affine open subset of the projective normal variety X.

For arbitrary orders not much can be said about these Brauer-Severi schemes.
We will now restrict to smooth orders A that is such that their representation space
rep!, Ais a smooth GL, (C)-variety. In chapter 5 we will prove that this geometric
condition is equivalent to the algebraic characterization of A via the lifting property
modulo nilpotent ideals in the category of algebras equipped with a trace map
satisfying the Cayley-Hamilton identities of n x n matrices.

Lemma 2.49 Let A be a smooth order, that is, repl, A is a smooth variety. Then,
the Brauer-Severi scheme BS(A) is a smooth variety.

Proof.  As the action of GL,(C) on Brauer®(A) is free, it suffices to prove that
Brauer®(A) is a smooth variety. As Brauer®(A) is a Zariski open subset of the
variety repl, A x C" which is smooth by assumption, the result follows. |

Remains to classify the smooth orders A. The strategy we will follow is : first
compute the étale local structure of these orders, that is, if m< R is a maximal ideal
of R we describe

~ ~

An =AQ®gr Rn

These structures will follow by combining the étale slice results in invariant the-
ory with the geometric reconstruction of an order A from its representation space
rept, A. The local structures can be classified combinatorial by quiver-data.

In the special case of orders over smooth surfaces we will show that the relevant
data is given a Z,-loop. That is,
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e A two loop quiver Ay, with dimension vector o = (1,...,1)

and the vertices numbered as indicated. In this picture we make the natural
changes whenever k or [ is zero.

e An unordered partition of n in k + [ 4+ m nonzero parts

pP= (plv oo 7pk+l+m)
associated to the vertices of the quiver

We will prove in chapter 6 that a Z,-loop encodes the following algebraic data.
Let m be a maximal ideal of R, then there is a closed GL,(C)-orbit in rep!, A
corresponding to m. This closed orbit determines a semi-simple n-dimensional rep-
resentation of A. the fact that all dimension components are equal to one asserts
that all the simple components of this representation occur with multiplicity one and
the components of the partition p give the dimensions of these simple components.

We will prove in chapter 6 a local characterization of smooth orders in arbitrary
dimension. In the special case of surfaces we have the following result

Theorem 2.50 Let A be a central simple algebra of dimension n? over C(S) where
S is a smooth projective surface and let A be an Og-order in A. Then A is a sheaf
of smooth orders if and only if for every affine open subset U —— S and section
algebras A =T(U, A) and R =T(U,Og) we have for every mazimal ideal m a Z,,-
loop (Agim,p) such that in local coordinates x,y of S near the point corresponding
tom

() (1)

An | () 1) | Mu(Clz,y]])
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where at spot (i,7) with 1 < i,j < k+ 1+ m there is a block of dimension p; X p;
with entries the indicated ideal of C[x,y]].

Using such an explicit local description of the order, it is also possible to deter-
mine the étale local structure of the Brauer-Severi variety BS(A) in a neighborhood
of the closed fiber corresponding to m as well as the structure of the fiber 7= (m).
Assume A is locally of type (Agim,p) and construct the extended quiver

That is, we add on extra vertex labeled zero and connect it to vertex ¢ by p; directed
arrows where p; is the i-th component of the unordered partition p. In chapter 8
we will prove that the local structure of BS(A) is determined by the moduli space
of #-stable representations of this extended quiver for a certain character 6.

The fiber of the structural morphism BS(B) —» S over the point corresponding
to m we will show in chapter 8 to be the moduli space of the #-stable representations
in the nullcone of the quiver.

Rather than introducing all these concepts here we will illustrate these results

in the case of the smooth orders in quaternion algebras considered by M. Artin and
D. Mumford in [3].

Example 2.51 Smooth quaternion orders over surfaces.

Let A be a maximal order in a quaternion division algebra over a smooth projec-
tive surface S such that the ramification divisor is a disjoint union of smooth curves.
We restrict to affine sections on an affine open subset U and call them again A and
R. If m< R is a maximal ideal corresponding to a point on S not contained in the
ramification divisor of A, then A,, is an Azumaya algebra and as the Brauer group
of every Henselian local ring is trivial, it follows that in these points the étale local
structure of A must be

Am = My (Cllz, y]])

for suitable local variables x and y. If however m corresponds to a point on the
ramification divisor we have seen before that a local description of Ay, is the free
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Ry-module spanned by {1,4,j,4j} such that

;2

1 =a
j2 =0t
Ji =iy

where a, b are units in Ry, and t is a local equation of the divisor in the point. That
is, after splitting A with say the quadratic extension by adding v/a we can view the
up-tensored A, to be the subalgebra over the center by the matrices

(IS ENE

Hence, if we take our local variables to be such that x = t we obtain for the étale

local structure Cllz, y]] (z)
i [Cllz,y r
Ap = [C[[x’y” (C[[xvyﬂ:| .

In our quiver-approach there are just two possibilities for Zs-loops. They are

e type 1: Ago1 = %D andp:7
e type 2: Ajp1 = \/GD/Q and p = .

We observe that type 1 is precisely the Azumaya case and type 2 corresponds to
a point on the ramification divisor. To compute the fiber of BS(A) over a type 1
point (an Azumaya point) we have to consider the quiver

and we need to classify orbits of #-stable representations where § = (2,—2) in
the nullcone containing the vertex space in vg. Being in the nullcone means that
all evaluations around oriented cycles in the quiver should be zero, so the two
loop-matrices must be zero. Being #-stable means that the representation has no
proper subrepresentation, say with dimension vector 8 = (1,n;) such that (0, 8 >=
2 — 2n; > 0. In this case this means that either of the two matrices corresponding
to the two extra arrows must be nonzero. That is, the relevant representation space
is C2. Considering the C* x C*-action on these representations

(A, p)-(a,b) = K(a,b)

we see that the classifying space is P*(C) as it should be over an Azumaya point.
The fiber over a type 2 point (a ramified point) is determined by the quiver

~/
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Again, we have to consider representations in the nullcone, meaning that the loop-
matrix is zero and that at least one of the two arrows in the A1g1-quiver must be zero.
This time we have to consider #-stable representations where § = (2, —1, —1) which
means that the representation is not allowed to have a proper subrepresentation of
dimension vector 8 = (1,n1,n2) such that (0, 5) =2 —n; —ng > 0. If one of the
arrows a in Aig; is non-zero this means that the extra arrow ending in the source
of @ must be nonzero and if both arrows in Ajg; are zero the two extra arrows must
be non-zero. That is, we have to classify the orbits of the quiver-representations

V

giving us the required P! vV P! as classifying space.

In this book we will give combinatorial tools to extend these descriptions of
Brauer-Severi schemes of smooth orders both the higher n and to higher dimensional
base varieties.
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Classical Structures.

Among the plenitude of Quillen-smooth algebras there is a small subclass of well
understood examples : the path algebras of quivers. The main result we will prove
in this part asserts that for an arbitrary Quillen-smooth algebra A, the local study
of the approximation at level n, AQ,,, is controlled by a quiver setting. In this intro-
duction, we will first give an example of this theory and then we will briefly indicate
the relationship between this reduction result and the theory of A,.-algebras.

Consider Artin’s braid group Bs on three strings. B3 has the presentation
By~ (L,R | LR'L=R'LR™)

where L and R are the fundamental 3-braids

L R

If welet S=LR 'L and T = R™'L, an algebraic manipulation shows that
By =(S,T | T®> = 5%

is an equivalent presentation for B3. The center of Bjg is the infinite cyclic group
generated by the braid

Z=8"=(LR'L?=(R'L}?=T3

It follows from the second presentation of Bs that the quotient group modulo the
center is isomorphic to

B
i:(s,t | 82 =1=13) ~ 7y xZs

(Z)

the free product of the cyclic group of order 2 (with generator s) and the cyclic
group of order 3 (with generator ¢). This group is isomorphic to the modular group

PSLy(Z) via
- 11 - 1 0
N [P

It is well known that the modular group PSL(Z) acts on the upper half-plane H?
by left multiplication in the usual way, that is

az+b
cz+d

a bl o 2 .
L d] - H H* given by =z
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The fundamental domain H?/PSLo(Z) for this action is the hyperbolic triangle

and the action defines a quilt-tiling [?] on the hyperbolic plane, indexed by elements

thstt tt g stz shsts

-2 o] 1 2

By the above, the representation theory of the 3-string braid group Bj is essentially
reduced to that of the modular group PSLs(Z). The latter can be studied using
noncommutative geometry as the group algebra CPSL2(Z) is a Quillen-smooth
algebra. Indeed,

CPSLy(Z) ~CZy+CZ3 ~ (CxC)* (CxC xC)

and the free product of Quillen-smooth algebras is again Quillen-smooth as follows
immediately from the universal property of free products. Phrased differently, the
group algebra CPSL2(Z) is the coordinate ring of the noncommutative product of
two commutative points with three commutative points.

For a fixed integer n we want to determine the isomorphism classes of all n-
dimensional representations of PSLs(Z), or equivalently, of the Quillen-smooth
algebra CPSL2(Z). We give a geometric reformulation of this problem. Let
repn, CPSLy(Z) be the representation variety of CPSL2(Z), that is, its geomet-
ric points are algebra morphisms

CPSLy(Z) —2+ M,(C)

From the presentation of PSLy(Z) we see that we can identify it with the closed
subvariety of the affine space M, (C) & M, (C)

rep, CPSLy(Z) = {(A,B) € M,,(C) ® M, (C) | A*>=1, = B%}

It follows from Quillen-smoothness that rep, CPSLs(Z) is a smooth affine variety
(though not necessarily connected) for every n. On this representation space, the
group of invertible matrices GL,,(C) acts by simultaneous conjugation, that is

9-(A,B) = (gAg~',gBg™")
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and isomorphism classes of representations correspond to G L, (C)-orbits. That is,
we have to classify the orbits in rep,, CPSLy(Z). For n > 1 there is no Hausdorff
orbit-space due to the existence of non-closed orbits. For this reason, the classifi-
cation of isomorphism classes of n-dimensional representations of PSLo(Z) is split
into two sub-problems :

e The construction of an algebraic quotient map
rep, CPSLy(Z) — o issy, CPSLy(Z)

classifying closed GL, (C)-orbits, which we will show to be the same as iso-
morphism classes of semi-simple n-dimensional representations.

e For x € iss, CPSLy(Z), the classification of all orbits in the fiber m=1(&).
That is, if M is the corresponding semi-simple n-dimensional representation,
we want to classify all representations having M, as the direct sum of its
Jordan-Hélder components.

To solve the first, we introduce the approximation at level n, denoted by
CPSLy(Z)Q,,. To define it we first adjoin formal traces to the groupalgebra. That
is, we consider the commutative polynomial algebra in the variables t,, where w
runs through all necklaces w of length [ > 0

D/DD\D
D/ w \D
\ /

~,_ 7

where each of beads is either or |t |subject to the conditions that no two (resp.
three) consecutive beads are labeled s (resp. t). With CPSLy(Z)! we denote the
tensor product C[t,, | w necklace] @c CPSL2(Z) and there is a natural C-linear

trace map
tr

CPSLy(Z)" — C[t,, | w necklace]
defined by sending each monomial m = s ...t% in the noncommuting variables s
and t to t,, where w is the cyclic word constructed from m. As we are interested
in n-dimensional representations we would like to interpret t,, as the character
tr(m) =Tr(A" ... B%). For this reason we consider the quotient

CPSLy(Z)

CPSLy(7Z) =
* (tr — n, X (m))

where for each monomial m we define the formal Cayley-Hamilton polynomial

) (t) of m of degree n to be the polynomial in C[t,, | w][t] obtained after ex-

pressing the coefficients of the polynomial f(¢) =[], (¢t — ;) which are symmetric
functions in the A; as polynomials in the Newton functions n; = 3 A; and replac-
ing n; by tr(m?). By construction it follows that there is a one-to-one correspon-
dence between n-dimensional representations of the group algebra CPSLy(Z) and

n-dimensional trace preserving representations of CPSLs(Z)@,,. We will prove in
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chapter 4 that CPSLy(Z)Q, is a finitely generated module over the commutative
central subalgebra tr(CPSLy(Z)Q,,) which is also

tr(CPSL2(Z)Q,,) = Cliss, PSL2(Z)]

the coordinate ring of the quotient variety as semi-simple representa-
tions are determined by their characters. The algebraic quotient map
rep, PSLo(Z) — iss, PSLy(Z) is given by sending an n-dimensional represen-
tation to its set of characters tr(A® ... B%). Moreover, we will prove in chapter 5
that the approximation at level n can be geometrically reconstructed

equiv

CPSLy(Z)Q,, ={ rep, PSLy(Z) M,(C) }
as the algebra of all GL,,(C)-equivariant maps from the representation space to nxn
matrices. Both results are valid for any affine C-algebra A and follow from invari-
ant theory and the generic case of m-tuples of n X n matrices under simultaneous
conjugation, which we will prove in chapter 3.

Now, let & € iss,, PSLy(Z) be the point corresponding to the semi-simple n-
dimensional representation

Me=SP"@... @S2

where the S; are distinct irreducible d;-dimensional representations which occur in
M, with multiplicity e; (hence, n = )" d;e;). Using the theory of étale slices we will
prove in chapter 5 that the étale local structure of the quotient variety iss,, P.SLa(Z)
in a neighborhood of ¢ is fully determined by combinatorial data consisting of

e a quiver Q¢ on k vertices corresponding to the distinct simple components of
M, and

e a dimension vector ¢ = (eq,...,ex) corresponding to the multiplicities of
these simple components in M.

The local quiver Q¢ is constructed as follows (a proof will be given in chapter 7).
If S is a simple PSLo(Z)-representation, we can decompose its restrictions to the
cyclic subgroups Zs and Zs into one-dimensional eigenspaces

S |z, ~EP™ g B
S lz, ~F"@Ff” &FS”

where E resp. F) are the one-dimensional simple representations on which s resp.
t acts via multiplication with \. We will call this 5-tuple

to be the type of S. If the dimension of S, d(S) = d, we will show in chapter 7 that
these numbers must satisfy the relations (or see [?] for another proof)

d :a1+a2:b1+bg+b3
a; >b;foralli,j
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With these notations, the local quiver Q)¢ has the following local shape for every
two of its vertices v; and v;

FICE @]

where the numbers of multiple arrows and loops are determined by the formulas

{aij = d(Si)d(S;) — (7(S:), 7(S;)) when i # j
ai; = 1+d(S;)? = (7(S;),7(S:))

where (—, —) is the usual inproduct on 5-tuples. For example, issy PSLo(Z) has
several components of dimension 3 and 2. For one of the three 3-dimensional com-
ponents, the different types of semi-simples M¢ and corresponding local quivers Q)¢
of the 3-dimensional component are listed below.

MO @@2 NO
288 o
& e o

In chapter 5 we prove that the étale local structure of iss,, PSLs(Z) near £ is
isomorphic to that of iss,, Q¢ near the trivial representation. The local algebra of
the latter is generated by traces along oriented cycles in Q¢. That is, for every arrow

we take an e; x e; matrix M, of indeterminates. Multiplying these
matrices along an oriented cycle in Q)¢ and taking the trace of the square matrix

obtained gives an invariant function. Such invariants generate the local algebra
of issq, Q¢ in the trivial semi-simple representation. Therefore, to verify whether
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i88n, PSLo(Z) is smooth in ¢ it suffices to prove that the traces along oriented cycle
for the quiver-setting (Qg, ce) generate a polynomial algebra. For example, consider
a point £ € issy PSLQ(Z) of type

IO RO RENIRO 2]

©. © © o
@@ b @@ @ ®@ ®\_/@\/®

HORENORERNO. o i

Then, the traces along oriented cycles in Q¢ are generated by the following three
algebraic independent polynomials

r =ac+bd
y =eg+fh
z = (cg+dh)(ea+ fb)

and hence issqy PSLy(Z) is smooth in . The other cases being easier, we see that
this component of issy PSLo(Z) is a smooth manifold.

Another application of this local quiver-setting (Q¢, ct¢) is that one can construct
families of irreducible representations of PSLy(Z) starting from known ones. For
example consider the point & of type

NORRENO NS NONRINO

o o O° © P
@@ . ®@ . @@ @@ N N

EORRNORENORNNO b

Then, M is determlned by the followmg matrices

1 0 0 0 1 0 00
0 -1 0 0 0 ¢2 00

o 0o 1 o {o 0o ¢ of
0 0 0 -1 0 0 01

The quiver-setting (Q¢, e ) implies that any nearby orbit is determined by a matrix-
couple

1 b 0 0 1 b 0 0

( aq -1 d1 0 a9 C2 d2 0 )
0 aa 1 fi]’? |0 e ¢ fo
0 0 €1 -1 0 0 () 1

and as there is just one arrow in each direction these entries must satisfy
0=ajas =biby = cic2 = dida = e1e2 = f1f2

As the square of the first matrix must be the identity matrix 7, we have in addition
that
0=aiby =cidi =erfr

Hence, we get several sheets of 3-dimensional families of representations (possibly,
matrix-couples lying on different sheets give isomorphic PSLy(Z)-representations,
as the isomorphism holds in the étale topology and not necessarily in the Zariski
topology). One of the sheets has representatives

1 0 0 O 1 b 0 0

a -1 d 0 0 ¢2 0 0
(OOIO’Oc(f)

0 0 e —1 0 0 0 1
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From the description of dimension vectors of semi-simple quiver representations we
will give in chapter 6 it follows that such a representation is simple if and only if

ab#0 cd#0 and ef #0

Moreover, these simples are not-isomorphic unless their traces ab, cd and ef evaluate
to the same numbers.

A final application of the local quiver-setting is that it solves the second sub-
problem. That is, assume that § € iss,, PSL2(Z) has local quiver-setting (Q¢, ace),
then the isomorphism classes of PSLo(Z)-representations having as direct sum of
its Jordan-Holder components the semi-simple representation Mg are in one-to-one
correspondence with the GL(a) = GL¢, (C) x ... X GL,, (C)-orbits in the nullcone
of the quiver representation space rep,, Q¢. In chapter 8 we will see how we can
stratify these nullcones to get a handle on this problem. In the above example, this
nullcone problem is quite trivial. A representation has M, as Jordan-Holder sum if
and only if all traces vanish, that is,

ab=cd=¢ef =0

Under the action of the group GL(ag) = C* x C* x C* x C*, these orbits are easily
seen to be classified by the arrays

filled with zeroes and ones subject to the rule that no column can have two 1’s, giving
27 = 33-orbits. In chapter 13 we will give more applications to the representation
theory of Bs, PSLy(Z) and, more generally, knot groups.

Although we will arrive at the local quiver-setting (Qg¢, ce) by invariant theory
we will indicate an alternative approach using the theory of A..,-algebras. More
details can be found in the excellent notes of B. Keller [?]. In recent years some
families of multi-linear objects satisfying certain extended associativity constraints
have been studied which are naturally associated to topological operads. For our
purposes, the relevant operad is the tiny interval operad. That is, let D1(n) be the
collection of all configurations

i1 ig in

®@—0 O O0— «+—0 0-®

0 1

consisting of the unit interval with n closed intervals cut out, each gap given a
label i; where (i1,42,...,4,) is a permutation of (1,2,...,n). Clearly, Di(n) is a
2n-dimensional C*°-manifold having n! connected components, each of which is a
contractible space. the operadic structure comes from the collection of composition
maps

Dl(n) X (Dl(ml) X Dl(mn)) —_— Dl(ml —+ ... +mn)

defined by resizing the configuration in the Dj(m;)-component such that it fits
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precisely in the i-th gap of the configuration of the Dj(n)-component. That is,

iq ig in

MM% %)O@

We then obtain a unit interval having mq + ...+ m,, gaps which are labeled in the
natural way, that is the first m; labels are for the gaps in the D;(my)-configuration
fitted in gap 1, the next mgy labels are for the gaps in the Dj(mg)-configuration
fitted in gap 2 and so on. The tiny interval operator consists of

e a collection of topological spaces Dq(n) for n > 0,

e a continuous action of S,, on Dj(n) by relabeling, for every n,

e an identity element id € Dq(1),

e continuous composition maps M, m,,...,m,) satisfying a list of axioms.

For every topological operad, we can take its homology operad and define a class
of algebras over it, see for example [?] or [?] for details. Rather than introducing
all these concepts here we will list the set of axioms defining the algebra-objects
associated to the tiny interval operad : the A..-algebras.

Definition 2.52 An A, -algebra is a Z-graded complex vectorspace
B = ®pezBp
endowed with homogeneous C-linear maps
m,: B®" —+ B
of degree 2 —n for all n > 1, satisfying the following relations

e We have mj o m; = 0, that is (B, m;) is a differential complex

ma ma m m
. —»Bi,1—>Bi—l>Bi+1—l>

e We have the equality of maps B& B — B
myomy =mgo (my @T+T®my)

where 7 is the identity map on the vectorspace B. That is, m is a derivation
with respect to the multiplication B @ B 2, B.
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e We have the equality of maps B& B® B — B

ma o (T® mg —ma ®@1)
=miomsz+mzo(m TR T+T@mM1 @1+ 1R TR my)

where the right second expression is the associator for the multiplication mso
and the first is a boundary of ms, implying that ms is associative up to
homology.

e More generally, for n > 1 we have the relations
D (=) o (1% @ m; @ T°%) = 0

where the sum runs over all decompositions n = i+j+k and where | = 14+1+k.
These identities can be pictorially represented by

Observe that an A, .-algebra B is in general not associative for the multiplication

ma, but its homology
H* B=H*(B,m»)

is an associative graded algebra for the multiplication induced by mgy. Further, if
m, = 0 for all n > 3, then B is an associative differentially graded algebra and
conversely every differentially graded algebra yields an A..-algebra with m, = 0
for all n > 3.

Let A be an associative C-algebra and M a left A-module. Choose an injective
resolution of M

00— M — 1" — 1" — ..
with the I* injective left A-modules and denote by I® the complex

d

roo—1r -4

I —= ...

Let B = HOMS(I®,I*) be the morphism complex. That is, its n-th component
are the graded A-linear maps I* —— I® of degree n. This space can be equipped
with a differential

d(fy=dof—(—1)"fod for f in the n-th part

Then, B is a differentially graded algebra where the multiplication is the natural
composition of graded maps. The homology algebra

H* B = Ext’,(M, M)
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is the extension algebra of M. This extension algebra has a canonical structure of
A-algebra with m; = 0 and my he usual multiplication.

Now, let My, ..., My be A-modules (for example, finite dimensional representa-
tions) and with filt(M;,..., M) we denote the full subcategory of all A-modules
whose objects admit finite filtrations with subquotients among the M;. We have
the following result, see for example [?, §6].

Theorem 2.53 Let M = M @...® M. The canonical As-structure on the exten-
sion algebra Ext’y (M, M) contains enough information to reconstruct the category
file(My, ..., My).

Finally, let us elucidate the connection between this result and the local quiver-
setting (Q¢, o) associated to a semi-simple n-dimensional representation

Me=SP"@... @S2

of a Quillen-smooth algebra A. In chapter 9 we will prove that for a Quillen-smooth
algebra Ext'y (M, M) = 0 whenever i > 2. That is, the extension algebra

Be = Exty (Mg, M)
contains only two terms

o Ext% (Mg, M¢) = Homa(Mg, M) and using the above decomposition this
space is equal to
M, (C)@...® M, (C)

and hence determines the dimension vector ag = (e, ..., ex).

o Extl (Mg, M¢) which by the decomposition is equal to
@ﬁjzl Mej Xe; (Exth(Sl, SJ))

and we will prove that dimc ExtY(S;,S;) determines the number of arrows
(or loops) in Q¢ between the vertices v; and v;.

By the theorem above, this quiver-setting must contain enough information to de-
scribe filt(S1,...,Sk) and hence in particular all n-dimensional representations
having as their Jordan-Hélder components the simples S;.



Chapter 3

(Generic Matrices.

The results of this section are essential in the geometric study of noncommutative
smooth algebras. If A is an affine C-algebra, say with generators {ai,...,am},
we will study in chapter 4 the variety (actually, a scheme) of all n-dimensional
representations rep A of A. The crucial result we will prove in chapter 4 is that
the canonical Cayley-Hamilton algebra of degree n, A @,,, associated to A can be
recovered from the natural GL, (C)-structure on rep A as the ring of all GL,(C)-
equivariant polynomial maps from rep A to M, (C).

In this chapter we will study the generic case, that is, when A is the free asso-
ciative C-algebra C(x1, ..., %) on m noncommuting generators. In this case,

rep C(z1,...,2m) = Mp(C) @ ... & M, (C)

m

as every C-algebra map to M, (C) is determined by the images of the generators
x;. The GL,(C)-action on the representation variety, determining isomorphisms of
representations, is given by simultaneous conjugation, that is,

g (A1, ..., Ap) = (gAlg_l, .. ,gAmg_l).

In the special case when m = 1, the Jordan-normal form of an n x n matrix provides
us with a set-theoretical description of the GL,,(C)-orbits. However, as we will see
in section 1, one cannot define a Hausdorff topology on this set or orbits due to the
existence of non-closed orbits. Invariant theory provides us with the best continuous
approximation to such an orbit-space. We will see that all functions on M,,(C) which
are constant on conjugacy classes are actually functions in the coefficients of the
characteristic polynomial of the matrix. That is, we have an algebraic quotient map

Mn(C) —= C* A (01(A), ..., 0n(A))

where 0;(A) is the i-th elementary symmetric function in the eigenvalues of A. A
characteristic property of this quotient map is that every fiber contains a unique
closed orbit.

In trying to extend this to arbitrary m we are faced with the problem that there
are no known canonical forms for m-tuples of n x n matrices, except for small values
of m and n such as (m,n) = (2,2), in which case a complete description of the orbits
is given in section 2. The combinatorial tools which will be developed in part 3 will
allow us later to extend such a complete classification (at least in principle) of all
orbits for moderate values of n. In this chapter we will prove the important results,
due to C. Procesi [24] on the invariant theory of m-tuples of n X n matrices under
simultaneous conjugation.

87
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In section 3 we will determine the ring of invariant polynomials for simultaneous
conjugation. The approach is classical in invariant theory. First we determine the
multilinear invariant polynomials and then we will use polarization and restitution
to find all invariants. It turns out that all invariants are generated by traces of
necklaces. Consider a noncommutative word in the variables x;

W = T4y Ty - - Ty,
determined only up to cyclic permutation of the terms, that is w should really be
viewed as a necklace having k beads

D/DD\D
D/ w \D
\ /

~, 7

Replace each of the beads z; by an n x n matrix X; having all its coefficients being
indeterminates. That is X; is a generic n x n matrix

{Ell(i) . azln(z)

[i]=xX: =

eot(i) oo wan(i)

Then multiplying these generic matrices along the necklace and taking the trace
of the n X n matrix obtained, we get an invariant polynomial. We will then use
some results on the representation theory of the symmetric groups to bound the
length of necklaces necessary to generate the whole algebra of invariants NJ' =
Clrepn Clzy,...,2m)](©). The best bound on this length we will obtain is
n? + 1.

Further, we will study in section 4 the C-algebra of all GL, (C)-equivariant
polynomial maps

M,C)&®...® M,(C) — M,(C)

which form the trace algebra Tj'. We will prove that T} is generated by the ring of
invariants N and the generic matrices X; introduced above. In sections 6 and 7 we
will then determine all relations holding among the necklace invariants and prove
that they are all formal consequences of the Cayley-Hamilton equation holding for
n x n matrices. In fact, we will show in the next chapter that the trace algebra T}’
is the generic object in the category of all Cayley-Hamilton algebras of degree n.

We have tried to keep this chapter as self-contained as possible. More details
on symmetric groups can be found for example in [?].

3.1 Conjugacy classes of matrices

From now on we will denote by M, the space of all n x n matrices M,,(C) and by
GL,, the general linear group GL,(C). A matrix A € M,, determines by left mul-
tiplication a linear operator on the n-dimensional vectorspace V,, = C™ of column
vectors. If g € GL, is the matrix describing the base change from the canonical
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basis of V,, to a new basis, then the linear operator expressed in this new basis is
represented by the matrix gAg~!. For a given matrix A we want to find an suitable
basis such that the conjugated matriz gAg~" has a simple form.

That is, we consider the linear action of GL,, on the n?-dimensional vectorspace
M, of n x n matrices determined by

GL, x M,, — M, (g9,A) — g. A= gAg™".

The orbit O(A) = {gAg™' | g € GL,, } of Aunder this action is called the conjugacy
class of A. We look for a particularly nice representant in a given conjugacy class.
The answer to this problem is, of course, given by the Jordan normal form of the
matrix.

With e;; we denote the matrix whose unique non-zero entry is 1 at entry (4, 7).
Recall that the group GL,, is generated by the following three classes of matrices :

e the permutation matrices p;; =T, + e;; + €j; — e — ej; for all i # j,
e the addition matrices a;;(\) =T, + Ae;; for all i # j and 0 # A, and
e the multiplication matrices m;(\) =T, + (A — L)e;; for all ¢ and 0 # A.

Conjugation by these matrices determine the three types of Jordan moves on n xn
matrices, where the altered rows and columns are dashed :

/ +A.

i i J i
type p type a type m
Therefore, it suffices to consider sequences of these moves on a given n x n matrix

A € M,. The characteristic polynomial of A is defined to be the polynomial of
degree n in the variable ¢

xa(t) = det(t1, — A) € C[t].

As C is algebraically closed, x 4(t) decomposes as a product of linear terms

€

[—x)*

i=1

where the {A1,..., A} are called the eigenvalues of the matrix A. Observe that A;
is an eigenvalue of A if and only if there is a non-zero eigenvector v € V,, = C"
with eigenvalue );, that is, A.v = A\jv. In particular, the rank r; of the matrix
A; = M1, — A satisfies n — d; < r; < n. A nice inductive procedure using Jordan
moves given in [?] gives a proof of the following Jordan- Weierstrass theorem.

Theorem 3.1 Let A € M, with characteristic polynomial x a(t) = [5_, (t — X;)%.
Then, A determines unique partitions

pi = (@1, Qizs - .. Qi) Of d;
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associated to the eigenvalues \; of A such that A is conjugated to a unique (up to
permutation of the blocks) block-diagonal matrix

By

By

J(phm,pe) =

B,

withm = mi+...+m. and exactly one block By of the form J,,;(\;) for all1 <i <e
and 1 < j < m; where

Ja'ij ()‘l) = . € Maij ((C)
’ 1
Ag

For example, let us prove uniqueness of the partitions p; of d; corresponding to
the eigenvalue \; of A. Assume A is conjugated to another Jordan block matrix
Jg1,....q0), necessarily with partitions ¢; = (b1, ... ,bim;) of d;. To begin, observe
that for a Jordan block of size k we have that

rk Je(0) =k —1 foralll <kandif u#0then 7k Jp(p) =k

for all I. As Jip, ... p.) is conjugated to Ji4, .. 4.) We have for all A € C and all [

rk (X — T p)) =1k (Mo — J(gr a0

Now, take A = )A; then only the Jordan blocks with eigenvalue \; are important in
the calculation and one obtains for the ranks

! I
n—> #{jlay >h} respectively n— Y #{j|biy >h}.

h=1 h=1

Now, for any partition p = (¢i,...,¢,) and any natural number h we see that the
number z = #{j | ¢; > h}

1 : l
o ]

s 3l

Cz4+1

c

u :] h

is the number of blocks in the h-th row of the dual partition p* which is defined to
be the partition obtained by interchanging rows and columns in the Young diagram
of p. Therefore, the above rank equality implies that p; = ¢ and hence that
pi = ¢;- As we can repeat this argument for the other eigenvalues we have the
required uniqueness. Hence, the Jordan normal form shows that the classification
of GL,-orbits in M,, consists of two parts : a discrete part choosing
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e a partition p = (di,da, ..., d.) of n, and for each d;,
e a partition p; = (a1, @iz, - - ., Aim, ) of d;,

determining the sizes of the Jordan blocks and a continuous part choosing
e an e-tuple of distinct complex numbers (A1, Aa, ..., Ae).

fixing the eigenvalues. Moreover, this e-tuple (A1, ..., Ae) is determined only up to
permutations of the subgroup of all permutations 7 in the symmetric group S, such
that p; = pr(;) for all 1 < i < e. Whereas this gives a satisfactory set-theoretical
description of the orbits we cannot put an Hausdorff topology on this set due to the
existence of non-closed orbits in M,,. For example, if n = 2, consider the matrices

A1 A0
A:_O /\} and B:[O )\}

which are in different normal form so correspond to distinct orbits. For any e # 0

we have that }
e 0] [A 1] [er 0] [X e
0 1[0 A" 0 1] [0 A
belongs to the orbit of A. Hence if e — 0, we see that B lies in the closure of O(A).

As any matrix in O(A) has trace 2, the orbit is contained in the 3-dimensional
subspace

Atz Y
{ z )\—x} My

In this space, the orbit-closure O(A) is the set of points satisfying 22 +yz = 0 (the
determinant has to be A\?), which is a cone having the origin as its top :

The orbit O(B) is the top of the cone and the orbit O(A) is the complement.

Still, for general n we can try to find the best separated topological quotient
space for the action of GL,, on M,,. We will prove that this space coincide with the
quotient variety determined by the invariant polynomial functions.

If two matrices are conjugated A ~ B, then A and B have the same unordered
n-tuple of eigenvalues {\1, ..., \,} (occurring with multiplicities). Hence any sym-
metric function in the \; will have the same values in A as in B. In particular this
is the case for the elementary symmetric functions oy

O'l(/\l,...,Al)Z Z )\il)\iz...Ail.

i1 <in<...<i;

Observe that for every A € M,, with eigenvalues {\1,..., A\, } we have

f[(t —Aj) = xal(t) =det(th, — A) =t" + i(—l)iai(A)t"_i
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Developing the determinant det(¢1, — A) we see that each of the coefficients o;(A) is
in fact a polynomial function in the entries of A. A fortiori, o;(A) is a complex valued
continuous function on M,. The above equality also implies that the functions
o; : M,, — C are constant along orbits. We now construct the continuous map

M, -~ C"

sending a matrix A € M, to the point (c1(4),...,0,(A)) in C". Clearly, if A~ B
then they map to the same point in C™. We claim that 7 is surjective. Take any

point (aq,...,a,) € C" and consider the matrix A € M,
0 an,
-1 0 An—1
A= : (3.1)
-1 0 as
-1 al

then we will show that 7(A) = (aq,...,a,), that is,
det(tT, — A) =t" —a1t" ' +apt" 2 — ...+ (—=1)"ay,.

Indeed, developing the determinant of ¢1,, — A along the first column we obtain

FEEE € SRR O EEEESTEEEEEAES: § Eitbianel ¢ ATEEH t 0 0O «--- 0 —a,
t 0 0o —a_, @ FEEEE ZEFCELES  EEFETELEETEFEN ¢ Rbhest ¢ FHE"
1t 0 —a,, 0 1 ¢ 0 —a,,

g o0 1t —a 0 0 1t —a
0 0 1 t— a, ﬁ 0 1 t— a,

Here, the second determinant is equal to (—1)""'a,, and by induction on n the first
determinant is equal to t.(t""! —a1t" "2 + ... + (=1)""La,_1), proving the claim.

Next, we will determine which n X n matrices can be conjugated to a matrix in
the canonical form A as above. We call a matrix B € M,, cyclic if there is a (column)
vector v € C™ such that C" is spanned by the vectors {v, B.v, B?.v,..., B" " Lv}.
Let ¢ € GL,, be the basechange transforming the standard basis to the ordered
basis

(v,~B.w,B*v,—B3w,...,(~1)""'B" 1),

In this new basis, the linear map determined by B (or equivalently, g.B.g~!) is
equal to the matrix in canonical form

0 bn
-1 0 bn—l
-1 0 ba
-1 b
where B™.v has coordinates (b, ..., bs, b1) in the new basis. Conversely, any matrix

in this form is a cyclic matrix.
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We claim that the set of all cyclic matrices in M, is a dense open subset. To see
this take v = (1,...,2,)” € C" and compute the determinant of the n X n matrix

n-1

This gives a polynomial of total degree n in the x; with all its coefficients polynomial
functions ¢; in the entries by; of B. Now, B is a cyclic matrix if and only if at least
one of these coefficients is non-zero. That is, the set of non-cyclic matrices is exactly
the intersection of the finitely many hypersurfaces

Vi ={B = (bki)k, € My, | ¢j(bi1,b12,...,bypn) =0}

in the vectorspace M,,.

Theorem 3.2 The best continuous approzimation to the orbit space is given by the

surjection
™

M, - C"
mapping a matrix A € M, (C) to the n-tuple (61(A),...,on(4)).

Let f: M,, —— C be a continuous function which is constant along conjugacy
classes. We will show that f factors through , that is, f is really a continuous
function in the o;(A). Consider the diagram

M,

o

cr

where s is the section of 7 (that is, m o s = idcn) determined by sending a point
(a1,...,a,) to the cyclic matrix in canonical form A as in equation (3.1). Clearly,
s is continuous, hence so is f' = f o s. The approximation property follows if we
prove that f = f’ oxw. By continuity, it suffices to check equality on the dense open
set of cyclic matrices in M,.

There it is a consequence of the following three facts we have proved before :
(1) : any cyclic matrix lies in the same orbit as one in standard form, (2) : sis a
section of m and (3) : f is constant along orbits.

Example 3.3 Orbits in Ms.

A 2 X 2 matrix A can be conjugated to an upper triangular matrix with diagonal entries the
eigenvalues A1, A2 of A. As the trace and determinant of both matrices are equal we have

o01(A) = tr(A) and o2(A) = det(A).
The best approximation to the orbitspace is therefore given by the surjective map

My — 5> C2 [‘C‘ Z:|}—>(a+d,adfbc)
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The matrix A has two equal eigenvalues if and only if the discriminant of the characteristic poly-
nomial t2 — o1 (A)t + o2(A) is zero, that is when o1 (A)? — 402(A) = 0. This condition determines
a closed curve C in C? where

C={(z,y) € C* | 2® —dy = 0}.

C

the inverse images of points) of the surjective map .
If p= (z,y) € C2 — C, then 7~ (p) consists of precisely one orbit (which is then necessarily
closed in M>) namely that of the diagonal matrix

A 0
0 A2

—x £ /22 -4y
2

] where A1 =

If p = (z,y) € C then 7~ (p) consists of two orbits,
(@] A1 and O A 0
0 A 0 A
where \ = %z We have seen that the second orbit lies in the closure of the first. Observe that
the second orbit reduces to one point in Ms and hence is closed. Hence, also 7~ !(p) contains a
unique closed orbit.
To describe the fibers of 7 as closed subsets of M3 it is convenient to write any matrix A as a
linear combination

T e i e R Rt

Expressed in the coordinate functions u,v,w and z the fibers 7=1(p) of a point p = (x,y) € C?
are the common zeroes of

u =z
v2 44wz =2 -4y

The first equation determines a three dimensional affine subspace of Ms in which the second
equation determines a quadric.

®2

If p ¢ C this quadric is non-degenerate and thus 7—!(p) is a smooth 2-dimensional submanifold of
M. If p € C, the quadric is a cone with top lying in the point %’Ug Under the G La-action, the
unique singular point of the cone must be clearly fixed giving us the closed orbit of dimension 0
corresponding to the diagonal matrix. The other orbit is the complement of the top and hence is
a smooth 2-dimensional (non-closed) submanifold of Ms. The graphs represent the orbit-closures

and the dimensions of the orbits.
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Example 3.4 Orbits in M;.

We will describe the fibers of the surjective map M3 —J ©3. If a 3 x 3 matrix has multiple
eigenvalues then the discriminant d = (A1 — A2)?2(A2 — A\3)2(A3 — A\1)? is zero. Clearly, d is a
symmetric polynomial and hence can be expressed in terms of 01,02 and o3. More precisely,

d=40303 4+ 403 + 270'§ — 0202 — 18010203

The set of points in C3 where d vanishes is a surface S with singularities.

These singularities are the common zeroes of the 59701 for 1 <4 < 3. One computes that these

singularities form a twisted cubic curve C in C3, that is,

C ={(3¢,3¢%,c3) | ce C}.

The description of the fibers 71 (p) for p = (z,y, 2) € C3 is as follows. When p ¢ S, then 7—1(p)
consists of a unique orbit (which is therefore closed in M3), the conjugacy class of a matrix with
paired distinct eigenvalues. If p € S — C, then 71 (p) consists of the orbits of

A1 0 A0 O
Air=1]10 X 0| and A2=|0 X O
0 0 u 0 0 u

Finally, if p € C, then the matrices in the fiber 771 (p) have a single eigenvalue \ = %x and the
fiber consists of the orbits of the matrices

A1 0 A1 0 A 0 O
Bi=1]0 X 1 By=1]0 X 0 B3=1]0 X 0
0 0 A 0 0 A 0 0 A

We observe that the strata with distinct fiber behavior (that is, C3 — S, S — C and C) are all
submanifolds of C3.

The dimension of an orbit O(A) in M, is computed as follows. Let C4 be the subspace of all
matrices in M, commuting with A. Then, the stabilizer subgroup of A is a dense open subset of
Cz whence the dimension of O(A) is equal to n2 — dim Cy.

Performing these calculations for the matrices given above, we obtain the following graphs
representing orbit-closures and the dimensions of orbits

6 OAl 6 OBl 6
Oa, 04 Op, ¢4
Op; 0

c:-5s S—-C C

Returning to M,,, the set of cyclic matrices is a Zariski open subset of M,,. For,
consider the generic matrix of coordinate functions and generic column vector

T11 e T1in U1
X=1": : and v =

Tnl --- Tpn Un
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and form the square matrix
[U Xov X320 ... Xnil.’l}] EMn((C[xll,xlg,...,xnn,vl,...,vn])

Then its determinant can be written as Y ;_; pi(2;;)q(vi) where the ¢; are poly-
nomials in the v, and the p; polynomials in the x;;. Let A € M, be such that at
least one of the p;(A) # 0, then the polynomial d = >, pi(A)q(vk) € Cluy, ..., vg]
is non-zero. But then there is a ¢ = (c1, ..., ¢,) € C" such that d(c) # 0 and hence
c” is a cyclic vector for A. The converse implication is obvious.

Theorem 3.5 Let f : M,, —— C is a reqular (that is, polynomial) function on
M, which is constant along conjugacy classes, then

feClow(X),...,on(X)]

Proof. Consider again the diagram

M,

£

o
The function f’ = f o s is a regular function on C™ whence is a polynomial in the
coordinate functions of C™ (which are the 0;(X)), so

F e Clor(X),...,0n(X)] — C[M,].

Moreover, f and f’ are equal on a Zariski open (dense) subset of M,, whence they
are equal as polynomials in C[M,,]. O

The ring of polynomial functions on M, which are constant along conjugacy
classes can also be viewed as a ring of invariants. The group GL,, acts as algebra
automorphisms on the polynomial ring C[M,,]. The automorphism ¢, determined
by g € GL,, sends the variable z;; to the (i, j)-entry of the matrix g~'.X.g which
is a linear form in C[M,,]. This action is determined by the property that for all
g€ GL,, A€ A and f € C[M,] we have that

bg(f)(A) = flg-Ag™)

The ring of polynomial invariants is the algebra of polynomials left invariant under
this action

C[M,)%"» = {f € C[My,] | py(f) = f for all g € GL,}

and hence is the ring of polynomial functions on M,, which are constant along orbits.
The foregoing theorem determines the ring of polynomials invariants

(C[MTL]GLn = C[Ul(X)7 cey an(X)]
We will give an equivalent description of this ring below.

Consider the variables Ay, ..., A, and consider the polynomial

n

fult) =TT =2 = ¢+ 3 (-1

=1
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then o; is the i-th elementary symmetric polynomial in the A;. We know that
these polynomials are algebraically independent and generate the ring of symmetric
polynomials in the A;, that is,

Clot,...,00] = C[A1, ..., \]%"

where S, is the symmetric group on n letters acting by automorphisms on the
polynomial ring C[Ay,...,A,] via 7(\;) = Ar(;) and the algebra of polynomials
which are fixed under these automorphisms are precisely the symmetric polynomials
in the A;.

Consider the symmetric Newton functions s; = A{ +...+ %, then we claim that
this is another generating set of symmetric polynomials, that is,

Clo1,...,0n] =Cl[s1,...,8n]

To prove this it suffices to express each o; as a polynomial in the s;. More precisely,
we claim that the following identities hold for all 1 < j <n

S§j —01Sj—1 +028j—2 — ...+ (—1)j_10'j_181 + (—1)j0'j.j =0 (32)

For j = n this identity holds because we have
0= Z fa(Ai) = sn + Z(_l)igisn—i
i=1 i=1

if we take s9 = n. Assume now j < n then the left hand side of equation
is a symmetric function in the \; of degree < j and is therefore a polynomial
p(o1,...,0;) in the first j elementary symmetric polynomials. Let ¢ be the algebra
epimorphism

ClA, - An] =5 ClAg,. .0 A

defined by mapping Ajy1,...,A; to zero. Clearly, ¢(o;) is the i-th elementary
symmetric polynomial in {A1,...,A;} and é(s;) = A\i +... + )\3 Repeating the
above j = n argument (replacing n by j) we have
i i _
0= fi(A) = 6(s;) + Y _(=1)'é(0:)d(sns)
i=1 i=1

(this time with so = j). But then, p(¢(o1),...,¢(0;)) = 0 and as the ¢(oy) for
1 < k < j are algebraically independent we must have that p is the zero polynomial
finishing the proof of the claimed identity.

If Aq,..., A\, are the eigenvalues of an n x n matrix A, then A can be conjugated
to an upper triangular matrix B with diagonal entries (A1,...,A;). Hence, the trace
tr(A) =tr(B) = M\ +...+ X, = s1. In general, A can be conjugated to B® which is
an upper triangular matrix with diagonal entries (\},...,\}) and hence the traces
of A" and B? are equal to A} + ...+ A\ = s;. Concluding, we have

Theorem 3.6 Consider the action of conjugation by GL, on M,. Let X be the
generic matriz of coordinate functions on M,

11 oo Tpn
X =
Tpt .- Tpn

Then, the ring of polynomial invariants is generated by the traces of powers of X,
that is,
C[M,)%En = Cltr(X), tr(X?), ..., tr(X™)]
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Proof. The result follows from theorem and the fact that

Clo1(X),...,0n(X)] =C[tr(X),...,tr(X")]

3.2 Simultaneous conjugacy classes.

For applications to noncommutative algebras it is crucial to extend what we have
done for conjugacy classes of matrices to simultaneous conjugacy classes of m-tuples
of matrices. Consider the mn?-dimensional complex vectorspace

M =M,&...&M,
—_— —

m

of m-tuples (Ai,...,A) of n x n-matrices A; € M,. On this space we let the
group GL,, act by simultaneous conjugation, that is

g.(A1,..., Ap) = (g.Al.gfl, . ,g.Am.gfl)

for all g € GL,, and all m-tuples (Ay,...,A,,). Unfortunately, there is no substitute
for the Jordan normalform result in this more general setting. Still, for small m
and n one can work out the GL,-orbits by ad hoc methods.

Example 3.7 Orbits in M3 = My & Ms.

We can try to mimic the geometric approach to the conjugacy class problem, that is, we
will try to approximate the orbitspace via polynomial functions on M22 which are constant along
orbits. For (A4, B) € M22 = My @ M> clearly the polynomial functions we have encountered before
tr(A),det(A) and tr(B), det(B) are constant along orbits. However, there are more : for example
tr(AB). Later, we will show that these five functions generate all polynomials functions which are

constant along orbits. Here, we will show that the map M22 = My ® My —» C5 defined by
(A, B) — (tr(A),det(A),tr(B), det(B),tr(AB))

is surjective such that each fiber contains precisely one closed orbit. In the next chapter, we will
see that this property characterizes the best polynomial approximation to the (non-existent) orbit
space.

First, we will show surjectivity of 7, that is, for every (z1,...,25) € C® we will construct a
couple of 2 X 2 matrices (A, B) (or rather its orbit) such that w(A, B) = (x1,...,x5). Consider
the open set where z% # 4x9. We have seen that this property characterizes those A € M> such
that A has distinct eigenvalues and hence diagonalizable. Hence, we can take a representative of

the orbit O(A, B) to be a couple
( A0 c1 co )
0 2 ’ c3 C4

with A # u. We need a solution to the set of equations

r3 = c1+c4
T4 = cC1c4 —C2C3
x5 = Ac1 + pcy

Because A # p the first and last equation uniquely determine c1, c4 and substitution in the second
gives us cac3. Analogously, points of C® lying in the open set x% # x4 lie in the image of .
Finally, for a point in the complement of these open sets, that is when m% = x2 and mg = 4xy4 we

can consider a couple (A, B)
A1l w0
SO A

where A = %x1 and p = %5133. Observe that the remaining equation x5 = tr(AB) = 2A\p+ ¢ has a
solution in c.

Now, we will describe the fibers of w. Assume (A, B) is such that A and B have a common
eigenvector v. Simultaneous conjugation with a g € GL, expressing a basechange from the
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standard basis to {v,w} for some w shows that the orbit O(A, B) contains a couple of upper-
triangular matrices. We want to describe the image of these matrices under w. Take an upper
triangular representative in O(A, B)

( a1 a2 b1 b2 )
0 a3 ’ 0 b3 :

with m-image (z1,...,25). The coordinates z1,z2 determine the eigenvalues a1, a3 of A only as
an unordered set (similarly, x3,z4 only determine the set of eigenvalues {b1,b3} of B). Hence,
tr(AB) is one of the following two expressions

a1by +azbz  or aibz + azby
and therefore satisfies the equation

(tT(AB) —a1b; — a3b3)(tr(AB) —a1bs — a3b1) =0.

Recall that 1 = a1 + a3, z2 = a1a3, 3 = b1 + b3, x4 = b1b3 and x5 = tr(AB) we can express this
equation as

xg —x1x3T5 + x%x4 + w%xz —4dxoxg = 0.
This determines an hypersurface H — C®. If we view the left-hand side as a polynomial f in
the coordinate functions of C® we see that H is a four dimensional subset of C5 with singularities
the common zeroes of the partial derivatives

of

Ty

for 1<i<5

These singularities for the 2-dimensional submanifold S of points of the form (2a, a?,2b, b2, 2ab).
We now claim that the smooth submanifolds C® — H, H — S and S of C5 describe the different
types of fiber behavior. In chapter 6 we will see that the subsets of points with different fiber
behavior (actually, of different representation type) are manifolds for m-tuples of n X n matrices.

If p ¢ H we claim that 7—!(p) is a unique orbit, which is therefore closed in M2. Let
(A, B) € 7! and assume first that 27 # 4z then there is a representative in O(A, B) of the form

( A0 (SR )
0 u ’ c3 ¢4
with A # p. Moreover, cac3 # 0 (for otherwise A and B would have a common eigenvector
whence p € H) hence we may assume that ca = 1 (eventually after simultaneous conjugation with

a suitable diagonal matrix diag(t,t=1)). The value of A, u is determined by 1, z2. Moreover,
c1,c3,cq are also completely determined by the system of equations

r3 =c1+ca
T4 = ci1C4 —C3
T5 = Ac1+ pca

and hence the point p = (x1,...,25) completely determines the orbit O(A, B). Remains to
consider the case when $% = 4z (that is, when A has a single eigenvalue). Consider the couple
(uA+vB, B) for u,v € C*. To begin, uA+vB and B do not have a common eigenvalue. Moreover,
p = w(A, B) determines w(uA + vB, B) as

tr(uA 4+ vB) = utr(A) + vtr(B)
det(uA 4+ vB) = u?det(A) + v2det(B) + uv(tr(A)tr(B) — tr(AB))
tr((uA +vB)B) = utr(AB) + v(tr(B)? — 2det(B))

Assume that for all u,v € C* we have the equality tr(uA+vB)? = 4det(uA +vB) then comparing
coefficients of this equation expressed as a polynomial in u and v we obtain the conditions z% = 4xg,
m§ = 4x4 and 2z5 = z1x3 whence p € S —— H, a contradiction. So, fix u,v such that uA + vB
has distinct eigenvalues. By the above argument O(uA + vB, B) is the unique orbit lying over
m(uA + vB, B), but then O(A, B) must be the unique orbit lying over p.

Let p € H— S and (A, B) € 7~ 1(p), then A and B are simultaneous upper triangularizable,
with eigenvalues a1, ag respectively b1, ba. Either a; # ag or by # ba for otherwise p € S. Assume
a1 # a2, then there is a representative in the orbit O(A, B) of the form

( fe 0 b 0]
0 a;] » |0 b
for {3,j} = {1,2} = {k,l}. If b # 0 we can conjugate with a suitable diagonal matrix to get b =1

hence we get at most 9 possible orbits. Checking all possibilities we see that only three of them
are distinct, those corresponding to the couples

R R X e B
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Clearly, the first and last orbit have the middle one lying in its closure. Observe that the case
assuming that by # by is handled similarly. Hence, if p € H — S then 7~ !(p) consists of three
orbits, two of dimension three whose closures intersect in a (closed) orbit of dimension two.

Finally, consider the case when p € S and (4, B) € 7~ 1(p). Then, both A and B have a single
eigenvalue and the orbit O(A, B) has a representative of the form

AR ]

for certain z,y € C. If either  or y are non-zero, then the subgroup of GL2 fixing this matrix
consists of the matrices of the form

C

1 u v *
Stab [0 c:|:{[0 u:||u€(C,v€(C}

but these matrices also fix the second component. Therefore, if either « or y is nonzero, the orbit
is fully determined by [z : y] € PL. That is, for p € S, the fiber 7~ (p) consists of an infinite
family of orbits of dimension 2 parameterized by the points of the projective line P! together with

the orbit of
( a 0 b 0 )
0 a ’ 0 b

which consists of one point (hence is closed in M22) and lies in the closure of each of the 2-
dimensional orbits.

Concluding, we see that each fiber 7~1(p) contains a unique closed orbit (that of minimal
dimension). The orbitclosure and dimension diagrams have the following shapes

®

o5 _m H -8 s

3.3 DMatrix invariants and necklaces

In this section we will determine the ring of all polynomial maps

M"=M,®...o M, L+ C
—_—

m

which are constant along orbits under the action of GL,, on M," by simultaneous
conjugation. The strategy we will use is classical in invariant theory.

e First, we will determine the multilinear maps which are constant along orbits,
equivalently, the linear maps

ME" =M, ®...9@ M,, — C
————

which are constant along G L,-orbits where GGL,, acts by the diagonal action,
that is,
g.(A1®...®A,) =gAig7 ' ®... @ gALg .
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o Afterwards, we will be able to obtain from them all polynomial invariant maps
by using polarization and restitution operations.

First, we will translate our problem into one studied in classical invariant theory of
GL,.

Let V,, ~ C™ be the n-dimensional vectorspace of column vectors on which GL,,
acts naturally by left multiplication

C %1

C 2]
V.= |. with action g.

C Uy,

In order to define an action on the dual space V,; = Hom(V,,,C) >~ C" of covectors
(or, row vectors) we have to use the contragradient action

V= [(C Cc ... (C] with action [(]51 P2 ... ¢n] 9"

Observe, that we have an evaluation map V, x V,, —— C which is given by the
scalar product f(v) for all f € V¥ and v € V,

141
V2

[d)l p2 ... ¢n] - =11+ pava + ...+ Pply
V’I’L

which is invariant under the diagonal action of GL,, on V¥ x V,,. Further, we have
the natural identification

C
C
M,=V, @V, =|. ®[(C c ... (C].
C
Under this identification, a pure tensor v ® f corresponds to the rank one matrix
or rank one endomorphism of V,, defined by
v f:V, —V, with w— f(w)v

and observe that the rank one matrices span M,,. The diagonal action of GL,, on
V., ® V¥ is then determined by its action on the pure tensors where it is equal to

vy

V2

g | Zl@lor ¢ o ¢u]gt

Vn

and therefore coincides with the action of conjugation on M,,. Now, let us consider
the identification
(Vo™ & VEm)* ~ Bnd(VE™)

obtained from the nondegenerate pairing
End(VE™) x (V" g V&™) & C
given by the formula

MNA® . @ fm @1 ®...0Un) =[®...® frn(AMv1 ® ... ® V)



102 CHAPTER 3. GENERIC MATRICES.

GL,, acts diagonally on V,¥™ and hence again by conjugation on End(V,™) after
embedding GL,, —— GL(V,®™) = GLy,. Thus, the above identifications are
isomorphism as vectorspaces with GL,-action. But then, the space of G L,-invariant

linear maps
Viem g yem __» C

can be identified with the space Endgr, (V,2™) of GL,-linear endomorphisms of
V&m . We will now give a different presentation of this vectorspace relating it to
the symmetric group.

Apart from the diagonal action of GL, on V2™ given by

g (V1 ®...QUR) =gV Q... R gUm
we have an action of the symmetric group S, on m letters on V,2™ given by
0. (V1 ®...0Un) = V(1) ® ... ®Vg(m)

These two actions commute with each other and give embeddings of GL,, and S,
in End(V,2™).

GL,

GL(Vy™) > End(V,”"™)

Sm

The subspace of V.2 spanned by the image of GL, will be denoted by (GL,).
Similarly, with (S,,) we denote the subspace spanned by the image of S,,.

Theorem 3.8 With notations as above we have :
1. (GL,) = Endsg,, (V,2™)
2. (Sy) = Endgr, (V™)

Proof. (1) : Under the identification End(V,®™) = End(V,,)®™ an element g €
GL, is mapped to the symmetric tensor ¢ ® ... ® g. On the other hand, the
image of Endg, (V,¥™) in End(V,,)®™ is the subspace of all symmetric tensors in
End(V)®™. We can give a basis of this subspace as follows. Let {e1,...,e,2} be a
basis of End(V,,), then the vectors e;, ®...®e;  form a basis of End(V,,)®™ which is
stable under the S,,-action. Further, any S,,-orbit contains a unique representative

of the form
M. @
with hy + ...+ hy2 = m. If we denote by r(hy, ..., h,2) the sum of all elements in
the corresponding S,,-orbit then these vectors are a basis of the symmetric tensors
in End(V,,)®™.
The claim follows if we can show that every linear map A on the symmetric
tensors which is zero on all ¢ ® ... ® g with ¢ € GL,, is the zero map. Write

e =Y m;e;, then

AMe®...®e€) :Zx}fl ...ac:’gz)\(r(hl,...,hnz))
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is a polynomial function on End(V;,). As GL,, is a Zariski open subset of End(V)
on which by assumption this polynomial vanishes, it must be the zero polynomial.
Therefore, A(r(hy,...,h,2)) =0 for all (hq,...,hy,2) finishing the proof.

(2) : Recall that the groupalgebra CS,, of S,, is a semisimple algebra. Any
epimorphic image of a semisimple algebra is semisimple. Therefore, (S,,) is a
semisimple subalgebra of the matrixalgebra End(V,2™) ~ M,,,. By the double
centralizer theorem (see for example [23]), it is therefore equal to the centralizer of
Endg,, (V,2™). By the first part, it is the centralizer of (GL,) in End(V,?™) and
therefore equal to Endgr, (V,2™). O

Because Endgyr, (V,2™) = (Sp), every G L,-endomorphism of V™ can be writ-
ten as a linear combination of the morphisms A, describing the action of o € S,
on V,¥™. Our next job is to trace back these morphisms ), through the canonical
identifications until we can express them in terms of matrices.

To start let us compute the linear invariant

po Vi@ VI — C

corresponding to A, under the identification (V®™ @ V.¢™)* ~ End(V*™). By
the identification we know that (i, (f1 ® ... frmn @ V1 ® ... ®@ vy,) is equal to

<)\avf1®-~~fm®’l)1®u~®vm> = f1®...®fm(vg(1)®...vg(m))
= [ fi(vowy)

That is, we have proved

Proposition 3.9 Any multilinear G L, -invariant map
vV QYEm b C

is a linear combination of the invariants

fo([1® . . [mn@u1 ®...Qvy) = Hfi(va(i))

foroeS,,.
Using the identification M,,(C) = V,, ® V,*® a multilinear G L,-invariant map
(VF@V)em =yemgyem — C
corresponds to a multilinear G L, -invariant map
M,CO)®...@ M,(C) — C

We will now give a description of the generating maps u, in terms of matrices.
Under the identification, matrix multiplication is induced by composition on rank
one endomorphisms and here the rule is given by

v fu'ef = fl e f

V1 7 1

@1 .. Gu || @[S o @] = | f)®][e ... L]

vy, v Vn

Moreover, the trace map on M, is induced by that on rank one endomorphisms
where it is given by the rule

tr(v® f) = f(v)
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1%} V1¢1 Vl(bn
tr(| | @pr .. o)) =tr(| : ):Zwasi:f(v)

Un Un@1 ... VUpbn ¢
With these rules we can now give a matrix-interpretation of the G L,,-invariant maps
Mo

Proposition 3.10 Let 0 = (i142...%0)(J1j2..-78) - .- (z122...2¢) be a decomposi-
tion of o € S, into cycles (including those of length one). Then, under the above
identification we have

,U,O-(Al ®...Q0 Am) = tT(AilAZ‘2 e Ai(‘, )tT(Alej2 . Aj,g) . tT’(AzlAZQ LA )

s Az

Proof. Both sides are multilinear hence it suffices to verify the equality for rank
one matrices. Write A; = v; ® f;, then we have that

Uo(A1® ... Q@A) = poe(1®...0m @1 ®...® fim)
= [ fi(voes))

Consider the subproduct

fir iy) fiz (Vi) - - fiaoy (Vi) = 8
Now, look at the matrixproduct

Vi, @ fiy Uiy ® fiy. o 0, ® fi,

which is by the product rule equal to

fil (Uiz)fh (Uis) s fiafl(,via)vil ® fia

Hence, by the trace rule we have that

tr(Ai Ai2 e Ala) = H fij (Ug(i].)) =5
j=1

Having found a description of the multilinear invariant polynomial maps

M'"=M,®...&M, — C
|y ——

m

we will now describe all polynomial maps which are constant along orbits by po-
larization. The coordinate algebra C[M"] is the polynomial ring in mn? variables
x;j(k) where 1 <k <m and 1 <¢,j <n. Consider the m generic n X n matrices

xn(k) !L‘ln(k‘)
[kl=Xi=1] L | e Ma(CT).
The action of GL, on polynomial maps f € C[M"] is fully determined by the

action on the coordinate functions x;;(k). As in the case of one n x n matrix we
see that this action is given by

g-wij(k) = (97" Xp.9)ij-
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We see that this action preserves the subspaces spanned by the entries of any of
the generic matrices. Hence, we can define a gradation on C[M"] by deg(z;;(k)) =
(0,...,0,1,0,...,0) (with 1 at place k) and decompose

C[M,' = ® CIM ay....dm)
(dl,...,d7n)€Nm

where C[M]"] (4, ,....d,,) is the subspace of all multihomogeneous forms f in the x;;(k)
of degree (dl, e d ), that is, in each monomial term of f there are exactly dj
factors coming from the entries of the generic matrix X for all 1 < k < m. The
action of GL,, stabilizes each of these subspaces, that is,

if feC[M ..., then g.fecC[M"]@q,,. a, forallgeGL,.

In particular, if f determines a polynomial map on M]" which is constant along
orbits, that is, if f belongs to the ring of invariants C[M"]%L» then each of its mul-
tihomogeneous components is also an invariant and therefore it suffices to determine
all multihomogeneous invariants.

Let f c C[M]")a,.....d,,) and take for each 1 < k < m dj new variables
ti(k), ... ta, (k). Expand

f(tl(l)Al(l) +...+ tdlAdl(l); .. ,tl(m)Al(m) + ...+ tdm( )Adm( ))

as a polynomial in the variables ¢;(k), then we get an expression

S OOy (m) )t () ),

Fs1 ()50, (1)1 (m),enssay, () (A1 (D)5 ooy Agy (1), Ar(m), -, Ag,, (M)
such that for all 1 < k < m we have Zfil si(k) = di. Moreover, each of the
f(S1(1),...,5d1 (1),.,51(m),...,54,, (m)) 18 @ multi-homogeneous polynomial function on

M,®..0OM, oM, ®..0M,®..0M,&...0M,
—_—————
dy do dm

of multi-degree (s1(1),...,54,(1),...,51(m),..., 84, (m)). Observe that if f is an
invariant polynomial function on M, then each of these multi homogeneous func-
tions is an invariant polynomial function on M where D = dy + ... + d,,.

In particular, we consider the multi-linear function
fi.oi:MP=Mro. . .¢oM» —C

which we call the polarization of the polynomial f and denote with Pol(f). Observe
that Pol(f) in symmetric in each of the entries belonging to a block M2 for every
1<k <m. If fis invariant under GL,,, then so is the multilinear function Pol(f)
and we know the form of all such functions by the results given before (replacing
M™ by MP).

Finally, we want to recover f back from its polarization. We claim to have the
equality

POl(f)(Al,...,Al,...,Am,...,Am) :dl'dm'f(Al,,Am)

dy dm,

and hence we recover f. This process is called restitution. The claim follows from
the observation that

f(t]_(l)Al +...+ tdl (1)141, ce ,tl (m)Am +...+ tdm( )Am) =
F ) 4+t ()AL (2 () . ta () Ay =
(tl(l) + ...+ tdl (1))d1 - (tl(m) + ...+ tdm (m))dmf(Ah A ,Am)
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and the definition of Pol(f). Hence we have proved that any multi-homogeneous
invariant polynomial function f on M of multidegree (ds, ..., d,,) can be obtained
by restitution of a multilinear invariant function

Pol(f): MP =M @ ... MIm» —~ C

If we combine this fact with our description of all multilinear invariant functions on
M, &...® M, we finally obtain :

Theorem 3.11 Any polynomial function M)" SN C which is constant along or-
bits under the action of GL, by simultaneous conjugation is a polynomial in the
mvariants

t?"(Xil . X”)
where X;, ... X;, run over all possible noncommutative polynomials in the generic
matrices {X1,..., Xm}.

We will call the algebra C[M]"] generated by these invariants the necklace al-
gebra N = C[M*]%Ln. The terminology is justified by the observation that the
generators

t’l‘(XilXiQ e le)
are only determined up to cyclic permutation of the generic matrices X;. That is,
the generators are determined by necklace words w such as

AN /

where each bead corresponds to a generic matrix = X;. They are multiplied
cyclicly to obtain an n x n matrix with coeflicients in M, (C[M]"]). The trace of
this matrix is called ¢r(w) and the result asserts that these elements generate the
ring of polynomial invariants.

3.4 The trace algebra.

In this section we will prove a bound on the length of the necklace words w necessary

for the tr(w) to generate N'. In the last section, after we have determined the

relations between these necklaces tr(w), we will be able to improve this bound.
First, we will characterize all GL,,-equivariant maps from M]" to M,, that is

all polynomial maps M, N M, such that for all g € GL,, the diagram below is
commutative

M g
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With pointwise addition and multiplication in the target algebra M,,, these polyno-
mial maps form a noncommutative algebra T}' called the trace algebra. Obviously,
the trace algebra is a subalgebra of the algebra of all polynomial maps from M;"
to M, that is,

T < M, (C[M"))

Clearly, using the diagonal embedding of C in M,, any invariant polynomial on M,
determines a G L,,-equivariant map. Equivalently, using the diagonal embedding of
C[M]"] in M, (C[M]"]) we can embed the necklace algebra

Ny = €M) e T
Another source of GL,-equivariant maps are the coordinate maps

Observe that the coordinate map X is represented by the generic matrix |i | = X;
in M, (C[M).

Proposition 3.12 As an algebra over the necklace algebra NI, the trace algebra
T™ is generated by the elements {X1,..., X }.

Proof. Consider a G Ly,-equivariant map M," ER M,, and associate to it the

polynomial map

M7’rln+1 — M:;n D Mn tT(fX'rrL+1) N C

defined by sending (Ai,...,Am, Ams1) to tr(f(A1,..., An).-Amy1). For all g €
GL, we have that f(g.A1.g7 %, ...,9.Am.g 1) is equal to g.f(A1,..., Ap).g" " and
hence
tr(f(g.Al.g_l, e 7g.Am.g_l).L(}.AmH.g_l) =tr(g.f(Aq,... ,Am).g_l.g.AmH.g_l)
=tr(g.f(Aq,... ,Am).Am_,_l.g*l)
= t’l"(f(1417 e 7Am)-Am+1)

s0 tr(f X,n41) is an invariant polynomial function on M™! which is linear in X, 1.
By theorem [3.11] we can therefore write

tr(fXms1) = Zgil...il tr(Xi, .o Xy, Xmt1)
eNm

Here, we used the necklace property allowing to permute cyclicly the trace terms
in which X,,41 occurs such that X,,;1 occurs as the last factor. But then,
tr(f Xm+1) = tr(gXm41) where

g= Zgil...ilXil X

Finally, using the nondegeneracy of the trace map on M, (that is, if A,B € M,
such that tr(AC) = tr(BC) for all C' € M,,, then A = B) it follows that f =g. O

If we give each of the generic matrices X; degree one, we see that the trace
algebra T}' is a connected positively graded algebra

Our aim is to bound the length of the monomials in the X; necessary to generate
T} as a module over the necklace algebra Nj'. Before we can do this we need to
make a small detour in one of the more exotic realms of noncommutative algebra :
the Nagata-Higman problem.
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Theorem 3.13 (Nagata-Higman) Let R be an associative algebra without a unit
element. Assume there is a fized natural number n such that ™ = 0 for all z € R.
Then, R*"~1 =0, that is

T1.2....Togn_1 = 0

for all z; € R.

Proof. 'We use induction on n, the case n = 1 being obvious. Consider for all
z,y €R

flay) =ya" " +aya" 2+ 2%ya" P + a2 Py 2™y
Because for all ¢ € C we must have that
0=(y+cx)" =a"c" + flz,y)c"  + ... +y"

it follows that all the coefficients of the ¢’ with 1 < i < n must be zero, in particular
f(x,y) = 0. But then we have for all x,y, z € R that

0= fla,2)y" "+ fla,29)y" 2 + (@, 20)y" %+ 4 fla,zy™ )
=na" ey 4 2 fy, 2" Faaf(y, e )+ a2 fy, 2" 70 a2 f (y, @)
and therefore " 12y”~! = 0. Let I < R be the twosided ideal of R generated by

all elements 2"~ !, then we have that I.R.I = 0. In the quotient algebra R = R/I

every element T satisfies "~ = 0.
—1

. . 2" -1 . n— .
By induction we may assume that R =0, or equivalently that 2" ~1is
contained in I. But then,

R¥' 1= R2"TDH Rl R RPNl L TRI=0
finishing the proof. |

Proposition 3.14 The trace algebra T} is spanned as a module over the necklace
algebra NJ' by all monomials in the generic matrices

Xi, Xy - Xy,
of degree [ < 2™ — 1.

Proof. By the diagonal embedding of N in M, (C[M]"]) it is clear that N
commutes with any of the X;. Let T4 and Ny be the strict positive degrees of T}’
and N and form the graded associative algebra (without unit element)

R = T+/N+ .T+
Observe that any element ¢ € T satisfies an equation of the form
et et" 2+ 4, =0

with all of the ¢; € N;. Indeed we have seen that all the coeflicients of the char-
acteristic polynomial of a matrix can be expressed as polynomials in the traces of
powers of the matrix. But then, for any = € R we have that ™ = 0.

By the Nagata-Higman theorem we know that R?"~ = (R;)?"~! = 0. Let T’ be
the graded Nj'-submodule of T} spanned by all monomials in the generic matrices
X; of degree at most 2" — 1, then the above can be reformulated as

T =T + N, T



3.4. THE TRACE ALGEBRA. 109

We claim that T? = T'. Assume not, then there is a homogeneous t € T of
minimal degree d not contained in T’ but still we have a description

t=t +cit1+...+cs.ts

with ¢ and all ¢;, t; homogeneous elements. As deg(t;) < d, t; € T’ for all 4 but
then is t € T’ a contradiction. a

Finally we are in a position to bound the length of the necklaces generating NI
as an algebra.

Theorem 3.15 The necklace algebra NI is generated by all necklaces tr(w) where
w is a necklace word

/Dim\

O O
D/ w \D
\ /

O O

\ /
O——0

of length I < 2™ where each of the beads is a generic matriz|i|= X;.

Proof. Let T’ be the C-subalgebra of T} generated by the generic matrices X;.
Then, tr(T’,) generates the ideal Ny . Let S be the set of all monomials in the X; of
degree at most 2™ — 1. By the foregoing proposition we know that T —— N™.S.
The trace map

tr: )W —— N

is Nj'-linear and therefore, because T, C T".(CX; + ...+ CX,,) we have
tr(T) C tr(N'.S.(CX1 + ...+ CX,,)) C N".tr(S')

where S’ is the set of monomials in the X; of degree at most 2. If N’ is the C-
subalgebra of NJ* generated by all tr(S’), then we have tr(T’, ) C N;".N’ . But then,
we have

N, = N'r(Ty) C NPN, and thus N7 =N + NN,

from which it follows that N7 = N’ by a similar argument as in the foregoing proof.
O

Example 3.16 The algebras N3 and T3.
When working with 2 x 2 matrices, the following identities are often helpful
0=A2% —tr(A)A + det(A)
A.B+ B.A=tr(AB) — tr(A)tr(B) + tr(A)B + tr(B)A
for all A, B € M. Let N’ be the subalgebra of N3 generated by tr(X1),tr(X2), det(X1), det(X2)
and tr(X1X2). Using the two formulas above and N%—linearity of the trace on ']1'% we see that the

trace of any monomial in X7 and X2 of degree d > 3 can be expressed in elements of N’ and traces
of monomials of degree < d — 1. Hence, we have

N3 = Cltr(X1), tr(X2), det(X1), det(X2), tr(X1 X2)].
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Observe that there can be no algebraic relations between these generators as we have seen that the
induced map 7 : M22 —— C5 is surjective. Another consequence of the above identities is that
over Ng any monomial in the X7, X2 of degree d > 3 can be expressed as a linear combination of
1, X1, X2 and X1 X9 and so these elements generate T% as a N%-module. In fact, they are a basis
of ’IF% over N%. Assume otherwise, there would be a relation say

X1X2 =oals + X1 +vX2

with a, 8,7 € C(tr(X1),tr(X2),det(X1),det(X2),tr(X1X2)). Then this relation has to hold for
all matrix couples (A, B) € M22 and we obtain a contradiction if we take the couple

0 1 0 0 1 0
A= {0 0} B = [1 0} whence AB = {0 O}A

Concluding, we have the following description of N% and ']1‘% as a subalgebra of (C[M%} respectively
M2 (C[M3))

NZ = C[tr(X1),tr(X2),det(X1), det(X2), tr(X1X2)]

T% = N%.IQ D N%.Xl @N%.XQ D N%.X1X2
Observe that we might have taken the generators tr(X?) rather than det(X;) because det(X;) =
%(tr(Xi)2 — tr(X;)?) as follows from taking the trace of characteristic polynomial of X;.

3.5 The symmetric group.

Let S; be the symmetric group of all permutations on d letters. The group algebra
C S4 is a semisimple algebra. In particular, any simple Sy-representation is isomor-
phic to a minimal left ideal of C Sy which is generated by an idempotent. We will
now determine these idempotents.

To start, conjugacy classes in Sy correspond naturally to partitions A =
(A1,...,A\k) of d, that is, decompositions in natural numbers

d=XM+...+ X with M >2X>...2 M\ >1

The correspondence associates to a partition A = (A1,...,Ax) the conjugacy class
of a permutation consisting of disjoint cycles of lengths Ay, ..., Ag. It is traditional
to assign to a partition A = (A1,..., ;) a Young diagram with \; boxes in the i-th
row, the rows of boxes lined up to the left. The dual partition \* = (A},..., AF)
to A is defined by interchanging rows and columns in the Young diagram of A. For
example, to the partition A = (3,2,1,1) of 7 we assign the Young diagram

)\: )\*:

with dual partition A\* = (4,2,1). A Young tableau is a numbering of the boxes
of a Young diagram by the integers {1,2,...,d}. For example, two distinct Young
tableaux of type \ are

N || &~ |
N || N =

Now, fix a Young tableau T of type A and define subgroups of S; by

Py, = {0 € S4 | o preserves each row }
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Qx = {0 € S4 | o preserves each column }

For example, for the second Young tableaux given above we have that

Py =835 X Sq2ay x {(6)} x {(7)}
Qr = 5{1,2,6,7} X 5{3,4} x {(5)}

Observe that different Young tableaux for the same A define different subgroups
and different elements to be defined below. Still, the simple representations we will
construct from them turn out to be isomorphic.

Using these subgroups, we define the following elements in the groupalgebra CSy

ay = Z es , by= Z sgn(o)e, and ¢y = ay.bs
ocEPy cEQN

The element c), is called a Young symmetrizer. The next result gives an explicit one-
to-one correspondence between the simple representations of CS; and the conjugacy
classes in Sy (or, equivalently, Young diagrams).

Theorem 3.17 For every partition A of d the left ideal CSy.cx = V) is a simple
Sq-representations and, conversely, any simple Sg-representation is isomorphic to
Vi for a unique partition .

Proof. Observe that Py N Qy = {e} (any permutation preserving rows as well as
columns preserves all boxes) and so any element of Sy can be written in at most one
way as a product p.q with p € Py and ¢ € Q. In particular, the Young symmetrizer
can be written as ¢y = Y +e, with o = p.q for unique p and ¢ and the coefficient
+1 = sgn(q). From this it follows that for all p € Py and g € @, we have

p.ayx =axp=ay , sgn(q)q.bx=>bx.sgn(q)g=>0bx , p.cx.sgn(q)q = cx

Moreover, we claim that ¢ is the unique element in CSy (up to a scalar factor)
satisfying the last property. This requires a few preparations.

Assume o ¢ P,.Q, and consider the tableaux 7" = ¢T, that is, replacing the
label i of each box in T by o (7). We claim that there are two distinct numbers which
belong to the same row in T and to the same column in 7T”. If this were not the
case, then all the distinct numbers in the first row of T" appear in different columns
of T'. But then we can find an element ¢} in the subgroup o.Qx.0c~! preserving
the columns of T” to take all these elements to the first row of 7”. But then, there
is an element p; € Ty such that p;T and ¢{7” have the same first row. We can
proceed to the second row and so on and obtain elements p € Py and ¢ € 0.Qx, 0!
such that the tableaux pT and ¢'T’ are equal. Hence, pT = ¢'oT entailing that
p = ¢'o. Further, ¢ = 0.q.0~! but then p = ¢'0 = o0¢q whence 0 = p.q~' € P\.Qa,
a contradiction. Therefore, to 0 ¢ P\.QQx we can assign a transposition T = (ij)
(replacing the two distinct numbers belonging to the same row in 7" and to the same
column in 7”) for which p=7 € Py and ¢ =0~ 1.7.0 € Q,.

After these preliminaries, assume that ¢ =) a,€, is an element such that

p.c.sgn(q)g=c forall pe Py,q€ Qx

We claim that a, = 0 whenever o ¢ P5.Qx. For take the transposition 7 found
above and p = 7, ¢ = o~ '.7.0, then p.oc.¢q = T7.0.07'.7.0 = 0. However, the
coefficient of o in ¢’ is a, and that of p.c’.q is —a, proving the claim. That is,

r_
¢ = E :apqep-q

b,q
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but then by the property of ¢ we must have that a,, = sgn(q)a. whence ¢ = a.c
finishing the proof of the claimed uniqueness of the element cy.

As a consequence we have for all elements x € CSy that cy.z,c) = agcy for
some scalar «, € C and in particular that c?\ = nycy, for,

p.(ex.xz.cx).sgn(q)g = p.ax.by.x.ax.bx.sgn(q)q
= a>\.b>\.a:.a>\.b>\ = C)\.Z.C)

and the statement follows from the uniqueness result for c.

Define V), = CS,.c) then we have ¢).V)\ C Cey. We claim that V), is a simple Sg-
representation. Let W C V) be a simple subrepresentation, then being a left ideal
of CSy we can write W = CSy.z with 22 = z (note that W is a direct summand).
Assume that cx.W = 0, then W.W C CSy.cy.W = 0 implying that £ = 0 whence
W =0, a contradiction. Hence, cy.W = Cec) C W, but then

Va=CS4.chx CW whenceV, =W

is simple. Remains to show that for different partitions, the corresponding simple
representations cannot be isomorphic.
We put a lexicographic ordering on the partitions by the rule that

A > p if the first nonvanishing \; — p; is positive

We claim that if A > p then a).CS4.b, = 0. It suffices to check that ay.c.b, =0
for c € Sy. As a.bu.o_1 is the ”b-element” constructed from the tableau b.7’" where
T' is the tableaux fixed for p, it is sufficient to check that ax.b, = 0. As A > p
there are distinct numbers ¢ and j belonging to the same row in 7" and to the same
column in 7”. If not, the distinct numbers in any fixed row of T" must belong to
different columns of 7", but this can only happen for all rows if 4 > A. So consider
7 = (ij) which belongs to Py and to Q,, whence ay.7 = ay and 7.b, = —b,. But
then,
ax.b, = ax.7,7,b, = —ax.b,

proving the claim.
If A # 1 we claim that V) is not isomorphic to V},. Assume that A > ;1 and ¢ a
CSg-isomorphism with ¢(Vy) = V,,, then

¢(CAVA) = C)\¢(V,\) = C)\VM = C)\CSdCM =0

Hence, ¢\ V) = Ccy # 0 lies in the kernel of an isomorphism which is clearly absurd.

Summarizing, we have constructed to distinct partitions of d, A and p noniso-
morphic simple CSg-representations Vy and V),. As we know that there are as many
isomorphism classes of simples as there are conjugacy classes in Sy (or partitions),
the V) form a complete set of isomorphism classes of simple S;-representations,
finishing the proof of the theorem. O

3.6 Necklace relations.

In this section we will prove that all the relations holding among the elements of
the necklace algebra N;* are formal consequences of the Cayley-Hamilton equation.
First, we will have to set up some notation to clarify what we mean by this.

For technical reasons it is sometimes convenient to have an infinite supply of
noncommutative variables {x,zs,...,2;,...}. Two monomials of the same degree
d in these variables

M=ux;x...25;, and M =z x4, ...25,
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are said to be equivalent if M’ is obtained from M by a cyclic permutation, that is,
there is a k such that i; = ji and all i, = j, with b =k + a — 1 mod d. That is, if
they determine the same necklace word

D/D - D\D
|:|/ 0 \D
\ /

N,

with each of the beads one of the noncommuting variables | ¢ | = x;. To each equiv-
alence class we assign a formal variable that we denote by

t(wiy Tiy - Tiy)-

The formal necklace algebra N*° is then the polynomial algebra on all these (in-
finitely many) letters. Similarly, we define the formal trace algebra T® to be the
algebra

T = N*° @¢c C{z1, 22, ..., Tiy...)

that is, the free associative algebra on the noncommuting variables x; with coeffi-
cients in the polynomial algebra N*°.
Crucial for our purposes is the existence of an N°°-linear formal trace map

t:T® — N*
defined by the formula

t(z ail,,,ikxil e J)lk) = Z ail__likt(xil e xik)

where a;, .4, € N*°.

In an analogous manner we will define infinite versions of the necklace and trace
algebras. Let MS° be the space of all ordered sequences (A1, Ag, ..., A;,...) with
A; € M, and all but finitely many of the A; are the zero matrix. Again, GL,, acts
on MS° by simultaneous conjugation and we denote the infinite necklace algebra
NS° to be the algebra of polynomial functions f

M L.

which are constant along orbits. Clearly, No° is generated as C-algebra by the in-
variants tr(M) where M runs over all monomials in the coordinate generic matrices
X = (z;(k));,; belonging to the k-th factor of M2°. Similarly, the infinite trace
algebra TP° is the algebra of G L, -equivariant polynomial maps

Clearly, Tg° is the C-algebra generated by N;° and the generic matrices X for
1 <k < 0o. Observe that T is a subalgebra of the matrixring

T — My (C[M;"])
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and as such has a trace map tr defined on it and from our knowledge of the gener-
ators of N2° we know that tr(TS%) = N°.
Now, there are natural algebra epimorphisms

T v
T —5r T and N % N

defined by 7(t(zi, ... 2:,)) = v(t(zs, ... 25,)) = tr( X ... X;,) and 7(2;) = X;.
That is, v and 7 are compatible with the trace maps

T

T T
t tr
N* — % o NP

We are interested in describing the necklace relations, that is, the kernel of v. In the
next section we will describe the trace relations which is the kernel of 7. Note that
we obtain the relations holding among the necklaces in N by setting all z; = 0
with ¢ > m and all ¢(z;, ...x;,) = 0 containing a variable with ¢; > m.

In the description a map T : CSy; —— N will be important. Let Sy be the
symmetric group of permutations on {1,...,d} and let

g = (ilil .. .ia)(jljg .. jﬁ) N (2122 .. Zc)

be a decomposition of ¢ € Sy into cycles including those of length one. The map T
assigns to o a formal necklace T, (x1,...,xq) defined by

To(w1,. .y mq) = U@y iy o 23 (X5, T4y - Tgy) o (T2 Ty T2)

Let V =V, be again the n-dimensional vectorspace of column vectors, then Sy acts
naturally on V®? via

0‘.(’1}1 ®...®Ud) = Vg(1) ®~-~®Ua(d)

hence determines a linear map A\, € End(V®%). Recall from section 3 that under
the natural identifications

(MP4* ~ (V24 @ VEY* ~ End(V)
the map A\, defines the multilinear map

po : Mp®...0 M,, — C
N———
d

defined by (using the cycle decomposition of ¢ as before)

/J,O—(Al ®R...Q Ad) = tT(AilAiz ...Aia)t’l“(Alejz LA ) . .tT‘(AZlAZ2 - Azc)

Js
Therefore, a linear combination Y a,T,(z1,...,24) is a necklace relation (that is,
belongs to Ker v) if and only if the multilinear map 3" a, 1y : M4 — C is zero.
This, in turn, is equivalent to the endomorphism Y a,\, € End(V®™), induced by
the action of the element Y a,e, € CSy on V®? being zero. In order to answer the
latter problem we have to understand the action of a Young symmetrizer ¢, € CSy
on V&4,
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Let A = (A1, Aa,..., ) be a partition of d and equip the corresponding Young
diagram with the standard tableau (that is, order first the boxes in the first row
from left to right, then the second row from left to right and so on).

;:::::::::Ej

S

The subgroup P, of S; which preserves each row then becomes
Py =5y, X 8y, X...x 8y, — Sa.
Asay = ZPEPA ep we see that the image of the action of a) on V® is the subspace
Im(ay) = Sym™ V@ Sym™ V®...@ Sym™ V W V&4

Here, Sym® V denotes the subspace of symmetric tensors in V' ®.

Similarly, equip the Young diagram of A with the tableau by ordering first the
boxes in the first column from top to bottom, then those of the second column from
top to bottom and so on.

1 d]

T

A
Equivalently, give the Young diagram corresponding to the dual partition of A

A= (/1417/1'27"'7;“1)

the standard tableau. Then, the subgroup @ of S; which preserves each row of A
(or equivalently, each column of \*) is

Q)= 8u X8y, x...x 8, — 5
As by =37 cq, s9n(q)eq we see that the image of by on V@4 is the subspace

1223

M1 H2
Imb )= A\ Ve AVve. o Vv

Here, \' V is the subspace of all anti-symmetric tensors in V®%. Note that A" V =
0 whenever ¢ is greater than the dimension dim V = n. That is, the image of
the action of by on V®? is zero whenever the dual partition A\* contains a row of
length > n + 1, or equivalently, whenever A has > n 4 1 rows. Because the Young
symmetrizer ¢y = ax.by € C Sy we have proved the first result on necklace relations.

Proposition 3.18 A formal necklace

Z asTo(1,...,2q)

oc€Sy
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is a necklace relation (for n x n matrices) if and only if the element

Z aqse, € CSy

belongs to the ideal of CSy spanned by the Young symmetrizers cy relative to parti-
tions A = (Aq,..., \)

I

]

with a least n 4+ 1 rows, that is, k > n + 1.

Example 3.19 (Fundamental necklace and trace relation.)
Consider the partition A = (1,1,...,1) of n + 1, with corresponding Young tableau

Then, Py = {e}, Qx = Sp+1 and we have the Young symmetrizer
ay=1 by =cy = Z sgn(o)eq.
oc€Sp41

The corresponding element is called the fundamental necklace relation

Flx1,.. ., xng1) = Z sgn(o)To (1, ..., Tnt1).

C"Esnﬁ»l
Clearly, §(z1,...,Zn+1) is multilinear of degree n+1 in the variables {z1,...,Zn+1}. Conversely,
any multilinear necklace relation of degree n+ 1 must be a scalar multiple of §(z1,...,Zn+1). This

follows from the proposition as the ideal described there is for d = n + 1 just the scalar multiples
of Zaesn+1 sgn(o)ec.

Because §(x1,...,%n+1) is multilinear in the variables ; we can use the cyclic permutation
property of the formal trace ¢ to write it in the form

F(z1,... s xnt1) =t(€H(z1, ..., 2n)Tnt+1) with EH(z1,...,zn) € T

Observe that €$H(z1,...,2n) is multilinear in the variables x;. Moreover, by the nondegener-
acy of the trace map tr and the fact that F(z1,...,2n+1) is a necklace relation, it follows that
H(z1,...,xn) is a trace relation. Again, any multilinear trace relation of degree n in the vari-
ables {z1,...,zn} is a scalar multiple of €§(z1,...,zn). This follows from the corresponding
uniqueness result for §(z1,...,Zn+1).

We can give an explicit expression of this fundamental trace relation

n
CH(x1,...,xn) = Z(fl)k Z Ty Tig + o - Tiy, Z sgn(o)To (T, -5 25, ;)
k=0

i1 ia . Ay c€Sy
where J = {1,...,n} — {i1,...,ir}. In a moment we will see that €9(z1,...,2zn) and hence also
F(x1,...,xnt1) is obtained by polarization of the Cayley-Hamilton identity for n x n matrices.

We will explain what we mean by the Cayley-Hamilton polynomial for an el-
ement of T. Recall that when X € M, (A) is a matrix with coefficients in a
commutative C-algebra A its characteristic polynomial is defined to be

Xx () = det(tT, — X) € Alt]

and by the Cayley-Hamilton theorem we have the basic relation that xx(X) = 0.
We have seen that the coefficients of the characteristic polynomial can be expressed
as polynomial functions in the tr(X?) for 1 <i < n.



3.6. NECKLACE RELATIONS. 117
For example if n = 2, then the characteristic polynomial can we written as
1
xx(t) =t —tr(X)t + 5(tr(X)“' —tr(X?)).

For general n the method for finding these polynomial functions is based on the
formal recursive algorithm expressing elementary symmetric functions in term of
Newton functions, usually expressed by the formulae

n

ft) = H(t— Ai);

n n

ft dlog f(t 1 1
f((t)): fzt():Zt_AfE_ZtkH(ZAf)

i=1 k=0 i=1

Note, if \; are the eigenvalues of X € M, then f(t) = xx(t) and Y | A\F = tr(XF).
Therefore, one can use the formulae to express f(¢) in terms of the elements > | AF.
To get the required expression for the characteristic polynomial of X one only has
to substitute Y. | AF with ¢tr(X*).

This allows us to construct a formal Cayley-Hamilton polynomial x.(x) € T
of an element x € T by replacing in the above characteristic polynomial the term
tr(X*) with t(2*) and ¢ with 2. If x is one of the variables x; then y,(z) is
an element of T* homogeneous of degree n. Moreover, by the Cayley-Hamilton
theorem it follows immediately that x.(x) is a trace relation. Hence, if we fully
polarize x,(z) (say, using the variables {x1,...,2,}) we obtain a multilinear trace
relation of degree n. By the argument given in the example above we know that
this element must be a scalar multiple of €$(z1,...,2,). In fact, one can see that
this scale factor must be (—1)" as the leading term of the multilinearization is
Y ves, To(l) - - - To(n) and compare this with the explicit form of €H(zy,. .., z,).

Example 3.20 Consider the case n = 2. The formal Cayley-Hamilton polynomial of an ele-
ment x € T is

X (@) = 2% = @) + 2 (1(0)? — 1(22)
Polarization with respect to the variables x; and x2 gives the expression
122 + 21 — t(z1)T2 — t(T2)21 + t(21)t(22) — t(T122)
which is €H(x1, z2). Indeed, multiplying it on the right with x3 and applying the formal trace ¢
to it we obtain
t(z1zozws) + t(zazizs) — t(x1)t(zoxs) — t(z2)t(x123) + t(z1)t(22)t(23) — t(x122)t(23)
= T(123) (21, 22, 23) + T(213) (21, T2, 23) — T(1)(23) (1, T2, x3) — L(2)(13) (21, T2, *3)
+ Ty @2)(3) (@1, 22, 23) = T(12)(3) (21, 2, 23)
= Z To(z1,22,23) = (1,72, 23)

o€S3

as required.

Theorem 3.21 The necklace relations Ker v is the ideal of N°° generated by all
the elements

8(m17 R 7mn+1)

where the m; run over all monomials in the variables {x1,x2,..., 2, ...}.

Proof. Take a homogeneous necklace relation f € Ker v of degree d and polarize
it to get a multilinear element f’ € N*°. Clearly, f’ is also a necklace relation and
if we can show that f’ belongs to the described ideal, then so does f as the process
of restitution maps this ideal into itself.
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Therefore, we may assume that f is multilinear of degree d. A priori f may
depend on more than d variables xj, but we can separate f as a sum of multilinear
polynomials f; each depending on precisely d variables such that for i # j f; and f;
do not depend on the same variables. Setting some of the variables equal to zero,
we see that each of the f; is again a necklace relation.

Thus, we may assume that f is a multilinear necklace identity of degree d de-
pending on the variables {z1,...,z4}. But then we know from proposition
that we can write

f= Z a;Tr(1,...,2q)

TESY

where > are; € CS; belongs to the ideal spanned by the Young symmetrizers of
Young diagrams A\ having at least n + 1 rows.

We claim that this ideal is generated by the Young symmetrizer of the partition
(1,...,1) of n + 1 under the natural embedding of S, 11 into S4;. Let A be a
Young diagram having & > n + 1 boxes and let c¢) be a Young symmetrizer with
respect to a tableau where the boxes in the first column are labeled by the numbers
I ={iy,...,ix} and let St be the obvious subgroup of Sy. As @\ = S5 x Q' we see
that by = (3_,cg, sgn(o)ey).b" with b’ € CQ'. Hence, cx belongs to the twosided
ideal generated by c; = ) . sgn(o)e, but this is also the twosided ideal generated
by ¢, = desk sgn(o)e, as one verifies by conjugation with a partition sending I
to {1,...,k}. Moreover, by induction one shows that the twosided ideal generated
by ¢ belongs to the twosided ideal generated by cg = Y sgn(c)ey, finishing
the proof of the claim.

From this claim, we can write

ZaTeT: Z a;jer, . Z sgn(o)eq).ex,

TESq Ti,Tj€Sq 0ESn+1

g€Sy

and therefore it suffices to analyze the form of the necklace identity associated to
an element of the form

er( Z sgn(o)ey).e;r  with 7,77 € Sy

o€Sni1

Now, if a groupelement > uESy be, corresponds to the formal necklace polynomial
&(z1,...,24), then the element e .(> bue,).e;—1 corresponds to the formal

HESa
necklace polynomial &(z,(1),...,Tr(a))-
Therefore, we may replace the element eT.(ZGGSn+1 sgn(o)ey).e- by the ele-
ment

( Z sgn(o)ey).e, with n=71".71 €Sy

0ESnt1

We claim that we can write n = ¢’.60 with ¢’ € S,,11 and 0 € S, such that each cycle

of 6 contains at most one of the elements from {1,2,...,n+1}. Indeed assume that
7 contains a cycle containing more than one element from {1,...,n+ 1}, say 1 and
2, that is

n = (12122 Zr2]1j2]5)(]€1 ...ka)...(zl Zg)
then we can express the product (12). in cycles as
(1’i1i2 PO 7/7‘)(2.]1]2 .. ]s)(kl PN ka) “es (Zl SN Z()

Continuing in this manner we reduce the number of elements from {1....,n + 1}
in every cycle to at most one.
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But then as o € S,y1 we have seen that (> sgn(o)e,).eqr =
sgn(o’) (> sgn(o)e,) and consequently

( Z sgn(o)eq).en = £( Z sgn(o)eq).€q

cESH 11 oESh4+1

where each cycle of § contains at most one of {1,...,n+ 1}. Let us write

92(1112a)(2j1j5)(TL—FlSlS,@)(tltA)(ZlZQ)

Now, let ¢ € S,4+1 then the cycle decomposition of 0.6 is obtained as follows :
substitute in each cycle of o the element 1 formally by the string 1i;...4,, the
element 2 by the string 2j; ... j3, and so on until the element n + 1 by the string
n+1sp ...s, and finally adjoin the cycles of 6 in which no elements from {1,...,n+
1} appear.

Finally, we can write out the formal necklace element corresponding to the
element (3_,cq ., sgn(o)es).eq as

S(@1Tiy - iy, T2Tyy o Ty T 1Ty - T )Ty gy ) o (2 T)

finishing the proof of the theorem. |

3.7 Trace relations.

We will again use the non-degeneracy of the trace map to deduce the trace relations,
that is, Ker 7 from the description of the necklace relations.

Theorem 3.22 The trace relations Ker 7 is the twosided ideal of the formal trace
algebra T generated by all elements

F(my,....mps1)  and  E€H(My,...,my)
where the m; run over all monomials in the variables {x1,22,...,2;,...}.
Proof. Consider a trace relation $(x1,...,24) € Ker 7. Then, we have a necklace

relation of the form
t(H(z1,...,xq)xa41) € Ker v

By theorem we know that this element must be of the form

Z nil...in+1 g<m21 ycc 7mi7z+1)

where the m; are monomials, the n;,.;,,, € N and the expression must be linear
in the variable x441. That is, 441 appears linearly in each of the terms

ng(my, ..., Mpy1)

so appears linearly in n or in precisely one of the monomials m;. If x441 appears
linearly in n we can write

n=t(n".x41) where n’ € T™.

If 2441 appears linearly in one of the monomials m; we may assume that it does so
in my,41, permuting the monomials if necessary. That is, we may assume m,+; =
My, 1-Ta1.m” pp1 with m, m’ monomials. But then, we can write

ng(ma,...,mpy1) = nt(CH(Ma, ..., my) My 41 Tap1.m n41)

= t(n.m”p41.€H(M1, ..., Mp) My, Tagr)
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using N*°-linearity and the cyclic permutation property of the formal trace ¢t. But
then, separating the two cases, one can write the total expression

t(ﬁ(l’l, o axd)derl) = t([z nél...in+1g(mi17 o 7min+1)
j

Finally, observe that two formal trace elements $(z1,...,2z4) and R(x1,...,x4) are
equal if the formal necklaces

t(9(z1,. .., xa)xar1) = t(R(z1, ..., 2q)Td+1)

are equal, finishing the proof. a

We will give another description of the necklace relations Ker 7 which is better
suited for the categorical interpretation of TS® to be given in the next chapter.
Consider formal trace elements mi, mo,...,m;,... with m; € T*. The formal
substitution

f|—>f(m1,m2,...,mi,...)

is the uniquely determined algebra endomorphism of T which maps the variable
x; to m; and is compatible with the formal trace t. That is, the substitution sends a
monomial x;, &, ...x;, to the element g;, gi, ...g;, and an element t(x;, x4, ... x;,)
to the element t(g;,9i, .- i, ). A substitution invariant ideal of T is a twosided
ideal of T°° that is closed under all possible substitutions as well as under the
formal trace t. For any subset of elements E C T there is a minimal substitution
invariant ideal containing E. This is the ideal generated by all elements obtained
from F by making all possible substitutions and taking all their formal traces. We
will refer to this ideal as the substitution invariant ideal generated by E.

Recall the definition of the formal Cayley-Hamilton polynomial x.(z) of an
element € T given in the previous section.

Theorem 3.23 The trace relations Ker 7 is the substitution invariant ideal of T
generated by the formal Cayley-Hamilton polynomials

Xz(x) for all x €T

Proof. The result follows from theorem and the definition of a substitution
invariant ideal once we can show that the full polarization of x,(x), which we have
seen is €9H(x1,...,2,), lies in the substitution invariant ideal generated by the
Xz ().

This is true since we may replace the process of polarization with the process of
multilinearization, whose first step is to replace, for instance

Xz(Z) by Xety (T +Y) = xa(2) — Xy (v)-

The final result of multilinearization is the same as of full polarization and the claim
follows as multilinearizing a polynomial in a substitution invariant ideal, we remain
in the same ideal. ]

We will use our knowledge on the necklace and trace relations to improve the
bound of 2" — 1 in the Nagata-Higman problem to n?. Recall that this problem asks
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for a number N(n) with the property that if R is an associative C-algebra without
unit such that r™ = 0 for all » € R, then we must have for all r; € R the identity

7"17“2...7“N(n):0 in R.

We start by reformulating the problem. Consider the positive part F of the free
C-algebra generated by the variables {x1,za,...,2;,...}

]FJr = C<$1,$2,...,$i,...>+

which is an associative C-algebra without unit. Let T'(n) be the twosided ideal of
F, generated by all n-powers f™ with f € F,.. Note that the ideal T'(n) is invariant
under all substitutions of F. The Nagata-Higman problem then asks for a number
N(n) such that the product

T1T2...TN(n) € T(n)

We will now give an alternative description of the quotient algebra F, /T'(n). Let
N, be the positive part of the infinite necklace algebra N2° and Ty the positive
part of the infinite trace algebra T;°. Consider the quotient associative C-algebra
without unit

T =T /(NLT).

Observe the following facts about T, : as a C-algebra it is generated by the variables
X1, Xo,... as all the other algebra generators of the form ¢(x;, ...x;. ) of T are
mapped to zero in T,. Further, from the form of the Cayley-Hamilton polynomial it
follows that every ¢ € T satisfies " = 0. That is, we have an algebra epimorphism

Fy/T(n) — T

and we claim that it is also injective. To see this, observe that the quotient
T /NFT is just the free C-algebra on the variables {x1,z2,...}. To obtain T,
we have to factor out the ideal of trace relations. Now, a formal Cayley-Hamilton
polynomial y,(z) is mapped to 2" in T°/NT>. That is, to obtain T we factor
out the substitution invariant ideal (observe that ¢ is zero here) generated by the
elements x, but this is just the definition of Fy /T(n).

Therefore, a reformulation of the Nagata-Higman problem is to find a number
N = N(n) such that the product of the first N generic matrices

X1X5... Xy € NPT or, equivalently that ¢r(X1Xo... XnXn1)

can be expressed as a linear combination of products of traces of lower degree. Using
the description of the necklace relations given in proposition [3.18 we can reformulate
this conditions in terms of the group algebra CSy 1. Let us introduce the following
subspaces of the groupalgebra :

e A will be the subspace spanned by all N + 1 cycles in Syi1,
e B will be the subspace spanned by all elements except N + 1 cycles,

e L(n) will be the ideal of CSy1 spanned by the Young symmetrizers associ-
ated to partitions

with < n rows, and
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e M (n) will be the ideal of CSpy; spanned by the Young symmetrizers associ-
ated to partitions

having more than n rows.

With these notations, we can reformulate the above condition as
(12...NN+1) € B+ M(n) and consequently CSyy; =B+ M(n)

Define an inner product on the groupalgebra CSy 1 such that the groupelements
form an orthonormal basis, then A and B are orthogonal complements and also L(n)
and M (n) are orthogonal complements. But then, taking orthogonal complements
the condition can be rephrased as

(B4 M(n))* = AnL(n)=0.

Finally, let us define an automorphism 7 on CSyy; induced by sending e, to
sgn(o)ey. Clearly, 7 is just multiplication by (—1)" on A and therefore the above
condition is equivalent to

ANL(n)NntL(n)=0.

Moreover, for any Young tableau A\ we have that 7(ax) = by and 7(by) = ax-.
Hence, the automorphism 7 sends the Young symmetrizer associated to a partition
to the Young symmetrizer of the dual partition. This gives the following character-
ization

e 7L(n) is the ideal of CSy41 spanned by the Young symmetrizers associated
to partitions

with < n columns.

Now, specialize to the case N = n2?. Clearly, any Young diagram having n? + 1

boxes must have either more than n columns or more than n rows

—

and consequently we indeed have for N = n? that
ANLn)NTL(n) =0

finishing the proof of the promised refinement of the Nagata-Higman bound
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Theorem 3.24 Let R be an associative C-algebra without unit element. Assume
that r™ = 0 for all r € R. Then, for all r; € R we have

riro...Tp2 =0

Theorem 3.25 The necklace algebra N} is generated as a C-algebra by all elements
of the form
tT(XilXiQ . X”)

with | < n? + 1. The trace algebra T™ is spanned as a module over the necklace
algebra NI by all monomials in the generic matrices

X, Xi, ... Xy,

of degree | < n?.



124 CHAPTER 3. GENERIC MATRICES.



Chapter 4

Reconstructing Algebras.

Let A be an affine C-algebra, generated by {ai,...,a,,}. A running theme of this
book is to study A by investigating its level n approximations AQ,, for all natural
numbers n. These algebras are defined in two stages. First, we define the category

alg® of C-algebras equipped with a linear trace map A — '+ A. This map has to
satisfy for all a,b € A

t(a)b =bt(a) t(ab) =t(ba) and t(t(a)b) = t(a)t(d)

Morphisms in alg’ are C-algebra morphisms compatible with the trace structure.
The forgetful functor alg®* —— alg has a left adjoint

alg O alg A— Al

where A! is constructed (as in the special case of T* in the foregoing chapter)
by adding formal traces to necklaces with beads running through a C-basis of A.
The algebra A! is trace-generated by m elements, that is, we have a commutative
diagram

Clz1,...,xm) — A

I Al

where T™ is the subalgebra with trace of T generated by {zi,...,2m,}. The
vertical maps are the natural ones and the lower map is trace preserving. For any
a € A and natural number n we can define a formal Cayley-Hamilton polynomial

Xgn) (t) of degree n by expressing

f) = H(t — ;) with the )\; indeterminates

i=1

as a polynomial in ¢ with coefficients which are polynomials in the Newton functions
S AE (as they are symmetric functions in the );). Replacing each occurrence of
S AF by t(a¥) gives X,(ln) (t) € Aft]. The approximation of A at level n is then
defined to be

At
(t(1) —n, x4 (a) Va € A)

125
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with the induced trace map, that is we can complete the above diagram

Tm . At

N - AQ,,

The main result of this chapter gives a geometric interpretation of the alge-
bra AQ,. The representation variety rep. A has as its geometric points the n-
dimensional representations of A, that is, C-algebra morphisms

A —L» M, (C)

It will be shown that this variety comes equipped with a G L,-structure, the orbits
of which correspond to isomorphism classes of n-dimensional representations. We
will prove that AQ,, is the algebra of GL,-equivariant polynomial maps

rep, A — M,

with the algebra structure coming from those of the target space M, (C). Further,
we will prove that the the commutative central subalgebra t(AQ,,) of AQ,, classifies
the isomorphism classes of n-dimensional semi-simple representations of A. The
geometric interpretation of ¢(A@,, ) proves it to be the coordinate ring of the quotient
variety rep A/GL, classifying the closed orbits in rep,. A which correspond by the
Artin-Voigt result to semi-simple representations.

These two main results follow from the description of necklace and trace algebras
given in the foregoing chapter and invariant theory, the basics of which we will recall
in this chapter. At an intermediate stage, we will introduce also trace preserving
representation varieties @fj A when the algebra A is equipped with a trace map.
The above results then follow from the natural GG L,-isomorphisms

rep, A=rep A"~ rep” A,

coming from the left adjointness. The level n approximation AQ, is a special
case of a Cayley-Hamilton algebra of degree n, other natural examples are orders
over normal affine varieties in central simple algebras of dimension n? over the
functionfield. The results in this chapter prove that there is a functor from the
category CH (n) of Cayley-Hamilton algebras of degree n to the category of affine
G L,-varieties (actually schemes) which assigns to an algebra A with trace map ¢
the trace preserving representation variety @i" A and that this functor has a left
inverse assigning to an affine GL,,-variety the algebra of GL,-equivariant maps from
the variety to M,. This left inverse is not an equivalence of categories, however,
and the characterization of those affine GL,-varieties which are trace preserving
representation varieties is a difficult problem. In chapter 11 we will show that the
formal structure defined on them may be a first step in solving this riddle.

4.1 Representation varieties.
When A is a noncommutative affine algebra with generating set {a1, ..., am}, there
is an epimorphism

Clz1,... Tm) —2r A

defined by ¢(x;) = a;. Hence, we have a presentation of A as

A~C(x1,...,2m)/1a
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where [ 4 is the twosided ideal of relations holding among the a;. For example, if
A = Clz1,...,2y)], then 1,4 is the twosided ideal of C(x1,...,z,,) generated by
the elements x;z; — xjx; for all 1 < 4,5 < m. Observe that there is no analog of
the Hilbert basis theorem for C(x1,...,x,,), that is, I4 is not necessarily finitely
generated as a twosided ideal. If it is, we say that A is finitely presented.

An n-dimensional representation of A is an algebra morphism

A M,

from A to n x n matrices over C. If A is generated by {a1,...,an}, then ¢ is fully
determined by the point

(¢(a1)7w(a2)7 <. ;sz(am)) € M:Ln = Mn D...D Mn .

m

We claim that mod,, (A), the set of all n-dimensional representations of A, forms a
Zariski closed subset of M]". To begin, observe that

repn(Clzy, ..., xm)) = M

as any m-tuple of n X n matrices (Ay,...,A,) € M determines an algebra mor-
phism C(z1,...,Zm) N M, by taking ¥ (x;) = A;.

Now, given a presentation A = C(z1,...,2m)/Ia an m-tuple (4;1,...,4,,) €
M™ determines an n-dimensional representation of A if (and only if) for every

noncommutative polynomial r(z1, ..., %) € Ia <C{zxy,...,2,) we have that
0O ... 0
(A, .. Ap) = |t | € M,
0O ... 0
Hence, consider the ideal I4(n) of C[M]"] = Clz;(k) | 1 < 4,5 < n,1 <k < m)]

) |
generated by all the entries of the matrices in M, (C[M"]) of the form

r(Xy,..., X)) forall r(z1,...,2m,) € 14.

By the above observation we see that the reduced representation variety rep, A is
the set of simultaneous zeroes of the ideal 14(n), that is,

repn, A=V(Is(n)) — M

proving the claim, where V denotes the closed set in the Zariski topology determined
by an ideal, the complement of which we will denotye with X). Observe that even
when A is not finitely presented, the ideal I4(n) is finitely generated as an ideal of
the commutative polynomial algebra C[M™].

Often, the ideal T4(n) contains more information than the closed subset
repn(A) = V(I4(n)) which only determines the radical ideal of I4(n). This forces
us to consider also the representation variety (or module scheme) rep A which we
will introduce in a moment.

Example 4.1 It may happen that rep, A = (. For example, consider the Weyl algebra
A1(C) = Clz,y)/(zy —yz — 1)
If a couple of n x n-matrices (A, B) € rep, A1(C) then we must have

AB—-BA="1, € M,

However, taking traces on both sides gives a contradiction as tr(AB) = tr(BA) and tr(1,) = n # 0.
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In the foregoing chapter we studied the action of GL, by simultaneous conjuga-
tion on M. We claim that rep, A —— M]" is stable under this action, that is,
if (A1,...,Ap) € rep, A, then also (gA1g7 Y, ..., gAng™ ") € rep, A. This is clear
by composing the n-dimensional representation ¥ of A determined by (A1,. .., An)
with the algebra automorphism of M,, given by conjugation with g € GL,,

A—" s,

That is, rep, A is a GLy-variety. We will give an interpretation of the orbits under
this action.

Recall that a left A-module M is a vectorspace on which elements of A act on
the left as linear operators satisfying the conditions

lm=m and a.(b.m)= (ab).m

foralla,b € A and allm € M. An A-module morphism M o N between two left
A-modules is a linear map such that f(a.m) = a.f(m) for alla € A and allm € M.
An A-module automorphism is an A-module morphism M N such that there
is an A-module morphism N —9+ M such that fog=idy and go f =idy.
Assume the A-module M has complex dimension n, then after fizing a basis
we can identify M with C" (column wvectors). For any a € A we can represent

the linear action of a on M by an n X n matriz ¥(a) € M,. The condition that
a.(b.m) = (ab).m for all m € M asserts that ¥(ab) = ¥(a)(b) for all a,b €

A, that is, ¥ is an algebra morphism A v, M, and hence M determines an

n-dimensional representation of A. Conversely, an n-dimensional representation

A M,, determines an A-module structure on C™ by the rule

av=1(a)v forall wveC"

Hence, there is a one-to-one correspondence between the n-dimensional representa-
tions of A and the A-module structures on C™. For this reason we call the reduced
variety rep, A the reduced representation variety of A. If two n-dimensional A-
module structures M and N on C™ are isomorphic (determined by a linear invertible
map g € GL,,) then for all a € A we have the commutative diagram

M g N

M—! N

Hence, if the action of a on M is represented by the matriz A, then the action of
a on M is represented by the matriz g.A.g~'. Therefore, two A-module structures
on C" are isomorphic if and only if the points of rep, A corresponding to them
lie in the same GL,-orbit. Concluding, studying n-dimensional A-modules up to
isomorphism is the same as studying the G L, -orbits in the reduced representation
variety rep, A.

If the defining ideal I5(n) is a radical ideal (as we will see, this is the case when
A is a Quillen-smooth algebra) the above suffices. In general, the scheme structure
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of the representation variety rep, A will be important. By definition, the module
scheme rep, A is the functor assigning to any (affine) commutative C-algebra R,
the set

rep, A(R) = Algc(C[M,"]/14(n), R)

of C-algebra morphisms «:I[:\/(I;E';} Y+ R. Such a map 1 is determined by the image
¥(wij(k)) = rij(k) € R. That is, 1) € rep A(R) determines an m-tuple of n x n

matrices with coefficients in R

Tll(k‘) Tln(k})
(riye.oyrm) € Mp(R) @ ... ® M, (R) where 11 = :
m ’I"nl(k‘) e Tnn(k)
Clearly, for any r(x1,...,2m) € Ia we must have that r(r1,...,rm) is the zero

matriz in M, (R). That is, 1 determines uniquely an R-algebra morphism
Y:R®cA— My(R) by mapping xj +— 7.

Alternatively, we can identify the set @n(R) with the set of left R ® A-module
structures on the free R-module R®™ of rank n. In section 8, we will introduce the
representation variety T@p; A and teh reduced representation variety repl, A of trace
preserving n-dimensional representations.

4.2 Some algebraic geometry.

Throughout this book we assume that the reader has some familiarity with algebraic
geometry, such as the first two chapters of the textbook [J]. In this section we
restrict to the dimension formulas and the relation between Zariski and analytic
closure, illustrating them with examples from module varieties. We will work only
with reduced varieties in this section.

A morphism X —— Y between two affine irreducible varieties is said to be
dominant if the image ¢(X) is Zariski dense in Y. On the level of the coordinate
algebras dominance is equivalent to ¢* : C[Y] —— C[X] being injective and hence
inducing a fieldextension ¢* : C(Y) —— C(X) between the functionfields. Indeed,
for f € C[Y] the function ¢*(f) is by definition the composition

x-“y-t.c
and therefore ¢*(f) = 0 iff F($(X)) = 0 iff F(S(X)) = 0.

A morphism X —2+ Y between two affine varieties is said to be finite if under
the algebra morphism ¢* the coordinate algebra C[X] is a finite C[Y]-module. An
important property of finite morphisms is that they are closed, that is the image
of a closed subset is closed. Indeed, we can replace without loss of generality Y by
the closed subset ¢(X) = Vy (Ker ¢*) and hence assume that ¢* is an inclusion
C[Y] = C[X]. The claim then follows from the fact that in a finite extension
there exists for any mazimal ideal N < C[Y] a mazimal ideal M < C[X] such that
M NCJY] =C[X].

Example 4.2 Let X be an irreducible affine variety of dimension d. By the Noether normal-
ization result C[X] is a finite module over a polynomial subalgebra C[f1,..., f4]. But then, the
finite inclusion C[f1,..., fqg] & C[X] determines a finite surjective morphism

X—(#;»Cd
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An important source of finite morphisms is given by integral extensions. Recall
that, if R — S is an inclusion of domains we call S integral over R if every s € S
satisfies an equation

n—1
s" = Z rist  with r; € R.
i=0

A normal domain R has the property that any element of its field of fractions which

is integral over R belongs already to R. If X —% .Y is a dominant morphism
between two irreducible affine varieties, then ¢ is finite if and only if C[X] in integral
over C[Y] for the embedding coming from ¢*.

Proposition 4.3 Let X . Y be a dominant morphism between irreducible affine
varieties. Then, for any x € X and any irreducible component C of the fiber

¢~ 1(¢(2)) we have
dim C >dim X —dim Y.

Moreover, there is a nonempty open subset U of Y contained in the image ¢(X)
such that for all w € U we have

dim ¢ (u) = dim X — dim Y.

Proof. Letd = dim X — dim Y and apply the Noether normalization result to
the affine C(Y)-algebra C(Y)C[X]. Then, we can find a function g € C[Y] and
algebraic independent functions fi, ..., fq € C[X], (g clears away any denominators
that occur after applying the normalization result) such that C[X], is integral over
ClYl,lfa,--., fda]. That is, we have the commutative diagram

Xx(g) e Xy (g) x C*

X ¢

Y < > Xy (9)

where we know that p is finite and surjective. But then we have that the open
subset Xy (g) lies in the image of ¢ and in Xy (g) all fibers of ¢ have dimension
d. For the first part of the statement we have to recall the statement of Krull’s
Hauptideal result : if X is an irreducible affine variety and ¢, ...,g, € C[X] with
(915---,9r) # C[X], then any component C of Vx (g1, ..., gr) satisfies the inequality

dim C > dim X —r.
If dim Y = r apply this result to the g; determining the morphism
Xy o

where the latter morphism is the one from ezample [[.3 O

In fact, a stronger result holds. Chevalley’s theorem asserts the following.

Theorem 4.4 Let X .y be a morphism between affine varieties, the function
X — N defined by x> dim, ¢ (p(x))
is upper-semicontinuous. That is, for alln € N, the set
{z € X | dim, ¢~ (6(x)) <n}

s Zariski open in X.
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Proof. Let Z(¢,n) be the set {x € X | dim, ¢~ (é(x)) > n}. We will prove
that Z(¢,n) is closed by induction on the dimension of X. We first make some
reductions. We may assume that X is irreducible. For, let X = U;X; be the
decomposition of X into irreducible components, then Z(¢p,n) = UZ(¢ | X;i,n).
Next, we may assume that Y = ¢(X) whence Y is also irreducible and ¢ is a
dominant map. Now, we are in the setting of proposition [[.3. Therefore, if n <
dim X —dim Y we have Z(¢,n) = X by that proposition, so it is closed. If n >
dim X — dim Y consider the open set U in'Y of proposition . Then, Z(¢p,n) =
Z(p | (X—¢~1(U)),n). the dimension of the closed subvariety X —¢~1(U) is strictly
smaller that dim X hence by induction we may assume that Z(¢ | (X —¢~1(U)),n)
is closed in X — ¢~1(U) whence closed in X. ]

An immediate consequence of the foregoing proposition is that for any morphism

X 2, Y between affine varieties, the image ¢(X) contains an open dense subset

of §(Z) (reduce to irreducible components and apply the proposition).

Example 4.5 Let A be an affine C-algebra and M € rep, A. We claim that the orbit

O(M)=GLy.M is Zariski open in its closure ~O(M).

Consider the ’orbit-map’ GL, 2, repn, A defined by g — ¢g.M. then, by the above remark
O(M) = ¢(GLy,) contains a Zariski open subset U of O(M) contained in the image of ¢ which is
O(M). But then,

OM)=GLn.M =UgegL,9.U
is also open in O(M). Next, we claim that O(M) contains a closed orbit. Indeed, assume O(M)
is not closed, then the complement Cp; = O(M) — O(M) is a proper Zariski closed subset whence
dim C < dim O(M). But, C is the union of GLyp-orbits O(M;) with dim O(M;) < dim O(M).
Repeating the argument with the M; and induction on the dimension we will obtain a closed orbit
in O(M).

Next, we want to relate the Zariski closure with the C-closure. Whereas they
are usually not equal (for example, the unit circle in Cl), we will show that they
coincide for the important class of constructible subsets. A subset Z of an affine
variety X is said to be locally closed if Z is open in its Zariski closure Z. A subset
Z s said to be constructible if Z is the union of finitely many locally closed subsets.
Clearly, finite unions, finite intersections and complements of constructible subsets
are again constructible. The importance of constructible sets for algebraic geometry
is clear from the following result.

Proposition 4.6 Let X e Y bea morphism between affine varieties. If Z is a
constructible subset of X, then ¢(Z) is a constructible subset of Y.

Proof. Because every open subset of X is a finite union of special open sets which
are themselves affine varieties, it suffices to show that ¢(X) is constructible. We
will use induction on dim ¢(X). There exists an open subset U C ¢(X) which is
contained in ¢(X). Consider the closed complement W = ¢(X) — U and its inverse
image X' = ¢~ 1(W). Then, X' is an affine variety and by induction we may assume
that ¢(X') is constructible. But then, ¢(X) =UU@(X') is also constructible. O

Example 4.7 Let A be an affine C-algebra. The subset ind, A —— rep, A of the inde-
composable n-dimensional A-modules is constructible. Indeed, define for any pair k,l such that
k + 1 = n the morphism

GLn XTrepy AXrepy A —> repn, A
by sending a triple (g, M, N) to g.(M @& N). By the foregoing result the image of this map is
constructible. The decomposable n-dimensional A-modules belong to one of these finitely many

sets whence are constructible, but then so is its complement which in ind, A.
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Apart from being closed, finite morphisms often satisfy the going-down property.
That is, consider a finite and surjective morphism

X .y

where X is drreducible and Y is normal (that is, C[Y] is a normal domain).
Let Y —— Y an irreducible Zariski closed subvariety and x € X with image
¢(x) =y €Y'. Then, the going-down property asserts the existence of an irre-
ducible Zariski closed subvariety X' —— X such that x € X' and ¢(X')=Y". In

particular, the morphism X' v s again finite and surjective and in particular
dim X' =dim Y’.

An important application of this property is that any two points of an irreducible
affine variety can be connected through an irreducible curve.

Lemma 4.8 Let © € X an irreducible affine variety and U a Zariski open subset.
Then, there is an irreducible curve C —— X through x and intersecting U.

Proof. If d = dim X consider the finite surjective morphism X AN of
example . Let y € C — ¢(X — U) and consider the line L through y and ¢(z).
By the going-down property there is an irreducible curve C' —— X containing x
such that ¢(C) = L and by construction C NU # 0. O

Proposition 4.9 Let X ey be a dominant morphism between irreducible affine
varieties any y € Y. Then, there is an irreducible curve C —— X such that

y € ¢(C).

Proof. Consider an open dense subset U —— Y contained in the image ¢(X). By
the lemma there is a curve C' —— Y containing y and such that C'NU # (. Then,
again applying the lemma to an irreducible component of ¢~1(C") not contained in
a fiber, we obtain an irreducible curve C — X with $(C) = C". O

Any affine variety X —— C* can also be equipped with the induced C-topology
from CF which is much finer than the Zariski topology. Usually there is no relation

between the closure zZ° of a subset Z —— X in the C-topology and the Zariski
closure Z.

Lemma 4.10 Let U C CF containing a subset V. which is Zariski open and dense
in U. Then,
T =T

Proof. By reducing to irreducible components, we may assume that U is irreducible.
Assume first that dim U = 1, that is, U is an irreducible curve in Ck. Let U be
the subset of points where U is a complex manifold, then U — Uy is finite and by
the implicit function theorem in analysis every u € Us has a C-open neighborhood
which is C-homeomorphic to the complex line C, whence the result holds in this
case.

Ifﬁﬁ general and x € U we can take by the lemma above an irreducible curve
C —— U containing z and such that CNV # (. Then, CNV is Zariski open and

¢ _
dense in C and by the curve argument above x € (CNV) C UC. We can do this
for any x € U finishing the proof. |

Consider the embedding of an affine variety X — CF, pmposz’tion@ and the
fact that any constructible set Z contains a subset U which is open and dense in Z
we deduce from the lemma at one the next result.
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Proposition 4.11 If Z is a constructible subset of an affine variety X, then

7°=7Z

Example 4.12 Let A be an affine C-algebra and M € rep, A. We have proved in example
that the orbit O(M) = GL,.M is Zariski open in its closure O(M). Therefore, the orbit O(M) is

a constructible subset of repn, A. By the proposition above, the Zariski closure O(M) of the orbit
coincides with the closure of O(M) in the C-topology.

4.3 The Gerstenhaber-Hesselink theorem.

In the next sections we will study orbit-closure and closed orbits in rep, A. In this
section we give one of the rare instances (but which is very important in applications)
where everything can be fully determined : the orbits in rep, Clz] or, equivalent,
conjugacy classes of n X n matrices.

It is sometimes convenient to relax our definition of partitions to include zeroes
at its tail. That is, a partition p of n is an integral n-tuple (a1, az,...,a,) with
ay > as > ... > a, >0 with ZLI a; =n. As before, we represent a partition by a
Young diagram by omitting rows corresponding to zeroes.

If g = (b1,...,by) is another partition of n we say that p dominates q and write

T T
p>gq if and only if ZaiEZbi foralll <r <n.
i=1 i=1
For example, the partitions of 4 are ordered as indicated below

m>F>E>@j>E

Note however that the dominance relation is not a total ordering whenever n > 6.
For example, the following two partition of 6

_II\ EB}

are not comparable. The dominance order is induced by the Young move of throwing
a row-ending box down the diagram. Indeed, let p and q be partitions of n such that
p > q and assume there is no partition r such that p > r and r > q. Let i be the
minimal number such that a; > b;. Then by the assumption a; = b; + 1. Let j > 1
be minimal such that a; # b;, then we have b; = a; + 1 because p dominates q. But
then, the remaining rows of p and q must be equal. That is, a Young move can be
depicted as
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For example, the Young moves between the partitions of 4 given above are as indi-
cated
- F - =! - EF - E

A Young p-tableau is the Young diagram of p with the boxes labeled by integers
from {1,2,...,s} for some s such that each label appears at least ones. A Young p-
tableau is said to be of type q for some partition ¢ = (b, ..., b,) of n if the following
conditions are met :

o the labels are non-decreasing along rows,
o the labels are strictly increasing along columns, and
o the label i appears exactly b; times.

For example, if p=(3,2,1,1) and ¢ = (2,2,2,1) then the p-tableau below

113
2

W N

is of type q (observe that p > q and even p — q). In general, let p = (aq,...,an,)
and g = (b1,...,b,) be partitions of n and assume that p — q. Then, there is a
Young p-tableau of type q. For, fill the Young diagram of q by putting 1’s in the
first row, 2’s in the second and so on. Then, upgrade the fallen box together with
its label to get a Young p-tableau of type q. In the example above

11; 11113
|

22/: 212

3(® 3

4 4

Conversely, assume there is a Young p-tableau of type q. The number of boxes
labeled with a number < i is equal to by + ... + b;. Further, any box with label
< i must lie in the first i rows (because the labels strictly increase along a column).
There are a1 + ...+ a; boxes available in the first i rows whence

i i
Zbi§2ai forall 1<i<n
j=1 j=1
and therefore p > q. After these preliminaries on partitions, let us return to nilpo-

tent matrices.

Let A be a nilpotent matriz of type p = (as,...,a,), that is, conjugated to a
matriz with Jordan blocks (all with eigenvalue zero) of sizes a;. We have seen before
that the subspace Vi of column vectors v € C" such that A'.v =0 has dimension

l l
Y #ilag=ht=3"a;
h=1 h=1
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,ar) is the dual partition of p. Choose a basis {v1,...,v,} of
C™ such that for all | the first ai + ...+ a] base vectors span the subspace V;. For
example, if A is in Jordan normal form of type p = (3,2,1,1)

where p* = (af,...,a}

o O O

1
0
0

o = O

o o
O =

0

then p* = (4,2,1) and we can choose the standard base vectors ordered as follows

{617645667673627657 €3 }
—————

4 2 1

Take a partition ¢ = (by,...,b,) with p — q (in particular, p > q), then for the
dual partitions we have ¢* — p* (and thus ¢* > p*). But then there is a Young
q*-tableau of type p*. In the example with ¢ = (2,2,2,1) we have ¢* = (4,3) and
p* = (4,2,1) and we can take the Young ¢*-tableau of type p*

Now label the bozxes of this tableau by the base vectors {vi,...,v,} such that the
bozes labeled i in the Young q*-tableau of type p* are filled with the base vectors
from V; — V;_1. Call this tableau T. In the example, we can take

€y 54 66 €y

T = €2 €s €s

Define a linear operator F' on C™ by the rule that F(v;) = v, if vj is the label of the
box in T just above the box labeled v;. In case v; is a label of a box in the first row of
T we take F(v;) = 0. Obviously, F is a nilpotent n X n matriz and by construction
we have that

rk F'=n— (bj +...+0b)

That is, F is nilpotent of type ¢ = (b1,...,by,). Moreover, F satisfies F(V;) C V;_4
for all i by the way we have labeled the tableau T and defined F.

In the example above, we have F(e3) = e1, F(e5) = eq, F(e3) = eg and all other
F(e;) =0. That is, F' is the matriz

[0 1
0 0
0
0 1
0 0
1
L O_
which is seen to be of type (2,2,2,1) after performing a few Jordan moves.
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Returning to the general case, consider for all € € C the n X n matriz :
F.=(1—-¢)F +e€A.

We claim that for all but finitely many values of € we have F. € O(A). Indeed, we
have seen that F(V;) C V;_1 where V; is defined as the subspace such that A*(V;) = 0.
Hence, F(V1) =0 and therefore

F.(Vi)=(1—-¢eF +e€A(V1) =0.
Assume by induction that F!(V;) = 0 holds for all i <, then we have that

Fl(V) = FIH(Q-eF +eA)W)
C F'(Viy)=0

because A(V}) C Vi_y and F(V}) C Vi_1. But then we have for all l that
rk F' <dim Vi=n—(al+...+a]) =rk A" r,.

Then for at least one r; x r; submatriz of F! its determinant considered it as a
polynomial of degree 1y in € is not identically zero (as it is nonzero for e = 1). But
then this determinant is non-zero for all but finitely many €. Hence, rk F' =rk Al
for all l for all but finitely many €. As these numbers determine the dual partition
p* of the type of A, F. is a nilpotent n X n matriz of type p for all but finitely many
values of €, proving the claim. But then, Fy = F which we have proved to be a
nilpotent matrixz of type q belongs to the closure of the orbit O(A). That is, we have
proved the difficult part of the Gerstenhaber-Hesselink theorem.

Theorem 4.13 Let A be a nilpotent n x n matriz of type p = (a1,...,a,) and B
nilpotent of type ¢ = (b1,...,b,). Then, B belongs to the closure of the orbit O(A),
that is,

BecO(A) ifandonlyif p>q
in the domination order on partitions of n.
To prove the theorem we only have to observe that if B is contained in the closure
of A, then B! is contained in the closure of A" and hence rk A' > rk B! (because

rk Al < k is equivalent to vanishing of all determinants of k x k minors which is a
closed condition). But then,

1 1
n— E ai >n— E b}
i=1 i=1

for all l, that is, ¢* > p* and hence p > q. The other implication was proved above
if we remember that the domination order was induced by the Young moves and

clearly we have that if B € O(C) and C € O(A) then also B € O(A).

Example 4.14 Nilpotent matrices for small n.
We will apply theorem to describe the orbit-closures of nilpotent matrices of 8 x 8 matrices.
The following table lists all partitions (and their dual in the other column)

The partitions of 8.

a (8) v o (1,1,1,1,1,1,1,1)
b (7,1) v (2,1,1,1,1,1,1)
¢ (6,2) t (2,2,1,1,1,1)

d (6,1,1) s (3,1,1,1,1,1)

e (53) ro(2,2,2,1,1)
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f(52,1) a  (3,2,1,1,1)
g (LD | p (41,1,11)
h  (4,4) o (2222)
i (4,3,1) n (3,2,2,1)
i (4,2,2) m  (3,3,1,1)
k  (3,3,2) k(3,32

1 (42,10 | 1 (4,2,1,1)

The domination order between these partitions can be depicted as follows where all the Young
moves are from left to right

Of course, from this graph we can read off the dominance order graphs for partitions of n < 8.
The trick is to identify a partition of n with that of 8 by throwing in a tail of ones and to look at
the relative position of both partitions in the above picture. Using these conventions we get the
following graph for partitions of 7

The dominance order on partitions of n < 5 is a total ordering.

The Gerstenhaber-Hesselink theorem can be applied to describe the module vari-

eties of the algebras ((Cx[w%

Example 4.15 The representation variety rep, %.

Any algebra morphism Clz] — My, is determined by the image of =, whence rep, (Cz]) =
M,,. We have seen that conjugacy classes in M,, are classified by the Jordan normalform. Let A
is conjugated to a matrix in normalform

J1

Jo

Js

where J; is a Jordan block of size d;, hence n = dy + d2 + ... + ds. Then, the n-dimensional
C[z]-module M determined by A can be decomposed uniquely as

M=M &Mx®...0Ms

where M; is a C[z]-module of dimension d; which is indecomposable, that is, cannot be decomposed
as a direct sum of proper submodules.

Now, consider the quotient algebra R = C[z]/(z"), then the ideal Ir(n) of Clz11,Z12, ..., ZTnn]
is generated by the n? entries of the matrix

T
i1 ... Tin

Tnl ... Tnn
For example if r = m = 2, then the ideal is generated by the entries of the matrix

2
w1 w2 _ [ 2¥+wows  wa(z1 +w4)
T3 x4 z3(z1 +24) T3+ T2T3
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That is, the ideal with generators
Ig = (2% + zox3, w1 + 74), 23(21 + 74), (71 — 74) (1 + 74))

The variety V(Igr) = M> consists of all matrices A such that A2 = 0. Conjugating A to an
upper triangular form we see that the eigenvalues of A must be zero, hence

rems Clal/ @) = o[ ghuofy o))

and we have seen that this variety is a cone with top the zero matrix and defining equations
V(zy + 24, 2% + zox3)
and we see that I is properly contained in this ideal. Still, we have that
rad(Ig) = (x1 + z4,27 + z324)

for an easy computation shows that m?’ =0 € C[z1,22,z3,24]/Ir. Therefore, even in the
easiest of examples, the representation variety does not have to be reduced.

For the general case, observe that when J is a Jordan block of size d with eigenvalue zero an
easy calculation shows that

0o ... 0 d-1 o ... ... 0

0

Ja—1 — and J?% =

0 o ... ... 0

Therefore, we see that the representation variety rep, C[z]/(z") is the union of all conjugacy
classes of matrices having 0 as only eigenvalue and all of which Jordan blocks have size < r.
Expressed in module theoretic terms, any n-dimensional R = C[z]/(z")-module M is isomorphic
to a direct sum of indecomposables

M=IP"0If?®...0IP

where I is the unique indecomposable j-dimensional R-module (corresponding to the Jordan block
of size j). Of course, the multiplicities e; of the factors must satisfy the equation

e1+2e2+3e3+...+re, =n
In M we can consider the subspaces for all 1 <i<r —1
M; ={m & M |az'm =0}

the dimension of which can be computed knowing the powers of Jordan blocks (observe that the
dimension of M; is equal to n — rank(A?"))

t; = dimg Mi:el+2€2+...(i—1)€i+i(ei+6i+1+...+er)

Observe that giving n and the r — 1-tuple (t1,t2,...,tn—1) is the same as giving the multiplicities
e; because

2ty =t2+e1

2to =t3+t1 +e2

2t3 =ts+1t2+e3

2tp_2 =tp_1+tp_3+en_2
21 =n+th-2+en—1

n =tn-1+en
Let n-dimensional C[z]/(z")-modules M and M’ (or associated matrices A and A’) be determined
by the r — 1-tuples (¢1,...,t,—1) respectively (t},...,¢._;) then we have that

O(A") & 0O(A) ifandonlyif 3 <t),te <th,...,.tr—1 <t _,
Therefore, we have an inverse order isomorphism between the orbits in rep, (Clz]/(z")) and the
r — 1-tuples of natural numbers (¢1,...,t,—1) satisfying the following linear inequalities (which
follow from the above system)

2t1 > t2,2tg > t3 +t1,2t3 > ta +ta,...,2tp—1 > n+th_o,n>tn_9.

Let us apply this general result in a few easy cases. First, consider r = 2, then the orbits in
repn Clx]/(2?) are parameterized by a natural number ¢; satisfying the inequalities n > 1 and
2t1 > n, the multiplicities are given by e; = 2t1 — n and e2 = n — t;. Moreover, the orbit of the
module M (t}) lies in the closure of the orbit of M (t1) whenever t; < t}.
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That is, if n = 2k + & with § = 0 or 1, then rep,, C[z]/(x2) is the union of k + 1 orbits and
the orbitclosures form a linear order as follows (from big to small)

BeIidh — [9t2gPe-t . dn

If r = 3, orbits in rep, C[z]/(x3) are determined by couples of natural numbers (t1,t2)
satisfying the following three linear inequalities

2ty > t2
2t > n+t1
n > to

For example, for n = 8 we obtain the following situation

2t) = to
g 2ty = 8 + t7

to =8

Therefore, reps C[z]/(z3) consists of 10 orbits with orbitclosure diagram as below (the nodes
represent the multiplicities [e1eze3]).

[012]

[202]

[121

]
[040] \[
N

[230
\ /
[420)

(610

[800]

311]

[501

Here we used the equalities e = 2t1 — tg, e2 = 2t2 —n — t1 and e3 = n — t2. For general n and r
this result shows that rep, Clz]/(z") is the closure of the orbit of the module with decomposition

Mgen:ISBE@IS if n=er+s

4.4 The Hilbert criterium.

A one parameter subgroup of a linear algebraic group G is a morphism

A C"— G
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of affine algebraic groups. That is, X is both a groupmorphism and a morphism
of affine varieties. The set of all one parameter subgroup of G will be denoted by
Y(G).
If G is commutative algebraic group, then Y (G) is an Abelian group with additive
notation
AM+X:C" — G with ()\1 + )\2)(75) = )\1(15).)\2(15)

Recall that an n-dimensional torus is an affine algebraic group isomorphic to

C'x..xC"'=1T,
—_———

n

the closed subgroup of invertible diagonal matrices in GL,,.

Lemma 4.16 Y (T,) =~ Z". The correspondence is given by assigning to
(r1,...,1y) € Z™ the one-parameter subgroup

A:C"—— T, givenbyt— (t"™,...;t"™)

Proof. For any two affine algebraic groups G and H there is a canonical bijection
Y(Gx H) =Y(G) x Y(H) so it suffices to verify that Y (C*) ~ Z with any X :
C* —— C* given by t — t" for some r € Z. This is obvious as A induces the
algebra morphism

¢

C[C*] = Clz,z7Y] 2+ Clz,z7Y] = C[C*]

which is fully determined by the image of x which must be an invertible element.
Now, any invertible element in Clx, 1] is homogeneous of the form cx” for some
r € Z and ¢ € C*. The corresponding morphism maps t to ct” which is only a
groupmorphism if it maps the identity element 1 to 1 so ¢ = 1, finishing the proof.

|

Proposition 4.17 Any one-parameter subgroup A : C* —— GL,, is of the form

t" 0
t—g L L .g
0 7
for some g € GL,, and some n-tuple (r1,...,r,) € Z".

Proof. Let H be the image under A of the subgroup p of roots of unity in C*. We
claim that there is a basechange matriz g € GL,, such that
(O 0
gHg ' — .
0 Cc*
Assume h € H not a scalar matriz, then h has a proper eigenspace decomposition

V@ W =C" We use that ht =1, and hence all its Jordan blocks must have size
one as for any A # 0 we have

A1 0 AL N *

1 l)\lfl
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Because H is commutative, both V and W are stable under H. By induction on n
we may assume that the images of H in GL(V') and GL(W) are diagonalizable, but
then the same holds in GL,,.

As u is infinite, it is Zariski dense in C* and because the diagonal matrices are
Zariski closed in GL,, we have

g.)\(C*).g_l = g.ﬁ.g_1 — T,

and the result follows from the lemma above O

Let V' be a general GL,,-representation considered as an affine space with GL,,-
action, let X be a GLy,-stable closed subvariety and consider a point v € X. A

one-parameter subgroup C* N GL,, determines a morphism
o e x defined by t— A(t).x

Observe that the image Az (C*) lies in the orbit GL,.x of x. Assume there is a
continuous extension of this map to the whole of C. We claim that this extension
must then be a morphism. If not, the induced algebra morphism

C[x] 2o Cjt, 7Y

does not have its image in C[t], so for some f € C[Z] we have that

4. tatt
A;(f):ao_i_al —; ta with a9 #0 and s >0

But then X:(f)(t) — o0 when t goes to zero, that is, A cannot have a contin-
uous extension, a contradiction.

So, if a continuous extension exists there is morphism A\, : C —— X. Then,
Az (0) =y and we denote this by

izl?%)\(t).x =y
Clearly, the point y € X must belong to the orbitclosure GLy.x in the Zariski
topology (or in the C-topology as orbits are constructible). Conversely, one might
ask whether if y € GL,,.x we can always approach y via a one-parameter subgroup.
The Hilbert criterium gives situations when this is indeed possible.

The only ideals of the formal power series C[[t]] are principal and generated by
t" for some r € Ny. With C((t)) we will denote the field of fractions of the domain

C((®))-

Lemma 4.18 Let V' be a GL,-representation, v € V and a point w € V lying in
the orbitclosure GLy.v. Then, there exists a matrixz g with coefficients in the field
C((t)) and det(g) # 0 such that

(g.v)i=0 is well defined and is equal to  w

Proof. Note that g.v is a vector with coordinates in the field C((t)). If all coordinates
belong to Cl[[t]] we can set t = 0 in this vector and obtain a vector in V. It is this
vector that we denote with (g.v)¢=o.

Consider the orbit map p : GL, —— V defined by g’ — ¢'v. As w € GL,.v
we have seen that there is an irreducible curve C —— GL,, such that w € u(C).
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We obtain a diagram of C-algebras
ClGLy] —— C[C] —— C(C)
N

ClV] —— C[u(0)] = C[C"]

Here, C[C] is defined to be the integral closure of C[p(C)] in the functionfield C(C) of
C. Two things are important to note here : C' — p(C) is finite, so surjective and
take c € C' be a point lying over w € pu(C). Further, C' having an integrally closed
coordinate ring is a complex manifold. Hence, by the implicit function theorem
polynomial functions on C can be expressed in a neighborhood of ¢ as power series
in one variable, giving an embedding C[C'] —— C[[t]] with (t) NC[C'] = M.. This
inclusion extends to one on the level of their fields of fractions. That is, we have a
diagram of C-algebra morphisms

ClGL,] — C(C) = C(C") — C((t))

ClV] —— C[u(0)] = C[C"] —— C[[t]

The upper composition defines an invertible matriz g(t) with coefficients in C((t)),
its (i, j)-entry being the image of the coordinate function x;; € C[GL,). Moreover,
the inverse image of the mazimal ideal (t) <C|[t]] under the lower composition gives
the mazimal ideal M,, <«C[V]. This proves the claim. O

Lemma 4.19 Let g be an n X n matriz with coefficients in C((t)) and det g # 0.
Then there exist uy,us € GLy(C[[t]]) such that

i 0
g =1uj. Te U2
0 o

withr; €Z andr1 <re < ...<r,.

Proof. By multiplying g with a suitable power of t we may assume that g =
(955 (t))i; € Mo (C[[t]). If f(t) = Do, fit" € C[[t]] define v(f(t)) to be the minimal
i such that a; # 0. Let (io, jo) be an entry where v(g;;(t)) attains a minimum, say
r1. That is, for all (i,7) we have g;;(t) = t™t" f(t) with r > 0 and f(t) an invertible
element of C[[t]].

By suitable row and column interchanges we can take the entry (ig,jo) to the
(1,1)-position. Then, multiplying with a unit we can replace it by t™ and by ele-
mentary row and column operations all the remaining entries in the first row and
column can be made zero. That is, we have invertible matrices ay,as € GL,(Cl[t]])
such that

T 07
g =a. Q .o

Repeating the same idea on the submatrix g1 and continuing gives the result. O

We can now state and prove the Hilbert criterium which allows us to study orbit-
closures by one parameter subgroups.
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Theorem 4.20 Let V be a GL,-representation and X —— V a closed GL,,-stable

subvariety. Let O(x) = GL,.x be the orbit of a point x € X. Let Y —— O(x)
be a closed GL,-stable subset. Then, there exists a one-parameter subgroup A :

C* —— GL,, such that
éin%/\(t).x ey

Proof. It suffices to prove the result for X = V. By lemma there is an
invertible matriz g € M, (C((¢))) such that

(9x)tmo=y €Y
By lemmal4.19 we can find uy,us € GL,(C[[t]]) such that

tm 0
g=urN(t)ug with N(t)= .
0 trn

a one-parameter subgroup. There exist x; € V such that us.x = Z;’io zitt in par-
ticular uz(0).x = x¢. But then,

(N ()-ug.w)i—0 = Y (N (t).ait")1=g
1=0
= ()‘/(t)'xO)tZO + (A/(t).xlt)t:() —+ ...

But one easily verifies (using a basis of eigenvectors of X' (t)) that

(N(t).o)e=0 ifi=0,

3 1 / 41 —
éT%A (s).(N()zit") =0 = {0 ifi #0

As (N (t).ug.x)i=0 €Y and Y is a closed GL, -stable subset, we also have that

lim A 7Us).(N(t)ug.x)mo €Y that is, (N (t).x0)i—0 € Y

s —> 0
But then, we have for the one-parameter subgroup \(t) = ua(0)~L. N (t).u2(0) that
lim\(t).x €Y
t—0
finishing the proof. O

An important special case occurs when x € V belongs to the nullcone, that is,
when the orbit closure O(x) contains the fized point 0 € V. The original Hilbert
criterium asserts the following.

Proposition 4.21 Let V be a GL,-representation and x € V in the nullcone.
Then, there is a one-parameter subgroup C* N GL,, such that

lim A(t).x =0

t—0

In the statement of theorem[{.20 it is important thatY is closed. In particular,
it does not follow that any orbit O(y) — O(z) can be reached via one-parameter
subgroups. In the next section we will give an example of such a situation.
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4.5 Semisimple modules

In this section we will characterize the closed GLy-orbits in the module variety
rep, A for an affine C-algebra A. We have seen that any point v € rep, A, that

is any n-dimensional representation A v, M, determines an n-dimensional A-
module which we will denote with M,y.
A finite filtration F on an n-dimensional module M is a sequence of A-
submodules
F : 0=Mg1CMC...CM CMy=M.

The associated graded A-module is the n-dimensional module
gre M = &i_gM; /M.

We have the following ringtheoretical interpretation of the action of one-parameter
subgroups of GL,, on the representation variety rep,, A.

Lemma 4.22 Let 1, p € rep, A. Equivalent are,
1. There is a one-parameter subgroup C* N GL,, such that
lim ()4 = p
2. There is a finite filtration F' on the A-module My such that
grre My ~ M,

as A-modules.

Proof. (1) = (2) : If V is any GLy,-representation and C* >, GL, a one-
parameter subgroup, we have an induced weight space decomposition of V'

V =@®;Va; where Vi;={veV|At)w=tvVteC}.

In particular, we apply this to the underlying vectorspace of My which is V = C"
(column vectors) on which GL,, acts by left multiplication. We define

M; = @i~ Vi,

and claim that this defines a finite filtration on My with associated graded A-module
M,. For any a € A (it suffices to vary a over the generators of A) we can consider
the linear maps

(b”(a) : V/\,i — V= Mw i’ M"/" =V — V)\,j

(that is, we express the action of a in a blockmatriz ®, with respect to the decompo-
sition of V). Then, the action of a on the module corresponding to A(t).1) is given
by the matriz ®, = \(t).®,.\(t)~1 with corresponding blocks

dij(a)

Vi %W

A At)

Wi %W

¢;j (a)
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that is ¢j;(a) = t'""¢sj(a). Therefore, if lim_o\(t).1) exists we must have that
¢ij(a) =0 forall j<i.

But then, the action by a sends any My = @;> Vi, to itself, that is, the M}, are
A-submodules of My,. Moreover, for j > i we have

i% ¢7,] (a) é% t ¢1J (CL) 0

Consequently, the action of a on p is given by the diagonal blockmatriz with blocks
oii(a), but this is precisely the action of a on V; = M;_1/M;, that is, p corresponds
to the associated graded module.

(2) = (1) : Given a finite filtration on My

F : OZMt+1C...CM1CM0:M¢

we have to find a one-parameter subgroup C* A G L,, which induces the filtration
F as in the first part of the proof. Clearly, there exist subspaces V; for 0 < i <t
such that

V=a_Vi and M;=&j_;Vi.

Then we take X to be defined by \(t) = t'Idy, for all i and verifies the claims. O

Example 4.23 Let M,, we the 2-dimensional C[z]-module determined by the Jordan block
and consider the canonical basevectors

oA el =[]

Then, Ce; is a C[z]-submodule of My, and we have a filtration
0= My C Ce; = My C((:el@((:eg:MQ:Md,

Using the conventions of the second part of the above proof we then have

Vi = Ceq Vo =Cez hence A(t) = |:é (1]:|

Indeed, we then obtain that

t o] [x 1] [¢=' o] _[x ¢
0 1|10 A|"|O 1l 7|0 X
and the limit £ — 0 exists and is the associated graded module grp My, = M, determined by

the diagonal matrix.

Consider two modules My, My, € rep, A. Assume that O(M,) — O(My) and
that we can reach the orbit of M, via a one-parameter subgroup. Then, lemma
asserts that M, must be decomposable as it is the associated graded of a nontrivial
filtration on M. This gives us a criterium to construct ezamples showing that the
closedness assumption in the formulation of Hilbert’s criterium is essential.

Example 4.24 (Nullcone of M2 = Ms & Ms)

In chapter 8 we will describe a method to work-out the nullcones of m-tuples of n X n matrices.
The special case of 2 3 X 3 matrices has been worked out by H.P. Kraft in [I4] p.202]. We depict
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the orbits here and refer to chapter 8 for more details.

// \\
\0/ / \ \/

\ /

In this picture, each node corresponds to a torus. The right hand number is the dimension of the
torus and the left hand number is the dimension of the orbit represented by a point in the torus.
The solid or dashed lines indicate orbitclosures. For example, the dashed line corresponds to the
following two points in Mg = M3 @ M3

0o 1] [o 1 0 00 1] [o 1 0©
p=(lo o 1/,l0 0 o]) p=(lo 0o o|,[0 0 of)
o of o o o 0 0 o] [0 0 0

We claim that M), is an indecomposable 3-dimensional module of C(z, y). Indeed, the only subspace
of the column vectors C? left invariant under both = and y is equal to

C
0
0

o oo

hence M, cannot have a direct sum decomposition of two or more modules. Next, we claim that
O(M,) — O(My). Indeed, simultaneous conjugating ¢ with the invertible matrix

1 e—1 0 0 0 1 0o 1 0
0 1 0 we obtain the couple (|0 0 €|,|0 0 0})
0 0 e ! 0 0 o] [0 0 O

and letting ¢ — 0 we see that the limiting point is p.

The Jordan-Holder theorem, see for example [23, 2.6] asserts that any finite
dimensional A-module M has a composition series, that is, M has a finite filtration

F O:MH_lCMtC...CMlCMQ:M

such that the successive quotients S; = M;/M;1+1 are all simple A-modules for 0 <
1 < t. Moreover, these composition factors S and their multiplicities are independent
of the chosen composition series, that is, the set {Sp,...,S:} is the same for every
composition series. In particular, the associated graded module for a composition
series is determined only up to isomorphism and is the semisimple n-dimensional
module

gr M = @i_S;

Theorem 4.25 Let A be an affine C-algebra and M € rep, A.

1. The orbit O(M) is closed in rep, A if and only if M is an n-dimensional
semisimple A-module.

2. The orbitclosure O(M) contains exactly one closed orbit, corresponding to the
direct sum of the composition factors of M.
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3. The points of the quotient variety of rep, A under GL, parameterize the
isomorphism classes of n-dimensional semisimple A-modules. We will denote
the quotient variety by iss, A.

Proof. (1) : Assume that the orbit O(M) is Zariski closed. Let gr M be the
associated graded module for a composition series of M. From lemmal{.23 we know
that O(gr M) is contained in O(M) = O(M). But then gr M ~ M whence M is
semisimple.

Conversely, assume M is semisimple. We know that the orbitclosure O(M)
contains a closed orbit, say O(N). By the Hilbert criterium we have a one-parameter

subgroup C* A GL, such that
iirr(% A(t).M = N' ~ N.

By lemma this means that there is a finite filtration F on M with associated
graded module grp M ~ N. For the semisimple module M the only possible finite
filtrations are such that each of the submodules is a direct sum of simple components,

so grp M ~ M, whence M ~ N and hence the orbit O(M) is closed.

(2) : Remains only to prove uniqueness of the closed orbit in O(M). This
either follows from the Jordan-Hélder theorem or, alternatively, from the separation
property of the quotient map to be proved in the next section.

(3) : We will prove in the next section that the points of a quotient variety

parameterize the closed orbits. O

Example 4.26 Recall the description of the orbits in M2 = M @ Ma given in the previous

chapter.
©)
I o

cd - H H -8 s

and each fiber contains a unique closed orbit. The one over a point in H — S corresponding to the

matrix couple
( al 0 b1 0 )
0 az|’ |0 by

which is indeed a semi-simple module of C(x,y) (the direct sum of teh two 1-dimensional simple
representations determined by = — a; and y — b;. In case a; = a2 and by = bz then these two
simples coincide and the semi-simple module having this factor with multiplicity two is the unique

closed orbit in the fiber of a point in S.

Example 4.27 Assume A is a finite dimensional C-algebra. Then, there are only a finite
number, say k, of nonisomorphic n-dimensional semisimple A-modules. Hence iss, A is a finite
number of k points, whence rep,, A is the disjoint union of k connected components, each consisting
of all n-dimensional A-modules with the same composition factors. Connectivity follows from the

fact that the orbit of the sum of the composition factors lies in the closure of each orbit.

Example 4.28 Let A be an affine commutative algebra with presentation A =
Clz1,...,2xm]/Ia and let X be the affine variety V(I4). Observe that any simple A-module is one-
dimensional hence corresponds to a point in X. (Indeed, for any algebra A a simple k-dimensional
module determines an epimorphism A —s» M}, and M, is only commutative if K = 1). Applying
the Jordan-Holder theorem we see that

issn A XM = X x ... x X /S,
N————

n
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the n-th symmetric product of X.

4.6 Some invariant theory.

The results in this section hold for any reductive algebraic group. As we will need
them primarily for GL,, (or products of GL,,) we will prove them only in that
case. Qur first aim is to prove that GL, is a reductive group, that is, all GL,,-
representations are completely reducible. Consider the unitary group

Uy, ={A€eGL, | AA"=1,}

where A* is the Hermitian transpose of A. Clearly, U, is a compact Lie group.
Any compact Lie group has a so called Haar measure which allows one to integrate
continuous complex valued functions over the group in an invariant way. That is,
there is a linear function assigning to every continuous function f : U, — C its
integral

fre| [flg)dgeC

U’VL

which is normalized such that fU dg = 1 and is left and right invariant, which
means that for all uw € U, we have the equalities

/Un Flgu)dg = /U Flg)dg = /U Flug)dg.

This integral replaces the classical idea in representation theory of averaging func-
tions over a finite group.

Proposition 4.29 FEvery U, -representation is completely reducible.

Proof. Take a finite dimensional complex vectorspace V with a Uy-action and
assume that W is a subspace of V' left invariant under this action. FExtending a

basis of W to V' we get a linear map V —%ee W which is the identity on W. For
any v € V we have a continuous map

Uy —W g g.6(g ')

(use that W is left invariant) and hence we can integrate it over U, (integrate the
coordinate functions). Hence we can define a map ¢o: V —— W by

do(v) = /U 9.6(g~"v)dg.

n

Clearly, ¢q is linear and is the identity on W. Moreover,

¢o(u.v) :/ g.(b(g_lu.v)dg:u./ utg.d(g  uw)dg

U, Un

Zu. /Un g(b(g_l.v)dg = u.¢o(v)

where the starred equality uses the invariance of the Haar measure. Hence, V =
W @ Ker ¢g is a decomposition as U,-representations. Continuing whenever one
of the components has a nontrivial subrepresentation we arrive at a decomposition
of V into simple U, -representations. (|
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We claim that for any n, U, is Zariski dense in GL,,. Let D, be the group of
all diagonal matrices in GL,,. The Cartan decomposition for GL,, asserts that

GL, =U,.D,.U,

For, take g € GL,, then g.g* is an Hermitian matriz and hence diagonalizable by
unitary matrices. So, there is a u € U, such that

aq

uwg.gtu= =slgs.s7lg"s

Then, each a; > 0 € R as o = Z?Zl | pij II*. Let B; = \/a; and let d the diagonal
matriz diag(f1, ..., Bn). Clearly,

g=u.d(d'utg) andwe claim v=d tut.geU,.
Indeed, we have

vt =(dutg). (¢ ud ) =d (T g.gtu).d !
=d'.d®d ' =1,

proving the Cartan decomposition. Now, D, = C* x ... x C* and D, NU, =
Ui x ... x Uy and because Uy = p is Zariski dense (being infinite) in D1 = C*, we
have that D,, is contained in the Zariski closure of U,. By the Cartan decomposition
we then have that the Zariski closure of U, is GLy,.

Theorem 4.30 GL,, is a reductive group. That is, all GL,-representations are
completely reducible.

Proof. Let V be a GL,-representation having a subrepresentation W. In partic-
ular, V. and W are U, -representations, so by the foregoing proposition we have a
decomposition V. =W @ W' as U, -representations. Consider the subgroup

N = Ngr, (W/) ={g€GL, | gW'c W/}

then N is a Zariski closed subgroup of GL,, containing U,. As the Zariski closure
of Uy is GL, we have N = GL, and hence that W' is a representation of GL,.
Continuing gives a decomposition of V' in simple G L, -representations. ]

Let S = Sqar, be the set of isomorphism classes of simple G Ly, -representations.
If W is a simple GL,,-representation belonging to the isomorphism class s € S, we
say that W is of type s and denote this by W € s. Let X be a complex vectorspace
(not necessarily finite dimensional) with a linear action of GL,,. We say that the
action is locally finite on X if, for any finite dimensional subspace Y of X, there
exists a finite dimensional subspace Y C Y’ C X which is a GL,-representation.
The isotypical component of X of type s € S is defined to be the subspace

Xy => AW|W CX,W € s},

If V is a GL,-representation, we have seen that V is completely reducible. Then,
V = &V(s) and every isotypical component V(s =~ W®es for W € s and some
number es. Clearly, es # 0 for only finitely many classes s € S. We call the
decomposition V = ©sesV (s the isotypical decomposition of V and we say that the
simple representation W € s occurs with multiplicity es in V.
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If V' is another G L, -representation and if V e V'iisa morphism of GL,,-
representations (that is, a lmear map commuting with the action), then for any
s € S we have that ¢(V(5)) C V, (s If the action of GL, on X is locally finite, we
can reduce to finite dimensional &L -subrepresentation and obtain a decomposition

X = ®SESX(S)5

which is again called the isotypical decomposition of X .

Let V' be a GLy-representation of some dimension m. Then, we can view V
as an affine space C™ and we have an induced action of GL, on the polynomial
functions f € C[V] by the rule

that is (g.f)(v) = f(g~tw) for all g € GL,, and allv € V. If C[V] = Clz1, ..., 7m)
is graded by giving all the x; degree one, then each of the homogeneous components
of C[V] is a finite dimensional GL,, -representation. Hence, the action of GL, on
C[V] is locally finite. Indeed, let {y1,...,yi} be a basis of a finite dimensional
subspace Y C C[V] and let d be the maximum of the deg(y;). ThenY' = @ C[V];
is a G Ly, -representation containing Y .

Therefore, we have an isotypical decomposition C[V] = @.esC[V](5). In par-
ticular, if 0 € S denotes the isomorphism class of the trivial G L, -representation
(Cyiriv = Cx with g.x = x for every g € GL,,) then we have

C[V]y = {f €C[V] | g.f = f,¥g € GL,} = C[V]¢F

the ring of polynomial invariants, that is, of polynomial functions which are constant
along orbits in V.

Lemma 4.31 Let V be a GL, -representation.
1. Let I «C[V] be a GL,-stable ideal, that is, g.I C I for all g € GL,,, then
(VYD = CVIE /(TN CVIEE),

2. Let J<C[V]%Ln be an ideal, then we have a lying-over property
J = JC[V]|nC[V]¢E

Hence, C[V]9Ln is Noetherian, that is, every increasing chain of ideals stabi-
lizes.

3. Let I; be a family of GLy,-stable ideals of C[V], then

ZI )N CV]GEn = Z(Ij NC[V]EEn).

Proof. (1) : As I has the induced GL,-action which is locally finite we have the
isotypical decomposition I = ©Is and clearly Isy = C[V]y N 1. But then also,
taking quotients we have

@S(C[V}/I)(S) = (C[V]/I = @SC[V](S)/I(S)'
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Therefore, (C[V]/1)(s) = C[V](s)/I(s) and taking the special case s = 0 is the state-
ment.

(2) : For any f € C[V]9En left-multiplication by f in C[V] commutes with the
GL,-action, whence f.C[V]) C C[V]s). That is, C[V]s) is a C[V]Fn-module.
But then, as J C C[V]9Ln we have

®s(JC[V])(s) = JC[V] = B, JC[V] ).

Therefore, (JC[V]) sy = JC[V]s) and again taking the special value s = 0 we obtain
JCV] N CV]9En = (JC[V])o) = J. The Noetherian statement follows from the
fact that C[V] is Noetherian (the Hilbert basis theorem,).

(8) : For any j we have the decomposition Ij = ©s(I;)(s). But then, we have

@O L) =Y L= ®s(Ij)s) = @ Y _(I)(s)-
J J J J
Therefore, (32, 1;)s) = >-;(Ij)(s) and taking s = 0 gives the required statement.
([l
Theorem 4.32 Let V be a GL,-representation. Then, the ring of polynomial in-

variants C[V]9Ln is an affine C-algebra.

Proof.  Because the action of GL, on C[V] preserves the gradation, the ring of
invariants is also graded

ClV]%" =R=COR &Ry ®...

From lemmal4.31|(2) we know that C[V|En is Noetherian and hence the ideal Ry =
Ry @ Ro @ ... is finitely generated Ry = Rf1 + ...+ Rf; by homogeneous elements
fis---, fi- We claim that as a C-algebra C[V ]I is generated by the f;. Indeed,

we have Ry = 22:1 Cfi + R2 and then also
!
R =Y Cfifi+R:
ij=1

and iterating this procedure we obtain for all powers m that

Ry= > Cf"...f"+Rr
S m;=m

Now, consider the subalgebra C[fy,. .., fi] of R = C[V]|En, then we obtain for any
power d > 0 that
CV]¥*» =Clfr,..., fi] + RS

For any i we then have for the homogeneous components of degree i

Now, if d > i we have that (Ri)i = 0 and hence that R; = C[f1,..., fil;- As this
holds for all i we proved the claim. O

Choose generating invariants f1,. .., fi of C[V]¥En | consider the morphism

v 2. ¢ defined by v (fi(v),..., fi(v))
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and define W to be the Zariski closure ¢(V') in C'. Then, we have a diagram

v—?% . ¢

w

and an isomorphism C[W] AN C[V]9Ln. More general, let X be a closed GL,-
stable subvariety of V, then X =V (I) for some GLy-stable ideal I of C[V]. From

lemmal[{.31)(1) we obtain
CIX| = (©VI/NE = CVI® (T EVIo)

whence C[X]%In is also an affine algebra (and generated by the images of the f;).
Define Y to be the Zariski closure of ¢(X) in C', then we have a diagram

x —* ¢
E
Y
and an isomorphism C[Y] —— C[X]Ln. We call the morphism X —— Y an

algebraic quotient of X under GL,. We will now prove some important properties
of this quotient.

Proposition 4.33 (universal property) If X —“—~ Z is a morphism which is
constant along G Ly,-orbits in X, then there exists a unique factoring morphism @

s

X -Y

>

VA

Proof. As u is constant along GLy,-orbits in X, we have an inclusion u*(C[Z]) C
C[X]%En. We have the commutative diagram

Clx]

2

from which the existence and uniqueness of i follows. O
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As a consequence, an algebraic quotient is uniquely determined up to isomor-
phism (that is, we might have started from other generating invariants and still
obtain the same quotient variety up to isomorphism,).

Proposition 4.34 (onto property) The algebraic quotient X Y is surjec-
tive. Moreover, if Z —— X is a closed GL,-stable subset, then m(Z) is closed in
Y and the morphism

x| Z:Z — w(Z)

is an algebraic quotient, that is, C[r(Z)] ~ C[Z]%Ln.

Proof. Let y € Y with maximal ideal M, <« C[Y]. By lemma |4.31)(2) we have
M,C[X] # C[X] and hence there is a mazimal ideal M, of C[X] containing
M,C[X], but then m(x) = y. Let Z = Vx(I) for a G-stable ideal I of C[X],

then m(Z) = Vy (INC[Y]). That is, Clw(Z)] = C[Y]/(INC[Y]). However, we have
from lemma[4.51)(1) that

ClY)/(CIY]N 1) = (C[X]/D* = C[Z)%*~

and hence C[n(Z)] = C[Z]%F~. Finally, surjectivity of © | Z is proved as above.
(|

An immediate consequence is that the Zariski topology on Y is the quotient
topology of that on X. For, take U C Y with 7= (U) Zariski open in X. Then,
X — 77 YU) is a GLy,-stable closed subset of X. Then, n(X —m Y (U)) =Y —U is
Zariski closed in'Y .

Proposition 4.35 (separation property) The quotient X —"+ Y separates dis-
joint closed G Ly-stable subvarieties of X.

Proof. Let Z; be closed GLy,-stable subvarieties of X with defining ideals Z; =
Vx(I;). Then, N;Z; = Vx(32; ;). Applying lemma |4.31|(3) we obtain

©(N;Z;) = Vy(Q_ L) NCY]) = Vy (D _(I; NC[Y]))
J J
=N;Vy (I; NCY]) = nym(Z;)
The onto property implies that w(Z;) = w(Z;) from which the statement follows.
O

It follows from the universal property that the quotient variety Y determined by
the ring of polynomial invariants C[Y|SEn is the best algebraic approzimation to the
orbit space problem. From the separation property a stronger fact follows.

Proposition 4.36 The algebraic quotient X —"+ Y is the best continuous approz-
imation to the orbit space. That is, points of Y parameterize the closed GL,,-orbits
in X. In fact, every fiber 1=1(y) contains ezactly one closed orbit C and we have

7 y)={re X |CcCGL,x}

Proof. The fiber F = 7= (y) is a GL,-stable closed subvariety of X. Take any
orbit GL,.x C F then either it is closed or contains in its closure an orbit of strictly
smaller dimension. Induction on the dimension then shows that G.x contains a
closed orbit C'. On the other hand, assume that F contains two closed orbits, then
they have to be disjoint contradicting the separation property. (|
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4.7 Cayley-Hamilton algebras.

A trace map on an (affine) C-algebra A is a C-linear map
tr:A— A
satisfying the following three properties for all a,b € A :
1. tr(a)b = btr(a),
2. tr(ab) = tr(ba) and
3. tr(tr(a)b) = tr(a)tr(b).

Note that it follows from the first property that the image tr(A) of the trace map is
contained in the center of A. Consider two algebras A and B equipped with a trace
map which we will denote by tr respectively trg. A trace morphism ¢ : A — B
will be a C-algebra morphism which is compatible with the trace maps, that is, the
following diagram commutes

A . B

A—2 . p
This definition turns algebras with a trace map into a category. We will say that
an algebra A with trace map tr is trace generated by a subset of elements I C A if
the C-algebra generated by B and tr(B) is equal to A where B is the C-subalgebra
generated by the elements of I. Note that A does not have to be generated as a
C-algebra by the elements from I.

Observe that for T the formal trace t : T®® — N ——— T 4s a trace
map. Property (1) follows because N> commutes with all elements of T°°, property
(2) is the cyclic permutation property for t and property (3) is the fact that t is a
N linear map. The formal trace algebra T is trace generated by the variables
{z1,22,...,2,...} but not as a C-algebra.

Actually, T is the free algebra in the gemerators {xi,xa,...,x;, ...} in the
category of algebras with a trace map. That is, if A is an algebra with trace tr
which is trace generated by {ay,as,...}, then there is a trace preserving algebra
epimorphism

T s A
For example, define w(x;) = a; and w(t(z;, ... x4)) = tr(w(z,,) ... 7(x;)). Also,
the formal trace algebra T™, that is the subalgebra of T trace generated by
{z1,...,xm}, is the free algebra in the category of algebras with trace that are trace
generated by at most m elements.
Given a trace map tr on A, we can define for any a € A a formal Cayley-
Hamilton polynomial of degree n. Indeed, express

n

7 =TJe=x)

=1

as a polynomial in t with coefficients polynomial functions in the Newton functions
S AP Replacing the Newton function Y A¥ by tr(a¥) we obtain the Cayley-
Hamilton polynomial of degree n

X5 () € Alt]
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Definition 4.37 An (affine) C-algebra A with trace map tr : A —— A is said to
be a Cayley-Hamilton algebra of degree n if the following two properties are satisfied

1. tr(1) = n, and
2. For all a € A we have XE{‘) (a) =01in A.

Observe that if R is a commutative C-algebra, then M, (R) is a Cayley-Hamilton
algebra of degree n. The corresponding trace map is the composition of the usual
trace with the inclusion of R —= M, (R) via scalar matrices. As a consequence,
the infinite trace algebra TS has a trace map induced by the natural inclusion

n

T —— M, (C[M;7])

i
Np» ——— C[M;7]

which has image tr(TSC) the infinite necklace algebra N2°. Clearly, being a trace
preserving inclusion, T2 is a Cayley-Hamilton algebra of degree n. With this defi-
nition, we have the following categorical description of the trace algebra TC.

Theorem 4.38 The trace algebra T5° is the free algebra in the generic matriz gen-
erators { X1, Xa,...,X;,...} in the category of Cayley-Hamilton algebras of degree
n.

For any m, the trace algebra T} is the free algebra in the generic matriz gener-
ators {X1,...,Xm} in the category of Cayley-Hamilton algebras of degree n which
are trace generated by at most m elements.

Proof. Let F,, be the free algebra in the generators {yi,yz,...} in the category
of Cayley-Hamilton algebras of degree m, then by freeness of T there is a trace
preserving algebra epimorphism

T "+ F, with m(x;) = Y.

By the universal property of F,, the ideal Ker 7w is the minimal ideal I of T such
that T /I is Cayley-Hamilton of degree n.

We claim that Ker m is substitution invariant. Consider a substitution endo-
morphism ¢ of T and consider the diagram

¢ T

T

+

; i

T /Ker x —— F,

then Ker x is an ideal closed under traces such that T /Ker x is a Cayley-
Hamilton algebra of degree n (being a subalgebra of F,,). But then Ker m C Ker x
(by minimality of Ker w) and therefore x factors over F,, that is, the substitution
endomorphism ¢ descends to an endomorphism ¢ : F,, — F,, meaning that Ker
is left invariant under ¢, proving the claim. Further, any formal Cayley-Hamilton
polynomial Xé") () of degree n of x € T* maps to zero under w. By substitution
invariance it follows that the ideal of trace relations Ker 7 C Ker w. We have
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seen that T /Ker T = T is the infinite trace algebra which is a Cayley-Hamilton
algebra of degree n. Thus, by minimality of Ker m we must have Ker 7 = Ker w
and hence F,, ~ T5°. The second assertion follows immediately. |

Let A be a Cayley-Hamilton algebra of degree m which is trace generated by the
elements {a1,...,an}. We have a trace preserving algebra epimorphism pa defined
by p(Xi) = a;

N LAy

n

tr tra

T — e A

and hence a presentation A ~T% /Ty where Ty <TT is the ideal of trace relations
holding among the generators a;. We recall that T} is the ring of G L, -equivariant

polynomial maps M, AN M, that is,

My (C[M;]) S =Ty

n

where the action of GL, is the diagonal action on M,(C[M]"]) = M,, ® C[M"].

Observe that if R is a commutative algebra, then any twosided ideal I < M, (R)
is of the form My (J) for an ideal J < R. Indeed, the subsets J;; of (i,7) entries of
elements of I is an ideal of R as can be seen by multiplication with scalar matrices.
Moreover, by multiplying on both sides with permutation matrices one verifies that
Jij = Jg for all i, j, k, 1 proving the claim.

Applying this to the induced ideal M, (C[M]]) Ta M, (C[M]"]) < M, (C[M]"])
we find an ideal Ny < C[M]"'] such that

M (C[M;]) Ta M (C[M;]) = Mn(Na)

Observe that both the induced ideal and N4 are stable under the respective GL,,-
actions.

Assume that V. and W are two (not necessarily finite dimensional) C-

vectorspaces with a locally finite G Ly -action and that V N W is a linear map
commuting with the GL,-action. Decomposing V and W in their isotypical com-
ponents and recalling that Vigy = VGLn respectively Wy = WGEEn we obtain a
commutative diagram

|4 w

VGLn fo wé

where R is the Reynolds operator, that is, the canonical projection to the isotypical
component of the trivial representation. Clearly, the Reynolds operator commutes
with the GLy-action. Moreover, using complete decomposability we see that fo is
surjective (resp. injective) if [ is surjective (resp. injective).
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Because N4 is a GLy-stable ideal of C[M!™] we can apply the above in the
situation

s

M, (C[M;"]) > M, (C[M;"]/Na)
R R
Ty H—er My (C[M;]/Na)E

and the bottom map factorizes through A =TI /T4 giving a surjection
A —>» M, (C[M]/N)CEn,

In order to verify that this map is injective (and hence an isomorphism) it suffices
to check that

Mo(CIM)) Ta Mo(CIM]) AT = Ty

Using the functoriality of the Reynolds operator with respect to multiplication in
M, (C[MS°]) with an element x € T or with respect to the trace map (both com-
muting with the G Ly,-action) we deduce the following relations :

o Forallz € T and all z € M, (C[MS°]) we have R(xz) = xR(z) and R(zx) =
R(2)x.
e For all z € M, (C[M2°]) we have R(tr(z)) = tr(R(z)).

n

Assume that z = Y, tixin; € M, (C[M"]) Ta M,(CM) NTR with m;,n; €
M, (C[M"]) and t; € T4. Now, consider X,,+1 € TS°. Using the cyclic property of
traces we have

t’I"(ZXm+1) = Ztr(mitiniXmH) = Ztr(niXmHmiti)

and if we apply the Reynolds operator to it we obtain the equality

tT(ZXm_H) = t’l"(z R(TLZ‘Xm+1mi)ti)

K3

For any i, the term R(n;X,+1m;) is invariant so belongs to Tﬁ“ and is linear in
Xons1. Knowing the generating elements of T™ 1 we can write

R(n; Xmi1m;) = Z Sij Xmyi1ts + Ztr(uikaH)Uik
J k

with all of the elements s;5,t:5,ui and vy, in T)'. Substituting this information
and again using the cyclic property of traces we obtain

tr(2Xmi1) = tr((Y_ sijtijti + tr(vint;) Xme1)

.5,k
and by the nondegeneracy of the trace map we again deduce from this the equality

z = Z Sijtijti + t'f’(’l}ikti)
.5,k

Because t; € Ta and T4 is stable under taking traces we deduce from this that
z € T as required.
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Because A = M, (C[M™]/Na)%En we can apply functoriality of the Reynolds
operator to the setting

tr

M (CIM;]/Na) "5 C[Mp]/Na

tra

A ™ (C[My)/Na)S"

Concluding we also have the equality
tra(A) = (CIM;]/Ja) .

Summarizing, we have proved the following invariant theoretic reconstruction result
for Cayley-Hamilton algebras.

Theorem 4.39 Let A be a Cayley-Hamilton algebra of degree n, with trace map
tra, which is trace generated by at most m elements. Then , there is a canonical
ideal Nao < C[M"] from which we can reconstruct the algebras A and tra(A) as
invariant algebras

A= M,(C[M/N4) " and tra(A) = (C[MJ']/Na)SLr
A direct consequence of the above proof is the universal property of the embedding
A < M, (CIM™]/N ).
Let R be a commutative C-algebra, then M, (R) with the usual trace is a Cayley-
Hamilton algebra of degree n. If f: A —— M, (R) is a trace preserving morphism,

we claim that there exists a natural algebra morphism f : C[M™]/Na — R such
that the diagram

A T M, (R)

4

Qo
A v\‘«

M,,(C[M"]/Na)

where M, (f) is the algebra morphism defined entrywise. To see this, consider the
composed trace preserving morphism ¢ @ T —- A ERN M, (R). Its image is
fully determined by the images of the trace generators Xy of T which are say
mig = (mij(k))ij. But then we have an algebra morphism C[M"] —~ R de-
fined by sending the variable z;;(k) to m;;(k). Clearly, Ta C Ker ¢ and after
inducing to M, (C[M"]) it follows that Na C Ker g proving that g factors through
C[M]/Ja — R. This morphism has the required universal property.

4.8 Geometric reconstruction

In this section we will give a geometric interpretation of the reconstruction result.
Again, let A be a Cayley-Hamilton algebra of degree n, with trace map tr 4, which is
generated by at most m elements ay, ..., a,. We will give a functorial interpretation
to the affine scheme determined by the canonical ideal Ny < C[M™]. First, let us
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identify the reduced affine variety V(N4). A point m = (my,...,my) € V(Ny4)
determines an algebra map fu, : C[M*]/Na — C and hence an algebra map ¢,

My (C[M;"]/Na)

which is trace preserving. Conversely, from the universal property it follows that
any trace preserving algebra morphism A — M, (C) is of this form by considering
the images of the trace generators ay,...,a, of A. Alternatively, the points of
V(Na) parameterize n-dimensional trace preserving representations of A. That is,
n-dimensional representations for which the morphism A —— M, (C) describing
the action is trace preserving. For this reason we will denote the variety V(N a) by
rept” A and call it the trace preserving reduced representation variety of A.
Assume that A is generated as a C-algebra by ay, ..., a,, (observe that this is no
restriction as trace affine algebras are affine) then clearly Ia(n) C Na. That is,

Lemma 4.40 For A a Cayley-Hamilton algebra of degree n  generated by
{a1,...,am}, the reduced trace preserving representation variety

repll A —— rep, A
is a closed subvariety of the reduced representation variety.

It is easy to determine the additional defining equations. For, write any trace
monomial out in the generators

tT‘A(CLl‘l .. .aik) = E Qg5 gy - Ay

then for a point m = (ma,...,my,) € rep, A to belong to repl’ A, it must satisfy
all the relations of the form

tr(mil .. mzk) = E Ay Mgy o2y,

with tr the usual trace on M,(C). These relations define the closed subvariety
rept” (A). Usually, this is a proper subvariety.

Example 4.41 Let A be a finite dimensional semi-simple algebra A = Mgy, (C)®...® My, (C),
then A has precisely k distinct simple modules {Mj, ..., My} of dimensions {d1,...,d}. Here,
M; can be viewed as column vectors of size d; on which the component My, (C) acts by left
multiplication and the other factors act as zero. Because A is semi-simple every n-dimensional
A-representation M is isomorphic to

M=MPq.. . .¢M*
for certain multiplicities e; satisfying the numerical condition
n:eld1+...+ekdk

That is, repn A is the disjoint union of a finite number of (closed) orbits each determined by an
integral vector (e1,...,ex) satisfying the condition called the dimension vector of M.

repn A~ | |  GLn/(GLey x ...GLe,)
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Let f; > 1 be natural numbers such that n = fid; + ... frdr and consider the embedding of A
into My (C) defined by

[Ta1 0
0 al
N—
f1
(a1,...,ap) € A — € Ma(C)
Tr
—
Qg 0
0 ag |

Via this embedding, A becomes a Cayley-Hamilton algebra of degree n when equipped with the
induced trace tr from My (C).

Let M be the n-dimensional A-representation with dimension vector (e1,...,ex) and choose
a basis compatible with this decomposition. Let E; be the idempotent of A corresponding to the
identity matrix I4, of the i-th factor. Then, the trace of the matrix defining the action of E; on
M is clearly e;d;.In. On the other hand, tr(E;) = fid;.In, hence the only trace preserving n-
dimensional A-representation is that of dimension vector (f1,..., fx). Therefore, rep!” A consists
of the single closed orbit determined by the integral vector (f1,..., fk)-

rept’ A~ GLn/(GLy % ... X GLy,)

Consider the scheme structure of the trace preserving representation variety
@Z A. The corresponding functor assigns to a commutative affine C-algebra R

rep, (R) = Alge(C[M,"]/Na, R).

An algebra morphism ¢ : C[M"]/No —— R determines uniquely an m-tuple of
n X n matrices with coefficients in R by

(k) - P(@i(k)

T =

Glam () .. V(Ean(k)

Composing with the canonical embedding

My (C[M;"]/Na)

determines the trace preserving algebra morphism ¢ : A — M, (R) where the trace
map on M, (R) is the usual trace. By the universal property any trace preserving
map A — M, (R) is also of this form.

Lemma 4.42 Let A be a Cayley-Hamilton algebra of degree n which is generated
by {a1,...,am}. The trace preserving representation variety @ZT A represents the
functor

@: A(R)={A 2. M, (R) | ¢ is trace preserving }

Moreover, rep;" A is a closed subscheme of rep A.
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Recall that there is an action of GL,, on C[M]"] and from the definition of the
ideals Ta(n) and N4 it is clear that they are stable under the GLy-action. That
is, there is an action by automorphisms on the quotient algebras C[M!"]/I14(n) and
C[M]"]/N4. But then, their algebras of invariants are equal to

Clrep, AI°™ = (CM)/Ta(m) " = i
Clrep, A9t = (CIM]/NA) = (3w

That is, these rings of invariants define closed subschemes of the affine (reduced) va-
riety associated to the necklace algebra N'. We will call these schemes the quotient
schemes for the action of GL, and denote them respectively by

iss, A =rep, A/GL, and iss'" A :@Z A/GL,.

We have seen that the geometric points of the reduced variety iss, A of the affine
quotient scheme iss, A parameterize the isomorphism classes of n-dimensional
semisimple A-representations. Similarly, the geometric points of the reduced va-
riety isst’ A of the quotient scheme issl, A parameterize isomorphism classes of

trace preserving n-dimensional semisimple A-representations.

Proposition 4.43 Let A be a Cayley-Hamilton algebra of degree n with trace map
tra. Then, we have that
tra(A) = Cliss? 4],

the coordinate ring of the quotient scheme iss'™ A. In particular, mazimal ideals
of tra(A) parameterize the isomorphism classes of trace preserving n-dimensional
semi-simple A-representations.

By definition, a GL,-equivariant map between the affine GL,-schemes
rep’” A L M, =M,

means that for any commutative affine C-algebra R the corresponding map
rep!” A(R) L5 M, (R)

commutes with the action of GL,(R). Alternatively, the ring of all morphisms
rep!” A —— M, is the matrizalgebra M,(C[M;’]/Na) and those that commute
with the GL,, action are precisely the invariants. That is, we have the following
description of A.

Proposition 4.44 Let A be a Cayley-Hamilton algebra of degree n with trace map
tra. Then, we can recover A as the ring of G Ly -equivariant maps

A={f: @Z A —— M, equivariant }
of affine GL,-schemes.

Summarizing the results of this and the previous section we have

Theorem 4.45 The functor which assigns to a Cayley-Hamilton algebra A of de-
gree n. the G Ly -affine scheme @;’" A of trace preserving n-dimensional represen-
tations has a left inverse.

This left inverse functor assigns to a GL,-affine scheme X its witness algebra
M, (C[X])¥En which is a Cayley-Hamilton algebra of degree n.
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Note however that this functor is not an equivalence of categories. For, there
are many affine GLy,-schemes having the same witness algebra.

Example 4.46 Consider the action of GL,, on M,, by conjugation and take a nilpotent matrix
A. All eigenvalues of A are zero, so the conjugacy class of A is fully determined by the sizes of
its Jordan blocks. These sizes determine a partition A(A) = (A1, A2,...,Ax) of n with A1 > Ay >
... > Ak. Moreover, we have given an algorithm to determine whether an orbit O(B) of another
nilpotent matrix B is contained in the orbit closure O(A), the criterium being that

O(B) C O(A) <= A(B)* > A(A)*.

where A\* denotes the dual partition. We see that the witness algebra of O(A) is equal to
M (CO(A)) S = CX]/(X")

where k is the number of columns of the Young diagram A(A).

Hence, the orbit closures of nilpotent matrices such that their associated Young diagrams have
equal number of columns have the same witness algebras. For example, if n = 4 then the closures
of the orbits corresponding to

and

have the same witness algebra, although the closure of the second is a proper closed subscheme of
the closure of the first.

Recall the orbitclosure diagram of conjugacy classes of nilpotent 8 X 8 matrices given by the
Gerstenhaber-Hesselink theorem. In the picture below, the closures of orbits corresponding to
connected nodes of the same colour have the same witness algebra.




Chapter 5

Etale Slices.

Let A be an affine C-algebra. In the foregoing chapter we have found a geometric
reconstruction of the approximation at level n of A

AQ, ~ M, (Clrep, A])GLn
t(AQ,) =~C[rep A]“"~ =Cliss, A

In this chapter we will use the G L, -geometry to determine the étale local structure
of the Cayley-Hamilton algebra AQ,,. By this we mean the following. Let m be
a maximal ideal of the central subalgebra t(AQ,), then we want to determine the
m-adic completion

—

(AQy,),,

of AQ,,. We know that m determines a point € in the quotient variety iss, A and so
there is an n-dimensional semi-simple representation M¢ of A with decomposition

Me =S @...@ 52

where the S; are distinct simple A-representations of dimension d; and occurring in
M with multiplicity e;, in particular n = Zle d;e;.

To determine the local structure of AQ,, in m we determine the G Ly,-local struc-
ture of@n A in a neighborhood of the closed orbit O(Mg). This can be done by the
theory of Luna’s étale slices, or rather by the elegant extension of it to not necessar-
ily reduced varieties, due to F. Knop [?], whose proof we will outline in section 4.
When rep = A is smooth in M (which is always the case when A is Quillen-smooth)
then this local structure is determined by the normal space to the orbit, considered
as a module over the stabilizer subgroup.

In the case of representation varieties, this normal space can be identified with
the wvectorspace of self-extensions Extk(Mg,Mg) and the stabilizer subgroup with
the centralizer of Ve. The main result we will prove in this chapter is that this local
data is encoded in a quiver-setting, or rather a marked quiver-setting where we allow
some loops in the quiver to acquire a mark. We will prove that this marked quiver
has k vertices (corresponding to the distinct simple components of M) and we have
to consider a-dimensional representations of this quiver where a = (eq,...,ex), the
multiplicities with which these simples occur in M¢. In the next chapter we will
show that the arrows and loops in the quiver are determined by (trace preserving)
self-extensions of My.

The étale local structure of AQ,, in m is then given by



164 CHAPTER 5. ETALE SLICES.

where Q¢ is the local quiver determined by M¢, To Q¢ is the ring of GL(o)-
equivariant maps from repy, Q¢ to M, (C) and we take its completion at the mazimal
graded ideal of the corresponding ring of invariants.

5.1 (C* slices.

Let A be an affine C-algebra and & € iss,, A a point in the quotient space corre-
sponding to an n-dimensional semi-simple representation Mg of A. In this chapter
we will present a method to study the étale local structure of iss, A near & and the
étale local G L,,-structure of the representation variety rep. A near the closed orbit
O(M¢) = GL,,.M¢. In this section we will outline the basic idea in the setting of
differential geometry.

Let M be a compact C*°-manifold on which a compact Lie group G acts dif-
ferentially. By a usual averaging process we can define a G-invariant Riemannian
metric on M. For a point m € M we define

o The G-orbit O(m) = G.m of m in M,
o the stabilizer subgroup H = Stabg(m) ={g€ G | g.m =m} and

e the normal space N, defined to be the orthogonal complement to the tan-
gent space in m to the orbit in the tangent space to M. That is, we have a
decomposition of H-vectorspaces

Trn M =Ty O(m) ® Np,

The normal spaces N, when x varies over the points of the orbit O(m) define a

vectorbundle N' —Lo» O(m) over the orbit. We can identify the bundle with the
associated fiber bundle
N ~GxTN,,

Any point n € N in the normal bundle determines a geodesic

m(0)  =p(n)

%(0) =n

Yn : R —— M defined by {
dt

Using this geodesic we can define a G-equivariant exponential map from the normal
bundle N to the manifold M via

N v where exp(n) = v, (1)

\ o(m)
._17

/ “Ng

Now, take € > 0 and define the C* slice S¢ to be

Se={neN, | |In|<e}
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then G x™ S. is a neighborhood of the zero section in the normal bundle N' =
G xH N,,. But then we have a G-equivariant exponential

exp

Gx"s. =5 m

which for small enough € gives a diffeomorphism with a G-stable tubular neighbor-
hood U of the orbit O(m) in M.

Nm

0 e oS S~

G/H -

If we assume moreover that the action of G on M and the action of H on N,
are such that the orbit-spaces are manifolds M /G and N,,/H, then we have the
situation

GxHs. P U< M

S./H U/G — M/G

~

giving a local diffeomorphism between a neighborhood of 0 in N,,/H and a neigh-
borhood of the point ™ in M /G corresponding to the orbit O(m).

Returning to the setting of the orbit O(M¢) in rep. A we would equally like to
define a G Ly -equivariant morphism from an associated fiber bundle

GL, xGH@) N¢ . rep, A

where GL(E) is the stabilizer subgroup of M¢ and N¢ is a normal space to the orbit
O(M¢). Because we do not have an exponential-map in the setting of algebraic
geometry, the map e will have to be an étale map. Before we come to the description
of these étale slices we will first study the tangent spaces to rep, A and give a
ringtheoretical interpretation of the normal space Ne.

5.2 Tangent spaces.
Let X be a not necessarily reduced affine variety with coordinate ring C[X] =

Clz1, ..., zn)/I. If the origin o = (0,...,0) € V(I), elements of I have no con-
stant terms and we can write any p € I as

o0
p= Zp(i) with p™ homogeneous of degree i.
i=1
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The order ord(p) is the least integer v > 1 such that p\™) # 0. Define the following
two ideals in Clxy, ..., %)

I = {p(l) |lpel} andl, = {p(’“) |pel andord(p) =r}.

The subscripts | (respectively m) stand for linear terms (respectively, terms of min-
imal  degree).

The tangent space to X in o, T,(X) is by definition the subscheme of C™ deter-
mined by I;. Observe that

I, = (CLHJ}l + ...+ a1pTy, ..., a1 + ...+ alngcn)

for some I xn matriz A = (ai;),; of rank l. That is, we can express all xj, as linear
combinations of some {x;,,...,x;, _,}, but then clearly

ClTo(X)] =Clay,...,xn]/I; = Clziy, ...y, ]

In particular, To(X) is reduced and is a linear subspace of dimension n —1 in C"
through the point o.

Neat, consider an arbitrary geometric point x of X with coordinates (a1, ..., an).
We can translate x to the origin o and the translate of X is then the scheme defined
by the ideal

(f]_(xl+a1,..-7xn+an),---7fk(x1+a]_7...,l'n+an))

Now, the linear term of the translated polynomial fi(x1 + a1,...,Tn + ayn) is equal
to

of; ofi

axfl (aq, an)x1 + . 8f (a1,...,an)Ty
and hence the tangent space to X in x, T,(X) is the linear subspace of C™ defined

by the set of zeroes of the linear terms

3f1 3fk
C_, Cc".
Z o, Z o,
In particular, the dimension of this linear subspace can be computed from the Jaco-
bian matriz in x associated with the polynomials (f1,..., fx)
f) f)
L@ ... F()
dim T,(X)=n—rk : :
) )
Le(w) ... fE(a)

We now give an alternative description of the tangent spaces using the associated
functor of X. Let Cle] be the algebra of dual numbers, that is, Cle] ~ C[y]/(y?).
Consider a C-algebra morphism

Clzy, ..., xn] 2, Cle]  defined by x; — a; + ce.

Because €2 = 0 it is easy to verify that the image of a polynomial f(x1,...,x,)
under ¢ is of the form

O(f(x1,... 20)) = flag, ... an) —i—Z%(al,...,an)ch
j=1""

Therefore, ¢ factors through I, that is ¢(f;) = 0 for all 1 < ¢ < k, if and only
if (c1,...,¢n) € Tp(X). Hence, we can also identify the tangent space to X in x
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with the algebra morphisms C[X] . Cle] whose composition with the projection
7 : Cle] — C (sending € to zero) is the evaluation in x = (a,...,an). That is,
let ev, € X(C) be the point corresponding to evaluation in x, then

T:(X) = {¢ € X(Cle]) | X(7)(¢) = evx}-
Example 5.1 GL,(C[e]) is the group of invertible n X n matrices with coefficients in C[e]. By
the above we have for any g € GL,, that

Ty(GL,,) = {m € My (C) | g + me is invertible in M, (C[e]) } = M, (C)

1

because (g + me)~! = g7! — g~ L.m.g~ e for any m € M, (C). This computation is consistent

with the observation that GL,, is an open subset of M,,. For any affine algebraic group scheme G
one defines the Lie algebra g of G to be the tangentspace Te(G) at G in the neutral element e. In
particular, the Lie algebra gl,, of GL,, is the vectorspace My (C).

The following two examples compute the tangent spaces to the (trace preserving)
representation varieties.

Example 5.2 Let A be an affine C-algebra generated by {a1,...am} and p: A — M, (C)

D
an algebra morphism, that is, p € rep, A. We call a linear map A — M,,(C) a p-derivation if
and only if for all a,a’ € A we have that

D(ad') = D(a).p(a’) + pl(a).D(a').

We denote the vectorspace of all p-derivations of A by Der,(A). Observe that any p-derivation is
determined by its image on the generators a;, hence Der,(A) C M. We claim that

Tp(rep, A) = Dery(A).

Indeed, we know that rep = A(Cle]) is the set of algebra morphisms

A =2 My (CE))
By the functorial characterization of tangentspaces we have that Tp(@n A) is equal to
{D:A — My,(C) linear | p+ De : A — M, (Cle]) is an algebra map}.
Because p is an algebra morphism, the algebra map condition
plaa’) + D(aa')z = (p(a) + D(a)e).(p(a’) + D(a)e)
is equivalent to D being a p-derivation.
Example 5.3 Let A be a Cayley-Hamilton algebra of degree n with trace map tr4 and trace
generated by {a1,...,am}. Let p € repl” A, that is, p : A —— M, (C) is a trace preserving
algebra morphism. Because @i’” A(CJe]) is the set of all trace preserving algebra morphisms
A —— M, (Cfe]) (with the usual trace map tr on My, (C[e])) and the previous example one

verifies that
Tp(@: A) = Derly(A) C Derp(A)

the subset of trace preserving p-derivations D, that is, those satisfying

A —24 M, ()

Dotry =troD tra tr

A—20 M,

Again, using this property and the fact that A is trace generated by {a1,...,am} a trace preserving

p-derivation is determined by its image on the a; so is a subspace of M.

The tangent cone to X in o, TC,(X), is by definition the subscheme of C™
determined by L, that is,

CITCH(X)] = Clz1, .- xn)/Im.
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It is called a cone because if ¢ is a point of the underlying variety of TCo(X), then
the line | = o¢ is contained in this variety because I, is a graded ideal. Further,
observe that as I; C I,,, the tangent cone is a closed subscheme of the tangent space
at X in o. Again, if x is an arbitrary geometric point of X we define the tangent
cone to X in z, TC,(X) as the tangent cone TC,(X') where X' is the translated
scheme of X under the translation taking x to o.

Both the tangent space and tangent cone contain local information of the scheme
X in a neighborhood of x. We will now present a ringtheoretical description of both
using only the local algebra O, (X) of X in x. These descriptions have the additional
advantage of providing a description of tangent space and tangent cone independent
of the embedding of X.

Let my be the maximal ideal of C[X] corresponding to x (that is, the ideal of
polynomial functions vanishing in x). Then, its complement S, = C[X] — m, is a
multiplicatively closed subset the local algebra O, (X) is the corresponding localiza-
tion C[X]s,. It has a unique mazimal ideal m, with residue field Oy (X)/m, = C.
We equip the local algebra O, = O, (X) with the m,-adic filtration that is the Z-
filtration

Fy: Lcmicmlc...cmc0,=0,=...=0, = ...
with associated graded algebra
0,) = Mo g M T B C @0 0
gr(O0;) = O nE @...@m—%@ ©0D...00®...

Proposition 5.4 If x is a geometric point of the affine scheme X, then
1. ClT,(X)] is isomorphic to the polynomial algebra C[“m‘—é]
2. C[TC,(X)] is isomorphic to the associated graded algebra gr(O(X)).
Proof. After translating we may assume that x = o lies in V(I) —— C™. That is,
ClX]=Clz1,...,zn)/T and my = (x1,...,2,)/1.

(1) : Under these identifications we have

my

my
2 = m2
mz z
~ (T1,0,Tn)
(1, yn )2 +1
~ (T1,..,Tn)
(T1,..xn)2+1

and as I; is generated by linear terms it follows that the polynomial algebra on

=& is isomorphic to the quotient algebra Clxy, ..., x|/} which is by definition the
coordinate ring of the tangent space.

(2) : Again using the above identifications we have

i
1=0 m;;Jrl

gr(Oy)

12

2
1=0 m;{»l

12

~ @ (Azl,“.,xn)i ‘
- 1=0 (z1,...,xn) T I+(IN(T1,...,T0)7)

~ @OO (‘Tla*“jwn)i
- 1=0 (z1,...,n) F 1+ T ()
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where I,,(i) is the homogeneous part of I, of degree i. On the other hand, the i-th
homogeneous part of Clxy,...,x,]/ I is equal to

(21,...,2,)"
(X1, mp) 4 L, (1)

we obtain the required isomorphism. O

This gives a third interpretation of the tangent space as

My Mg
Tw(&) = Hom(:(ﬁv(c) = HOm(C(E,(C).

Hence, we can also view the tangent space T, (X) as the space of point derivations
Der,(0;) on O,(X) (or of the point derivations Der,(C[X]) on C[X]). That is,
C-linear maps D : O, — C (or D : C[X] — C) such that for all functions f,g
we have

D(fg) = D(f)g(x) + f(x)D(g).

If we define the local dimension of an affine scheme X in a geometric point
xz, dimy, X to be the mazimal dimension of irreducible components of the reduced
variety X passing through x, then

dim, X = dim, TC,(X).

We say that X is nonsingular at x (or equivalently, that x is a nonsingular point
of X) if the tangent cone to X in x coincides with the tangent space to X in x. An
immediate consequence is

Proposition 5.5 If X is nonsingular at x, then O,(X) is a domain. That is, in
a Zariski neighborhood of x , X is an irreducible variety.

Proof. If X is nonsingular at x, then
gr(0;) = C[T'C(X)] = C[T:(X)]

the latter one being a polynomial algebra whence a domain. Now, let 0 # a,b € O,
then there exist k,l such that a € m* — mFt! and b € m! — m!*!, that is @ is a
nonzero homogeneous element of gr(0,) of degree —k and b one of degree —1. But
then, @.b € m** — m*H=1 hence certainly a.b # 0 in O,.

Now, consider the natural map ¢ : C[X] —— O,. Let {Py,...,P} be the
minimal prime ideals of C[X]. All but one of them, say P, = ¢—1(0), extend to the
whole ring O. Taking the product of f functions f; € P; nonvanishing in x for
2 <i <1 gives the Zariski open set X(f) containing x and whose coordinate ring is
a domain, whence X(f) is an affine irreducible variety. |

When restricting to nonsingular points we reduce to irreducible affine varieties.
From the Jacobian condition it follows that nonsingularity is a Zariski open con-
dition on X and by the implicit function theorem X is a complex manifold in a
neighborhood of a nonsingular point.

5.3 Normal spaces.

Let X 2, Y be a morphism of affine varieties corresponding to the algebra mor-

phism C[Y] A C[X]. Let x be a geometric point of X and y = ¢(x). As
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¢*(my) C my, ¢ induces a linear map %% — Dz

the differential of ¢ in x which is a linear map

and taking the dual map gives

Assume X a closed subscheme of C" and Y a closed subscheme of C™ and let ¢ be
determined by the m polynomials { f1,..., fm} in Clz1,...,z,]. Then, the Jacobian
matriz in x

37{1(1;) “;fTT(x)
To@)=| :
Sh(z) ... Y=(x)

defines a linear map from C" to C™ and the differential d¢, is the induced linear
map from Tp(X) C C" to Ty, (Y) C C™. Let D € T,(X) = Der,(C[X]) and
xp the corresponding element of X (Cle]) defined by xp(f) = f(x) + D(f)e, then
xp o ¢* € Y(C[e]) is defined by

zp o ¢*(g) = g(¢(x)) + (Do ¢")e = g(¢(x)) + do(D)e
giving us the e-interpretation of the differential
¢(z + ve) = ¢(z) + doo(v)e
for all v € T,(X).
Proposition 5.6 Let X ey be a dominant morphism between irreducible affine

varieties. There is a Zariski open dense subset U —— X such that d¢,, is surjective
forallz e U.

Proof. We may assume that ¢ factorizes into

X — 2y xc

Y

with ¢ a finite and surjective morphism. Because the tangent space of a product is
the sum of the tangent spaces of the components we have that d(pryw ), is surjective
for all z € Y x C¢, hence it suffices to verify the claim for a finite morphism ¢.
That is, we may assume that S = C[Y] is a finite module over R = C[X] and let
L/K be the corresponding extension of the function fields. By the principal element
theorem we know that L = K[s] for an element s € L which is integral over R with
minimal polynomial

F=t"4+g, 1t" '+ ... +qt+gy withg;€R

Consider the ring S’ = R[t]/(F) then there is an element r € R such that the
localizations S, and S, are isomorphic. By restricting we may assume that X =
V(F) = Y x C and that

X=V(F) =Y xC
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Let x = (y,c) € X then we have (again using the identification of the tangent space
of a product with the sum of the tangent spaces of the components) that

oF
T.(X) = {(0,0) € T,(Y) & C| ¢5-(2) + vga1¢™ + ...+ vgic+ vgo = O},

But then, d¢, i surjective whenever %—f(az) # 0. This condition determines a non-

empty open subset of X as otherwise %—f would belong to the defining ideal of X
in C[Y x C] (which is the principal ideal generated by F') which is impossible by a

degree argument O

Example 5.7 Let X be a closed GL,,-stable subscheme of a GLy-representation V and x a
geometric point of X. Consider the orbitclosure O(z) of z in V. Because the orbit map

p: GLp —» GLp.x & O(x)

is dominant we have that C[O(z)] < C[GLy] and therefore a domain, so O(z) is an irreducible
affine variety. We define the stabilizer subgroup Stab(z) to be the fiber = 1(x), then Stab(x) is
a closed subgroup of GL,. We claim that the differential of the orbit map in the identity matrix

€ :/Un
dpte : gl, — TZ(K)

satisfies the following properties

Ker due = stab(z) and  Im dpe = T (O(z)).

By the proposition we know that there is a dense open subset U of G Ly, such that dug is surjective
for all g € U. By GLn-equivariance of p it follows that dug is surjective for all g € GLn, in
particular due : gl,, — T»(O(x)) is surjective. Further, all fibers of u over O(z) have the same
dimension. But then it follows from the dimension formula of proposition that
dim GLp = dim Stab(z) + dim O(x)

(which, incidentally gives us an algorithm to compute the dimensions of orbitclosures). Combining
this with the above surjectivity, a dimension count proves that Ker du. = stab(z), the Lie algebra
of Stab(z).

Let M and N two A-representations of dimensions say m and n. An A-
representation P of dimension m + n is said to be an extension of N by M if
there exists a short exact sequence of left A-modules

e: 0O— M — P —» N —0

We define an equivalence relation on extensions (P,e) of N by M : (P,e) = (P, ¢)

if and only if there is an isomorphism P N P’ of left A-modules such that the
diagram below is commutative

e: 0 - M > P - N >0

e : 0 - M - P’ - N > 0
The set of equivalence classes of extensions of N by M will be denoted by
Exthy (N, M).

An alternative description of Exty (N, M) is as follows. Let p : A —— M,
and 0 : A —— M, be the representations defining M and N. For an extension
(P, e) we can identify the C-vectorspace with M & N and the A-module structure on
P gives a algebra map p: A —— M+, and we can represent the action of a on
P by left multiplication of the block-matriz

o) = [P0 2.

o(a)
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where M(a) is an m x n matriz and hence defines a linear map
A:A—— Homc(N,M).
The condition that p is an algebra morphism is equivalent to the condition
Maa') = p(a)A(a) + Ma)o(a')

and we denote the set of all liner maps A : A —— Hom¢c(N, M) by Z(N,M)
and call it the space of cycles. (Observe already that if M = N and m = n then
Z(M, M) is the vectorspace of p-deriwations Der,(A) from A — M,.)

The extensions of N by M corresponding to two cycles X\ and X' from Z(N, M)
are equivalent if and only if we have an A-module isomorphism in block form

id .
[ ()M zdﬁN] with 8 € Homg (N, M)

between them. A-linearity of this map translates into the matriz relation

idy B (pla) Ma)| _ {pla) N(a)| fidwm 0
[ 0 idN} [ 0 a(a)] - [ 0 J(a)} [ 0 idN} forallae 4

or equivalently, that A(a) — X (a) = p(a)B— Bo(a) for alla € A. We will now define
the subspace of Z(N, M) of boundaries B(N, M)

{6 € Homc(N, M) |38 € Homc(N, M) :VYa € A:6(a) = p(a)s — fo(a)}.

We then have the description Exty (N, M) = %.

Example 5.8 Let A be an affine C-algebra generated by {a1,...,am} and p: A —» M, (C)
an algebra morphism, that is, p € rep, A determines an n-dimensional A-representation M. We
claim to have the following description of the normal space to the orbitclosure C, = O(p) of p

er To(rep A
Ny(rep  A) def M = Ext} (M, M).
- " Tp(cp)

We have already seen that the space of cycles Z(M, M) is the space of p-derivations of A in
Mn(C), Der,(A), which we know to be the tangent space Tp(rep ~A). Moreover, we know that

the differential due of the orbit map G L, LS Cp, — M
dpe = gly, = Mp —> T,(C)p)

is surjective. Now, p = (p(a1),...,p(am)) € M and the action of action of GL,, is given by
simultaneous conjugation. But then we have for any A € gl,, = M, that

(I + Ae).p(a:).(In — A2) = p(as) + (Ap(as) — plas) Ae.
Therefore, by definition of the differential we have that
dpe(A)(a) = Ap(a) — p(a)A  for all a € A.
that is, dpe(A) € B(M, M) and as the differential map is surjective we have T,(C,) = B(M, M)

from which the claim follows.

Example 5.9 Let A be a Cayley-Hamilton algebra with trace map tr4 and trace generated by
{a1,...,am}. Let p € rep!” A, that is, p: A —> M,,(C) is a trace preserving algebra morphism.
Any cycle A\: A — My (C) in Z(M, M) = Der,(A) determines an algebra morphism

p+re: A — M,(Cf])

We know that the tangent space Tp(@:f A) is the subspace Derf,T(A) of trace preserving p-
derivations, that is, those satisfying

A(tra(a)) =tr(A(a)) forallaec A
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Observe that for all boundaries 6 € B(M, M), that is, such that there is an m € My (C) with
d(a) = p(a).m — m.p(a) are trace preserving as

S(tra@) =  p(tra(@))m — m.p(tra(a) = tr(p(a)).m — m.tr(p(a))

= 0 = tr(m.p(a) — p(a).m) = tr(3(a))

Hence, we can define the space of trace preserving self-extensions
Dertr(A
Ext'T (M, M) = Dery(4)
B(M, M)

and obtain as before that the normal space to the orbit closure C, = O(p) is equal to

dey Tp(rep'™ A)

tr “€) _ tr
Np(@n A) = T,(C,) = Exty (M, M)

5.4 Luna’s étale slices.

The results of this section hold for any reductive algebraic group G. As we will use
them only in the case G = GL,, or GL(a) = GLg, X ... X GLg, we will restrict to
the case of GL,. Also all affine GLy,-varieties we will consider are representation
varieties or associated fiber bundles. We fix the setting : X andY are not necessarily
reduced affine G L,-varieties, 1 is a GL,-equivariant map

¥

=9y F X+~——Y 4 y

X Yy

X/GL,  Y/GL,
and we assume the following restrictions :
e ) is €tale in y,

o the GL,-orbits O(y) inY and O(x) in X are closed. That is, in representation
varieties we restrict to semi-simple representations,

o the stabilizer subgroups are equal Stab(x) = Stab(y). In the case of represen-
tation varieties, for a semi-simple n-dimensional representation with decom-
position

M=S"a.. 052"
into distinct simple components, this stabilizer subgroup s
GL, (C®Ty,)
GL(a) = —— GL,
GLc, (C®1y,)
where f; = dim S;. In particular, the stabilizer subgroup is again reductive.

In algebraic terms : consider the coordinate rings R = C[X] and S = C[Y] and the

dual morphism R Y. S. Let IR be the ideal describing O(x) and J < S the
ideal describing O(y). With R we will denote the I-adic completion lim % of R

and with S the J-adic completion of S.

Lemma 5.10 The morphism ¥* induces for all n an isomorphism
R y S
m-

In particular, R~S.
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Proof. Let Z be the closed GL,,-stable subvariety of Y where v is not étale. By
the separation property, there is an invariant function f € SEI» vanishing on Z
such that f(y) = 1 because the two closed GL,,-subschemes Z and O(y) are disjoint.
Replacing S by Sy we may assume that ¥* is an étale morphism. Because O(x) is
smooth, =1 O(x) is the disjoint union of its irreducible components and restricting
Y if necessary we may assume that =1 O(x) = O(y). But then J = *(I)S and

~

as O(y) — O(z) we have £ ~ % so the result holds for n = 1.
Because étale maps are flat, we have Yv*(I")S = I @r S = J" and an exact
sequence
n

I
0—I""@rS —I"®rS —> 77 ®rS — 0

But then we have

m s I S~ J"
It T e+l ©r/1 J  Int Br o= Jn+1

and the result follows from induction on n and the commuting diagram

I R R
0 g Jn+l g In+1 g _[7 -0
'
J" S S
0 . Jn—i—l g J7L+1 . ﬁ -0

O

As in the previous chapter we will denote for any irreducible G L,, -representation
s and any locally finite G Ly, -module X its s-isotypical component by X ).

Lemma 5.11 Let s be an irreducible GL,,-representation. There are natural num-
bers m > 1 (independent of s) and n > 0 such that for all k € N we have

Imk+n a) R(s) . (IGLn)k‘R(S) < Ik N R(s)

Proof. Consider A = &2 ,I"t" — R|[t], then A% is affine so certainly finitely
generated as RETn -algebra say by

{rit™ ... r ™} withr; € R and m; > 1.
Further, A,y is a finitely generated AGLn_module, say generated by
{s1t™, ..., 5,t"™}  with s; € Ry and n; > 0.

Take m = max m; and n = maz n; and r € I N R(,), then rt™ " € A,y and

remktn — ij(rltml, c Tt ) st
J

with p; a homogeneous polynomial of t-degree mk +n —n; > mk. But then each
monomial in p; occurs at least with ordinary degree %k = k and therefore is con-

tained in (IGFm)F R g tmh+n, O

Let RGLn be the IG1n -adic completion of the invariant ring R~ and let SGLn
be the J9Ln-adic completion of SCLm.
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Lemma 5.12 The morphism ¢* induces an isomorphism
R ®por, RGIn ——» § @ §GLn GGLn

Proof. Let s be an irreducible G L,-module, then the I -adic completion of R

is equal to Ii(:) = R(s) ®gorn ]?G?n Moreover,
5 R ,
Ry = lim(3)(s) = lim

which is the I-adic completion of R(s). By the foregoing lemma both topologies
coincide on Ry and therefore

—

Ry = }A%(S) and similarly §(S\) — §(S)

Because R ~ § it follows that ﬁ(s) ~ §(S) from which the result follows as the
foregoing holds for all s. O

Theorem 5.13 (Luna’s fundamental lemma) Consider o GL,-equivariant

map Y A X, yeY, x=19Y(y) and ¢ étale in y. Assume that the orbits O(x)
and O(y) are closed and that ¢ is injective on O(y). Then, there is an affine open
subset U —— Y containing y such that

1. U =7y (ny (U)) and 7y (U) = U/GLy,.
2. 1 is étale on U with affine image.
3. The induced morphism U/GLy, v, X/GL, is étale.

4. The diagram below is commutative

U X

U TX
U/GL, —*+ X/GL,

Proof. By the foregoing lemma we have RGLn ~ SGLn which means that 1 is étale
in my (y). As étaleness is an open condition, there is an open affine neighborhood V
of wy (y) on which v is étale. If R = R ®pcr, SEEn then the above lemma implies
that . o

R ®gcr, SGLn ~ S @gcr, SGLn

Let ng" be the local ring of SGE» in JGEn | then as the morphism ng” — GGLn
is faithfully flat we deduce that
R@SGL,L SCGLn ~ g ®gaLn GG Ln

loc loc

but then there is an f € S¢n — JGIn such that Ry ~ Sy. Now, intersect V with
the open affine subset where f # 0 and let U’ be the inverse image under wy of this

set. Remains to prove that the image of v is affine. As U’ X s étale, its
image is open and G L, -stable. By the separation property we can find an invariant
h € RGLn such that h is zero on the complement of the image and h(x) = 1. But
then we take U to be the subset of U’ of points u such that h(u) # 0. O
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Theorem 5.14 (Luna’s slice theorem) Let X be an affine GL,-variety with

quotient map X — = X/GL,. Let x € X be such that its orbit O(z) is closed
and its stabilizer subgroup Stab(x) = H is reductive. Then, there is a locally closed
affine subscheme S —— X containing x with the following properties

1. S is an affine H-variety,

2. the action map GL, x S — X induces an étale GL,,-equivariant morphism
GL, x" s Y+ X
with affine image,
3. the induced quotient map ¥ /GL,, is étale

(GL, x™ 8)/GL, ~ 8/H Y™ x /a1,

4. the diagram below is commutative

GL, x2S -

[><

w/GLn

If we assume moreover that X is smooth in x, then we can choose the slice S such
that also the following properties are satisfied

1. S is smooth,

2. there is an H-equivariant morphism
with ¢(x) = 0 having an affine image,

3. the induced morphism is étale

s/ 5 N,/ H

4. the diagram below is commutative

GL,x"¢

GL, x7' s GL, x" N,

o/H

E/H ‘Nx/H

Proof. Choose a finite dimensional GL,,-subrepresentation V of C[X] that generates
the coordinate ring as algebra. This gives a G L, -equivariant embedding

KLZ, wW=Vv*
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Choose in the vectorspace W an H-stable complement Sy of gl,,.i(x) = Tj,) O(x)
and denote Sy = i(x)+So and Sy = i~1(S1). Then, the diagram below is commutative

GL,x" S8, + GL, x" 8,

P Yo

X < - W

By construction we have that vy induces an isomorphism between the tangent spaces
in (1,i(z)) € GL, x" Sy and i(z) € W which means that vy is étale in i(z), whence
Y is étale in (1,x) € GL, x® S,. By the fundamental lemma we ge an affine
neighborhood U which must be of the form U = GL,, x® S giving a slice S with the
required properties.

Assume that X is smooth in x, then Sy is transversal to X in i(x) as

Ti(zy 1(X) +So =W

Therefore, S is smooth in x. Again using the separation property we can find an
invariant f € C[S]* such that f is zero on the singularities of S (which is a H-stable
closed subscheme) and f(x) = 1. Then replace S with its affine reduced subvariety
of points s such that f(s) # 0. Let m be the maximal ideal of C[S] in z, then we
have an exact sequence of H-modules

[e%
0—m?—>m—» N —> 0

Choose a H-equivariant section ¢* : N —— m —— C[S] of « then this gives

an H-equivariant morphism S 2, N, which is étale in x. Applying again the
fundamental lemma to this setting finishes the proof. |

5.5 Grothendieck smoothness.

In this section we prove that an affine variety X is smooth if and only if its coordi-
nate ring C[X] satisfies a certain lifting property in the category of all commutative
C-algebras. This allows us to define formally smooth algebras in other categories
such as the category of Cayley-Hamilton algebras of degree n or the category of all
C-algebras.

Let X be a possibly non-reduced affine variety and x a geometric point of X. As
we are interested in local properties of X near x, we may assume (after translation)
that x = o in C™ and that we have a presentation

CX]=Clxy,...,zn)/T withI = (f1,...,fm) and my = (1,...,2,)/1.
Denote the polynomial algebra P = Clxq,...,x,]| and consider the map

d I — (Pdx;®...® Pdx,) @p C[X] =C[X]dz: & ... ® C[X]dx,
where the dx; are a formal basis of the free module of rank n and the map is defined

by
of of
dif)=(=—,...,— d I.
(=L 25 mo
This gives a C[X]-linear mapping

I 4
Ve R ClXldz1 @ ... C[X]dx,.
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Ezxtending to the local algebra O, at x and then quotient out the mazximal ideal m,
we get a C = O, /m,- linear map

% A=), Cdz,1®...0 Cdzx,
Clearly, x is a nonsingular point of X if and only if the C-linear map d(x) is
injective. This is equivalent to the existence of a C-section and by the Nakayama
lemma also to the existence of a Oy -linear splitting s, of the induced O -linear map
dy

J c da

32 Sg

> O,dz1 @ ... Oudzy,

satisfying s, o dy = id%
J

A C-algebra epimorphism (between commutative algebras) R —o S with square
zero kernel is called an infinitesimal extension of S. It is called a trivial infinitesimal
extension if ™ has an algebra section o : S —— R satisfying m o 0 = idg. An in-
finitesimal extension R —» S of S is said to be versal if for any other infinitesimal

extension R —» S of S there is a C-algebra morphism

i -9

b 4

R.

making the diagram commute. From this universal property it is clear that versal
infinitesimal extensions are uniquely determined up to isomorphism. Moreover, if
a versal infinitesimal extension is trivial, then so is any infinitesimal extension.

Definition 5.15 A commutative C-algebra S is said to be Grothendieck smooth
if and only if it has the following universal property. Let T" be a commutative C-
algebra and I a nilpotent ideal of T'. Then, any C-algebra morphism « : S — T/T

S

5

T - T/I

can be lifted to a C-algebra morphism A : S —— T making the diagram commu-
tative.

Clearly, by iterating, S is Grothendieck smooth if and only if it has the lifting
property with respect to nilpotent ideals I with square zero. Therefore, assume we
have a test object (T, I) with I? = 0, then we have a commuting diagram

SXT/IT&’> S

T - T/1
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where we define the pull-back algebra
Sxp;pT={(s,t) € SxT|r(s)=p(t)}

Observe that pry : S X7/ T —= S is a C-algebra epimorphism with kernel 0 X7, I
having square zero, that is, it is an infinitesimal extension of S. Moreover, the
existence of a lifting A of k is equivalent to the existence of a C-algebra section

0:8 —— Sxp; T defined by s+ (s,\(s)).

Hence, S is Grothendieck smooth if and only if a versal infinitesimal extension of
S is trivial.
Returning to the situation of interest to us, we claim that the algebra epimor-
phism
0.(CM/1? 5+ 0,
is a versal infinitesimal extension of Oy. Indeed, consider any other infinitesimal

extension R ——» O, then we define a C-algebra morphism O,(C")/I? —— R
as follows : let r; € R such that m(r;) = ci(x;) and define an algebra morphism
Clx1,...,2n] — R by sending the variable x; to r;. As the image of any polyno-
mial mon-vanishing in x is a unit in R, this algebra map extends to one from the
local algebra O, (C™) and it factors over O,(C")/I? as the image of I, lies in the
kernel of m which has square zero, proving the claim. Hence, O, s Grothendieck
smooth if and only if there is a C-algebra section
0. (C™) /12 7 ™0,

Tz

satisfying cy o ry = ido, .

Proposition 5.16 The affine scheme X is non-singular at the geometric point x
if and only if the local algebra O,(X) is Grothendieck smooth.

Proof.  The result will follow once we prove that there is a natural one-to-one
correspondence between O,-module splittings s, of d, and C-algebra sections r, of
c.. This correspondence is given by assigning to an algebra section r, the map s,
defined by

se(da;) = (x5 — 14 0 cp(2;)) mod I?

O

If X is an affine scheme which is smooth in all of its geometric points, then we
have seen before that X = X must be reduced, that is, an affine variety. Restricting
to its disjoint irreducible components we may assume that

C[X] = mweXOw-

Clearly, if C[X] is Grothendieck smooth, so is any of the local algebras O,. Con-
versely, if all Oy are Grothendieck smooth and C[X] = Clz1,...,z,]/I one knows
that the algebra epimorphism

Cla, ..., wn]/T* —> C[X]

has local sections in every x, but then there is an algebra section. Because c is clearly
a versal infinitesimal deformation of C[X], it follows that C[X] is Grothendieck
smooth.

Proposition 5.17 Let X be an affine scheme. Then, C[X] is Grothendieck smooth
if and only if X is non-singular in all of its geometric points. In this case, X is a
reduced affine variety.
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5.6 Cayley smoothness.

Observe that the commutative C-algebras are precisely the Cayley-Hamilton algebras
of degree one, so we recover the notion of Grothendieck smoothness for commutative
algebras from the following one.

Definition 5.18 A Cayley-Hamilton algebra A of degree n with trace map tr4
is said to be Cayley smooth if it satisfies the following lifting property. Let T
be a Cayley-Hamilton algebra of degree n with trace map trp and I a twosided
nilpotent ideal of T such that ¢rp(I) C I. Assume there is a trace preserving C-
algebra morphism x : A — T/I, then there is a trace preserving C-algebra lift
N A—>T 4

5

T

making the diagram commutative.

- T/1

Let B be a Cayley-Hamilton algebra of degree n with trace map trp and trace
generated by m elements say {b1,...,bm}. Then, we can write

B=T/Ts with Ts closed under traces.
Now, consider the extended ideal
Eg = M, (C[M]")).Tg.M,(C[M]"]) = M,,(Ng)

and we have seen that Clrep'™ B] = C[M;"|/Np. We need the following technical
result.

Lemma 5.19 With notations as above, we have for all k that

Eb T C T8,

Proof. Let TI™ be the trace algebra on the generic n x n matrices {X1,...,Xm}
and TH™ the trace algebra on the generic matrices {Y1,...,Y;, X1,..., Xm}.
Let {Uy,...,U;} be elements of T™ and consider the trace preserving map

Thm = T induced by the map defined by sending Y; to U;. Then, by the
universal property we have a commutative diagram of Reynold operators

M (C[ME™]) 2 M,(C[M)

n

Tler "

n

Now, let Ai,...,A;41 be elements from M, (C[M]"]), then we can calculate
R(A U1 AsUsAs ... AU A1) by first computing

r= R(A1Y1A2Y'2A3 . Al}/lAl—i-l)

and then substituting the Y; with U;. The Reynolds operator preserves the degree
in each of the generic matrices, therefore r will be linear in each of the Y; and is a
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sum of trace algebra elements. By our knowledge of the generators of necklaces and
the trace algebra we can write each term of the sum as an expression

tT(A4&)tT(A4Q)...tT(A4;)A4%+1

where each of the M; is a monomial of degree < n? in the generic matrices
{Y1,...,Y, X1,..., Xn}. Now, look at how the generic matrices Y; are distributed
among the monomials M;. FEach M; contains at most n? of the Y;’s, hence the
monomial M, contains at least | — vn? of the Y; where v < z is the number of M;
with i < z containing at least one Y;.

Now, assume all the U; are taken from the ideal Tp < T} which is closed under
taking traces, then it follows that

A UL AsUs Ay .. A UA vr(—vn®) -k
R( U1 AU A5 .. AU H_l)ETB CTB

if we take | = kn? as v+ (k — v)n? > k. But this finishes the proof of the required
inclusion. |

Let B be a Cayley-Hamilton algebra of degree n with trace map trg and I a
twosided ideal of B which is closed under taking traces. We will denote by E(I) the
extended ideal with respect to the universal embedding, that is,

E(I) = My (Clrep!” B))IM,(Clrep” B)).

Then, for all powers k we have the inclusion E(I)k"2 NnBcIk.

Theorem 5.20 Let A be a Cayley-Hamilton algebra of degree n with trace map
tra. Then, A is Cayley smooth if and only if the trace preserving representation
variety @'Z A is non-singular in all points (in particular, @Z A is reduced).

Proof. Let A be Cayley smooth, then we have to show that C[@Z Al is
Grothendieck smooth. Take a commutative test-object (T, 1) with I nilpotent and
an algebra map K : C[@Z A] —— T/I. Composing with the universal embedding
i we obtain a trace preserving morphism g

M, (Clrep!” A)) M, (T/1)

M, (k)
Because M, (T) with the usual trace is a Cayley-Hamilton algebra of degree n and
M, (I) a trace stable ideal and A is Cayley smooth there is a trace preserving algebra
map p1. But then, by the universal property of the embedding ia there exists a C-
algebra morphism

)\:C[@Z Al — T

such that M, (X) completes the diagram. The morphism X is the required lift.
Conversely, assume that (C[@Z Al is Grothendieck smooth. Assume we have a

Cayley-Hamilton algebra of degree n with trace map trp and a trace-stable nilpotent

ideal I of T and a trace preserving C-algebra map k : A —— T/I. If we combine
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this test-data with the universal embeddings we obtain a diagram

T "+ M,(Clrep!” T)

.

Here, J = M, (Clrep’” T])IM,(Clrep!” T]) and we know already that JNT = I.
By the universal property of the embedding ia we obtain a C-algebra map

Clrep” A] — Clrep’ T}/J

which we would like to lift to C[@Z T]. This does not follow from Grothendieck
smoothness of(C[@Z” A] as J is usually not nilpotent. However, as I is a nilpotent

ideal of T there is some h such that I" = 0. As I is closed under taking traces we
know by the remark preceding the theorem that

E(N"™ AT cI1"=0.

Now, by definition E(I) = My(Clrep!" T|)IM,(C[rep!” T|) which is equal to
M, (J). That is, the inclusion can be rephrased as Mn(J)h”2 NT = 0, whence

there is a trace preserving embedding T — MTL((C[@Z T]/Jh”Q). Now, we have
the following situation

T s M,(Clrep’” T]/J*")

Y

54

- T g et 7))

M, (Clrep,” AJ)
This time we can lift o« to a C-algebra morphism
tr tr hn?
Clrep,” A] — Crep,” T]/J"".
This in turn gives us a trace preserving morphism
A 2
A —> M, (C[rep!” T]/J"™")
the image of which is contained in the algebra of GLy,-invariants. Because

T > M, (C[rep' T)/J"*) and by surjectivity of invariants under surjective
maps, the GL,-equivariants are equal to T, giving the required lift \. ([l
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5.7 Quillen smoothness.

In this section we introduce Quillen smooth algebras which are the basic building
blocks to construct noncommutative manifolds.

Definition 5.21 A C-algebra A is said to be Quillen smooth if it satisfies the
following lifting property. Let T be a C-algebra and I <T a nilpotent ideal. If there

is a C-algebra morphism A —“~ T'/I then there exists a C-algebra lift A 27
A

5

T

- T/1
making the diagram commutative.

This definition is rather restrictive. In particular, a commutative (Grothendieck)
smooth algebra does not have to satisfy the lifting property in the category of all C-
algebras.

Example 5.22 consider the polynomial algebra C[z1, ..., z4] and the 4-dimensional noncom-
mutative local algebra
Clz,y)
T=-—FFF—"""—=CoCzpCysCx
(22,92, 2y + yz) Y Y
Consider the one-dimensional nilpotent ideal I = C(zy —yz) of T', then the 3-dimensional quotient

. . . @
% is commutative and we have a morphism Clz1,...,z4] —> % by 1 +— x,22 — y and z; — 0

for ¢ > 2. This morphism admits no lift to T" as for any potential lift the commutator
[6(2),6(y)] #0 inT.

Therefore, C[z1,...,x4] can only be Quillen smooth if d = 1. In fact, we will see in chapter 9 that
the only commutative affine Quillen smooth algebras are the coordinate rings of a disjoint union

of points and affine smooth curves.

Still, the world of Quillen smooth algebras is rather exotic containing many
algebras determined by universal constructions. There is a fairly innocent class
of Quillen smooth algebras determined by combinatorial data : path algebras of
quivers. Consider the commutative C-algebra

k
Cr =Cley, ..., ex]/(e? —ei,eiej,Zei -1).
i=1

Cy is the universal C-algebra in which 1 is decomposed into k orthogonal idem-
potents, that is, if R is any C-algebra such that 1 = r1 + ... + rg with r; € R
idempotents satisfying r;rv; — 0, then there is an embedding C, — R sending e;
to r;. Observe that as a C-algebra

—_———
k

or equivalently, the coordinate ring of k distinct points.

Proposition 5.23 Cj is Quillen smooth. That is, if I be a nilpotent ideal of a C-
algebra T and if 1 =€1+...+€x is a decomposition of 1 into orthogonal idempotents
e; € T/I. Then, we can lift this decomposition to 1 = ey + ...+ ey for orthogo-
nal idempotents e; € T such that w(e;) = €; where T — T/I is the canonical
projection.
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Proof. Assume that I' = 0, clearly any element 1 — i with i € I is invertible in T
as

1-—i)A+i+i?+.. . +i)=1-di=1.
If € is an idempotent of T/I and x € T such that w(x) = e. Then, v —2? € I
whence

0=(x—2?) =zt — 2!t 4+ (é) 22— (=D

and therefore x! = az't! where a =1 — (é

If we take e = (ax)!, then e is an idempotent in T as

) r+...+ (=127 and so ax = za.

62 _ (a,’E)Ql _ al(al;CZl) — alml —e

the next to last equality follows from x' = ax'™' = a2!+2 = ... = ala®. Moreover,

ol

m(e) = n(a)n(z) = n(a)lw(z)? = n(a'2®) = n(x)' =

{f? is another idempotent in T /I such that ef = 0 = fe then as above we can lift
f to an idempotent f' of T. As f'e € I we can form the element

f=0-e)0-fe) f'(1-fe).

Because f'(1—f'e) = f'(1—e) one verifies that f is idempotent, ©(f) = f and e.f =
0 = f.e. Assume by induction that we have already lifted the pairwise orthogonal
idempotents €1, ..., €,_1 to pairwise orthogonal idempotents ey, ..., ex_1 of R, then
e=e1+...+ex_1 is an idempotent of T such that ee, = 0 = exe. Hence, we can
lift e to an idempotent ey, € T such that eep, = 0 = exe. But then also

eier = (e;e)er =0 = ep(ee;) = exe;.
Finally, as ey + ...+ ex — 1 =1 € I we have that
el—l—...—i—ek—l:(61+...+ek—1)l:il:0

finishing the proof. |

Let Q be a quiver, that is, a directed graph determined by
e a finite set Q, = {v1,..., v} of vertices, and

e a finite set Q, = {a1,...,a;} of arrows where we allow multiple arrows between
vertices and loops in vertices.

For now, we will depict vertex v; by (@ and an arrow a from vertex v; to v; by

O<—2—0. Note however than once we come to dimension vectors, we will encircle
the vector components and will indicate the ordering of the vertices by subscripts
when necessary.

The path algebra CQ has as underlying C-vectorspace basis the set of all ori-
ented paths in Q, including those of length zero corresponding to the vertices v;.
Multiplication in CQ is induced by (left) concatenation of paths. More precisely,
1=wv1+...4+vg is a decomposition of 1 into mutually orthogonal idempotents and
further we define

e v;.a is always zero unless GO<~—2—0 in which case it is the path a,

e a.v; is always zero unless O<———@ in which case it is the path a,
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e a;.a; is always zero unless %@LO in which case it is the
path a;a;.
Proposition 5.24 For any quiver @Q, the path algebra CQ is Quillen smooth.

Proof. Take an algebra T with a nilpotent twosided ideal I 9T and consider

.,_CQ

The decomposition 1 = ¢(v1) + ...+ ¢(vx) into mutually orthogonal idempotents in
% can be lifted up the nilpotent ideal I to a decomposition 1 = ¢(v1) + ...+ ¢(vg)
into mutually orthogonal idempotents in T. But then, taking for every arrow a

O<~—2—0O an arbitrary element ¢(a) € ¢p(v;)(B(a) + I)d(v;)

gives a required lifted algebra morphism CQ oL O

A Quillen smooth algebra A determines for every integer n a Cayley smooth
algebra AQ,,. Let alg'™ be the category of all C-algebras equipped with a trace map
and with trace preserving morphisms. The forgetful functor alg™ — alg has a
left adjoint

alg —— alg'”
that is, given an algebra A we construct an algebra A™ by formally adjoining traces
(as in the case of T given before). If tr : AT — AT is the trace map on A™ we
define for given n a Cayley-Hamilton algebra AQ,, to be the quotient

AT
(tr(1) — n, Xt(ln)(a) Va € A)

AQ, =

In general it may happen that AQ,, = 0 for ezample if A has no n-dimensional repre-
sentations. The characteristic feature of AQ,, is that any C-algebra map A — B
with B a Cayley-Hamilton algebra of degree n factors through AQ,,

@

A - B

R4

o

AQ,

with ¢, a trace preserving algebra morphism. From this universal property the next
result is immediate

Proposition 5.25 If A is Quillen smooth, then for every integer n, the Cayley-
Hamilton algebra of degree n, AQ,,, is Cayley smooth. Moreover,

rep, A=rep AQ,

is a smooth affine variety.
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This result allows us to study Quillen smooth algebras. We know that the algebra
AQ,, is given by the G L, -equivariant maps from rep”’ AQ,, to M,,(C). Because this
representation variety is smooth we will apply the Lt Luna étale slices to determine the
local structure of the G L, -variety rep”’ AQ,, and hence of AQ,,. The major result
we will prove in a moment is that this local structure is fully determined by a quiver
situation. That is, the local study of arbitrary Quillen smooth algebras can be reduced
to that of the better understood subclass of path algebras of quivers.

5.8 Local structure.

Let A be an affine C-algebra generated by m elements {a1,...,am}. The Cayley-
Hamilton algebra of AQ,, of degree n is then trace generated by m elements, that
is, there is a trace preserving epimorphism T . AQ,,. That is, we have a
GL,-equivariant closed embedding of affine schemes

rep, A =rep!” AQ, < rep!” T = M

Take a point & of the quotient scheme iss, A = @Z’ AQ,, /GL,. We know that &
determines the isomorphism class of a semi-simple n-dimensional representation of
A, say

Me=SP"®...0 82
where the S; are distinct simple A-representations, say of dimension d; and occur-

ring in Mg with multiplicity e;. These numbers determine the representation type
T(&) of & (or of the semi-simple representation My ), that is

7(§) = (e1,disea,da; . .. ex, di)

Choosing a basis of M¢ adapted to this decomposition we find a point x =
(X1,...,Xm) in the orbit O(Mg) —— M such that each n x n matric X; is
of the form

mgi) ® e, 0 ... 0
X; = " s’ ok o "
: : : .

0 0 coomy” @7,

where each mgl) € My, (C). Using this description we can compute the stabilizer
subgroup Stab(x) of GL,, consisting of those invertible matrices g € GL,, commuting
with every X;. That is, Stab(x) is the multiplicative group of units of the centralizer
of the algebra generated by the X;, that is

M, (C) 1., 0 - 0
0 Mg, ((C) ®'U62 . 0
0 0 Ce Mdk (C) ®/ﬂek

It is easy to verify that this group is isomorphic to
Stab(x) ~ GLe, X GL., X ... x GL
with the embedding Stab(x) — GL,, given by

GL., (C®1y,) 0 0
0 GLe, (C®My,) .. 0

€k

0 0 ... GL (C®1y,)



5.8. LOCAL STRUCTURE. 187

Clearly, o different choice of point in the orbit O(Mg) gives a subgroup of GL,,
conjugated to Stab(x). Consider the vector o = (e, ea,...,¢ex), then we see that

Stab(z) ~ GL(o) = GLe, X GLey X ... X GLg,

We will compute the normal space N9 to the orbit O(My;) in M™ = repir .
This is an elaborate book-keeping operation involving GL(«)-representations. As
x = (X1,...,Xm) the tangent space T,, O(My;) in M to the orbit is equal to the
image of the linear map

gl, =M, — M,®...06M,=T, M™
A = ([A7X1]7~'~7[A7Xm])

Observe that the kernel of this map is the centralizer of the subalgebra generated by
the X;, so we have an exact sequence of Stab(x) = GL(a)-modules

0 — gl(a) = Lie GL(a) — gl,, = M,, — T, O(z) — 0

As GL(«) is a reductive group every GL(a)-module is completely reducible and so
the sequence splits. But then, the normal space in M* = T, M]" to the orbit is
isomorphic as GL(a)-module to
NV = M, @...® M, ®gl(a)
—_————
m—1

with the action of GL(«) (embedded as above in GLy) is given by simultaneous
conjugation. If we consider the GL(«a)-action on M,

dq do

we see that it decomposes into a direct sum of subrepresentations

e for each 1 <i < k we have d? copies of the GL(«)-module M., on which GLe,
acts by conjugation and the other factors of GL(«) act trivially,

o for all 1 < i,j < k we have d;d; copies of the GL(a)-module Me,x.; on
which GLe, X GLe; acts via g.m = gimg;1 and the other factors of GL(«)
act trivially.

These GL(«) components are precisely the modules appearing in representation
spaces of quivers, which are defined in chapter 1 or more precisely in chapter 6.

Theorem 5.26 Let £ be of representation type 7 = (e1,dy;...;ex,dr) and let
a = (e1,...,ex). Then, the GL(a)-module structure of the mormal space N9
mn repf; T = M to the orbit of the semi-simple n-dimensional representation
O(M¢) is isomorphic to

repa Qc
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where the quiver Q¢ has k vertices and the subquiver on any two vertices v;,v; for
1 <i4,5 <k has the following shape

(m —1)d;d;

(m —1)d;d;

That is, in each vertex v; there are (m — 1)d? + 1-loops and there are (m — 1)d;d;
arrows from vertex v; to vertex v; for all 1 <1i,j < k.

Example 5.27 If m = 2 and n = 3 and the representation type is 7 = (1,1;1,1;1,1) (that is,
M is the direct sum of three distinct one-dimensional simple representations) then the quiver Q¢

is

We say that A is smooth at £ € iss,, A if the representation variety @Z AQ,
is smooth in M¢. Before we can apply the Luna slice theorem we have to control
the normal space NJ™ to the orbit O(Mc) in @Z AQ,,. We have GL,-equivariant

embeddings
O(Mg) — rep” AQ, — rep!” T = M,

and corresponding embeddings of the tangent spaces in x
T, O(Mg) — T @Z AQ, — T, M"

Because GL(«) is reductive we then obtain for the normal spaces to the orbit

Nbig

/E(IMs)
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a direct summand as GL(a)-modules. As we know the isotypical decomposition of
NY9 as the GL(a)-module rep,, Q¢ this allows us to control N3™. We only have to
observe that arrows in Q¢ correspond to simple GL(«)-modules, whereas a loop at
vertex v; decomposes as GL(a)-module into the simples

Mei = Mgl ® Ctriv

where Cyrip 18 the one-dimensional simple with trivial GL(«)-action and MSL_ is the
space of trace zero matrices in M,,. Again, we can represent the GL(«)-module
structure of N;™ graphically, this time by a marked quiver using the dictionary

e a loop at vertex v; corresponds to the GL(a)-module M., on which GL., acts
by conjugation and the other factors act trivially,

e a marked loop at vertex v; corresponds to the simple GL(c)-module M on
which GL., acts by conjugation and the other factors act trivially,

e an arrow from vertex v; to vertex v; corresponds to the simple GL(a)-module
Me,xe; on which GLe, X GL.,; acts via g.m = gimgjfl and the other factors
act trivially,

Theorem 5.28 Let & be such that M is a smooth point on rep. A of representation
type T = (e1,dy;...;ex,di) and let @« = (eq,...,ex). Then, the GL(«)-module
structure of the normal space N, to the orbit is isomorphic to the GL(«)-module of

representations of the marked quiver

repa Q¢

on k vertices {v1,..., v} such that the marked subquiver on any two vertices v;, v,
with 1 <1i,j <k has the form

a1 {J

where these numbers satisfy a;; < (m — 1)d;d; and a;; +my; < (m— 1)d? + 1.

Under the assumptions of the theorem, the étale slice result enables us with a

slice Sy . NZ™ and a commutative diagram

GL, x&H) g
Gbuﬂ &

GL, x9H) Nzm rep A

S, /GL()

12 /C2

Y
Y

N /GL() iss, A
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where the vertical maps are the quotient maps, all diagonal maps are étale and the
upper ones are G Ly -equivariant. Hence, the G Ly, -local structure of the representa-
tion variety rep A= rep" AQ,, in a neighborhood of the orbit of x is the same as

that of the assoczated fiber bundle G L,, x (@) N*™ jn g neighborhood of the orbit of
(1,,,0). Further, the local structure of the quotient scheme iss,, A in a neighborhood
of € is the same as that of the quotient variety of the marked quiver representations
N:™/GL(«) in a neighborhood of the trivial representation 0.

Let m < Cliss,, A] be the mazimal ideal corresponding to £. As the ring of
polynomial invariants Cliss,, A] is via the diagonal embedding a central subalgebra
of the ring of GL,-equivariant maps from rep. A to M, (C) we can localize this
ring of equwnt maps AQ, at m and also t take its m-adic completion which we
denote by (AQ,,), .

Let mg be the maximal ideal of the ring of GL( )-polynomial invariants of the
marked quiver representation space Clrep, Q¢ |GL(@) = C[N2™/GL(a)]. Let T, Q¢
denote the ring of GL(«)-equivariant maps fmm repa Qg to M, (C) and denote the

mg-adic filtration of it with mm . The above diagram then implies
0

Theorem 5.29 Let £ correspond to a semi-simple n-dimensional representation of
A such that the representation variety is smooth along this closed orbit. Then, with
notations as before we have an isomorphism of complete local algebras

(AQ,), ~To Q¢

In the following sections we will determine the algebra structure of To Q.

5.9 Finite dimensional algebras.

Let A be a Cayley-Hamilton algebra of degree n wit trace map tr, then we can define
a norm-map on A by defining

N(a) =op(a) forallae A.

Recall that the elementary symmetric function o, s a polynomial function

flti,te, ... ty) in the Newton functions t; = E;L:la:; Then, o(a) =
f(tr(a),tr(a?),...,tr(a®)).  Because, we have a trace preserving embedding

A— MH(C[@Z A)]) and the norm map N coincides with the determinant in
this matriz-algebra, we have that

N1)=1 and Va,b€e A N(ab) = N(a)N(b).

Furthermore, the norm-map extends to a polynomial map on A[t] and we have that

Xg") (t) = N(t—a), in particular we can obtain the trace by polarization of the norm
map. Consider a finite dimensional semi-simple C-algebra

A= Mdl((C) @@Mdk(C),

then all the Cayley-Hamilton structures of degree n on A with trace values in C are
given by the following result.

Lemma 5.30 Let A be a semi-simple algebra as above and tr a trace map on A
making it into a Cayley-Hamilton algebra of degree n. Then, there exist a di-
mension vector o = (my,...,my) € Ni such that n = Zle m;d; and for any
a=(Ai,...,A;) € A with A; € My,(C) we have that

tr(a) = miTr(Ar) + ...+ mpTr(Ag)

where T'r are the usual trace maps on matrices.
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Proof. The norm-map N on A defined by the trace map tr induces a group mor-
phism on the invertible elements of A

N:A"=GL4 (C) x ... x GLgy, (C) — C*

that is, a character. Now, any character is of the following form, let A; € GLq4,(C),
then for a = (Ay,..., Ar) we must have

N(a) = det(A1)™ det(A2)™> ... det(Ag)™*

for certain integers m; € Z. Since N extends to a polynomial map on the whole of
A we must have that all m; > 0. By polarization it then follows that

tr(a) = mlT’I“(A1> +... ka’I“(Ak)

and it remains to show that no m; = 0. Indeed, if m; = 0 then tr would be the
zero map on My, (C), but then we would have for any a = (0,...,0,A4,0,...,0) with
A € My, (C) that
X () ="
(n)

whence xq (a) # 0 whenever A is not nilpotent. This contradiction finishes the
proof. O

We can extend this to all finite dimensional C-algebras. Let A be a finite di-
mensional algebra with radical J and assume there is a trace map tr on A making
A into a Cayley-Hamilton algebra of degree n and such that tr(A) = C. We claim
that the norm map N : A —— C is zero on J. Indeed, any j € J satisfies j' = 0
for some | whence N(j)! = 0. But then, polarization gives that tr(J) = 0 and we
have that the semisimple algebra

is a semisimple Cayley-hamilton algebra of degree m on which we can apply the
foregoing lemma. Finally, note that A ~ A** ® J as C-vectorspaces. This concludes
the proof of

Proposition 5.31 Let A be a finite dimensional C-algebra with radical J and
semisimple part
A =A)J =My, (C)®...® My, (C).

Iftr : A —— C —— A is a trace map such that A is a Cayley-Hamilton algebra
of degree n, there exists a dimension vector a = (my,...,my) € Nﬁ_ such that for

all a = (Aq, ..., Ak, j) with A; € Mg, (C) and j € J we have
tr(a) =miTr(Ar) +...miTr(Ax)
with Tr the usual traces on Mg, (C) and )", m;d; = n.

Howewver, there can be other trace maps on A making A into a Cayley-Hamilton
algebra of degree n. For example let C' be a finite dimensional commutative C-algebra
with radical N, then A = M, (C) is finite dimensional with radical J = M,(N)
and the usual trace map tr : M,(C) —— C makes A into a Cayley-Hamilton
algebra of degree n such that tr(J) = N # 0. Still, if A is semi-simple, the center
Z(A)=Ca@...®C (as many terms as there are matriz components in A) and any
subring of Z(A) is of the form C® ... ® C. In particular, tr(A) has this form and
composing the trace map with projection on the j-th component we have a trace map
tr; on which we can apply the lemma.
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With Cy@Q,, we will denote the universal algebra in the category of Cayley-
Hamilton algebras of degree n such that 1 has a decomposition into k orthogonal

idempotents {e1,...,er}t. That is, take generic n X n matrices
Ill(l) e Iln(l)
Xp=| :
Tn1(l) oo zpn(D)

for the idempotents e; for 1 <1 < k. As e;e; =0 ifi # j and e? = e;, the only
nonvanishing traces of monomials in the e; (up to cyclic permutation) form the
polynomial algebra

P=Cl[t1,...,ts)/(t1 + ...+ tp — n)

where t; = tr(X;) = >5_; x;;(i). Now, consider the quotient R of the polynomial
algebra Clz;;(1) |1 <4,j <n,1 <1 <k] by the ideal of all entries coming from the
matriz identities

n

X2 =X;
XiX;=0fori#j
Xi+...+Xp=1,
x(;?i)(Xi) =0
and observe that all the coefficients of the Cayley-Hamilton polynomial of X; are

polynomials in t;. Then, Cx@,, is the subalgebra of M, (R) generated by the images
of the X; and t;.

Theorem 5.32 With notations as above, we have :
1. CxQ,, is a smooth Cayley-Hamilton algebra of degree n.

2. rep'™ C1,Q,, is the disjoint union of the homogeneous varieties
—n
GL,/(GLp, X ... X GLy,,)

where « = (my,...,myg) € Nﬁ is a dimension vector such that mi+...+my =
n.

3. The Cayley-Hamilton algebra corresponding to the component determined by
a = (mq,...,mg) is the semi-simple algebra Cy(«) which is the subalgebra of
M, (C) generated by the images

22:1 i
e; — Z €jj € Mn((C)

=0T metl

Proof. (1) : Let T be a Cayley-Hamilton algebra of degree n with trace map tr
and I a twosided nilpotent ideal of T such that tr(I) C I. Assume there is a trace
preserving algebra map

Cr@, —2+ 1)1

which is determined by the ¢(X;) = f; which are idempotents in T /I such that 1 =
fi+...+ fr. By the lemma above we can lift this decomposition to 1 = fi +...+ fi
where f; are orthogonal idempotents of T'. Clearly, there is a C-algebra morphism
VY CxQ,, — T lifting ¢ by sending X; to f; and t; to tr(f;). Observe that this is
possible as the only relation holding among the t; is t1 + ...+ tx = n and because T
is of degree n we have that tr(f1) + ...+ tr(fx) =n.
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(2) : By the previous part we know that the trace preserving representation
variety @Z’ CyQ,, is smooth and hence reduced. Therefore, it suffices to describe

the points. Take a trace preserving n-dimensional representation M determined by
the trace preserving algebra morphism

Ck@n 4X’ Mn (C)

The image x(Cr@,) is a finite dimensional semi-simple commutative Cayley-
hamilton algebra with trace image C and hence one of the algebras Cy(a) for some
dimension vector o = (mq, ..., my) with > m; = n. Therefore, M is a semi-simple
representation and the multiplicities of the simple components S; corresponding to
the I-th factor of Ci(«) is equal to the dimension of e;.M which is the number
my. Hence, there is a unique trace preserving representation factoring via Ck(c).
Therefore, Tepfj CrQ,, is the disjoint union of finitely many closed orbits (since they
are semi-simple) one for each dimension vector a = (my, ..., my) with 3. m; = n.
The stabilizer group of M is the group of module automorphisms and hence equal
to GLy,, X ... X GLy,, proving the assertion.

(3) : We have already seen that there is a unique isomorphism class of trace
preserving representation for Ci(a) so the reduced variety of @;’" Ci(a) is the
orbit GL, /(GLy,, X ...x GLy,, ). Moreover,

Ck(a) ~ Ck@n/(tl —My,..., g — m;c) = Ck@n(a)

We claim that C[@Z CrQ,(a)] is formally smooth. Let C be a commutative alge-

bra and I <C' a nilpotent ideal. Any algebra morphism C[repfl’" CrQ,(a)] 2, c/I
determines a decomposition 1 = €, + ... + G into orthogonal idempotents ¢ €
M, (C/I) with tr(¢;) = my. This decomposition can be lifted to 1 = c¢1 + ...+ ¢k
where ¢; are orthogonal idempotents in M, (C). The entries of the v; determine an
algebra morphism (C[rep;’" CrQ,, ()] — C lifting ¢ proving formal smoothness.
Therefore rep: Cr () is smooth and reduced hence is the orbit. ]

5.10 Invariant and equivariant maps.

Let A be a Cayley-Hamilton algebra of degree n with trace map tr. Assume we have
a decomposition
l=a1+...+ax

of 1 as a sum of orthogonal idempotents a; in A. Then, we have a trace preserving
embedding
Cr@, e A defined by X;— a;, t; v tr(a;).

On the level of representation schemes this embedding gives rise to a morphism
between the representation varieties

rep; A ——~ rep) C,@,

defined by composition. By the foregoing result we have a decomposition of
@Z CrQ,, as a disjoint union of finitely many orbits O(«a) determined by a di-
mension vector o = (my,...,mg) € Ni such that > m; = n. Therefore, we can
stmilarly decompose

@Z A=U,m ! O(a)

into a disjoint union of finitely many closed and open subschemes. We will de-
note the component 7=+ O(a) by rep, A. Observe that of course some of these
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components may be empty. On the level of coordinate algebras this decomposition
translates itself into

Clrep’ Al = @aClrep, Al and M, (Clrep” A]) = @M, (Clrep_ A])
Since each of the components rep, A is stable under the GL,-action we have that
M, (Clrep!™ A" = @o M, (Clrep, A])“"

as the left term equals A this finishes the proof of the following result.

Proposition 5.33 Let A be a Cayley-Hamilton algebra of degree n having a de-
composition 1 = a1 + ... + ag into orthogonal idempotents, then

1. A = ®,A, the sum ranging over all dimension vectors a = (mq,...,my) €
NE satisfying > m; = n.

2. The projection of a; in the component A, has trace m; where a =
(mla"'amk)‘

Again, observe that usually most components in the above direct sum decom-
position are zero. We will now concentrate on one of the components A, that
is we assume that A is a Cayley-Hamilton algebra of degree n with decomposition
1 = a1+ ...+ a, into orthogonal idempotents such that tr(a;) = m; € Ny and

> m; = n. Then, we have a trace preserving embedding Ci () SN making
A into a Ci(« ) = x¥_ C-algebra. We have constructed a trace preserving embed-
ding Ci(a) s M, (C) by sending the zdempotent e; to the diagonal idempotent
d; € M,(C) with ones from position Z 1 m; — 1 to Z;Zl m;. This calls for the

introduction of a restricted representatwn scheme of all trace preserving algebra
morphisms x such that the diagram below is commutative

A

M, (C)

Ci(a)

that is, such that x(a;) = d;. This again determines an affine scheme rep"es A
which is in fact a closed subscheme of reptr A. The functorial description of the
restricted module scheme is as follows. Lel C' be any commutative C-algebra, then
M, (C) is a Cr(a)-algebra and the idempotents d; allow for a block decomposition

M (C)dy ... dyM,(C)d,
M (C) = &;,;d; M, (C)d; = : :
Moy (C)dy ... duM,(C)dy

The scheme @SS A assigns to the algebra C the set of all trace preserving algebra
maps

A% M,(B) such that ¢(a;) = d;.
FEquivalently, the idempotents a; decompose A into block form A = @®; ja;Aa; and

then rep”* A(C) are the trace preserving algebra morphisms A — M, (B) com-
patible with the block decompositions.
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The embedding C () <, M, (C) sending e; to d; gives a special point p of the
homogeneous variety

@Z’“ Cr(a) = GLy/(GLyy, X ... X GLy,).

Still another description of the restricted representation scheme is therefore that
rep’®® A is the scheme theoretic fiber 7= 1(p) of the point p under the GL,-
equivariant morphism

@Z A" @Z Ci(a).

Hence, the stabilizer subgroup of p acts on rep™®® A. This stabilizer is the subgroup

GL(a) = GLy,, %X ... X GL,,, embedded in GL, along the diagonal

GLy,
GL(a) = — GL,.
GLy,

Clearly, GL(«) acts via this embedding by conjugation on M, (C). The main impli-
cation of the existence of a decomposition of 1 into orthogonal idempotents is the
following reduction result both of the affine scheme and of the acting group.

Theorem 5.34 Let A be a Cayley-Hamilton algebra of degree n such that 1 =
a1 +...+ay is a decomposition into orthogonal idempotents with tr(a;) = m; € N4.
Then, A is isomorphic to the ring of GL(a)-equivariant maps

@’;s A— M,.

Proof. We know that A is the ring of GL,-equivariant maps @: A—— M,.
Further, we have a G L, -equivariant map

@Z' A" rep tr Cy(a) = GLyp.p ~ GL,/GL(c)
Thus, the GL,,-equivariant maps from @Z A to M, coincide with the Stab(p) =
GL(a)-equivariant maps from the fiber 7=1(p) = rep’®® A to M,. O
That is, we have a block matriz decomposition for A. Indeed, we have
A~ (C[@Zes A] ® Mn(C))GL(a)

and this isomorphism is clearly compatible with the block decomposition and thus
we have for all i,j that

aiAa; = (Clrep!™ A} ® My, xm, (C)) )

where My, xm; (C) is the space of rectangular m; x m; matrices M with coefficients
in C on which GL(«) acts via

g.-M = gng;1 where g = (g1,...,9x) € GL(a).
Another consequence of a idempotent decomposition is.

Theorem 5.35 Let A be a Cayley-Hamilton algebra of degree n such that 1 = a1+
...+ ag s a decomposition into orthogonal idempotents with tr(a;) = m; € Np. If
the restricted representation scheme is a smooth GL(a)-variety, then A is a smooth
Cayley-Hamilton algebra.
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Proof. Consider again the projection rep!” A —— rep!” Ci(a). As the base is a
homogeneous variety it is smooth. Moreover all the fibers are isomorphic to @Zes A
whence smooth by assumption. Then, the total space repf: A is also smooth whence
is A a smooth algebra. - |

If Q be a quiver on k vertices, then the vertex idempotents e; give a decomposition
l=-e1+...4+er of one into orthogonal idempotents and make the path algebra CQ
into a Ci-algebra. Fiz a dimension vector a = (dy,...,dy) € NF and let n = > d;.

Observe that we may assume that o € N’j_ (and hence that the map Cy, . CQ is
an embedding. If not, we can restrict to the full subquiver of QQ on the vertices v;

such that d; # 0.

The algebra embedding Cl, 2, CQ determines a morphism
rep, CQ —— rep Cj =UgO(J)

where the disjoint union is taken over all the dimension vectors 8 = (by,...,bx)
such that n =Y b;. Again, consider the point p € O(«) determined by sending the
idempotents e; to the canonical diagonal idempotents of M, (C). As rep, @ can
be identified with the variety of n-dimensional representations of CQ in block form
determined by these idempotents we see that rep, Q = 7~ 1(p).

We construct the algebra T,, @ as follows : first adjoin formally all traces to the
path algebra CQ, that is, consider the path algebra of Q over the polynomial algebra
R in the variables t, where p is a word in the arrows a; € Q. and is determined
only up to cyclic permutation. As a consequence we only retain the variables t,
where p is an oriented cycle in Q (as all the others have a cyclic permutation which
is the zero element in CQ). This way we put a formal trace map on R ® CQ by
defining tr(p) =t is p is an oriented cycle in Q and tr(p) = 0 otherwise.

The algebra T, Q is obtained from this formal trace algebra R® CQ by dividing
out the substitution invariant twosided ideal generated by all the evaluations of the
formal Cayley-Hamilton algebras of degree n, Xé")(a) fora € R® CQ together with
the additional relations that tr(e;) = d;. To Q is a Cayley-Hamilton algebra of
degree n with a decomposition 1 = e1 + ... + e into orthogonal idempotents such
that tr(e;) = d;. Consequently, the restricted representation scheme

rep ™ To Q = repa Q
as GL(«a)-varieties. Summarizing the results proved before in this special we obtain
Theorem 5.36 With notations as before,
1. The algebra T, Q is a smooth Cayley-Hamilton algebra.
2. T, Q is the algebra of GL(«a)-equivariant maps from rep, Q to M,, that is,
To Q = M (Clrepa Q)"
3. The ring of GL(«)-polynomial invariants of rep, Q,

N, @ = Clrepa Q1"

is generated by traces along oriented cycles in the quiver Q of length bounded
by n? + 1.
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A realization of these algebras is as follows. To an arrow Q<——@ corresponds

a dj x d; matriz of variables from Clrep, Q]

3] -

rg1(a) ... ... xd].d‘l.(a)

x11(a) ... ... x14,(a)

where x;;(a) are the coordinate functions of the entries of V, of a representation
V € rep, Q. Let p = ajaz...a, be an oriented cycle in Q, then we can compute

the following matriz
M,=M,, ...My,M,,

over Clrep, Q]. As we have that s(a,) = t(a1) = v;, this is a square d; X d; matriz
with coefficients in Clrep, Q] and we can take its ordinary trace

Tr(M,) € Clrep, Q).

Then, N, Q is the C-subalgebra of Clrep, Q] generated by these elements.
Consider the block structure of M, (Clrep, Q]) with respect to the idempotents
€;

My, (S) ceo Mg, xa, (S)
: Md_,»xdi(s) .
M, xd,(S) oo Mg (5)
where S = Clrep, Q. Then, we can also view the matriz M, for an arrow

@O=<~——@ as a block matriz in M, (Crep, Q])

o ... ... 0

o ... ... 0

Then, Ty Q is the Cy(a)-subalgebra of M, (Clrep,, Q]) generated by N, Q and these
block matrices for all arrows a € Q.. T, Q itself has a block decomposition

where Py; is the No Q-module spanned by all matrices M,, where p is a path from
v; to vj of length bounded by n?.

Example 5.37 This result proves the claims we made in chapter 1 on the algebras related to
the study of Calogero particles. For consider the path algebra M of the quiver
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and take as dimension vector a = (n,1). The total dimension is in this case m = n + 1 and we
fix the embedding Co = C x C —— M given by the decomposition 1 = e + f. Then, the above
realization of T, M consists in taking the following 7 X 7 matrices

1 0 0O ... 0 O 11 ... Xip O
en = o= SR S

1 0 0 0 0 Inl Inn 0

0O ... 0 O 0 0 1 0 0 0
Y11 ... Yin O 0 ... 0 w 0O ... 0 O

Yn = . . . Up = | - . . Up = .

Ynl .- Ynn O 0 ... 0 un 0o ... 0 0
0 0 0 o ... 0 O v1 ... vn O

In order to determine the ring of GL(a)-polynomial invariants of repo M we have to consider the
traces along oriented cycles in the quiver. Any nontrivial such cycle must pass through the vertex
e and then we can decompose the cycle into factors z, y and uv (observe that if we wanted to
describe circuits based at the vertex f they are of the form ¢ = vc’u with ¢’ a circuit based at e
and we can use the cyclic property of traces to bring it into the claimed form). That is, all relevant
oriented cycles in the quiver can be represented by a necklace word w

\:‘/D\
e O
O AN
/ O
O \

=)
O

where each bead is one of the elements
sz @:y and E:uv

In calculating the trace, we first have to replace each occurrence of z,y,u or v by the relevant
T X m-matrix above. This results in replacing each of the beads in the necklace by one of the
following n X n matrices

11 ... Zin Y11 ... Yin ULV ...  ULVp
Tnl <. Tnn Ynl coo Ynn Un V1 co. o UnUn

and taking the trace of the n X n matrix obtained after multiplying these bead-matrices cyclicly in
the indicated orientation. This concludes the description of the invariant ring N, Q. The algebra
Ta M of GL(a)-equivariant maps from repo M to Mz, that is, To M = M(n) defined in chapter 1,
is then the subalgebra of M7(Clrepn M]) generated as Ca(a)-algebra (using the idempotent 7 X 7@
matrices corresponding to e and f) by No M and the 7 X m-matrices corresponding to z,y,u and

V.

We will have to extend these results to a marked quiver Q°®. Let {ly,...,l,} be
the marked loops in Q°, then we define

o __ N, Q
Now @ = o) i
Ta Q° = G 2Ty

Clearly, T, Q°® is a Cayley-Hamilton algebra of degree n having a decomposition
1=e1+...4 ex into orthogonal idempotents and such that

rep’” T(Q%, o) = repa Q°

Theorem 5.38 1. The algebra T, Q°® is a smooth Cayley-Hamilton algebra.
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2. T, Q° is the algebra of GL(&)-equivariant maps from rep, Q° to M, (C), that
18,

To Q* = My (Clrepa Q)
3. The algebra N, Q°® is the ring of GL(«a)-polynomial invariants of rep, Q°,
Na Qo _ (C[repa QQ]GL(oz)

and is generated by traces along oriented cycles in the quiver Q of length
bounded by n® + 1.
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Combinatorics.
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Chapter 6

Local Classification.

Every commutative smooth variety of dimension d is locally in the étale topology
isomorphic to affine d-space A®. In this chapter we study the corresponding problem
for Cayley-smooth orders A of degree n. In the foregoing chapter we have described
the étale local structure of A near a point & € iss, A by a marked quiver setting
(Qg,ag). In this chapter we will classify those quiver settings which can occur
for given n and given dimension d = dim iss, A of the central variety. We will
show that for fixed d and n only a finite number of such settings do arise, that is,
Cayley-smooth algebras have a finite number of possible étale local behaviour. We
prove this by simplifying a quiver-setting by shrinking (identifying arrow-connected
vertices with the same vertex-dimension) to one of a finite list of settings in reduced
form. For dimension d < 4, the complete list is

)

¢ (O QB@ e

where the bozed value is the dimension d. To arrive at this result we need to classify
the dimension vectors of simple representations of (marked) quivers and be able to
compute the dimension of the corresponding quotient varieties. Further, we show
that the local quiver setting (Qg,ag) contains enough information to determine the

203
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quiver-settings in nearby points and even to give the dimension of the strata of
points of equal type. We then apply these results to the local characterization of
Cayley-smooth orders over curves and surfaces. Smooth curve orders are proved
to coincide with hereditary orders and smooth surface orders must have a smooth
surface as their center, a ramification divisor having as worst singularities normal
crossings and must be étale splittable. If we combine these results with the Artin-
Mumford sequence, describing the Brauer group of the functionfield of a smooth
projective surface X, we are able to prove that any central simple algebra A of
degree n over C(X) contains a Cayley-Hamilton order A having at worst a finite
number of noncommutative singularities, all of which are étale isomorphic to those
appearing in the origin of a quantum plane. Finally, we classify all central simple
algebras over C(X) admitting a Cayley-smooth model.

Whereas we restrict attention mainly to orders, it is clear that the strategy can
be extended to Cayley-Hamilton algebras of degree n which are finite modules over
a central subring C, provided we have some control on the commutative extension
C —— Z(A). For an application of this to the theory of quantum groups, the reader
may consult [19].

6.1 Marked quivers.

In this section we recall the basics on representations of (marked) quivers. Recall
that a quiver Q is a directed graph determined by

e a finite set Q, = {v1,...,vr} of vertices, and

e a finite set Q, = {a1,...,a;} of arrows where we allow multiple arrows between
vertices and loops in vertices.

Every arrow has a starting vertex s(a) = i and a terminating vertex
t(a) = j. Multiplication in the path algebra CQ is induced by (left) concatenation
of paths. More precisely, 1 = v1 + ...+ vg is a decomposition of 1 into mutually
orthogonal idempotents and further we define

. a . . . .
e vj;.a is always zero unless O<———O in which case it is the path a,
. a . . . .
e a.v; is always zero unless O<———C in which case it is the path a,
. a; a; . . ..
o a;.a; is always zero unless O<——O=< (O in which case it is the
path a;a;.

The description of the quiver @Q can be encoded in an integral k X k matriz

X111 .-+ Xik
XQ=|": : with  xij = 0ij — # { O=~—0 }
Xkl --- Xkk

Example 6.1 Consider the quiver Q

2 3

Then, with the indicated ordering of the vertices we have that the integral matrix is
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and the path algebra of @) is isomorphic to the block-matrix algebra
C CeC 0
CcCQ' ~ |0 C 0
0 Clz] Clx]

where z is the loop in vertex vs.

The subspace CQu; has as basis the paths starting in vertex v; and because CQ =
®;CQu;, CQu; is a projective left ideal of CQ. Similarly, v;CQ has as basis the paths
ending at v; and is a projective right ideal of CQ. The subspace v;CQuv; has as basis
the paths starting at v; and ending at v; and CQu;CQ is the twosided ideal of CQ
having as basis all paths passing through v;. If 0 # f € CQu; and 0 # g € v;CQ,
then f.g # 0 for let p be a longest path occurring in f and q a longest path in g,
then the coefficient of p.q in f.g cannot be zero. As a consequence we have

Lemma 6.2 The projective left ideals CQu; are indecomposable and paired non-
isomorphic.

Proof. If CQu; is not indecomposable, then there exists a projection idempotent
[ € Homco(CQui, CQu;) ~ v;CQu;. But then, f2 = f = fu; whence f.(f —v;) =
0, contradicting the remark above. Further, for any left CQ-module M we have
that Homeg(CQui, M) ~ v;M. So, if CQu; ~ CQu; then the isomorphism gives
elements f € v;CQuv; and g € v;CQuv; such that f.g = v; and g.f = v;. But then,
v; € CQu;CQ, a contradiction unless i = j as this space has basis all paths passing
through v;. O

Example 6.3 Let Q be a quiver, then the following properties hold :
1. CQ is finite dimensional if and only if @ has no oriented cycles.

2. CQ is prime (that is, I.J # 0 for all twosided ideals I, J # 0) if and only if Q is strongly
connected, that is, for all vertices v; and v; there is a path from v; to v;.

3. CQ is Noetherian (that is, satisfies the ascending chain condition on left (or right) ideals)
if and only if for every vertex v; belonging to an oriented cycle there is only one arrow
starting at v; and only one arrow terminating at v;.

4. The radical of CQ has as basis all paths from v; to v; for which there is no path from v; to
Vs .

5. The center of CQ is of the form Cx...xCxC[z]X...xC[z] with one factor for each connected
component C of @ (that is, connected component for the underlying graph forgetting the
orientation) and this factor is isomorphic to C[z] if and only if C' is one oriented cycle.

Recall that a representation V' of the quiver Q is given by

e q finite dimensional C-vector space V; for each vertex v; € Q,, and

) Va, .
e a linear map V; <—— V; for every arrow n Qq.
If dim V; = d; we call the integral vector o = (dy,...,dy) € NF the dimension vector

of V' and denote it with dim V. A morphism V 2, W between two representations
V and W of Q is determined by a set of linear maps

Vi i, Wi for all vertices v; € @,

satisfying the following compatibility conditions for every arrow in Qg

Va

Vi v

@i ®;
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Clearly, composition of morphisms V Lew Y X s given by the rule that (¢ o
@); = W;io; and one readily verifies that this is again a morphism of representations
of Q. In this way we form a category rep Q of all finite dimensional representations
of the quiver Q.

Proposition 6.4 The category rep Q is equivalent to the category of finite dimen-

sional CQ-representations (left modules).

Proof. Let M be an n-dimensional CQ-representation. Then, we construct a
representation V of Q by taking

o V, =v;M, and for any arrow in Q. define
o V,: Vi — V; by V() = vjax.

Observe that the dimension vector dim(V) = (dy,...,dy) satisfies > .d; = n. If

¢: M —— N is CQ-linear, then we have a linear map V; = v; M o, W; =v;N
which clearly satisfies the compatibility condition.

Conversely, let V' be a representation of Q with dimension vector dim(V) =
(di,...,dr). Then, consider the n = Y d;-dimensional space M = @;V; which
we turn into a CQ-representation as follows. Consider the canonical injection and

projection maps V; <Y M T Vj. Then, define the action of CQ by fizing the
action of the algebra generators v; and a; to be

a
for all arrows . A computation verifies that these two operations are
inverse to each other and induce an equivalence of categories. |

The Euler form of the quiver Q is the bilinear form on Z*
xQ( )t ZF xZF —~ 7 defined by xo(a, B) = a.xq.f"
for all row vectors a, 3 € ZF.
Theorem 6.5 Let V and W be two representations of @Q, then
dime Homeq(V,W) — dimc Extpg(V,W) = xq(dim(V), dim(W))
Proof. We claim that there exists an exact sequence of C-vectorspaces
0 — Homco(V,W) —Lv @y,cq, Home(Vi, W;) ——r

§ €
—— Bacq, Home(Via), Wya)) —> Eatig(V,W) — 0

Here, v(¢) = (¢1,...,¢r) and 6 maps a family of linear maps (f1,..., fx) to the
linear maps pra = fr(a)Va —Wafs(a) for any arrow a in Q, that is, to the obstruction
of the following diagram to be commutative

Va

Vs(a) Vita)

Fs@y ™ fe(a)

W@y — Wiw)
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By the definition of morphisms between representations of Q it is clear that the
kernel of 6 coincides with Homeg(V, W).
Further, the map € is defined by sending a family of maps (g1, ...,9s) = (9a)acQ.
to the equivalence class of the exact sequence
0—W > E-L2sV_—»0
where for all v; € Q, we have E; = W; ®V; and the inclusion i and projection map

p are the obvious ones and for each generator a € @, the action of a on E is defined
by the matriz

W(l a
E, = { 0 ‘%J t Esa) = W) @ Vi) — Wita) ® Via) = Ei(a)
Clearly, this makes E into a CQ-module and one verifies that the above short exact
sequence is one of CQ-modules. Remains to prove that the cokernel of § can be
identified with EmtéQ(V, W). For this, we need to look back at the description of
Ezt! in terms of cycles and boundaries.

A set of algebra generators of CQ is given by {vi,..., vk, a1,...,a;}. A cycle is
given by a linear map A : CQ —— Homgc(V, W) such that for all f, f" € CQ we
have the condition

AL = p(DAS) + Ao (f)

where p determines the action on W and o that on V. First, consider v; then the
condition says A(v?) = A(v;) = pV M(v;) + A(vi)py whence A(v;) : V; —— W, but
then applying again the condition we see that A(v;) = 2X\(v;) so A(v;) = 0. Similarly,
using the condition on a = vyq)a = avye) we deduce that A(a) : Vyq) —— Wyq).
That is, we can identify Saeq, Homc (V) Wia)) with Z(V,W) under the map
€. Moreover, the image of 0 gives under § rise to a family of morphisms A(a) =
Jr@)Va — Wafs@) for a linear map f = (f;) : V. —— W so this image coincides
precisely to the subspace of boundaries B(V, W) proving that indeed the cokernel
of § is Ext(lcQ(V, W) finishing the proof of exactness of the long sequence of vec-
torspaces. But then, if dim(V) = (r1,...,rg) and dim(W) = (s1,..., k), we have
that dim Hom(V,W) — dim Ext'(V,W) is equal to

Z dim Hom(c(vi, Wl) — Z dim Hom(c(vs(a),Wt(a))

V; €Qy a€Qq
= Z TiS; — Z T's(a)St(a)
U'iEQ'u aeQa

=(r,...,re)Mg(s1,...,85)" = xo(dim(V), dim(W))
finishing the proof. O
Fiz a dimension vector o = (dy, . ..,d;,) € N¥ and consider the set rep, Q of all

representations V. of Q such that dim(V') = «. Because V is completely determined
by the linear maps

Va : ‘/S(a) = (Cdé‘(a) - > (Cdt(a) — ‘/t(a)
we see that rep, Q is the affine space

repa @ = @ Mg, xq,(C) ~C"
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where r = ZaEQa ds(a)di(a)- On this affine space we have an action of the algebraic
group GL(a) = GLg, X ... x GLg, by conjugation. That is, if g = (g1,...,9%) €
GL(a) and if V = (Vu)aeq, then g.V is determined by the matrices

(9~V)a = Gt(a) Vags_((ll) .

If V and W in rep, Q are isomorphic as representations of Q, such an isomorphism
is determined by invertible matrices g; : V; —— W; € GLg, such that for every

arrow O<~———Q we have a commutative diagram
Vi — sV
gi 9
Wi — W

or equivalently, g;Va = Wags. That is, two representations are isomorphic if and
only if they belong to the same orbit under GL(a). In particular, we see that

StabGL(a) V > Autcq V

and the latter is an open subvariety of the affine space Endcg(V) = Homeg(V, V)
whence they have the same dimension. The dimension of the orbit O(V) of V in
rep, Q is equal to

dim O(V) = dim GL(a) — dim Stabgra) V.
But then we have a geometric reformulation of the above theorem.
Lemma 6.6 Let V € rep, Q, then
dim rep, Q —dim O(V) = dim Endcg(V) — xo(o, @) = dim Ext%:Q(M V)

Proof. We have seen that dim rep, @Q — dim O(V) is equal to

st(a)dt(a) - (Z d? —dim Endcg(V)) = dim Endcg(V) — xg(a, @)

and the foregoing theorem asserts that the latter term is equal to dim ExtéQ(V, V).
O

In particular it follows that the orbit O(V) is open in rep, Q if and only if V
has no self-extensions. Moreover, as rep, Q is irreducible there can be at most one
isomorphism class of a representation without self-extensions.

For our purposes we have to generalize the setting slightly. A marked quiver Q°®
has an underlying quiver QQ such that some of its loops can acquire a marking. Such

a marked loop will be depicted by

A representation V' of a marked quiver Q°® is a representation of the underlying
quiver Q@ such that the matrices corresponding to marked loops have trace equal to
zero. If we fiz a dimension vector a,

repe Q° ={V €repy Q | tr(Vy) =0 if a is a marked loop in Q° }



6.2. SIMPLE DIMENSION VECTORS. 209

repa Q° is an affine subspace of rep, @ of codimension equal to the number of
marked loops in Q°. This subspace is stable under the action of GL(a) on rep, Q
and GL(«a)-orbits in rep, Q° correspond to isomorphism classes of representations
of Q®. The Euler form of the marked quiver Q* is the Euler form of the underlying
quiver Q. We denote

Xii =1 —u; —my

where u; is the number of unmarked loops at v; and m; is the number of marked
loops at v;.

6.2 Simple dimension vectors.

In this section we characterize the dimension vectors a such that the marked quiver
Q° has a simple representation V' (that is, contains no proper subrepresentations)
with dim(V') = a.

Consider the underlying quiver Q with vertex set Q, = {v1,...,vx}. To a subset
S —— @, we associate the full subquiver Qg of Q, that is, Qg has as set of vertices

the subset S and as set of arrows all arrows in Qq such that v; and v,
belong to S. A full subquiver Qg is said to be strongly connected if and only if for
all vi,v; € V there is an oriented cycle in Qs passing through v; and v;. We can
partition

Q,=51U...US;

such that the Q)s, are mazimal strongly connected components of (). Clearly, the
direction of arrows in Q) between vertices in S; and S; is the same by the maz-
imality assumption and can be used to define an orientation between S; and S;.
The strongly connected component quiver SC(Q) is then the quiver on s vertices
{wi, ..., ws} with w; corresponding to S; and there is one arrow from w; to w; if
and only if there is an arrow in Q from a vertex in S; to a vertex in S;. Observe
that when the underlying graph of Q is connected, then so is the underlying graph
of SC(Q) and SC(Q) is a quiver without oriented cycles.

Example 6.7 Consider the connected quiver Q

then the partitioning of @, into maximal strongly connected components is

Qv = {v1} U {v2,v3,v4} U{vs}

and the strictly connected component quiver SC(Q) of @ has the following form
)
G 2 =)

We will give names to vertices with very specific in- and out-going arrows

<

source sink
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prism : focus

For example, for the quiver @ of the above example, vy is a source, there are no
sinks, vo and vy are focuses and vy is a prism (observe that a loop gives one incoming
and one outgoing arrow). If a = (du,...,dy) is a dimension vector, then supp(a) =

{'Ui EQv|d2750}

Lemma 6.8 If o is the dimension vector of a simple representation of ), then
Qsupp(a) 8 a strongly connected subquiver.

Proof. If not, we consider the strongly connected component quiver SC(Q supp(a))
and by assumption there must be a sink in it corresponding to a proper subset

S el Q.. If V € rep, Q we can then construct a representation W by
o W; =V, forv, €S and W; =0 ifv; ¢ S,
o W, =V, for an arrow a in Qg and W, = 0 otherwise.
One verifies that W is a proper subrepresentation of V', so V' cannot be simple, a

contradiction. O

The second necessary condition involves the Euler form of Q. With €; be denote
the dimension vector of the simple representation having a one-dimensional space
at vertex v; and zero elsewhere and all arrows zero matrices.

Lemma 6.9 If a is the dimension vector of a simple representation of @), then

XQ(a7 67;) S 0
XQ(eia Oé) S 0
for all v; € supp(a).
Proof. Let V' be a simple representation of @ with dimension vector a =

(dy,...,dr). One verifies that
xq(e, ) =d; — Z dj
Assume that xq(e;, o) > 0, then the natural linear map

O v . v

@<a—@ @<‘1—@

has a nontrivial kernel, say K. But then we consider the representation W of Q
determined by

o W; =K and W; =0 for all j # i,
e W, =0 foralla € Q,.
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It is clear that W is a proper subrepresentation of V', a contradiction.

Similarly, assume that xg(a, €;) = d; — > d; > 0, then the linear map

& vn: b v - Vi
O——0
has an image I which is a proper subspace of V;. The representation W of Q
determined by
o Wy =1 and W; =V; for j #1,
o W, =V, foralla € Q,.

is a proper subrepresentation of V', a contradiction finishing the proof. O

Example 6.10 The necessary conditions of the foregoing two lemmas are not sufficient. Con-
sider the extended Dynkin quiver of type Ay with cyclic orientation.

foo
and dimension vector @ = (a,...,a). For a simple representation all arrow matrices must be
invertible but then, under the action of GL(«), they can be diagonalized. Hence, the only simple

representations (which are not the trivial simples concentrated in a vertex) have dimension vector
1,...,1).

Nevertheless, we will show that these are the only exceptions. A vertex v; is said to
be large with respect to a dimension vector a = (dy, . .., dy) whenever d; is mazimal
among the d;j. The vertex v; is said to be good if v; is large and has no direct
successor which is a large prism nor a direct predecessor which is a large focus.

Lemma 6.11 Let Q be a strongly connected quiver, not of type Ay, then one of the
following hold

1. @ has a good vertez, or,
2. Q has a large prism having no direct large prism successors, or
3. @Q has a large focus having no direct large focus predecessors.

Proof. If neither of the cases hold, we would have an oriented cycle in QQ consisting
of prisms (or consisting of focusses). Assume (vi,,...,v;) is a cycle of prisms,
then the unique incoming arrow of v;; belongs to the cycle. As Q # Ay, there is
at least one extra verter v, not belonging to the cycle. But then, there can be no
oriented path from v, to any of the v;,, contradicting the assumption that Q is
strongly connected. O

If we are in one of the two last cases, let a be the maximum among the com-
ponents of the dimension vector o and assume that o satisfies xg(a,€;) < 0 and
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xo(€,a) <0 for all 1 < i <k, then we have the following subquiver in Q

/

@ @

large focus large pN

We can reduce to a quiver situation with strictly less vertices.

Y

Lemma 6.12 Assume Q is strongly connected and we have a vertex v; which is a
prism with unique predecessor the vertex v; which is a focus. Consider the dimension
vector o = (d1,...,dy) withd; =d; = a # 0. Then, a is the dimension of a simple
representation of Q if and only if

o = (dla---,di—l,di+17- ..,dk) S Nk71

18 the dimension vector of a simple representation of the quiver Q' on k—1 vertices,
obtained from Q by identifying the vertices v; and v;, that is, the above subquiver
in Q 1is simplified to the one below in Q'

Proof. If b is the unique arrow from v; to v; and if V € rep, @ is a simple
representation then Vi, is an isomorphism, so we can identify V; with V; and obtain a
simple representation of Q'. Conversely, if V' € repy Q' is a simple representation,
define V € repo Q by V; =V} and V, =V for z # i, Viy =V, for all arrows b’ # b
and Vi, =1,. Clearly, V is a simple representation of Q. O

Theorem 6.13 « = (dy,...,dx) is the dimension vector of a simple representation
of Q if and only if one of the following two cases holds

1. supp(a) = Ay, the extended Dynkin quiver on k vertices with cyclic orienta-
tion and d; =1 for all1 <i <k

EN
O—C)
2. supp(a) # Ay. Then, supp(c) is strongly connected and for all 1 < i < k we

have
XQ(a7 67;) 0
0

INIA

xq(€, a)
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Proof. We will use induction, both on the number of vertices k in supp(a) and on
the total dimension n = ) . d; of the representation. If supp(a) does not possess
a good vertex, then the above lemma finishes the proof by induction on k. Observe
that the Euler-form conditions are preserved in passing from Q to Q' as d; = d;.

Hence, assume v; is a good vertex in supp(a). If d; = 1 then all dj = 1 for
v; € supp(e) and we can construct a simple representation by taking Vi, = 1 for
all arrows b in supp(«). Simplicity follows from the fact that supp(«) is strongly
connected.

If d; > 1, consider the dimension vector & = (dy,...,di—1,d; — 1, diz1,...,dg).
Clearly, supp(c’) = supp(«) is strongly connected and we claim that the Euler-form
conditions still hold for o'. the only vertices v; where things might go wrong are
direct predecessors or direct successors of v;. Assume for one of them xq (e, ) >0
holds, then

di=d> Y d,>d=d—1
@<0

But then, d; = d; whence vy is a large vertex of a and has to be also a focus with
end vertex v; (if not, d; > d;), contradicting goodness of v;.

Hence, by induction on n we may assume that there is a simple representation
W € repy Q. Consider the space repyw of representations V€ rep, @ such that
V| o =W. That is, for every arrow

: a : Va _ Wa
(%1 NN ’Udj
U1
Vo=| w,
Vd,;

Hence, repy is an affine space consisting of all representations degenerating to
W & S; where S; is the simple one-dimensional representation concentrated in v;.
As xq(d/,€;) < 0 and xg(ei, o) < 0 we have that Ext'(W,S;) # 0 # Ext!(S;, W)
so there is an open subset of representations which are not isomorphic to W & S;.
As there are simple representations of QQ having a one-dimensional component
at each vertex in supp(a) and as the subset of simple representations in repy Q
is open, we can choose W such that repw contains representations V such that a
trace of an oriented cycle differs from that of W @& S;. Hence, by the description of
the invariant ring Clrep, Q|9 as being generated by traces along oriented cycles
and by the identification of points in the quotient variety as isomorphism classes
of semi-simple representations, it follows that the Jordan-Hélder factors of V are
different from W and S;. In view of the definition of repw , this can only happen if
V' is a simple representation, finishing the proof of the theorem. O

From this result we can easily deduce the characterization of dimension vectors of
simple representations of a marked quiver Q®. For, if | is a marked loop in a vertex
v; with d; > 1, then we may replace the matrix V; of a simple representation V &€
rep, Q by V) =V, — d%./ﬂdi and retain the property that V' is a simple representation.
Things are different, however, for a marked loop in a vertex v; with d; = 1 as this
1 x 1-matriz factor is removed from the representation space. That is, we have the
following characterization result.
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Theorem 6.14 o = (dy,...,dy) is the dimension vector of a simple representation
of a marked quiver Q® if and only if o = (dy,...,dy) is the dimension vector of a
simple representation of the quiver Q' obtained from the underlying quiver Q of Q°®
after removing the loops in QQ which are marked in Q°® in all vertices v; such that
d; =1.

6.3 The local quiver.

Consider the underlying quiver QQ and a fized dimension vector a. Closed GL(«)-
orbits is rep, Q correspond to isomorphism classes of semi-simple representations
of Q of dimension vector a. We have a quotient map

repa Q B repe Q/GL(a) = issq Q

and we have seen that the coordinate ring Cliss, Q)] is generated by traces along
oriented cycles in the quiver Q. Consider a point £ € iss, @ and assume that the
corresponding semi-simple representation Ve has a decomposition

Ve=V®"@... 0V

into distinct simple representations V; of dimension vector say a; and occurring in
Ve with multiplicity e;. We then say that & is a point of representation-type

z
T=t¢&) = (e1,1;...,e,,,) with a:Zeiai
i=1

We want to apply the Luna slice theorem to obtain the étale GL(«)-local structure of
the representation space rep, @Q in a neighborhood of Ve and the étale local structure
of the quotient variety iss, @ in a neighborhood of &. That is, we have to calcu-
late the normal space N¢ to the orbit O(Ve) as a representation over the stabilizer
subgroup GL(a)e = Stabgr(a)(Ve)-

Denote a; = Zle a;; where a; = (a1, ..., a:k), that is, a; = dim V;. We will
choose a basis of the underlying vectorspace

®0,eQ,C¥%  of Ve=V" .. @V

as follows : the first ejay vectors give a basis of the verter spaces of all simple
components of type V1, the next esas vectors give a basis of the vertex spaces of all
simple components of type Vo, and so on. Ifn = Zle e;d; is the total dimension
of Ve, then with respect to this basis, the subalgebra of M,(C) generated by the
representation Ve has the following block-decomposition

M, (C) @1, 0 . 0
0 M,,(C) @1, 0
0 0 s M (C) @7,

But then, the stabilizer subgroup
StabGL(a)(VvE) ~ GLel X ... X GLez
embedded in GL(«) with respect to this particular basis as

GLe, (C®1,,) 0 0
0 GL.,(C®1,,) 0

0 0 ... GL.(C®1,.)
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The tangentspace to the GL(«)-orbit in Ve is equal to the image of the natural linear
map
Lie GL(a) — rep, Q

sending a matrizm € Lie GL(a) >~ Mg, ®...® My, to the representation determined
by the commutator [m, Ve] = mVe — Vem. By this we mean that the matriz [m, Ve]a
corresponding to an arrow a is obtained as the commutator in M, (C) using the
canonical embedding with respect to the above choice of basis. The kernel of this
linear map is the centralizer subalgebra. That is, we have an exact sequence of
GL(a)¢-modules

0 — Cwm,(c)(Ve) — Lie GL(a) — Ty, O(Vg) — 0

where
M., (C®1,,) 0 e 0
0 Me,(C @ Ta,) 0
Cum,(c)(Ve) = : . :
0 0 o M (C®T,)

where the action of GL(a)v, is given by conjugation on M, (C) via the above em-
bedding. We will now engage in a book-keeping operation counting the factors of
the relevant GL(a)¢-spaces. We identify the factors by the action of the GL.,-
components of GL(c)¢

1. The centralizer Cyp, (c)(Ve) decomposes as a G L(c)¢-module into

e one factor M., on which GL¢, acts via conjugation and the other factors
act trivially,

e one factor M._ on which GL._ acts via conjugation and the other factors
act trivially.

2. Recall the notation o; = (a;1, . .., a:k),then the Lie algebra Lie GL(«) decom-
poses as a GL(c)¢-module into

. Z§:1 a%j factors M., on which GL., acts via conjugation and the other
factors act trivially,

° Zf:l agj factors M._ on which GL._ acts via conjugation and the other
factors act trivially,

. 25:1 ayjaz; factors Me, xe, on which GLe, X GL, acts via y1mayy
and the other factors act trivially,

k . .
® > iy azjas—1j factors M xe. , on which GLe, X GL.._, acts via

’yz.m.’y;ll and the other factors act trivially.

3. The representation space rep, Q decomposes as a GL(«)e-modulo into the

following factors, for every arrow in Q (or every loop in v; by
setting © = j in the expressions below) we have



216 CHAPTER 6. LOCAL CLASSIFICATION.

e aj;aij factors M., on which GL., acts via conjugation and the other
factors act trivially,

® ai;azj factors Me, xe, on which GLe, X GL., acts via ’yl.m.vgl and the
other factors act trivially,

® a.a,_1 j factors Me, e, , on which GL., X GL., , act via vz.m.v;ll
and the other factors act trivially,

® a.a,; factors M., on which GL., acts via conjugation and the other
factors act trivially.

Remowving the factors of 1. from those of 2. we obtain a description of the tan-
gentspace to the orbit Ty, O(Ve). But then, removing these factors from those of 3.
we obtain the description of the normal space Ny, as a GL(a)e-module as there is
an ezxact sequence of GL(a)¢-modules

0 — Ty, O(Ve) — repa @ —> Ny, — 0

The upshot of this book-keeping is that we have proved that the normal space to the
orbit in Ve depends only on the representation type T = t(£) of the point & and can
be identified with the representation space of a specific local quiver Q.

Theorem 6.15 Let € € iss, Q be a point of representation type

T=1t() = (e1,a1;...,€,0z)

Then, the normal space Ny, to the orbit, as a module over the stabilizer subgroup,
is identical to the representation space of a local quiver situation

NVE =~ Tepar QT

where Q. is the quiver on z wvertices (the number of distinct simple components of
Ve) say {wn,...,w,} such that in Q-

#@<a—@ = _XQ(aivaj) fOTi#j; a'nd
()
and such that the dimension vector o, = (ex,...,e;) (the multiplicities of the simple

components in Ve ).

We can repeat this argument in the case of a marked quiver Q°®. the only differ-
ence lies in the description of the factors of rep, Q° where we need to replace the
factors M., in the description of a loop in v; by MS (trace zero matrices) in case
the loop gets a mark in Q°. Recall the notation of u; as the number of unmarked
loops in v; and m; the number of marked loops in v;. We define

1 — U1 X12 e Xlk —m1
L X1  l—u2 ... X2k ) —Mma
XQ' = : . . . and XQ. ==
Xk1 Xk2 .- L—uy —my

such that xq = Xé. + xé. where @ is the underlying quiver of Q°.
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Theorem 6.16 Let & € iss, Q° be a point of representation type
T=1t&) = (e1,a15. .., €, )

Then, the normal space Ny, to the orbit, as a module over the stabilizer subgroup,
is identical to the representation space of a local marked quiver situation

Ny, ~ repa, Q3

where Q2 is the quiver on z wvertices (the number of distinct simple components of
Ve) say {ws,...,w.} such that in Q2

i = —xqlog,a5) fori##j, and
\
# Q = 1= xge (o)
# @ = *Xé.(ai,ai)

and such that the dimension vector c; = (eq,...,e,) (the multiplicities of the simple
components in Ve ).

Proposition 6.17 If a = (dy,...,dy) is the dimension vector of a simple repre-
sentation of Q°, then the dimension of the quotient variety iss, Q° is equal to

1—xge(a, )
Proof. There is a Zariski open subset of iss, Q° consisting of points & such that the

corresponding semi-simple module Ve is simple, that is, £ has representation type
7= (1,). But then the local quiver setting (Qr, ) is

=1 e

where a = 1 — Xb.(a,a) and b = —ng- (o, ). The corresponding representation
space has coordinate Ting

Clrepa, Q2] =Clay,...,24]
on which GL(a;) = C* acts trivially. That is, the quotient variety is
repa, Qv/GL(ar) =rep,, QF ~C®

Asissq Q° has the same local structure near & as this quotient space near the origin,
by the Luna slice result, the result follows. (|
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6.4 The stratification.

In this section we will draw some consequences from the description of the local
quiver. usually, the quotient varieties iss, Q° have lots of singularities. Still, we can
decompose these quotient varieties in smooth pieces according to the representation
types of its points.

Proposition 6.18 Letiss, Q°(T) be the set of points & € iss, Q° of representation
type
T=(e1,01;...;€5,Q;)

Then, issq, Q*(T) is a locally closed smooth subvariety of issq Q° and
188 Q° = |_| 1880 Q°(T)

is a finite smooth stratification of the quotient variety.

Proof. Let Q2 be the local marked quiver in . Consider a nearby point &'. If some
trace of an oriented cycles of length > 1 in Q2 is non-zero in &', then & cannot be
of representation type T as it contains a simple factor composed of vertices of that
cycle. That is, locally in £ the subvariety iss, Q°®(T) is determined by the traces of
unmarked loops in vertices of the local quiver Q3 and hence is locally in the étale
topology an affine space whence smooth. All other statements are direct. (Il

Given a stratification of a topological space, one always wants to determine which
strata make up the boundary of a given stratum. In the stratification of iss, Q°
given by the above result, we have a combinatorial solution to this problem. Two
representation types

. . P . o ’
T=(e1,a1;...;€:0;,) and T = (ej,al;...;el,al)

are said to be direct successors T < 7' if and only if one of the following two cases
occurs

o (splitting of one simple) : 2/ = z+ 1 and for all but one 1 < i < z we have
that (ei, ;) = (€},a}) for a uniquely determined j and for the remaining io
we have that the remaining couples of 7' are

/ / - / /
(es,qp5e5,00)  with a; = ay, + o

o (combining two simple types) : 2/ = z — 1 and for all but one 1 < i < 2’ we
have that (€}, o) = (e, ;) for a uniquely determined j and for the remaining
1 we have that the remaining couples of T are

/ / . ’
(€1u al; €y, a’L) thh €y —+ €y = ei

This direct successor relation < induces an ordering which we will denote with <<.
Observe that T << 7' if and only if the stabilizer subgroup GL(«), is conjugated to
a subgroup of GL(«).. The following result either follows from general theory, see
for example [29], or from the description of the local marked quivers.

Proposition 6.19 The stratum iss, Q®(7') lies in the closure of the stratum
188q Q° if and only if T << 7'.

Using the dimension of the quotient variety iss, Q° given in the precious section
when « is the dimension vector of a simple representation can be used to determine
the dimensions of the different strata iss, Q®(7) in general.
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Proposition 6.20 Let 7 = (e1,a1;...;€e,,a;) a representation type of a. Then,

dim issq Q° = Z(l — X6e (05, ;)

Jj=1

Because rep, Q° and hence iss, Q° is irreducible, there is a unique represen-
tation type Tgen such that issq Q°(Tyen) is Zariski open. We call Tgen the generic
representation type for rep, Q. The generic representation type can be determined
as follows.

o Let Q' be the full marked subquiver of Q® on the support of o and consider its
strongly connected component quiver SC(Q’).

o LetV € rep, Q° be in general position, then a simple subrepresentation S C V.
must have its support in a strongly connected component G of Q which is a
sink in SC(Q'). Restrict attention to this subquiver G say on l vertices.

e As (1,...,1) € N! is the dimension vector of a simple representation of G,
there exists a dimension vector 3 with support equal to G satisfying the fol-
lowing properties

1. B is the dimension vector of a simple representation of G.

2. If o is the restriction of the dimension vector a to G, then a representa-
tion of repos G in general position has a subrepresentation of dimension
vector (3.

3. B is minimal among all dimension vectors (1,...,1) < 8 < o satisfying
1. and 2.

A representation in rep, Q° will then contain a simple subrepresentation of
dimension vector (3.

e Continue the process with starting dimension vector o — 3 until this difference
is the zero vector. We will ten have found the generic decomposition o =
01+ ...+ B, into dimension vectors of simple representations.

e Calculate 1 — XIQ. (Bi, Bi). If it is zero, then (B; occurs with multiplicity e; in
the generic representation type Tgen if €; is the number of components 3; in
the generic decomposition which are equal to 3;. This determines the generic
representation type.

The difficult part in the procedure is determining when a representation in general
position has a subrepresentation of given dimension vector. In the next chapter we
will prove a combinatorial procedure to verify this, due to A. Schofield [27].

6.5 The Cayley-smooth locus.

Let A be a Cayley-Hamilton algebra of degree n equipped with a trace map A Ly
and consider the quotient map

@; AT @; A
Let & be a geometric point of he quotient scheme iss!, A with corresponding n-
dimensional trace preserving semi-simple representation Ve with decomposition
Ve=SP"@...p S0

where ihe S; are distinct simple representations of A of dimension d; such that
n = Zi:l diei.
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Definition 6.21 The Cayley-smooth locus of A is the subset of iss!, A
Sm,, A={¢ciss A | iss' A issmooth along 7 '(¢) }

As the singular locus of @Z A is a GL,-stable closed subscheme of @; A this is
equivalent to

Sm, A={¢€iss!, A | iss' A is smoothin V¢ }

We will give some conditions on £ to be in the smooth locus Sm, A. To begin,
@i A is sooth in Ve if and only if the dimension of the tangent space in Vg is equal
to the local dimension of@; A in Ve. In the previous chapter we have calculated the

tangent space to be the set of trace preserving derivations A =y M, (C) satisfying
D(ad') = D(a)p(a) + pla) D(a)

where A —2+ M, (C) is the C-algebra morphism determined by the action of A on
Ve and such that D is compatible with the traces, that is, the diagram

A— "4 M)
tra tr
A—L0 M)

is commutative. The C-vectorspace of such derivations is denoted by Der; A.
Therefore,
£ e Sm, A< dimc Derf) A = dimy, @i A

Further, if £ € Sm,, A, then we know from the Luna slice theorem that the local
GL,-structure of@; A near Vg is determined by a marked quiver setting (QE, ag)
where QE is a marked quiver on k vertices (the number of distinct simple components
of Ve) and ae = (e1,...,ex) (the multiplicities with which these simples occur in
Ve ). Recall that GL(cg) is the stabilizer subgroup in GLy, of Ve and can be embedded
in GL, after a suitable choice of basis via

GLel((C ®’Ud1) 0 0
0 GL.,(C®Ty,) ... 0
GL(O[&) = . . 3 — GL,
0 0 coo GL (C®Ty,)

and we have an isomorphism of GL(cg)-modules
repa; Qf ~ Ny, O(Ve) ~ Exti‘(Vf,Vg),

the last isomorphism was proved in the previous chapter. This fact also allows us
to determine the quiver Q¢. Indeed,

Extly(Ve, V) = @f,j:1EfUt,14(Si7 S;)@eics

That is, as a GL(ag)-module Extl(Ve,Ve) is isomorphic to a quiver setting
T€Pag szg where the arrows and loops in the quiver Q?g are given by

# D<~——0O = dimc Extjlﬁl(si, Sj) ifi#j, and

# @O = dimc Exth(Si,S)
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Proposition 6.22 With notations as before, Qg is a marked sub-

quiver of the extension-quiver ngig determined by the GL(ag)-submodule
Extly (Ve, Ve) — Buaty (Ve, Ve).

It follows from the definition of trace preserving extensions Ext' (Ve, Ve) that
Qg and Qgig have the same number of arrows Q<~——— when i # j, but some of
the loops in Qgig may vanish or get a marking in Q¢. Observe that we can define
this quiver Qg to any point § € rep’; A whether £ € Sm,, A or not. However,

if € € Sm,, A then by the Luna slice theorem, we have local étale isomorphisms
between the varieties

GL, xCH) rep,. Q2 <> rep! A and repa, Qf/GL(ag) <= iss!, A
Which gives us the following numerical restrictions on & € Sm,, A :
Proposition 6.23 £ € Sm,, A if and only if the following two equalities hold

dimy, @2 A =n?—(el+...+¢€})+dimc Extl(Ve, V)
dimg iss), A = dimg repa, Qf/GL(ag)

Moreover, if € € Sm,, A, then @i A is a normal variety in a neighborhood of &

Proof. The last statement follows from the fact that C[repq, Qg]GL(D‘E) is integrally
closed and this property is preserved under the étale map. O

In general, the difference between these numbers gives a measure for the non-
commutative singularity of A in &. In the next section we will refine these conditions
under the extra assumption that A is an order in a central simple algebra.

Example 6.24 Consider the affine C-algebra A = (gaj_’;’;) then u = 22 and v = y? are central
elements of A and A is a free module of rank 4 over Clu,v]. In fact, A is a Clu,v]-order in the

quaternion division algebra
U v
2= (" cun )

and the reduced trace map on A makes A into a Cayley-Hamilton algebra of degree 2. More
precisely, ¢r is the linear map on A such that

tr(ziy?) =0 if either i or j are odd, and
tr(ztyd) = 2wiyd if 2 and j are even.

In particular, a trace preserving 2-dimensional representation is determined by a couple of 2 x 2
matrices

p=( [“"1 ”’CZ} : [“ ””5} ) with tr({xl “] : [“”4 5 }):o
T3  —T1 T6 —T4 T3 —x1 Te —T4
That is,@’; A is the hypersurface in C8 determined by the equation
@; A=V2x1z4 + x226 + T3T5) —> (ol

and is therefore irreducible of dimension 5 with an isolated singularity at p = (0,...,0). The
image of the trace map is equal to the center of A which is C[u, v] and the quotient map

™ .
rep’; A —> @é A=C? w(z1,...,T6) :(x%—l—a:zm:;,a:i—&—a:sx@-)

There are three different representation types to consider. Let & = (a,b) € C?2 = issh A with
ab # 0, then 7~ 1(¢) is a closed G La-orbit and a corresponding simple A-module is given by the

matrixcouple ‘
Al [ W)
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That is, € is of type (1,2) and the stabilizer subgroup are the scalar matrixes C* Ty —— GLo.
So, the action on both the tangentspace to rep! A and the tangent space to the orbit are trivial.
As they have respectively dimension 5 and 3, tﬁe normalspace corresponds to the quiver setting

v= CoD

which is compatible with the numerical restrictions. Next, consider a point £ = (0,b) (or similarly,
(a,0)), then £ is of type (1,1;1,1) and the corresponding semi-simple representation is given by

the matrices
( 0 0 b 0 )
0 0]’ 0 —ivb

The stabilizer subgroup is in this case the maximal torus of diagonal matrices C* x C* —— GLa.
The tangent space in this point to @g A are the 6-tuples (a1,...,a¢s) such that

o el aDE Sl Do wemen

This leads to the condition a; = 0, so the tangentspace are the matrix couples

( 0 a , a4 a5 ) on which the stabilizer A0
az O ag —a4 0 u

acts via conjugation. That is, the tangentspace corresponds to the quiver setting

Moreover, the tangentspace to the orbit is the image of the linear map
mi1  m2 0 O Vb 0 mi1  m2
R ] PG ] I A IO S Kl

which is equal to [ } {\[ } [ \[}
(O 0 ’ b 0 T 0 —2maVb )

0 0’0o —vb 2m3v/b 0
on which the stabilizer acts again via conjugation giving the quiver setting
AL
@W@

Therefore, the normal space to the orbit corresponds to the quiver setting
®\,/®Q

which is again compatible with the numerical restrictions. Finally, consider £ = (0,0) which is
of type (2,1) and whose semi-simple representation corresponds to the zero matrix-couple. The
action fixes this point, so the stabilizer is GL2 and the tangent space to the orbit is the trivial
space. Hence, the tangent space to 'rept A coincides with the normalspace to the orbit and both
spaces are acted on by GL2 via 51multaneous conjugation leading to the quiver setting

O
8

This time, the data is not compatible with the numerical restriction as

Ne =

5:dim@;A7§n2—eQ+dimrapa QR*=4—-4+6

consistent with the fact that the zero matrix-couple is a (in fact, the only) singularity on @; A.

6.6 Cayley-smooth orders.

Let X be a normal affine variety with coordinate ring C[X] and functionfield C(X).
Let A be a central simple C(X)-algebra of dimension n? which is a Cayley-Hamilton
algebra of degree n using the reduced trace map tr. Let A be a C[X]-order in A,
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that is, the center of A is C[X] and A ®c[x) C(X) ~ A. Because C[X] is integrally
closed, the restriction of the reduced trace tr to A has its image in C[X], that is, A
is a Cayley-Hamilton algebra of degree n and

Consider the quotient morphism for the representation variety
rep,, A —- iss;, A

then the above argument shows that X ~ iss! A and in particular the quotient
scheme is reduced.

Proposition 6.25 Let A be a Cayley-Hamilton order of degree n over C[X|. Then,
its smooth locus Sm, A is a nonempty Zariski open subset of X. In particular, the
set aza of Azumaya points, that is, of points v € X = iss, A of representation type
(1,n) is a non-empty Zariski open subset of X and its intersection with the Zariski
open subset Xyeq of smooth points of X satisfies

XozNXpeg — Smy, A

Proof. Because AC(X) = A, there is an f € C[X] such that Ay = A®cpx]C[X]y is
a free C[X]¢-module of rank n? say with basis {a1,...,a,2}. Consider the n* x n?
matriz with entries in C[X] s

tr(arar) ... tr(aia,2)
R =

tr(apzar) ... tr(apzay2)

The determinant d = det R is nonzero in C[X]s. For, let K be the algebraic
closure of C(X) then Ay ®cix], K =~ M,(K) and for any K-basis of M,(K) the
corresponding matriz is invertible (for example, verify this on the matrizes e;;).
As {ay,...,an2} is such a basis, d # 0. Next, consider the Zariski open subset
U=X(f)NnX(d) = X. For any x € X with mazimal ideal m, < C[X] we claim
that

A
~ M,
Am A n(C)

Indeed, the images of the a; give a C-basis in the quotient such that the n? x n?-

matriz of their product-traces is invertible. This property is equivalent to the quo-
tient being M, (C). Such points x are called Azumaya points of A. The correspond-
ing semi-simple representation of A is simple, proving that aza is a non-empty
Zariski open subset of X. But then, over U the restriction of the quotient map

@i A| 7Y U) —U

is a principal PGL,-fibration. In fact, this restricted quotient map determines an
element in HY,(U, PGL,) determining the class of the central simple C(X)-algebra
A in HY,(C(X), PGL,). Restrict this quotient map further to U N X,cq, then the
PGL,-fibration

rept A | 77N U N Xpeg) —> UN Xpgy

has a smooth base and therefore also the total space is smooth. But then, U N X,eq
is a non-empty Zariski open subset of Sm,, A. O
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We will now determine the étale local structure of A in points € € Sm, A.
Observe that the normality assumption on X is no restriction as the quotient scheme
is locally normal in a point of Sm,, A. Our next result drastically limits the local
dimension vectors cp.

Proposition 6.26 Let A be a Cayley-Hamilton order and & € Sm,, A such that
the normal space to the orbit of the corresponding semi-simple n-dimensional Tep-
resentation 1s

N¢ = repa, QF

Then, a¢ is the dimension vector of a simple representation of Qg.

Proof. Let V¢ be the semi-simple representation of A determined by . Let S¢ be
the slice variety in Ve then we have by the Luna slice theorem the following diagram
of étale G L, -equivariant maps

GL, xGLed g,

&

GL, xGLee) repa, Qf 7‘epf1 A
linking a neighborhood of Ve with one of (1,,0). Because A is an order, every Zariski
neighborhood of Ve in @; A contains simple n-dimensional representations, that
is, closed G L,-orbits with stabilizer subgroup isomorphic to C*. Transporting this
property via the G L, -equivariant étale maps, every Zariski neighborhood of (1,,0)
contains closed G L, -orbits with stabilizer C*. By the correspondence of orbits is
associated fiber bundles, every Zariski neighborhood of the trivial representation
0 € repa, Qg contains closed GL(ag)-orbits with stabilizer subgroup C*. We have
seen that closed GL(ag)-orbits correspond to semi-simple representations of Qg
However, if the stabilizer subgroup of a semi-simple representation is C* this repre-
sentation must be simple. (|

These two results allow us to refine the numerical characterization of smooth
points given in the previous section.

Theorem 6.27 Let A be a Cayley-Hamilton order of degree n with center C[X]
where X is a normal variety of dimension d. For& € X = iss' A with corresponding
semi-simple representation

Ve=SP"a... @57

and normal space to the orbit O(V) isomorphic to rep., Qf as GL(ag)-modules
where ag = (e1,...,ex). Then, & € Smy,, A if and only if the following two condi-
tions are met

{a§ is the dimension vector of a simple representation of Q°, and

k
d =1-xqlagag)—> _;m;

where Q 1is the underlying quiver of Q¢ and m; is the number of marked loops in
Qg in vertexr v;.
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Proof. By the Luna slice theorem we have étale maps
repa; Q2/GL(ag) ~— S¢/GL{ag) — isol, A= X

connecting a neighborhood of £ € X with one of the trivial semi-simple representa-
tion 0. By definition of the Euler-form of Q we have that

Xolag,ag) = =Y eiejxi+ Y€ (1 —u;—my)
itj i

On the other hand we have the following dimensions

dim repa Qg = Z €i€;Xij + Zef(ui +mi) — Zmz
i#j i i

dim GL(a¢) = Z e?

As any Zariski open neighborhood of £ contains an open set where the quotient map
is a PGL(ag) = %—ﬁbmtion we see that the quotient variety repq, Qg has
dimension equal to

dim repa, Q¢ —dim GL(ag) +1

and plugging in the above information we see that this is equal to 1 — xq (g, og) —
Z my;. O

%

Example 6.28 The quantum plane.
We will generalize the discussion of example to the algebra
Clz, )
(yz — qzy)
where ¢ is a primitive n-th root of unity. Let u = 2™ and v = y™ then it is easy to see that A is a

free module of rank n? over its center C[u,v] and is a Cayley-Hamilton algebra of degree n with
the trace determined on the basis

tr( i j) 0 when either i or j is not a multiple of n,
T = o
4 nz'y)  when ¢ and j are multiples of n,
Let £ € iss,, A = C? be a point (a”,b) with a.b # 0, then ¢ is of representation type (1,n) as the

corresponding (semi)simple representation V¢ is determined by (if m is odd, for even n we replace
a by ia and b by —b)

. 1 0 ... 0
0 0 1 0
qa
plx) = and  p(y) = :
0 0 0 1
n—1
e b 0 0 0

One computes that Extl (Vg, V) = C? where the algebra map A N M, (Cle]) corresponding
to (e, B) is given by

b(z) =p(a)+ealy

o(y) =py) +e BT

and all these algebra maps are trace preserving. That is, Extly (Ve, V) = Ewtl, (V¢, V¢) and as the
stabilizer subgroup is C* the marked quiver-setting (Qg7 ag) is

e

and d =1-xg(o, @) =Y, m; as 2 =1—(—1)+0, compatible with the fact that over these points
the quotient map is a principal PG L, -fibration.

Next, let £ = (a™,0) with a # 0 (or, by a similar argument (0,b") with b # 0). Then, the
representation type of £ is (1,1;...;1,1) because
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where the simple one-dimensional representation S; is given by
p(z) =d'a
ply) =0

One verifies that
Eaxth(S;,8;) =C and FEaxthy(S;,S;) = 8415 C
and as the stabilizer subgroup is C* x ... x C*, the Ext-quiver setting is

The algebra map A AN My (Cle]) corresponding to the extension (a1,fi,...,0n,0Bn) €
Eaxtl (Ve, V) is given by
a—+¢e ay
qga + € a2
o(x) =
" latean
0 B 0 0
0 0 p 0
oly) =¢ |1 .
0o 0 0 Bn—1
Bn O 0O ... 0

The conditions tr(z7) = 0 for 1 <4 < n impose n — 1 linear conditions among the aj, whence the
space of trace preserving extensions Emtf“(Vg, Ve) corresponds to the quiver setting

O
, o’

, (D
N
(O—)

The Euler-form of this quiver Q® is given by the n X n matrix

o -1 0 ... O
1 -1 0

-1 1
1)

giving the numerical restriction as oe = (1,...,
1-xg(a,a) = > mi=1—(-1)—0=2=dimiss!, A
i

n

so £ € Smy A. Finally, the only remaining point is £ = (0,0). This has representation type (n, 1)
as the corresponding semi-simple representation Vg is the trivial one. The stabilizer subgroup is
GLy and the (trace preserving) extensions are given by

Exthy (Ve,Ve) = My ® My, and  Eathy (Ve, V) = M2 ® M2
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determined by the algebra maps A 2 M, (Cle]) given by
o(z) =emy
#(y) =em2

That is, the relevant quiver setting (QE, o) is in this point

This time, £ ¢ Smn A as the numerical condition fails

I—XQ(a,a)—Zmizl—(—nQ)—O;£2:dimisistA
i

unless n = 1. That is, Sm, A = C2 — {(0,0)}.

6.7 Smooth local types.

If we want to study the local structure of Cayley-Hamilton orders A of degree n over
a central normal variety X of dimension d, we have to compile a list of admissible
marked quiver settings, that is couples (Q°, ) satisfying the two properties

a is the dimension vector of a simple representation of Q°, and
d =1-xqla,a) =3, m;

In this section, we will give the first steps in such a classification project

The basic idea that we use is to shrink a marked quiver-setting to its simplest
form and classify these simplest forms for given d. By shrinking we mean the
following process. Assume o = (eq,...,e) is the dimension vector of a simple
representation of Q° and let v; and v; be two vertices connected with an arrow such
that e; = e; = e. That is, locally we have the following situation

ug

q
=" @\ Vie—

We will use one of the arrows connecting v; with v; to identify the two vertices.
That is, we form the shrinked marked quiver-setting (Q?, cs) where Q2 is the marked
quiver on k — 1 vertices {v1,...,0;,...,vx} and oy is the dimension vector with e;
removed. That is, Q% has the following form in a neighborhood of the contracted
vertex

\

wi +uj+ x5 + x50 — 1

m; +m

J

That is, in QF we have for all k,1 # i that xj;, = Xw. Moreover, the number of
arrows and (marked) loops connected to vj are determined as follows

® Xk = Xik + Xjk
® Xij = Xki + Xkj

o uj = u; +uj+ X5+ Xji — 1
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° m;‘ =m; +m;
Lemma 6.29 « is the dimension vector of a simple representation of Q° if and
only if as is the dimension vector of a simple representation of Q2. Moreover,

dim rep, Q°/GL(a) = dim rep,, Q%F/GL(as)

Proof. Fiz an arrow Q<——0Q). As e; = e; = e there is a Zariski open subset
U —— repy Q° of points V' such that V, is invertible. By basechange in either v;
or vj we can find a point W in its orbit such that Wy = Te. If we think of W, as
identifying C with C% we can view the remaining maps of W as a representation in
repa, @ and denote it by W2. The map U — rep,, @ is well-defined and maps
GL(a)-orbits to GL(as)-orbits. Conversely, given a representation W' € rep,, QF
we can uniquely determine a representation W € U mapping to W'. Both claims

follow immediately from this observation. O

It is clear that any marked quiver-setting can uniquely be reduced to its simplest
form, which has the characteristic property that no arrow-connected vertices can
have the same dimension. The shrinking process has a converse operation which
we will call splitting of a vertex. However, this splitting operation is usually
not uniquely determined. Before we can compile lists of marked-quiver settings in
simplified form for a specific base-dimension d, we need to bound the components of
the occurring dimension vectors . We will do this in the case of quivers and leave
the extension to marked quivers an an exercise.

Proposition 6.30 Let o = (eq,...,e) be the dimension vector of a simple rep-
resentation of @ and let 1 — xg(a,a) = d = dim rep, Q°/GL(«). Then, if
e = max e;, we have that d > e+ 1.

Proof. By the above lemma we may assume that (Q, «) is brought in its simplest
form, that is, no two arrow-connected vertices have the same dimension. Let x;;
denote the number of loops in a verter v;, then

o € (o) Xijejs —€i)
o6 (O, xjies —ei)

and observe that the bracketed terms are positive by the requirement that o is the
dimension vector of a simple representation. We call them the incoming in;, re-
spectively outgoing out;, contribution of the vertex v; to d. Let v, be a vertex with
mazimal vertex-dimension e.

_XQ(a’ Oé) = {

inm = (D Xjme; + (xii — 1)e)  and outm = e(D_ xije; + (xii — 1)e)
j#m j#m

If there are loops in vy, then ing, > 2 or out,, > 2 unless the local structure of Q
18
° @ o

in which case in,, = e = outl,,. Let v; be the unique incoming vertex of v,,, then
we have out; > e — 1. But then,

d=1-xg(a,a) = 1+Zoutj > 2e
J
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If vy, has no loops, consider the incoming vertices {v;,,...,v;_ }, then

S

My = e(z Xi;m€i; — €)

Jj=1

which is > e unless Xi;m€i; = e, but in that case we have

S S

E outi.zeQ—E el >e
J J

Jj=1 Jj=1

the last inequality because all e;; < e. In either case we have that d = 1—xq(a, a) =
14+ outi=1+%in; > e+ 1. O

This result allows us to compile a list of all possible marked quiver-settings in
simplest form for small values of d. In such a list we are only interested in rep, Q°
as GL(a)-module and we call two setting equivalent if they determine the same
GL(«)-module. For example, the marked quiver-settings

(0 4
@ @ and @ @

\W/\N/

determine the same C* x G Ly-module, hence are equivalent.

Theorem 6.31 Let A be a Cayley-Hamilton order of degree n over a central normal
variety X of degree d. Then, the local quiver of A in a point £ € X = iss’ A
belonging to the smooth locus Sm, A can be shrinked to one of a finite list of
equivalence classes of marked quiver-settings. For d < 4, the complete lists are

given below where the boxed values are the dimension d of X.
() =
S D T GO
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An immediate consequence is the following analog of the fact that commutative
smooth varieties have only one type of analytic (or étale) local behavior.

Theorem 6.32 There are only finitely many types of étale local behaviour of smooth
Cayley-Hamilton orders of degree n over a central variety of dimension d.

Proof. The foregoing reduction shows that for fixed d there are only a finite number
of marked quiver-settings shrinked to their simplest form. As > e; < n, we can only
apply the splitting operations on vertices a finite number of times. ([

6.8 Curve orders.

W. Schelter has proved in [26] that in dimension one, smooth orders are hereditary.
In this section we will give an alternative proof of this result using the étale local
classification. The result below can also be proved by the splitting operation and the
above classification. We give this direct proof as an illustration of the stratification
result of § 4.

Theorem 6.33 Let A be a Cayley-Hamilton order of degree n over an affine curve
X =iss A. If ¢ € Sm,, A, then the étale local structure of A in & is determined
by a marked quiver-setting which is an oriented cycle on k vertices with k <n

and an unordered partition p = (dy,...,dg) having precisely k parts such that
>; di = n determining the dimensions of the simple components of Ve.

Proof. Let (Q°, ) be the corresponding local marked quiver-setting. Because Q° is
strongly connected, there exist oriented cycles in Q°. Fix one such cycle of length
s < k and renumber the vertices of Q°® such that the first s vertices make up the
cycle. If « = (eq,...,ex), then there exist semi-simple representations in rep, Q°
with composition

a1=(1,...,1,0,...,00@ " Ta... 0Tl 0. 0P

where €; stands for the simple one-dimensional representation concentrated in vertex
v;. There is a one-dimensional family of simple representations of dimension vector
a1, hence the stratum of semi-simple representations in iss, Q° of representation
type T = (L,an;e1—1,€15. .. ;es— 1, €55 €541, €s41; €k, €k ) 1S al least one-dimensional.
However, as dim iss, Q° = 1 this can only happen if this semi-simple representation
s actually simple. That is, when o = a1 and k = s. (Il
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Hence, if V¢ is the semi-simple n-dimensional representation of A corresponding
to &, then

That is, the stabilizer subgroup is GL(a) = C* x ... x C* embedded in GL,, via the
diagonal embedding

()\1,...,)%) _— dz'ag(/\l,...,/\1,...,/\k,...,/\k)
N———
dl dk

Further, using basechange in rep, Q° we can bring every simple a-dimensional
representation of Q% in standard form

where x € C* is the arrow from vy, to vi. That is, Clrep, Q*]9*(®) ~ C[z] proving
that the quotient (or central) variety X must be smooth in & by the Luna slice result.
Moreover, as ;1\5 ~ m we have, using the numbering conventions of the vertices)
the following block decomposition

[ M, (Clll]) | Mayxa, (C[[2]]) o | Mayxay (Cl[]]) ]
Ma, xa, (zCl[z]]) | Ma, (C[]]) oo | Mayxa, (Cll]))
A¢
L My xa, (xCl2l]) | Mayxa, («C[[2]]) | .. Ma, (Cll=]]) |

and from the local description of hereditary orders given in [25, Thm. 39.14] we de-
duce that A¢ is an hereditary order. That is, we have the following characterization
of the smooth locus

Proposition 6.34 Let A be a Cayley-Hamilton order of degree n over a central
affine curve X. Then, Smy, A is the locus of points & € X such that A¢ is an
hereditary order (in particular, & must be a smooth point of X ).

Globalizing this result, we obtain the following characterization of noncommuta-
tive smooth models in dimension one.

Theorem 6.35 Let A be a Cayley-Hamilton central Ox-order of degree n where
X s a projective curve. Equivalent are

1. A is a sheaf of Cayley-smooth orders

2. X is smooth and A is a sheaf of hereditary Ox -orders
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6.9 Surface orders.

The result below can equally be proved using the splitting operation and the classifi-
cation result.

Theorem 6.36 Let A be a Cayley-Hamilton order of degree n over an affine surface
X =isst A. If &€ € Sm,, A, then the étale local structure of A in & is determined
by a marked local quiver-setting Agim on k + 1+ m < n vertices

and an unordered partition p = (dy,...,dgyi+m) of n with k+1+m non-zero parts
determined by the dimensions of the simple components of V.

Proof. Let (Q®, ) be the marked quiver-setting on r vertices with o = (eq,...,e;)
corresponding to §&. As Q° is strongly connected and the quotient variety is two-
dimensional, Q® must contain more than one oriented cycle, hence it contains a sub-
quiver of type Agim, possibly degenerated with k orl equal to zero. Order the first k+
l+m vertices of Q°® as indicated. One verifies that Ay, has simple representations
of dimension vector (1,...,1). Assume that Ay, is a proper subquiver and denote
s = k+l+m+1 then Q° has semi-simple representations in rep, Q° with dimension-
vector decomposition

-1 Beriipm—1 , ,
o1=(1,...,1,0,...,0) DT D... De i D@, @D
k+l+m

Applying the formula for the dimension of the quotient wvariety shows that
i85(1,...,1) Akim has dimension 2 so there is a two-dimensional family of such semi-
simple representation in the two-dimensional quotient variety iss, Q°. This is only
possible if this semi-simple representation is actually simple, whence r = k+1+m,
Q® = Agim and o= (1,...,1). |

If Ve is the semi-simple n-dimensional representation of A corresponding to &,
then
%:Sl@...@& with dim S; = d;
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and the stabilizer subgroup GL(a) = C* x ... x C* embedded diagonally in GL,,
()\1,...,)\7-) = diag(A17...7>\1,...7>\T7...,Ar)
— —

dq dr

By basechange in reps Agim we can bring every simple a-dimensional representation
in the following standard form

with x,y € C* and as Clissy Akim] = Clrepa Aklm]GL(‘”‘) is the ring generated by
traces along oriented cycles in Agim, it is isomorphic to Clx,y]. From the Luna slice

results one deduces that & must be a smooth point of X and because ;1:: ~ T, Arim
we deduce it must have the following block-decomposition

() (1)

Ae~| () (1) —— M, (C[[z,y]])

(1)

(z,y)
—_— T
k l m

where at spot (i,j) with 1 <4,j < k+ 14 m there is a block of dimension d; x d;
with entries the indicated ideal of C[[z,y]].

Definition 6.37 Let A be a Cayley-Hamilton central C[X]-order of degree n in a

central simple C(X)- algebra A of dimension n?.

1. A is said to be étale locally split in ¢ if and only if ;1\5 is a central O x,z-order
in M,,(Ox.» ®oy., C(X)).
2. The ramification locus ram 4 of A is the locus of points £ € X such that

A
m5 Am§

# M,(C)

The complement X — ram 4 is called the Azumaya locus az of A.
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Theorem 6.38 Let A be a Cayley-smooth central Ox-order of degree n over a
projective surface X. Then,

1. X is smooth.
2. A is étale locally split in all points of X.

3. The ramification divisor ramy — X 1is either empty or consists of a finite
number of isolated (possibly embedded) points and a reduced divisor having as
its worst singularities normal crossings.

Proof. (1) and (2) follow from the above local description of A. As for (3) we
have to compute the local quiver-settings in proper semi-simple representations of
repa Apim- As simples have a strongly connected support, the decomposition types
of these proper semi-simple can be depicted by one of the following two situations

ONO,

1 - :
R OO @@ i
10LY0 ONO)

with xz,y € C*. By the description of local quivers given in section 3 we see that
they are respectively of the following form

N

Aoit Ao

and the associated unordered partitions are defined in the obvious way, that is,
to the looped vertex one assigns the sum of the d; belonging to the loop-contracted
circuit and the other components of the partition are preserved. Using the étale local
isomorphism between X in a neighborhood of & and of issa Agim in a neighborhood
of the trivial representation, we see that the local picture of quiver-settings of A in
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a neighborhood of £ can be represented by

Aklm

T /@O

Ako1

Aon/\
CX »

QO

Ao01

The Azumaya points are the points in which the quiver-setting is Ago1 (the two-
loop quiver). From this local description the result follows if we take care of possibly
degenerated cases. For example, an isolated point in £ can occur if the quiver-setting
in & is of type Agom with m > 2, that is,

In the next section we will characterize those central simple C(X)-algebras
A allowing a Cayley-smooth model. We first need to perform a local calcula-
tion. Consider the ring of algebraic functions in two variables C{x,y} and let
Xioe = Spec C{x,y}. There is only one codimension two subvariety : m = (x,y).
Let us compute the coniveau spectral sequence for Xjo.. If K is the field of fractions
of C{z,y} and if we denote with k, the field of fractions of C{x,y}/p where p is a
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height one prime, we have as its first term

HQ(Ka,Un) Dp Hl(k‘p,Z”) Mﬁl 0

HY(K, p) SpZn 0 0

Lin 0 0 0

Because C{z,y} is a unique factorization domain, we see that the map
H\(K,pn) = K*/(K*)" ——~ &, Z,

is surjective. Moreover, all fields k, are isomorphic to the field of fractions of C{z}
whose only cyclic extensions are given by adjoining a root of z and hence they are
all ramified in m. Therefore, the component maps

B —
L = Helt(kvan) —

are isomorphisms. But then, the second (and limiting) term of the spectral sequence
has the form

0 0 0 0
Ker a | Ker 8/Im « 0 0
Ker v 0 0 0

i 0 0 0

Finally, we use the fact that C{x,y} is strict Henselian whence has no proper
étale extensions. But then,

Hét(Xloca,Ufn) =0 fO'l"i Z 1

and substituting this information in the spectral sequence we obtain that the top
sequence of the coniveau spectral sequence

0 — Br, K —+ @, %, — Z, — 0
is exact. From this sequence we immediately obtain the following

Lemma 6.39 With notations as before, we have
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1. Let U = X1 — V(2), then Br, U =0

2. Let U = X — V(zy), then Br, U = Z, with generator the quantum-plane
algebra
C(u,v)

Cel = = cun

where € is a primitive n-th root of one

6.10 Noncommutative smooth surfaces.

Let A be a central simple algebra of dimension n® over a field of transcendence

degree 2 say L. We want to determine when A admits a Cayley-smooth order A,
that is, a sheaf of Cayley-smooth Ox-algebras where X is a projective surface with
functionfield C(X) = L. In the previous section we have seen that if such a model
exists, then X has to be a smooth projective surface. So we may assume that X
is a commutative smooth model for L. But then we know from the Artin-Mumford
exact sequence, proved in chapter 2, that the class of A in Br,, C(X) is determined
by the following geo-combinatorial data

e A finite collection C = {C4,...,Ck} of irreducible curves in X.

o A finite collection P = {Py,..., P} of points of X where each P; is either an
intersection point of two or more C; or a singular point of some C;.

e For each P € P the branch-data bp = (by,...,b;,) with b; € Z,, = Z/nZ and
{1,...,ip} the different branches of C in P. These numbers must satisfy the
admissibility condition

> bi=0¢Z,

for every P € P
e for each C € C we fix a cyclic Z,-cover of smooth curves
D—C
of the desingularization C of C which is compatible with the branch-data.

We have seen in chapter 2 that if A is a mazimal Ox-order in A, then the ramifi-
cation locus ram 4 coincides with the collection of curves C. We fix such a mazimal
Ox-order A and investigate its smooth locus.

Proposition 6.40 Let A be a mazimal Ox-order in A with X a projective smooth
surface and with geo-combinatorial data (C,P,b, D) determining the class of A in
Br, C(X).

If € € X lies in X —C or if € is a non-singular point of C, then A is smooth in
£.

Proof. If¢ ¢ C, then A¢ is an Azumaya algebra over Ox 5. As X is smooth in &,
A is Cayley-smooth in €. Alternatively, we know that Azumaya algebras are split
by étale extensions, whence A¢ ~ M, (C[[x,y]]) which shows that the behaviour of
A near £ is controlled by the local data

Ceh W4

n
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and hence & € Sm,, A. Next, assume that £ is a nonsingular point of the ramification
divisor C. Consider the pointed spectrum X¢ = Spec Ox ¢ — {m¢}. The only prime
ideals are of height one, corresponding to the curves on X passing through & and
hence this pointed spectrum is a Dedekind scheme. Further, A determines a mazximal
order over X¢. But then, tensoring A with the strict henselization (’)g& ~ C{z,y}

determines a sheaf of hereditary orders on the pointed spectrum Xg = Spec C{x,y}—

{(z,y)} and we may choose the local variable x such that x is a local parameter of
the ramification divisor C near €.

Using the characterization result for hereditary orders over discrete valuation
rings, giwen in [25, Thm. 39.14] we know the structure of this extended sheaf if
hereditary orders over every height one prime of X¢. Because A¢ is a reflexive
(even a projective) Ox ¢-module this height one information determines .Agh or .25.
This proves that .Agh must be isomorphic to the following blockdecomposition

Md1 ((C{JZ, y}) Mdl X d2 (C{xv Z/}) s Md1 X dp, ((C{J?, y}) 1
Md2><d1 (xC{x,y}) Mdz ((C{a:,y}) s Md2><dk (C{x’y})
L Mdk xdy (zC{x,y}) Mdedz (zC{x,y}) s Mdk ((C{z,y})
for a certain partition p = (di,...,dr) of n having k parts. In fact, as we started

out with a mazximal order A one can even show that all these integers d; must be
equal. Anyway, this local form corresponds to the following quiver-setting

VA e p:(d17"'7dk)

Aror

whence £ € Sm,, A as this is one of the allowed surface settings. O

Concluding, a mazximal Ox-order in A can have at worst noncommutative sin-
gularities in the singular points of the ramification divisor C. We have seen that a
Cayley-smooth order over a surface has as ramification-singularities at worst nor-
mal crossings. We are always able to reduce to mormal crossings by the following
classical result on commutative surfaces, see for example [9, V.3.8].

Theorem 6.41 (Embedded resolution of curves in surfaces) Let C be any
curve on the surface X. Then, there exists a finite sequence of blow-ups

X=X, — Xy — ... — Xo=X
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and, if f: X' — X is their composition, then the total inverse image f~*(C) is
a divisor with normal crossings.

Fiz now a series of blow-ups X' —Jev X such that the inverse image f~(C) is a
divisor on X' having as worst singularities normal crossings. We will now replace
the Cayley-Hamilton Ox-order A by a Cayley-Hamilton Ox:-order A" where A’ is
a sheaf of Ox/-maximal orders in A. In order to determine the ramification divisor
of A" we need to be able to keep track how the ramification divisor C of A changes
if we blow up a singular point p € P.

Lemma 6.42 Let X —» X be the blow-up of X at a singular point p of C, the
ramification divisor of A on X. Let C be the strict transform of C and E the
exceptional line on X. Let C' be the ramification divisor of A on the smooth model

X. Then,

1. Assume the local branch data at p distribute in an admissible way on C, that

18,

> bip=0foraiqe ENC

1 at q
where the sum 1is taken only over the branches at q. Then, C' = C.

2. Assume the local branch data at p do not distribute in an admissible way, then
C'=CUE.

Proof. Clearly, C — C' —— CU E. By the Artin-Mumford sequence applied to
X' we know that the branch data of C' must add up to zero at all points q¢ of CNE.
We investigate the two cases

1. : Assume E C C'. Then, the E-branch number at q must be zero for all
q € CN E. But there are no non-trivial étale covers of P' = E so ram(A) gives
the trivial element in HY,(C(E), un), a contradiction. Hence C' = C.

E

a —a

2. : If at some q € CNE the branch numbers do not add up to zero, the only remedy
is to include E in the ramification divisor and let the E-branch number be such that
the total sum is zero in Zn,. O

Theorem 6.43 Let A be a central simple algebra of dimension n? over a field L
of transcendence degree two. Then, there exists a smooth projective surface S with
functionfield C(S) = L such that any mazimal Og-order Ag in A has at worst a
finite number of isolated noncommutative singularities. Each of these singularities
is locally étale of quantum-plane type.

Proof. We take any projective smooth surface X with functionfield C(X) = L. By
the Artin-Mumford exact sequence, the class of A determines a geo-combinatorial
set of data

(C,P,b,D)
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as before. In particular, C is the ramification divisor ram(A) and P is the set of
singular points of C. We can separate P in two subsets

e Pynr = {P € P where all the branch-data bp = (b1,...,b;,) are trivial, that
is, allb; =0 in Z,}

® Pram = {P € P where some of the branch-data bp = (by,...,b;,) are non-
trivial, that is, some b; # 0 in Z,}

After a finite number of blow-ups we get a birational morphism Sy —» X such that
77 Y(C) has as its worst singularities normal crossings and all branches in points of
P are separated in S. Let Cy be the ramification divisor of A in S1. By the foregoing
argument we have

o If P € Pynr, then we have that C' N7~ 1(P) consists of smooth points of Cy,

o If P € Pram, then m=1(P) contains at least one singular points Q of C1 with
branch data bg = (a, —a) for some a # 0 in Z,,.

In fact, after blowing-up singular points Q' in ©7=1(P) with trivial branch-data we
obtain a smooth surface S — S; — X such that the only singular points of the
ramification divisor C' of A have non-trivial branch-data (a, —a) for some a € Z,,.
Then, take a mazimal Og-order A in A. By the local calculation of Br, C{z,y}
performed in the last section we know that locally étale A is of quantum-plane type
in these remaining singularities. As the quantum-plane is not étale locally split, A
is mot Cayley-smooth in these finite number of singularities. |

In fact, the above proof gives also a complete classification of those central simple
algebras admitting a Cayley-smooth model.

Theorem 6.44 Let A be a central simple C(X)-algebra of dimension n? determined
by the geo-combinatorial data (C,P,b,D) given by the Artin-Mumford sequence.
Then, A admits a Cayley-smooth model if and only if all branch-data are trivial.

Proof. If all branch-data are trivial, the foregoing proof constructs a Cayley-smooth
model of A. Conversely, if A is a Cayley-smooth Og-order in A with S a smooth
projective model of C(X), then A is locally étale split in every point s € S. But
then, so is any maximal Og-order Apq. containing A. By the foregoing arguments
this can only happen if all branch-data are trivial. O

6.11 Higher dimensional orders.

The strategy we used to characterize the central simple algebras over a surface ad-
mitting a Cayley-smooth model can also be applied (at least in principle) to higher
dimensional varieties. First, one uses the classification result of marked quiver-
settings to compile a list of allowed étale local behaviour of Cayley-smooth orders
and of their ramification. Next, if a subclass of central simple algebras is deter-
mined by ramification data, the obtained local behaviour puts restrictions on those
admitting a smooth model. We have seen that in the case of curves and surfaces,
the central variety X of a Cayley-smooth model A had to be smooth and that A is
étale locally split in every point € € X. Both of these properties are no longer valid
in higher dimensions.

Lemma 6.45 For dimension d > 3, the center Z of a Cayley-smooth order of
degree n can have singularities.
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Proof. Consider the following marked quiver-setting
b
V/@
d
which is allowed for dimension d = 3 and degree n = 2. The quiver-invariants are

generated by the traces along oriented cycles, that is, are generated by ac, ad, bc and

bd. That is,
Clz,y, 2,v]

(zv —yz)
which has a singularity in the origin. This example can be extended to dimensions
d > 3 by adding loops in one of the vertices.

C

Clissa Q] ~

O

Lemma 6.46 For dimension d > 3, a Cayley-smooth algebra does not have to be
locally étale split in every point of its central variety.

Proof. Consider the following allowable quiver-setting for d =3 and n =2

s

The corresponding Cayley-smooth algebra A is generated by two generic 2 X 2 trace
zero matrices, say A and B. Using our knowledge of T3 we see that its center is
generated by A2 =z, B2 = z and AB + BA = z. Alternatively, we can identify A
with the Clifford-algebra over Clxz,y, z] of the non-degenerate quadratic form

Ty

b
This is a noncommutative domain and remains to be so over the formal power series
Cl[z,y, 2]]. That is, A cannot be split by an étale extension in the origin. More
generally, whenever the local marked quiver contains vertices with dimension > 2,
the corresponding Cayley-smooth algebra cannot be split by an étale extension as the

local quiver-setting does not change and for a split algebra all vertex-dimensions have
to be equal to 1. In particular, the Cayley-smooth algebra of degree 2 corresponding

to the quiver-setting
€0 U

cannot be split by an étale extension in the origin. Its corresponding dimension is
d=3k+4 -3

whenever k 4+ 1> 2 and so all dimensions d > 3 are reached. O
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Chapter 7

Moduli Spaces.

In the study of the Hilbert scheme Hilb, of n points in C? we ran into the quiver
setting (Q, a)

)
© ()

In fact, we proved that Hilb, is the orbit space of the GL(«)-orbits on triples
(A,B,u) € rep, Q@ = M, & M, ® C" such that [A,B] = 0 and u is a cyclic
vector for (A, B). None of these triples (A, B,u) determines a closed GL(«a)-orbit
in rep, Q because

tim (1,41,).(4, B,v) = (A, B,0)

Still, a cyclic triple does determine a closed GL(«)-orbit in some Zariski open sub-
set rep (o) determined by a Hilbert stair o, as the dimension of all GL(«)-orbits
in rep (o) is equal to n?. Such situations, where a shortage of closed orbits is com-
pensated when restricted to suitable open subsets, often occur such as in the study
of linear dynamical systems as we will see in the first sections.

For a general quiver setting (Q,«) and a character xo : GL(a) — C* we
will study a moduli space MZ2%(Q,0) classifying closed orbits in the Zariski open
subset of so called 0-semistable representations of rep, Q. These moduli spaces
were introduced and studied by A. King in [I2]. The intuition we have formed on
algebraic quotient varieties is helpful in studying these moduli spaces provided we
use the following dictionary

is50 Q | M&(Q.0)

closed orbits in rep, Q closed orbits in reps®(Q,0)

simple representation 0-stable representation

semi-simple representation | direct sum of 0-stable representations
polynomaial invariants semi-invariants of weight 6

A first important problem is to determine which of these moduli spaces are non-
empty, that is for which triples (Q,«,8) do there exist 0-(semi)stable representa-
tions in rep, Q. A beautiful inductive combinatorial answer to this problem was
discovered by A. Schofield [27]. His characterization of the dimension vectors «
allowing 0-stables is as fundamental to the study of the moduli spaces M2°(Q,0) as
the description of the dimension vectors of simple representations is to the study of
the quotient varieties iss, Q. These moduli spaces are defined to be the projective
varieties of certain graded algebras of semi-invariant functions. Hence, we need to
find generators of semi-invariants precisely as we needed to control the polynomial

243
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invariants to study the quotient varieties. Of the many independent description of
these semi-invariants we follow here the approach due to A. schofield and M. Van
den Bergh in [28].

In the next chapter we will see that the investigation of these moduli spaces is
crucial in the study of fibers of the representation spaces rep, A — iss, A and
of the Brauer-Severi fibration BS,, A — iss,, A for Cayley-smooth algebras A of
degree n.

7.1 Dynamical systems.

A linear time invariant dynamical system X is determined by the following system
of differential equations

dx

— =Bzr+A

at T Au (7.1)
y = Czx.

Here, u(t) € C™ is the input or control of the system at tome t, x(t) € C" the
state of the system and y(t) € CP the output of the system . Time invariance
of ¥ means that the matrices A € My, xm(C), B € M, (C) and C € M,x,(C) are
constant. The system ¥ can be represented as a black box

. u(t) - y(t) .

z(t)

which is in a certain state x(t) that we can try to change by using the input controls
u(t). By reading the output signals y(t) we can try to determine the state of the
system.

Recall that the matriz exponential e of any n x n matriz B is defined by the
infinite series ,

m
eB:’Un+B+%+...+i!

The importance of this construction is clear from the fact that eB?t is the fundamental
matriz for the homogeneous differential equation % = Bx. That is, the columns of
eBt are a basis for the n-dimensional space of solutions of the equation % = Bzx.

Motivated by this, we look for a solution to equation as the form z(t) =
eBtg(t) for some function g(t). Substitution gives the condition

+...

T

% =e BtAu  whence g(1) = g(m) +/ e Bt Au(t)dt.

To

Observe that x(19) = eP™0g(m0) and we obtain the solution of the linear dynamical
system ¥ = (A, B,C) :

z(r) = elT7m0)By(7y) —|—f:0 e(T=OB Ay(t)dt
y(r) = CePUmu(ny) + [T Celm DB Au(t)dt.

Differentiating we see that this is indeed a solution and it is the unique one having
a prescribed starting state x(79). Indeed, given another solution x1(7) we have that
z1(7) — z(7) is a solution to the homogeneous system %% = Bt, but then

xi (1) =z(1) + eTBe_TUB(xl(TO) —2(79)).
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We call the system % completely controllable if we can steer any starting state
x(70) to the zero state by some control function u(t) in a finite time span [19,7].
That is, the equation

.
0=2x(m) + / e0=DB Ay (t)dt
70
has a solution in 7 and u(t). As the system is time-invariant we may always assume
that 79 = 0 and have to satisfy the equation

0=x9+ / P Au(t)dt  for every a9 € C" (7.2)
0

Consider the control matriz c(X) which is the n X mn matriz

C(Z): A BA BzA Br1 A

Assume that rk ¢(X) < n then there is a non-zero state s € C™ such that s"¢(X) = 0,
where s™ denotes the transpose (row column) of s. Because B satisfies the charac-
teristic polynomial xp(t), B™ and all higher powers B™ are linear combinations of
{1,,B,B?,...,B""'}. Hence, s" B™A =0 for all m. Writing out the power series
expansion of e!® in equation this leads to the contradiction that 0 = s™xq for
all xg € C™. Hence, if rk ¢(X) < n, then ¥ is not completely controllable.

Conversely, let rk ¢(X) = n and assume that ¥ is not completely controllable.
That is, the space of all states

s(ryu) = /OT e B Au(t)dt

is a proper subspace of C™. But then, there is a non-zero state s € C™ such that
sts(t,u) = 0 for all T and all functions u(t). Differentiating this with respect to T
we obtain

sem P Au(t) =0 whence sTeTTPA=0 (7.3)

for any T as u(t) can take on any vector. For 7 = 0 this gives s"A = 0. If we
differentiate with respect to T we get s*"Be""BA =0 for all T and for T =0
this gives s""BA = 0. Iterating this process we show that st"B™A = 0 for any m,
whence

st [A BA B?A ... B”’lA] =0

contradicting the assumption that rk ¢(X) = n. That is, we have proved :

Proposition 7.1 A linear time-invariant dynamical system 3 determined by the
matrices (A, B, C) is completely controllable if and only if rk ¢(X) is mazimal.

We say that a state x(1) at time T is unobservable if Ce(™"9Bx(r) = 0 for all
t. Intuitively this means that the state x(T) cannot be detected uniquely from the
output of the system . Again, if we differentiate this condition a number of times
and evaluate at t = 7 we obtain the conditions

Cx(r) = CBx(r) = ... = CB" 'z(r) = 0.

We say that % is completely observable if the zero state is the only unobservable
state at any time 7. Consider the observation matriz o(X) of the system ¥ which
is the pn X n matriz

o(X) = [Ctr (©cB)" ... (Canl)tr]tT
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An analogous argument as in the proof of proposition[7.1] gives us that a linear time-
invariant dynamical system Y determined by the matrices (A, B,C) is completely
observable if and only if rk o(X) is maximal. For reasons which will become clear
i a moment, we call linear time-invariant dynamical systems which are both com-
pletely controllable and completely observable Schurian systems. An important prob-
lem in system theory is to classify the Schurian systems with the same input/output
behavior. We reduce this problem to the study of GL,-orbits in an open subset of a
vectorspace. Assume we have two systems ¥ and Y/, determined by matriz triples
from Sys = My xm(C) x M, (C) x Mpyyn(C) producing the same output y(t) when
given the same input u(t), for all possible input functions u(t). We recall that the
output function y for a system ¥ = (A, B,C) is determined by

y(1) = CeBr=0) g (1) +/ Cel™ B Au(t)dt.
To
Differentiating this a number of times and evaluating at T = 79 as in the proof of
propositz'on equality of input/output for ¥ and X' gives the conditions
CB'A=C'B"A" forall i.

As a consequence the systems ¥ and X' have the same Hankel matrixz which by
definition is the product of the observation matriz with the control matrix of the

system :
CCB @

CB" 1
cB#n 24

But then, we have for any v € C™ that ¢(X)(v) = 0 < ¢(X')(v) = 0 and we can
decompose CP™* =V @ W such that the restriction of ¢(X) and ¢(X') to V are the
zero map and the restrictions to W give isomorphisms with C". Hence, there is
an invertible matrix g € GL,, such that ¢(¥X') = gc(X) and from the commutative
diagram

c(2 o(%)

cmn ) » C" < cpn

(%' o(2)

(C’mn ) > CTL c Cp’fb

we obtain that also o(X') = o(X)g~!. Consider the system % = (A1, B1,Ch)
equivalent with % under the base-change matrix g. That is, X1 = g¢g.X =
(9A,9Bg~",Cg™"). Then,

[Al, BlAl, RN B?_lAl] = gc(z) = C(Z/) = [A/,B/A/, o B/n_lA’}

and so Ay = A’. Further, as Bi'HAl = B A" we have by induction on i that the
restriction of By on the subspace of B Im(A') is equal to the restriction of B’ on
this space. Moreover, as Z;’:}} B'iIm(A’) = C" it follows that By = B'. Because
o(X) = o(X)g~! we also have C; = C". This finishes the proof of :
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Proposition 7.2 Let ¥ = (A, B,C) and ¥’ = (A’, B',C") be two Schurian dynam-
ical systems. The following are equivalent

1. The input/output behavior of ¥ and ¥’ are equal.

2. The systems ¥ and X/ are equivalent, that is, there exists an invertible matriz
g € GL,, such that

A'=gA, B' =gBg™' and C'=Cg7L.

By definition, a dynamical system ¥ = (A, B, C) is Schurian if (and only if) the
determinant of at least one n x n minor of ¢(X) and o(X) is non-zero. That is, the
subset Sys® of Schurian dynamical systems is open in Sys and is stable under the
GL,-action. Our next job is to classify the orbits under this action. We introduce
a combinatorial gadget : the Kalman code. It is an array consisting of (n+1) x m
bozes each having a position label (i,7) where 0 < i < n and 1 < j < m. These
bozes are ordered lexicographically that is (i',5") < (i,7) if and only if either i’ < i
ori =1 and j' < j. Ezactly n of these boxes are painted black subject to the rule
that if box (i,7) is black, then so is box (i',7) for all i’ <i. That is, a Kalman code

looks like
0 I

1 m

We assign to a completely controllable system ¥ = (A, B, C) its Kalman code K (X)
as follows : let A = [Al Ay L. Am], that is A; is the i-th column of A. Paint
the boz (i,7) black if and only if the column vector B*'A; is linearly independent of
the column vectors B*A; for all (k1) < (i,5). The painted array K(X) is indeed a
Kalman code. Assume that box (i,7) is black but box (i, j) white for i’ < i, then

Bi/Aj: Z amB*A;  but then, B'A; = Z ap BFHT 4,
(k‘,l)<(i/7j) (k,l)<(i/,j)

and all (k+1i—14',1) < (i,1), a contradiction. Moreover, K(X) has exactly n black
bozes as there are n linearly independent columns of the control matriz ¢(X) when X
is completely controllable. The Kalman code is a discrete invariant of the orbit O(X)
under the action of GL,. This follows from the fact that B*A; is linearly indepen-
dent of the BXA; for all (k,1) < (i,7) if and only if gB*A; is linearly independent
of the gB* A; for any g € GL,, and the observation that gB* Ay = (gBg~1)¥(gA);.
With V. we will denote the open subset of all completely controllable pairs (A, B)
that is, those for which the rank of the nxnm matriz [A BA B?A ... B”flA]

is maximal. We consider the map

V= Mnxm(c) D Mn((c) g MnX(WJFl)m(C)

(A, B) - [A BA B2A ... B"'A B4
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The matriz (A, B) determines a linear map 14 py : Ccrtm . C" and (A, B)
is a completely controllable pair if and only if the corresponding linear map (4, p)
is surjective. Moreover, there is a linear action of GL, on M,y (ni1)m(C) by left
multiplication and the map 1 is G Ly, -equivariant.

7.2 Grassmannians.

The Kalman code induces a barcode on ¥(A, B), that is the n x n minor of ¥(A, B)
determined by the columns corresponding to black boxes in the Kalman code.

¥(4, B)

By construction this minor is an invertible matriz g € GL,,. We can choose a
canonical point in the orbit O (A,B) : g.(A,B). It does have the characteristic
property that the n x n minor of its image under 1), determined by the Kalman code
is the identity matriz T,. The matriz ¥(g.(A, B)) will be denoted by b(A, B) and
is called barcode of the pair (A, B). We claim that the barcode determines the orbit
uniquely.

The map 1) is injective on the open set V. of completely controllable pairs. Indeed,

if
[A BA ... B"A]=[A B'A ... B"A
then A= A’, B | Im(A) = B’ | Im(A) and hence by induction also

B| B'Im(A)=B'| B'Im(A") foralli<n—1.

But then, B = B’ as both pairs (A, B) and (A, B’) are completely controllable,
that is, Z?:_ol BiIm(A) = C" = Z?:_ol B'iIm(A’). Hence, the barcode b(A, B)
determines the orbit O (A, B) and is a point in the Grassmannian Grass, (m(n+1)).

We briefly recall the definition of these Grassmannians. Let k < [ be integers,
then the points of the Grassmannian Grassi(l) are in one-to-one correspondence
with k-dimensional subspaces of C'. For example, if k = 1 then Grass,(l) = P71,
We know that projective space can be covered by affine spaces defining a manifold
structure on it. Also Grassmannians admit a cover by affine spaces.

Let W be a k-dimensional subspace of C' then firing a basis {wy, ..., wp} of W
determines an k X | matriz M having as i-th row the coordinates of w; with respect
to the standard basis of C'. Linear independence of the vectors w; means that there
is a barcode design I on M

wi
wp,
i1 io ce

where [ =1 <141 <9 < ... < i, <1 such that the corresponding k x k minor My
of M is invertible. Observe that M can have several such designs.

Conversely, given a k x I matrix M of rank k determines a k-dimensional sub-
space of | spanned by the transposed rows. Two k x | M and M’ matrices of rank

ik
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k determine the same subspace provided there is a basechange matriz g € GLy, such
that gM = M'. That is, we can identify Grassi(l) with the orbit space of the
linear action of GLy by left multiplication on the open set M[2%"(C) of Myxi(C)
of matrices of maximal rank. Let I be a barcode design and consider the subset of
Grassi(1)(I) of subspaces having a matriz representation M having I as barcode
design. Multiplying on the left with N[fl the GLy-orbit Oy has a unique repre-
sentant N with Ny = 1. Conversely, any matric N with Ny = T, determines a
point in Grassy(1)(I). Thus, Grassi(1)(I) depends on k(l—k) free parameters (the
entries of the negative of the barcode)

w1y

i1 iy iy

and we have an identification Grassy(1)(I) —— CF=F) . For a different barcode
design I' the image 71(Grassy(1)(I) N Grassg(1)(I')) is an open subset of CFU—F)
(one extra nonsingular minor condition) and 7y o 7r;1 is a diffeomorphism on this
set. That is, the maps 7 provide us with an atlas and determine a manifold struc-
ture on Grassg(l).

Returning to dynamical systems, the barcode b(A, B) determined by the Kalman
code determines a unique point in Grassy,(m(n+1)). We have

¥ max
Ve &——r n><m(n+1)((c)

6() X

Grassp(m(n+1))

where 1 is a G L, -equivariant embedding and x the orbit map. Observe that the bar-
code matriz b(A, B) shows that the stabilizer of (A, B) is trivial. Indeed, the minor
of g.b(A, B) determined by the Kalman code is equal to g. Moreover, continuity of b
implies that the orbit O (A, B) is closed in V... We claim that v is a diffeomorphism
to a locally closed submanifold of My, (nt1)(C). To prove this we have to consider
the differential of 4. For all (A,B) € W and (X,Y) € T(4,5)(V) ~ V we have

j—1
(B+eY)(A+eX)=B"A+e (B"X +» B'YB"''A).

i=0
Therefore the differential of 1 in (A, B) € V, da,5)(X,Y) is equal to

[X BX+YA B2X+BYA+YBA ... B"X+Y." ) BYB"174].

Assume dip4,p)(X,Y) is the zero matriz, then X = 0 and substituting in the next
term also YA = 0. Substituting in the third gives Y BA = 0, then in the fourth
YB?A =0 and so on until Y B" A = 0. But then,

Y[A BA B2A ... B 'A]=0.

If (A, B) is a completely controllable pair, this implies that Y = 0 and hence shows
that dip(a,py is injective for all (A, B) € V.. By the implicit function theorem, 1)
induces a G Ly, -equivariant diffeomorphism between the open subset V. of completely
controllable pairs and a locally closed submanifold of M,y (n+1)m(C)™**. The image
of this submanifold under the orbit map x is again a manifold as all fibers are equal
to GLy. This concludes the difficult part of the Kalman theorem :
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Theorem 7.3 The orbit space O, = V./GL,, of equivalence classes of completely
controllable pairs is a locally closed submanifold of dimension m.n of the Grassman-

nian Grass,(m(n+1)). In fact V. o O, is a principal GLy-bundle.

To prove the dimension statement, consider V.(K) the set of completely control-
lable pairs (A, B) having Kalman code K and let O.(K) be the image under the orbit
map. After identifying V.(K) with its image under 1, the barcode matriz b(A, B)

gives a section O.(K) —— V,(K). In fact,
Ly % Ou(K) —= Vi(K)  (g,2) > g.5(x)

is a G Ly,-equivariant diffeomorphism because the n x n minor determined by K of
g9.b(A, B) is g. Apply the local product decomposition to the generic Kalman code

K9
p—

n

1 m

obtained by painting the top boxes black from left to right until one has n black boxes.
Clearly V.(K9) is open in V. and one deduces

dim O, = dim O.(K9) = dim V.(K?) — dim GL, =mn +n*—n? = mn.

The Kalman theorem implies the existence of an orbit space for completely
controllable and Schurian systems. Indeed, let ¥ = (A, B,C) completely control-
lable and let g = g(a,By € GLy be the uniquely determined basechange such that
g-(A, B) = b(A, B), then we have a canonical representant (gA,gBg~t,Cg~1) in
the orbit O(X). As the stabilizer Stab(A, B) is trivial the orbits of (A, B,C) and
(A, B,C") are distinct if C = C'. That is the natural projection prs

prs3

Sysc - Ve

H
Sys./GL, — O,

descends to define an orbit space which is an Myy,(C)- bundle over O, and hence
is a manifold. The Schurian systems Syss form a G L, -stable open subset of Sys.
and hence their orbit space is an open submanifold of Sys./GL,.

Theorem 7.4 Let Sys. (resp. Syss) the the open subset of
Sys - Mnx*m(@) SY Mn((c) SY Mpxn((c)

determined by the completely controllable (resp. Schurian) linear dynamical sys-
tems.

1. The orbit space for the GL,, action on Sys. exists and is a vectorbundle of
rank pn over O..

2. The orbit space for the GL,-action on Syss exists and is a manifold of di-
mension mn2p.
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7.3 Mixed semi-invariants.

The space Sys of all linear systems determined by the numbers (m,n,p) can be
identified with the representation space of the quiver situation rep, @ with o =
(m,n,p) and Q the quiver

® 2 20

i\

Instead of considering GL(«)-orbits we only consider the G Ly-action. Up till now
we have only considered GL(a)-invariant functions to classify (closed) orbits. Ob-
serve that a completely controllable system ¥ = (A, B) does not determine a closed
GLy-orbit in V. = M, xm ® M, as the action of the scalar matriz g = €1, gives
the system (€A, B) and hence (0pxm, B) is a (not completely controllable) system
belonging to the orbit closure O(X). Still, we were able to construct a nice orbit
space for such systems because the orbit O(X) is closed in the open subvariety V.
We will give an interpretation of the orbit map in invariant-theoretic language.

]i + 1 given by
sending a point to the N -tuple of all determinants of the k x k minors determined
by the different bar-code designs I

wy
. Wiy e wigy
. det : :
w : :
Whiy o Whiy
i in e

ik

There is a natural embedding Grassy(l) — PN where N =

e

Composing the orbit map b with this embedding, a system ¥ = (A, B) is send to the
N-tuple of determinants det by(A, B). For a different point g.(A, B) in the orbit
O(X) we have that

det by (g.(A, B)) = det(g)det b; (A, B)

That is, these functions are semi-invariants for GL,. In general, if V is a GL,-
module, a polynomial function f onV is said to be a semi-invariant if for allv € V
we have

flgv) = x(9)f(v) for some character GL,, — C*

and we recall that every character of GL,, is of the form det® for some k € Z.
Equivalently, f is an invariant polynomial for the restricted action of the special
linear group SL, ={ g € GL,, | det(¢g)=1} on V.

In chapter 1, we ran into semi-invariants in the description of the orbit space
for the GL,-action on rep, M = M,, & M,, & C™* & C™* using Hilbert stairs. Recall
that a Hilbert stair o, that is, the lower triangular part of a square of n X n array
of boxes filled with go-stones subject to the rules

e cach row contains exactly one stone, and
e cach column contains at most one stone of each color.

determines a sequence W (o) = {1, wa, ..., w,} of monomials in the noncommuting
variables x and y, placing 1 at the top of the stairs and descending the chair fol-
lowing the rule that every go-stone has a top word T which we may assume we have
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constructed before and a side word S and they are related as indicated below

. o =

O 7ls O Tlr ) Tr

= = =

For a quadruple (X,Y,u,v) € rep, M we replace every occurrence of x in the
word w;(x,y) by X and every occurrence of y by Y to obtain an n x n matric
w; = wi(X,Y) € M, (C) and by left multiplication on u a column vector w;.v. The
evaluation of o on (X,Y,u,v) is the determinant of the n x n matriz

o(X,Y,u,v) =det| u || w2u|l wsu WU

These functions were used to separate the orbits of cyclic quadruples. As for every
monomial w(z,y) and every g € GL,, we have that

w(gX 1, gYg Hgu = gw(X,Y)u

we see that the functions o(X,Y,u,v) are again semi-invariants for the action of
GL,, or equivalently, SL,-invariants on rep, M.

In this section we will determine all such mized semi-invariants for GL, acting
on the vectorspace

W=M,®.. oM, eV, ®...06V, eV &...08V,

k m p

made up of k matriz-components M, on which GL, act by simultaneous conju-
gation, m wector-components V,, on which GLy-acts by left-multiplication and p
covector-components V¥ on which GLyact via the contragradient action. That s,
W is the representation space of the quiver situation

® H 'G

where we restrict the usual GL(a)-action to the G Ly, -component. We will determine
the generating semi-invariant polynomials, that is, the SLy-invariant functions on
W. In chapter 3 we worked out a similar problem in great detail, here we merely
sketch the main steps. In section 6 we will generalize these calculations to determine
the GL(«)-semi-invariants on an arbitrary quiver situation rep, Q.

As always, we first determine the multilinear S L, -invariants, that is the SL,,-
invariant linear maps

My®..Q Mp®V,®...0V, @V, ®...0V; —I+C

i j z
By the identification M, =V, ® V. we have to determine the SLy,-invariant linear
maps

Vn®i+j®v7:f®i+z f C
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The description of such invariants is given by classical invariant theory, see for
example [32, I1.5,Thm. 2.5.4].

Theorem 7.5 The multilinear SL,-invariants f of the situation above are linear
combinations of invariants of one of the following two types

1. For (i1,...,in,h1, oo by ooty oo tn, 1, .., Sp) a permutation of the i + j
vector indices and (uq,...,u,) a permutation of the i + z covector indices,
consider the SL,-invariant

[Uilﬂ"'aviw,] [Uhu"',vhn] [vt17"'7vtn} ¢U1(vsl)"'¢ur(vs7‘)

where the brackets are the determinantal invariants

[Wars---sVa,] = det [Va, Vay ... va,]
2. For (i1, ... in,hiyee oy hpy oo yty, oo tn, S1,- .., Sr) @ permutation of the i + z
covector indices and (uq,...,u,) a permutation of the i + j vector indices,

consider the S L, -invariant

[d)iu sy d)in]* [¢h1a ey ¢hn]* cee [¢t17 E) ¢tn,]* ¢u1 (’l}sl) e QSUT(IUST)
where the brackets are the determinantal invariants

Pa,
[¢a17"'7¢an]*:d€t .
Pa,,

Observe that we do not have at the same time brackets of vectors and of covectors,
due to the relation

o1 (Ul) e Py (Un)
[Ul,...,vn] [¢17...,¢n]:d€t :
On(v1) o Onlvn)

Our next job is to give a matriz-interpretation of these basic invariants. Let us
consider the case of a bracket of vectors (the case of covectors is similar)

[’Uil, e ,’Uin]

If all the indices {iy,...,i,} are original vector-indices (and so do not come from
the matriz-terms) we save this term and go to the next factor. Otherwise, if say i,
is one of the matrixz indices, Ai, = ¢i, @ v;,, then the covector ¢;; must be paired
up in a scalar product ¢;, (vy, ) with a vector vy, . Again, two cases can occur. If uy
is a vector index, we have that

¢i1(vu1>[vi1" .- avin] = [Ahvulvviw <o ’Uin] = [U;l,viz, ce- 7vin]

Otherwise, we can keep on matching the matriz indices and get an expression
Giy (Vuy) Puy (Vuy) Puy (Vug) -
until we finally hit again a vector index, say u;, but then we have the expression
Diy (Vi) Gy (Vzy) oo Py (V) [Vigs ooy 05, ] = [MUyy, Vig,y .., 04, ]

where M = A; Ay, ... Ay,_,. One repeats the same argument for all vectors in the
brackets. As for the remaining scalar product terms, we have a similar procedure of
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matching up the matrix indices and one verifies that in doing so one obtains factors
of the type
o(Mv) and tr(M)

where M is a monomial in the matrices. As we mentioned, the case of covector-
brackets is similar except that in matching the matriz indices with a covector ¢, one
obtains a monomial in the transposed matrices.

Having found these interpretations of the basic SL,-invariant linear terms, we
can proceed by polarization and restitution processes as explained in chapter 3, to
finish the proof of the next result, due to C. Procesi [24, Thm 12.1].

Theorem 7.6 The SL,-invariants of W = rep, Q where Q is the quiver

k
o

are gemerated by the following four types of functions, where we write a typical
element in W as

(Alv'"7Ak7vlv"'7vm7¢17"-5¢p)
—_———— ——— ™ —

k m P
with the A; the matrices corresponding to the loops, the v; making up the rows of
the n x m matriz and the ¢; the columns of the p x n matriz.
o tr(M) where M is a monomial in the matrices A;,
e scalar products ¢;(Mwv;) where M is a monomial in the matrices A;,
e vector-brackets [Myv;,, Mav,,, ..., Myv; | where the M; are monomials in the
matrices A;,

T

e covector-brackets [M1¢] , .

trices A;,

.oy My, @7 | where the M; are monomials in the ma-

7.4 (General subrepresentations.

Throughout this section we fix a quiver Q on k vertices {v1,...,v} and dimension
vectors o = (a1,...,ar) and B = (by,...,by). We want to describe morphisms
between representations V € rep, Q and W € repg Q. That is, we consider the
closed subvariety

Homg(a, 3) = My, xb, D ... ® My, xp, Dreps Q ®reps Q

consisting of the triples (¢, V,W) where ¢ = (p1,..., o) is a morphism of quiver-
representations V.—— W. Projecting to the two last components we have an onto
morphism between affine varieties

Homg(a, B) —>> repa Q @ reps Q

In chapter 4.2 we have proved that the dimension of fibers is an upper-
semicontinuous function. That is, for every natural number d, the set

{® € Homg(a,B) | dime h™'(h(®)) < d}

is a Zariski open subset of Homg(a, 3). As the target space rep, Q @ repg Q is
irreducible, it contains a mon-empty open subset hom,,, where the dimension of
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the fibers attains a minimal value. This minimal fiber dimension will be denoted by
hom(a, 3).

Similarly, we could have defined an affine variety Extg(a, 3) where the fiber
over a point (V,W) € rep, Q ®reps Q is given by the extensions EmtéQ(V, w). If
Xq 1s the Euler-form of Q we recall that for all V € rep, Q and W € repg Q we
have

dimc Homeg(V,W) — dimg EmtlQ(V, W) = xo(a, 5)

Hence, there is also an open set ext, of rep, @ ® repg (Q where the dimension
of Ext!(V,W) attains a minimum. This minimal value we denote by ext(a, 3). As
homupin N extmin s a non-empty open subset we have the numerical equality

hom(a, B) — ext(a, ) = xo(a, B).
In particular, if hom(a, a+ ) > 0, there will be an open subset where the morphism

14 2, W is a monomorphism. Hence, there will be an open subset of repa+s Q
consisting of representations containing a subrepresentation of dimension vector
a. We say that « is a general subrepresentation of a + B and denote this with
a — a+ [. We want to characterize this property. To do this, we introduce the
quiver-Grassmannians

k
Grassq(a+ ) = H Grassg, (a; + b;)
i=1
which is a projective manifold. Consider the following diagram of morphisms of

reduced varieties
repats Q
A

A

Grassqo(a+ ()
with the following properties

o repa+s QX Grassq(a+f) is the trivial vectorbundle with fiber repa+s Q over
the projective smooth variety Grass,(a + 3) with structural morphism pra.

e 7ep2 TP Q is the subvariety of repat+s @ X Grassq(a+ ) consisting of couples
(W, V) where V is a subrepresentation of W (observe that this is for fived W
a linear condition). Because GL(a+ () acts transitively on the Grassmannian
Grasse(a+B3) (by multiplication on the right) we see that rep®tP Q is a sub-
vectorbundle over Grassq(«a + ) with structural morphism p. In particular,
rep P Q is a reduced variety.

e The morphism s is a projective morphism, that is, can be factored via the
natural projection

repass Q x PV

S
repy ™ Q —— repaip Q
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where f is the composition of the inclusion repot’ Q —— TePatg Q X
Grasse(a + ) with the natural inclusion of Grassmannians in projective
spaces recalled in the previous section Grassq,(o + ) — Hle P™ with
the Segre embedding Hle P —— PN, In particular, s is proper by 9,
Thm. II.4.9], that is, maps closed subsets to closed subsets.

We are interested in the scheme-theoretic fibers of s. If W € repat+g Q lies in
the image of s, we denote the fiber s=Y(W) by Grass,(W). Its geometric points
are couples (W, V') where V is an a-dimensional subrepresentation of W. Whereas
Grass, (W) is a projective scheme, it is in general neither smooth, nor irreducible
nor even reduced. Therefore, in order to compute the tangent space in a point (W, V)
of Grass,, (W) we have to clarify the functor it represents on the category commalg
of commutative C-algebras.

Let C be a commutative C-algebra, a representation R of the quiver @ over
C consists of a collection R; = P; of projective C-modules of finite rank and a
collection of C'-module morphisms for every arrow a in Q

Ra
Rjzpj%PiZRi

The dimension wvector of the representation R is given by the k-tuple
(rkc Ra,...,rkc Ri). A subrepresentation S of R is determined by a collection of
projective sub-summands (and not merely sub-modules) S; <R;. In particular, for
W € repa+s @ we define the representation We of Q) over the commutative ring C
by

We)i =CocW;

We)a = idc ®c W,

With these definitions, we can now define the functor represented by Grass, (W) as
the functor assigning to a commutative C-algebra C' the set of all subrepresentations
of dimension vector a of the representation We.

Lemma 7.7 Let x = (W, V) be a geometric point of Grass, (W), then

T, Grass, (W) = Homcg(V, g)

Proof. The tangent space in x = (W, V) are the Cle]-points of Grass, (W) lying

over (W, V). To start, let V L w be a homomorphism of representations of

V ~
Q and consider a C-linear lift of this map ¢ : V. —— W. Consider the C-linear

subspace of Wep = Cle] @ W spanned by the sets

{v+exy@) | veV} and e®V

This determines a Cle]-subrepresentation of dimension vector o of Weq lying over
(W, V) and is independent of the chosen linear lift .

Conversely, if S is a Cle]-subrepresentation of Weq lying over (W, V), then
% =V —— W. But then, a C-linear complement of €S is spanned by elements
of the form v + el(v) where Y(v) € W and € ® ¢ is determined modulo an element
of e ® V. But then, we have a C-linear map ¢ : V. —— % and as S is a Cle]-

subrepresentation, z/? must be a homomorphism of representations of Q. O

We can now give a characterization for general a-dimensional subrepresenta-
tions, proved by A. Schofield in citeSchofield.
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Theorem 7.8 The following are equivalent
1. a &~ a+p.

2. Bvery representation W € repayg @ has a subrepresentation V' of dimension
Q.

3. ext(a, ) = 0.

Proof. Assume 1. , then the image of the proper map s : rep# Q — TePats @
contains a Zariski open subset. As properness implies that the image of s must also
be a closed subset of repatg @ it follows that Im s = repatp Q, that is 2. holds.
Conversely, 2. clearly implies 1. so they are equivalent.

We compute the dimension of the vectorbundle rep®™? Q over Grass,(a + 3).
Using that the dimension of a Grassmannians Grassi(l) is k(I — k) we know that
the base has dimension Zle aib;. Now, fix a point V.—— W in Grass,(a +
B), then the fiber over it determines all possible ways in which this inclusion is a
subrepresentation of quivers. That is, for every arrow in Q of the form Q<——~Q
we need to have a commuting diagram

Vi

Vi

W, ——— W,

Here, the vertical maps are fizved. If we turn V € rep, @, this gives us the a;a;
entries of the upper horizontal map as degrees of freedom, leaving only freedom for
the lower horizontal map determined by a linear map Wi — Wj, that is, having
bi(a; +b;) degrees of freedom. Hence, the dimension of 'the vectorspace-fibers is

> (aia; +bi(a; +b)))

giving the total dimension of the reduced variety rep>™? Q. But then,
k
dim T€Pg+ﬁ Q — dim repayp Q = Zaibi + Z (aiaj +bi(a; + b))
= > (ai+bi)(a;+1b;)
k
= aibi— > aibj =xq(,B)

Assume that 2. holds, then the proper map repS ™5 — rePatg @ 15 onto and
as both varieties are reduced, the general fiber is a reduced variety of dimension
xq(w, B), whence the general fiber contains points such that their tangentspaces
have dimension xq(c, 8). By the foregoing lemma we can compute the dimension
of this tangentspace as dim Homcg(V, %) But then, as

w
xq(a, B) = dime¢ Homcg(V, 7) — dimg E:vt}CQ(V, g)
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it follows that Ext!(V, %) = 0 for some representation V of dimension vector
and % of dimension vector 3. But then, ext(«,3) = 0, that is, 3. holds.
Conversely, assume that ext(a, 5) = 0. Then, for a general point W € repa1s Q
in the image of s and for a general point in its fiber (W, V) € rep2™? Q we have
dimg E:Ct}CQ(V,%) = 0 whence dimc Homeq(V,¥) = xq(a,8). But then, the
general fiber of s has dimension xg(c, 8) and as this is the difference in dimension
between the two irreducible varieties, the map is generically onto. Finally, proper-
ness of s then implies that it is onto, giving 2. and finishing the proof. ]

7.5 Schofield’s criterium.

In all moduli space problems we will encounter, it will be crucial to determine the
dimension vectors of general subrepresentations, or by the foregoing section, to com-
pute ext(a, B). An inductive algorithm to do this was discovered by A. Schofield
127).

Recall that o« — [ iff a general representation W € repg Q contains a sub-
representation S —— W of dimension vector «. Similarly, we denote  —
if and only if a general representation W € repg Q) has a quotient-representation
W —— T of dimension vector v. As before, Q will be a quiver on k-vertices
{v1,..., vt} and we denote dimension vectors o = (a1,...,ar), 8 = (b1,...,bx)
and v = (c1,...,cx). We will first determine the rank of a general homomorphism
V —— W between representations V € rep, Q and W € repg QQ. We denote

Hom(a, ) = @ My, o, and Hom(V,3) = Hom(a, ) = Hom(a, W)

for any representations V- and W as above. With these conventions we have

Lemma 7.9 There is an open subset Hompy (o, 8) — rep, Q x repg @ and a
dimension vector ~y © ok hom(a, B) such that for all (V,W) € Hommn(c, B)
o dimgc Homgg(V, W) is minimal, and

o {¢p € Homcq(V,W) | rk ¢ = v} is a non-empty Zariski open subset of
HomCQ(V, W)

Proof. Consider the subvariety Homg (v, 8) of the trivial vectorbundle

Homg(a, B) = Hom(a, 8) X repa @ X repg Q

reps, @ X repg Q

of triples (¢, V, W) such that V . W is a morphism of representations of Q. The
fiber =Y (V,W) = Homcg(V,W). As the fiber dimension is upper semi-continuous,
there is an open subset Homupn (v, B) of repa QX repg Q consisting of points (V, W)
where dimgc Homeg(V, W) is minimal. For given dimension vector 6 = (dy, ..., dy)
we consider the subset

Homg(a, 8,6) = {(¢,V,W) € Homg(«a,3) | rk ¢ =6} — Homg(a, B)

This is a constructible subset of Homg(c, B) and hence there is a dimension vec-
tor vy such that Homg(cv, B,7) N @~ (Hommin(c, B)) is constructible and dense in
O~ Y (Hommin(a, B)). But then,

O(Homg(a, 8,7) N O~ Hommin(a, §)))
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is constructible and dense in Homy,,(V,W). Therefore it contains an open subset
Hom,,,(V,W) satisfying the requirements of the lemma. O

Lemma 7.10 Assume we have short exact sequences of representations of Q
{l1: 0—>S—>V—sX—>0
= 0O—Y —W —T—0
then there is a natural onto map
Extio(V,W) —s» Exto(S,T)

Proof. We will see in chapter 9 that gldim CQ < 1, whence applying derived
functors to the given sequences we obtain the following part of the natural long-
exact sequences

RHom(W, ) RHom(T,H)

Y Y
RHom(V, ). .. Ext(V,W) Ext(V,T) 0
RHom(S,My). .. Ext(S,W) Ext(S,T) 0
Y Y
0 0
from which the statement follows. O

Theorem 7.11 Let v = rk hom(a, 3) (with notations as in lemma , then

lLa—-vy—sa—»vy—> [ —= -1

2. ext(a, B) = —xqla —7,8—7) = ext(a — 7,5 —7)
Proof. The first statement is obvious from the definitions, for if v = rk hom(a, 3),
then a general representation of dimension a will have a quotient-representation
of dimension v (and hence a subrepresentation of dimension o — ) and a general
representation of dimension [ will have a subrepresentation of dimension v (and
hence a quotient-representation of dimension 3 — 7.

The strategy of the proof of the second statement is to compute the dimension of
the subvariety of Hom(c, B) X reps X repg X rep, defined by

v ¢ - W

HIoetor — {(¢. VW, X) | factors as representations }

4

X=Im¢
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in two different ways. Consider the intersection of the open set Homy, (o, B) deter-
mined by lemma[7.9 with the open set of couples (V, W) such that dim Ext(V,W) =
ext(a, B) and let (V,W) lie in this intersection. In the previous section we have
proved that

dim Grass. (W) = xq (7,8 —7)
Let H be the subbundle of the trivial vectorbundle over Grass. (W)

H ——— Hom(a, W) x Grass. (W)

A
Grass

(W)

y
consisting of triples (¢, W,U) with ¢ : &;C%% —— W a linear map such that
Im() is contained in the subrepresentation U —— W of dimension . That is,
the fiber over (W,U) is Hom(c,U) and therefore has dimension Zle a;c;. With
HT" we consider the open subvariety of H of triples (¢, W,U) such that Im ¢ = U.
We have

k
dim H™ =" a;ci + xq (7,8 —7)
i=1
But then, Hf*" js the subbundle of the trivial vectorbundle over HT®!
Hfactor ., repa Q % Hfull

'\

Hfull

consisting of quadruples (V, ¢, W, X) such that V N W is a morphism of repre-
sentations, with image the subrepresentation X of dimension . The fiber of m over

a triple (¢, W, X) is determined by the property that for each arrow
the following diagram must be commutative, where we decompose the vertex spaces

Vi=X, 9K, for K= Ker ¢
A B
C D

1. 0 1,

X; ©K;

Xi
where A is fized, giving the condition B = 0 and hence the fiber has dimension equal
to

Yo (ai—c)ag—c)+ Y clag—¢)= Y aila;—c¢)

This gives our first formula for the dimension of HTactor

k
HIm =N " aiei + xo(n 8-+ Y aila; —¢))
= ©0370)
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On the other hand, we can consider the natural map HToctor 2, rep, @ defined
by sending a quadruple (V, ¢, W, X) to V. the fiber in V is given by all quadruples

(V, ¢, W, X) such that V 2, W is a morphism of representations with Im ¢ = X
a representation of dimension vector vy, or equivalently

V) ={V —2- W | 1k o =1}

Now, recall our restriction on the couple (V,W) giving at the beginning of the
proof. There is an open subset max of rep, @ of such V and by construction
mazx — Im ®, ®~(mazx) is open and dense in HT**" and the fiber ®=1(V) is
open and dense in Homeg(V,W). This provides us with the second formula for the
dimension of HTector

dim HT" = dim rep, Q + hom(a, W) = Z a;a; + hom(c, )

Equating both formulas we obtain the equality

k
Xo(B=1+ > aici— > aic; = hom(a, B)
= 0320

which is equivalent to

xQ(7; 8 =) + xqla,7) — xqla, B) = ext(a, B)

Now, for our (V,W) we have that Ext(V,W) = ext(a,5) and we have exact se-
quences of representations

0—S—V —X—0 00— X — W —T —0

and using lemma [7.10 this gives a surjection Ext(V,W) —» Exzt(S,T). On the
other hand we always have from the homological interpretation of the Euler form
the first inequality
dime Ext(S,T) = —xq(a —7,8—7) = xo(7,8—7) — xqla, 8) + xq(a,7)
= ext(a, §)

As the last term is dimge Ext(V, W), this implies that the above surjection must be
an isomorphism and that

dimg Ext(S,T) = —xo(a—~,8—7) whence dimgc Hom(S,T)=0
But this implies that hom(a — 7,8 — v) = 0 and therefore ext(aw — v, — ) =
—xq(a—7,8="7). Finally,
ext(a —, 8 —v) =dim Ext(S,T) = dim Ext(V,W) = ext(a, B)
finishing the proof. O

Theorem 7.12 For all dimension vectors o and 3 we have

ext(a, ) = max  —xq(d,B)
« >
B —> g/

=  max - xol(a, 5”)

B —>> B

_ _ b
=  max . xo(a”, 3)

o
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Proof. Let V and W be representation of dimension vector a and 3 such that
dim Ext(V,W) = ext(a, 8). Let S —— V be a subrepresentation of dimension o/
and W —= T a quotient representation of dimension vector 3. Then, we have

ext(a, B) = dimc Ext(V,W) > dim¢c Ext(S,T) > —xq(a/, )

where the first inequality is lemma[7.10] and the second follows from the interpreta-
tion of the Fuler form. Therefore, ext(a, 3) is greater or equal than all the terms
in the statement of the theorem. The foregoing theorem asserts the first equality, as
for rk hom(w, B) = v we do have that ext(a, 5) = —xq(a — 7,58 — 7).

In the proof of the above theorem, we have found for sufficiently general V and
W an ezact sequence of representations

00— —V —W —T—0

where S is of dimension o —y and T of dimension 3 — . Moreover, we have a
commuting diagram of surjections

Ext(V,W) - Eat(V,T)

N

Ext(S,W) - Ext(S,T)

and the dashed map is an isomorphism, hence so are all the epimorphisms. There-
fore, we have

ext(a, f—v) <dim Ext(V,T) = dim Ext(V,W) = ext(a, B)
ext(a —v,8) <dim Ext(S,W) = dim Ext(V,W) = ext(a, )

Further, let T" be a sufficiently general representation of dimension 3 — vy, then it
follows from Ext(V,T") — Ext(S,T) that

ext(a —v,8 —7v) < dim Ext(S,T') < dim Ext(V,T') = ext(a, 8 — )

but the left term is equal to ext(a,3) by the above theorem. But then, we have
ext(a, ) = ext(a, B—7). Now, we may assume by induction that the theorem holds
for B—~. That is, there exists 3—~ —= 37 such that ext(c, S —7v) = —xq(a, 57).
Whence, 8 — (3" and ext(a, 3) = —xq(a,3”) and the middle equality of the
theorem holds. By a dual argument so does the last. O

This gives us the following inductive procedure to find all the dimension vectors
of general subrepresentations. Take a dimension vector o and assume by induction
we know for all B < « the set of general subrepresentations 3 —— (3. Then,
8 —— « if and only if

0=ext(B,a—p0) :ﬁ/% ; 7XQ(B/’a7ﬂ)

where the first equality is the main result of the foregoing section and the last is the
result above.

7.6 0O-semistable representations.

Let Q be a quiver on k vertices {v1,...,vx} and fix a dimension vector «. So far,
we have considered the algebraic quotient map

repa @ — issq Q
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classifying closed GL(&)-orbits in rep, @, that is, isomorphism classes of semi-
simple representations of dimension o. We have seen that the invariant polynomial
maps are generated by traces along oriented cycles in the quiver. Hence, if Q has no
oriented cycles, the quotient variety iss, Q is reduced to one point corresponding

to the semi-simple
SPn ... @ 8P

where S; is the trivial one-dimensional simple concentrated in vertex v;. Still, in
these cases one can often classify nice families of representations. For example,
consider the quiver situation

i

TN

O—0

~_ 7

z

Then, reps, Q = C3 and the action of GL(ca)) = C* x C* is given by (\, p).(x,y,2) =
(33@, %y, %z) The only closed GL(a)-orbit in C3 is (0,0,0) as the one-parameter
subgroup \(t) = (t,1) has the property

Lim A(t).(2,y,2) = (0,0,0)
s0 (0,0,0) € O(x,y,z) for any representation (x,y,z). Still, if we trow away the
zero-representation, then we have a nice quotient map
C3 —{(0,0,0)} —»» P? (x,y,2) — [z :y: 2]

and as O(z,y, z) = C*(x,y, 2) we see that every GL(«)-orbit is closed in this com-
plement C3 — {(0,0,0)}. We will generalize such settings to arbitrary quivers.

A character of GL(«) is an algebraic group morphism x : GL(a) — C*. They
are fully determined by an integral k-tuple 0 = (t1,...,t) € Z* where

GL(a) 2% C* (g1, g5) — det(g)™. ... .det(gr)™
For a fixed 6 we can extend the GL(«)-action to the space rep, ® C by
GL(a) xreps Q ® C — rep, Q @ C g9.(V,c) = (g.V, xe_l(g)c)

The coordinate ring Clrep, Q @ C] = Clrep,][t] can be given a Z-gradation by
defining deg(t) = 1 and deg(f) = 0 for all f € Clrep, Q). The induced action of
GL(«a) on Clrep, Q ® C] preserves this gradation. Therefore, the ring of invariant
polynomial maps

Clreps, Q & (C]GL(O‘) = Clrepa Q] [t]GL(a)

is also graded with homogeneous part of degree zero the ring of invariants
Clrepa|SH@) . An invariant of degree n, say ft" with f € Clrep, Q] has the char-
acteristic property that

F(9.V) =x5(9)f(V)
that is, f is a semi-invariant of weight xy. That is, the graded decomposition of the
mvariant ring s

Clrepa Q ® (C]GL(O‘) =Ro® R ®... with R;=Clrep, Q]GL(O‘)’XW

With these notations, the moduli space of semi-stable quiver representations of
dimension o was introduced by A. King in [12] to be the variety

M2 (Q,0) = Proj Clrep, Q ® (C]GL(O‘) = Proj @52, Clrepq, Q]GL(O‘)’XHG
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Recall that for a positively graded affine commutative C-algebra R = ®2,R;, the
geometric points of Proj R correspond to graded-maximal ideals m not containing
the positive part Ry = @2, R;. Intersecting m with the part of degree zero Ry
determines a point of Spec Ry, the affine variety with coordinate ring Ry and gives
rise to a structural morphism Proj R —— Spec Ry. The Zariski closed subsets of
Proj R are of the form

V(I)={me Proj R | I Cm}

for a homogeneous ideal I < R. Also recall that Proj R can be covered by affine
varieties of the form X(f) with f a homogeneous element in Ry. The coordinate
ring of this affine variety is the part of degree zero of the graded localization R?.
We refer to [9, 11.2] for more details.

Example 7.13 Consider again the quiver-situation

@/T\
~____~7

z

®

and character § = (—1,1), then the three coordinate functions z,y and z of C[rep, Q] are semi-
invariants of weight xg. It is then clear that the invariant ring is equal to

Clrepa Q ® CH®) = Clat, yt, 2t]
where the three generators all have degree one. That is,

MZ°(Q,0) = Proj Clzt, yt, zt] = P?

as desired,

We will now investigate which orbits in rep, @ are parameterized by the moduli
space M25(Q,0). We say that a representation V € rep, @ is xo-semistable if and
only if there is a semi-invariant f € Clreps, Q)M X"? for some n > 1 such that
f(V) # 0. The subset of rep, Q consisting of all xg-semistable representations
will be denoted by reps’(Q,0). Observe that reps®(Q,0) is Zariski open (but it may
be empty for certain (o, 8)). We can lift a representation V € rep, @ to points
Ve = (V,c) € repo, Q@ ® C and use GL(a)-invariant theory on this larger GL()-
module

V()

P v(t)

Let ¢ # 0 and assume that the orbit closure O(V,) does not intersect V(t) =
repa @ x {0}. As both are GL(«)-stable closed subsets of rep, Q ® C we know
from the separation property of invariant theory, see §4.6, that this is equivalent

to the existence of a GL(«)-invariant function g € Clrep, Q @ C]9E(®) such that
g(O(V)) # 0 but g(V(t)) = 0. We have seen that the invariant ring is graded,
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hence we may assume g to be homogeneous, that is, of the form g = ft™ for some
n. But then, f is a semi-invariant on rep, Q of weight xy and we see that V
must be xg-semistable. Moreover, we must have that 6(«) = Zle t;a; =0, for the
one-dimensional central torus of GL(«)

p(t) = (tlays -+ tlay) —> GL(a)

acts trivially on rep, Q but acts on C via multiplication with Hle t=%t hence if
O(a) # 0 then O(V,) NV(t) # (. More generally, we have from the strong form of
the Hilbert criterium proved in §4.4 that O(V.) NV (t) = 0 if and only if for every
one-parameter subgroup A(t) of GL(«) we must have that izl?;)a A). V. ¢ V(t). We
can also formulate this in terms of the GL(a)-action on rep, Q. The composition
of a one-parameter subgroup A(t) of GL(«) with the character

o 2% ar(a) 24 ¢

is an algebraic group morphism and is therefore of the form t —— t™ for some
m € Z and we denote this integer by O(\) = m. Assume that \(t) is a one-parameter
subgroup such that izn% At).V =V exists in rep, Q, then as

At).(V,e) = (A(t).V,t™™¢)

we must have that O(X) > 0 for the orbitclosure O(V.) not to intersect V(t). That
is, we have the following characterization of xg-semistable representations.

Proposition 7.14 The following are equivalent

1. V €rep, Q is xo-semistable.

2. For c # 0, we have O(V.) NV (t) = 0.
3. For every one-parameter subgroup A(t) of GL(a) we have %mg At). V. ¢ V(t) =
reps @ x {0}.
4. For every one-parameter subgroup A(t) of GL(a) such that izn% A(t).V exists
in rep, @ we have 6(\) > 0.
Moreover, these cases can only occur if 8(a) = 0.

Assume that g = ft™ is a homogeneous invariant function for the GL(«)-action
on rep, Q @ C and consider the affine open GL(«)-stable subset X(g). The con-
struction of the algebraic quotient in §4.6 and the fact that invariant rings here are
graded asserts that the closed GL(«)-orbits in X(g) are classified by the points of
the graded localization at g which is of the form

(Clrepa @ ® CI9M™)g = Rylh, h ]

for some homogeneous invariant h and where Ry is the coordinate ring of the affine
open subset X(f) in M3°(Q,0) determined by the semi-invariant f of weight xj.
As the moduli space is covered by such open subsets we have

Proposition 7.15 The moduli space of 8-semistable representations of rep, @

M3 (Q,0)

classifies closed GL(«)-orbits in the open subset rep3*(Q,0) of all xp-semistable
representations of Q of dimension vector «.
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Example 7.16 In the foregoing example rep3?(Q, 6) = C3—{(0,0,0)} as for all these points one
of the semi-invariant coordinate functions is non-zero. For § = (—1, 1) the lifted GL(a)) = C* x C*-
action to repo, @ ® C = C* is given by

Boopoop A
>\7 . 771t: N )777,7t
A p)-(2,y, 2, 1) (/\w/\y/\z#)

We have seen that the ring of invariants is C[xt, yt, 2t]. Consider the affine open set X(xt) of C4,
then the closed orbits in X(zt) are classified by
1
(C[Itv yt7 Zt]gt = C[g7 i]["Et: 7]
T x xt

and the part of degree zero C[£, £] is the coordinate ring of the open set X(z) in P2,

In §4.5 we were able to classify closed GL,-orbits in rep, A with semi-simple
representations. We will now give a representation theoretic interpretation of closed
GL(a)-orbits in rep3(Q,0). Again, the starting point is that one-parameter sub-
groups A(t) of GL(«) correspond to filtrations of representations. Let us go through
the motions one more time. For A : C* —— GL(«a) a one-parameter subgroup and
V € rep, Q we can decompose for every vertexr v; the verter-space in weight spaces

Vi = @nezV; ™

where A(t) acts on the weight space Vi(") as multiplication by t™. This decomposition
allows us to define a filtration

>n m
Vi(_ ) _ @mznVi( )

For every arrow Q<———@, A(t) acts on the components of the arrow maps

V(n) Vet V(m)
i J
by multiplication with t™~". That is, a limit gmg Ve, ezists if and only if V™™ =0

for all m < n, that is, if V, induces linear maps

yEn Yo, G0
i J

Hence, a limiting representation exists if and only if the vertex-filtration spaces
V:E™ determine a subrepresentation V,, —— V for alln. That is, a one-parameter

?

subgroup A such that ltim A(t).V exists determines a decreasing filtration of V' by
subrepresentations
. <—3Vn<—DVn+1<—D

Further, the limiting representation is then the associated graded representation

Vi
lim \(t).V = ®nez——
fir A) "V
where of course only finitely many of these quotients can be nonzero. For the given
character 8 = (t1,...,tx) and a representation W € repg Q we denote

O(W) =tiby + ... +tpb, where B=(bi,...,by)

Assume that (V') = 0, then with the above notations, we have an interpretation of
O(N\) as
k

000 =313 ndime VO =% ne(v‘nfil) ~S o)

=1 nez nez nez
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Definition 7.17 A representation V € rep, @ is said to be

e O-semistable if §(V) = 0 and for all subrepresentations W —— V we have
6(W) > 0.

e O-stable if V is f-semistable and if the only subrepresentations W —— V
such that O(W) = 0 are V and 0.

Proposition 7.18 For V € rep, Q the following are equivalent

1. 'V is xg-semistable.

2. V is 0-semistable.
Proof. 1.= 2. : Let W be a subrepresentation of V and let A be the one-parameter
subgroup associated to the filtration V. <——> W «—— 0, then %zlré A(t).V exists
whence by proposition .4 we have 8(A) > 0, but we have

ON) =0(V)+o0(W)=0(W)
2. = 1. : Let X be a one-parameter subgroup of GL(a) such that {Wrg At).V ex-

ists and consider the induced filtration by subrepresentations V, defined above. By
assumption all (V,,) > 0, whence

oA =>_ 0(V,) =0

nezZ
and again proposition[7.14 4 finishes the proof. O

Lemma 7.19 Let V € rep, @ and W € repg QQ be both 0-semistable and
v-L.w

a morphism of representations. Then, Ker f, Im f and Coker f are 0-semistable
representations.

Proof. Consider the two short exact sequences of representations of @

00— Ker f —V —Im f—0
00— Im f— W — Coker f — 0

As 0(—) is additive, we have 0 = (V) = 0(Ker f)+0(Im f) and as both are subrep-
resentations of 0-semistable representations V' resp. W, the right-hand terms are
> 0 whence are zero. But then, from the second sequence also 6(Coker f) = 0.
Being submodules of 0-semistable representations, Ker f and Im f also sat-
isfy 6(S) > 0 for all their subrepresentations U. Finally, a subrepresentation
T —— Coker f can be lifted to a subrepresentation T' —— W and 0(T) > 0
follows from the short exact sequence 0 — Im f —— T —— T — 0. |

That is, the full subcategory rep®s(Q,0) of rep @ consisting of all 0-semistable
representations 1is an Abelian subcategory and clearly the simple objects in
rep®*(Q,0) are precisely the 0-stable representations. As this Abelian subcategory
has the necessary finiteness conditions, one can prove a version of the Jordan-Hélder
theorem. That is, every 0-semistable representation V has a finite filtration

V=Wy+—Vi<+—2 ... <2V, =0
V:/Jil 18 O-stable. Moreover, the unordered
set of these 0-stable factors are uniquely determined by V.

of subrepresentation such that every factor
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Theorem 7.20 For a 0-semistable representation V' € rep, Q the following are
equivalent

1. The orbit O(V) is closed in repi®(Q, a).
2.V~ WfBel G...6 VVl@el with every W; a 0-stable representation.

That is, the geometric points of the moduli space M:2°(Q,0) are in natural one-
to-one correspondence with isomorphism classes of a-dimensional representations
which are direct sums of 0-stable subrepresentations. The quotient map

repy’ (Q,0) —=> M(Q,0)

maps a 0-semistable representation V' to the direct sum of its Jordan-Hdolder factors
in the Abelian category rep®s(Q,0).

Proof. Assume that O(V) is closed in rep®*(Q,0) and consider the 6-semistable
representation W = grss V', the direct sum of the Jordan-Hélder factors in
rep®*(Q,0). As W is the associated graded representation of a filtration on V,
there is a one-parameter subgroup A of GL(«) such that 52_7)78 A(t).V ~ W, that is

O(W) Cc O(V)=0(V), whence W =~V and 2. holds.

Conversely, assume that V is as in 2. and let O(W) be a closed orbit contained
in O(V) (one of minimal dimension). By the Hilbert criterium there is a one-
parameter subgroup X\ in GL(«) such that iz_v:ré A(t).V ~ W. Hence, there is a finite

filtration of V' with associated graded 6-semistable representation W. As none of
the 0-stable components of V' admits a proper quotient which is 6-semistable (being
a direct summand of W), this shows that V.~ W and so O(V) = O(W) is closed.

The other statements are clear from this. O

The striking similarities between 0-stable representations and simple representa-
tions will become more transparent in chapter 13 when we discuss universal local-
izations. It will turn out that 0-stable representations become simple representations
of a certain universal localization of the path algebra CQ.

Example 7.21 Consider the modular group PSL2(Z) ~ Za % Z3, the free product of the cyclic
groups of order two and three with generators o resp. 7. Let S be an n-dimensional simple
representation of PSL2(Z). Let € be a 3-rd root of unity, then restricting S to these finite Abelian
subgroups we have

Slz, ~8P @s%

Slz, =TP" @TP” @TS™
where Sz resp. T are the one-dimensional representations on which o resp. 7 acts via multipli-
cation with x. Observe that a1 4+ a2 = b1 + ba + b3 = n and we associate to S a representation V'
of the quiver situation

. : b . .
with Vq; = Si@ai and Va; = T;B 7 and where the linear map corresponding to an arrow

aij . "
@ @ is the composition of

. b,
Vag; ¢ S?al > Slzy=Vlgy — T;77
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of the canonical injections and projections. If o = (a1, a2,b1,b2,b3) then we take as 0 =
(-1,-1,41,+1,+1). Observe that ®i,jVa;; : C* — C" isalinear isomorphism. If W —— V'is
a subrepresentation, then (W) > 0. Indeed, if the dimension vector of W is 8 = (c1, ¢c2,d1,d2,d3)
and assume that (W) < 0, then k = ¢1+c2 > | = di +d2+d3, but then the restriction of @Vaij to
W gives a linear map C¥ —» C! having a kernel which is impossible. Hence, V is a f-semistable
representation of the quiver. In fact, V' is even #-stable, for consider a subrepresentation W & V'
with dimension vector 3 as before and (W) = 0, that is, ¢1 + c2 = d1 + d2 + ds = m, then the
isomorphism @; ; Vaij | W and the decomposition into eigenspaces of C™ with respect to the
Zo and Zs-action, makes C™ into an m-dimensional representation of PSL2(Z) which is a sub-
representation of S. S being simple then implies that W = V or W = 0, whence V is #-stable.
The underlying reason is that the group algebra CPSL2(Z) is a universal localization of the path
algebra CQ of the above quiver.

Remains to determine the situations («, 0) such that the corresponding moduli
space M:3%(Q,0) is non-empty, or equivalently, such that the Zariski open subset
repsi(Q,0) — repy, Q is non-empty.

Theorem 7.22 Let o be a dimension vector such that 8(a) = 0. Then,

1. rep*(Q,a) is a non-empty Zariski open subset of rep, @ if and only if for
every § — « we have that 0(3) > 0.

2. The 0-stable representations reps (Q, ) are a non-empty Zariski open subset
of repa @ if and only if for every 0 # 8 — «a we have that 6(5) > 0

Observe that the Schofield criterium gives an inductive procedure to calculate
these conditions. Sometimes we can bypass the troublesome inductive step using
our description of dimension vectors of simple representations.

Example 7.23 1t is possible to determine the weight space decomposition vectors a =
(a1,a2,b1,b2,b3) of simple n = a1 + az = b1 + bz + bz-dimensional representations of the mod-
ular group PSLo(Z) by first computing the dimension vectors 8 = (c1, ¢2,d1, d2,ds) of general
subrepresentations of « and then to check whether for all of these ¢1 4+ c2 < d1 4+ d2 + d3.

An alternative method is to compute local quiver settings and use the description of semi-
simple dimension vectors. With S;; we denote the simple 1-dimensional representation of PSL2(Z)
determined by

Sij lzo=8; and  Sij |z,
Let n = z1+. ..+ ¢ and we aim to study the local structure of rep, CPSL2(Z) in a neighborhood
of the semi-simple n-dimensional representation

Dz Dz Dz Dz Dz Dz
ngSn1@5122@5133@5214@5225695236

To determine the structure of Q® we have to compute dim Ext! (Sij,Ski). To do this we view the
Si; as representations of the quiver Q in the example above. For example S12 is the representation

©

O)
O)

of dimension vector (1,0;0,1,0).For representations of @, the dimensions of Hom and Ezt-groups
are determined by the bilinear form

1 0 -1 -1 -1
01 -1 -1 -1
xo=10 0 1 0 0
00 0 1 0
o0 0 o0 1
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If V €repo Qand W € repg Q where a = (a1, az;b1,b2,b3) with a1 + a2 = b1 + b2 + b3 = k and
B = (c1,c2;d1,da,ds) with ¢1 + c2 = di + d2 + d3 = we have

dim Hom(V, W) —dim Ea:tl (‘/7 W) =XQ (Oé7 ﬁ) =kl — (a101 + agco + brdy + bado + bgdg)

Because the translation from PSLs(Z)-representations to Q-representations is full and faithful and
as Hom(S;j,Sk1) = C®%k9jl we have that

1 ifi# k and j #1
0 otherwise

dim Extl(Sij, Ski) = {

But then, the local quiver setting (QE, ag) is

9

We want to determine whether the irreducible component of rep, CPSL2(Z) containing Vg con-
tains simple P.SLz(Z)-representations, or equivalently, whether o is the dimension vector of a
simple representation of Qg, that is,

XQe (cg,€5) <0 and Xqe (ej,ag) forall1<j<6
The Euler-form of Qg is determined by the matrix where we number the vertices cyclicly
1 -1 0 0

-1 1 -1 0
1 1 -1

o oo
[e=]

—_ 0 -

XQ¢= 1o o
0 0 0 —1 1 —1

—1 0

leading to the following set of inequalities

z1 <5+ 76 z4a <2+ 73
T2 < x4+ T6 5 < x1+7T3
z3 < z4+T5 6 < T1+ T2

Finally, observe that Vg corresponds to a Q-representation of dimension vector (z1 4 2 + 3,24 +
5 + Te; T1 + x4, T2 + x5, 3 + x6). If we write this dimension vector as (a1, a2; b1, b2, bg) then the
inequalities are equivalent to the conditions

a; >b; foralll1<i<2and1<j5<3

which gives us the desired restriction on the quintuples

O
®

at least when a; > 3 and b; > 2. The remaining cases are handled similarly. Observe that we can
use a similar strategy to determine the restrictions on simple representations of any free product

Zp * Zq of two cyclic groups.
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The graded algebra Clrep, @ C)“H) of all semi-invariants on reps, Q of weight
Xy for some n > 0 has as degree zero part the ring of polynomial invariants
Clrepa Q]GL(”‘). This embedding determines a proper morphism

M (Q.0) —— issa Q

which is onto whenever rep3*(Q, a) is non-empty. In particular, if Q is a quiver
without oriented cycles, then the moduli space of 0-semistable representations of
dimension vector a, M3°(Q,0), is a projective variety.

7.7 Semi-invariants of quivers.

Because the moduli space M2%(Q,0) is defined to be the projective scheme of the
graded algebra of semi-invariants of weight xj for some n

M:?(Q,a) = Proj &, Clrepa Q}GL(G),X”G

we need some control on the semi-invariants of quivers. A genmerating set of semi-
invariants was described by A. Schofield and M. Van den Bergh in [28]. The strategy
of proof should be clear by now. First, we describe a large set of semi-invariants,
apart from the invariant polynomials which we know to be gemerated by traces of
oriented cycles in the quiver we expect determinantal semi-invariants as in the case
of mized GL,,-semi-invariants of section 3. Then we use classical invariant theory
to describe all multilinear semi-invariants of GL(«), or equivalently, all multilinear
invariants of SL(a) = SLg, X ... X SLg, and describe them in terms of these
determinantal semi-invariants. Finally, we show by polarization and restitution
that these semi-invariants do indeed generate all semi-invariants.

Let Q be a quiver on k wvertices {vi,...,vr}. We introduce the additive C-
category add @ generated by the quiver. For every vertex v; we introduce an inde-

composable object which we denote by . An arbitrary object in add Q is then a
sum of those

61961 5. .. EBEB%
Morphisms in the category add @ are defined by the rules
Hom(, )Z@P Ko)
Hom(v ) = \\@

where the right hand sides are the C-vectorspaces spanned by all oriented paths
from v; to v; in the quiver Q, including the idempotent (trivial) path e; when i = j.
Clearly, for any k-tuples of positive integers o = (uq,...,ux) and 8 = (vy,...,vx)

Hom( ®“1 @...@.ﬁm : 691“ @...@@U’“ )

is defined in the usual way in the additive category add @Q, that is by the matrices
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where composition arises via matrixz multiplication

lexul( @ ) lexuk(@ @)
kaxul(@) @) kaxuk( @ )
Now, fix a dimension vector « = (aq,...,ar) and a morphism in add Q

@ul@”.@@uk i»@m@w.@@vk

For any representation V. € rep, @ we can replace each occurrence of an arrow

O~—2—0 of Q in ¢ by the aj x a;-matriz V,. This way we obtain a rectangular
matrix

If we are in a situation such that Y a;v; = > a;u;, then we can define a semi-
invariant polynomial function on rep, @ by

P, (V) =det V(¢)

We call such semi-invariants determinantal semi-invariants. One verifies that Py o
is a semi-invariant of weight xo where 8 = (u; — v1,...,u — v). We will show
that such determinantal semi-invariant together with traces along oriented cycles
generate all semi-invariants.

Because semi-invariants for the GL(a)-action on rep, Q are the same as in-
variants for the restricted action of SL(a) = SLg, X ... X SL,, , we will describe
the multilinear SL(a)-invariants from classical invariant theory. Because

repa Q= P Muyxa(C)
OO
= P cuecw
we have to consider multilinear SL(a)-invariants of

® Qi ® C*% — ® [ ® Cai ® ® C*ai ]
O<0O

© G0 O~

Hence, any multilinear SL(«)-invariant can be written as f = Hle fi where f; is
a SLg,-invariant of

R e ® o
G—0O 0=

In section 8 we have recalled Weyl’s result describing all multilinear S L,, -invariants
on @pC™ @ ®cC*™. By polarization and restitution it follows from this that the
linear S L.,-invariants are determined by the following three sets
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e traces, that is, for each pair (b,c) we have C™ @ C*™ = M,,(C) I c.

o brackets, that is, for each m-tuple (b1,...,by) we have an invariant
®@p,C™ —— C defined by

UVp, @ ..., +— det [Ubl s 'me]

e cobrackets, that is, for each m-tuple (ci1,...,¢n) we have an invariant
®,C*™ —— C defined by

ey
Pey D ... Q @, +— det

be,,
Multilinear SL,,-invariants of @ gC™ ® ®cC*™ are then spanned by invariants

constructed from the following data. Take three disjoint index-sets I,J and K and
consider surjective maps

B A TUK
C - JUK
subject to the following conditions

#u k) =1=# v (k) forallk € K.
#u @) =m=# v71(j) foralliel and j € J.

To this data v = (p,v,I,J,K) we can associate a multilinear SL,,-invariant
f+(®@BUs @ ®cde) defined by

Pey
H ¢u—1(k) (Uu—l(k)) H det [Ubl . ’l}bm] H det

keK iel jeJ be
“m

where (i) = {b1,...,bm} and v71(j) = {c1,...,cm}. Observe that f., is deter-
mined only up to a sign by the data ~y. But then, we also have a spanning set for
the multilinear SL(a)-invariants on

repaQ:®[ ® C* ® ® Cr ]

® GO 0=

determined by quintuples T' = (u,v, I, J, K) where we have disjoint indez-sets parti-

tioned over the vertices v € {v1,..., vk} of Q
I =, L
J =, Jv
K =], K,

together with surjective maps from the set of all arrows A of @

A S TuK
A S JUK

where we have for every arrow @<———@) that

pla) €I, UK,
v(a) € Jy UK,
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and these maps u and v are subject to the numerical restrictions

#u Y k)=1=# v (k) forallk € K.
# (i) = a, = # v71(j) for alli € I, and all j € J,.

Such a quintuple T = (p,v, I, J, K) determines for every vertex v a quintuple

Yo=(w=p | {GF—0}h nn=v | {00} 1,J,K,)

satisfying the necessary numerical restrictions to define the SL,, -invariant f,, de-
scribed before. Then, the multilinear SL(«)-invariant on rep, @ determined by T’

is defined to be
f"f = H f'Yu

and we have to show that these semi-invariants lie in the linear span of the deter-
minantal semi-invariants.

First, consider the case where the index set K is empty. If we denote the total
number of arrows in Q by m, then the numerical restrictions imposed give us two

expressions for n
Z ay.F#F I, =n = Z ay. 7 Ty

v v

Every arrow ®<———@ determines a pair of indices yu(a) € I, and v(a) € J,,. To
the quintuple T' we assign a map Pr in add Q

6911@.”@@% ﬁ»@h@n.@eﬂk

I'U J'lU
which decomposes as a block-matriz in blocks M, ,, € Hom( EB ,65 ) of

which the (i,7) entry is given by the sum of arrows

> <0
w(a)=i
v(a)=j
For a representation V € rep, @, V(®r) is an n X n matriz and the determinant
defines the determinantal semi-invariant Ps, . which we claim to be equal to the
basic invariant fr possibly up to a sign.
We introduce a new quiver situation. Let Q' be the quiver with vertices the
elements of I 1 J and with arrows the set A of arrows of Q, but this time w take

the starting point of the arrow G———0 in Q to be u(a) € I and the terminating
vertex to be v(a) € J. That is, Q' is a bipartite quiver

)
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On Q' we have the quintuple T = (p/,v/, I', J', K') where K' =),

r= =@ r=s=1 &

iel iel jeJ jeJ
and i/ = p, V' = v. We define an additive functor add Q' ——~ add Q by

foralli € I, and all j € J,. The functor s induces a functor rep Q — s rep Q'
defined by V.—» Vos. If V € repa Q then s(V) € repos Q' where

G =a, ifi€l,

o =(c1,...,¢p,dy,. .. dg)  with .
N S e di =ay ifjeJy
# 1 #J

That is, the characteristic feature of Q' is that every vertex i € I is the source of
exactly ¢; arrows (follows from the numerical condition on p) and that every vertex
j € J is the sink of exactly d; arrows in Q'. That is, locally Q' has the following
form

O— or 20)

There are induced maps

repe Q@ —— repe @ GL(a) —> GL(a)

where the latter follows from functoriality by considering GL(«) as the automor-
phism group of the trivial representation in rep, Q. These maps are compatible
with the actions as one checks that s(g.V) = s(g).s(V). Also s induces a map on

the coordinate rings Clrep, Q] 2. Clrepas Q'] by s(f) = f os. In particular, for
the determinantal semi-invariants we have

S(Pa/7¢/) = Pa,s(¢’)

and from the compatibility of the action it follows that when f is a semi-invariant
the GL(') action on repy Q' with character x', then s(f) is a semi-invariant for
the GL(a)-action on rep, Q with character s(x) = x' o s. In particular we have
that

S(PO/,{)F/) = Pa,s('i)F/) = Pa@r and S(fp/) =Jr
Hence in order to prove our claim, we may replace the triple (Q, a,T) by the triple
(Q', ', T"). We will do this and forget the dashes from here on.

In order to verify that fr = £ P, ¢, it suffices to check this equality on the image

of

W= crecC? in (K CraC®

0520)

One verifies that both fr and P, ¢, are GL(a)-semi-invariants on W of weight xo

where

0=(1,...,1,-1,...,—1)
—_—— ——
# 1 # J

Using the characteristic local form of Q = Q', we see that W is isomorphic to the
GL(a)- module

Wed o eched €Y. 0Ch) ~ @M. C) o M, (O

iel o jeJ 4 iel jeJg
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and the i factors of GL(a) act by inverse right-multiplication on the component
M., (and trivially on all others) and the j factors act by left-multiplication on the
component Mg, (and trivially on the others). That is, GL(«) acts on W with an
open orbit, say that of the element

w = (/ﬂcu--~7/Ucp7/ﬂd1;-~-,/ﬂdq) ew

One verifies immediately from the definitions that that both fr and P, &, evaluate
to £1 in w. Hence, indeed, fr can be expressed as a determinantal semi-invariant.

Remains to consider the case when K is non-empty. For k € K two situations
can occur

e u (k) = a and v=1(k) = b are distinct, then k corresponds to replacing the
arrows a and b by their concatenation

%H

b

o u (k) =a=v"1(k) then a is a loop in Q and k corresponds

a

)

®

to taking the trace of a.

This time we construct a new quiver Q7 with vertices {w1, ..., w,} corresponding
to the set A of arrows in Q. The arrows in QQ” will correspond to elements of K,
that is if k € K we have the arrow (or loop) in Q7 with notations as before

k
o

We consider the connected components of Q”. They are of the following three types

<:><7]c @ or

o (oriented cycle) : To an oriented cycle C in Q" corresponds an oriented cycle
C¢. in the original quiver Q. We associate to it the trace tr(Cy,) of this cycle.

e (open paths) : An open path P in Q" corresponds to an oriented path Pp in
Q which may be a cycle. To P we associate the corresponding path Pp in Q.

e (isolated points) : They correspond to arrows in Q.

We will now construct a new quiver Q' having the same vertex set {vi,..., v}
as Q but with arrows corresponding to the set of paths Pp described above. The
starting and ending vertex of the arrow corresponding to Pp are of course the start-
ing and ending vertex of the path Pp in Q. Again, we define an additive functor

add Q' —>» add Q by the rules
"
s, and Ot 2 cf o

If the path Pp is the concatenation of the arrows ag o ...oay in Q, we define the
maps

{u’(P{:) =p@) {{P}a} e 1
V(Pp) = v(aa) Ay
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that is, a quintuple T" = (p/, v, I', J', K' = () for the quiver Q'. One then verifies
that

fr=s(fr) [[tr(Co) = s(Pas.) [ tr(CE)
C C

= Pa,s(fbrl) H tr(C/C)
C

finishing the proof of the fact that multilinear semi-invariants lie in the linear span
of determinantal semi-invariants (and traces of oriented cycles).

The arguments above can be reformulated in a more combinatorial form which
is often useful in constructing semi-invariants of a specific weight, as is necessary
in the study of the moduli spaces M3°(Q,0). Let Q be a quiver on the vertices
{v1,...,v}, fix a dimension vector « = (ai,...,ar) and a character xo where
0 = (t1,...,tx) such that O(a) = 0. We will call a bipartite quiver Q'

——0

1 /a
O

L R

on left vertex-set L = {l1,...,l,} and right vertez-set R = {r1,...,rq} and a di-
mension vector § = (c1,...,¢p;d1,...,dq) to be of type (Q, ., 8) if the following
conditions are met

o All left and right vertices correspond to vertices of Q, that is, there are maps
L —l>{v1,...,vk}
R 47“>{’U17...,’Uk}
possibly occurring with multiplicities, that is there is a map
LUR -+ N,
such that ¢; = m(l;)a, if I(l;) = v, and d; = m(r;)a, if r(r;) = v..
e There can only be an arrow if for v =1(l;) and v; = r(r;) there
is an oriented path
® B

in Q allowing the trivial path and loops if vi. = v;.

e Every left vertex l; is the source of exactly c; arrows in Q' and every right-
vertex r; is the sink of precisely d; arrows in @Q’.

e Consider the u x u matriz where u =3, ¢; = . d; (both numbers are equal
to the total number of arrows in Q') where the i-th row contains the entries of
the i-th arrow in Q' with respect to the obvious left and right bases. Observe
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that this is a GL(B) semi-invariant on repg Q' with weight determined by the
integral k + l-tuple (—1,...,—1;1,...,1). If we fix for every arrow a from l;
tor; in @ an m(r;) x m(l;) matric p, of linear combinations of paths in Q
from I(1;) to r(r;), we obtain a morphism

repa Q@ — reps Q'

sending a representation V € rep, Q to the representation W of Q' defined
by Wo = pa (V). Composing this map with the above semi-invariant we obtain
a GL(«a) semi-invariant of rep, Q with weight determined by the k-tuple 6 =

(t1,...,tx) where
ti= Y, mr)— Y mll)

jer—1(v;) FEI=1(v;)

We call such semi-invariants standard determinantal. Summarizing the arguments
of this section we have proved after applying polarization and restitution processes

Theorem 7.24 The semi-invariants of the GL(a)-action on rep, @ are generated
by traces of oriented cycles and by standard determinantal semi-invariants.

7.8 Brauer-Severi varieties.

In this section we will reconsider the Brauer-Severi scheme BS,(A) of an algebra,
introduced in chapter 2. In the generic case, that is when A is the free algebra
Clz1,...,2m), we show that it is a moduli space of a certain quiver situation. This
then allows us to give the étale local description of BSy,(A) whenever A is a Cayley-
smooth algebra. Again, this local description will be a moduli space.

The generic Brauer-Severi scheme of degree n for m-generators, BSI™"(gen) is
defined as follows. Consider the free algebra on m generators C{xy,...,xn) and
consider the GLy,-action on rep, C{xy,...,xm) x C* =M™ & C" given by

g.(Ay, ..., Ap,v) = (gArg™t, ... gAmg ™, gv)
and consider the open subset Brauer®(gen) consisting of those points
(A1,..., Ay, v) where v is a cyclic vector, that is, there is no proper subspace of
C™ containing v and invariant under left multiplication by the matrices A;. The
GL,,-stabilizer is trivial in every point of Brauer®(gen) whence we can define the
orbit space
BS;"(gen) = Brauer®(gen)/GL,
Consider the following quiver situation

Q)

@ @

on two vertices {vy, v} such that there are m loops in ve and consider the dimension
vector « = (1,n). Then, clearly

repe, Q@ =C" & M"* ~rep, Cl{zq,...,x,) d&C"

where the isomorphism is as GL,-module. On rep, @ we consider the action of the
larger group GL(a) = C* x GL,, acting as

()‘79)'(7)7 Ala R Am) = (gv)‘_lnglg_17 s 7gAmg_1)

Consider the character xg where = (—n, 1), then 6(«) =0 and consider the open
subset of 6-semistable representations in rep, Q.
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Lemma 7.25 The following are equivalent for V.= (v, A1,..., Apn) € reps, Q
1. 'V is O-semistable.
2.V is 0-stable.
3. V € Brauer®(gen).

Consequently,
M (Q,0) = BSJ (gen)

Proof. 1. = 2. : If V is 0-semistable it must contain a largest 0-stable subrepre-
sentation W (the first term in the Jordan-Hélder filtration for 0-semistables). In
particular, if the dimension vector of W is 8= (a,b) < (1,n), then 8(8) = 0 which
is impossible unless = o whence W =V is 6-stable.

2. = 3. : Observe that v # 0, for otherwise V would contain a subrepresentation
of dimension vector 8 = (1,0) but 0(3) = —n is impossible. Assume that v is non-
cyclic and let U —— C™ be a proper subspace say of dimension | < n containing
v and stable under left multiplication by the A;, then V' has a subrepresentation of
dimension vector ' = (1,1) and again (') =1 —mn < 0 is impossible.

3. = 1. : By cyclicity of v, the only proper subrepresentations of V' have dimen-
sion vector 8 = (0,1) for some 0 < [ < n, but they satisfy 6(8) > 0, whence V is
0-(semi)stable.

As for the last statement, recall that geometric points of M2%(Q, «) classify iso-
morphism classes of direct sums of 0-stable representations. As there are no proper
0-stable subrepresentations, M3°(Q, «) classifies the GL(a)-orbits in Brauer®(gen).
Finally, as in chapter 1, there is a one-to-one orbits between the GL,-orbits as
described in the definition of the Brauer-Severi variety and the GL(a)-orbits on

rep, Q. O

By definition, M3°(Q,0) = Proj @, Clreps Q) X"? and we can either
use the results of section 3 or the previous section to show that these semi-invariants
f are generated by brackets, that is,

f(V)=det [wi(A1,...;,An)v ... wp(As,..., Apn)v]
where the w; are words in the noncommuting variables x1,...,T,. As in sec-
tion 1.3 we can restrict these n-tuples of words {wy,...,w,} to sequences arising

from multicolored Hilbert n-stairs. That is, the lower triangular part of a square
nxXn array

1 n

this time filled with colored stones &) where 1 < i < m subject to the two coloring
rules

e cach row contains exactly one stone

e cach column contains at most one stone of each color
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The relevant sequences W (o) = {1,wa,...,w,} of words are then constructed by
placing the identity element 1 at the top of the stair, and descend according to the
rule

e Fvery go-stone has a top word T which we may assume we have constructed
before and a side word S and they are related as indicated below

1 1

In a similar way to the argument in chapter 1 we can cover M2%(Q, o) = BST(gen)
by open sets determined by Hilbert stairs and find representatives of the orbits in
o-standard form, that is replacing every i-colored stone in o by a 1 at the same spot
i A; and fill the remaining spots in the same column of A; by zeroes

. |
[ L | ]
: : 0
n T A — 0
1 7 n 1

As this fizes (n—1)n entries of the mn?+n entries of V', one recovers the following
result of M. Van den Bergh [31]]

Theorem 7.26 The generic Brauer-Severi variety BST(gen) of degree m in m
generators is a smoot@ variety which can be covered by affine open subsets each
isomorphic to Cm=1n"+n,

For an arbitrary affine C-algebra A, one defines the Brauer stable points to be
the open subset of@n AxCr

Brauery (A) = {(¢,v) €rep, AxC" | ¢(A)v=C"}

As Brauer stable points have trivial stabilizer in GL,, all orbits are closed and we
can define the Brauer-Severi variety of A of degree n to be the orbit space

BS,(A) = Brauer, (A)/GL,

We claim that Quillen-smooth algebras have smooth Brauer-Severi varieties. Indeed,
as the quotient morphism

Brauer; (A) — BS,(A)

is a principal G Ly -fibration, the base is smooth whenever the total space is smooth.
The total space is an open subvariety of @nA x C™ which is smooth whenever A
is Quillen-smooth.
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Proposition 7.27 If A is Quillen-smooth, then for every m we have that the
Brauer-Severi variety of A at degree n is smooth.

Next, we bring in the approrimation at level n. Observe that for every affine
C-algebra A we have a GL,-equivariant isomorphism

rep, A= rep AQ,

More generally, we can define for every Cayley-Hamilton algebra A of degree n the
trace preserving Brauer-Severi variety to be the orbit space of the Brauer stable
points in @;’" A x C". We denote this variety with BS!"(A). Again, the same
argument applies

Proposition 7.28 If A is Cayley-smooth of degree n , then the trace preserving
Brauer-Severi variety BSL(A) is smooth.

We have seen that the moduli spaces are projective fiber bundles over the variety
determined by the invariants,

M (Q,0) —>» issa @

Similarly, the (trace preserving) Brauer-Severi variety is a projective fiber bundle
over the quotient variety of rep, A, that is, there is a proper map

BS, (A) —>» iss, A

and we would like to study the fibers of this map. Recall that when A is an order in
a central simple algebra of degree n, then the general fiber will be isomorphic to the
projective space P"~1 embedded in a higher dimensional PN . Owver non-Azumaya
points we expect this P"~! to degenerate to more complex projective varieties which
we would like to describe. To perform this study we need to control the étale local
structure of the fiber bundle m in a neighborhood of £ € iss,, A. Again, it is helpful
to consider first the generic case, that is when A = C{xq,...,xmy) or T, In this
case, we have seen that the following two fiber bundles are isomorphic

BS)(gen) — iss, T

n

and MZ7°(Q,0) — iss, Q

where a = (1,n), 8 = (—n, 1) and the quiver

m

&

@ 0] has Euler form xq = {1 -1 ]

0 1—-m

A semi-simple o-dimensional representation Ve of @ has representation type

(1,0) @ (0,d1)®* @ ... @ (0,d)®*  with Y die;=n

K2

and hence corresponds uniquely to a point £ € iss, T, of representation type
7 = (e1,dy;...;ex,dg). The étale local structure of rep, @ and of iss, @ near
¢ is determined by the local quiver Q¢ on k + l-vertices, say {vo,v1,...,vr} with
dimension vector o = (1,e1,...,ep) and where Q¢ has the following local form for
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every triple (vo,v;,v;) as can be verified from the Euler-form

where a;; = (m—1)d;d; = aj; and a; = (m—1)d;+1, a; = (m—1)d5+1. The dashed
part of Q¢ is the same as the local quiver Q¢ describing the étale local structure of

i88n, T near £. Hence, we see that the fibration BS["(gen) — iss, Ti' is étale

isomorphic in a neighborhood of € to the fibration of the moduli space
Méi(QC,GC) —> 0880, Q¢ = i85q, Qe

in a neighborhood of the trivial representation and where 8 = (—n,d1,...,d).
Another application of the Luna slice results gives the following

Theorem 7.29 Let A be a Cayley-smooth algebra of degree m. Let & € isst" A
correspond to the trace preserving n-dimensional semi-simple representation

Me=SP"@... @S2

where the S; are distinct simple representations of dimension d; and occurring with
multiplicity e;. Then, the projective fibration

BSI(A) Do isst A
is €tale isomorphic in a neighborhood of £ to the fibration of the moduli space
M;‘Z(QZ,GC) —> 0880, QF 20850, QF

in a neighborhood of the trivial representation. Here, Qg is the local marked
quiver describing the étale local structure of rept” A near £, where QZ is the ex-
tended marked quiver situation, which locally for every triple (vo,vs,v;) has the
following shape where the dashed region is the local marked quiver Qg describing
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Ext'y (M, M¢) and where a¢ = (1,e1,...,ex) and 0 = (—n,dq,. .., dy).

In the next chapter we will use this local description to describe the fibers of the
Brauer-Severi fibration.
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Chapter 8

Nullcones.

When A is a Quillen-smooth algebra we have found a local description of the variety
rep, A of its n-dimensional representations, of the variety iss, A os isomorphism
classes of semi-simple n-dimensional representations and of the Brauer-Severi vari-
ety BS,, A. In this chapter we will develop tools to study the fibers of the structural
morphisms

BS, A

™ .
rep, A — iss, A

In particular, we will be able to compute the number and dimensions of their irre-
ducible components allowing to determine the flat locus of these morphisms. The
basic observation is that these fibers are nullcones of certain quiver settings, that is,
quiver representations on which all polynomial invariants evaluate to zero. What
we will do is to give a representation theoretic interpretation of a stratification by
vectorbundles over flag varieties of these nullcones, due to W. Hesselink [10)].

The strategy is easy to explain in the generic case, that is, of m-tuples of n x n
matrices. Here, (A1,...,Ap) lies in the nullcone if and only if by applying permu-
tation Jordan-moves simultaneously to the components A;, they all become strictly
upper triangular matrices. Sometimes, we can do better and bring all the non-zero
entries of the A; together in a smaller upper right-hand side corner, such as

.
nn

C =

for 4 x 4 matrices. For a given m-tuple it is easy to determine the smallest corner
which can be obtained by only applying permutation moves. Remains the prob-
lem whether we can simultaneously conjugate the m-tuple to produce another tuple
(A} ..., Al in the orbit which can be permuted to a strictly smaller corner. If this
is not possible, we will say that the corner type C is optimal for (Ay,..., An). To
verify this it is clear that the border region of the corner, such as

.

B =

will be relevant. We will assign a new quiver setting to the border region. Observe
that there is a parabolic subgroup P of GL,, preserving the corner C' and its action
on the border region is coming from its Levi subgroup L which is a product of GL;’s.

285
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In the example,

[ JL I [ ]
[ JEJK ) [ ]
[ JEJ [ JEJ
P = ®® ,d L= (L)

and the corresponding quiver setting is easily seen to be

D=0

The crucial observation is now, to assign a character to GL(«) = L such that an
m-tuple (A1,..., Ay) has optimal corner type C if and only if the representation in
rep, Q = B it determines by looking only at the border entries is 8-semistable. By
Schofield’s criterium we have a combinatorial way to verify whether there are such 0-
semistable representations. The corresponding stratum in Hesselinks’s stratification
is S = GL,.U where U is the collection of all such m-tuples. We have the following
size-reduction of the problem : there is a natural one-to-one correspondence between

e GL,-orbits in S, and
e P-orbits in U

Moreover, as U is determined by 0-semistables, there is a moduli space of quiver
representation M2%(Q,0) ar the heart of the stratum.

8.1 Cornering matrices.

In this section we will outline the basic idea of the Hesselink stratification of the
nullcone [10] in the generic case, that is, the action of GLy by simultaneous conju-
gation on m-tuples of matrices M]* = M, @& ... ® M,. With Null’ we denote the
nullcone of this action

Nul» ={x=(A1,...,An) € M | 0=(0,...,0) € O(x)}

By the Hilbert criterium we know that x = (A1, ..., Ay) belongs to the nullcone if

, A
and only if there is a one-parameter subgroup C* —— GL,, such that

lim At).(Ay,..., An) = (0,...,0).

t—0

We recall from chapter 4 that any one-parameter subgroup of GL,, is conjugated to

one determined by an integral n-tuple (r1,...,r,) € Z™ by
tm 0
At) = .
0 trn

Moreover, permuting the basis if necessary, we can conjugate this A to one where
the n-tuple if dominant, that is, ry > ro > ... > r,. By applying permutation
Jordan-moves, that is, by simultaneously interchanging certain rows and columns
i all A;, we may therefore assume that the limit-formula holds for a dominant
one-parameter subgroup A\ of the mazximal torus

C1 O

T, ~C"x...xC"=/{ | ¢;€eC" } — GL,
—_———
n 0 Cn
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of GL,,. Computing its action on a n X n matriz A we obtain

tr 0 ayl ... Qin t" 0 t" a0 tTTTmaqy,

0 t | lan1 ... Gnn 0 rm T Man s T T g,

But then, using dominance v; < r; for i > j, we see that the limit is only defined
if ajj = 0 for i > j, that is, when A is a strictly upper triangular matriz. We have
proved our first ‘cornering’ result.

Lemma 8.1 Any m-tuple x = (A1,..., Amn) € Null® has a point in its orbit O(x)
under simultaneous conjugation (Ay, ..., AL) with all A, strictly upper triangular
matrices. In fact permutation Jordan-moves suffice.

For specific m-tuples x = (A1,..., An) it might be possible to improve on this
result. That is, we want to determine the smallest ‘corner’ C' in the upper right hand
corner of the matriz, such that all the component matrices A; can be conjugated
simultaneously to matrices Al having only non-zero entries in the corner C

and no strictly smaller corner C' can be found with this property. Our first task will
be to compile a list of the relevant corners and to define an order relation on this
set. Consider the weight space decomposition of M]" for the action by simultaneous
conjugation of the mazimal torus T,

M = ®1<ijen M (T3 — 75) = @10 j<nCET

where ¢ = diag(ci, ... ,¢,) € Thy, acts on any element of M (m; — ;) by multiplica-
tion with cicj_l, that is, the eigenspace M (m; —m;) is the space of the (i, j)-entries
of the m-matrices. We call

W={m—m; | 1<i,j<n}

the set of T,-weights of M™. Let x = (A1,...,An) € Nulll® and consider the
subset E;, C W consisting of the elements m; — m; such that for at least one of the
matriz components Ay the (i,j)-entry is non-zero. Repeating the argument above,
we see that if X is a one-parameter subgroup of T, determined by the integral n-tuple
(r1,...,mn) € Z™ such that lim A(t).x = 0 we have

Va,—m; € B, wehave r;—r; >1
Conversely, let E C W be a subset of weights, we want to determine the subset
{s=(s1,....80) €ER" | 85,—5; >1Vm—m; € E}

and determine a point in this set, minimal with respect to the usual norm

I'sll=1/si+...+53
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Let s = (s1,...,8,) attain such a minimum. We can partition the entries of s in a
disjoint union of strings

with k; € N and subject to the condition that all the numbers p;; = pi + § with
0 < j < k; occur as components of s, possibly with a multiplicity that we denote by
a;j. We call a string string; = {pi,p; +1,...,p; + k;} of s balanced if and only if

ki
Z szzaij(pi+j):0
spEstring; 7=0

In particular, all balanced strings consists entirely of rational numbers. We have

Lemma 8.2 Let E C W, then the subset of R" determined by
R%:{ (Tl,u'arn) | Ty —Tj >1 Vﬁifﬂj EE}

has a unique point sg = (81,...,8n) of minimal norm || sg ||. This point is deter-
mined by the characteristic feature that all its strings are balanced. In particular,
SE € Qn

Proof. Let s be a minimal point for the norm in R% and consider a string of s and
denote with S the indices k € {1,...,n} such that s, € string. Let m; — m; € E,
then if only one of i or j belongs to S we have a strictly positive number a;;

Si_sj:1+rij with rij>0
Take €9 > 0 smaller than all r;; and consider the n-tuple
Se =8+ €(015,...,0ns) with Ops=114f k€S and 0 otherwise

with | € |< €. Then, sc € Ry, for if m;, —m; € E and i and j both belong to S or
both do not belong to S then (s¢); — (se¢); = si —s; > 1 and if one of i or j belong
to S, then

(Se)i — (86)]‘ =1 + 7ij +e>1

by the choice of 9. However, the norm of sc is

I s = w 5 42¢ Y sp+ 245

kes

Hence, if the string would not be balanced, ), ¢ sx # 0 and we can choose € small
enough such that || sc ||<|| s ||, contradicting minimality of s. O

For given n we can compile a list S,, of all dominant n-tuples (s1,...,s,) (that
is, s; < s; whenever i > j) having all its strings balanced, as follows.
e List all Young-diagrams YV, = {Y1,...} having < n bozes.

o For every diagram Y; fill the boxes with strictly positive integers subject to the
rules
1. the total sum is equal to n
2. no two rows are filled identically

3. at most one row has length 1
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This gives a list T, = {T1,...} of tableaux.

o For every tableau T; € T,,, for each of its rows (a1, as,...,ax) find a solution
p to the linear equation

az+ax(x+1)+...+ar(x+k)=0
and define the Y a;-tuple of rational numbers

p,...,pyp+1,...,p+1,...p4+k,...,p+ k)
———

ai az ag

Repeating this process for every row of T; we obtain an n-tuple, which we then
order.

—_

For example, for n =5 and the tableauz |1 the linear equations are

2c+2x+1 =0 gving p1 = —
z4+2x+1 =0 giving p2

N W=

The corresponding 5-tuple is therefore s = (%, %, —%, —%, —%) The list S,, will be
the combinatorial object underlying the relevant corners and the stratification of the

nullcone.

Example 8.3 (S, for small n)
For n = 2, we have giving (£, —1) and |2] giving (0,0). For n = 3 we have five types

2' 72
tableau | s1 S9 s3 | |ls|?
10 -1 2
1 1 _2 2
S = 5 1 3 >
3 3 73 3
1]1]
1 1 _1 1
— 2 2 2
o 0 0 0
S4 has eleven types
tableau s1 S2 S3 sa | |Is?
311 3| s
5 1 3 3 11
i3 "1 1 I
I
1 0 o0 -1 2
1 1 1 1
2 2 T3 ~3 1
3 1 1 1 3
s = S B B 1
i 3 i 1 I
1[2]
1 1 2 2
L 3 3 0 -3 3
2]1]
2 1 1
L 3 0 -3 -3 3
1[1]
2 1 0 _1 1
— 2 2 2
o 0 0 o0 0
Observe that we ordered the elements in S, according to || s ||. The reader is invited to verify

that Ss has 28 different types.

To every s = (81,...,8,) € Sy, we associate the following data
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o the corner Cjs s the subspace of M]" consisting of those m tuples of n x n
matrices with zero entries except perhaps at position (i,j) where s; — s; > 1.
A partial ordering is defined on these corners by the rule

Co<Cs & [ < |sl
e the parabolic subgroup P, which is the subgroup of GL,, consisting of matrices
with zero entries except perhaps at entry (4,j) when s; —s; > 0.

e the Levi subgroup L which is the subgroup of GL, consisting of matrices
with zero entries except perhaps at entry (i, j) when s; —s; = 0. Observe that
L, = HGL% where the a;; are the multiplicities of p; + 7.

Example 8.4 Using the sequence of types in the previous example, we have that the relevant
corners and subgroup for 3 X 3 matrices are

Cs H
o0 e [ JLJE ) [ JLJE ) [ JEJE) ([ JLJIE )
[ JKJ [ JE K J ( JEJ ( JKJ [ JEJL )
P, [ ] [ ] [ JLJ [ ] o0 e
[ J [ JLJ [ ] [ ] [ JEJE )
[ ] [ JLJ (L] [ J [ JEJE )
Ls [ J [ J [ JL ) [ ] [ J JE )

For 4 x 4 matrices the relevant corners are

il
u

= I | ||
m

Returning to the corner-type of an m-tuple x = (A1,...,Ap) € Null*, we have
seen that £, C W determines a unique sg, € Q™ which up to permuting the entries
an element s of S,,. As permuting the entries of s translates into permuting rows
and columns in M, (C) we have

Theorem 8.5 Fvery © = (Ai,...,An) € Null* can be brought by permutation
Jordan-moves to an m-tuple &' = (AY,...,Al,) € Cs. Here, s is the dominant
reordering of sg, with E, C W the subset m; — m; determined by the non-zero
entries at place (i,7) of one of the components Ay. The permutation of rows and
columns is determined by the dominant reordering.

The m-tuple s (or sg, ) determines a one-parameter subgroup \s of T,, where A
corresponds to the unique n-tuple of integers

(ri,...,m) € NysNZ"®  with ged(r;) =1

For any one-parameter subgroup p of T, determined by an integral n-tuple p =
(a1,...,an) €Z™ and any x = (A1, ..., Ap) € Nulll” we define the integer

m(x, u) = min {a; —a; | x contains a non-zero entry in M, (m; — ;) }
From the definition of R it follows that the minimal value sg and As,, is

As As
B and s

SBe = m(z, Asy, ) - m(x, As)

We can now state to what extend g is an optimal one-parameter subgroup of T, .
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Theorem 8.6 Let x = (A1,...,Ay) € Null and let i1 be a one-parameter sub-
group contained in T, such that %mg At).x =0, then

[ Ase, Il pll
m(xv)\sgz) B m(l’,ﬂ)

The proof follows immediately from the observation that —t— € R and the

()
minimality of sg,. Phrased differently, there is no simultaneous reordering of rows
and columns that admit an m-tuple 27 = (A”4,...,A”,,) € Cy for a corner Cy <
Cs.

8.2 Optimal corners.

In the foregoing section we have transformed an m-tuple x = (A1, ..., An) € Null?
by interchanging rows and columns to an m-tuple in corner-form Cs. However, it
is still possible that another point in the orbit O(x) sayy = g.x = (B1,...,Bm) can
be transformed by interchanging rows and columns in a smaller corner.

Example 8.7 Consider one 3 x 3 nilpotent matrix of the form

0 a b
z=[0 0 0| with ab#£0
0O 0 O

Then, E; = {m1 — 2,71 — 73} and the corresponding s = sg, = (%, —%, —%) so x is clearly of

corner type

Cs =
However, x is a nilpotent matrix of rank 1 and by the Jordan-normalform we can conjugate it in
standard form, that is, there is some g € GL3 such that

0 1 0
y:g.x:gwg_lz 0 0 O
0 0 O

For this y we have Ey = {m1 —m2} and the corresponding SE, = (%, —%, 0), which can be brought
into standard dominant form s’ = (%,07 7%) by interchanging the two last entries. Hence, by
interchanging the last two rows and columns, y is indeed of corner type

Cy =

and we have that Cy < Cs.

Trivial as this ezample seems, we needed the Jordan-normalform to produce it. As
there are no known canonical forms for m tuples of n X n matrices, it is a difficult
problem to determine the optimal corner type in general.

Definition 8.8 We say that @ = (Ay,..., Ay) € Null™ is of optimal corner type
C, if after reordering rows and columns, x is of corner type Cy and there is no point
y = g.x in the orbit which is of corner type Cy with Cy < Cs.

Using the results of the foregoing chapter we can give an elegant solution to the
problem of determining the optimal corner type of an m-tuple in Nulll*. We assume
that © = (Ay,..., Ay) is brought into corner type Cs with s = (s1,...,8,) € Sp.
We will associate a quiver-representation to x. As we are interested in checking
whether we can transform x to a smaller corner-type, it is intuitively clear that the
border region of Cs will be important.
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e the border By is the subspace of Cs consisting of those m-tuples of n X n
matrices with zero entries except perhaps at entries (i,j) where s; —s; = 1.

Example 8.9 For 3 x 3 matrices we have the following corner-types Cs having border-regions
Bs and associated Levi-subgroups Lg

. H [ ||
.
]@ HI ||
B, L] [ ]
[ J [ JLJ [ ] [ ] [ JEJE)
[ ] ( JKJ (L] [ ] [ JK JK )
Ls [ J [ ] (L] o 000
For 4 x 4 matrices the relevant data are as follows
Cs = [ ] [ ] [ |
olo] [ MO0 O] HE
. O] ||
Bs =
[ ] [ ] [ JLJ [ ] [ JEJ [ ]
[ ] [ ] [ JL ] [ JK ] [ JK ] [ I JK )
[ ] [ JEJ [ ] [ JEJ [ JEJ [ JLJE )
Ls = [ ] ( JK ) [ ] [ ] [ JK J [ JEJK )
= I || ||
o - Y
I = || ||
Bs = [ |
[ JLJIE ) [ JEJ [ ] [ ] [ JLJILJE )
o0 e [ JK ] [ ] [ JK J [ JEJCJK )
[ JL I [ ] [ JEJ [ JEJ o0 e0eoe
Ly = [J [ ] [ JEJ o 0000

From these examples, it is clear that the action of the Levi-subgroup Ls on the border
Bs is a quiver-setting. In general, let s € S,, be determined by the tableau T, the
associated quiver-setting (Qs, as) is

e (), is the quiver having as many connected components as there are rows in
the tableau Ts. If the i-th row in Ty is

(a7:07a7:1, ceey aiki)
then the corresponding string of entries in s is of the form

{plv7p21p1+1a7p1+177p1+k17,pl+kl}

aio i1 ik,

and the i-th component of Qs is defined to be the quiver Q; on k; + 1 vertices
having m arrows between the consecutive vertices, that is Q; is

0 1 2 k;
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e the dimension vector «; for the i-th component quiver Q; is equal to the i-th
row of the tableau Ty, that is

o = (aiO,aila--~aaik,;)

and the total dimension vector ay is the collection of these component dimen-
sion vectors.

With these notations we have

Proposition 8.10 The action of the Levi-subgroup Ls = []; ; GLq,; on the border
Bs coincides with the base-change action of GL(as) on the representation space
repa, Qs. The isomorphism

Bs - Tepozs Qs
is given by sending an m-tuple of border Bs-matrices (Ay,. .., Ay) to the represen-

tation in rep,, Qs where the j-th arrow between the vertices v, and vqy1 of the i-th
component quiver Q; is given by the relevant block in the matriz A;.

Example 8.11 Let us give a couple of examples for 4 x 4 matrices

tableau Ls Bs (@Qs,as)
° [O]O]
° \
N0
°
0
o
[1]2]1] ° O<=r=@<==0
DD =
o0 @<=r=0
1[2] °
1] ° ®

Finally, we associate to s € S, a character x of the Levi-subgroup Ls = GL(ay)
e the character GL(a) —X» C* is determined by the integral n-tuple 0, =
(t1,...,tn) € Z™ where if entry k corresponds to the j-th vertex of the i-th
component of Qs we have

ty =ny; £ d.(p; +J)

where d is the least common multiple of the numerators of the p;’s for all
i. Equivalently, the n;; are the integers appearing in the description of the
one-parameter subgroup As = (r1,...,7n) grouped together according to the
ordering of vertices in the quiver Qs. Recall that the character xs is then
defined to be

XS(gl- cee 7gn) = H det(gi)ti
=1

or in terms of GL(a) it sends an element g;; € GL(a) to [[, ; det(gi;)™.
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Example 8.12 For the n = 4 examples above we obtain the following characters (indicated as
top-labels of the vertices)

tableau | t1 to t3 ty (Qs»asves)

5 1 -3
5 1 -3 —3|O=r=0==0Q

1 0 -1
1 0 0 -1|0==0==0

-2

1
@<=n=0)
0
[1] 1 1 0 -—2|O®

Observe that 65 (as) = 0.

Using these conventions we can now state the main result of this section, giving a
solution to the problem of optimal corners.

Theorem 8.13 Let © = (A1,...,Ay) € Nulll™ be of corner type Cs. Then, x is
of optimal corner type Cs if and only if under the natural maps

Cs — Bs — T€Pa, Qs

(the first map forgets the non-border entries) x is mapped to a 0s-semistable repre-
sentation in rep,, Qs.

8.3 The Hesselink stratification.

We have seen that every orbit in Nulll has a representative x = (A, ..., Am) with
all A; strictly upper triangular matrices. That is, if N C M, is the subspace of
strictly upper triangular matrices, then the action map determines a surjection

GL, x N™ —%» Null™

Recall that the standard Borel subgroup B is the subgroup of GL,, consisting of all
upper triangular matrices and consider the action of B on GL,, x M]" determined
by

b.(g,z) = (gb~ ', b.x)

Then, B-orbits in GL, x N™ are mapped under the action map ac to the same
point in the nullcone Null". Consider the morphisms

us

GL, x M]" — GL,/B x M

which sends a point (g,x) to (9B, g.x). The quotient GL,,/B is called a flag variety
and is a projective manifold. Its points are easily seen to correspond to complete
flags

F:0ckhCcFkhcC...CF,=C" with dimc F; =1

of subspaces of C™. For example, if n = 2 then GLy/B ~ P'. Consider the fiber
71 of a point (g, (B1,...,Bm)) € GL,/B x M™. These are the points

g 'h =beB

h(Ay,... A, h that
( ( 1 )) suc a {bAlbl = gileg fo']" all ]- é Z S m.
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Therefore, the fibers of m are precisely the B-orbits in GL, x M". That is, there
exists a quotient variety for the B-action on GL,, x M) which is the trivial vector-
bundle of rank mn?

T =GL,/Bx M"™ —t» GL, /B
over the flag variety GL,/B. We will denote with GL,, xB N™ the image of the

subvariety GLy, x N™ of GL,, x M" under this quotient map. That is, we have a

commuting diagram
GL, x N —— GL, x M]"

GL, xBN™ <~ GL,/B x M™

Hence, V = GL,, xB N™ is a sub-bundle of rank m.@ of the trivial bundle T
over the flag variety. Note however that V itself is not trivial as the action of GLy,
does mot map N™ to itself.

Theorem 8.14 Let U be the open subvariety of m-tuples of strictly upper triangular
matrices N™ consisting of those tuples such that one of the component matrices has
rank n — 1. the action map ac induces a commuting diagram

GL, xBU = > GL,.U

ac

GL, xB N™

Null™

where the upper map is an isomorphism of GL,-varieties if we define the action
on fiber bundles to be given by left multiplication in the first component. Therefore,
there is a natural one-to-one correspondence between GL,-orbits in GL,,.U and
B-orbits in U. Further, ac is o desingularization of the nullcone and Nulll" is
irreducible of dimension
n(n—1)

5

Proof. Let A € N be a strictly upper triangular matriz of rankn —1 and g € GL,
such that gAg=' € N, then g € B as one verifies by first bringing A into Jordan-
normal form J,(0). This implies that over a point x = (A1,...,An) € U the fiber
of the action map

(m+1)

GL, x N™ —%» Null™

has dimension @ = dim B. Ower all other points the fiber has at least dimen-

n(n—1)
2

sion .But then, by the dimension formula we have

n(n—1)
2

Over GL,,.U this map is an isomorphism of G L, -varieties. Irreducibility of Null}"
follows from surjectivity of ac as C[Null*] —— C[GL,]| ® C[N™] and the latter is
a domain. These facts imply that the induced action map

dim Nulll* = dim GL, +dim N™ —dim B = (m+1)

ac

GL, xB N™ s Null™

is birational and as the former is a smooth variety (being a vectorbundle over the
flag manifold), this is a desingularization. O
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Example 8.15 Let n = 2 and m = 1. We have seen in chapter 3 that Null} is a cone in
3-space with the singular top the orbit of the zero-matrix and the open complement the orbit of

b o)

In this case the flag variety is P! and the fiber bundle GLs xB N has rank one. The action map

can be depicted as above and is a G La-isomorphism over the complement of the fiber of the top.

The foregoing theorem gives us a reduction in the complexity, both in the dimension
of the acting group as in the dimension of the space acted upon, of the study of

o GL,-orbits in the nullcone Null)*, to
e B-orbits in N™.

at least on the stratum GL,.U described before. The aim of the Hesselink stratifi-
cation of the nullcone is to extend this reduction also to the complement.

Let s € S, and let Cs be the vectorspace of all m-tuples in M) which are of
corner-type Cs.  We have seen that there is a Zariski open subset (but, possibly
empty) Us of Cs consisting of m-tuples of optimal corner type Cs. Observe that the
action of conjugation of GL,, on M]" induces an action of the associated parabolic
subgroup Ps on Cs.

e The Hesselink stratum S associated to s is the subvariety GL,.Us where U,
is the open subset of Cs consisting of the optimal Cs-type tuples

The results of the foregoing section allow us to prove, similar to the foregoing result,
the following reduction of complexity result from

e (GL, -orbits in the Hesselink stratum Sg to

e P, -orbits in optimal corner tuples Us.
Theorem 8.16 With notations as before we have a commuting diagram

GL, xT= U, = > S,

GL, xT C,4 - S,

where ac is the action map, Sy is the Zariski closure of S in Null and the up-
per map is an isomorphism of GL,-varieties. Here, GL,,/Ps is the flag variety
associated to the parabolic subgroup Ps and is a projective manifold. The variety
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GL, xTC, is a vectorbundle over the flag variety GL, /Ps and is a subbundle of the
trivial bundle GL,, x = M]". Therefore, the Hesselink stratum S is an irreducible
smooth variety of dimension

dim Sy = dim GL,/Ps+rk GL, x* C,

=n?—dim P, + dime C,

and there is a natural one-to-one correspondence between the G L., -orbits in Ss and
the P,-orbits in Us. Moreover, the vectorbundle GL, xT* Cy is a desingularization
of S, hence ‘feels’ the gluing of S, to the remaining strata. Finally, the ordering of
corners has the geometric interpretation

S.c |J S

s 1<l

In the previous section we have seen that U, = p~1 repy’ (Qs,0s) where Cs 4 B,
is the canomnical projection forgetting the mnon-border entries. As the action of the
parabolic subgroup Ps restricts to the action of its Levi-part Ly on By = rep,, @
we have a canonical projection

US/PS L Mg‘z (Q37 95)

to the moduli space of 05-semistable representations in rep,, Qs. As none of the
components of Qs admits cycles, these moduli spaces are projective varieties. For
small values of m and n these moduli spaces give good approzimations to the study
of the orbits in the nullcone.

Example 8.17 (Nullcone of m-tuples of 2 x 2 matrices)

In chapter 3 we have proved by brute force that the orbits in Nullg correspond to points on
P! together with one extra orbit, the zero representation. For arbitrary m, the relevant strata-
information for Nully* is contained in the following table

tableau s Bs =Cs Py (Qs, as,05)
' [e[e] 1
) of O==0
[ L J 0
(0,0) oo ®

Because Bs = Cs we have that the orbit space Us/Ps =~ M52 (Qs,0s). For the first stratum,
every representation in repo, Qs is Os-semistable except the zero-representation (as it contains
a subrepresentation of dimension 8 = (1,0) and 05(8) = —1 < 0. The action of Ly = C* x C*
on C™ — 0 has as orbit space P™~1, classifying the orbits in the maximal stratum. The second

stratum consists of one point, the zero representation.

Example 8.18 A more interesting application, illustrating all of the general phenomena, is
the description of orbits in the nullcone of two 3 X 3 matrices. As we mentioned in chapter 4, H.
Kraft described them in [14] p. 202] by brute force. The orbit space decomposes as a disjoint
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union of tori and can be represented by the picture

\ /‘
|.|.|./

Here, each node corresponds to a torus of dimension the right-hand side number in the bottom
row. A point in this torus represents an orbit with dimension the left-hand side number. The top
letter is included for classification purposes. That is, every orbit has a unique representant in the
following list of couples of 3 x 3 matrices (A, B). The top letter gives the torus, the first 2 rows
give the first two rows of A and the last two rows give the first two rows of B, z,y € C*

a b c d e f g h i

0/1/0] |0f1]0| [O|1]|0| |Of1|0O] |O|1]|0O| [O|O]|O| |O]|1]0]| |O]1]|0| |O|O|=
0/0J1] |0|O|1| [0|O|1| |O|O|1] |OJO|1| |[O|O|1| |O|O]|O]| [O]|O|1] |O]|O|O
0|z|0] |0/0|O0| [0|z|0| |O|x|y| |O|=z|0O| [0|1]0| |O|O]|O] [O]|O]|z| |O]|1]|0O
0/0|y| |0|/O]x| [0/O]|O| |O|O|z| |0/0]0O| [0]O|z| |O]O]|1] [O]O]O] |O]O]1
J k l m n o p q r

0/0/0] |0|O|1| [0|O|O| |O|O|1] |O|O|O| |[O|1]0O| |O|1]0]| |[O]|O|O| |O]O|O
0/0J1] |0|O]|O| [0|O|1| |O|O|O] |0O|O|O| [O|O]|O| |O|O]|O]| [O]|O]O] |O]O]O
0/1/0] |O0f1]0| [0|O|1| |Of1|O| |OJ1]|0O| |[O|x|O| |O|O]|O]| [O][1]|0O]| |O]|O]O
0/0/0] |0|O]|O| [0JO|0O| |O|O|O] |0JO]1| |0|O]|O| |O]|O]|O] [O]|O]O] |O]0O]O

We will now derive this result from the above description of the Hesselink stratification. To begin,
the relevant data concerning S3 is summarized in the following table

tableau s Bs,Cs Py (Qs, as,0s)
| e [e]ee
—H oo ', — ° ,— !
(1,0,—1) L @\,/CD\._/@
j ool
eee ', — 7
|l [e[ee
oo 2, . — !
(2,-1, -1 oo O ©
37 37 3
1%’\_1
B [eee O ®
1[1] oo o
1 1
1] (3:0,—%) o ©
000
eee o
(0,0,0,) oeje] ©®

For the last four corner types, Bs = Cs whence the orbit space Us/Ps is isomorphic to the moduli
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space MZ° (Qs,0s). Consider the quiver-setting

s

@ 0

If the two arrows are not linearly independent, then the representation contains a proper sub-
representation of dimension-vector 8 = (1,1) or (1,0) and in both cases 05(8) < 0 whence the
representation is not 6s-semistable. If the two arrows are linearly independent, we can use the

G La-component to bring them in the form (|:(1]:| , |:(1)

:|), whence M5? (Qs, as) is reduced to one

point, corresponding to the matrix-couple of type [

0 0 0 0 0 1
(lo o 1], o 0o of)
0 0 0 0 0 0

A similar argument, replacing linear independence by common zero-vector shows that also the
quiver-setting corresponding to the tableau has one point as its moduli space, the matrix-
tuple of type k. Incidentally, this shows that the corners corresponding to the tableaux or

cannot be optimal when m = 1 as then the row or column vector always has a kernel or
cokernel whence cannot be fs-semistable. This of course corresponds to the fact that the only
orbits in Nullé are those corresponding to the Jordan-matrixes

0 1 0 0 1 0 0 0 O
0 0 1 0 0 O 0 0 O
0 0 O 0 0 O 0 0 O
1]1]
which are respectively of corner type |1 11 [1] and , whence the two other types do not
occur. Next, consider the quiver setting
1 -1
T T
o 0

A representation in repn, Qs is Os-semistable if and only if the two maps are not both zero
(otherwise, there is a subrepresentation of dimension 8 = (1,0) with 65(8) < 0). The action of
GL(as) = C* x C* on C? — 0 has a s orbit space P! and they are represented by matrix-couples

0 0 a 0 0 b
(lo o o, lo o o)
0 0 0 0 0 0

with [a : b] € P! giving the types o,p and q. Clearly, the stratum consists just of the zero-matrix,
which is type . Remains to investigate the quiver-setting

1 e 0 a -1
e N
d b

Again, one easily verifies that a representation in repn, Qs is 0s-semistable if and only if (a,b) #
(0,0) # (c,d) (for otherwise one would have subrepresentations of dimensions (1, 1,0) or (1,0,0)).
The corresponding G L(as)-orbits are classified by

ME® (Qs.05) ~ P! x P!

corresponding to the matrix-couples of types a,b,c,e, f,g,7,k and n

0 ¢ 0 0 d 0
(lo o a|, o 0o b|)
0 0 0 0 0 0

where [a : b] and [c : d] are points in P1. In this case, however, Cs # B, and we need to investigate
the fibers of the projection

Us/Ps J)» M;Z(Q57as)
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Now, Ps is the Borel subgroup of upper triangular matrices and one verifies that the following two
couples
0 0 0 d 0 0 0 d vy
(|0 al , |0 0 b| ) and ( |O , 10 0 b))
0 0 0 0 0 0 0 0 O

SO0
S o0
o e 8

lie in the same B-orbit if and only if det {Z Ccl} # 0, that is, if and only if [a : b] # [c : d] in

P!. Hence, away from the diagonal p is an isomorphism. On the diagonal one can again verify by
direct computation that the fibers of p are isomorphic to C, giving rise to the cases d, h and ¢ in
the classification.

The connection between this approach and Kraft’s result is depicted by the following two pictures

@
\/ / \ \m/
/\

The picture on the left is Kraft’s toric degeneration picture where we enclosed all orbits belonging
to the same Hesselink strata, that is, having the same optimal corner type. The dashed region
enclosed the orbits which do not come from the moduli spaces M3? (Qs, 0s), that is, those coming
from the projection Us/Ps —» M5 (Qs,0s)). The picture on the right gives the ordering of the

relevant corners.

Example 8.19 We see that we get most orbits in the nullcone from the moduli spaces
M3 (Qs,0s). The reader is invited to work out the orbits in Nulli. We list here the moduli
spaces of the relevant corners

corner Mz5(Qs, 0s) corner Mz (Qs, 0s) corner ME® (Qs,0s)

P! x P! x P! P!

s ulll

P3 UP! x P UP! x P! P! L S2(PY) PO

1 A
n

P! P! PO

Observe that two potential corners are missing in this list. This is because we have the following
quiver setting for the corner
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and there are no 6s-semistable representations as the two maps have a common kernel, whence a
subrepresentation of dimension 8 = (1,0) and 6s(8) < 0. A similar argument holds for the other
missing corner and quiver setting

For general n, a similar argument proves that the corners associated to the tableaux
and are not optimal for tuples in Null}, | unless m > n. It is also easy

to see that with m > n all relevant corners appear in Null}}, |, that is all potential
Hesselink strata are non-empty.

8.4 Cornering quiver representations.

One again, generalizing the results from m-tuples of n X n matrices to arbitrary
quiver representations presents more a notational than an intellectual challenge.
Let Q be a (marked) quiver on k vertices {v1,...,vx} and fix a dimension vector
a = (ay,...,ax) and denote the total dimension Zle a; by a. A representation
V € rep, Q is said to belong to the nullcone Null, Q if the trivial representation
0 € O(V). Equivalently, all polynomial invariants are zero when evaluated in V,
that is, the traces of all oriented cycles in @ are zero in V. By the Hilbert criterium
for GL(«), V € Null, Q if and only if there is a one-parameter subgroup

GLa,
C* 2+ GL(a) = <+ GL,
GL.,

such that lim A(t).V = 0. Up to conjugation in GL(&), or equivalently, replacing

V' by another point in the orbit O(V'), we may assume that A lies in the mazimal
torus T, of GL(«) (and of GL,) and can be represented by an integral a-tuple
(ri,...,rq) € Z* such that

tn
At) =
tra

We have to take the wvertices into account, so we decompose the integer interval
[1,2,...,a] into vertex intervals I, such that

1—1 %
[1,2,...,a) =k | I, with I, = [ZajJrl,...,Zaj]
j=1 j=1

If we recall that the weights of T, are isomorphic to Z* having canonical generators
7, for 1 < p < a we can decompose the representation space into weight spaces

reps @ = @ TePq Q(ﬂ'pq)

Tpqg=Tq—Tp

where the eigenspace of mpq is non-zero if and only if for p € I, and q € I,,;, there
s an arrow
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in the quiver Q. Call o, @Q the set of weights m,, which have non-zero eigenspace
inrepy Q. Using this weight space decomposition we can write every representation
as 'V = Z%q Vpg where V,q is a vector of the (p,q)-entries of the maps V(a) for
all arrows a in @ from v; to vj. Using the fact that the action of T, on rep, @ is
induced by conjugation, we deduce as before that for A determined by (r1,...,74)

iirré A).V=0 & ry—71p, > 1 whenever V,, # 0

Again, we can define the corner type C of the representation V' by defining the subset
of real a-tuples

Ey ={(z1,...,24) €R* | zq—2, > 1V Vg #0}

and determine a minimal element sy in it, minimal with respect to the usual norm
on R®. Similar to the case of matrices considered before, it follows that sy is a
uniquely determined point in Q%, having the characteristic property that its entries
can be partitioned into strings

{pla"'aplapl+17"'7pl+la"'vpl+kla"'7pl+kl} with allalmzl
———

ao ari Aik,;

which are balanced, that is Zf,i:o aim(pr +m) = 0. Note however that this time we
are not allowed to bring sy into dominant form, as we can only permute base-vectors
of the vertex-spaces. That is, we can only use the action of the vertex-symmetric
groups

Say X oo X Sq, = S,

to bring sy into vertex dominant form, that is if sy = (s1,...,84) then
54 < s, whenever p,q€ I, for somei andp < q
We can compile a list S, of such rational a-tuples as follows
e Start with the list S, of matriz corner types.

o For every s € S, consider all permutations o € Sg/(Sa, X ... % S, ) such that
0.5 = (85(1)s- - 54(a)) is verter dominant.

o Take H, to be the list of the distinct a-tuples o.s which are vertexr dominant.
e Remove s € H,, whenever there is an s’ € H,, such that
Ts Q= {mpg €T Q | 5q =8, 21} C 7y Q ={mpg €Ema Q | 5, — 5, > 1}
and || s[> s" ||
o The list S, are the remaining entries s from H,.

Example 8.20 Let us give an example illustrating the removing condition. Consider the quiver

AN

O— ®

with a,b,¢ > 1. As o = (1,2,1) we have that the set of occurring weights in rep, Q is

Ta Q = {712,713, 14, 724, T34}



8.4. CORNERING QUIVER REPRESENTATIONS. 303

The total dimension a = 4 and we have compiled the list Sy before. Consider the vertex-dominant
reordering of (1,0,0,—1)
s=1(0,1,—1,0) then =ms Q= {mi2,7m34} and | s]=2

However, we have a vertex-dominant reordering of (%, %, 7%, 7%)
11 11
s/:(_§y§7_§75) with st Q:{ﬂ'12,ﬂ'3477{'14} and II 8/ H: 1

and we need to remove s from the possible corner types. Indeed, s cannot be a minimum for the
set By where Vig # 0 # V34. In fact, the list So for this quiver-setting consists of the following

types

s s Q Il s I
(-1,0,0,1) Ta @ 2
(*l7l,*l7l) {m12, m14, ™34} 1
(—5,%%,2%)2 {mi2,m13,ma} %
B S 3
( regs 101) Amia,mea, w34} ]
(737%7%70) {7712771-13} g
(—?57071%)2 {m12,m14} 3
GEvIyy (memad g
—1.% 0%0)° {2} ’ i
(%,5,0,%) {ma} %
(0707_%75) {ms4} 2
(0,0,0,0) [} 0

and one verifies that all other vertex-dominant reorderings of elements from S4 have to be removed.
Observe that we do not have to worry about this additional restriction if each vertex has a loop
and any two vertices of @) are connected by arrows in both ways, that is, when 7, @ is the set of

all weights m;; with 1 <4,j < a.

For s € 8., we can then define similar associated data as in the case of matrices
e The corner Cs is the subspace of rep,, @ such that all arrow matrices Vi, when

viewed as a X a matrices using the partitioning in vertex-entries, have only
non-zero entries at spot (p,q) when sq — sp > 1.

e The border By is the subspace of rep, Q such that all arrow matrices Vi, when
viewed as a X a matrices using the partitioning in vertex-entries, have only
non-zero entries at spot (p,q) when sq —sp = 1.

e The parabolic subgroup Ps(«) is the intersection of Ps C GL, with GL(«)
embedded along the diagonal. Ps(«) is a parabolic subgroup of GL(«), that is,
contains the product of the Borels B(a) = By, X ... X By,

e The Levi-subgroup Lg(c) is the intersection of Ly C GL, with GL(a) embed-
ded along the diagonal.

We say that a representation V € rep,, Q is of corner type Cs whenever V € Cs.

Theorem 8.21 By permuting the vertex-bases, every representation V € rep, @Q
can be brought to a corner type Cs for a uniquely determined s which is a vertez-
dominant reordering of sy .

Example 8.22 Let us consider the quiver setting we encountered in chapter 1
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Then, the relevant corners have the following block decomposition

Eufl WEufilEulaEEl WEsRSlEals

(O e (m0 g ey g

(,0,-1) (0,-1,1) (1,-1,0 $.3.-3 G.-3% G-3-9

J oM 0HH Y 00
-D DIDEIDDIDDHD

-1,-1.% (3,0,-1) 0, -4 3, -%0 (0,0,0)

Again we will solve the problem of the optimal corner representations by introducing
a new quiver setting. Fix a type s € So, Q and let Ji,. .., J, be the distinct strings
partitioning the entries of s, say with
Ji=Api,...ooup+ 1Lk o+ R )
—_——
Z?:l bi,10 Z"f:l bi,i1 Z?:l bi, ik,

where b; 1, 1s the number of entries p € I,,, such that s, = py +m. To every string
I we will associate a quiver Q,; and dimension vector o, as follows

o Qs has k.(ky + 1) vertices labeled (v;,m) with 1 <i <k and 0 <m < k.

o In Qg there are as many arrows from vertex (v;,m) to vertex (v;,m + 1)
as there are arrows in @) from vertex v; to vertex v;. There are no arrows
between (v;,m) and (vj,m') if m' —m # 1.

e The dimension-component of as, in vertex (v;,m) is equal to b im,.

Example 8.23 For the above quiver, all component quivers Qs,1 are pieces of the quiver below

Clearly, we only need to consider that part of the quiver Q,; where the dimensions of the vertex

Spaces are non-zero.

The quiver-setting (Qs, as) associated to a type s € S, Q will be the disjoint union
of the string quiver-settings (Qs.1,os,1) for 1 < 1 < u. The purpose of all these
definitions is

Theorem 8.24 With notations as before, for s € S, Q we have isomorphisms

B, ~ repa, Qs
Li(a) ~GL(as)

Moreover, the base-change action of GL(a) on rep,, Qs coincides under the iso-
morphisms with the action of the Levi-subgroup Ls(a) on the border Bs.
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In order to determine the representations in rep., Qs which have optimal corner
type Cs we define the following character on the Levi-subgroup

u

k k X0s s

Ls(a) = H Xi=1 Xm=0 GLb;,,, —> C
=1

det gznln;m where the exponents

determined by sending a tuple (giim)itm — []
are determined by

ilm

05 = (mi,lm)ilm where Milm = d(pl + m)

with d the least common multiple of the numerators of the rational numbers p; for
all 1 <1 <wu. As in the case of m-tuples of n X n matrices we can prove

Theorem 8.25 Consider a representation V € Null, Q of corner type Cs. Then,
V' is of optimal corner type Cy if and only if under the natural maps

™ ~
Cs > Bs > T'€Pa, Qs

V' is mapped to a 0s-semistable representation in reps, Qs. If Us is the open sub-
variety of Cy consisting of all representations of optimal corner type Cy, then

Us = ot Tepf{i (stes)

For the corresponding Hesselink stratum Ss = GL(a).Us we have the commuting
diagram

GL(a) x() U, = - S,

ac _ §

where ac is the action map, Ss is the Zariski closure of Ss in Null, @ and the
upper map is an isomorphism as GL(«)-varieties. Here, GL()/Ps() is the flag
variety associated to the parabolic subgroup Ps(«) and is a projective manifold. The
variety GL(a) xT+(®) Cy is a vectorbundle over the flag variety GL(a)/Ps(a) and
is a subbundle of the trivial bundle GL(a) x'*(®) rep, Q. Hence, the Hesselink
stratum Ss is an irreducible smooth variety of dimension

dim Sy = dim GL(a)/Ps(a) + rk GL(a) xT=(@) ¢

GL(o) xT=(®) ¢,

k
= Z a? — dim Py(a) + dime C,
i=1

and there is a natural one-to-one correspondence between the GL(«)-orbits in S
and the P,(a)-orbits in Us. Moreover, the vectorbundle GL(a) x (%) Cy is a desin-
gularization of Sy hence ‘feels’ the gluing of S, to the remaining strata. Finally, the
ordering of corners has the geometric interpretation

S.c |J s

s I<lisll

95)

Finally, because Ps() acts on B by the restriction to its subgroup Lg(a) = GL(as)
we have a projection from the orbit space

US/PS l” M;j(Q&as)

to the moduli space of 0s-semistable quiver representations.
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Example 8.26 Above we have listed the relevant corner-types for the nullcone of the quiver-
setting

x y

In the table below we list the data of the three irreducible components of Nullo, Q/GL(c) corre-
sponding to the three maximal Hesselink strata :

CS7BS Ls (Q37055795) M;S (Qs,es)

e e
11 [

0 1

[ ) ]Pvl
(1,0, —1)
EulERC
[ ]
He [ e P!
(0,—1,1)
o W
i s
(M [ e ® P

(1, —-1,0)

There are 6 other Hesselink strata consisting of precisely one orbit. Finally, two possible corner-
types do not appear as there are no 6s-semistable representations for the corresponding quiver
setting

Cs, Bs Ls (Q57a5795) M;S(QS765)
1
©
l (I
[ JL) s
L] O = ©) 0
dodb
—1
©
H [ JL)
[ JL ) )
N ¥ o s
hb b

8.5 Etale fibers.

Having obtained some control on the nullcone of arbitrary quiver settings, we want
to apply these results to obtain information on the representations of smooth alge-
bras. Let us recall the setting : A will be an affine C-algebra and M¢ is a semi-
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simple n-dimensional module such that the (trace preserving) representation variety
rep, AQ,, is smooth in Mc. If M is of representation type T = (e1,dn;. .. ; ek, di),
that is, if M¢ decomposes as

Me =S @...@ 50

with distinct simple components S; of dimension d; and occurring in Mg with mul-
tiplicity e;, then the GL(a) = Stab Mg-structure on the normal space N¢ to the
orbit O(My) is isomorphic to that of the representation space

repa Q°

of a certain marked quiver on k vertices (the number of distinct simple components)
and the dimension vector a = (eq,...,ex) is given by the multiplicities. Moreover,
we have seen in chapter 6 that the arrows in Q° are determined by the (trace pre-
serving) self-extensions of M¢. The Luna slice theorem asserts the existence of a

slice S¢ o, N¢ such that there is a local commuting diagram

GL,L XGL(Q) Sg
G"uﬂ ol
ot ¢

GL,, xGL@ Ne¢ rep. AQ,
/
Se/GL(a)
%
h Sz
) G‘JKOL 7 1
; / ;
Ne¢/GL(c) iss, AQ,

in a neighborhood of £ € iss,, AQ,, on the right and a neighborhood of the image Q
of the trivial representation in N¢/GL(a) on the left. In this diagram, the vertical
maps are the quotient maps, all diagonal maps are étale and the upper diagonal
maps are G Ly -equivariant. In particular, there is a GL,-isomorphism between the
fibers
w5 1 (0) = (€)

and as w5 *(0) ~ GL, xCL) 7=1(0) where 7 is the quotient morphism for the
marked quiver representations N¢ = reps @Q° — v iS5, Q* = N, /GL(a) we have
a G Ly,-isomorphism

7€) ~ GL,, xGH@ 771(0)
That is, there is a natural one-to-one correspondence between

o GL,-orbits in the fiber Wfl(C), that is, isomorphism classes of n-dimensional
(trace preserving) representations of A with Jordan-Hélder decomposition My,
and

o GL(a)-orbits in 7=1(0), that is, the nullcone of the marked quiver Null, Q°.

Summarizing we have the following

Theorem 8.27 Let A be an affine Quillen-smooth C-algebra and Mg a semi-simple
n-dimensional representation of A. Then, the isomorphism classes of n-dimensional
representations of A with Jordan-Hélder sum isomorphic to M¢ are given by the
GL(«a)-orbits in the nullcone Null, Q°® of the local marked quiver setting.



308 CHAPTER 8. NULLCONES.

8.6 Simultaneous conjugacy classes.

We have come a long way from our bare hands description of the simultaneous
conjugacy classes of couples of 2 X 2 matrices in chapter 3. In this section we will
summarize what we have learned so far to approach this hopeless problem. The
problem of classifying simultaneous conjugacy classes of m-tuples of n X n matrices,
is the same as studying the G L, -orbits in

M ~rep, Clx1,...,Tm)

The best continuous approximation to the non-existent Hausdorff orbit-space is given
by the algebraic quotient map

repnClEy, ..., Tp) —>> i85, ClEy, ..., Tpy) =iss™

where the points & in iss)’ classify the isomorphism classes of n-dimensional semi-
simple modules M¢. If M¢ has a simple decomposition

Me ~ SP @ ... G2

with the S; distinct simples of dimension d; (so that n = ZZ d;e;) we say that Me
is of representation type

T(Mg = (e1,dn;. .. ex,di)

We have calculated the coordinate ring Cliss]'] = N which is the necklace algebra,
that is, is generated by traces of monomials in the generic nxn matrices X1, ..., Xm
of length bounded by n* 4+ 1. Moreover, we know that if we collect all M¢ with fized
representation type together in the subset iss'(7), then

188y, = less,’;“ (1)
T

is a finite stratification of iss)' into locally closed smooth algebraic subvarieties.
Moreover, we know that a stratum iss™ (') is contained in the Zariski closure
iss™(1) of another stratum if and only if ' < 7. Here, the order relation is induced
by the direct ordering

= (e, dy;. e, dly) <P = (eq,dy;. . ek, dy)
if there exist a permutation o on [1,2,...,k'] such that there exist numbers
l=jo<j1<j2...<jx=W
such that for every 1 <1 < k we have the following relations
{eidi = X+ % do0)
€; < e;(j) for all ji—1 < j <j;

For example,the order relation on the representation types of dimension n = 4 has
the following Hasse diagram.

/ \
/
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Because iss)' is irreducible, there is an open stratum corresponding to the simple
representations, that is type (1,n). The sub-generic strata are all of the form

7= (1,m1;1,ma) with my+mg=n.

The (in)equalities describing the locally closed subvarieties issl'(T) can (in prin-
ciple) be deduced from the theory of trace identities. Remains to study the local
structure of the quotient variety iss™ near & and the description of the fibers 7=1(€).

Both problems can be tackled by studying the local quiver setting (Qe¢, ag) corre-
sponding to £ which describes the GL(ag) = Stab(Mg)-module structure of the nor-
mal space to the orbit of M. If £ is of representation type T = (e1,dn;. .. ;ex, di)
then the local quiver Q¢ has k-vertices {v1, ..., v} corresponding the the k distinct
simple components Si,..., Sk of M¢ and the number of arrows (resp. loops) from
v; to v; (resp. in v;) are given by the dimensions

dimcEztl(S,-,Sj) resp. dimcExt'(S;, S;)

and these numbers can be computed from the dimensions of the simple components,
#O~——0 = (m—1)did;

()

# 0 =(m—1)d?+1

Further, the local dimension vector ag is given by the multiplicities (e1,. .., ex).
The étale local structure of iss]' in a neighborhood of € is the same as that of the
quotient variety iss,, Q¢ in a neighborhood of 0. The local algebra of the latter is
generated by traces along oriented cycles in the quiver Q¢. A direct application is

Proposition 8.28 For m > 2, { is a smooth point of iss)' if and only if M is
a simple representation, unless (m,n) = (2,2) i which case iss3 ~ C® is a smooth
variety.

Proof. If £ is of representation type (1,n), the local quiver setting (Qg¢, ae) is

d

)

@

where d = (m — 1)n? 4+ 1, whence the local algebra is the formal power series ring in
d variables and so iss]’ is smooth in . As the singularities form a Zariski closed
subvariety of issy', the result follows if we prove that all points £ lying in sub-generic
strata, say of type (1, mq;1,mq) are singular. In this case the local quiver setting is

equal to .
1 @@/ ::\:@@ "

/
\

where a = (m — 1)mimg and l; = (m — 1)m? + 1. Let us denote the arrows from
vy to ve by x1,...,x, and those from vy to v1 by y1,...,Ya. If (m,n) # (2,2) then
a > 2, but then we have traces along cycles

{zy; | 1<i,j<a}

that is, the polynomial ring of invariants is the polynomial algebra in 1y +1s variables
(the traces of the loops) over the homogeneous coordinate ring of the Segre embedding

2
Pa—l % ]Pa—l c P —1
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which has a singularity at the top (for example we have equations of the form
(x1y2)(x2y1) — (x1y1)(x2y2)). Thus, the local algebra of issl cannot be a formal
power series ring in & whence iss)' is singular in £&. We have proved in chapter 3
that in the exceptional case iss3 ~ C®. g

To determine the fibers of the quotient map M) I iss)' we have to study the
nullcone of this local quiver setting, Nullo, Q¢. Observe that the quiver Q¢ has
loops in every vertex and arrows connecting each ordered pair of vertices, whence
we do not have to worry about potential corner-type removals. Denote > e; =z <n
and let C, be the set of all s = (s1,...,5,) € Q% which are disjoint unions of strings
of the form

where l; € N, all intermediate numbers p; + j with 7 < k; do occur as components
in s with multiplicity a;; > 1 and p; satisfies the balance-condition

ki
Z aij(pi +7) =0
=0

for every string in s. For fized s € C, we can distribute the components s; over
the vertices of Q¢ (e; of them to vertex v;) in all possible ways modulo the action
of the small Weyl group Se, x ...Se, — S,. That is, we can rearrange the s;’s
belonging to a fized vertex such that they are in decreasing order. This gives us the
list So, or S; of all corner-types in Nully, Q¢. For each s € S, we then construct
the corner-quiver setting

(Qé sy Q¢ 3705 s)

and study the Hesselink strata Ss which actually do appear, which is equivalent to
verifying whether there are 0¢ s-semistable representations in repa, , Q¢ 5. Using
Schofield’s criterium proved in chapter 7 we have a purely combinatorial way to
settle this (in general quite hard) problem of optimal corner-types.

That is, we can determine which Hesselink strata S, actually occur in 7= 1(§) ~
Nully,, Qe. The GL(ag s)-orbits in the stratum S, are in natural one-to-one cor-
respondence with the orbits under the associated parabolic subgroup Ps acting on the
semistable representations

Us = 7T_1 Tepii g(625 sa9£ s)

and there is a natural projection morphism from the corresponding orbit-space

US/PS e Mosfz S(Qé saoé S)
to the moduli space of 0¢ s-semistable representations which we can study locally
because we know how to construct all semi-invariants of quivers. The “only’ (usually
hard) remaining problem in the classification of m-tuples of n x n matrices under
simultaneous conjugation is the description of the fibers of this projection map ps.

Example 8.29 (m-tuples of 2 x 2 matrices)

There are three different representation types 7 of 2-dimensional representations of C(x1,...,Tm)
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with corresponding local quiver settings (Qr, or)

type T (QT ) aT)

24 (1,2)

2 | (LLL MC@/T ) :L\S/@Qm
m — 1

2 (2,1)

The defining (in)equalities of the strata issj*(7) are given by k X k minors (with k < 4 of the
symmetric m X m matrix

tr(z929) ... tr(2929))
tr(z9,29) ... tr(29,29,)

where 29 = z; — %tr(mi) is the generic trace zero matrix. These facts follow from the description of
the trace algebras TJ" as polynomial algebras over the generic Clifford algebras of rank < 4 (deter-
mined by the above symmetric matrix) and the classical matrix decomposition of Clifford algebras
over C. Full details can be found my Habilitation thesis ??7. To study the fibers MJ* —> issh®
we need to investigate the different Hesselink strata in the nullcones of these local quiver settings.
Type 2, has just one potential corner type corresponding to s = (0) € S; and with corresponding
corner-quiver setting
0

®

which obviously has P? (one point) as corresponding moduli (and orbit) space. This corresponds
to the fact that for £ € iss§*(1,2), M¢ is simple and hence the fiber 7~ 1(¢) consists of the closed
orbit O(M¢).

For type 2, the following list gives the potential corner-types Cs together with their associated
corner-quiver settings and moduli spaces (note that as Bs = Cs in all cases, these moduli spaces
describe the full fiber)

S Bs, Cs (Q57045,65) M3? (Q5795)

@/,é
7 o

[]
|

]P)m72

—~
N|=
|
[NIES
~

©

[]
[]

m = 1

Pm72

—~
|
N
[NIES
~

®
0 O
©o OO0 o P

That is, for € € iss5*(1,1;1, 1), the fiber m7~1(£) consists of the unique closed orbit O(M¢) (corre-
sponding to the ]P’O) and two families P2 of non-closed orbits. Observe that in the special case
m = 2 we recover the two non-closed orbits found in chapter 3.

Finally, for type 2., the fibers are isomorphic to the nullcones of m-tuples of 2 x 2 matrices.
We have the following list of corner-types, corner-quiver settings and moduli spaces. Again, as
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Bs = Cjs in all cases, these moduli spaces describe the full fiber.

S Bs, Cs (Qs:as:as) MES(QS708)

I 1
1] O=r=0O P!

—
ol
I
ol
N

]

(0,0) ® PO

whence the fiber 7~ 1(&) consists of the closed orbit, together wit a P™~!-family of non-closed
orbits. Again, in the special case m = 2, we recover the P!-family found in chapter 3.

Example 8.30 (m-tuples of 3 x 3 matrices)
There are 5 different representation-types for 3-dimensional representations. Their associated local
quiver settings are depicted in the following table

type T (Qr,ar)

9m — 8

@
@

3 (1,2;1,1) am — 3©@<z:\@© "

3a (1,3)

27n—2‘/

m

A

€
3¢ (1,1;1,1;1,1) /{/1%

N

m

34 (2,1;1,1) m@@@@gm

@

For each of these types we can perform an analysis of the nullcones as before. We leave the details
to the interested reader and mention only the end-result

m

3e (3,1)

e For type 3, the fiber is one closed orbit.

e TFor type 3; the fiber consists of the closed orbit together with two P2™~3_families of non-
closed orbits.

e TFor type 3. the fiber consists of the closed orbit together with twelve P™~2 x P™~2_families
and one P™~2_family of non-closed orbits.

o TFor type 34 the fiber consists of the closed orbit together with four P™~1 x P™~2_families,
one P2 x P™—2_family, two P™~2-families, one P~ !-family and two M-families of non-
closed orbits determined by moduli spaces of quivers, where M is the moduli space of the
following quiver setting

—1 2

@=m - 1=—=0)
together with some additional orbits coming from the projection maps ps.

e For type 3. we have to study the nullcone of m-tuples of 3 X 3 matrices, which can be done
as in the case of couples but for m > 3 the two extra strata do occur.

We see that in this case the only representation-types where the fiber is not fully determined by

moduli spaces of quivers are 35 and 3c.
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8.7 Representation fibers.

Let A be a Cayley-Hamilton algebra of degree n and consider the algebraic quotient
map

s .
rep:’ A — iss!" A

from the variety of n-dimensional trace preserving representations to the variety
classifying isomorphism classes of trace preserving n-dimensional semi-simple rep-
resentations. Assume & € Sm,, A — iss'™ A. That is, the representation variety
repf;” A is smooth along the GL,,-orbit of M¢ where M is the semi-simple represen-
tation determined by € € iss!” A. In chapter 5 we have seen that the local structure
of A and @Z’ A near £ is fully determined by a local marked quiver setting (Qg, ag).
That is, we have a G L -isomorphism between the fiber of the quotient map, that is,
the n-dimensional trace preserving representation degenerating to Mg

771(€) =~ GL, xCH) Null,, Q¢

and the nullcone of the marked quiver-setting. In this section we will apply the
results on nullcones to the study of these representation fibers 7=1(£). Observe that
all the facts on nullcones of quivers extend verbatim to marked quivers Q° using
the underlying quiver Q with the proviso that we drop all loops in vertices with
vertex-dimension 1 which get a marking in Q°®. This is clear as nilpotent quiver
representations obviously have zero trace along each oriented cycle, in particular in
each loop. The examples given before illustrate that a complete description of the
nullcone is rather cumbersome. For this reason we restrict here to the determination
of the number of irreducible components and their dimensions in the representation
fibers. Modulo the GL,-isomorphism above this study amounts to describing the
irreducible components of Nully, Q¢ which are determined by the mazimal corner-
types C, that is such that the set of weights in Cs is maximal among subsets of
Tag: Qe (and hence || s || is mazimal among Su, Q.

To illustrate our strategy, consider the case of curve orders. In chapter 6 we
proved that if A is a Cayley-Hamilton order of degree n over an affine curve X =
isst A and if € € Sm, A, then the local quiver setting (Q, ) is determined by
an oriented cycle Q on k vertices with k < n being the number of distinct simple
components of Mg, the dimension vector a = (1,...,1)

111
O—Q -
)

O—

and an unordered partition p = (dy,...,dy) having precisely k parts such that
>, di = n, determining the dimensions of the simple components of M. Fizing
a cyclic ordering of the k-vertices {v1,...,v;} we have that the set of weights of the
maximal torus T = C* x ... x C* = GL(«) occurring in rep, @ is the set

Ta @ = {Tk1, T2, M3, .., Th—1k }
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Denote K = Z;:Oli = k(kgl) and consider the one string vector

K K K K K
S:( 7k—2—z,k—1—?,—?,1—?,2—z, )
—~—

%

then s is balanced and vertex-dominant, s € S, Q and ws Q = 11. To check whether
the corresponding Hesselink strata in Null, Q is nonempty we have to consider the
associated quiver-setting (Qs, aus, 05) which is

-K —-K+k —K + 2k —K + k2 — 2k —K+k2 -k
v Vit1 Vit2 vi—2 vi—1

1t is well known and easy to verify that rep,, Qs has an open orbit with represen-
tative all arrows equal to 1. For this representation all proper subrepresentations
have dimension vector § = (0,...,0,1,...,1) and hence 6,(8) > 0. That is, the
representation is 0,-stable and hence the corresponding Hesselink stratum Sy # 0.
Finally, because the dimension of rep,, Qs is k — 1 we have that the dimension of
this component in the representation fiber m—1(x) is equal to

dim GL, —dim GL(a)+dim rep,, Qs =n* —k+k—1=n?—1
which completes the proof of the following

Theorem 8.31 Let A be a Cayley-Hamilton order of degree n over an affine curve
X such that A is smooth in & € X. Then, the representation fiber 7=1(&) has
exactly k irreducible components of dimension n®> — 1, each the closure of one orbit.
In particular, if A is Cayley-smooth over X, then the quotient map

rep, A —e- iss), A= X
is flat, that is, all fibers have the same dimension n% — 1.

For Cayley-Hamilton orders over surfaces, the situation is slightly more com-
plicated. From chapter 6 we recall that if A is a Cayley-Hamilton order of degree
n over an affine surface S = iss', A and if A is smooth in & € X, then the local
structure of A is determined by a quiver setting (Q,«) where « = (1,...,1) and
Q is a two-circuit quiver on k + 1+ m < n wvertices, corresponding to the distinct
simple components of Mg
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and an unordered partition p = (dy, ..., dgti+m) of n with k+1+m non-zero parts
determined by the dimensions of the simple components of M¢. With the indicated
ordering of the vertices we have that

1 <i1<k-1
’/TQQ:{TFZ'H_1| k+1 <i<k+l-1 }
k+1+1 <i<k+l+m-1

U {7Tk k+14+15 Tkl k+14+1 Tk+i+m 15 Tk+l+m k+1}
As the weights of a corner cannot contain all weights of an oriented cycle in @ we

have to consider the following two types of potential corner-weights II of maximal
cardinality

o (outer type) : I = 7w, Q — {ma, ™} where a is an edge in the interval
[1,...,0] and b is an edge in the interval [Vky1,. .., Ukt
o (inner type) : I = 7w, Q — {m.} where ¢ is an edge in the interval

[Uk+z+17 Uk+l+m]-

There are 2 + (k — 1)(I — 1) different subsets 11 of outer type, each occurring as
the set of weights of a corner Cs, that is I = ws @ for some s € S4 Q. The two
exceptional cases correspond to

I =70 Q= {Thtitm 1, Thti ktit1}
Iy =mq Q — {Mhtitm k1> Tk ktit1}

which are of the form ws, Q with associated border quiver-setting (Qs,, as,,0s,) where
as, = (1,...,1), Qs, are the following full line subquivers of Q

i

1

2 2 1

k+1 . k+1

k+1+m| lc+l+m @

VA " VA
k+l+1 @ . k+1+1

k+1 . k+l

‘A A
QSl k-1 k QSl

with starting point vy (resp. vg+1). The corresponding s; € S, @ is a single string
with minimal entry

—Zi:(ﬁmAi _ _kAldm=l at place !
k+1+m 2 P k41

and going with increments equal to one along the unique path. Again, one verifies
that repo, Qs has a unique open and 05-stable orbit, whence these Hesselink strata
do occur and the border By is the full corner Cs. The corresponding irreducible
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component in = 1(€) has therefore dimension equal to n? — 1 and is the closure of
a unique orbit. The remaining (k —1)(1 — 1) subsets IT of outer type are of the form

Hij =m0 Q —{mi it1,7j j41}

with 1 <i1<k—1and k+1<j < k+4+1—-1. We will see in a moment that
they are again of type w5 Q for some s € Sy Q with associated border quiver-setting
(Qs, as,0s) where as = (1,...,1) and Qs is the full subquiver of Q

If we denote with A; the directed line quiver on [ + 1 wvertices, then Qs can be
decomposes into full line subquivers

but then we consider the one string s € So Q with minimal entry equal to —
where with notations as above

a b c
z=Yi+2) (a+i)+ Y (a+b+i)
i=1 i=1 i=1
d e

+2) (a+btcti)+ Y (a+b+c+d+i)
=1 i=1

where the components of s are given to the relevant vertex-indices. Again, there is a
unique open orbit in rep,, Qs which is a O5-stable representation and the border B
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coincides with the corner Cs. That is, the corresponding Hesselink stratum occurs
and the irreducible component of m=1(€) it determines had dimension equal to

dim GL, — dim GL(a) 4+ dim repo, Qs =n*> — (k+14+m)+ (k+1+m —1)

=n?-1

There are m—1 different subsets I1,, of inner type, where for k+1l+1 <u < k+Il+m
we define I, = 7o Q — {my wt1}, that is dropping an edge in the middle

First assume that k = 1. In this case we can walk through the quiver (with notations
as before)

Ay
oo 00
Ap

and hence the full subquiver of Q is part of a corner quiver-setting (Qs, as, 0s) where

a=(1,...,1) and where s has as its minimal entry — -~ where

a b c
x=Yi+2) (a+i)+ Y (a+b+i)
=1 =1 =1

In this case we see that rep,, Qs has 0s-stable representations, in fact, there is a
P! -family of such orbits. The corresponding Hesselink stratum is nonempty and the
irreducible component of 7=1(€) determined by it has dimension

dim GL, — dim GL(a) + dim rep,, Qs =n?— (k+1+m)+ (k+14+m) =n?

Ifl < k, then I, = w5 Q for some s € S, Q but this time the border quiver-setting
(Qs, s, 05) is determined by as = (1,...,1) and Qs the full subquiver of Q by also
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dropping the arrow corresponding to Ti4i4+1 k+1, that is

Vk+41

Vut1 Vk4l4m

If Qs is this quiver (without the dashed arrow) then Bs = reps, Qs and it contains
an open orbit of a O5-stable representation. Observe that s is determines as the one

string vector with minimal entry fﬁ where

d

a b c
z=Yi+2) (a+i)+ Y (a+b+i)+ Y (a+b+c+i)
=1 1=1 =1

i=1

However, in this case Bs # Cs and we can identify Cs with rep,, Q. where Q' is
Qs together with the dashed arrow. There is an A'-family of orbits in Cy mapping
to the O4-stable representation. In particular, the Hesselink stratum exists and the
corresponding irreducible component in 7—1(&) has dimension equal to

dim GL, — dim GL(a) 4 dim Cs =n? — (k4+1+m)+ (k+1+m) = n?

This concludes the proof of the description of the representation fibers of smooth
orders over surfaces, summarized in the following result.

Theorem 8.32 Let A be a Cayley-Hamilton order of degree n over an affine surface
X = iss' A and assume that A is smooth in & € X of local type (Axim,). Then,
the representation fiber 7=1(€) has exvactly 2 + (k — 1)(I — 1) + (m — 1) irreducible
components of which 2 + (k — 1)(I — 1) are of dimension n? — 1 and are closure
of one orbit and the remaining m — 1 have dimension n? and are closures of a
one-dimensional family of orbits. In particular, if A is Cayley-smooth, then the
algebraic quotient map

™ .
T@p; A—iss A=X

is flat if and only if all local quiver settings of A have quiver Ay, with m = 1.

8.8 Brauer-Severi fibers.

In the foregoing chapter we have given a description of the generic Brauer-Severi
variety BS!™(gen) as a moduli space of quiver representation. Moreover, we have
given a local description of the fibration

BS;(gen) e 188y

in an étale neighborhood of a point & € iss)' of representation type T =

(e1,d1;...; ek, di). We proved that it is étale locally isomorphic to the fibration

MGH(Qc,0c) —> issa, Q¢
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in a neighborhood of the trivial representation. That is, we can obtain the generic
Brauer-Severi fiber 1 ~1(€) from the description of the nullcone Null,, Q¢ pro-
vided we can keep track of 0-semistable representations. Let us briefly recall the
description of the quiver-setting (Qc, o, 0¢).

o The quiver Q¢ has k+1 vertices {vog,v1,..., v} such that there are d; arrows
from vy tov; for 1 <i<k. For1<i,j <k there are a;; = (m — 1)d;d; + 6;;
directed arrows from v; to vj.

e The dimension vector ae = (1,€1,...,€).

e The character 0; is determined by the integral k + 1-tuple (—n,d1, ..., d).

That is, for any triple (vo,v;,v;) of vertices, the full subquiver of Q. on these three
vertices has the following form

N

@53

Let E = Ele e; and T the usual (diagonal) mazimal torus of dimension 1+ E in
GL(a¢) — GLg and let {mg,m1,...,TE} be the obvious basis for the weights of
T.. As there are loops in every v; for i > 1 and there are arrows from v; to v; for
all i,j > 1 we see that the set of weights of repa, Q¢ is

Tae Qc={mj=mj—m | 0<i<E1<j<E}
The mazximal sets ws Q¢ for s € So, Q¢ are of the form

s Q¢ i o ={mi; | i=0o0ro(i) <o(j)}

for some fized permutation o € Sg of the last E entries. To begin, there can be no
larger subset as this would imply that for some 1 < ¢,5 < E both m;; and 7j; would
belong to it which cannot be the case for a subset my Q¢. Next, m, = mg Q¢ where

s=(p,p+ol),p+o(2),....,p+0(E)) where p= —%

If we now make s vertex-dominant, or equivalently if we only take a o in the factor
Sp/(Se; X Sey X ... x Se,), then s belongs to So, Q¢. For example, if E =3 and

o =1id € S3, then the corresponding border and corner regions for ws are

00

and Bs =
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We have to show that the corresponding Hesselink stratum is mon-empty in
Nulls, Q¢ and that it contains 0;-semistable representations. For s correspond-
ing to a fized o € Sg the border quiver-setting (Qs, as,0s) is equal to

—E 4+ 2 —E+4 E —2 E

ézﬂﬁ%ﬁ@:é o e mpam(De—ree—s()

where the number of arrows z; are determined by

{ZO = Pu ZfU(].) € Ivu

2i = Quy if 0(i) €I, and o(i+1) € I,,

where we recall that I, is the interval of entries in [1,..., E] belonging to vertex
v;. As all the z; > 1 it follows that rep,, Qs contains 0s-stable representations, so
the stratum in Null,, Q¢ determined by the corner-type Cs is non-empty. We can
depict the Ly = T-action on the corner as a representation space of the extended
quiver-setting

Translating representations of this extended quiver back to the original quiver-setting
(Qc¢, o) we see that the corner Cy indeed contains 0¢-semistable representations and
hence that this stratum in the nullcone determines an irreducible component in the
Brauer-Severi fiber ¥(&) of the generic Brauer-Severi variety.

Theorem 8.33 Let & € issl* be of representation type T = (e1,d1;...; ek, d) and
let B = Zle ei. Then, the fiber m=1(£) of the Brauer-Severi fibration

Brauer?®(gen)

BS)(gen) —— iss)t

has ezactly ﬁ irreducible components, all of dimension
n+(m— I)Ze'eld'd' + (m — I)ZM —Ze-
i<j T i 2 i Z

Proof. In view of the foregoing remarks we only have to compute the dimension
of the irreducible components. For a corner type Cs as above we have that the
corresponding irreducible component in Null,. Q¢ has dimension

dim GL(a¢) — dim Py + dim Cj

and from the foregoing description of Cs as a quiver-representation space we see
that

OdimPszl—f—w.
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o dim Cy=n+Y, 9= ((m—1)d? + 1) + 3, (m — Dese;did;.

as we can identify Py ~ C* x B., x ... x B, where B, is the Borel subgroup of
GL.. Moreover, as ~1(€) is a Zariski open subset of

(C* x GL,) x @) Null,, Q¢
we see that the corresponding irreducible component of 1 ~1(£) has dimension
1+ dim GL, — dim Py + dim C,

As the quotient morphism ¢ ~1(€) —= 7=Y(€) is surjective, we have that the
Brauer-Severi fiber 7= 1(¢) has the same number of irreducible components of
(&), As the quotient

P7HE) —= mT(E)

is by Brauer-stability of all point a principal PGL(1,n)-fibration, substituting the
obtained dimensions finishes the proof. O

In particular, we deduce that the Brauer-Severi fibration BS™(gen) —»» iss" is a
flat morphism if and only if (m,n) = (2,2) in which case all Brauer-Severi fibers
have dimension one.

As a final application, let us compute the Brauer-Severi fibers in a point £ € X =
iss' A of the smooth locus Sm,, A of a Cayley-Hamilton order of degree n which is
of local quiver type (Q, ) where o = (1,...,1) and Q is the quiver

where the cycle has k vertices and p = (p1,...,px) i an unordered partition of n
having exactly k parts. That is, A is a local Cayley-smooth order over a surface
of type Ap_101- These are the only types that can occur for smooth surface orders
which are maximal orders and have a non-singular ramification divisor. Observe
also that in the description of nullcones, the extra loop will play no role, so the
discussion below also gives the Brauer-Severi fibers of smooth curve orders. The
Brauer-Severi fibration is étale locally isomorphic to the fibration

M23(Q,0) — o> issq Q =issa Q'
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in a neighborhood of the trivial representation. Here, Q' is the extended quiver by
one vertex vy

the extended dimension vector is o/ = (1,1,...,1) and the character is determined
by the integral k + 1-tuple (—n,p1,p2,...,0k). The weights of the mazimal torus
T = GL() of dimension k + 1 that occur in representations in the nullcone are

Tor Q ={mo i,mi iy1,1 < i < k}
Therefore, mazximal corners Cy are associated to s € Sy Q' where
s Q@ ={mo j,1 < j < k}U{m; ix1,Tigt1 i42,---»TMi—2 i—1}

for some fized i. For such a subset the corresponding s is a one string k + 1-tuple
having as minimal value —% at entry 0, —% + 1 at entry i, —% + 2 at entry i + 1
and so on. To verify that this corner-type occurs in Null, @' we have to consider
the corresponding border quiver-setting (Q, o, 0%) which is

—k+2 —k+4 k-2 k

which clearly has 0.-semistable representations, in fact, the corresponding moduli
space M25(QL,0%) ~ PPr=1. In this case we have that Ly = Ps = GL() and
therefore we can also interpret the corner as an open subset of the representation

space

Cs ’ Tepag Q” s

where the embedding is Ps = GL(c)-equivariant and the extended quiver Q"4 is

Y *13
Pq

Translating corner representations back to repo, Q' we see that Cg contains 6'-
semistable representations, so will determine an irreducible component in the
Brauer-Severi fiber m=(£). Let us calculate its dimension. The irreducible com-
ponent N, of Nully Q' determined by the corner Cy has dimension

dim GL(d/) — dim Py +dim Cy = (k+1) — (k+1)+ Y pi+ (k—1)

=n+k-—1
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But then, the corresponding component in the Brauer-stable is an open subvariety
of (C* x GL,) xH) N, and therefore has dimension

dim C* x GL, —dim GL(a/) +dim Ny =14+n* — (k+1)+n+k—1
=n’4+n—1

But then, as the stabilizer subgroup of all Brauer-stable points is one dimensional in
C* x GL,, the corresponding irreducible component in the Brauer-Severi fiber m=1(£)
has dimension n — 1. This completes the proof of the

Theorem 8.34 Let A be a Cayley-Hamilton order of degree n over a surface X =
isst A and let A be Cayley-smooth in & € X of type Ax_101 and p as before.
Then,the fiber of the Brauer-Severi fibration

BS!(A) — X

in & has exactly k irreducible components, each of dimension n—1. In particular, if A
is a Cayley-smooth order over the surface X such that all local types are (Ax—101.D)
for some k > 1 and partition p of n in having k-parts, then the Brauer-Severi
fibration is a flat morphism.

In fact, one can give a nice geometric interpretation to the different components.
Consider the component corresponding to the corner Cs with notations as before.
Consider the sequence of k — 1 rational maps

Pn_l — Pn_l_pi*I — Pn_l_pifl_p"'*2 — e .. —> ]P)pi_l
defined by killing the right hand coordinates

B 0 B T S S | I R S S | 0]

(D)

we subsequently set all entries of the arrows from wvo to vi—; zero for j >
1, the extreme projection P 1 ——» PPi=1 corresponds to the projection
Cs/Ps — Bs/L, = M3 (Q5,0,). Let V; be the subvariety in xh_ P be
the closure of the graph of this sequence of rational maps. If we label the coor-
dinates in the k — j-th component Pt as x(j) = [21(j) : ... : x,(j)], then the

multi-homogeneous equations defining V; are

74 (j) =0ifa>p +piy1+ ...+ ity
vo(f)ap(j—1) =ap(f)ra(f—1) if 1 <a<b<pi+...+piri1

One verifies that V; is a smooth variety of dimension n — 1. If we would have
the patience to work out the whole nullcone (restricting to the €' -semistable rep-
resentations) rather than just the irreducible components, we would see that the
Brauer-Severi fiber 1=1(€) consists of the varieties Vi, . .., Vy intersecting transver-
sally. The reader is invited to compare our description of the Brauer-Severi fibers
with that of M. Artin [2] in the case of Cayley-smooth maximal curve orders.
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