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Motivation.

This book is all about smooth noncommutative algebras and combinatorial tools
to study them. It is an old result, due to A. Grothendieck, that when A is a
commutative affine C-algebra, A is the coordinate ring of a smooth affine variety
if and only if A satisfies the following lifting property. For every test-object (B, I)
where B is a commutative C-algebra and I /R is a nilpotent ideal and any C-algebra
morphism φ : A - B

I there is a C-algebra lift φ̃

A ....................
∃ φ̃

- B

B

I

??

φ

-

making the diagram commute. As this is a purely categorical characterization of
smooth affine commutative algebras, it can be extended to more general settings
where we restrict the test-objects and morphisms to a specified category of C-
algebras. In this book we focuss on two such settings.

If we take the category alg with objects all (not necessarily commutative) C-
algebras and as morphisms all C-algebra morphisms, then algebras satisfying the
above lifting property with respect to test-objects in alg are called (formally) smooth
algebras or Quillen-smooth algebras. The importance of this class of algebras is
that they are often associated to natural families of moduli problems. Examples
of Quillen-smooth algebras include : semi-simple C-algebras (as we can lift idem-
potents modulo nilpotent ideals), free algebras C〈x1, . . . , xk〉, path algebras CQ of
quivers (oriented graphs) as well as more exotic algebras constructed from these by
universal constructions such as the free product A1 ∗A2, the n-th root n

√
A and so

on. However, the coordinate ring of an affine smooth variety is Quillen-smooth if
and only if the variety is a curve. To see at least one implication of this equivalence
it suffices by reasoning locally to verify the lifting property for the formal power
series ring C[[x1, . . . , xk]]. Take the 4-dimensional noncommutative algebra

T =
C〈x, y〉

(x2, y2, xy + yx)
= C⊕ Cx⊕ Cy ⊕ Cxy

then the quotient modulo the nilpotent ideal I = (xy − yx) is a 3-dimensional
commutative ring and we have an algebra map x1 7→ x, x2 7→ y and xi 7→ 0 for
i ≥ 3 which is verified not to allow a lift unless k = 1, the curve case.

The second category we will consider is CH(n), the category of all Cayley-
Hamilton algebras of degree n. Its objects are C-algebras A equipped with a linear
trace map tr : A - A satisfying tr(a)b = btr(a), tr(ab) = tr(ba) and tr(tr(a)b) =
tr(a)tr(b) for all a, b ∈ A. The formal Cayley-Hamilton polynomial of degree n
of an element a ∈ A is defined by expressing

∏n
i=1(t − xi) as a polynomial in t

with coefficients which (being symmetric functions) can be expressed as polynomial
functions in the Newton functions

∑
xmi . Replacing

∑
xmi by tr(am) we obtain
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the Cayley-Hamilton polynomial χ(n)
a (t) ∈ A[t]. A is said to be a Cayley-Hamilton

algebra of degree n provided tr(1) = n and χ
(n)
a (a) = 0 for all a ∈ A. Naturally,

morphisms in CH(n) must be trace preserving. A C-algebra A ∈ CH(n) with the
above lifting property for test-objects (B, I), where B ∈ CH(n) and I /B nilpotent
such that tr(I) ⊂ I (making B

I ∈ CH(n)) and where φ : A - B
I as well as

its lift φ̃ : A - B must be trace preserving, is called a Cayley-smooth algebra
(of degree n). Examples include semi-simple algebras Mn1(C)⊕ . . .⊕Mnk

(C) with
n =

∑
i ni (equipped with the sum of the natural traces) as well as many nice

C[X]-orders in central simple C(X)-algebras of dimension n2 where X is an affine
normal variety. An important subclass are the so called Azumaya algebras over
X, such as Mn(C[X]), when X is smooth. The more interesting examples include
ramified orders where the central variety X is allowed to have singularities. We
will give a complete étale local classifications of Cayley-smooth orders and of the
central singularities.

In the next two chapters we motivate the study of these noncommutative smooth
algebras. In chapter 1 we study Calogero particles which is a classical n-particle
system in C with positions xi ∈ C and velocities yi ∈ C and Hamiltonian

H =
1
2

∑
i

y2
i −

∑
i<j

1
(xi − xj)2

This is a completely integrable dynamical system via the equations of motion. If
the n particles are distinct (that is xi 6= xj for i 6= j) the corresponding point in the
phase space is the 2n-tuple (x1, y1; . . . ;xn, yn) under the proviso that two such tuples
are the same when we permute the n couples (xi, yi). As the system is attractive,
collisions will occur and one wants to extend the phase space analytically. This was
done by G. Wilson in [33] who showed that the extended phase space Calon is the
2n-dimensional connected manifold of GLn-orbits of quadruples

(X,Y, u, v) ∈Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗ such that [X,Y ] + u.v = rr
n

where the action is given by g.(X,Y, u, v) = (gXg−1, gY g−1, gu, vg−1). This phase
space Calon should be compared with the 2n-dimensional Hilbert scheme Hilbn of
n points in C2. Whereas Hilbn decomposes in strata according to the multiplicities
of the points, Calon was shown by V. Ginzburg [8] to be a coadjoint orbit for an
infinite dimensional Lie algebra, which is independent of n.

The Lie algebra is naturally associated to a Quillen-smooth algebra M which is
the path algebra of the quiver

e(/).*-+,

f(/).*-+,

y

qq
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--

u

BB

v

��

We will define noncommutative functions, differential forms and symplectic struc-
tures on Quillen-smooth algebras. They have the characteristic property of induc-
ing corresponding GLm-invariant classical structures on the representation varieties
repm A of these algebras. In the case of path algebras such as M, these represen-
tation spaces decompose according to the dimensions of the vertex spaces. In the
special case of dimension vector α = (n, 1) we have

repα M = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗
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with the GL(α) = GLn × C∗-action given by (g, λ).(X,Y, u, v) =
(gXg−1, gY g−1, guλ−1, λvg−1). To this action we associate the moment map

repα M µ- Mn(C)⊕ C (X,Y, u, v) 7→ ([X,Y ] + u.v,−v.u)

and one proves that Calon is equal to µ−1(rrn,−n)/GL(α) and that Hilbn is an
open subvariety of µ−1(0n, 0)/GL(α). The infinite dimensional Lie algebra men-
tioned before is associated to the group of C-algebra morphisms of M preserving
the moment-map element [x, y] + [u, v].

In analogy with the commutative case, one would expect that the difference
in behaviour between Calon and Hilbn is caused by the fact that the fiber-algebra
associated to Calon is Quillen-smooth whereas that associated to Hilbn is not (con-
tains noncommutative singularities).

• •

sing

Calon Hilbn

repα M/GL(α)

(1n,−n) (0n, 0)

A natural definition of these noncommutative fiber algebras are the deformed pre-
projective algebras introduced and studied by W. Crawley-Boevey and M.P. Holland
in [6]. In the case under consideration, the fiber algebra of Calon (resp. Hilbn) is
M1 (resp. M0) where for any λ ∈ C we define

Mλ =
M

([x, y] + [u, v]− λ(e− nf))

One verifies that for every λ ∈ C the fiber-algebra Mλ is not Quillen-smooth, so
apparently there is no difference between M1 and M0.

However, if one focusses on Calon or Hilbn for a specific value of n, these fiber-
algebras are a bit too big and it is more natural to consider algebras associated
to Mλ and the dimension vector α = (n, 1). First, we define the algebra M(n) to
be the C-subalgebra of Mn+1(C[repα M]) generated by the polynomial invariants
C[repα M]GL(α) (embedded as scalar matrices) and the following matrices

en =


1 0

. . .
...

1 0
0 . . . 0 0

 fn =


0 . . . 0 0
...

...
...

0 . . . 0 0
0 . . . 0 1

 xn =


x11 . . . x1n 0
...

...
...

xn1 . . . xnn 0
0 . . . 0 0



yn =


y11 . . . y1n 0
...

...
...

yn1 . . . ynn 0
0 . . . 0 0

 un =


0 . . . 0 u1

...
...

...
0 . . . 0 un
0 . . . 0 0

 vn =


0 . . . 0 0
...

...
...

0 . . . 0 0
v1 . . . vn 0


The usual trace map on Mn+1(C[repα M]) makes M(n) a Cayley-Hamilton algebra
of degree n+ 1 and it is even a Cayley-smooth algebra of degree n+ 1. The closed
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affine subscheme π−1(λrr
n,−nλ) has as its defining ideal of relations Iλ the entries

in the n+ 1× n+ 1 matrix

[xn, yn] + [un, vn]−
[
λrr

n 0
0 −nλ

]
By invariant theory we have that the defining ideal of the quotient scheme
µ−1(λrr

n,−nλ)/GL(α) is Jλ = Iλ ∩ C[repα M]GL(α). The restricted fiber-algebra
we are interested in is

Mλ(n) =
M(n)

M(n)JλM(n)

Again, Mλ(n) is a Cayley-Hamilton algebra of degree n+1. The distinction between
Calon and Hilbn is a consequence of the fact that{

M1(n) is Cayley-smooth of degree n+ 1,
M0(n) is not Cayley-smooth of degree n+ 1

and the last fact holds even when we restrict to the open subvariety Hilbn of
µ−1(0n, 0). The homogeneous character of Calon follows from the fact that M1(n)
is an Azumaya algebra over Calon. That is, to every point in the extended phase
space corresponds a simple n+ 1-dimensional representation. In chapter 12 we will
generalize these results to fiber-algebras for the moment map of arbitrary quiver
settings.

In chapter 1 we will give an outline of the main ingredients going into the
proof of Ginzburg’s result on coadjointness of Calon, in particular the acyclicity of
the Karoubi complex and noncommutative symplectic geometry identifying tangent
vectors (derivations) with noncommutative 1-forms. More details will be given in
chapters 9,10 and 12.

The investigation of Cayley-smooth algebras has also a more classical motivation
as we will recall in chapter 2. Let X be a projective normal variety with function
field C(X). An important birational invariant of X is the Brauer group Br C(X).
The elements of Br C(X) are equivalence classes of central simple C(X)-algebras ∆.
That is, the center of ∆ is C(X), ∆ has no proper twosided ideals and dimC(X) ∆ =
n2 for some integer n. Two such algebras ∆ and ∆′ are equivalent if Mk(∆) '
Ml(∆′) for certain k, l and the isomorphism is as C(X)-algebras. Then, tensor
product over C(X) induces a group structure onBr C(X). In chapter 2 we will recall
the necessary ingredients from étale cohomology to outline the proof of the coniveau
spectral sequence which gives us a handle on the n-torsion part of Br C(X). This
result also shows that the collection of all central simple C(X)-algebras of degree n
is huge.

For example, a subset of the n-torsion part of Br C(x, y) is given by the following
geometrical data. Let C and C ′ be two smooth irreducible projective curves in P2,
intersecting each other transversally in the points {P1, . . . , Pk}. Let ai ∈ Z/nZ for
every 1 ≤ i ≤ k such that

∑k
i=1 ai = 0. Now, take a cyclic Z/nZ-cover of smooth

curves
D -- C and D′ -- C ′

such that D (resp. D′) are ramified only in the points Pi with ramification deter-
mined by the class ai ∈ Z/nZ (resp. −ai ∈ Z/nZ). One can control such coverings
using the fundamental group of the Riemann surfaces C (and C ′) with k punctures.
For example, if C has genus g, then the collection of such covers is in one-to-one
correspondence with group morphisms

π1(C − {P1, . . . , Pk}) = 〈u1,v1,...,ug,vg,x1,...,xk〉
(u1v1u

−1
1 v−1

1 ...ugvgu
−1
g v−1

g x1...xk)
- Aut Z/nZ
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mapping xi to the multiplication by ai (and similarly for C ′ mapping the xi to mul-
tiplication by −ai). To every such data corresponds a class of order n in Br C(x, y)
which often corresponds to a central simple C(x, y)-algebra of degree n, that is, of
dimension n2 over C(x, y).

Returning to the general setting of a projective normal variety X, let ∆ be a
central simple C(X)-algebra of degree n. If K is the algebraic closure of C(X), then
∆ ⊗C(X) K ' Mn(K) and by Galois descent the usual trace on Mn(K) induces a
trace map on ∆ making it a Cayley-Hamilton algebra of degree n. An important
class of Cayley-Hamilton algebras of degree n is given by section algebras of OX -
orders in ∆. That is, let A be a sheaf of OX -algebras over X such that for every
affine open subset U ⊂ - X we have

Γ(U,A)Γ(U,OX)−1 = ∆

Because Γ(U,OX) is integrally closed, the trace map on ∆ determines a trace map
on the section algebra Γ(U,A) making it a Cayley-Hamilton algebra of degree n.
We call a sheaf A of OX -orders in ∆ to be a noncommutative smooth model for ∆
if all affine section algebras are Cayley-smooth of degree n.

The archetypical example of such a noncommutative smooth model is given
by the Artin-Mumford counterexamples to the Lüroth problem [3] , that is the
construction of certain unirational non-rational threefolds. Let C and C ′ be two
smooth elliptic curves in P2 intersecting transversally in {P1, . . . , P9}, let all ai = 0
and consider two unramified Z/2Z-covers D -- C and D′ -- C ′. Then, D
and D′ are again elliptic curves and the covers are given by dividing out a point of
order two. Let ∆ be the corresponding central simple algebra over C(x, y) which
is a quaternion algebra. Next, let X -- P2 be the rational projective surface
obtained by blowing up the Pi and let A be a maximal OX -order in ∆. M. Artin
and D.Mumford are able to calculate the local description of A. If x ∈ X not lying
on C̃ ∪ C̃ ′ then Ax is an Azumaya algebra and if x ∈ C̃ ∪ C̃ ′ (the strict transforms),
then

Ax = OX,x ⊕OX,xi⊕OX,xj ⊕OX,xij with


i2 = a

j2 = bt

ji = −ij

where a and b are units in OX,x and t = 0 is a local equation for C̃ ∪ C̃ ′ near x.
Extending the classical notion of Brauer-Severi varieties of central simple algebras
to these orders they define BS(A) which is a projective space bundle over X

BS(A)
π-- X

Using the local description of A they show that BS(A) is a smooth variety, π is
a flat morphisms and the geometric fibers are isomorphic to P1 (resp. to P1 ∨ P1)
whenever x /∈ C̃ ∪ C̃ ′ (resp. x ∈ C̃ ∪ C̃ ′). For specific starting configurations
they then show that the threefold BS(A) is unirational but non-rational. With
hindsight, the characteristic property of A allowing a local description, a smooth
Brauer-Severi scheme and a description of the fibers is that A is a noncommutative
smooth model for ∆. In this book we will generalize these computations both to
higher degree central simple algebras and higher dimensional base varieties.

In chapter 6 we will give a complete characterization of the central simple al-
gebras ∆ over C(S) where S is a projective smooth surface such that ∆ allows a
noncommutative smooth model. For example, among the subclass of Brn C(x, y)
described before by two curves and ramified covers those allowing a smooth model
are precisely the configurations where all ai = 0, that is, such that the covers are
unramified. In fact, for such a ∆ an explicit smooth model is obtained by taking
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a maximal order A in ∆ where X is the surface obtained after blowing up all the
intersection points Pi. In this generality we will be able in chapter 5 and 6 to
determine the étale local structure of Az in z ∈ C̃ ∪ C̃ ′ (in all other points it is
an Azumaya algebra). If ∆ is of degree n it is determined by combinatorial data
consisting of a circuit on k ≤ n vertices ordered starting in the vertex having an
extra loop

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

//

??���������

OO

__?????????

oo

!!

qq

...

and an unordered partition p = (p1, . . . , pk) of n having exactly k parts. The mz-
adic completion of Az is then isomorphic to the subalgebra of Mn(C[[x, y]]) for local
coordinates (x, y) near z having the following block form

Âz '


Mp1(C[[x, y]]) Mp1×p2((x)) . . . Mp1×pk

((x))
Mp2×p1(C[[x, y]]) Mp2(C[[x, y]]) . . . Mp2×pk

((x))
...

. . .
...

Mpk×p1(C[[x, y]]) mpk×p2(C[[x, y]]) . . . Mpk
(C[[x, y]])


The combinatorial data is constant along C̃ and a possibly different data is constant
along C̃ ′. We will show in chapter 2 that for such orders the Brauer-Severi scheme
BS(A) is a smooth variety. In chapter 8 we will give a combinatorial method
to describe the fibers of the structural morphism BS(A) -- X. Consider the
quiver-data

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

//

??���������

OO

__?????????

oo

!!

p1ccccccccccccccc

11ccccccccccccccccccccccc

p2lllllllllllll

55llllllllllllllllllllp3rrrrrrrrr

99rrrrrrrrrrrrrr

pk−2
LLLLLLLLL

%%LLLLLLLLLLLLLL pk−1
RRRRRRRRRRRRR

))RRRRRRRRRRRRRRRRRRRR

pk
[[[[[[[[[[[[[[[

--[[[[[[[[[[[[[[[[[[[[[[[

That is, we add a vertex v0 and connect it to vertex vi with pi arrows. We will
prove in chapter 8 that the fiber is the moduli space of θ-semistable representa-
tions in the nullcone of this quiver with dimension vector (1, 1, . . . , 1) and where
θ = (n,−p1,−p2, . . . ,−pk). That is, we have to classify isomorphism classes of
representations such that at least one of the arrows in the circuit is zero and such
that the representation contains no proper subrepresentation of dimension vector



8

(1, n1, n2, . . . , nk) with all ni = 0 or 1 such that n −
∑
i pini > 0. In chapter 7

we will give more details on such moduli spaces and the combinatorial aspects of
θ-semistable representations.



Chapter 1

Calogero Systems.

One motivation to study noncommutative geometry comes from physics. One wants
to understand the behaviour of n-particle systems when n - ∞. In this chapter
we will give an illustrative example : collisions of Calogero particles.

We will first describe the phase space of collisions of n Calogero particles Calon
using invariant theory. Its description is closely related to that of the Hilbert scheme
of n points in the plane, Hilbn. In fact, Nakajima [21] and G. Wilson [33] have
shown that there is a diffeomorphism of C∞ (real) manifolds between the two spaces.
However, this diffeomorphism does not respect the complex structure and, in fact,
both spaces have fundamentally different properties. Recent work of Y. Berest
and G. Wilson [4] relating the phase space of Calogero particles to the study of
isomorphism classes of right ideals in the Weyl algebra suggests that Calon is a
coadjoint orbit of some infinite dimensional algebraic group. This conjecture was
recently proved by V. Ginzburg [8] using noncommutative symplectic geometry.

We will briefly indicate the main steps in Ginzburg’s proof (more details will be
given in chapter 12). The phase space Calon turns out to be a fiber of the moment
map on the representation space of a noncommutative smooth algebra. Following
the lead of M. Karoubi [11] and J. Cuntz and D. Quillen [7] one defines differential
forms and de Rham cohomology for noncommutative algebras. In the case of the
smooth algebra M under consideration the de Rham complex is shown to be acyclic,
a result first proved by M. Kontsevich [13] for the free algebra. Moreover, there
is a natural symplectic structure on M giving a natural one-to-one correspondence
between 1-forms and derivations (vector fields). Ginzburg’s result then follows from
a noncommutative version of the classical exact sequence in symplectic geometry
describing Hamiltonian vector fields.

Similarly, the Hilbert scheme Hilbn is (part of) a fiber of the moment map but
one knows that this space cannot be a coadjoint orbit. The distinction between the
two cases comes from investigating noncommutative algebras, finite modules over
their centers, associated to these fibers. It turns out that the algebra corresponding
to Calon is a smooth order (in fact it is even an Azumaya algebra over Calon),
whereas that corresponding to Hilbn is not. The description and study of such
smooth orders will be one of the main goals of this book. In chapter 12, we will be
able to extend the above results to general quiver varieties.

9



10 CHAPTER 1. CALOGERO SYSTEMS.

1.1 Calogero particles.

The Calogero system is a classical particle system of n particles on the real line with
inverse square potential.

• • •
x1 x2 xn

That is, if the i-th particle has position xi and velocity (momentum) yi, then the
Hamiltonian is equal to

H =
1
2

n∑
i=1

y2
i +

∑
i<j

1
(xi − xj)2

The Hamiltonian equations of motions is the system of 2n differential equations
dxi
dt

=
∂H

∂yi

dyi
dt

= −∂H
∂xi

This defines a dynamical system which is integrable.
A convenient way to study this system is as follows. Assign to a position defined

by the 2n vector (x1, y1; . . . , xn, yn) the couple of Hermitian or self-adjoint n × n
matrices

X =



y1
i

x1−x2
. . . . . . i

x1−xn

i
x2−x1

y2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . i

xn−1−xn
i

xn−x1
. . . . . . i

xn−xn−1
yn


and Y =


x1

. . .

xn


Physical quantities are given by invariant polynomial functions under the action
of the unitary group Un(C) under simultaneous conjugation. In particular one
considers the functions

Fj = tr
Xj

j

For example,{
tr(X) =

∑
yi the total momentum

1
2 tr(X

2) = 1
2

∑
y2
i −

∑
i<j

1
(xi−xj)2

the Hamiltonian

We can now consider the Un(C)-translates of these matrix couples. This is shown
to be a manifold with a free action of Un(C) such that the orbits are in one-to-
one correspondence with points (x1, y1; . . . ;xn, yn) in the phase space (that is, we
agree that two such 2n tuples are determined only up to permuting the couples
(xi, yi). The n-functions Fj give a completely integrable system on the phase space
via Liouville’s theorem, see for example [1].

In the classical case, all points are assumed to lie on the real axis and the
potential is repulsive so that collisions do not appear. G. Wilson [33] considered an
alternative where the points are assumed to lie in the complex numbers and such
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that the potential is attractive (to allow for collisions), that is, the Hamiltonian is
of the form

H =
1
2

∑
i

y2
i −

∑
i<j

1
(xi − xj)2

giving again rise to a dynamical system via the equations of motion. One recov-
ers the classical situation back if the particles are assumed only to move on the
imaginary axis.

•
•

•

x1

x2

xn

In general, we want to extend the phase space of n distinct points analytically to
allow for collisions. When all the points are distinct, that is, if all eigenvalues of Y
are distinct we will see in a moment that there is a unique GLn(C)-orbit of couples
of n× n matrices (up to permuting the n couples (xi, yi)).

X =



y1
1

x1−x2
. . . . . . 1

x1−xn

1
x2−x1

y2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 1

xn−1−xn
1

xn−x1
. . . . . . 1

xn−xn−1
yn


and Y =

x1

. . .
xn



For matrix couples in this standard form one verifies that

[X,Y ] +

1 . . . 1
...

. . .
...

1 . . . 1

 = rr
n

This equality suggests an approach to extend the phase space of n distinct complex
Calogero particles to allow for collisions.

Consider the 2n2 + 2n-dimensional vectorspace (the notation will be explained
later)

repα M = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗

(where Cn∗ is the space of row-vectors). Consider the subvariety CALOn of quadru-
ples (X,Y, u, v) such that

[X,Y ] + u.v = rr
n

There is an action of GLn(C) on the vectorspace defined by

g.(X,Y, u, v) = (gXg−1, gY g−1, gu, vg−1)

which preserves CALOn and which we will show to be free.
We can define the phase space for Calogero collisions of n particles to be the

orbit space
Calon = CALOn/GLn(C)

the space of orbits of GLn(C) on CALOn. In a moment we will show :
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Theorem 1.1 The phase space Calon of Calogero collisions of n-particles is a
connected complex manifold of dimension 2n.

1.2 The moment map.

The moment map for the GLn(C)-action on Mn(C)⊕Mn(C)⊕Cn⊕Cn∗ is defined
to be

Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗ µ - Mn(C)

(X,Y, u, v) 7→ [X,Y ] + u.v

We will be interested in the differential dµ of this map which we can compute by
the ε-method : [(X + εA), (Y + εB)] + (u+ εc).(v + εd) is equal to

([X,Y ] + u.v) + ε([X,B] + [A.Y ] + u.d+ c.v)

whence the differential dµ in the point (X,Y, u, v) is equal to

dµ(X,Y,u,v) (A,B, c, d) = [X,B] + [A, Y ] + u.d+ c.v.

We say that u is a cyclic vector for the matrix-couple (X,Y ) ∈ Mn(C)⊕Mn(C) if
there is no proper subspace of Cn containing u which is stable under left multipli-
cation by X and Y .

Lemma 1.2 The differential dµ is surjective in (X,Y, u, v) if u is a cyclic vector
for (X,Y ).

Proof. Consider the nondegenerate symmetric bilinear form on Mn(C)

Mn(C)×Mn(C) - C

(M,N) 7→ tr(MN)

Nondegeneracy means that tr(MN) = 0,∀N ∈Mn(C) is equivalent to M = 0.
With respect to this inproduct on Mn(C) the space orthogonal to the image of

dµ(X,Y,u,v) is equal to

{M ∈Mn(C) | tr([X,B]M + [A, Y ]M + u.dM + c.vM) = 0,∀(A,B, c, d)}

Because the trace does not change under cyclic permutations and is nondegenerate
we see that this space is equal to

{M ∈Mn(C) | [M,X] = 0 [Y,M ] = 0 Mu = 0 and vM = 0}

But then, the kernel ker M is a subspace of Cn containing u and stable under
left multiplication by X and Y . By the cyclicity assumption this implies that
ker M = Cn or equivalently that M = 0.

As dµ⊥(X,Y,u,v) = 0 and tr is nondegenerate, this implies that the differential is
surjective. �

It follows from the implicit function theorem that the image of the moment map
is open in Mn(C). If we denote by repsα M (again, we will explain the terminology
later) the open submanifold of Mn(C)⊕Mn(C)⊕Cn⊕Cn∗ consisting of quadruples
(X,Y, u, v) such that u is a cyclic vector for (X,Y ) then we obtain
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Proposition 1.3 For every matrix M ∈Mn(C) in the image of the map

repsα M µ- Mn(C)

the inverse image µ−1(M) is a submanifold of Mn(C) ⊕ Mn(C) ⊕ Cn ⊕ Cn∗ of
dimension n2 + 2n.

1.3 Hilbert stairs.

For the investigation of the GLn(C)-orbits on repsα M we introduce a combinatorial
gadget : the Hilbert n-stair. This is the lower triangular part of a square n × n
array of boxes

1

n

1 n

filled with go-stones according to the following two rules :

• each row contains exactly one stone, and

• each column contains at most one stone of each color.

For example, the set of all possible Hilbert 3-stairs is given below.ue u u u e eu e e e u
To every Hilbert stair σ we will associate a sequence of monomials W (σ) in the free
noncommutative algebra C〈x, y〉, that is W (σ) is a sequence of words in x and y.

At the top of the stairs we place the identity element 1. Then, we descend the
stairs according to the following rule.

• Every go-stone has a top word T which we may assume we have constructed
before and a side word S and they are related as indicated below

T

S

1

T

xT

1

•

T

yT

1

◦

For example, for the Hilbert 3-stairs we have the following sequences of non-
commutative words

ue
1

x

y

u u
1

x

x2

u e
1

x

yx

eu
1

y

x

e e
1

y

y2

e u
1

y

xy
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We will evaluate a Hilbert n-stair σ with associated sequence of non-commutative
words W (σ) = {1, w2(x, y), . . . , wn(x, y)} on

repα M = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗

For a quadruple (X,Y, u, v) we replace every occurrence of x in the word wi(x, y) by
X and every occurrence of y by Y to obtain an n×n matrix wi = wi(X,Y ) ∈Mn(C)
and by left multiplication on u a column vector wi.v. The evaluation of σ on
(X,Y, u, v) is the determinant of the n× n matrix

σ(X,Y, u, v) = det u w2.u w3.u wn.u. . .

For a fixed Hilbert n-stair σ we denote with rep(σ) the subset of quadruples
(X,Y, u, v) in repα M such that the evaluation σ(v,X, Y ) 6= 0.

Theorem 1.4 For every Hilbert n-stair, rep (σ) 6= ∅

Proof. Let u be the basic column vector

e1 =


1
0
...
0


Let every black stone in the Hilbert stair σ fix a column of X by the rule

i

j

1

n

1 n

•

X =

1i

j

0

0

.

.

.

0

0

.

.

.

That is, one replaces every black stone in σ by 1 at the same spot in X and fills
the remaining spots in the same column by zeroes. The same rule applies to Y for
white stones. We say that such a quadruple (X,Y, u, v) is in σ-standard form.

With these conventions one easily verifies by induction that

wi(X,Y )e1 = ei for all 2 ≤ i ≤ n.

Hence, filling up the remaining spots in X and Y arbitrarily one has that
σ(X,Y, u, v) 6= 0 proving the claim. �

Hence, rep (σ) is an open subset of repα M (and even of repsα M) for every Hilbert
n-stair σ. Further, for every word (monomial) w(x, y) and every g ∈ GLn(C) we
have that

w(gXg−1, gY g−1)gv = gw(X,Y )v

and therefore the open sets rep (σ) are stable under the GLn(C)-action on repα M.
We will give representatives of the orbits in rep (σ).
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Let Wn = {1, x, . . . , xn, xy, . . . , yn} be the set of all words in the non-commuting
variables x and y of length ≤ n, ordered lexicographically.

For every quadruple (X,Y, u, v) ∈ repα M consider the n×m matrix

ψ(X,Y, u, v) =
[
u Xu X2u . . . Y nu

]
where m = 2n+1−1 and the j-th column is the column vector w(X,Y )v with w(x, y)
the j-th word in Wn.

Hence, (X,Y, u, v) ∈ rep (σ) if and only if the n × n minor of ψ(X,Y, u, v)
determined by the word-sequence {1, w2, . . . , wn} of σ is invertible. Moreover, as

ψ(gXg−1, gY g−1, gu, vg−1) = gψ(v,X, Y )

we deduce that the GLn(C)-orbit of (X,Y, u, v) ∈ repα M contains a unique quadru-
ple (X1, Y1, u1, v1) such that the corresponding minor of ψ(X1, Y1, u1, v1) = rr

n.
Hence, each GLn(C)-orbit in rep (σ) contains a unique representant in σ-

standard form. Therefore,

Proposition 1.5 The action of GLn(C) on rep (σ) is free and the orbit space

rep (σ)/GLn(C)

is an affine space of dimension n2 + 2n.

Proof. The dimension is equal to the number of non-forced entries in X, Y and v.
As we fixed n− 1 columns in X or Y this dimension is equal to

k = 2n2 − (n− 1)n+ n = n2 + 2n.

The argument above shows that every GLn(C)-orbit contains a unique quadruple
in σ-standard form so the orbit space is an affine space. �

Theorem 1.6 The orbit space

repsα M/GLn(C)

is a complex manifold of dimension n2 + 2n and is covered by the affine spaces
rep (σ).

Proof. Recall that repsα M is the open submanifold consisting of quadruples
(x, Y, u, v) such that u is a cyclic vector of (X,Y ) or equivalently such that

C〈X,Y 〉u = Cn

where C〈X,Y 〉 is the not necessarily commutative subalgebra of Mn(C) generated
by the matrices X and Y .

Hence, clearly rep (σ) ⊂ repn M for any Hilbert n-stair σ. Conversely, we claim
that a quadruple (X,Y, u, v) ∈ repsα M belongs to at least one of the open subsets
rep (σ).

Indeed, either Xu /∈ Cu or Y u /∈ Cu as otherwise the subspace W = Cu
would contradict the cyclicity assumption. Fill the top box of the stairs with the
corresponding stone and define the 2-dimensional subspace V2 = Cu1 + Cu2 where
u1 = u and u2 = w2(X,Y )u with w2 the corresponding word (either x or y).

Assume by induction we have been able to fill the first i rows of the stairs with
stones leading to the sequence of words {1, w2(x, y), . . . , wi(x, y)} such that the
subspace Vi = Cu1 + . . .+ Cui with ui = wi(X,Y )v has dimension i.
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Then, either Xuj /∈ Vi for some j or Y uj /∈ Vi (if not, Vi would contradict cyclic-
ity). Then, fill the j-th box in the i+ 1-th row of the stairs with the corresponding
stone. Then, the top i+1 rows of the stairs form a Hilbert i+1-stair as there can be
no stone of the same color lying in the same column. Define wi+1(x, y) = xwi(x, y)
(or ywi(x, y)) and ui+1 = wi+1(X,Y )u. Then, Vi+1 = Cu1 + . . . + Cui+1 has
dimension i+ 1.

Continuing we end up with a Hilbert n-stair σ such that (X,Y, u, v) ∈ rep (σ).
This concludes the proof. �

Example 1.7 Orbits when n = 3.

Representatives for the GL3(C)-orbits in rep (σ) are given by the following quadruples for σ a
Hilbert 3-stair :td t t t d dt d d d t
X

240 a b
1 c d
0 e f

35 240 0 a
1 0 b
0 1 c

35 240 a b
1 c d
0 e f

35 240 a b
0 c d
1 e f

35 24a b c
d e f
g h i

35 24a 0 b
c 0 d
e 1 f

35

Y

240 g h
0 i j
1 k l

35 24d e f
g h i
j k l

35 24g 0 h
i 0 j
k 1 l

35 240 g h
1 i j
0 k l

35 240 0 j
1 0 k
0 1 l

35 240 g h
1 i j
0 k l

35

u

241
0
0

35 241
0
0

35 241
0
0

35 241
0
0

35 241
0
0

35 241
0
0

35
v

ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜ ˆ
m n o

˜

Let λ = λrr
n be a scalar matrix in Mn(C) and hence fixed under the action

by conjugation of GLn(C). Then, the subvariety µ−1(λ) of repα M is GLn-stable.
Because the GLn(C)-action is free on repsα M we have the following situation

µ−1(λ) ∩ repsα M ⊂ - repsα M

(µ−1(λ) ∩ repsα M)/GLn(C)

??
⊂ - repsα M/GLn(C)

??

and we obtain :

Theorem 1.8 For a scalar matrix λ ∈ Mn(C) lying in the image of µ, the orbit
space

(µ−1(λ) ∩ repsα M)/GLn(C)

is a submanifold of repsα M/GLn(C) of dimension 2n.

We will now investigate two of these manifolds : the Hilbert scheme of n points
in the plane and the phase space of collisions of n Calogero particles.

1.4 The Hilbert scheme Hilbn.

Consider n distinct points in the complex plane C2. Identifying C2 with R4 we
can view these points as particles in (flat) space-time. Particles have a tendency to
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collide with each other and we want to construct a manifold describing all possible
collisions.

To a point p = (a, b) ∈ C2 corresponds a maximal ideal m = (x− a, y− b) of the
polynomial algebra C[x, y]. To a set of n distinct points P = {p1, . . . , pn} we can
associate a codimension n ideal

iP = m1 ∩ . . . ∩mn / C[x, y]

Now, consider an arbitrary codimension n ideal i/C[x, y] and fix a basis {v1, . . . , vn}
in the quotient space

Vi =
C[x, y]

i
= Cv1 + . . .+ Cvn.

Multiplication by x on C[x, y] induces a linear operator on the quotient Vi and hence
determines a matrix Xi ∈ Mn(C) with respect to the chosen basis {v1, . . . , vn}.
Similarly, multiplication by y determines a matrix Yi ∈Mn(C).

Moreover, the image of the unit element 1 ∈ C[x, y] in Vi determines with respect
to the basis {v1, . . . , vn} a column vector u ∈ Cn = Vi. Clearly, this vector and
matrices satisfy :

[Xi, Yi] = 0 and C[Xi, Yi]u = Cn.

Here, C[Xi, Yi] is the n-dimensional subalgebra of Mn(C) generated by the two
matrices Xi and Yi. In particular, u is a cyclic vector for the matrix-couple (X,Y ).

We have seen that to a codimension n ideal i corresponds a cyclic triple
(ui, Xi, Yi) such that Xi and Yi commute with each other.

Conversely, if (X,Y, u) ∈ Mn(C) ⊕ Mn(C) ⊕ Cn is a cyclic triple such that
[X,Y ] = 0, then C〈X,Y 〉 = C[X,Y ] is an n-dimensional commutative subalgebra
of Mn(C) and the kernel of the natural epimorphism

C[x, y] -- C[X,Y ] x 7→ X y 7→ Y

is a codimension n ideal i of C[x, y]. Indeed, the linear map

C[x, y]
φ- Cn

defined by sending a polynomial f(x, y) ∈ C[x, y] to the vector f(X,Y ).u is surjec-
tive by the cyclicity assumption.

However, there is some redundancy in the assignment i - (Xi, Yi, ui) as it
depends on the choice of basis of Vi. If we choose a different basis {v′1, . . . , v′n} with
basechange matrix g ∈ GLn(C), then the corresponding triple is

(X ′i , Y
′
i , u
′
i) = (g.Xi.g

−1, g.Yi.g
−1, gui)

That is, we have an action of GLn(C) on the space of all triples

GLn(C)× (Mn(C)⊕Mn(C)⊕ Cn) - Mn(C)⊕Mn(C)⊕ Cn

(g, (X,Y, u)) 7→ (g.X.g−1, g.Y.g−1, gu)

The above discussion shows that there is a one-to-one correspondence between

• codimension n ideals i of C[x, y], and

• GLn(C)-orbits of cyclic triples (X,Y, u) in Mn(C) ⊕Mn(C) ⊕ Cn such that
[X,Y ] = 0.
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Example 1.9 The Hilbert scheme Hilb1.

The space of all triples when n = 1 is (X,Y, u) ∈ C⊕ C⊕ C. Clearly, they are all commuting and
u is a cyclic vector for (X,Y ) if and only if u 6= 0.

The basechange group in this case is GL1(C) = C∗ and it acts on the space of triples via

g.(X,Y, u) = (X,Y, gu)

Therefore, the GL1(C) orbits of the cyclic (commuting) triples are parameterized by the points

{(X,Y, 1) ∈ C⊕ C⊕ C} ' C2

The ideal i of codimension one corresponding to (X,Y, 1) are the polynomials vanishing in the

point p = (X,Y ) ∈ C2. Hence, Hilb1 ' C2.

Example 1.10 The Hilbert scheme Hilb2.

Consider a triple (X,Y, u) ∈ M2(C) ⊕M2(C) ⊕ C2 and assume that either X or Y has distinct
eigenvalues (type a). As

[

»
ν1 0
0 ν2

–
,

»
a b
c d

–
] =

»
0 (ν1 − ν2)b

(ν2 − ν1)c 0

–
we have a representant in the orbit of the form

(

»
λ1 0
0 λ2

–
,

»
µ1 0
0 µ2

–
,

»
u1

u2

–
)

where cyclicity of the column vector implies that u1u2 6= 0.
The stabilizer subgroup of the matrix-pair is the group of diagonal matrices C∗ ×

C∗ ⊂ - GL2(C), hence the orbit has a unique representant of the form

(

»
λ1 0
0 λ2

–
,

»
µ1 0
0 µ2

–
,

»
1
1

–
)

The corresponding ideal i / C[x, y] is then

i = {f(x, y) ∈ C[x, y] | f(λ1, µ1) = 0 = f(λ2, µ2)}

hence these orbits correspond to sets of two distinct points in C2.
The situation is slightly more complicated when X and Y have only one eigenvalue (type b).

If (X,Y, u) is a cyclic commuting triple, then either X or Y is not diagonalizable. But then, as

[

»
ν 1
0 ν

–
,

»
a b
c d

–
] =

»
c d− a
0 c

–
we have a representant in the orbit of the form

(

»
λ α
0 λ

–
,

»
µ β
0 µ

–
,

»
u1

u2

–
)

with [α : β] ∈ P1 and u2 6= 0. The stabilizer of the matrixpair is the subgroup

{
»
c d
0 c

–
| c 6= 0} ⊂ - GL2(C)

and hence we have a unique representant of the form

(

»
λ α
0 λ

–
,

»
µ β
0 µ

–
,

»
0
1

–
)

The corresponding ideal i / C[x, y] is

i = {f(x, y) ∈ C[x, y] | f(λ, µ) = 0 and α
∂f

∂x
(λ, µ) + β

∂f

∂y
(λ, µ) = 0}

as one proves by verification on monomials because»
λ α
0 λ

–k »
µ β
0 µ

–l »
0
1

–
=

»
kαλk−1µl + lβλkµl−1

λkµl

–
Therefore, i corresponds to the set of two points at (λ, µ) ∈ C2 infinitesimally attached to each
other in the direction α ∂

∂x
+ β ∂

∂y
. For each point in C2 there is a P1 family of such fat points.
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Thus, points of Hilb2 correspond to either of the following two situations :

type a

C2

•

•

p

p’

type b

C2

p
•��

The Hilbert-Chow map Hilb2
π- S2 C2 (where S2 C2 is the symmetric power of C2, that is

S2 = Z/2Z orbits of couples of points from C2) sends a point of type a to the formal sum [p] + [p′]
and a point of type b to 2[p]. Over the complement of (the image of) the diagonal, this map is a
one-to-one correspondence.

However, over points on the diagonal the fibers are P1 corresponding to the directions in which

two points can approach each other in C2. As a matter of fact, the symmetric power S2 C2 has

singularities and the Hilbert-Chow map Hilb2
π-- S2 C2 is a resolution of singularities.

Theorem 1.11 Let repα M µ- Mn(C) be the moment map, then

Hilbn ' (µ−1(0) ∩ repsα M)/GLn(C)

and is therefore a complex manifold of dimension 2n.

Proof. We identify the triples (X,Y, u) ∈ Mn(C) ⊕Mn(C) ⊕ Cn such that u is a
cyclic vector of (X,Y ) and [X,Y ] = 0 with the subspace

{(X,Y, u, 0) | [X,Y ] = 0 and u is cyclic } ⊂ - repsα M

which is clearly contained in µ−1(0). To prove the converse inclusion assume that
(X,Y, u, v) is a cyclic quadruple such that

[X,Y ] + uv = 0.

Let m(x, y) be any word in the noncommuting variables x and y. We claim that

v.m(X,Y ).u = 0.

We will prove this by induction on the length l(m) of the word m(x, y). When
l(m) = 0 then l(x, y) = 1 and we have

v.l(X,Y ).u = v.u = tr(u.v) = tr([X,Y ]) = 0.

Assume we proved the claim for all words of length < l and take a word of the form
m(x, y) = m1(x, y)yxm2(x, y) with l(m1) + l(m2) + 2 = l. Then, we have

wm(X,Y ) = wm1(X,Y )Y Xm2(X,Y )
= wm1(X,Y )([Y,X] +XY )m2(X,Y )
= (wm1(X,Y )v).wm2(X,Y ) + wm1(X,Y )XYm2(X,Y )
= wm1(X,Y )XYm2(X,Y )

where we used the induction hypotheses in the last equality (the bracketed term
vanishes).
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Hence we can reorder the terms in m(x, y) if necessary and have that
wm(X,Y ) = wX l1Y l2 with l1 + l2 = l and l1 the number of occurrences of x
in m(x, y). Hence, we have to prove the claim for X l1Y l2 .

wX l1Y l2v = tr(X l1Y l2vw)
= −tr(X l1Y l2 [X,Y ])
= −tr([X l1Y l2 , X]Y )
= −tr(X l1 [Y l2 , X]Y )

= −
∑l2−1
i=0 tr(X l1Y i[Y,X]Y l2−i)

= −
∑l2−1
i=0 tr(Y l2−iX l1Y i[Y,X]

= −
∑l2−1
i=0 tr(Y l2−iX l1Y iv.w

= −
∑l2−1
i=0 wY m2−iX l1Y iv

But we have seen that wY l2−iX l1Y i = wX l1Y l2 hence the above implies that
wX l1Y l2v = −l2wX l1Y l2v. But then wX l1Y l2v = 0, proving the claim.

Consequently, w.C〈X,Y 〉.v = 0 and by the cyclicity condition we have w.Cn = 0
hence w = 0. Finally, as v.w + [X,Y ] = 0 this implies that [X,Y ] = 0 and we can
identify the fiber µ−1(0) with the indicated subspace. From this the result follows.

�

We can cover the subset (X,Y, u, 0) such that [X,Y ] = 0 and u a cyclic vector
by their intersections with the rep (σ) for σ a Hilbert n-stair. In particular, we can
cover Hilbn by open subsets

Hilbn (σ) = {(X,Y, u, 0) in σ-standard form such that [X,Y ] = 0}.

Example 1.12 The Hilbert scheme Hilb2.

Consider Hilb2 (
t

). Because

[

»
0 a
1 b

–
,

»
c d
e f

–
] =

»
ae− d af − ac− bd

c+ be− f d− ae

–
this subset can be identified with C4 using the equalities

d = ar andf = c+ be.

Similarly, Hilb2 (
d

) ' C4.

Example 1.13 The Hilbert scheme Hilb3.

Up to change of colors there are three 3-stairs to considertd t t t d
.

We claim that

Hilb3 (

td
) ' C6.

For consider the commutator

[

240 a b
1 c d
0 e f

35 ,
240 g h

0 i j
1 k k

35 ] =

24b− g ai+ bk − cg − eh aj + bl − dg − fh
d− i g + dk − ej h+ cj + dl − di− fj
f − k −a− ck − el + ei+ fk −b− dk + ej

35
Taking the Groebner basis of these relations one finds the following relations8>>>>>>>><>>>>>>>>:

f = k

g = ej − ik

d = i

h = i2 − cj + jk − il

b = g

a = ei− ck + k2 − el



1.4. THE HILBERT SCHEME HILBN . 21

from which the claim follows. In a similar manner one proves that

Hilb3 (

t t
) ' C6.

However, the situation for

Hilb3 (

t d
)

is more complicated.

Observe that some of these intersections may be empty. For example, for the
Hilbert 5-stair

Hilb5 (

ue ue ) = ∅

Indeed, the associated series of words is

{1, x, y, xy, yx}

whence σ(X,Y, u, 0) = 0 whenever [X,Y ] = 0. Hence all Hilbert stairs σ containing
this stair (that is, if we recover the 5-stair after removing certain rows and columns)
satisfy Hilbn (σ) = ∅.

We have shown that Hilbn is a manifold of dimension 2n. A priori it may have
many connected components (all of dimension 2n). We will now show that Hilbn
is connected.

Theorem 1.14 The Hilbert scheme Hilbn of n points in C2 is a complex connected
manifold of dimension 2n.

Proof. The symmetric power Sn C1 parametrizes sets of n-points on the line C1

and can be identified with Cn. Consider the map

Hilbn
π-- Sn C1

defined by mapping a cyclic triple (X,Y, u) with [X,Y ] = 0 in the orbit correspond-
ing to the point of Hilbn to the set {λ1, . . . , λn} of eigenvalues of X. Observe that
this map does not depend on the point chosen in the orbit.

Let ∆ be the big diagonal in Sn C1, that is, Sn C1−∆ is the space of all sets of n
distinct points from C1. Clearly, Sn C1−∆ is a connected n-dimensional manifold.
We claim that

π−1(Sn C1 −∆) ' (Sn C1 −∆)× Cn

and hence is connected.
Indeed, take a matrix X with n distinct eigenvalues {λ1, . . . , λn}. We may

diagonalize X. But then, as

[

λ1

. . .
λn

 ,
y11 . . . y1n

...
...

yn1 . . . ynn

] =

(λ1 − λ1)y11 . . . (λ1 − λn)y1n
...

...
(λn − λ1)yn1 . . . (λn − λn)ynn


we see that also Y must be a diagonal matrix with entries (µ1, . . . , µn) ∈ Cn where
µi = yii. But then the cyclicity condition implies that all coordinates of v must be
non-zero.

Now, the stabilizer subgroup of the commuting (diagonal) matrix-pair (X,Y )
is the maximal torus Tn = C∗ × . . . × C∗ of diagonal invertible n × n matrices.
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Using its action we may assume that all coordinates of v are equal to 1. That is,
the points in π−1({λ1, . . . , λn}) with λi 6= λj have unique (up to permutation as
before) representatives of the form

(


λ1

λ2

. . .
λn

 ,

µ1

µ2

. . .
µn

 ,


1
1
...
1

)

that is π−1({λ1, . . . , λn} can be identified with Cn, proving the claim.
Next, we claim that all the fibers of π have dimension at most n. Let

{λ1, . . . , λn} ∈ Sn C1 then there are only finitely many X in Jordan normalform
with eigenvalues {λ1, . . . , λn}. Fix such an X, then the subset T (X) of cyclic triples
(X,Y, u) with [X,Y ] = 0 has dimension at most n+ dim C(X) where C(X) is the
centralizer of X in Mn(C), that is,

C(X) = {Y ∈Mn(C) | XY = Y X}.

The stabilizer subgroup Stab(X) = {g ∈ GLn(C) | gXg−1 = X} is an open subset
of the vectorspace C(X) and acts freely on the subset T (X) because the action of
GLn(C) on µ−1(0) ∩ repsα M has trivial stabilizers.

But then, the orbitspace for the Stab(X)-action on T (X) has dimension at most

n+ dim C(X)− dim Stab(X) = n.

As we only have to consider finitely many X this proves the claim. The diagonal ∆
has dimension n−1 in Sn C1 and hence by the foregoing we know that the dimension
of π−1(∆) is at most 2n−1. Let H be the connected component of Hilbn containing
the connected subset π−1(Sn C1−∆). If π−1(∆) were not entirely contained in H,
then Hilbn would have a component of dimension less than 2n, which we proved
not to be the case. This finishes the proof. �

1.5 The phase space Calon.

Recall that Calogero quadruples were defined to be

CALOn = {(X,Y, u, v) | [X,Y ] + u.v = rr
n}

and that the phase space of collisions of n Calogero particles is the orbit space
Calon = CALOn/GLn(C).

Theorem 1.15 Let repα M µ- Mn(C) be the moment map, then

Calon ' µ−1(rrn)/GLn(C) = (µ−1(rrn) ∩ repsα M)/GLn(C)

and is therefore a complex manifold of dimension 2n.

Proof. The result will follow if we can prove that any Calogero quadruple (X,Y, u, v)
has the property that u is a cyclic vector, that is, lies in repsα M.

Assume that U is a subspace of Cn stable under X and Y and containing u. U
is then also stable under left multiplication with the matrix

A = [Y,X] + rr
n
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and we have that tr(A | U) = tr(rrn | U) = dim U . On the other hand, A = u.v
and therefore

A.

c1...
cn

 =

u1

...
un

 . [v1 . . . vn
]
.

c1...
cn

 = (
n∑
i=1

vici)

u1

...
un


Hence, if we take a basis for U containing u, then we have that

tr(A | U) = a

where A.u = au, that is a =
∑
uivi.

But then, tr(A | U) = dim U is independent of the choice of U . Now, Cn is
clearly a subspace stable under X and Y and containing u, so we must have that
a = n and so the only subspace U possible is Cn proving cyclicity of u with respect
to the matrix-couple (X,Y ). �

Again, it follows that we can cover the phase space Calon by open subsets

Calon (σ) = {(X,Y, u, v) in σ-standard form such that [X.Y ] + u.v = rr
n }

where σ runs over the Hilbert n-stairs.

Example 1.16 The phase space Calo2.

Consider Calo2 (
t

). Because

[

»
0 a
1 b

–
,

»
c d
e f

–
] +

»
1
0

–
.
ˆ
g h

˜
− rr

2 =

»
g − d+ ae− 1 h+ af − ac− bd
c− f + be d− ae− 1

–
We obtain after taking Groebner bases that the defining equations are8>>><>>>:

g = 2

h = b

f = c+ eh

d = 1 + ae

In particular we find

Calo2 (
t

) = {(
»
0 a
1 b

–
,

»
c 1 + ae
e c+ be

–
,

»
1
0

–
,
ˆ
2 b

˜
) | a, b, c, e ∈ C} ' C4

and a similar description holds for Calo2 (
d

).

Example 1.17 The phase space Calo3.

We claim that

Calo3 (

td
) ' C6

For, if we compute the 3× 3 matrix

[

240 a b
1 c d
0 e f

35 ,
240 g h

0 i j
1 k l

35] +

241
0
0

35 . ˆm n o
˜
− rr

3

then the Groebner basis for its entries gives the following defining equations8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

m = 3

n = c+ k

o = i+ l

f = k

d = o− l

g = 2 + b

l = g − ej − kl + ko

h = 2jk + 2l2 − jn− 3lo+ o2

a = 2k2 − 2el − kn+ eo
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In a similar manner one can show that

Calo3 (

t t
) ' C6 but Calo3 (

t d
)

is again more difficult to describe.

We will prove that Calon is connected by a strategy similar to that used for
Hilbn.

Proposition 1.18 Let (X,Y, u, v) ∈ CALOn and suppose that X is diagonalizable.
Then

1. all eigenvalues of X are distinct, and

2. the GLn(C)-orbit contains a representative such that

X =

−λ1

. . .
−λn

 Y =



α1
1

λ1−λ2
. . . . . . 1

λ1−λn

1
λ2−λ1

α2
. . .

...
...

. . . . . . . . .
...

...
. . . . . . 1

λn−1−λn
1

λn−λ1
. . . . . . 1

λn−λn−1
αn



u =


1
1
...
1

 v =
[
1 1 . . . 1

]

and this representative is unique up to permutation of the n couples (λi, αi).

Proof. Choose a representative with X a diagonal matrix as indicated. Equating
the diagonal entries in [X,Y ] + u.v = rr

n we obtain that for all 1 ≤ i ≤ n we have
uivi = 1. Hence, none of the entries of

[Y,X] + rr
n = u.v

is zero. Consequently, by equating the (i, j)-entry it follows that λi 6= λj for i 6= j.
The representative with X a diagonal matrix is therefore unique up to the action

of a diagonal matrix D and of a permutation. The freedom in D allows us to
normalize u and v as indicated, the effect of the permutation is described in the
last sentence.

Finally, the precise form of Y can be calculated from the normalized forms of
X, u and v and the equation [X,Y ] + u.v = rr

n. �

Consider the map
Calon

π-- Sn C1

by mapping a point in CALOn to the set of the eigenvalues of X (and as this does
not depend on the point in the orbit this map factors through Calon).

The foregoing proposition describe π−1(Sn C1−∆) where ∆ is the big diagonal
and hence the subset of Calon with X diagonalizable is connected as it coincides
with (Sn C1 −∆)×Cn. The identification is made through the parameters λi and
αi of the proposition.

Theorem 1.19 The phase space Calon is a complex connected manifold of dimen-
sion 2n.
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Proof. Reasoning as in the proof for the Hilbert scheme, the result will follow once
we prove that all the fibers of π have dimension at most n.

Consider the projection to the last two factors

CALOn
p- C2n

For a fixed matrix X ∈ Mn(C) we claim that the subset CALOn(X) (Calogero
quadruples with fixed X) maps under p into an n-dimensional subvariety of C2n.

Because p is GLn(C)-equivariant we may assume that X is in Jordan normal
form. Consider first the case of one block, that is

X =


λ 1

λ
. . .
. . . 1

λ


Then, in [Y,X] every diagonal below the main diagonal has entries that add up to
0 as one verifies. On the other hand, for a rank one matrix, the lowest nonvanishing
diagonal can have just one non-zero entry.

Therefore, the rank one matrix [Y,X] + rr
n = u.v is upper triangular and there

is just one non-zero entry (which must be equal to n by taking traces) on the main
diagonal. If the first non-zero entry of v occurs at place i then the last non-zero
entry of u must also occur in place i and the product of both must be equal to
n. In this way, the possible pairs (u, v) fall into n families (indexed by i) each of
dimension n. This proves the claim in the case of one Jordan block.

For the general case X = ⊕jXj one writes Y, u and v in the corresponding block
forms, and one sees that

[Yjj , Xj ] + rr
n = uj .vj

and one repeats the above argument for each of the blocks, proving the claim.
Now, define Calon(O) to be the subset of Calon represented by quadruples

(X,Y, u, v) such that X belongs to a fixed conjugacy class O in Mn(C). We claim
that Calon(O) has dimension at most n.

Fix a matrix X ∈ O, then Calon(O) = CALOn(X)/G where G is the centralizer
of X in GLn(C). Now, the part of CALOn(X) lying over a fixed (u, v) ∈ C2n is
parametrized by the Lie algebra Lie(G) and so by the foregoing claim

dim CALOn(X) ≤ n+ dim G

Finally, the action of G is free and we have proved that all the fibers of π have
dimension at most n. �

1.6 The noncommutative smooth algebra M.

We will now bring in some noncommutative algebras. Consider the following quiver
(that is, directed graph) on two vertices

e(/).*-+,

f(/).*-+,

y

qq

x

--

u

BB

v

��
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We define M to be the path algebra of this quiver. That is, as a C-vectorspace
M has as basis the oriented paths in the quiver, including those of length zero
corresponding to the two vertices. We agree that we write paths from right to left
(as we do with compositions of morphisms). To each vertex there is a path of length
zero. An associative algebra structure on M is induced by concatenation of paths
when possible and zero otherwise.

That is, M is the algebra on 6 noncommuting generators{
e, f the paths of length zero
x, y, u, v the paths of length one

Concatenation of paths induces the following defining relations for M

e2 = e f2 = f e+ f = 1
e.x = x e.y = y e.u = u e.v = 0
x.e = x y.e = y u.e = 0 v.e = v

f.x = 0 f.y = 0 f.u = 0 f.v = v

x.f = 0 y.f = 0 u.f = u v.f = 0
x.v = 0 u.x = 0
y.v = 0 u.y = 0
u.u = 0 v.v = 0

Horrible as these relations may seem, the algebra M has one important property, it
is (formally) smooth. That is, if A is any C-algebra having a twosided ideal I with
I2 = 0, then we can lift C-algebra morphisms

M ....................
∃φ̃

- A

A

I

π
??

φ

-

from the quotient to A. The relevance of this notion will become clear when we
study differential forms and connections on noncommutative manifolds.

This lifting property can be seen as follows. Let a ∈ A be such that π(a) = φ(e),
then one verifies that

E = (2− a)2a2

is an idempotent of A such that π(E) = φ(e). Define a lift φ̃ by sending e 7→ E,
f 7→ F = 1− E and 

x 7→ any element of E.(φ(x) + I).E,
y 7→ any element of E.(φ(y) + I).E,
u 7→ any element of E.(φ(u) + I).F ,
v 7→ any element of F.(φ(v) + I).E.

and one immediately verifies that all the relations holding in M are preserved under
φ̃ whence φ̃ is an algebra morphism lifting φ.

A representation of a quiver assigns to each vertex a finite dimensional vec-
torspace and to each arrow a linear map between the corresponding vertex-spaces.
The dimension-vector of a representation is then the integral vector containing the
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dimensions of the vertex-spaces. Fixing a dimension-vector and a basis in each
vertex-space we see that the representations form an affine space.

For the quiver described above, the set of representations of dimension vector
α = (m,n) can be identified with the affine space

repα(M) = Mn(C)⊕Mn(C)⊕Mn×m(C)⊕Mm×n(C)

the factors corresponding respectively to the arrows x, y, u and v. On this affine
space there is a natural action of the algebraic group

GL(α) = GLn(C)×GLm(C)

given by base-change in the vertex-spaces. That is, (g, h) ∈ GL(α) acts as

(g, h).(X,Y, U, V ) = (gXg−1, gY g−1, gUh−1, hV g−1).

Two representations are said to be isomorphic if and only if they belong to the same
GL(α)-orbit.

We will now relate the vectorspaces repα M and the action of GL(α) on it to
the study of finite dimensional representations of M. For an integer n ∈ N, an
n-dimensional representation of M is a C-algebra morphism

M φ- Mn(C)

and two n-dimensional representations φ1 and φ2 are said to be isomorphic (or
equivalent) iff there is a g ∈ GLn(C) such that the diagram below commutes

M

Mn(C)
cg -

�

φ1

Mn(C)

φ
2

-

where cg is conjugation by g on Mn(C). Because M is an affine C-algebra, the
set of all n-dimensional representations is an affine variety repn M. Indeed, any
representation is determined by the images of the generators e, f, u, v, x and y. That
is,

repn M ⊂ - Mn(C)⊕6

is the closed subvariety where the ideal of relations is generated by the entries of
the matrix identities determined by the defining relations for M.

Clearly, conjugation on Mn(C) defines an action of GLn(C) on the affine variety
repn M. For α = (n,m) let n = n + m and consider the diagonal embedding of
GL(α) in GLn(C) [

GLn(C) 0
0 GLm(C)

]
⊂ - GLn(C).

Using this embedding there is a natural GL(α) action on the product GLn(C) ×
repα M given by

(g, h).(G,X, Y, U, V ) = (G
[
g−1 0
0 h−1

]
, gXg−1, gY g−1, gUh−1, hV g−1)

and the space of GL(α)-orbits is called the associated fiber bundle and denoted by

GLn(C)×GL(α) repα M

Left multiplication defines a GLn(C)-action on the product GLn(C)×repα M which
commutes with the action of GL(α) and hence induces an action on the associated
fiber bundle.
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Lemma 1.20 The representation spaces repn M are affine manifolds and

repn M '
⊔

α=(n,m)
n+m=n

GLn(C)×GL(α) repα M

as manifolds with GLn(C)-action.

Proof. Given a representation M φ- Mn(C), the images φ(e) and φ(f) give an
orthogonal decomposition of rr

n into idempotents. If the rank of φ(e) is n, then
the rank of φ(f) is m = n − n and under simultaneous conjugation by an element
G ∈ GLn(C) we reduce to the case that

φ(e) =
[rr
n 0
0 0

]
and φ(f) =

[
0 0
0 rr

m

]
But then using equations such as exe = x and euf = u we deduce that the images
of the other generators are of the following matrix shape in Mn(C)

φ(x) =
[
X 0
0 0

]
φ(y) =

[
Y 0
0 0

]
φ(u) =

[
0 U
0 0

]
φ(v) =

[
0 0
V 0

]
and hence correspond to a point in repα M for α = (n,m). The assertion is now
easy to verify. �

In chapter 5 we will prove that the representation spaces repn A of any formally
smooth algebra are affine manifolds and even have an analytic local description by
quiver representations.

For applications to Calogero particles and Hilbert schemes, we specialize to the
case m = 1, that is, α = (n, 1) and n = n+ 1 and recover the vectorspace repα M
of the previous section.

Lemma 1.21 There is a natural one-to-one correspondence between

• GLn × C∗-orbits in repα M = Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗

• GLn-orbits in Mn(C)⊕Mn(C)⊕ Cn ⊕ Cn∗ as in the previous section

Proof. One implication is obvious by taking (g, 1) ∈ GL(α) = GLn × C∗. Con-
versely, assume that the quadruples (X,Y, u, v) and (X ′, Y ′, u′, v′) belong to the
same GL(α)-orbit in repα M. Then there is a g ∈ GLn and λ ∈ C∗ such that

gXg−1 = X ′ gY g−1 = Y ′ guλ−1 = u′ and λvg−1 = v′

Then, taking the matrix g′ = g.(λ−1rr
n) ∈ GLn we see that these quadruples also

belong to the same GLn-orbit. �

Therefore, we would like to construct an orbit space for the GL(α)-action on
repα M. However, such an orbit-space would have horrible topological properties
(such as being non-Hausdorff) as there are GL(α)-orbits which are not closed. For
example, if α = (2, 1) consider the representation

X =
[
0 1
0 0

]
Y =

[
0 0
0 0

]
u =

[
0
0

]
v =

[
0 0

]
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and consider the elements Gt = (
[
t 0
0 1

]
, 1) ∈ GL(α), then the action on the above

quadruple gives the representation

X =
[
0 t
0 0

]
Y =

[
0 0
0 0

]
u =

[
0
0

]
v =

[
0 0

]
whence if t - 0 we see that the zero representation lies in the closure of the
GL(α)-orbit.

1.7 Invariant theory and repα M.

Invariant theory provides us with the best Hausdorff approximation to the orbit
space problem, that is a classifying space for the closed orbits. We will prove in
chapter 4 that closed GLn(C)-orbits in the representation space repn A for an arbi-
trary affine C-algebra A are in one-to-one correspondence with isomorphism classes
of semi-simple n-dimensional representations of A. Recall that a representation is
simple if it has no proper (non-zero) subrepresentations and is semi-simple if it is
the direct sum of simple representations.

Our first job is to find a criterium on the dimension vector α = (n,m) to ensure
that repα M contains simple representations. A necessary condition is m ≤ n

�������������������
n

m

•

Indeed, if m > n then any representation (X,Y, U, V ) contains as non-trivial sub-
representation the trivial representation (all matrices zero-matrices) of dimension
vector (dim Ker U, 0). In chapter 6 we will give a combinatorial description of
the dimension vectors of simple representations of quivers which implies that for
the quiver under consideration this necessary condition is also sufficient. In partic-
ular, for α = (1, n) there is an open submanifold of repα M consisting of simple
representations.

Invariant theory learns us that closed orbits can be separated by invariant poly-
nomial functions. We will focuss here on the special case of interest α = (n, 1)
although the arguments hold more generally as we will prove in chapter 4. The
coordinate ring of repα M is the polynomial algebra

C[repα M] = C[x11, . . . , xnn, y11, . . . , ynn, u1, . . . , un, v1, . . . , vn]

where the xij , yij , ui and vj with 1 ≤ i, j ≤ n are the coordinate functions of the
matrices (X,Y, u, v). The group GL(α) acts on this algebra by automorphisms as
follows, let G = (g, λ) ∈ GL(α) = GLn ×C∗ then ψG is the automorphism sending

• xij to the (i, j) entry of the matrix g

x11 . . . x1n

...
...

xn1 . . . xnn

 g−1,

• yij to the (i, j) entry of the matrix g

y11 . . . y1n
...

...
yn1 . . . ynn

 g−1,
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• ui to the (i, 1) entry of the matrix g

u1

...
un

λ−1,

• vj to the (1, j) entry of the matrix λ
[
v1 . . . vn

]
g−1.

The ring of polynomial invariants C[repα M]GL(α) is the subalgebra consisting of
polynomials P such that ψG(P ) = P for all G ∈ GL(α). We will prove in chapter
5 that this algebra is generated by traces along oriented cycles in the quiver. That
is, consider all necklace words w

�

�''''

�;;;;

� SSSS� ccc

�
uuu

u

�
��
��

�

�
00

00

�
III

I

�[[[ �kkkk

�
����

����

x
w

where each bead is one of the following n× n matrices

u =

x11 . . . x1n

...
...

xn1 . . . xnn

 e =

y11 . . . y1n
...

...
yn1 . . . ynn

 H =

u1v1 . . . u1vn
...

...
unv1 . . . unvn


Multiplying these bead-matrices cyclicly in the indicated orientation and taking the
trace of the n× n matrix obtained gives a polynomial tr(w) of C[repα M] which is
clearly left invariant under the GL(α)-action. The assertion is that these invariants
generate all the invariant functions. We will even show that it suffices to take
necklace words having at most (n+ 1)2 + 1 beads.

Assume there are s distinct necklace words of length ≤ (n+1)2 +1, then we can
evaluate tr(w) at a representation (X,Y, u, v) ∈ repα M by substituting the entries
for the coordinate functions and obtain a map

repα M π- Cs

The image of π will be shown to be the affine variety corresponding to the ring of in-
variant polynomials. It is called the quotient variety and is denoted repα M/GL(α).
If ξ ∈ Im π then π−1(ξ) contains a unique closed orbit. In particular, if two semi-
simple representations (X1, Y1, u1, v1) and (X2, Y2, u2, v2) have all their necklace-
invariants equal then they belong to the same orbit.

These quotients varieties are in general not manifolds. In fact, we will give in
chapter 6 combinatorial tools to determine the singularities and to describe the
analytic local structure of the quotient variety near these singularities. Applying
these results we will see that repα M/GL(α) always has singularities except in the
trivial case α = (1, 1) where the quotient variety is easily seen to be C3.

When studying repα M for a specific dimension vector α = (n, 1), working with
M is overdoing things. We will construct another noncommutative algebra M(n)
which is a finite module over the ring of polynomial invariants C[repα M]GL(α). We
have a canonical morphism M tn- M(n) with the property that α-dimensional
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representation of M (with the images of e and f fixed) factors through tn. One way
to define M(n) is as the ring of equivariant maps from repα M to Mn+1(C).

Embed GL(α) diagonally in GLn+1(C), that is

GL(α) =
[
GLn(C) 0

0 C∗
]

⊂ - GLn+1(C)

thenGL(α) acts onMn+1(C) via the conjugation action ofGLn+1(C). A polynomial
map

repα M p- Mn+1(C)

is said to be GL(α)-equivariant if it is compatible with the GL(α)-action on source
and target space. That is, for all (g, λ) ∈ GL(α) and all (X,Y, u, v) ∈ repα(C) we
have

p(gXg−1, gY g−1, guλ−1, λvg−1) =
[
g 0
0 λ

]
p(X,Y, u, v)

[
g−1 0
0 λ−1

]
Addition and multiplication in the target space Mn+1(C) define a C-algebra struc-
ture on the equivariant maps.

A concrete realization of this ring M(n) can be given as follows. Consider the
matrix algebra Mn+1(C[repα M]), then M(n) is the C-subalgebra generated by
the polynomial invariants C[repα M]GL(α) (embedded as scalar matrices) and the
following matrices

en =


1 0

. . .
...

1 0
0 . . . 0 0

 fn =


0 . . . 0 0
...

...
...

0 . . . 0 0
0 . . . 0 1

 xn =


x11 . . . x1n 0
...

...
...

xn1 . . . xnn 0
0 . . . 0 0



yn =


y11 . . . y1n 0
...

...
...

yn1 . . . ynn 0
0 . . . 0 0

 un =


0 . . . 0 u1

...
...

...
0 . . . 0 un
0 . . . 0 0

 vn =


0 . . . 0 0
...

...
...

0 . . . 0 0
v1 . . . vn 0


Clearly, C[repα M]GL(α) is a central subring of M(n) and from the generation of
the polynomial invariants by traces of necklace words we see that the restriction of
the usual trace tr on Mn+1(C[repα M]) to the subring M(n) defines a trace map on
M(n), that is a map t

M(n)
t - M(n)

C[repα M]GL(α)
⊂

-

tr

-

satisfying t(ab) = t(ba), t(a)b = bt(a), t(t(a)b) = t(a)t(b) and t(1) = n. It is a rather
straightforward consequence of the Cayley-Hamilton equation that M(n) is a finite
module over its center which is equal to C[repα M]GL(α). The factorizing property
for representations in repα M mentioned above follows.

1.8 de Rham cohomology for M.

Formally smooth algebras should be viewed as the coordinate rings of affine noncom-
mutative manifolds. Associated to them is a well developed theory of differential
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forms, de Rham cohomology groups, connections and so on. We will introduce
and study all these concepts in chapter 9 in great detail. Here, we merely sketch
these notions for the formally smooth algebra M as they are crucial in the proof of
Ginzburg’s result.

Recall that M (resp. C× C) is the path algebra of the quiver

e(/).*-+,

f(/).*-+,

y

qq

x

--

u

BB

v

��
resp.

e(/).*-+,

f(/).*-+,
As the images of S = C × C is fixed in any representation of repα M, we are
interested in relative differential forms of M with respect to the subalgebra C× C.
Let M be the S-bimodule cokernel of the inclusion S ⊂ - M, then we define the
space of relative differential forms of degree n to be

Ωnrel M = M⊗S M⊗S . . .⊗S M︸ ︷︷ ︸
n

We will denote a tensor a0⊗a1⊗ . . .⊗an ∈ Ωnrel M with all ai ∈M by a0da1 . . . dan.
It is easy to see that a basis for Ωnrel M is given by the elements

p0dp1 . . . dpn

where pi is an oriented path in the quiver such that length p0 ≥ 0 and length pi ≥ 1
for 1 ≤ i ≤ n and such that the starting point of pi is the endpoint of pi+1 for all
1 ≤ i ≤ n − 1. We define an algebra structure on Ωrel M = ⊕n Ωnrel M by the
product rule

(a0da1 . . . dan)(an+1dan+2 . . . dam) =∑n
i=0(−1)n−1a0da1 . . . dai−1d(aiai+1)dai+2 . . . dam

and we make this into a differential graded C-algebra by defining a differential of
degree one

. . .
d- Ωn−1

rel M d- Ωnrel M d- Ωn+1
rel M d- . . .

by the rule that d(a0da1 . . . dan) = da0da1 . . . dan. Clearly d ◦ d = 0 and d is a
super-derivation meaning that

d(rs) = (dr)s+ (−1)ir(ds)

when r ∈ Ωirel M. For ω ∈ Ωirel M and ω′ ∈ Ωjrel M we define the super-commutator
to be

[ω, ω′] = ωω′ − (−1)ijω′ω

and following M. Karoubi [11] we define the space of noncommutative differential
forms of degree i on M to be the quotient space

dRirel M =
Ωirel M∑i

j=0 [ Ωjrel M,Ωi−jrel M ]
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and one verifies that the differential d induces a differential on the Karoubi complex
of M

dR0
rel M d- dR1

rel M d- dR2
rel M d- . . .

An important result we will prove in chapter 9 is that this complex is acyclic, that
is, if we define the i-th de Rham cohomology group of M to be the i-th homology of
the Karoubi complex

Hi
dR M =

Ker dRirel M d- dRi+1
rel M

Im dRi−1
rel M

d
- dRirel M

then we will prove that

Hi
dR M =

{
C× C when i = 0,
0 when i ≥ 1.

We will compute the first few terms in the Karoubi complex. Noncommutative
functions on M are the 0-forms, which is by definition the quotient space

dR0
rel M =

M
[ M,M ]

If p is an oriented path of length≥ 1 in the quiver with different begin- and endpoint,
then we can write p as a concatenation p = p1p2 with pi an oriented path of length
≥ 0 such that p2p1 = 0 in M. As [p1, p2] = p1p2 − p2p1 = 0 in dR0

rel M we deduce
that the space of noncommutative functions on M has as C-basis the necklace words
w

�

�''''

�;;;;

� SSSS� ccc

�
uuu

u

�
��
��

�

�
00

00

�
III

I

�[[[ �kkkk

�
����

����

x
w

where each bead is this time one of the elementsu = x
e = y and H = uv

together with the necklace words of length zero e and f . Each necklace word w
corresponds to the equivalence class of the words in M obtained from multiplying
the beads in the indicated orientation and and two words in {x, y, u, v} in M are
said to be equivalent if they are identical up to cyclic permutation of the terms.

Substituting each bead with the n×n matrices specified before and taking traces
we get a map

dR0
rel M =

M
[ M,M ]

tr- C[repα M]

Hence, noncommutative functions on M induce ordinary functions on all the rep-
resentation spaces repα M and these functions are GL(α)-invariant. Moreover, the
image of this map generates the ring of polynomial invariants as we mentioned
before.
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Next, we consider noncommutative 1-forms on M which are by definition ele-
ments of the space

dR1
rel M =

Ω1
rel M

[ M,Ω1
rel M ]

Recall that Ω1
rel M is spanned by the expressions p0dp1 with p0 resp. p1 oriented

paths in the quiver of length ≥ 0 resp. ≥ 1 and such that the starting point of p0

is the end point of p1. To form dR1
rel M we have to divide out expressions such as

[ p, p0dp1 ] = pp0dp1 + p0p1dp− p0d(p1p)

That is, if we have connecting oriented paths p2 and p1 both of length ≥ 1 we have
in dR1

rel M
p0d(p1p2) = p2p0dp1 + p0p1dp2

and by iterating this procedure whenever the differential term is a path of length
≥ 2 we can represent each class in dR1

rel M as a combination from

Me dx+ Me dy + Me du+ Mf dv

Now, Me = eMe+ fMe and let p ∈ fMe. Then, we have in dR1
rel M

d(xp) = p dx+ x dp

but by our description of Ω1 M the left hand term is zero as is the second term on
the right, whence p dx = 0. A similar argument holds replacing x by y. As for u,
let p ∈ eMe, then we have in dR1

rel M

d(up) = p du+ u dp

and again the left-hand and the second term on the right are zero whence p du = 0.
An analogous result holds for v and p ∈ fMf . Therefore, we have the description
of noncommutative 1-forms on M

dR1
rel M = eMe dx+ eMe dy + fMe du+ eMf dv

That is, in graphical terms

dR1
rel M = e(/).*-+,�� d e(/).*-+,

x

��
+ e(/).*-+,�� d e(/).*-+,

y

��
+

f(/).*-+, e(/).*-+,��
d e(/).*-+, f(/).*-+,uoo + e(/).*-+, f(/).*-+,��

d f(/).*-+, e(/).*-+,voo

1.9 Symplectic geometry on M.

Recall that a symplectic structure on a (commutative) manifold M is given by a
closed differential 2-form. The non-degenerate 2-form ω gives a canonical isomor-
phism

T M ' T ∗ M

that is, between vector fields on M and differential 1-forms. Further, there is a
unique C-linear map from functions f on M to vectorfields ξf by the requirement
that −df = iξf

ω where iξ is the contraction of n-forms to n − 1-forms using the
vectorfield ξ. We can make the functions on M into a Poisson algebra by defining

{f, g} = ω(ξf , ξg)
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and one verifies that this bracket satisfies the Jacobi and Leibnitz identities.
The Lie derivative Lξ with respect to ξ is defined by the Cartan homotopy

formula
Lξ ϕ = iξdϕ+ diξϕ

for any differential form ϕ. A vectorfield ξ is said to be symplectic if it preserves
the symplectic form, that is, Lξω = 0. In particular, for any function f on M we
have that ξf is symplectic. Moreover the assignment

f - ξf

defines a Lie algebra morphism from the functions O(M) on M equipped with the
Poisson bracket to the Lie algebra of symplectic vectorfields, V ectω M . Moreover,
this map fits into the exact sequence

0 - C - O(M) - V ectω M - H1
dR M - 0

It is this sequence that we will generalize to the noncommutative algebra M.

We say that a noncommutative symplectic structure on M is given by a 2-form

ω ∈ dR2
rel M such that d ω = 0 ∈ dR3

rel M

Given the shape of the defining quiver, a natural choice of symplectic structure is
taking

ω = dx dy + du dv

By a (relative) vectorfield on M we understand a C× C-derivation on M. That is,
a linear map M θ- M such that

θ(ab) = θ(a)b+ aθ(b) and θ(e) = 0 = θ(f).

For a given θ we define a degree preserving derivation Lθ and a degree −1 super-
derivation iθ on Ω M

Ωn−1 M Ωn M Ωn+1 M

Lθ

XX

Lθ

YY

Lθ

XX

d

%%

iθ

ee

d

%%

iθ

ee

defined by the rules {
Lθ(a) = θ(a) Lθ(da) = d θ(a)
iθ(a) = 0 iθ(da) = θ(a)

for all a ∈ M. We will prove in chapter 10 an analog for the Cartan homotopy
formula

Lθ = iθ ◦ d+ d ◦ iθ
and that these operators induce operators on the Karoubi complex dR M. The
analog of the isomorphism T M ' T ∗ M is the isomorphism

DerC×C M i.ω- dR1
rel M

as for any C× C-derivation θ we have

iθ ω = iθ(dx)dy − dxiθ(dy) + iθ(du)dv − duiθ(dv)
= θ(x)dy − dxθ(y) + θ(u)dv − duθ(v)
≡ θ(x)dy − θ(y)dx+ θ(u)dv − θ(v)du



36 CHAPTER 1. CALOGERO SYSTEMS.

and using the relations in M we can easily prove that any C × C derivation on M
must satisfy

θ(x) ∈ eMe θ(y) ∈ eMe θ(u) ∈ eMf θ(v) ∈ fMe

so the above expression belongs to dR1
rel M. Conversely, any θ defined by its images

on the generators x, y, u and v by

−θ(y)dx+ θ(x)dy − θ(v)du+ θ(u)dv ∈ dR1
rel M

induces a derivation on M.
In analogy with the classical case we define a derivation θ to be symplectic if

and only if Lθω = 0 in dR2
rel M. We denote these derivations by Derω M. From

the homotopy formula it follows that

θ ∈ Derω M⇐⇒ d(iθω) = 0 in dR2
rel M

But then, using the above identification DerC×C M ' dR1
rel M and the fact that

H1
dR M = 0 we obtain an analog of the map f - ξf from functions to symplectic

vectorfields in the classical case

M
[ M,M ]

= dR0
rel M d- (dR1

rel M)closed
i.ω

−1
- Derω M

which fits into the exact sequence, using our knowledge of the de Rham cohomology
of M

0 - C× C - M
[ M,M ]

- Derω M - 0

which we claim to be an exact sequence of Lie algebras. Hence we need to define a
Poisson bracket on the noncommutative functions M

[ M,M ] . We want to mimic the
Poisson bracket on C[x, y, u, v] determined by dx ∧ dy + du ∧ dv which is

{f, g} = (∂f∂x .
∂g
∂y −

∂f
∂y .

∂g
∂x ) + (∂f∂u .

∂g
∂v −

∂f
∂v .

∂g
∂u )

but then we need a substitute for these partial derivatives. Using our description of
dR1

rel M we have for any f ∈ dR0
rel M == M

[M,M] uniquely defined partial derivatives

∂a
∂x ,

∂a
∂y ,

∂a
∂u ,

∂a
∂v :

M
[ M,M ]

- M

by the formula
da = ∂a

∂x ⊗ x+ ∂a
∂y ⊗ y + ∂a

∂u ⊗ u+ ∂a
∂v ⊗ v.

We have to specify these on necklace words w. Using the calculation rules in dR1
rel M

one verifies that the partial derivatives of w are the sums of the oriented paths in
the quiver one obtains by cyclicly running through the remaining path by deleting
occurrences of the differentiating arrow. That is,

∂w

∂x
=

∑
•

�

�))

� HH�
�

vv

�
��

�

))

�
HH

�
�vv

��
�•x

w
II
I

___ ∂w

∂y
=

∑
◦

�

�))

� HH�
�

vv

�
��

�

))

�
HH

�
�vv

��
�◦x

w
II
I

___



1.10. FIBERS OF THE MOMENT MAP. 37

∂w

∂u
=

∑
H

�

�))

� HH�
�

vv

�
��

�

))

�
HH

�
�vv

��

vx
w

II
I

∂w

∂v
=

∑
H

�

�))

� HH�
�

vv

�
��

�

))

�
HH

�
�vv

��

ux
w

___

Using these partial derivatives one can then define a Poisson product on dR0
rel M

by

{w1, w2}K ≡ (∂w1
∂x .

∂w2
∂y −

∂w1
∂y .

∂w2
∂x ) + (∂w1

∂u .
∂w2
∂v −

∂w1
∂v .

∂w2
∂u ) modulo [ M,M ]

In particular, if the wi are necklace words, the Poisson bracket {w1, w2}K is a sum
of necklace words. Using the above graphical description we have that {w1, w2} is
equal to

∑
• ... ◦

�

�))

� HH�
�

vv

�
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�
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�
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�
�vv
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�• �

�111
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1.10 Fibers of the moment map.

After this excursion to the symplectic geometry of the noncommutative manifold M
it is time to return to the study of the phase space Calon. Observe that the center
C∗ = (λrr

n, λ) ⊂ - GL(α) acts trivially on repα M so the relevant acting group is
rather

PGL(α) =
GL(α)

C∗(rrn, 1)
.
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There is an open subset in repα M of representations such that the stabilizer
subgroup of PGL(α) is trivial. This is the case for all simple representations
by Schur’s lemma. However, there are others. For example any representation
(X,Y, u, 0) ∈ Hilbn has trivial stabilizer, but none of them are simple representa-
tions of M as they always have a nontrivial subrepresentation of dimension vector
(1, 0) determined by a common eigenvector of X and Y (which exists because X
and Y commute with each other). We will denote the open set of representations
with trivial stabilizer by repsα M and call any (X,Y, u, v) ∈ repsα M a Schur repre-
sentation of the quiver.

Remark that the Lie algebra of PGL(α) is the vectorspace

Lie PGL(α) = M0
α(C) = { (M, c) ∈Mn(C)⊕ C | tr(M) + c = 0 }

The relevant moment map for the action of (P )GL(α) on the representation space
repα M is

repα M µ - Lie PGL(α)

(X,Y, u, v) 7→ ([X,Y ] + uv , − vu)

Fix λ ∈ C, then λ = (λrr
n,−nλ) ∈M0

α(C) and is fixed under conjugation by GL(α).
Therefore, its preimage

π−1(λ) = {(X,Y, u, v) ∈ repα M | [X,Y ] + uv = λrr
n and vu = nλ }

is a closed affine subscheme of repα M stable under the action of GL(α). In partic-
ular we have that

CALOn = π−1(1).

We will now associate noncommutative algebras to the fibers π−1(λ). These are
special examples of the deformed preprojective algebras introduced by W. Crawley-
Boevey and M.P. Holland in [6]. For λ ∈ C we define

Mλ =
M

([x, y] + [u, v]− λ(e− nf))

and by an argument similar to that of M we see that µ−1(λ) is the space of n+ 1-
dimensional representations Mλ

φ- Mn+1(C) such that

φ(e) =
[rr
n 0
0 0

]
and φ(f) =

[
0 0
0 1

]
.

The closed affine subscheme π−1(λ) has as its defining ideal of relations Iλ the
entries in the n+ 1× n+ 1 matrix

[xn, yn] + [un, vn]−
[
λrr

n 0
0 −nλ

]
We consider the ring of polynomial invariants C[µ−1(λ)]GL(α) and its corresponding
affine scheme µ−1(λ)/GL(α). The natural algebra morphisms give the following
geometric picture

µ−1(λ) ⊂ - repα M

µ−1(λ)/GL(α)

pi

??
⊂ - repα M/GL(α)

??
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Invariant theory tells us that the defining ideal of the closed subscheme
µ−1(λ)/GL(α) is Jλ = Iλ ∩ C[repα M]GL(α). Again. points in µ−1(λ)/GL(α)
are in one-to-one correspondence with isomorphism classes of n + 1-dimensional
semi-simple representations of the algebra Mλ with specified ranks of the images of
e and f .

Analogous to the construction of the algebra M(n) we construct an algebra
Mλ(n) which is a finite module over its center by dividing out the centrally generated
ideal of M determined by Jλ

Mλ(n) =
M(n)

M(n) Jλ M(n)

Again, one verifies that the α-dimensional representations of Mλ factor through
Mλ(n). The trace map t on M(n) introduced before defines a trace map on Mλ(n).
Clearly, this trace satisfies the Cayley-Hamilton identities for n+1×n+1 matrices
and t(1) = n+ 1.

We define a category CH(n+ 1) of all C-algebras A equipped with a trace map
A

tA- A such that tA(1) = n + 1 and tA satisfies all Cayley-Hamilton identities
holding for n + 1 × n + 1 matrices. Morphisms A

φ- B in CH(n + 1) are C-
algebra morphisms compatible with the trace maps, that is, making the diagram
below commute

A
φ - B

A

tA

?
φ - B

tB

?

We say that an algebra S in CH(n + 1) is smooth in CH(n + 1) if it has the
lifting property with respect to nilpotent ideals in CH(n + 1). That is, for all
A ∈ CH(n+1), I /A a nilpotent ideal in A such that tA(I) ⊂ I and a morphism ψ
in CH(n+ 1) we can complete the diagram below by a morphism ψ̃ in CH(n+ 1)

S ....................
ψ̃

- A

A
I

??

ψ

-

We will prove in chapter 5 that this property is equivalent to the geometric for-
mulation that the space of trace preserving n + 1-dimensional representations of
S is a smooth variety. Here, a trace preserving representation is a morphism
S φ- Mn+1(C) in CH(n+ 1) where Mn+1(C) is equipped with the usual trace.

For example, the algebra M(n) is smooth in CH(n + 1) as its space of trace
preserving n+1-dimensional representations is GLn+1(C)×GL(α)repα M. Similarly,
the space of trace preserving n+ 1-dimensional representations of the fiber algebra
Mλ(n) is equal to the fiber bundle

GLn+1(C)×GL(α) µ−1(λ)

and is therefore smooth in CH(n + 1) if and only if the fiber µ−1(λ) is a smooth
submanifold of repα M. In particular, because CALOn = µ−1(1) we deduce
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Theorem 1.22 The fiber algebra M1(n) corresponding to the phase space Calon is
a smooth algebra in CH(n + 1). In fact, it is an Azumaya algebra over Calon =
µ−1(1)/GL(α).

Proof. The first statement follows from the fact that CALOn is a submanifold
of repα M. Further, we know that the GLn-action on CALOn is free, hence the
GL(α)-action has all its stabilizer subgroups equal to the center C∗. But then,
CALOn -- Calon is a principal PGL(α)-fibration. We will see in chapter 5 that
then the ring of PGL(α)-equivariant maps

CALOn - Mn+1(C)

(which is equal to the fiber algebra M1(n) is an Azumaya algebra with a specified
embedding of the idempotents. �

This result gives a ringtheoretical interpretation of the uniformity of the phase
space Calon. Each point in the phase space corresponds to a simple n + 1-
dimensional representation of M1(n).

In contrast, the fiber algebra M0(n) corresponding to Hilbn is not smooth in
CH(n+1). Indeed, the fiber µ−1(0) is not even irreducible but even the irreducible
component determined by Hilbn contains singularities.

1.11 Ginzburg’s theorem for Calon.

We have now all the necessary ingredients to sketch the proof of Ginzburg’s result
that Calon i s the coadjoint orbit of some infinite dimensional Lie algebra. To begin,
we equip repα M with the symplectic structure induced by the 2-form

ωα =
∑

1≤i,j≤n

dxij ∧ dyij +
n∑
i=1

dui ∧ dvi

The induced Poisson bracket {−.−}α on the ring of polynomial functions C[repα M]
is defined to be

{f, g}α =
∑

1≤i,j≤n

( ∂f
∂xij

∂g
∂yij
− ∂f

∂yij

∂g
∂xij

) +
n∑
i=1

( ∂f∂ui

∂g
∂vi
− ∂f

∂vi

∂g
∂ui

)

The action of GL(α) on repα M is symplectic meaning that

ωα(t, t′) = ωα(gt, gt′)

for all t, t′ ∈ T(X,Y,u,v) repα M in all points (X,Y, u, v) and for all g ∈ GL(α). The
infinitesimal GL(α) action gives a Lie algebra homomorphism

Lie PGL(α) - V ectωα
repα M

which factorizes through a Lie algebra morphism H to the coordinate ring making
the diagram below commute

Lie PGL(α)

C[repα M]
f 7→ξf

-
�

H
=
µ
∗

V ectωα
repα M

-
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We say that the action of GL(α) on repα M is Hamiltonian.
This makes the ring of polynomial invariants C[repα M]GL(α) into a Poisson

algebra and we will write

Lie1 = (C[repα M]GL(α), {−,−}α)

for the corresponding abstract infinite dimensional Lie algebra. The dual space of
this Lie algebra Lie∗1 is then a Poisson manifold equipped with the Kirillov-Kostant
bracket. Evaluation at a point in the quotient variety repα M/GL(α) defines a
linear function on Lie1 and therefore evaluation gives an embedding

repα M/GL(α) ⊂ - Lie∗1

as Poisson varieties. That is, the induced map on the polynomial functions is a
morphism of Poisson algebras.

Let λ ∈ C and let λ = (λrr
n,−nλ) ∈ Lie PGL(α). Then, we have

Theorem 1.23 Assume that µ−1(λ) is a smooth variety on which PGL(α) acts
freely. Then, the quotient variety µ−1(λ)/GL(α) is an affine symplectic manifold
and the Poisson embeddings

µ−1(λ)/GL(α) ⊂ - repα M/GL(α) ⊂ - Lie∗1

makes each connected component of µ−1(λ)/GL(α) a closed coadjoint orbit of Lie∗1.

Proof. (sketch) Because the action of the reductive group PGL(α) is free on
the smooth affine variety π−1(λ), the quotient variety µ−1(λ)/GL(α) is smooth
and affine. Moreover, the infinitesimal coadjoint action of Lie1 on Lie∗1 preserves
µ−1(λ)/GL(α) and factors through the quotient Lie algebra Lie1

Jλ
.

In general, if X is a smooth affine variety, then the differentials of polynomial
functions on X span the tangent spaces at all points x of X. Therefore, if X is in
addition symplectic, the infinitesimal Hamiltonian action of the Lie algebra C[X]
(with the natural Poisson bracket) on X is infinitesimally transitive. But then, the
evaluation map makes X a coadjoint orbit of the dual Lie algebra C[X]∗.

Hence, µ−1(λ)/GL(α) is a coadjoint orbit in C[µ−1(λ)/GL(α)]∗. There-
fore, the infinite dimensional group Ham generated by all Hamiltonian flows on
µ−1(λ)/GL(α) acts with open orbits. Being connected, each irreducible component
of µ−1(λ)/GL(α) is a single Ham-orbit finishing the proof. �

Observe that the conditions hold for λ = 1, that is, Calon is a coadjoint orbit in
Lie∗1. In contrast, the fiber corresponding to Hilbn, that is, λ = 0 does not satisfy
the requirements.

The drawback is that the Lie algebra Lie1 still depends on n and we want a
similar result holding for all n. We will now show that all Calon are coadjoint orbits
in the dual of a central extension of the Lie algebra Derω M.

The central extension in question is given by the exact sequence of Lie algebras
we found when investigating the noncommutative deRham cohomology of M

0 - C× C - M
[ M,M ]

- Derω M - 0

Moreover, we have seen that both M
[ M,M ] and Lie1 are generated by necklace words.

the crucial point to note is now that

Lie =
M

[ M,M ]
tr- C[repα M]GL(α) = Lie1
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obtained by mapping a necklace word w to its trace tr(w) using the n+ 1× n+ 1
matrices xn, yn, un and vn introduced before, is a Lie algebra morphism where we
equip Lie with the Poisson bracket determined by the partial derivations determined
from our description of dR1 M and Lie1 is equipped with the Poisson bracket
{−,−}α. That is, we have for all necklace words w1 and w2 the identity

{tr w1, tr w2}α = tr {w1, w2}K

Because the tr w generate the ring of polynomial invariants C[repα M]GL(α) it
follows that the elements tr M

[ M,M ] separate points of Calon = µ−1(1)/GL(α) as
subset of repα M/GL(α). That is, the composition

Calon ⊂ - repα M/GL(α)
tr∗- (

M
[ M,M ]

)∗

is injective. Analogously, the differentials of functions on Calon obtained by restrict-
ing traces of necklace words viewed as linear functions on Lie∗1 span the cotangent
spaces at all points of Calon, concluding the proof of

Theorem 1.24 For all n, the phase space Calon is a coadjoint orbit in the dual of
the Lie algebra M

[ M,M ] which is a central extension of the Lie algebra Derω M.



Chapter 2

Brauer-Severi Varieties.

Let K be a field and ∆ = (a, b)K the quaternion algebra determined by a, b ∈ K∗.
That is,

∆ = K.1⊕K.i⊕K.j ⊕K.ij with i2 = a j2 = b and ji = −ij

The norm map on ∆ defines a conic in P2
K called the Brauer-Severi variety of ∆

BS(∆) = V (x2 − ay2 − bz2) ⊂ - P2
K = Proj K[x, y, z].

Its characteristic property is that a fieldextension L of K admits an L-rational point
on BS(∆) if and only if ∆ ⊗K L admits zero-divisors and hence is isomorphic to
M2(L).

More generally, let K be the algebraic closure of K. We will see that the Galois
cohomology pointed set

H1(Gal(K/K), PGLn(K))

classifies at the same time the isomorphism classes of the following geometric and
algebraic objects

• Brauer-Severi K-varieties BS, which are smooth projective K-varieties such
that BSK ' Pn−1

K .

• Central simple K-algebras ∆, which are K-algebras of dimension n2 such that
∆⊗K K 'Mn(K).

The one-to-one correspondence between these two sets is given by associating to
a central simple K-algebra ∆ its Brauer-Severi variety BS(∆) which represents
the functor associating to a fieldextension L of K the set of left ideals of ∆ ⊗K L
which have L-dimension equal to n. In particular, BS(∆) has an L-rational point
if and only if ∆⊗K L 'Mn(L) and hence the geometric object BS(∆) encodes the
algebraic splitting behaviour of ∆.

Now restrict to the case when K is the functionfield C(X) of a projective variety
X and let ∆ be a central simple C(X)-algebra of dimension n2. Let A be a sheaf
of OX -orders in ∆ then we will see that there is a Brauer-Severi scheme BS(A)
which is a projective space bundle over X with general fiber isomorphic to Pn−1(C)
embedded in PN (C) where N =

(
n + k − 1

k

)
− 1. Over an arbitrary point of x the fiber

may degenerate, for example if n = 2 the P1(C) embedded as a conic in P2(C) can
degenerate into a pair of P1(C)’s. The special case when BS(A) is a Pn−1(C)-bundle
corresponds to the case when A is a sheaf of Azumaya algebras over X.

For arbitrary orders, the geometric structure of BS(A) can be fairly complicated.
However, when A is a sheaf of smooth orders we will prove in chapter 8 that BS(A)
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is a smooth variety and indicate how one can compute the fibers over X explicitly.
The motivating class of such examples are the unirational non-rational threefolds
constructed by M. Artin and D. Mumford [3] in 1972 as Brauer-Severi varieties of
maximal orders in specified quaternion algebras (the restrictions impose that these
maximal orders are indeed smooth orders). A major step in their construction is the
description of the Brauer group of a simply connected projective surface using étale
cohomology. We will outline this result in some detail as it gives us the opportunity
to introduce some basic results on étale extentions, étale cohomology and étale
descent. Roughly speaking, étale extensions give us an algebraic alternative for the
implicit function theorem in differential geometry. In this book we will give several
applications of étale descent. For example, we will give an étale local description
of smooth orders which will allow us to deduce from the Artin-Mumford exact
sequence which central simple algebras over a smooth projective surface allow a
noncommutative smooth model, see chapter 6.

2.1 Unirational non-rational threefolds.

In this section we will outline the major steps in the Artin-Mumford construction
of unirational non-rational threefolds. We use this class of examples as motivation
for introducing étale cohomology and smooth orders. For more details we refer to
the original paper [3].

Consider P2 = P2(C). We want to describe all central simple algebras ∆ over
the functionfield C(x, y). In this chapter we will prove that this is a huge collection.
The Artin-Mumford result describes them by a certain geo-combinatorial package
which we call a Zn-wrinkle over P2 = P2(C). A Zn-wrinkle is determined by

• A finite collection C = {C1, . . . , Ck} of irreducible curves in P2, that is, Ci =
V (Fi) for an irreducible form in C[X,Y, Z] of degree di.

• A finite collection P = {P1, . . . , Pl} of points of P2 where each Pi is either an
intersection point of two or more Ci or a singular point of some Ci.

• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ and
{1, . . . , iP } the different branches of C in P . These numbers must satisfy the
admissibility condition ∑

i

bi = 0 ∈ Zn

for every P ∈ P

• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C which is compatible with the branch-data.
That is, if Q ∈ C̃ corresponds to a C-branch bi in P , then D is ramified in Q
with stabilizer subgroup

StabQ = 〈bi〉 ⊂ Zn
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For example, a portion of a Z4-wrinkle can have the following picture

@@�� B
B
B
B
B�
�
�
�
�

��@@
@@��

@@��
��@@

��@@ �
�
�
�
�B
B
B
B
B

0

2

1

3

D

C̃
0 2 1
• • •

It is clear that the cover-data is the most untractable part of a Zn-wrinkle, so
we want to have some control on the covers D -- C̃. Let {Q1, . . . , Qz} be the
points of C̃ where the cover ramifies with branch numbers {b1, . . . , bz}, then D
is determined by a continuous module structure (that is, a cofinite subgroup acts
trivially) of

π1(C̃ − {Q1, . . . , Qz}) on Zn
where the fundamental group of the Riemann surface C̃ with z punctures is known
(topologically) to be equal to the group

〈u1, v1, . . . , ug, vg, x1, . . . , xz〉/([u1, v1] . . . [ug, vg]x1 . . . xz)

where g is the genus of C̃. The action of xi on Zn is determined by multiplication
with bi. In fact, we need to use the étale fundamental group, see [20], but this group
has the same finite continuous modules as the topological fundamental group.

Example 2.1 Covers of P1 and elliptic curves.

1. If C̃ = P1 then g = 0 and hence π1(P1−{Q1, . . . , Qz} is zero if z ≤ 1 (whence
no covers exist) and is Z if z = 2. Hence, there exists a unique coverD -- P1

with branch-data (1,−1) in say (0,∞) namely with D the normalization of
P1 in C( n

√
x).

2. If C̃ = E an elliptic curve, then g = 1. Hence, π1(C) = Z⊕Z and there exist
unramified Zn-covers. They are given by the isogenies

E′ -- E

where E′ is another elliptic curve and E = E′/〈τ〉 where τ is an n-torsion
point on E′.

We will show that any n-fold cover D -- C̃ is determined by a function
f ∈ C(C)∗/C(C)∗n. This allows us to put a group-structure on the equivalence
classes of Zn-wrinkles. In particular, we call a wrinkle trivial provided all coverings
Di

-- C̃i are trivial (that is, Di is the disjoint union of n copies of C̃i).
One of the main results we will prove in this chapter is the Artin-Mumford exact

sequence for Brauer groups of simply connected surfaces. In the case of C(x, y) this
result can be phrased as

Theorem 2.2 If ∆ is a central simple C(x, y)-algebra of dimension n2, then ∆
determines uniquely a Zn-wrinkle on P2. Conversely, any Zn-wrinkle on P2 deter-
mines a unique division C(x, y)- algebra whose class in the Brauer group has order
n.
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Specialize to the case of quaternion algebras, that is n = 2. Consider E1 and E2

two elliptic curves in P2 and take C = {E1, E2} and P = {P1, . . . P9} the intersection
points and all the branch data zero. Let E′i be a twofold unramified cover of Ei
as in the example above given by modding our a 2-torsion point from E′i. By
the Artin-Mumford result there is a quaternion algebra ∆ corresponding to this
Z2-wrinkle.

Next, blow up the intersection points to get a surface S with disjoint elliptic
curves C1 and C2. Now take a maximal OS order in ∆ then we will see that the
relevance of the curves Ci is that they are the locus of the points s ∈ S where
As 6'M2(C), the so called ramification locus of the order A. The local structure of
A in a point s ∈ S is

• when s /∈ C1 ∪ C2, then As is an Azumaya OS,s-algebra in ∆,

• when s ∈ Ci, then As = OS,s.1⊕OS,s.i⊕OS,s.j ⊕OS,s.ij with
i2 = a

j2 = bt

ji = −ij

where t = 0 is a local equation for Ci and a and b are units in OS,s.

In chapter 6 we will see that this is the local description of a smooth order over a
smooth surface in a quaternion algebra. Artin and Mumford then define the Brauer-
Severi scheme of A as representing the functor which assigns to an S-scheme S′ the
set of left ideals of A ⊗OS

OS′ which are locally free of rank 2. Using the local
description of A they show that BS(A) is a projective space bundle over S
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with the properties that BS(A) is a smooth variety and the projection morphism
BS(A)

π-- S is flat, all of the geometric fibers being isomorphic to P1 (resp. to
P1 ∨ P1) whenever s /∈ C1 ∪ C2 (resp. s ∈ C1 ∪ C2).

Finally, for specific starting configurations E1 and E2, they prove that the ob-
tained Brauer-Severi variety BS(A) cannot be rational because there is torsion in
H4(BS(A),Z2), whereas BS(A) can be shown to be unirational for these specific
configurations.
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2.2 Etale morphisms and sheaves.

In the next few sections we will introduce the basic tools from étale topology leading
to a sketch of the Artin-Mumford exact sequence.

Definition 2.3 A finite morphism A
f- B of commutative C-algebras is said to

be étale if and only if

B = A[t1, . . . , tk]/(f1, . . . , fk) such that det (
∂fi
∂xj

)i,j ∈ B∗

Example 2.4 Consider the morphism C[x, x−1] ⊂ - C[x, x−1][ n
√
x] and the in-

duced map on the affine varieties

V ar C[x, x−1][ n
√
x]

ψ- V ar C[x, x−1] = C− {0}.

Clearly, every point λ ∈ C − {0} has exactly n preimages λi = ζi n
√
λ. Moreover,

in a neighborhood of λi, the map ψ is a diffeomorphism. Still, we do not have
an inverse map in algebraic geometry as n

√
x is not a polynomial map. However,

C[x, x−1][ n
√
x] is an étale extension of C[x, x−1]. That is, étale morphisms can be

seen as an algebraic substitute for the nonexistence of an inverse function theorem
in algebraic geometry.

Proposition 2.5 Etale morphisms satisfy ’sorite’, that is

A′ ............
et
- A′ ⊗A B

A

6

et - B

6

B

A ..................................................
et

-

et

-

C

et

-

(basechange) (composition)

A′
et- A′ ⊗A B

A

f.f.

6

....................
et

- B

6

A

B .................................................
et

A−alg
-

�

et

B′

et

-

(descent) (morphisms)

Here et means an étale morphism and f.f. stands for a faithfully flat morphism.

Definition 2.6 The étale site of A, which we will denote by Aet is the category
with

• objects : the étale extensions A
f- B of A

• morphisms : compatible A-algebra morphisms

A

B1
φ -

�

f1

B2

f
2

-
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Observe that by the foregoing proposition all morphisms in Aet are étale. We can
put on Aet a (Grothendieck) topology by defining

• cover : a collection C = {B fi- Bi} in Aet such that

Spec B = ∪i Im (Spec Bi
f- Spec B )

where Spec is the prime spectrum of a commutative algebra, that is the col-
lection of all its prime ideals equipped with the Zariski topology.

An étale presheaf of groups on Aet is a functor

G : Aet - Groups

In analogy with usual (pre)sheaf notation we denote for each

• object B ∈ Aet : Γ(B,G) = G(B)

• morphism B
φ- C in Aet : ResBC = G(φ) : G(B) - G(C) and g | C =

G(φ)(g).

A presheaf G is a sheaf provided for every B ∈ Aet and every cover {B - Bi}
we have exactness of the equalizer diagram

0 - G(B) -
∏
i

G(Bi)
-
-

∏
i,j

G(Bi ⊗B Bj)

Example 2.7 Constant sheaf.
If G is a group, then

G : Aet - Groups B 7→ G⊕π0(B)

is a sheaf where π0(B) is the number of connected components of Spec B.

Example 2.8 Multiplicative group Gm.
The functor

Gm : Aet - Ab B 7→ B∗

is a sheaf on Aet.

A sequence of sheaves of Abelian groups on Aet is said to be exact

G′ f- G g- G”

if for every B ∈ Aet and s ∈ G(B) such that g(s) = 0 ∈ G”(B) there is a cover
{B - Bi} in Aet and sections ti ∈ G′(Bi) such that f(ti) = s | Bi.

Example 2.9 Roots of unity µn.
We have a sheaf morphism

Gm
(−)n

- Gm

and we denote the kernel with µn. As A is a C-algebra we can identify µn with the
constant sheaf Zn = Z/nZ via the isomorphism ζi 7→ i after choosing a primitive
n-th root of unity ζ ∈ C.
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Lemma 2.10 The (Kummer)-sequence of sheaves of Abelian groups

0 - µn - Gm
(−)n

- Gm
- 0

is exact on Aet (but not necessarily on AZar).

Proof. We only need to verify surjectivity. Let B ∈ Aet and b ∈ Gm(B) = B∗.
Consider the étale extension B′ = B[t]/(tn − b) of B, then b has an n-th root over
in Gm(B′). Observe that this n-th root does not have to belong to Gm(B). �

If p is a prime ideal of A we will denote with kp the algebraic closure of the field
of fractions of A/p. An étale neighborhood of p is an étale extension B ∈ Aet such
that the diagram below is commutative

A
nat - kp

B

et

?

-

The analogue of the localization Ap for the étale topology is the strict Henselization

Ashp = lim- B

where the limit is taken over all étale neighborhoods of p.
Recall that a local algebra L with maximal ideal m and residue map π :

L -- L/m = k is said to be Henselian if the following condition holds. Let
f ∈ L[t] be a monic polynomial such that π(f) factors as g0.h0 in k[t], then f
factors as g.h with π(g) = g0 and π(h) = h0. If L is Henselian then tensoring
with k induces an equivalence of categories between the étale A-algebras and the
étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if its residue
field is algebraically closed. Thus, a strict Henselian ring has no proper finite
étale extensions and can be viewed as a local algebra for the étale topology.

Example 2.11 The algebraic functions C{x1, . . . , xd}
Consider the local algebra of C[x1, . . . , xd] in the maximal ideal (x1, . . . , xd),

then the Henselization and strict Henselization are both equal to

C{x1, . . . , xd}

the ring of algebraic functions. That is, the subalgebra of C[[x1, . . . , xd]] of for-
mal power-series consisting of those series φ(x1, . . . , xd) which are algebraically
dependent on the coordinate functions xi over C. In other words, those φ
for which there exists a non-zero polynomial f(xi, y) ∈ C[x1, . . . , xd, y] with
f(x1, . . . , xd, φ(x1, . . . , xd)) = 0.

These algebraic functions may be defined implicitly by polynomial equations.
Consider a system of equations

fi(x1, . . . , xd; y1, . . . , ym) = 0 for fi ∈ C[xi, yj ] and 1 ≤ i ≤ m

Suppose there is a solution in C with

xi = 0 and yj = yoj
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such that the Jacobian matrix is non-zero

det (
∂fi
∂yj

(0, . . . , 0; yo1, . . . , y
0
m)) 6= 0

Then, the system can be solved uniquely for power series yj(x1, . . . , xd) with
yj(0, . . . , 0) = yoj by solving inductively for the coefficients of the series. One can
show that such implicitly defined series yj(x1, . . . , xd) are algebraic functions and
that, conversely, any algebraic function can be obtained in this way.

If G is a sheaf on Aet and p is a prime ideal of A, we define the stalk of G in p
to be

Gp = lim- G(B)

where the limit is taken over all étale neighborhoods of p. One can verify mono-
epi- or isomorphisms of sheaves by checking it in all the stalks.

If A is an affine algebra defined over an algebraically closed field, then it suffices
to verify in the maximal ideals of A.

2.3 Etale cohomology

Before we define cohomology of sheaves on Aet let us recall the definition of derived
functors. Let A be an Abelian category. An object I of A is said to be injective if
the functor

A - Ab M 7→ HomA(M, I)

is exact. We say that A has enough injectives if, for every object M in A, there is
a monomorphism M ⊂ - I into an injective object.

If A has enough injectives and f : A - B is a left exact functor from A into a
second Abelian category B, then there is an essentially unique sequence of functors

Ri f : A - B i ≥ 0

called the right derived functors of f having the following properties

• R0 f = f

• Ri I = 0 for I injective and i > 0

• For every short exact sequence in A

0 - M ′ - M - M” - 0

there are connecting morphisms δi : Ri f(M”) - Ri+1 f(M ′) for i ≥ 0
such that we have a long exact sequence

. . . - Ri f(M) - Ri f(M”)
δi

- Ri+1 f(M ′) - Ri+1 f(M) - . . .

• For any morphism M - N there are morphisms Ri f(M) - Ri f(N)
for i ≥ 0

In order to compute the objects Ri f(M) define an object N in A to be f -acyclic
if Ri f(M) = 0 for all i > 0. If we have a resolution of M

0 - M - N0
- N1

- N2
- . . .
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by f -acyclic object Ni, then the objects Ri f(M) are canonically isomorphic to the
cohomology objects of the complex

0 - f(N0) - f(N1) - f(N2) - . . .

One can show that all injectives are f -acyclic and hence that derived objects of M
can be computed from an injective resolution of M .

Now, let Sab(Aet) be the category of all sheaves of Abelian groups on Aet. This
is an Abelian category having enough injectives whence we can form right derived
functors of left exact functors. In particular, consider the global section functor

Γ : Sab(Aet) - Ab G 7→ G(A)

which is left exact. The right derived functors of Γ will be called the étale coho-
mology functors and we denote

Ri Γ(G) = Hi
et(A,G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 - G′ - G - G” - 0, then we have a long exact cohomology se-
quence

. . . - Hi
et(A,G) - Hi

et(A,G”) - Hi+1
et (A,G′) - . . .

If G is a sheaf of non-Abelian groups (written multiplicatively), we cannot define
cohomology groups. Still, one can define a pointed set H1

et(A,G) as follows. Take
an étale cover C = {A - Ai} of A and define a 1-cocycle for C with values in G
to be a family

gij ∈ G(Aij) with Aij = Ai ⊗A Aj
satisfying the cocycle condition

(gij | Aijk)(gjk | Aijk) = (gik | Aijk)

where Aijk = Ai ⊗A Aj ⊗A Ak.
Two cocycles g and g′ for C are said to be cohomologous if there is a family

hi ∈ G(Ai) such that for all i, j ∈ I we have

g′ij = (hi | Aij)gij(hj | Aij)−1

This is an equivalence relation and the set of cohomology classes is written as
H1
et(C,G). It is a pointed set having as its distinguished element the cohomology

class of gij = 1 ∈ G(Aij) for all i, j ∈ I.
We then define the non-Abelian first cohomology pointed set as

H1
et(A,G) = lim- H1

et(C,G)

where the limit is taken over all étale coverings of A. It coincides with the previous
definition in case G is Abelian.

A sequence 1 - G′ - G - G” - 1 of sheaves of groups on Aet is
said to be exact if for every B ∈ Aet we have

• G′(B) = Ker G(B) - G”(B)

• For every g” ∈ G”(B) there is a cover {B - Bi} in Aet and sections
gi ∈ G(Bi) such that gi maps to g” | B.
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Proposition 2.12 For an exact sequence of groups on Aet

1 - G′ - G - G” - 1

there is associated an exact sequence of pointed sets

1 - G′(A) - G(A) - G”(A)
δ- H1

et(A,G′) -

- H1
et(A,G) - H1

et(A,G”) ........- H2
et(A,G′)

where the last map exists when G′ is contained in the center of G (and therefore is
Abelian whence H2 is defined).

Proof. The connecting map δ is defined as follows. Let g” ∈ G”(A) and let
C = {A - Ai} be an étale covering of A such that there are gi ∈ G(Ai) that
map to g | Ai under the map G(Ai) - G”(Ai). Then, δ(g) is the class determined
by the one cocycle

gij = (gi | Aij)−1(gj | Aij)
with values in G′. The last map can be defined in a similar manner, the other maps
are natural and one verifies exactness. �

The main applications of this non-Abelian cohomology to non-commutative al-
gebra is as follows. Let Λ be a not necessarily commutative A-algebra and M an
A-module. Consider the sheaves of groups Aut(Λ) resp. Aut(M) on Aet associated
to the presheaves

B 7→ AutB−alg(Λ⊗A B) resp. B 7→ AutB−mod(M ⊗A B)

for all B ∈ Aet. A twisted form of Λ (resp. M) is an A-algebra Λ′ (resp. an
A-module M ′) such that there is an étale cover C = {A - Ai} of A such that
there are isomorphisms

Λ⊗A Ai
φi- Λ′ ⊗A Ai resp. M ⊗A Ai

ψi- M ′ ⊗A Ai
of Ai-algebras (resp. Ai-modules). The set of A-algebra isomorphism classes (resp.
A-module isomorphism classes) of twisted forms of Λ (resp. M) is denoted by
TwA(Λ) (resp. TwA(M)). To a twisted form Λ′ one associates a cocycle on C

αΛ′ = αij = φ−1
i ◦ φj

with values in Aut(Λ). Moreover, one verifies that two twisted forms are isomorphic
as A-algebras if their cocycles are cohomologous. That is, there is an embedding

TwA(Λ) ⊂ - H1
et(A,Aut(Λ)) and similarly TwA(M) ⊂ - H1

et(A,Aut(M))

In favorable situations one can even show bijectivity. In particular, this is the case
if the automorphisms group is a smooth affine algebraic group-scheme.

For example, consider Λ = Mn(A), then the automorphism group is PGLn and
twisted forms of Λ are classified by elements of the cohomology group

H1
et(A,PGLn)

These twisted forms are precisely the Azumaya algebras of rank n2 with center A.
When A is an affine commutative C-algebra and B is an A-algebra with center A,
then B is an Azumaya algebra of rank n2 if and only if

B

BmB
'Mn(C)

for every maximal ideal m of A. For example, the fiber algebra M1(n) introduced in
the foregoing chapter is an Azumaya algebra of rank (n+ 1)2 over its center which
is C[Calon].
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2.4 Central simple algebras

Let K be a field of characteristic zero, choose an algebraic closure K with absolute
Galois group GK = Gal(K/K).

Lemma 2.13 The following are equivalent

1. K - A is étale

2. A⊗K K ' K× . . .×K

3. A =
∏
Li where Li/K is a finite field extension

Proof. Assume (1), then A = K[x1, . . . , xn]/(f1, . . . , fn) where fi have invertible
Jacobian matrix. Then A⊗K is a smooth algebra (hence reduced) of dimension 0
so (2) holds.

Assume (2), then

HomK−alg(A,K) ' HomK−alg(A⊗K,K)

has dimK(A⊗K) elements. On the other hand we have by the Chinese remainder
theorem that

A/Jac A =
∏
i

Li

with Li a finite field extension of K. However,

dimK(A⊗K) =
∑
i

dimK(Li) = dimK(A/Jac A) ≤ dimK(A)

and as both ends are equal A is reduced and hence A =
∏
i Li whence (3).

Assume (3), then each Li = K[xi]/(fi) with ∂fi/∂xi invertible in Li. But then
A =

∏
Li is étale over K whence (1). �

To every finite étale extension A =
∏
Li we can associate the finite set rts(A) =

HomK−alg(A,K) on which the Galois group GK acts via a finite quotient group.
If we write A = K[t]/(f), then rts(A) is the set of roots in K of the polynomial f
with obvious action by GK . Galois theory, in the interpretation of Grothendieck
can now be stated as

Proposition 2.14 The functor

Ket
rts(−)- finite GK − sets

is an anti-equivalence of categories.

We will now give a similar interpretation of the Abelian sheaves on Ket. Let G
be a presheaf on Ket. Define

MG = lim- G(L)

where the limit is taken over all subfields L ⊂ - K that are finite over K. The
Galois group GK acts on G(L) on the left through its action on L whenever L/K
is Galois. Hence, GK acts an MG and MG = ∪MH

G where H runs through the open
subgroups of GK . That is, MG is a continuous GK-module.

Conversely, given a continuous GK-module M we can define a presheaf GM on
Ket such that
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• GM (L) = MH where H = GL = Gal(K/L).

• GM (
∏
Li) =

∏
GM (Li).

One verifies that GM is a sheaf of Abelian groups on Ket.

Theorem 2.15 There is an equivalence of categories

S(Ket)
-� GK −mod

induced by the correspondences G 7→ MG and M 7→ GM . Here, GK −mod is the
category of continuous GK-modules.

Proof. A GK-morphism M - M ′ induces a morphism of sheaves GM
- GM ′ .

Conversely, if H is an open subgroup of GK with L = KH , then if G φ- G′ is
a sheafmorphism, φ(L) : G(L) - G′(L) commutes with the action of GK by
functoriality of φ. Therefore, lim- φ(L) is a GK-morphism MG - MG′ .

One verifies easily that HomGK
(M,M ′) - Hom(GM ,GM ′) is an isomor-

phism and that the canonical map G - GMG is an isomorphism. �

In particular, we have that G(K) = G(K)GK for every sheaf G of Abelian groups
on Ket and where G(K) = MG. Hence, the right derived functors of Γ and (−)G

coincide for Abelian sheaves.
The category GK −mod of continuous GK-modules is Abelian having enough

injectives. Therefore, the left exact functor

(−)G : GK −mod - Ab

admits right derived functors. They are called the Galois cohomology groups and
denoted

Ri MG = Hi(GK ,M)

Therefore, we have.

Proposition 2.16 For any sheaf of Abelian groups G on Ket we have a group
isomorphism

Hi
et(K,G) ' Hi(GK ,G(K))

Therefore, étale cohomology is a natural extension of Galois cohomology to
arbitrary algebras.

The following definition-characterization of central simple algebras is classical

Proposition 2.17 Let A be a finite dimensional K-algebra. The following are
equivalent :

1. A has no proper twosided ideals and the center of A is K.

2. AK = A⊗K K 'Mn(K) for some n.

3. AL = A⊗K L 'Mn(L) for some n and some finite Galois extension L/K.

4. A ' Mk(D) for some k where D is a division algebra of dimension l2 with
center K.
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The last part of this result suggests the following definition. Call two central
simple algebras A and A′ equivalent if and only if A ' Mk(∆) and A′ ' Ml(∆)
with ∆ a division algebra. From the second characterization it follows that the
tensorproduct of two central simple K-algebras is again central simple. Therefore,
we can equip the set of equivalence classes of central simple algebras with a product
induced from the tensorproduct. This product has the class [K] as unit element
and [∆]−1 = [∆opp], the opposite algebra as ∆ ⊗K ∆opp ' EndK(∆) = Ml2(K).
This group is called the Brauer group and is denoted Br(K). We will quickly recall
its cohomological description, all of which is classical.

GLr is an affine smooth algebraic group defined over K and is the automorphism
group of a vectorspace of dimension r. It defines a sheaf of groups on Ket that we
will denote by GLr. Using the general results on twisted forms of the foregoing
chapter we have

Lemma 2.18

H1
et(K,GLr) = H1(GK , GLr(K)) = 0

In particular, we have ’Hilbert’s theorem 90’

H1
et(K,Gm) = H1(GK ,K∗) = 0

Proof. The cohomology group classifies K-module isomorphism classes of twisted
forms of r-dimensional vectorspaces over K. There is just one such class. �

PGLn is an affine smooth algebraic group defined over K and it is the automor-
phism group of the K-algebra Mn(K). It defines a sheaf of groups on Ket denoted
by PGLn. By the proposition we know that any central simple K-algebra ∆ of
dimension n2 is a twisted form of Mn(K). Therefore,

Lemma 2.19 The pointed set of K-algebra isomorphism classes of central simple
algebras of dimension n2 over K coincides with the cohomology set

H1
et(K,PGLn) = H1(GK , PGLn(K))

Theorem 2.20 There is a natural inclusion

H1
et(K,PGLn) ⊂ - H2

et(K,µn) = Brn(K)

where Brn(K) is the n-torsion part of the Brauer group of K. Moreover,

Br(K) = H2
et(K,Gm)

is a torsion group.
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Proof. Consider the exact commutative diagram of sheaves of groups on Ket.

1 1

1 - µn
?

- Gm

?
(−)n

- Gm
- 1

||

1 - SLn

?
- GLn

?
det - Gm

- 1

PGLn

?
= PGLn

?

1
?

1
?

Taking cohomology of the second exact sequence we obtain

GLn(K)
det- K∗ - H1

et(K,SLn) - H1
et(K,GLn)

where the first map is surjective and the last term is zero, whence

H1
et(K,SLn) = 0

Taking cohomology of the first vertical exact sequence we get

H1
et(K,SLn) - H1

et(K,PGLn) - H2
et(K,µn)

from which the first claim follows.
As for the second, taking cohomology of the first exact sequence we get

H1
et(K,Gm) - H2

et(K,µn) - H2
et(K,Gm)

n.- H2
et(K,Gm)

By Hilbert 90, the first term vanishes and hence H2
et(K,µn) is equal to the n-torsion

of the group
H2
et(K,Gm) = H2(GK ,K∗) = Br(K)

where the last equality follows from the crossed product result, see for example
[23]. �

So far, the field K was arbitrary. If K is of transcendence degree d, this will put
restrictions on the ’size’ of the Galois group GK . In particular this will enable us
to show that Hi(GK , µn) = 0 for i > d. Before we can prove this we need to refresh
our memory on spectral sequences.

2.5 Spectral sequences

Let A,B and C be Abelian categories such that A and B have enough injectives and
consider left exact functors

A f- B g- C
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Let the functors be such that f maps injectives of A to g-acyclic objects in B, that
is Ri g(f I) = 0 for all i > 0. Then, there are connections between the objects

Rp g(Rq f(A)) and Rn gf(A)

for all objects A ∈ A. These connections can be summarized by giving a spectral
sequence

Theorem 2.21 Let A,B, C be Abelian categories with A,B having enough injectives
and left exact functors

A f- B g- C

such that f takes injectives to g-acyclics.
Then, for any object A ∈ A there is a spectral sequence

Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A)

In particular, there is an exact sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) - . . .

Moreover, if f is an exact functor, then we have

Rp gf(A) ' Rp g(f(A))

A spectral sequence Ep.q2 =⇒ En (or Ep,q1 =⇒ En) consists of the following data

1. A family of objects Ep,qr in an Abelian category for p, q, r ∈ Z such that
p, q ≥ 0 and r ≥ 2 (or r ≥ 1).

2. A family of morphisms in the Abelian category

dp.qr : Ep.qr - Ep+r,q−r+1
r

satisfying the complex condition

dp+r,q−r+1
r ◦ dp,qr = 0

and where we assume that dp.qr = 0 if any of the numbers p, q, p+r or q−r+1
is < 1. At level one we have the following

Ep,q1 =
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p
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At level two we have the following

Ep,q2 =
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3. The objects Ep,qr+1 on level r + 1 are derived from those on level r by taking
the cohomology objects of the complexes, that is,

Epr+1 = Ker dp,qr / Im dp−r,q+r−1
r

At each place (p, q) this process converges as there is an integer r0 depending
on (p, q) such that for all r ≥ r0 we have dp.qr = 0 = dp−r,q+r−1

r . We then
define

Ep,q∞ = Ep,qr0 (= Ep,qr0+1 = . . .)

Observe that there are injective maps E0,q
∞

⊂ - E0,q
2 .

4. A family of objects En for integers n ≥ 0 and for each we have a filtration

0 ⊂ Enn ⊂ Enn−1 ⊂ . . . ⊂ En1 ⊂ En0 = En

such that the successive quotients are given by

Enp / E
n
p+1 = Ep,n−p∞

That is, the terms Ep,q∞ are the composition terms of the limiting terms Ep+q.
Pictorially,

Ep,q∞ =
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pE0 E1 E2 E3 E4

For small n one can make the relation between En and the terms Ep,q2 explicit.
First note that

E0,0
2 = E0,0

∞ = E0

Also, E1
1 = E1,0

∞ = E1,0
2 and E1/E1

1 = E0,1
∞ = Ker d0,1

2 . This gives an exact
sequence

0 - E1,0
2

- E1 - E0,1
2

d0,1
2- E2,0

2
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Further, E2 ⊃ E2
1 ⊃ E2

2 where

E2
2 = E2,0

∞ = E2,0
2 / Im d0,1

2

and E2
1/E

2
2 = E1,1

∞ = Ker d1,1
2 whence we can extend the above sequence to

. . . - E0,1
2

d0,1
2- E2,0

2
- E2

1
- E1,1

2

d1,1
2- E3,0

2

as E2/E2
1 = E0,2

∞
⊂ - E0,2

2 we have that E2
1 = Ker (E2 - E0,2

2 ). If we specialize
to the spectral sequence Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A) we obtain the exact
sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) -

- E2
1

- R1 g(R1 f(A)) - R3 g(f(A))

where E2
1 = Ker (R2 gf(A) - g(R2 f(A))).

An important example of a spectral sequence is the Leray spectral sequence.
Assume we have an algebra morphism A

f- A′ and a sheaf of groups G on A′et.
We define the direct image of G under f to be the sheaf of groups f∗ G on Aet
defined by

f∗ G(B) = G(B ⊗A A′)

for all B ∈ Aet (recall that B ⊗A A′ ∈ A′et so the right hand side is well defined).
This gives us a left exact functor

f∗ : Sab(A′et) - Sab(Aet)

and therefore we have right derived functors of it Ri f∗. If G is an Abelian sheaf
on A′et, then Ri f∗G is a sheaf on Aet. One verifies that its stalk in a prime ideal p
is equal to

(Ri f∗G)p = Hi
et(A

sh
p ⊗A A′,G)

where the right hand side is the direct limit of cohomology groups taken over all
étale neighborhoods of p. We can relate cohomology of G and f∗G by the following

Theorem 2.22 (Leray spectral sequence) If G is a sheaf of Abelian groups on A′et

and A
f- A′ an algebra morphism, then there is a spectral sequence

Ep,q2 = Hp
et(A,R

q f∗G) =⇒ Hn
et(A,G)

In particular, if Rj f∗G = 0 for all j > 0, then for all i ≥ 0 we have isomorphisms

Hi
et(A, f∗G) ' Hi

et(A
′,G)

2.6 Tsen and Tate fields

Definition 2.23 A field K is said to be a Tsend-field if every homogeneous form
of degree deg with coefficients in K and n > degd variables has a non-trivial zero
in K.

For example, an algebraically closed field K is a Tsen0-field as any form in
n-variables defines a hypersurface in Pn−1

K . In fact, algebraic geometry tells us a
stronger story

Lemma 2.24 Let K be algebraically closed. If f1, . . . , fr are forms in n variables
over K and n > r, then these forms have a common non-trivial zero in K.
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Proof. Each fi defines a hypersurface V (fi) ⊂ - Pn−1
K . The intersection of r

hypersurfaces has dimension ≥ n− 1− r from which the claim follows. �

We want to extend this fact to higher Tsen-fields. The proof of the following
result is technical unenlightening inequality manipulation, see for example [30].

Proposition 2.25 Let K be a Tsend-field and f1, . . . , fr forms in n variables of
degree deg. If n > rdegd, then they have a non-trivial common zero in K.

For our purposes the main interest in Tsen-fields comes from :

Theorem 2.26 Let K be of transcendence degree d over an algebraically closed
field C, then K is a Tsend-field.

Proof. First we claim that the purely transcendental field C(t1, . . . , td) is a Tsend-
field. By induction we have to show that if L is Tsenk, then L(t) is Tsenk+1.

By homogeneity we may assume that f(x1, . . . , xn) is a form of degree deg with
coefficients in L[t] and n > degk+1. For fixed s we introduce new variables y(s)

ij with
i ≤ n and 0 ≤ j ≤ s such that

xi = y
(s)
i0 + y

(s)
i1 t+ . . .+ y

(s)
is t

s

If r is the maximal degree of the coefficients occurring in f , then we can write

f(xi) = f0(y
(s)
ij ) + f1(y

(s)
ij )t+ . . .+ fdeg.s+r(y

(s)
ij )tdeg.s+r

where each fj is a form of degree deg in n(s + 1)-variables. By the proposition
above, these forms have a common zero in L provided

n(s+ 1) > degk(ds+ r + 1)⇐⇒ (n− degi+1)s > degi(r + 1)− n

which can be satisfied by taking s large enough. the common non-trivial zero in L
of the fj , gives a non-trivial zero of f in L[t].

By assumption, K is an algebraic extension of C(t1, . . . , td) which by the above
argument is Tsend. As the coefficients of any form over K lie in a finite extension
E of C(t1, . . . , td) it suffices to prove that E is Tsend.

Let f(x1, . . . , xn) be a form of degree deg in E with n > degd. Introduce new
variables yij with

xi = yi1e1 + . . . yikek

where ei is a basis of E over C(t1, . . . , td). Then,

f(xi) = f1(yij)e1 + . . .+ fk(yij)ek

where the fi are forms of degree deg in k.n variables over C(t1, . . . , td). Because
C(t1, . . . , td) is Tsend, these forms have a common zero as k.n > k.degd. Finding a
non-trivial zero of f in E is equivalent to finding a common non-trivial zero to the
f1, . . . , fk in C(t1, . . . , td), done. �

A direct application of this result is Tsen’s theorem :

Theorem 2.27 Let K be the functionfield of a curve C defined over an alge-
braically closed field. Then, the only central simple K-algebras are Mn(K). That
is, Br(K) = 1.
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Proof. Assume there exists a central division algebra ∆ of dimension n2 over K.
There is a finite Galois extension L/K such that ∆⊗ L = Mn(L). If x1, . . . , xn2 is
a K-basis for ∆, then the reduced norm of any x ∈ ∆,

N(x) = det(x⊗ 1)

is a form in n2 variables of degree n. Moreover, as x ⊗ 1 is invariant under the
action of Gal(L/K) the coefficients of this form actually lie in K.

By the main result, K is a Tsen1-field and N(x) has a non-trivial zero whenever
n2 > n. As the reduced norm is multiplicative, this contradicts N(x)N(x−1) = 1.
Hence, n = 1 and the only central division algebra is K itself. �

If K is the functionfield of a surface, we also have an immediate application :

Proposition 2.28 Let K be the functionfield of a surface defined over an alge-
braically closed field. If ∆ is a central simple K-algebra of dimension n2, then the
reduced norm map

N : ∆ - K

is surjective.

Proof. Let e1, . . . , en2 be a K-basis of ∆ and k ∈ K, then

N(
∑

xiei)− kxnn2+1

is a form of degree n in n2+1 variables. Since K is a Tsen2 field, it has a non-trivial
solution (x0

i ), but then, δ = (
∑
x0
i ei)x

−1
n2+1 has reduced norm equal to k. �

From the cohomological description of the Brauer group it is clear that we need
to have some control on the absolute Galois group GK = Gal(K/K). We will see
that finite transcendence degree forces some cohomology groups to vanish.

Definition 2.29 The cohomological dimension of a group G, cd(G) ≤ d if and only
if Hr(G,A) = 0 for all r > d and all torsion modules A ∈ G-mod.

Definition 2.30 A field K is said to be a Tated-field if the absolute Galois group
GK = Gal(K/K) satisfies cd(G) ≤ d.

First, we will reduce the condition cd(G) ≤ d to a more manageable one. To
start, one can show that a profinite group G (that is, a projective limit of finite
groups, see [30] for more details) has cd(G) ≤ d if and only if

Hd+1(G,A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we can
decompose the cohomology in its p-primary parts and relate their vanishing to the
cohomological dimension of the p-Sylow subgroups Gp of G. This problem can then
be verified by computing cohomology of finite simple Gp-modules of p-power order,
but for a profinite p-group there is just one such module namely Z/pZ with the
trivial action.

Combining these facts we have the following manageable criterium on cohomo-
logical dimension.

Proposition 2.31 cd(G) ≤ d if Hd+1(G,Z/pZ) = 0 for the simple G-modules with
trivial action Z/pZ.



62 CHAPTER 2. BRAUER-SEVERI VARIETIES.

We will need the following spectral sequence in Galois cohomology

Proposition 2.32 (Hochschild-Serre spectral sequence) If N is a closed normal
subgroup of a profinite group G, then

Ep,q2 = Hp(G/N,Hq(N,A)) =⇒ Hn(G,A)

holds for every continuous G-module A.

Now, we are in a position to state and prove Tate’s theorem

Theorem 2.33 Let K be of transcendence degree d over an algebraically closed
field, then K is a Tated-field.

Proof. Let C denote the algebraically closed basefield, then K is algebraic over
C(t1, . . . , td) and therefore

GK ⊂ - GC(t1,...,td)

Thus, K is Tated if C(t1, . . . , td) is Tated. By induction it suffices to prove

If cd(GL) ≤ k then cd(GL(t)) ≤ k + 1

Let L be the algebraic closure of L and M the algebraic closure of L(t). As L(t)
and L are linearly disjoint over L we have the following diagram of extensions and
Galois groups

L ⊂ - L(t) ⊂
GL(t) - M

L

GL

∪

6

⊂ - L(t)

GL

∪

6

⊂

GL
(t
)

-

where GL(t)/GL(t) ' GL.
We claim that cd(GL(t)) ≤ 1. Consider the exact sequence of GL(t)-modules

0 - µp - M∗ (−)p

- M∗ - 0

where µp is the subgroup (of C∗) of p-roots of unity. As GL(t) acts trivially on
µp it is after a choice of primitive p-th root of one isomorphic to Z/pZ. Taking
cohomology with respect to the subgroup GL(t) we obtain

0 = H1(GL(t),M∗) - H2(GL(t),Z/pZ) - H2(GL(t),M∗) = Br(L(t))

But the last term vanishes by Tsen’s theorem as L(t) is the functionfield of a curve
defined over the algebraically closed field L. Therefore, H2(GL(t),Z/pZ) = 0 for all
simple modules Z/pZ, whence cd(GL(t)) ≤ 1.

By the inductive assumption we have cd(GL) ≤ k and now we are going to use
exactness of the sequence

0 - GL - GL(t)
- GL(t)

- 0

to prove that cd(GL(t)) ≤ k + 1. For, let A be a torsion GL(t)-module and consider
the Hochschild-Serre spectral sequence

Ep,q2 = Hp(GL,Hq(GL(t), A)) =⇒ Hn(GL(t), A)
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By the restrictions on the cohomological dimensions of GL and GL(t) the level two
term has following shape

Ep,q2 =
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where the only non-zero groups are lying in the lower rectangular region. Therefore,
all Ep,q∞ = 0 for p+q > k+1. Now, all the composition factors of Hk+2(GL(t), A) are
lying on the indicated diagonal line and hence are zero. Thus, Hk+2(GL(t), A) = 0
for all torsion GL(t)-modules A and hence cd(GL(t)) ≤ k + 1. �

Theorem 2.34 If A is a constant sheaf of an Abelian torsion group A on Ket,
then

Hi
et(K,A) = 0

whenever i > trdegC(K).

2.7 Coniveau spectral sequence

Consider the setting
A

i - K

k

π

?

where A is a discrete valuation ring in K with residue field A/m = k. As always, we
will assume that A is a C-algebra. By now we have a grip on the Galois cohomology
groups

Hi
et(K,µ

⊗l
n ) and Hi

et(k, µ
⊗l
n )

and we will use this information to compute the étale cohomology groups

Hi
et(A,µ

⊗l
n )

Here, µ⊗ln = µn ⊗ . . .⊗ µn︸ ︷︷ ︸
l

where the tensorproduct is as sheafs of invertible Zn =

Z/nZ-modules.
We will consider the Leray spectral sequence for i and hence have to compute

the derived sheaves of the direct image

Lemma 2.35 1. R0 i∗µ
⊗l
n ' µ⊗ln on Aet.

2. R1 i∗µ
⊗l
n ' µ⊗l−1

n concentrated in m.

3. Rj i∗µ⊗ln ' 0 whenever j ≥ 2.
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Proof. The strict Henselizations of A at the two primes {0,m} are resp.

Ash0 ' K and Ashm ' k{t}

where K (resp. k) is the algebraic closure of K (resp. k). Therefore,

(Rj i∗µ⊗ln )0 = Hj
et(K, µ⊗ln )

which is zero for i ≥ 1 and µ⊗ln for j = 0. Further, Ashm ⊗AK is the field of fractions
of k{t} and hence is of transcendence degree one over the algebraically closed field
k, whence

(Rj i∗µ⊗ln )m = Hj
et(L, µ

⊗l
n )

which is zero for j ≥ 2 because L is Tate1.
For the field-tower K ⊂ L ⊂ K we have that GL = Ẑ = lim� µm because the

only Galois extensions of L are the Kummer extensions obtained by adjoining m
√
t.

But then,

H1
et(L, µ

⊗l
n ) = H1(Ẑ, µ⊗ln (K)) = Hom(Ẑ, µ⊗ln (K)) = µ⊗l−1

n

from which the claims follow. �

Theorem 2.36 We have a long exact sequence

0 - H1(A,µ⊗ln ) - H1(K,µ⊗ln ) - H0(k, µ⊗l−1
n ) -

H2(A,µ⊗ln ) - H2(K,µ⊗ln ) - H1(k, µ⊗l−1
n ) - . . .

Proof. By the foregoing lemma, the second term of the Leray spectral sequence for
i∗µ
⊗l
n looks like

0 0 0 . . .

H0(k, µ⊗l−1
n ) H1(k, µ⊗l−1

n ) H2(k, µ⊗l−1
n ) . . .

H0(A,µ⊗ln ) H1(A,µ⊗ln ) H2(A,µ⊗ln ) . . .

with connecting morphisms

Hi−1
et (k, µ⊗l−1

n )
αi- Hi+1

et (A,µ⊗ln )

The spectral sequences converges to its limiting term which looks like
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0 0 0 . . .

Ker α1 Ker α2 Ker α3 . . .

H0(A,µ⊗ln ) H1(A,µ⊗ln ) Coker α1 . . .

and the Leray sequence gives the short exact sequences

0 - H1
et(A,µ

⊗l
n ) - H1

et(K,µ
⊗l
n ) - Ker α1

- 0

0 - Coker α1
- H2

et(K,µ
⊗l
n ) - Ker α2

- 0

0 - Coker αi−1
- Hi

et(K,µ
⊗l
n ) - Ker αi - 0

and gluing these sequences gives us the required result. �

In particular, if A is a discrete valuation ring of K with residue field k we have
for each i a connecting morphism

Hi
et(K,µ

⊗l
n )

∂i,A- Hi−1
et (k, µ⊗l−1

n )

Like any other topology, the étale topology can be defined locally on any scheme
X. That is, we call a morphism of schemes

Y
f- X

an étale extension (resp. cover) if locally f has the form

fa | Ui : Ai = Γ(Ui,OX) - Bi = Γ(f−1(Ui),OY )

with Ai - Bi an étale extension (resp. cover) of algebras.
Again, we can construct the étale site of X locally and denote it with Xet.

Presheaves and sheaves of groups on Xet are defined similarly and the right derived
functors of the left exact global sections functor

Γ : Sab(Xet) - Ab

will be called the cohomology functors and we denote

Ri Γ(G) = Hi
et(X,G)

From now on we restrict to the case when X is a smooth, irreducible projec-
tive variety of dimension d over C. In this case, we can initiate the computation
of the cohomology groups Hi

et(X,µ
⊗l
n ) via Galois cohomology of functionfields of

subvarieties using the coniveau spectral sequence

Theorem 2.37 Let X be a smooth irreducible variety over C. Let X(p) denote the
set of irreducible subvarieties x of X of codimension p with functionfield C(x), then
there exists a coniveau spectral sequence

Ep.q1 =
⊕

x∈X(p)

Hq−p
et (C(x), µ⊗l−pn ) =⇒ Hp+q

et (X,µ⊗ln )
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In contrast to the spectral sequences used before, the existence of the coniveau
spectral sequence by no means follows from general principles. In it, a lot of heavy
machinery on étale cohomology of schemes is encoded. In particular,

• cohomology groups with support of a closed subscheme, see for example [20,
p. 91-94], and

• cohomological purity and duality, see [20, p. 241-252]

a detailed exposition of which would take us too far afield. For more details we
refer the reader to [5].

Using the results on cohomological dimension and vanishing of Galois cohomol-
ogy of µ⊗kn when the index is larger than the transcendence degree, we see that the
coniveau spectral sequence has the following shape

Ep,q1 =

6

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

. . .

. . .

. . .

. . .

. . .

. . .

�
�

�
�

�
�

�
�

�
�

�
�

�

q

p

d

where the only non-zero terms are in the indicated region.
Let us understand the connecting morphisms at the first level, a typical instance

of which is ⊕
x∈X(p)

Hi(C(x), µ⊕l−pn ) -
⊕

y∈X(p+1)

Hi−1(C(y), µ⊕l−p−1
n )

and consider one of the closed irreducible subvarieties x of X of codimension p and
one of those y of codimension p+ 1. Then, either y is not contained in x in which
case the component map

Hi(C(x), µ⊕l−pn ) - Hi−1(C(y), µ⊕l−p−1
n )

is the zero map. Or, y is contained in x and hence defines a codimension one
subvariety of x. That is, y defines a discrete valuation on C(x) with residue field
C(y). In this case, the above component map is the connecting morphism defined
above.

In particular, let K be the functionfield of X. Then we can define the unramified
cohomology groups

F i,ln (K/C) = Ker Hi(K,µ⊗ln )
⊕∂i,A- ⊕Hi−1(kA, µ⊗l−1

n )

where the sum is taken over all discrete valuation rings A of K (or equivalently, the
irreducible codimension one subvarieties of X) with residue field kA. By definition,
this is a (stable) birational invariant of X. In particular, if X is (stably) rational
over C, then

F i,ln (K/C) = 0 for all i, l ≥ 0
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2.8 The Artin-Mumford exact sequence

In this section S will be a smooth irreducible projective surface.

Definition 2.38 S is called simply connected if every étale cover Y - S is
trivial, that is, Y is isomorphic to a finite disjoint union of copies of S.

The first term of the coniveau spectral sequence of S has following shape

µn 0 0 0

0 0

0

00 0 0

H1(C(S), µn) ⊕C Zn

H2(C(S), µn) ⊕P µ−1
n⊕C H1(C(S), Zn)

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

where C runs over all irreducible curves on S and P over all points of S.

Lemma 2.39 For any smooth S we have H1(C(S), µn) -- ⊕CZn. If S is simply
connected, H1

et(S, µn) = 0.

Proof. Using the Kummer sequence 1 - µn - Gm
(−)- Gm

- 1 and
Hilbert 90 we obtain that

H1
et(C(S), µn) = C(S)∗/C(S)∗n

The first claim follows from the exact diagram describing divisors of rational func-
tions

µn ' µn 0

0 - C∗
?

- C(S)∗
?

div- ⊕CZ
?

- 0

0 - C∗
?

- C(S)∗

(−)n

?
div- ⊕CZ

n.

?
- 0

0
?

⊕CZn
?

' ⊕CZn
?

By the coniveau spectral sequence we have that H1
et(S, µn) is equal to the kernel of

the morphism
H1
et(C(S), µn)

γ- ⊕C Zn
and in particular, H1(S, µn) ⊂ - H1(C(S), µn).
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As for the second claim, an element in H1(S, µn) determines a cyclic extension
L = C(S) n

√
f with f ∈ C(S)∗/C(S)∗n such that in each fieldcomponent Li of L

there is an étale cover Ti - S with C(Ti) = Li. By assumption no non-trivial
étale covers exist whence f = 1 ∈ C(S)∗/C(S)∗n. �

If we invoke another major tool in étale cohomology of schemes, Poincaré du-
ality, see for example [20, VI,§11], we obtain the following information on the co-
homology groups for S.

Proposition 2.40 (Poincaré duality for S) If S is simply connected, then

1. H0
et(S, µn) = µn

2. H1
et(S, µn) = 0

3. H3
et(S, µn) = 0

4. H4
et(S, µn) = µ−1

n

Proof. The third claim follows from the second as both groups are dual to each
other. The last claim follows from the fact that for any smooth irreducible projective
variety X of dimension d one has that

H2d
et (X,µn) ' µ⊗1−d

n

�

We are now in a position to state and prove the important

Theorem 2.41 (Artin-Mumford exact sequence) If S is a simply connected smooth
projective surface, then the sequence

0 - Brn(S) - Brn(C(S)) - ⊕C C(C)∗/C(C)∗n -

- ⊕P µ−1
n

- µ−1
n

- 0

is exact.

Proof. The top complex in the first term of the coniveau spectral sequence for S
was

H2(C(S), µn)
α- ⊕C H1(C(C),Zn)

β- ⊕P µn
The second term of the spectral sequence (which is also the limiting term) has the
following form

µn 0 0 0

0 0

0

00 0 0

Ker γ Coker γ

Ker α Coker βKer β/Im α

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.
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By the foregoing lemma we know that Coker γ = 0. By Poincare duality we know
that Ker β = Im α and Coker β = µ−1

n . Hence, the top complex was exact in its
middle term and can be extended to an exact sequence

0 - H2(S, µn) - H2(C(S), µn) - ⊕C H1(C(C),Zn) -

⊕Pµ−1
n

- µ−1
n

- 0

As Zn ' µn the third term is equal to ⊕CC(C)∗/C(C)∗n by the argument given
before and the second term we remember to be Brn(C(S). The identification of
Brn(S) with H2(S, µn) will be explained below. �

Some immediate consequences can be drawn from this :

• For a smooth simply connected surface S, Brn(S) is a birational invariant (it
is the birational invariant F 2,1

n (C(S)/C) of the foregoing section.

• In particular, if S = P2 we have that Brn(P2) = 0 and we obtain the descrip-
tion of Brn(C(x, y)) by Zn-wrinkles as

0 - Brn C(x, y) - ⊕C C(C)∗/C(C)∗n - ⊕P µ−1
n

- µn - 0

Example 2.42 If S is not necessarily simply connected, show that any class in
Br(C(S))n determines a Zn-wrinkle.

Example 2.43 IfX is a smooth irreducible rational projective variety of dimension
d, show that the obstruction to classifying Br(C(X))n by Zn-wrinkles is given by
H3
et(X,µn).

We will give a ringtheoretical interpretation of the maps in the Artin-Mumford
sequence. Observe that nearly all maps are those of the top complex of the first term
in the coniveau spectral sequence for S. We gave an explicit description of them
using discrete valuation rings. The statements below follow from this description.

Let us consider a discrete valuation ring A with field of fractions K and residue
field k. Let ∆ be a central simple K-algebra of dimension n2.

Definition 2.44 An A-subalgebra Λ of ∆ will be called an A-order if it is a free
A-module of rank n2 with Λ.K = ∆. An A-order is said to be maximal if it is not
properly contained in any other order.

In order to study maximal orders in ∆ (they will turn out to be all conjugated),
we consider the completion Â with respect to the m-adic filtration where m = At
with t a uniformizing parameter of A. K̂ will denote the field of fractions of Â and
∆̂ = ∆⊗K K̂.

Because ∆̂ is a central simple K̂-algebra of dimension n2 it is of the form

∆̂ = Mt(D)

where D is a division algebra with center K̂ of dimension s2 and hence n = s.t. We
call t the capacity of ∆ at A.

In D we can construct a unique maximal Â-order Γ, namely the integral closure
of Â in D. We can view Γ as a discrete valuation ring extending the valuation v
defined by A on K. If v : K̂ - Z, then this extended valuation

w : D - n−2Z is defined as w(a) = (K̂(a) : K̂)−1v(NK̂(a)/K̂(a))
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for every a ∈ D where K̂(a) is the subfield generated by a and N is the norm map
of fields.

The image of w is a subgroup of the form e−1Z ⊂ - n−2.Z. The number
e = e(D/K̂) is called the ramification index of D over K̂. We can use it to normalize
the valuation w to

vD : D - Z defined by vD(a) =
e

n2
v(ND/K̂(a))

With these conventions we have that vD(t) = e.
The maximal order Γ is then the subalgebra of all elements a ∈ D with vD(a) ≥

0. It has a unique maximal ideal generated by a prime element T and we have that
Γ = Γ

T Γ is a division algebra finite dimensional over Â/tÂ = k (but not necessarily
having k as its center).

The inertial degree of D over K̂ is defined to be the number f = f(D/K̂) = (Γ :
k) and one shows that

s2 = e.f and e | s whence s | f

After this detour, we can now take Λ = Mt(Γ) as a maximal Â-order in ∆̂.
One shows that all other maximal Â-orders are conjugated to Λ. Λ has a unique
maximal ideal M with Λ = Mt(Γ).

Definition 2.45 With notations as above, we call the numbers e = e(D/K̂), f =
f(D/K̂) and t resp. the ramification, inertia and capacity of the central simple
algebra ∆ at A. If e = 1 we call Λ an Azumaya algebra over A, or equivalently, if
Λ/tΛ is a central simple k-algebra of dimension n2.

Now let us consider the case of a discrete valuation ring A in K such that the
residue field k is Tsen1. The center of the division algebra Γ is a finite dimensional
field extension of k and hence is also Tsen1 whence has trivial Brauer group and
therefore must coincide with Γ. Hence,

Γ = k(a)

a commutative field, for some a ∈ Γ. But then, f ≤ s and we have e = f = s and
k(a) is a cyclic degree s field extension of k.

Because s | n, the cyclic extension k(a) determines an element of H1
et(k,Zn).

Definition 2.46 Let Z be a normal domain with field of fractions K and let ∆ be
a central simple K-algebra of dimension n2. A Z-order B is a subalgebra which is a
finitely generated Z-module. It is called maximal if it is not properly contained in
any other order. One can show that B is a maximal Z-order if and only if Λ = Bp
is a maximal order over the discrete valuation ring A = Zp for every height one
prime ideal p of Z.

Return to the situation of an irreducible smooth projective surface S. If ∆ is a
central simple C(S)-algebra of dimension n2, we define a maximal order as a sheaf
A of OS-orders in ∆ which for an open affine cover Ui ⊂ - S is such that

Ai = Γ(Ui,A) is a maximal Zi = Γ(Ui,OS) order in ∆

Any irreducible curve C on S defines a discrete valuation ring on C(S) with residue
field C(C) which is Tsen1. Hence, the above argument can be applied to obtain
from A a cyclic extension of C(C), that is, an element of C(C)∗/C(C)∗n.

Definition 2.47 We call the union of the curves C such that A determines a non-
trivial cyclic extension of C(C) the ramification divisor of ∆ (or of A).
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The map in the Artin-Mumford exact sequence

Brn(C(S)) -
⊕
C

H1
et(C(C), µn)

assigns to the class of ∆ the cyclic extensions introduced above.

Definition 2.48 An S-Azumaya algebra (of index n) is a sheaf of maximal orders
in a central simple C(S)-algebra ∆ of dimension n2 such that it is Azumaya at each
curve C, that is, such that [∆] lies in the kernel of the above map.

Observe that this definition of Azumaya algebra coincides with the one given
in the discussion of twisted forms of matrices. One can show that if A and A′ are
S-Azumaya algebras of index n resp. n′, then A⊗OS

A′ is an Azumaya algebra of
index n.n′. We call an Azumaya algebra trivial if it is of the form End(P) where
P is a vectorbundle over S. The equivalence classes of S-Azumaya algebras can be
given a group-structure called the Brauer-group Br(S) of the surface S.

2.9 Brauer-Severi schemes

Now that we have some control over the central simple algebras over functionfields,
we will generalize the classical notion of Brauer-Severi variety of a central simple
algebra to the setting of (maximal) orders.

Fix a projective normal variety X with function field C(X) and let ∆ be a
central simple C(X)-algebra of dimension n2. Let A be a sheaf of OX -algebras. We
call A an OX -order in ∆ if and only if for every affine open subset U ⊂ - X we
have that the sections A(U) = Γ(U,A) is a finite module over the integrally closed
domain R(U) = Γ(U,OX) such that

A(U)⊗R(U) C(X) ' ∆

We will define the Brauer-Severi scheme BS(A) of A locally so we fix an affine
open set U and denote A = A(U) and R = R(U). Let K be the algebraic closure of
C(X), then we have the natural inclusions

A ⊂ - ∆ ⊂ - ∆⊗K 'Mn(K)

R
∪

6

⊂ - C(X)
∪

6

⊂ - K
∪

6

By Galois descent we can define a linear trace map ∆
t- C(X) such that for all

δ ∈ ∆
t(δ) = tr(δ ⊗ 1)

with tr the usual trace map on Mn(K). That is, A
t- A is a trace map on the

order A satisfying the Cayley-Hamilton identities of n × n matrices such that the
image of the trace map is the center R..

One of the major results we will prove in chapter 4 is that this allows to re-
construct both the order A and the center R from geometrical data. Consider the
affine scheme of all n-dimensional trace preserving representations of A,

reptn A = {A φ- Mn(C) | tr ◦ φ = φ ◦ t }

where tr is the ordinary trace map on Mn(C). Conjugation by GLn(C) in the target
space Mn(C) induces a GLn(C)-action on reptn A. We will show in chapter 4 that
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• A is the ring of GLn(C)-equivariant maps from reptn A to Mn(C), and

• R is the ring of polynomial GLn(C)-invariants on reptn A.

We use these representation spaces to define the Brauer-Severi scheme BS(A) in a
fashion very similar to the Hilbert scheme construction in the previous chapter. In
fact, historically these varieties were introduced and studied by M. Nori [22] who
called them noncommutative Hilbert schemes. We follow here the account of M.
Van den Bergh in [31].

Consider the GLn(C) action on the product scheme reptn A× Cn given by

g.(φ, v) = (g φ g−1, gv)

In this product we consider the set of Brauer stable points which are

Brauers(A) = {(φ, v) | φ(A)v = Cn}

which is also the subset of points with trivial stabilizer subgroup. Hence, every
GLn(C)-orbit in Brauers(A) is closed and we can form the orbit space which we
call the Brauer-Severi scheme of the order A

BS(A) = Brauers(A)/GLn(C).

This is shown to be a projective space bundle over the quotient variety
reptn A/GLn(C) which by the above is the variety corresponding to R, that is,
the chosen affine open subset of the projective normal variety X.

For arbitrary orders not much can be said about these Brauer-Severi schemes.
We will now restrict to smooth orders A that is such that their representation space
reptn A is a smooth GLn(C)-variety. In chapter 5 we will prove that this geometric
condition is equivalent to the algebraic characterization of A via the lifting property
modulo nilpotent ideals in the category of algebras equipped with a trace map
satisfying the Cayley-Hamilton identities of n× n matrices.

Lemma 2.49 Let A be a smooth order, that is, reptn A is a smooth variety. Then,
the Brauer-Severi scheme BS(A) is a smooth variety.

Proof. As the action of GLn(C) on Brauers(A) is free, it suffices to prove that
Brauers(A) is a smooth variety. As Brauers(A) is a Zariski open subset of the
variety reptn A× Cn which is smooth by assumption, the result follows. �

Remains to classify the smooth orders A. The strategy we will follow is : first
compute the étale local structure of these orders, that is, if m/R is a maximal ideal
of R we describe

Âm = A⊗R R̂m

These structures will follow by combining the étale slice results in invariant the-
ory with the geometric reconstruction of an order A from its representation space
reptn A. The local structures can be classified combinatorial by quiver-data.

In the special case of orders over smooth surfaces we will show that the relevant
data is given a Zn-loop. That is,
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• A two loop quiver Aklm with dimension vector α = (1, . . . , 1)

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

//

??��������

OO

OO

__????????

oo

//

oo

OO

��

��

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

and the vertices numbered as indicated. In this picture we make the natural
changes whenever k or l is zero.

• An unordered partition of n in k + l +m nonzero parts

p = (p1, . . . , pk+l+m)

associated to the vertices of the quiver

We will prove in chapter 6 that a Zn-loop encodes the following algebraic data.
Let m be a maximal ideal of R, then there is a closed GLn(C)-orbit in reptn A
corresponding to m. This closed orbit determines a semi-simple n-dimensional rep-
resentation of A. the fact that all dimension components are equal to one asserts
that all the simple components of this representation occur with multiplicity one and
the components of the partition p give the dimensions of these simple components.

We will prove in chapter 6 a local characterization of smooth orders in arbitrary
dimension. In the special case of surfaces we have the following result

Theorem 2.50 Let ∆ be a central simple algebra of dimension n2 over C(S) where
S is a smooth projective surface and let A be an OS-order in ∆. Then A is a sheaf
of smooth orders if and only if for every affine open subset U ⊂ - S and section
algebras A = Γ(U,A) and R = Γ(U,OS) we have for every maximal ideal m a Zn-
loop (Aklm, p) such that in local coordinates x, y of S near the point corresponding
to m

Âm '

@
@

@
@

@
@

@
@

@
@

@
@

@
@

(x)

(x)

(y)

(y)

(1)

(1)
(1)

(1)

(1)

(x)

(y)

(x, y)︸ ︷︷ ︸
k

︸ ︷︷ ︸
l

︸ ︷︷ ︸
m

⊂ - Mn(C[[x, y]])
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where at spot (i, j) with 1 ≤ i, j ≤ k + l +m there is a block of dimension pi × pj
with entries the indicated ideal of C[[x, y]].

Using such an explicit local description of the order, it is also possible to deter-
mine the étale local structure of the Brauer-Severi variety BS(A) in a neighborhood
of the closed fiber corresponding to m as well as the structure of the fiber π−1(m).
Assume A is locally of type (Aklm, p) and construct the extended quiver
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k+l+1

k+l+m

That is, we add on extra vertex labeled zero and connect it to vertex i by pi directed
arrows where pi is the i-th component of the unordered partition p. In chapter 8
we will prove that the local structure of BS(A) is determined by the moduli space
of θ-stable representations of this extended quiver for a certain character θ.

The fiber of the structural morphism BS(B)
π-- S over the point corresponding

to m we will show in chapter 8 to be the moduli space of the θ-stable representations
in the nullcone of the quiver.

Rather than introducing all these concepts here we will illustrate these results
in the case of the smooth orders in quaternion algebras considered by M. Artin and
D. Mumford in [3].

Example 2.51 Smooth quaternion orders over surfaces.
Let A be a maximal order in a quaternion division algebra over a smooth projec-

tive surface S such that the ramification divisor is a disjoint union of smooth curves.
We restrict to affine sections on an affine open subset U and call them again A and
R. If m / R is a maximal ideal corresponding to a point on S not contained in the
ramification divisor of A, then Am is an Azumaya algebra and as the Brauer group
of every Henselian local ring is trivial, it follows that in these points the étale local
structure of A must be

Âm 'M2(C[[x, y]])

for suitable local variables x and y. If however m corresponds to a point on the
ramification divisor we have seen before that a local description of Am is the free
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Rm-module spanned by {1, i, j, ij} such that
i2 = a

j2 = bt

ji = −ij

where a, b are units in Rm and t is a local equation of the divisor in the point. That
is, after splitting ∆ with say the quadratic extension by adding

√
a we can view the

up-tensored Am to be the subalgebra over the center by the matrices[√
a 0

0 −
√
a

] [
0 t
−b 0

]
Hence, if we take our local variables to be such that x = t we obtain for the étale
local structure

Âm '
[
C[[x, y]] (x)
C[[x, y]] C[[x, y]]

]
.

In our quiver-approach there are just two possibilities for Z2-loops. They are

• type 1 : A001 = 1(/).*-+,qq-- and p = 2 ,

• type 2 : A101 = 1(/).*-+, 1(/).*-+,
__

  
ee and p =

1
1 .

We observe that type 1 is precisely the Azumaya case and type 2 corresponds to
a point on the ramification divisor. To compute the fiber of BS(A) over a type 1
point (an Azumaya point) we have to consider the quiver

1(/).*-+,

1(/).*-+,

KS
qq--

and we need to classify orbits of θ-stable representations where θ = (2,−2) in
the nullcone containing the vertex space in v0. Being in the nullcone means that
all evaluations around oriented cycles in the quiver should be zero, so the two
loop-matrices must be zero. Being θ-stable means that the representation has no
proper subrepresentation, say with dimension vector β = (1, n1) such that 〈θ, β >=
2− 2n1 > 0. In this case this means that either of the two matrices corresponding
to the two extra arrows must be nonzero. That is, the relevant representation space
is C2. Considering the C∗ × C∗-action on these representations

(λ, µ).(a, b) = µ
λ (a, b)

we see that the classifying space is P1(C) as it should be over an Azumaya point.
The fiber over a type 2 point (a ramified point) is determined by the quiver

1(/).*-+, 1(/).*-+,

1(/).*-+,

__
  

WW///////////

GG�����������

ee
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Again, we have to consider representations in the nullcone, meaning that the loop-
matrix is zero and that at least one of the two arrows in the A101-quiver must be zero.
This time we have to consider θ-stable representations where θ = (2,−1,−1) which
means that the representation is not allowed to have a proper subrepresentation of
dimension vector β = (1, n1, n2) such that 〈θ, β〉 = 2 − n1 − n2 > 0. If one of the
arrows a in A101 is non-zero this means that the extra arrow ending in the source
of a must be nonzero and if both arrows in A101 are zero the two extra arrows must
be non-zero. That is, we have to classify the orbits of the quiver-representations

1(/).*-+, 1(/).*-+,

1(/).*-+,

ooWW///////////

GG�����������

∨ 1(/).*-+, 1(/).*-+,

1(/).*-+,

//WW///////////

GG�����������

giving us the required P1 ∨ P1 as classifying space.

In this book we will give combinatorial tools to extend these descriptions of
Brauer-Severi schemes of smooth orders both the higher n and to higher dimensional
base varieties.
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Classical Structures.

Among the plenitude of Quillen-smooth algebras there is a small subclass of well
understood examples : the path algebras of quivers. The main result we will prove
in this part asserts that for an arbitrary Quillen-smooth algebra A, the local study
of the approximation at level n, A@n, is controlled by a quiver setting. In this intro-
duction, we will first give an example of this theory and then we will briefly indicate
the relationship between this reduction result and the theory of A∞-algebras.

Consider Artin’s braid group B3 on three strings. B3 has the presentation

B3 ' 〈L,R | LR−1L = R−1LR−1〉

where L and R are the fundamental 3-braids

L R

If we let S = LR−1L and T = R−1L, an algebraic manipulation shows that

B3 = 〈S, T | T 3 = S2〉

is an equivalent presentation for B3. The center of B3 is the infinite cyclic group
generated by the braid

Z = S2 = (LR−1L)2 = (R−1L)3 = T 3

It follows from the second presentation of B3 that the quotient group modulo the
center is isomorphic to

B3

〈Z〉
' 〈s, t | s2 = 1 = t3〉 ' Z2 ∗ Z3

the free product of the cyclic group of order 2 (with generator s) and the cyclic
group of order 3 (with generator t). This group is isomorphic to the modular group
PSL2(Z) via

L -
[
1 1
0 1

]
and R -

[
1 0
1 1

]
It is well known that the modular group PSL2(Z) acts on the upper half-plane H2

by left multiplication in the usual way, that is[
a b
c d

]
: H2 - H2 given by z - az + b

cz + d
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The fundamental domain H2/PSL2(Z) for this action is the hyperbolic triangle

and the action defines a quilt-tiling [?] on the hyperbolic plane, indexed by elements
of PSL2(Z) = Z2 ∗ Z3

By the above, the representation theory of the 3-string braid group B3 is essentially
reduced to that of the modular group PSL2(Z). The latter can be studied using
noncommutative geometry as the group algebra CPSL2(Z) is a Quillen-smooth
algebra. Indeed,

CPSL2(Z) ' CZ2 ∗ CZ3 ' (C× C) ∗ (C× C× C)

and the free product of Quillen-smooth algebras is again Quillen-smooth as follows
immediately from the universal property of free products. Phrased differently, the
group algebra CPSL2(Z) is the coordinate ring of the noncommutative product of
two commutative points with three commutative points.

For a fixed integer n we want to determine the isomorphism classes of all n-
dimensional representations of PSL2(Z), or equivalently, of the Quillen-smooth
algebra CPSL2(Z). We give a geometric reformulation of this problem. Let
repn CPSL2(Z) be the representation variety of CPSL2(Z), that is, its geomet-
ric points are algebra morphisms

CPSL2(Z)
φ- Mn(C)

From the presentation of PSL2(Z) we see that we can identify it with the closed
subvariety of the affine space Mn(C)⊕Mn(C)

repn CPSL2(Z) = {(A,B) ∈Mn(C)⊕Mn(C) | A2 = rr
n = B3}

It follows from Quillen-smoothness that repn CPSL2(Z) is a smooth affine variety
(though not necessarily connected) for every n. On this representation space, the
group of invertible matrices GLn(C) acts by simultaneous conjugation, that is

g.(A,B) = (gAg−1, gBg−1)
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and isomorphism classes of representations correspond to GLn(C)-orbits. That is,
we have to classify the orbits in repn CPSL2(Z). For n > 1 there is no Hausdorff
orbit-space due to the existence of non-closed orbits. For this reason, the classifi-
cation of isomorphism classes of n-dimensional representations of PSL2(Z) is split
into two sub-problems :

• The construction of an algebraic quotient map

repn CPSL2(Z)
π-- issn CPSL2(Z)

classifying closed GLn(C)-orbits, which we will show to be the same as iso-
morphism classes of semi-simple n-dimensional representations.

• For x ∈ issn CPSL2(Z), the classification of all orbits in the fiber π−1(ξ).
That is, if Mξ is the corresponding semi-simple n-dimensional representation,
we want to classify all representations having Mξ as the direct sum of its
Jordan-Hölder components.

To solve the first, we introduce the approximation at level n, denoted by
CPSL2(Z)@n. To define it we first adjoin formal traces to the groupalgebra. That
is, we consider the commutative polynomial algebra in the variables tw where w
runs through all necklaces w of length l ≥ 0

�

�)))))

� HHHHH
�

�
vvvvv

�
��
��
�

�

))
))

)

�
HHHHH

�

�vvvvv

�����

x
w

where each of beads is either s or t subject to the conditions that no two (resp.
three) consecutive beads are labeled s (resp. t). With CPSL2(Z)t we denote the
tensor product C[tw | w necklace] ⊗C CPSL2(Z) and there is a natural C-linear
trace map

CPSL2(Z)t
tr- C[tw | w necklace]

defined by sending each monomial m = si1 . . . til in the noncommuting variables s
and t to tw where w is the cyclic word constructed from m. As we are interested
in n-dimensional representations we would like to interpret tw as the character
tr(m) = Tr(Ai1 . . . Bil). For this reason we consider the quotient

CPSL2(Z) =
CPSL2(Z)t

(t1 − n, χ(n)
m (m))

where for each monomial m we define the formal Cayley-Hamilton polynomial
χ

(n)
m (t) of m of degree n to be the polynomial in C[tw | w][t] obtained after ex-

pressing the coefficients of the polynomial f(t) =
∏n
i=1(t−λi) which are symmetric

functions in the λi as polynomials in the Newton functions ηi =
∑
λij and replac-

ing ηi by tr(mi). By construction it follows that there is a one-to-one correspon-
dence between n-dimensional representations of the group algebra CPSL2(Z) and
n-dimensional trace preserving representations of CPSL2(Z)@n. We will prove in
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chapter 4 that CPSL2(Z)@n is a finitely generated module over the commutative
central subalgebra tr(CPSL2(Z)@n) which is also

tr(CPSL2(Z)@n) = C[issn PSL2(Z)]

the coordinate ring of the quotient variety as semi-simple representa-
tions are determined by their characters. The algebraic quotient map
repn PSL2(Z) -- issn PSL2(Z) is given by sending an n-dimensional represen-
tation to its set of characters tr(Ai1 . . . Bil). Moreover, we will prove in chapter 5
that the approximation at level n can be geometrically reconstructed

CPSL2(Z)@n = { repn PSL2(Z)
equiv - Mn(C) }

as the algebra of all GLn(C)-equivariant maps from the representation space to n×n
matrices. Both results are valid for any affine C-algebra A and follow from invari-
ant theory and the generic case of m-tuples of n × n matrices under simultaneous
conjugation, which we will prove in chapter 3.

Now, let ξ ∈ issn PSL2(Z) be the point corresponding to the semi-simple n-
dimensional representation

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct irreducible di-dimensional representations which occur in
Mξ with multiplicity ei (hence, n =

∑
diei). Using the theory of étale slices we will

prove in chapter 5 that the étale local structure of the quotient variety issn PSL2(Z)
in a neighborhood of ξ is fully determined by combinatorial data consisting of

• a quiver Qξ on k vertices corresponding to the distinct simple components of
Mξ, and

• a dimension vector αξ = (e1, . . . , ek) corresponding to the multiplicities of
these simple components in Mξ.

The local quiver Qξ is constructed as follows (a proof will be given in chapter 7).
If S is a simple PSL2(Z)-representation, we can decompose its restrictions to the
cyclic subgroups Z2 and Z3 into one-dimensional eigenspaces{

S ↓Z2 ' E⊕a1
1 ⊕ E⊕a2

−1

S ↓Z3 ' F⊕b11 ⊕ F⊕b2ζ ⊕ F⊕b3ζ2

where Eλ resp. Fλ are the one-dimensional simple representations on which s resp.
t acts via multiplication with λ. We will call this 5-tuple

τ(S) = (/).*-+,a2

(/).*-+,a1

(/).*-+,b3

(/).*-+,b2

(/).*-+,b1

to be the type of S. If the dimension of S, d(S) = d, we will show in chapter 7 that
these numbers must satisfy the relations (or see [?] for another proof){

d = a1 + a2 = b1 + b2 + b3

ai ≥ bj for all i, j
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With these notations, the local quiver Qξ has the following local shape for every
two of its vertices vi and vj

(/).*-+,ei (/).*-+,ejaii 99 ajjee

aij

))

aji

ii

where the numbers of multiple arrows and loops are determined by the formulas{
aij = d(Si)d(Sj)− 〈τ(Si), τ(Sj)〉 when i 6= j

aii = 1 + d(Si)2 − 〈τ(Si), τ(Si)〉

where 〈−,−〉 is the usual inproduct on 5-tuples. For example, iss4 PSL2(Z) has
several components of dimension 3 and 2. For one of the three 3-dimensional com-
ponents, the different types of semi-simples Mξ and corresponding local quivers Qξ
of the 3-dimensional component are listed below.
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In chapter 5 we prove that the étale local structure of issn PSL2(Z) near ξ is
isomorphic to that of issαξ

Qξ near the trivial representation. The local algebra of
the latter is generated by traces along oriented cycles in Qξ. That is, for every arrow

(/).*-+,ei(/).*-+,ej
aaoo we take an ej × ei matrix Ma of indeterminates. Multiplying these

matrices along an oriented cycle in Qξ and taking the trace of the square matrix
obtained gives an invariant function. Such invariants generate the local algebra
of issαξ

Qξ in the trivial semi-simple representation. Therefore, to verify whether
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issn PSL2(Z) is smooth in ξ it suffices to prove that the traces along oriented cycle
for the quiver-setting (Qξ, αξ) generate a polynomial algebra. For example, consider
a point ξ ∈ iss4 PSL2(Z) of type

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1

(/).*-+,0

⊕ (/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

(/).*-+,1
⊕2

⊕ (/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,0

��������1 ��������2 ��������1

»
a
b

–

##

ˆ
c d

˜
cc

ˆ
e f

˜
##

»
g
h

–
cc

Then, the traces along oriented cycles in Qξ are generated by the following three
algebraic independent polynomials

x = ac+ bd

y = eg + fh

z = (cg + dh)(ea+ fb)

and hence iss4 PSL2(Z) is smooth in ξ. The other cases being easier, we see that
this component of iss4 PSL2(Z) is a smooth manifold.

Another application of this local quiver-setting (Qξ, αξ) is that one can construct
families of irreducible representations of PSL2(Z) starting from known ones. For
example consider the point ξ of type
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Then, Mξ is determined by the following matrices

(


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,


1 0 0 0
0 ζ2 0 0
0 0 ζ 0
0 0 0 1

)

The quiver-setting (Qξ, αξ) implies that any nearby orbit is determined by a matrix-
couple

(


1 b1 0 0
a1 −1 d1 0
0 c1 1 f1
0 0 e1 −1

 ,


1 b2 0 0
a2 ζ2 d2 0
0 c2 ζ f2
0 0 e2 1

)

and as there is just one arrow in each direction these entries must satisfy

0 = a1a2 = b1b2 = c1c2 = d1d2 = e1e2 = f1f2

As the square of the first matrix must be the identity matrix rr
4, we have in addition

that
0 = a1b1 = c1d1 = e1f1

Hence, we get several sheets of 3-dimensional families of representations (possibly,
matrix-couples lying on different sheets give isomorphic PSL2(Z)-representations,
as the isomorphism holds in the étale topology and not necessarily in the Zariski
topology). One of the sheets has representatives

(


1 0 0 0
a −1 d 0
0 0 1 0
0 0 e −1

 ,


1 b 0 0
0 ζ2 0 0
0 c ζ f
0 0 0 1

)
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From the description of dimension vectors of semi-simple quiver representations we
will give in chapter 6 it follows that such a representation is simple if and only if

ab 6= 0 cd 6= 0 and ef 6= 0

Moreover, these simples are not-isomorphic unless their traces ab, cd and ef evaluate
to the same numbers.

A final application of the local quiver-setting is that it solves the second sub-
problem. That is, assume that ξ ∈ issn PSL2(Z) has local quiver-setting (Qξ, αξ),
then the isomorphism classes of PSL2(Z)-representations having as direct sum of
its Jordan-Hölder components the semi-simple representation Mξ are in one-to-one
correspondence with the GL(α) = GLe1(C)× . . .×GLek

(C)-orbits in the nullcone
of the quiver representation space repαξ

Qξ. In chapter 8 we will see how we can
stratify these nullcones to get a handle on this problem. In the above example, this
nullcone problem is quite trivial. A representation has Mξ as Jordan-Hölder sum if
and only if all traces vanish, that is,

ab = cd = ef = 0

Under the action of the group GL(αξ) = C∗×C∗×C∗×C∗, these orbits are easily
seen to be classified by the arrays

a c e
b d f

filled with zeroes and ones subject to the rule that no column can have two 1’s, giving
27 = 33-orbits. In chapter 13 we will give more applications to the representation
theory of B3, PSL2(Z) and, more generally, knot groups.

Although we will arrive at the local quiver-setting (Qξ, αξ) by invariant theory
we will indicate an alternative approach using the theory of A∞-algebras. More
details can be found in the excellent notes of B. Keller [?]. In recent years some
families of multi-linear objects satisfying certain extended associativity constraints
have been studied which are naturally associated to topological operads. For our
purposes, the relevant operad is the tiny interval operad. That is, let D1(n) be the
collection of all configurations

i1 i2 in

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

consisting of the unit interval with n closed intervals cut out, each gap given a
label ij where (i1, i2, . . . , in) is a permutation of (1, 2, . . . , n). Clearly, D1(n) is a
2n-dimensional C∞-manifold having n! connected components, each of which is a
contractible space. the operadic structure comes from the collection of composition
maps

D1(n)× (D1(m1)× . . . D1(mn)) - D1(m1 + . . .+mn)

defined by resizing the configuration in the D1(mi)-component such that it fits
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precisely in the i-th gap of the configuration of the D1(n)-component. That is,

i1

j1 j2 jmi1

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

k1 k2 kmi2

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

l1 l2 lmin

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

i2 in

0 1

•�������� �������� �������� �������� �������� . . . . . . �������� �������� •��������

We then obtain a unit interval having m1 + . . .+mn gaps which are labeled in the
natural way, that is the first m1 labels are for the gaps in the D1(m1)-configuration
fitted in gap 1, the next m2 labels are for the gaps in the D1(m2)-configuration
fitted in gap 2 and so on. The tiny interval operator consists of

• a collection of topological spaces D1(n) for n ≥ 0,

• a continuous action of Sn on D1(n) by relabeling, for every n,

• an identity element id ∈ D1(1),

• continuous composition maps m(n,m1,...,mn) satisfying a list of axioms.

For every topological operad, we can take its homology operad and define a class
of algebras over it, see for example [?] or [?] for details. Rather than introducing
all these concepts here we will list the set of axioms defining the algebra-objects
associated to the tiny interval operad : the A∞-algebras.

Definition 2.52 An A∞-algebra is a Z-graded complex vectorspace

B = ⊕p∈ZBp

endowed with homogeneous C-linear maps

mn : B⊗n - B

of degree 2− n for all n ≥ 1, satisfying the following relations

• We have m1 ◦m1 = 0, that is (B,m1) is a differential complex

. . .
m1- Bi−1

m1- Bi
m1- Bi+1

m1- . . .

• We have the equality of maps B ⊗B - B

m1 ◦m2 = m2 ◦ (m1 ⊗ rr + rr⊗m1)

where rr is the identity map on the vectorspace B. That is, m1 is a derivation
with respect to the multiplication B ⊗B m2- B.
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• We have the equality of maps B ⊗B ⊗B - B

m2 ◦ (rr⊗m2 −m2 ⊗ rr)
= m1 ◦m3 +m3 ◦ (m1 ⊗ rr⊗ rr + rr⊗m1 ⊗ 1 + rr⊗ rr⊗m1)

where the right second expression is the associator for the multiplication m2

and the first is a boundary of m3, implying that m2 is associative up to
homology.

• More generally, for n ≥ 1 we have the relations∑
(−1)i+j+kml ◦ (rr⊗i ⊗mj ⊗ rr⊗k) = 0

where the sum runs over all decompositions n = i+j+k and where l = i+1+k.
These identities can be pictorially represented by

∑
± = 0

��������
��������

��������
�������� ��������

��������

��������
��������

b1
�����

bi+1
oooooooooooo OOOOOOOOOOOO

//
//

/

mj

ml

Observe that an A∞-algebra B is in general not associative for the multiplication
m2, but its homology

H∗ B = H∗(B,m2)

is an associative graded algebra for the multiplication induced by m2. Further, if
mn = 0 for all n ≥ 3, then B is an associative differentially graded algebra and
conversely every differentially graded algebra yields an A∞-algebra with mn = 0
for all n ≥ 3.

Let A be an associative C-algebra and M a left A-module. Choose an injective
resolution of M

0 - M - I0 - I1 - . . .

with the Ik injective left A-modules and denote by I• the complex

I• : 0 - I0 d- I1 d- . . .

Let B = HOM•A(I•, I•) be the morphism complex. That is, its n-th component
are the graded A-linear maps I• - I• of degree n. This space can be equipped
with a differential

d(f) = d ◦ f − (−1)nf ◦ d for f in the n-th part

Then, B is a differentially graded algebra where the multiplication is the natural
composition of graded maps. The homology algebra

H∗ B = Ext∗A(M,M)
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is the extension algebra of M . This extension algebra has a canonical structure of
A∞-algebra with m1 = 0 and m2 he usual multiplication.

Now, let M1, . . . ,Mk be A-modules (for example, finite dimensional representa-
tions) and with filt(M1, . . . ,Mk) we denote the full subcategory of all A-modules
whose objects admit finite filtrations with subquotients among the Mi. We have
the following result, see for example [?, §6].

Theorem 2.53 Let M = M1⊕. . .⊕Mk. The canonical A∞-structure on the exten-
sion algebra Ext∗A(M,M) contains enough information to reconstruct the category
filt(M1, . . . ,Mk).

Finally, let us elucidate the connection between this result and the local quiver-
setting (Qξ, αξ) associated to a semi-simple n-dimensional representation

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

of a Quillen-smooth algebra A. In chapter 9 we will prove that for a Quillen-smooth
algebra ExtiA(M,M) = 0 whenever i ≥ 2. That is, the extension algebra

Bξ = Ext∗A(Mξ,Mξ)

contains only two terms

• Ext0A(Mξ,Mξ) = HomA(Mξ,Mξ) and using the above decomposition this
space is equal to

Me1(C)⊕ . . .⊕Mek
(C)

and hence determines the dimension vector αξ = (e1, . . . , ek).

• Ext1A(Mξ,Mξ) which by the decomposition is equal to

⊕ki,j=1 Mej×ei(Ext
1
A(Si, Sj))

and we will prove that dimC Ext1A(Si, Sj) determines the number of arrows
(or loops) in Qξ between the vertices vi and vj .

By the theorem above, this quiver-setting must contain enough information to de-
scribe filt(S1, . . . , Sk) and hence in particular all n-dimensional representations
having as their Jordan-Hölder components the simples Si.



Chapter 3

Generic Matrices.

The results of this section are essential in the geometric study of noncommutative
smooth algebras. If A is an affine C-algebra, say with generators {a1, . . . , am},
we will study in chapter 4 the variety (actually, a scheme) of all n-dimensional
representations rep

n
A of A. The crucial result we will prove in chapter 4 is that

the canonical Cayley-Hamilton algebra of degree n, A @n, associated to A can be
recovered from the natural GLn(C)-structure on rep

n
A as the ring of all GLn(C)-

equivariant polynomial maps from rep
n
A to Mn(C).

In this chapter we will study the generic case, that is, when A is the free asso-
ciative C-algebra C〈x1, . . . , xm〉 on m noncommuting generators. In this case,

rep
n

C〈x1, . . . , xm〉 = Mn(C)⊕ . . .⊕Mn(C)︸ ︷︷ ︸
m

as every C-algebra map to Mn(C) is determined by the images of the generators
xi. The GLn(C)-action on the representation variety, determining isomorphisms of
representations, is given by simultaneous conjugation, that is,

g.(A1, . . . , Am) = (gA1g
−1, . . . , gAmg

−1).

In the special case when m = 1, the Jordan-normal form of an n×n matrix provides
us with a set-theoretical description of the GLn(C)-orbits. However, as we will see
in section 1, one cannot define a Hausdorff topology on this set or orbits due to the
existence of non-closed orbits. Invariant theory provides us with the best continuous
approximation to such an orbit-space. We will see that all functions onMn(C) which
are constant on conjugacy classes are actually functions in the coefficients of the
characteristic polynomial of the matrix. That is, we have an algebraic quotient map

Mn(C) -- Cn A 7→ (σ1(A), . . . , σn(A))

where σi(A) is the i-th elementary symmetric function in the eigenvalues of A. A
characteristic property of this quotient map is that every fiber contains a unique
closed orbit.

In trying to extend this to arbitrary m we are faced with the problem that there
are no known canonical forms for m-tuples of n×n matrices, except for small values
of m and n such as (m,n) = (2, 2), in which case a complete description of the orbits
is given in section 2. The combinatorial tools which will be developed in part 3 will
allow us later to extend such a complete classification (at least in principle) of all
orbits for moderate values of n. In this chapter we will prove the important results,
due to C. Procesi [24] on the invariant theory of m-tuples of n× n matrices under
simultaneous conjugation.

87
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In section 3 we will determine the ring of invariant polynomials for simultaneous
conjugation. The approach is classical in invariant theory. First we determine the
multilinear invariant polynomials and then we will use polarization and restitution
to find all invariants. It turns out that all invariants are generated by traces of
necklaces. Consider a noncommutative word in the variables xi

w = xi1xi2 . . . xik

determined only up to cyclic permutation of the terms, that is w should really be
viewed as a necklace having k beads

�

�)))))

� HHHHH
�

�
vvvvv

�
��
��
�

�

))
))

)

�
HHHHH

�

�vvvvv

�����

x
w

Replace each of the beads xi by an n×n matrix Xi having all its coefficients being
indeterminates. That is Xi is a generic n× n matrix

i = Xi =

x11(i) . . . x1n(i)
...

...
xn1(i) . . . xnn(i)


Then multiplying these generic matrices along the necklace and taking the trace
of the n × n matrix obtained, we get an invariant polynomial. We will then use
some results on the representation theory of the symmetric groups to bound the
length of necklaces necessary to generate the whole algebra of invariants Nmn =
C[repn C〈x1, . . . , xm〉]GLn(C). The best bound on this length we will obtain is
n2 + 1.

Further, we will study in section 4 the C-algebra of all GLn(C)-equivariant
polynomial maps

Mn(C)⊕ . . .⊕Mn(C) - Mn(C)

which form the trace algebra Tmn . We will prove that Tmn is generated by the ring of
invariants Nmn and the generic matrices Xi introduced above. In sections 6 and 7 we
will then determine all relations holding among the necklace invariants and prove
that they are all formal consequences of the Cayley-Hamilton equation holding for
n×n matrices. In fact, we will show in the next chapter that the trace algebra Tmn
is the generic object in the category of all Cayley-Hamilton algebras of degree n.

We have tried to keep this chapter as self-contained as possible. More details
on symmetric groups can be found for example in [?].

3.1 Conjugacy classes of matrices

From now on we will denote by Mn the space of all n× n matrices Mn(C) and by
GLn the general linear group GLn(C). A matrix A ∈ Mn determines by left mul-
tiplication a linear operator on the n-dimensional vectorspace Vn = Cn of column
vectors. If g ∈ GLn is the matrix describing the base change from the canonical
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basis of Vn to a new basis, then the linear operator expressed in this new basis is
represented by the matrix gAg−1. For a given matrix A we want to find an suitable
basis such that the conjugated matrix gAg−1 has a simple form.

That is, we consider the linear action of GLn on the n2-dimensional vectorspace
Mn of n× n matrices determined by

GLn ×Mn
- Mn (g,A) 7→ g.A = gAg−1.

The orbitO(A) = {gAg−1 | g ∈ GLn } ofA under this action is called the conjugacy
class of A. We look for a particularly nice representant in a given conjugacy class.
The answer to this problem is, of course, given by the Jordan normal form of the
matrix.

With eij we denote the matrix whose unique non-zero entry is 1 at entry (i, j).
Recall that the group GLn is generated by the following three classes of matrices :

• the permutation matrices pij = rr
n + eij + eji − eii − ejj for all i 6= j,

• the addition matrices aij(λ) = rr
n + λeij for all i 6= j and 0 6= λ, and

• the multiplication matrices mi(λ) = rr
n + (λ− 1)eii for all i and 0 6= λ.

Conjugation by these matrices determine the three types of Jordan moves on n×n
matrices, where the altered rows and columns are dashed :

i j

i

type p

j

����

dd

zz

i j

i

type a

j

−λ.

��

+λ.

dd

i

type m

i

λ−1.

��

λ.__

Therefore, it suffices to consider sequences of these moves on a given n× n matrix
A ∈ Mn. The characteristic polynomial of A is defined to be the polynomial of
degree n in the variable t

χA(t) = det(trrn −A) ∈ C[t].

As C is algebraically closed, χA(t) decomposes as a product of linear terms

e∏
i=1

(t− λi)di

where the {λ1, . . . , λe} are called the eigenvalues of the matrix A. Observe that λi
is an eigenvalue of A if and only if there is a non-zero eigenvector v ∈ Vn = Cn
with eigenvalue λi, that is, A.v = λiv. In particular, the rank ri of the matrix
Ai = λi

rr
n − A satisfies n − di ≤ ri < n. A nice inductive procedure using Jordan

moves given in [?] gives a proof of the following Jordan-Weierstrass theorem.

Theorem 3.1 Let A ∈Mn with characteristic polynomial χA(t) =
∏e
i=1(t− λi)di .

Then, A determines unique partitions

pi = (ai1, ai2, . . . , aimi
) of di
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associated to the eigenvalues λi of A such that A is conjugated to a unique (up to
permutation of the blocks) block-diagonal matrix

J(p1,...,pe) =



B1

B2

. . .

Bm


with m = m1+. . .+me and exactly one block Bl of the form Jaij

(λi) for all 1 ≤ i ≤ e
and 1 ≤ j ≤ mi where

Jaij
(λi) =


λi 1

λi
. . .
. . . 1

λi

 ∈Maij
(C)

For example, let us prove uniqueness of the partitions pi of di corresponding to
the eigenvalue λi of A. Assume A is conjugated to another Jordan block matrix
J(q1,...,qe), necessarily with partitions qi = (bi1, . . . , bim′

i
) of di. To begin, observe

that for a Jordan block of size k we have that

rk Jk(0)l = k − l for all l ≤ k and if µ 6= 0 then rk Jk(µ)l = k

for all l. As J(p1,...,pe) is conjugated to J(q1,...,qe) we have for all λ ∈ C and all l

rk (λrr
n − J(p1,...,pe))l = rk (λrr

n − J(q1,...,qe))l

Now, take λ = λi then only the Jordan blocks with eigenvalue λi are important in
the calculation and one obtains for the ranks

n−
l∑

h=1

#{j | aij ≥ h} respectively n−
l∑

h=1

#{j | bij ≥ h}.

Now, for any partition p = (c1, . . . , cu) and any natural number h we see that the
number z = #{j | cj ≥ h}

c1

c2

cz

cz+1

cu
h

is the number of blocks in the h-th row of the dual partition p∗ which is defined to
be the partition obtained by interchanging rows and columns in the Young diagram
of p. Therefore, the above rank equality implies that p∗i = q∗i and hence that
pi = qi. As we can repeat this argument for the other eigenvalues we have the
required uniqueness. Hence, the Jordan normal form shows that the classification
of GLn-orbits in Mn consists of two parts : a discrete part choosing
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• a partition p = (d1, d2, . . . , de) of n, and for each di,

• a partition pi = (ai1, ai2, . . . , aimi
) of di,

determining the sizes of the Jordan blocks and a continuous part choosing

• an e-tuple of distinct complex numbers (λ1, λ2, . . . , λe).

fixing the eigenvalues. Moreover, this e-tuple (λ1, . . . , λe) is determined only up to
permutations of the subgroup of all permutations π in the symmetric group Se such
that pi = pπ(i) for all 1 ≤ i ≤ e. Whereas this gives a satisfactory set-theoretical
description of the orbits we cannot put an Hausdorff topology on this set due to the
existence of non-closed orbits in Mn. For example, if n = 2, consider the matrices

A =
[
λ 1
0 λ

]
and B =

[
λ 0
0 λ

]
which are in different normal form so correspond to distinct orbits. For any ε 6= 0
we have that [

ε 0
0 1

]
.

[
λ 1
0 λ

]
.

[
ε−1 0
0 1

]
=

[
λ ε
0 λ

]
belongs to the orbit of A. Hence if ε - 0, we see that B lies in the closure ofO(A).
As any matrix in O(A) has trace 2λ, the orbit is contained in the 3-dimensional
subspace [

λ+ x y
z λ− x

]
⊂ - M2

In this space, the orbit-closure O(A) is the set of points satisfying x2 + yz = 0 (the
determinant has to be λ2), which is a cone having the origin as its top :

The orbit O(B) is the top of the cone and the orbit O(A) is the complement.
Still, for general n we can try to find the best separated topological quotient

space for the action of GLn on Mn. We will prove that this space coincide with the
quotient variety determined by the invariant polynomial functions.

If two matrices are conjugated A ∼ B, then A and B have the same unordered
n-tuple of eigenvalues {λ1, . . . , λn} (occurring with multiplicities). Hence any sym-
metric function in the λi will have the same values in A as in B. In particular this
is the case for the elementary symmetric functions σl

σl(λ1, . . . , λl) =
∑

i1<i2<...<il

λi1λi2 . . . λil .

Observe that for every A ∈Mn with eigenvalues {λ1, . . . , λn} we have

n∏
j=1

(t− λj) = χA(t) = det(trrn −A) = tn +
n∑
i=1

(−1)iσi(A)tn−i
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Developing the determinant det(trrn−A) we see that each of the coefficients σi(A) is
in fact a polynomial function in the entries of A. A fortiori, σi(A) is a complex valued
continuous function on Mn. The above equality also implies that the functions
σi : Mn

- C are constant along orbits. We now construct the continuous map

Mn
π- Cn

sending a matrix A ∈Mn to the point (σ1(A), . . . , σn(A)) in Cn. Clearly, if A ∼ B
then they map to the same point in Cn. We claim that π is surjective. Take any
point (a1, . . . , an) ∈ Cn and consider the matrix A ∈Mn

A =


0 an
−1 0 an−1

. . . . . .
...

−1 0 a2

−1 a1

 (3.1)

then we will show that π(A) = (a1, . . . , an), that is,

det(trrn −A) = tn − a1t
n−1 + a2t

n−2 − . . .+ (−1)nan.

Indeed, developing the determinant of trrn −A along the first column we obtain

0

...

0

0

0

t

1

0

0

0

0

t

. . .

. . .

. . .

1

0

0

0

...

t

1

−an

−a
n-1

−a
n-2

...
−a

2

t− a
1

1

−

t07162534

0

...

0

0

0

t

1

0

0

0

0

t

. . .

. . .

. . .

1

0

0

0

...

t

1

−an

−a
n-1

−a
n-2

...
−a

2

t− a
1

t

107162534

Here, the second determinant is equal to (−1)n−1an and by induction on n the first
determinant is equal to t.(tn−1 − a1t

n−2 + . . .+ (−1)n−1an−1), proving the claim.
Next, we will determine which n× n matrices can be conjugated to a matrix in

the canonical form A as above. We call a matrix B ∈Mn cyclic if there is a (column)
vector v ∈ Cn such that Cn is spanned by the vectors {v,B.v,B2.v, . . . , Bn−1.v}.
Let g ∈ GLn be the basechange transforming the standard basis to the ordered
basis

(v,−B.v,B2.v,−B3.v, . . . , (−1)n−1Bn−1.v).

In this new basis, the linear map determined by B (or equivalently, g.B.g−1) is
equal to the matrix in canonical form

0 bn
−1 0 bn−1

. . . . . .
...

−1 0 b2
−1 b1


where Bn.v has coordinates (bn, . . . , b2, b1) in the new basis. Conversely, any matrix
in this form is a cyclic matrix.
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We claim that the set of all cyclic matrices in Mn is a dense open subset. To see
this take v = (x1, . . . , xn)τ ∈ Cn and compute the determinant of the n× n matrix

v Bv . . .
B
n-1

v

This gives a polynomial of total degree n in the xi with all its coefficients polynomial
functions cj in the entries bkl of B. Now, B is a cyclic matrix if and only if at least
one of these coefficients is non-zero. That is, the set of non-cyclic matrices is exactly
the intersection of the finitely many hypersurfaces

Vj = {B = (bkl)k,l ∈Mn | cj(b11, b12, . . . , bnn) = 0}

in the vectorspace Mn.

Theorem 3.2 The best continuous approximation to the orbit space is given by the
surjection

Mn
π -- Cn

mapping a matrix A ∈Mn(C) to the n-tuple (σ1(A), . . . , σn(A)).

Let f : Mn
- C be a continuous function which is constant along conjugacy

classes. We will show that f factors through π, that is, f is really a continuous
function in the σi(A). Consider the diagram

Mn
f - C

Cn

s

6

π

?.....
.....

.....
.....

.....
.....

.

f
′ =
f◦
s

-

where s is the section of π (that is, π ◦ s = idCn) determined by sending a point
(a1, . . . , an) to the cyclic matrix in canonical form A as in equation (3.1). Clearly,
s is continuous, hence so is f ′ = f ◦ s. The approximation property follows if we
prove that f = f ′ ◦ π. By continuity, it suffices to check equality on the dense open
set of cyclic matrices in Mn.

There it is a consequence of the following three facts we have proved before :
(1) : any cyclic matrix lies in the same orbit as one in standard form, (2) : s is a
section of π and (3) : f is constant along orbits.

Example 3.3 Orbits in M2.
A 2× 2 matrix A can be conjugated to an upper triangular matrix with diagonal entries the

eigenvalues λ1, λ2 of A. As the trace and determinant of both matrices are equal we have

σ1(A) = tr(A) and σ2(A) = det(A).

The best approximation to the orbitspace is therefore given by the surjective map

M2
π-- C2

»
a b
c d

–
7→ (a+ d, ad− bc)
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The matrix A has two equal eigenvalues if and only if the discriminant of the characteristic poly-
nomial t2 − σ1(A)t+ σ2(A) is zero, that is when σ1(A)2 − 4σ2(A) = 0. This condition determines
a closed curve C in C2 where

C = {(x, y) ∈ C2 | x2 − 4y = 0}.

C

Observe that C is a smooth 1-dimensional submanifold of C2. We will describe the fibers (that is,
the inverse images of points) of the surjective map π .

If p = (x, y) ∈ C2 − C, then π−1(p) consists of precisely one orbit (which is then necessarily
closed in M2) namely that of the diagonal matrix»

λ1 0
0 λ2

–
where λ1,2 =

−x±
p
x2 − 4y

2

If p = (x, y) ∈ C then π−1(p) consists of two orbits,

O"
λ 1
0 λ

# and O"
λ 0
0 λ

#

where λ = 1
2
x. We have seen that the second orbit lies in the closure of the first. Observe that

the second orbit reduces to one point in M2 and hence is closed. Hence, also π−1(p) contains a
unique closed orbit.

To describe the fibers of π as closed subsets of M2 it is convenient to write any matrix A as a
linear combination

A = u(A)

» 1
2

0

0 1
2

–
+ v(A)

» 1
2

0

0 − 1
2

–
+ w(A)

»
0 1
0 0

–
+ z(A)

»
0 0
1 0

–
.

Expressed in the coordinate functions u, v, w and z the fibers π−1(p) of a point p = (x, y) ∈ C2

are the common zeroes of (
u = x

v2 + 4wz = x2 − 4y

The first equation determines a three dimensional affine subspace of M2 in which the second
equation determines a quadric.

• 2

•

• 2

0

If p /∈ C this quadric is non-degenerate and thus π−1(p) is a smooth 2-dimensional submanifold of

M2. If p ∈ C, the quadric is a cone with top lying in the point x
2

rr
2. Under the GL2-action, the

unique singular point of the cone must be clearly fixed giving us the closed orbit of dimension 0

corresponding to the diagonal matrix. The other orbit is the complement of the top and hence is

a smooth 2-dimensional (non-closed) submanifold of M2. The graphs represent the orbit-closures

and the dimensions of the orbits.
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Example 3.4 Orbits in M3.
We will describe the fibers of the surjective map M3

π-- C3. If a 3× 3 matrix has multiple
eigenvalues then the discriminant d = (λ1 − λ2)2(λ2 − λ3)2(λ3 − λ1)2 is zero. Clearly, d is a
symmetric polynomial and hence can be expressed in terms of σ1, σ2 and σ3. More precisely,

d = 4σ3
1σ3 + 4σ3

2 + 27σ2
3 − σ2

1σ
2
2 − 18σ1σ2σ3

The set of points in C3 where d vanishes is a surface S with singularities.

These singularities are the common zeroes of the ∂d
∂σi

for 1 ≤ i ≤ 3. One computes that these

singularities form a twisted cubic curve C in C3, that is,

C = {(3c, 3c2, c3) | c ∈ C}.
The description of the fibers π−1(p) for p = (x, y, z) ∈ C3 is as follows. When p /∈ S, then π−1(p)
consists of a unique orbit (which is therefore closed in M3), the conjugacy class of a matrix with
paired distinct eigenvalues. If p ∈ S − C, then π−1(p) consists of the orbits of

A1 =

24λ 1 0
0 λ 0
0 0 µ

35 and A2 =

24λ 0 0
0 λ 0
0 0 µ

35
Finally, if p ∈ C, then the matrices in the fiber π−1(p) have a single eigenvalue λ = 1

3
x and the

fiber consists of the orbits of the matrices

B1 =

24λ 1 0
0 λ 1
0 0 λ

35 B2 =

24λ 1 0
0 λ 0
0 0 λ

35 B3 =

24λ 0 0
0 λ 0
0 0 λ

35
We observe that the strata with distinct fiber behavior (that is, C3 − S, S − C and C) are all
submanifolds of C3.

The dimension of an orbit O(A) in Mn is computed as follows. Let CA be the subspace of all
matrices in Mn commuting with A. Then, the stabilizer subgroup of A is a dense open subset of
CA whence the dimension of O(A) is equal to n2 − dim CA.

Performing these calculations for the matrices given above, we obtain the following graphs
representing orbit-closures and the dimensions of orbits

C3 − S

• 6

•

•

• 6

4

0

OB1

OB2

OB3

•

• 6

4

OA1

OA2

S − C C

Returning to Mn, the set of cyclic matrices is a Zariski open subset of Mn. For,
consider the generic matrix of coordinate functions and generic column vector

X =

x11 . . . x1n

...
...

xn1 . . . xnn

 and v =

v1...
vn
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and form the square matrix[
v X.v X2.v . . . Xn−1.v

]
∈Mn(C[x11, x12, . . . , xnn, v1, . . . , vn])

Then its determinant can be written as
∑z
l=1 pl(xij)ql(vk) where the ql are poly-

nomials in the vk and the pl polynomials in the xij . Let A ∈ Mn be such that at
least one of the pl(A) 6= 0, then the polynomial d =

∑
l pl(A)ql(vk) ∈ C[v1, . . . , vk]

is non-zero. But then there is a c = (c1, . . . , cn) ∈ Cn such that d(c) 6= 0 and hence
cτ is a cyclic vector for A. The converse implication is obvious.

Theorem 3.5 Let f : Mn
- C is a regular (that is, polynomial) function on

Mn which is constant along conjugacy classes, then

f ∈ C[σ1(X), . . . , σn(X)]

Proof. Consider again the diagram

Mn
f - C

Cn

s

6

π

?.....
.....

.....
.....

.....
.....

.

f
′ =
f◦
s

-

The function f ′ = f ◦ s is a regular function on Cn whence is a polynomial in the
coordinate functions of Cm (which are the σi(X)), so

f ′ ∈ C[σ1(X), . . . , σn(X)] ⊂ - C[Mn].

Moreover, f and f ′ are equal on a Zariski open (dense) subset of Mn whence they
are equal as polynomials in C[Mn]. �

The ring of polynomial functions on Mn which are constant along conjugacy
classes can also be viewed as a ring of invariants. The group GLn acts as algebra
automorphisms on the polynomial ring C[Mn]. The automorphism φg determined
by g ∈ GLn sends the variable xij to the (i, j)-entry of the matrix g−1.X.g which
is a linear form in C[Mn]. This action is determined by the property that for all
g ∈ GLn, A ∈ A and f ∈ C[Mn] we have that

φg(f)(A) = f(g.A.g−1)

The ring of polynomial invariants is the algebra of polynomials left invariant under
this action

C[Mn]GLn = {f ∈ C[Mn] | φg(f) = f for all g ∈ GLn}

and hence is the ring of polynomial functions onMn which are constant along orbits.
The foregoing theorem determines the ring of polynomials invariants

C[Mn]GLn = C[σ1(X), . . . , σn(X)]

We will give an equivalent description of this ring below.

Consider the variables λ1, . . . , λn and consider the polynomial

fn(t) =
n∏
i=1

(t− λi) = tn +
n∑
i=1

(−1)iσitn−i
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then σi is the i-th elementary symmetric polynomial in the λj . We know that
these polynomials are algebraically independent and generate the ring of symmetric
polynomials in the λj , that is,

C[σ1, . . . , σn] = C[λ1, . . . , λn]Sn

where Sn is the symmetric group on n letters acting by automorphisms on the
polynomial ring C[λ1, . . . , λn] via π(λi) = λπ(i) and the algebra of polynomials
which are fixed under these automorphisms are precisely the symmetric polynomials
in the λj .

Consider the symmetric Newton functions si = λi1 + . . .+λin, then we claim that
this is another generating set of symmetric polynomials, that is,

C[σ1, . . . , σn] = C[s1, . . . , sn].

To prove this it suffices to express each σi as a polynomial in the sj . More precisely,
we claim that the following identities hold for all 1 ≤ j ≤ n

sj − σ1sj−1 + σ2sj−2 − . . .+ (−1)j−1σj−1s1 + (−1)jσj .j = 0 (3.2)

For j = n this identity holds because we have

0 =
n∑
i=1

fn(λi) = sn +
n∑
i=1

(−1)iσisn−i

if we take s0 = n. Assume now j < n then the left hand side of equation 3.2
is a symmetric function in the λi of degree ≤ j and is therefore a polynomial
p(σ1, . . . , σj) in the first j elementary symmetric polynomials. Let φ be the algebra
epimorphism

C[λ1, . . . , λn]
φ-- C[λ1, . . . , λj ]

defined by mapping λj+1, . . . , λj to zero. Clearly, φ(σi) is the i-th elementary
symmetric polynomial in {λ1, . . . , λj} and φ(si) = λi1 + . . . + λij . Repeating the
above j = n argument (replacing n by j) we have

0 =
j∑
i=1

fj(λi) = φ(sj) +
j∑
i=1

(−1)iφ(σi)φ(sn−i)

(this time with s0 = j). But then, p(φ(σ1), . . . , φ(σj)) = 0 and as the φ(σk) for
1 ≤ k ≤ j are algebraically independent we must have that p is the zero polynomial
finishing the proof of the claimed identity.

If λ1, . . . , λn are the eigenvalues of an n×n matrix A, then A can be conjugated
to an upper triangular matrix B with diagonal entries (λ1, . . . , λ1). Hence, the trace
tr(A) = tr(B) = λ1 + . . .+λn = s1. In general, Ai can be conjugated to Bi which is
an upper triangular matrix with diagonal entries (λi1, . . . , λ

i
n) and hence the traces

of Ai and Bi are equal to λi1 + . . .+ λin = si. Concluding, we have

Theorem 3.6 Consider the action of conjugation by GLn on Mn. Let X be the
generic matrix of coordinate functions on Mn

X =

x11 . . . xnn
...

...
xn1 . . . xnn


Then, the ring of polynomial invariants is generated by the traces of powers of X,
that is,

C[Mn]GLn = C[tr(X), tr(X2), . . . , tr(Xn)]
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Proof. The result follows from theorem 3.5 and the fact that

C[σ1(X), . . . , σn(X)] = C[tr(X), . . . , tr(Xn)]

�

3.2 Simultaneous conjugacy classes.

For applications to noncommutative algebras it is crucial to extend what we have
done for conjugacy classes of matrices to simultaneous conjugacy classes of m-tuples
of matrices. Consider the mn2-dimensional complex vectorspace

Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

of m-tuples (A1, . . . , Am) of n × n-matrices Ai ∈ Mn. On this space we let the
group GLn act by simultaneous conjugation, that is

g.(A1, . . . , Am) = (g.A1.g
−1, . . . , g.Am.g

−1)

for all g ∈ GLn and all m-tuples (A1, . . . , Am). Unfortunately, there is no substitute
for the Jordan normalform result in this more general setting. Still, for small m
and n one can work out the GLn-orbits by ad hoc methods.

Example 3.7 Orbits in M2
2 = M2 ⊕M2.

We can try to mimic the geometric approach to the conjugacy class problem, that is, we
will try to approximate the orbitspace via polynomial functions on M2

2 which are constant along
orbits. For (A,B) ∈M2

2 = M2 ⊕M2 clearly the polynomial functions we have encountered before
tr(A), det(A) and tr(B), det(B) are constant along orbits. However, there are more : for example
tr(AB). Later, we will show that these five functions generate all polynomials functions which are

constant along orbits. Here, we will show that the map M2
2 = M2 ⊕M2

π- C5 defined by

(A,B) 7→ (tr(A), det(A), tr(B), det(B), tr(AB))

is surjective such that each fiber contains precisely one closed orbit. In the next chapter, we will
see that this property characterizes the best polynomial approximation to the (non-existent) orbit
space.

First, we will show surjectivity of π, that is, for every (x1, . . . , x5) ∈ C5 we will construct a
couple of 2 × 2 matrices (A,B) (or rather its orbit) such that π(A,B) = (x1, . . . , x5). Consider
the open set where x2

1 6= 4x2. We have seen that this property characterizes those A ∈ M2 such
that A has distinct eigenvalues and hence diagonalizable. Hence, we can take a representative of
the orbit O(A,B) to be a couple

(

»
λ 0
0 µ

–
,

»
c1 c2
c3 c4

–
)

with λ 6= µ. We need a solution to the set of equations8><>:
x3 = c1 + c4

x4 = c1c4 − c2c3

x5 = λc1 + µc4

Because λ 6= µ the first and last equation uniquely determine c1, c4 and substitution in the second
gives us c2c3. Analogously, points of C5 lying in the open set x2

3 6= x4 lie in the image of π.
Finally, for a point in the complement of these open sets, that is when x2

1 = x2 and x2
3 = 4x4 we

can consider a couple (A,B)

(

»
λ 1
0 λ

–
,

»
µ 0
c µ

–
)

where λ = 1
2
x1 and µ = 1

2
x3. Observe that the remaining equation x5 = tr(AB) = 2λµ+ c has a

solution in c.
Now, we will describe the fibers of π. Assume (A,B) is such that A and B have a common

eigenvector v. Simultaneous conjugation with a g ∈ GLn expressing a basechange from the
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standard basis to {v, w} for some w shows that the orbit O(A,B) contains a couple of upper-
triangular matrices. We want to describe the image of these matrices under π. Take an upper
triangular representative in O(A,B)

(

»
a1 a2

0 a3

–
,

»
b1 b2
0 b3

–
).

with π-image (x1, . . . , x5). The coordinates x1, x2 determine the eigenvalues a1, a3 of A only as
an unordered set (similarly, x3, x4 only determine the set of eigenvalues {b1, b3} of B). Hence,
tr(AB) is one of the following two expressions

a1b1 + a3b3 or a1b3 + a3b1

and therefore satisfies the equation

(tr(AB)− a1b1 − a3b3)(tr(AB)− a1b3 − a3b1) = 0.

Recall that x1 = a1 + a3, x2 = a1a3, x3 = b1 + b3, x4 = b1b3 and x5 = tr(AB) we can express this
equation as

x2
5 − x1x3x5 + x2

1x4 + x2
3x2 − 4x2x4 = 0.

This determines an hypersurface H ⊂ - C5. If we view the left-hand side as a polynomial f in
the coordinate functions of C5 we see that H is a four dimensional subset of C5 with singularities
the common zeroes of the partial derivatives

∂f

∂xi
for 1 ≤ i ≤ 5

These singularities for the 2-dimensional submanifold S of points of the form (2a, a2, 2b, b2, 2ab).
We now claim that the smooth submanifolds C5 − H, H − S and S of C5 describe the different
types of fiber behavior. In chapter 6 we will see that the subsets of points with different fiber
behavior (actually, of different representation type) are manifolds for m-tuples of n× n matrices.

If p /∈ H we claim that π−1(p) is a unique orbit, which is therefore closed in M2
2 . Let

(A,B) ∈ π−1 and assume first that x2
1 6= 4x2 then there is a representative in O(A,B) of the form

(

»
λ 0
0 µ

–
,

»
c1 c2
c3 c4

–
)

with λ 6= µ. Moreover, c2c3 6= 0 (for otherwise A and B would have a common eigenvector
whence p ∈ H) hence we may assume that c2 = 1 (eventually after simultaneous conjugation with
a suitable diagonal matrix diag(t, t−1)). The value of λ, µ is determined by x1, x2. Moreover,
c1, c3, c4 are also completely determined by the system of equations8><>:

x3 = c1 + c4

x4 = c1c4 − c3

x5 = λc1 + µc4

and hence the point p = (x1, . . . , x5) completely determines the orbit O(A,B). Remains to
consider the case when x2

1 = 4x2 (that is, when A has a single eigenvalue). Consider the couple
(uA+vB,B) for u, v ∈ C∗. To begin, uA+vB and B do not have a common eigenvalue. Moreover,
p = π(A,B) determines π(uA+ vB,B) as8><>:

tr(uA+ vB) = utr(A) + vtr(B)

det(uA+ vB) = u2det(A) + v2det(B) + uv(tr(A)tr(B)− tr(AB))

tr((uA+ vB)B) = utr(AB) + v(tr(B)2 − 2det(B))

Assume that for all u, v ∈ C∗ we have the equality tr(uA+vB)2 = 4det(uA+vB) then comparing
coefficients of this equation expressed as a polynomial in u and v we obtain the conditions x2

1 = 4x2,
x2
3 = 4x4 and 2x5 = x1x3 whence p ∈ S ⊂ - H, a contradiction. So, fix u, v such that uA+ vB

has distinct eigenvalues. By the above argument O(uA + vB,B) is the unique orbit lying over
π(uA+ vB,B), but then O(A,B) must be the unique orbit lying over p.

Let p ∈ H − S and (A,B) ∈ π−1(p), then A and B are simultaneous upper triangularizable,
with eigenvalues a1, a2 respectively b1, b2. Either a1 6= a2 or b1 6= b2 for otherwise p ∈ S. Assume
a1 6= a2, then there is a representative in the orbit O(A,B) of the form

(

»
ai 0
0 aj

–
,

»
bk b
0 bl

–
)

for {i, j} = {1, 2} = {k, l}. If b 6= 0 we can conjugate with a suitable diagonal matrix to get b = 1
hence we get at most 9 possible orbits. Checking all possibilities we see that only three of them
are distinct, those corresponding to the couples

(

»
a1 0
0 a2

–
,

»
b1 1
0 b2

–
) (

»
a1 0
0 a2

–
,

»
b1 0
0 b2

–
) (

»
a2 0
0 a1

–
,

»
b1 1
0 b2

–
)
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Clearly, the first and last orbit have the middle one lying in its closure. Observe that the case
assuming that b1 6= b2 is handled similarly. Hence, if p ∈ H − S then π−1(p) consists of three
orbits, two of dimension three whose closures intersect in a (closed) orbit of dimension two.

Finally, consider the case when p ∈ S and (A,B) ∈ π−1(p). Then, both A and B have a single
eigenvalue and the orbit O(A,B) has a representative of the form

(

»
a x
0 a

–
,

»
b y
0 b

–
)

for certain x, y ∈ C. If either x or y are non-zero, then the subgroup of GL2 fixing this matrix
consists of the matrices of the form

Stab

»
c 1
0 c

–
= {

»
u v
0 u

–
| u ∈ C∗, v ∈ C}

but these matrices also fix the second component. Therefore, if either x or y is nonzero, the orbit
is fully determined by [x : y] ∈ P1. That is, for p ∈ S, the fiber π−1(p) consists of an infinite
family of orbits of dimension 2 parameterized by the points of the projective line P1 together with
the orbit of

(

»
a 0
0 a

–
,

»
b 0
0 b

–
)

which consists of one point (hence is closed in M2
2 ) and lies in the closure of each of the 2-

dimensional orbits.
Concluding, we see that each fiber π−1(p) contains a unique closed orbit (that of minimal

dimension). The orbitclosure and dimension diagrams have the following shapes

3(/).*-+,

2(/).*-+,

3(/).*-+, 3(/).*-+,

2(/).*-+, 2(/).*-+,

0(/).*-+,

C5 − H H − S S

77
77

77
77

77
77

��
��

��
��

��
��

P1

**********

����������

3.3 Matrix invariants and necklaces

In this section we will determine the ring of all polynomial maps

Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

f- C

which are constant along orbits under the action of GLn on Mm
n by simultaneous

conjugation. The strategy we will use is classical in invariant theory.

• First, we will determine the multilinear maps which are constant along orbits,
equivalently, the linear maps

M⊗mn = Mn ⊗ . . .⊗Mn︸ ︷︷ ︸
m

- C

which are constant along GLn-orbits where GLn acts by the diagonal action,
that is,

g.(A1 ⊗ . . .⊗Am) = gA1g
−1 ⊗ . . .⊗ gAmg−1.
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• Afterwards, we will be able to obtain from them all polynomial invariant maps
by using polarization and restitution operations.

First, we will translate our problem into one studied in classical invariant theory of
GLn.

Let Vn ' Cn be the n-dimensional vectorspace of column vectors on which GLn
acts naturally by left multiplication

Vn =


C
C
...
C

 with action g.


ν1
ν2
...
νn


In order to define an action on the dual space V ∗n = Hom(Vn,C) ' Cn of covectors
(or, row vectors) we have to use the contragradient action

V ∗n =
[
C C . . . C

]
with action

[
φ1 φ2 . . . φn

]
.g−1

Observe, that we have an evaluation map V ∗n × Vn - C which is given by the
scalar product f(v) for all f ∈ V ∗n and v ∈ Vn

[
φ1 φ2 . . . φn

]
.


ν1
ν2
...
νn

 = φ1ν1 + φ2ν2 + . . .+ φnνn

which is invariant under the diagonal action of GLn on V ∗n × Vn. Further, we have
the natural identification

Mn = Vn ⊗ V ∗n =


C
C
...
C

⊗ [
C C . . . C

]
.

Under this identification, a pure tensor v ⊗ f corresponds to the rank one matrix
or rank one endomorphism of Vn defined by

v ⊗ f : Vn - Vn with w 7→ f(w)v

and observe that the rank one matrices span Mn. The diagonal action of GLn on
Vn ⊗ V ∗n is then determined by its action on the pure tensors where it is equal to

g.


ν1
ν2
· · ·
νn

⊗ [
φ1 φ2 . . . φn

]
.g−1

and therefore coincides with the action of conjugation on Mn. Now, let us consider
the identification

(V ∗⊗mn ⊗ V ⊗mn )∗ ' End(V ⊗mn )

obtained from the nondegenerate pairing

End(V ⊗mn )× (V ∗⊗mn ⊗ V ⊗mn ) - C

given by the formula

〈λ, f1 ⊗ . . .⊗ fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(λ(v1 ⊗ . . .⊗ vm))
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GLn acts diagonally on V ⊗mn and hence again by conjugation on End(V ⊗mn ) after
embedding GLn ⊂ - GL(V ⊗mn ) = GLmn. Thus, the above identifications are
isomorphism as vectorspaces withGLn-action. But then, the space ofGLn-invariant
linear maps

V ∗⊗mn ⊗ V ⊗mn
- C

can be identified with the space EndGLn(V ⊗mn ) of GLn-linear endomorphisms of
V ⊗mn . We will now give a different presentation of this vectorspace relating it to
the symmetric group.

Apart from the diagonal action of GLn on V ⊗mn given by

g.(v1 ⊗ . . .⊗ vm) = g.v1 ⊗ . . .⊗ g.vm

we have an action of the symmetric group Sm on m letters on V ⊗mn given by

σ.(v1 ⊗ . . .⊗ vm) = vσ(1) ⊗ . . .⊗ vσ(m)

These two actions commute with each other and give embeddings of GLn and Sm
in End(V ⊗mn ).

GLn

GL(V ⊗mn ) ⊂ -

-

End(V ⊗mn )

Sm

-

The subspace of V ⊗mn spanned by the image of GLn will be denoted by 〈GLn〉.
Similarly, with 〈Sm〉 we denote the subspace spanned by the image of Sm.

Theorem 3.8 With notations as above we have :

1. 〈GLn〉 = EndSm
(V ⊗mn )

2. 〈Sm〉 = EndGLn
(V ⊗mn )

Proof. (1) : Under the identification End(V ⊗mn ) = End(Vn)⊗m an element g ∈
GLn is mapped to the symmetric tensor g ⊗ . . . ⊗ g. On the other hand, the
image of EndSm

(V ⊗mn ) in End(Vn)⊗m is the subspace of all symmetric tensors in
End(V )⊗m. We can give a basis of this subspace as follows. Let {e1, . . . , en2} be a
basis of End(Vn), then the vectors ei1⊗. . .⊗eim form a basis of End(Vn)⊗m which is
stable under the Sm-action. Further, any Sm-orbit contains a unique representative
of the form

e⊗h1
1 ⊗ . . .⊗ e⊗hn2

n2

with h1 + . . .+ hn2 = m. If we denote by r(h1, . . . , hn2) the sum of all elements in
the corresponding Sm-orbit then these vectors are a basis of the symmetric tensors
in End(Vn)⊗m.

The claim follows if we can show that every linear map λ on the symmetric
tensors which is zero on all g ⊗ . . . ⊗ g with g ∈ GLn is the zero map. Write
e =

∑
xiei, then

λ(e⊗ . . .⊗ e) =
∑

xh1
1 . . . x

hn2

n2 λ(r(h1, . . . , hn2))
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is a polynomial function on End(Vn). As GLn is a Zariski open subset of End(V )
on which by assumption this polynomial vanishes, it must be the zero polynomial.
Therefore, λ(r(h1, . . . , hn2)) = 0 for all (h1, . . . , hn2) finishing the proof.

(2) : Recall that the groupalgebra CSm of Sm is a semisimple algebra. Any
epimorphic image of a semisimple algebra is semisimple. Therefore, 〈Sm〉 is a
semisimple subalgebra of the matrixalgebra End(V ⊗mn ) ' Mnm. By the double
centralizer theorem (see for example [23]), it is therefore equal to the centralizer of
EndSm

(V ⊗mm ). By the first part, it is the centralizer of 〈GLn〉 in End(V ⊗mn ) and
therefore equal to EndGLn

(V ⊗mn ). �

Because EndGLn
(V ⊗mn ) = 〈Sm〉, every GLn-endomorphism of V ⊗mn can be writ-

ten as a linear combination of the morphisms λσ describing the action of σ ∈ Sm
on V ⊗mn . Our next job is to trace back these morphisms λσ through the canonical
identifications until we can express them in terms of matrices.

To start let us compute the linear invariant

µσ : V ∗⊗mn ⊗ V ⊗mn
- C

corresponding to λσ under the identification (V ∗⊗mn ⊗ V ⊗mn )∗ ' End(V ⊗mn ). By
the identification we know that µσ(f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm) is equal to

〈λσ, f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm〉 = f1 ⊗ . . .⊗ fm(vσ(1) ⊗ . . . vσ(m))
=

∏
i fi(vσ(i))

That is, we have proved

Proposition 3.9 Any multilinear GLn-invariant map

γ : V ∗⊗mn ⊗ V ⊗mn
- C

is a linear combination of the invariants

µσ(f1 ⊗ . . . fm ⊗ v1 ⊗ . . .⊗ vm) =
∏
i

fi(vσ(i))

for σ ∈ Sm.

Using the identification Mn(C) = Vn ⊗ V ∗⊗n a multilinear GLn-invariant map

(V ∗n ⊗ V )⊗mn = V ∗⊗mn ⊗ V ⊗mn
- C

corresponds to a multilinear GLn-invariant map

Mn(C)⊗ . . .⊗Mn(C) - C

We will now give a description of the generating maps µσ in terms of matrices.
Under the identification, matrix multiplication is induced by composition on rank
one endomorphisms and here the rule is given by

v ⊗ f.v′ ⊗ f ′ = f(v′)v ⊗ f ′ν1...
νn

⊗ [
φ1 . . . φn

]
.

ν
′
1
...
ν′n

⊗ [
φ′1 . . . φ′n

]
=

ν1...
νn

 f(v′)⊗
[
φ′1 . . . φ′n

]
.

Moreover, the trace map on Mn is induced by that on rank one endomorphisms
where it is given by the rule

tr(v ⊗ f) = f(v)
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tr(

ν1...
νn

⊗ [
φ1 . . . φn

]
) = tr(

ν1φ1 . . . ν1φn
...

. . .
...

νnφ1 . . . νnφn

) =
∑
i

νiφi = f(v)

With these rules we can now give a matrix-interpretation of the GLn-invariant maps
µσ.

Proposition 3.10 Let σ = (i1i2 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ) be a decomposi-
tion of σ ∈ Sm into cycles (including those of length one). Then, under the above
identification we have

µσ(A1 ⊗ . . .⊗Am) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ
)

Proof. Both sides are multilinear hence it suffices to verify the equality for rank
one matrices. Write Ai = vi ⊗ fi, then we have that

µσ(A1 ⊗ . . .⊗Am) = µσ(v1 ⊗ . . . vm ⊗ f1 ⊗ . . .⊗ fm)
=

∏
i fi(vσ(i))

Consider the subproduct

fi1(vi2)fi2(vi3) . . . fiα−1(viα) = S

Now, look at the matrixproduct

vi1 ⊗ fi1 .vi2 ⊗ fi2 . . . . .viα ⊗ fiα

which is by the product rule equal to

fi1(vi2)fi2(vi3) . . . fiα−1(viα)vi1 ⊗ fiα

Hence, by the trace rule we have that

tr(Ai1Ai2 . . . Aiα) =
α∏
j=1

fij (vσ(ij)) = S

�

Having found a description of the multilinear invariant polynomial maps

Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

- C

we will now describe all polynomial maps which are constant along orbits by po-
larization. The coordinate algebra C[Mm

n ] is the polynomial ring in mn2 variables
xij(k) where 1 ≤ k ≤ m and 1 ≤ i, j ≤ n. Consider the m generic n× n matrices

k = Xk =

x11(k) . . . x1n(k)
...

...
xn1(k) . . . xnn(k)

 ∈Mn(C[Mm
n ]).

The action of GLn on polynomial maps f ∈ C[Mm
n ] is fully determined by the

action on the coordinate functions xij(k). As in the case of one n × n matrix we
see that this action is given by

g.xij(k) = (g−1.Xk.g)ij .
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We see that this action preserves the subspaces spanned by the entries of any of
the generic matrices. Hence, we can define a gradation on C[Mm

n ] by deg(xij(k)) =
(0, . . . , 0, 1, 0, . . . , 0) (with 1 at place k) and decompose

C[Mm
n ] = ⊕

(d1,...,dm)∈Nm
C[Mm

n ](d1,...,dm)

where C[Mm
n ](d1,...,dm) is the subspace of all multihomogeneous forms f in the xij(k)

of degree (d1, . . . , dm), that is, in each monomial term of f there are exactly dk
factors coming from the entries of the generic matrix Xk for all 1 ≤ k ≤ m. The
action of GLn stabilizes each of these subspaces, that is,

if f ∈ C[Mm
n ](d1,...,dm) then g.f ∈ C[Mm

n ](d1,...,dm) for all g ∈ GLn.

In particular, if f determines a polynomial map on Mm
n which is constant along

orbits, that is, if f belongs to the ring of invariants C[Mm
n ]GLn then each of its mul-

tihomogeneous components is also an invariant and therefore it suffices to determine
all multihomogeneous invariants.

Let f ∈ C[Mm
n ](d1,...,dm) and take for each 1 ≤ k ≤ m dk new variables

t1(k), . . . , tdk
(k). Expand

f(t1(1)A1(1) + . . .+ td1Ad1(1), . . . , t1(m)A1(m) + . . .+ tdm
(m)Adm

(m))

as a polynomial in the variables ti(k), then we get an expression∑
t1(1)s1(1) . . . tsd1 (1)

d1
. . . t1(m)s1(m) . . . tdm

(m)sdm (m).

f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m))(A1(1), . . . , Ad1(1), . . . , A1(m), . . . , Adm
(m))

such that for all 1 ≤ k ≤ m we have
∑dk

i=1 si(k) = dk. Moreover, each of the
f(s1(1),...,sd1 (1),...,s1(m),...,sdm (m)) is a multi-homogeneous polynomial function on

Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
d1

⊕Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
d2

⊕ . . .⊕Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
dm

of multi-degree (s1(1), . . . , sd1(1), . . . , s1(m), . . . , sdm
(m)). Observe that if f is an

invariant polynomial function on Mm
n , then each of these multi homogeneous func-

tions is an invariant polynomial function on MD
n where D = d1 + . . .+ dm.

In particular, we consider the multi-linear function

f1,...,1 : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C

which we call the polarization of the polynomial f and denote with Pol(f). Observe
that Pol(f) in symmetric in each of the entries belonging to a block Mdk

n for every
1 ≤ k ≤ m. If f is invariant under GLn, then so is the multilinear function Pol(f)
and we know the form of all such functions by the results given before (replacing
Mm
n by MD

n ).
Finally, we want to recover f back from its polarization. We claim to have the

equality

Pol(f)(A1, . . . , A1︸ ︷︷ ︸
d1

, . . . , Am, . . . , Am︸ ︷︷ ︸
dm

) = d1! . . . dm!f(A1, . . . , Am)

and hence we recover f . This process is called restitution. The claim follows from
the observation that

f(t1(1)A1 + . . .+ td1(1)A1, . . . , t1(m)Am + . . .+ tdm
(m)Am) =

f((t1(1) + . . .+ td1(1))A1, . . . , (t1(m) + . . .+ tdm
(m))Am) =

(t1(1) + . . .+ td1(1))d1 . . . (t1(m) + . . .+ tdm
(m))dmf(A1, . . . , Am)
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and the definition of Pol(f). Hence we have proved that any multi-homogeneous
invariant polynomial function f on Mm

n of multidegree (d1, . . . , dm) can be obtained
by restitution of a multilinear invariant function

Pol(f) : MD
n = Md1

n ⊕ . . .⊕Mdm
n

- C

If we combine this fact with our description of all multilinear invariant functions on
Mn ⊕ . . .⊕Mn we finally obtain :

Theorem 3.11 Any polynomial function Mm
n

f- C which is constant along or-
bits under the action of GLn by simultaneous conjugation is a polynomial in the
invariants

tr(Xi1 . . . Xil)

where Xi1 . . . Xil run over all possible noncommutative polynomials in the generic
matrices {X1, . . . , Xm}.

We will call the algebra C[Mm
n ] generated by these invariants the necklace al-

gebra Nmn = C[Mm
n ]GLn . The terminology is justified by the observation that the

generators
tr(Xi1Xi2 . . . Xil)

are only determined up to cyclic permutation of the generic matrices Xj . That is,
the generators are determined by necklace words w such as

i1

i2 1111

i3 SSSSS
i4

kkkkk

i5




i6

%%
%%
%

i7

DDD
DD

i8

i9
zzzzz

�����

x
w

where each bead corresponds to a generic matrix i = Xi. They are multiplied
cyclicly to obtain an n × n matrix with coefficients in Mn(C[Mm

n ]). The trace of
this matrix is called tr(w) and the result asserts that these elements generate the
ring of polynomial invariants.

3.4 The trace algebra.

In this section we will prove a bound on the length of the necklace words w necessary
for the tr(w) to generate Nmn . In the last section, after we have determined the
relations between these necklaces tr(w), we will be able to improve this bound.

First, we will characterize all GLn-equivariant maps from Mm
n to Mn, that is

all polynomial maps Mm
n

f- Mn such that for all g ∈ GLn the diagram below is
commutative

Mm
n

f - Mn

Mm
n

g.g−1

?
f - Mn

g.g−1

?
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With pointwise addition and multiplication in the target algebra Mn, these polyno-
mial maps form a noncommutative algebra Tmn called the trace algebra. Obviously,
the trace algebra is a subalgebra of the algebra of all polynomial maps from Mm

n

to Mn, that is,
Tmn ⊂ - Mn(C[Mm

n ])

Clearly, using the diagonal embedding of C in Mn any invariant polynomial on Mm
n

determines a GLn-equivariant map. Equivalently, using the diagonal embedding of
C[Mm

n ] in Mn(C[Mm
n ]) we can embed the necklace algebra

Nmn = C[Mm
n ]GLn ⊂ - Tmn

Another source of GLn-equivariant maps are the coordinate maps

Xi : Mm
n = Mn ⊕ . . .⊕Mm

n
- Mn (A1, . . . , Am) 7→ Ai

Observe that the coordinate map Xi is represented by the generic matrix i = Xi

in Mn(C[Mm
n ]).

Proposition 3.12 As an algebra over the necklace algebra Nmn , the trace algebra
Tmn is generated by the elements {X1, . . . , Xm}.

Proof. Consider a GLn-equivariant map Mm
n

f- Mn and associate to it the
polynomial map

Mm+1
n = Mm

n ⊕Mn
tr(fXm+1) - C

defined by sending (A1, . . . , Am, Am+1) to tr(f(A1, . . . , Am).Am+1). For all g ∈
GLn we have that f(g.A1.g

−1, . . . , g.Am.g
−1) is equal to g.f(A1, . . . , Am).g−1 and

hence

tr(f(g.A1.g
−1, . . . , g.Am.g

−1).g.Am+1.g
−1) = tr(g.f(A1, . . . , Am).g−1.g.Am+1.g

−1)

= tr(g.f(A1, . . . , Am).Am+1.g
−1)

= tr(f(A1, . . . , Am).Am+1)

so tr(fXm+1) is an invariant polynomial function onMm+1
n which is linear inXm+1.

By theorem 3.11 we can therefore write

tr(fXm+1) =
∑

gi1...il︸ ︷︷ ︸
∈Nm

n

tr(Xi1 . . . XilXm+1)

Here, we used the necklace property allowing to permute cyclicly the trace terms
in which Xm+1 occurs such that Xm+1 occurs as the last factor. But then,
tr(fXm+1) = tr(gXm+1) where

g =
∑

gi1...ilXi1 . . . Xil .

Finally, using the nondegeneracy of the trace map on Mn (that is, if A,B ∈ Mn

such that tr(AC) = tr(BC) for all C ∈Mn, then A = B) it follows that f = g. �

If we give each of the generic matrices Xi degree one, we see that the trace
algebra Tmn is a connected positively graded algebra

Tmn = T0 ⊕ T1 ⊕ T2 ⊕ . . . with T0 = C.

Our aim is to bound the length of the monomials in the Xi necessary to generate
Tmn as a module over the necklace algebra Nmn . Before we can do this we need to
make a small detour in one of the more exotic realms of noncommutative algebra :
the Nagata-Higman problem.
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Theorem 3.13 (Nagata-Higman) Let R be an associative algebra without a unit
element. Assume there is a fixed natural number n such that xn = 0 for all x ∈ R.
Then, R2n−1 = 0, that is

x1.x2. . . . x2n−1 = 0

for all xj ∈ R.

Proof. We use induction on n, the case n = 1 being obvious. Consider for all
x, y ∈ R

f(x, y) = yxn−1 + xyxn−2 + x2yxn−3 + . . .+ xn−2yx+ xn−1y.

Because for all c ∈ C we must have that

0 = (y + cx)n = xncn + f(x, y)cn−1 + . . .+ yn

it follows that all the coefficients of the ci with 1 ≤ i < n must be zero, in particular
f(x, y) = 0. But then we have for all x, y, z ∈ R that

0 = f(x, z)yn−1 + f(x, zy)yn−2 + f(x, zy2)yn−3 + . . .+ f(x, zyn−1)

= nxn−1zyn−1 + zf(y, xn−1) + xzf(y, xn−2) + x2zf(y, xn−3) + . . .+ xn−2zf(y, x)

and therefore xn−1zyn−1 = 0. Let I / R be the twosided ideal of R generated by
all elements xn−1, then we have that I.R.I = 0. In the quotient algebra R = R/I
every element x satisfies xn−1 = 0.

By induction we may assume that R
2n−1−1

= 0, or equivalently that R2n−1−1 is
contained in I. But then,

R2n−1 = R2(2n−1−1)+1 = R2n−1−1.R.R2n−1−1 ⊂ - I.R.I = 0

finishing the proof. �

Proposition 3.14 The trace algebra Tmn is spanned as a module over the necklace
algebra Nmn by all monomials in the generic matrices

Xi1Xi2 . . . Xil

of degree l ≤ 2n − 1.

Proof. By the diagonal embedding of Nmn in Mn(C[Mm
n ]) it is clear that Nmn

commutes with any of the Xi. Let T+ and N+ be the strict positive degrees of Tmn
and Nmn and form the graded associative algebra (without unit element)

R = T+/N+.T+

Observe that any element t ∈ T+ satisfies an equation of the form

tn + c1t
n−1 + c2t

n−2 + . . .+ cn = 0

with all of the ci ∈ N+. Indeed we have seen that all the coefficients of the char-
acteristic polynomial of a matrix can be expressed as polynomials in the traces of
powers of the matrix. But then, for any x ∈ R we have that xn = 0.

By the Nagata-Higman theorem we know that R2n−1 = (R1)2
n−1 = 0. Let T′ be

the graded Nmn -submodule of Tmn spanned by all monomials in the generic matrices
Xi of degree at most 2n − 1, then the above can be reformulated as

Tmn = T′ + N+.Tmn .
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We claim that Tnm = T′. Assume not, then there is a homogeneous t ∈ Tmn of
minimal degree d not contained in T′ but still we have a description

t = t′ + c1.t1 + . . .+ cs.ts

with t′ and all ci, ti homogeneous elements. As deg(ti) < d, ti ∈ T′ for all i but
then is t ∈ T′ a contradiction. �

Finally we are in a position to bound the length of the necklaces generating Nmn
as an algebra.

Theorem 3.15 The necklace algebra Nmn is generated by all necklaces tr(w) where
w is a necklace word
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of length l ≤ 2n where each of the beads is a generic matrix i = Xi.

Proof. Let T′ be the C-subalgebra of Tmn generated by the generic matrices Xi.
Then, tr(T′+) generates the ideal N+. Let S be the set of all monomials in the Xi of
degree at most 2n − 1. By the foregoing proposition we know that T′ ⊂ - Nmn .S.
The trace map

tr : Tmn - Nmn
is Nmn -linear and therefore, because T′+ ⊂ T′.(CX1 + . . .+ CXm) we have

tr(T′+) ⊂ tr(Nmn .S.(CX1 + . . .+ CXm)) ⊂ Nmn .tr(S′)

where S′ is the set of monomials in the Xi of degree at most 2n. If N′ is the C-
subalgebra of Nmn generated by all tr(S′), then we have tr(T′+) ⊂ Nmn .N′+. But then,
we have

N+ = Nmn tr(T+) ⊂ Nmn N′+ and thus Nmn = N′ + Nmn N′+

from which it follows that Nmn = N′ by a similar argument as in the foregoing proof.
�

Example 3.16 The algebras N2
2 and T2

2.
When working with 2× 2 matrices, the following identities are often helpful

0 = A2 − tr(A)A+ det(A)

A.B +B.A = tr(AB)− tr(A)tr(B) + tr(A)B + tr(B)A

for all A,B ∈ M2. Let N′ be the subalgebra of N2
2 generated by tr(X1), tr(X2), det(X1), det(X2)

and tr(X1X2). Using the two formulas above and N2
2-linearity of the trace on T2

2 we see that the
trace of any monomial in X1 and X2 of degree d ≥ 3 can be expressed in elements of N′ and traces
of monomials of degree ≤ d− 1. Hence, we have

N2
2 = C[tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)].
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Observe that there can be no algebraic relations between these generators as we have seen that the
induced map π : M2

2
- C5 is surjective. Another consequence of the above identities is that

over N2
2 any monomial in the X1, X2 of degree d ≥ 3 can be expressed as a linear combination of

1, X1, X2 and X1X2 and so these elements generate T2
2 as a N2

2-module. In fact, they are a basis
of T2

2 over N2
2. Assume otherwise, there would be a relation say

X1X2 = αI2 + βX1 + γX2

with α, β, γ ∈ C(tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)). Then this relation has to hold for
all matrix couples (A,B) ∈M2

2 and we obtain a contradiction if we take the couple

A =

»
0 1
0 0

–
B =

»
0 0
1 0

–
whence AB =

»
1 0
0 0

–
.

Concluding, we have the following description of N2
2 and T2

2 as a subalgebra of C[M2
2 ] respectively

M2(C[M2
2 ]) (

N2
2 = C[tr(X1), tr(X2), det(X1), det(X2), tr(X1X2)]

T2
2 = N2

2.I2 ⊕ N2
2.X1 ⊕ N2

2.X2 ⊕ N2
2.X1X2

Observe that we might have taken the generators tr(X2
i ) rather than det(Xi) because det(Xi) =

1
2
(tr(Xi)

2 − tr(Xi)
2) as follows from taking the trace of characteristic polynomial of Xi.

3.5 The symmetric group.

Let Sd be the symmetric group of all permutations on d letters. The group algebra
C Sd is a semisimple algebra. In particular, any simple Sd-representation is isomor-
phic to a minimal left ideal of C Sd which is generated by an idempotent. We will
now determine these idempotents.

To start, conjugacy classes in Sd correspond naturally to partitions λ =
(λ1, . . . , λk) of d, that is, decompositions in natural numbers

d = λ1 + . . .+ λk with λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1

The correspondence associates to a partition λ = (λ1, . . . , λk) the conjugacy class
of a permutation consisting of disjoint cycles of lengths λ1, . . . , λk. It is traditional
to assign to a partition λ = (λ1, . . . , λk) a Young diagram with λi boxes in the i-th
row, the rows of boxes lined up to the left. The dual partition λ∗ = (λ∗1, . . . , λ

∗
r)

to λ is defined by interchanging rows and columns in the Young diagram of λ. For
example, to the partition λ = (3, 2, 1, 1) of 7 we assign the Young diagram

λ = λ∗ =

with dual partition λ∗ = (4, 2, 1). A Young tableau is a numbering of the boxes
of a Young diagram by the integers {1, 2, . . . , d}. For example, two distinct Young
tableaux of type λ are

7

6

4

1 2 3

5

7

6

2

1 3 5

4

Now, fix a Young tableau T of type λ and define subgroups of Sd by

Pλ = {σ ∈ Sd | σ preserves each row }
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Qλ = {σ ∈ Sd | σ preserves each column }

For example, for the second Young tableaux given above we have that{
Pλ = S{1,3,5} × S{2,4} × {(6)} × {(7)}
Qλ = S{1,2,6,7} × S{3,4} × {(5)}

Observe that different Young tableaux for the same λ define different subgroups
and different elements to be defined below. Still, the simple representations we will
construct from them turn out to be isomorphic.

Using these subgroups, we define the following elements in the groupalgebra CSd

aλ =
∑
σ∈Pλ

eσ , bλ =
∑
σ∈Qλ

sgn(σ)eσ and cλ = aλ.bσ

The element cλ is called a Young symmetrizer. The next result gives an explicit one-
to-one correspondence between the simple representations of CSd and the conjugacy
classes in Sd (or, equivalently, Young diagrams).

Theorem 3.17 For every partition λ of d the left ideal CSd.cλ = Vλ is a simple
Sd-representations and, conversely, any simple Sd-representation is isomorphic to
Vλ for a unique partition λ.

Proof. Observe that Pλ ∩ Qλ = {e} (any permutation preserving rows as well as
columns preserves all boxes) and so any element of Sd can be written in at most one
way as a product p.q with p ∈ Pλ and q ∈ Qλ. In particular, the Young symmetrizer
can be written as cλ =

∑
±eσ with σ = p.q for unique p and q and the coefficient

±1 = sgn(q). From this it follows that for all p ∈ Pλ and q ∈ Qλ we have

p.aλ = aλ.p = aλ , sgn(q)q.bλ = bλ.sgn(q)q = bλ , p.cλ.sgn(q)q = cλ

Moreover, we claim that cλ is the unique element in CSd (up to a scalar factor)
satisfying the last property. This requires a few preparations.

Assume σ /∈ Pλ.Qλ and consider the tableaux T ′ = σT , that is, replacing the
label i of each box in T by σ(i). We claim that there are two distinct numbers which
belong to the same row in T and to the same column in T ′. If this were not the
case, then all the distinct numbers in the first row of T appear in different columns
of T ′. But then we can find an element q′1 in the subgroup σ.Qλ.σ

−1 preserving
the columns of T ′ to take all these elements to the first row of T ′. But then, there
is an element p1 ∈ Tλ such that p1T and q′1T

′ have the same first row. We can
proceed to the second row and so on and obtain elements p ∈ Pλ and q′ ∈ σ.Qλ, σ−1

such that the tableaux pT and q′T ′ are equal. Hence, pT = q′σT entailing that
p = q′σ. Further, q′ = σ.q.σ−1 but then p = q′σ = σq whence σ = p.q−1 ∈ Pλ.Qλ,
a contradiction. Therefore, to σ /∈ Pλ.Qλ we can assign a transposition τ = (ij)
(replacing the two distinct numbers belonging to the same row in T and to the same
column in T ′) for which p = τ ∈ Pλ and q = σ−1.τ.σ ∈ Qλ.

After these preliminaries, assume that c′ =
∑
aσeσ is an element such that

p.c′.sgn(q)q = c′ for all p ∈ Pλ, q ∈ Qλ

We claim that aσ = 0 whenever σ /∈ Pλ.Qλ. For take the transposition τ found
above and p = τ , q = σ−1.τ.σ, then p.σ.q = τ.σ.σ−1.τ.σ = σ. However, the
coefficient of σ in c′ is aσ and that of p.c′.q is −aσ proving the claim. That is,

c′ =
∑
p,q

apqep.q
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but then by the property of c′ we must have that apq = sgn(q)ae whence c′ = aecλ
finishing the proof of the claimed uniqueness of the element cλ.

As a consequence we have for all elements x ∈ CSd that cλ.x, cλ = αxcλ for
some scalar αx ∈ C and in particular that c2λ = nλcλ, for,

p.(cλ.x.cλ).sgn(q)q = p.aλ.bλ.x.aλ.bλ.sgn(q)q
= aλ.bλ.x.aλ.bλ = cλ.x.cλ

and the statement follows from the uniqueness result for cλ.
Define Vλ = CSd.cλ then we have cλ.Vλ ⊂ Ccλ. We claim that Vλ is a simple Sd-

representation. Let W ⊂ Vλ be a simple subrepresentation, then being a left ideal
of CSd we can write W = CSd.x with x2 = x (note that W is a direct summand).
Assume that cλ.W = 0, then W.W ⊂ CSd.cλ.W = 0 implying that x = 0 whence
W = 0, a contradiction. Hence, cλ.W = Ccλ ⊂W , but then

Vλ = CSd.cλ ⊂W whenceVλ = W

is simple. Remains to show that for different partitions, the corresponding simple
representations cannot be isomorphic.

We put a lexicographic ordering on the partitions by the rule that

λ > µ if the first nonvanishing λi − µi is positive

We claim that if λ > µ then aλ.CSd.bµ = 0. It suffices to check that aλ.σ.bµ = 0
for σ ∈ Sd. As σ.bµ.σ−1 is the ”b-element” constructed from the tableau b.T ′ where
T ′ is the tableaux fixed for µ, it is sufficient to check that aλ.bµ = 0. As λ > µ
there are distinct numbers i and j belonging to the same row in T and to the same
column in T ′. If not, the distinct numbers in any fixed row of T must belong to
different columns of T ′, but this can only happen for all rows if µ ≥ λ. So consider
τ = (ij) which belongs to Pλ and to Qµ, whence aλ.τ = aλ and τ.bµ = −bµ. But
then,

aλ.bµ = aλ.τ, τ, bµ = −aλ.bµ
proving the claim.

If λ 6= µ we claim that Vλ is not isomorphic to Vµ. Assume that λ > µ and φ a
CSd-isomorphism with φ(Vλ) = Vµ, then

φ(cλVλ) = cλφ(Vλ) = cλVµ = cλCSdcµ = 0

Hence, cλVλ = Ccλ 6= 0 lies in the kernel of an isomorphism which is clearly absurd.
Summarizing, we have constructed to distinct partitions of d, λ and µ noniso-

morphic simple CSd-representations Vλ and Vµ. As we know that there are as many
isomorphism classes of simples as there are conjugacy classes in Sd (or partitions),
the Vλ form a complete set of isomorphism classes of simple Sd-representations,
finishing the proof of the theorem. �

3.6 Necklace relations.

In this section we will prove that all the relations holding among the elements of
the necklace algebra Nmn are formal consequences of the Cayley-Hamilton equation.
First, we will have to set up some notation to clarify what we mean by this.

For technical reasons it is sometimes convenient to have an infinite supply of
noncommutative variables {x1, x2, . . . , xi, . . .}. Two monomials of the same degree
d in these variables

M = xi1xi2 . . . xid and M ′ = xj1xj2 . . . xjd
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are said to be equivalent if M ′ is obtained from M by a cyclic permutation, that is,
there is a k such that i1 = jk and all ia = jb with b = k + a− 1 mod d. That is, if
they determine the same necklace word
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with each of the beads one of the noncommuting variables i = xi. To each equiv-
alence class we assign a formal variable that we denote by

t(xi1xi2 . . . xid).

The formal necklace algebra N∞ is then the polynomial algebra on all these (in-
finitely many) letters. Similarly, we define the formal trace algebra T∞ to be the
algebra

T∞ = N∞ ⊗C C〈x1, x2, . . . , xi, . . .〉

that is, the free associative algebra on the noncommuting variables xi with coeffi-
cients in the polynomial algebra N∞.

Crucial for our purposes is the existence of an N∞-linear formal trace map

t : T∞ -- N∞

defined by the formula

t(
∑

ai1...ikxi1 . . . xik) =
∑

ai1...ikt(xi1 . . . xik)

where ai1...ik ∈ N∞.
In an analogous manner we will define infinite versions of the necklace and trace

algebras. Let M∞n be the space of all ordered sequences (A1, A2, . . . , Ai, . . .) with
Ai ∈Mn and all but finitely many of the Ai are the zero matrix. Again, GLn acts
on M∞n by simultaneous conjugation and we denote the infinite necklace algebra
N∞n to be the algebra of polynomial functions f

M∞n
f- C

which are constant along orbits. Clearly, N∞n is generated as C-algebra by the in-
variants tr(M) where M runs over all monomials in the coordinate generic matrices
Xk = (xij(k))i,j belonging to the k-th factor of M∞n . Similarly, the infinite trace
algebra T∞n is the algebra of GLn-equivariant polynomial maps

M∞n - Mn.

Clearly, T∞n is the C-algebra generated by N∞n and the generic matrices Xk for
1 ≤ k <∞. Observe that T∞n is a subalgebra of the matrixring

T∞n ⊂ - Mn(C[M∞n ])
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and as such has a trace map tr defined on it and from our knowledge of the gener-
ators of N∞n we know that tr(T∞n ) = N∞n .

Now, there are natural algebra epimorphisms

T∞ τ-- T∞n and N∞ ν-- N∞n

defined by τ(t(xi1 . . . xik)) = ν(t(xi1 . . . xik)) = tr(Xi1 . . . Xik) and τ(xi) = Xi.
That is, ν and τ are compatible with the trace maps

T∞ τ -- T∞n

N∞

t

??
ν -- N∞n

tr

??

We are interested in describing the necklace relations, that is, the kernel of ν. In the
next section we will describe the trace relations which is the kernel of τ . Note that
we obtain the relations holding among the necklaces in Nmn by setting all xi = 0
with i > m and all t(xi1 . . . xik) = 0 containing a variable with ij > m.

In the description a map T : CSd - N∞ will be important. Let Sd be the
symmetric group of permutations on {1, . . . , d} and let

σ = (i1i1 . . . iα)(j1j2 . . . jβ) . . . (z1z2 . . . zζ)

be a decomposition of σ ∈ Sd into cycles including those of length one. The map T
assigns to σ a formal necklace Tσ(x1, . . . , xd) defined by

Tσ(x1, . . . , xd) = t(xi1xi2 . . . xiα)t(xj1xj2 . . . xjβ ) . . . t(xz1xz2 . . . xzζ
)

Let V = Vn be again the n-dimensional vectorspace of column vectors, then Sd acts
naturally on V ⊗d via

σ.(v1 ⊗ . . .⊗ vd) = vσ(1) ⊗ . . .⊗ vσ(d)

hence determines a linear map λσ ∈ End(V ⊗d). Recall from section 3 that under
the natural identifications

(M⊗dn )∗ ' (V ∗⊗d ⊗ V ⊗d)∗ ' End(V ⊗d)

the map λσ defines the multilinear map

µσ : Mn ⊗ . . .⊗Mn︸ ︷︷ ︸
d

- C

defined by (using the cycle decomposition of σ as before)

µσ(A1 ⊗ . . .⊗Ad) = tr(Ai1Ai2 . . . Aiα)tr(Aj1Aj2 . . . Ajβ ) . . . tr(Az1Az2 . . . Azζ
) .

Therefore, a linear combination
∑
aσTσ(x1, . . . , xd) is a necklace relation (that is,

belongs to Ker ν) if and only if the multilinear map
∑
aσµσ : M⊗dn - C is zero.

This, in turn, is equivalent to the endomorphism
∑
aσλσ ∈ End(V ⊗m), induced by

the action of the element
∑
aσeσ ∈ CSd on V ⊗d, being zero. In order to answer the

latter problem we have to understand the action of a Young symmetrizer cλ ∈ CSd
on V ⊗d.
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Let λ = (λ1, λ2, . . . , λk) be a partition of d and equip the corresponding Young
diagram with the standard tableau (that is, order first the boxes in the first row
from left to right, then the second row from left to right and so on).

1

d

//
//

//

The subgroup Pλ of Sd which preserves each row then becomes

Pλ = Sλ1 × Sλ2 × . . .× Sλk
⊂ - Sd.

As aλ =
∑
p∈Pλ

ep we see that the image of the action of aλ on V ⊗d is the subspace

Im(aλ) = Symλ1 V ⊗ Symλ2 V ⊗ . . .⊗ Symλk V ⊂ - V ⊗d .

Here, Symi V denotes the subspace of symmetric tensors in V ⊗i.
Similarly, equip the Young diagram of λ with the tableau by ordering first the

boxes in the first column from top to bottom, then those of the second column from
top to bottom and so on.

1 d

��

�� ��

Equivalently, give the Young diagram corresponding to the dual partition of λ

λ∗ = (µ1, µ2, . . . , µl)

the standard tableau. Then, the subgroup Qλ of Sd which preserves each row of λ
(or equivalently, each column of λ∗) is

Qλ = Sµ1 × Sµ2 × . . .× Sµl
⊂ - Sd

As bλ =
∑
q∈Qλ

sgn(q)eq we see that the image of bλ on V ⊗d is the subspace

Im(bλ) =
µ1∧

V ⊗
µ2∧

V ⊗ . . .⊗
µl∧

V ⊂ - V ⊗d .

Here,
∧i

V is the subspace of all anti-symmetric tensors in V ⊗i. Note that
∧i

V =
0 whenever i is greater than the dimension dim V = n. That is, the image of
the action of bλ on V ⊗d is zero whenever the dual partition λ∗ contains a row of
length ≥ n+ 1, or equivalently, whenever λ has ≥ n+ 1 rows. Because the Young
symmetrizer cλ = aλ.bλ ∈ C Sd we have proved the first result on necklace relations.

Proposition 3.18 A formal necklace∑
σ∈Sd

aσTσ(x1, . . . , xd)
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is a necklace relation (for n× n matrices) if and only if the element∑
aσeσ ∈ CSd

belongs to the ideal of CSd spanned by the Young symmetrizers cλ relative to parti-
tions λ = (λ1, . . . , λk)

n

with a least n+ 1 rows, that is, k ≥ n+ 1.

Example 3.19 (Fundamental necklace and trace relation.)
Consider the partition λ = (1, 1, . . . , 1) of n+ 1, with corresponding Young tableau

n+1

...

2
1

Then, Pλ = {e}, Qλ = Sn+1 and we have the Young symmetrizer

aλ = 1 bλ = cλ =
X

σ∈Sn+1

sgn(σ)eσ .

The corresponding element is called the fundamental necklace relation

F(x1, . . . , xn+1) =
X

σ∈Sn+1

sgn(σ)Tσ(x1, . . . , xn+1).

Clearly, F(x1, . . . , xn+1) is multilinear of degree n+1 in the variables {x1, . . . , xn+1}. Conversely,
any multilinear necklace relation of degree n+1 must be a scalar multiple of F(x1, . . . , xn+1). This
follows from the proposition as the ideal described there is for d = n+ 1 just the scalar multiples
of

P
σ∈Sn+1

sgn(σ)eσ .

Because F(x1, . . . , xn+1) is multilinear in the variables xi we can use the cyclic permutation
property of the formal trace t to write it in the form

F(x1, . . . , xn+1) = t(CH(x1, . . . , xn)xn+1) with CH(x1, . . . , xn) ∈ T∞

Observe that CH(x1, . . . , xn) is multilinear in the variables xi. Moreover, by the nondegener-
acy of the trace map tr and the fact that F(x1, . . . , xn+1) is a necklace relation, it follows that
CH(x1, . . . , xn) is a trace relation. Again, any multilinear trace relation of degree n in the vari-
ables {x1, . . . , xn} is a scalar multiple of CH(x1, . . . , xn). This follows from the corresponding
uniqueness result for F(x1, . . . , xn+1).

We can give an explicit expression of this fundamental trace relation

CH(x1, . . . , xn) =
nX
k=0

(−1)k
X

i1 6=i2 6=...6=ik

xi1xi2 . . . xik

X
σ∈SJ

sgn(σ)Tσ(xj1 , . . . , xjn−k
)

where J = {1, . . . , n} − {i1, . . . , ik}. In a moment we will see that CH(x1, . . . , xn) and hence also

F(x1, . . . , xn+1) is obtained by polarization of the Cayley-Hamilton identity for n× n matrices.

We will explain what we mean by the Cayley-Hamilton polynomial for an el-
ement of T∞. Recall that when X ∈ Mn(A) is a matrix with coefficients in a
commutative C-algebra A its characteristic polynomial is defined to be

χX(t) = det(trrn −X) ∈ A[t]

and by the Cayley-Hamilton theorem we have the basic relation that χX(X) = 0.
We have seen that the coefficients of the characteristic polynomial can be expressed
as polynomial functions in the tr(Xi) for 1 ≤ i ≤ n.
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For example if n = 2, then the characteristic polynomial can we written as

χX(t) = t2 − tr(X)t+
1
2
(tr(X)2 − tr(X2)).

For general n the method for finding these polynomial functions is based on the
formal recursive algorithm expressing elementary symmetric functions in term of
Newton functions, usually expressed by the formulae

f(t) =
n∏
i=1

(t− λi),

f ′(t)
f(t)

=
d log f(t)

dt
=

n∑
i=1

1
t− λi

=
∞∑
k=0

1
tk+1

(
n∑
i=1

λki )

Note, if λi are the eigenvalues ofX ∈Mn, then f(t) = χX(t) and
∑n
i=1 λ

k
i = tr(Xk).

Therefore, one can use the formulae to express f(t) in terms of the elements
∑n
i=1 λ

k
i .

To get the required expression for the characteristic polynomial of X one only has
to substitute

∑n
i=1 λ

k
i with tr(Xk).

This allows us to construct a formal Cayley-Hamilton polynomial χx(x) ∈ T∞
of an element x ∈ T∞ by replacing in the above characteristic polynomial the term
tr(Xk) with t(xk) and tl with xl. If x is one of the variables xi then χx(x) is
an element of T∞ homogeneous of degree n. Moreover, by the Cayley-Hamilton
theorem it follows immediately that χx(x) is a trace relation. Hence, if we fully
polarize χx(x) (say, using the variables {x1, . . . , xn}) we obtain a multilinear trace
relation of degree n. By the argument given in the example above we know that
this element must be a scalar multiple of CH(x1, . . . , xn). In fact, one can see that
this scale factor must be (−1)n as the leading term of the multilinearization is∑
σ∈Sn

xσ(1) . . . xσ(n) and compare this with the explicit form of CH(x1, . . . , xn).

Example 3.20 Consider the case n = 2. The formal Cayley-Hamilton polynomial of an ele-
ment x ∈ T∞ is

χx(x) = x2 − t(x)x+
1

2
(t(x)2 − t(x2)) .

Polarization with respect to the variables x1 and x2 gives the expression

x1x2 + x2x1 − t(x1)x2 − t(x2)x1 + t(x1)t(x2)− t(x1x2)

which is CH(x1, x2). Indeed, multiplying it on the right with x3 and applying the formal trace t
to it we obtain

t(x1x2x3) + t(x2x1x3)− t(x1)t(x2x3)− t(x2)t(x1x3) + t(x1)t(x2)t(x3)− t(x1x2)t(x3)

= T(123)(x1, x2, x3) + T(213)(x1, x2, x3)− T(1)(23)(x1, x2, x3)− T(2)(13)(x1, x2, x3)

+ T(1)(2)(3)(x1, x2, x3)− T(12)(3)(x1, x2, x3)

=
X
σ∈S3

Tσ(x1, x2, x3) = F(x1, x2, x3)

as required.

Theorem 3.21 The necklace relations Ker ν is the ideal of N∞ generated by all
the elements

F(m1, . . . ,mn+1)

where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}.

Proof. Take a homogeneous necklace relation f ∈ Ker ν of degree d and polarize
it to get a multilinear element f ′ ∈ N∞. Clearly, f ′ is also a necklace relation and
if we can show that f ′ belongs to the described ideal, then so does f as the process
of restitution maps this ideal into itself.



118 CHAPTER 3. GENERIC MATRICES.

Therefore, we may assume that f is multilinear of degree d. A priori f may
depend on more than d variables xk, but we can separate f as a sum of multilinear
polynomials fi each depending on precisely d variables such that for i 6= j fi and fj
do not depend on the same variables. Setting some of the variables equal to zero,
we see that each of the fi is again a necklace relation.

Thus, we may assume that f is a multilinear necklace identity of degree d de-
pending on the variables {x1, . . . , xd}. But then we know from proposition 3.18
that we can write

f =
∑
τ∈Sd

aτTτ (x1, . . . , xd)

where
∑
aτeτ ∈ CSd belongs to the ideal spanned by the Young symmetrizers of

Young diagrams λ having at least n+ 1 rows.
We claim that this ideal is generated by the Young symmetrizer of the partition

(1, . . . , 1) of n + 1 under the natural embedding of Sn+1 into Sd. Let λ be a
Young diagram having k ≥ n + 1 boxes and let cλ be a Young symmetrizer with
respect to a tableau where the boxes in the first column are labeled by the numbers
I = {i1, . . . , ik} and let SI be the obvious subgroup of Sd. As Qλ = SI ×Q′ we see
that bλ = (

∑
σ∈SI

sgn(σ)eσ).b′ with b′ ∈ CQ′. Hence, cλ belongs to the twosided
ideal generated by cI =

∑
σ∈SI

sgn(σ)eσ but this is also the twosided ideal generated
by ck =

∑
σ∈Sk

sgn(σ)eσ as one verifies by conjugation with a partition sending I
to {1, . . . , k}. Moreover, by induction one shows that the twosided ideal generated
by ck belongs to the twosided ideal generated by cd =

∑
σ∈Sd

sgn(σ)eσ, finishing
the proof of the claim.

From this claim, we can write∑
τ∈Sd

aτeτ =
∑

τi,τj∈Sd

aijeτi .(
∑

σ∈Sn+1

sgn(σ)eσ).eτj

and therefore it suffices to analyze the form of the necklace identity associated to
an element of the form

eτ .(
∑

σ∈Sn+1

sgn(σ)eσ).eτ ′ with τ, τ ′ ∈ Sd

Now, if a groupelement
∑
µ∈Sd

bµeµ corresponds to the formal necklace polynomial
G(x1, . . . , xd), then the element eτ .(

∑
µ∈Sd

bµeµ).eτ−1 corresponds to the formal
necklace polynomial G(xτ(1), . . . , xτ(d)).

Therefore, we may replace the element eτ .(
∑
σ∈Sn+1

sgn(σ)eσ).eτ ′ by the ele-
ment

(
∑

σ∈Sn+1

sgn(σ)eσ).eη with η = τ ′.τ ∈ Sd

We claim that we can write η = σ′.θ with σ′ ∈ Sn+1 and θ ∈ Sd such that each cycle
of θ contains at most one of the elements from {1, 2, . . . , n+1}. Indeed assume that
η contains a cycle containing more than one element from {1, . . . , n+ 1}, say 1 and
2, that is

η = (1i1i2 . . . ir2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

then we can express the product (12).η in cycles as

(1i1i2 . . . ir)(2j1j2 . . . js)(k1 . . . kα) . . . (z1 . . . zζ)

Continuing in this manner we reduce the number of elements from {1. . . . , n + 1}
in every cycle to at most one.
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But then as σ′ ∈ Sn+1 we have seen that (
∑
sgn(σ)eσ).eσ′ =

sgn(σ′)(
∑
sgn(σ)eσ) and consequently

(
∑

σ∈Sn+1

sgn(σ)eσ).eη = ±(
∑

σ∈Sn+1

sgn(σ)eσ).eθ

where each cycle of θ contains at most one of {1, . . . , n+ 1}. Let us write

θ = (1i1 . . . iα)(2j1 . . . jβ) . . . (n+ 1s1 . . . sκ)(t1 . . . tλ) . . . (z1 . . . zζ)

Now, let σ ∈ Sn+1 then the cycle decomposition of σ.θ is obtained as follows :
substitute in each cycle of σ the element 1 formally by the string 1i1 . . . iα, the
element 2 by the string 2j1 . . . jβ , and so on until the element n + 1 by the string
n+1s1 . . . sκ and finally adjoin the cycles of θ in which no elements from {1, . . . , n+
1} appear.

Finally, we can write out the formal necklace element corresponding to the
element (

∑
σ∈Sn+1

sgn(σ)eσ).eθ as

F(x1xi1 . . . xiα , x2xj1 . . . xjβ , . . . , xn+1xs1 . . . xsκ
)t(xt1 . . . xtλ) . . . t(xz1 . . . xzζ

)

finishing the proof of the theorem. �

3.7 Trace relations.

We will again use the non-degeneracy of the trace map to deduce the trace relations,
that is, Ker τ from the description of the necklace relations.

Theorem 3.22 The trace relations Ker τ is the twosided ideal of the formal trace
algebra T∞ generated by all elements

F(m1, . . . ,mn+1) and CH(m1, . . . ,mn)

where the mi run over all monomials in the variables {x1, x2, . . . , xi, . . .}.

Proof. Consider a trace relation H(x1, . . . , xd) ∈ Ker τ . Then, we have a necklace
relation of the form

t(H(x1, . . . , xd)xd+1) ∈ Ker ν
By theorem 3.21 we know that this element must be of the form∑

ni1...in+1F(mi1 , . . . ,min+1)

where the mi are monomials, the ni1...in+1 ∈ N∞ and the expression must be linear
in the variable xd+1. That is, xd+1 appears linearly in each of the terms

nF(m1, . . . ,mn+1)

so appears linearly in n or in precisely one of the monomials mi. If xd+1 appears
linearly in n we can write

n = t(n′.xd+1) where n′ ∈ T∞.

If xd+1 appears linearly in one of the monomials mi we may assume that it does so
in mn+1, permuting the monomials if necessary. That is, we may assume mn+1 =
m′n+1.xd+1.m”n+1 with m,m′ monomials. But then, we can write

nF(m1, . . . ,mn+1) = nt(CH(m1, . . . ,mn).m′n+1.xd+1.m”n+1)
= t(n.m”n+1.CH(m1, . . . ,mn).m′n+1.xd+1)
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using N∞-linearity and the cyclic permutation property of the formal trace t. But
then, separating the two cases, one can write the total expression

t(H(x1, . . . , xd)xd+1) = t([
∑
i

n′i1...in+1
F(mi1 , . . . ,min+1)

+
∑
j

nj1...jn+1 .m”jn+1 .CH(mj1 , . . . ,mjn).m′jn+1
] xd+1)

Finally, observe that two formal trace elements H(x1, . . . , xd) and K(x1, . . . , xd) are
equal if the formal necklaces

t(H(x1, . . . , xd)xd+1) = t(K(x1, . . . , xd)xd+1)

are equal, finishing the proof. �

We will give another description of the necklace relations Ker τ which is better
suited for the categorical interpretation of T∞n to be given in the next chapter.
Consider formal trace elements m1,m2, . . . ,mi, . . . with mj ∈ T∞. The formal
substitution

f 7→ f(m1,m2, . . . ,mi, . . .)

is the uniquely determined algebra endomorphism of T∞ which maps the variable
xi to mi and is compatible with the formal trace t. That is, the substitution sends a
monomial xi1xi1 . . . xik to the element gi1gi2 . . . gik and an element t(xi1xi2 . . . xik)
to the element t(gi1gi2 . . . gik). A substitution invariant ideal of T∞ is a twosided
ideal of T∞ that is closed under all possible substitutions as well as under the
formal trace t. For any subset of elements E ⊂ T∞ there is a minimal substitution
invariant ideal containing E. This is the ideal generated by all elements obtained
from E by making all possible substitutions and taking all their formal traces. We
will refer to this ideal as the substitution invariant ideal generated by E.

Recall the definition of the formal Cayley-Hamilton polynomial χx(x) of an
element x ∈ T∞ given in the previous section.

Theorem 3.23 The trace relations Ker τ is the substitution invariant ideal of T∞
generated by the formal Cayley-Hamilton polynomials

χx(x) for all x ∈ T∞

Proof. The result follows from theorem 3.22 and the definition of a substitution
invariant ideal once we can show that the full polarization of χx(x), which we have
seen is CH(x1, . . . , xn), lies in the substitution invariant ideal generated by the
χx(x).

This is true since we may replace the process of polarization with the process of
multilinearization, whose first step is to replace, for instance

χx(x) by χx+y(x+ y)− χx(x)− χy(y).

The final result of multilinearization is the same as of full polarization and the claim
follows as multilinearizing a polynomial in a substitution invariant ideal, we remain
in the same ideal. �

We will use our knowledge on the necklace and trace relations to improve the
bound of 2n−1 in the Nagata-Higman problem to n2. Recall that this problem asks
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for a number N(n) with the property that if R is an associative C-algebra without
unit such that rn = 0 for all r ∈ R, then we must have for all ri ∈ R the identity

r1r2 . . . rN(n) = 0 in R.

We start by reformulating the problem. Consider the positive part F+ of the free
C-algebra generated by the variables {x1, x2, . . . , xi, . . .}

F+ = C〈x1, x2, . . . , xi, . . .〉+

which is an associative C-algebra without unit. Let T (n) be the twosided ideal of
F+ generated by all n-powers fn with f ∈ F+. Note that the ideal T (n) is invariant
under all substitutions of F+. The Nagata-Higman problem then asks for a number
N(n) such that the product

x1x2 . . . xN(n) ∈ T (n).

We will now give an alternative description of the quotient algebra F+/T (n). Let
N+ be the positive part of the infinite necklace algebra N∞n and T+ the positive
part of the infinite trace algebra T∞n . Consider the quotient associative C-algebra
without unit

T+ = T+/(N+T∞n ).

Observe the following facts about T+ : as a C-algebra it is generated by the variables
X1, X2, . . . as all the other algebra generators of the form t(xi1 . . . xir ) of T∞ are
mapped to zero in T+. Further, from the form of the Cayley-Hamilton polynomial it
follows that every t ∈ T+ satisfies tn = 0. That is, we have an algebra epimorphism

F+/T (n) -- T+

and we claim that it is also injective. To see this, observe that the quotient
T∞/N∞+ T∞ is just the free C-algebra on the variables {x1, x2, . . .}. To obtain T+

we have to factor out the ideal of trace relations. Now, a formal Cayley-Hamilton
polynomial χx(x) is mapped to xn in T∞/N∞+ T∞. That is, to obtain T+ we factor
out the substitution invariant ideal (observe that t is zero here) generated by the
elements xn, but this is just the definition of F+/T (n).

Therefore, a reformulation of the Nagata-Higman problem is to find a number
N = N(n) such that the product of the first N generic matrices

X1X2 . . . XN ∈ N∞+ T∞n or, equivalently that tr(X1X2 . . . XNXN+1)

can be expressed as a linear combination of products of traces of lower degree. Using
the description of the necklace relations given in proposition 3.18 we can reformulate
this conditions in terms of the group algebra CSN+1. Let us introduce the following
subspaces of the groupalgebra :

• A will be the subspace spanned by all N + 1 cycles in SN+1,

• B will be the subspace spanned by all elements except N + 1 cycles,

• L(n) will be the ideal of CSN+1 spanned by the Young symmetrizers associ-
ated to partitions

n

L(n)

with ≤ n rows, and



122 CHAPTER 3. GENERIC MATRICES.

• M(n) will be the ideal of CSN+1 spanned by the Young symmetrizers associ-
ated to partitions

n

M(n)

having more than n rows.

With these notations, we can reformulate the above condition as

(12 . . . NN + 1) ∈ B +M(n) and consequently CSN+1 = B +M(n)

Define an inner product on the groupalgebra CSN+1 such that the groupelements
form an orthonormal basis, then A and B are orthogonal complements and also L(n)
and M(n) are orthogonal complements. But then, taking orthogonal complements
the condition can be rephrased as

(B +M(n))⊥ = A ∩ L(n) = 0.

Finally, let us define an automorphism τ on CSN+1 induced by sending eσ to
sgn(σ)eσ. Clearly, τ is just multiplication by (−1)N on A and therefore the above
condition is equivalent to

A ∩ L(n) ∩ τL(n) = 0.

Moreover, for any Young tableau λ we have that τ(aλ) = bλ∗ and τ(bλ) = aλ∗ .
Hence, the automorphism τ sends the Young symmetrizer associated to a partition
to the Young symmetrizer of the dual partition. This gives the following character-
ization

• τL(n) is the ideal of CSN+1 spanned by the Young symmetrizers associated
to partitions

n

τL(n)

with ≤ n columns.

Now, specialize to the case N = n2. Clearly, any Young diagram having n2 + 1
boxes must have either more than n columns or more than n rows

n

and consequently we indeed have for N = n2 that

A ∩ L(n) ∩ τL(n) = 0

finishing the proof of the promised refinement of the Nagata-Higman bound
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Theorem 3.24 Let R be an associative C-algebra without unit element. Assume
that rn = 0 for all r ∈ R. Then, for all ri ∈ R we have

r1r2 . . . rn2 = 0

Theorem 3.25 The necklace algebra Nmn is generated as a C-algebra by all elements
of the form

tr(Xi1Xi2 . . . Xil)

with l ≤ n2 + 1. The trace algebra Tmn is spanned as a module over the necklace
algebra Nmn by all monomials in the generic matrices

Xi1Xi2 . . . Xil

of degree l ≤ n2.
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Chapter 4

Reconstructing Algebras.

Let A be an affine C-algebra, generated by {a1, . . . , am}. A running theme of this
book is to study A by investigating its level n approximations A@n for all natural
numbers n. These algebras are defined in two stages. First, we define the category
algt of C-algebras equipped with a linear trace map A

t- A. This map has to
satisfy for all a, b ∈ A

t(a)b = bt(a) t(ab) = t(ba) and t(t(a)b) = t(a)t(b)

Morphisms in algt are C-algebra morphisms compatible with the trace structure.
The forgetful functor algt - alg has a left adjoint

alg
(.)t

- algt A 7→ At

where At is constructed (as in the special case of T∞ in the foregoing chapter)
by adding formal traces to necklaces with beads running through a C-basis of A.
The algebra At is trace-generated by m elements, that is, we have a commutative
diagram

C〈x1, . . . , xm〉 -- A

Tm
?

-- At
?

where Tm is the subalgebra with trace of T∞ generated by {x1, . . . , xm}. The
vertical maps are the natural ones and the lower map is trace preserving. For any
a ∈ A and natural number n we can define a formal Cayley-Hamilton polynomial
χ

(n)
a (t) of degree n by expressing

f(t) =
n∏
i=1

(t− λi) with the λi indeterminates

as a polynomial in t with coefficients which are polynomials in the Newton functions∑n
i=1 λ

k
i (as they are symmetric functions in the λi). Replacing each occurrence of∑n

i=1 λ
k
i by t(ak) gives χ(n)

a (t) ∈ A[t]. The approximation of A at level n is then
defined to be

A@n =
At

(t(1)− n, χ(n)
a (a) ∀a ∈ A)

125
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with the induced trace map, that is we can complete the above diagram

Tm -- At

Tmn

??
-- A@n

??

The main result of this chapter gives a geometric interpretation of the alge-
bra A@n. The representation variety rep

n
A has as its geometric points the n-

dimensional representations of A, that is, C-algebra morphisms

A
ρ- Mn(C)

It will be shown that this variety comes equipped with a GLn-structure, the orbits
of which correspond to isomorphism classes of n-dimensional representations. We
will prove that A@n is the algebra of GLn-equivariant polynomial maps

rep
n
A - Mn

with the algebra structure coming from those of the target space Mn(C). Further,
we will prove that the the commutative central subalgebra t(A@n) of A@n classifies
the isomorphism classes of n-dimensional semi-simple representations of A. The
geometric interpretation of t(A@n) proves it to be the coordinate ring of the quotient
variety rep

n
A/GLn classifying the closed orbits in rep

n
A which correspond by the

Artin-Voigt result to semi-simple representations.
These two main results follow from the description of necklace and trace algebras

given in the foregoing chapter and invariant theory, the basics of which we will recall
in this chapter. At an intermediate stage, we will introduce also trace preserving
representation varieties reptr

n
A when the algebra A is equipped with a trace map.

The above results then follow from the natural GLn-isomorphisms

rep
n
A ' reptr

n
At ' reptr

n
A@n

coming from the left adjointness. The level n approximation A@n is a special
case of a Cayley-Hamilton algebra of degree n, other natural examples are orders
over normal affine varieties in central simple algebras of dimension n2 over the
functionfield. The results in this chapter prove that there is a functor from the
category CH(n) of Cayley-Hamilton algebras of degree n to the category of affine
GLn-varieties (actually schemes) which assigns to an algebra A with trace map t
the trace preserving representation variety reptr

n
A and that this functor has a left

inverse assigning to an affine GLn-variety the algebra of GLn-equivariant maps from
the variety to Mn. This left inverse is not an equivalence of categories, however,
and the characterization of those affine GLn-varieties which are trace preserving
representation varieties is a difficult problem. In chapter 11 we will show that the
formal structure defined on them may be a first step in solving this riddle.

4.1 Representation varieties.

When A is a noncommutative affine algebra with generating set {a1, . . . , am}, there
is an epimorphism

C〈x1, . . . , xm〉
φ-- A

defined by φ(xi) = ai. Hence, we have a presentation of A as

A ' C〈x1, . . . , xm〉/IA
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where IA is the twosided ideal of relations holding among the ai. For example, if
A = C[x1, . . . , xm], then IA is the twosided ideal of C〈x1, . . . , xm〉 generated by
the elements xixj − xjxi for all 1 ≤ i, j ≤ m. Observe that there is no analog of
the Hilbert basis theorem for C〈x1, . . . , xm〉, that is, IA is not necessarily finitely
generated as a twosided ideal. If it is, we say that A is finitely presented.

An n-dimensional representation of A is an algebra morphism

A
ψ- Mn

from A to n× n matrices over C. If A is generated by {a1, . . . , am}, then ψ is fully
determined by the point

(ψ(a1), ψ(a2), . . . , ψ(am)) ∈Mm
n = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m

.

We claim that modn(A), the set of all n-dimensional representations of A, forms a
Zariski closed subset of Mm

n . To begin, observe that

repn(C〈x1, . . . , xm〉) = Mm
n

as any m-tuple of n× n matrices (A1, . . . , Am) ∈ Mm
n determines an algebra mor-

phism C〈x1, . . . , xm〉
ψ- Mn by taking ψ(xi) = Ai.

Now, given a presentation A = C〈x1, . . . , xm〉/IA an m-tuple (A1, . . . , Am) ∈
Mm
n determines an n-dimensional representation of A if (and only if) for every

noncommutative polynomial r(x1, . . . , xm) ∈ IA / C〈x1, . . . , xm〉 we have that

r(A1, . . . , Am) =

0 . . . 0
...

...
0 . . . 0

 ∈Mn.

Hence, consider the ideal IA(n) of C[Mm
n ] = C[xij(k) | 1 ≤ i, j ≤ n, 1 ≤ k ≤ m]

generated by all the entries of the matrices in Mn(C[Mm
n ]) of the form

r(X1, . . . , Xm) for all r(x1, . . . , xm) ∈ IA.

By the above observation we see that the reduced representation variety repn A is
the set of simultaneous zeroes of the ideal IA(n), that is,

repn A = V(IA(n)) ⊂ - Mm
n

proving the claim, where V denotes the closed set in the Zariski topology determined
by an ideal, the complement of which we will denotye with X). Observe that even
when A is not finitely presented, the ideal IA(n) is finitely generated as an ideal of
the commutative polynomial algebra C[Mm

n ].
Often, the ideal IA(n) contains more information than the closed subset

repn(A) = V(IA(n)) which only determines the radical ideal of IA(n). This forces
us to consider also the representation variety (or module scheme) rep

n
A which we

will introduce in a moment.

Example 4.1 It may happen that repn A = ∅. For example, consider the Weyl algebra

A1(C) = C〈x, y〉/(xy − yx− 1)

If a couple of n× n-matrices (A,B) ∈ repn A1(C) then we must have

A.B −B.A = rr
n ∈Mn

However, taking traces on both sides gives a contradiction as tr(AB) = tr(BA) and tr(rrn) = n 6= 0.
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In the foregoing chapter we studied the action of GLn by simultaneous conjuga-
tion on Mm

n . We claim that repn A ⊂ - Mm
n is stable under this action, that is,

if (A1, . . . , Am) ∈ repn A, then also (gA1g
−1, . . . , gAmg

−1) ∈ repn A. This is clear
by composing the n-dimensional representation ψ of A determined by (A1, . . . , Am)
with the algebra automorphism of Mn given by conjugation with g ∈ GLn,

A
ψ - Mn

Mn

g.g−1

?

................................

g.ψ

-

That is, repn A is a GLn-variety. We will give an interpretation of the orbits under
this action.

Recall that a left A-module M is a vectorspace on which elements of A act on
the left as linear operators satisfying the conditions

1.m = m and a.(b.m) = (ab).m

for all a, b ∈ A and all m ∈M . An A-module morphism M
f- N between two left

A-modules is a linear map such that f(a.m) = a.f(m) for all a ∈ A and all m ∈M .
An A-module automorphism is an A-module morphism M

f- N such that there
is an A-module morphism N

g- M such that f ◦ g = idM and g ◦ f = idN .
Assume the A-module M has complex dimension n, then after fixing a basis

we can identify M with Cn (column vectors). For any a ∈ A we can represent
the linear action of a on M by an n × n matrix ψ(a) ∈ Mn. The condition that
a.(b.m) = (ab).m for all m ∈ M asserts that ψ(ab) = ψ(a)ψ(b) for all a, b ∈
A, that is, ψ is an algebra morphism A

ψ- Mn and hence M determines an
n-dimensional representation of A. Conversely, an n-dimensional representation
A

ψ- Mn determines an A-module structure on Cn by the rule

a.v = ψ(a)v for all v ∈ Cn.

Hence, there is a one-to-one correspondence between the n-dimensional representa-
tions of A and the A-module structures on Cn. For this reason we call the reduced
variety repn A the reduced representation variety of A. If two n-dimensional A-
module structures M and N on Cn are isomorphic (determined by a linear invertible
map g ∈ GLn) then for all a ∈ A we have the commutative diagram

M
g - N

M

a.

?
g - N

a.

?

Hence, if the action of a on M is represented by the matrix A, then the action of
a on M is represented by the matrix g.A.g−1. Therefore, two A-module structures
on Cn are isomorphic if and only if the points of repn A corresponding to them
lie in the same GLn-orbit. Concluding, studying n-dimensional A-modules up to
isomorphism is the same as studying the GLn-orbits in the reduced representation
variety repn A.

If the defining ideal IA(n) is a radical ideal (as we will see, this is the case when
A is a Quillen-smooth algebra) the above suffices. In general, the scheme structure
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of the representation variety rep
n
A will be important. By definition, the module

scheme rep
n
A is the functor assigning to any (affine) commutative C-algebra R,

the set
rep

n
A(R) = AlgC(C[Mm

n ]/IA(n), R)

of C-algebra morphisms C[Mm
n ]

IA(n)

ψ- R. Such a map ψ is determined by the image
ψ(xij(k)) = rij(k) ∈ R. That is, ψ ∈ rep

n
A(R) determines an m-tuple of n × n

matrices with coefficients in R

(r1, . . . , rm) ∈Mn(R)⊕ . . .⊕Mn(R)︸ ︷︷ ︸
m

where rk =

r11(k) . . . r1n(k)
...

...
rn1(k) . . . rnn(k)

 .
Clearly, for any r(x1, . . . , xm) ∈ IA we must have that r(r1, . . . , rm) is the zero
matrix in Mn(R). That is, ψ determines uniquely an R-algebra morphism

ψ : R⊗C A - Mn(R) by mapping xk 7→ rk.

Alternatively, we can identify the set rep
n
(R) with the set of left R ⊗ A-module

structures on the free R-module R⊕n of rank n. In section 8, we will introduce the
representation variety rept

n
A and teh reduced representation variety reptn A of trace

preserving n-dimensional representations.

4.2 Some algebraic geometry.

Throughout this book we assume that the reader has some familiarity with algebraic
geometry, such as the first two chapters of the textbook [9]. In this section we
restrict to the dimension formulas and the relation between Zariski and analytic
closure, illustrating them with examples from module varieties. We will work only
with reduced varieties in this section.

A morphism X
φ- Y between two affine irreducible varieties is said to be

dominant if the image φ(X) is Zariski dense in Y . On the level of the coordinate
algebras dominance is equivalent to φ∗ : C[Y ] - C[X] being injective and hence
inducing a fieldextension φ∗ : C(Y ) ⊂ - C(X) between the functionfields. Indeed,
for f ∈ C[Y ] the function φ∗(f) is by definition the composition

X
φ- Y

f- C

and therefore φ∗(f) = 0 iff f(φ(X)) = 0 iff f(φ(X)) = 0.

A morphism X
φ- Y between two affine varieties is said to be finite if under

the algebra morphism φ∗ the coordinate algebra C[X] is a finite C[Y ]-module. An
important property of finite morphisms is that they are closed, that is the image
of a closed subset is closed. Indeed, we can replace without loss of generality Y by
the closed subset φ(X) = VY (Ker φ∗) and hence assume that φ∗ is an inclusion
C[Y ] ⊂ - C[X]. The claim then follows from the fact that in a finite extension
there exists for any maximal ideal N / C[Y ] a maximal ideal M / C[X] such that
M ∩ C[Y ] = C[X].

Example 4.2 Let X be an irreducible affine variety of dimension d. By the Noether normal-
ization result C[X] is a finite module over a polynomial subalgebra C[f1, . . . , fd]. But then, the
finite inclusion C[f1, . . . , fd] ⊂ - C[X] determines a finite surjective morphism

X
φ-- Cd
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An important source of finite morphisms is given by integral extensions. Recall
that, if R ⊂ - S is an inclusion of domains we call S integral over R if every s ∈ S
satisfies an equation

sn =
n−1∑
i=0

ris
i with ri ∈ R.

A normal domain R has the property that any element of its field of fractions which
is integral over R belongs already to R. If X

φ- Y is a dominant morphism
between two irreducible affine varieties, then φ is finite if and only if C[X] in integral
over C[Y ] for the embedding coming from φ∗.

Proposition 4.3 Let X
φ- Y be a dominant morphism between irreducible affine

varieties. Then, for any x ∈ X and any irreducible component C of the fiber
φ−1(φ(z)) we have

dim C ≥ dim X − dim Y.

Moreover, there is a nonempty open subset U of Y contained in the image φ(X)
such that for all u ∈ U we have

dim φ−1(u) = dim X − dim Y.

Proof. Let d = dim X − dim Y and apply the Noether normalization result to
the affine C(Y )-algebra C(Y )C[X]. Then, we can find a function g ∈ C[Y ] and
algebraic independent functions f1, . . . , fd ∈ C[X]g (g clears away any denominators
that occur after applying the normalization result) such that C[X]g is integral over
C[Y ]g[f1, . . . , fd]. That is, we have the commutative diagram

XX(g)
ρ -- XY (g)× Cd

X
?

∩

φ - Y � ⊃ XY (g)

pr1

??

where we know that ρ is finite and surjective. But then we have that the open
subset XY (g) lies in the image of φ and in XY (g) all fibers of φ have dimension
d. For the first part of the statement we have to recall the statement of Krull’s
Hauptideal result : if X is an irreducible affine variety and g1, . . . , gr ∈ C[X] with
(g1, . . . , gr) 6= C[X], then any component C of VX(g1, . . . , gr) satisfies the inequality

dim C ≥ dim X − r.

If dim Y = r apply this result to the gi determining the morphism

X
φ- Y -- Cr

where the latter morphism is the one from example 4.2. �

In fact, a stronger result holds. Chevalley’s theorem asserts the following.

Theorem 4.4 Let X
φ- Y be a morphism between affine varieties, the function

X - N defined by x 7→ dimx φ
−1(φ(x))

is upper-semicontinuous. That is, for all n ∈ N, the set

{x ∈ X | dimx φ
−1(φ(x)) ≤ n}

is Zariski open in X.
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Proof. Let Z(φ, n) be the set {x ∈ X | dimx φ−1(φ(x)) ≥ n}. We will prove
that Z(φ, n) is closed by induction on the dimension of X. We first make some
reductions. We may assume that X is irreducible. For, let X = ∪iXi be the
decomposition of X into irreducible components, then Z(φ, n) = ∪Z(φ | Xi, n).
Next, we may assume that Y = φ(X) whence Y is also irreducible and φ is a
dominant map. Now, we are in the setting of proposition 4.3. Therefore, if n ≤
dim X − dim Y we have Z(φ, n) = X by that proposition, so it is closed. If n >
dim X − dim Y consider the open set U in Y of proposition 4.3. Then, Z(φ, n) =
Z(φ | (X−φ−1(U)), n). the dimension of the closed subvariety X−φ−1(U) is strictly
smaller that dim X hence by induction we may assume that Z(φ | (X−φ−1(U)), n)
is closed in X − φ−1(U) whence closed in X. �

An immediate consequence of the foregoing proposition is that for any morphism
X

φ- Y between affine varieties, the image φ(X) contains an open dense subset
of φ(Z) (reduce to irreducible components and apply the proposition).

Example 4.5 Let A be an affine C-algebra and M ∈ repn A. We claim that the orbit

O(M) = GLn.M is Zariski open in its closure O(M).

Consider the ’orbit-map’ GLn
φ- repn A defined by g 7→ g.M . then, by the above remark

O(M) = φ(GLn) contains a Zariski open subset U of O(M) contained in the image of φ which is
O(M). But then,

O(M) = GLn.M = ∪g∈GLng.U

is also open in O(M). Next, we claim that O(M) contains a closed orbit. Indeed, assume O(M)

is not closed, then the complement CM = O(M)−O(M) is a proper Zariski closed subset whence

dim C < dim O(M). But, C is the union of GLn-orbits O(Mi) with dim O(Mi) < dim O(M).

Repeating the argument with the Mi and induction on the dimension we will obtain a closed orbit

in O(M).

Next, we want to relate the Zariski closure with the C-closure. Whereas they
are usually not equal (for example, the unit circle in C1), we will show that they
coincide for the important class of constructible subsets. A subset Z of an affine
variety X is said to be locally closed if Z is open in its Zariski closure Z. A subset
Z is said to be constructible if Z is the union of finitely many locally closed subsets.
Clearly, finite unions, finite intersections and complements of constructible subsets
are again constructible. The importance of constructible sets for algebraic geometry
is clear from the following result.

Proposition 4.6 Let X
φ- Y be a morphism between affine varieties. If Z is a

constructible subset of X, then φ(Z) is a constructible subset of Y .

Proof. Because every open subset of X is a finite union of special open sets which
are themselves affine varieties, it suffices to show that φ(X) is constructible. We
will use induction on dim φ(X). There exists an open subset U ⊂ φ(X) which is
contained in φ(X). Consider the closed complement W = φ(X)−U and its inverse
image X ′ = φ−1(W ). Then, X ′ is an affine variety and by induction we may assume
that φ(X ′) is constructible. But then, φ(X) = U ∪ φ(X ′) is also constructible. �

Example 4.7 Let A be an affine C-algebra. The subset indn A ⊂ - repn A of the inde-
composable n-dimensional A-modules is constructible. Indeed, define for any pair k, l such that
k + l = n the morphism

GLn × repk A× repl A - repn A

by sending a triple (g,M,N) to g.(M ⊕ N). By the foregoing result the image of this map is

constructible. The decomposable n-dimensional A-modules belong to one of these finitely many

sets whence are constructible, but then so is its complement which in indn A.
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Apart from being closed, finite morphisms often satisfy the going-down property.
That is, consider a finite and surjective morphism

X
φ- Y

where X is irreducible and Y is normal (that is, C[Y ] is a normal domain).
Let Y ′ ⊂ - Y an irreducible Zariski closed subvariety and x ∈ X with image
φ(x) = y′ ∈ Y ′. Then, the going-down property asserts the existence of an irre-
ducible Zariski closed subvariety X ′ ⊂ - X such that x ∈ X ′ and φ(X ′) = Y ′. In
particular, the morphism X ′

φ- Y ′ is again finite and surjective and in particular
dim X ′ = dim Y ′.

An important application of this property is that any two points of an irreducible
affine variety can be connected through an irreducible curve.

Lemma 4.8 Let x ∈ X an irreducible affine variety and U a Zariski open subset.
Then, there is an irreducible curve C ⊂ - X through x and intersecting U .

Proof. If d = dim X consider the finite surjective morphism X
φ- Cd of

example 4.2. Let y ∈ Cd − φ(X − U) and consider the line L through y and φ(x).
By the going-down property there is an irreducible curve C ⊂ - X containing x
such that φ(C) = L and by construction C ∩ U 6= ∅. �

Proposition 4.9 Let X
φ- Y be a dominant morphism between irreducible affine

varieties any y ∈ Y . Then, there is an irreducible curve C ⊂ - X such that
y ∈ φ(C).

Proof. Consider an open dense subset U ⊂ - Y contained in the image φ(X). By
the lemma there is a curve C ′ ⊂ - Y containing y and such that C ′∩U 6= ∅. Then,
again applying the lemma to an irreducible component of φ−1(C ′) not contained in
a fiber, we obtain an irreducible curve C ⊂ - X with φ(C) = C ′. �

Any affine variety X ⊂ - Ck can also be equipped with the induced C-topology
from Ck which is much finer than the Zariski topology. Usually there is no relation
between the closure Z

C
of a subset Z ⊂ - X in the C-topology and the Zariski

closure Z.

Lemma 4.10 Let U ⊂ Ck containing a subset V which is Zariski open and dense
in U . Then,

U
C

= U

Proof. By reducing to irreducible components, we may assume that U is irreducible.
Assume first that dim U = 1, that is, U is an irreducible curve in Ck. Let Us be
the subset of points where U is a complex manifold, then U − Us is finite and by
the implicit function theorem in analysis every u ∈ Us has a C-open neighborhood
which is C-homeomorphic to the complex line C1, whence the result holds in this
case.

If U is general and x ∈ U we can take by the lemma above an irreducible curve
C ⊂ - U containing z and such that C ∩ V 6= ∅. Then, C ∩ V is Zariski open and
dense in C and by the curve argument above x ∈ (C ∩ V )

C
⊂ U

C
. We can do this

for any x ∈ U finishing the proof. �

Consider the embedding of an affine variety X ⊂ - Ck, proposition 4.6 and the
fact that any constructible set Z contains a subset U which is open and dense in Z
we deduce from the lemma at one the next result.
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Proposition 4.11 If Z is a constructible subset of an affine variety X, then

Z
C

= Z

Example 4.12 Let A be an affine C-algebra and M ∈ repn A. We have proved in example 4.5

that the orbit O(M) = GLn.M is Zariski open in its closure O(M). Therefore, the orbit O(M) is

a constructible subset of repn A. By the proposition above, the Zariski closure O(M) of the orbit

coincides with the closure of O(M) in the C-topology.

4.3 The Gerstenhaber-Hesselink theorem.

In the next sections we will study orbit-closure and closed orbits in repn A. In this
section we give one of the rare instances (but which is very important in applications)
where everything can be fully determined : the orbits in repn C[x] or, equivalent,
conjugacy classes of n× n matrices.

It is sometimes convenient to relax our definition of partitions to include zeroes
at its tail. That is, a partition p of n is an integral n-tuple (a1, a2, . . . , an) with
a1 ≥ a2 ≥ . . . ≥ an ≥ 0 with

∑n
i=1 ai = n. As before, we represent a partition by a

Young diagram by omitting rows corresponding to zeroes.
If q = (b1, . . . , bn) is another partition of n we say that p dominates q and write

p > q if and only if
r∑
i=1

ai ≥
r∑
i=1

bi for all 1 ≤ r ≤ n.

For example, the partitions of 4 are ordered as indicated below

> > > >

Note however that the dominance relation is not a total ordering whenever n ≥ 6.
For example, the following two partition of 6

are not comparable. The dominance order is induced by the Young move of throwing
a row-ending box down the diagram. Indeed, let p and q be partitions of n such that
p > q and assume there is no partition r such that p > r and r > q. Let i be the
minimal number such that ai > bi. Then by the assumption ai = bi + 1. Let j > i
be minimal such that aj 6= bj, then we have bj = aj + 1 because p dominates q. But
then, the remaining rows of p and q must be equal. That is, a Young move can be
depicted as

p =

i

j

−→ q =

i

j
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For example, the Young moves between the partitions of 4 given above are as indi-
cated

.
→

.
→

.

→

.

→

A Young p-tableau is the Young diagram of p with the boxes labeled by integers
from {1, 2, . . . , s} for some s such that each label appears at least ones. A Young p-
tableau is said to be of type q for some partition q = (b1, . . . , bn) of n if the following
conditions are met :

• the labels are non-decreasing along rows,

• the labels are strictly increasing along columns, and

• the label i appears exactly bi times.

For example, if p = (3, 2, 1, 1) and q = (2, 2, 2, 1) then the p-tableau below

4

3

2

1 1 3

2

is of type q (observe that p > q and even p → q). In general, let p = (a1, . . . , an)
and q = (b1, . . . , bn) be partitions of n and assume that p → q. Then, there is a
Young p-tableau of type q. For, fill the Young diagram of q by putting 1’s in the
first row, 2’s in the second and so on. Then, upgrade the fallen box together with
its label to get a Young p-tableau of type q. In the example above

4

3
=⇒

2

1 1

2

3'&%$ !"#

•OO

4

3

2

1 1 3

2

Conversely, assume there is a Young p-tableau of type q. The number of boxes
labeled with a number ≤ i is equal to b1 + . . . + bi. Further, any box with label
≤ i must lie in the first i rows (because the labels strictly increase along a column).
There are a1 + . . .+ ai boxes available in the first i rows whence

i∑
j=1

bi ≤
i∑

j=1

ai for all 1 ≤ i ≤ n

and therefore p > q. After these preliminaries on partitions, let us return to nilpo-
tent matrices.

Let A be a nilpotent matrix of type p = (a1, . . . , an), that is, conjugated to a
matrix with Jordan blocks (all with eigenvalue zero) of sizes ai. We have seen before
that the subspace Vl of column vectors v ∈ Cn such that Al.v = 0 has dimension

l∑
h=1

#{j | aj ≥ h} =
l∑

h=1

a∗h
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where p∗ = (a∗1, . . . , a
∗
n) is the dual partition of p. Choose a basis {v1, . . . , vn} of

Cn such that for all l the first a∗1 + . . .+ a∗l base vectors span the subspace Vl. For
example, if A is in Jordan normal form of type p = (3, 2, 1, 1)

0 1 0
0 0 1
0 0 0

0 1
0 0

0
0


then p∗ = (4, 2, 1) and we can choose the standard base vectors ordered as follows

{e1, e4, e6, e7︸ ︷︷ ︸
4

, e2, e5︸ ︷︷ ︸
2

, e3︸︷︷︸
1

}.

Take a partition q = (b1, . . . , bn) with p → q (in particular, p > q), then for the
dual partitions we have q∗ → p∗ (and thus q∗ > p∗). But then there is a Young
q∗-tableau of type p∗. In the example with q = (2, 2, 2, 1) we have q∗ = (4, 3) and
p∗ = (4, 2, 1) and we can take the Young q∗-tableau of type p∗

2 2 3

1 1 1 1

Now label the boxes of this tableau by the base vectors {v1, . . . , vn} such that the
boxes labeled i in the Young q∗-tableau of type p∗ are filled with the base vectors
from Vi − Vi−1. Call this tableau T . In the example, we can take

T = e2 e5 e3

e1 e4 e6 e7

Define a linear operator F on Cn by the rule that F (vi) = vj if vj is the label of the
box in T just above the box labeled vi. In case vi is a label of a box in the first row of
T we take F (vi) = 0. Obviously, F is a nilpotent n× n matrix and by construction
we have that

rk F l = n− (b∗1 + . . .+ b∗l )

That is, F is nilpotent of type q = (b1, . . . , bn). Moreover, F satisfies F (Vi) ⊂ Vi−1

for all i by the way we have labeled the tableau T and defined F .
In the example above, we have F (e2) = e1, F (e5) = e4, F (e3) = e6 and all other

F (ei) = 0. That is, F is the matrix

0 1
0 0

0 0
0 1
0 0

1 0
0


which is seen to be of type (2, 2, 2, 1) after performing a few Jordan moves.
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Returning to the general case, consider for all ε ∈ C the n× n matrix :

Fε = (1− ε)F + εA.

We claim that for all but finitely many values of ε we have Fε ∈ O(A). Indeed, we
have seen that F (Vi) ⊂ Vi−1 where Vi is defined as the subspace such that Ai(Vi) = 0.
Hence, F (V1) = 0 and therefore

Fε(V1) = (1− ε)F + εA(V1) = 0.

Assume by induction that F iε (Vi) = 0 holds for all i < l, then we have that

F lε(Vl) = F l−1
ε ((1− ε)F + εA)(Vl)

⊂ F l−1
ε (Vl−1) = 0

because A(Vl) ⊂ Vl−1 and F (Vl) ⊂ Vl−1. But then we have for all l that

rk F lε ≤ dim Vl = n− (a∗1 + . . .+ a∗l ) = rk Al
def
= rl.

Then for at least one rl × rl submatrix of F lε its determinant considered it as a
polynomial of degree rl in ε is not identically zero (as it is nonzero for ε = 1). But
then this determinant is non-zero for all but finitely many ε. Hence, rk F lε = rk Al

for all l for all but finitely many ε. As these numbers determine the dual partition
p∗ of the type of A, Fε is a nilpotent n×n matrix of type p for all but finitely many
values of ε, proving the claim. But then, F0 = F which we have proved to be a
nilpotent matrix of type q belongs to the closure of the orbit O(A). That is, we have
proved the difficult part of the Gerstenhaber-Hesselink theorem.

Theorem 4.13 Let A be a nilpotent n × n matrix of type p = (a1, . . . , an) and B
nilpotent of type q = (b1, . . . , bn). Then, B belongs to the closure of the orbit O(A),
that is,

B ∈ O(A) if and only if p > q

in the domination order on partitions of n.

To prove the theorem we only have to observe that if B is contained in the closure
of A, then Bl is contained in the closure of Al and hence rk Al ≥ rk Bl (because
rk Al < k is equivalent to vanishing of all determinants of k× k minors which is a
closed condition). But then,

n−
l∑
i=1

a∗i ≥ n−
l∑
i=1

b∗i

for all l, that is, q∗ > p∗ and hence p > q. The other implication was proved above
if we remember that the domination order was induced by the Young moves and
clearly we have that if B ∈ O(C) and C ∈ O(A) then also B ∈ O(A).

Example 4.14 Nilpotent matrices for small n.
We will apply theorem 4.13 to describe the orbit-closures of nilpotent matrices of 8×8 matrices.

The following table lists all partitions (and their dual in the other column)

The partitions of 8.

a (8) v (1,1,1,1,1,1,1,1)
b (7,1) u (2,1,1,1,1,1,1)
c (6,2) t (2,2,1,1,1,1)
d (6,1,1) s (3,1,1,1,1,1)
e (5,3) r (2,2,2,1,1)
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f (5,2,1) q (3,2,1,1,1)
g (5,1,1,1) p (4,1,1,1,1)
h (4,4) o (2,2,2,2)
i (4,3,1) n (3,2,2,1)
j (4,2,2) m (3,3,1,1)
k (3,3,2) k (3,3,2)
l (4,2,1,1) l (4,2,1,1)

The domination order between these partitions can be depicted as follows where all the Young
moves are from left to right

a�������� b�������� c��������
d��������

e��������
f��������

g��������

h��������
i�������� j��������

k��������

l��������
m�������� n��������

o��������

p��������
q��������

r��������
s��������

t�������� u�������� v��������
??

?? ���� ??
??

??
??

??
?? ����

??
??

??
??

����

����
����

����
����

Of course, from this graph we can read off the dominance order graphs for partitions of n ≤ 8.
The trick is to identify a partition of n with that of 8 by throwing in a tail of ones and to look at
the relative position of both partitions in the above picture. Using these conventions we get the
following graph for partitions of 7

b�������� d�������� f��������
g��������

i��������
l��������

m��������

p��������

n��������
q��������

r��������

s��������
t�������� u�������� v��������

�����

OOOOOOOOO
OOOOOOOOO

�����

�����

OOOOOOOOO ooooooooo

??
??

? ooooooooo

??
??

?
??

??
?

ooooooooo

and for partitions of 6 the dominance order is depicted as follows

c�������� g�������� l��������
p��������

m��������
q��������

s��������
r��������

t�������� u�������� v��������
??

??
??

??
??

?? ������

������

The dominance order on partitions of n ≤ 5 is a total ordering.

The Gerstenhaber-Hesselink theorem can be applied to describe the module vari-
eties of the algebras C[x]

(xr) .

Example 4.15 The representation variety repn
C[x]
(xr) .

Any algebra morphism C[x] - Mn is determined by the image of x, whence repn(C[x]) =
Mn. We have seen that conjugacy classes in Mn are classified by the Jordan normalform. Let A
is conjugated to a matrix in normalform26666666664

J1

J2

. . .

Js

37777777775
where Ji is a Jordan block of size di, hence n = d1 + d2 + . . . + ds. Then, the n-dimensional
C[x]-module M determined by A can be decomposed uniquely as

M = M1 ⊕M2 ⊕ . . .⊕Ms

where Mi is a C[x]-module of dimension di which is indecomposable, that is, cannot be decomposed
as a direct sum of proper submodules.

Now, consider the quotient algebra R = C[x]/(xr), then the ideal IR(n) of C[x11, x12, . . . , xnn]
is generated by the n2 entries of the matrix264x11 . . . x1n

..

.
..
.

xn1 . . . xnn

375
r

.

For example if r = m = 2, then the ideal is generated by the entries of the matrix»
x1 x2

x3 x4

–2

=

»
x2
1 + x2x3 x2(x1 + x4)

x3(x1 + x4) x2
4 + x2x3

–
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That is, the ideal with generators

IR = (x2
1 + x2x3, x2(x1 + x4), x3(x1 + x4), (x1 − x4)(x1 + x4))

The variety V(IR) ⊂ - M2 consists of all matrices A such that A2 = 0. Conjugating A to an
upper triangular form we see that the eigenvalues of A must be zero, hence

rep2 C[x]/(x2) = O(

»
0 1
0 0

–
) ∪ O(

»
0 0
0 0

–
)

and we have seen that this variety is a cone with top the zero matrix and defining equations

V(x1 + x4, x
2
1 + x2x3)

and we see that IR is properly contained in this ideal. Still, we have that

rad(IR) = (x1 + x4, x
2
1 + x3x4)

for an easy computation shows that x1 + x4
3

= 0 ∈ C[x1, x2, x3, x4]/IR. Therefore, even in the
easiest of examples, the representation variety does not have to be reduced.

For the general case, observe that when J is a Jordan block of size d with eigenvalue zero an
easy calculation shows that

Jd−1 =

2666664
0 . . . 0 d− 1

. . . 0

. . .
...
0

3777775 and Jd =

2666664
0 . . . . . . 0
...

...
...

...
0 . . . . . . 0

3777775
Therefore, we see that the representation variety repn C[x]/(xr) is the union of all conjugacy
classes of matrices having 0 as only eigenvalue and all of which Jordan blocks have size ≤ r.
Expressed in module theoretic terms, any n-dimensional R = C[x]/(xr)-module M is isomorphic
to a direct sum of indecomposables

M = I⊕e11 ⊕ I⊕e22 ⊕ . . .⊕ I⊕er
r

where Ij is the unique indecomposable j-dimensional R-module (corresponding to the Jordan block
of size j). Of course, the multiplicities ei of the factors must satisfy the equation

e1 + 2e2 + 3e3 + . . .+ rer = n

In M we can consider the subspaces for all 1 ≤ i ≤ r − 1

Mi = {m ∈M | xi.m = 0}

the dimension of which can be computed knowing the powers of Jordan blocks (observe that the
dimension of Mi is equal to n− rank(Ai))

ti = dimC Mi = e1 + 2e2 + . . . (i− 1)ei + i(ei + ei+1 + . . .+ er)

Observe that giving n and the r− 1-tuple (t1, t2, . . . , tn−1) is the same as giving the multiplicities
ei because 8>>>>>>>>>>>><>>>>>>>>>>>>:

2t1 = t2 + e1

2t2 = t3 + t1 + e2

2t3 = t4 + t2 + e3
.
..

2tn−2 = tn−1 + tn−3 + en−2

2tn−1 = n+ tn−2 + en−1

n = tn−1 + en

Let n-dimensional C[x]/(xr)-modules M and M ′ (or associated matrices A and A′) be determined
by the r − 1-tuples (t1, . . . , tr−1) respectively (t′1, . . . , t

′
r−1) then we have that

O(A′) ⊂ - O(A) if and only if t1 ≤ t′1, t2 ≤ t′2, . . . , tr−1 ≤ t′r−1

Therefore, we have an inverse order isomorphism between the orbits in repn(C[x]/(xr)) and the
r − 1-tuples of natural numbers (t1, . . . , tr−1) satisfying the following linear inequalities (which
follow from the above system)

2t1 ≥ t2, 2t2 ≥ t3 + t1, 2t3 ≥ t4 + t2, . . . , 2tn−1 ≥ n+ tn−2, n ≥ tn−2.

Let us apply this general result in a few easy cases. First, consider r = 2, then the orbits in
repn C[x]/(x2) are parameterized by a natural number t1 satisfying the inequalities n ≥ t1 and
2t1 ≥ n, the multiplicities are given by e1 = 2t1 − n and e2 = n− t1. Moreover, the orbit of the
module M(t′1) lies in the closure of the orbit of M(t1) whenever t1 ≤ t′1.
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That is, if n = 2k + δ with δ = 0 or 1, then repn C[x]/(x2) is the union of k + 1 orbits and
the orbitclosures form a linear order as follows (from big to small)

Iδ1 ⊕ I⊕k2 I⊕δ+2
1 ⊕ I⊕k−1

2 . . . I⊕n1

If r = 3, orbits in repn C[x]/(x3) are determined by couples of natural numbers (t1, t2)
satisfying the following three linear inequalities8><>:

2t1 ≥ t2

2t2 ≥ n+ t1

n ≥ t2

For example, for n = 8 we obtain the following situation

2t1 = t2
2t2 = 8 + t1

t2 = 8

• •

• • •

• • •• •

Therefore, rep8 C[x]/(x3) consists of 10 orbits with orbitclosure diagram as below (the nodes
represent the multiplicities [e1e2e3]).

[800]

[610]

[420]

[501]?????

[040]
�����

[121]
�����

[202]

[012]

[420]

[230]
�����

[311]
�����

[121]?????

[230]

[040]?????

Here we used the equalities e1 = 2t1 − t2, e2 = 2t2 − n− t1 and e3 = n− t2. For general n and r
this result shows that repn C[x]/(xr) is the closure of the orbit of the module with decomposition

Mgen = I⊕er ⊕ Is if n = er + s

4.4 The Hilbert criterium.

A one parameter subgroup of a linear algebraic group G is a morphism

λ : C∗ - G
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of affine algebraic groups. That is, λ is both a groupmorphism and a morphism
of affine varieties. The set of all one parameter subgroup of G will be denoted by
Y (G).

If G is commutative algebraic group, then Y (G) is an Abelian group with additive
notation

λ1 + λ2 : C∗ - G with (λ1 + λ2)(t) = λ1(t).λ2(t)

Recall that an n-dimensional torus is an affine algebraic group isomorphic to

C∗ × . . .× C∗︸ ︷︷ ︸
n

= Tn

the closed subgroup of invertible diagonal matrices in GLn.

Lemma 4.16 Y (Tn) ' Zn. The correspondence is given by assigning to
(r1, . . . , rn) ∈ Zn the one-parameter subgroup

λ : C∗ - Tn given by t 7→ (tr1 , . . . , trn)

Proof. For any two affine algebraic groups G and H there is a canonical bijection
Y (G × H) = Y (G) × Y (H) so it suffices to verify that Y (C∗) ' Z with any λ :
C∗ - C∗ given by t 7→ tr for some r ∈ Z. This is obvious as λ induces the
algebra morphism

C[C∗] = C[x, x−1]
λ∗- C[x, x−1] = C[C∗]

which is fully determined by the image of x which must be an invertible element.
Now, any invertible element in C[x, x−1] is homogeneous of the form cxr for some
r ∈ Z and c ∈ C∗. The corresponding morphism maps t to ctr which is only a
groupmorphism if it maps the identity element 1 to 1 so c = 1, finishing the proof.

�

Proposition 4.17 Any one-parameter subgroup λ : C∗ - GLn is of the form

t 7→ g−1.

t
r1 0

. . .
0 trn

 .g
for some g ∈ GLn and some n-tuple (r1, . . . , rn) ∈ Zn.

Proof. Let H be the image under λ of the subgroup µ of roots of unity in C∗. We
claim that there is a basechange matrix g ∈ GLn such that

g.H.g−1 ⊂ -

C∗ 0
. . .

0 C∗


Assume h ∈ H not a scalar matrix, then h has a proper eigenspace decomposition
V ⊕W = Cn. We use that hl = rr

n and hence all its Jordan blocks must have size
one as for any λ 6= 0 we have

λ 1 0
. . . . . .

. . . 1
λ


l

=


λl lλl−1 ∗

. . . . . .
. . . lλl−1

λl

 6= rr
n
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Because H is commutative, both V and W are stable under H. By induction on n
we may assume that the images of H in GL(V ) and GL(W ) are diagonalizable, but
then the same holds in GLn.

As µ is infinite, it is Zariski dense in C∗ and because the diagonal matrices are
Zariski closed in GLn we have

g.λ(C∗).g−1 = g.H.g−1 ⊂ - Tn

and the result follows from the lemma above �

Let V be a general GLn-representation considered as an affine space with GLn-
action, let X be a GLn-stable closed subvariety and consider a point x ∈ X. A
one-parameter subgroup C∗ λ- GLn determines a morphism

C∗ λx- X defined by t 7→ λ(t).x

Observe that the image λx(C∗) lies in the orbit GLn.x of x. Assume there is a
continuous extension of this map to the whole of C. We claim that this extension
must then be a morphism. If not, the induced algebra morphism

C[X]
λ∗x- C[t, t−1]

does not have its image in C[t], so for some f ∈ C[Z] we have that

λ∗x(f) =
a0 + a1t+ . . .+ azt

z

ts
with a0 6= 0 and s > 0

But then λ∗x(f)(t) - ±∞ when t goes to zero, that is, λ∗x cannot have a contin-
uous extension, a contradiction.

So, if a continuous extension exists there is morphism λx : C - X. Then,
λx(0) = y and we denote this by

lim
t→0

λ(t).x = y

Clearly, the point y ∈ X must belong to the orbitclosure GLn.x in the Zariski
topology (or in the C-topology as orbits are constructible). Conversely, one might
ask whether if y ∈ GLn.x we can always approach y via a one-parameter subgroup.
The Hilbert criterium gives situations when this is indeed possible.

The only ideals of the formal power series C[[t]] are principal and generated by
tr for some r ∈ N+. With C((t)) we will denote the field of fractions of the domain
C((t)).

Lemma 4.18 Let V be a GLn-representation, v ∈ V and a point w ∈ V lying in
the orbitclosure GLn.v. Then, there exists a matrix g with coefficients in the field
C((t)) and det(g) 6= 0 such that

(g.v)t=0 is well defined and is equal to w

Proof. Note that g.v is a vector with coordinates in the field C((t)). If all coordinates
belong to C[[t]] we can set t = 0 in this vector and obtain a vector in V . It is this
vector that we denote with (g.v)t=0.

Consider the orbit map µ : GLn - V defined by g′ 7→ g′.v. As w ∈ GLn.v
we have seen that there is an irreducible curve C ⊂ - GLn such that w ∈ µ(C).
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We obtain a diagram of C-algebras

C[GLn] - C[C] ⊂ - C(C)

C[V ]

µ∗

6

- C[µ(C)]

µ∗

∪

6

⊂ - C[C ′]
∪

6

Here, C[C] is defined to be the integral closure of C[µ(C)] in the functionfield C(C) of
C. Two things are important to note here : C ′ - µ(C) is finite, so surjective and
take c ∈ C ′ be a point lying over w ∈ µ(C). Further, C ′ having an integrally closed
coordinate ring is a complex manifold. Hence, by the implicit function theorem
polynomial functions on C can be expressed in a neighborhood of c as power series
in one variable, giving an embedding C[C ′] ⊂ - C[[t]] with (t) ∩C[C ′] = Mc. This
inclusion extends to one on the level of their fields of fractions. That is, we have a
diagram of C-algebra morphisms

C[GLn] - C(C) = C(C ′) ⊂ - C((t))

C[V ]

µ∗

6

- C[µ(C)]
∪

6

⊂ - C[C ′]
∪

6

⊂ - C[[t]]
∪

6

The upper composition defines an invertible matrix g(t) with coefficients in C((t)),
its (i, j)-entry being the image of the coordinate function xij ∈ C[GLn]. Moreover,
the inverse image of the maximal ideal (t) /C[[t]] under the lower composition gives
the maximal ideal Mw / C[V ]. This proves the claim. �

Lemma 4.19 Let g be an n × n matrix with coefficients in C((t)) and det g 6= 0.
Then there exist u1, u2 ∈ GLn(C[[t]]) such that

g = u1.

t
r1 0

. . .
0 trn

 .u2

with ri ∈ Z and r1 ≤ r2 ≤ . . . ≤ rn.

Proof. By multiplying g with a suitable power of t we may assume that g =
(gij(t))i,j ∈Mn(C[[t]]). If f(t) =

∑∞
i=0 fit

i ∈ C[[t]] define v(f(t)) to be the minimal
i such that ai 6= 0. Let (i0, j0) be an entry where v(gij(t)) attains a minimum, say
r1. That is, for all (i, j) we have gij(t) = tr1trf(t) with r ≥ 0 and f(t) an invertible
element of C[[t]].

By suitable row and column interchanges we can take the entry (i0, j0) to the
(1, 1)-position. Then, multiplying with a unit we can replace it by tr1 and by ele-
mentary row and column operations all the remaining entries in the first row and
column can be made zero. That is, we have invertible matrices a1, a2 ∈ GLn(C[[t]])
such that

g = a1.

[
tr1 0τ

0 g1

]
.a2

Repeating the same idea on the submatrix g1 and continuing gives the result. �

We can now state and prove the Hilbert criterium which allows us to study orbit-
closures by one parameter subgroups.
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Theorem 4.20 Let V be a GLn-representation and X ⊂ - V a closed GLn-stable
subvariety. Let O(x) = GLn.x be the orbit of a point x ∈ X. Let Y ⊂ - O(x)
be a closed GLn-stable subset. Then, there exists a one-parameter subgroup λ :
C∗ - GLn such that

lim
t→0

λ(t).x ∈ Y

Proof. It suffices to prove the result for X = V . By lemma 4.18 there is an
invertible matrix g ∈Mn(C((t))) such that

(g.x)t=0 = y ∈ Y

By lemma 4.19 we can find u1, u2 ∈ GLn(C[[t]]) such that

g = u1.λ
′(t).u2 with λ′(t) =

t
r1 0

. . .
0 trn


a one-parameter subgroup. There exist xi ∈ V such that u2.x =

∑∞
i=0 zit

i in par-
ticular u2(0).x = x0. But then,

(λ′(t).u2.x)t=0 =
∞∑
i=0

(λ′(t).xiti)t=0

= (λ′(t).x0)t=0 + (λ′(t).x1t)t=0 + . . .

But one easily verifies (using a basis of eigenvectors of λ′(t)) that

lim
s→0

λ
′−1(s).(λ′(t)xiti)t=0 =

{
(λ′(t).x0)t=0 if i = 0,
0 if i 6= 0

As (λ′(t).u2.x)t=0 ∈ Y and Y is a closed GLn-stable subset, we also have that

lim
s - 0

λ
′−1(s).(λ′(t).u2.x)t=0 ∈ Y that is, (λ′(t).x0)t=0 ∈ Y

But then, we have for the one-parameter subgroup λ(t) = u2(0)−1.λ′(t).u2(0) that

lim
t→0

λ(t).x ∈ Y

finishing the proof. �

An important special case occurs when x ∈ V belongs to the nullcone, that is,
when the orbit closure O(x) contains the fixed point 0 ∈ V . The original Hilbert
criterium asserts the following.

Proposition 4.21 Let V be a GLn-representation and x ∈ V in the nullcone.
Then, there is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).x = 0

In the statement of theorem 4.20 it is important that Y is closed. In particular,
it does not follow that any orbit O(y) ⊂ - O(x) can be reached via one-parameter
subgroups. In the next section we will give an example of such a situation.
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4.5 Semisimple modules

In this section we will characterize the closed GLn-orbits in the module variety
repn A for an affine C-algebra A. We have seen that any point ψ ∈ repn A, that
is any n-dimensional representation A

ψ- Mn determines an n-dimensional A-
module which we will denote with Mψ.

A finite filtration F on an n-dimensional module M is a sequence of A-
submodules

F : 0 = Mt+1 ⊂Mt ⊂ . . . ⊂M1 ⊂M0 = M.

The associated graded A-module is the n-dimensional module

grF M = ⊕ti=0Mi/Mi+1.

We have the following ringtheoretical interpretation of the action of one-parameter
subgroups of GLn on the representation variety repn A.

Lemma 4.22 Let ψ, ρ ∈ repn A. Equivalent are,

1. There is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).ψ = ρ

2. There is a finite filtration F on the A-module Mψ such that

grF Mψ 'Mρ

as A-modules.

Proof. (1) ⇒ (2) : If V is any GLn-representation and C∗ λ- GLn a one-
parameter subgroup, we have an induced weight space decomposition of V

V = ⊕iVλ,i where Vλ,i = {v ∈ V | λ(t).v = tiv,∀t ∈ C∗}.

In particular, we apply this to the underlying vectorspace of Mψ which is V = Cn
(column vectors) on which GLn acts by left multiplication. We define

Mj = ⊕i>jVλ,i

and claim that this defines a finite filtration on Mψ with associated graded A-module
Mρ. For any a ∈ A (it suffices to vary a over the generators of A) we can consider
the linear maps

φij(a) : Vλ,i ⊂ - V = Mψ
a.- Mψ = V -- Vλ,j

(that is, we express the action of a in a blockmatrix Φa with respect to the decompo-
sition of V ). Then, the action of a on the module corresponding to λ(t).ψ is given
by the matrix Φ′a = λ(t).Φa.λ(t)−1 with corresponding blocks

Vλ,i
φij(a)- Vλ,j

Vλ,i

λ(t)−1

6

φ′ij(a)
- Vλ,j

λ(t)

?
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that is φ′ij(a) = tj−iφij(a). Therefore, if limt→0λ(t).ψ exists we must have that

φij(a) = 0 for all j < i.

But then, the action by a sends any Mk = ⊕i>kVλ,i to itself, that is, the Mk are
A-submodules of Mψ. Moreover, for j > i we have

lim
t→0

φ′ij(a) = lim
t→0

tj−iφij(a) = 0

Consequently, the action of a on ρ is given by the diagonal blockmatrix with blocks
φii(a), but this is precisely the action of a on Vi = Mi−1/Mi, that is, ρ corresponds
to the associated graded module.

(2)⇒ (1) : Given a finite filtration on Mψ

F : 0 = Mt+1 ⊂ . . . ⊂M1 ⊂M0 = Mψ

we have to find a one-parameter subgroup C∗ λ- GLn which induces the filtration
F as in the first part of the proof. Clearly, there exist subspaces Vi for 0 ≤ i ≤ t
such that

V = ⊕ti=0Vi and Mj = ⊕tj=iVi.

Then we take λ to be defined by λ(t) = tiIdVi for all i and verifies the claims. �

Example 4.23 Let Mψ we the 2-dimensional C[x]-module determined by the Jordan block
and consider the canonical basevectors»

λ 1
0 λ

–
e1 =

»
1
0

–
e2 =

»
0
1

–
Then, Ce1 is a C[x]-submodule of Mψ and we have a filtration

0 = M2 ⊂ Ce1 = M1 ⊂ Ce1 ⊕ Ce2 = M0 = Mψ

Using the conventions of the second part of the above proof we then have

V1 = Ce1 V2 = Ce2 hence λ(t) =

»
t 0
0 1

–
Indeed, we then obtain that »

t 0
0 1

–
.

»
λ 1
0 λ

–
.

»
t−1 0
0 1

–
=

»
λ t
0 λ

–
and the limit t - 0 exists and is the associated graded module grF Mψ = Mρ determined by

the diagonal matrix.

Consider two modules Mψ,Mψ ∈ repn A. Assume that O(Mρ) ⊂ - O(Mψ) and
that we can reach the orbit of Mρ via a one-parameter subgroup. Then, lemma 4.22
asserts that Mρ must be decomposable as it is the associated graded of a nontrivial
filtration on Mψ. This gives us a criterium to construct examples showing that the
closedness assumption in the formulation of Hilbert’s criterium is essential.

Example 4.24 (Nullcone of M2
3 = M3 ⊕M3)

In chapter 8 we will describe a method to work-out the nullcones of m-tuples of n×n matrices.
The special case of 2 3× 3 matrices has been worked out by H.P. Kraft in [14, p.202]. We depict
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the orbits here and refer to chapter 8 for more details.
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In this picture, each node corresponds to a torus. The right hand number is the dimension of the
torus and the left hand number is the dimension of the orbit represented by a point in the torus.
The solid or dashed lines indicate orbitclosures. For example, the dashed line corresponds to the
following two points in M2

3 = M3 ⊕M3

ψ = (

240 0 1
0 0 1
0 0 0

35 ,
240 1 0

0 0 0
0 0 0

35) ρ = (

240 0 1
0 0 0
0 0 0

35 ,
240 1 0

0 0 0
0 0 0

35)

We claim thatMρ is an indecomposable 3-dimensional module of C〈x, y〉. Indeed, the only subspace
of the column vectors C3 left invariant under both x and y is equal to24C

0
0

35
hence Mρ cannot have a direct sum decomposition of two or more modules. Next, we claim that

O(Mρ) ⊂ - O(Mψ). Indeed, simultaneous conjugating ψ with the invertible matrix241 ε− 1 0
0 1 0
0 0 ε−1

35 we obtain the couple (

240 0 1
0 0 ε
0 0 0

35 ,
240 1 0

0 0 0
0 0 0

35)

and letting ε - 0 we see that the limiting point is ρ.

The Jordan-Hölder theorem, see for example [23, 2.6] asserts that any finite
dimensional A-module M has a composition series, that is, M has a finite filtration

F : 0 = Mt+1 ⊂Mt ⊂ . . . ⊂M1 ⊂M0 = M

such that the successive quotients Si = Mi/Mi+1 are all simple A-modules for 0 ≤
i ≤ t. Moreover, these composition factors S and their multiplicities are independent
of the chosen composition series, that is, the set {S0, . . . , St} is the same for every
composition series. In particular, the associated graded module for a composition
series is determined only up to isomorphism and is the semisimple n-dimensional
module

gr M = ⊕ti=0Si

Theorem 4.25 Let A be an affine C-algebra and M ∈ repn A.

1. The orbit O(M) is closed in repn A if and only if M is an n-dimensional
semisimple A-module.

2. The orbitclosure O(M) contains exactly one closed orbit, corresponding to the
direct sum of the composition factors of M .
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3. The points of the quotient variety of repn A under GLn parameterize the
isomorphism classes of n-dimensional semisimple A-modules. We will denote
the quotient variety by issn A.

Proof. (1) : Assume that the orbit O(M) is Zariski closed. Let gr M be the
associated graded module for a composition series of M . From lemma 4.22 we know
that O(gr M) is contained in O(M) = O(M). But then gr M ' M whence M is
semisimple.

Conversely, assume M is semisimple. We know that the orbitclosure O(M)
contains a closed orbit, say O(N). By the Hilbert criterium we have a one-parameter
subgroup C∗ λ- GLn such that

lim
t→0

λ(t).M = N ′ ' N.

By lemma 4.22 this means that there is a finite filtration F on M with associated
graded module grF M ' N . For the semisimple module M the only possible finite
filtrations are such that each of the submodules is a direct sum of simple components,
so grF M 'M , whence M ' N and hence the orbit O(M) is closed.

(2) : Remains only to prove uniqueness of the closed orbit in O(M). This
either follows from the Jordan-Hölder theorem or, alternatively, from the separation
property of the quotient map to be proved in the next section.

(3) : We will prove in the next section that the points of a quotient variety
parameterize the closed orbits. �

Example 4.26 Recall the description of the orbits in M2
2 = M2 ⊕M2 given in the previous

chapter.

3(/).*-+,

2(/).*-+,

3(/).*-+, 3(/).*-+,

2(/).*-+, 2(/).*-+,

0(/).*-+,

C5 − H H − S S

77
77

77
7

��
��
��
�

P1

*****
�����

and each fiber contains a unique closed orbit. The one over a point in H −S corresponding to the
matrix couple

(

»
a1 0
0 a2

–
,

»
b1 0
0 b2

–
)

which is indeed a semi-simple module of C〈x, y〉 (the direct sum of teh two 1-dimensional simple

representations determined by x 7→ ai and y 7→ bi. In case a1 = a2 and b1 = b2 then these two

simples coincide and the semi-simple module having this factor with multiplicity two is the unique

closed orbit in the fiber of a point in S.

Example 4.27 Assume A is a finite dimensional C-algebra. Then, there are only a finite

number, say k, of nonisomorphic n-dimensional semisimple A-modules. Hence issn A is a finite

number of k points, whence repn A is the disjoint union of k connected components, each consisting

of all n-dimensional A-modules with the same composition factors. Connectivity follows from the

fact that the orbit of the sum of the composition factors lies in the closure of each orbit.

Example 4.28 Let A be an affine commutative algebra with presentation A =
C[x1, . . . , xm]/IA and let X be the affine variety V(IA). Observe that any simple A-module is one-
dimensional hence corresponds to a point in X. (Indeed, for any algebra A a simple k-dimensional
module determines an epimorphism A -- Mk and Mk is only commutative if k = 1). Applying
the Jordan-Hölder theorem we see that

issn A ' X(n) = X × . . .×X| {z }
n

/Sn
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the n-th symmetric product of X.

4.6 Some invariant theory.

The results in this section hold for any reductive algebraic group. As we will need
them primarily for GLn (or products of GLni

) we will prove them only in that
case. Our first aim is to prove that GLn is a reductive group, that is, all GLn-
representations are completely reducible. Consider the unitary group

Un = {A ∈ GLn | A.A∗ = rr
n}

where A∗ is the Hermitian transpose of A. Clearly, Un is a compact Lie group.
Any compact Lie group has a so called Haar measure which allows one to integrate
continuous complex valued functions over the group in an invariant way. That is,
there is a linear function assigning to every continuous function f : Un - C its
integral

f 7→
∫
Un

f(g)dg ∈ C

which is normalized such that
∫
Un
dg = 1 and is left and right invariant, which

means that for all u ∈ Un we have the equalities∫
Un

f(gu)dg =
∫
Un

f(g)dg =
∫
Un

f(ug)dg.

This integral replaces the classical idea in representation theory of averaging func-
tions over a finite group.

Proposition 4.29 Every Un-representation is completely reducible.

Proof. Take a finite dimensional complex vectorspace V with a Un-action and
assume that W is a subspace of V left invariant under this action. Extending a
basis of W to V we get a linear map V

φ-- W which is the identity on W . For
any v ∈ V we have a continuous map

Un - W g 7→ g.φ(g−1.v)

(use that W is left invariant) and hence we can integrate it over Un (integrate the
coordinate functions). Hence we can define a map φ0 : V - W by

φ0(v) =
∫
Un

g.φ(g−1.v)dg.

Clearly, φ0 is linear and is the identity on W . Moreover,

φ0(u.v) =
∫
Un

g.φ(g−1u.v)dg = u.

∫
Un

u−1g.φ(g−1u.v)dg

∗=u.
∫
Un

gφ(g−1.v)dg = u.φ0(v)

where the starred equality uses the invariance of the Haar measure. Hence, V =
W ⊕Ker φ0 is a decomposition as Un-representations. Continuing whenever one
of the components has a nontrivial subrepresentation we arrive at a decomposition
of V into simple Un-representations. �
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We claim that for any n, Un is Zariski dense in GLn. Let Dn be the group of
all diagonal matrices in GLn. The Cartan decomposition for GLn asserts that

GLn = Un.Dn.Un

For, take g ∈ GLn then g.g∗ is an Hermitian matrix and hence diagonalizable by
unitary matrices. So, there is a u ∈ Un such that

u−1.g.g∗.u =

α1

. . .
αn

 = s−1.g.s︸ ︷︷ ︸
p

. s−1.g∗.s︸ ︷︷ ︸
p∗

Then, each αi > 0 ∈ R as αi =
∑n
j=1 ‖ pij ‖2. Let βi =

√
αi and let d the diagonal

matrix diag(β1, . . . , βn). Clearly,

g = u.d.(d−1.u−1.g) and we claim v = d−1.u−1.g ∈ Un.

Indeed, we have

v.v∗ =(d−1.u−1.g).(g∗.u.d−1) = d−1.(u−1.g.g∗.u).d−1

=d−1.d2.d−1 = rr
n

proving the Cartan decomposition. Now, Dn = C∗ × . . . × C∗ and Dn ∩ Un =
U1 × . . .× U1 and because U1 = µ is Zariski dense (being infinite) in D1 = C∗, we
have that Dn is contained in the Zariski closure of Un. By the Cartan decomposition
we then have that the Zariski closure of Un is GLn.

Theorem 4.30 GLn is a reductive group. That is, all GLn-representations are
completely reducible.

Proof. Let V be a GLn-representation having a subrepresentation W . In partic-
ular, V and W are Un-representations, so by the foregoing proposition we have a
decomposition V = W ⊕W ′ as Un-representations. Consider the subgroup

N = NGLn
(W ′) = {g ∈ GLn | g.W ′ ⊂W ′}

then N is a Zariski closed subgroup of GLn containing Un. As the Zariski closure
of Un is GLn we have N = GLn and hence that W ′ is a representation of GLn.
Continuing gives a decomposition of V in simple GLn-representations. �

Let S = SGLn
be the set of isomorphism classes of simple GLn-representations.

If W is a simple GLn-representation belonging to the isomorphism class s ∈ S, we
say that W is of type s and denote this by W ∈ s. Let X be a complex vectorspace
(not necessarily finite dimensional) with a linear action of GLn. We say that the
action is locally finite on X if, for any finite dimensional subspace Y of X, there
exists a finite dimensional subspace Y ⊂ Y ′ ⊂ X which is a GLn-representation.
The isotypical component of X of type s ∈ S is defined to be the subspace

X(s) =
∑
{W |W ⊂ X,W ∈ s}.

If V is a GLn-representation, we have seen that V is completely reducible. Then,
V = ⊕V(s) and every isotypical component V(s) ' W⊕es for W ∈ s and some
number es. Clearly, es 6= 0 for only finitely many classes s ∈ S. We call the
decomposition V = ⊕s∈SV(s) the isotypical decomposition of V and we say that the
simple representation W ∈ s occurs with multiplicity es in V .
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If V ′ is another GLn-representation and if V
φ- V ′ is a morphism of GLn-

representations (that is, a linear map commuting with the action), then for any
s ∈ S we have that φ(V(s)) ⊂ V ′(s). If the action of GLn on X is locally finite, we
can reduce to finite dimensional GLn-subrepresentation and obtain a decomposition

X = ⊕s∈SX(s),

which is again called the isotypical decomposition of X.
Let V be a GLn-representation of some dimension m. Then, we can view V

as an affine space Cm and we have an induced action of GLn on the polynomial
functions f ∈ C[V ] by the rule

V
f - C

V

g.

?.....
.....

.....
.....

.....
.....

..

g.
f

-

that is (g.f)(v) = f(g−1.v) for all g ∈ GLn and all v ∈ V . If C[V ] = C[x1, . . . , xm]
is graded by giving all the xi degree one, then each of the homogeneous components
of C[V ] is a finite dimensional GLn-representation. Hence, the action of GLn on
C[V ] is locally finite. Indeed, let {y1, . . . , yl} be a basis of a finite dimensional
subspace Y ⊂ C[V ] and let d be the maximum of the deg(yi). Then Y ′ = ⊕di=0C[V ]i
is a GLn-representation containing Y .

Therefore, we have an isotypical decomposition C[V ] = ⊕s∈SC[V ](s). In par-
ticular, if 0 ∈ S denotes the isomorphism class of the trivial GLn-representation
(Ctriv = Cx with g.x = x for every g ∈ GLn) then we have

C[V ](0) = {f ∈ C[V ] | g.f = f,∀g ∈ GLn} = C[V ]GLn

the ring of polynomial invariants, that is, of polynomial functions which are constant
along orbits in V .

Lemma 4.31 Let V be a GLn-representation.

1. Let I / C[V ] be a GLn-stable ideal, that is, g.I ⊂ I for all g ∈ GLn, then

(C[V ]/I)GLn ' C[V ]GLn/(I ∩ C[V ]GLn).

2. Let J / C[V ]GLn be an ideal, then we have a lying-over property

J = JC[V ] ∩ C[V ]GLn .

Hence, C[V ]GLn is Noetherian, that is, every increasing chain of ideals stabi-
lizes.

3. Let Ij be a family of GLn-stable ideals of C[V ], then

(
∑
j

Ij) ∩ C[V ]GLn =
∑
j

(Ij ∩ C[V ]GLn).

Proof. (1) : As I has the induced GLn-action which is locally finite we have the
isotypical decomposition I = ⊕I(s) and clearly I(s) = C[V ](s) ∩ I. But then also,
taking quotients we have

⊕s(C[V ]/I)(s) = C[V ]/I = ⊕sC[V ](s)/I(s).
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Therefore, (C[V ]/I)(s) = C[V ](s)/I(s) and taking the special case s = 0 is the state-
ment.

(2) : For any f ∈ C[V ]GLn left-multiplication by f in C[V ] commutes with the
GLn-action, whence f.C[V ](s) ⊂ C[V ](s). That is, C[V ](s) is a C[V ]GLn-module.
But then, as J ⊂ C[V ]GLn we have

⊕s(JC[V ])(s) = JC[V ] = ⊕sJC[V ](s).

Therefore, (JC[V ])(s) = JC[V ](s) and again taking the special value s = 0 we obtain
JC[V ] ∩ C[V ]GLn = (JC[V ])(0) = J . The Noetherian statement follows from the
fact that C[V ] is Noetherian (the Hilbert basis theorem).

(3) : For any j we have the decomposition Ij = ⊕s(Ij)(s). But then, we have

⊕s(
∑
j

Ij)(s) =
∑
j

Ij =
∑
j

⊕s(Ij)(s) = ⊕s
∑
j

(Ij)(s).

Therefore, (
∑
j Ij)(s) =

∑
j(Ij)(s) and taking s = 0 gives the required statement.

�

Theorem 4.32 Let V be a GLn-representation. Then, the ring of polynomial in-
variants C[V ]GLn is an affine C-algebra.

Proof. Because the action of GLn on C[V ] preserves the gradation, the ring of
invariants is also graded

C[V ]GLn = R = C⊕R1 ⊕R2 ⊕ . . . .

From lemma 4.31(2) we know that C[V ]GLn is Noetherian and hence the ideal R+ =
R1 ⊕R2 ⊕ . . . is finitely generated R+ = Rf1 + . . .+Rfl by homogeneous elements
f1, . . . , fl. We claim that as a C-algebra C[V ]GLn is generated by the fi. Indeed,
we have R+ =

∑l
i=1 Cfi +R2

+ and then also

R2
+ =

l∑
i,j=1

Cfifj +R3
+

and iterating this procedure we obtain for all powers m that

Rm+ =
∑

P
mi=m

Cfm1
1 . . . fml

l +Rm+1
+ .

Now, consider the subalgebra C[f1, . . . , fl] of R = C[V ]GLn , then we obtain for any
power d > 0 that

C[V ]GLn = C[f1, . . . , fl] +Rd+.

For any i we then have for the homogeneous components of degree i

Ri = C[f1, . . . , fl]i + (Rd+)i.

Now, if d > i we have that (Rd+)i = 0 and hence that Ri = C[f1, . . . , fl]i. As this
holds for all i we proved the claim. �

Choose generating invariants f1, . . . , fl of C[V ]GLn , consider the morphism

V
φ- Cl defined by v 7→ (f1(v), . . . , fl(v))
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and define W to be the Zariski closure φ(V ) in Cl. Then, we have a diagram

V
φ - Cl

W
∪

6

π

-

and an isomorphism C[W ]
π∗- C[V ]GLn . More general, let X be a closed GLn-

stable subvariety of V , then X = VV (I) for some GLn-stable ideal I of C[V ]. From
lemma 4.31(1) we obtain

C[X]GLn = (C[V ]/I)GLn = C[V ]GLn/(I ∩ C[V ]GLn)

whence C[X]GLn is also an affine algebra (and generated by the images of the fi).
Define Y to be the Zariski closure of φ(X) in Cl, then we have a diagram

X
φ - Cl

Y
∪

6

π

-

and an isomorphism C[Y ]
π- C[X]GLn . We call the morphism X

π- Y an
algebraic quotient of X under GLn. We will now prove some important properties
of this quotient.

Proposition 4.33 (universal property) If X
µ- Z is a morphism which is

constant along GLn-orbits in X, then there exists a unique factoring morphism µ

X
π - Y

Z
�...

.....
.....

.....
.....

.....
....

µ
µ

-

Proof. As µ is constant along GLn-orbits in X, we have an inclusion µ∗(C[Z]) ⊂
C[X]GLn . We have the commutative diagram

C[X]

C[X]GLn

∪

6

C[Z] ............................................
µ∗

-

µ
∗

-

-

C[Y ]

�

π ∗

�

'

from which the existence and uniqueness of µ follows. �
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As a consequence, an algebraic quotient is uniquely determined up to isomor-
phism (that is, we might have started from other generating invariants and still
obtain the same quotient variety up to isomorphism).

Proposition 4.34 (onto property) The algebraic quotient X
π- Y is surjec-

tive. Moreover, if Z ⊂ - X is a closed GLn-stable subset, then π(Z) is closed in
Y and the morphism

πX | Z : Z - π(Z)

is an algebraic quotient, that is, C[π(Z)] ' C[Z]GLn .

Proof. Let y ∈ Y with maximal ideal My / C[Y ]. By lemma 4.31(2) we have
MyC[X] 6= C[X] and hence there is a maximal ideal Mx of C[X] containing
MyC[X], but then π(x) = y. Let Z = VX(I) for a G-stable ideal I of C[X],
then π(Z) = VY (I ∩C[Y ]). That is, C[π(Z)] = C[Y ]/(I ∩C[Y ]). However, we have
from lemma 4.31(1) that

C[Y ]/(C[Y ] ∩ I) ' (C[X]/I)GLn = C[Z]GLn

and hence C[π(Z)] = C[Z]GLn . Finally, surjectivity of π | Z is proved as above.
�

An immediate consequence is that the Zariski topology on Y is the quotient
topology of that on X. For, take U ⊂ Y with π−1(U) Zariski open in X. Then,
X − π−1(U) is a GLn-stable closed subset of X. Then, π(X − π−1(U)) = Y −U is
Zariski closed in Y .

Proposition 4.35 (separation property) The quotient X
π- Y separates dis-

joint closed GLn-stable subvarieties of X.

Proof. Let Zj be closed GLn-stable subvarieties of X with defining ideals Zj =
VX(Ij). Then, ∩jZj = VX(

∑
j Ij). Applying lemma 4.31(3) we obtain

π(∩jZj) = VY ((
∑
j

Ij) ∩ C[Y ]) = VY (
∑
j

(Ij ∩ C[Y ]))

= ∩jVY (Ij ∩ C[Y ]) = ∩jπ(Zj)

The onto property implies that π(Zj) = π(Zj) from which the statement follows.
�

It follows from the universal property that the quotient variety Y determined by
the ring of polynomial invariants C[Y ]GLn is the best algebraic approximation to the
orbit space problem. From the separation property a stronger fact follows.

Proposition 4.36 The algebraic quotient X
π- Y is the best continuous approx-

imation to the orbit space. That is, points of Y parameterize the closed GLn-orbits
in X. In fact, every fiber π−1(y) contains exactly one closed orbit C and we have

π−1(y) = {x ∈ X | C ⊂ GLn.x}

Proof. The fiber F = π−1(y) is a GLn-stable closed subvariety of X. Take any
orbit GLn.x ⊂ F then either it is closed or contains in its closure an orbit of strictly
smaller dimension. Induction on the dimension then shows that G.x contains a
closed orbit C. On the other hand, assume that F contains two closed orbits, then
they have to be disjoint contradicting the separation property. �
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4.7 Cayley-Hamilton algebras.

A trace map on an (affine) C-algebra A is a C-linear map

tr : A - A

satisfying the following three properties for all a, b ∈ A :

1. tr(a)b = btr(a),

2. tr(ab) = tr(ba) and

3. tr(tr(a)b) = tr(a)tr(b).

Note that it follows from the first property that the image tr(A) of the trace map is
contained in the center of A. Consider two algebras A and B equipped with a trace
map which we will denote by trA respectively trB. A trace morphism φ : A - B
will be a C-algebra morphism which is compatible with the trace maps, that is, the
following diagram commutes

A
φ - B

A

trA

?
φ - B

trB

?

This definition turns algebras with a trace map into a category. We will say that
an algebra A with trace map tr is trace generated by a subset of elements I ⊂ A if
the C-algebra generated by B and tr(B) is equal to A where B is the C-subalgebra
generated by the elements of I. Note that A does not have to be generated as a
C-algebra by the elements from I.

Observe that for T∞ the formal trace t : T∞ -- N∞ ⊂ - T∞ is a trace
map. Property (1) follows because N∞ commutes with all elements of T∞, property
(2) is the cyclic permutation property for t and property (3) is the fact that t is a
N∞-linear map. The formal trace algebra T∞ is trace generated by the variables
{x1, x2, . . . , xi, . . .} but not as a C-algebra.

Actually, T∞ is the free algebra in the generators {x1, x2, . . . , xi, . . .} in the
category of algebras with a trace map. That is, if A is an algebra with trace tr
which is trace generated by {a1, a2, . . .}, then there is a trace preserving algebra
epimorphism

T∞ π-- A .

For example, define π(xi) = ai and π(t(xi1 . . . xil)) = tr(π(xi1) . . . π(xil)). Also,
the formal trace algebra Tm, that is the subalgebra of T∞ trace generated by
{x1, . . . , xm}, is the free algebra in the category of algebras with trace that are trace
generated by at most m elements.

Given a trace map tr on A, we can define for any a ∈ A a formal Cayley-
Hamilton polynomial of degree n. Indeed, express

f(t) =
n∏
i=1

(t− λi)

as a polynomial in t with coefficients polynomial functions in the Newton functions∑n
i=1 λ

k
i . Replacing the Newton function

∑
λki by tr(ak) we obtain the Cayley-

Hamilton polynomial of degree n

χ(n)
a (t) ∈ A[t] .
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Definition 4.37 An (affine) C-algebra A with trace map tr : A - A is said to
be a Cayley-Hamilton algebra of degree n if the following two properties are satisfied
:

1. tr(1) = n, and

2. For all a ∈ A we have χ(n)
a (a) = 0 in A.

Observe that if R is a commutative C-algebra, then Mn(R) is a Cayley-Hamilton
algebra of degree n. The corresponding trace map is the composition of the usual
trace with the inclusion of R -- Mn(R) via scalar matrices. As a consequence,
the infinite trace algebra T∞n has a trace map induced by the natural inclusion

T∞n ⊂ - Mn(C[M∞n ])

N∞n

tr

?

................
⊂ - C[M∞n ]

tr

?

which has image tr(T∞n ) the infinite necklace algebra N∞n . Clearly, being a trace
preserving inclusion, T∞n is a Cayley-Hamilton algebra of degree n. With this defi-
nition, we have the following categorical description of the trace algebra T∞n .

Theorem 4.38 The trace algebra T∞n is the free algebra in the generic matrix gen-
erators {X1, X2, . . . , Xi, . . .} in the category of Cayley-Hamilton algebras of degree
n.

For any m, the trace algebra Tmn is the free algebra in the generic matrix gener-
ators {X1, . . . , Xm} in the category of Cayley-Hamilton algebras of degree n which
are trace generated by at most m elements.

Proof. Let Fn be the free algebra in the generators {y1, y2, . . .} in the category
of Cayley-Hamilton algebras of degree n, then by freeness of T∞ there is a trace
preserving algebra epimorphism

T∞ π- Fn with π(xi) = yi.

By the universal property of Fn, the ideal Ker π is the minimal ideal I of T∞ such
that T∞/I is Cayley-Hamilton of degree n.

We claim that Ker π is substitution invariant. Consider a substitution endo-
morphism φ of T∞ and consider the diagram

T∞ φ - T∞

T∞/Ker χ
?

.................
⊂ - Fn

π

??

.................................

χ

-

then Ker χ is an ideal closed under traces such that T∞/Ker χ is a Cayley-
Hamilton algebra of degree n (being a subalgebra of Fn). But then Ker π ⊂ Ker χ
(by minimality of Ker π) and therefore χ factors over Fn, that is, the substitution
endomorphism φ descends to an endomorphism φ : Fn - Fn meaning that Ker π
is left invariant under φ, proving the claim. Further, any formal Cayley-Hamilton
polynomial χ(n)

x (x) of degree n of x ∈ T∞ maps to zero under π. By substitution
invariance it follows that the ideal of trace relations Ker τ ⊂ Ker π. We have
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seen that T∞/Ker τ = T∞n is the infinite trace algebra which is a Cayley-Hamilton
algebra of degree n. Thus, by minimality of Ker π we must have Ker τ = Ker π
and hence Fn ' T∞n . The second assertion follows immediately. �

Let A be a Cayley-Hamilton algebra of degree n which is trace generated by the
elements {a1, . . . , am}. We have a trace preserving algebra epimorphism pA defined
by p(Xi) = ai

Tmn
pa -- A

Tmn

tr

?
pa -- A

trA

?

and hence a presentation A ' Tmn /TA where TA / Tmn is the ideal of trace relations
holding among the generators ai. We recall that Tmn is the ring of GLn-equivariant
polynomial maps Mm

n

f- Mn, that is,

Mn(C[Mm
n ])GLn = Tmn

where the action of GLn is the diagonal action on Mn(C[Mm
n ]) = Mn ⊗ C[Mm

n ].
Observe that if R is a commutative algebra, then any twosided ideal I / Mn(R)

is of the form Mn(J) for an ideal J / R. Indeed, the subsets Jij of (i, j) entries of
elements of I is an ideal of R as can be seen by multiplication with scalar matrices.
Moreover, by multiplying on both sides with permutation matrices one verifies that
Jij = Jkl for all i, j, k, l proving the claim.

Applying this to the induced ideal Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) / Mn(C[Mm
n ])

we find an ideal NA / C[Mm
n ] such that

Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) = Mn(NA)

Observe that both the induced ideal and NA are stable under the respective GLn-
actions.

Assume that V and W are two (not necessarily finite dimensional) C-
vectorspaces with a locally finite GLn-action and that V

f- W is a linear map
commuting with the GLn-action. Decomposing V and W in their isotypical com-
ponents and recalling that V(0) = V GLn respectively W(0) = WGLn we obtain a
commutative diagram

V
f - W

V GLn

R

??
f0 - WG

R

??

where R is the Reynolds operator, that is, the canonical projection to the isotypical
component of the trivial representation. Clearly, the Reynolds operator commutes
with the GLn-action. Moreover, using complete decomposability we see that f0 is
surjective (resp. injective) if f is surjective (resp. injective).
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Because NA is a GLn-stable ideal of C[Mm
n ] we can apply the above in the

situation
Mn(C[Mm

n ])
π -- Mn(C[Mm

n ]/NA)

Tmn

R

??
π0 -- Mn(C[Mm

n ]/NA)GLn

R

??

and the bottom map factorizes through A = Tmn /TA giving a surjection

A -- Mn(C[Mm
n ]/NA)GLn .

In order to verify that this map is injective (and hence an isomorphism) it suffices
to check that

Mn(C[Mm
n ]) TA Mn(C[Mm

n ]) ∩ Tmn = TA.

Using the functoriality of the Reynolds operator with respect to multiplication in
Mn(C[M∞n ]) with an element x ∈ Tmn or with respect to the trace map (both com-
muting with the GLn-action) we deduce the following relations :

• For all x ∈ Tmn and all z ∈Mn(C[M∞n ]) we have R(xz) = xR(z) and R(zx) =
R(z)x.

• For all z ∈Mn(C[M∞n ]) we have R(tr(z)) = tr(R(z)).

Assume that z =
∑
i tixini ∈ Mn(C[Mm

n ]) TA Mn(C[Mm
n ]) ∩ Tmn with mi, ni ∈

Mn(C[Mm
n ]) and ti ∈ TA. Now, consider Xm+1 ∈ T∞n . Using the cyclic property of

traces we have

tr(zXm+1) =
∑
i

tr(mitiniXm+1) =
∑
i

tr(niXm+1miti)

and if we apply the Reynolds operator to it we obtain the equality

tr(zXm+1) = tr(
∑
i

R(niXm+1mi)ti)

For any i, the term R(niXm+1mi) is invariant so belongs to Tm+1
n and is linear in

Xm+1. Knowing the generating elements of Tm+1
n we can write

R(niXm+1mi) =
∑
j

sijXm+1tij +
∑
k

tr(uikXm+1)vik

with all of the elements sij , tij , uik and vik in Tmn . Substituting this information
and again using the cyclic property of traces we obtain

tr(zXm+1) = tr((
∑
i,j,k

sijtijti + tr(vikti))Xm+1)

and by the nondegeneracy of the trace map we again deduce from this the equality

z =
∑
i,j,k

sijtijti + tr(vikti)

Because ti ∈ TA and TA is stable under taking traces we deduce from this that
z ∈ TA as required.
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Because A = Mn(C[Mm
n ]/NA)GLn we can apply functoriality of the Reynolds

operator to the setting

Mn(C[Mm
n ]/NA)

tr --
� ⊃ C[Mn]/NA

A

R

?? trA --
� ⊃ (C[Mn]/NA)GLn

R

??

Concluding we also have the equality

trA(A) = (C[Mm
n ]/JA)GLn .

Summarizing, we have proved the following invariant theoretic reconstruction result
for Cayley-Hamilton algebras.

Theorem 4.39 Let A be a Cayley-Hamilton algebra of degree n, with trace map
trA, which is trace generated by at most m elements. Then , there is a canonical
ideal NA / C[Mm

n ] from which we can reconstruct the algebras A and trA(A) as
invariant algebras

A = Mn(C[Mm
n ]/NA)GLn and trA(A) = (C[Mm

n ]/NA)GLn

A direct consequence of the above proof is the universal property of the embedding

A ⊂
iA- Mn(C[Mm

n ]/NA).

Let R be a commutative C-algebra, then Mn(R) with the usual trace is a Cayley-
Hamilton algebra of degree n. If f : A - Mn(R) is a trace preserving morphism,
we claim that there exists a natural algebra morphism f : C[Mm

n ]/NA - R such
that the diagram

A
f- Mn(R)

Mn(C[Mm
n ]/NA)

iA

?

∩

.....
.....

.....
.....

.....
.....

.....

M
n
(f

)
-

where Mn(f) is the algebra morphism defined entrywise. To see this, consider the
composed trace preserving morphism φ : Tmn -- A

f- Mn(R). Its image is
fully determined by the images of the trace generators Xk of Tmn which are say
mk = (mij(k))i,j. But then we have an algebra morphism C[Mm

n ]
g- R de-

fined by sending the variable xij(k) to mij(k). Clearly, TA ⊂ Ker φ and after
inducing to Mn(C[Mm

n ]) it follows that NA ⊂ Ker g proving that g factors through
C[Mm

n ]/JA - R. This morphism has the required universal property.

4.8 Geometric reconstruction

In this section we will give a geometric interpretation of the reconstruction result.
Again, let A be a Cayley-Hamilton algebra of degree n, with trace map trA, which is
generated by at most m elements a1, . . . , am. We will give a functorial interpretation
to the affine scheme determined by the canonical ideal NA / C[Mm

n ]. First, let us
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identify the reduced affine variety V(NA). A point m = (m1, . . . ,mm) ∈ V(NA)
determines an algebra map fm : C[Mm

n ]/NA - C and hence an algebra map φm

A .......................
φm

- Mn(C)

Mn(C[Mm
n ]/NA)
?

∩

M
n
(f

m
)

-

which is trace preserving. Conversely, from the universal property it follows that
any trace preserving algebra morphism A - Mn(C) is of this form by considering
the images of the trace generators a1, . . . , am of A. Alternatively, the points of
V(NA) parameterize n-dimensional trace preserving representations of A. That is,
n-dimensional representations for which the morphism A - Mn(C) describing
the action is trace preserving. For this reason we will denote the variety V(NA) by
reptrn A and call it the trace preserving reduced representation variety of A.

Assume that A is generated as a C-algebra by a1, . . . , am (observe that this is no
restriction as trace affine algebras are affine) then clearly IA(n) ⊂ NA. That is,

Lemma 4.40 For A a Cayley-Hamilton algebra of degree n generated by
{a1, . . . , am}, the reduced trace preserving representation variety

reptrn A ⊂ - repn A

is a closed subvariety of the reduced representation variety.

It is easy to determine the additional defining equations. For, write any trace
monomial out in the generators

trA(ai1 . . . aik) =
∑

αj1...jlaj1 . . . ajl

then for a point m = (m1, . . . ,mm) ∈ repn A to belong to reptrn A, it must satisfy
all the relations of the form

tr(mi1 . . .mik) =
∑

αj1...jlmj1 . . .mjl

with tr the usual trace on Mn(C). These relations define the closed subvariety
reptrn (A). Usually, this is a proper subvariety.

Example 4.41 Let A be a finite dimensional semi-simple algebra A = Md1 (C)⊕ . . .⊕Mdk
(C),

then A has precisely k distinct simple modules {M1, . . . ,Mk} of dimensions {d1, . . . , dk}. Here,
Mi can be viewed as column vectors of size di on which the component Mdi

(C) acts by left
multiplication and the other factors act as zero. Because A is semi-simple every n-dimensional
A-representation M is isomorphic to

M = M⊕e1
1 ⊕ . . .⊕M

⊕ek
k

for certain multiplicities ei satisfying the numerical condition

n = e1d1 + . . .+ ekdk

That is, repn A is the disjoint union of a finite number of (closed) orbits each determined by an
integral vector (e1, . . . , ek) satisfying the condition called the dimension vector of M .

repn A '
G

(e1,...,ek)

GLn/(GLe1 × . . . GLek )
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Let fi ≥ 1 be natural numbers such that n = f1d1 + . . . fkdk and consider the embedding of A
into Mn(C) defined by

(a1, . . . , ak) ∈ A -

266666666666666666664

264a1 0

. . .

0 a1

375
| {z }

f1

. . .
fkz }| {264ak 0

. . .

0 ak

375

377777777777777777775

∈Mn(C)

Via this embedding, A becomes a Cayley-Hamilton algebra of degree n when equipped with the
induced trace tr from Mn(C).

Let M be the n-dimensional A-representation with dimension vector (e1, . . . , ek) and choose
a basis compatible with this decomposition. Let Ei be the idempotent of A corresponding to the
identity matrix Idi

of the i-th factor. Then, the trace of the matrix defining the action of Ei on
M is clearly eidi.In. On the other hand, tr(Ei) = fidi.In, hence the only trace preserving n-
dimensional A-representation is that of dimension vector (f1, . . . , fk). Therefore, reptrn A consists
of the single closed orbit determined by the integral vector (f1, . . . , fk).

reptrn A ' GLn/(GLf1 × . . .×GLfk
)

Consider the scheme structure of the trace preserving representation variety
reptr

n
A. The corresponding functor assigns to a commutative affine C-algebra R

reptr
n

(R) = AlgC(C[Mm
n ]/NA, R).

An algebra morphism ψ : C[Mm
n ]/NA - R determines uniquely an m-tuple of

n× n matrices with coefficients in R by

rk =

ψ(x11(k)) . . . ψ(x1n(k))
...

...
ψ(xn1(k)) . . . ψ(xnn(k))


Composing with the canonical embedding

A .......................
φ
- Mn(R)

Mn(C[Mm
n ]/NA)
?

∩

M
n
(ψ

)

-

determines the trace preserving algebra morphism φ : A - Mn(R) where the trace
map on Mn(R) is the usual trace. By the universal property any trace preserving
map A - Mn(R) is also of this form.

Lemma 4.42 Let A be a Cayley-Hamilton algebra of degree n which is generated
by {a1, . . . , am}. The trace preserving representation variety reptr

n
A represents the

functor

reptr
n
A(R) = {A φ- Mn(R) | φ is trace preserving }

Moreover, reptr
n
A is a closed subscheme of rep

n
A.
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Recall that there is an action of GLn on C[Mm
n ] and from the definition of the

ideals IA(n) and NA it is clear that they are stable under the GLn-action. That
is, there is an action by automorphisms on the quotient algebras C[Mm

n ]/IA(n) and
C[Mm

n ]/NA. But then, their algebras of invariants are equal to{
C[rep

n
A]GLn = (C[Mm

n ]/IA(n))GLn = Nm
n

(IA(n)∩Nm
n )

C[reptr
n
A]GLn = (C[Mm

n ]/NA)GLn = Nm
n

(NA∩Nm
n )

That is, these rings of invariants define closed subschemes of the affine (reduced) va-
riety associated to the necklace algebra Nmn . We will call these schemes the quotient
schemes for the action of GLn and denote them respectively by

issn A = rep
n
A/GLn and isstrn A = reptr

n
A/GLn.

We have seen that the geometric points of the reduced variety issn A of the affine
quotient scheme issn A parameterize the isomorphism classes of n-dimensional
semisimple A-representations. Similarly, the geometric points of the reduced va-
riety isstrn A of the quotient scheme isstrn A parameterize isomorphism classes of
trace preserving n-dimensional semisimple A-representations.

Proposition 4.43 Let A be a Cayley-Hamilton algebra of degree n with trace map
trA. Then, we have that

trA(A) = C[isstrn A],

the coordinate ring of the quotient scheme isstrn A. In particular, maximal ideals
of trA(A) parameterize the isomorphism classes of trace preserving n-dimensional
semi-simple A-representations.

By definition, a GLn-equivariant map between the affine GLn-schemes

reptr
n
A

f- Mn = Mn

means that for any commutative affine C-algebra R the corresponding map

reptr
n
A(R)

f(R)- Mn(R)

commutes with the action of GLn(R). Alternatively, the ring of all morphisms
reptr

n
A - Mn is the matrixalgebra Mn(C[Mm

n ]/NA) and those that commute
with the GLn action are precisely the invariants. That is, we have the following
description of A.

Proposition 4.44 Let A be a Cayley-Hamilton algebra of degree n with trace map
trA. Then, we can recover A as the ring of GLn-equivariant maps

A = {f : reptr
n
A - Mn equivariant }

of affine GLn-schemes.

Summarizing the results of this and the previous section we have

Theorem 4.45 The functor which assigns to a Cayley-Hamilton algebra A of de-
gree n the GLn-affine scheme reptr

n
A of trace preserving n-dimensional represen-

tations has a left inverse.
This left inverse functor assigns to a GLn-affine scheme X its witness algebra

Mn(C[X])GLn which is a Cayley-Hamilton algebra of degree n.
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Note however that this functor is not an equivalence of categories. For, there
are many affine GLn-schemes having the same witness algebra.

Example 4.46 Consider the action of GLn on Mn by conjugation and take a nilpotent matrix
A. All eigenvalues of A are zero, so the conjugacy class of A is fully determined by the sizes of
its Jordan blocks. These sizes determine a partition λ(A) = (λ1, λ2, . . . , λk) of n with λ1 ≥ λ2 ≥
. . . ≥ λk. Moreover, we have given an algorithm to determine whether an orbit O(B) of another

nilpotent matrix B is contained in the orbit closure O(A), the criterium being that

O(B) ⊂ O(A) ⇐⇒ λ(B)∗ ≥ λ(A)∗.

where λ∗ denotes the dual partition. We see that the witness algebra of O(A) is equal to

Mn(C[O(A)])GLn = C[X]/(Xk)

where k is the number of columns of the Young diagram λ(A).
Hence, the orbit closures of nilpotent matrices such that their associated Young diagrams have

equal number of columns have the same witness algebras. For example, if n = 4 then the closures
of the orbits corresponding to

and

have the same witness algebra, although the closure of the second is a proper closed subscheme of
the closure of the first.

Recall the orbitclosure diagram of conjugacy classes of nilpotent 8 × 8 matrices given by the
Gerstenhaber-Hesselink theorem. In the picture below, the closures of orbits corresponding to
connected nodes of the same colour have the same witness algebra.

◦ • ◦

◦

•

•

•

◦

◦ ◦

•

◦

• •

◦

◦

•
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•
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Chapter 5

Etale Slices.

Let A be an affine C-algebra. In the foregoing chapter we have found a geometric
reconstruction of the approximation at level n of A{

A@n 'Mn(C[rep
n
A])GLn

t(A@n) ' C[rep
n
A]GLn = C[issn A]

In this chapter we will use the GLn-geometry to determine the étale local structure
of the Cayley-Hamilton algebra A@n. By this we mean the following. Let m be
a maximal ideal of the central subalgebra t(A@n), then we want to determine the
m-adic completion

(̂A@n)m

of A@n. We know that m determines a point ξ in the quotient variety issn A and so
there is an n-dimensional semi-simple representation Mξ of A with decomposition

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct simple A-representations of dimension di and occurring in
Mξ with multiplicity ei, in particular n =

∑k
i=1 diei.

To determine the local structure of A@n in m we determine the GLn-local struc-
ture of rep

n
A in a neighborhood of the closed orbit O(Mξ). This can be done by the

theory of Luna’s étale slices, or rather by the elegant extension of it to not necessar-
ily reduced varieties, due to F. Knop [?], whose proof we will outline in section 4.
When rep

n
A is smooth in Mξ (which is always the case when A is Quillen-smooth)

then this local structure is determined by the normal space to the orbit, considered
as a module over the stabilizer subgroup.

In the case of representation varieties, this normal space can be identified with
the vectorspace of self-extensions Ext1A(Mξ,Mξ) and the stabilizer subgroup with
the centralizer of Vξ. The main result we will prove in this chapter is that this local
data is encoded in a quiver-setting, or rather a marked quiver-setting where we allow
some loops in the quiver to acquire a mark. We will prove that this marked quiver
has k vertices (corresponding to the distinct simple components of Mξ) and we have
to consider α-dimensional representations of this quiver where α = (e1, . . . , ek), the
multiplicities with which these simples occur in Mξ. In the next chapter we will
show that the arrows and loops in the quiver are determined by (trace preserving)
self-extensions of Mξ.

The étale local structure of A@n in m is then given by

(̂A@n)m ' T̂α Qξ

163
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where Qξ is the local quiver determined by Mξ, Tα Qξ is the ring of GL(α)-
equivariant maps from repα Qξ to Mn(C) and we take its completion at the maximal
graded ideal of the corresponding ring of invariants.

5.1 C∞ slices.

Let A be an affine C-algebra and ξ ∈ issn A a point in the quotient space corre-
sponding to an n-dimensional semi-simple representation Mξ of A. In this chapter
we will present a method to study the étale local structure of issn A near ξ and the
étale local GLn-structure of the representation variety rep

n
A near the closed orbit

O(Mξ) = GLn.Mξ. In this section we will outline the basic idea in the setting of
differential geometry.

Let M be a compact C∞-manifold on which a compact Lie group G acts dif-
ferentially. By a usual averaging process we can define a G-invariant Riemannian
metric on M . For a point m ∈M we define

• The G-orbit O(m) = G.m of m in M ,

• the stabilizer subgroup H = StabG(m) = {g ∈ G | g.m = m} and

• the normal space Nm defined to be the orthogonal complement to the tan-
gent space in m to the orbit in the tangent space to M . That is, we have a
decomposition of H-vectorspaces

Tm M = Tm O(m)⊕Nm

The normal spaces Nx when x varies over the points of the orbit O(m) define a
vectorbundle N p-- O(m) over the orbit. We can identify the bundle with the
associated fiber bundle

N ' G×H Nm

Any point n ∈ N in the normal bundle determines a geodesic

γn : R - M defined by

{
γn(0) = p(n)
dγn

dt (0) = n

Using this geodesic we can define a G-equivariant exponential map from the normal
bundle N to the manifold M via

N exp- M where exp(n) = γn(1)

•

YY222222

n

x

γn

O(m)

Nx

M

Now, take ε > 0 and define the C∞ slice Sε to be

Sε = {n ∈ Nm | ‖ n ‖< ε }
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then G ×H Sε is a neighborhood of the zero section in the normal bundle N =
G×H Nm. But then we have a G-equivariant exponential

G×H Sε
exp- M

which for small enough ε gives a diffeomorphism with a G-stable tubular neighbor-
hood U of the orbit O(m) in M .

Nm

0•

ε

−ε

G/H

exp-

•
m

O(m)

U

Nx

M

If we assume moreover that the action of G on M and the action of H on Nm
are such that the orbit-spaces are manifolds M/G and Nm/H, then we have the
situation

G×H Sε
exp

'
- U ⊂ - M

Sε/H

??

'
- U/G

??
⊂ - M/G

??

giving a local diffeomorphism between a neighborhood of 0 in Nm/H and a neigh-
borhood of the point m in M/G corresponding to the orbit O(m).

Returning to the setting of the orbit O(Mξ) in rep
n
A we would equally like to

define a GLn-equivariant morphism from an associated fiber bundle

GLn ×GL(α) Nξ
e- rep

n
A

where GL(ξ) is the stabilizer subgroup of Mξ and Nξ is a normal space to the orbit
O(Mξ). Because we do not have an exponential-map in the setting of algebraic
geometry, the map e will have to be an étale map. Before we come to the description
of these étale slices we will first study the tangent spaces to rep

n
A and give a

ringtheoretical interpretation of the normal space Nξ.

5.2 Tangent spaces.

Let X be a not necessarily reduced affine variety with coordinate ring C[X] =
C[x1, . . . , xn]/I. If the origin o = (0, . . . , 0) ∈ V(I), elements of I have no con-
stant terms and we can write any p ∈ I as

p =
∞∑
i=1

p(i) with p(i) homogeneous of degree i.
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The order ord(p) is the least integer r ≥ 1 such that p(r) 6= 0. Define the following
two ideals in C[x1, . . . , xn]

Il = {p(1) | p ∈ I} and Im = {p(r) | p ∈ I and ord(p) = r}.

The subscripts l (respectively m) stand for linear terms (respectively, terms of min-
imal degree).

The tangent space to X in o, To(X) is by definition the subscheme of Cn deter-
mined by Il. Observe that

Il = (a11x1 + . . .+ a1nxn, . . . , al1x1 + . . .+ alnxn)

for some l×n matrix A = (aij)i,j of rank l. That is, we can express all xk as linear
combinations of some {xi1 , . . . , xin−l

}, but then clearly

C[To(X)] = C[x1, . . . , xn]/Il = C[xi1 , . . . , xin−l
]

In particular, To(X) is reduced and is a linear subspace of dimension n − l in Cn
through the point o.

Next, consider an arbitrary geometric point x of X with coordinates (a1, . . . , an).
We can translate x to the origin o and the translate of X is then the scheme defined
by the ideal

(f1(x1 + a1, . . . , xn + an), . . . , fk(x1 + a1, . . . , xn + an))

Now, the linear term of the translated polynomial fi(x1 + a1, . . . , xn + an) is equal
to

∂fi
∂x1

(a1, . . . , an)x1 + . . .+
∂fi
∂xn

(a1, . . . , an)xn

and hence the tangent space to X in x, Tx(X) is the linear subspace of Cn defined
by the set of zeroes of the linear terms

Tx(X) = V(
n∑
j=1

∂f1
∂xj

(x)xj , . . . ,
n∑
j=1

∂fk
∂xj

(x)xj) ⊂ - Cn.

In particular, the dimension of this linear subspace can be computed from the Jaco-
bian matrix in x associated with the polynomials (f1, . . . , fk)

dim Tx(X) = n− rk


∂f1
∂x1

(x) . . . ∂f1
∂xn

(x)
...

...
∂fk

∂x1
(x) . . . ∂fk

∂xn
(x)

 .
We now give an alternative description of the tangent spaces using the associated
functor of X. Let C[ε] be the algebra of dual numbers, that is, C[ε] ' C[y]/(y2).
Consider a C-algebra morphism

C[x1, . . . , xn]
φ- C[ε] defined by xi 7→ ai + ciε.

Because ε2 = 0 it is easy to verify that the image of a polynomial f(x1, . . . , xn)
under φ is of the form

φ(f(x1, . . . , xn)) = f(a1, . . . , an) +
n∑
j=1

∂f

∂xj
(a1, . . . , an)cjε

Therefore, φ factors through I, that is φ(fi) = 0 for all 1 ≤ i ≤ k, if and only
if (c1, . . . , cn) ∈ Tx(X). Hence, we can also identify the tangent space to X in x
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with the algebra morphisms C[X]
φ- C[ε] whose composition with the projection

π : C[ε] -- C (sending ε to zero) is the evaluation in x = (a1, . . . , an). That is,
let evx ∈ X(C) be the point corresponding to evaluation in x, then

Tx(X) = {φ ∈ X(C[ε]) | X(π)(φ) = evx}.

Example 5.1 GLn(C[ε]) is the group of invertible n×n matrices with coefficients in C[ε]. By
the above we have for any g ∈ GLn that

Tg(GLn) = {m ∈Mn(C) | g +mε is invertible in Mn(C[ε]) } = Mn(C)

because (g + mε)−1 = g−1 − g−1.m.g−1ε for any m ∈ Mn(C). This computation is consistent

with the observation that GLn is an open subset of Mn. For any affine algebraic group scheme G

one defines the Lie algebra g of G to be the tangentspace Te(G) at G in the neutral element e. In

particular, the Lie algebra gln of GLn is the vectorspace Mn(C).

The following two examples compute the tangent spaces to the (trace preserving)
representation varieties.

Example 5.2 Let A be an affine C-algebra generated by {a1, . . . am} and ρ : A - Mn(C)

an algebra morphism, that is, ρ ∈ repn A. We call a linear map A
D- Mn(C) a ρ-derivation if

and only if for all a, a′ ∈ A we have that

D(aa′) = D(a).ρ(a′) + ρ(a).D(a′).

We denote the vectorspace of all ρ-derivations of A by Derρ(A). Observe that any ρ-derivation is
determined by its image on the generators ai, hence Derρ(A) ⊂Mm

n . We claim that

Tρ(repn A) = Derρ(A).

Indeed, we know that rep
n
A(C[ε]) is the set of algebra morphisms

A
φ- Mn(C[ε])

By the functorial characterization of tangentspaces we have that Tρ(repn A) is equal to

{D : A - Mn(C) linear | ρ+Dε : A - Mn(C[ε]) is an algebra map}.

Because ρ is an algebra morphism, the algebra map condition

ρ(aa′) +D(aa′)ε = (ρ(a) +D(a)ε).(ρ(a′) +D(a′)ε)

is equivalent to D being a ρ-derivation.

Example 5.3 Let A be a Cayley-Hamilton algebra of degree n with trace map trA and trace
generated by {a1, . . . , am}. Let ρ ∈ reptrn A, that is, ρ : A - Mn(C) is a trace preserving
algebra morphism. Because reptr

n
A(C[ε]) is the set of all trace preserving algebra morphisms

A - Mn(C[ε]) (with the usual trace map tr on Mn(C[ε])) and the previous example one
verifies that

Tρ(rep
tr
n
A) = Dertrρ (A) ⊂ Derρ(A)

the subset of trace preserving ρ-derivations D, that is, those satisfying

D ◦ trA = tr ◦D

A
D- Mn(C)

A

trA

?
D- Mn(C)

tr

?

Again, using this property and the fact that A is trace generated by {a1, . . . , am} a trace preserving

ρ-derivation is determined by its image on the ai so is a subspace of Mm
n .

The tangent cone to X in o, TCo(X), is by definition the subscheme of Cn
determined by Im, that is,

C[TCo(X)] = C[x1, . . . , xn]/Im.
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It is called a cone because if c is a point of the underlying variety of TCo(X), then
the line l = −→oc is contained in this variety because Im is a graded ideal. Further,
observe that as Il ⊂ Im, the tangent cone is a closed subscheme of the tangent space
at X in o. Again, if x is an arbitrary geometric point of X we define the tangent
cone to X in x, TCx(X) as the tangent cone TCo(X ′) where X ′ is the translated
scheme of X under the translation taking x to o.

Both the tangent space and tangent cone contain local information of the scheme
X in a neighborhood of x. We will now present a ringtheoretical description of both
using only the local algebra Ox(X) of X in x. These descriptions have the additional
advantage of providing a description of tangent space and tangent cone independent
of the embedding of X.

Let mx be the maximal ideal of C[X] corresponding to x (that is, the ideal of
polynomial functions vanishing in x). Then, its complement Sx = C[X] −mx is a
multiplicatively closed subset the local algebra Ox(X) is the corresponding localiza-
tion C[X]Sx

. It has a unique maximal ideal mx with residue field Ox(X)/mx = C.
We equip the local algebra Ox = Ox(X) with the mx-adic filtration that is the Z-
filtration

Fx : ... ⊂ mi ⊂ mi−1 ⊂ . . . ⊂ m ⊂ Ox = Ox = . . . = Ox = . . .

with associated graded algebra

gr(Ox) = . . .⊕ mi
x

mi+1
x

⊕ mi−1
x

mi
x

⊕ . . .⊕ mx

m2
x

⊕ C⊕ 0⊕ . . .⊕ 0⊕ . . .

Proposition 5.4 If x is a geometric point of the affine scheme X, then

1. C[Tx(X)] is isomorphic to the polynomial algebra C[mx

m2
x
].

2. C[TCx(X)] is isomorphic to the associated graded algebra gr(Ox(X)).

Proof. After translating we may assume that x = o lies in V(I) ⊂ - Cn. That is,

C[X] = C[x1, . . . , xn]/I and mx = (x1, . . . , xn)/I.

(1) : Under these identifications we have

mx

m2
x

' mx

m2
x

' (x1,...,xn)
(x1,...,xn)2+I

' (x1,...,xn)
(x1,...,xn)2+Il

and as Il is generated by linear terms it follows that the polynomial algebra on
mx

m2
x

is isomorphic to the quotient algebra C[x1, . . . , xn]/Il which is by definition the
coordinate ring of the tangent space.
(2) : Again using the above identifications we have

gr(Ox) ' ⊕∞i=0
mi

x

mi+1
x

' ⊕∞i=0
mi

x

mi+1
x

' ⊕∞i=0
(x1,...,xn)i

(x1,...,xn)i+1+(I∩(x1,...,xn)i)

' ⊕∞i=0
(x1,...,xn)i

(x1,...,xn)i+1+Im(i)
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where Im(i) is the homogeneous part of Im of degree i. On the other hand, the i-th
homogeneous part of C[x1, . . . , xn]/Im is equal to

(x1, . . . , xn)i

(x1, . . . , xn)i+1 + Im(i)

we obtain the required isomorphism. �

This gives a third interpretation of the tangent space as

Tx(X) = HomC(
mx

m2
x

,C) = HomC(
mx

m2
x

,C).

Hence, we can also view the tangent space Tx(X) as the space of point derivations
Derx(Ox) on Ox(X) (or of the point derivations Derx(C[X]) on C[X]). That is,
C-linear maps D : Ox - C (or D : C[X] - C) such that for all functions f, g
we have

D(fg) = D(f)g(x) + f(x)D(g).

If we define the local dimension of an affine scheme X in a geometric point
x, dimx X to be the maximal dimension of irreducible components of the reduced
variety X passing through x, then

dimx X = dimo TCx(X).

We say that X is nonsingular at x (or equivalently, that x is a nonsingular point
of X) if the tangent cone to X in x coincides with the tangent space to X in x. An
immediate consequence is

Proposition 5.5 If X is nonsingular at x, then Ox(X) is a domain. That is, in
a Zariski neighborhood of x , X is an irreducible variety.

Proof. If X is nonsingular at x, then

gr(Ox) ' C[TCx(X)] = C[Tx(X)]

the latter one being a polynomial algebra whence a domain. Now, let 0 6= a, b ∈ Ox
then there exist k, l such that a ∈ mk − mk+1 and b ∈ ml − ml+1, that is a is a
nonzero homogeneous element of gr(Ox) of degree −k and b one of degree −l. But
then, a.b ∈ mk+l −mk+l−1 hence certainly a.b 6= 0 in Ox.

Now, consider the natural map φ : C[X] - Ox. Let {P1, . . . , Pl} be the
minimal prime ideals of C[X]. All but one of them, say P1 = φ−1(0), extend to the
whole ring Ox. Taking the product of f functions fi ∈ Pi nonvanishing in x for
2 ≤ i ≤ l gives the Zariski open set X(f) containing x and whose coordinate ring is
a domain, whence X(f) is an affine irreducible variety. �

When restricting to nonsingular points we reduce to irreducible affine varieties.
From the Jacobian condition it follows that nonsingularity is a Zariski open con-
dition on X and by the implicit function theorem X is a complex manifold in a
neighborhood of a nonsingular point.

5.3 Normal spaces.

Let X
φ- Y be a morphism of affine varieties corresponding to the algebra mor-

phism C[Y ]
φ∗- C[X]. Let x be a geometric point of X and y = φ(x). As
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φ∗(my) ⊂ mx, φ induces a linear map my

m2
y

- mx

m2
x

and taking the dual map gives
the differential of φ in x which is a linear map

dφx : Tx(X) - Tφ(x)(Y ).

Assume X a closed subscheme of Cn and Y a closed subscheme of Cm and let φ be
determined by the m polynomials {f1, . . . , fm} in C[x1, . . . , xn]. Then, the Jacobian
matrix in x

Jx(φ) =


∂f1
∂x1

(x) . . . ∂fm

∂x1
(x)

...
...

∂f1
∂xn

(x) . . . ∂fm

∂xn
(x)


defines a linear map from Cn to Cm and the differential dφx is the induced linear
map from Tx(X) ⊂ Cn to Tφ(x)(Y ) ⊂ Cm. Let D ∈ Tx(X) = Derx(C[X]) and
xD the corresponding element of X(C[ε]) defined by xD(f) = f(x) + D(f)ε, then
xD ◦ φ∗ ∈ Y (C[ε]) is defined by

xD ◦ φ∗(g) = g(φ(x)) + (D ◦ φ∗)ε = g(φ(x)) + dφx(D)ε

giving us the ε-interpretation of the differential

φ(x+ vε) = φ(x) + dφx(v)ε

for all v ∈ Tx(X).

Proposition 5.6 Let X
φ- Y be a dominant morphism between irreducible affine

varieties. There is a Zariski open dense subset U ⊂ - X such that dφx is surjective
for all x ∈ U .

Proof. We may assume that φ factorizes into

X
ρ-- Y × Cd

Y

prY

?

φ

-

with φ a finite and surjective morphism. Because the tangent space of a product is
the sum of the tangent spaces of the components we have that d(prW )z is surjective
for all z ∈ Y × Cd, hence it suffices to verify the claim for a finite morphism φ.
That is, we may assume that S = C[Y ] is a finite module over R = C[X] and let
L/K be the corresponding extension of the function fields. By the principal element
theorem we know that L = K[s] for an element s ∈ L which is integral over R with
minimal polynomial

F = tn + gn−1t
n−1 + . . .+ g1t+ g0 with gi ∈ R

Consider the ring S′ = R[t]/(F ) then there is an element r ∈ R such that the
localizations S′r and Sr are isomorphic. By restricting we may assume that X =
V(F ) ⊂ - Y × C and that

X = V(F ) ⊂ - Y × C

Y

prY

?

φ

-
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Let x = (y, c) ∈ X then we have (again using the identification of the tangent space
of a product with the sum of the tangent spaces of the components) that

Tx(X) = {(v, a) ∈ Ty(Y )⊕ C | c∂F
∂t

(x) + vgn−1c
n−1 + . . .+ vg1c+ vg0 = 0}.

But then, dφx i surjective whenever ∂F
∂t (x) 6= 0. This condition determines a non-

empty open subset of X as otherwise ∂F
∂t would belong to the defining ideal of X

in C[Y × C] (which is the principal ideal generated by F ) which is impossible by a
degree argument �

Example 5.7 Let X be a closed GLn-stable subscheme of a GLn-representation V and x a

geometric point of X. Consider the orbitclosure O(x) of x in V . Because the orbit map

µ : GLn -- GLn.x ⊂ - O(x)

is dominant we have that C[O(x)] ⊂- C[GLn] and therefore a domain, so O(x) is an irreducible
affine variety. We define the stabilizer subgroup Stab(x) to be the fiber µ−1(x), then Stab(x) is
a closed subgroup of GLn. We claim that the differential of the orbit map in the identity matrix
e = rr

n

dµe : gln
- Tx(X)

satisfies the following properties

Ker dµe = stab(x) and Im dµe = Tx(O(x)).

By the proposition we know that there is a dense open subset U of GLn such that dµg is surjective
for all g ∈ U . By GLn-equivariance of µ it follows that dµg is surjective for all g ∈ GLn, in

particular dµe : gln
- Tx(O(x)) is surjective. Further, all fibers of µ over O(x) have the same

dimension. But then it follows from the dimension formula of proposition that

dim GLn = dim Stab(x) + dim O(x)

(which, incidentally gives us an algorithm to compute the dimensions of orbitclosures). Combining

this with the above surjectivity, a dimension count proves that Ker dµe = stab(x), the Lie algebra

of Stab(x).

Let M and N two A-representations of dimensions say m and n. An A-
representation P of dimension m + n is said to be an extension of N by M if
there exists a short exact sequence of left A-modules

e : 0 - M - P - N - 0

We define an equivalence relation on extensions (P, e) of N by M : (P, e) ∼= (P ′, e′)
if and only if there is an isomorphism P

φ- P ′ of left A-modules such that the
diagram below is commutative

e : 0 - M - P - N - 0

e′ : 0 - M

idM

?
- P ′

φ

?
- N

idN

?
- 0

The set of equivalence classes of extensions of N by M will be denoted by
Ext1A(N,M).

An alternative description of Ext1A(N,M) is as follows. Let ρ : A - Mm

and σ : A - Mn be the representations defining M and N . For an extension
(P, e) we can identify the C-vectorspace with M ⊕N and the A-module structure on
P gives a algebra map µ : A - Mm+n and we can represent the action of a on
P by left multiplication of the block-matrix

µ(a) =
[
ρ(a) λ(a)
0 σ(a)

]
,
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where λ(a) is an m× n matrix and hence defines a linear map

λ : A - HomC(N,M).

The condition that µ is an algebra morphism is equivalent to the condition

λ(aa′) = ρ(a)λ(a′) + λ(a)σ(a′)

and we denote the set of all liner maps λ : A - HomC(N,M) by Z(N,M)
and call it the space of cycles. (Observe already that if M = N and m = n then
Z(M,M) is the vectorspace of ρ-derivations Derρ(A) from A - Mn.)

The extensions of N by M corresponding to two cycles λ and λ′ from Z(N,M)
are equivalent if and only if we have an A-module isomorphism in block form[

idM β
0 idN

]
with β ∈ HomC(N,M)

between them. A-linearity of this map translates into the matrix relation[
idM β
0 idN

]
.

[
ρ(a) λ(a)
0 σ(a)

]
=

[
ρ(a) λ′(a)
0 σ(a)

]
.

[
idM β
0 idN

]
for all a ∈ A

or equivalently, that λ(a)−λ′(a) = ρ(a)β−βσ(a) for all a ∈ A. We will now define
the subspace of Z(N,M) of boundaries B(N,M)

{δ ∈ HomC(N,M) | ∃β ∈ HomC(N,M) : ∀a ∈ A : δ(a) = ρ(a)β − βσ(a)}.

We then have the description Ext1A(N,M) = Z(N,M)
B(N,M) .

Example 5.8 Let A be an affine C-algebra generated by {a1, . . . , am} and ρ : A - Mn(C)
an algebra morphism, that is, ρ ∈ repn A determines an n-dimensional A-representation M . We
claim to have the following description of the normal space to the orbitclosure Cρ = O(ρ) of ρ

Nρ(repn A)
def
=

Tρ(repn A)

Tρ(Cρ)
= Ext1A(M,M).

We have already seen that the space of cycles Z(M,M) is the space of ρ-derivations of A in
Mn(C), Derρ(A), which we know to be the tangent space Tρ(repn A). Moreover, we know that

the differential dµe of the orbit map GLn
µ- Cρ ⊂ - Mm

n

dµe : gln = Mn - Tρ(Cρ)

is surjective. Now, ρ = (ρ(a1), . . . , ρ(am)) ∈ Mm
n and the action of action of GLn is given by

simultaneous conjugation. But then we have for any A ∈ gln = Mn that

(In +Aε).ρ(ai).(In −Aε) = ρ(ai) + (Aρ(ai)− ρ(ai)A)ε.

Therefore, by definition of the differential we have that

dµe(A)(a) = Aρ(a)− ρ(a)A for all a ∈ A.

that is, dµe(A) ∈ B(M,M) and as the differential map is surjective we have Tρ(Cρ) = B(M,M)

from which the claim follows.

Example 5.9 Let A be a Cayley-Hamilton algebra with trace map trA and trace generated by
{a1, . . . , am}. Let ρ ∈ reptrn A, that is, ρ : A - Mn(C) is a trace preserving algebra morphism.
Any cycle λ : A - Mn(C) in Z(M,M) = Derρ(A) determines an algebra morphism

ρ+ λε : A - Mn(C[ε])

We know that the tangent space Tρ(reptrn A) is the subspace Dertrρ (A) of trace preserving ρ-
derivations, that is, those satisfying

λ(trA(a)) = tr(λ(a)) for all a ∈ A
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Observe that for all boundaries δ ∈ B(M,M), that is, such that there is an m ∈ Mn(C) with
δ(a) = ρ(a).m−m.ρ(a) are trace preserving as

δ(trA(a)) = ρ(trA(a)).m−m.ρ(trA(a)) = tr(ρ(a)).m−m.tr(ρ(a))

= 0 = tr(m.ρ(a)− ρ(a).m) = tr(δ(a))

Hence, we can define the space of trace preserving self-extensions

ExttrA (M,M) =
Dertrρ (A)

B(M,M)

and obtain as before that the normal space to the orbit closure Cρ = O(ρ) is equal to

Nρ(rep
tr
n
A)

def
=

Tρ(reptrn A)

Tρ(Cρ)
= ExttrA (M,M)

5.4 Luna’s étale slices.

The results of this section hold for any reductive algebraic group G. As we will use
them only in the case G = GLn or GL(α) = GLa1 × . . .×GLak

we will restrict to
the case of GLn. Also all affine GLn-varieties we will consider are representation
varieties or associated fiber bundles. We fix the setting : X and Y are not necessarily
reduced affine GLn-varieties, ψ is a GLn-equivariant map

x = ψ(y) ` X � ψ
Y a y

X/GLn

πX

??
Y /GLn

πY

??

and we assume the following restrictions :

• ψ is étale in y,

• the GLn-orbits O(y) in Y and O(x) in X are closed. That is, in representation
varieties we restrict to semi-simple representations,

• the stabilizer subgroups are equal Stab(x) = Stab(y). In the case of represen-
tation varieties, for a semi-simple n-dimensional representation with decom-
position

M = S⊕e11 ⊕ . . .⊕ S⊕ek

k

into distinct simple components, this stabilizer subgroup is

GL(α) =

GLe1(C⊗
rr
f1)

. . .
GLek

(C⊗ rr
fk

)

 ⊂ - GLn

where fi = dim Si. In particular, the stabilizer subgroup is again reductive.

In algebraic terms : consider the coordinate rings R = C[X] and S = C[Y ] and the
dual morphism R

ψ∗- S. Let I / R be the ideal describing O(x) and J / S the
ideal describing O(y). With R̂ we will denote the I-adic completion lim

←
R
In of R

and with Ŝ the J-adic completion of S.

Lemma 5.10 The morphism ψ∗ induces for all n an isomorphism

R

In
ψ∗- S

Jn

In particular, R̂ ' Ŝ.
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Proof. Let Z be the closed GLn-stable subvariety of Y where ψ is not étale. By
the separation property, there is an invariant function f ∈ SGLn vanishing on Z
such that f(y) = 1 because the two closed GLn-subschemes Z and O(y) are disjoint.
Replacing S by Sf we may assume that ψ∗ is an étale morphism. Because O(x) is
smooth, ψ−1 O(x) is the disjoint union of its irreducible components and restricting
Y if necessary we may assume that ψ−1 O(x) = O(y). But then J = ψ∗(I)S and
as O(y)

'- O(x) we have R
I '

S
J so the result holds for n = 1.

Because étale maps are flat, we have ψ∗(In)S = In ⊗R S = Jn and an exact
sequence

0 - In+1 ⊗R S - In ⊗R S - In

In+1
⊗R S - 0

But then we have

In

In+1
=

In

In+1
⊗R/I

S

J
=

In

In+1
⊗R S '

Jn

Jn+1

and the result follows from induction on n and the commuting diagram

0 - In

In+1
- R

In+1
- R

In
- 0

0 - Jn

Jn+1

'

?

- S

Jn+1

?

............

- S

Jn

'

?

- 0

�

As in the previous chapter we will denote for any irreducible GLn-representation
s and any locally finite GLn-module X its s-isotypical component by X(s).

Lemma 5.11 Let s be an irreducible GLn-representation. There are natural num-
bers m ≥ 1 (independent of s) and n ≥ 0 such that for all k ∈ N we have

Imk+n ∩R(s)
⊂ - (IGLn)kR(s)

⊂ - Ik ∩R(s)

Proof. Consider A = ⊕∞i=0I
ntn ⊂ - R[t], then AGLn is affine so certainly finitely

generated as RGLn-algebra say by

{r1tm1 , . . . , rzt
mz} with ri ∈ R and mi ≥ 1.

Further, A(s) is a finitely generated AGLn-module, say generated by

{s1tn1 , . . . , syt
ny} with si ∈ R(s) and ni ≥ 0.

Take m = max mi and n = max ni and r ∈ Imk+n ∩R(s), then rtmk+n ∈ A(s) and

rtmk+n =
∑
j

pj(r1tm1 , . . . , rzt
mz )sjtnj

with pj a homogeneous polynomial of t-degree mk + n − nj ≥ mk. But then each
monomial in pj occurs at least with ordinary degree mk

m = k and therefore is con-
tained in (IGLn)kR(s)t

mk+n. �

Let R̂GLn be the IGLn-adic completion of the invariant ring RGLn and let ŜGLn

be the JGLn-adic completion of SGLn .
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Lemma 5.12 The morphism ψ∗ induces an isomorphism

R⊗RGLn R̂GLn
'- S ⊗ SGLn ŜGLn

Proof. Let s be an irreducible GLn-module, then the IGLn-adic completion of R(s)

is equal to R̂(s) = R(s) ⊗RGLn R̂GLn . Moreover,

R̂(s) = lim
←

(
R

Ik
)(s) = lim

←

R(s)

(Ik ∩R(s))

which is the I-adic completion of R(s). By the foregoing lemma both topologies
coincide on R(s) and therefore

R̂(s) = R̂(s) and similarly Ŝ(s) = Ŝ(s)

Because R̂ ' Ŝ it follows that R̂(s) ' Ŝ(s) from which the result follows as the
foregoing holds for all s. �

Theorem 5.13 (Luna’s fundamental lemma) Consider a GLn-equivariant
map Y

ψ- X, y ∈ Y , x = ψ(y) and ψ étale in y. Assume that the orbits O(x)
and O(y) are closed and that ψ is injective on O(y). Then, there is an affine open
subset U ⊂ - Y containing y such that

1. U = π−1
Y (πY (U)) and πY (U) = U/GLn.

2. ψ is étale on U with affine image.

3. The induced morphism U/GLn
ψ- X/GLn is étale.

4. The diagram below is commutative

U
ψ - X

U/GLn

πU

??
ψ- X/GLn

πX

??

Proof. By the foregoing lemma we have R̂GLn ' ŜGLn which means that ψ is étale
in πY (y). As étaleness is an open condition, there is an open affine neighborhood V
of πY (y) on which ψ is étale. If R = R⊗RGLn SGLn then the above lemma implies
that

R⊗SGLn ŜGLn ' S ⊗SGLn ŜGLn

Let SGLn

loc be the local ring of SGLn in JGLn , then as the morphism SGLn

loc
- ŜGLn

is faithfully flat we deduce that

R⊗SGLn S
GLn

loc ' S ⊗SGLn S
GLn

loc

but then there is an f ∈ SGLn − JGLn such that Rf ' Sf . Now, intersect V with
the open affine subset where f 6= 0 and let U ′ be the inverse image under πY of this
set. Remains to prove that the image of ψ is affine. As U ′

ψ- X is étale, its
image is open and GLn-stable. By the separation property we can find an invariant
h ∈ RGLn such that h is zero on the complement of the image and h(x) = 1. But
then we take U to be the subset of U ′ of points u such that h(u) 6= 0. �
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Theorem 5.14 (Luna’s slice theorem) Let X be an affine GLn-variety with
quotient map X

π-- X/GLn. Let x ∈ X be such that its orbit O(x) is closed
and its stabilizer subgroup Stab(x) = H is reductive. Then, there is a locally closed
affine subscheme S ⊂ - X containing x with the following properties

1. S is an affine H-variety,

2. the action map GLn×S - X induces an étale GLn-equivariant morphism

GLn ×H S
ψ- X

with affine image,

3. the induced quotient map ψ/GLn is étale

(GLn ×H S)/GLn ' S/H
ψ/GLn- X/GLn

4. the diagram below is commutative

GLn ×H S
ψ - X

S/H

??
ψ/GLn - X/GLn

π

??

If we assume moreover that X is smooth in x, then we can choose the slice S such
that also the following properties are satisfied

1. S is smooth,

2. there is an H-equivariant morphism

S
φ- Tx S = Nx

with φ(x) = 0 having an affine image,

3. the induced morphism is étale

S/H
φ/H- Nx/H

4. the diagram below is commutative

GLn ×H S
GLn×Hφ - GLn ×H Nx

S/H

??
φ/H - Nx/H

??

Proof. Choose a finite dimensional GLn-subrepresentation V of C[X] that generates
the coordinate ring as algebra. This gives a GLn-equivariant embedding

X ⊂
i- W = V ∗
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Choose in the vectorspace W an H-stable complement S0 of gln.i(x) = Ti(x) O(x)
and denote S1 = i(x)+S0 and S2 = i−1(S1).Then, the diagram below is commutative

GLn ×H S2
⊂ - GLn ×H S1

X

ψ

?
⊂

i - W

ψ0

?

By construction we have that ψ0 induces an isomorphism between the tangent spaces
in (1, i(x)) ∈ GLn×H S0 and i(x) ∈W which means that ψ0 is étale in i(x), whence
ψ is étale in (1, x) ∈ GLn ×H S2. By the fundamental lemma we ge an affine
neighborhood U which must be of the form U = GLn×H S giving a slice S with the
required properties.

Assume that X is smooth in x, then S1 is transversal to X in i(x) as

Ti(x) i(X) + S0 = W

Therefore, S is smooth in x. Again using the separation property we can find an
invariant f ∈ C[S]H such that f is zero on the singularities of S (which is a H-stable
closed subscheme) and f(x) = 1. Then replace S with its affine reduced subvariety
of points s such that f(s) 6= 0. Let m be the maximal ideal of C[S] in x, then we
have an exact sequence of H-modules

0 - m2 - m
α- N∗x - 0

Choose a H-equivariant section φ∗ : N∗x - m ⊂ - C[S] of α then this gives
an H-equivariant morphism S

φ- Nx which is étale in x. Applying again the
fundamental lemma to this setting finishes the proof. �

5.5 Grothendieck smoothness.

In this section we prove that an affine variety X is smooth if and only if its coordi-
nate ring C[X] satisfies a certain lifting property in the category of all commutative
C-algebras. This allows us to define formally smooth algebras in other categories
such as the category of Cayley-Hamilton algebras of degree n or the category of all
C-algebras.

Let X be a possibly non-reduced affine variety and x a geometric point of X. As
we are interested in local properties of X near x, we may assume (after translation)
that x = o in Cn and that we have a presentation

C[X] = C[x1, . . . , xn]/I with I = (f1, . . . , fm) and mx = (x1, . . . , xn)/I.

Denote the polynomial algebra P = C[x1, . . . , xn] and consider the map

d : I - (Pdx1 ⊕ . . .⊕ Pdxn)⊗P C[X] = C[X]dx1 ⊕ . . .⊕ C[X]dxn

where the dxi are a formal basis of the free module of rank n and the map is defined
by

d(f) = (
∂f

∂x1
, . . . ,

∂f

∂xn
) mod I.

This gives a C[X]-linear mapping

I

I2

d- C[X]dx1 ⊕ . . .⊕ C[X]dxn.
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Extending to the local algebra Ox at x and then quotient out the maximal ideal mx

we get a C = Ox/mx- linear map

I

I2

d(x)- Cdx1 ⊕ . . .⊕ Cdxn

Clearly, x is a nonsingular point of X if and only if the C-linear map d(x) is
injective. This is equivalent to the existence of a C-section and by the Nakayama
lemma also to the existence of a Ox-linear splitting sx of the induced Ox-linear map
dx

I

I2

⊂
dx -

��
sx

Oxdx1 ⊕ . . .⊕Oxdxn

satisfying sx ◦ dx = id I
I2

A C-algebra epimorphism (between commutative algebras) R
π-- S with square

zero kernel is called an infinitesimal extension of S. It is called a trivial infinitesimal
extension if π has an algebra section σ : S ⊂ - R satisfying π ◦ σ = idS. An in-
finitesimal extension R

π-- S of S is said to be versal if for any other infinitesimal
extension R′

π′-- S of S there is a C-algebra morphism

R
π -- S

R′

π
′

--
...............................

∃
g

-

making the diagram commute. From this universal property it is clear that versal
infinitesimal extensions are uniquely determined up to isomorphism. Moreover, if
a versal infinitesimal extension is trivial, then so is any infinitesimal extension.

Definition 5.15 A commutative C-algebra S is said to be Grothendieck smooth
if and only if it has the following universal property. Let T be a commutative C-
algebra and I a nilpotent ideal of T . Then, any C-algebra morphism κ : S - T/I

S

T --
�...

.....
.....

.....
.....

.....
....

∃
λ

T/I

κ

?

can be lifted to a C-algebra morphism λ : S - T making the diagram commu-
tative.

Clearly, by iterating, S is Grothendieck smooth if and only if it has the lifting
property with respect to nilpotent ideals I with square zero. Therefore, assume we
have a test object (T, I) with I2 = 0, then we have a commuting diagram

S ×T/I T
pr1 -- S

T

pr2

??

p
-- T/I

κ

?
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where we define the pull-back algebra

S ×T/I T = {(s, t) ∈ S × T | κ(s) = p(t)}.

Observe that pr1 : S×T/I T -- S is a C-algebra epimorphism with kernel 0×T/I I
having square zero, that is, it is an infinitesimal extension of S. Moreover, the
existence of a lifting λ of κ is equivalent to the existence of a C-algebra section

σ : S - S ×T/I T defined by s 7→ (s, λ(s)).

Hence, S is Grothendieck smooth if and only if a versal infinitesimal extension of
S is trivial.

Returning to the situation of interest to us, we claim that the algebra epimor-
phism

Ox(Cn)/I2
x

cx-- Ox
is a versal infinitesimal extension of Ox. Indeed, consider any other infinitesimal
extension R

π-- Ox then we define a C-algebra morphism Ox(Cn)/I2
x

- R
as follows : let ri ∈ R such that π(ri) = cx(xi) and define an algebra morphism
C[x1, . . . , xn] - R by sending the variable xi to ri. As the image of any polyno-
mial non-vanishing in x is a unit in R, this algebra map extends to one from the
local algebra Ox(Cn) and it factors over Ox(Cn)/I2

x as the image of Ix lies in the
kernel of π which has square zero, proving the claim. Hence, Ox is Grothendieck
smooth if and only if there is a C-algebra section

Ox(Cn)/I2
x

cx --
�

rx

⊃ Ox

satisfying cx ◦ rx = idOx .

Proposition 5.16 The affine scheme X is non-singular at the geometric point x
if and only if the local algebra Ox(X) is Grothendieck smooth.

Proof. The result will follow once we prove that there is a natural one-to-one
correspondence between Ox-module splittings sx of dx and C-algebra sections rx of
cx. This correspondence is given by assigning to an algebra section rx the map sx
defined by

sx(dxi) = (xi − rx ◦ cx(xi)) mod I2
x

�

If X is an affine scheme which is smooth in all of its geometric points, then we
have seen before that X = X must be reduced, that is, an affine variety. Restricting
to its disjoint irreducible components we may assume that

C[X] = ∩x∈XOx.

Clearly, if C[X] is Grothendieck smooth, so is any of the local algebras Ox. Con-
versely, if all Ox are Grothendieck smooth and C[X] = C[x1, . . . , xn]/I one knows
that the algebra epimorphism

C[x1, . . . , xn]/I2 c-- C[X]

has local sections in every x, but then there is an algebra section. Because c is clearly
a versal infinitesimal deformation of C[X], it follows that C[X] is Grothendieck
smooth.

Proposition 5.17 Let X be an affine scheme. Then, C[X] is Grothendieck smooth
if and only if X is non-singular in all of its geometric points. In this case, X is a
reduced affine variety.
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5.6 Cayley smoothness.

Observe that the commutative C-algebras are precisely the Cayley-Hamilton algebras
of degree one, so we recover the notion of Grothendieck smoothness for commutative
algebras from the following one.

Definition 5.18 A Cayley-Hamilton algebra A of degree n with trace map trA
is said to be Cayley smooth if it satisfies the following lifting property. Let T
be a Cayley-Hamilton algebra of degree n with trace map trT and I a twosided
nilpotent ideal of T such that trT (I) ⊂ I. Assume there is a trace preserving C-
algebra morphism κ : A - T/I, then there is a trace preserving C-algebra lift
λ : A - T

A

T --
�...

.....
.....

.....
.....

.....
....

∃
λ

T/I

κ

?

making the diagram commutative.

Let B be a Cayley-Hamilton algebra of degree n with trace map trB and trace
generated by m elements say {b1, . . . , bm}. Then, we can write

B = Tmn /TB with TB closed under traces.

Now, consider the extended ideal

EB = Mn(C[Mm
n ]).TB .Mn(C[Mm

n ]) = Mn(NB)

and we have seen that C[reptr
n
B] = C[Mm

n ]/NB. We need the following technical
result.

Lemma 5.19 With notations as above, we have for all k that

Ekn
2

B ∩ Tmn ⊂ T kB .

Proof. Let Tmn be the trace algebra on the generic n × n matrices {X1, . . . , Xm}
and Tl+mn the trace algebra on the generic matrices {Y1, . . . , Yl, X1, . . . , Xm}.
Let {U1, . . . , Ul} be elements of Tmn and consider the trace preserving map
Tl+mn

u- Tmn induced by the map defined by sending Yi to Ui. Then, by the
universal property we have a commutative diagram of Reynold operators

Mn(C[M l+m
n ])

ũ- Mn(C[Mm
n ])

Tl+mn

R

?
u - Tmn

R

?

.

Now, let A1, . . . , Al+1 be elements from Mn(C[Mm
n ]), then we can calculate

R(A1U1A2U2A3 . . . AlUlAl+1) by first computing

r = R(A1Y1A2Y2A3 . . . AlYlAl+1)

and then substituting the Yi with Ui. The Reynolds operator preserves the degree
in each of the generic matrices, therefore r will be linear in each of the Yi and is a
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sum of trace algebra elements. By our knowledge of the generators of necklaces and
the trace algebra we can write each term of the sum as an expression

tr(M1)tr(M2) . . . tr(Mz)Mz+1

where each of the Mi is a monomial of degree ≤ n2 in the generic matrices
{Y1, . . . , Yl, X1, . . . , Xm}. Now, look at how the generic matrices Yi are distributed
among the monomials Mj. Each Mj contains at most n2 of the Yi’s, hence the
monomial Mz+1 contains at least l− vn2 of the Yi where v ≤ z is the number of Mi

with i ≤ z containing at least one Yj.
Now, assume all the Ui are taken from the ideal TB / Tmn which is closed under

taking traces, then it follows that

R(A1U1A2U2A3 . . . AlUlAl+1) ∈ T v+(l−vn2)
B ⊂ T kB

if we take l = kn2 as v + (k − v)n2 ≥ k. But this finishes the proof of the required
inclusion. �

Let B be a Cayley-Hamilton algebra of degree n with trace map trB and I a
twosided ideal of B which is closed under taking traces. We will denote by E(I) the
extended ideal with respect to the universal embedding, that is,

E(I) = Mn(C[reptr
n
B])IMn(C[reptr

n
B]).

Then, for all powers k we have the inclusion E(I)kn
2 ∩B ⊂ Ik.

Theorem 5.20 Let A be a Cayley-Hamilton algebra of degree n with trace map
trA. Then, A is Cayley smooth if and only if the trace preserving representation
variety reptr

n
A is non-singular in all points (in particular, reptr

n
A is reduced).

Proof. Let A be Cayley smooth, then we have to show that C[reptr
n

A] is
Grothendieck smooth. Take a commutative test-object (T, I) with I nilpotent and
an algebra map κ : C[reptr

n
A] - T/I. Composing with the universal embedding

iA we obtain a trace preserving morphism µ0

A ...............................................
µ1

- Mn(T )

Mn(C[reptr
n
A])

iA

?

∩

Mn(κ)
- Mn(T/I)

??

µ0

-

Because Mn(T ) with the usual trace is a Cayley-Hamilton algebra of degree n and
Mn(I) a trace stable ideal and A is Cayley smooth there is a trace preserving algebra
map µ1. But then, by the universal property of the embedding iA there exists a C-
algebra morphism

λ : C[reptr
n
A] - T

such that Mn(λ) completes the diagram. The morphism λ is the required lift.
Conversely, assume that C[reptr

n
A] is Grothendieck smooth. Assume we have a

Cayley-Hamilton algebra of degree n with trace map trT and a trace-stable nilpotent
ideal I of T and a trace preserving C-algebra map κ : A - T/I. If we combine
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this test-data with the universal embeddings we obtain a diagram

T ⊂
iT- Mn(C[reptr

n
T ])

A
κ -.....

.....
.....

.....
.....

.....
.....

..

?∃
λ

-

T/I

??
⊂

iT/I- Mn(C[reptr
n
T/I])

??
=Mn(C[reptr

n
T ]/J)

Mn(C[reptr
n
A])

iA

?

∩

.........
.........

.........
.........

.........
.........

......

Mn
(α)

-

Here, J = Mn(C[reptr
n
T ])IMn(C[reptr

n
T ]) and we know already that J ∩ T = I.

By the universal property of the embedding iA we obtain a C-algebra map

C[reptr
n
A]

α- C[reptr
n
T ]/J

which we would like to lift to C[reptr
n
T ]. This does not follow from Grothendieck

smoothness of C[reptr
n
A] as J is usually not nilpotent. However, as I is a nilpotent

ideal of T there is some h such that Ih = 0. As I is closed under taking traces we
know by the remark preceding the theorem that

E(I)hn
2
∩ T ⊂ Ih = 0.

Now, by definition E(I) = Mn(C[reptr
n
T ])IMn(C[reptr

n
T ]) which is equal to

Mn(J). That is, the inclusion can be rephrased as Mn(J)hn
2 ∩ T = 0, whence

there is a trace preserving embedding T ⊂ - Mn(C[reptr
n
T ]/Jhn

2
). Now, we have

the following situation

T ⊂ - Mn(C[reptr
n
T ]/Jkn

2
)

A
κ -.....

.....
.....

.....
.....

.....
.....

..

λ

-

T/I

??
⊂

iT/I- Mn(C[reptr
n
T ]/J)

??

Mn(C[reptr
n
A])

iA

?

∩

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

.....
.....

....-

Mn
(α)

-

This time we can lift α to a C-algebra morphism

C[reptr
n
A] - C[reptr

n
T ]/Jhn

2
.

This in turn gives us a trace preserving morphism

A
λ- Mn(C[reptr

n
T ]/Jhn

2
)

the image of which is contained in the algebra of GLn-invariants. Because
T ⊂ - Mn(C[reptr

n
T ]/Jhn

2
) and by surjectivity of invariants under surjective

maps, the GLn-equivariants are equal to T , giving the required lift λ. �
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5.7 Quillen smoothness.

In this section we introduce Quillen smooth algebras which are the basic building
blocks to construct noncommutative manifolds.

Definition 5.21 A C-algebra A is said to be Quillen smooth if it satisfies the
following lifting property. Let T be a C-algebra and I /T a nilpotent ideal. If there
is a C-algebra morphism A

κ- T/I then there exists a C-algebra lift A
λ- T

A

T --
�...

.....
.....

.....
.....

.....
....

∃
λ

T/I

κ

?

making the diagram commutative.

This definition is rather restrictive. In particular, a commutative (Grothendieck)
smooth algebra does not have to satisfy the lifting property in the category of all C-
algebras.

Example 5.22 consider the polynomial algebra C[x1, . . . , xd] and the 4-dimensional noncom-
mutative local algebra

T =
C〈x, y〉

(x2, y2, xy + yx)
= C⊕ Cx⊕ Cy ⊕ Cxy

Consider the one-dimensional nilpotent ideal I = C(xy−yx) of T , then the 3-dimensional quotient
T
I

is commutative and we have a morphism C[x1, . . . , xd]
φ- T

I
by x1 7→ x, x2 7→ y and xi 7→ 0

for i ≥ 2. This morphism admits no lift to T as for any potential lift the commutator

[φ̃(x), φ̃(y)] 6= 0 in T .

Therefore, C[x1, . . . , xd] can only be Quillen smooth if d = 1. In fact, we will see in chapter 9 that

the only commutative affine Quillen smooth algebras are the coordinate rings of a disjoint union

of points and affine smooth curves.

Still, the world of Quillen smooth algebras is rather exotic containing many
algebras determined by universal constructions. There is a fairly innocent class
of Quillen smooth algebras determined by combinatorial data : path algebras of
quivers. Consider the commutative C-algebra

Ck = C[e1, . . . , ek]/(e2i − ei, eiej ,
k∑
i=1

ei − 1).

Ck is the universal C-algebra in which 1 is decomposed into k orthogonal idem-
potents, that is, if R is any C-algebra such that 1 = r1 + . . . + rk with ri ∈ R
idempotents satisfying rirj − 0, then there is an embedding Ck ⊂ - R sending ei
to ri. Observe that as a C-algebra

Ck ' C⊕ . . .⊕ C︸ ︷︷ ︸
k

or equivalently, the coordinate ring of k distinct points.

Proposition 5.23 Ck is Quillen smooth. That is, if I be a nilpotent ideal of a C-
algebra T and if 1 = e1+. . .+ek is a decomposition of 1 into orthogonal idempotents
ei ∈ T/I. Then, we can lift this decomposition to 1 = e1 + . . . + ek for orthogo-
nal idempotents ei ∈ T such that π(ei) = ei where T

π-- T/I is the canonical
projection.
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Proof. Assume that I l = 0, clearly any element 1− i with i ∈ I is invertible in T
as

(1− i)(1 + i+ i2 + . . .+ il−1) = 1− il = 1.

If e is an idempotent of T/I and x ∈ T such that π(x) = e. Then, x − x2 ∈ I
whence

0 = (x− x2)l = xl − lxl+1 +
(
l
2

)
xl+2 − . . .+ (−1)lx2l

and therefore xl = axl+1 where a = l−
(
l
2

)
x+ . . .+ (−1)l−1xl−1 and so ax = xa.

If we take e = (ax)l, then e is an idempotent in T as

e2 = (ax)2l = al(alx2l) = alxl = e

the next to last equality follows from xl = axl+1 = a2xl+2 = . . . = alx2l. Moreover,

π(e) = π(a)lπ(x)l = π(a)lπ(x)2l = π(alx2l) = π(x)l = e.

If f is another idempotent in T/I such that ef = 0 = fe then as above we can lift
f to an idempotent f ′ of T . As f ′e ∈ I we can form the element

f = (1− e)(1− f ′e)−1f ′(1− f ′e).

Because f ′(1−f ′e) = f ′(1−e) one verifies that f is idempotent, π(f) = f and e.f =
0 = f.e. Assume by induction that we have already lifted the pairwise orthogonal
idempotents e1, . . . , ek−1 to pairwise orthogonal idempotents e1, . . . , ek−1 of R, then
e = e1 + . . .+ ek−1 is an idempotent of T such that eek = 0 = eke. Hence, we can
lift ek to an idempotent ek ∈ T such that eek = 0 = eke. But then also

eiek = (eie)ek = 0 = ek(eei) = ekei.

Finally, as e1 + . . .+ ek − 1 = i ∈ I we have that

e1 + . . .+ ek − 1 = (e1 + . . .+ ek − 1)l = il = 0

finishing the proof. �

Let Q be a quiver, that is, a directed graph determined by

• a finite set Qv = {v1, . . . , vk} of vertices, and

• a finite set Qa = {a1, . . . , al} of arrows where we allow multiple arrows between
vertices and loops in vertices.

For now, we will depict vertex vi by ��������i and an arrow a from vertex vi to vj by
��������j ��������i

aoo . Note however than once we come to dimension vectors, we will encircle
the vector components and will indicate the ordering of the vertices by subscripts
when necessary.

The path algebra CQ has as underlying C-vectorspace basis the set of all ori-
ented paths in Q, including those of length zero corresponding to the vertices vi.
Multiplication in CQ is induced by (left) concatenation of paths. More precisely,
1 = v1 + . . .+ vk is a decomposition of 1 into mutually orthogonal idempotents and
further we define

• vj .a is always zero unless ��������j ��������aoo in which case it is the path a,

• a.vi is always zero unless ��������i�������� aoo in which case it is the path a,
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• ai.aj is always zero unless ���������������� ��������aioo ajoo in which case it is the
path aiaj.

Proposition 5.24 For any quiver Q, the path algebra CQ is Quillen smooth.

Proof. Take an algebra T with a nilpotent twosided ideal I / T and consider

T -- T

I

CQ

φ

6

�...............................

?φ̃

The decomposition 1 = φ(v1) + . . .+ φ(vk) into mutually orthogonal idempotents in
T
I can be lifted up the nilpotent ideal I to a decomposition 1 = φ̃(v1) + . . . + φ̃(vk)
into mutually orthogonal idempotents in T . But then, taking for every arrow a

��������j ��������i
aoo an arbitrary element φ̃(a) ∈ φ̃(vj)(φ(a) + I)φ̃(vi)

gives a required lifted algebra morphism CQ φ̃- T . �

A Quillen smooth algebra A determines for every integer n a Cayley smooth
algebra A@n. Let algtr be the category of all C-algebras equipped with a trace map
and with trace preserving morphisms. The forgetful functor algtr - alg has a
left adjoint

alg
τ- algtr

that is, given an algebra A we construct an algebra Aτ by formally adjoining traces
(as in the case of T∞ given before). If tr : Aτ - Aτ is the trace map on Aτ we
define for given n a Cayley-Hamilton algebra A@n to be the quotient

A@n =
Aτ

(tr(1)− n, χ(n)
a (a) ∀a ∈ A)

In general it may happen that A@n = 0 for example if A has no n-dimensional repre-
sentations. The characteristic feature of A@n is that any C-algebra map A - B
with B a Cayley-Hamilton algebra of degree n factors through A@n

A
φ - B

A@n

.....
.....

.....
.....

.....
.....

..

∃φ
n

-
can

-

with φn a trace preserving algebra morphism. From this universal property the next
result is immediate

Proposition 5.25 If A is Quillen smooth, then for every integer n, the Cayley-
Hamilton algebra of degree n, A@n, is Cayley smooth. Moreover,

rep
n
A ' reptr

n
A@n

is a smooth affine variety.
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This result allows us to study Quillen smooth algebras. We know that the algebra
A@n is given by the GLn-equivariant maps from reptr

n
A@n to Mn(C). Because this

representation variety is smooth we will apply the Luna étale slices to determine the
local structure of the GLn-variety reptrn A@n and hence of A@n. The major result
we will prove in a moment is that this local structure is fully determined by a quiver
situation. That is, the local study of arbitrary Quillen smooth algebras can be reduced
to that of the better understood subclass of path algebras of quivers.

5.8 Local structure.

Let A be an affine C-algebra generated by m elements {a1, . . . , am}. The Cayley-
Hamilton algebra of A@n of degree n is then trace generated by m elements, that
is, there is a trace preserving epimorphism Tmn

ψ∗-- A@n. That is, we have a
GLn-equivariant closed embedding of affine schemes

rep
n
A = reptr

n
A@n

⊂
ψ- reptr

n
Tmn = Mm

n

Take a point ξ of the quotient scheme issn A = reptr
n
A@n/GLn. We know that ξ

determines the isomorphism class of a semi-simple n-dimensional representation of
A, say

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct simple A-representations, say of dimension di and occur-
ring in Mξ with multiplicity ei. These numbers determine the representation type
τ(ξ) of ξ (or of the semi-simple representation Mξ), that is

τ(ξ) = (e1, d1; e2, d2; . . . ; ek, dk)

Choosing a basis of Mξ adapted to this decomposition we find a point x =
(X1, . . . , Xm) in the orbit O(Mξ) ⊂ - Mm

n such that each n × n matrix Xi is
of the form

Xi =


m

(i)
1 ⊗

rr
e1 0 . . . 0

0 m
(i)
2 ⊗

rr
e2 . . . 0

...
...

. . .
...

0 0 . . . m
(i)
k ⊗

rr
ek


where each m

(i)
j ∈ Mdj

(C). Using this description we can compute the stabilizer
subgroup Stab(x) of GLn consisting of those invertible matrices g ∈ GLn commuting
with every Xi. That is, Stab(x) is the multiplicative group of units of the centralizer
of the algebra generated by the Xi, that is

Md1(C)⊗ rr
e1 0 . . . 0

0 Md2(C)⊗ rr
e2 . . . 0

...
...

. . .
...

0 0 . . . Mdk
(C)⊗ rr

ek


It is easy to verify that this group is isomorphic to

Stab(x) ' GLe1 ×GLe2 × . . .×GLek

with the embedding Stab(x) ⊂ - GLn given by
GLe1(C⊗

rr
d1) 0 . . . 0

0 GLe2(C⊗
rr
d2) . . . 0

...
...

. . .
...

0 0 . . . GLek
(C⊗ rr

dk
)
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Clearly, a different choice of point in the orbit O(Mξ) gives a subgroup of GLn
conjugated to Stab(x). Consider the vector α = (e1, e2, . . . , ek), then we see that

Stab(x) ' GL(α) = GLe1 ×GLe2 × . . .×GLek

We will compute the normal space N big
x to the orbit O(Mxi) in Mm

n = reptr
n

Tmn .
This is an elaborate book-keeping operation involving GL(α)-representations. As
x = (X1, . . . , Xm) the tangent space Tx O(Mxi) in Mm

n to the orbit is equal to the
image of the linear map

gln = Mn
- Mn ⊕ . . .⊕Mn = Tx M

m
n

A 7→ ([A,X1], . . . , [A,Xm])

Observe that the kernel of this map is the centralizer of the subalgebra generated by
the Xi, so we have an exact sequence of Stab(x) = GL(α)-modules

0 - gl(α) = Lie GL(α) - gln = Mn
- Tx O(x) - 0

As GL(α) is a reductive group every GL(α)-module is completely reducible and so
the sequence splits. But then, the normal space in Mm

n = Tx M
m
n to the orbit is

isomorphic as GL(α)-module to

N big
x = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸

m−1

⊕gl(α)

with the action of GL(α) (embedded as above in GLn) is given by simultaneous
conjugation. If we consider the GL(α)-action on Mnd1d2

︸ ︷︷ ︸
d1

︸ ︷︷ ︸
d2

we see that it decomposes into a direct sum of subrepresentations

• for each 1 ≤ i ≤ k we have d2
i copies of the GL(α)-module Mei

on which GLei

acts by conjugation and the other factors of GL(α) act trivially,

• for all 1 ≤ i, j ≤ k we have didj copies of the GL(α)-module Mei×ej on
which GLei

× GLej
acts via g.m = gimg

−1
j and the other factors of GL(α)

act trivially.

These GL(α) components are precisely the modules appearing in representation
spaces of quivers, which are defined in chapter 1 or more precisely in chapter 6.

Theorem 5.26 Let ξ be of representation type τ = (e1, d1; . . . ; ek, dk) and let
α = (e1, . . . , ek). Then, the GL(α)-module structure of the normal space N big

x

in reptr
n

Tmn = Mm
n to the orbit of the semi-simple n-dimensional representation

O(Mξ) is isomorphic to
repα Qξ
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where the quiver Qξ has k vertices and the subquiver on any two vertices vi, vj for
1 ≤ i, j ≤ k has the following shape

ei8?9>:=;< ej8?9>:=;< (m − 1)d
2
j + 1(m − 1)d

2
i + 1

(m − 1)didj

))

(m − 1)didj

ii77 gg

That is, in each vertex vi there are (m − 1)d2
i + 1-loops and there are (m − 1)didj

arrows from vertex vi to vertex vj for all 1 ≤ i, j ≤ k.

Example 5.27 If m = 2 and n = 3 and the representation type is τ = (1, 1; 1, 1; 1, 1) (that is,
Mξ is the direct sum of three distinct one-dimensional simple representations) then the quiver Qξ
is

18?9>:=;< 18?9>:=;<

18?9>:=;<

**
jj

<<

||

SS

��
--
MM

qq
QQ

qq--

We say that A is smooth at ξ ∈ issn A if the representation variety reptr
n
A@n

is smooth in Mξ. Before we can apply the Luna slice theorem we have to control
the normal space Nsm

x to the orbit O(Mξ) in reptr
n
A@n. We have GLn-equivariant

embeddings
O(Mξ) ⊂ - reptr

n
A@n

⊂ - reptr
n

Tmn = Mm
n

and corresponding embeddings of the tangent spaces in x

Tx O(Mξ) ⊂ - Tx rep
tr
n
A@n

⊂ - Tx M
m
n

Because GL(α) is reductive we then obtain for the normal spaces to the orbit

•

22
22

22
22

22
22

22
22

22
22

22
22

22
2

22
22

22
22

22
22

22
22

22
22

22
22

22
2

x

O(Mξ)

Nsm
x

N
big
x

rep
n

A

Nsm
x =

Tx rep
tr
n
A@n

Tx O(Mξ)
/ N big

x =
Tx M

m
n

Tx O(Mξ)
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a direct summand as GL(α)-modules. As we know the isotypical decomposition of
N big
x as the GL(α)-module repα Qξ this allows us to control Nsm

x . We only have to
observe that arrows in Qξ correspond to simple GL(α)-modules, whereas a loop at
vertex vi decomposes as GL(α)-module into the simples

Mei
= M0

ei
⊕ Ctriv

where Ctriv is the one-dimensional simple with trivial GL(α)-action and M0
ei

is the
space of trace zero matrices in Mei

. Again, we can represent the GL(α)-module
structure of Nsm

x graphically, this time by a marked quiver using the dictionary

• a loop at vertex vi corresponds to the GL(α)-module Mei on which GLei acts
by conjugation and the other factors act trivially,

• a marked loop at vertex vi corresponds to the simple GL(α)-module M0
ei

on
which GLei acts by conjugation and the other factors act trivially,

• an arrow from vertex vi to vertex vj corresponds to the simple GL(α)-module
Mei×ej

on which GLei
× GLej

acts via g.m = gimg
−1
j and the other factors

act trivially,

Theorem 5.28 Let ξ be such that Mξ is a smooth point on rep
n
A of representation

type τ = (e1, d1; . . . ; ek, dk) and let α = (e1, . . . , ek). Then, the GL(α)-module
structure of the normal space Nx to the orbit is isomorphic to the GL(α)-module of
representations of the marked quiver

repα Q
•
ξ

on k vertices {v1, . . . , vk} such that the marked subquiver on any two vertices vi, vj
with 1 ≤ i, j ≤ k has the form

ei8?9>:=;< ej8?9>:=;<
ajjaii

mjjmii

aij

))

aji

ii
��

•

DD

��

•

ZZ

where these numbers satisfy aij ≤ (m− 1)didj and aii +mii ≤ (m− 1)d2
i + 1.

Under the assumptions of the theorem, the étale slice result enables us with a
slice Sx

φ- Nsm
x and a commutative diagram

GLn ×GL(α) Sx

GLn ×GL(α) Nsm
x

�

GL
n
×

GL(α
) φ

rep
n
A

ψ

-

Sx/GL(α)

??

Nsm
x /GL(α)

?? �

φ/
GL

(α
)

issn A

??

ψ/GL
n

-
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where the vertical maps are the quotient maps, all diagonal maps are étale and the
upper ones are GLn-equivariant. Hence, the GLn-local structure of the representa-
tion variety rep

n
A = reptr

n
A@n in a neighborhood of the orbit of x is the same as

that of the associated fiber bundle GLn×GL(α)Nsm
x in a neighborhood of the orbit of

(rrn, 0). Further, the local structure of the quotient scheme issn A in a neighborhood
of ξ is the same as that of the quotient variety of the marked quiver representations
Nsm
x /GL(α) in a neighborhood of the trivial representation 0.
Let m / C[issn A] be the maximal ideal corresponding to ξ. As the ring of

polynomial invariants C[issn A] is via the diagonal embedding a central subalgebra
of the ring of GLn-equivariant maps from rep

n
A to Mn(C) we can localize this

ring of equivariant maps A@n at m and also take its m-adic completion which we
denote by (̂A@n)m.

Let m0 be the maximal ideal of the ring of GL(α)-polynomial invariants of the
marked quiver representation space C[repα Q•ξ ]

GL(α) = C[Nsm
x /GL(α)]. Let Tα Q•ξ

denote the ring of GL(α)-equivariant maps from repα Q
•
ξ to Mn(C) and denote the

m0-adic filtration of it with T̂α Q•ξm0
. The above diagram then implies

Theorem 5.29 Let ξ correspond to a semi-simple n-dimensional representation of
A such that the representation variety is smooth along this closed orbit. Then, with
notations as before we have an isomorphism of complete local algebras

(̂A@n)m ' T̂α Q•ξm0

In the following sections we will determine the algebra structure of Tα Q•ξ .

5.9 Finite dimensional algebras.

Let A be a Cayley-Hamilton algebra of degree n wit trace map tr, then we can define
a norm-map on A by defining

N(a) = σn(a) for all a ∈ A.

Recall that the elementary symmetric function σn is a polynomial function
f(t1, t2, . . . , tn) in the Newton functions ti =

∑n
j=1 x

i
j. Then, σ(a) =

f(tr(a), tr(a2), . . . , tr(an)). Because, we have a trace preserving embedding
A ⊂ - Mn(C[reptr

n
A]) and the norm map N coincides with the determinant in

this matrix-algebra, we have that

N(1) = 1 and ∀a, b ∈ A N(ab) = N(a)N(b).

Furthermore, the norm-map extends to a polynomial map on A[t] and we have that
χ

(n)
a (t) = N(t−a), in particular we can obtain the trace by polarization of the norm

map. Consider a finite dimensional semi-simple C-algebra

A = Md1(C)⊕ . . .⊕Mdk
(C),

then all the Cayley-Hamilton structures of degree n on A with trace values in C are
given by the following result.

Lemma 5.30 Let A be a semi-simple algebra as above and tr a trace map on A
making it into a Cayley-Hamilton algebra of degree n. Then, there exist a di-
mension vector α = (m1, . . . ,mk) ∈ Nk+ such that n =

∑k
i=1midi and for any

a = (A1, . . . , Ak) ∈ A with Ai ∈Mdi(C) we have that

tr(a) = m1Tr(A1) + . . .+mkTr(Ak)

where Tr are the usual trace maps on matrices.
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Proof. The norm-map N on A defined by the trace map tr induces a group mor-
phism on the invertible elements of A

N : A∗ = GLd1(C)× . . .×GLdk
(C) - C∗

that is, a character. Now, any character is of the following form, let Ai ∈ GLdi
(C),

then for a = (A1, . . . , Ak) we must have

N(a) = det(A1)m1det(A2)m2 . . . det(Ak)mk

for certain integers mi ∈ Z. Since N extends to a polynomial map on the whole of
A we must have that all mi ≥ 0. By polarization it then follows that

tr(a) = m1Tr(A1) + . . .mkTr(Ak)

and it remains to show that no mi = 0. Indeed, if mi = 0 then tr would be the
zero map on Mdi

(C), but then we would have for any a = (0, . . . , 0, A, 0, . . . , 0) with
A ∈Mdi

(C) that
χ(n)
a (t) = tn

whence χ
(n)
a (a) 6= 0 whenever A is not nilpotent. This contradiction finishes the

proof. �

We can extend this to all finite dimensional C-algebras. Let A be a finite di-
mensional algebra with radical J and assume there is a trace map tr on A making
A into a Cayley-Hamilton algebra of degree n and such that tr(A) = C. We claim
that the norm map N : A - C is zero on J . Indeed, any j ∈ J satisfies jl = 0
for some l whence N(j)l = 0. But then, polarization gives that tr(J) = 0 and we
have that the semisimple algebra

Ass = A/J = Md1(C)⊕ . . .⊕Mdk
(C)

is a semisimple Cayley-hamilton algebra of degree n on which we can apply the
foregoing lemma. Finally, note that A ' Ass⊕J as C-vectorspaces. This concludes
the proof of

Proposition 5.31 Let A be a finite dimensional C-algebra with radical J and
semisimple part

Ass = A/J = Md1(C)⊕ . . .⊕Mdk
(C).

If tr : A - C ⊂ - A is a trace map such that A is a Cayley-Hamilton algebra
of degree n, there exists a dimension vector α = (m1, . . . ,mk) ∈ Nk+ such that for
all a = (A1, . . . , Ak, j) with Ai ∈Mdi

(C) and j ∈ J we have

tr(a) = m1Tr(A1) + . . .mkTr(Ak)

with Tr the usual traces on Mdi
(C) and

∑
imidi = n.

However, there can be other trace maps on A making A into a Cayley-Hamilton
algebra of degree n. For example let C be a finite dimensional commutative C-algebra
with radical N , then A = Mn(C) is finite dimensional with radical J = Mn(N)
and the usual trace map tr : Mn(C) - C makes A into a Cayley-Hamilton
algebra of degree n such that tr(J) = N 6= 0. Still, if A is semi-simple, the center
Z(A) = C⊕ . . .⊕C (as many terms as there are matrix components in A) and any
subring of Z(A) is of the form C⊕ . . .⊕ C. In particular, tr(A) has this form and
composing the trace map with projection on the j-th component we have a trace map
trj on which we can apply the lemma.
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With Ck@n we will denote the universal algebra in the category of Cayley-
Hamilton algebras of degree n such that 1 has a decomposition into k orthogonal
idempotents {e1, . . . , ek}. That is, take generic n× n matrices

Xl =

x11(l) . . . x1n(l)
...

...
xn1(l) . . . xnn(l)


for the idempotents el for 1 ≤ l ≤ k. As eiej = 0 if i 6= j and e2i = ei, the only
nonvanishing traces of monomials in the ei (up to cyclic permutation) form the
polynomial algebra

P = C[t1, . . . , tk]/(t1 + . . .+ tk − n)

where ti = tr(Xi) =
∑n
j=1 xjj(i). Now, consider the quotient R of the polynomial

algebra C[xij(l) | 1 ≤ i, j ≤ n, 1 ≤ l ≤ k] by the ideal of all entries coming from the
matrix identities 

X2
i = Xi

XiXj = 0 for i 6= j

X1 + . . .+Xk = In

χ
(n)
Xi

(Xi) = 0

and observe that all the coefficients of the Cayley-Hamilton polynomial of Xi are
polynomials in ti. Then, Ck@n is the subalgebra of Mn(R) generated by the images
of the Xl and tl.

Theorem 5.32 With notations as above, we have :

1. Ck@n is a smooth Cayley-Hamilton algebra of degree n.

2. reptr
n
Ck@n is the disjoint union of the homogeneous varieties

GLn/(GLm1 × . . .×GLmk
)

where α = (m1, . . . ,mk) ∈ Nk+ is a dimension vector such that m1+. . .+mk =
n.

3. The Cayley-Hamilton algebra corresponding to the component determined by
α = (m1, . . . ,mk) is the semi-simple algebra Ck(α) which is the subalgebra of
Mn(C) generated by the images

ei 7→

Pi
k=1mi∑

j=
Pi−1

k=1mk+1

ejj ∈Mn(C)

Proof. (1) : Let T be a Cayley-Hamilton algebra of degree n with trace map tr
and I a twosided nilpotent ideal of T such that tr(I) ⊂ I. Assume there is a trace
preserving algebra map

Ck@n
φ- T/I

which is determined by the φ(Xl) = fl which are idempotents in T/I such that 1 =
f1 + . . .+fk. By the lemma above we can lift this decomposition to 1 = f1 + . . .+fk
where fi are orthogonal idempotents of T . Clearly, there is a C-algebra morphism
ψ : Ck@n

- T lifting φ by sending Xl to fl and tl to tr(fl). Observe that this is
possible as the only relation holding among the tl is t1 + . . .+ tk = n and because T
is of degree n we have that tr(f1) + . . .+ tr(fk) = n.
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(2) : By the previous part we know that the trace preserving representation
variety reptr

n
Ck@n is smooth and hence reduced. Therefore, it suffices to describe

the points. Take a trace preserving n-dimensional representation M determined by
the trace preserving algebra morphism

Ck@n
χ- Mn(C)

The image χ(Ck@n) is a finite dimensional semi-simple commutative Cayley-
hamilton algebra with trace image C and hence one of the algebras Ck(α) for some
dimension vector α = (m1, . . . ,mk) with

∑
mi = n. Therefore, M is a semi-simple

representation and the multiplicities of the simple components Sl corresponding to
the l-th factor of Ck(α) is equal to the dimension of el.M which is the number
ml. Hence, there is a unique trace preserving representation factoring via Ck(α).
Therefore, reptr

n
Ck@n is the disjoint union of finitely many closed orbits (since they

are semi-simple) one for each dimension vector α = (m1, . . . ,mk) with
∑
mi = n.

The stabilizer group of M is the group of module automorphisms and hence equal
to GLm1 × . . .×GLmk

proving the assertion.
(3) : We have already seen that there is a unique isomorphism class of trace

preserving representation for Ck(α) so the reduced variety of reptr
n
Ck(α) is the

orbit GLn/(GLm1 × . . .×GLmk
). Moreover,

Ck(α) ' Ck@n/(t1 −m1, . . . , tk −mk) = Ck@n(α)

We claim that C[reptr
n
Ck@n(α)] is formally smooth. Let C be a commutative alge-

bra and I /C a nilpotent ideal. Any algebra morphism C[reptr
n
Ck@n(α)]

φ- C/I
determines a decomposition 1 = c1 + . . . + ck into orthogonal idempotents cl ∈
Mn(C/I) with tr(cl) = ml. This decomposition can be lifted to 1 = c1 + . . . + ck
where cl are orthogonal idempotents in Mn(C). The entries of the vl determine an
algebra morphism C[reptr

n
Ck@n(α)] - C lifting φ proving formal smoothness.

Therefore reptr
n
Ck(α) is smooth and reduced hence is the orbit. �

5.10 Invariant and equivariant maps.

Let A be a Cayley-Hamilton algebra of degree n with trace map tr. Assume we have
a decomposition

1 = a1 + . . .+ ak

of 1 as a sum of orthogonal idempotents al in A. Then, we have a trace preserving
embedding

Ck@n
⊂
φ- A defined by Xi 7→ ai, ti 7→ tr(ai).

On the level of representation schemes this embedding gives rise to a morphism
between the representation varieties

reptr
n
A

π- reptr
n
Ck@n

defined by composition. By the foregoing result we have a decomposition of
reptr

n
Ck@n as a disjoint union of finitely many orbits O(α) determined by a di-

mension vector α = (m1, . . . ,mk) ∈ Nk+ such that
∑
mi = n. Therefore, we can

similarly decompose
reptr

n
A = ∪απ−1 O(α)

into a disjoint union of finitely many closed and open subschemes. We will de-
note the component π−1 O(α) by rep

α
A. Observe that of course some of these
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components may be empty. On the level of coordinate algebras this decomposition
translates itself into

C[reptr
n
A] = ⊕αC[rep

α
A] and Mn(C[reptr

n
A]) = ⊕αMn(C[rep

α
A])

Since each of the components rep
α
A is stable under the GLn-action we have that

Mn(C[reptr
n
A])GLn = ⊕αMn(C[rep

α
A])GLn

as the left term equals A this finishes the proof of the following result.

Proposition 5.33 Let A be a Cayley-Hamilton algebra of degree n having a de-
composition 1 = a1 + . . .+ ak into orthogonal idempotents, then

1. A = ⊕αAα the sum ranging over all dimension vectors α = (m1, . . . ,mk) ∈
Nk+ satisfying

∑
mi = n.

2. The projection of ai in the component Aα has trace mi where α =
(m1, . . . ,mk).

Again, observe that usually most components in the above direct sum decom-
position are zero. We will now concentrate on one of the components Aα, that
is we assume that A is a Cayley-Hamilton algebra of degree n with decomposition
1 = a1 + . . . + an into orthogonal idempotents such that tr(ai) = mi ∈ N+ and∑
mi = n. Then, we have a trace preserving embedding Ck(α) ⊂

i- A making
A into a Ck(α) = ×ki=1C-algebra. We have constructed a trace preserving embed-

ding Ck(α) ⊂
i′- Mn(C) by sending the idempotent ei to the diagonal idempotent

di ∈ Mn(C) with ones from position
∑i−1
j=1mj − 1 to

∑i
j=1mi. This calls for the

introduction of a restricted representation scheme of all trace preserving algebra
morphisms χ such that the diagram below is commutative

A
χ- Mn(C)

Ck(α)

i

∪

6

⊂

i
′

-

that is, such that χ(ai) = di. This again determines an affine scheme repres
α

A

which is in fact a closed subscheme of reptr
n
A. The functorial description of the

restricted module scheme is as follows. Let C be any commutative C-algebra, then
Mn(C) is a Ck(α)-algebra and the idempotents di allow for a block decomposition

Mn(C) = ⊕i,jdiMn(C)dj =

d1Mn(C)d1 . . . d1Mn(C)dk
...

...
dkMn(C)d1 . . . dkMn(C)dk

 .
The scheme repres

α
A assigns to the algebra C the set of all trace preserving algebra

maps

A
φ- Mn(B) such that φ(ai) = di.

Equivalently, the idempotents ai decompose A into block form A = ⊕i,jaiAaj and
then repres

α
A(C) are the trace preserving algebra morphisms A - Mn(B) com-

patible with the block decompositions.
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The embedding Ck(α) ⊂
i′- Mn(C) sending ei to di gives a special point p of the

homogeneous variety

reptr
n
Ck(α) = GLn/(GLm1 × . . .×GLmk

).

Still another description of the restricted representation scheme is therefore that
repres

α
A is the scheme theoretic fiber π−1(p) of the point p under the GLn-

equivariant morphism
reptr

n
A

π- reptr
n
Ck(α).

Hence, the stabilizer subgroup of p acts on repres
α

A. This stabilizer is the subgroup
GL(α) = GLm1 × . . .×GLmk

embedded in GLn along the diagonal

GL(α) =

GLm1

. . .
GLmk

 ⊂ - GLn.

Clearly, GL(α) acts via this embedding by conjugation on Mn(C). The main impli-
cation of the existence of a decomposition of 1 into orthogonal idempotents is the
following reduction result both of the affine scheme and of the acting group.

Theorem 5.34 Let A be a Cayley-Hamilton algebra of degree n such that 1 =
a1 + . . .+ak is a decomposition into orthogonal idempotents with tr(ai) = mi ∈ N+.
Then, A is isomorphic to the ring of GL(α)-equivariant maps

repres
α

A - Mn.

Proof. We know that A is the ring of GLn-equivariant maps reptr
n
A - Mn.

Further, we have a GLn-equivariant map

reptr
n
A

π- rep
n
tr Ck(α) = GLn.p ' GLn/GL(α)

Thus, the GLn-equivariant maps from reptr
n
A to Mn coincide with the Stab(p) =

GL(α)-equivariant maps from the fiber π−1(p) = repres
α

A to Mn. �

That is, we have a block matrix decomposition for A. Indeed, we have

A ' (C[repres
α

A]⊗Mn(C))GL(α)

and this isomorphism is clearly compatible with the block decomposition and thus
we have for all i, j that

aiAaj ' (C[repres
α

A]⊗Mmi×mj
(C))GL(α)

where Mmi×mj
(C) is the space of rectangular mi×mj matrices M with coefficients

in C on which GL(α) acts via

g.M = giMg−1
j where g = (g1, . . . , gk) ∈ GL(α).

Another consequence of a idempotent decomposition is.

Theorem 5.35 Let A be a Cayley-Hamilton algebra of degree n such that 1 = a1 +
. . .+ ak is a decomposition into orthogonal idempotents with tr(ai) = mi ∈ N+. If
the restricted representation scheme is a smooth GL(α)-variety, then A is a smooth
Cayley-Hamilton algebra.
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Proof. Consider again the projection reptr
n
A

π- reptr
n
Ck(α). As the base is a

homogeneous variety it is smooth. Moreover all the fibers are isomorphic to repres
α

A

whence smooth by assumption. Then, the total space reptr
n
A is also smooth whence

is A a smooth algebra. �

If Q be a quiver on k vertices, then the vertex idempotents ei give a decomposition
1 = e1 + . . .+ ek of one into orthogonal idempotents and make the path algebra CQ
into a Ck-algebra. Fix a dimension vector α = (d1, . . . , dk) ∈ Nk and let n =

∑
di.

Observe that we may assume that α ∈ Nk+ (and hence that the map Ck
φ- CQ is

an embedding. If not, we can restrict to the full subquiver of Q on the vertices vi
such that di 6= 0.

The algebra embedding Ck
φ- CQ determines a morphism

rep
n

CQ π- rep
n
Ck = ∪βO(β)

where the disjoint union is taken over all the dimension vectors β = (b1, . . . , bk)
such that n =

∑
bi. Again, consider the point p ∈ O(α) determined by sending the

idempotents ei to the canonical diagonal idempotents of Mn(C). As repα Q can
be identified with the variety of n-dimensional representations of CQ in block form
determined by these idempotents we see that repα Q = π−1(p).

We construct the algebra Tα Q as follows : first adjoin formally all traces to the
path algebra CQ, that is, consider the path algebra of Q over the polynomial algebra
R in the variables tp where p is a word in the arrows aj ∈ Qa and is determined
only up to cyclic permutation. As a consequence we only retain the variables tp
where p is an oriented cycle in Q (as all the others have a cyclic permutation which
is the zero element in CQ). This way we put a formal trace map on R ⊗ CQ by
defining tr(p) = tp is p is an oriented cycle in Q and tr(p) = 0 otherwise.

The algebra Tα Q is obtained from this formal trace algebra R⊗CQ by dividing
out the substitution invariant twosided ideal generated by all the evaluations of the
formal Cayley-Hamilton algebras of degree n, χ(n)

a (a) for a ∈ R⊗CQ together with
the additional relations that tr(ei) = di. Tα Q is a Cayley-Hamilton algebra of
degree n with a decomposition 1 = e1 + . . . + ek into orthogonal idempotents such
that tr(ei) = di. Consequently, the restricted representation scheme

repres
α

Tα Q ' repα Q

as GL(α)-varieties. Summarizing the results proved before in this special we obtain

Theorem 5.36 With notations as before,

1. The algebra Tα Q is a smooth Cayley-Hamilton algebra.

2. Tα Q is the algebra of GL(α)-equivariant maps from repα Q to Mn, that is,

Tα Q = Mn(C[repα Q])GL(α)

3. The ring of GL(α)-polynomial invariants of repα Q,

Nα Q = C[repα Q]GL(α)

is generated by traces along oriented cycles in the quiver Q of length bounded
by n2 + 1.
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A realization of these algebras is as follows. To an arrow ��������j ��������i
a

oo corresponds
a dj × di matrix of variables from C[repα Q]

Ma =

 x11(a) . . . . . . x1di
(a)

...
...

xdj1(a) . . . . . . xdjdi
(a)


where xij(a) are the coordinate functions of the entries of Va of a representation
V ∈ repα Q. Let p = a1a2 . . . ar be an oriented cycle in Q, then we can compute
the following matrix

Mp = Mar
. . .Ma2Ma1

over C[repα Q]. As we have that s(ar) = t(a1) = vi, this is a square di × di matrix
with coefficients in C[repα Q] and we can take its ordinary trace

Tr(Mp) ∈ C[repα Q].

Then, Nα Q is the C-subalgebra of C[repα Q] generated by these elements.
Consider the block structure of Mn(C[repα Q]) with respect to the idempotents

ei 
Md1(S) . . . . . . Md1×dk

(S)
...

...
... Mdj×di(S)

...
Mdk×di(S) . . . . . . Mdk

(S)


where S = C[repα Q]. Then, we can also view the matrix Ma for an arrow��������j ��������i

a
oo as a block matrix in Mn(C[repα Q])

0 . . . . . . 0
...

...
... Ma

...
0 . . . . . . 0


Then, Tα Q is the Ck(α)-subalgebra of Mn(C[repα Q]) generated by Nα Q and these
block matrices for all arrows a ∈ Qa. Tα Q itself has a block decomposition

Tα Q =


P11 . . . . . . P1k

...
...

... Pij
...

Pk1 . . . . . . Pkk


where Pij is the Nα Q-module spanned by all matrices Mp where p is a path from
vi to vj of length bounded by n2.

Example 5.37 This result proves the claims we made in chapter 1 on the algebras related to
the study of Calogero particles. For consider the path algebra M of the quiver

e(/).*-+,

f(/).*-+,

y

qq

x

--

u

EE

v

��
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and take as dimension vector α = (n, 1). The total dimension is in this case n = n + 1 and we
fix the embedding C2 = C × C ⊂ - M given by the decomposition 1 = e + f . Then, the above
realization of Tα M consists in taking the following n× n matrices

en =

26664
1 0

. . .
...

1 0
0 . . . 0 0

37775 fn =

26664
0 . . . 0 0
...

...
...

0 . . . 0 0
0 . . . 0 1

37775 xn =

26664
x11 . . . x1n 0
...

...
...

xn1 . . . xnn 0
0 . . . 0 0

37775

yn =

26664
y11 . . . y1n 0
...

...
...

yn1 . . . ynn 0
0 . . . 0 0

37775 un =

26664
0 . . . 0 u1

...
...

...
0 . . . 0 un
0 . . . 0 0

37775 vn =

26664
0 . . . 0 0
...

...
...

0 . . . 0 0
v1 . . . vn 0

37775
In order to determine the ring of GL(α)-polynomial invariants of repα M we have to consider the
traces along oriented cycles in the quiver. Any nontrivial such cycle must pass through the vertex
e and then we can decompose the cycle into factors x, y and uv (observe that if we wanted to
describe circuits based at the vertex f they are of the form c = vc′u with c′ a circuit based at e
and we can use the cyclic property of traces to bring it into the claimed form). That is, all relevant
oriented cycles in the quiver can be represented by a necklace word w

�

�''

�;;
� SS� cc

�
uu

�
��

�

�

00

�
II

�[[ �kk

�
��

��

x
w

where each bead is one of the elementst
= x

d
= y and H = uv

In calculating the trace, we first have to replace each occurrence of x, y, u or v by the relevant
n × n-matrix above. This results in replacing each of the beads in the necklace by one of the
following n× n matrices

t
=

264x11 . . . x1n

...
...

xn1 . . . xnn

375 d
=

264y11 . . . y1n
...

...
yn1 . . . ynn

375 H =

264u1v1 . . . u1vn
...

...
unv1 . . . unvn

375
and taking the trace of the n×n matrix obtained after multiplying these bead-matrices cyclicly in

the indicated orientation. This concludes the description of the invariant ring Nα Q. The algebra

Tα M of GL(α)-equivariant maps from repα M to Mn, that is, Tα M = M(n) defined in chapter 1,

is then the subalgebra of Mn(C[repα M]) generated as C2(α)-algebra (using the idempotent n×n
matrices corresponding to e and f) by Nα M and the n× n-matrices corresponding to x, y, u and

v.

We will have to extend these results to a marked quiver Q•. Let {l1, . . . , lm} be
the marked loops in Q•, then we define{

Nα Q• = Nα Q
(tr(l1),...,tr(lm))

Tα Q• = Tα Q
(tr(l1),...,tr(lm))

Clearly, Tα Q• is a Cayley-Hamilton algebra of degree n having a decomposition
1 = e1 + . . .+ ek into orthogonal idempotents and such that

repres
α

T(Q•, α) = repα Q
•

Theorem 5.38 1. The algebra Tα Q• is a smooth Cayley-Hamilton algebra.
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2. Tα Q• is the algebra of GL(α)-equivariant maps from repα Q
• to Mn(C), that

is,
Tα Q• = Mn(C[repα Q•])GL(α)

3. The algebra Nα Q• is the ring of GL(α)-polynomial invariants of repα Q•,

Nα Q• = C[repα Q•]GL(α)

and is generated by traces along oriented cycles in the quiver Q of length
bounded by n2 + 1.
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Combinatorics.
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Chapter 6

Local Classification.

Every commutative smooth variety of dimension d is locally in the étale topology
isomorphic to affine d-space Ad. In this chapter we study the corresponding problem
for Cayley-smooth orders A of degree n. In the foregoing chapter we have described
the étale local structure of A near a point ξ ∈ issn A by a marked quiver setting
(Q•ξ , αξ). In this chapter we will classify those quiver settings which can occur
for given n and given dimension d = dim issn A of the central variety. We will
show that for fixed d and n only a finite number of such settings do arise, that is,
Cayley-smooth algebras have a finite number of possible étale local behaviour. We
prove this by simplifying a quiver-setting by shrinking (identifying arrow-connected
vertices with the same vertex-dimension) to one of a finite list of settings in reduced
form. For dimension d ≤ 4, the complete list is

��������1
��

1

��������1
## {{

2

��������1
"" ||
[[

3

��������2•
##

•
{{

3

��������1 ��������2
&&ff
��

3

��������1 ��������2 ��������1
&&ff ff &&

3

��������1
�� qqQQ11

4

��������2•
## {{

4

��������1 ��������2
&&ff
��

4

��������1 ��������2
))ii ##

cc

4

��������1 ��������2 ��������1
&&ff ff &&��

4

where the boxed value is the dimension d. To arrive at this result we need to classify
the dimension vectors of simple representations of (marked) quivers and be able to
compute the dimension of the corresponding quotient varieties. Further, we show
that the local quiver setting (Q•ξ , αξ) contains enough information to determine the

203
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quiver-settings in nearby points and even to give the dimension of the strata of
points of equal type. We then apply these results to the local characterization of
Cayley-smooth orders over curves and surfaces. Smooth curve orders are proved
to coincide with hereditary orders and smooth surface orders must have a smooth
surface as their center, a ramification divisor having as worst singularities normal
crossings and must be étale splittable. If we combine these results with the Artin-
Mumford sequence, describing the Brauer group of the functionfield of a smooth
projective surface X, we are able to prove that any central simple algebra ∆ of
degree n over C(X) contains a Cayley-Hamilton order A having at worst a finite
number of noncommutative singularities, all of which are étale isomorphic to those
appearing in the origin of a quantum plane. Finally, we classify all central simple
algebras over C(X) admitting a Cayley-smooth model.

Whereas we restrict attention mainly to orders, it is clear that the strategy can
be extended to Cayley-Hamilton algebras of degree n which are finite modules over
a central subring C, provided we have some control on the commutative extension
C ⊂ - Z(A). For an application of this to the theory of quantum groups, the reader
may consult [19].

6.1 Marked quivers.

In this section we recall the basics on representations of (marked) quivers. Recall
that a quiver Q is a directed graph determined by

• a finite set Qv = {v1, . . . , vk} of vertices, and

• a finite set Qa = {a1, . . . , al} of arrows where we allow multiple arrows between
vertices and loops in vertices.

Every arrow ��������i��������j
aoo has a starting vertex s(a) = i and a terminating vertex

t(a) = j. Multiplication in the path algebra CQ is induced by (left) concatenation
of paths. More precisely, 1 = v1 + . . . + vk is a decomposition of 1 into mutually
orthogonal idempotents and further we define

• vj .a is always zero unless ��������j ��������aoo in which case it is the path a,

• a.vi is always zero unless ��������i�������� aoo in which case it is the path a,

• ai.aj is always zero unless ���������������� ��������aioo ajoo in which case it is the
path aiaj.

The description of the quiver Q can be encoded in an integral k × k matrix

χQ =

χ11 . . . χ1k

...
...

χk1 . . . χkk

 with χij = δij −# { ��������i��������j oo }

Example 6.1 Consider the quiver Q

�������� ��������
��������

// ��

88 FF

2 3

1

Then, with the indicated ordering of the vertices we have that the integral matrix is

χQ =

24 1 0 0
−2 1 −1
0 0 0

35
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and the path algebra of Q is isomorphic to the block-matrix algebra

CQ′ '

24C C⊕ C 0
0 C 0
0 C[x] C[x]

35
where x is the loop in vertex v3.

The subspace CQvi has as basis the paths starting in vertex vi and because CQ =
⊕iCQvi, CQvi is a projective left ideal of CQ. Similarly, viCQ has as basis the paths
ending at vi and is a projective right ideal of CQ. The subspace viCQvj has as basis
the paths starting at vj and ending at vi and CQviCQ is the twosided ideal of CQ
having as basis all paths passing through vi. If 0 6= f ∈ CQvi and 0 6= g ∈ viCQ,
then f.g 6= 0 for let p be a longest path occurring in f and q a longest path in g,
then the coefficient of p.q in f.g cannot be zero. As a consequence we have

Lemma 6.2 The projective left ideals CQvi are indecomposable and paired non-
isomorphic.

Proof. If CQvi is not indecomposable, then there exists a projection idempotent
f ∈ HomCQ(CQvi,CQvi) ' viCQvi. But then, f2 = f = f.vi whence f.(f − vi) =
0, contradicting the remark above. Further, for any left CQ-module M we have
that HomCQ(CQvi,M) ' viM . So, if CQvi ' CQvj then the isomorphism gives
elements f ∈ viCQvj and g ∈ vjCQvi such that f.g = vi and g.f = vj. But then,
vi ∈ CQvjCQ, a contradiction unless i = j as this space has basis all paths passing
through vj. �

Example 6.3 Let Q be a quiver, then the following properties hold :

1. CQ is finite dimensional if and only if Q has no oriented cycles.

2. CQ is prime (that is, I.J 6= 0 for all twosided ideals I, J 6= 0) if and only if Q is strongly
connected, that is, for all vertices vi and vj there is a path from vi to vj .

3. CQ is Noetherian (that is, satisfies the ascending chain condition on left (or right) ideals)
if and only if for every vertex vi belonging to an oriented cycle there is only one arrow
starting at vi and only one arrow terminating at vi.

4. The radical of CQ has as basis all paths from vi to vj for which there is no path from vj to
vi.

5. The center of CQ is of the form C×. . .×C×C[x]×. . .×C[x] with one factor for each connected
component C of Q (that is, connected component for the underlying graph forgetting the
orientation) and this factor is isomorphic to C[x] if and only if C is one oriented cycle.

Recall that a representation V of the quiver Q is given by

• a finite dimensional C-vector space Vi for each vertex vi ∈ Qv, and

• a linear map Vj �Va
Vi for every arrow ��������i��������j

aoo in Qa.

If dim Vi = di we call the integral vector α = (d1, . . . , dk) ∈ Nk the dimension vector
of V and denote it with dim V . A morphism V

φ- W between two representations
V and W of Q is determined by a set of linear maps

Vi
φi- Wi for all vertices vi ∈ Qv

satisfying the following compatibility conditions for every arrow ��������i��������j
aoo in Qa

Vi
Va - Vj

Wi

φi

?
Wa - Wj

φj

?
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Clearly, composition of morphisms V
φ- W

ψ- X is given by the rule that (ψ ◦
φ)i = ψi◦ψi and one readily verifies that this is again a morphism of representations
of Q. In this way we form a category rep Q of all finite dimensional representations
of the quiver Q.

Proposition 6.4 The category rep Q is equivalent to the category of finite dimen-
sional CQ-representations (left modules).

Proof. Let M be an n-dimensional CQ-representation. Then, we construct a
representation V of Q by taking

• Vi = viM , and for any arrow ��������i��������j
aoo in Qa define

• Va : Vi - Vj by Va(x) = vjax.

Observe that the dimension vector dim(V ) = (d1, . . . , dk) satisfies
∑
di = n. If

φ : M - N is CQ-linear, then we have a linear map Vi = viM
φi- Wi = viN

which clearly satisfies the compatibility condition.
Conversely, let V be a representation of Q with dimension vector dim(V ) =

(d1, . . . , dk). Then, consider the n =
∑
di-dimensional space M = ⊕iVi which

we turn into a CQ-representation as follows. Consider the canonical injection and
projection maps Vj ⊂

ij- M
πj-- Vj. Then, define the action of CQ by fixing the

action of the algebra generators vj and al to be{
vjm = ij(πj(m))
alm = ij(Va(πi(m)))

for all arrows ��������i��������j
aloo . A computation verifies that these two operations are

inverse to each other and induce an equivalence of categories. �

The Euler form of the quiver Q is the bilinear form on Zk

χQ(., .) : Zk × Zk - Z defined by χQ(α, β) = α.χQ.β
τ

for all row vectors α, β ∈ Zk.

Theorem 6.5 Let V and W be two representations of Q, then

dimC HomCQ(V,W )− dimC Ext1CQ(V,W ) = χQ(dim(V ), dim(W ))

Proof. We claim that there exists an exact sequence of C-vectorspaces

0 - HomCQ(V,W )
γ- ⊕vi∈Qv HomC(Vi,Wi)

δ-

δ- ⊕a∈Qa HomC(Vs(a),Wt(a))
ε- Ext1CQ(V,W ) - 0

Here, γ(φ) = (φ1, . . . , φk) and δ maps a family of linear maps (f1, . . . , fk) to the
linear maps µa = ft(a)Va−Wafs(a) for any arrow a in Q, that is, to the obstruction
of the following diagram to be commutative

Vs(a)
Va - Vt(a)

Ws(a)

fs(a)

?
Wa- Wt(a)

ft(a)

?

.............................

µ
a

-
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By the definition of morphisms between representations of Q it is clear that the
kernel of δ coincides with HomCQ(V,W ).

Further, the map ε is defined by sending a family of maps (g1, . . . , gs) = (ga)a∈Qa

to the equivalence class of the exact sequence

0 - W
i- E

p- V - 0

where for all vi ∈ Qv we have Ei = Wi⊕ Vi and the inclusion i and projection map
p are the obvious ones and for each generator a ∈ Qa the action of a on E is defined
by the matrix

Ea =
[
Wa ga
0 Va

]
: Es(a) = Ws(a) ⊕ Vs(a) - Wt(a) ⊕ Vt(a) = Et(a)

Clearly, this makes E into a CQ-module and one verifies that the above short exact
sequence is one of CQ-modules. Remains to prove that the cokernel of δ can be
identified with Ext1CQ(V,W ). For this, we need to look back at the description of
Ext1 in terms of cycles and boundaries.

A set of algebra generators of CQ is given by {v1, . . . , vk, a1, . . . , al}. A cycle is
given by a linear map λ : CQ - HomC(V,W ) such that for all f, f ′ ∈ CQ we
have the condition

λ(ff ′) = ρ(f)λ(f ′) + λ(f)σ(f ′)

where ρ determines the action on W and σ that on V . First, consider vi then the
condition says λ(v2

i ) = λ(vi) = pWi λ(vi) + λ(vi)pVi whence λ(vi) : Vi - Wi but
then applying again the condition we see that λ(vi) = 2λ(vi) so λ(vi) = 0. Similarly,
using the condition on a = vt(a)a = avs(a) we deduce that λ(a) : Vs(a) - Wt(a).
That is, we can identify ⊕a∈QaHomC(Vs(a),Wt(a)) with Z(V,W ) under the map
ε. Moreover, the image of δ gives under δ rise to a family of morphisms λ(a) =
ft(a)Va −Wafs(a) for a linear map f = (fi) : V - W so this image coincides
precisely to the subspace of boundaries B(V,W ) proving that indeed the cokernel
of δ is Ext1CQ(V,W ) finishing the proof of exactness of the long sequence of vec-
torspaces. But then, if dim(V ) = (r1, . . . , rk) and dim(W ) = (s1, . . . , sk), we have
that dim Hom(V,W )− dim Ext1(V,W ) is equal to∑

vi∈Qv

dim HomC(Vi,Wi)−
∑
a∈Qa

dim HomC(Vs(a),Wt(a))

=
∑
vi∈Qv

risi −
∑
a∈Qa

rs(a)st(a)

= (r1, . . . , rk)MQ(s1, . . . , sk)τ = χQ(dim(V ), dim(W ))

finishing the proof. �

Fix a dimension vector α = (d1, . . . , dk) ∈ Nk and consider the set repα Q of all
representations V of Q such that dim(V ) = α. Because V is completely determined
by the linear maps

Va : Vs(a) = Cds(a) - Cdt(a) = Vt(a)

we see that repα Q is the affine space

repα Q =
⊕

��������i��������j
aoo

Mdj×di(C) ' Cr
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where r =
∑
a∈Qa

ds(a)dt(a). On this affine space we have an action of the algebraic
group GL(α) = GLd1 × . . . × GLdk

by conjugation. That is, if g = (g1, . . . , gk) ∈
GL(α) and if V = (Va)a∈Qa

then g.V is determined by the matrices

(g.V )a = gt(a)Vag
−1
s(a).

If V and W in repα Q are isomorphic as representations of Q, such an isomorphism
is determined by invertible matrices gi : Vi - Wi ∈ GLdi such that for every
arrow ��������i��������j

aoo we have a commutative diagram

Vi
Va - Vj

Wi

gi

?
Wa - Wj

gj

?

or equivalently, gjVa = Wagi. That is, two representations are isomorphic if and
only if they belong to the same orbit under GL(α). In particular, we see that

StabGL(α) V ' AutCQ V

and the latter is an open subvariety of the affine space EndCQ(V ) = HomCQ(V, V )
whence they have the same dimension. The dimension of the orbit O(V ) of V in
repα Q is equal to

dim O(V ) = dim GL(α)− dim StabGL(α) V.

But then we have a geometric reformulation of the above theorem.

Lemma 6.6 Let V ∈ repα Q, then

dim repα Q− dim O(V ) = dim EndCQ(V )− χQ(α, α) = dim Ext1CQ(V, V )

Proof. We have seen that dim repα Q− dim O(V ) is equal to∑
a

ds(a)dt(a) − (
∑
i

d2
i − dim EndCQ(V )) = dim EndCQ(V )− χQ(α, α)

and the foregoing theorem asserts that the latter term is equal to dim Ext1CQ(V, V ).
�

In particular it follows that the orbit O(V ) is open in repα Q if and only if V
has no self-extensions. Moreover, as repα Q is irreducible there can be at most one
isomorphism class of a representation without self-extensions.

For our purposes we have to generalize the setting slightly. A marked quiver Q•

has an underlying quiver Q such that some of its loops can acquire a marking. Such
a marked loop will be depicted by

(/).*-+,
•
��

A representation V of a marked quiver Q• is a representation of the underlying
quiver Q such that the matrices corresponding to marked loops have trace equal to
zero. If we fix a dimension vector α,

repα Q
• = {V ∈ repα Q | tr(Va) = 0 if a is a marked loop in Q• }
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repα Q• is an affine subspace of repα Q of codimension equal to the number of
marked loops in Q•. This subspace is stable under the action of GL(α) on repα Q
and GL(α)-orbits in repα Q

• correspond to isomorphism classes of representations
of Q•. The Euler form of the marked quiver Q∗ is the Euler form of the underlying
quiver Q. We denote

χii = 1− ui −mi

where ui is the number of unmarked loops at vi and mi is the number of marked
loops at vi.

6.2 Simple dimension vectors.

In this section we characterize the dimension vectors α such that the marked quiver
Q• has a simple representation V (that is, contains no proper subrepresentations)
with dim(V ) = α.

Consider the underlying quiver Q with vertex set Qv = {v1, . . . , vk}. To a subset
S ⊂ - Qv we associate the full subquiver QS of Q, that is, QS has as set of vertices
the subset S and as set of arrows all arrows ��������i��������j

aoo in Qa such that vi and vj
belong to S. A full subquiver QS is said to be strongly connected if and only if for
all vi, vj ∈ V there is an oriented cycle in QS passing through vi and vj. We can
partition

Qv = S1 t . . . t Ss
such that the QSi

are maximal strongly connected components of Q. Clearly, the
direction of arrows in Q between vertices in Si and Sj is the same by the max-
imality assumption and can be used to define an orientation between Si and Sj.
The strongly connected component quiver SC(Q) is then the quiver on s vertices
{w1, . . . , ws} with wi corresponding to Si and there is one arrow from wi to wj if
and only if there is an arrow in Q from a vertex in Si to a vertex in Sj. Observe
that when the underlying graph of Q is connected, then so is the underlying graph
of SC(Q) and SC(Q) is a quiver without oriented cycles.

Example 6.7 Consider the connected quiver Q

(/).*-+,1 (/).*-+,2

(/).*-+,3

(/).*-+,4

(/).*-+,5//

**VVVVVVVVVVVVVVVVVVV ddJJJJJJJJ

::tttttttt

��

$$J
JJJJJJJ

::tttttttt

cc

then the partitioning of Qv into maximal strongly connected components is

Qv = {v1} t {v2, v3, v4} t {v5}

and the strictly connected component quiver SC(Q) of Q has the following form

(/).*-+,1 (/).*-+,2 (/).*-+,3// //

We will give names to vertices with very specific in- and out-going arrows

��������
source

;;wwwwwwwwwwwwww
33gggggggggggg

++WWWWWWWWWWWW

##G
GGGGGGGGGGGGG ��������

sink

##GGGGGGGGGGGGGG

++WWWWWWWWWWWW

33gggggggggggg

;;
wwwwwwwwwwwwww
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��������
prism

;;wwwwwwwwwwwwww
33gggggggggggg

++WWWWWWWWWWWW

##G
GGGGGGGGGGGGG// ��������

focus

##GGGGGGGGGGGGGG

++WWWWWWWWWWWW

33gggggggggggg

;;
wwwwwwwwwwwwww

//

For example, for the quiver Q of the above example, v1 is a source, there are no
sinks, v2 and v5 are focuses and v4 is a prism (observe that a loop gives one incoming
and one outgoing arrow). If α = (d1, . . . , dk) is a dimension vector, then supp(α) =
{vi ∈ Qv | di 6= 0}.

Lemma 6.8 If α is the dimension vector of a simple representation of Q, then
Qsupp(α) is a strongly connected subquiver.

Proof. If not, we consider the strongly connected component quiver SC(Qsupp(α))
and by assumption there must be a sink in it corresponding to a proper subset
S ⊂

6=- Qv. If V ∈ repα Q we can then construct a representation W by

• Wi = Vi for vi ∈ S and Wi = 0 if vi /∈ S,

• Wa = Va for an arrow a in QS and Wa = 0 otherwise.

One verifies that W is a proper subrepresentation of V , so V cannot be simple, a
contradiction. �

The second necessary condition involves the Euler form of Q. With εi be denote
the dimension vector of the simple representation having a one-dimensional space
at vertex vi and zero elsewhere and all arrows zero matrices.

Lemma 6.9 If α is the dimension vector of a simple representation of Q, then{
χQ(α, εi) ≤ 0
χQ(εi, α) ≤ 0

for all vi ∈ supp(α).

Proof. Let V be a simple representation of Q with dimension vector α =
(d1, . . . , dk). One verifies that

χQ(εi, α) = di −
∑

��������i��������j
aoo

dj

Assume that χQ(εi, α) > 0, then the natural linear map⊕
��������i��������j

aoo

Va : Vi -
⊕

��������i��������j
aoo

Vj

has a nontrivial kernel, say K. But then we consider the representation W of Q
determined by

• Wi = K and Wj = 0 for all j 6= i,

• Wa = 0 for all a ∈ Qa.



6.2. SIMPLE DIMENSION VECTORS. 211

It is clear that W is a proper subrepresentation of V , a contradiction.
Similarly, assume that χQ(α, εi) = di −

∑
��������j��������i

aoo
dj > 0, then the linear map

⊕
��������j��������i

aoo

Va :
⊕

��������j��������i
aoo

Vj - Vi

has an image I which is a proper subspace of Vi. The representation W of Q
determined by

• Wi = I and Wj = Vj for j 6= i,

• Wa = Va for all a ∈ Qa.

is a proper subrepresentation of V , a contradiction finishing the proof. �

Example 6.10 The necessary conditions of the foregoing two lemmas are not sufficient. Con-
sider the extended Dynkin quiver of type Ãk with cyclic orientation.

a(/).*-+, a(/).*-+,
a(/).*-+,
a(/).*-+,

a(/).*-+,a(/).*-+,

//
??���

OO

__???
oo

��

and dimension vector α = (a, . . . , a). For a simple representation all arrow matrices must be

invertible but then, under the action of GL(α), they can be diagonalized. Hence, the only simple

representations (which are not the trivial simples concentrated in a vertex) have dimension vector

(1, . . . , 1).

Nevertheless, we will show that these are the only exceptions. A vertex vi is said to
be large with respect to a dimension vector α = (d1, . . . , dk) whenever di is maximal
among the dj. The vertex vi is said to be good if vi is large and has no direct
successor which is a large prism nor a direct predecessor which is a large focus.

Lemma 6.11 Let Q be a strongly connected quiver, not of type Ãk, then one of the
following hold

1. Q has a good vertex, or,

2. Q has a large prism having no direct large prism successors, or

3. Q has a large focus having no direct large focus predecessors.

Proof. If neither of the cases hold, we would have an oriented cycle in Q consisting
of prisms (or consisting of focusses). Assume (vi1 , . . . , vil) is a cycle of prisms,
then the unique incoming arrow of vij belongs to the cycle. As Q 6= Ãk there is
at least one extra vertex va not belonging to the cycle. But then, there can be no
oriented path from va to any of the vij , contradicting the assumption that Q is
strongly connected. �

If we are in one of the two last cases, let a be the maximum among the com-
ponents of the dimension vector α and assume that α satisfies χQ(α, εi) ≤ 0 and
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χQ(εi, α) ≤ 0 for all 1 ≤ i ≤ k, then we have the following subquiver in Q

��������a ��������a

large focus large prism

##G
GG

GG
GG

GG
GG

GG
G

++WWWWWWWWWWW

33ggggggggggg
;;wwwwwwwwwwwwww

//

77oooooooooooo //

''OOOOOOOOOOOO

We can reduce to a quiver situation with strictly less vertices.

Lemma 6.12 Assume Q is strongly connected and we have a vertex vi which is a
prism with unique predecessor the vertex vj which is a focus. Consider the dimension
vector α = (d1, . . . , dk) with di = dj = a 6= 0. Then, α is the dimension of a simple
representation of Q if and only if

α′ = (d1, . . . , di−1, di+1, . . . , dk) ∈ Nk−1

is the dimension vector of a simple representation of the quiver Q′ on k−1 vertices,
obtained from Q by identifying the vertices vi and vj, that is, the above subquiver
in Q is simplified to the one below in Q′

��������a
##G

GG
GG

GG
GG

GG
GG

G

++WWWWWWWWWWW

33ggggggggggg
;;wwwwwwwwwwwwww

77oooooooooooo //

''OOOOOOOOOOOO

Proof. If b is the unique arrow from vj to vi and if V ∈ repα Q is a simple
representation then Vb is an isomorphism, so we can identify Vi with Vj and obtain a
simple representation of Q′. Conversely, if V ′ ∈ repα′ Q′ is a simple representation,
define V ∈ repα Q by Vi = V ′j and Vz = V ′z for z 6= i, Vb′ = V ′b′ for all arrows b′ 6= b
and Vb = rr

a. Clearly, V is a simple representation of Q. �

Theorem 6.13 α = (d1, . . . , dk) is the dimension vector of a simple representation
of Q if and only if one of the following two cases holds

1. supp(α) = Ãk, the extended Dynkin quiver on k vertices with cyclic orienta-
tion and di = 1 for all 1 ≤ i ≤ k

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

""

2. supp(α) 6= Ãk. Then, supp(α) is strongly connected and for all 1 ≤ i ≤ k we
have {

χQ(α, εi) ≤ 0
χQ(εi, α) ≤ 0



6.2. SIMPLE DIMENSION VECTORS. 213

Proof. We will use induction, both on the number of vertices k in supp(α) and on
the total dimension n =

∑
i di of the representation. If supp(α) does not possess

a good vertex, then the above lemma finishes the proof by induction on k. Observe
that the Euler-form conditions are preserved in passing from Q to Q′ as di = dj.

Hence, assume vi is a good vertex in supp(α). If di = 1 then all dj = 1 for
vj ∈ supp(α) and we can construct a simple representation by taking Vb = 1 for
all arrows b in supp(α). Simplicity follows from the fact that supp(α) is strongly
connected.

If di > 1, consider the dimension vector α′ = (d1, . . . , di−1, di − 1, di+1, . . . , dk).
Clearly, supp(α′) = supp(α) is strongly connected and we claim that the Euler-form
conditions still hold for α′. the only vertices vl where things might go wrong are
direct predecessors or direct successors of vi. Assume for one of them χQ(εl, α) > 0
holds, then

dl = d′l >
∑

��������l��������m
aoo

d′m ≥ d′i = di − 1

But then, dl = di whence vl is a large vertex of α and has to be also a focus with
end vertex vi (if not, dl > di), contradicting goodness of vi.

Hence, by induction on n we may assume that there is a simple representation
W ∈ repα′ Q. Consider the space repW of representations V ∈ repα Q such that
V | α′ = W . That is, for every arrow

��������i��������j
aoo Va =

Wa

v1 . . . vdj

��������j��������i
aoo Va =

v1

Wa

...
vdj

Hence, repW is an affine space consisting of all representations degenerating to
W ⊕ Si where Si is the simple one-dimensional representation concentrated in vi.
As χQ(α′, εi) < 0 and χQ(εi, α′) < 0 we have that Ext1(W,Si) 6= 0 6= Ext1(Si,W )
so there is an open subset of representations which are not isomorphic to W ⊕ Si.

As there are simple representations of Q having a one-dimensional component
at each vertex in supp(α) and as the subset of simple representations in repα′ Q
is open, we can choose W such that repW contains representations V such that a
trace of an oriented cycle differs from that of W ⊕ Si. Hence, by the description of
the invariant ring C[repα Q]GL(α) as being generated by traces along oriented cycles
and by the identification of points in the quotient variety as isomorphism classes
of semi-simple representations, it follows that the Jordan-Hölder factors of V are
different from W and Si. In view of the definition of repW , this can only happen if
V is a simple representation, finishing the proof of the theorem. �

From this result we can easily deduce the characterization of dimension vectors of
simple representations of a marked quiver Q•. For, if l is a marked loop in a vertex
vi with di > 1, then we may replace the matrix Vl of a simple representation V ∈
repα Q by V ′l = Vl− 1

di

rr
di

and retain the property that V ′ is a simple representation.
Things are different, however, for a marked loop in a vertex vi with di = 1 as this
1× 1-matrix factor is removed from the representation space. That is, we have the
following characterization result.
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Theorem 6.14 α = (d1, . . . , dk) is the dimension vector of a simple representation
of a marked quiver Q• if and only if α = (d1, . . . , dk) is the dimension vector of a
simple representation of the quiver Q′ obtained from the underlying quiver Q of Q•

after removing the loops in Q which are marked in Q• in all vertices vi such that
di = 1.

6.3 The local quiver.

Consider the underlying quiver Q and a fixed dimension vector α. Closed GL(α)-
orbits is repα Q correspond to isomorphism classes of semi-simple representations
of Q of dimension vector α. We have a quotient map

repα Q
π-- repα Q/GL(α) = issα Q

and we have seen that the coordinate ring C[issα Q] is generated by traces along
oriented cycles in the quiver Q. Consider a point ξ ∈ issα Q and assume that the
corresponding semi-simple representation Vξ has a decomposition

Vξ = V ⊕e11 ⊕ . . .⊕ V ⊕ez
z

into distinct simple representations Vi of dimension vector say αi and occurring in
Vξ with multiplicity ei. We then say that ξ is a point of representation-type

τ = t(ξ) = (e1, α1; . . . , ez, αz) with α =
z∑
i=1

eiαi

We want to apply the Luna slice theorem to obtain the étale GL(α)-local structure of
the representation space repα Q in a neighborhood of Vξ and the étale local structure
of the quotient variety issα Q in a neighborhood of ξ. That is, we have to calcu-
late the normal space Nξ to the orbit O(Vξ) as a representation over the stabilizer
subgroup GL(α)ξ = StabGL(α)(Vξ).

Denote ai =
∑k
j=1 aij where αi = (ai1, . . . , aik), that is, ai = dim Vi. We will

choose a basis of the underlying vectorspace

⊕vi∈Qv
C⊕di of Vξ = V ⊕e11 ⊕ . . .⊕ V ⊕ez

z

as follows : the first e1a1 vectors give a basis of the vertex spaces of all simple
components of type V1, the next e2a2 vectors give a basis of the vertex spaces of all
simple components of type V2, and so on. If n =

∑k
i=1 eidi is the total dimension

of Vξ, then with respect to this basis, the subalgebra of Mn(C) generated by the
representation Vξ has the following block-decomposition

Ma1(C)⊗ rr
e1 0 . . . 0

0 Ma2(C)⊗ rr
e2 0

...
. . .

...
0 0 . . . Maz

(C)⊗ rr
ez


But then, the stabilizer subgroup

StabGL(α)(Vξ) ' GLe1 × . . .×GLez

embedded in GL(α) with respect to this particular basis as
GLe1(C⊗

rr
a1) 0 . . . 0

0 GLe2(C⊗
rr
a2) 0

...
. . .

...
0 0 . . . GLez

(C⊗ rr
az

)
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The tangentspace to the GL(α)-orbit in Vξ is equal to the image of the natural linear
map

Lie GL(α) - repα Q

sending a matrix m ∈ Lie GL(α) 'Md1⊕. . .⊕Mdk
to the representation determined

by the commutator [m,Vξ] = mVξ − Vξm. By this we mean that the matrix [m,Vξ]a
corresponding to an arrow a is obtained as the commutator in Mn(C) using the
canonical embedding with respect to the above choice of basis. The kernel of this
linear map is the centralizer subalgebra. That is, we have an exact sequence of
GL(α)ξ-modules

0 - CMn(C)(Vξ) - Lie GL(α) - TVξ
O(Vξ) - 0

where

CMn(C)(Vξ) =


Me1(C⊗

rr
a1) 0 . . . 0

0 Me2(C⊗
rr
a2) 0

...
. . .

...
0 0 . . . Mez

(C⊗ rr
az

)


where the action of GL(α)Vξ

is given by conjugation on Mn(C) via the above em-
bedding. We will now engage in a book-keeping operation counting the factors of
the relevant GL(α)ξ-spaces. We identify the factors by the action of the GLei-
components of GL(α)ξ

1. The centralizer CMn(C)(Vξ) decomposes as a GL(α)ξ-module into

• one factor Mei on which GLe1 acts via conjugation and the other factors
act trivially,

...

• one factor Mez on which GLez acts via conjugation and the other factors
act trivially.

2. Recall the notation αi = (ai1, . . . , aik),then the Lie algebra Lie GL(α) decom-
poses as a GL(α)ξ-module into

•
∑k
j=1 a

2
1j factors Me1 on which GLe1 acts via conjugation and the other

factors act trivially,
...

•
∑k
j=1 a

2
zj factors Mez

on which GLez
acts via conjugation and the other

factors act trivially,

•
∑k
j=1 a1ja2j factors Me1×e2 on which GLe1 × GLe2 acts via γ1.m.γ

−1
2

and the other factors act trivially,

...

•
∑k
j=1 azjaz−1 j factors Mez×ez−1 on which GLez × GLez−1 acts via

γz.m.γ
−1
z−1 and the other factors act trivially.

3. The representation space repα Q decomposes as a GL(α)ξ-modulo into the

following factors, for every arrow ��������i��������j
aoo in Q (or every loop in vi by

setting i = j in the expressions below) we have
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• a1ia1j factors Me1 on which GLe1 acts via conjugation and the other
factors act trivially,

• a1ia2j factors Me1×e2 on which GLe1 ×GLe2 acts via γ1.m.γ
−1
2 and the

other factors act trivially,
...

• aziaz−1 j factors Mez×ez−1 on which GLez
× GLez−1 act via γz.m.γ−1

z−1

and the other factors act trivially,

• aziazj factors Mez on which GLez acts via conjugation and the other
factors act trivially.

Removing the factors of 1. from those of 2. we obtain a description of the tan-
gentspace to the orbit TVξ

O(Vξ). But then, removing these factors from those of 3.
we obtain the description of the normal space NVξ

as a GL(α)ξ-module as there is
an exact sequence of GL(α)ξ-modules

0 - TVξ
O(Vξ) - repα Q - NVξ

- 0

The upshot of this book-keeping is that we have proved that the normal space to the
orbit in Vξ depends only on the representation type τ = t(ξ) of the point ξ and can
be identified with the representation space of a specific local quiver Qτ .

Theorem 6.15 Let ξ ∈ issα Q be a point of representation type

τ = t(ξ) = (e1, α1; . . . , ez, αz)

Then, the normal space NVξ
to the orbit, as a module over the stabilizer subgroup,

is identical to the representation space of a local quiver situation

NVξ
' repατ

Qτ

where Qτ is the quiver on z vertices (the number of distinct simple components of
Vξ) say {w1, . . . , wz} such that in Qτ

# ��������i��������j
aoo = −χQ(αi, αj) for i 6= j, and

# ��������i
��

= 1− χQ(αi, αi)

and such that the dimension vector ατ = (e1, . . . , ez) (the multiplicities of the simple
components in Vξ).

We can repeat this argument in the case of a marked quiver Q•. the only differ-
ence lies in the description of the factors of repα Q• where we need to replace the
factors Mej

in the description of a loop in vi by M0
ei

(trace zero matrices) in case
the loop gets a mark in Q•. Recall the notation of ui as the number of unmarked
loops in vi and mi the number of marked loops in vi. We define

χ1
Q• =


1− u1 χ12 . . . χ1k

χ21 1− u2 . . . χ2k

...
...

. . .
...

χk1 χk2 . . . 1− uk

 and χ2
Q• =


−m1

−m2

. . .
−mk


such that χQ = χ1

Q• + χ2
Q• where Q is the underlying quiver of Q•.
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Theorem 6.16 Let ξ ∈ issα Q• be a point of representation type

τ = t(ξ) = (e1, α1; . . . , ez, αz)

Then, the normal space NVξ
to the orbit, as a module over the stabilizer subgroup,

is identical to the representation space of a local marked quiver situation

NVξ
' repατ Q•τ

where Q•τ is the quiver on z vertices (the number of distinct simple components of
Vξ) say {w1, . . . , wz} such that in Q•τ

# ��������i��������j
aoo = −χQ(αi, αj) for i 6= j, and

# ��������i
��

= 1− χ1
Q•(αi, αi)

# ��������i

•

��
= −χ2

Q•(αi, αi)

and such that the dimension vector ατ = (e1, . . . , ez) (the multiplicities of the simple
components in Vξ).

Proposition 6.17 If α = (d1, . . . , dk) is the dimension vector of a simple repre-
sentation of Q•, then the dimension of the quotient variety issα Q• is equal to

1− χ1
Q•(α, α)

Proof. There is a Zariski open subset of issα Q• consisting of points ξ such that the
corresponding semi-simple module Vξ is simple, that is, ξ has representation type
τ = (1, α). But then the local quiver setting (Qτ , ατ ) is

��������1

•
b

[[

a

��

where a = 1 − χ1
Q•(α, α) and b = −χ2

Q•(α, α). The corresponding representation
space has coordinate ring

C[repατ Q•τ ] = C[x1, . . . , xa]

on which GL(ατ ) = C∗ acts trivially. That is, the quotient variety is

repατ
Q•τ/GL(ατ ) = repατ

Q•τ ' Ca

As issα Q• has the same local structure near ξ as this quotient space near the origin,
by the Luna slice result, the result follows. �
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6.4 The stratification.

In this section we will draw some consequences from the description of the local
quiver. usually, the quotient varieties issα Q• have lots of singularities. Still, we can
decompose these quotient varieties in smooth pieces according to the representation
types of its points.

Proposition 6.18 Let issα Q•(τ) be the set of points ξ ∈ issα Q• of representation
type

τ = (e1, α1; . . . ; ez, αz)

Then, issα Q•(τ) is a locally closed smooth subvariety of issα Q• and

issα Q
• =

⊔
τ

issα Q
•(τ)

is a finite smooth stratification of the quotient variety.

Proof. Let Q•τ be the local marked quiver in ξ. Consider a nearby point ξ′. If some
trace of an oriented cycles of length > 1 in Q•τ is non-zero in ξ′, then ξ′ cannot be
of representation type τ as it contains a simple factor composed of vertices of that
cycle. That is, locally in ξ the subvariety issα Q•(τ) is determined by the traces of
unmarked loops in vertices of the local quiver Q•τ and hence is locally in the étale
topology an affine space whence smooth. All other statements are direct. �

Given a stratification of a topological space, one always wants to determine which
strata make up the boundary of a given stratum. In the stratification of issα Q•

given by the above result, we have a combinatorial solution to this problem. Two
representation types

τ = (e1, α1; . . . ; ez, αz) and τ ′ = (e′1, α
′
1; . . . ; e

′
z′ , α

′
z′)

are said to be direct successors τ < τ ′ if and only if one of the following two cases
occurs

• (splitting of one simple) : z′ = z + 1 and for all but one 1 ≤ i ≤ z we have
that (ei, αi) = (e′j , α

′
j) for a uniquely determined j and for the remaining i0

we have that the remaining couples of τ ′ are

(ei, α′u; ei, α
′
v) with αi = α′u + α′v

• (combining two simple types) : z′ = z − 1 and for all but one 1 ≤ i ≤ z′ we
have that (e′i, α

′
i) = (ej , αj) for a uniquely determined j and for the remaining

i we have that the remaining couples of τ are

(eu, α′i; ev, α
′
i) with eu + ev = e′i

This direct successor relation < induces an ordering which we will denote with <<.
Observe that τ << τ ′ if and only if the stabilizer subgroup GL(α)τ is conjugated to
a subgroup of GL(α)τ ′ . The following result either follows from general theory, see
for example [29], or from the description of the local marked quivers.

Proposition 6.19 The stratum issα Q•(τ ′) lies in the closure of the stratum
issα Q

• if and only if τ << τ ′.

Using the dimension of the quotient variety issα Q• given in the precious section
when α is the dimension vector of a simple representation can be used to determine
the dimensions of the different strata issα Q•(τ) in general.
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Proposition 6.20 Let τ = (e1, α1; . . . ; ez, αz) a representation type of α. Then,

dim issα Q
• =

z∑
j=1

(1− χ1
Q•(αj , αj)

Because repα Q• and hence issα Q• is irreducible, there is a unique represen-
tation type τgen such that issα Q•(τgen) is Zariski open. We call τgen the generic
representation type for repα Q. The generic representation type can be determined
as follows.

• Let Q′ be the full marked subquiver of Q• on the support of α and consider its
strongly connected component quiver SC(Q′).

• Let V ∈ repα Q• be in general position, then a simple subrepresentation S ⊂ V
must have its support in a strongly connected component G of Q which is a
sink in SC(Q′). Restrict attention to this subquiver G say on l vertices.

• As (1, . . . , 1) ∈ Nl is the dimension vector of a simple representation of G,
there exists a dimension vector β with support equal to G satisfying the fol-
lowing properties

1. β is the dimension vector of a simple representation of G.
2. If α′ is the restriction of the dimension vector α to G, then a representa-

tion of repα′ G in general position has a subrepresentation of dimension
vector β.

3. β is minimal among all dimension vectors (1, . . . , 1) ≤ β ≤ α′ satisfying
1. and 2.

A representation in repα Q• will then contain a simple subrepresentation of
dimension vector β.

• Continue the process with starting dimension vector α−β until this difference
is the zero vector. We will ten have found the generic decomposition α =
β1 + . . .+ βz into dimension vectors of simple representations.

• Calculate 1 − χ1
Q•(βi, βi). If it is zero, then βi occurs with multiplicity ei in

the generic representation type τgen if ei is the number of components βj in
the generic decomposition which are equal to βi. This determines the generic
representation type.

The difficult part in the procedure is determining when a representation in general
position has a subrepresentation of given dimension vector. In the next chapter we
will prove a combinatorial procedure to verify this, due to A. Schofield [27].

6.5 The Cayley-smooth locus.

Let A be a Cayley-Hamilton algebra of degree n equipped with a trace map A
tr- A

and consider the quotient map

rept
n
A

π-- isstn A

Let ξ be a geometric point of he quotient scheme isstn A with corresponding n-
dimensional trace preserving semi-simple representation Vξ with decomposition

Vξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct simple representations of A of dimension di such that
n =

∑k
i=1 diei.
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Definition 6.21 The Cayley-smooth locus of A is the subset of isstn A

Smn A = {ξ ∈ isstn A | isstn A is smooth along π−1(ξ) }

As the singular locus of isstn A is a GLn-stable closed subscheme of isstn A this is
equivalent to

Smn A = {ξ ∈ isstn A | isstn A is smooth in Vξ }

We will give some conditions on ξ to be in the smooth locus Smn A. To begin,
rept

n
A is sooth in Vξ if and only if the dimension of the tangent space in Vξ is equal

to the local dimension of rept
n
A in Vξ. In the previous chapter we have calculated the

tangent space to be the set of trace preserving derivations A
D- Mn(C) satisfying

D(aa′) = D(a)ρ(a′) + ρ(a)D(a′)

where A
ρ- Mn(C) is the C-algebra morphism determined by the action of A on

Vξ and such that D is compatible with the traces, that is, the diagram

A
D- Mn(C)

A

trA

?
D- Mn(C)

tr

?

is commutative. The C-vectorspace of such derivations is denoted by Dertρ A.
Therefore,

ξ ∈ Smn A⇐⇒ dimC Dertρ A = dimVξ
rept

n
A

Further, if ξ ∈ Smn A, then we know from the Luna slice theorem that the local
GLn-structure of rept

n
A near Vξ is determined by a marked quiver setting (Q•ξ , αξ)

where Q•ξ is a marked quiver on k vertices (the number of distinct simple components
of Vξ) and αξ = (e1, . . . , ek) (the multiplicities with which these simples occur in
Vξ). Recall that GL(αξ) is the stabilizer subgroup in GLn of Vξ and can be embedded
in GLn after a suitable choice of basis via

GL(αξ) =


GLe1(C⊗

rr
d1) 0 . . . 0

0 GLe2(C⊗
rr
d2) . . . 0

...
...

. . .
...

0 0 . . . GLek
(C⊗ rr

dk
)

 ⊂ - GLn

and we have an isomorphism of GL(αξ)-modules

repαξ
Q•ξ ' NVξ

O(Vξ) ' ExttA(Vξ, Vξ),

the last isomorphism was proved in the previous chapter. This fact also allows us
to determine the quiver Qξ. Indeed,

Ext1A(Vξ, Vξ) = ⊕ki,j=1Ext
1
A(Si, Sj)⊕eiej

That is, as a GL(αξ)-module Ext1A(Vξ, Vξ) is isomorphic to a quiver setting
repαξ

Qbigξ where the arrows and loops in the quiver Qbigξ are given by

# ��������i��������j
aoo = dimC Ext1A(Si, Sj) if i 6= j, and

# ��������i
��

= dimC Ext1A(Si, Si)
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Proposition 6.22 With notations as before, Q•ξ is a marked sub-
quiver of the extension-quiver Qbigξ determined by the GL(αξ)-submodule
ExttA(Vξ, Vξ) ⊂ - Ext1A(Vξ, Vξ).

It follows from the definition of trace preserving extensions ExttA(Vξ, Vξ) that

Q•ξ and Qbigξ have the same number of arrows ��������i��������j
aoo when i 6= j, but some of

the loops in Qbigξ may vanish or get a marking in Q•ξ . Observe that we can define
this quiver Q•ξ to any point ξ ∈ rept

n
A whether ξ ∈ Smn A or not. However,

if ξ ∈ Smn A then by the Luna slice theorem, we have local étale isomorphisms
between the varieties

GLn ×GL(αξ) repαξ
Q•ξ

et←→ rept
n
A and repαξ

Q•ξ/GL(αξ)
et←→ isstn A

Which gives us the following numerical restrictions on ξ ∈ Smn A :

Proposition 6.23 ξ ∈ Smn A if and only if the following two equalities hold{
dimVξ

rept
n
A = n2 − (e21 + . . .+ e2k) + dimC ExttA(Vξ, Vξ)

dimξ iss
t
n A = dim0 repαξ

Q•ξ/GL(αξ)

Moreover, if ξ ∈ Smn A, then rept
n
A is a normal variety in a neighborhood of ξ

Proof. The last statement follows from the fact that C[repαξ
Q•ξ ]

GL(αξ) is integrally
closed and this property is preserved under the étale map. �

In general, the difference between these numbers gives a measure for the non-
commutative singularity of A in ξ. In the next section we will refine these conditions
under the extra assumption that A is an order in a central simple algebra.

Example 6.24 Consider the affine C-algebra A =
C〈x,y〉

(xy+yx)
then u = x2 and v = y2 are central

elements of A and A is a free module of rank 4 over C[u, v]. In fact, A is a C[u, v]-order in the
quaternion division algebra

∆ =

„
u v

C(u, v)

«
and the reduced trace map on ∆ makes A into a Cayley-Hamilton algebra of degree 2. More
precisely, tr is the linear map on A such that(

tr(xiyj) = 0 if either i or j are odd, and

tr(xiyj) = 2xiyj if i and j are even.

In particular, a trace preserving 2-dimensional representation is determined by a couple of 2 × 2
matrices

ρ = (

»
x1 x2

x3 −x1

–
,

»
x4 x5

x6 −x4

–
) with tr(

»
x1 x2

x3 −x1

–
.

»
x4 x5

x6 −x4

–
) = 0

That is,rept
2
A is the hypersurface in C6 determined by the equation

rept
2
A = V(2x1x4 + x2x6 + x3x5) ⊂ - C6

and is therefore irreducible of dimension 5 with an isolated singularity at p = (0, . . . , 0). The
image of the trace map is equal to the center of A which is C[u, v] and the quotient map

rept
2
A

π-- isst2 A = C2 π(x1, . . . , x6) = (x2
1 + x2x3, x

2
4 + x5x6)

There are three different representation types to consider. Let ξ = (a, b) ∈ C2 = isst2 A with
ab 6= 0, then π−1(ξ) is a closed GL2-orbit and a corresponding simple A-module is given by the
matrixcouple

(

»
i
√
a 0

0 −i
√
a

–
,

»
0

√
b

−
√
b 0

–
)
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That is, ξ is of type (1, 2) and the stabilizer subgroup are the scalar matrixes C∗rr
2
⊂ - GL2.

So, the action on both the tangentspace to rept
2
A and the tangent space to the orbit are trivial.

As they have respectively dimension 5 and 3, the normalspace corresponds to the quiver setting

Nξ = ��������1
## {{

which is compatible with the numerical restrictions. Next, consider a point ξ = (0, b) (or similarly,
(a, 0)), then ξ is of type (1, 1; 1, 1) and the corresponding semi-simple representation is given by
the matrices

(

»
0 0
0 0

–
,

»
i
√
b 0

0 −i
√
b

–
)

The stabilizer subgroup is in this case the maximal torus of diagonal matrices C∗×C∗ ⊂- GL2.
The tangent space in this point to rept

2
A are the 6-tuples (a1, . . . , a6) such that

tr (

»
0 0
0 0

–
+ ε

»
a1 a2

a3 −a1

–
).(

»
i
√
b 0

0 −i
√
b

–
+ ε

»
b4 b5
b6 −b4

–
) = 0 where ε2 = 0

This leads to the condition a1 = 0, so the tangentspace are the matrix couples

(

»
0 a2

a3 0

–
,

»
a4 a5

a6 −a4

–
) on which the stabilizer

»
λ 0
0 µ

–
acts via conjugation. That is, the tangentspace corresponds to the quiver setting

��������1 ��������1
'' ��

__ gg cc

Moreover, the tangentspace to the orbit is the image of the linear map

(rr2 + ε

»
m1 m2

m3 m4

–
).(

»
0 0
0 0

–
,

»√
b 0

0 −
√
b

–
), (rr2 −

»
m1 m2

m3 m4

–
)

which is equal to

(

»
0 0
0 0

–
,

»√
b 0

0 −
√
b

–
+ ε

»
0 −2m2

√
b

2m3

√
b 0

–
)

on which the stabilizer acts again via conjugation giving the quiver setting

��������1 ��������1
''gg

Therefore, the normal space to the orbit corresponds to the quiver setting

��������1 ��������1
��

__ cc

which is again compatible with the numerical restrictions. Finally, consider ξ = (0, 0) which is
of type (2, 1) and whose semi-simple representation corresponds to the zero matrix-couple. The
action fixes this point, so the stabilizer is GL2 and the tangent space to the orbit is the trivial
space. Hence, the tangent space to rept

2
A coincides with the normalspace to the orbit and both

spaces are acted on by GL2 via simultaneous conjugation leading to the quiver setting

Nξ = ��������2

•

��

•

[[

This time, the data is not compatible with the numerical restriction as

5 = dim rept
2
A 6= n2 − e2 + dim repα Q

• = 4− 4 + 6

consistent with the fact that the zero matrix-couple is a (in fact, the only) singularity on rept
2
A.

6.6 Cayley-smooth orders.

Let X be a normal affine variety with coordinate ring C[X] and functionfield C(X).
Let ∆ be a central simple C(X)-algebra of dimension n2 which is a Cayley-Hamilton
algebra of degree n using the reduced trace map tr. Let A be a C[X]-order in ∆,
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that is, the center of A is C[X] and A⊗C[X] C(X) ' ∆. Because C[X] is integrally
closed, the restriction of the reduced trace tr to A has its image in C[X], that is, A
is a Cayley-Hamilton algebra of degree n and

tr(A) = C[X]

Consider the quotient morphism for the representation variety

rept
n
A

π-- isstn A

then the above argument shows that X ' isstn A and in particular the quotient
scheme is reduced.

Proposition 6.25 Let A be a Cayley-Hamilton order of degree n over C[X]. Then,
its smooth locus Smn A is a nonempty Zariski open subset of X. In particular, the
set azA of Azumaya points, that is, of points x ∈ X = issn A of representation type
(1, n) is a non-empty Zariski open subset of X and its intersection with the Zariski
open subset Xreg of smooth points of X satisfies

Xaz ∩Xreg
⊂ - Smn A

Proof. Because AC(X) = ∆, there is an f ∈ C[X] such that Af = A⊗C[X] C[X]f is
a free C[X]f -module of rank n2 say with basis {a1, . . . , an2}. Consider the n2 × n2

matrix with entries in C[X]f

R =

 tr(a1a1) . . . tr(a1an2)
...

...
tr(an2a1) . . . tr(an2an2)


The determinant d = det R is nonzero in C[X]f . For, let K be the algebraic
closure of C(X) then Af ⊗C[X]f K ' Mn(K) and for any K-basis of Mn(K) the
corresponding matrix is invertible (for example, verify this on the matrixes eij).
As {a1, . . . , an2} is such a basis, d 6= 0. Next, consider the Zariski open subset
U = X(f) ∩ X(d) ⊂ - X. For any x ∈ X with maximal ideal mx / C[X] we claim
that

A

AmxA
'Mn(C)

Indeed, the images of the ai give a C-basis in the quotient such that the n2 × n2-
matrix of their product-traces is invertible. This property is equivalent to the quo-
tient being Mn(C). Such points x are called Azumaya points of A. The correspond-
ing semi-simple representation of A is simple, proving that azA is a non-empty
Zariski open subset of X. But then, over U the restriction of the quotient map

rept
n
A | π−1(U) -- U

is a principal PGLn-fibration. In fact, this restricted quotient map determines an
element in H1

et(U,PGLn) determining the class of the central simple C(X)-algebra
∆ in H1

et(C(X), PGLn). Restrict this quotient map further to U ∩Xreg, then the
PGLn-fibration

rept
n
A | π−1(U ∩Xreg) -- U ∩Xreg

has a smooth base and therefore also the total space is smooth. But then, U ∩Xreg

is a non-empty Zariski open subset of Smn A. �
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We will now determine the étale local structure of A in points ξ ∈ Smn A.
Observe that the normality assumption on X is no restriction as the quotient scheme
is locally normal in a point of Smn A. Our next result drastically limits the local
dimension vectors αξ.

Proposition 6.26 Let A be a Cayley-Hamilton order and ξ ∈ Smn A such that
the normal space to the orbit of the corresponding semi-simple n-dimensional rep-
resentation is

Nξ = repαξ
Q•ξ

Then, αξ is the dimension vector of a simple representation of Q•ξ .

Proof. Let Vξ be the semi-simple representation of A determined by ξ. Let Sξ be
the slice variety in Vξ then we have by the Luna slice theorem the following diagram
of étale GLn-equivariant maps

GLn ×GL(αξ) Sξ

GLn ×GL(αξ) repαξ
Q•ξ

�

et

rept
n
A

et

-

linking a neighborhood of Vξ with one of (rrn, 0). Because A is an order, every Zariski
neighborhood of Vξ in rept

n
A contains simple n-dimensional representations, that

is, closed GLn-orbits with stabilizer subgroup isomorphic to C∗. Transporting this
property via the GLn-equivariant étale maps, every Zariski neighborhood of (rrn, 0)
contains closed GLn-orbits with stabilizer C∗. By the correspondence of orbits is
associated fiber bundles, every Zariski neighborhood of the trivial representation
0 ∈ repαξ

Q•ξ contains closed GL(αξ)-orbits with stabilizer subgroup C∗. We have
seen that closed GL(αξ)-orbits correspond to semi-simple representations of Q•ξ .
However, if the stabilizer subgroup of a semi-simple representation is C∗ this repre-
sentation must be simple. �

These two results allow us to refine the numerical characterization of smooth
points given in the previous section.

Theorem 6.27 Let A be a Cayley-Hamilton order of degree n with center C[X]
where X is a normal variety of dimension d. For ξ ∈ X = isstn A with corresponding
semi-simple representation

Vξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

and normal space to the orbit O(Vξ) isomorphic to repαξ
Q•ξ as GL(αξ)-modules

where αξ = (e1, . . . , ek). Then, ξ ∈ Smn A if and only if the following two condi-
tions are met{

αξ is the dimension vector of a simple representation of Q•, and
d = 1− χQ(αξ, αξ)−

∑k
i=1mi

where Q is the underlying quiver of Q•ξ and mi is the number of marked loops in
Q•ξ in vertex vi.
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Proof. By the Luna slice theorem we have étale maps

repαξ
Q•ξ/GL(αξ) �et Sξ/GL(αξ)

et- isotn A = X

connecting a neighborhood of ξ ∈ X with one of the trivial semi-simple representa-
tion 0. By definition of the Euler-form of Q we have that

χQ(αξ, αξ) = −
∑
i 6=j

eiejχij +
∑
i

e2i (1− ui −mi)

On the other hand we have the following dimensions

dim repα Q
•
αξ

=
∑
i 6=j

eiejχij +
∑
i

e2i (ui +mi)−
∑
i

mi

dim GL(αξ) =
∑
i

e2i

As any Zariski open neighborhood of ξ contains an open set where the quotient map
is a PGL(αξ) = GL(αξ)

C∗ -fibration we see that the quotient variety repαξ
Q•ξ has

dimension equal to
dim repαξ

Q•ξ − dim GL(αξ) + 1

and plugging in the above information we see that this is equal to 1− χQ(αξ, αξ)−∑
imi. �

Example 6.28 The quantum plane.
We will generalize the discussion of example 6.24 to the algebra

A =
C〈x, y〉

(yx− qxy)

where q is a primitive n-th root of unity. Let u = xn and v = yn then it is easy to see that A is a
free module of rank n2 over its center C[u, v] and is a Cayley-Hamilton algebra of degree n with
the trace determined on the basis

tr(xiyj) =

(
0 when either i or j is not a multiple of n,

nxiyj when i and j are multiples of n,

Let ξ ∈ issn A = C2 be a point (an, b) with a.b 6= 0, then ξ is of representation type (1, n) as the
corresponding (semi)simple representation Vξ is determined by (if m is odd, for even n we replace
a by ia and b by −b)

ρ(x) =

26664
a

qa

. . .

qn−1a

37775 and ρ(y) =

2666664
0 1 0 . . . 0
0 0 1 0
...

...
. . .

0 0 0 . . . 1
b 0 0 . . . 0

3777775
One computes that Ext1A(Vξ, Vξ) = C2 where the algebra map A

φ- Mn(C[ε]) corresponding
to (α, β) is given by (

φ(x) = ρ(x) + ε αrr
n

φ(y) = ρ(y) + ε βrr
n

and all these algebra maps are trace preserving. That is, Ext1A(Vξ, Vξ) = ExttA(Vξ, Vξ) and as the
stabilizer subgroup is C∗ the marked quiver-setting (Q•ξ , αξ) is

��������1
"" pp

and d = 1−χQ(α, α)−
P
imi as 2 = 1− (−1)+0, compatible with the fact that over these points

the quotient map is a principal PGLn-fibration.
Next, let ξ = (an, 0) with a 6= 0 (or, by a similar argument (0, bn) with b 6= 0). Then, the

representation type of ξ is (1, 1; . . . ; 1, 1) because

Vξ = S1 ⊕ . . .⊕ Sn
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where the simple one-dimensional representation Si is given by(
ρ(x) = qia

ρ(y) = 0

One verifies that
Ext1A(Si, Si) = C and Ext1A(Si, Sj) = δi+1,j C

and as the stabilizer subgroup is C∗ × . . .× C∗, the Ext-quiver setting is

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

$$

qq

YY YY

mm

����

The algebra map A
φ- Mn(C[ε]) corresponding to the extension (α1, β1, . . . , αn, βn) ∈

Ext1A(Vξ, Vξ) is given by8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

φ(x) =

266664
a+ ε α1

qa+ ε α2

. . .

qn−1a+ ε αn

377775

φ(y) = ε

266666664

0 β1 0 . . . 0

0 0 β2 0

...
...

. . .
...

0 0 0 βn−1

βn 0 0 . . . 0

377777775
The conditions tr(xj) = 0 for 1 ≤ i < n impose n− 1 linear conditions among the αj , whence the
space of trace preserving extensions ExttA(Vξ, Vξ) corresponds to the quiver setting

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

$$

qq

The Euler-form of this quiver Q• is given by the n× n matrix2666664
0 −1 0 . . . 0

1 −1 0

. . .
. . .

1 −1
−1 1

3777775
giving the numerical restriction as αξ = (1, . . . , 1)

1− χQ(α, α)−
X
i

mi = 1− (−1)− 0 = 2 = dim isstn A

so ξ ∈ Smn A. Finally, the only remaining point is ξ = (0, 0). This has representation type (n, 1)
as the corresponding semi-simple representation Vξ is the trivial one. The stabilizer subgroup is
GLn and the (trace preserving) extensions are given by

Ext1A(Vξ, Vξ) = Mn ⊕Mn and ExttA(Vξ, Vξ) = M0
n ⊕M0

n
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determined by the algebra maps A
φ- Mn(C[ε]) given by(

φ(x) = ε m1

φ(y) = ε m2

That is, the relevant quiver setting (Q•ξ , αξ) is in this point

��������n

• "" •
pp

This time, ξ /∈ Smn A as the numerical condition fails

1− χQ(α, α)−
X
i

mi = 1− (−n2)− 0 6= 2 = dim isstn A

unless n = 1. That is, Smn A = C2 − {(0, 0)}.

6.7 Smooth local types.

If we want to study the local structure of Cayley-Hamilton orders A of degree n over
a central normal variety X of dimension d, we have to compile a list of admissible
marked quiver settings, that is couples (Q•, α) satisfying the two properties{

α is the dimension vector of a simple representation of Q•, and
d = 1− χQ(α, α)−

∑
imi

In this section, we will give the first steps in such a classification project
The basic idea that we use is to shrink a marked quiver-setting to its simplest

form and classify these simplest forms for given d. By shrinking we mean the
following process. Assume α = (e1, . . . , ek) is the dimension vector of a simple
representation of Q• and let vi and vj be two vertices connected with an arrow such
that ei = ej = e. That is, locally we have the following situation

e8?9>:=;< e8?9>:=;<
χij

$,

χji

dl

ui

��

•
mi

S[

uj

��

•
mj

S[

χpi
WWWWW
WWWWW

'/WWWWWWW
WWWWWWW

χiqgggggggggg

ow gggggggggggggg

χrjgggggggggg

ow gggggggggggggg

χjs
WWWWW
WWWWW

'/WWWWWWW
WWWWWWW

We will use one of the arrows connecting vi with vj to identify the two vertices.
That is, we form the shrinked marked quiver-setting (Q•s, αs) where Q•s is the marked
quiver on k − 1 vertices {v1, . . . , v̂i, . . . , vk} and αs is the dimension vector with ei
removed. That is, Q•s has the following form in a neighborhood of the contracted
vertex

e8?9>:=;<
ui + uj + χij + χji − 1

��

•
mi + mj

S[

χpi + χpj
\\\\\\\\\\\
\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\

χiq + χjqbbbbbbbbbbbbbbbbbbbbbb

mu bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb

χrj + χri
bbbbbbbbbbbbbbbbbbbbbb

mu bbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb

χjs + χis
\\\\\\\\\\\
\\\\\\\\\\\

)1\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\

That is, in Q•s we have for all k, l 6= i that χskl = χkl. Moreover, the number of
arrows and (marked) loops connected to vj are determined as follows

• χsjk = χik + χjk

• χskj = χki + χkj

• usj = ui + uj + χij + χji − 1



228 CHAPTER 6. LOCAL CLASSIFICATION.

• ms
j = mi +mj

Lemma 6.29 α is the dimension vector of a simple representation of Q• if and
only if αs is the dimension vector of a simple representation of Q•s. Moreover,

dim repα Q
•/GL(α) = dim repαs

Q•s/GL(αs)

Proof. Fix an arrow ��������i��������j
aoo . As ei = ej = e there is a Zariski open subset

U ⊂ - repα Q
• of points V such that Va is invertible. By basechange in either vi

or vj we can find a point W in its orbit such that Wa = rr
e. If we think of Wa as

identifying Cei with Cej we can view the remaining maps of W as a representation in
repαs Q

•
s and denote it by W s. The map U - repαs Q

•
s is well-defined and maps

GL(α)-orbits to GL(αs)-orbits. Conversely, given a representation W ′ ∈ repαs
Q•s

we can uniquely determine a representation W ∈ U mapping to W ′. Both claims
follow immediately from this observation. �

It is clear that any marked quiver-setting can uniquely be reduced to its simplest
form, which has the characteristic property that no arrow-connected vertices can
have the same dimension. The shrinking process has a converse operation which
we will call splitting of a vertex. However, this splitting operation is usually
not uniquely determined. Before we can compile lists of marked-quiver settings in
simplified form for a specific base-dimension d, we need to bound the components of
the occurring dimension vectors α. We will do this in the case of quivers and leave
the extension to marked quivers an an exercise.

Proposition 6.30 Let α = (e1, . . . , ek) be the dimension vector of a simple rep-
resentation of Q and let 1 − χQ(α, α) = d = dim repα Q•/GL(α). Then, if
e = max ei, we have that d ≥ e+ 1.

Proof. By the above lemma we may assume that (Q,α) is brought in its simplest
form, that is, no two arrow-connected vertices have the same dimension. Let χii
denote the number of loops in a vertex vi, then

−χQ(α, α) =

{∑
i ei (

∑
j χijej − ei)∑

i ei (
∑
j χjiej − ei)

and observe that the bracketed terms are positive by the requirement that α is the
dimension vector of a simple representation. We call them the incoming ini, re-
spectively outgoing outi, contribution of the vertex vi to d. Let vm be a vertex with
maximal vertex-dimension e.

inm = e(
∑
j 6=m

χjmej + (χii − 1)e) and outm = e(
∑
j 6=m

χijej + (χii − 1)e)

If there are loops in vm, then inm ≥ 2 or outm ≥ 2 unless the local structure of Q
is

��������1 ��������e ��������1// //��

in which case inm = e = outm. Let vi be the unique incoming vertex of vm, then
we have outi ≥ e− 1. But then,

d = 1− χQ(α, α) = 1 +
∑
j

outj ≥ 2e
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If vm has no loops, consider the incoming vertices {vi1 , . . . , vis}, then

inm = e(
s∑
j=1

χijmeij − e)

which is ≥ e unless
∑
χijmeij = e, but in that case we have

s∑
j=1

outij ≥ e2 −
s∑
j=1

e2ij ≥ e

the last inequality because all eij < e. In either case we have that d = 1−χQ(α, α) =
1 +

∑
i outi = 1 +

∑
i ini ≥ e+ 1. �

This result allows us to compile a list of all possible marked quiver-settings in
simplest form for small values of d. In such a list we are only interested in repα Q•

as GL(α)-module and we call two setting equivalent if they determine the same
GL(α)-module. For example, the marked quiver-settings

��������1 ��������2
&&ff

•

����
and ��������1 ��������2

&&ff
��

determine the same C∗ ×GL2-module, hence are equivalent.

Theorem 6.31 Let A be a Cayley-Hamilton order of degree n over a central normal
variety X of degree d. Then, the local quiver of A in a point ξ ∈ X = isstn A
belonging to the smooth locus Smn A can be shrinked to one of a finite list of
equivalence classes of marked quiver-settings. For d ≤ 4, the complete lists are
given below where the boxed values are the dimension d of X.

��������1
��

1

��������1
## {{

2

��������1
"" ||
[[

3

��������2•
##

•
{{

3

��������1 ��������2
&&ff
��

3

��������1 ��������2 ��������1
&&ff ff &&

3

��������1
�� qqQQ11

4

��������2•
## {{

4

��������1 ��������2
&&ff
��

4

��������1 ��������2
))ii ##

cc

4

��������1 ��������2 ��������1
&&ff ff &&��

4



230 CHAPTER 6. LOCAL CLASSIFICATION.

An immediate consequence is the following analog of the fact that commutative
smooth varieties have only one type of analytic (or étale) local behavior.

Theorem 6.32 There are only finitely many types of étale local behaviour of smooth
Cayley-Hamilton orders of degree n over a central variety of dimension d.

Proof. The foregoing reduction shows that for fixed d there are only a finite number
of marked quiver-settings shrinked to their simplest form. As

∑
ei ≤ n, we can only

apply the splitting operations on vertices a finite number of times. �

6.8 Curve orders.

W. Schelter has proved in [26] that in dimension one, smooth orders are hereditary.
In this section we will give an alternative proof of this result using the étale local
classification. The result below can also be proved by the splitting operation and the
above classification. We give this direct proof as an illustration of the stratification
result of § 4.

Theorem 6.33 Let A be a Cayley-Hamilton order of degree n over an affine curve
X = isstn A. If ξ ∈ Smn A, then the étale local structure of A in ξ is determined
by a marked quiver-setting which is an oriented cycle on k vertices with k ≤ n

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

//

??���������

OO

__?????????

oo

!!

...

and an unordered partition p = (d1, . . . , dk) having precisely k parts such that∑
i di = n determining the dimensions of the simple components of Vξ.

Proof. Let (Q•, α) be the corresponding local marked quiver-setting. Because Q• is
strongly connected, there exist oriented cycles in Q•. Fix one such cycle of length
s ≤ k and renumber the vertices of Q• such that the first s vertices make up the
cycle. If α = (e1, . . . , ek), then there exist semi-simple representations in repα Q•

with composition

α1 = (1, . . . , 1︸ ︷︷ ︸
s

, 0, . . . , 0︸ ︷︷ ︸
k−s

)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕es−1

s ⊕ ε⊕es+1
s+1 ⊕ . . .⊕ ε⊕ek

k

where εi stands for the simple one-dimensional representation concentrated in vertex
vi. There is a one-dimensional family of simple representations of dimension vector
α1, hence the stratum of semi-simple representations in issα Q• of representation
type τ = (1, α1; e1−1, ε1; . . . ; es−1, εs; es+1, εs+1; ek, εk) is at least one-dimensional.
However, as dim issα Q

• = 1 this can only happen if this semi-simple representation
is actually simple. That is, when α = α1 and k = s. �
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Hence, if Vξ is the semi-simple n-dimensional representation of A corresponding
to ξ, then

Vξ = S1 ⊕ . . .⊕ Sk with dim Si = di

That is, the stabilizer subgroup is GL(α) = C∗ × . . .×C∗ embedded in GLn via the
diagonal embedding

(λ1, . . . , λk) - diag(λ1, . . . , λ1︸ ︷︷ ︸
d1

, . . . , λk, . . . , λk︸ ︷︷ ︸
dk

)

Further, using basechange in repα Q• we can bring every simple α-dimensional
representation of Qα in standard form

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

1 //

1
??������

x

OO
1

__??????
1

oo

!!

where x ∈ C∗ is the arrow from vk to v1. That is, C[repα Q•]GL(α) ' C[x] proving
that the quotient (or central) variety X must be smooth in ξ by the Luna slice result.
Moreover, as Âξ ' T̂α Q• we have, using the numbering conventions of the vertices)
the following block decomposition

Âξ '



Md1(C[[x]]) Md1×d2(C[[x]]) . . . Md1×dk
(C[[x]])

Md2×d1(xC[[x]]) Md2(C[[x]]) . . . Md2×dk
(C[[x]])

...
...

. . .
...

Mdk×d1(xC[[x]]) Mdk×d2(xC[[x]]) . . . Mdk
(C[[x]])


and from the local description of hereditary orders given in [25, Thm. 39.14] we de-
duce that Aξ is an hereditary order. That is, we have the following characterization
of the smooth locus

Proposition 6.34 Let A be a Cayley-Hamilton order of degree n over a central
affine curve X. Then, Smn A is the locus of points ξ ∈ X such that Aξ is an
hereditary order (in particular, ξ must be a smooth point of X).

Globalizing this result, we obtain the following characterization of noncommuta-
tive smooth models in dimension one.

Theorem 6.35 Let A be a Cayley-Hamilton central OX-order of degree n where
X is a projective curve. Equivalent are

1. A is a sheaf of Cayley-smooth orders

2. X is smooth and A is a sheaf of hereditary OX-orders
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6.9 Surface orders.

The result below can equally be proved using the splitting operation and the classifi-
cation result.

Theorem 6.36 Let A be a Cayley-Hamilton order of degree n over an affine surface
X = isstn A. If ξ ∈ Smn A, then the étale local structure of A in ξ is determined
by a marked local quiver-setting Aklm on k + l +m ≤ n vertices

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

//

??��������

OO

OO

__????????

oo

//

oo

OO

��

}}

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

...

and an unordered partition p = (d1, . . . , dk+l+m) of n with k+ l+m non-zero parts
determined by the dimensions of the simple components of Vξ.

Proof. Let (Q•, α) be the marked quiver-setting on r vertices with α = (e1, . . . , er)
corresponding to ξ. As Q• is strongly connected and the quotient variety is two-
dimensional, Q• must contain more than one oriented cycle, hence it contains a sub-
quiver of type Aklm, possibly degenerated with k or l equal to zero. Order the first k+
l+m vertices of Q• as indicated. One verifies that Aklm has simple representations
of dimension vector (1, . . . , 1). Assume that Aklm is a proper subquiver and denote
s = k+l+m+1 then Q• has semi-simple representations in repα Q• with dimension-
vector decomposition

α1 = (1, . . . , 1︸ ︷︷ ︸
k+l+m

, 0, . . . , 0)⊕ ε⊕e1−1
1 ⊕ . . .⊕ ε⊕ek+l+m−1

k+l+m ⊕ ε⊕es
s ⊕ . . .⊕ ε⊕er

r

Applying the formula for the dimension of the quotient variety shows that
iss(1,...,1) Aklm has dimension 2 so there is a two-dimensional family of such semi-
simple representation in the two-dimensional quotient variety issα Q•. This is only
possible if this semi-simple representation is actually simple, whence r = k+ l+m,
Q• = Aklm and α = (1, . . . , 1). �

If Vξ is the semi-simple n-dimensional representation of A corresponding to ξ,
then

Vξ = S1 ⊕ . . .⊕ Sr with dim Si = di
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and the stabilizer subgroup GL(α) = C∗ × . . .× C∗ embedded diagonally in GLn

(λ1, . . . , λr) 7→ diag(λ1, . . . , λ1︸ ︷︷ ︸
d1

, . . . , λr, . . . , λr︸ ︷︷ ︸
dr

)

By basechange in repα Aklm we can bring every simple α-dimensional representation
in the following standard form

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
1 //

1
??�����

1
OO

1
OO

x

__?????
1
oo

y //

1
oo

OO

!!

{{

with x, y ∈ C∗ and as C[issα Aklm] = C[repα Aklm]GL(α) is the ring generated by
traces along oriented cycles in Aklm, it is isomorphic to C[x, y]. From the Luna slice
results one deduces that ξ must be a smooth point of X and because Âξ ' ̂Tα Aklm
we deduce it must have the following block-decomposition

Âξ '

@
@

@
@

@
@

@
@

@
@

@
@

@
@

(x)

(x)

(y)

(y)

(1)

(1)
(1)

(1)

(1)

(x)

(y)

(x, y)︸ ︷︷ ︸
k

︸ ︷︷ ︸
l

︸ ︷︷ ︸
m

⊂ - Mn(C[[x, y]])

where at spot (i, j) with 1 ≤ i, j ≤ k + l +m there is a block of dimension di × dj
with entries the indicated ideal of C[[x, y]].

Definition 6.37 Let A be a Cayley-Hamilton central C[X]-order of degree n in a
central simple C(X)- algebra ∆ of dimension n2.

1. A is said to be étale locally split in ξ if and only if Âξ is a central ÔX,x-order
in Mn(ÔX,x ⊗OX,x

C(X)).

2. The ramification locus ramA of A is the locus of points ξ ∈ X such that

A

mξAmξ
6'Mn(C)

The complement X − ramA is called the Azumaya locus azA of A.



234 CHAPTER 6. LOCAL CLASSIFICATION.

Theorem 6.38 Let A be a Cayley-smooth central OX-order of degree n over a
projective surface X. Then,

1. X is smooth.

2. A is étale locally split in all points of X.

3. The ramification divisor ramA ⊂ - X is either empty or consists of a finite
number of isolated (possibly embedded) points and a reduced divisor having as
its worst singularities normal crossings.

Proof. (1) and (2) follow from the above local description of A. As for (3) we
have to compute the local quiver-settings in proper semi-simple representations of
repα Aklm. As simples have a strongly connected support, the decomposition types
of these proper semi-simple can be depicted by one of the following two situations

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
1 //

1
??�����

1
OO

1
OO

x

__?????
1
oo

OO

!!
1(/).*-+, 1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,1
OO

1
OO
y //

1
oo

OO

{{

with x, y ∈ C∗. By the description of local quivers given in section 3 we see that
they are respectively of the following form

1(/).*-+,

1(/).*-+,

1(/).*-+,

A0l1

JJ�������������
__?????

99

{{

1(/).*-+, 1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

Ak01

WW/////////

KK������������������

ee

//

oo

!!

and the associated unordered partitions are defined in the obvious way, that is,
to the looped vertex one assigns the sum of the di belonging to the loop-contracted
circuit and the other components of the partition are preserved. Using the étale local
isomorphism between X in a neighborhood of ξ and of issα Aklm in a neighborhood
of the trivial representation, we see that the local picture of quiver-settings of A in
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a neighborhood of ξ can be represented by

���������������� Ak01

XX
��
bb

�������� ��������A0l1
��

XX<<

�������� ����������������
Aklm

��
XXXX
��

��������
A001

}}..

•

••

•//

OO
yysssssssss

__???????????????

The Azumaya points are the points in which the quiver-setting is A001 (the two-
loop quiver). From this local description the result follows if we take care of possibly
degenerated cases. For example, an isolated point in ξ can occur if the quiver-setting
in ξ is of type A00m with m ≥ 2, that is,

1��������
1��������

1��������
1��������

OO

OO

OO

ww''

�

In the next section we will characterize those central simple C(X)-algebras
∆ allowing a Cayley-smooth model. We first need to perform a local calcula-
tion. Consider the ring of algebraic functions in two variables C{x, y} and let
Xloc = Spec C{x, y}. There is only one codimension two subvariety : m = (x, y).
Let us compute the coniveau spectral sequence for Xloc. If K is the field of fractions
of C{x, y} and if we denote with kp the field of fractions of C{x, y}/p where p is a
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height one prime, we have as its first term

0 0 0 0 . . .

H2(K,µn) ⊕p H1(kp,Zn) µ−1
n 0 . . .

H1(K,µn) ⊕pZn 0 0 . . .

µn 0 0 0 . . .

Because C{x, y} is a unique factorization domain, we see that the map

H1
et(K,µn) = K∗/(K∗)n

γ- ⊕p Zn

is surjective. Moreover, all fields kp are isomorphic to the field of fractions of C{z}
whose only cyclic extensions are given by adjoining a root of z and hence they are
all ramified in m. Therefore, the component maps

Zn = H1
et(kp,Zn)

βL- µ−1

are isomorphisms. But then, the second (and limiting) term of the spectral sequence
has the form

0 0 0 0 . . .

Ker α Ker β/Im α 0 0 . . .

Ker γ 0 0 0 . . .

µn 0 0 0 . . .

Finally, we use the fact that C{x, y} is strict Henselian whence has no proper
étale extensions. But then,

Hi
et(Xloc, µn) = 0 for i ≥ 1

and substituting this information in the spectral sequence we obtain that the top
sequence of the coniveau spectral sequence

0 - Brn K
α- ⊕p Zn - Zn - 0

is exact. From this sequence we immediately obtain the following

Lemma 6.39 With notations as before, we have
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1. Let U = Xloc − V (x), then Brn U = 0

2. Let U = Xloc − V (xy), then Brn U = Zn with generator the quantum-plane
algebra

Cζ [u, v] =
C〈u, v〉

(vu− ζuv)

where ζ is a primitive n-th root of one

6.10 Noncommutative smooth surfaces.

Let ∆ be a central simple algebra of dimension n2 over a field of transcendence
degree 2 say L. We want to determine when ∆ admits a Cayley-smooth order A,
that is, a sheaf of Cayley-smooth OX-algebras where X is a projective surface with
functionfield C(X) = L. In the previous section we have seen that if such a model
exists, then X has to be a smooth projective surface. So we may assume that X
is a commutative smooth model for L. But then we know from the Artin-Mumford
exact sequence, proved in chapter 2, that the class of ∆ in Brn C(X) is determined
by the following geo-combinatorial data

• A finite collection C = {C1, . . . , Ck} of irreducible curves in X.

• A finite collection P = {P1, . . . , Pl} of points of X where each Pi is either an
intersection point of two or more Ci or a singular point of some Ci.

• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ and
{1, . . . , iP } the different branches of C in P . These numbers must satisfy the
admissibility condition ∑

i

bi = 0 ∈ Zn

for every P ∈ P

• for each C ∈ C we fix a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization C̃ of C which is compatible with the branch-data.

We have seen in chapter 2 that if A is a maximal OX-order in ∆, then the ramifi-
cation locus ramA coincides with the collection of curves C. We fix such a maximal
OX-order A and investigate its smooth locus.

Proposition 6.40 Let A be a maximal OX-order in ∆ with X a projective smooth
surface and with geo-combinatorial data (C,P, b,D) determining the class of ∆ in
Brn C(X).

If ξ ∈ X lies in X − C or if ξ is a non-singular point of C, then A is smooth in
ξ.

Proof. If ξ /∈ C, then Aξ is an Azumaya algebra over OX,x. As X is smooth in ξ,
A is Cayley-smooth in ξ. Alternatively, we know that Azumaya algebras are split
by étale extensions, whence Âξ ' Mn(C[[x, y]]) which shows that the behaviour of
A near ξ is controlled by the local data

1(/).*-+,%% yy . . .︸ ︷︷ ︸
n



238 CHAPTER 6. LOCAL CLASSIFICATION.

and hence ξ ∈ Smn A. Next, assume that ξ is a nonsingular point of the ramification
divisor C. Consider the pointed spectrum Xξ = Spec OX,ξ − {mξ}. The only prime
ideals are of height one, corresponding to the curves on X passing through ξ and
hence this pointed spectrum is a Dedekind scheme. Further, A determines a maximal
order over Xξ. But then, tensoring A with the strict henselization OshX,ξ ' C{x, y}
determines a sheaf of hereditary orders on the pointed spectrum X̂ξ = Spec C{x, y}−
{(x, y)} and we may choose the local variable x such that x is a local parameter of
the ramification divisor C near ξ.

Using the characterization result for hereditary orders over discrete valuation
rings, given in [25, Thm. 39.14] we know the structure of this extended sheaf if
hereditary orders over every height one prime of X̂ξ. Because Aξ is a reflexive
(even a projective) OX,ξ-module this height one information determines Ashξ or Âξ.
This proves that Ashξ must be isomorphic to the following blockdecomposition

Md1(C{x, y}) Md1×d2(C{x, y}) . . . Md1×dk
(C{x, y})

Md2×d1(xC{x, y}) Md2(C{x, y}) . . . Md2×dk
(C{x, y})

...
...

. . .
...

Mdk×d1(xC{x, y}) Mdk×d2(xC{x, y}) . . . Mdk
(C{x, y})


for a certain partition p = (d1, . . . , dk) of n having k parts. In fact, as we started
out with a maximal order A one can even show that all these integers di must be
equal. Anyway, this local form corresponds to the following quiver-setting

1(/).*-+, 1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

Ak01

WW///////

KK��������������

ee

//

oo

##
p = (d1, . . . , dk)

whence ξ ∈ Smn A as this is one of the allowed surface settings. �

Concluding, a maximal OX-order in ∆ can have at worst noncommutative sin-
gularities in the singular points of the ramification divisor C. We have seen that a
Cayley-smooth order over a surface has as ramification-singularities at worst nor-
mal crossings. We are always able to reduce to normal crossings by the following
classical result on commutative surfaces, see for example [9, V.3.8].

Theorem 6.41 (Embedded resolution of curves in surfaces) Let C be any
curve on the surface X. Then, there exists a finite sequence of blow-ups

X ′ = Xs
- Xs−1

- . . . - X0 = X
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and, if f : X ′ -- X is their composition, then the total inverse image f−1(C) is
a divisor with normal crossings.

Fix now a series of blow-ups X ′
f-- X such that the inverse image f−1(C) is a

divisor on X ′ having as worst singularities normal crossings. We will now replace
the Cayley-Hamilton OX-order A by a Cayley-Hamilton OX′-order A′ where A′ is
a sheaf of OX′-maximal orders in ∆. In order to determine the ramification divisor
of A′ we need to be able to keep track how the ramification divisor C of ∆ changes
if we blow up a singular point p ∈ P.

Lemma 6.42 Let X̃ -- X be the blow-up of X at a singular point p of C, the
ramification divisor of ∆ on X. Let C̃ be the strict transform of C and E the
exceptional line on X̃. Let C′ be the ramification divisor of ∆ on the smooth model
X̃. Then,

1. Assume the local branch data at p distribute in an admissible way on C̃, that
is, ∑

i at q

bi,p = 0 for all q ∈ E ∩ C̃

where the sum is taken only over the branches at q. Then, C′ = C̃.

2. Assume the local branch data at p do not distribute in an admissible way, then
C′ = C̃ ∪ E.

Proof. Clearly, C̃ ⊂ - C′ ⊂ - C̃ ∪ E. By the Artin-Mumford sequence applied to
X ′ we know that the branch data of C′ must add up to zero at all points q of C̃ ∩E.
We investigate the two cases

1. : Assume E ⊂ C′. Then, the E-branch number at q must be zero for all
q ∈ C̃ ∩ E. But there are no non-trivial étale covers of P1 = E so ram(∆) gives
the trivial element in H1

et(C(E), µn), a contradiction. Hence C′ = C̃.

??
??

??
??

??
??

??
??

? �����������������

•
p

a −a

E

a

−a

−a

a

2. : If at some q ∈ C̃ ∩E the branch numbers do not add up to zero, the only remedy
is to include E in the ramification divisor and let the E-branch number be such that
the total sum is zero in Zn. �

Theorem 6.43 Let ∆ be a central simple algebra of dimension n2 over a field L
of transcendence degree two. Then, there exists a smooth projective surface S with
functionfield C(S) = L such that any maximal OS-order AS in ∆ has at worst a
finite number of isolated noncommutative singularities. Each of these singularities
is locally étale of quantum-plane type.

Proof. We take any projective smooth surface X with functionfield C(X) = L. By
the Artin-Mumford exact sequence, the class of ∆ determines a geo-combinatorial
set of data

(C,P, b,D)
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as before. In particular, C is the ramification divisor ram(∆) and P is the set of
singular points of C. We can separate P in two subsets

• Punr = {P ∈ P where all the branch-data bP = (b1, . . . , biP ) are trivial, that
is, all bi = 0 in Zn}

• Pram = {P ∈ P where some of the branch-data bP = (b1, . . . , biP ) are non-
trivial, that is, some bi 6= 0 in Zn}

After a finite number of blow-ups we get a birational morphism S1
π-- X such that

π−1(C) has as its worst singularities normal crossings and all branches in points of
P are separated in S. Let C1 be the ramification divisor of ∆ in S1. By the foregoing
argument we have

• If P ∈ Punr, then we have that C′ ∩ π−1(P ) consists of smooth points of C1,

• If P ∈ Pram, then π−1(P ) contains at least one singular points Q of C1 with
branch data bQ = (a,−a) for some a 6= 0 in Zn.

In fact, after blowing-up singular points Q′ in π−1(P ) with trivial branch-data we
obtain a smooth surface S -- S1

-- X such that the only singular points of the
ramification divisor C′ of ∆ have non-trivial branch-data (a,−a) for some a ∈ Zn.
Then, take a maximal OS-order A in ∆. By the local calculation of Brn C{x, y}
performed in the last section we know that locally étale A is of quantum-plane type
in these remaining singularities. As the quantum-plane is not étale locally split, A
is not Cayley-smooth in these finite number of singularities. �

In fact, the above proof gives also a complete classification of those central simple
algebras admitting a Cayley-smooth model.

Theorem 6.44 Let ∆ be a central simple C(X)-algebra of dimension n2 determined
by the geo-combinatorial data (C,P, b,D) given by the Artin-Mumford sequence.
Then, ∆ admits a Cayley-smooth model if and only if all branch-data are trivial.

Proof. If all branch-data are trivial, the foregoing proof constructs a Cayley-smooth
model of ∆. Conversely, if A is a Cayley-smooth OS-order in ∆ with S a smooth
projective model of C(X), then A is locally étale split in every point s ∈ S. But
then, so is any maximal OS-order Amax containing A. By the foregoing arguments
this can only happen if all branch-data are trivial. �

6.11 Higher dimensional orders.

The strategy we used to characterize the central simple algebras over a surface ad-
mitting a Cayley-smooth model can also be applied (at least in principle) to higher
dimensional varieties. First, one uses the classification result of marked quiver-
settings to compile a list of allowed étale local behaviour of Cayley-smooth orders
and of their ramification. Next, if a subclass of central simple algebras is deter-
mined by ramification data, the obtained local behaviour puts restrictions on those
admitting a smooth model. We have seen that in the case of curves and surfaces,
the central variety X of a Cayley-smooth model A had to be smooth and that A is
étale locally split in every point ξ ∈ X. Both of these properties are no longer valid
in higher dimensions.

Lemma 6.45 For dimension d ≥ 3, the center Z of a Cayley-smooth order of
degree n can have singularities.
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Proof. Consider the following marked quiver-setting

1(/).*-+, 1(/).*-+,a
''

b

  

c

gg

d

__

which is allowed for dimension d = 3 and degree n = 2. The quiver-invariants are
generated by the traces along oriented cycles, that is, are generated by ac, ad, bc and
bd. That is,

C[issα Q] ' C[x, y, z, v]
(xv − yz)

which has a singularity in the origin. This example can be extended to dimensions
d ≥ 3 by adding loops in one of the vertices.

1(/).*-+, 1(/).*-+,a
''

b

  

c

gg

d

__d − 3 5=

�

Lemma 6.46 For dimension d ≥ 3, a Cayley-smooth algebra does not have to be
locally étale split in every point of its central variety.

Proof. Consider the following allowable quiver-setting for d = 3 and n = 2

2(/).*-+,•
%%

•
yy

The corresponding Cayley-smooth algebra A is generated by two generic 2× 2 trace
zero matrices, say A and B. Using our knowledge of T2

2 we see that its center is
generated by A2 = x, B2 = z and AB + BA = z. Alternatively, we can identify A
with the Clifford-algebra over C[x, y, z] of the non-degenerate quadratic form[

x y
y z

]
This is a noncommutative domain and remains to be so over the formal power series
C[[x, y, z]]. That is, A cannot be split by an étale extension in the origin. More
generally, whenever the local marked quiver contains vertices with dimension ≥ 2,
the corresponding Cayley-smooth algebra cannot be split by an étale extension as the
local quiver-setting does not change and for a split algebra all vertex-dimensions have
to be equal to 1. In particular, the Cayley-smooth algebra of degree 2 corresponding
to the quiver-setting

2(/).*-+,•k

!)
l

u}

cannot be split by an étale extension in the origin. Its corresponding dimension is

d = 3k + 4l − 3

whenever k + l ≥ 2 and so all dimensions d ≥ 3 are reached. �
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Chapter 7

Moduli Spaces.

In the study of the Hilbert scheme Hilbn of n points in C2 we ran into the quiver
setting (Q,α)

1(/).*-+, n(/).*-+,// ��
EE

In fact, we proved that Hilbn is the orbit space of the GL(α)-orbits on triples
(A,B, u) ∈ repα Q = Mn ⊕ Mn ⊕ Cn such that [A,B] = 0 and u is a cyclic
vector for (A,B). None of these triples (A,B, u) determines a closed GL(α)-orbit
in repα Q because

lim
t→0

(1, trrn).(A,B, v) = (A,B, 0)

Still, a cyclic triple does determine a closed GL(α)-orbit in some Zariski open sub-
set rep (σ) determined by a Hilbert stair σ, as the dimension of all GL(α)-orbits
in rep (σ) is equal to n2. Such situations, where a shortage of closed orbits is com-
pensated when restricted to suitable open subsets, often occur such as in the study
of linear dynamical systems as we will see in the first sections.

For a general quiver setting (Q,α) and a character χθ : GL(α) - C∗ we
will study a moduli space Mss

α (Q, θ) classifying closed orbits in the Zariski open
subset of so called θ-semistable representations of repα Q. These moduli spaces
were introduced and studied by A. King in [12]. The intuition we have formed on
algebraic quotient varieties is helpful in studying these moduli spaces provided we
use the following dictionary

issα Q Mss
α (Q, θ)

closed orbits in repα Q closed orbits in repssα (Q, θ)
simple representation θ-stable representation
semi-simple representation direct sum of θ-stable representations
polynomial invariants semi-invariants of weight θ

A first important problem is to determine which of these moduli spaces are non-
empty, that is for which triples (Q,α, θ) do there exist θ-(semi)stable representa-
tions in repα Q. A beautiful inductive combinatorial answer to this problem was
discovered by A. Schofield [27]. His characterization of the dimension vectors α
allowing θ-stables is as fundamental to the study of the moduli spaces Mss

α (Q, θ) as
the description of the dimension vectors of simple representations is to the study of
the quotient varieties issα Q. These moduli spaces are defined to be the projective
varieties of certain graded algebras of semi-invariant functions. Hence, we need to
find generators of semi-invariants precisely as we needed to control the polynomial

243
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invariants to study the quotient varieties. Of the many independent description of
these semi-invariants we follow here the approach due to A. schofield and M. Van
den Bergh in [28].

In the next chapter we will see that the investigation of these moduli spaces is
crucial in the study of fibers of the representation spaces repn A -- issn A and
of the Brauer-Severi fibration BSn A -- issn A for Cayley-smooth algebras A of
degree n.

7.1 Dynamical systems.

A linear time invariant dynamical system Σ is determined by the following system
of differential equations 

dx

dt
= Bx+Au

y = Cx.
(7.1)

Here, u(t) ∈ Cm is the input or control of the system at tome t, x(t) ∈ Cn the
state of the system and y(t) ∈ Cp the output of the system Σ. Time invariance
of Σ means that the matrices A ∈ Mn×m(C), B ∈ Mn(C) and C ∈ Mp×n(C) are
constant. The system Σ can be represented as a black box

u(t) y(t)

x(t)

• •// //

which is in a certain state x(t) that we can try to change by using the input controls
u(t). By reading the output signals y(t) we can try to determine the state of the
system.

Recall that the matrix exponential eB of any n × n matrix B is defined by the
infinite series

eB = rr
n +B +

B2

2!
+ . . .+

Bm

m!
+ . . .

The importance of this construction is clear from the fact that eBt is the fundamental
matrix for the homogeneous differential equation dx

dt = Bx. That is, the columns of
eBt are a basis for the n-dimensional space of solutions of the equation dx

dt = Bx.
Motivated by this, we look for a solution to equation (7.1) as the form x(t) =

eBtg(t) for some function g(t). Substitution gives the condition

dg

dt
= e−BtAu whence g(τ) = g(τ0) +

∫ τ

τ0

e−BtAu(t)dt.

Observe that x(τ0) = eBτ0g(τ0) and we obtain the solution of the linear dynamical
system Σ = (A,B,C) :{

x(τ) = e(τ−τ0)Bx(τ0) +
∫ τ
τ0
e(τ−t)BAu(t)dt

y(τ) = CeB(τ−τ0)x(τ0) +
∫ τ
τ0
Ce(τ−t)BAu(t)dt.

Differentiating we see that this is indeed a solution and it is the unique one having
a prescribed starting state x(τ0). Indeed, given another solution x1(τ) we have that
x1(τ)− x(τ) is a solution to the homogeneous system dx

dt = Bt, but then

x1(τ) = x(τ) + eτBe−τ0B(x1(τ0)− x(τ0)).
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We call the system Σ completely controllable if we can steer any starting state
x(τ0) to the zero state by some control function u(t) in a finite time span [τ0, τ ].
That is, the equation

0 = x(τ0) +
∫ τ

τ0

e(τ0−t)BAu(t)dt

has a solution in τ and u(t). As the system is time-invariant we may always assume
that τ0 = 0 and have to satisfy the equation

0 = x0 +
∫ τ

0

etBAu(t)dt for every x0 ∈ Cn (7.2)

Consider the control matrix c(Σ) which is the n×mn matrix

c(Σ) = A BA B2A Bn-1A. . .

Assume that rk c(Σ) < n then there is a non-zero state s ∈ Cn such that sτ c(Σ) = 0,
where sτ denotes the transpose (row column) of s. Because B satisfies the charac-
teristic polynomial χB(t), Bn and all higher powers Bm are linear combinations of
{rrn, B,B2, . . . , Bn−1}. Hence, sτBmA = 0 for all m. Writing out the power series
expansion of etB in equation (7.2) this leads to the contradiction that 0 = sτx0 for
all x0 ∈ Cn. Hence, if rk c(Σ) < n, then Σ is not completely controllable.

Conversely, let rk c(Σ) = n and assume that Σ is not completely controllable.
That is, the space of all states

s(τ, u) =
∫ τ

0

e−tBAu(t)dt

is a proper subspace of Cn. But then, there is a non-zero state s ∈ Cn such that
strs(τ, u) = 0 for all τ and all functions u(t). Differentiating this with respect to τ
we obtain

stre−τBAu(τ) = 0 whence stre−τBA = 0 (7.3)

for any τ as u(τ) can take on any vector. For τ = 0 this gives strA = 0. If we
differentiate (7.3) with respect to τ we get strBe−τBA = 0 for all τ and for τ = 0
this gives strBA = 0. Iterating this process we show that strBmA = 0 for any m,
whence

str
[
A BA B2A . . . Bn−1A

]
= 0

contradicting the assumption that rk c(Σ) = n. That is, we have proved :

Proposition 7.1 A linear time-invariant dynamical system Σ determined by the
matrices (A,B,C) is completely controllable if and only if rk c(Σ) is maximal.

We say that a state x(τ) at time τ is unobservable if Ce(τ−t)Bx(τ) = 0 for all
t. Intuitively this means that the state x(τ) cannot be detected uniquely from the
output of the system Σ. Again, if we differentiate this condition a number of times
and evaluate at t = τ we obtain the conditions

Cx(τ) = CBx(τ) = . . . = CBn−1x(τ) = 0.

We say that Σ is completely observable if the zero state is the only unobservable
state at any time τ . Consider the observation matrix o(Σ) of the system Σ which
is the pn× n matrix

o(Σ) =
[
Ctr (CB)tr . . . (CBn−1)tr

]tr
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An analogous argument as in the proof of proposition 7.1 gives us that a linear time-
invariant dynamical system Σ determined by the matrices (A,B,C) is completely
observable if and only if rk o(Σ) is maximal. For reasons which will become clear
in a moment, we call linear time-invariant dynamical systems which are both com-
pletely controllable and completely observable Schurian systems. An important prob-
lem in system theory is to classify the Schurian systems with the same input/output
behavior. We reduce this problem to the study of GLn-orbits in an open subset of a
vectorspace. Assume we have two systems Σ and Σ′, determined by matrix triples
from Sys = Mn×m(C) ×Mn(C) ×Mp×n(C) producing the same output y(t) when
given the same input u(t), for all possible input functions u(t). We recall that the
output function y for a system Σ = (A,B,C) is determined by

y(τ) = CeB(τ−τ0)x(τ0) +
∫ τ

τ0

Ce(τ−t)BAu(t)dt.

Differentiating this a number of times and evaluating at τ = τ0 as in the proof of
proposition 7.1 equality of input/output for Σ and Σ′ gives the conditions

CBiA = C ′B
′iA′ for all i.

As a consequence the systems Σ and Σ′ have the same Hankel matrix which by
definition is the product of the observation matrix with the control matrix of the
system :

H(Σ) =


C
CB
...

CBn−1

 [
A BA . . . Bn−1A

]
=

CA CBA

CBA CB2A

CB2n-2A

. . .

. . .

. . .
...

...

But then, we have for any v ∈ Cmn that c(Σ)(v) = 0 ⇔ c(Σ′)(v) = 0 and we can
decompose Cpn = V ⊕W such that the restriction of c(Σ) and c(Σ′) to V are the
zero map and the restrictions to W give isomorphisms with Cn. Hence, there is
an invertible matrix g ∈ GLn such that c(Σ′) = gc(Σ) and from the commutative
diagram

Cmn c(Σ)-- Cn ⊂
o(Σ)- Cpn

‖ ‖

Cmn c(Σ′)-- Cn

g

?
⊂

o(Σ′)- Cpn

we obtain that also o(Σ′) = o(Σ)g−1. Consider the system Σ1 = (A1, B1, C1)
equivalent with Σ under the base-change matrix g. That is, Σ1 = g.Σ =
(gA, gBg−1, Cg−1). Then,[

A1, B1A1, . . . , B
n−1
1 A1

]
= gc(Σ) = c(Σ′) =

[
A′, B′A′, . . . , B

′n−1A′
]

and so A1 = A′. Further, as Bi+1
1 A1 = B

′i+1A′ we have by induction on i that the
restriction of B1 on the subspace of B

′iIm(A′) is equal to the restriction of B′ on
this space. Moreover, as

∑n−1
i=0 B

′iIm(A′) = Cn it follows that B1 = B′. Because
o(Σ′) = o(Σ)g−1 we also have C1 = C ′. This finishes the proof of :
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Proposition 7.2 Let Σ = (A,B,C) and Σ′ = (A′, B′, C ′) be two Schurian dynam-
ical systems. The following are equivalent

1. The input/output behavior of Σ and Σ′ are equal.

2. The systems Σ and Σ′ are equivalent, that is, there exists an invertible matrix
g ∈ GLn such that

A′ = gA, B′ = gBg−1 and C ′ = Cg−1.

By definition, a dynamical system Σ = (A,B,C) is Schurian if (and only if) the
determinant of at least one n× n minor of c(Σ) and o(Σ) is non-zero. That is, the
subset Syss of Schurian dynamical systems is open in Sys and is stable under the
GLn-action. Our next job is to classify the orbits under this action. We introduce
a combinatorial gadget : the Kalman code. It is an array consisting of (n+ 1)×m
boxes each having a position label (i, j) where 0 ≤ i ≤ n and 1 ≤ j ≤ m. These
boxes are ordered lexicographically that is (i′, j′) < (i, j) if and only if either i′ < i
or i′ = i and j′ < j. Exactly n of these boxes are painted black subject to the rule
that if box (i, j) is black, then so is box (i′, j) for all i′ < i. That is, a Kalman code
looks like

0

n

1 m

We assign to a completely controllable system Σ = (A,B,C) its Kalman code K(Σ)
as follows : let A =

[
A1 A2 . . . Am

]
, that is Ai is the i-th column of A. Paint

the box (i, j) black if and only if the column vector BiAj is linearly independent of
the column vectors BkAl for all (k, l) < (i, j). The painted array K(Σ) is indeed a
Kalman code. Assume that box (i, j) is black but box (i′, j) white for i′ < i, then

Bi
′
Aj =

∑
(k,l)<(i′,j)

αklB
kAl but then, BiAj =

∑
(k,l)<(i′,j)

αklB
k+i−i′Al

and all (k + i − i′, l) < (i, l), a contradiction. Moreover, K(Σ) has exactly n black
boxes as there are n linearly independent columns of the control matrix c(Σ) when Σ
is completely controllable. The Kalman code is a discrete invariant of the orbit O(Σ)
under the action of GLn. This follows from the fact that BiAj is linearly indepen-
dent of the BkAl for all (k, l) < (i, j) if and only if gBiAj is linearly independent
of the gBkAl for any g ∈ GLn and the observation that gBkAl = (gBg−1)k(gA)l.

With Vc we will denote the open subset of all completely controllable pairs (A,B)
that is, those for which the rank of the n×nm matrix

[
A BA B2A . . . Bn−1A

]
is maximal. We consider the map

V = Mn×m(C)⊕Mn(C)
ψ - Mn×(n+1)m(C)

(A,B) 7→
[
A BA B2A . . . Bn−1A BnA

]
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The matrix ψ(A,B) determines a linear map ψ(A,B) : C(n+1)m - Cn and (A,B)
is a completely controllable pair if and only if the corresponding linear map ψ(A,B)

is surjective. Moreover, there is a linear action of GLn on Mn×(n+1)m(C) by left
multiplication and the map ψ is GLn-equivariant.

7.2 Grassmannians.

The Kalman code induces a barcode on ψ(A,B), that is the n×n minor of ψ(A,B)
determined by the columns corresponding to black boxes in the Kalman code.

ψ(A,B)

By construction this minor is an invertible matrix g−1 ∈ GLn. We can choose a
canonical point in the orbit O (A,B) : g.(A,B). It does have the characteristic
property that the n×n minor of its image under ψ, determined by the Kalman code
is the identity matrix rr

n. The matrix ψ(g.(A,B)) will be denoted by b(A,B) and
is called barcode of the pair (A,B). We claim that the barcode determines the orbit
uniquely.

The map ψ is injective on the open set Vc of completely controllable pairs. Indeed,
if [

A BA . . . BnA
]

=
[
A′ B′A′ . . . B

′nA′
]

then A = A′, B | Im(A) = B′ | Im(A) and hence by induction also

B | BiIm(A) = B′ | B
′iIm(A′) for all i ≤ n− 1.

But then, B = B′ as both pairs (A,B) and (A′, B′) are completely controllable,
that is,

∑n−1
i=0 B

iIm(A) = Cn =
∑n−1
i=0 B

′iIm(A′). Hence, the barcode b(A,B)
determines the orbit O (A,B) and is a point in the Grassmannian Grassn(m(n+1)).

We briefly recall the definition of these Grassmannians. Let k ≤ l be integers,
then the points of the Grassmannian Grassk(l) are in one-to-one correspondence
with k-dimensional subspaces of Cl. For example, if k = 1 then Grass1(l) = Pl−1.
We know that projective space can be covered by affine spaces defining a manifold
structure on it. Also Grassmannians admit a cover by affine spaces.

Let W be a k-dimensional subspace of Cl then fixing a basis {w1, . . . , wk} of W
determines an k× l matrix M having as i-th row the coordinates of wi with respect
to the standard basis of Cl. Linear independence of the vectors wi means that there
is a barcode design I on M

w1

...
wk

i1 i2 . . . ik

where I = 1 ≤ i1 < i2 < . . . < ik ≤ l such that the corresponding k × k minor MI

of M is invertible. Observe that M can have several such designs.
Conversely, given a k × l matrix M of rank k determines a k-dimensional sub-

space of l spanned by the transposed rows. Two k × l M and M ′ matrices of rank
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k determine the same subspace provided there is a basechange matrix g ∈ GLk such
that gM = M ′. That is, we can identify Grassk(l) with the orbit space of the
linear action of GLk by left multiplication on the open set Mmax

k×l (C) of Mk×l(C)
of matrices of maximal rank. Let I be a barcode design and consider the subset of
Grassk(l)(I) of subspaces having a matrix representation M having I as barcode
design. Multiplying on the left with M−1

I the GLk-orbit OM has a unique repre-
sentant N with NI = rr

k. Conversely, any matrix N with NI = rr
k determines a

point in Grassk(l)(I). Thus, Grassk(l)(I) depends on k(l−k) free parameters (the
entries of the negative of the barcode)

w1

...
wk

i1 i2 . . . ik

and we have an identification Grassk(l)(I)
πI- Ck(l−k). For a different barcode

design I ′ the image πI(Grassk(l)(I) ∩ Grassk(l)(I ′)) is an open subset of Ck(l−k)
(one extra nonsingular minor condition) and πI′ ◦ π−1

I is a diffeomorphism on this
set. That is, the maps πI provide us with an atlas and determine a manifold struc-
ture on Grassk(l).

Returning to dynamical systems, the barcode b(A,B) determined by the Kalman
code determines a unique point in Grassn(m(n+ 1)). We have

Vc ⊂
ψ- Mmax

n×m(n+1)(C)

Grassn(m(n+ 1))

χ

??

b(.)

-

where ψ is a GLn-equivariant embedding and χ the orbit map. Observe that the bar-
code matrix b(A,B) shows that the stabilizer of (A,B) is trivial. Indeed, the minor
of g.b(A,B) determined by the Kalman code is equal to g. Moreover, continuity of b
implies that the orbit O (A,B) is closed in Vc. We claim that ψ is a diffeomorphism
to a locally closed submanifold of Mn×m(n+1)(C). To prove this we have to consider
the differential of ψ. For all (A,B) ∈W and (X,Y ) ∈ T(A,B)(V ) ' V we have

(B + εY )j(A+ εX) = BnA+ ε (BnX +
j−1∑
i=0

BiY Bn−1−iA).

Therefore the differential of ψ in (A,B) ∈ V , dψ(A,B)(X,Y ) is equal to[
X BX + Y A B2X +BY A+ Y BA . . . BnX +

∑n−1
i=0 B

iY Bn−1−iA
]
.

Assume dψ(A,B)(X,Y ) is the zero matrix, then X = 0 and substituting in the next
term also Y A = 0. Substituting in the third gives Y BA = 0, then in the fourth
Y B2A = 0 and so on until Y Bn−1A = 0. But then,

Y
[
A BA B2A . . . Bn−1A

]
= 0.

If (A,B) is a completely controllable pair, this implies that Y = 0 and hence shows
that dψ(A,B) is injective for all (A,B) ∈ Vc. By the implicit function theorem, ψ
induces a GLn-equivariant diffeomorphism between the open subset Vc of completely
controllable pairs and a locally closed submanifold of Mn×(n+1)m(C)max. The image
of this submanifold under the orbit map χ is again a manifold as all fibers are equal
to GLn. This concludes the difficult part of the Kalman theorem :
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Theorem 7.3 The orbit space Oc = Vc/GLn of equivalence classes of completely
controllable pairs is a locally closed submanifold of dimension m.n of the Grassman-
nian Grassn(m(n+ 1)). In fact Vc

b-- Oc is a principal GLn-bundle.

To prove the dimension statement, consider Vc(K) the set of completely control-
lable pairs (A,B) having Kalman code K and let Oc(K) be the image under the orbit
map. After identifying Vc(K) with its image under ψ, the barcode matrix b(A,B)
gives a section Oc(K) ⊂

s- Vc(K). In fact,

GLn ×Oc(K) - Vc(K) (g, x) 7→ g.s(x)

is a GLn-equivariant diffeomorphism because the n× n minor determined by K of
g.b(A,B) is g. Apply the local product decomposition to the generic Kalman code
Kg

0

n

1 m

obtained by painting the top boxes black from left to right until one has n black boxes.
Clearly Vc(Kg) is open in Vc and one deduces

dim Oc = dim Oc(Kg) = dim Vc(Kg)− dim GLn = mn+ n2 − n2 = mn.

The Kalman theorem implies the existence of an orbit space for completely
controllable and Schurian systems. Indeed, let Σ = (A,B,C) completely control-
lable and let g = g(A,B) ∈ GLn be the uniquely determined basechange such that
g.(A,B) = b(A,B), then we have a canonical representant (gA, gBg−1, Cg−1) in
the orbit O(Σ). As the stabilizer Stab(A,B) is trivial the orbits of (A,B,C) and
(A,B,C ′) are distinct if C = C ′. That is the natural projection pr3

Sysc
pr3 -- Vc

Sysc/GLn

?

................
-- Oc

b

??

descends to define an orbit space which is an Mp×n(C)- bundle over Oc and hence
is a manifold. The Schurian systems Syss form a GLn-stable open subset of Sysc
and hence their orbit space is an open submanifold of Sysc/GLn.

Theorem 7.4 Let Sysc (resp. Syss) the the open subset of

Sys = Mn×m(C)⊕Mn(C)⊕Mp×n(C)

determined by the completely controllable (resp. Schurian) linear dynamical sys-
tems.

1. The orbit space for the GLn action on Sysc exists and is a vectorbundle of
rank pn over Oc.

2. The orbit space for the GLn-action on Syss exists and is a manifold of di-
mension mn2p.
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7.3 Mixed semi-invariants.

The space Sys of all linear systems determined by the numbers (m,n, p) can be
identified with the representation space of the quiver situation repα Q with α =
(m,n, p) and Q the quiver

n(/).*-+,m(/).*-+, p(/).*-+,��
// //

Instead of considering GL(α)-orbits we only consider the GLn-action. Up till now
we have only considered GL(α)-invariant functions to classify (closed) orbits. Ob-
serve that a completely controllable system Σ = (A,B) does not determine a closed
GLn-orbit in V = Mn×m ⊕Mn as the action of the scalar matrix g = εrrn gives
the system (εA,B) and hence (0n×m, B) is a (not completely controllable) system
belonging to the orbit closure O(Σ). Still, we were able to construct a nice orbit
space for such systems because the orbit O(Σ) is closed in the open subvariety V s.
We will give an interpretation of the orbit map in invariant-theoretic language.

There is a natural embedding Grassk(l) ⊂ - PN where N =
(
l
k

)
+ 1 given by

sending a point to the N -tuple of all determinants of the k × k minors determined
by the different bar-code designs I

w1

...
wk

i1 i2 . . . ik

-

det

266664
w1i1

. . . w1ik

.

.

.

.

.

.
wki1

. . . wkik

377775

Composing the orbit map b with this embedding, a system Σ = (A,B) is send to the
N -tuple of determinants det bI(A,B). For a different point g.(A,B) in the orbit
O(Σ) we have that

det bI(g.(A,B)) = det(g)det bI(A,B)

That is, these functions are semi-invariants for GLn. In general, if V is a GLn-
module, a polynomial function f on V is said to be a semi-invariant if for all v ∈ V
we have

f(g.v) = χ(g)f(v) for some character GLn
χ- C∗

and we recall that every character of GLn is of the form detk for some k ∈ Z.
Equivalently, f is an invariant polynomial for the restricted action of the special
linear group SLn = { g ∈ GLn | det(g) = 1 } on V .

In chapter 1, we ran into semi-invariants in the description of the orbit space
for the GLn-action on repα M = Mn ⊕Mn ⊕Cn ⊕Cn∗ using Hilbert stairs. Recall
that a Hilbert stair σ, that is, the lower triangular part of a square of n × n array
of boxes filled with go-stones subject to the rules

• each row contains exactly one stone, and

• each column contains at most one stone of each color.

determines a sequence W (σ) = {1, w2, . . . , wn} of monomials in the noncommuting
variables x and y, placing 1 at the top of the stairs and descending the chair fol-
lowing the rule that every go-stone has a top word T which we may assume we have
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constructed before and a side word S and they are related as indicated below

T

S

1

T

xT

1

•

T

yT

1

◦

For a quadruple (X,Y, u, v) ∈ repα M we replace every occurrence of x in the
word wi(x, y) by X and every occurrence of y by Y to obtain an n × n matrix
wi = wi(X,Y ) ∈Mn(C) and by left multiplication on u a column vector wi.v. The
evaluation of σ on (X,Y, u, v) is the determinant of the n× n matrix

σ(X,Y, u, v) = det u w2.u w3.u wn.u. . .

These functions were used to separate the orbits of cyclic quadruples. As for every
monomial w(x, y) and every g ∈ GLn we have that

w(gX−1, gY g−1)gu = gw(X,Y )u

we see that the functions σ(X,Y, u, v) are again semi-invariants for the action of
GLn, or equivalently, SLn-invariants on repα M.

In this section we will determine all such mixed semi-invariants for GLn acting
on the vectorspace

W = Mn ⊕ . . .⊕Mn︸ ︷︷ ︸
k

⊕Vn ⊕ . . .⊕ Vn︸ ︷︷ ︸
m

⊕V ∗n ⊕ . . .⊕ V ∗n︸ ︷︷ ︸
p

made up of k matrix-components Mn on which GLn act by simultaneous conju-
gation, m vector-components Vn on which GLn-acts by left-multiplication and p
covector-components V ∗n on which GLnact via the contragradient action. That is,
W is the representation space of the quiver situation

n(/).*-+,m(/).*-+, p(/).*-+,
k

��
// //

where we restrict the usual GL(α)-action to the GLn-component. We will determine
the generating semi-invariant polynomials, that is, the SLn-invariant functions on
W . In chapter 3 we worked out a similar problem in great detail, here we merely
sketch the main steps. In section 6 we will generalize these calculations to determine
the GL(α)-semi-invariants on an arbitrary quiver situation repα Q.

As always, we first determine the multilinear SLn-invariants, that is the SLn-
invariant linear maps

Mn ⊗ . . .⊗Mn︸ ︷︷ ︸
i

⊗Vn ⊗ . . .⊗ Vn︸ ︷︷ ︸
j

⊗V ∗n ⊗ . . .⊗ V ∗n︸ ︷︷ ︸
z

f- C

By the identification Mn = Vn⊗ V ∗n we have to determine the SLn-invariant linear
maps

V ⊗i+jn ⊗ V ∗⊗i+zn

f- C
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The description of such invariants is given by classical invariant theory, see for
example [32, II.5,Thm. 2.5.A].

Theorem 7.5 The multilinear SLn-invariants f of the situation above are linear
combinations of invariants of one of the following two types

1. For (i1, . . . , in, h1, . . . , hn, . . . , t1, . . . , tn, s1, . . . , sr) a permutation of the i+ j
vector indices and (u1, . . . , ur) a permutation of the i + z covector indices,
consider the SLn-invariant

[vi1 , . . . , vin ] [vh1 , . . . , vhn
] . . . [vt1 , . . . , vtn ] φu1(vs1) . . . φur

(vsr
)

where the brackets are the determinantal invariants

[va1 , . . . , van
] = det

[
va1 va2 . . . van

]
2. For (i1, . . . , in, h1, . . . , hn, . . . , t1, . . . , tn, s1, . . . , sr) a permutation of the i+ z

covector indices and (u1, . . . , ur) a permutation of the i + j vector indices,
consider the SLn-invariant

[φi1 , . . . , φin ]∗ [φh1 , . . . , φhn
]∗ . . . [φt1 , . . . , φtn ]∗ φu1(vs1) . . . φur

(vsr
)

where the brackets are the determinantal invariants

[φa1 , . . . , φan
]∗ = det

φa1

...
φan


Observe that we do not have at the same time brackets of vectors and of covectors,
due to the relation

[v1, . . . , vn] [φ1, . . . , φn] = det

φ1(v1) . . . φ1(vn)
...

...
φn(v1) . . . φn(vn)


Our next job is to give a matrix-interpretation of these basic invariants. Let us
consider the case of a bracket of vectors (the case of covectors is similar)

[vi1 , . . . , vin ]

If all the indices {i1, . . . , in} are original vector-indices (and so do not come from
the matrix-terms) we save this term and go to the next factor. Otherwise, if say i1
is one of the matrix indices, Ai1 = φi1 ⊗ vi1 , then the covector φi1 must be paired
up in a scalar product φi1(vu1) with a vector vu1 . Again, two cases can occur. If u1

is a vector index, we have that

φi1(vu1)[vi1 , . . . , vin ] = [Ai1vu1 , vi2 , . . . , vin ] = [v′i1 , vi2 , . . . , vin ]

Otherwise, we can keep on matching the matrix indices and get an expression

φi1(vu1) φu1(vu2) φu2(vu3) . . .

until we finally hit again a vector index, say ul, but then we have the expression

φi1(vu1) φu1(vz1) . . . φul−1(vul
) [vi1 , . . . , vin ] = [Mvul

, vi2 , . . . , vin ]

where M = Ai1Au1 . . . Aul−1 . One repeats the same argument for all vectors in the
brackets. As for the remaining scalar product terms, we have a similar procedure of
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matching up the matrix indices and one verifies that in doing so one obtains factors
of the type

φ(Mv) and tr(M)

where M is a monomial in the matrices. As we mentioned, the case of covector-
brackets is similar except that in matching the matrix indices with a covector φ, one
obtains a monomial in the transposed matrices.

Having found these interpretations of the basic SLn-invariant linear terms, we
can proceed by polarization and restitution processes as explained in chapter 3, to
finish the proof of the next result, due to C. Procesi [24, Thm 12.1].

Theorem 7.6 The SLn-invariants of W = repα Q where Q is the quiver

n(/).*-+,m(/).*-+, p(/).*-+,
k

��
// //

are generated by the following four types of functions, where we write a typical
element in W as

(A1, . . . , Ak︸ ︷︷ ︸
k

, v1, . . . , vm︸ ︷︷ ︸
m

, φ1, . . . , φp︸ ︷︷ ︸
p

)

with the Ai the matrices corresponding to the loops, the vj making up the rows of
the n×m matrix and the φj the columns of the p× n matrix.

• tr(M) where M is a monomial in the matrices Ai,

• scalar products φj(Mvi) where M is a monomial in the matrices Ai,

• vector-brackets [M1vi1 ,M2vi2 , . . . ,Mnvin ] where the Mj are monomials in the
matrices Ai,

• covector-brackets [M1φ
τ
i1
, . . . ,Mnφ

τ
in

] where the Mj are monomials in the ma-
trices Ai,

7.4 General subrepresentations.

Throughout this section we fix a quiver Q on k vertices {v1, . . . , vk} and dimension
vectors α = (a1, . . . , ak) and β = (b1, . . . , bk). We want to describe morphisms
between representations V ∈ repα Q and W ∈ repβ Q. That is, we consider the
closed subvariety

HomQ(α, β) ⊂ - Ma1×b1 ⊕ . . .⊕Mak×bk
⊕ repα Q⊕ repβ Q

consisting of the triples (φ, V,W ) where φ = (φ1, . . . , φk) is a morphism of quiver-
representations V - W . Projecting to the two last components we have an onto
morphism between affine varieties

HomQ(α, β)
h-- repα Q⊕ repβ Q

In chapter 4.2 we have proved that the dimension of fibers is an upper-
semicontinuous function. That is, for every natural number d, the set

{Φ ∈ HomQ(α, β) | dimΦ h−1(h(Φ)) ≤ d}

is a Zariski open subset of HomQ(α, β). As the target space repα Q ⊕ repβ Q is
irreducible, it contains a non-empty open subset hommin where the dimension of
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the fibers attains a minimal value. This minimal fiber dimension will be denoted by
hom(α, β).

Similarly, we could have defined an affine variety ExtQ(α, β) where the fiber
over a point (V,W ) ∈ repα Q⊕ repβ Q is given by the extensions Ext1CQ(V,W ). If
χQ is the Euler-form of Q we recall that for all V ∈ repα Q and W ∈ repβ Q we
have

dimC HomCQ(V,W )− dimC Ext1Q̧(V,W ) = χQ(α, β)

Hence, there is also an open set extmin of repα Q ⊕ repβ Q where the dimension
of Ext1(V,W ) attains a minimum. This minimal value we denote by ext(α, β). As
hommin ∩ extmin is a non-empty open subset we have the numerical equality

hom(α, β)− ext(α, β) = χQ(α, β).

In particular, if hom(α, α+β) > 0, there will be an open subset where the morphism
V

φ- W is a monomorphism. Hence, there will be an open subset of repα+β Q
consisting of representations containing a subrepresentation of dimension vector
α. We say that α is a general subrepresentation of α + β and denote this with
α ⊂ - α+ β. We want to characterize this property. To do this, we introduce the
quiver-Grassmannians

Grassα(α+ β) =
k∏
i=1

Grassai(ai + bi)

which is a projective manifold. Consider the following diagram of morphisms of
reduced varieties

repα+β Q

repα+β
α Q ⊂ -

s

-

repα+β Q×Grassα(α+ β)

pr1

66

Grassα(α+ β)

pr2

??

p

--

with the following properties

• repα+β Q×Grassα(α+β) is the trivial vectorbundle with fiber repα+β Q over
the projective smooth variety Grassα(α+ β) with structural morphism pr2.

• repα+β
α Q is the subvariety of repα+β Q×Grassα(α+β) consisting of couples

(W,V ) where V is a subrepresentation of W (observe that this is for fixed W
a linear condition). Because GL(α+β) acts transitively on the Grassmannian
Grassα(α+β) (by multiplication on the right) we see that repα+β

α Q is a sub-
vectorbundle over Grassα(α + β) with structural morphism p. In particular,
repα+β

α Q is a reduced variety.

• The morphism s is a projective morphism, that is, can be factored via the
natural projection

repα+β Q× PN

repα+β
α Q

s -

f

-

repα+β Q

π2

??
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where f is the composition of the inclusion repα+β
α Q ⊂ - repα+β Q ×

Grassα(α + β) with the natural inclusion of Grassmannians in projective
spaces recalled in the previous section Grassα(α + β) ⊂ - ∏k

i=1 Pni with
the Segre embedding

∏k
i=1 Pni ⊂ - PN . In particular, s is proper by [9,

Thm. II.4.9], that is, maps closed subsets to closed subsets.

We are interested in the scheme-theoretic fibers of s. If W ∈ repα+β Q lies in
the image of s, we denote the fiber s−1(W ) by Grassα(W ). Its geometric points
are couples (W,V ) where V is an α-dimensional subrepresentation of W . Whereas
Grassα(W ) is a projective scheme, it is in general neither smooth, nor irreducible
nor even reduced. Therefore, in order to compute the tangent space in a point (W,V )
of Grassα(W ) we have to clarify the functor it represents on the category commalg
of commutative C-algebras.

Let C be a commutative C-algebra, a representation R of the quiver Q over
C consists of a collection Ri = Pi of projective C-modules of finite rank and a
collection of C-module morphisms for every arrow a in Q

��������i��������j
aoo Rj = Pj �Ra

Pi = Ri

The dimension vector of the representation R is given by the k-tuple
(rkC R1, . . . , rkC Rk). A subrepresentation S of R is determined by a collection of
projective sub-summands (and not merely sub-modules) Si /Ri. In particular, for
W ∈ repα+β Q we define the representation WC of Q over the commutative ring C
by {

(WC)i = C ⊗C Wi

(WC)a = idC ⊗C Wa

With these definitions, we can now define the functor represented by Grassα(W ) as
the functor assigning to a commutative C-algebra C the set of all subrepresentations
of dimension vector α of the representation WC .

Lemma 7.7 Let x = (W,V ) be a geometric point of Grassα(W ), then

Tx Grassα(W ) = HomCQ(V,
W

V
)

Proof. The tangent space in x = (W,V ) are the C[ε]-points of Grassα(W ) lying
over (W,V ). To start, let V

ψ- W
V be a homomorphism of representations of

Q and consider a C-linear lift of this map ψ̃ : V - W . Consider the C-linear
subspace of WC[ε] = C[ε]⊗W spanned by the sets

{v + ε⊗ ψ̃(v) | v ∈ V } and ε⊗ V

This determines a C[ε]-subrepresentation of dimension vector α of WC[ε] lying over
(W,V ) and is independent of the chosen linear lift ψ̃.

Conversely, if S is a C[ε]-subrepresentation of WC[ε] lying over (W,V ), then
S
εS = V ⊂ - W . But then, a C-linear complement of εS is spanned by elements
of the form v + εψ(v) where ψ(v) ∈W and ε⊗ ψ is determined modulo an element
of ε ⊗ V . But then, we have a C-linear map ψ̃ : V - W

V and as S is a C[ε]-
subrepresentation, ψ̃ must be a homomorphism of representations of Q. �

We can now give a characterization for general α-dimensional subrepresenta-
tions, proved by A. Schofield in citeSchofield.
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Theorem 7.8 The following are equivalent

1. α ⊂ - α+ β.

2. Every representation W ∈ repα+β Q has a subrepresentation V of dimension
α.

3. ext(α, β) = 0.

Proof. Assume 1. , then the image of the proper map s : repα+β
α Q - repα+β Q

contains a Zariski open subset. As properness implies that the image of s must also
be a closed subset of repα+β Q it follows that Im s = repα+β Q, that is 2. holds.
Conversely, 2. clearly implies 1. so they are equivalent.

We compute the dimension of the vectorbundle repα+β
α Q over Grassα(α+ β).

Using that the dimension of a Grassmannians Grassk(l) is k(l − k) we know that
the base has dimension

∑k
i=1 aibi. Now, fix a point V ⊂ - W in Grassα(α +

β), then the fiber over it determines all possible ways in which this inclusion is a
subrepresentation of quivers. That is, for every arrow in Q of the form ��������i��������j

aoo

we need to have a commuting diagram

Vi - Vj

Wi

?

∩

- Wj

?

∩

Here, the vertical maps are fixed. If we turn V ∈ repα Q, this gives us the aiaj
entries of the upper horizontal map as degrees of freedom, leaving only freedom for
the lower horizontal map determined by a linear map Wi

Vi

- Wj, that is, having
bi(aj + bj) degrees of freedom. Hence, the dimension of the vectorspace-fibers is∑

��������i��������j
aoo

(aiaj + bi(aj + bj))

giving the total dimension of the reduced variety repα+β
α Q. But then,

dim repα+β
α Q− dim repα+β Q =

k∑
i=1

aibi +
∑

��������i��������j
aoo

(aiaj + bi(aj + bj))

−
∑

��������i��������j
aoo

(ai + bi)(aj + bj)

=
k∑
i=1

aibi −
∑

��������i��������j
aoo

aibj = χQ(α, β)

Assume that 2. holds, then the proper map repα+β
α

s-- repα+β Q is onto and
as both varieties are reduced, the general fiber is a reduced variety of dimension
χQ(α, β), whence the general fiber contains points such that their tangentspaces
have dimension χQ(α, β). By the foregoing lemma we can compute the dimension
of this tangentspace as dim HomCQ(V, WV ). But then, as

χQ(α, β) = dimC HomCQ(V,
W

V
)− dimC Ext1CQ(V,

W

V
)
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it follows that Ext1(V, WV ) = 0 for some representation V of dimension vector α
and W

V of dimension vector β. But then, ext(α, β) = 0, that is, 3. holds.
Conversely, assume that ext(α, β) = 0. Then, for a general point W ∈ repα+β Q

in the image of s and for a general point in its fiber (W,V ) ∈ repα+β
α Q we have

dimC Ext1CQ(V, WV ) = 0 whence dimC HomCQ(V, WV ) = χQ(α, β). But then, the
general fiber of s has dimension χQ(α, β) and as this is the difference in dimension
between the two irreducible varieties, the map is generically onto. Finally, proper-
ness of s then implies that it is onto, giving 2. and finishing the proof. �

7.5 Schofield’s criterium.

In all moduli space problems we will encounter, it will be crucial to determine the
dimension vectors of general subrepresentations, or by the foregoing section, to com-
pute ext(α, β). An inductive algorithm to do this was discovered by A. Schofield
[27].

Recall that α ⊂ - β iff a general representation W ∈ repβ Q contains a sub-
representation S ⊂ - W of dimension vector α. Similarly, we denote β -- γ
if and only if a general representation W ∈ repβ Q has a quotient-representation
W -- T of dimension vector γ. As before, Q will be a quiver on k-vertices
{v1, . . . , vk} and we denote dimension vectors α = (a1, . . . , ak), β = (b1, . . . , bk)
and γ = (c1, . . . , ck). We will first determine the rank of a general homomorphism
V - W between representations V ∈ repα Q and W ∈ repβ Q. We denote

Hom(α, β) = ⊕ki=1Mbi×ai
and Hom(V, β) = Hom(α, β) = Hom(α,W )

for any representations V and W as above. With these conventions we have

Lemma 7.9 There is an open subset Homm(α, β) ⊂ - repα Q × repβ Q and a

dimension vector γ
def
= rk hom(α, β) such that for all (V,W ) ∈ Hommin(α, β)

• dimC HomCQ(V,W ) is minimal, and

• {φ ∈ HomCQ(V,W ) | rk φ = γ} is a non-empty Zariski open subset of
HomCQ(V,W ).

Proof. Consider the subvariety HomQ(α, β) of the trivial vectorbundle

HomQ(α, β) ⊂- Hom(α, β)× repα Q× repβ Q

repα Q× repβ Q

pr

??

Φ

-

of triples (φ, V,W ) such that V
φ- W is a morphism of representations of Q. The

fiber Φ−1(V,W ) = HomCQ(V,W ). As the fiber dimension is upper semi-continuous,
there is an open subset Hommin(α, β) of repα Q×repβ Q consisting of points (V,W )
where dimC HomCQ(V,W ) is minimal. For given dimension vector δ = (d1, . . . , dk)
we consider the subset

HomQ(α, β, δ) = {(φ, V,W ) ∈ HomQ(α, β) | rk φ = δ} ⊂ - HomQ(α, β)

This is a constructible subset of HomQ(α, β) and hence there is a dimension vec-
tor γ such that HomQ(α, β, γ) ∩ Φ−1(Hommin(α, β)) is constructible and dense in
Φ−1(Hommin(α, β)). But then,

Φ(HomQ(α, β, γ) ∩ Φ−1(Hommin(α, β)))
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is constructible and dense in Hommin(V,W ). Therefore it contains an open subset
Homm(V,W ) satisfying the requirements of the lemma. �

Lemma 7.10 Assume we have short exact sequences of representations of Q{
�1 = 0 - S - V - X - 0
�2 = 0 - Y - W - T - 0

then there is a natural onto map

Ext1CQ(V,W ) -- Ext1CQ(S, T )

Proof. We will see in chapter 9 that gldim CQ ≤ 1, whence applying derived
functors to the given sequences we obtain the following part of the natural long-
exact sequences

RHom(W,�1) RHom(T,�1)

...
...

RHom(V,�2). . . - Ext(V,W )
?

- Ext(V, T )
?

- 0

RHom(S,�2). . . - Ext(S,W )
?

- Ext(S, T )
?

- 0

0
?

0
?

from which the statement follows. �

Theorem 7.11 Let γ = rk hom(α, β) (with notations as in lemma 7.9), then

1. α− γ ⊂ - α -- γ ⊂ - β -- β − γ

2. ext(α, β) = −χQ(α− γ, β − γ) = ext(α− γ, β − γ)

Proof. The first statement is obvious from the definitions, for if γ = rk hom(α, β),
then a general representation of dimension α will have a quotient-representation
of dimension γ (and hence a subrepresentation of dimension α − γ) and a general
representation of dimension β will have a subrepresentation of dimension γ (and
hence a quotient-representation of dimension β − γ.

The strategy of the proof of the second statement is to compute the dimension of
the subvariety of Hom(α, β)× repα × repβ × repγ defined by

Hfactor = {(φ, V,W,X) |

V
φ - W

X = Im φ
⊂

-

--

factors as representations }
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in two different ways. Consider the intersection of the open set Homm(α, β) deter-
mined by lemma 7.9 with the open set of couples (V,W ) such that dim Ext(V,W ) =
ext(α, β) and let (V,W ) lie in this intersection. In the previous section we have
proved that

dim Grassγ(W ) = χQ(γ, β − γ)
Let H be the subbundle of the trivial vectorbundle over Grassγ(W )

H ⊂ - Hom(α,W )×Grassγ(W )

Grassγ(W )

??
--

consisting of triples (φ,W,U) with φ : ⊕iC⊕ai - W a linear map such that
Im(φ) is contained in the subrepresentation U ⊂ - W of dimension γ. That is,
the fiber over (W,U) is Hom(α,U) and therefore has dimension

∑k
i=1 aici. With

Hfull we consider the open subvariety of H of triples (φ,W,U) such that Im φ = U .
We have

dim Hfull =
k∑
i=1

aici + χQ(γ, β − γ)

But then, Hfactor is the subbundle of the trivial vectorbundle over Hfull

Hfactor ⊂ - repα Q×Hfull

Hfull

??

π

--

consisting of quadruples (V, φ,W,X) such that V
φ- W is a morphism of repre-

sentations, with image the subrepresentation X of dimension γ. The fiber of π over
a triple (φ,W,X) is determined by the property that for each arrow ��������i��������j

aoo

the following diagram must be commutative, where we decompose the vertex spaces
Vi = Xi ⊕Ki for K = Ker φ

Xi ⊕Ki

24A B
C D

35
- Xj ⊕Kj

Xi

hrr
ci

0
i

??

A
- Xj

hrr
cj

0
i

??

where A is fixed, giving the condition B = 0 and hence the fiber has dimension equal
to ∑

��������i��������j
aoo

(ai − ci)(aj − cj) +
∑

��������i��������j
aoo

ci(aj − cj) =
∑

��������i��������j
aoo

ai(aj − cj)

This gives our first formula for the dimension of Hfactor

Hfactor =
k∑
i=1

aici + χQ(γ, β − γ) +
∑

��������i��������j
aoo

ai(aj − cj)
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On the other hand, we can consider the natural map Hfactor Φ- repα Q defined
by sending a quadruple (V, φ,W,X) to V . the fiber in V is given by all quadruples
(V, φ,W,X) such that V

φ- W is a morphism of representations with Im φ = X
a representation of dimension vector γ, or equivalently

Φ−1(V ) = {V φ- W | rk φ = γ}

Now, recall our restriction on the couple (V,W ) giving at the beginning of the
proof. There is an open subset max of repα Q of such V and by construction
max ⊂ - Im Φ, Φ−1(max) is open and dense in Hfactor and the fiber Φ−1(V ) is
open and dense in HomCQ(V,W ). This provides us with the second formula for the
dimension of Hfactor

dim Hfactor = dim repα Q+ hom(α,W ) =
∑

��������i��������j
aoo

aiaj + hom(α, β)

Equating both formulas we obtain the equality

χQ(γ, β − γ) +
k∑
i=1

aici −
∑

��������i��������j
aoo

aicj = hom(α, β)

which is equivalent to

χQ(γ, β − γ) + χQ(α, γ)− χQ(α, β) = ext(α, β)

Now, for our (V,W ) we have that Ext(V,W ) = ext(α, β) and we have exact se-
quences of representations

0 - S - V - X - 0 0 - X - W - T - 0

and using lemma 7.10 this gives a surjection Ext(V,W ) -- Ext(S, T ). On the
other hand we always have from the homological interpretation of the Euler form
the first inequality

dimC Ext(S, T ) ≥ −χQ(α− γ, β − γ) = χQ(γ, β − γ)− χQ(α, β) + χQ(α, γ)
= ext(α, β)

As the last term is dimC Ext(V,W ), this implies that the above surjection must be
an isomorphism and that

dimC Ext(S, T ) = −χQ(α− γ, β − γ) whence dimC Hom(S, T ) = 0

But this implies that hom(α − γ, β − γ) = 0 and therefore ext(α − γ, β − γ) =
−χQ(α− γ, β − γ). Finally,

ext(α− γ, β − γ) = dim Ext(S, T ) = dim Ext(V,W ) = ext(α, β)

finishing the proof. �

Theorem 7.12 For all dimension vectors α and β we have

ext(α, β) = max
α′ ⊂ - α
β

--
β′

− χQ(α′, β′)

= max
β -- β”

− χQ(α, β”)

= max
α” ⊂ - α

− χQ(α”, β)
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Proof. Let V and W be representation of dimension vector α and β such that
dim Ext(V,W ) = ext(α, β). Let S ⊂ - V be a subrepresentation of dimension α′

and W -- T a quotient representation of dimension vector β′. Then, we have

ext(α, β) = dimC Ext(V,W ) ≥ dimC Ext(S, T ) ≥ −χQ(α′, β′)

where the first inequality is lemma 7.10 and the second follows from the interpreta-
tion of the Euler form. Therefore, ext(α, β) is greater or equal than all the terms
in the statement of the theorem. The foregoing theorem asserts the first equality, as
for rk hom(α, β) = γ we do have that ext(α, β) = −χQ(α− γ, β − γ).

In the proof of the above theorem, we have found for sufficiently general V and
W an exact sequence of representations

0 - S - V - W - T - 0

where S is of dimension α − γ and T of dimension β − γ. Moreover, we have a
commuting diagram of surjections

Ext(V,W ) -- Ext(V, T )

Ext(S,W )

??
-- Ext(S, T )

??

...............................-

and the dashed map is an isomorphism, hence so are all the epimorphisms. There-
fore, we have{

ext(α, β − γ) ≤ dim Ext(V, T ) = dim Ext(V,W ) = ext(α, β)
ext(α− γ, β) ≤ dim Ext(S,W ) = dim Ext(V,W ) = ext(α, β)

Further, let T ′ be a sufficiently general representation of dimension β − γ, then it
follows from Ext(V, T ′) -- Ext(S, T ) that

ext(α− γ, β − γ) ≤ dim Ext(S, T ′) ≤ dim Ext(V, T ′) = ext(α, β − γ)

but the left term is equal to ext(α, β) by the above theorem. But then, we have
ext(α, β) = ext(α, β−γ). Now, we may assume by induction that the theorem holds
for β−γ. That is, there exists β−γ -- β” such that ext(α, β−γ) = −χQ(α, β”).
Whence, β -- β” and ext(α, β) = −χQ(α, β”) and the middle equality of the
theorem holds. By a dual argument so does the last. �

This gives us the following inductive procedure to find all the dimension vectors
of general subrepresentations. Take a dimension vector α and assume by induction
we know for all β < α the set of general subrepresentations β′ ⊂ - β. Then,
β ⊂ - α if and only if

0 = ext(β, α− β) = max
β′ ⊂ - β

− χQ(β′, α− β)

where the first equality is the main result of the foregoing section and the last is the
result above.

7.6 θ-semistable representations.

Let Q be a quiver on k vertices {v1, . . . , vk} and fix a dimension vector α. So far,
we have considered the algebraic quotient map

repα Q -- issα Q
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classifying closed GL(α)-orbits in repα Q, that is, isomorphism classes of semi-
simple representations of dimension α. We have seen that the invariant polynomial
maps are generated by traces along oriented cycles in the quiver. Hence, if Q has no
oriented cycles, the quotient variety issα Q is reduced to one point corresponding
to the semi-simple

S⊕a1
1 ⊕ . . .⊕ S⊕ak

k

where Si is the trivial one-dimensional simple concentrated in vertex vi. Still, in
these cases one can often classify nice families of representations. For example,
consider the quiver situation

��������1��������1

x

""y //

z

<<

Then, repα Q = C3 and the action of GL(α) = C∗×C∗ is given by (λ, µ).(x, y, z) =
(λµx,

λ
µy,

λ
µz). The only closed GL(α)-orbit in C3 is (0, 0, 0) as the one-parameter

subgroup λ(t) = (t, 1) has the property

lim
t→0

λ(t).(x, y, z) = (0, 0, 0)

so (0, 0, 0) ∈ O(x, y, z) for any representation (x, y, z). Still, if we trow away the
zero-representation, then we have a nice quotient map

C3 − {(0, 0, 0)} π-- P2 (x, y, z) 7→ [x : y : z]

and as O(x, y, z) = C∗(x, y, z) we see that every GL(α)-orbit is closed in this com-
plement C3 − {(0, 0, 0)}. We will generalize such settings to arbitrary quivers.

A character of GL(α) is an algebraic group morphism χ : GL(α) - C∗. They
are fully determined by an integral k-tuple θ = (t1, . . . , tk) ∈ Zk where

GL(α)
χθ- C∗ (g1, . . . , gk) 7→ det(g1)t1 . . . . .det(gk)tk

For a fixed θ we can extend the GL(α)-action to the space repα ⊕ C by

GL(α)× repα Q⊕ C - repα Q⊕ C g.(V, c) = (g.V, χ−1
θ (g)c)

The coordinate ring C[repα Q ⊕ C] = C[repα][t] can be given a Z-gradation by
defining deg(t) = 1 and deg(f) = 0 for all f ∈ C[repα Q]. The induced action of
GL(α) on C[repα Q⊕C] preserves this gradation. Therefore, the ring of invariant
polynomial maps

C[repα Q⊕ C]GL(α) = C[repα Q][t]GL(α)

is also graded with homogeneous part of degree zero the ring of invariants
C[repα]GL(α). An invariant of degree n, say ftn with f ∈ C[repα Q] has the char-
acteristic property that

f(g.V ) = χnθ (g)f(V )

that is, f is a semi-invariant of weight χnθ . That is, the graded decomposition of the
invariant ring is

C[repα Q⊕ C]GL(α) = R0 ⊕R1 ⊕ . . . with Ri = C[repα Q]GL(α),χnθ

With these notations, the moduli space of semi-stable quiver representations of
dimension α was introduced by A. King in [12] to be the variety

Mss
α (Q, θ) = Proj C[repα Q⊕ C]GL(α) = Proj ⊕∞n=0 C[repα Q]GL(α),χnθ
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Recall that for a positively graded affine commutative C-algebra R = ⊕∞i=0Ri, the
geometric points of Proj R correspond to graded-maximal ideals m not containing
the positive part R+ = ⊕∞i=1Ri. Intersecting m with the part of degree zero R0

determines a point of Spec R0, the affine variety with coordinate ring R0 and gives
rise to a structural morphism Proj R - Spec R0. The Zariski closed subsets of
Proj R are of the form

V(I) = {m ∈ Proj R | I ⊂ m}

for a homogeneous ideal I / R. Also recall that Proj R can be covered by affine
varieties of the form X(f) with f a homogeneous element in R+. The coordinate
ring of this affine variety is the part of degree zero of the graded localization Rgf .
We refer to [9, II.2] for more details.

Example 7.13 Consider again the quiver-situation

��������1��������1

x

$$y //

z

::

and character θ = (−1, 1), then the three coordinate functions x, y and z of C[repα Q] are semi-
invariants of weight χθ. It is then clear that the invariant ring is equal to

C[repα Q⊕ C]GL(α) = C[xt, yt, zt]

where the three generators all have degree one. That is,

Mss
α (Q, θ) = Proj C[xt, yt, zt] = P2

as desired,

We will now investigate which orbits in repα Q are parameterized by the moduli
space Mss

α (Q, θ). We say that a representation V ∈ repα Q is χθ-semistable if and
only if there is a semi-invariant f ∈ C[repα Q]GL(α),χnθ for some n ≥ 1 such that
f(V ) 6= 0. The subset of repα Q consisting of all χθ-semistable representations
will be denoted by repssα (Q, θ). Observe that repssα (Q, θ) is Zariski open (but it may
be empty for certain (α, θ)). We can lift a representation V ∈ repα Q to points
Vc = (V, c) ∈ repα Q ⊕ C and use GL(α)-invariant theory on this larger GL(α)-
module

������������� ��
��
��
��
��
��
�

•

•

V(f)

V0

Vc

V(t)

Let c 6= 0 and assume that the orbit closure O(Vc) does not intersect V(t) =
repα Q × {0}. As both are GL(α)-stable closed subsets of repα Q ⊕ C we know
from the separation property of invariant theory, see §4.6, that this is equivalent
to the existence of a GL(α)-invariant function g ∈ C[repα Q ⊕ C]GL(α) such that
g(O(Vc)) 6= 0 but g(V(t)) = 0. We have seen that the invariant ring is graded,
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hence we may assume g to be homogeneous, that is, of the form g = ftn for some
n. But then, f is a semi-invariant on repα Q of weight χnθ and we see that V
must be χθ-semistable. Moreover, we must have that θ(α) =

∑k
i=1 tiai = 0, for the

one-dimensional central torus of GL(α)

µ(t) = (trra1 , . . . , t
rr
ak

) ⊂ - GL(α)

acts trivially on repα Q but acts on C via multiplication with
∏k
i=1 t

−aiti hence if
θ(α) 6= 0 then O(Vc) ∩ V(t) 6= ∅. More generally, we have from the strong form of
the Hilbert criterium proved in §4.4 that O(Vc) ∩ V(t) = ∅ if and only if for every
one-parameter subgroup λ(t) of GL(α) we must have that lim

t→0
λ(t).Vc /∈ V(t). We

can also formulate this in terms of the GL(α)-action on repα Q. The composition
of a one-parameter subgroup λ(t) of GL(α) with the character

C∗ λ(t)- GL(α)
χθ- C∗

is an algebraic group morphism and is therefore of the form t - tm for some
m ∈ Z and we denote this integer by θ(λ) = m. Assume that λ(t) is a one-parameter
subgroup such that lim

t→0
λ(t).V = V ′ exists in repα Q, then as

λ(t).(V, c) = (λ(t).V, t−mc)

we must have that θ(λ) ≥ 0 for the orbitclosure O(Vc) not to intersect V(t). That
is, we have the following characterization of χθ-semistable representations.

Proposition 7.14 The following are equivalent

1. V ∈ repα Q is χθ-semistable.

2. For c 6= 0, we have O(Vc) ∩ V(t) = ∅.

3. For every one-parameter subgroup λ(t) of GL(α) we have lim
t→0

λ(t).Vc /∈ V(t) =

repα Q× {0}.

4. For every one-parameter subgroup λ(t) of GL(α) such that lim
t→0

λ(t).V exists

in repα Q we have θ(λ) ≥ 0.

Moreover, these cases can only occur if θ(α) = 0.

Assume that g = ftn is a homogeneous invariant function for the GL(α)-action
on repα Q ⊕ C and consider the affine open GL(α)-stable subset X(g). The con-
struction of the algebraic quotient in §4.6 and the fact that invariant rings here are
graded asserts that the closed GL(α)-orbits in X(g) are classified by the points of
the graded localization at g which is of the form

(C[repα Q⊕ C]GL(α))g = Rf [h, h−1]

for some homogeneous invariant h and where Rf is the coordinate ring of the affine
open subset X(f) in Mss

α (Q, θ) determined by the semi-invariant f of weight χnθ .
As the moduli space is covered by such open subsets we have

Proposition 7.15 The moduli space of θ-semistable representations of repα Q

Mss
α (Q, θ)

classifies closed GL(α)-orbits in the open subset repssα (Q, θ) of all χθ-semistable
representations of Q of dimension vector α.
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Example 7.16 In the foregoing example repssα (Q, θ) = C3−{(0, 0, 0)} as for all these points one
of the semi-invariant coordinate functions is non-zero. For θ = (−1, 1) the lifted GL(α) = C∗×C∗-
action to repα Q⊕ C = C4 is given by

(λ, µ).(x, y, z, t) = (
µ

λ
x,
µ

λ
y,
µ

λ
z,
λ

µ
t)

We have seen that the ring of invariants is C[xt, yt, zt]. Consider the affine open set X(xt) of C4,
then the closed orbits in X(xt) are classified by

C[xt, yt, zt]gxt = C[
y

x
,
z

x
][xt,

1

xt
]

and the part of degree zero C[ y
x
, z
x
] is the coordinate ring of the open set X(x) in P2.

In §4.5 we were able to classify closed GLn-orbits in repn A with semi-simple
representations. We will now give a representation theoretic interpretation of closed
GL(α)-orbits in repssα (Q, θ). Again, the starting point is that one-parameter sub-
groups λ(t) of GL(α) correspond to filtrations of representations. Let us go through
the motions one more time. For λ : C∗ - GL(α) a one-parameter subgroup and
V ∈ repα Q we can decompose for every vertex vi the vertex-space in weight spaces

Vi = ⊕n∈ZV
(n)
i

where λ(t) acts on the weight space V (n)
i as multiplication by tn. This decomposition

allows us to define a filtration

V
(≥n)
i = ⊕m≥nV (m)

i

For every arrow ��������i��������j
aoo , λ(t) acts on the components of the arrow maps

V
(n)
i

Vm,n
a - V

(m)
j

by multiplication with tm−n. That is, a limit lim
t→0

Va exists if and only if V m,na = 0
for all m < n, that is, if Va induces linear maps

V
(≥n)
i

Va- V
(≥n)
j

Hence, a limiting representation exists if and only if the vertex-filtration spaces
V

(≥n)
i determine a subrepresentation Vn ⊂ - V for all n. That is, a one-parameter

subgroup λ such that lim
t→

λ(t).V exists determines a decreasing filtration of V by
subrepresentations

. . . � ⊃ Vn � ⊃ Vn+1
� ⊃ . . .

Further, the limiting representation is then the associated graded representation

lim
t→0

λ(t).V = ⊕n∈Z
Vn
Vn+1

where of course only finitely many of these quotients can be nonzero. For the given
character θ = (t1, . . . , tk) and a representation W ∈ repβ Q we denote

θ(W ) = t1b1 + . . .+ tkbk where β = (b1, . . . , bk)

Assume that θ(V ) = 0, then with the above notations, we have an interpretation of
θ(λ) as

θ(λ) =
k∑
i=1

ti
∑
n∈Z

ndimC V
(n)
i =

∑
n∈Z

nθ(
Vn
Vn+1

) =
∑
n∈Z

θ(Vn)
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Definition 7.17 A representation V ∈ repα Q is said to be

• θ-semistable if θ(V ) = 0 and for all subrepresentations W ⊂ - V we have
θ(W ) ≥ 0.

• θ-stable if V is θ-semistable and if the only subrepresentations W ⊂ - V
such that θ(W ) = 0 are V and 0.

Proposition 7.18 For V ∈ repα Q the following are equivalent

1. V is χθ-semistable.

2. V is θ-semistable.

Proof. 1.⇒ 2. : Let W be a subrepresentation of V and let λ be the one-parameter
subgroup associated to the filtration V � ⊃ W � ⊃ 0, then lim

t→0
λ(t).V exists

whence by proposition 7.14.4 we have θ(λ) ≥ 0, but we have

θ(λ) = θ(V ) + θ(W ) = θ(W )

2. ⇒ 1. : Let λ be a one-parameter subgroup of GL(α) such that lim
t→0

λ(t).V ex-
ists and consider the induced filtration by subrepresentations Vn defined above. By
assumption all θ(Vn) ≥ 0, whence

θ(λ) =
∑
n∈Z

θ(Vn) ≥ 0

and again proposition 7.14.4 finishes the proof. �

Lemma 7.19 Let V ∈ repα Q and W ∈ repβ Q be both θ-semistable and

V
f- W

a morphism of representations. Then, Ker f , Im f and Coker f are θ-semistable
representations.

Proof. Consider the two short exact sequences of representations of Q{
0 - Ker f - V - Im f - 0
0 - Im f - W - Coker f - 0

As θ(−) is additive, we have 0 = θ(V ) = θ(Ker f)+θ(Im f) and as both are subrep-
resentations of θ-semistable representations V resp. W , the right-hand terms are
≥ 0 whence are zero. But then, from the second sequence also θ(Coker f) = 0.
Being submodules of θ-semistable representations, Ker f and Im f also sat-
isfy θ(S) ≥ 0 for all their subrepresentations U . Finally, a subrepresentation
T ⊂ - Coker f can be lifted to a subrepresentation T ′ ⊂ - W and θ(T ) ≥ 0
follows from the short exact sequence 0 - Im f - T ′ - T - 0. �

That is, the full subcategory repss(Q, θ) of rep Q consisting of all θ-semistable
representations is an Abelian subcategory and clearly the simple objects in
repss(Q, θ) are precisely the θ-stable representations. As this Abelian subcategory
has the necessary finiteness conditions, one can prove a version of the Jordan-Hölder
theorem. That is, every θ-semistable representation V has a finite filtration

V = V0
� ⊃ V1

� ⊃ . . . � ⊃ Vz = 0

of subrepresentation such that every factor Vi

Vi+1
is θ-stable. Moreover, the unordered

set of these θ-stable factors are uniquely determined by V .
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Theorem 7.20 For a θ-semistable representation V ∈ repα Q the following are
equivalent

1. The orbit O(V ) is closed in repssα (Q,α).

2. V 'W⊕e11 ⊕ . . .⊕W⊕el

l with every Wi a θ-stable representation.

That is, the geometric points of the moduli space Mss
α (Q, θ) are in natural one-

to-one correspondence with isomorphism classes of α-dimensional representations
which are direct sums of θ-stable subrepresentations. The quotient map

repssα (Q, θ) -- Mss
α (Q, θ)

maps a θ-semistable representation V to the direct sum of its Jordan-Hölder factors
in the Abelian category repss(Q, θ).

Proof. Assume that O(V ) is closed in repssα (Q, θ) and consider the θ-semistable
representation W = grss V , the direct sum of the Jordan-Hölder factors in
repss(Q, θ). As W is the associated graded representation of a filtration on V ,
there is a one-parameter subgroup λ of GL(α) such that lim

t→0
λ(t).V ' W , that is

O(W ) ⊂ O(V ) = O(V ), whence W ' V and 2. holds.
Conversely, assume that V is as in 2. and let O(W ) be a closed orbit contained

in O(V ) (one of minimal dimension). By the Hilbert criterium there is a one-
parameter subgroup λ in GL(α) such that lim

t→0
λ(t).V 'W . Hence, there is a finite

filtration of V with associated graded θ-semistable representation W . As none of
the θ-stable components of V admits a proper quotient which is θ-semistable (being
a direct summand of W ), this shows that V ' W and so O(V ) = O(W ) is closed.
The other statements are clear from this. �

The striking similarities between θ-stable representations and simple representa-
tions will become more transparent in chapter 13 when we discuss universal local-
izations. It will turn out that θ-stable representations become simple representations
of a certain universal localization of the path algebra CQ.

Example 7.21 Consider the modular group PSL2(Z) ' Z2 ∗Z3, the free product of the cyclic
groups of order two and three with generators σ resp. τ . Let S be an n-dimensional simple
representation of PSL2(Z). Let ξ be a 3-rd root of unity, then restricting S to these finite Abelian
subgroups we have (

S ↓Z2 ' S⊕a11 ⊕ S⊕a2−1

S ↓Z3 ' T⊕b11 ⊕ T⊕b2ξ ⊕ T⊕b3
ξ2

where Sx resp. Tx are the one-dimensional representations on which σ resp. τ acts via multipli-
cation with x. Observe that a1 + a2 = b1 + b2 + b3 = n and we associate to S a representation V
of the quiver situation

(/).*-+,a2

(/).*-+,a1

(/).*-+,b3

(/).*-+,b2

(/).*-+,b177oooooooooo

''OOOOOOOOOO

��4
44

44
44

44
44

44
44

44
4

DD



















77oooooooooo

''OOOOOOOOOO

with V1i = S
⊕ai
i and V2j = T

⊕bj
j and where the linear map corresponding to an arrow

(/).*-+,ai(/).*-+,bj

aij // is the composition of

Vaij : S
⊕ai
i

⊂ - S ↓Z2= V ↓Z3
-- T

⊕bj
j
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of the canonical injections and projections. If α = (a1, a2, b1, b2, b3) then we take as θ =

(−1,−1,+1,+1,+1). Observe that⊕i,jVaij : Cn - Cn is a linear isomorphism. IfW ⊂- V is

a subrepresentation, then θ(W ) ≥ 0. Indeed, if the dimension vector of W is β = (c1, c2, d1, d2, d3)

and assume that θ(W ) < 0, then k = c1+c2 > l = d1+d2+d3, but then the restriction of ⊕Vaij to

W gives a linear map Ck -- Cl having a kernel which is impossible. Hence, V is a θ-semistable

representation of the quiver. In fact, V is even θ-stable, for consider a subrepresentationW ⊂- V

with dimension vector β as before and θ(W ) = 0, that is, c1 + c2 = d1 + d2 + d3 = m, then the

isomorphism ⊕i,jVaij | W and the decomposition into eigenspaces of Cm with respect to the

Z2 and Z3-action, makes Cm into an m-dimensional representation of PSL2(Z) which is a sub-

representation of S. S being simple then implies that W = V or W = 0, whence V is θ-stable.

The underlying reason is that the group algebra CPSL2(Z) is a universal localization of the path

algebra CQ of the above quiver.

Remains to determine the situations (α, θ) such that the corresponding moduli
space Mss

α (Q, θ) is non-empty, or equivalently, such that the Zariski open subset
repssα (Q, θ) ⊂ - repα Q is non-empty.

Theorem 7.22 Let α be a dimension vector such that θ(α) = 0. Then,

1. repssα (Q,α) is a non-empty Zariski open subset of repα Q if and only if for
every β ⊂ - α we have that θ(β) ≥ 0.

2. The θ-stable representations repsα(Q,α) are a non-empty Zariski open subset
of repα Q if and only if for every 0 6= β ⊂ - α we have that θ(β) > 0

Observe that the Schofield criterium gives an inductive procedure to calculate
these conditions. Sometimes we can bypass the troublesome inductive step using
our description of dimension vectors of simple representations.

Example 7.23 It is possible to determine the weight space decomposition vectors α =
(a1, a2, b1, b2, b3) of simple n = a1 + a2 = b1 + b2 + b3-dimensional representations of the mod-
ular group PSL2(Z) by first computing the dimension vectors β = (c1, c2, d1, d2, d3) of general
subrepresentations of α and then to check whether for all of these c1 + c2 < d1 + d2 + d3.

An alternative method is to compute local quiver settings and use the description of semi-
simple dimension vectors. With Sij we denote the simple 1-dimensional representation of PSL2(Z)
determined by

Sij ↓Z2= Si and Sij ↓Z3

Let n = x1+ . . .+x6 and we aim to study the local structure of repn CPSL2(Z) in a neighborhood
of the semi-simple n-dimensional representation

Vξ = S⊕x1
11 ⊕ S⊕x2

12 ⊕ S⊕x3
13 ⊕ S⊕x4

21 ⊕ S⊕x5
22 ⊕ S⊕x6

23

To determine the structure of Q•ξ we have to compute dim Ext1(Sij , Skl). To do this we view the

Sij as representations of the quiver Q in the example above. For example S12 is the representation

(/).*-+,0

(/).*-+,1

(/).*-+,0

(/).*-+,1

(/).*-+,0

1

''OOOOOO

of dimension vector (1, 0; 0, 1, 0).For representations of Q, the dimensions of Hom and Ext-groups
are determined by the bilinear form

χQ =

26664
1 0 −1 −1 −1
0 1 −1 −1 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

37775
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If V ∈ repα Q and W ∈ repβ Q where α = (a1, a2; b1, b2, b3) with a1 + a2 = b1 + b2 + b3 = k and
β = (c1, c2; d1, d2, d3) with c1 + c2 = d1 + d2 + d3 = l we have

dim Hom(V,W )− dim Ext1(V,W ) = χQ(α, β) = kl − (a1c1 + a2c2 + b1d1 + b2d2 + b3d3)

Because the translation from PSL2(Z)-representations to Q-representations is full and faithful and
as Hom(Sij , Skl) = C⊕δikδjl we have that

dim Ext1(Sij , Skl) =

(
1 if i 6= k and j 6= l

0 otherwise

But then, the local quiver setting (Q•ξ , αξ) is

(/).*-+,x1

(/).*-+,x6(/).*-+,x5

(/).*-+,x2(/).*-+,x3

(/).*-+,x4

66

vv

��

II

VV

��vv

66

��

II

VV

��

We want to determine whether the irreducible component of repn CPSL2(Z) containing Vξ con-
tains simple PSL2(Z)-representations, or equivalently, whether αξ is the dimension vector of a
simple representation of Q•ξ , that is,

χQ•
ξ
(αξ, εj) ≤ 0 and χQ•

ξ
(εj , αξ) for all 1 ≤ j ≤ 6

The Euler-form of Q•ξ is determined by the matrix where we number the vertices cyclicly

χQ•
ξ

=

2666664
1 −1 0 0 0 −1
−1 1 −1 0 0 0
0 −1 1 −1 0 0
0 0 −1 1 −1 0
0 0 0 −1 1 −1
−1 0 0 0 −1 1

3777775
leading to the following set of inequalities8><>:

x1 ≤ x5 + x6

x2 ≤ x4 + x6

x3 ≤ x4 + x5

8><>:
x4 ≤ x2 + x3

x5 ≤ x1 + x3

x6 ≤ x1 + x2

Finally, observe that Vξ corresponds to a Q-representation of dimension vector (x1 +x2 +x3, x4 +
x5 + x6;x1 + x4, x2 + x5, x3 + x6). If we write this dimension vector as (a1, a2; b1, b2, b3) then the
inequalities are equivalent to the conditions

ai ≥ bj for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3

which gives us the desired restriction on the quintuples

(/).*-+,a2

(/).*-+,a1

(/).*-+,b3

(/).*-+,b2

(/).*-+,b1

at least when ai ≥ 3 and bj ≥ 2. The remaining cases are handled similarly. Observe that we can

use a similar strategy to determine the restrictions on simple representations of any free product

Zp ∗ Zq of two cyclic groups.
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The graded algebra C[repα⊕C]GL(α) of all semi-invariants on repα Q of weight
χnθ for some n ≥ 0 has as degree zero part the ring of polynomial invariants
C[repα Q]GL(α). This embedding determines a proper morphism

Mss
α (Q, θ)

π- issα Q

which is onto whenever repssα (Q,α) is non-empty. In particular, if Q is a quiver
without oriented cycles, then the moduli space of θ-semistable representations of
dimension vector α, Mss

α (Q, θ), is a projective variety.

7.7 Semi-invariants of quivers.

Because the moduli space Mss
α (Q, θ) is defined to be the projective scheme of the

graded algebra of semi-invariants of weight χnθ for some n

Mss
α (Q,α) = Proj ⊕∞n=0 C[repα Q]GL(α),χnθ

we need some control on the semi-invariants of quivers. A generating set of semi-
invariants was described by A. Schofield and M. Van den Bergh in [28]. The strategy
of proof should be clear by now. First, we describe a large set of semi-invariants,
apart from the invariant polynomials which we know to be generated by traces of
oriented cycles in the quiver we expect determinantal semi-invariants as in the case
of mixed GLn-semi-invariants of section 3. Then we use classical invariant theory
to describe all multilinear semi-invariants of GL(α), or equivalently, all multilinear
invariants of SL(α) = SLa1 × . . . × SLak

and describe them in terms of these
determinantal semi-invariants. Finally, we show by polarization and restitution
that these semi-invariants do indeed generate all semi-invariants.

Let Q be a quiver on k vertices {v1, . . . , vk}. We introduce the additive C-
category add Q generated by the quiver. For every vertex vi we introduce an inde-
composable object which we denote by  '!&"%#$07162534i . An arbitrary object in add Q is then a
sum of those

 '!&"%#$071625341
⊕e1 ⊕ . . .⊕  '!&"%#$07162534k

⊕ek

Morphisms in the category add Q are defined by the rules


Hom(  '!&"%#$07162534i ,  '!&"%#$07162534j ) = ��������i��������j

��

Hom(  '!&"%#$07162534i ,  '!&"%#$07162534i ) = ��������i
��

where the right hand sides are the C-vectorspaces spanned by all oriented paths
from vi to vj in the quiver Q, including the idempotent (trivial) path ei when i = j.
Clearly, for any k-tuples of positive integers α = (u1, . . . , uk) and β = (v1, . . . , vk)

Hom(  '!&"%#$071625341
⊕u1 ⊕ . . .⊕  '!&"%#$07162534k

⊕uk
,  '!&"%#$071625341

⊕v1 ⊕ . . .⊕  '!&"%#$07162534k

⊕vk )

is defined in the usual way in the additive category add Q, that is by the matrices



272 CHAPTER 7. MODULI SPACES.

where composition arises via matrix multiplication

Mv1×u1( ��������1
��

) . . . Mv1×uk
( ��������k��������1
~~

)

...
. . .

...

Mvk×u1( ��������1��������k

~~
) . . . Mvk×uk

( ��������k

��
)


Now, fix a dimension vector α = (a1, . . . , ak) and a morphism in add Q

 '!&"%#$071625341
⊕u1 ⊕ . . .⊕  '!&"%#$07162534k

⊕uk φ-  '!&"%#$071625341
⊕v1 ⊕ . . .⊕  '!&"%#$07162534k

⊕vk

For any representation V ∈ repα Q we can replace each occurrence of an arrow��������i��������j
aoo of Q in φ by the aj × ai-matrix Va. This way we obtain a rectangular

matrix
V (φ) ∈MPk

i=1 aivi×
Pk

i=1 aiui
(C)

If we are in a situation such that
∑
aivi =

∑
aiui, then we can define a semi-

invariant polynomial function on repα Q by

Pα,φ(V ) = det V (φ)

We call such semi-invariants determinantal semi-invariants. One verifies that Pφ,α
is a semi-invariant of weight χθ where θ = (u1 − v1, . . . , uk − vk). We will show
that such determinantal semi-invariant together with traces along oriented cycles
generate all semi-invariants.

Because semi-invariants for the GL(α)-action on repα Q are the same as in-
variants for the restricted action of SL(α) = SLa1 × . . . × SLak

, we will describe
the multilinear SL(α)-invariants from classical invariant theory. Because

repα Q =
⊕

��������i��������j
aoo

Maj×ai
(C)

=
⊕

��������i��������j
aoo

Cai ⊗ C∗aj

we have to consider multilinear SL(α)-invariants of⊗
��������i��������j oo

Cai ⊗ C∗aj =
⊗

��������i

[
⊗

��������i��������oo Cai ⊗
⊗

����������������i oo
C∗ai ]

Hence, any multilinear SL(α)-invariant can be written as f =
∏k
i=1 fi where fi is

a SLai
-invariant of ⊗

��������i��������oo Cai ⊗
⊗

����������������i oo
C∗ai

In section 3 we have recalled Weyl’s result describing all multilinear SLm-invariants
on ⊗BCm ⊗ ⊗CC∗m. By polarization and restitution it follows from this that the
linear SLm-invariants are determined by the following three sets
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• traces, that is, for each pair (b, c) we have Cm ⊗ C∗m = Mm(C)
Tr- C.

• brackets, that is, for each m-tuple (b1, . . . , bm) we have an invariant
⊗bj Cm - C defined by

vb1 ⊗ . . .⊗ vbm
7→ det

[
vb1 . . . vbm

]
• cobrackets, that is, for each m-tuple (c1, . . . , cm) we have an invariant
⊗ci

C∗m - C defined by

φc1 ⊗ . . .⊗ φcm
7→ det

φc1...
φcm


Multilinear SLm-invariants of ⊗BCm ⊗ ⊗CC∗m are then spanned by invariants
constructed from the following data. Take three disjoint index-sets I, J and K and
consider surjective maps {

B
µ-- I tK

C
ν-- J tK

subject to the following conditions{
# µ−1(k) = 1 = # ν−1(k) for all k ∈ K.
# µ−1(i) = m = # ν−1(j) for all i ∈ I and j ∈ J .

To this data γ = (µ, ν, I, J,K) we can associate a multilinear SLm-invariant
fγ(⊗Bvb ⊗⊗Cφc) defined by

∏
k∈K

φν−1(k)(vµ−1(k))
∏
i∈I

det
[
vb1 . . . vbm

] ∏
j∈J

det

φc1...
φcm


where µ−1(i) = {b1, . . . , bm} and ν−1(j) = {c1, . . . , cm}. Observe that fγ is deter-
mined only up to a sign by the data γ. But then, we also have a spanning set for
the multilinear SL(α)-invariants on

repα Q =
⊗

��������v

[
⊗

��������v��������oo Cav ⊗
⊗

����������������v oo
C∗av ]

determined by quintuples Γ = (µ, ν, I, J,K) where we have disjoint index-sets parti-
tioned over the vertices v ∈ {v1, . . . , vk} of Q

I =
⊔
v Iv

J =
⊔
v Jv

K =
⊔
v Kv

together with surjective maps from the set of all arrows A of Q{
A

µ-- I tK
A

ν-- J tK

where we have for every arrow ��������v��������w
aoo that{

µ(a) ∈ Iv tKv

ν(a) ∈ Jw tKw
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and these maps µ and ν are subject to the numerical restrictions{
# µ−1(k) = 1 = # ν−1(k) for all k ∈ K.
# µ−1(i) = av = # ν−1(j) for all i ∈ Iv and all j ∈ Jv.

Such a quintuple Γ = (µ, ν, I, J,K) determines for every vertex v a quintuple

γv = (µv = µ | { ��������v�������� aoo }, νv = ν | { ����������������v
aoo }, Iv, Jv,Kv)

satisfying the necessary numerical restrictions to define the SLav -invariant fγv de-
scribed before. Then, the multilinear SL(α)-invariant on repα Q determined by Γ
is defined to be

fγ =
∏
v

fγv

and we have to show that these semi-invariants lie in the linear span of the deter-
minantal semi-invariants.

First, consider the case where the index set K is empty. If we denote the total
number of arrows in Q by n, then the numerical restrictions imposed give us two
expressions for n ∑

v

av.# Iv = n =
∑
v

av.# Jv

Every arrow ��������v��������w
aoo determines a pair of indices µ(a) ∈ Iv and ν(a) ∈ Jw. To

the quintuple Γ we assign a map ΦΓ in add Q

 '!&"%#$071625341
⊕I1 ⊕ . . .⊕  '!&"%#$07162534k

⊕Ik ΦΓ-  '!&"%#$071625341
⊕J1 ⊕ . . .⊕  '!&"%#$07162534k

⊕Jk

which decomposes as a block-matrix in blocks Mv,w ∈ Hom(  '!&"%#$07162534v
⊕Iv

,  '!&"%#$07162534w
⊕Jw ) of

which the (i, j) entry is given by the sum of arrows∑
µ(a)=i
ν(a)=j

��������v��������w
aoo

For a representation V ∈ repα Q, V (ΦΓ) is an n × n matrix and the determinant
defines the determinantal semi-invariant PΦα,Γ which we claim to be equal to the
basic invariant fΓ possibly up to a sign.

We introduce a new quiver situation. Let Q′ be the quiver with vertices the
elements of I t J and with arrows the set A of arrows of Q, but this time w take
the starting point of the arrow ���������������� aoo in Q to be µ(a) ∈ I and the terminating
vertex to be ν(a) ∈ J . That is, Q′ is a bipartite quiver

I J

8?9>:=;<µ(a)

8?9>:=;<ν(a)

a

77ooooooooooooooo
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On Q′ we have the quintuple Γ′ = (µ′, ν′, I ′, J ′,K ′) where K ′ = ∅,

I ′ =
⊔
i∈I

I ′i =
⊔
i∈I
{i} J ′ =

⊔
j∈J

J ′j =
⊔
j∈J
{j}

and µ′ = µ, ν′ = ν. We define an additive functor add Q′
s- add Q by

 '!&"%#$07162534i
s-  '!&"%#$07162534v  '!&"%#$07162534j

s-  '!&"%#$07162534w ���������������� aoo s- ���������������� aoo

for all i ∈ Iv and all j ∈ Jw. The functor s induces a functor rep Q
s- rep Q′

defined by V
s- V ◦ s. If V ∈ repα Q then s(V ) ∈ repα′ Q′ where

α′ = (c1, . . . , cp︸ ︷︷ ︸
# I

, d1, . . . , dq︸ ︷︷ ︸
# J

) with

{
ci = av if i ∈ Iv
dj = aw if j ∈ Jw

That is, the characteristic feature of Q′ is that every vertex i ∈ I is the source of
exactly ci arrows (follows from the numerical condition on µ) and that every vertex
j ∈ J is the sink of exactly dj arrows in Q′. That is, locally Q′ has the following
form ��������c c +3 or ��������dd +3

There are induced maps

repα Q
s- repα′ Q

′ GL(α)
s- GL(α′)

where the latter follows from functoriality by considering GL(α) as the automor-
phism group of the trivial representation in repα Q. These maps are compatible
with the actions as one checks that s(g.V ) = s(g).s(V ). Also s induces a map on
the coordinate rings C[repα Q]

s- C[repα′ Q′] by s(f) = f ◦ s. In particular, for
the determinantal semi-invariants we have

s(Pα′,φ′) = Pα,s(φ′)

and from the compatibility of the action it follows that when f is a semi-invariant
the GL(α′) action on repα′ Q

′ with character χ′, then s(f) is a semi-invariant for
the GL(α)-action on repα Q with character s(χ) = χ′ ◦ s. In particular we have
that

s(Pα′,ΦΓ′ ) = Pα,s(ΦΓ′ )
= Pα,ΦΓ and s(fΓ′) = fΓ

Hence in order to prove our claim, we may replace the triple (Q,α,Γ) by the triple
(Q′, α′,Γ′). We will do this and forget the dashes from here on.

In order to verify that fΓ = ±Pα,ΦΓ it suffices to check this equality on the image
of

W =
⊕

��������j��������i
a //

Cci ⊕ C∗dj in
⊗

��������j��������i
a //

Cci ⊗ C∗dj

One verifies that both fΓ and Pα,ΦΓ are GL(α)-semi-invariants on W of weight χθ
where

θ = (1, . . . , 1︸ ︷︷ ︸
# I

,−1, . . . ,−1︸ ︷︷ ︸
# J

)

Using the characteristic local form of Q = Q′, we see that W is isomorphic to the
GL(α)- module

W '
⊕
i∈I

(Cci ⊕ . . .⊕ Cci︸ ︷︷ ︸
ci

)⊕
⊕
j∈J

(C∗dj ⊕ . . .⊕ C∗dj︸ ︷︷ ︸
dj

) '
⊕
i∈I

Mci
(C)⊕

⊕
j∈J

Mdj
(C)
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and the i factors of GL(α) act by inverse right-multiplication on the component
Mci

(and trivially on all others) and the j factors act by left-multiplication on the
component Mdj

(and trivially on the others). That is, GL(α) acts on W with an
open orbit, say that of the element

w = (rrc1 , . . . ,
rr
cp ,

rr
d1 , . . . ,

rr
dq ) ∈W

One verifies immediately from the definitions that that both fΓ and Pα,ΦΓ evaluate
to ±1 in w. Hence, indeed, fΓ can be expressed as a determinantal semi-invariant.

Remains to consider the case when K is non-empty. For k ∈ K two situations
can occur

• µ−1(k) = a and ν−1(k) = b are distinct, then k corresponds to replacing the
arrows a and b by their concatenation

��������k�������� ��������
b

oo
a

oo

• µ−1(k) = a = ν−1(k) then a is a loop in Q and k corresponds

��������k

a

��

to taking the trace of a.

This time we construct a new quiver Q” with vertices {w1, . . . , wn} corresponding
to the set A of arrows in Q. The arrows in Q” will correspond to elements of K,
that is if k ∈ K we have the arrow (or loop) in Q” with notations as before

��������a��������b
koo or ��������a

k

��

We consider the connected components of Q”. They are of the following three types

• (oriented cycle) : To an oriented cycle C in Q” corresponds an oriented cycle
C ′C in the original quiver Q. We associate to it the trace tr(C ′C) of this cycle.

• (open paths) : An open path P in Q” corresponds to an oriented path P ′P in
Q which may be a cycle. To P we associate the corresponding path P ′P in Q.

• (isolated points) : They correspond to arrows in Q.

We will now construct a new quiver Q′ having the same vertex set {v1, . . . , vk}
as Q but with arrows corresponding to the set of paths P ′P described above. The
starting and ending vertex of the arrow corresponding to P ′P are of course the start-
ing and ending vertex of the path PP in Q. Again, we define an additive functor
add Q′

s- add Q by the rules

 '!&"%#$07162534v
s-  '!&"%#$07162534v and ��������i��������j

P ′Poo s- ��������i��������j

P ′P

��

If the path P ′P is the concatenation of the arrows ad ◦ . . . ◦ a1 in Q, we define the
maps {

µ′(P ′P ) = µ(a1)
ν′(P ′P ) = ν(ad)

whence

{
{P ′P }

µ-- I ′

{P ′P }
ν-- J ′
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that is, a quintuple Γ′ = (µ′, ν′, I ′, J ′,K ′ = ∅) for the quiver Q′. One then verifies
that

fΓ = s(fΓ′)
∏
C

tr(C ′C) = s(Pα,ΦΓ′ )
∏
C

tr(C ′C)

= Pα,s(ΦΓ′ )

∏
C

tr(C ′C)

finishing the proof of the fact that multilinear semi-invariants lie in the linear span
of determinantal semi-invariants (and traces of oriented cycles).

The arguments above can be reformulated in a more combinatorial form which
is often useful in constructing semi-invariants of a specific weight, as is necessary
in the study of the moduli spaces Mss

α (Q, θ). Let Q be a quiver on the vertices
{v1, . . . , vk}, fix a dimension vector α = (a1, . . . , ak) and a character χθ where
θ = (t1, . . . , tk) such that θ(α) = 0. We will call a bipartite quiver Q′

L R

8?9>:=;<li

8?9>:=;<rj

22eeeeeeeeeeeeeeee //

,,YYYYYYYYYYYYYYYY

,,YYYYYYYYYYYYYYY

//

on left vertex-set L = {l1, . . . , lp} and right vertex-set R = {r1, . . . , rq} and a di-
mension vector β = (c1, . . . , cp; d1, . . . , dq) to be of type (Q,α, θ) if the following
conditions are met

• All left and right vertices correspond to vertices of Q, that is, there are maps{
L

l- {v1, . . . , vk}
R

r- {v1, . . . , vk}

possibly occurring with multiplicities, that is there is a map

L ∪R m- N+

such that ci = m(li)az if l(li) = vz and dj = m(rj)az if r(rj) = vz.

• There can only be an arrow (/).*-+,rj(/).*-+,li
// if for vk = l(li) and vl = r(ri) there

is an oriented path

(/).*-+,vl(/).*-+,vk

  

in Q allowing the trivial path and loops if vk = vl.

• Every left vertex li is the source of exactly ci arrows in Q′ and every right-
vertex rj is the sink of precisely dj arrows in Q′.

• Consider the u× u matrix where u =
∑
i ci =

∑
j dj (both numbers are equal

to the total number of arrows in Q′) where the i-th row contains the entries of
the i-th arrow in Q′ with respect to the obvious left and right bases. Observe
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that this is a GL(β) semi-invariant on repβ Q′ with weight determined by the
integral k + l-tuple (−1, . . . ,−1; 1, . . . , 1). If we fix for every arrow a from li
to rj in Q′ an m(rj) ×m(li) matrix pa of linear combinations of paths in Q
from l(li) to r(rj), we obtain a morphism

repα Q - repβ Q
′

sending a representation V ∈ repα Q to the representation W of Q′ defined
by Wa = pa(V ). Composing this map with the above semi-invariant we obtain
a GL(α) semi-invariant of repα Q with weight determined by the k-tuple θ =
(t1, . . . , tk) where

ti =
∑

j∈r−1(vi)

m(rj)−
∑

j∈l−1(vi)

m(lj)

.

We call such semi-invariants standard determinantal. Summarizing the arguments
of this section we have proved after applying polarization and restitution processes

Theorem 7.24 The semi-invariants of the GL(α)-action on repα Q are generated
by traces of oriented cycles and by standard determinantal semi-invariants.

7.8 Brauer-Severi varieties.

In this section we will reconsider the Brauer-Severi scheme BSn(A) of an algebra,
introduced in chapter 2. In the generic case, that is when A is the free algebra
C〈x1, . . . , xm〉, we show that it is a moduli space of a certain quiver situation. This
then allows us to give the étale local description of BSn(A) whenever A is a Cayley-
smooth algebra. Again, this local description will be a moduli space.

The generic Brauer-Severi scheme of degree n for m-generators, BSmn (gen) is
defined as follows. Consider the free algebra on m generators C〈x1, . . . , xm〉 and
consider the GLn-action on repn C〈x1, . . . , xm〉 × Cn = Mm

n ⊕ Cn given by

g.(A1, . . . , Am, v) = (gA1g
−1, . . . , gAmg

−1, gv)

and consider the open subset Brauers(gen) consisting of those points
(A1, . . . , Am, v) where v is a cyclic vector, that is, there is no proper subspace of
Cn containing v and invariant under left multiplication by the matrices Ai. The
GLn-stabilizer is trivial in every point of Brauers(gen) whence we can define the
orbit space

BSmn (gen) = Brauers(gen)/GLn
Consider the following quiver situation

��������1 ��������n//

m

��

on two vertices {v1, v2} such that there are m loops in v2 and consider the dimension
vector α = (1, n). Then, clearly

repα Q = Cn ⊕Mm
n ' repn C〈x1, . . . , xm〉 ⊕ Cn

where the isomorphism is as GLn-module. On repα Q we consider the action of the
larger group GL(α) = C∗ ×GLn acting as

(λ, g).(v,A1, . . . , Am) = (gvλ−1, gA1g
−1, . . . , gAmg

−1)

Consider the character χθ where θ = (−n, 1), then θ(α) = 0 and consider the open
subset of θ-semistable representations in repα Q.



7.8. BRAUER-SEVERI VARIETIES. 279

Lemma 7.25 The following are equivalent for V = (v,A1, . . . , Am) ∈ repα Q

1. V is θ-semistable.

2. V is θ-stable.

3. V ∈ Brauers(gen).

Consequently,
Mss
α (Q,α) ' BSmn (gen)

Proof. 1. ⇒ 2. : If V is θ-semistable it must contain a largest θ-stable subrepre-
sentation W (the first term in the Jordan-Hölder filtration for θ-semistables). In
particular, if the dimension vector of W is β = (a, b) < (1, n), then θ(β) = 0 which
is impossible unless β = α whence W = V is θ-stable.

2.⇒ 3. : Observe that v 6= 0, for otherwise V would contain a subrepresentation
of dimension vector β = (1, 0) but θ(β) = −n is impossible. Assume that v is non-
cyclic and let U ⊂ - Cn be a proper subspace say of dimension l < n containing
v and stable under left multiplication by the Ai, then V has a subrepresentation of
dimension vector β′ = (1, l) and again θ(β′) = l − n < 0 is impossible.

3.⇒ 1. : By cyclicity of v, the only proper subrepresentations of V have dimen-
sion vector β = (0, l) for some 0 < l ≤ n, but they satisfy θ(β) > 0, whence V is
θ-(semi)stable.

As for the last statement, recall that geometric points of Mss
α (Q,α) classify iso-

morphism classes of direct sums of θ-stable representations. As there are no proper
θ-stable subrepresentations, Mss

α (Q,α) classifies the GL(α)-orbits in Brauers(gen).
Finally, as in chapter 1, there is a one-to-one orbits between the GLn-orbits as
described in the definition of the Brauer-Severi variety and the GL(α)-orbits on
repα Q. �

By definition, Mss
α (Q, θ) = Proj ⊕∞n=0 C[repα Q]GL(α),χnθ and we can either

use the results of section 3 or the previous section to show that these semi-invariants
f are generated by brackets, that is,

f(V ) = det
[
w1(A1, . . . , Am)v . . . wn(A1, . . . , Am)v

]
where the wi are words in the noncommuting variables x1, . . . , xm. As in sec-
tion I.3 we can restrict these n-tuples of words {w1, . . . , wn} to sequences arising
from multicolored Hilbert n-stairs. That is, the lower triangular part of a square
n× n array

1

n

1 n

this time filled with colored stones ��������i where 1 ≤ i ≤ m subject to the two coloring
rules

• each row contains exactly one stone

• each column contains at most one stone of each color
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The relevant sequences W (σ) = {1, w2, . . . , wn} of words are then constructed by
placing the identity element 1 at the top of the stair, and descend according to the
rule

• Every go-stone has a top word T which we may assume we have constructed
before and a side word S and they are related as indicated below

T

S

1

T

xiT

1

��������i

In a similar way to the argument in chapter 1 we can cover Mss
α (Q,α) = BSmn (gen)

by open sets determined by Hilbert stairs and find representatives of the orbits in
σ-standard form, that is replacing every i-colored stone in σ by a 1 at the same spot
in Ai and fill the remaining spots in the same column of Ai by zeroes

i

j

1

n

1 n

��������i

Ai =

1i

j

0

0

.

.

.

0

0

.

.

.

As this fixes (n−1)n entries of the mn2 +n entries of V , one recovers the following
result of M. Van den Bergh [31]

Theorem 7.26 The generic Brauer-Severi variety BSmn (gen) of degree n in m
generators is a smooth variety which can be covered by affine open subsets each
isomorphic to C(m−1)n2+n.

For an arbitrary affine C-algebra A, one defines the Brauer stable points to be
the open subset of rep

n
A× Cn

Brauersn(A) = {(φ, v) ∈ rep
n
A× Cn | φ(A)v = Cn}

As Brauer stable points have trivial stabilizer in GLn all orbits are closed and we
can define the Brauer-Severi variety of A of degree n to be the orbit space

BSn(A) = Brauersn(A)/GLn

We claim that Quillen-smooth algebras have smooth Brauer-Severi varieties. Indeed,
as the quotient morphism

Brauersn(A) -- BSn(A)

is a principal GLn-fibration, the base is smooth whenever the total space is smooth.
The total space is an open subvariety of rep

n
A × Cn which is smooth whenever A

is Quillen-smooth.
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Proposition 7.27 If A is Quillen-smooth, then for every n we have that the
Brauer-Severi variety of A at degree n is smooth.

Next, we bring in the approximation at level n. Observe that for every affine
C-algebra A we have a GLn-equivariant isomorphism

rep
n
A ' reptr

n
A@n

More generally, we can define for every Cayley-Hamilton algebra A of degree n the
trace preserving Brauer-Severi variety to be the orbit space of the Brauer stable
points in reptr

n
A × Cn. We denote this variety with BStrn (A). Again, the same

argument applies

Proposition 7.28 If A is Cayley-smooth of degree n , then the trace preserving
Brauer-Severi variety BStrn (A) is smooth.

We have seen that the moduli spaces are projective fiber bundles over the variety
determined by the invariants,

Mss
α (Q, θ) -- issα Q

Similarly, the (trace preserving) Brauer-Severi variety is a projective fiber bundle
over the quotient variety of rep

n
A, that is, there is a proper map

BSn(A)
π-- issn A

and we would like to study the fibers of this map. Recall that when A is an order in
a central simple algebra of degree n, then the general fiber will be isomorphic to the
projective space Pn−1 embedded in a higher dimensional PN . Over non-Azumaya
points we expect this Pn−1 to degenerate to more complex projective varieties which
we would like to describe. To perform this study we need to control the étale local
structure of the fiber bundle π in a neighborhood of ξ ∈ issn A. Again, it is helpful
to consider first the generic case, that is when A = C〈x1, . . . , xm〉 or Tmn . In this
case, we have seen that the following two fiber bundles are isomorphic

BSmn (gen) -- issn Tmn and Mss
α (Q, θ) -- issα Q

where α = (1, n), θ = (−n, 1) and the quiver

��������1 ��������n//

m

��
has Euler form χQ =

[
1 −1
0 1−m

]
A semi-simple α-dimensional representation Vζ of Q has representation type

(1, 0)⊕ (0, d1)⊕e1 ⊕ . . .⊕ (0, dk)⊕ek with
∑
i

diei = n

and hence corresponds uniquely to a point ξ ∈ issn Tmn of representation type
τ = (e1, d1; . . . ; ek, dk). The étale local structure of repα Q and of issα Q near
ζ is determined by the local quiver Qζ on k + 1-vertices, say {v0, v1, . . . , vk} with
dimension vector αζ = (1, e1, . . . , ek) and where Qζ has the following local form for
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every triple (v0, vi, vj) as can be verified from the Euler-form

(/).*-+,1

(/).*-+,ei

(/).*-+,ej

di

OOOOOOOOO

OOOOOOOOO

#+OOOOOOOOOOOOO

OOOOOOOOOOOOO

djooooooooo

ooooooooo

3;ooooooooooooo

ooooooooooooo

aij

BJ

aji

�


aj

��

ai

@H

where aij = (m−1)didj = aji and ai = (m−1)d2
i+1, aj = (m−1)d2

j+1. The dashed
part of Qζ is the same as the local quiver Qξ describing the étale local structure of
issn Tmn near ξ. Hence, we see that the fibration BSmn (gen) -- issn Tmn is étale
isomorphic in a neighborhood of ξ to the fibration of the moduli space

Mss
αζ

(Qζ , θζ) -- issαζ
Qζ ' issαξ

Qξ

in a neighborhood of the trivial representation and where θζ = (−n, d1, . . . , dk).
Another application of the Luna slice results gives the following

Theorem 7.29 Let A be a Cayley-smooth algebra of degree n. Let ξ ∈ isstrn A
correspond to the trace preserving n-dimensional semi-simple representation

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

where the Si are distinct simple representations of dimension di and occurring with
multiplicity ei. Then, the projective fibration

BStrn (A)
π-- isstrn A

is étale isomorphic in a neighborhood of ξ to the fibration of the moduli space

Mss
αζ

(Q•ζ , θζ) -- issαζ
Q•ζ ' issαξ

Q•ξ

in a neighborhood of the trivial representation. Here, Q•ξ is the local marked
quiver describing the étale local structure of reptrn A near ξ, where Q•ζ is the ex-
tended marked quiver situation, which locally for every triple (v0, vi, vj) has the
following shape where the dashed region is the local marked quiver Q•ξ describing
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ExttrA (Mξ,Mξ) and where αζ = (1, e1, . . . , ek) and θζ = (−n, d1, . . . , dk).

(/).*-+,1

(/).*-+,ei

(/).*-+,ej

di

OOOOOOOOO

OOOOOOOOO

#+OOOOOOOOOOOOO

OOOOOOOOOOOOO

djooooooooo

ooooooooo

3;ooooooooooooo

ooooooooooooo

aij

BJ

aji

�


uj


�
•

mj

� 

ui

LT

•
mi

>F

In the next chapter we will use this local description to describe the fibers of the
Brauer-Severi fibration.
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Chapter 8

Nullcones.

When A is a Quillen-smooth algebra we have found a local description of the variety
repn A of its n-dimensional representations, of the variety issn A os isomorphism
classes of semi-simple n-dimensional representations and of the Brauer-Severi vari-
ety BSn A. In this chapter we will develop tools to study the fibers of the structural
morphisms

BSn A

repn A
π-- issn A

ψ

??

In particular, we will be able to compute the number and dimensions of their irre-
ducible components allowing to determine the flat locus of these morphisms. The
basic observation is that these fibers are nullcones of certain quiver settings, that is,
quiver representations on which all polynomial invariants evaluate to zero. What
we will do is to give a representation theoretic interpretation of a stratification by
vectorbundles over flag varieties of these nullcones, due to W. Hesselink [10].

The strategy is easy to explain in the generic case, that is, of m-tuples of n× n
matrices. Here, (A1, . . . , Am) lies in the nullcone if and only if by applying permu-
tation Jordan-moves simultaneously to the components Ai, they all become strictly
upper triangular matrices. Sometimes, we can do better and bring all the non-zero
entries of the Ai together in a smaller upper right-hand side corner, such as

C =

for 4× 4 matrices. For a given m-tuple it is easy to determine the smallest corner
which can be obtained by only applying permutation moves. Remains the prob-
lem whether we can simultaneously conjugate the m-tuple to produce another tuple
(A′1 . . . , A

′
m) in the orbit which can be permuted to a strictly smaller corner. If this

is not possible, we will say that the corner type C is optimal for (A1, . . . , Am). To
verify this it is clear that the border region of the corner, such as

B =

will be relevant. We will assign a new quiver setting to the border region. Observe
that there is a parabolic subgroup P of GLn preserving the corner C and its action
on the border region is coming from its Levi subgroup L which is a product of GLl’s.

285
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In the example,

P =

t t t tt t tt tt t
and L =

t t t tt t
and the corresponding quiver setting is easily seen to be

��������1 ��������1 ��������2mks mks

The crucial observation is now, to assign a character to GL(α) = L such that an
m-tuple (A1, . . . , Am) has optimal corner type C if and only if the representation in
repn Q = B it determines by looking only at the border entries is θ-semistable. By
Schofield’s criterium we have a combinatorial way to verify whether there are such θ-
semistable representations. The corresponding stratum in Hesselinks’s stratification
is S = GLn.U where U is the collection of all such m-tuples. We have the following
size-reduction of the problem : there is a natural one-to-one correspondence between

• GLn-orbits in S, and

• P -orbits in U

Moreover, as U is determined by θ-semistables, there is a moduli space of quiver
representation Mss

α (Q, θ) ar the heart of the stratum.

8.1 Cornering matrices.

In this section we will outline the basic idea of the Hesselink stratification of the
nullcone [10] in the generic case, that is, the action of GLn by simultaneous conju-
gation on m-tuples of matrices Mm

n = Mn ⊕ . . .⊕Mn. With Nullmn we denote the
nullcone of this action

Nullmn = {x = (A1, . . . , Am) ∈Mm
n | 0 = (0, . . . , 0) ∈ O(x)}

By the Hilbert criterium we know that x = (A1, . . . , Am) belongs to the nullcone if
and only if there is a one-parameter subgroup C∗ λ- GLn such that

lim
t→0

λ(t).(A1, . . . , Am) = (0, . . . , 0).

We recall from chapter 4 that any one-parameter subgroup of GLn is conjugated to
one determined by an integral n-tuple (r1, . . . , rn) ∈ Zn by

λ(t) =

t
r1 0

. . .
0 trn


Moreover, permuting the basis if necessary, we can conjugate this λ to one where
the n-tuple if dominant, that is, r1 ≥ r2 ≥ . . . ≥ rn. By applying permutation
Jordan-moves, that is, by simultaneously interchanging certain rows and columns
in all Ai, we may therefore assume that the limit-formula holds for a dominant
one-parameter subgroup λ of the maximal torus

Tn ' C∗ × . . .× C∗︸ ︷︷ ︸
n

= {

c1 0
. . .

0 cn

 | ci ∈ C∗ } ⊂ - GLn
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of GLn. Computing its action on a n× n matrix A we obtaint
r1 0

. . .
0 trn


a11 . . . a1n

...
...

an1 . . . ann


t
−r1 0

. . .
0 r−rn

 =

t
r1−r1a11 . . . tr1−rna1n

...
...

trn−r1an1 . . . trn−rnann


But then, using dominance ri ≤ rj for i ≥ j, we see that the limit is only defined
if aij = 0 for i ≥ j, that is, when A is a strictly upper triangular matrix. We have
proved our first ’cornering’ result.

Lemma 8.1 Any m-tuple x = (A1, . . . , Am) ∈ Nullmn has a point in its orbit O(x)
under simultaneous conjugation (A′1, . . . , A

′
m) with all A′i strictly upper triangular

matrices. In fact permutation Jordan-moves suffice.

For specific m-tuples x = (A1, . . . , Am) it might be possible to improve on this
result. That is, we want to determine the smallest ’corner’ C in the upper right hand
corner of the matrix, such that all the component matrices Ai can be conjugated
simultaneously to matrices A′i having only non-zero entries in the corner C

C =

and no strictly smaller corner C ′ can be found with this property. Our first task will
be to compile a list of the relevant corners and to define an order relation on this
set. Consider the weight space decomposition of Mm

n for the action by simultaneous
conjugation of the maximal torus Tn,

Mm
n = ⊕1≤i,j≤nM

m
n (πi − πj) = ⊕1≤i,j≤nC⊕mπi−πj

where c = diag(c1, . . . , cn) ∈ Tm acts on any element of Mm
n (πi−πj) by multiplica-

tion with cic−1
j , that is, the eigenspace Mm

n (πi−πj) is the space of the (i, j)-entries
of the m-matrices. We call

W = {πi − πj | 1 ≤ i, j ≤ n}

the set of Tn-weights of Mm
n . Let x = (A1, . . . , Am) ∈ Nullmn and consider the

subset Ex ⊂ W consisting of the elements πi − πj such that for at least one of the
matrix components Ak the (i, j)-entry is non-zero. Repeating the argument above,
we see that if λ is a one-parameter subgroup of Tn determined by the integral n-tuple
(r1, . . . , rn) ∈ Zn such that lim λ(t).x = 0 we have

∀ πi − πj ∈ Ex we have ri − rj ≥ 1

Conversely, let E ⊂ W be a subset of weights, we want to determine the subset

{s = (s1, . . . , sn) ∈ Rn | si − sj ≥ 1 ∀ πi − πj ∈ E }

and determine a point in this set, minimal with respect to the usual norm

‖ s ‖=
√
s21 + . . .+ s2n
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Let s = (s1, . . . , sn) attain such a minimum. We can partition the entries of s in a
disjoint union of strings

{pi, pi + 1, . . . , pi + ki}

with ki ∈ N and subject to the condition that all the numbers pij
def
= pi + j with

0 ≤ j ≤ ki occur as components of s, possibly with a multiplicity that we denote by
aij. We call a string stringi = {pi, pi + 1, . . . , pi + ki} of s balanced if and only if

∑
sk∈stringi

sj =
ki∑
j=0

aij(pi + j) = 0

In particular, all balanced strings consists entirely of rational numbers. We have

Lemma 8.2 Let E ⊂ W, then the subset of Rn determined by

RnE = { (r1, . . . , rn) | ri − rj ≥ 1 ∀ πi − πj ∈ E}

has a unique point sE = (s1, . . . , sn) of minimal norm ‖ sE ‖. This point is deter-
mined by the characteristic feature that all its strings are balanced. In particular,
sE ∈ Qn.

Proof. Let s be a minimal point for the norm in RnE and consider a string of s and
denote with S the indices k ∈ {1, . . . , n} such that sk ∈ string. Let πi − πj ∈ E,
then if only one of i or j belongs to S we have a strictly positive number aij

si − sj = 1 + rij with rij > 0

Take ε0 > 0 smaller than all rij and consider the n-tuple

sε = s+ ε(δ1S , . . . , δnS) with δkS = 1 if k ∈ S and 0 otherwise

with | ε |≤ ε0. Then, sε ∈ RnE for if πi − πj ∈ E and i and j both belong to S or
both do not belong to S then (sε)i − (sε)j = si − sj ≥ 1 and if one of i or j belong
to S, then

(sε)i − (sε)j = 1 + rij ± ε ≥ 1

by the choice of ε0. However, the norm of sε is

‖ sε ‖=
√
‖ s ‖ +2ε

∑
k∈S

sk + ε2#S

Hence, if the string would not be balanced,
∑
k∈S sk 6= 0 and we can choose ε small

enough such that ‖ sε ‖<‖ s ‖, contradicting minimality of s. �

For given n we can compile a list Sn of all dominant n-tuples (s1, . . . , sn) (that
is, si ≤ sj whenever i ≥ j) having all its strings balanced, as follows.

• List all Young-diagrams Yn = {Y1, . . .} having ≤ n boxes.

• For every diagram Yl fill the boxes with strictly positive integers subject to the
rules

1. the total sum is equal to n

2. no two rows are filled identically

3. at most one row has length 1
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This gives a list Tn = {T1, . . .} of tableaux.

• For every tableau Tl ∈ Tn, for each of its rows (a1, a2, . . . , ak) find a solution
p to the linear equation

a1x+ a2(x+ 1) + . . .+ ak(x+ k) = 0

and define the
∑
ai-tuple of rational numbers

(p, . . . , p︸ ︷︷ ︸
a1

, p+ 1, . . . , p+ 1︸ ︷︷ ︸
a2

, . . . p+ k, . . . , p+ k︸ ︷︷ ︸
ak

)

Repeating this process for every row of Tl we obtain an n-tuple, which we then
order.

For example, for n = 5 and the tableaux
2 1
1 1 the linear equations are{

2x+ x+ 1 = 0 giving p1 = − 1
3

x+ x+ 1 = 0 giving p2 = − 1
2

The corresponding 5-tuple is therefore s = (2
3 ,

1
2 ,−

1
3 ,−

1
3 ,−

1
2 ). The list Sn will be

the combinatorial object underlying the relevant corners and the stratification of the
nullcone.

Example 8.3 (Sn for small n)
For n = 2, we have 1 1 giving ( 1

2
,− 1

2
) and 2 giving (0, 0). For n = 3 we have five types

S3 =

tableau s1 s2 s3 ‖ s ‖2

1 1 1 1 0 −1 2

1 2 1
3

1
3

− 2
3

2
3

2 1 2
3

− 1
3

− 1
3

2
3

1 1
1 1

2
0 − 1

2
1
2

3 0 0 0 0

S4 has eleven types

S4 =

tableau s1 s2 s3 s4 ‖ s ‖2

1 1 1 1 3
2

1
2

− 1
2

− 3
2

5

2 1 1 5
4

1
4

− 3
4

− 3
4

11
4

1 1 2 3
4

3
4

− 1
4

− 5
4

11
4

1 2 1 1 0 0 −1 2

2 2 1
2

1
2

− 1
2

− 1
2

1

3 1 3
4

− 1
4

− 1
4

− 1
4

3
4

1 3 1
4

1
4

1
4

− 3
4

3
4

1 2
1 1

3
1
3

0 − 2
3

2
3

2 1
1 2

3
0 − 1

3
− 1

3
2
3

1 1
2 1

2
0 0 − 1

2
1
2

4 0 0 0 0 0

Observe that we ordered the elements in Sn according to ‖ s ‖. The reader is invited to verify

that S5 has 28 different types.

To every s = (s1, . . . , sn) ∈ Sn we associate the following data



290 CHAPTER 8. NULLCONES.

• the corner Cs is the subspace of Mm
n consisting of those m tuples of n × n

matrices with zero entries except perhaps at position (i, j) where si − sj ≥ 1.
A partial ordering is defined on these corners by the rule

Cs′ < Cs ⇔ ‖ s′ ‖ < ‖ s ‖

• the parabolic subgroup Ps which is the subgroup of GLn consisting of matrices
with zero entries except perhaps at entry (i, j) when si − sj ≥ 0.

• the Levi subgroup Ls which is the subgroup of GLn consisting of matrices
with zero entries except perhaps at entry (i, j) when si− sj = 0. Observe that
Ls =

∏
GLaij where the aij are the multiplicities of pi + j.

Example 8.4 Using the sequence of types in the previous example, we have that the relevant
corners and subgroup for 3× 3 matrices are

Cs

Ps

t t tt tt t t tt t tt t t tt tt t t t tt tt t t tt t tt t t
Ls

t t t t tt t t t t tt t t t t t t tt t tt t t
For 4× 4 matrices the relevant corners are

Returning to the corner-type of an m-tuple x = (A1, . . . , Am) ∈ Nullmn , we have
seen that Ex ⊂ W determines a unique sEx

∈ Qn which up to permuting the entries
an element s of Sn. As permuting the entries of s translates into permuting rows
and columns in Mn(C) we have

Theorem 8.5 Every x = (A1, . . . , Am) ∈ Nullmn can be brought by permutation
Jordan-moves to an m-tuple x′ = (A′1, . . . , A

′
m) ∈ Cs. Here, s is the dominant

reordering of sEx
with Ex ⊂ W the subset πi − πj determined by the non-zero

entries at place (i, j) of one of the components Ak. The permutation of rows and
columns is determined by the dominant reordering.

The m-tuple s (or sEx) determines a one-parameter subgroup λs of Tn where λ
corresponds to the unique n-tuple of integers

(r1, . . . , rn) ∈ N+s ∩ Zn with gcd(ri) = 1

For any one-parameter subgroup µ of Tn determined by an integral n-tuple µ =
(a1, . . . , an) ∈ Zn and any x = (A1, . . . , An) ∈ Nullmn we define the integer

m(x, µ) = min {ai − aj | x contains a non-zero entry in Mm
n (πi − πj) }

From the definition of RnE it follows that the minimal value sE and λsE
is

sEx =
λsEx

m(x, λsEx
)

and s =
λs

m(x, λs)

We can now state to what extend λs is an optimal one-parameter subgroup of Tn.
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Theorem 8.6 Let x = (A1, . . . , Am) ∈ Nullmn and let µ be a one-parameter sub-
group contained in Tn such that lim

t→0
λ(t).x = 0, then

‖ λsEx
‖

m(x, λsEx
)
≤ ‖ µ ‖
m(x, µ)

The proof follows immediately from the observation that µ
m(x,µ) ∈ RnEx

and the
minimality of sEx

. Phrased differently, there is no simultaneous reordering of rows
and columns that admit an m-tuple x” = (A”1, . . . , A”m) ∈ Cs′ for a corner Cs′ <
Cs.

8.2 Optimal corners.

In the foregoing section we have transformed an m-tuple x = (A1, . . . , Am) ∈ Nullmn
by interchanging rows and columns to an m-tuple in corner-form Cs. However, it
is still possible that another point in the orbit O(x) say y = g.x = (B1, . . . , Bm) can
be transformed by interchanging rows and columns in a smaller corner.

Example 8.7 Consider one 3× 3 nilpotent matrix of the form

x =

240 a b
0 0 0
0 0 0

35 with ab 6= 0

Then, Ex = {π1 − π2, π1 − π3} and the corresponding s = sEx = ( 2
3
,− 1

3
,− 1

3
) so x is clearly of

corner type

Cs =

However, x is a nilpotent matrix of rank 1 and by the Jordan-normalform we can conjugate it in
standard form, that is, there is some g ∈ GL3 such that

y = g.x = gxg−1 =

240 1 0
0 0 0
0 0 0

35
For this y we have Ey = {π1−π2} and the corresponding sEy = ( 1

2
,− 1

2
, 0), which can be brought

into standard dominant form s′ = ( 1
2
, 0,− 1

2
) by interchanging the two last entries. Hence, by

interchanging the last two rows and columns, y is indeed of corner type

Cs′ =

and we have that Cs′ < Cs.

Trivial as this example seems, we needed the Jordan-normalform to produce it. As
there are no known canonical forms for m tuples of n× n matrices, it is a difficult
problem to determine the optimal corner type in general.

Definition 8.8 We say that x = (A1, . . . , Am) ∈ Nullmn is of optimal corner type
Cs if after reordering rows and columns, x is of corner type Cs and there is no point
y = g.x in the orbit which is of corner type Cs′ with Cs′ < Cs.

Using the results of the foregoing chapter we can give an elegant solution to the
problem of determining the optimal corner type of an m-tuple in Nullmn . We assume
that x = (A1, . . . , Am) is brought into corner type Cs with s = (s1, . . . , sn) ∈ Sn.
We will associate a quiver-representation to x. As we are interested in checking
whether we can transform x to a smaller corner-type, it is intuitively clear that the
border region of Cs will be important.
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• the border Bs is the subspace of Cs consisting of those m-tuples of n × n
matrices with zero entries except perhaps at entries (i, j) where si − sj = 1.

Example 8.9 For 3× 3 matrices we have the following corner-types Cs having border-regions
Bs and associated Levi-subgroups Ls

Cs

Bs

d

Ls

t t t t tt t t t t tt t t t t t t tt t tt t t
For 4× 4 matrices the relevant data are as follows

Cs =

Bs =

d dd d d dd d

Ls =

t t t t
t t t tt t

t tt t t t
t t tt t t

t tt t t tt t
t t t tt t tt t t

Cs =

Bs =

Ls =

t t tt t tt t t t
t tt t t t

t t t tt t
t t tt t t

t t t tt t t tt t t tt t t t
From these examples, it is clear that the action of the Levi-subgroup Ls on the border
Bs is a quiver-setting. In general, let s ∈ Sn be determined by the tableau Ts, the
associated quiver-setting (Qs, αs) is

• Qs is the quiver having as many connected components as there are rows in
the tableau Ts. If the i-th row in Ts is

(ai0, ai1, . . . , aiki
)

then the corresponding string of entries in s is of the form

{pi, . . . , pi︸ ︷︷ ︸
ai0

, pi + 1, . . . , pi + 1︸ ︷︷ ︸
ai1

, . . . , pi + ki, . . . , pi + ki︸ ︷︷ ︸
aiki

}

and the i-th component of Qs is defined to be the quiver Qi on ki + 1 vertices
having m arrows between the consecutive vertices, that is Qi is

0 1 2 ki

�������� �������� �������� ��������. . .m +3 m +3 m +3 m +3
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• the dimension vector αi for the i-th component quiver Qi is equal to the i-th
row of the tableau Ts, that is

αi = (ai0, ai1, . . . , aiki
)

and the total dimension vector αs is the collection of these component dimen-
sion vectors.

With these notations we have

Proposition 8.10 The action of the Levi-subgroup Ls =
∏
i,j GLaij on the border

Bs coincides with the base-change action of GL(αs) on the representation space
repαs

Qs. The isomorphism

Bs - repαs
Qs

is given by sending an m-tuple of border Bs-matrices (A1, . . . , Am) to the represen-
tation in repαs

Qs where the j-th arrow between the vertices va and va+1 of the i-th
component quiver Qi is given by the relevant block in the matrix Aj.

Example 8.11 Let us give a couple of examples for 4× 4 matrices

tableau Ls Bs (Qs, αs)

2 1 1

t t t tt t
d d

��������1 ��������1 ��������2mks mks

1 2 1

t t tt t t
d

��������1 ��������2 ��������1mks mks

1 2
1

t tt t t t ��������2 ��������1

��������1

mks

Finally, we associate to s ∈ Sn a character χs of the Levi-subgroup Ls = GL(αs)

• the character GL(αs)
χs- C∗ is determined by the integral n-tuple θs =

(t1, . . . , tn) ∈ Zn where if entry k corresponds to the j-th vertex of the i-th
component of Qs we have

tk = nij
def= d.(pi + j)

where d is the least common multiple of the numerators of the pi’s for all
i. Equivalently, the nij are the integers appearing in the description of the
one-parameter subgroup λs = (r1, . . . , rn) grouped together according to the
ordering of vertices in the quiver Qs. Recall that the character χs is then
defined to be

χs(g1. . . . , gn) =
n∏
i=1

det(gi)ti

or in terms of GL(αs) it sends an element gij ∈ GL(αs) to
∏
i,j det(gij)nij .
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Example 8.12 For the n = 4 examples above we obtain the following characters (indicated as
top-labels of the vertices)

tableau t1 t2 t3 t4 (Qs, αs, θs)

2 1 1 5 1 −3 −3

5 1 −3��������1 ��������1 ��������2mks mks

1 2 1 1 0 0 −1

1 0 −1��������1 ��������2 ��������1mks mks

1 2
1 1 1 0 −2

1 −2

0

��������2 ��������1

��������1

mks

Observe that θs(αs) = 0.

Using these conventions we can now state the main result of this section, giving a
solution to the problem of optimal corners.

Theorem 8.13 Let x = (A1, . . . , Am) ∈ Nullmn be of corner type Cs. Then, x is
of optimal corner type Cs if and only if under the natural maps

Cs -- Bs
'- repαs Qs

(the first map forgets the non-border entries) x is mapped to a θs-semistable repre-
sentation in repαs

Qs.

8.3 The Hesselink stratification.

We have seen that every orbit in Nullmn has a representative x = (A1, . . . , Am) with
all Ai strictly upper triangular matrices. That is, if N ⊂ Mn is the subspace of
strictly upper triangular matrices, then the action map determines a surjection

GLn ×Nm ac-- Nullmn

Recall that the standard Borel subgroup B is the subgroup of GLn consisting of all
upper triangular matrices and consider the action of B on GLn ×Mm

n determined
by

b.(g, x) = (gb−1, b.x)

Then, B-orbits in GLn × Nm are mapped under the action map ac to the same
point in the nullcone Nullmn . Consider the morphisms

GLn ×Mm
n

π-- GLn/B ×Mm
n

which sends a point (g, x) to (gB, g.x). The quotient GLn/B is called a flag variety
and is a projective manifold. Its points are easily seen to correspond to complete
flags

F : 0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fn = Cn with dimC Fi = i

of subspaces of Cn. For example, if n = 2 then GL2/B ' P1. Consider the fiber
π−1 of a point (g, (B1, . . . , Bm)) ∈ GLn/B ×Mm

n . These are the points

(h, (A1, . . . , Am)) such that

{
g−1h = b ∈ B
bAib

−1 = g−1Big for all 1 ≤ i ≤ m.
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Therefore, the fibers of π are precisely the B-orbits in GLn ×Mm
n . That is, there

exists a quotient variety for the B-action on GLn×Mm
n which is the trivial vector-

bundle of rank mn2

T = GLn/B ×Mm
n

p-- GLn/B

over the flag variety GLn/B. We will denote with GLn ×B Nm the image of the
subvariety GLn ×Nm of GLn ×Mm

n under this quotient map. That is, we have a
commuting diagram

GLn ×Nm ⊂ - GLn ×Mm
n

GLn ×B Nm

??
⊂- GLn/B ×Mm

n

??

Hence, V = GLn ×B Nm is a sub-bundle of rank m.n(n−1)
2 of the trivial bundle T

over the flag variety. Note however that V itself is not trivial as the action of GLn
does not map Nm to itself.

Theorem 8.14 Let U be the open subvariety of m-tuples of strictly upper triangular
matrices Nm consisting of those tuples such that one of the component matrices has
rank n− 1. the action map ac induces a commuting diagram

GLn ×B U
' - GLn.U

GLn ×B Nm

?

∩

ac - Nullmn

?

∩

where the upper map is an isomorphism of GLn-varieties if we define the action
on fiber bundles to be given by left multiplication in the first component. Therefore,
there is a natural one-to-one correspondence between GLn-orbits in GLn.U and
B-orbits in U . Further, ac is a desingularization of the nullcone and Nullmn is
irreducible of dimension

(m+ 1)
n(n− 1)

2
.

Proof. Let A ∈ N be a strictly upper triangular matrix of rank n− 1 and g ∈ GLn
such that gAg−1 ∈ N , then g ∈ B as one verifies by first bringing A into Jordan-
normal form Jn(0). This implies that over a point x = (A1, . . . , Am) ∈ U the fiber
of the action map

GLn ×Nm ac-- Nullmn

has dimension n(n−1)
2 = dim B. Over all other points the fiber has at least dimen-

sion n(n−1)
2 .But then, by the dimension formula we have

dim Nullmn = dim GLn + dim Nm − dim B = (m+ 1)
n(n− 1)

2

Over GLn.U this map is an isomorphism of GLn-varieties. Irreducibility of Nullmn
follows from surjectivity of ac as C[Nullmn ] ⊂ - C[GLn]⊗C[Nm] and the latter is
a domain. These facts imply that the induced action map

GLn ×B Nm ac- Nullmn

is birational and as the former is a smooth variety (being a vectorbundle over the
flag manifold), this is a desingularization. �
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Example 8.15 Let n = 2 and m = 1. We have seen in chapter 3 that Null12 is a cone in
3-space with the singular top the orbit of the zero-matrix and the open complement the orbit of»
0 1
0 0

–
.

In this case the flag variety is P1 and the fiber bundle GL2 ×B N has rank one. The action map

can be depicted as above and is a GL2-isomorphism over the complement of the fiber of the top.

The foregoing theorem gives us a reduction in the complexity, both in the dimension
of the acting group as in the dimension of the space acted upon, of the study of

• GLn-orbits in the nullcone Nullmn , to

• B-orbits in Nm.

at least on the stratum GLn.U described before. The aim of the Hesselink stratifi-
cation of the nullcone is to extend this reduction also to the complement.

Let s ∈ Sn and let Cs be the vectorspace of all m-tuples in Mm
n which are of

corner-type Cs. We have seen that there is a Zariski open subset (but, possibly
empty) Us of Cs consisting of m-tuples of optimal corner type Cs. Observe that the
action of conjugation of GLn on Mm

n induces an action of the associated parabolic
subgroup Ps on Cs.

• The Hesselink stratum Ss associated to s is the subvariety GLn.Us where Us
is the open subset of Cs consisting of the optimal Cs-type tuples

The results of the foregoing section allow us to prove, similar to the foregoing result,
the following reduction of complexity result from

• GLn-orbits in the Hesselink stratum Ss to

• Ps-orbits in optimal corner tuples Us.

Theorem 8.16 With notations as before we have a commuting diagram

GLn ×Ps Us
' - Ss

GLn ×Ps Cs

?

∩

ac - Ss

?

∩

where ac is the action map, Ss is the Zariski closure of Ss in Nullmn and the up-
per map is an isomorphism of GLn-varieties. Here, GLn/Ps is the flag variety
associated to the parabolic subgroup Ps and is a projective manifold. The variety
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GLn×PsCs is a vectorbundle over the flag variety GLn/Ps and is a subbundle of the
trivial bundle GLn ×Ps Mm

n . Therefore, the Hesselink stratum Ss is an irreducible
smooth variety of dimension

dim Ss = dim GLn/Ps + rk GLn ×Ps Cs

= n2 − dim Ps + dimC Cs

and there is a natural one-to-one correspondence between the GLn-orbits in Ss and
the Ps-orbits in Us. Moreover, the vectorbundle GLn ×Ps Cs is a desingularization
of Ss hence ’feels’ the gluing of Ss to the remaining strata. Finally, the ordering of
corners has the geometric interpretation

Ss ⊂
⋃

‖s′‖≤‖s‖

Ss′

In the previous section we have seen that Us = p−1 repssαs
(Qs, θs) where Cs

p-- Bs
is the canonical projection forgetting the non-border entries. As the action of the
parabolic subgroup Ps restricts to the action of its Levi-part Ls on Bs = repαs Q
we have a canonical projection

Us/Ps
p-- Mss

αs
(Qs, θs)

to the moduli space of θs-semistable representations in repαs
Qs. As none of the

components of Qs admits cycles, these moduli spaces are projective varieties. For
small values of m and n these moduli spaces give good approximations to the study
of the orbits in the nullcone.

Example 8.17 (Nullcone of m-tuples of 2× 2 matrices)

In chapter 3 we have proved by brute force that the orbits in Null22 correspond to points on
P1 together with one extra orbit, the zero representation. For arbitrary m, the relevant strata-
information for Nullm2 is contained in the following table

tableau s Bs = Cs Ps (Qs, αs, θs)

1 1 ( 1
2
,− 1

2
)

t tt 1 −1��������1 ��������1mks

2 (0, 0)

t tt t 0��������2

Because Bs = Cs we have that the orbit space Us/Ps ' Mss
αs

(Qs, θs). For the first stratum,

every representation in repαs Qs is θs-semistable except the zero-representation (as it contains

a subrepresentation of dimension β = (1, 0) and θs(β) = −1 < 0. The action of Ls = C∗ × C∗

on Cm − 0 has as orbit space Pm−1, classifying the orbits in the maximal stratum. The second

stratum consists of one point, the zero representation.

Example 8.18 A more interesting application, illustrating all of the general phenomena, is
the description of orbits in the nullcone of two 3× 3 matrices. As we mentioned in chapter 4, H.
Kraft described them in [14, p. 202] by brute force. The orbit space decomposes as a disjoint
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union of tori and can be represented by the picture

r
0 0

p
4 0

q
4 0

o
4 1

k
6 0

l
6 0

m
6 0

n
6 0

g
7 0

h
6 1

i
6 1

j
7 0

b
7 1

c
7 1

d
6 2

e
7 1

f
7 1

a
7 2
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Here, each node corresponds to a torus of dimension the right-hand side number in the bottom
row. A point in this torus represents an orbit with dimension the left-hand side number. The top
letter is included for classification purposes. That is, every orbit has a unique representant in the
following list of couples of 3 × 3 matrices (A,B). The top letter gives the torus, the first 2 rows
give the first two rows of A and the last two rows give the first two rows of B, x, y ∈ C∗

a
0 1 0
0 0 1
0 x 0
0 0 y

b
0 1 0
0 0 1
0 0 0
0 0 x

c
0 1 0
0 0 1
0 x 0
0 0 0

d
0 1 0
0 0 1
0 x y
0 0 x

e
0 1 0
0 0 1
0 x 0
0 0 0

f
0 0 0
0 0 1
0 1 0
0 0 x

g
0 1 0
0 0 0
0 0 0
0 0 1

h
0 1 0
0 0 1
0 0 x
0 0 0

i
0 0 x
0 0 0
0 1 0
0 0 1

j
0 0 0
0 0 1
0 1 0
0 0 0

k
0 0 1
0 0 0
0 1 0
0 0 0

l
0 0 0
0 0 1
0 0 1
0 0 0

m
0 0 1
0 0 0
0 1 0
0 0 0

n
0 0 0
0 0 0
0 1 0
0 0 1

o
0 1 0
0 0 0
0 x 0
0 0 0

p
0 1 0
0 0 0
0 0 0
0 0 0

q
0 0 0
0 0 0
0 1 0
0 0 0

r
0 0 0
0 0 0
0 0 0
0 0 0

We will now derive this result from the above description of the Hesselink stratification. To begin,
the relevant data concerning S3 is summarized in the following table

tableau s Bs, Cs Ps (Qs, αs, θs)

1 1 1 (1, 0,−1)

t t t tt tt 1 0 −1��������1 ��������1 ��������1ff
xx

ff
xx

1 2 ( 1
3
, 1
3
,− 2

3
)

t t tt t tt 1 −2��������2 ��������1ff
xx

2 1 ( 2
3
,− 1

3
,− 1

3
)

t t tt tt t 2 −1��������1 ��������2ff
xx

1 1
1 ( 1

2
, 0,− 1

2
)

t t tt tt
1 −1

0

��������1 ��������1

��������1

ff
xx

3 (0, 0, 0, )

t t tt t tt t t 0��������3

For the last four corner types, Bs = Cs whence the orbit space Us/Ps is isomorphic to the moduli
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space Mss
αs

(Qs, θs). Consider the quiver-setting

1 −2

��������2 ��������1iiuu

If the two arrows are not linearly independent, then the representation contains a proper sub-
representation of dimension-vector β = (1, 1) or (1, 0) and in both cases θs(β) < 0 whence the
representation is not θs-semistable. If the two arrows are linearly independent, we can use the

GL2-component to bring them in the form (

»
0
1

–
,

»
1
0

–
), whence Mss

αs
(Qs, αs) is reduced to one

point, corresponding to the matrix-couple of type l

(

240 0 0
0 0 1
0 0 0

35 ,

240 0 1
0 0 0
0 0 0

35 )

A similar argument, replacing linear independence by common zero-vector shows that also the

quiver-setting corresponding to the tableau 2 1 has one point as its moduli space, the matrix-

tuple of type k. Incidentally, this shows that the corners corresponding to the tableaux 2 1 or
1 2 cannot be optimal when m = 1 as then the row or column vector always has a kernel or

cokernel whence cannot be θs-semistable. This of course corresponds to the fact that the only
orbits in Null13 are those corresponding to the Jordan-matrixes240 1 0

0 0 1
0 0 0

35 240 1 0
0 0 0
0 0 0

35 240 0 0
0 0 0
0 0 0

35

which are respectively of corner type 1 1 1 ,

1 1
1 and 3 , whence the two other types do not

occur. Next, consider the quiver setting

1 −1

0

��������1 ��������1

��������1

iiuu

A representation in repαs Qs is θs-semistable if and only if the two maps are not both zero
(otherwise, there is a subrepresentation of dimension β = (1, 0) with θs(β) < 0). The action of
GL(αs) = C∗ × C∗ on C2 − 0 has a s orbit space P1 and they are represented by matrix-couples

(

240 0 a
0 0 0
0 0 0

35 ,

240 0 b
0 0 0
0 0 0

35 )

with [a : b] ∈ P1 giving the types o,p and q. Clearly, the stratum 3 consists just of the zero-matrix,
which is type r. Remains to investigate the quiver-setting

1 0 −1

��������1 ��������1 ��������1

b

ii
a

uu

d

ii
c

uu

Again, one easily verifies that a representation in repαs Qs is θs-semistable if and only if (a, b) 6=
(0, 0) 6= (c, d) (for otherwise one would have subrepresentations of dimensions (1, 1, 0) or (1, 0, 0)).
The corresponding GL(αs)-orbits are classified by

Mss
αs

(Qs.θs) ' P1 × P1

corresponding to the matrix-couples of types a, b, c, e, f, g, j, k and n

(

240 c 0
0 0 a
0 0 0

35 ,

240 d 0
0 0 b
0 0 0

35 )

where [a : b] and [c : d] are points in P1. In this case, however, Cs 6= Bs and we need to investigate
the fibers of the projection

Us/Ps
p-- Mss

αs
(Qs, αs)



300 CHAPTER 8. NULLCONES.

Now, Ps is the Borel subgroup of upper triangular matrices and one verifies that the following two
couples

(

240 c 0
0 0 a
0 0 0

35 ,

240 d 0
0 0 b
0 0 0

35 ) and (

240 c x
0 0 a
0 0 0

35 ,

240 d y
0 0 b
0 0 0

35 )

lie in the same B-orbit if and only if det

»
a c
b d

–
6= 0, that is, if and only if [a : b] 6= [c : d] in

P1. Hence, away from the diagonal p is an isomorphism. On the diagonal one can again verify by
direct computation that the fibers of p are isomorphic to C, giving rise to the cases d, h and i in
the classification.
The connection between this approach and Kraft’s result is depicted by the following two pictures
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The picture on the left is Kraft’s toric degeneration picture where we enclosed all orbits belonging

to the same Hesselink strata, that is, having the same optimal corner type. The dashed region

enclosed the orbits which do not come from the moduli spaces Mss
αs

(Qs, θs), that is, those coming

from the projection Us/Ps -- Mss
αs

(Qs, θs)). The picture on the right gives the ordering of the

relevant corners.

Example 8.19 We see that we get most orbits in the nullcone from the moduli spaces
Mss
αs

(Qs, θs). The reader is invited to work out the orbits in Null24. We list here the moduli
spaces of the relevant corners

corner Mss
αs

(Qs, θs) corner Mss
αs

(Qs, θs) corner Mss
αs

(Qs, θs)

P1 × P1 × P1 P1 P1

P3 t P1 × P1 t P1 × P1 P1 t S2(P1) P0

P1 P1 P0

Observe that two potential corners are missing in this list. This is because we have the following
quiver setting for the corner

3 −1

��������1 ��������3

d

ii
c

uu
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and there are no θs-semistable representations as the two maps have a common kernel, whence a
subrepresentation of dimension β = (1, 0) and θs(β) < 0. A similar argument holds for the other
missing corner and quiver setting

1 −3

��������3 ��������1

d

ii
c

uu

For general n, a similar argument proves that the corners associated to the tableaux
1 n and n 1 are not optimal for tuples in Nullmn+1 unless m ≥ n. It is also easy
to see that with m ≥ n all relevant corners appear in Nullmn+1, that is all potential
Hesselink strata are non-empty.

8.4 Cornering quiver representations.

One again, generalizing the results from m-tuples of n × n matrices to arbitrary
quiver representations presents more a notational than an intellectual challenge.
Let Q be a (marked) quiver on k vertices {v1, . . . , vk} and fix a dimension vector
α = (a1, . . . , ak) and denote the total dimension

∑k
i=1 ai by a. A representation

V ∈ repα Q is said to belong to the nullcone Nullα Q if the trivial representation
0 ∈ O(V ). Equivalently, all polynomial invariants are zero when evaluated in V ,
that is, the traces of all oriented cycles in Q are zero in V . By the Hilbert criterium
for GL(α), V ∈ Nullα Q if and only if there is a one-parameter subgroup

C∗ λ- GL(α) =

GLa1

. . .
GLak

 ⊂ - GLa

such that lim
→

λ(t).V = 0. Up to conjugation in GL(α), or equivalently, replacing

V by another point in the orbit O(V ), we may assume that λ lies in the maximal
torus Ta of GL(α) (and of GLa) and can be represented by an integral a-tuple
(r1, . . . , ra) ∈ Za such that

λ(t) =

t
r1

. . .
tra


We have to take the vertices into account, so we decompose the integer interval
[1, 2, . . . , a] into vertex intervals Ivi

such that

[1, 2, . . . , a] = tki=1 Ivi
with Ivi

= [
i−1∑
j=1

aj + 1, . . . ,
i∑

j=1

aj ]

If we recall that the weights of Ta are isomorphic to Za having canonical generators
πp for 1 ≤ p ≤ a we can decompose the representation space into weight spaces

repα Q =
⊕

πpq=πq−πp

repα Q(πpq)

where the eigenspace of πpq is non-zero if and only if for p ∈ Ivi
and q ∈ Ivj

, there
is an arrow ��������i��������j oo
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in the quiver Q. Call πα Q the set of weights πpq which have non-zero eigenspace
in repα Q. Using this weight space decomposition we can write every representation
as V =

∑
p,q Vpq where Vpq is a vector of the (p, q)-entries of the maps V (a) for

all arrows a in Q from vi to vj. Using the fact that the action of Ta on repα Q is
induced by conjugation, we deduce as before that for λ determined by (r1, . . . , ra)

lim
t→0

λ(t).V = 0 ⇔ rq − rp ≥ 1 whenever Vpq 6= 0

Again, we can define the corner type C of the representation V by defining the subset
of real a-tuples

EV = {(x1, . . . , xa) ∈ Ra | xq − xp ≥ 1 ∀ Vpq 6= 0}

and determine a minimal element sV in it, minimal with respect to the usual norm
on Ra. Similar to the case of matrices considered before, it follows that sV is a
uniquely determined point in Qa, having the characteristic property that its entries
can be partitioned into strings

{pl, . . . , pl︸ ︷︷ ︸
al0

, pl + 1, . . . , pl + 1︸ ︷︷ ︸
al1

, . . . , pl + kl, . . . , pl + kl︸ ︷︷ ︸
alkl

} with all alm ≥ 1

which are balanced, that is
∑kl

m=0 alm(pl +m) = 0. Note however that this time we
are not allowed to bring sV into dominant form, as we can only permute base-vectors
of the vertex-spaces. That is, we can only use the action of the vertex-symmetric
groups

Sa1 × . . .× Sak
⊂ - Sa

to bring sV into vertex dominant form, that is if sV = (s1, . . . , sa) then

sq ≤ sp whenever p, q ∈ Ivi
for some i and p < q

We can compile a list Sα of such rational a-tuples as follows

• Start with the list Sa of matrix corner types.

• For every s ∈ Sa consider all permutations σ ∈ Sa/(Sa1 × . . .×Sak
) such that

σ.s = (sσ(1), . . . , sσ(a)) is vertex dominant.

• Take Hα to be the list of the distinct a-tuples σ.s which are vertex dominant.

• Remove s ∈ Hα whenever there is an s′ ∈ Hα such that

πs Q = {πpq ∈ πα Q | sq − sp ≥ 1} ⊂ πs′ Q = {πpq ∈ πα Q | s′q − s′p ≥ 1}

and ‖ s ‖>‖ s′ ‖.

• The list Sα are the remaining entries s from Hα.

Example 8.20 Let us give an example illustrating the removing condition. Consider the quiver
setting

��������2

��������1

��������1

a��
����
��

{� ��
��

�
��

��
�

b +3

c

??
??
??

??

�#
??

??
?

??
??

?

with a, b, c ≥ 1. As α = (1, 2, 1) we have that the set of occurring weights in repα Q is

πα Q = {π12, π13, π14, π24, π34}
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The total dimension a = 4 and we have compiled the list S4 before. Consider the vertex-dominant
reordering of (1, 0, 0,−1)

s = (0, 1,−1, 0) then πs Q = {π12, π34} and ‖ s ‖= 2

However, we have a vertex-dominant reordering of ( 1
2
, 1
2
,− 1

2
,− 1

2
)

s′ = (−
1

2
,
1

2
,−

1

2
,
1

2
) with πs′ Q = {π12, π34, π14} and ‖ s′ ‖= 1

and we need to remove s from the possible corner types. Indeed, s cannot be a minimum for the
set EV where V12 6= 0 6= V34. In fact, the list Sα for this quiver-setting consists of the following
types

s πs Q ‖ s ‖

(−1, 0, 0, 1) πα Q 2
(− 1

2
, 1
2
,− 1

2
, 1
2
) {π12, π14, π34} 1

(− 3
4
, 1
4
, 1
4
, 1
4
) {π12, π13, π14} 3

4
(− 1

4
,− 1

4
,− 1

4
, 3
4
) {π14, π24, π34} 3

4
(− 2

3
, 1
3
, 1
3
, 0) {π12, π13} 2

3
(− 2

3
, 1
3
, 0, 1

3
) {π12, π14} 2

3
(− 1

3
, 0,− 1

3
, 2
3
) {π14, π34} 2

3
(0,− 1

3
,− 1

3
, 2
3
) {π24, π34} 2

3
(− 1

2
, 1
2
, 0, 0) {π12} 1

2
(− 1

2
, 0, 0, 1

2
) {π14} 1

2
(0, 0,− 1

2
, 1
2
) {π34} 1

2
(0, 0, 0, 0) ∅ 0

and one verifies that all other vertex-dominant reorderings of elements from S4 have to be removed.

Observe that we do not have to worry about this additional restriction if each vertex has a loop

and any two vertices of Q are connected by arrows in both ways, that is, when πα Q is the set of

all weights πij with 1 ≤ i, j ≤ a.

For s ∈ Sα, we can then define similar associated data as in the case of matrices

• The corner Cs is the subspace of repα Q such that all arrow matrices Vb, when
viewed as a × a matrices using the partitioning in vertex-entries, have only
non-zero entries at spot (p, q) when sq − sp ≥ 1.

• The border Bs is the subspace of repα Q such that all arrow matrices Vb, when
viewed as a × a matrices using the partitioning in vertex-entries, have only
non-zero entries at spot (p, q) when sq − sp = 1.

• The parabolic subgroup Ps(α) is the intersection of Ps ⊂ GLa with GL(α)
embedded along the diagonal. Ps(α) is a parabolic subgroup of GL(α), that is,
contains the product of the Borels B(α) = Ba1 × . . .×Bak

.

• The Levi-subgroup Ls(α) is the intersection of Ls ⊂ GLa with GL(α) embed-
ded along the diagonal.

We say that a representation V ∈ repα Q is of corner type Cs whenever V ∈ Cs.

Theorem 8.21 By permuting the vertex-bases, every representation V ∈ repα Q
can be brought to a corner type Cs for a uniquely determined s which is a vertex-
dominant reordering of sV .

Example 8.22 Let us consider the quiver setting we encountered in chapter 1

2(/).*-+,

1(/).*-+,

y

qq

x

--

u

EE

v

��
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Then, the relevant corners have the following block decomposition

(1, 0,−1) (0,−1, 1) (1,−1, 0) ( 1
3 , 1

3 ,− 2
3 ) ( 1

3 ,− 2
3 , 1

3 ) ( 2
3 ,− 1

3 ,− 1
3 )

(− 1
3 ,− 1

3 , 2
3 ) ( 1

2 , 0,− 1
2 ) (0,− 1

2 , 1
2 ) ( 1

2 ,− 1
2 , 0) (0, 0, 0)

Again we will solve the problem of the optimal corner representations by introducing
a new quiver setting. Fix a type s ∈ Sα Q and let J1, . . . , Ju be the distinct strings
partitioning the entries of s, say with

Jl = {pl, . . . , pl︸ ︷︷ ︸Pk
i=1 bi,l0

, pl + 1, . . . , pl + 1︸ ︷︷ ︸Pk
i=1 bi,l1

, . . . , pl + kl, . . . , pl + kl︸ ︷︷ ︸Pk
i=1 bi,lkl

}

where bi,lm is the number of entries p ∈ Ivi such that sp = pl +m. To every string
l we will associate a quiver Qs,l and dimension vector αs,l as follows

• Qs,l has k.(kl + 1) vertices labeled (vi,m) with 1 ≤ i ≤ k and 0 ≤ m ≤ kl.

• In Qs,l there are as many arrows from vertex (vi,m) to vertex (vj ,m + 1)
as there are arrows in Q from vertex vi to vertex vj. There are no arrows
between (vi,m) and (vj ,m′) if m′ −m 6= 1.

• The dimension-component of αs,l in vertex (vi,m) is equal to bi,lm.

Example 8.23 For the above quiver, all component quivers Qs,l are pieces of the quiver below

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,

(/).*-+,
. . .

,, 22 ,,22 ,,22 ++ 33??�������������� ��?
??

??
??

??
??

??
? ??�������������� ��?

??
??

??
??

??
??

? ??�������������� ��?
??

??
??

??
??

??
? ??��������������� ��?

??
??

??
??

??
??

??

Clearly, we only need to consider that part of the quiver Qs,l where the dimensions of the vertex

spaces are non-zero.

The quiver-setting (Qs, αs) associated to a type s ∈ Sα Q will be the disjoint union
of the string quiver-settings (Qs,l, αs,l) for 1 ≤ l ≤ u. The purpose of all these
definitions is

Theorem 8.24 With notations as before, for s ∈ Sα Q we have isomorphisms{
Bs ' repαs

Qs

Ls(α) ' GL(αs)

Moreover, the base-change action of GL(αs) on repαs Qs coincides under the iso-
morphisms with the action of the Levi-subgroup Ls(α) on the border Bs.
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In order to determine the representations in repαs Qs which have optimal corner
type Cs we define the following character on the Levi-subgroup

Ls(α) =
u∏
l=1

×ki=1 ×
kl
m=0 GLbi,lm

χθs- C∗

determined by sending a tuple (gi,lm)ilm -
∏
ilm det g

mi,lm

i,lm where the exponents
are determined by

θs = (mi,lm)ilm where mi,lm = d(pl +m)

with d the least common multiple of the numerators of the rational numbers pl for
all 1 ≤ l ≤ u. As in the case of m-tuples of n× n matrices we can prove

Theorem 8.25 Consider a representation V ∈ Nullα Q of corner type Cs. Then,
V is of optimal corner type Cs if and only if under the natural maps

Cs
π-- Bs

'- repαs Qs

V is mapped to a θs-semistable representation in repαs
Qs. If Us is the open sub-

variety of Cs consisting of all representations of optimal corner type Cs, then

Us = π−1 repssαs
(Qs, θs)

For the corresponding Hesselink stratum Ss = GL(α).Us we have the commuting
diagram

GL(α)×Ps(α) Us
' - Ss

GL(α)×Ps(α) Cs

?

∩

ac - Ss

?

∩

where ac is the action map, Ss is the Zariski closure of Ss in Nullα Q and the
upper map is an isomorphism as GL(α)-varieties. Here, GL(α)/Ps(α) is the flag
variety associated to the parabolic subgroup Ps(α) and is a projective manifold. The
variety GL(α) ×Ps(α) Cs is a vectorbundle over the flag variety GL(α)/Ps(α) and
is a subbundle of the trivial bundle GL(α) ×Ps(α) repα Q. Hence, the Hesselink
stratum Ss is an irreducible smooth variety of dimension

dim Ss = dim GL(α)/Ps(α) + rk GL(α)×Ps(α) Cs

=
k∑
i=1

a2
i − dim Ps(α) + dimC Cs

and there is a natural one-to-one correspondence between the GL(α)-orbits in Ss
and the Ps(α)-orbits in Us. Moreover, the vectorbundle GL(α)×Ps(α)Cs is a desin-
gularization of Ss hence ’feels’ the gluing of Ss to the remaining strata. Finally, the
ordering of corners has the geometric interpretation

Ss ⊂
⋃

‖s′‖≤‖s‖

Ss′

Finally, because Ps(α) acts on Bs by the restriction to its subgroup Ls(α) = GL(αs)
we have a projection from the orbit space

Us/Ps
p-- Mss

αs
(Qs, θs)

to the moduli space of θs-semistable quiver representations.
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Example 8.26 Above we have listed the relevant corner-types for the nullcone of the quiver-
setting

2(/).*-+,

1(/).*-+,

y

qq

x

--

u

EE

v

��

In the table below we list the data of the three irreducible components of Nullα Q/GL(α) corre-
sponding to the three maximal Hesselink strata :

Cs, Bs Ls (Qs, αs, θs) Mss
αs

(Qs, θs)

t
(1, 0,−1)

t t t −1

0 1

1��������

0��������

0��������

1��������

0��������

1��������**44??�������� P1

t
(0,−1, 1)

t t t
−1 0

1

0��������

1��������

0��������

1��������

1��������

0��������**44

��?
??

??
??

?

P1

t
(1,−1, 0)

t t t
−1

0

1

0��������

1��������

1��������

0��������

0��������

1��������

��?
??

??
??

? ??�������� P0

There are 6 other Hesselink strata consisting of precisely one orbit. Finally, two possible corner-
types do not appear as there are no θs-semistable representations for the corresponding quiver
setting

Cs, Bs Ls (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
3 , 1

3 ,− 2
3 )

t tt t t −2

1

1��������

0��������

0��������

2��������??�������� ∅

(− 1
3 ,− 1

3 , 2
3 )

t tt t t
−1

2

0��������

2��������

1��������

0��������

��?
??

??
??

?

∅

8.5 Etale fibers.

Having obtained some control on the nullcone of arbitrary quiver settings, we want
to apply these results to obtain information on the representations of smooth alge-
bras. Let us recall the setting : A will be an affine C-algebra and Mξ is a semi-
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simple n-dimensional module such that the (trace preserving) representation variety
rep

n
A@n is smooth in Mξ. If Mξ is of representation type τ = (e1, d1; . . . ; ek, dk),

that is, if Mξ decomposes as

Mξ = S⊕e11 ⊕ . . .⊕ S⊕ek

k

with distinct simple components Si of dimension di and occurring in Mξ with mul-
tiplicity ei, then the GL(α) = Stab Mξ-structure on the normal space Nξ to the
orbit O(Mξ) is isomorphic to that of the representation space

repα Q
•

of a certain marked quiver on k vertices (the number of distinct simple components)
and the dimension vector α = (e1, . . . , ek) is given by the multiplicities. Moreover,
we have seen in chapter 6 that the arrows in Q• are determined by the (trace pre-
serving) self-extensions of Mξ. The Luna slice theorem asserts the existence of a

slice Sξ
φ- Nξ such that there is a local commuting diagram

GLn ×GL(α) Sξ

GLn ×GL(α) Nξ
�

GL
n
×

GL(α
) φ

rep
n
A@n

ψ

-

Sξ/GL(α)

??

Nξ/GL(α)

π2

?? �

φ/
GL

(α
)

issn A@n

π1

??

ψ/GL
n

-

in a neighborhood of ξ ∈ issn A@n on the right and a neighborhood of the image 0
of the trivial representation in Nξ/GL(α) on the left. In this diagram, the vertical
maps are the quotient maps, all diagonal maps are étale and the upper diagonal
maps are GLn-equivariant. In particular, there is a GLn-isomorphism between the
fibers

π−1
2 (0) ' π−1

1 (ξ)

and as π−1
2 (0) ' GLn ×GL(α) π−1(0) where π is the quotient morphism for the

marked quiver representations Nξ = repα Q•
π-- issα Q• = Nx/GL(α) we have

a GLn-isomorphism
π−1

1 (ξ) ' GLn ×GL(α) π−1(0)

That is, there is a natural one-to-one correspondence between

• GLn-orbits in the fiber π−1
1 (ζ), that is, isomorphism classes of n-dimensional

(trace preserving) representations of A with Jordan-Hölder decomposition Mξ,
and

• GL(α)-orbits in π−1(0), that is, the nullcone of the marked quiver Nullα Q•.

Summarizing we have the following

Theorem 8.27 Let A be an affine Quillen-smooth C-algebra and Mξ a semi-simple
n-dimensional representation of A. Then, the isomorphism classes of n-dimensional
representations of A with Jordan-Hölder sum isomorphic to Mξ are given by the
GL(α)-orbits in the nullcone Nullα Q• of the local marked quiver setting.
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8.6 Simultaneous conjugacy classes.

We have come a long way from our bare hands description of the simultaneous
conjugacy classes of couples of 2× 2 matrices in chapter 3. In this section we will
summarize what we have learned so far to approach this hopeless problem. The
problem of classifying simultaneous conjugacy classes of m-tuples of n×n matrices,
is the same as studying the GLn-orbits in

Mm
n ' repn C〈x1, . . . , xm〉

The best continuous approximation to the non-existent Hausdorff orbit-space is given
by the algebraic quotient map

repnC〈x1, . . . , xm〉
π-- issn C〈x1, . . . , xm〉 = issmn

where the points ξ in issmn classify the isomorphism classes of n-dimensional semi-
simple modules Mξ. If Mξ has a simple decomposition

Mξ ' S⊕e11 ⊕ . . . S⊕ek

k

with the Si distinct simples of dimension di (so that n =
∑
i diei) we say that Mξ

is of representation type

τ(Mξ = (e1, d1; . . . ; ek, dk)

We have calculated the coordinate ring C[issmn ] = Nmn which is the necklace algebra,
that is, is generated by traces of monomials in the generic n×n matrices X1, . . . , Xm

of length bounded by n2 + 1. Moreover, we know that if we collect all Mξ with fixed
representation type together in the subset issmn (τ), then

issn =
⊔
τ

issmn (τ)

is a finite stratification of issmn into locally closed smooth algebraic subvarieties.
Moreover, we know that a stratum issmn (τ ′) is contained in the Zariski closure
issmn (τ) of another stratum if and only if τ ′ < τ . Here, the order relation is induced
by the direct ordering

τ ′ = (e′1, d
′
1; . . . ; e

′
k′ , d

′
k′) <

dir τ = (e1, d1; . . . ; ek, dk)

if there exist a permutation σ on [1, 2, . . . , k′] such that there exist numbers

1 = j0 < j1 < j2 . . . < jk = k′

such that for every 1 ≤ i ≤ k we have the following relations{
eidi =

∑ji
j=ji−1+1 e

′
σ(j)d

′
σ(j)

ei ≤ e′σ(j) for all ji−1 < j ≤ ji

For example,the order relation on the representation types of dimension n = 4 has
the following Hasse diagram.

4 1

1 1 3 1 2 1 2 1

1 1 1 1 2 1

1 1 1 1 1 1 1 1 1 2 2 1 2 2

1 2 1 1 1 1

1 3 1 1 1 2 1 2

1 4

oooo OOOO

OOO
O

ooo
o

??
??

??
??

ooo
o OOO

O

OOO
O

ooo
o

ooo
o OOO

O
��

��
��

��

OOOO
oooo
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Because issmn is irreducible, there is an open stratum corresponding to the simple
representations, that is type (1, n). The sub-generic strata are all of the form

τ = (1,m1; 1,m2) with m1 +m2 = n.

The (in)equalities describing the locally closed subvarieties issmn (τ) can (in prin-
ciple) be deduced from the theory of trace identities. Remains to study the local
structure of the quotient variety issmn near ξ and the description of the fibers π−1(ξ).

Both problems can be tackled by studying the local quiver setting (Qξ, αξ) corre-
sponding to ξ which describes the GL(αξ) = Stab(Mξ)-module structure of the nor-
mal space to the orbit of Mξ. If ξ is of representation type τ = (e1, d1; . . . ; ek, dk)
then the local quiver Qξ has k-vertices {v1, . . . , vk} corresponding the the k distinct
simple components S1, . . . , Sk of Mξ and the number of arrows (resp. loops) from
vi to vj (resp. in vi) are given by the dimensions

dimCExt
1(Si, Sj) resp. dimCExt

1(Si, Si)

and these numbers can be computed from the dimensions of the simple components,
# ��������i��������j

aoo = (m− 1)didj

# ��������i
��

= (m− 1)d2
i + 1

Further, the local dimension vector αξ is given by the multiplicities (e1, . . . , ek).
The étale local structure of issmn in a neighborhood of ξ is the same as that of the
quotient variety issαξ

Qξ in a neighborhood of 0. The local algebra of the latter is
generated by traces along oriented cycles in the quiver Qξ. A direct application is

Proposition 8.28 For m ≥ 2, ξ is a smooth point of issmn if and only if Mξ is
a simple representation, unless (m,n) = (2, 2) i which case iss22 ' C5 is a smooth
variety.

Proof. If ξ is of representation type (1, n), the local quiver setting (Qξ, αξ) is

��������1

d

��

where d = (m− 1)n2 +1, whence the local algebra is the formal power series ring in
d variables and so issmn is smooth in ξ. As the singularities form a Zariski closed
subvariety of issmn , the result follows if we prove that all points ξ lying in sub-generic
strata, say of type (1,m1; 1,m2) are singular. In this case the local quiver setting is
equal to

��������1 ��������1

a

"*

a

bjl1 7? l2_g

where a = (m − 1)m1m2 and li = (m − 1)m2
i + 1. Let us denote the arrows from

v1 to v2 by x1, . . . , xa and those from v2 to v1 by y1, . . . , ya. If (m,n) 6= (2, 2) then
a ≥ 2, but then we have traces along cycles

{xiyj | 1 ≤ i, j ≤ a}

that is, the polynomial ring of invariants is the polynomial algebra in l1+l2 variables
(the traces of the loops) over the homogeneous coordinate ring of the Segre embedding

Pa−1 × Pa−1 ⊂ - Pa
2−1
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which has a singularity at the top (for example we have equations of the form
(x1y2)(x2y1) − (x1y1)(x2y2)). Thus, the local algebra of issmn cannot be a formal
power series ring in ξ whence issmn is singular in ξ. We have proved in chapter 3
that in the exceptional case iss22 ' C5. �

To determine the fibers of the quotient map Mm
n

π-- issmn we have to study the
nullcone of this local quiver setting, Nullαξ

Qξ. Observe that the quiver Qξ has
loops in every vertex and arrows connecting each ordered pair of vertices, whence
we do not have to worry about potential corner-type removals. Denote

∑
ei = z ≤ n

and let Cz be the set of all s = (s1, . . . , sz) ∈ Qz which are disjoint unions of strings
of the form

{pi, pi + 1, . . . , pi + ki}

where li ∈ N, all intermediate numbers pi + j with j ≤ ki do occur as components
in s with multiplicity aij ≥ 1 and pi satisfies the balance-condition

ki∑
j=0

aij(pi + j) = 0

for every string in s. For fixed s ∈ Cz we can distribute the components si over
the vertices of Qξ (ej of them to vertex vj) in all possible ways modulo the action
of the small Weyl group Se1 × . . . Sek

⊂ - Sz. That is, we can rearrange the si’s
belonging to a fixed vertex such that they are in decreasing order. This gives us the
list Sαξ

or Sτ of all corner-types in Nullαξ
Qξ. For each s ∈ Sαξ

we then construct
the corner-quiver setting

(Qξ s, αξ s, θξ s)

and study the Hesselink strata Ss which actually do appear, which is equivalent to
verifying whether there are θξ s-semistable representations in repαξ s

Qξ s. Using
Schofield’s criterium proved in chapter 7 we have a purely combinatorial way to
settle this (in general quite hard) problem of optimal corner-types.

That is, we can determine which Hesselink strata Ss actually occur in π−1(ξ) '
Nullαxi Qξ. The GL(αξ s)-orbits in the stratum Ss are in natural one-to-one cor-
respondence with the orbits under the associated parabolic subgroup Ps acting on the
semistable representations

Us = π−1 repssαξ s
(Qξ s, θξ s)

and there is a natural projection morphism from the corresponding orbit-space

Us/Ps
ps-- Mss

αξ s
(Qξ s, θξ s)

to the moduli space of θξ s-semistable representations which we can study locally
because we know how to construct all semi-invariants of quivers. The ’only’ (usually
hard) remaining problem in the classification of m-tuples of n × n matrices under
simultaneous conjugation is the description of the fibers of this projection map ps.

Example 8.29 (m-tuples of 2× 2 matrices)

There are three different representation types τ of 2-dimensional representations of C〈x1, . . . , xm〉
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with corresponding local quiver settings (Qτ , ατ )

type τ (Qτ , ατ )

2a (1, 2) ��������1

4m − 3

��

2b (1, 1; 1, 1) ��������1 ��������1

m − 1
$,

m − 1

dlm 7? m_g

2c (2, 1) ��������2

m

��

The defining (in)equalities of the strata issm2 (τ) are given by k × k minors (with k ≤ 4 of the
symmetric m×m matrix 264 tr(x

0
1x

0
1) . . . tr(x0

1x
0
m)

...
...

tr(x0
mx

0
1) . . . tr(x0

mx
0
m)

375
where x0

i = xi− 1
2
tr(xi) is the generic trace zero matrix. These facts follow from the description of

the trace algebras Tm2 as polynomial algebras over the generic Clifford algebras of rank ≤ 4 (deter-
mined by the above symmetric matrix) and the classical matrix decomposition of Clifford algebras
over C. Full details can be found my Habilitation thesis ??. To study the fibers Mm

2
-- issm2

we need to investigate the different Hesselink strata in the nullcones of these local quiver settings.
Type 2a has just one potential corner type corresponding to s = (0) ∈ S1 and with corresponding
corner-quiver setting

0

��������1

which obviously has P0 (one point) as corresponding moduli (and orbit) space. This corresponds
to the fact that for ξ ∈ issm2 (1, 2), Mξ is simple and hence the fiber π−1(ξ) consists of the closed
orbit O(Mξ).

For type 2b the following list gives the potential corner-types Cs together with their associated
corner-quiver settings and moduli spaces (note that as Bs = Cs in all cases, these moduli spaces
describe the full fiber)

s Bs, Cs (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
2
,− 1

2
)

−1

1

1��������

0��������

0��������

1��������
m − 1��� ���

;C����
����

Pm−2

(− 1
2
, 1
2
)

−1

1

0��������

1��������

1��������

0��������
m − 1
??

?
??

?

�#
??

??
??

??

Pm−2

(0, 0)

0

0

1��������

1��������

P0

That is, for ξ ∈ issm2 (1, 1; 1, 1), the fiber π−1(ξ) consists of the unique closed orbit O(Mξ) (corre-
sponding to the P0) and two families Pm−2 of non-closed orbits. Observe that in the special case
m = 2 we recover the two non-closed orbits found in chapter 3.

Finally, for type 2c, the fibers are isomorphic to the nullcones of m-tuples of 2 × 2 matrices.
We have the following list of corner-types, corner-quiver settings and moduli spaces. Again, as
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Bs = Cs in all cases, these moduli spaces describe the full fiber.

s Bs, Cs (Qs, αs, θs) Mss
αs

(Qs, θs)

( 1
2
,− 1

2
)

−1 1

1�������� 0��������m +3 Pm−1

(0, 0)

0

2�������� P0

whence the fiber π−1(ξ) consists of the closed orbit, together wit a Pm−1-family of non-closed

orbits. Again, in the special case m = 2, we recover the P1-family found in chapter 3.

Example 8.30 (m-tuples of 3× 3 matrices)
There are 5 different representation-types for 3-dimensional representations. Their associated local
quiver settings are depicted in the following table

type τ (Qτ , ατ )

3a (1, 3) ��������1

9m − 8

��

3b (1, 2; 1, 1) ��������1 ��������1

2m − 2
$,

2m − 2

dl4m − 3 7? m_g

3c (1, 1; 1, 1; 1, 1) ��������1 ��������1

��������1

m − 1
$,

m − 1

dl

m − 1

3;

m − 1

s{

m − 1

��
m − 1

NV

m

IQ

m

MU

m

��

3d (2, 1; 1, 1) ��������2 ��������1

m − 1
$,

m − 1

dlm 7? m_g

3e (3, 1) ��������3

m

��

For each of these types we can perform an analysis of the nullcones as before. We leave the details
to the interested reader and mention only the end-result

• For type 3a the fiber is one closed orbit.

• For type 3b the fiber consists of the closed orbit together with two P2m−3-families of non-
closed orbits.

• For type 3c the fiber consists of the closed orbit together with twelve Pm−2×Pm−2-families
and one Pm−2-family of non-closed orbits.

• For type 3d the fiber consists of the closed orbit together with four Pm−1 × Pm−2-families,
one Pm−2×Pm−2-family, two Pm−2-families, one Pm−1-family and two M -families of non-
closed orbits determined by moduli spaces of quivers, where M is the moduli space of the
following quiver setting

−1 2

��������2 ��������1m − 1 +3

together with some additional orbits coming from the projection maps ps.

• For type 3e we have to study the nullcone of m-tuples of 3× 3 matrices, which can be done
as in the case of couples but for m ≥ 3 the two extra strata do occur.

We see that in this case the only representation-types where the fiber is not fully determined by

moduli spaces of quivers are 3d and 3e.
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8.7 Representation fibers.

Let A be a Cayley-Hamilton algebra of degree n and consider the algebraic quotient
map

reptr
n
A

π-- isstrn A

from the variety of n-dimensional trace preserving representations to the variety
classifying isomorphism classes of trace preserving n-dimensional semi-simple rep-
resentations. Assume ξ ∈ Smn A ⊂ - isstrn A. That is, the representation variety
reptr

n
A is smooth along the GLn-orbit of Mξ where Mξ is the semi-simple represen-

tation determined by ξ ∈ isstrn A. In chapter 5 we have seen that the local structure
of A and reptr

n
A near ξ is fully determined by a local marked quiver setting (Q•ξ , αξ).

That is, we have a GLn-isomorphism between the fiber of the quotient map, that is,
the n-dimensional trace preserving representation degenerating to Mξ

π−1(ξ) ' GLn ×GL(αξ) Nullαξ
Qξ

and the nullcone of the marked quiver-setting. In this section we will apply the
results on nullcones to the study of these representation fibers π−1(ξ). Observe that
all the facts on nullcones of quivers extend verbatim to marked quivers Q• using
the underlying quiver Q with the proviso that we drop all loops in vertices with
vertex-dimension 1 which get a marking in Q•. This is clear as nilpotent quiver
representations obviously have zero trace along each oriented cycle, in particular in
each loop. The examples given before illustrate that a complete description of the
nullcone is rather cumbersome. For this reason we restrict here to the determination
of the number of irreducible components and their dimensions in the representation
fibers. Modulo the GLn-isomorphism above this study amounts to describing the
irreducible components of Nullαξ

Qξ which are determined by the maximal corner-
types Cs, that is such that the set of weights in Cs is maximal among subsets of
παxi Qξ (and hence ‖ s ‖ is maximal among Sαξ

Qξ.

To illustrate our strategy, consider the case of curve orders. In chapter 6 we
proved that if A is a Cayley-Hamilton order of degree n over an affine curve X =
isstn A and if ξ ∈ Smn A, then the local quiver setting (Q,α) is determined by
an oriented cycle Q on k vertices with k ≤ n being the number of distinct simple
components of Mξ, the dimension vector α = (1, . . . , 1)

1(/).*-+, 1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,1(/).*-+,

//

??�����

OO

__?????

oo

&&

...

and an unordered partition p = (d1, . . . , dk) having precisely k parts such that∑
i di = n, determining the dimensions of the simple components of Mξ. Fixing

a cyclic ordering of the k-vertices {v1, . . . , vk} we have that the set of weights of the
maximal torus Tk = C∗ × . . .× C∗ = GL(α) occurring in repα Q is the set

πα Q = {πk1, π12, π23, . . . , πk−1k}
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Denote K =
∑k−1
i=0 i = k(k−1)

2 and consider the one string vector

s = ( . . . , k − 2− K

k
, k − 1− K

k
,−K

k︸︷︷︸
i

, 1− K

k
, 2− K

k
, . . . )

then s is balanced and vertex-dominant, s ∈ Sα Q and πs Q = Π. To check whether
the corresponding Hesselink strata in Nullα Q is nonempty we have to consider the
associated quiver-setting (Qs, αs, θs) which is

−K −K + k −K + 2k −K + k2 − 2k −K + k2 − k

vi vi+1 vi+2 vi−2 vi−1

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .// // // // //

It is well known and easy to verify that repαs Qs has an open orbit with represen-
tative all arrows equal to 1. For this representation all proper subrepresentations
have dimension vector β = (0, . . . , 0, 1, . . . , 1) and hence θs(β) > 0. That is, the
representation is θs-stable and hence the corresponding Hesselink stratum Ss 6= ∅.
Finally, because the dimension of repαs

Qs is k − 1 we have that the dimension of
this component in the representation fiber π−1(x) is equal to

dim GLn − dim GL(α) + dim repαs
Qs = n2 − k + k − 1 = n2 − 1

which completes the proof of the following

Theorem 8.31 Let A be a Cayley-Hamilton order of degree n over an affine curve
X such that A is smooth in ξ ∈ X. Then, the representation fiber π−1(ξ) has
exactly k irreducible components of dimension n2− 1, each the closure of one orbit.
In particular, if A is Cayley-smooth over X, then the quotient map

rept
n
A

π-- isstn A = X

is flat, that is, all fibers have the same dimension n2 − 1.

For Cayley-Hamilton orders over surfaces, the situation is slightly more com-
plicated. From chapter 6 we recall that if A is a Cayley-Hamilton order of degree
n over an affine surface S = isstn A and if A is smooth in ξ ∈ X, then the local
structure of A is determined by a quiver setting (Q,α) where α = (1, . . . , 1) and
Q is a two-circuit quiver on k + l + m ≤ n vertices, corresponding to the distinct
simple components of Mξ

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//

??�����

OO

OO

__?????

oo

//

oo

OO

##

yy

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

...
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and an unordered partition p = (d1, . . . , dk+l+m) of n with k+ l+m non-zero parts
determined by the dimensions of the simple components of Mξ. With the indicated
ordering of the vertices we have that

πα Q = {πi i+1 |


1 ≤ i ≤ k − 1
k + 1 ≤ i ≤ k + l − 1
k + l + 1 ≤ i ≤ k + l +m− 1

}

∪ {πk k+l+1, πk+l k+l+1, πk+l+m 1, πk+l+m k+1}

As the weights of a corner cannot contain all weights of an oriented cycle in Q we
have to consider the following two types of potential corner-weights Π of maximal
cardinality

• (outer type) : Π = πα Q − {πa, πb} where a is an edge in the interval
[v1, . . . , vk] and b is an edge in the interval [vk+1, . . . , vk+l].

• (inner type) : Π = πα Q − {πc} where c is an edge in the interval
[vk+l+1, vk+l+m].

There are 2 + (k − 1)(l − 1) different subsets Π of outer type, each occurring as
the set of weights of a corner Cs, that is Π = πs Q for some s ∈ Sα Q. The two
exceptional cases correspond to{

Π1 = πα Q− {πk+l+m 1, πk+l k+l+1}
Π2 = πα Q− {πk+l+m k+1, πk k+l+1}

which are of the form πsi
Q with associated border quiver-setting (Qsi

, αsi
, θsi

) where
αsi = (1, . . . , 1), Qsi are the following full line subquivers of Q

Qs1

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//

??�����

OO

OO

oo

//

OO

##

yy

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

Qs1

1(/).*-+, 1(/).*-+,
1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,
1(/).*-+,

1(/).*-+,
//

OO

OO

__?????

oo

oo

OO

##

yy

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

with starting point v1 (resp. vk+1). The corresponding si ∈ Sα Q is a single string
with minimal entry

−
∑k+l+m−1
i=0 i

k + l +m
= −k + l +m− 1

2
at place

{
1
k + 1

and going with increments equal to one along the unique path. Again, one verifies
that repαs Qs has a unique open and θs-stable orbit, whence these Hesselink strata
do occur and the border Bs is the full corner Cs. The corresponding irreducible
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component in π−1(ξ) has therefore dimension equal to n2 − 1 and is the closure of
a unique orbit. The remaining (k− 1)(l− 1) subsets Π of outer type are of the form

Πij = πα Q− {πi i+1, πj j+1}

with 1 ≤ i ≤ k − 1 and k + 1 ≤ j ≤ k + l − 1. We will see in a moment that
they are again of type πs Q for some s ∈ Sα Q with associated border quiver-setting
(Qs, αs, θs) where αs = (1, . . . , 1) and Qs is the full subquiver of Q

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

i+1

i

j+1

j

//

??��������

OO

OO

__????????

oo

//

oo

OO��

  

yy

��

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

If we denote with Al the directed line quiver on l + 1 vertices, then Qs can be
decomposes into full line subquivers

(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,

(/).*-+,
(/).*-+,

Aa
OOOOOOOOOOO

Ab
OOOOOOOOOOO

Ab
ooooooooooo

Ac

Ad
ooooooooooo

Ad
OOOOOOOOOOO

Ae
OOOOOOOOOOO

but then we consider the one string s ∈ Sα Q with minimal entry equal to − x
k+l+m

where with notations as above

x =
a∑
i=1

i+ 2
b∑
i=1

(a+ i) +
c∑
i=1

(a+ b+ i)

+ 2
d∑
i=1

(a+ b+ c+ i) +
e∑
i=1

(a+ b+ c+ d+ i)

where the components of s are given to the relevant vertex-indices. Again, there is a
unique open orbit in repαs Qs which is a θs-stable representation and the border Bs
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coincides with the corner Cs. That is, the corresponding Hesselink stratum occurs
and the irreducible component of π−1(ξ) it determines had dimension equal to

dim GLn − dim GL(α) + dim repαs
Qs = n2 − (k + l +m) + (k + l +m− 1)

= n2 − 1

There are m−1 different subsets Πu of inner type, where for k+l+1 ≤ u < k+l+m
we define Πu = πα Q− {πu u+1}, that is dropping an edge in the middle

1(/).*-+, 1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,
1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,

//

??��������

OO

OO

__????????

oo

//

oo

OO

OO

vu

vu+1

��

||

1

kk-1

2

k+1

k+l

k+l+1

k+l+m

First assume that k = l. In this case we can walk through the quiver (with notations
as before)

(/).*-+, (/).*-+, (/).*-+, (/).*-+,Aa

Ab

Ab

Ac

and hence the full subquiver of Q is part of a corner quiver-setting (Qs, αs, θs) where
α = (1, . . . , 1) and where s has as its minimal entry − x

k+l+m where

x =
a∑
i=1

i+ 2
b∑
i=1

(a+ i) +
c∑
i=1

(a+ b+ i)

In this case we see that repαs Qs has θs-stable representations, in fact, there is a
P1-family of such orbits. The corresponding Hesselink stratum is nonempty and the
irreducible component of π−1(ξ) determined by it has dimension

dim GLn − dim GL(α) + dim repαs
Qs = n2 − (k + l +m) + (k + l +m) = n2

If l < k, then Πu = πs Q for some s ∈ Sα Q but this time the border quiver-setting
(Qs, αs, θs) is determined by αs = (1, . . . , 1) and Qs the full subquiver of Q by also



318 CHAPTER 8. NULLCONES.

dropping the arrow corresponding to πk+l+1 k+l, that is

(/).*-+, (/).*-+,
(/).*-+,

(/).*-+,
(/).*-+,

(/).*-+,

Aa

Ab
ooooooooooo

Ab
OOOOOOOOOOO

AcOOOO

AdOOOO
��

vu+1 vk+l+m

vk+l

vk+l+1

vu

If Qs is this quiver (without the dashed arrow) then Bs = repαs
Qs and it contains

an open orbit of a θs-stable representation. Observe that s is determines as the one
string vector with minimal entry − x

k+l+m where

x =
a∑
i=1

i+ 2
b∑
i=1

(a+ i) +
c∑
i=1

(a+ b+ i) +
d∑
i=1

(a+ b+ c+ i)

However, in this case Bs 6= Cs and we can identify Cs with repαs
Q′s where Q′s is

Qs together with the dashed arrow. There is an A1-family of orbits in Cs mapping
to the θs-stable representation. In particular, the Hesselink stratum exists and the
corresponding irreducible component in π−1(ξ) has dimension equal to

dim GLn − dim GL(α) + dim Cs = n2 − (k + l +m) + (k + l +m) = n2.

This concludes the proof of the description of the representation fibers of smooth
orders over surfaces, summarized in the following result.

Theorem 8.32 Let A be a Cayley-Hamilton order of degree n over an affine surface
X = isstn A and assume that A is smooth in ξ ∈ X of local type (Aklm, α). Then,
the representation fiber π−1(ξ) has exactly 2 + (k − 1)(l − 1) + (m − 1) irreducible
components of which 2 + (k − 1)(l − 1) are of dimension n2 − 1 and are closure
of one orbit and the remaining m − 1 have dimension n2 and are closures of a
one-dimensional family of orbits. In particular, if A is Cayley-smooth, then the
algebraic quotient map

rept
n
A

π-- isstn A = X

is flat if and only if all local quiver settings of A have quiver Aklm with m = 1.

8.8 Brauer-Severi fibers.

In the foregoing chapter we have given a description of the generic Brauer-Severi
variety BSmn (gen) as a moduli space of quiver representation. Moreover, we have
given a local description of the fibration

BSmn (gen)
ψ-- issmn

in an étale neighborhood of a point ξ ∈ issmn of representation type τ =
(e1, d1; . . . ; ek, dk). We proved that it is étale locally isomorphic to the fibration

Mss
αζ

(Qζ , θζ) -- issαζ
Qζ
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in a neighborhood of the trivial representation. That is, we can obtain the generic
Brauer-Severi fiber ψ−1(ξ) from the description of the nullcone Nullαζ

Qζ pro-
vided we can keep track of θζ-semistable representations. Let us briefly recall the
description of the quiver-setting (Qζ , αζ , θζ).

• The quiver Qζ has k+1 vertices {v0, v1, . . . , vk} such that there are di arrows
from v0 to vi for 1 ≤ i ≤ k. For 1 ≤ i, j ≤ k there are aij = (m− 1)didj + δij
directed arrows from vi to vj.

• The dimension vector αζ = (1, e1, . . . , ek).

• The character θζ is determined by the integral k + 1-tuple (−n, d1, . . . , dk).

That is, for any triple (v0, vi, vj) of vertices, the full subquiver of Qζ on these three
vertices has the following form

1(/).*-+,

ei(/).*-+,

ej(/).*-+,

−n

di

dj

diooooooooo

ooooooooo

3;ooooooooooooo

ooooooooooooo

dj

OOOOOOOOO

OOOOOOOOO

#+OOOOOOOOOOOOO

OOOOOOOOOOOOO

aii

�	

ajj

U]

aij

�


aji

BJ

Let E =
∑k
i=1 ei and T the usual (diagonal) maximal torus of dimension 1 + E in

GL(αζ) ⊂ - GLE and let {π0, π1, . . . , πE} be the obvious basis for the weights of
T .. As there are loops in every vi for i ≥ 1 and there are arrows from vi to vj for
all i, j ≥ 1 we see that the set of weights of repαζ

Qζ is

παζ
Qζ = {πij = πj − πi | 0 ≤ i ≤ E, 1 ≤ j ≤ E}

The maximal sets πs Qζ for s ∈ Sαζ
Qζ are of the form

πs Qζ
dfn
= πσ = {πij | i = 0 or σ(i) < σ(j)}

for some fixed permutation σ ∈ SE of the last E entries. To begin, there can be no
larger subset as this would imply that for some 1 ≤ i, j ≤ E both πij and πji would
belong to it which cannot be the case for a subset πs′ Qζ . Next, πσ = πs Qζ where

s = (p, p+ σ(1), p+ σ(2), . . . , p+ σ(E)) where p = −E2

If we now make s vertex-dominant, or equivalently if we only take a σ in the factor
SE/(Se1 × Se2 × . . . × Sek

), then s belongs to Sαζ
Qζ . For example, if E = 3 and

σ = id ∈ S3, then the corresponding border and corner regions for πs are

Cs = and Bs =

t tt
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We have to show that the corresponding Hesselink stratum is non-empty in
Nullαζ

Qζ and that it contains θζ-semistable representations. For s correspond-
ing to a fixed σ ∈ SE the border quiver-setting (Qs, αs, θs) is equal to

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .z0 +3 z1 +3 z2 +3 zE−1 +3 zE +3
−E −E + 2 −E + 4 E − 2 E

where the number of arrows zi are determined by{
z0 = pu if σ(1) ∈ Ivu

zi = auv if σ(i) ∈ Ivu
and σ(i+ 1) ∈ Ivv

where we recall that Ivi
is the interval of entries in [1, . . . , E] belonging to vertex

vi. As all the zi ≥ 1 it follows that repαs Qs contains θs-stable representations, so
the stratum in Nullαζ

Qζ determined by the corner-type Cs is non-empty. We can
depict the Ls = T -action on the corner as a representation space of the extended
quiver-setting

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .z0 +3 z1 +3 z2 +3 zE +3

v02

�&

v0E

�"

v1E

�%

Translating representations of this extended quiver back to the original quiver-setting
(Qζ , αζ) we see that the corner Cs indeed contains θζ-semistable representations and
hence that this stratum in the nullcone determines an irreducible component in the
Brauer-Severi fiber ψ(ξ) of the generic Brauer-Severi variety.

Theorem 8.33 Let ξ ∈ issmn be of representation type τ = (e1, d1; . . . ; ek, dk) and
let E =

∑k
i=1 ei. Then, the fiber π−1(ξ) of the Brauer-Severi fibration

Brauers(gen)

BSmn (gen)

??

π
-- issmn

ψ

-

has exactly E!
e1!e2!...ek! irreducible components, all of dimension

n+ (m− 1)
∑
i<j

eiejdidj + (m− 1)
∑
i

ei(ei − 1)
2

−
∑
i

ei

Proof. In view of the foregoing remarks we only have to compute the dimension
of the irreducible components. For a corner type Cs as above we have that the
corresponding irreducible component in Nullαζ

Qζ has dimension

dim GL(αζ)− dim Ps + dim Cs

and from the foregoing description of Cs as a quiver-representation space we see
that

• dim Ps = 1 + ei(ei+1)
2 .
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• dim Cs = n+
∑
i
ei(ei−1)

2 ((m− 1)d2
i + 1) +

∑
i<j(m− 1)eiejdidj.

as we can identify Ps ' C∗ × Be1 × . . . × Bek
where Be is the Borel subgroup of

GLe. Moreover, as ψ−1(ξ) is a Zariski open subset of

(C∗ ×GLn)×GL(αζ) Nullαζ
Qζ

we see that the corresponding irreducible component of ψ−1(ξ) has dimension

1 + dim GLn − dim Ps + dim Cs

As the quotient morphism ψ−1(ξ) -- π−1(ξ) is surjective, we have that the
Brauer-Severi fiber π−1(ξ) has the same number of irreducible components of
ψ−1(ξ). As the quotient

ψ−1(ξ) -- π−1(ξ)

is by Brauer-stability of all point a principal PGL(1, n)-fibration, substituting the
obtained dimensions finishes the proof. �

In particular, we deduce that the Brauer-Severi fibration BSmn (gen)
π-- issmn is a

flat morphism if and only if (m,n) = (2, 2) in which case all Brauer-Severi fibers
have dimension one.

As a final application, let us compute the Brauer-Severi fibers in a point ξ ∈ X =
isstn A of the smooth locus Smn A of a Cayley-Hamilton order of degree n which is
of local quiver type (Q,α) where α = (1, . . . , 1) and Q is the quiver

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

//

??���������

OO

__?????????

oo

!!

qq

...

where the cycle has k vertices and p = (p1, . . . , pk) is an unordered partition of n
having exactly k parts. That is, A is a local Cayley-smooth order over a surface
of type Ak−101. These are the only types that can occur for smooth surface orders
which are maximal orders and have a non-singular ramification divisor. Observe
also that in the description of nullcones, the extra loop will play no role, so the
discussion below also gives the Brauer-Severi fibers of smooth curve orders. The
Brauer-Severi fibration is étale locally isomorphic to the fibration

Mss
α′ (Q

′, θ′)
π-- issα Q = issα′ Q

′
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in a neighborhood of the trivial representation. Here, Q′ is the extended quiver by
one vertex v0

1(/).*-+, 1(/).*-+,

1(/).*-+,

1(/).*-+,

1(/).*-+,1(/).*-+,

1(/).*-+,

//

??���������

OO
qq

__?????????

oo

!!

p1cccccccccccccccc
cccccccccccccccc

-5ccccccccccccccccccccccc
ccccccccccccccccccccccc

p2lllllllllllll

lllllllllllll

19llllllllllllllllllll

llllllllllllllllllllp3rrrrrrrrr

rrrrrrrrr

5=rrrrrrrrrrrrrr

rrrrrrrrrrrrrr

pk−2
LLLLLLL

LLLLLLL

!)LLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLL

pk−1
RRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRRRR

%-RRRRRRRRRRRRR

RRRRRRRRRRRRR

pk
[[[[[[[[[[[[[[[[
[[[[[[[[[[[[[[[[

)1[[[[[[[[[[[[[[[[[[[[[[[

[[[[[[[[[[[[[[[[[[[[[[[

the extended dimension vector is α′ = (1, 1, . . . , 1) and the character is determined
by the integral k + 1-tuple (−n, p1, p2, . . . , pk). The weights of the maximal torus
T = GL(α′) of dimension k + 1 that occur in representations in the nullcone are

πα′ Q
′ = {π0 i, πi i+1, 1 ≤ i ≤ k}

Therefore, maximal corners Cs are associated to s ∈ Sα′ Q′ where

πs Q
′ = {π0 j , 1 ≤ j ≤ k} ∪ {πi i+1, πi+1 i+2, . . . , πi−2 i−1}

for some fixed i. For such a subset the corresponding s is a one string k + 1-tuple
having as minimal value −k2 at entry 0, −k2 + 1 at entry i, −k2 + 2 at entry i + 1
and so on. To verify that this corner-type occurs in Nullα′ Q

′ we have to consider
the corresponding border quiver-setting (Q′s, α

′
s, θ
′
s) which is

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .pi +3 // // // //
−k −k + 2 −k + 4 k − 2 k

which clearly has θ′s-semistable representations, in fact, the corresponding moduli
space Mss

α′s
(Q′s, θ

′
s) ' Pp1−1. In this case we have that Ls = Ps = GL(α′s) and

therefore we can also interpret the corner as an open subset of the representation
space

Cs ⊂ - repα′s Q”s
where the embedding is Ps = GL(α′s)-equivariant and the extended quiver Q”s is

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .pi +3 // // //

pi+1

�&

pi−1

�"

Translating corner representations back to repα′ Q
′ we see that Cs contains θ′-

semistable representations, so will determine an irreducible component in the
Brauer-Severi fiber π−1(ξ). Let us calculate its dimension. The irreducible com-
ponent Ns of Nullα′ Q′ determined by the corner Cs has dimension

dim GL(α′)− dim Ps + dim Cs = (k + 1)− (k + 1) +
∑
i

pi + (k − 1)

= n+ k − 1
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But then, the corresponding component in the Brauer-stable is an open subvariety
of (C∗ ×GLn)×GL(α′) Ns and therefore has dimension

dim C∗ ×GLn − dim GL(α′) + dim Ns = 1 + n2 − (k + 1) + n+ k − 1

= n2 + n− 1

But then, as the stabilizer subgroup of all Brauer-stable points is one dimensional in
C∗×GLn the corresponding irreducible component in the Brauer-Severi fiber π−1(ξ)
has dimension n− 1. This completes the proof of the

Theorem 8.34 Let A be a Cayley-Hamilton order of degree n over a surface X =
isstn A and let A be Cayley-smooth in ξ ∈ X of type Ak−101 and p as before.
Then,the fiber of the Brauer-Severi fibration

BStn(A) -- X

in ξ has exactly k irreducible components, each of dimension n−1. In particular, if A
is a Cayley-smooth order over the surface X such that all local types are (Ak−101.p)
for some k ≥ 1 and partition p of n in having k-parts, then the Brauer-Severi
fibration is a flat morphism.

In fact, one can give a nice geometric interpretation to the different components.
Consider the component corresponding to the corner Cs with notations as before.
Consider the sequence of k − 1 rational maps

Pn−1 -- Pn−1−pi−1 -- Pn−1−pi−1−pi−2 -- . . . -- Ppi−1

defined by killing the right hand coordinates

[x1 : . . . : xn] 7→ [x1 : . . . : xn−pi−1 : 0 : . . . : 0︸ ︷︷ ︸
pi−1

] 7→ . . . 7→ [x1 : . . . : xpi : 0 : . . . : 0︸ ︷︷ ︸
n−pi

]

that is in the extended corner-quiver setting

1(/).*-+, 1(/).*-+, 1(/).*-+, 1(/).*-+,. . . . . .pi +3 // // //

pi+1

� 

pi−1

��

we subsequently set all entries of the arrows from v0 to vi−j zero for j ≥
1, the extreme projection Pn−1 -- Ppi−1 corresponds to the projection
Cs/Ps -- Bs/Ls = Mss

α′s
(Q′s, θ

′
s). Let Vi be the subvariety in ×kj=1 Pn−1 be

the closure of the graph of this sequence of rational maps. If we label the coor-
dinates in the k − j-th component Pn−1 as x(j) = [x1(j) : . . . : xn(j)], then the
multi-homogeneous equations defining Vi are{

xa(j) = 0 if a > pi + pi+1 + . . .+ pi+j

xa(j)xb(j − 1) = xb(j)xa(j − 1) if 1 ≤ a < b ≤ pi + . . .+ pi+l−1

One verifies that Vi is a smooth variety of dimension n − 1. If we would have
the patience to work out the whole nullcone (restricting to the θ′-semistable rep-
resentations) rather than just the irreducible components, we would see that the
Brauer-Severi fiber π−1(ξ) consists of the varieties V1, . . . , Vk intersecting transver-
sally. The reader is invited to compare our description of the Brauer-Severi fibers
with that of M. Artin [2] in the case of Cayley-smooth maximal curve orders.
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