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Abstract

The moduli spaces of θ-semistable representations of a finite quiver can

be packaged together to form a noncommutative compact manifold.

If noncommutative affine schemes are geometric objects associated to affine

associative C-algebras, affine smooth noncommutative varieties ought to cor-

respond to quasi-free (or formally smooth) algebras (having the lifting prop-

erty for algebra morphisms modulo nilpotent ideals). Indeed, J. Cuntz and D.

Quillen have shown that for an algebra to have a rich theory of differential

forms allowing natural connections it must be quasi-free [1, Prop. 8.5].

M. Kontsevich and A. Rosenberg introduced noncommutative spaces general-

izing the notion of stacks to the noncommutative case [5, §2]. It is hard to

construct noncommutative compact manifolds in this framework, due to the

scarcity of faithfully flat extensions for quasi-free algebras. An alternative was

outlined by M. Kontsevich in [4] and made explicit in [5, §1] (see also [7] and

[6]). Here, the geometric object corresponding to the quasi-free algebra A is the

collection (repnA)n where repnA is the affine GLn-scheme of n-dimensional

representations of A. As A is quasi-free each repnA is smooth and endowed

with Kapronov’s formal noncommutative structure [2]. Moreover, this collec-

tion has equivariant sum-maps repnA × repmA - repm+nA.

We define a noncommutative compact manifold to be a collection (Yn)n of pro-

jective varieties such that Yn is the quotient-scheme of a smooth GLn-scheme

Xn which is locally isomorphic to repnAα for a fixed set of quasi-free algebras

Aα, is endowed with a formal noncommutative structure and there are equiv-

ariant sum-maps Xm ×Xn
- Xm+n. In this note we will construct of a large

class of examples.

An illustrative example : let MP2
(n; 0, n) be the moduli space of semi-stable

vectorbundles of rank n over the projective plane P2 with Chern-numbers c1 = 0
and c2 = n, then the collection (MP2

(n; 0, n))n is a noncommutative compact

manifold. In general, let Q be a quiver on k vertices without oriented cycles and

let θ = (θ1, . . . , θk) ∈ Zk. For a finite dimensional representation N of Q with

dimension vector α = (a1, . . . , ak) we denote θ(N) =
∑

i θiai and d(α) =
∑

i ai. A

representation M of Q is called θ-semistable if θ(M) = 0 and θ(N) ≥ 0 for every

subrepresentation N of M . A. King studied the moduli spaces MQ(α, θ) of θ-

semistable representations of Q of dimension vector α and proved that these

are projective varieties [3, Prop 4.3]. We will prove the following result.
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Theorem 1 With notations as above, the collection of projective varieties

(
⊔

d(α)=n

MQ(α, θ) )n

is a noncommutative compact manifold.

The claim about moduli spaces of vectorbundles on P2 follows by considering

the quiver • -

-

-
• and θ = (−1, 1).

Let C be a smooth projective curve of genus g and MC(n, 0) the moduli space

of semi-stable vectorbundles of rank n and degree 0 over C. We expect the

collection (MC(n, 0))n to be a noncommutative compact manifold.

1 The setting.

Let Q be a quiver on a finite set Qv = {v1, . . . , vk} of vertices having a finite set

Qa of arrows. We assume that Q has no oriented cycles.

The path algebra CQ has as underlying C-vectorspace basis the set of all ori-

ented paths in Q, including those of length zero which give idempotents corre-

sponding to the vertices vi. Multiplication in CQ is induced by (left) concatena-

tion of paths. CQ is a finite dimensional quasi-free algebra.

Let α = (a1, . . . , ak) be a dimension vector such that d(α) = n. Let repQ(α) be

the affine space of α-dimensional representations of the quiver Q. That is,

repQ(α) =
⊕

•
j

�
a

•
i

Maj×ai
(C)

GL(α) = GLa1
× . . . × GLak

acts on this space via basechange in the vertexs-

paces. For θ = (θ1, . . . , θk) ∈ Zk we denote with repss
Q (α, θ) the open (possibly

empty) subvariety of θ-semistable representations in repQ(α). Applying re-

sults of A. Schofield [8] there is an algorithm to determine the (α, θ) such that

repss
Q (α, θ) 6= ∅. Consider the diagonal embedding of GL(α) in GLn and the

quotient morphism

Xn =
⊔

d(α)=n

GLn ×GL(α) repss
Q (α, θ)

πn
-- Yn =

⊔

d(α)=n

MQ(α, θ).

Clearly, Xn is a smooth GLn-scheme and the direct sum of representations in-

duces sum-maps Xm × Xn
- Xm+n which are equivariant with respect to

GLm × GLn
⊂ - GLm+n. Yn is a projective variety by [3, Prop. 4.3] and its

points correspond to isoclasses of n-dimensional representations of CQ which

are direct sums of θ-stable representations by [3, Prop. 3.2]. Recall that a

θ-semistable representation M is called θ-stable provided the only subrepre-

sentations N with θ(N) = 0 are M and 0.

2 Universal localizations.

We recall the notion of universal localization and refer to [9, Chp. 4] for full

details. Let A be a C-algebra and projmod A the category of finitely generated

projective left A-modules. Let Σ be some class of maps in this category. In [9,

Chp. 4] it is shown that there exists an algebra map A
jΣ
- AΣ with the univer-

sal property that the maps AΣ ⊗A σ have an inverse for all σ ∈ Σ. AΣ is called
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the universal localization of A with respect to the set of maps Σ. In the special

case when A is the path algebra CQ of a quiver on k vertices, we can identify

the isomorphism classes in projmod CQ with Nk. To each vertex vi corresponds

an indecomposable projective left CQ-ideal Pi having as C-vectorspace basis all

paths in Q starting at vi. We can also determine the space of homomorphisms

HomCQ(Pi, Pj) =
⊕

•
i

�........
p

•
j

Cp

where p is an oriented path in Q starting at vj and ending at vi. Therefore, any

A-module morphism σ between two projective left modules

Pi1 ⊕ . . . ⊕ Piu

σ
- Pj1 ⊕ . . . ⊕ Pjv

can be represented by an u × v matrix Mσ whose (p, q)-entry mpq is a linear

combination of oriented paths in Q starting at vjq
and ending at vip

.

Now, form an v × u matrix Nσ of free variables ypq and consider the algebra

CQσ which is the quotient of the free product CQ ∗ C〈y11, . . . , yuv〉 modulo the

ideal of relations determined by the matrix equations

Mσ.Nσ =






vi1 0
. . .

0 viu




 Nσ.Mσ =






vj1 0
. . .

0 vjv




 .

Repeating this procedure for every σ ∈ Σ we obtain the universal localization

CQΣ. Observe that if Σ is a finite set of maps, then the universal localization

CQΣ is an affine algebra.

It is easy to see that CQΣ is quasi-free and that the representation space

repn CQσ is an open subscheme (but possibly empty) of repn CQ. Indeed, if

m = (ma)a ∈ repQ(α), then m determines a point in repn CQΣ if and only if

the matrices Mσ(m) in which the arrows are all replaced by the matrices ma

are invertible for all σ ∈ Σ. In particular, this induces numerical conditions

on the dimension vectors α such that repnCQΣ 6= ∅. Let α = (a1, . . . , ak) be a

dimension vector such that
∑

ai = n then every σ ∈ Σ say with

P⊕e1

1 ⊕ . . . ⊕ P⊕ek

k

σ
- P

⊕f1

1 ⊕ . . . ⊕ P
⊕fk

k

gives the numerical condition e1a1 + . . . + ekak = f1a1 + . . . + fkak.

3 Local structure.

Fix θ = (θ1, . . . , θk) ∈ Zk and let Σ = ∪z∈N+
Σz where Σz is the set of all mor-

phisms σ

P
⊕zθi1

i1
⊕ . . . ⊕ P

⊕zθiu

iu

σ
- P

⊕−zθj1

j1
⊕ . . . ⊕ P

⊕−zθjv

jv

where {i1, . . . , iu} (resp. {j1, . . . , jv}) is the set of indices 1 ≤ i ≤ k such that

θi > 0 (resp. θi < 0). Fix a dimension vector α with 〈θ, α〉 = 0, then θ determines

a character χθ on GL(α) defined by χθ(g1, . . . , gk) =
∏

det(gi)
θi . With notations

as before, the function dσ(m) = det(Mσ(m)) for m ∈ repQ(α) is a semi-invariant

of weight zχθ in C[repQ(α)] if σ ∈ Σz.

The open subset Xσ(α) = {m ∈ repQ(α) | dσ(m) 6= 0} consists of θ-semistable

representations which are also n-dimensional representations of the universal
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localization CQσ. Under this correspondence θ-stable representations corre-

spond to simple representations of CQσ. If we denote

Xσ,n =
⊔

d(α)=n

GLn ×GL(α) Xσ(α) ⊂ - Xn

then Xσ,n = repnCQσ and the restriction of πn to Xσ,n is the GLn-quotient

map repnCQσ
-- facnCQσ which sends an n-dimensional representation to

the isomorphism class of the semi-simple n-dimensional representation of CQσ

given by the sum of the Jordan-Hölder components, see [7, 2.3]. As the semi-

invariants dσ for σ ∈ Σ cover the moduli spaces MQ(α, θ) this proves the local

isomorphism condition for the collection (Yn)n.

A point y ∈ Yn determines a unique closed orbit in Xn corresponding to a rep-

resentation

My = M⊕e1

1 ⊕ . . . ⊕ M⊕el

l

with the Mi θ-stable representations occurring in My with multiplicity ei. The

local structure of Yn near y is completely determined by a local quiver Γy on

l vertices which usually has loops and oriented cycles and a dimension vector

βy = (e1, . . . , el). The quiver-data (Γy, βy) is determined by the canonical A∞-

structure on Ext∗
CQ(My, My). As CQ is quasi-free, this ext-algebra has only

components in degree zero (determining the vertices and the dimension vector

βy) and degree one (giving the arrows in Γy).

Using [9, Thm 4.7] and the correspondence between θ-stable representations

and simples of universal localizations, the local structure is the one outlined in

[7, 2.5]. In particular, it can be used to locate the singularities of the projective

varieties Yn.

4 Formal structure.

In [2] M. Kapranov computes the formal neighborhood of commutative mani-

folds embedded in noncommutative manifolds. Equip a C-algebra R with the

commutator filtration having as part of degree −d

F−d =
∑

m

∑

i1+...im=d

RRLie
i1

R . . .RRLie
im

R

where RLie
i is the subspace spanned by all expressions [r1, [r2, [. . . , [ri−1, ri] . . .]

containing i − 1 instances of Lie brackets. We require that for Rab = R
F−1

affine

smooth, the algebras R
F−d

have the lifting property modulo nilpotent algebras

in the category of d-nilpotent algebras (that is, those such that F−d = 0). The

micro-local structuresheaf with respect to the commutator filtration then de-

fines a sheaf of noncommutative algebras on specRab, the formal structure.

Kapranov shows that in the affine case there exists an essentially unique such

structure. For arbitrary manifolds there is an obstruction to the existence of a

formal structure and when it exists it is no longer unique. We refer to [2, 4.6]

for an operadic interpretation of these obstructions.

We will write down the formal structure on the affine open subscheme repnCQΓ

of Xn where Γ is a finite subset of Σ. Functoriality of this construction then

implies that one can glue these structures together to define a formal structure

on Xn finishing the proof of theorem 1.

If A is an affine quasi-free algebra, the formal structure on repnA is given by

the micro-structuresheaf for the commutator filtration on the affine algebra

n
√

A = A ∗ Mn(C)Mn(C) = {p ∈ A ∗ Mn(C) | p.(1 ∗ m) = (1 ∗ m).p ∀m ∈ Mn(C)}
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This follows from the fact that
n
√

A is again quasi-free by the coproduct theo-

rems, [9, §2]. Specialize to the case when A = n
√

CQΓ. Consider the extended

quiver Q̂(n) by adding one vertex v0 and for every vertex vi in Q we add n

arrows from v0 to vi denoted {xi1, . . . , xin}. Consider the morphism between

projective left CQ̂(n)-modules

P1 ⊕ P2 ⊕ . . . ⊕ Pk
τ
- P0 ⊕ . . . ⊕ P0

︸ ︷︷ ︸

n

determined by the matrix

Mτ =






x11 . . . . . . x1n

...
...

xk1 . . . . . . xkn




 .

Consider the universal localization B = CQ̂(n)Γ∪{τ}. Then, n
√

CQΓ = v0Bv0 the

algebra of oriented loops based at v0.

5 Odds and ends.

One can build a global combinatorial object from the universal localizations

CQΓ with Γ a finite subset of Σ and gluings coming from unions of these sets.

This example may be useful to modify the Kontsevich-Rosenberg proposal of

noncommutative spaces to the quasi-free world.

Finally, allowing oriented cycles in the quiver Q one can repeat the foregoing

verbatim and obtain a projective space bundle over the collection (facnCQ)n.
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