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Abstract
We present a representation theoretic description of the non-empty strata in the
Hesselink stratification of the nullcone of representations of quivers. We use this
stratification to define optimal filtrations on representations of finite dimensional
algebras. As an application we investigate the isomorphism problem for uniserial
representations.
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1. OPTIMAL FILTRATIONS

1.1. Let A be a finite dimensional algebra over an algebraically closed field k.

In this paper we want to parameterize isomorphism classes of finite dimensional
A-modules having a specific Jordan-Hélder sequence. In particular, we want to
relate the recent results due to K. Bongartz and B. Huisgen-Zimmermann [3, 4, 1]
on uniserial modules to the Hesselink stratification of nullcones.
By Morita theory we may reduce to the case that A is a basic algebra. That is,
all simple A-modules are one dimensional. In this case we can write A as the
quotient of the path algebra of a quiver and relate finite dimensional A-modules
to representations of this quiver.

1.2. A quiver @ is a directed graph on a finite set of vertices {vy,...,vn}. Let
a;; be the number of directed arrows from v; to v; (or loops if v; = v;). The
Euler-form of @ is the bilinear form

X:ZL"xIL" —17Z
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2 LIEVEN LE BRUYN
determined by the matrix x = (x4;)i; € Mn(Z) with entries
Xij = 0ij — @i

Clearly, x encodes the structure of the directed graph Q.
A representation V of a quiver Q of dimension vector a = (a1,...,a,) € N

assigns to every arrow v; 2, v; in @ a matrix V(¢) € Mg, xq; (k). The set of all
a~dimensional representations form an affine space,

Rep(Q, ) = @ My, s () ®%

1,j=1

where a;; is the number of arrows in ¢ from v; to v;.

There is a natural action of the basechange group GL(c) = GLqy, X ... X GL,,
on Rep(Q, ), the orbits correspond to isomorphism classes of representations.
The path algebra k @ of the quiver @ is a vectorspace with basis the oriented
paths in @ of length > 0 and the multiplication is induced by concatenation of
paths.If p and ¢ are paths in @) we denote by gp the path by concatenating g after
.

Representations of Q can be viewed as finite dimensional representations of k¥ Q.
In this way, representations form an Abelian category and one defines homomor-
phisms, extensions etc. in the obvious way. If V € Rep(Q, o) and W € Rep(Q, §),
then

x(a, B) = dimy Hom(V,W) — dimy, Ext'(V, W)

1.8. We fix @ to be the quiver corresponding to the basic algebra A. That is, if
{Sy,...,5,} is the set of isoclasses of simple (one-dimensional) A-modules, then
@ is a quiver on n vertices {v1,...,v,} such that

Qi = dimkExtfq (SZ‘, 57)

Alternatively, let {e;,...,e,} be a complete set of primitive idempotents f A,
then the arrows from v; to v; in @ form a k-basis of the vectorspace

2
e,-Je,-/ejJ €;

where J is the Jacobson radical of A. Given a choice of primitive idempotents and
bases of these vectorspaces we can identify A with k& @/I where I is an admissible
ideal of k @, that is generated by linear combinations of paths of length > 2 in
the quiver @. Such a choice of idempotents and bases is called a coordinatization
of A. We will fix a coordinatization and identify from now on A with k¥ Q/I and
the vertex v; of @ with the primitive idempotent e; of A.

To a finite dimensional (left) representation M of A we associate its dimension
vector a = (ai,...,a,) where

a; = dimy ;.M.
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The set of all a-dimensional representations of A form an affine algebraic variety
Rep(A, o) which is a closed subvariety of Rep(Q, ). Recall that a representation
V € Rep(Q, o) is determined by matrices V(¢) assigned to every arrow ¢ in Q.
Any element of k (), that is the subspace generated by paths of length > 1 in @),
can be evaluated using these matrices. The closed subvariety Rep(A, o) is then
determined as these a-dimensional representations of () such that every f € I
evaluates to the zero matrix.

Clearly, Rep(A, «) is a GL(«)-subvariety of Rep(Q, ) and orbits correspond to
isomorphism classes of A-representations.

1.4. We claim that Rep(A,c) is a subvariety of the nullcone of Rep(Q, )
under the action of GL(«). By definition, this nullcone is the subvariety of

V € Rep(Q,a) such that the Zariski orbit closure GL(«).V contains the zero

representation.
Consider the one-dimensional simple A-representation

S; = e;Ale;] = ek Qfeik Q+’

then the zero representation of Rep(Q, @) is contained in Rep(A, o) and corre-
sponds to the a-dimensional semi-simple A-module

S(a)=SP"@...o 55"
Let M € Rep(A, o) and consider a Jordan-Holder sequence
O=MyCcMiyCMyCc..CM,=M

with M;/M;_, a simple (hence one dimensional) A-module. Therefore, a =3, a;
and M** = &;M;/M;_; is the semi-simple A-module S(a).

Take a k-vectorspace description M = @%_,km,; where m; is a basis vector of
M;/M;_1, then there is a one-parameter subgroup A of GL, with respect to this
basis

td
td_l
At) =

t
lies in GL(a) = GL, and has the property that
limy__o\(t).M = M*° = S(a)

whence M is contained in the nullcone.
For this reason we first have to study the nullcone Null(Q, ) of Rep(Q), o) under
the action of the base-change group GL(c).
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1.5. By the Hilbert criterium (see for example [8, II1.2.3]) we know that V' €
Rep(Q, @) les in the nullcone Null(Q, @) if and only if there is a one-parameter
subgroup

A k* —— GL(a) = GLg, X ...GL,, — GL,
such that
tlﬁr%)\(t)..V =0 in Rep(Q, @)
Up to conjugation in GL(«), or equivalently replacing V' by another point in its
orbit, we may assume that A lies in the maximal torus T, of GL(«) and is of the
form
A GL,,
At) = . — g — GL,
the GL,,

with the \; € Z.
Recall that the weights of T, are isomorphic to Z® having canonical generators

m; for 1 < 4 < a. Decompose the interval
1...a] =Uj_,1,

into vertex-intervals

1=0

v—1 v
I, = [Zai +1.. ..Zai.]
1=0

Then, we have the weight space decomposition
Rep(Q? O[) = @ﬂ'i,‘ =Ty Rep(Q7 O[)ﬂ-i].

where m;; occurs with a non-zero weightspace if and only if ¢ € I,, j € Iy and in
the quiver @ there is an arrow v —— ',
Using this weight space decomposition we can write V = Zm Vi;j. The condition

tlimb)\(t).V = 0 in Rep(Q, ) with X determined by (A,..., ;) € Z° is then
..—.—)
equivalent to the condition

Aj — Ay > 1 whenever M;; # 0.

1.6. Assume V € Null(Q, ). Consider the set
By ={(,7) | Vi # 0}.

There exists a unique a-tuple py = (y1, ..., te) € Q* such that p; — pu; > 1 for
all (¢,5) € Ey and such that the norm
| v = 63+ g

is minimal.
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There is a unique Ay = (A, ..., \,) € Z° satisfying
Av € Nuy and ged(Aq, ..., A) = 1.

The corresponding one-parameter subgroup Ay : k* —— T is called the best
one-parameter subgroup for V with respect to the maximal torus 7.

We can repeat this procedure for any point V' = ¢.V in the GL(a)- orbit of V.
Assume V"’ is such that | py | is minimal. We then say that

g A\vg  k* — GL(a)

is an optimal one parameter subgroup for V in GL(c). With A(V) we denote the
set of all optimal one-parameter subgroups for V in GL(«).

We recall from [9, Prop.4.3] and [6] that one-parameter subgroups of GL(c)
correspond to filtrations. Let A : k* <—— GL(«) be a one-parameter subgroup
and take for any vertex v; in () the decomposition

c = oW ™
where A(t) acts on the weight space Wi(m) as multiplication by ¢™. Consider the
filtration
WE™ = g )
Let W € Rep(Q, @), then under the action of A the components of the maps
(W)™ Wi(m) o) Wj(m’)

are multiplied by ¢™ ~™. Therefore, tlin% A(t).W exists if and only if ¢(W)™'™) =
—

0 for all m' < m. This in turn happens if and only if W(¢) induces a map

Wi(zm) _— Wj(zm) for all m. That is, if and only if the subspaces m(Zm)

determine subrepresentations Wy, of W. Thus a one-parameter subgroup A, for

which tliﬂ% A(t). W exists, determines a filtration of W,
—

oo D Wiy D Wimgry O -
indexed by Z and such that W,y = W for m small.

Definition 1.1. In particular, let Ay be an optimal one-parameter subgroup for
V in GL(«), then tlin% Av(t).V = 0 and we obtain a decreasing filtration Vi) of
__)

V with associated graded representation the zero representation in Rep(Q, ¢).
We call this an optimal filtrationon V. If V = M € Rep(A, «), then the subrep-
resentations M, are A-representations and we call the corresponding filtration
an optimal filtration for the A-representation M.

1.7. Two representations V,W € Null(Q, ) are said to belong to the same
blade if and only if A(V) = A(W). With [V] we denote the blade determined by
V.
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The representations V, W € Null(Q), o) are said to belong to the same stratum if
and only if A(V) = A(g.W) for some g € GL(a). Thus, GL(w).[V] is the stratum
determined by V.

Let V € Null(Q, «), take A € A(V) and define

S(V) = @(mi,h)leep(CL a)mﬂ;‘

where (7, A) = A; — Ao Then, S(V) is a linear subspace of Null(Q, o) and by
[2, Prop. 4.2] we have that the blade [V] of V is a Zariski open subset of S(V)
and ‘the stratum GL(«).[V] is a Zariski open subset of the irreducible variety
GL(a).S(V).

Let P()) be the parabolic subgroup of GL(«) associated with A € A(V). Recall
that P()\) consists of those g € GL(«a) such that tli_m)0 A(t).g.\(t) 7! exists.

This parabolic subgroup of GL(«) has unipotent radical U(X) consisting of those
elements such that the above limit is equal to the unit element and has Levi-
subgroup L()\) which is a product of GL,’s determined by the multiplicities of
the )\;. For more details we refer to [8, II1.2.5].

The parabolic subgroup P()) acts on S(V') and hence on GL(a) x S(V') by

p-(9, W) = (gp~",p.W)

Further, there is also an action of P(\) on GL(a) x Rep(Q, ) and the natural
map

GL(a) X Rep(Q,a) — GL(a)/P()) x Null(Q, o)

sending (g, W) to (gP()), g.W) is seen to be a geometric quotient for this action.
That is, points of GL(a)/P(\) x Null(Q, o) classify the P())-orbits in GL(x) x
Rep(Q, o).
We will denote this quotient by GL(a) xF™ Rep(Q, «) which is a vectorbundle
over the flag variety GL(c)/P()\) with fiber Null(Q, c).
With GL(a) xP® S(V) we denote the image in this quotient of GL(a) x S(V).
One verifies that it is a (not necessarily trivial) vectorbundle over the flag variety
GL(a)/P(\) with typical fiber S(V).
In particular, it is a smooth variety of dimension dim GL(«) — dim P(X) +
dim S(V) and we have natural morphisms
/
GL(a) xPO [V] 2 GL(a) [V]

GL(a) xPN S(V) 4 GL(a).S(V).

From [2, Th. 4.7] we recall that ¢ is birational and a resolution of singularities.
Concluding, one obtains the following
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Theorem 1.2 (Hesselink). With notations as before we have
1. The stratum GL().[V] is a smooth irreducible subvariety of Null(Q, o)
2. The Zariski closure of this stratum is equal to GL(c).S(V)
3. The desingularization of this closure is a vectorbundle over the flag variety
GL(a)/P(\) of rank the dimension of S(V).
4. There is a natural one-to-one correspondence between GL(a)-orbits in the
stratum GL(a).[V] and P()\)-orbits in the blade [V] —— S(V)

2. COMBINATORICS OF STRATA

2.1. In order to apply the Hesselink stratification of the nullcone Null(Q, @)
we need to describe the non-empty strata explicitly. In this section we give a
representation theoretic solution of this problem.

First, we will compile a finite list List(Q, o) of a-tuples p € Q* which can deter-
mine a stratum St,. To each p € List(Q, ) we will associate a directed quiver
Q,, a dimension vector «, and a character 6, and prove that St, # 0 if and
only if there are §,-semistable representations in Rep(Q,, o) as defined in [6].
Finally, we give a combinatorial solution to this existence problem using results
of A. Schofield [11].

In order to follow the construction, it may be helpful to consider the special case
of the m-loop quiver discussed in [10].

2.2. We will describe the list List(Q, ). Fix the maximal torus T, of GL(c) and
let T be the set of weights of T, having a nontrivial weight space in Rep(Q, @).
Recall that

H={7T1;‘j:7T7‘-7T1;|’I:EIU,j€IvI andﬂv—¢>v'€Q}

A subset R C II is said to be unstable if there exists a coweight p = (u1, ..., ls) €
Q* such that p; — p; > 1 for all m; € R.

If R is unstable, there is a unique coweight u(R) € Q* with this property and
such that the norm | u(R) | is minimal.

We define the saturation R*® of R to be the subset

R = {m;; € I | (myj, p(R)) 2 1}
and we call R a saturated subset of II whenever R = R*%.
If R is a saturated subset of IT we have a corresponding saturated subspace Xg of
Null(Q, ) by taking
XR = @m’jGRRep(Q) a)m’j
By [2, Prop. 5.5] one has a bijective correspondence between the GL(«)-

conjugacy classes of saturated subspaces of Null(Q, @) and the conjugacy classes
of saturated subsets R &~ II under the action of the Weyl-group

Se = Sa; X ... 8,
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of GL().
This correspondence assigns to R the subspace Xr and to a saturated subspace
the set of non-zero weights of its elements.
Hence, the number of Hesselink strata of Null(Q, «) is smaller than the number
of conjugacy classes of saturated subsets R —— II under the Weyl group.
Clearly, a saturated subset R —— II is determined by its associated coweight
u(R) and we will now describe the possible occurring coweights following [2, 6.8].
Consider a coweight u = (1, - - ., ttg) € Q*. Then, we can partition [1 .. .a] into a
disjoint union of segments I determined by the properties that there exist rational
numbers p < ¢ such that

o {piliel}={rep+Z|p<az<q}

e I={1<i<almep+Zyp-1<p<g+1}
We define a coweight u € Q* to be balanced if and only if for every segment I of

1 we have
D mi=0

We call a coweight i € Q? dominant if and only if for every vertex v we have for
alle,7 € I,
1< J =y <y

Finally, for p € Q* we denote R(u) = {m;; € IT | p; — ps > 1}.
Proposition 2.1. With notations as before.

1. Let R be a saturated subset of I1, then p(R) is balanced.

2. If 11 is balanced and for every balanced coweight i’ such that R(p) . R(y')

we have | p |<| i’ |, then R(p) is a saturated subset of II.

Proof. (Compare with [2, 6.8]) (1) : Let I be a segment for u and consider for
e €Q,
pe =+ (011, - -, 0ar)e

where 0,y = 1 if ¢ € I and zero otherwise. By definition of a segment, there exists
€0 > 0 such that for all € with absolute value < ¢y we have that

R(u) = R(pe)

By minimality of | x|, it follows that | e |>| 1o | whenever | € |< €. But,
| e =l | 426> i+ E# T
iel
whence p must be balanced. If not, we can take e < 0 and contradict minimality

of .
Statement (2) follows from (1) and the definitions. O
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Since we are interested in conjugacy classes under the Weyl group of saturated
subsets of II, we can restrict attention to dominant balanced coweights.

Denote with List(@, «) the finite list of dominant balanced coweights satisfying
the condition of the second part of the proposition.

Any u € List(Q, o) determines a (conjugacy class) of a saturated subspace

Sy = ®ry;eru) Rep(Q, a)r,;

of Null(Q, ).
Remains the problem to determine which of these S, is the closure of a stratum

St, in the Hesselink stratification of Null(Q, «).

2.8. Given p € List(Q,«) we want to determine whether S, is of the form
S(V) for some representation V' € Null(Q, &) and if so we want to determine the
Zariski-open blade [V] —— S(V).

In order to achieve this we use some results of F. Kirwan [7, 12.18-12.26]. Let us
fix p € List(Q, o) and define

pr(R) = {m; € I | pj — p = 1}
and
Tp, - EB'/ri,-Gul(R)Rep(Q7 a)'ﬂ'i‘i

Then, there is a natural projection map with vectorspaces as fibers
Su e Ty

Let ) be the uniquely determined one-parameter subgroup of 7, determined by ,
that is, A € NunZ® with ged(Xi, ..., \,) = 1. The action of GL(c) on Rep(Q, @)
induces actions of

e P(A)on S,

e L(\)onT,
There is a Zariski open (but possibly empty) subset T};° of representations W € T),
such that A € A(W). Specializing [7, 12.24 & 12.26] to our setting we obtain

Proposition 2.2. Let y € List(Q, a).
Then, S, = S(V) for some V € Null(Q, ) if and only if T* # 0.
Moreover, in that case we have

L [Vl={WeS,|pr(N)eT;}

2. Tp® is an L())-stable subset of T),

3. The fibers of [V] === T are vectorspaces

4. [V] is a P()\)-stable subset of S, = S(V)
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2.4. In order to verify the condition 7;;° # () we give an interpretation of the
L(X)-action on T}, as a quiver situation.
Let u € List(Q, ). Let Jy,...,J, be the distinct segments of 4 where

Jo={pi-opopit L. opitLpit koot Kyl
\_“,__/\ o (.

n (‘L) b(z) n (1)
vlt;o v1t71 Ult7k

where b( Y is the number of entries a € I, such that u, = p; + k.

Deﬁmtlon 2.3. A quiver T is said to be a level quiver if we can partition the
set of vertices of I" into disjoint subsets Si,Ss,...,S; such that the only arrows
in I are from a vertex from S; to one in S; 1 forall 1 <¢ <1 —1.

Consider for each segment J; with 1 <4 < u the level quiver @; on n x (k; + 1)
vertices {(v,7) | v a vertex in Q and 1 < j < k; +1}.

In Q; there are as many arrows from (v, k) to (v, k+ 1) as there are arrows from
v to v in Q.

For the level quiver (); we take the dimension vector o; = (bt] k)tk

The quiver @, will be the disjoint union of the level quivers ¢); associated to the
different segments J; of u where 1 <14 < u.

The dimension vector o, for @, will be the vector obtained from the dimension

vectors o; for ;.
Theorem 2.4. With notations as above we have identifications
T, = Rep(Qu, o)
L(A) = GL(o)

Moreover, the base-change action of GL(cy,) on Rep(Qy, @) coincides under the
identifications with the action of L(A\) on Ty,.

Proof. This is a straightforward but rather tedious verification. Perhaps it is
helpful to consider the special case of the m-loop quiver treated in [10]. O

2.5. Using this identification we will now give a representation theoretic inter-
pretation of the condition T3° # 0.
We define the character

Xu: L) = GL(ay,) = x¥y x0y x¥y GLw — K
‘ &
determined by sending a tuple (with obvious notation)
))wi - Hdet %])) v
wj

where the exponents are determined by
m,) = d.(pi + )
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where d is the least common multiple of all the numerators of the rational numbers
p; where i runs over all the segments of p, that is, 1 <17 < w.

Let G(1) be the kernel of this character and observe that the group of characters
of G(u) N'T, correspond to those x € Z* such that (x, ) = >, Xzp2 = 0.

But then, [12, Prop 1] applied to our situation implies

Proposition 2.5. T;;° is the set of semi-stable points of T, with respect to the
action of the group G(u).

That is, T,;° is the open subset of T,, consisting of points V' such that there exists
a X, semi-invariant function f : T, —— C with f(V) # 0. This in turn means
that for all g € L(\) we have g.f = x,(g)*f for some k € N.

Using the identifications of T,, = Rep(Q,, o) and of L(\) = GL(cy,) we will give
a representation theoretic description of the set 77;°.

Let T be a quiver on s vertices, then the Grothendieck group Ky kI' of the path
algebra is Z* and the isomorphism assigns to the class of a representation V of I’

its dimension vector.
If we have an additive function on the Grothendieck group

0 : Ko kI’ — Z
we can define, following A. King in [6], in analogy with the terminology of vec-
torbundles on projective varieties a representation V' € Rep(I', B) to be
o G-semistable if (V') = 0 and for every subrepresentation W <~ V' we have
6(W) > 0.
o O-stable if it is f-semistable and the only subrepresentations W «——V
satisfying (W) = 0 are 0 or N.
Returning to the case of interest, the character x,, describes the additive function
on the Grothendieck group

0, Ko kQ, — Z

by sending a class of a representation of (), with dimension vector (aff])) to

(#) ()
wj mvj avj .

Applying [6, Prop. 3.1] to our situation we obtain

Proposition 2.6. T;;° s the set of 6,-semistable representations in
Rep(Qp, ap) =Ty

Therefore, we need to find a method to determine when f-semistable representa-
tions exist.

2.6. Let T be a quiver on s vertices and 6 an additive function of the
Grothendieck group. The subset of f-semistable of Rep(I', B) is Zariski open (but
possibly empty). Hence it suffices to verify whether representations in general
position of Rep(T', §) are f-semistable.
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If 8,7 € N° we denote, following A. Schofield in [11], v ~—  if and only if
representations in general position of Rep(T', 3) contain a subrepresentation of
dimension vector 7.

A. Schofield proved in [11] an inductive procedure to verify this condition in terms

of the Euler form x of I'.
Theorem 2.7 (Schofield).
v B iff Maz —x(6,8—-7)=0
§-— v

This result is the final ingredient in our representation theoretic description of
the non-empty Hesselink strata of Null(Q, c).

Theorem 2.8. Let u € List(Q, ). The saturated subspace of Null(Q, o)
Sp, = ®Wij€R(u)Rep(Q7 a)ﬂ'ij
is the closure of a stratum in the Hesselink stratification of Null(Q, o) if and only

if for the corresponding

o level quiver @,
e dimension vector oy, and
e additive function 0,

the following condition is satisfied
B — o, = 9#(/3) >0

Moreover, the condition 3 — «,, can be verified in terms of the Euler form of
Qp-

If this condition is satisfied, the stratum St, consists of all W € S, such that
under the canonical projection

Sy o T, = Rep(Qy, o)

pr(W) is a 6,-semistable representation.

2.7. We can also give a representation theoretic description of the action of the
parabolic subgroup P()\) —— GL(c) on the saturated subspace 5.

Consider the level quiver Q, and denote its vertices by (v,7)®. Recall that v
runs over the vertices of Q, 4 over the different segments of 1 and j over the
length of the i-th segment J;. Further, J; determines a rational number p;.
Define the extended quiver Q,, as follows. Whenever (vy, 41)) and (v, j2)#) are
two vertices of @, satisfying the condition

Dis+Jo—piuy —1 21

then there are as many arrows in Q, from (vi, 1)) to (vs,j2)() as there are
arrows in @ from vy to vs.
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Observe that @, is a subquiver of Q,,. We have a natural inclusions
RGP(Q/M O‘u) — Rep(Q,“ au) — Rep(Q, )

where the last inclusion is obtained by adding the vertex spaces of @, (or Qu)
to obtain the vertex spaces for . A similar procedure applies to the matrices
corresponding to arrows. Under this inclusion we have

Proposition 2.9. We can identify S, with Rep(Qy, ). Moreover, the action
of P(\) — GL(c) on S, defines an action of P()) on Rep(Qy, o) such that
L()) acts on the subspace Rep(Qy, o) by base change.

3. UNISERIAL REPRESENTATIONS

3.1. In this section we will apply the foregoing general results to the construction
of moduli spaces for uniserial representations of the finite dimensional algebra A.
First, we will show that uniserial representations in Rep(@Q, ) can only belong
to very special strata St,. We determine the structure of the quivers @, and
Qu and dimension vector a,. In this case, the description of the §,-semistable
representations presents no problem.

In fact, we show that T;°/L(}) is in this case a product of projective spaces.
Over the standard open affine sets we can reduce the action of P()) to that of
the unipotent group G = ky X ... X ki (where the number of terms depends
on the multiplicity with which the top-component occurs) on a slice which is
Rep( Nf}, a,) for a specific subquiver fo of Q,.. The orbits of this reduced action
can be easily parameterized.

The results of Bongartz and Huisgen-Zimmermann in [1] can then be recovered
using the equivariant embedding Rep(A, o) — Rep(Q, «).

The strategy of this classification extends to more general classes of representa-
tions. Let u € List(Q, «) be such that none of its segments contains numbers ap-
pearing with multiplicity > 2. Then, one can repeat almost verbatim the method
below to classify A-representations having an optimal filtration corresponding to
A

3.2. Fix a sequence S = (5(0),...,5()) of simple A-modules. Let a be the

dimension vector (ai,...,a,) where a; is the number of times the simple A-
module S; occurs among the S(j). Observe that | = a — 1 where as before
a = Zi a;.

We say that an A-module M € Rep(4, ) is filtered of type S if and only if M
has a decreasing Jordan-Holder filtration

MZM():)MlD.."DMlDMl_f.l:O
with simple factors
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An A-module M € Rep(A,«) is said to be uniserial if and only if there is a
unique (up to isomorphism) Jordan-Hélder filtration on M with simple factors.

3.8. We have a GL(a)-equivariant embedding
Rep(A, a) — Null(Q, o) = U,GL(a).St,

and we have determined which y € List(Q, o) actually occur.

By construction, Q” is a directed quiver. It is easy to determine all possible
Jordan-Holder filtrations on a representation of directed quivers.

If W is a representation of dimension vector 5 of the directed quiver I', then its
socle soc(W) is the direct sum of the spaces at the sink-vertices of the subquiver
of T' on the support of 3 after removing the arrows for which the corresponding
matrices of W are zero.

Any (decreasing) Jordan-Hélder sequence on W ends with one of the possible
Jordan-Holder filtrations on soc(W). Then, we repeat this procedure on the
representation W = W/soc(W).

Proposition 3.1. If M € Rep(A,«) is uniserial of type S = (S(0),...,S5(1)),
then up to A-module isomorphism M belongs to S, where

p=0.(0,q+1,9+2,...,9+1).

Here, ¢ = —% and o is the permutation of S, such that o(k) € I, 1f S(k) =S,
and making u dominant for the action of S,.

Proof. Up to A-isomorphism we may assume that M € St,~—— 5, =
Rep(Q,a,). Clearly, if M is uniserial,so is the corresponding representation
V if the directed quiver Q.

This means that at each step in the procedure to construct the Jordan-Holder
sequence on V the socle must be one-dimensional.

In particular, all components of the dimension vector «, must be equal to one
or zero and for each segment J; of y and all 0 < j < k; precisely one of the
components of the vertices (v, j)(i) is equal to one, the others zero.

We claim that 4 has only one segment. If not, there are vertices v = (vy, j1)®)
and v' = (va, 70) @) with

0<!pi2+j2“’“pi1_p1]<1 _
and so there are no arrows in QM between v and v'. But then, at some stage
in the construction of the Jordan-Holder sequence the dimension of the relevant
socle is > 2, contradicting uniseriality.
Hence, writing the components of y in increasing order we get
(¢,g+1,...,q+1).
As p is balanced, its sum (I + 1)g + 3/(! + 1) = 0 finishing the proof. O
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3.4. The full subquiver of @, on the support of o, is of the following form

Q |Supp(a) . Qo1 a12 a23 ar—11
g # ST TS >0 )

where the number a;.; of arrows from (i) to (i + 1) is determined as follows.
In the foregoing proof we have seen that there is a unique vertex (i) among the
vertices (v,i)™ with dimension component equal to one. Let V, be the set of
all vertices (1) in @, | supp(oy corresponding to the vertex v in Q. Observe
that if v = v; then the number of elements of V, is equal to a;. If (i) € V, and
(i + 1) € Vi, then a;41 is the number of arrows in @ from v to v,

From now on we will write @, for @, | supp(a,) and oy, = (1,...,1) for oy |
supp(oy,).

Ifl+1 = aisodd we have A = = 6, = (—k,—k +1,...,k) with | = 2k. If
l+1=aiseven, then A\=0, = (—I,-1+2,...,1).

The Levi and parabolic subgroups of GL(c) are

o L(A) =T, GL(w),
e P())=B,, X...X B,, — GL(«)

where B,, is the Borel subgroup of lower triangular matrices in GL,,.

As T, = Rep(Qu, o) and o = (1,...,1) it is easy to verify that the sub-
variety 7;° of 0,-semistable representations consists of those representations of
Rep(Q,, o) having no subrepresentation of dimension vector

These representations are precisely those for which at least one of the a;..1 maps
from (i) to (i + 1) is non-zero for every 0 < < [. Observe that these represen-
tations are then uniserial and under the canonical embedding

Rep(Qu, au) “— Rep(Q; )

correspond to uniserial Q-representations of type S.

In particular, St, # 0 if and only if there is a path of length [ in the quiver Q
along the vertices wq, w1, . .., w; where (i) € V.

Consequently, A can only have uniserial modules in Rep(A,a) of type S if at
least one of these paths of length | does not belong to the defining ideal of A.
Compare this non-vanishing path with the notion of a 'mast’ in [3, 4, 1].

8.5. With conventions as for @), the extended quiver Qu is of the following form
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Q~ supp (8]
ul () ) ) ® ® O

where the number of arrows a;; from (7) to (j) with j > ¢ is equal to the number
of arrows in @ from v to v’ if (1) € V,, and (j) € V.

As we have an explicit description of the open subset 7;° —— T, we can also
describe the Hesselink stratum St, explicitly as pr~"(7:*) where

Sty — Sp = Rep(@u, au)'

or
v

T;js ¢ T}, = Rep(Qyu, o)

The fibers of pr over vectorspaces of dimension j>it1 G- Clearly, all represen-
tations of St,, are uniserial and correspond under the canonical inclusion

Rep(Qu, ay) — Rep(Q, @)

to uniserial Q-representations of type S.

3.6. We will now parameterize the isomorphism classes of uniserial representa-
tions of Rep(Q,a) of type S. Combining the foregoing remarks with the gen-
eral results on Hesselink strata, this problem amounts to parameterizing the
P()\) = B(a) = By, X ... X Bg,-orbits in St,,.

Recall that 7;° is the set of representations in Rep(Q,, (1,...,1)) such that for
every 0 < i < [ at least one of the ;1 numbers determined by the arrows from
(i) to (z + 1) is non-zero. As L(A) = T, acting via

(to, -+ -+ t0)-((Mo1, - -+ s Moagy ), - - -5 (Mu=11, - -+ TU—t0y_yy)) =

(tl_ltO (mOI, v )m0&01)7 v 7tl_1tl—-1 (ml——ll, s 7ml—1al_1l))
we observe that there is a geometric quotient
7o o T3/ L(N) e PO 1 x . x Pa=u~!

We want to study the P()\) = B(a)-orbits in the open subvariety U (41,...,%) of
S, = Rep(Qy, (1,...,1)) which is the inverse image under the quotient map b of
the standard affine open subvariety

A% 1(5) x L ABuTL(G) e PetTh L x PU-uT
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that is, of points such that the 4;-th coordinate component of Pei-1i~1 is set equal
to one. .

Equivalently, U (i1, .. .,%;) can be identified with Rep(QL,,, (1,...,1)) where the
quiver QL is the subquiver of Qu obtained by deleting these fixed arrows.

With this choice, the induced action of T, on U (i1, . .., %) is trivial and the action
of B(c) reduces to an action of the nilpotent group

U(@) =Ug X ... X U, — GL(«a)
where U, is the nilpotent radical of the Borel subgroup B, of GL,.

3.7. In order to simplify the action of U(a) on Uiy, . .., %) even further we have
to describe the embedding

Rep(Qyu, (1, .,1)) = Rep(Q, a).

For every 0 < 4 < [ there exists a unique vertex v(s) of @ such that (i) € V().
Let j(i) = #{(k) € Vo) | k < 4}, then we will fix a basis of the vertex space
of @ in v(z) by taking as its j(¢)-th basevector a fixed vector spanning the one-
dimensional vertex space of Q,, in ().

Take a representation W € Rep(y,(1,...,1)) and consider an arrow vy
(1) — (k) in Q,. By definition v determines a unique arrow ¢ : v —= v’
in Q where (i) € V, and (k) € Viy. By our assumption on the bases of the vertex

spaces of Q) and ), we have that
Y = jik),i) Where ¢ € Moy xa; (k)

We will construct a slice of the form Rep( ~ff, (1,...,1)) where fo is a subquiver
of @ (and Q,.).

For every (i) with 4 > 1, let ¢, be the arrow in () determined by the fixed arrow
from (i — 1) to (i) (the value of which we gave set equal to 1). By the induced
basechange action in Rep(Q, ) by the subgroup U(a) we can ensure that the
j(i)-th column of the matrix corresponding to ¢; contains this 1 as its only non-

zero entry.
Performing the necessary computations we see that this choice determines all

components of the basechange matrix (u1,...,u,) € U(o) apart from the first
column of u,(g. For, inductively we can determine the J(1)-th column of u,qy),
then the j(2)-column of u,@) and so on.
Consider the subquiver Q% of @, where we removed

e the fixed arrows from (k) to (k + 1) determined by i for every 0 < k <

and

e all arrows from (k) to (I) for [ > k corresponding to ¢.
By the argument given above we see that every U (a)-orbit in Uiy, . .., 4;) contains
a representation from Rep(Q?, (1,...,1)).
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Hence, we reduced the study of U()-orbits in U (43,...,%) to that of orbits in
Rep(Q%, (1,...,1)) under the action of the nilpotent group

1 00 ...0

G=| 2z 01 0| «— U(a) = GL(a)

Lo, 0 0 1
That is, G ~ k4 X ... x k; where the number of components is equal to a,g) —1
where ay() is also the multiplicity with which the top component occurs in the
Jordan-Holder sequence.
We recall from [8, III.1.1,Satz 4] that all G-orbits in Rep( ~f},(1,.. .., 1)) are
closed. Therefore, we can parameterize the orbits by stratifying according to
the dimension of the stabilizer subgroup.
Each of the representing spaces can be identified to some Rep(Q’,(1,...,1))
where @' is a subquiver of Qf} and for the corresponding stratum

Ug —— Rep(Q%,(1,...,1)) the quotient map

Ug —~ Rep(@',(1,...,1))
is a vectorbundle because all fibers are isomorphic to G/(k+ X ... x ky) =~ A® for
some s < Gy — 1.

3.8. Finally, using the equivariant embedding Rep(A, a) “— Rep(Q, ) and
our solution of the classification problem for the uniserial representations of @ of
type S we recover [1, Thm. A].

We mentioned already that the same construction can be repeated almost verba-
tim for representations having optimal filtrations corresponding to u where none
of the segments of x4 contains numbers with multiplicity > 2.

To begin the general classification problem of A-representations according to
optimal filtration series, a natural idea would be to study the moduli spaces
Ts*/L()) studied by A. King in [6]. Over a suitable affine open cover of these
projective varieties one might then try to construct slices reducing the acting
parabolic group P()) to a more manageable group.

Acknowledgment : I thank B. Huisgen-Zimmermann for providing me with
(p)reprints of the papers [3, 4, 1].
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