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THE SINGULARITIES OF QUANTUM GROUPS

LIEVEN LE BRUYN

. ABsTRACT. IfC[G] & C[H] is.an extension of Hopf domains of degree d, then
H —» G is an étale map. Equivalently, the variety Xcpz) of d-dimensional
C[H]-modules compatible with the trace map of the extension, is a smooth
G Lg-variety with quotient G.

If we replace C[H] by a noncommutative Hopf algebra H, we construct similarly
a GLg-variety and quotient map Xp —5+ G. The smooth locus of H over
C]Q] is the set of points g € G such that Xy is smooth along 7~*(g).

We relate this set to the separability locus of H over C[G] as well as to the
(ordinary) smooth locus of the commutative extension C[G] ~—» Z where Z
is the center of H.

In particular, we prove that the smooth locus coincides with the separability
locus whenever H is a reflexive Azumaya algebra. This implies that the quan-
tum function algebras O.(G) and quantised enveloping algebras Ue(g) are as
singular as possible.
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1. INTRODUCTION

1.1. Throughout, we work over an algebraically closed field of characteristic zero
and denote it with C. Let g be a semi-simple Lie algebra over C of rank r with
Cartan matrix C = (as;) € M,(Z) and vector d = (di1,...,d,) € Ny of relative
prime integers such that d.C is symmetric.

The (simply connected form of the) quantised enveloping algebra Uc(g) is the C-
algebra with generators

{E;,F;, K |1<4,j <r}
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satisfying the following relations for all 1 < 4,5 <r:

KK;=K;K; KK '=1= K 'K;
KiEj= "9 E;K;
KFj= e %% FK;
Ko, —K!
EiF; - FjE; = 6@7?1—_("_
l—a;j 1
Z (__1)s [ - a“] Ez.—aij—sEjEis _ 0
$=0 s d; ‘
1—ayj 1
S| meRE = o
s=0 s d;

where the symbols in squarebrackets denote Gaussian binomial coefficients for the

parameter e, see [4].

The Hopf structure on this algebra is given by defining for all1 <i <r
AE)=E®1+K,QE;,AF)=F,0K;'+1® F;, A(K;) = K; ® K;
S(E;) = ~K;'E;, S(F) = —F;K;, S(K;) = K;*

G(Ez) = O,G(Fi) = O,G(Ki) = 1.

Now, let € be a primitive I-th root of unity, where ! is odd and prime to 3 if g

contains components of type Ga. We recall the following structural results on Uc(g)

from [4].

U.(g) is an order with integrally closed center Z. in a central simple algebra of

dimension 2¥ where N is the number of positive roots of g. The commutator in

U,(g) induces a nontrivial Poisson structure on Z.

-There exists a Poisson subalgebra Zg of Z, satisfying the following properties :

1. Z, is a sub-Hopf algebra of U(g).
2. Uc(g) is a free Zo-module of rank
3. Z. is a free Zp-module of rank [".
That is, we have the following inclusions

Ue(g)

l2N+7‘ .

l2N

ldim g Ze

Zo
Being an affine commutative Hopf algebra, Zy.~ C[H] for an algebraic group H

which can be described in the following way. Let T be a maximal torus of.the ...

simply connected Lie group G corresponding to g, and Bx the corresponding Borel
subgroups. Then, we have a fiber diagram

H By
prt
B_ » T

pr—
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where pry. are the projections and pr—! = (=)~ opr_. The connection between H
and G is given by the map

o H—G° (h_,h+) > h:1h+

which is an unramified cover of the big cell G° of G of degree 2".
There is an (infinte dimensional) group G of analytic automorphisms of H such that
its orbits in H are of the form :

o~ HCNnG%

where C is the conjugacy class of a non-central element in G. These orbits are also
the symplectic leaves of H induced by the Poisson structure on Zy = C[H].

In this paper we investigate to what extend the inclusion of Hopf algebras
C[H] = U.(g) differs from a finite Hopf algebra extension between the coor-
dinate rings of irreducible algebraic groups.

1.2. Recall the commutative situation. Let G be an irreducible algebraic group
with coordinate ring C[G]. Consider a subHopf algebra C[H] such that C[G] is a fi-
nite C[H]-module. Corresponding to the inclusion of Hopf algebras C[H] —— C[G]
is a projection of varieties (or group-schemes) G —~ H which is a finite étale mor-
phism, that is, unramified and smooth.

Since there is no suitable substitute for the variety corresponding to U.(g), we will
give a different geometric description of the extension C[H] —— C[G] which can
be generalized to the non-commutative setting.
Consider the trace map ¢r on the finite Galois extension of degree d between the
function fields C(H) —— C(G). As C[G] and C[H] are integrally closed, tr restricts
to a linear map on C[G] with image ¢r C[G] = C[H]. Remark that tr satisfies the
formal Cayley-Hamilton identity for d x d matrices, see section 2 for more details.
~Consider the affine algebraic variety X¢jg) with points the trace preserving algebra

maps C[G] —~ M4(C), that is, those having the property that the diagram

6] —2 My(©)
tr Tr

6] —2+ My(©)

is commutative, where T'r is the ordinary trace on My(C).

The variety X¢g) has a natural GLg-action by conjugation in M4(C). The or-
bits correspond to isomorphism classes of (trace preserving) d-dimensional C[G]-
modules.

By a result of C. Procesi [21] (or see Theorem 2.2) we can recover C[G] and C[H]
from the G Lg-variety X¢g)-

1. C[H] is the ring of polynomial invariants C[X¢(g]¢7<.

2. C[G] is the 1ing of GLg-equivariant maps X¢g — Ma(O).
By the first fact, we have an algebraic quotient map
Xge) — H

Consider h € H with corresponding maximal ideal mp, <« C[H]. The fiber n~1(h)
contains a unique closed orbit which is, by the Artin-Voigt theorem, the orbit
of the unique (trace preserving) d-dimensional semi-simple C[G]/mC[G]-module.
The full fiber 7= (h) consists of all d-dimensional (trace preserving) C[G]/mpC[G]-
modules.
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Because G — H is an étale map, C[G]/mpC[G] ~C& ... ® C (d components)
is a semi-simple algebra and thus w~1(h) is a single orbit isomorphic to GL4/Ty
where Ty is a maximal torus of GLy. Hence, X is a principal fibration over H
with fibres the homogeneous space GLg/Ty.

- Proposition 1.1. Let C[H] < C|G] be a finite Hopf algebra extension of degree. .
d, then Xcg) is a smooth GLg-variety with algebraic (even geometric) quotient
variety H.

In this paper we study whether this result remains true if we replace C[G] by a
non-commutative Hopf algebra such as Uc(g).

1.8. We can define a trace map on U(g) by taking the composition of the reduced
trace map and the trace map of the extension C[H] < Z.. Again, using the fact
that both Z, and Zy = C[H] are integrally closed, this trace map ¢r is well defined
with image tr U.(g) = C[H]. This time, ¢r satisfies the formal Cayley-Hamilton
identity for d x d matrices where d = ['V*7.

As before, we can define the affine algebraic variety Xy, (4 of trace preserving

algebra maps U,(g) —— M4(C). This variety has a natural GLg-action and orbits
correspond to isomorphism classes of d-dimensional trace preserving U (g)-modules.
Again, we can recover U,(g) and C[H] from the GLg-variety Xy, (q)-

1. C[H] is the ring of polynomial invariants C[Xy, (4)]¢L¢.

2. Uc(g) is the ring of GLg-equivariant maps Xy, (g — My(C).
We have an algebraic quotient variety

Xy g — H

and the description of the fibers 7w~ 1(h) is as above : it consists of all d-dimensional
trace preserving Uy = U(g)/mpUc(g)-modules and there is a unique closed orbit
corresponding to a semi-simple U, (g)-module which we denote by

MPE=5F"o0.. 0852

where the S; is a simple U (g)-module of dimension d; occurring in M7® with mul-
tiplicity e;. Clearly, d = > d;e;.
Keeping proposition 1.1 in mind, we define.

Definition 1.2. We say that Uc(g) is smooth in h if and only if Xy, (4) is smooth
along 7=t (h).

The smooth locus Sm U.(g)/C[H] of Uc(g) over C[H] is the subset of all h € H such
that U.(g) is smooth in A.

1.4. An alternative geometric description of Uc(g) is as follows. Because Uegg) is a
free C[H]-module of rank ¢ = [%™ 8, every U}, is a C-algebra of dimension ¢. This
determines a map

H -2+ Alg,

where Alg; is the variety of (structure constants of) ¢-dimensional associative alge-
bras with unit, see for example [14] or [23]. One can recover U,(g) from ¢ by taking
¢* of the generic t-dimensional algebra over Alg; as in [23].

For sufficiently general h we have that Up ~ Mn(C) @ ... ® Mn(C) (r copies) a
semi-simple algebra. This entails that ¢(H) is contained in the irreducible com-
ponent of Alg; which is the closure of the GLs-orbit O of My (C) & ... ® Mn(C).
We define ¢~1(0) as the separability locus of U(g) over C{H] and denote it with
Sep U.(g)/C[H]. Clearly, it is the Zariski open subset of H consisting of those h such
that U}, is a semi-simple algebra (and hence isomorphic to My (C) @ ... ® Mn(C)).
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As the terminology suggests, it is also the locus over which U.(g) is a separable
C[H]-algebra as in [12].

As in the commutative case, we see that m—1(h) consists of a single orbit when
h € Sep U.(g)/C[H] and that this orbit is the homogeneous space GLq4/T, where
T, is the center of GLy X ... X GLy < GL4. Hence, Xy, is a principal
fibration and therefore smooth over Sep Uc(g)/C[H]. Thus,

Sep Ue(g)/ClH] < Sm U.(g)/CH].

For general Hopf algebras, one expects the smooth locus to be larger. For example,
if U,(b) is the quantum Borel of sly we will show in example 5.7 that its smooth
locus is the whole of B. However, we will prove :

Theorem 1.3. The quantised enveloping algebra Uc(g) is as singular as possible.
That is,

Sm U.(g)/C[G] = Sep Uc(g)/ClH]

The same result also holds for O.(G), that is, the guantum function algebra of G.
Recall from [3] that O (G) is obtained by first constructing a suitable integral form
of U,(g) over Qlg, ¢~*], then taking an appropriate subHopf algebra of its Hopf dual
and finally specializing ¢ to €.

We will outline the strategy of proof in the case of Uc(g).

1.5. Assume that U.(g) is smooth in h and let z; be a point in Xy, (4) in the orbit
-of the uniquely determined semi-simple d-dimensional U, (g)-module M;°. We will
show that the conormal space to the orbit in z is the space of representations
Rep(By, o) of a certain quiver By and dimension vector ap.
‘Because Xy, (g) is smooth in z, we can apply the Luna slice theorem (see for example
[11]) to prove that the ring of polynomial invariants C[Rep(Br, ap)]E(@r) of this
quiver setting under the action of the basechange group must be a polynomial
algebra.
The problem to determine all coregular quiver situations is a hard one. However,
we will prove the following crude classification.

Theorem 1.4. Let Q be a quiver and o = (a1, .. .,0x) o dimension vector. Assume
that Q is strongly connected, that is, each pair of vertices belongs to an oriented
cycle.

If the ring of polynomial invariants C[Rep(Q, 0)]SL(® is a polynomial ring, then
we are in one of the following situations :

1. type 1 : min; a; <1 or 3
2. type 2 : min; a; = 2 and Q has the form Ap(+1) :

that is, the extended Dynkin diagram with cyclic orientation and one extra
arrow, or
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3. type 8 : min; a; > 2 and the quiver Q) is the extended Dynkin diagram A,
with cyclic orientation

\

This result drastically restricts the shapes of the strongly connected components of
the quiver B, and of the dimension vector ay,.

Let X, be the affine variety determined by the center Z, of Uc(g) and let {z1,..., 2}
be the set of points of X, lying over h. We will prove that each z; determines a
strongly connected component of By, and that the restriction of oy, to this component
encodes the multiplicity of p; over m.

We will show that only the first case can occur and only if the multiplicity of p; is
equal to one, that is, if p; is unramified over m. Therefore, we have

Theorem 1.5. With notations as above
Sep U.(g)/C[H] — Sm U(g)/C[H] — Sm Z./C[H]

Here, Sm Z./C[H] is the usual smooth locus of the commutative extension
C[H] —— Z.. Therefore, if Uc(g) is smooth in h, then there are precisely I”
points of X, lying over h and X, is smooth in all of them.

- K. Brown.and K. Goodearl have proved in.[1] that the smooth locus of X, coincides. -
with the Azumaya locus of U.(g) over Z.. That is, the set of points such that the
corresponding maximal ideal p of Z, satisfies U,(g)/Uc(g)p ~ Mn(C).

But then, U ~ Mn(C) @ ...® Mn(C) (s copies) whence U.(g) is separable over
ClH] in h.

1.6. The method of proof applies to a much larger class of Hopf algebras and
algebras and will be presented in that generality. We will outline the contents
briefly.

In section 2 we recall some results of Procesi on Cayley-Hamilton algebras, introduce
the basic setting for our results, introduce the varieties X 4 and compute the normal
spaces to the orbits. Our setting will be a triad of algebras (A4, Z, C) where A is a
prime algebra which is a finite module over a subring C' of the center Z and Z is a
projective C-module.

In section 3 we recall some results on representations of quivers and generalize them
to the setting of marked quivers, that is, quivers such that some of their loops get
a marking. This generality is necessary as the conormal spaces are representations
of marked quivers. Moreover, in this section we give the classification of coregular

(marked) quiver settings mentioned before. '

In section 4 we begin the structure of these marked quivers B,, describing the
conormal space to the orbit in X 4 of the semi-simple module determined by the
maximal ideal m of C. We relate their connected components and their dimension
vector to the splitting behavior of the center over m.

In section 5 we will then study the extra restrictions imposed on B,, and the oc-
curring dimension vector if we assume that A is smooth in m.

Finally, in section 6 we will prove the main results of the paper. We summarize the
application to Hopf algebras in the next result.
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Theorem 1.6. Let H be a prime Hopf algebra which is a finite module over a
central subHopf algebra C. Let Z be the center of H.

1. With notations as above,
Sep H/C —— Sm H/C — Sm Z/C.
2. If, in addition, H is a reflexive Azumaya algebra, then
Sm H/C = Sep H/C

- Acknowledgment. I have benefitted from discussions with and emailsfrom-Ken
Brown, Hanspeter Kraft, Steffen Konig and Iain Gordon.

2. CAYLEY-HAMILTON ALGEBRAS

2.1. All algebras considered will be C-algebras. In this section we recall some
results due to C. Procesi on Cayley-Hamilton algebras. We take [21] and [4, §2] as
our primary references.

Definition 2.1. An affine algebra A is said to be a Cayley-Hamilton algebra of
degree dif there is a linear trace map tr : A — A satisfying the following properties
1. For all a,b € A we have tr(ab) = tr(ba), tr(a)b = btr(a) and tr(tr(a)b) =
tr(a)tr(b).
2. Consider the characteristic polynomial of d x d matrices m € M4(C)

d
Xd,m[t] = Z(_l)ioi ()=

=0
where o; are polynomials with rational coefficients in Tr(m), ..., Tr(m?). Re-
placing Tr by tr in the definition of the o; we demand that for alla € A
Xd,o[a] =0 and tr(1) = d.
Because A is affine, it has a presentation
A=Cz1,...,Twher/(r4)

where C{z1,...,Tm)e is the free algebra with trace on m generators, see {4, 4.1.2]
and where r4 is the ideal of relations defining A.

Recall that C(z1,. .., Zm)sr is the ordinary free algebra in the z; over the polynomial
ring in the formal variables tr(M) as M runs over all non-commutative monomials
in the z; considered up to cyclic order equivalence. The trace map is then defined
in the obvious way.

For every 1 < i < m consider the generic d X d matrix

yi = (U5)sk € Ma(Clyfy) |1 <5,k < d, 1< i <ml).

The subalgebra of My ((C[ygz)]) generated by the y; together with all traces of mono-
mials in the y; is then seen to be the generic Cayley-Hamilton algebra of degree
d. Often, it is denoted with T, 4 and is called the trace ring of m generic d x d
matrices. A is then an epimorphic image of Ty, 4.

Let I4 be the ideal in (C[y%) | 4,k,i] generated by the entries of the matrices
Fflyr,...,ym) for all f(z1,...,2m) € ra. We define the affine commutative algebra

CXa]= C[y%) | j,k,4]/I14 and have a canonical inclusion
A s Ma(O[X )
by sending z; to the image of y; under the epimorphism
Ma(Clyj” | k,lym]) — Ma(CX4)).
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2.2. The inclusion i4 is a solution to the following universal problem.

Let R be a commutative C-algebra such that there is a trace preserving algebra
morphism j : A — My(R) (with the usual trace Tr on M4(R)), then there is a
unique algebra morphism j : C[X4] — R of commutative algebras making the
diagram below commutative.

A4 pCxa))
M4(5)

My(R)

Any g € GLg acts on My(R) = R® M4(C) by conjugation on M, (C). In particular,
it defines a trace preserving automorphism on My(C[X 4]) which by the universal
property defines an automorphism ¢(g) on C[X 4]. One verifies that

gc=¢(g7")(c) VeeC[Xa]

defines an action of GL; on C[X 4]. Further, define the diagonal action of GL4 on
M4(C[X4]) = C[X 4] ® My(C) where the action on the first factor is defined above
and that on the second factor is conjugation by g. By [4, §4.3] we have the following
geometric description of A.

Theorem 2.2 (Procesi). Let C be the central subalgebra tr(A), then :

1. The ring of invariants C[X 4]¢L4 = C.
2. The ring of concomitants Ma(C[X 4])¢%e = A.

The affine scheme X4 = Spec C[X 4] represents the functor which assigns to a
commutative algebra R the set X 4(R) of algebra morphisms

p: R®c A — My(R)

which are trace preserving, that is, such that the diagram below is commutative

Rec A L+ MyR)
id® tr Tr

Roc A L+ My(R)

The action of GL4 on C[X 4] extends to an action of the groupscheme GLg on X 4.
A C-valued point z of X4 is a trace preserving algebra map p, : A — My(C) and
hence defines a d-dimensional left A-module M,. The GLg4-orbits in X 4 correspond
to A-module isomorphism classes.

2.3. The inclusion C = C[X4]¢%¢ <> C[X 4] determines a projection

X4 2+ Spec C

which is an algebraic quotient. The C-points of Spec C (the maximal ideals of C)
parameterize closed orbits of d-dimensional trace preserving A-modules. We have
the following result, see for example [7].

Theorem 2.3 (Artin,Voigt). The points of Spec C parameterize isomorphism
classes of d-dimensional trace preserving semi-simple A-modules.
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That is, for every maximal ideal m of C = tr(A) there is a unique semi-simple
A-module

ME=SP"o.. &SP
-~ where. S; is-a simple A-module of dimension d; occurring with multiplicity e;.
Clearly, d = > dse;.

2.4. Throughout this paper, we restrict attention to the following class of Cayley-
Hamilton algebras.

Definition 2.4. By a triad of algebras (A, Z,C) we mean a commutative diagram
of algebras

A

Mn(K)

=

\,
/

C’ C
Here, A is a prime affine algebra with integrally closed center Z. If we localize A
at all its nonzero central elements we obtain ) = A.K a central simple K-algebra
of dimension n2 where K s the field of fractions of Z. If K is the algebraic closure
of K, this condition on @ means that Q ®x K ~ M, (K).
In the center we consider an.integrally closed domain C such that A is a finitely
generated module over C and its center Z is a projective C-module of rank s. The
field of fractions of C' we denote by L.

Qr
DN
K(‘
L

Much of this triad can be encoded in a linear trace map on A. Define
tr:A—A amtrpg(Tr@®1l))

where T'r is the trace on M,(K) and try/k is the trace map of the finite field
extension L/K.

From the action of the Galois group Gal K/K on M,(K) and K with invariants
respectively @ and K we see that Tr(g®1) € K for all ¢ € Q. Because A is a finite
module over Z, Z is integrally closed in K and T'r splits (as we are in characteristic
zero), we deduce that Tr(A®1) = Z.

Mozxeover, because Z is the integral closure of ' in K, we have that try, x(Z)=C.
Concluding, the trace map ¢r on A is well defined and has as its image tr(A4) = C.
We recall the following result from [4, p.46 and p.49].

Lemma 2.5. 1. A with the reduced Tr is a Cayley-Hamilton algebra of degree
n with Tr(A) = Z.
2. A with the trace map tr is a Cayley-Hamilton algebra of degree d = n.s with
tr(A)=C.

2.5. The next two classes of triads are of current interest :

Example 2.6. In the introduction we recalled the definition and main structural
properties of the quantised enveloping algebra U(g). In particular, we have seen
that the triple

(Ué(g)7 Ley 2o = (C[H])
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is a triad with corresponding numbers
d=I"*" =N s=1"
where r is the rank of g and N the number of positive roots.

Example 2.7, The quantum function algebra O (G) at a root of unity. .For defi-
nition, proofs and more details we refer the reader to [3], [6] and [10] or [1, 4.4].
We assume that e.is a primitive l<th root of unity, ! is odd, prime to 3 if g contains
factors of type Ga and prime to each a; where Y ;_, a;a; is the expression of the
highest root of g-as a'linear combination of the simple roots e;, r-is'the rank of the -
Lie algebra g.

The Hopf algebra A = O.(G) has a central sub-Hopf algebra C ~ C[G] and is a
projective module over it of rank (%™ G. Moreover, O.(G) is a Cayley- Hamilton
algebra of degree IV+" where N is the number of positive roots of g. That is,
(0:(@), Z,C[GY) is a triad

0:(G)

l2N

ldim G VA

e

with corresponding numbers d = V4" n =N and s = I".

2.6. Let = be a Cpoint of X4 with corresponding d-dimensional trace preserving
A-module M.
Recall the computation of self-extensions Exth (M, M). Consider the vectorspace
of linear maps XA : A — Endc(M) satisfying A(aa’) = p(a)A(a’) + A(a)p(a’) where
p is the action of A on M. Hence, A determines an algebra map

or: A — Ende(M + Me) = My(C + Ce)

where €2 = 0 and ¢y (a) = p(a) + A(a)e.
In Z(M, M) we consider the subspace B(M, M) of linear maps § : A — Endc(M)
which are of the form

6(a) = p(a).m — m.p(a)
for some m € Endc(M) = M4(C). Then, Exty (M, M) = Z(M,M)/B(M, M).
Let a selfextention e be determined by a linear map A € Z(M, M). As the trace on

all §{a) with § € B(M, M) is zero, the property that ¢, ef ¢ is trace preserving
is independent of the choice of A.

This allows us to define the space of trace preserving extensions Exty (M, M), as
the subspace of extensions e such that ¢, is trace preserving.

Proposition 2.8. Let M be o C-point of X4 corresponding to the d-dimensional
A-module M. There is a canonical isomorphism

Extly (M, M)y ~ T, /T2
where Ty, is the Zariski tangentspace to the scheme X4 in x and TQ is the Zariski-
tangent space in x to the orbit through z.




SINGULARITIES OF QUANTUM GROUPS 11

Proof. Similar to the proof of P. Gabriel in [7, Prop. 1.1} of the result attributed
to Voigt. O

We remark that it is important to consider the scheme structure of X 4. For ex-
ample, if A = C[z]/(z?) and d = 1, then the reduced variety of X4 is one point.
However, the corresponding .one-dimensional representation. of A has non-trivial
selfextensions.

3. MARKED QUIVERS

3.1. In this section we will recall some results on representations of quivers and
extend them to the slightly more general setting of marked gquivers which are quivers
of which some loops are marked. Representations of marked quivers are used to
study the normal space to the orbit in X4 of a semi-simple module. Further, we
give a rather crude classification for coregular quiver settings, that is, dimension
vectors of quivers such that the corresponding ring of polynomial invariants is a
polynomial ring.

A quiver @ is a directed graph on a finite set of vertices {v1,...,vr}. Let a;; be the
number of directed arrows from v; to v; (or loops if v; = v;). The Euler-form of Q
is the bilinear form
X:ZFxZF — 7

determined by the matrix x = (x4;)i,; € M(Z) with entries

Xij = 0ij — i
Clearly, x encodes the structure of the directed graph Q.
A representation V of a-quiver Q of dimension vector o =(ay,..:,ar) € N* assigns
to every arrow v; AN vj in Q a matrix V(¢) € Mg, xa;(C). The set of all a-
dimensional representations form an affine space,

k
Rep(Q,0) = EP Ma,xa; (C)®*
i,5=1
where a;; is the number of arrows in @ from v; to v;.
There is a natural action of the basechange group GL(a) = GLg, X ... X GL,, on
Rep(Q, a), the orbits correspond to isomorphism classes of representations.
The path algebra C Q of the quiver @) is a vectorspace with basis the oriented paths
in @ of length > 0 and the multiplication is induced by concatenation of paths.
‘ Representations of @) can be viewed as finite dimensional representations of C ). In -
this way, representations form an Abelian category and one defines homomorphisms,
extensions etc. in the obvious way. If V € Rep(Q,a) and W € Rep(Q, ), then

x(a, B) = dim¢ Hom(V, W) — dim¢ Ezt'(V,W)

3.2. Let (A, Z,C) be a triad of algebras and m a maximal ideal of C. There is a
unique semi-simple d-dimensional A-module

M$ =5 @.. . 052

where S; is a simple A-module of dimension d; occurring with multiplicity e;. There-
fore, d= Z d,;ei.

The ext-quiver E,, of m is the quiver on k vertices, where v; corresponds to the
simple module S; and where

aij = dime Ext}y(S;, S))
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Consider the dimension vector a,, = (es, ..., ex) where e; is the multiplicity of S;
in M2? and the quiver @, then there is a natural isomorphism

Rep(Bp y o) = Eaxtly (M25, ME?)

Moreover, Aut 4(M55) = GL(oy,) and its action on Ext} (M35, M2?) coincides with
the basechange action in Rep(Ep, , ).

-After a suitable.choice of basis in (which amounts to fixing a point.in the orbit of
MEs in X 4) we can embed GL{ayy,) in GLg4 via

GL., ® 14,
> GLd'.
GL., ® 1,4,

It is clear from the definition that Extl (M:*, M%), is a GL(0,)-submodule of
Extl (M$®, M;*) = Rep(Em,, tm).

If v; # vj, the submodule M, x.,(C) corresponding to a directed arrow from v; to
v; is a simple GL(ay,)-module and is contained in Bt (M35, M%),

On the other hand, the subspace M., (C) corresponding to a loop in v; decomposes
as a GL{ay,)-module into Cyrgy & M, g, (€) where Cyyyy is the trivial one-dimensional
representation and Mé’i (C) is the space of trace zexo e; X e;-matrices. As the trace
preserving condition imposes linear conditions on Ezt (M35, M%) some of the
components C 4, (but only those) can disappear in Extl (M35, MS5),,.

Therefore, we have a decomposition

Bty (Mg, My )tr = @D Me,xe; (%% @ @D (M., (€)% @ M, (O)®™)
i35 i
where u; + m; = a4
This description motivates the introduction of marked quivers.

3.8. A marked quiver Q* is a quiver @) such that some of the loops in  are marked.
A representation of the marked quiver Q* is a representation of the underlying quiver
() such that the matrices corresponding to marked loops have trace equal to zero.
Let @* be a marked quiver on k-vertices {v1,...,vx} with a;; directed arrows from
v; t0 v;, u; unmarked loops in v; and m; marked loops in v;. The Euler-form of Q*
is the bilinear form

X:Z¥xZF — 7
where x = x1 + X2 with defining matrices
X1 = (8ijui)i,; — (@ij)i; and x2 = (—0ima)i,j

Again, the Euler-form contains all graph-information of the marked quiver.

If o = (a1,...,a;) € N* then the space of all a-dimensional representations of Q*
is equal to
Rep(Q*,@) = P Maixa, (O%* & (P Ma, (0% & (P Ma, (O°™
i#j i i

Again, the basechange group GL{a) acts on this space and its orbits are precisely
the isomorphism classes of representations.

3.4. Returning to the semi-simple module M3’ we define the m-bozx By, to be the
marked quiver on k vertices having
e a;; = dimc ExtYy(S;, S;) arrows from v; to v; for i # j.
e u; unmarked loops in v; if M., (C) occurs with multiplicity u; in Bzt (S;, Si)r-
e m; = a;; — u; marked loops in v; where a;; = dim¢ Ext (S;, S;).




SINGULARITIES OF QUANTUM GROUPS 13

If we take the dimension vector a,, = (e1,...,€ex), then there is a natural identifi-
cation

Extil(M;:, M:)ir = Rep(Bm, aim)

and the action of Auta (M) = GL(a,,) on both sides is the same.
In the next section we will investigate the structure of the m-box B, further. First,
-.we.need to-recall-and generalize some results on representations of quivers.

3.5. I Q* is a marked quiver and V € Rep(Q*, ), we say that V is a simple
representation if and only if V' has no proper subrepresentations.
In [17, §5] a combinatorial description is given of the dimension vectors a such
that Rep(@, ) contains simple representations. Observe that in the slightly more
general case of marked quivers the proof can be repeated verbatim as we can separate
traces. That is, if V = (V(¢))s is a simple representation of @ and if ¢ is a loop
in Q in the vertex v; with a; > 2, then V' with V'(¢) = V(¢) if ¢ # ¢ and
V@) =V@) - Elz_—Tr(V(qS))Iai is also a simple representation.
A full marked subquiver Q' of @Q* is said to be strongly connected if and only if each
couple from its set of vertices belongs to an oriented cycle in Q’.
If 3 € NF is a dimension vector we denote with supp(3) the full marked subquiver
of @* on the set of vertices v; such that B(i) # 0. Finally, with §; we denote the
dimension vector (d;;);.

Proposition 3.1. Thevector 3 € N* is the dimension vector of a simple represen-
tation of Q* if and only if either of the following two situations occur :

1. supp(B) is the extended Dynkin diagram A, for some z > 1 with cyclic orien-
tation and B | supp(B) = (1,...,1), or

2. supp(B) is a noncyclic strongly connected subquiver of Q@* and for all v; in
supp(B) we have

Proof. We will only recall the proof of the necessity of supp(8) being strongly
connected. Assume otherwise, then we can divide supp(8) into maximal strongly
connected marked subquivers Q1,...,Q,. The direction of all arrows between two
such components must be the same by maximality. Hence, there is a component ¢);
having no arrows to other components.

Let M = ®M(¢) be a representation of Q* with dimension vector 8. Consider the
subrepresentation N with dimension vector dg,.3 and components N(¢) = M(¢) if
¢ is an arrow or (marked) loop in @Q; and M(¢) = 0 otherwise. If M is simple, N
has to be equal to M, whence supp(8) = Q; is strongly connected.

The other statements are proved as in [17, Thm. 4]. O

We take this opportunity to correct an error from [17, §7]. The problem is to
determine the Jordan-Holder decomposition of a representation of @* of dimension
vector a in general position.

We will use induction on the dimension vector . Let Q' be the full marked sub-
quiver of @* on supp(a). Consider the strongly connected component quiver SC(Q")
of Q'.

That is, its vertices are the maximal strongly connected components G; of Q' and
there is an arrow from G; to G; if and only if there is an arrow in the quiver Q'
from a vertex in G; to a vertex in G;. Remark that there are no oriented cycles in
S5C(Q').

Let M be a representation in Rep(Q’,a) in general position. By the foregoing
proposition, a simple subrepresentation S of M must have its support contained in
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a strongly connected component G of @ which is a sink in SC(G). Recall that a
sink in a directed graph is a vertex which is not the starting point of an arrow.
Restrict attention to this strongly connected component G. As (1,...,1) | G is the
dimension vector of a simple representation of G, there exists a dimension vector 3
with supp(B) = G satisfying the following properties

1. B is the dimension vector of a simple representation of G.

2. —d =alqG.

3. B is minimal among the dimensionvectors (1,...,1) | G < 8 < ¢ satisfying

these two conditions.

Here, we denote by 8 —— « the condition that a representation of a quiver @ of
dimension vector « in general position has a subrepresentation of dimension vector
8.
A. Schofield [24, p. 61] has given an inductive procedure to verify the condition
B —— « in terms of the Euler form x of the quiver Q.

Theorem 3.2 (Schofield).
B~ aif and only if Max -x(8,a—B)=0
f Y , x( )

A representation in general position of @* of dimension vector o will then contain
a simple subrepresentation of dimension vector f.

Continuing by induction on the dimension vector o — 8 we will eventually obtain
the generic semi-simple representation type o = 31 + ... + Bs.

That is, the decomposition of & as a sum of dimension vectors 3; of simple represen-
tations such that a representation of Q* of dimension vector « in general position
has Jordan-Holder components of dimension vectors G;.

Schofield gave a procedure to determine the canonical decomposition in [24]. That .
is, let ‘@ be a dimension vector for a quiver @ and consider a representation
M € Rep(Q,c) in general position. Then, M decomposes into indecomposable
representations

M=N&.. &Ny

where V; is an indecomposable representation of dimension vector «;. We then say
that the canonical decomposition of « is

a=yt.ty

There are strong restrictions on the dimension vectors ;.
Recall that if ¥ denotes the Euler-form for ), we say that a dimension vector 7 is

real if and only if x(v,v) = 1.
From [24, Th. 2.4] we recall that among the components ; in the canonical decom-

position of o we have : either v = v; is a real root or

x(Bi, Bi)x(Bj, Bi) =0

We can compute the canonical decomposition of « in the more general situation
of a marked quiver @Q* by working out the canonical decomposition of a for the
underlying quiver @ (that is, forgetting the marks).

In the (marked) quiver cases that will occur in our investigation, it will turn out that
the canonical decomposition coincides with the generic semi-simple representation
type. It is clear from the above that this imposes stringent conditions on the
dimension vector.

3.6. We now turn to the ring of polynomial invariants
R = C[Rep(Q", )] *H
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Tt is a very interesting (but hard) problem to determine all coregular marked quiv-
ers Q* and dimension vectors «. That is, all pairs (Q*,«) such that the ring of
polynomial invariants is a polynomial algebra.
- Recall-that- the ring of polynomial invariants R is by [17, Thm. 1} generated by
traces of oriented cycles in the quiver Q* of length at most N? where N = P
(observe that the proof generalizes to the setting of marked quivers as we can
separate traces). That is;for every-arrow ¢ (resp. doop or marked loop) in @* from
v; to v; we take a generic a; X a; matrix
11() ... Tia;(4)

My=| :
wai1(¢) s xa~ia;‘(¢’)
(resp. a generic square matrix or a generic trace zero matrix).
If cye = ¢1.¢2. ... .y is an oriented cycle in Q*, we compute the matrix

Meye = My, Mg, ... Mg,

over the ring Clz; (4)] = ClRep(Q*, am)]. If the starting vertex of ¢; is v;, this is
an a; X a; matrix and we can compute its trace

Tr(Meye) € ClRep(Q*, o))
which is clearly a polynomial invariant under the action of GL(ay,).

The assertion of [17, Thm. 1] is that these functions actually generate the ring of

invariants R.
Similar to the case of module varieties recalled before, the inclusion R =
C[Rep(Q*,a)]L(®) s C[Rep(Q*, )] induces a quotient morphism

Rep(Q*,a) —3> Rep(Q*,a)/GL(c)
A point in the quotient variety determines a maximal ideal p of R. Further, the
fiber Wc_gl (p) contains a unique closed orbit, which again is the orbit of a semi-simple
representation of @* of dimension vector c.
We have given a combinatorial method to describe all dimension vectors of sim-
ple representations of @* hence we can determine all representation types T =

(ma,B1; .. -3 me, B:) with

a=my.f1+ ...+ my.B;
where 3; is the dimension vector of a simple representation occurring with multi-
plicity m;.
Let p be a maximal ideal of R corresponding to a semi-simple representation of Q*
of representation type 7.
In order to describe the local structure of R in p, we will introduce a new marked

quiver QF.

The local marked quiver QF is a marked quiver on z vertices {ws,...,w;} . It has
o —x(B:,B;) directed arrows from w; to w; for i # j,
o 1— x1(Bs, B:) loops in w; and
o —x2(8i, B;) marked loops in w;

where x is the Euler form of @* that is,
X = X1+ X2 where X1 = ((5¢l,~ui)i,,- - (aij),-,,' and X2 = (—di‘jmi)i,j
with a;; the number of arrows from v; to v; and u; resp. m; the number of (resp.
marked) loops in v; in @Q*.
Finally, we define a new dimension vector

ar = (my,...,m,) € V¥
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Similar to the proof given in [17, Thm. 5], but taking the marked loops into con-
sideration, one proves the following result.

Proposition 3.3. Let p be a mazimal ideal of R = C[Rep(Q*, )] correspond-
ing to a semi-simple representation of type 7. Let S be the ring of invariants
(C[Rep(Qi,Oér)]GL(a’) of the local marked quiver and let q be its mazimal -graded
ideal, then. there-is an isomorphism between the completions

B~
Therefore, if R is a polynomial ring, then S is-also a polynomial ring.: This often
allows us to reduce to a simpler (marked) quiver situation.

3.7. Tt will be crucial for our purposes to have some control on the coregular marked
quiver situations (Q*, ). We can reduce to the case of a strongly connected marked
quiver.

Lemma 3.4. The polynomial invariants of Rep(Q*, &) form a polynomial algebra if
and only if for every mazimal strongly connected component Q' of Q* the polynomial
invariants of Rep(Q',a | Q') form a polynomial algebra.

Proof. The polynomial invariants are generated by taking traces along oriented
cycles in @* by [17, Thm. 1]. O

We can now state and prove a crude characterization of marked quiver situations
which are coregular, that is, having a polynomial ring of invariants.
Theorem 3.5. Let Q* be a strongly connected marked quiver and o = (ay,. .., ax)
o dimension vector.
If the ring of polynomial invariants C[Rep(Q*,a)]%(®) is a polynomial ring, then
we are in one of the following situations :

1. type 1 : min; a; <1 or

2. type 2 : min; a; = 2 and Q* has the form Ap(+1) :

q

g

that is, the extended Dynkin diagram with cyclic orientation and one exira
arrow (which may degenerate to a cycle and loop or to two loops, possibly
marked), or

3. type 3 : min; a; 2 2 and the marked quiver Q™ is the extended Dynkin diagram

Ay, with cyclic orientation
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(which may degenerate to one loop possibly marked).

Proof. Let us assume that min; a; > 2. Because @Q* is strongly connected (1,...,1)
is the dimension vector of a simple representation and there are infinitely many
isoclasses of such representations.

Hence, in Rep(Q*, o) there are semi-simple representations of type
=1, 11,1, 1) a1 — 2,855 0k — 2, 8)

The-local marked quiver @} has at most k + 2 vertices and the full subquiver on
the first two vertices is of the following form

M
e »
* a *
m m

where there are a directed arrows between the vertices with

a=-x((1,...,1),@1,...,1)) = Z (Z aij + u; +m; — 1)

and u (resp. m) loops (resp. marked loops) in the vertices where
u= 1-x1(1,...,1),(L,....,0)) =3, aij + > ui—k+1
m= xe((L 1, (1)) =
and the dimension vector a, | {wy, w2} = (1,1). We claim that
Z (Z a;j +u;+m;—1) <1
i 7
If not, we have the following subquiver B in Q7 :

B =

Then, we would have in C[Rep(Q* , - )]%(%7) the invariants uz, uy, vx and vy which
satisfy the relation (uz)(vy) = (uy)(vz). Hence, the ring of invariants of (QF, o)
cannot be a polynomial ring. But then, the same would hold for (Q*, o).

Therefore, at most one of the 3°; ai; + u; +m; — 1 can be equal to one. Let us
consider the different possibilities.

There is just one vertex, in which case u; + m; — 1 < 1 and we have the one or two
loop quiver (one or both of the loops may be marked). If there is one (marked) loop
there is no restriction on the dimension vector o = (ay). If there are two (marked)
loops, it is well known that the ring of polynomial invariants is a polynomial ring
if and only if a; < 2, see for example [16] or an adaptation of the argument given
below.
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There are at least two vertices and all terms Z o +ui+m;—1=0. As Q" is
strongly connected this implies that all u; = m; = 0 and for each ¢ there is a unique
arrow to another vertex.

Hence, we are in the case Q* = A; (k > 2) and there are no restrictions on the
dimension vector for the invariants to be a polynomial ring.

There are at least two vertices and for a unique vertex v; the sum >, a;; + u; +
m;—1 =1, then we are in the case that Q* = A;(+1) with the extra arrow possibly
a (marked) loop starting in v;.

In this case we still have to prove that min; a; < 2. The case of an extra (marked)
loop in v; reduces easily to the two loop case treated before. So we may assume
that there is a unique 7' # ¢ with vy the end point of the extra arrow.

First we reduce to the case of ff4(+1). Fix the following four vertices : z; = v;,
23 = vy, 23 the vertex v, on the oriented path from v; to vy where a, is minimal
and likewise z4 is the vertex v, on the oriented path from vy to v; where a, is
minimal.

Observe that degenerate cases are possible if either a; or ay is minimal but this
only simplifies the argument given below.

Let 8 = (a;, Gy, @i, Gy ) then we claim that

ClRep(Ar (+1), @))% = ClRep(4s(+1), £)]°*)
Indeed, classical invariant theory (see for example [13, Thm. I1.4.1]) tells us that
(Moxs(C) & MpxC))/GLy ~ Myxo(C)

if b > min(a,c). Iterating this reduction we obtain the claim.
Therefore, we only have to exclude the special case when Q* is of the following form

\{> 1 -1 -1 0
with x = 8 1 -1 0

0o 1 -1
-1 0 0 1

and the dimension vector 8 = (by, b, b3, bs) satisfies min b; > 3.

Then, one verifies that (2,1,2,2) and (1,1, 1, 1) are dimension vectors of simple rep-
resentations and by assumption there are semi-simple representations in Rep(Q*, 3)
of type

T= (17 (2a 17272); 1, (1, 17171);b1 - 3751;b2 - 2362§b3 - 3, 53;b4 - 3764)

Calculating the local quiver Q% we observe that it again contains a subquiver of the
form B and we can repeat the argument given above to exclude this case. O

Clearly, the first case of the foregoing theorem is the hardest to classify. Even when
all the dimension components are equal to one, a full .classification of the settings
where the ring of invariants is a polynomial ring is unknown at the moment. We
hope to return to this problem in another paper.

4. BLOCK STRUCTURE

4.1. In this section we will describe the structure of the m-box B,,. We will relate
its connected components to the splitting behavior of Z over C.

Throughout, we consider a triad (A4, Z,C) and a maximal ideal m of C with corre-
sponding semi-simple d-dimensional module

My =S"o. &S5
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where S; is a simple A-module of dimension d; occurring with multiplicity e;.
Clearly, d = 3 d;e;.
We want to relate these multiplicities to the structure of the finite dimensional
algebra

A, =A/mA
With the induced trace map #r, Ay, is a Cayley-Hamilton algebra of degree d having
k distinct simple modules 'S;-of dimension d;.- As atrace map vanishes on the radical,
the associated semi-simple algebra

Ap/rad Ay ~ My, (C) @ ... ® My, (C)

is a Cayley-Hamilton algebra of degree d for the induced trace map #r. If Tr;
denotes the usual trace on My, (C) then there exist by [4, Prop. 4.3] unique e; > 1
such that

k
E = Z eiTm
d=1

These numbers determine the multiplicities with which S; occurs in the semi-simple
A-module M;?.

From the theory of finite dimensional algebras we recall that A,, is Morita equivalent
to a finite dimensional basic algebra B,,, that is, such that all simple B,,-modules
are one dimensional.

The algebra B,, is a quotient of the path algebra of a quiver S,, by an admissible
ideal of relations. We call S, the skeleton quiver for m.

We construct this quiver S,, on k vertices {vi,..., vz} such that the number @;; of
directed arrows (possibly including loops) from v; to v; is given by the formula

ai; = dime Eaty (S, 5;).

An element =3 ¢;p; € CSy, is said to be admissible if all the paths p; occurring
with nonzero coefficient ¢; have length > 2.
There is a twosided ideal Ig of C §,, of admissible elements such that

FmZ(CSm/ IB

Clearly, we have @;; < a;j, where we recall that the a;; = dimc Exty(S;,S;) are
the data determining the ext-quiver E,, .

4.2. We will now relate the structure of B,, and the dimension vector «,, to the
properties of the extension of commutative algebras ¢ —— Z.
Because Z is a projective C-module of rank s, Z,, = Z/mZ is a (commutative)
s-dimensional algebra whence decomposes into local algebras :

ZpLi®...0 L.

. This means that there are ! maximal ideals of Z, say {p1,...,m}, lying over m. If
dime Lo = n, we say that p, has multiplicity n,.

The central character x; = Ann(S;) N Z of the simple A-module S; is a maximal
ideal among the {pi,...,p}. Hence, we can reorder the S; such that there exist
numbers 0 = kp < k1 < ... < k; = k such that the interval

[1...kl=IU...0 with I, = kg1 + 1...kg]

decomposes into subintexvals I, with x; = p, .if and only if § € I,.
Because A equipped with the reduced trace map T'r is a Cayley-Hamilton algebra
of degree n, each p, determines a semi-simple n-dimensional A-module
M, =P S;™ where > myd; =n.
J€l, Jj€l,
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If we denote with u, the dimension vector in Z* having components m; if j € I,
and zeroes otherwise, we obtain the relation

l
Oy, = E Ng.lhg-
a=1

This determines the dimension vector o, in terms of the ramification of Z over C.-

4.3. Consider p,; then the simple A-modules with:central character p, are exactly
the S; with ¢ € I,. Consider A as a Cayley-Hamilton algebra of degree n under the
reduced trace map and let By, be the marked quiver corresponding to the maximal
ideal p, of Z = Tr(A). That is, B,, is the p,-box for the triple (4, Z, Z).

We recall the following result, see for example [8, Thm. 11.20].

Proposition 4.1 (Miieller). With notations as before, By, is a connected quiver.
That is, if S; and S; are simple A-modules with central character p,, then there
exist simple modules T4, . .., Ty with central character p, such that Ty = S;, Ty = S
and E.’Et}lq (Ti,Ti.*.l) 76 0 or Emth (Ti+1,Ti) # 0.

The only possible difference between b, = By, | I, and By, is that some of the
unmarked loops in B,, may become marked in b,. In particular, it follows from the
foregoing proposition that the b, are the connected components of By, .
Concluding, we have the following general structural results for the m-box B, and
the corresponding dimensionvector oy,

Theorem 4.2. Consider a triad (A,Z,C). Let m be a mazimal ideal of C and
{p1,...,p1} the mazimal ideals of Z lying over m. Let n, be the multiplicity of p,.

1. By, is the disjoint union of by U...Ub; with b, a connected component.
2. am = Zfl:l Ng b Where dy.tig =1 .

Definition 4.3. For every 1 < a < a we call the marked quiver b, the p,-block and
combined with the dimension vector n,u, the block data associated to the maximal
ideal p, lying over m.

Recall that the algebra Ay = A/mA has associated skeleton quiver S,,. The
connected components of B,, and S,, are the same (though there may be more
arrows in the former). This is again evident from the result of Miieller. Therefore,
the above definition coincides with the usual notion of block of a finite dimensional
algebra.

5. THE SMOOTH LOCUS

5.1. Throughout, (4, Z, C) will be a triad, m a maximal ideal of C and {p1,...,p1}
the maximal ideals of Z lying over m. In this section we will study the extra
restrictions on the m-box B, and on the-block data (by,n.us) imposed by the
condition that A is smooth in m.

Recall that m4 : X4 — Spec C is the algebraic quotient map corresponding to
the inclusion C' = C[X4]%%¢ —— C[X4].

Definition 5.1. We say that A is smooth in m if and only if X4 is smooth along
73" (m). The set of all maximal ideals m such that A is smooth in m is called the
smooth locus of A over C and is denoted by Sm A/C.

As the singular locus of X4 is a closed G'Lg-stable subscheme of X4, A is smooth
in m if and only if X4 is smooth in a point of the unique closed orbit in 7;*(m)
determined by the semi-simple d-dimensional A-module M°.

For any triad (A4, Z,C) the smooth locus Sm A/C contains a Zariski open subset
of Spec C.
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Definition 5.2. Given a triad (4, Z,C) and a maximal ideal m of C. We say that
A is separable in m if and only if

A = ®1 Ma(O).

That is; there are s distinct maximal ideals of Z lying over m-each corresponding
to a single simple A-module of dimension .

. The separability locus of A over C is the set of all maximal ideals m where A is
separable. It will be denoted by Sep 4/C.

. This notion corresponds to the usual notion of separable extensions, see for example
[12, Chp. III]. Recall that an R-algebra A is said to be separable if and only one of
the following equivalent conditions is satisfied

1. A is a projective A° = A ® A°PP-module.

2. A° contains a separability idempotent, that is, an element e such that

A®lle=e(l®N) VAEA
and p(e) = 1 where p: A ® g A°PP —— A is the multiplication.

We apply this result in the following way. Assume that A,, is a separable Cp,-
algebra, then A¢ contains a separability idempotent e. But then, there is an f €
C —m such that e € A% and hence also Ay is a separable Cy-algebra. The Zariski
open subset of maximal ideals m such that A,, is a separable Cy,-algebra coincides
with our definition of Sep A/C.
To see this, observe that an algebra A over a local algebra R (with maximal ideal
m) s separable if and only if A/Am is a separable R/Rm-algebra. In our case,
“m/Cmm =~ C and the only separable C-algebras are products of matrices. Hence
A/Am is a semi-simple algebra. However, since A is a projective C-module of
rank sn?, we have seen that the image Max C —— Alg,,2 is contained in the

orbit closure of My (C)&... M,(C) (s copies). As any semi-simple sn?-dimensional ...

.algebra determines-an open orbit in Algs,> it follows that
Ay =A/Am ~ M, (C) @ ... ® Mp(C)

Lemma 5.3. Consider a triad (A, Z,C) with C a regular domain. Then, the sep-
arability locus of A over C is contained in the smooth locus of A over C.

Proof. Let U be the Zariski open subset of Spec C' determined by the separability
locus. From the definition it is clear that X4 is a principal fibration over U with
fibers isomorphic to GLg/T*. As both the base and the fibers are smooth, so is
2t (U). d
Because any affine domain C has a Zariski open subset of smooth points, the next
result follows immediately.

Proposition 5.4. For a triad (4, Z,C) we have

dim X4 =dim C +d? — s
Proof. We have seen that X4 is a principal fibration over the intersection of the

smooth locus of Spec C with the separability locus of A over C, with fiber isomorphic
to GL4/Ts. The formula now follows. O

5.2. We will use the m-box B,, and dimension vector a,, to give a numerical
criterium to verify smoothness.
With x.,, we will denote the Euler-form of By, .

Theorem 5.5. A is smooth in m if and only if
dim C=s— Xm(amaam) - Zmz
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Proof. Let z,,, be a point in the orbit in X4 corresponding to M2*. Then, GL{ay,)
is the-stabilizer group in z;. We have
dim Ty, = dim Ty, /T2 + dim Tg
= dim Bxty(MsS, M), +d® — Y €2
= dim Rep(By,, ) +d? — S8 e?
Knowing the-dimension of X 4, the-condition.dim X 4 = dim T}, gives the equations
dim C —s=dim Rep(Bm,am) — 3.5, €2

= _Xm(ama Oém) - Zf:l m;

proving the theorem. O

Definition 5.6. In general, we have that s — xm(@m,am) — >; my > dim C.
Therefore, the number

Sm =8 = Xm(Qm,m) — Z my — dim C

is a measure for the singularity of A in m.

5.8. To illustrate the concepts introduced and the above theorem, we give an ex-
ample of a noncommutative Hopf algebra which is smooth in all maximal ideals of
a central sub-Hopf algebra.

Example 5.7. Consider the quantum Borel A = Uy(b) of U,(sly) where ¢ is a
primitive I-th root of unity, [ odd. A is generated by E and K, K~! satisfying the
defining relation KE = ¢?EK.
The Hopf-structure is defined by taking K to be grouplike and E a skew-primitive
with

AEY=E®1+K®FE

A is a free module of rank 12 over its center C = C[K?, K, E'] which is a sub-Hopf
algebra isomorphic to the coordinatering of C* x C, .

The reduced trace map on A is given by tr(E*K®) = 0 unless both a and b are
multiples of ! in which case tr(E°K®) = IE°K®. It makes A into a Cayley-
Hamilton algebra of degree I. We consider the triad (U,(b),C[B],C[B]) where
C[B) = ClE', k', K~].

Let m be the maximal ideal (K! — o', E' — b) with ab # 0, then 4, =~ M;(C) as it
is generated by

a 010 0
2 0 01 0
¢’a
p(K) = . and p(E) = -

' 000 1

2(1-1)
R b 0 0 0

One verifies that Ext'(M:5, M%) = Ca + CB where the algebra map

A —— M;(Cle]) is given by
K p(K) + ael; and E — p(E) + Bel

and these algebra maps are trace preserving. Therefore, E,, = B,, is the 2-loop

quiver
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and the dimension-vector a,, = (1). In this case, s = 1, xm = (—1) and one checks
that

§ = Xm(@m,am) — 3 mi=1-(-1)=0=2=dim C

whence A is smooth in m. This corresponds to the fact that locally around m, X4
is a principal PG L;-fibration whence smooth.
Next, let m be the maximal ideal (K' — a, E') with a # 0, then

ME~5..05

where S; is the simple one-dimensional A-module determined by p;(K) = ¢*’a and
pi(E) = 0. One verifies that

Exth(Si, S@) = Co; and E:Eth (Si,Sj) = 6i+1,_7Cﬂi
whence the quiver E,, has the following shape

)
0 Q

and the dimension=vector is c,, = (1,...,1). The algebra'map A — M;(Cle])
corresponding to the representation (o4, 8; | 1 <4 <) is given by

a+ o€
q’a + ase
K~
@Va + oge
0 pBie O 0
0 O ﬂzé’ 0
E~ .
0 0 0 ,61_16
Bie 0 0 0

Setting tr(K?) = 0 for 1 < i < [ gives [ — 1 linear relations among the a; leaving
just a one-dimensional solution space. Therefore, By, is the quiver

0
/\{
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In this case, the Euler-form x., is determined by the [ x I-matrix

0 -1 0 0
1 -1 0
Xm =
1 -1
—1 1

whence
s—Xm(am,am)—Z m;=1—(-1)-0=2=dim C

and therefore A is also smooth in these points.
Remark that it would be rather difficult to prove smoothness of Xy, (p) directly.

5.4. Before we can proceed we have to recall the Luna slice theorem in invariant
theory. We have already given an application in proposition 3.3. For future reference
we give the result in a more general setting than we need.

Recall the presentation A = C{x1,...,Zm)tr/(r4) which gave us the epimorphism
(C[ygz) | 4,4,k] —> C[X4]. Therefore, X4 is a closed GLg4-stable subscheme of
M4(C)®™ on which the action is given by simultaneous conjugation.

Let z be a point in Mz(C)®™ in the orbit of M. The normal space in x to the
GL4-orbit has been computed in {16, §I111.1]. We recall that it can be identified with

Rep( ;i:taam)

where Q¢ is the quiver on {v1,...,vs} such that the number of directed arrows
from v; to v; is given by the formula A;; = (m — 1)d;d; and the number of loops in
v; is equal to U; = (m — 1)d? + 1.

-.An-element -e-of - this space can ‘be ‘identified ‘with-an m-tuple of d x d matrices- - -

(Ei,...,Ep) in block form, the first of which Fy € Lie(GL(o,)) —:Lie(GLg). =
M4(C).
We can define an algebra map

e:Clxr,. -, Tm)tr —> Md((C[Rep(foft,am)])
such that for all all e € Rep(Q¢*?, o) we have
&(z;)(e) = p(z:) + E;
Definition 5.8. The slice algebra of A in m is the commutative affine algebra
Sm = ClRep(Qr:", am)l/ (Ja)

where J4 is the ideal generated by the entries of &(r4) where r4 is the ideal of
relations of A as a Cayley-Hamilton algebra.

From the universal property.of i4 we-obtain.a uniquely determined (surjective). .-
algebra map g : C[X 4] — Sy, such that the diagram below is commutative

g

A Md(sm)
a Ma(E)
Ma(C[X4))

The slice algebra S,, determines a closed subscheme of Rep(Q¢%, ) containing
the zero representation. Let 2’ denote the maximal ideal of S,, corresponding to
the zero representation. If z,, is the maximal ideal of C[X 4] corresponding to the
chosen point in the orbit of M3, then £71(2') = zp.
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The action by automorphisms of GLg4 on X 4 induces an action of GL(ay,) > GLg4
on the slice algebra S,,. Moreover, GL(ay,) acts on C[GLg4] by automorphisms via
the action

GL(0um) x GLg — GLg where (h,g) ~ gh™?.
Hence, we have a GL(ay,) action on C[X 4] ® C[GL,4] and on S,, ® C[GLg4] and the
map Z ® id-is GL(ay, )-equivariant ‘and therefore induces -an algebra map-between
the ring of GL(ay, )-invariants.
If C[X4] — C[X4] ® CJGL4] denotes the comodule algebra map encoding the

action of GLs on X4, one verifies that ac(C[X4]) is contained in the GL(ap)-
invariants. Therefore we have an algebra morphism

QX 4] —2> (Sm ® CIGL4])CE(@m).

On the other hand, multiplication on the left in GL4 induces an action of GL4 on
Sm ® C[GL4] by working on the second factor. As this action commutes with the
G L{am)-action, it defines an action of GL4 on the invariants (S, ® C[GL4])FL(@m)
and the corresponding ring of invariants is equal to

(S ® C[GLg])CL(@m))GLa oy GGL(em)

Concluding, we have the following commutative diagram of algebras

C[X 4] 4 (S ® C[GL4])GE(om)

C L4 > SGL(em)

For more details on étale morphisms and their properties we refer to [22]. The next
result is-an-application of the Luna slice theorem [19] as extended in the proof of
F. Knop [11].

Theorem 5.9. Let z be the maximal ideal of S,C,';L(a’") corresponding to the zero
representation in Rep(Q2%%, ay,). Then, there exists an f € SSHem) _ i such that
in the localized diagram
014] ——— (S © ClEL) O
¢ b (552@),

the horizontal morphisms are étale and ¢y is GLg4-equivariant. In particular, if
— qGL(a@)
T=58n then
Cp =T,
Proof. Observe that by definition Sy, is the scheme theoretic intersection of X 4 with

the normal space in M;(C)®™ in the point corresponding to M;# to the GLg-orbit.
By [11, p.112] this is the scheme on which to apply Luna’s fundamental lemma. [

We will only need a special case of this result. When A is smooth in m, we can apply
[11, p. 113] and see that the slice algebra Sy, can be replaced by C{Rep(By, , o).
That is, we have the following result.
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Theorem 5.10. Let A be smooth in m. The ring of polynomial invariants R =
C[Rep(Byy , 0 ]S @) is o positively graded algebra with mazimal ideal n = R
Then, there exists an f € R — n such that in the localized diagram

4
C[Xa] !+ (C[Rep(Bm,am)] ® CIGL4))G )
c i - Ry
the horizontal morphisms are étale and vy is GLg4-equivariant. In particular,

~

C’mzf%n

5.5. We are now in a position to state our main theorem concerning the blocks b,
of the m-box B, .

Theorem 5.11. Let A be smooth in m and let {p1,...,pm} be the mazimal ideals
of Z lying over m such thet p, occurs with multiplicity n,.
Let (bg, nqitq) be the block data for B, where 1 <a <lI.

1. b, are the strongly connected components of B, .
2. The generic semi-simple representation type of nou, coincides with the canon-
ical decomposition of nop, ond is of the form :

Nolta = ﬂ&a) +...+ /87(12)

with d.B =n for all 1< i < n,.
3. If m is the total number of marked loops in By, , then

Il ng
dim C=s5-3 % xn(8",5"”) —m

a=1 ¢=1
Proof. Because A is smooth in m the slice algebra S, can be taken to be
C[Rep(By, )] Let R = ClRep(By,n)]9H@m), then R is a positively graded
algebra with maximal graded ideal n = Ry. We know that there is an étale local
isomorphism between an open subset of Spec R containing n and one of Spec C
containing m.
Any open neighborhood of m contains maximal ideals u such that A, ~ M, (C) &
... ® Mp(C) (s copies). The maximal ideal v of R corresponding to v determines a
semi-simple representation of @}, of dimensionvector a,.
By GLg-quivariance of ¢; we know that the automorphism group of this semi-
simple representation is C* x ... x C* (s copies). Therefore, it is the direct sum of
s simple representations of By, say of dimension vectors y; where d.y; = n.
Again, by G'Ls-equivariance of 17 we know that there is a unique orbit lying over
v. Hence, a representation of B, of dimension vector oy, in general decomposition
is semi-simple. Therefore, the generic semi-simple representation type of o, is the
same as the canonical decomposition of .
From this it follows immediately that the blocks b, (which we know already to
be the connected components of B,,) are strongly connected. If one b, were not
strongly connected, then by the construction of the generic representation type it
would follow that general representations are not semi-simple.
The generic semi-simple representation type of o,,-dimensional representations of
B, is

Om =7 +...+7%

il
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The support of any of the +y; is strongly connected, hence is contained in a single

»
Let ﬂ§a), ..., B be the set of ~; belonging to b,. Clearly, the generic semi-simple
representation type of nguq-dimensional representations of b, is equal to

Natta = B + ...+ B

Taking the scalar product with d on both sides gives the equality n, = z proving
the second part of the theorem.

Meodifying the formula for the dimension of the quotient . variety
Rep(By, am)/GL(au) (or equivalently, the dimension of R) proved in [17,
Thm. 6] to the slightly more general setting of marked quivers we obtain

dim R=) (1= xm(w, %)) —m

j=1
and the local isomorphism Cpn =~ I%n finishes the proof. |

Another consequence of the Luna slice machinery which can be proved along similar
lines is that Sm A/C is Zariski open in Spec C.

6. THE SINGULARITIES

6.1. If A is smooth in m we have seen that Cp, ~ R, where R is the ring of
polynomial invariants C[Rep(By,,,)]¢(®™) and n is the maximal ideal of this
graded algebra.

In this section we will investigate what extra restrictions are imposed on the m-
box (B, ) and the block data (bs, netta) when we assume in addition that C' is
smooth in m, that is, Cp, is a regular local ring.

- Then, Cry = C[[z1, .. -, 2] ~ R, where ¢ = dim C. Consequently, R must be a
polynomial ring in ¢ variables as R is a positively graded algebra of finite global
dimension.

Therefore, each of the block data (b,, n44,) must be one of the three possible types
appearing in theorem 3.5. A direct consequence of this classification is the next

result.

Theorem 6.1. Let A and C be smooth in m. If dim C > 1, then the multiplicity
= of -every -magzimal ideal p, lying over m is n, = 1. In particular, Z is smooth in
every prime D, lying over m.

Proof. If the multiplicity n, of p, is equal to one, then p, is unramified over m and
is thus a smooth point of Spec Z.

Assume n, > 1, then clearly b, cannot be of type 1 of theorem 3.5. We will also
exclude the two other types.

Suppose that b, = Ay (+1). Then n, = 2 hence all dimension components are even
and at least one is equal to 2. Hence, the two simple components must have one of
their dimension components equal to one. Calculating the necessary and sufficient
conditions for a dimension vector of A (+1) to be simple we see that the only such
case is (1,...,1). That is,

Ha = (1771)
However, if x denotes the Euler-form of Az(+1) we calculate that
“1=x(,...,1,(1,...,1))

But then, (1,...,1) is not a real root so it cannot occur with higher multiplicity in
a canonical decomposition by a result of Schofield [24].
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Suppose that b, = Az. Then, napte = (Na,...,Nq). As the dimension vector of a
simple representation of Ay is either (1,...,1) or 6;, and as the general representa-
tion of dimension vector n, t, must split as a direct sum of n, distinct simples, the
only possibility is that u, = (1,...,1).
Consider the p,-box B-of the triad (4, Z, Z). As all entries of nyp, are > 1 it follows
that B = A; (for.in this.case one cannot get rid of any loops in B). Let Y4 be the
variety corresponding to this triple, then

dim Ya=dim Z +n* -1
and if y is a point of Y4 in the orbit of the semi-simple n-dimensional A-module
corresponding to p,, then

dim Ty = dim Rep(A,(1,...,1)) +n® —k =n?

As always, dim T,, > dim Y, this implies that dim C' = dim Z < 1 contradicting
the assumption.

The case of one marked loop cannot occur if n, > 1 as the canonical decomposition
of the underlying quiver is (n,) = (1)+...+(1), but there is just one (1)-dimensional
representation of the marked loop, the trivial representation. O

Up till now, we have not used the assumption that A is a Hopf algebra nor that C
is a commutative sub-Hopf algebra. If we do impose these conditions, then we have
1. A is a projective C-module. In fact, by [15, Thm. 1.7} we even know that
A is a Frobenius extension of C. That is, A is a finitely generated projec-
tive C-module and there is an isomorphism A —— Hom¢(4,C) of (C, A)-
bimodules. See [9] and [2] for more details.
2. C, being the coordinate ring of an irreducible algebraic group, is smooth in
all maximal ideals m. )
That is, all:requirements.of the theorem above are satisfied and we.obtain.. . ...

Theorem 6.2. Let H be a prime Hopf algebra which is o finite module over -a
central subHopf algebra C. If Z is the center of H, then

Sep H/C “— Sm H/C — Sm Z/C

Proof. By the theorem above, Z is an unramified cover of degree s over Sm A/C.
O

6.2. If A and C are smooth in m, then we have seen that the m-box B, consists of
exactly s blocks b, all of type 1. That is, b, is a strongly connected marked quiver,
L is the dimension vector of a simple representation of b, and min; a; = 1.

In order to further restrain the structure of b, we will recall the definition and some
results on reflerive Azumaya algebras. We refer to [18] or [20] for more details.
Let R be an integrally closed affine domain with field of fractions K and let ¥ be a
central simple K-algebra. A subring A of ¥ s said to be a reflezive Azumaya algebra
over R if and only if
1. The center of A is equal to R.
2. A is a finitely generated reflexive R-module, that is, A** ~ A where (—)* =
Hom R(—, R) .
3. Ap is an Azumaya algebra over the discrete valuation ring Rp for every height
one prime ideal P of R.

Equivalently, the natural map
A®g A® —~ Endg(A)

is an isomorphism of R-algebras, where the modified tensor product — ®'R - is
defined to be (— ®p —)**.
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Two reflexive Azumaya algebras over R, A and I' (possibly in different central
simple algebras) are said to be equivalent if there exist finitely generated reflexive
R-modules M and N such that

A ®p Endp(M) ~T ®5 Endg(N)

as R-algebras. The set-of equivalence classes of reflexive Azumaya algebras equipped
with the modified tensor product as a multiplication rule is a-group. This is the
reflezive Brauer group B(R) of R. Contrary to the ordinary Brauer group Br(R),
it is always a subgroup of Br(K).

In [18] a cohomological interpretation was given of the reflexive Brauer group. If
Xom is the Zariski open set of smooth points of R, then

B(R) = Hezt(Xsm’ Gm)

Hence, at least in the étale cohomology, the reflexive Brauer group is the Brauer
group of the smooth locus of R.

Clearly, one can also define reflexive Azumaya algebras locally in a maximal ideal
p of R. The following result is implicit in [20] or see [1] for more details.

Lemma 6.3. Let A be an order in a central simple algebra of dimension n?. As-
sume that A is reflexive Azumaye in o mazimal ideal p of R.
1. The set Ram(A) of maximal ideals q¢ of R such that AfqgA 2 M,(C) is of

codimension > 2 in p.
2. If A, is a projective Ry-module, then A/pA =~ M,(C).

Proof. As for (2) : if A, is a projective Z,-module, the above natural map is an
isomorphism. Hence, A, is an Azumaya algebra over Z, meaning that A,/pA, is a
central simple algebra over the residue field of Z, which is C, done.

-~6.8. Returning to our triad (4, Z, C), the reflexive Azumaya condition (imposed
locally) has drastic consequences on the shape of the block b,.

Proposition 6.4. Let A and C' be smooth in m and let p, be a moximal ideal of
Z lying over m such that A is reflerive Azumaya in p,. Assume moreover that A

is a projective C-module.
Then, the block b, is the a one vertes quiver and u, = (1). In particular, AJ/Ap, ~
M, (C) whence p, belongs to the Azumaya locus of A.

Proof. We know already that Z is smooth in p,. Further, because A is a projective
C-module, A,, is free over the local regular domain C,,. Hence, A,, is a Cohen-
Macaulay module.

Because Z,,, is regular local, it follows that A,, is a free Z,,-module. Moreover, by
assumption Ap, is a reflexive Azumaya algebra over Z,,. By the above lemma this
entails that A/Ap, ~ M, (C) from which all the claims follow. |

In particular we have the following application to Hopf algebras.

Theorem 6.5. Let H be a prime Hopf algebra which is a finite module over a
central subHopf algebra C. If H is a reflexive Azumaya algebra over its center Z,
then

Sm H/C = Sep H/C

Proof. If H is smooth in m, then by the foregoing proposition A/Ap, ~ M, (C) for
all maximal ideals p, of Z lying over m. But then.

AJAm ~ M,(C) & ... ® M,(C) (s copies)

which entails that A is separable over C' in m. O
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Finally, in order to apply this result to the quantised enveloping algebra U.(g) or
the quantum function algebra O.(Q@) we recall the following result proved in [1, pf.
of Thm. 4.3 and Thm. 4.5].

Theorem 6.6 (Brown-Goodearl). Let g be a finite dimensional semisimple Lie al-
gebra with corresponding simply connected Lie group G. Let € -be a primitive I-th
root of unity where I is odd and prime to 3 if g involves a factor of type Gs.

1:- The quantum function algebra O¢(G) is o reflezive Azumaya algebra.
2. The quantised enveloping algebra U(g) is a reflexive Azumaya algebra.
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