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Abstract
Let V be a vector space and let {ej,...,e,} be a basis of V. An algebra structure

on V is given by r® structure constants cﬁ‘j, where e; - e; = Y, cﬁ‘jem We require this
algebra structure to be associative with unit element e;. This limits the sets of structure
constants (cfj) to a subvariety of k‘"B, which we denote by Alg,. Base changes in V (leav-
ing e; fixed) give rise to the natural transport of structure action on Alg,; isomorphism
classes of ‘r-dimensonal algebras are in 1-1 correspondence with the orbits under this
action. o

In this paper we classify the smooth closed subvarieties of Alg, which are invariant
under the ‘transport of structure action and study the singularities which may occur.
In particular, we show that if r = n? then the closure of the locus corresponding to
the matrix algebra M, (k) is not smooth for n > 3. This gives a negative answer to a

question of Seshadri [3e78].
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Let V be a vector space and let {e1,...,e,} be a basis of V. An algebra structure
on V is given by 73 structure constants c?], where €; - e; = 25, c”eh We require this
algebra structure to be associative Wlth unit element e;. This limits the sets of structure
constants (cl, ;) to a subvariety of k"® which we denote by Alg,. Base changes in V' (leav-
ing e; ﬁxed) give rise to the natural transport of structure action on Alg,; isomorphism
classes of r-dimensonal algebras are in 1-1 correspondence with the orbits under this
action.

In this paper we classify the smooth closed subvarieties of Alg, which are invariant
under the transport of structure action and study the singularities which may occur.
In particular, we show that if r = n? then the closure of the locus corresponding to
the matrix algebra M, (k) is not smooth for n > 3. This gives a negative answer to a

question of Seshadri [Se78].
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1 Introduction

Throughout this paper k will be an algebraically closed field, V' will be an r-dimensional
vector space, and ey, ... ,e, will be a basis of V. We want to endow V with a structure
of an associative k-algebra so that e; becomes the identity element. By linearity this
can be done by specifying the 73 structure constants c?]- € k, where

,
e e = Z c{-”jeh . (1)
h=1

Equivalently, an algebra structure on V is given by a bilinear map V xV — V, i.e., an
element of V* ® V* ® V. The collection of constants (cé’j :4,59,h =1,...,7) corresponds
to the tensor

c’-Ljeﬁz EV*RV*QV,

2,

1,5,h
where ¢}/ = ef ® €j ® ep. The choice of the structure constants is not arbitrary; it must
reflect our assumptions that e; is the identity element, i.e., e; - ¢; = €; = ¢; - €1 for every

i=1,...,r and that multiplication is associative, i.e., (e;-€;)-ep = e;- (e; - e3) for every
1,5,h =1,... ,r. These conditions translate respectively, into
c;=ch =9 (2)
and
~
l
> chich — el =0 (3)
=1




for all 4,5,h,m =1,... ,r. Equations (2) and (3) cut out an algebraic variety in &¥"° =
V*®@V*®@YV. This variety, which we shall denote by Alg,, is of fundamental importance
in the theory of algebras and their deformations; see, e.g., [DS], [F68], [K]. Flanigan [F68]
referred to the study of Alg, as “algebraic geography”. :

The basic facts of algebraic geography are as follows. A point (cfj) € Alg, represents
an r-dimensional k-algebra A, along with a particular choice of basis (which gives the
structure constants cf‘j). A change of basis in A gives rise to a (possibly) different point of
Alg,. Let G, be the group of all base changes in V', which preserve the element e;. This
group acts on Alg, by the so-called “transport of structure” action, which is induced by
the natural action of G, C GL(V) on V* ® V* ® V. The G,-orbits of this action are
in 1-1 correspondence with isomorphism classes of r-dimensional associative algebras.
We shall denote the orbit corresponding to an algebra A by [A] C Alg,. If p € [A]
then the stabilizer subgroup Stab(p) C G, is exactly the group Autg(A) of all k-algebra
automorphisms of A. If [B] is contained in the Zariski closure of [4] in Alg,, we shall
say that A is a deformation of B (or, alternatively, B is a degeneration of A) and write
B < A. The relation < defined this way is a partial order on the set of r-dimensional
algebras; we shall refer to it as the degeneration partial order.

We remark that our definition of Alg, is the same as the one given in [Schaps] or
[Se82]. A slightly different definition arises if one does not fix the identity element of V'
but simply requires that one exists; see, e.g., [Ga]. The variety obtained in this way is
closely related to Alg,. The transport of structure group is larger in this case (GL(V)
vs. G,) but the degeneration picture for the orbits (or, equivalently, the degeneration
partial order), remains the same.

The geometry of Alg, is rather complicated. It is known that the number of irre-
ducible components increases exponentially with r (see [M79] and [M82]) and that their -
dimensions are <-4/27r3 +O(r®/3); see [N]. However, a complete description of the orbits *
and the degeneration partial order is only known for r < 5; see [Ga] , [M79], [Ha], and --
our Remarks 4.4.2 and 4.5.3:;- Many but-not :all components -of Alg, are-orbit closures; -
see [F68], [M82]. An algebra A such that the closure of [A] is a component is called
generic. Every semi-simple algebra is known to be generic; see, e.g., [Ge, 1.3] or [F68,
Cor. 2.6].

The component X, C Alg,: given by the Zariski closure of [M,,] is of particular inter-
est. One reason is the connection between X,, and moduli spaces of vector bundles which
first appeared in the work of Seshadri; see [Se78] and [Se82]. Let U(n,d) be the moduli
space of semi-stable vector bundles of rank n and degree d over a smooth curve. This
space is singular in general. Seshadri [Se78] constructed a conjectural desingularization
Ny q of U(n,d) and proved that N, 4 is smooth iff X, is smooth. Moreover, X3 (and
thus Ng 4) is smooth; see [Se78, Theorem 1] or [Se82, p.112]. This construction has since
been used in the study of rank 2 vector bundles. In order to extend it to vector bundles
of rank n one needs to have a positive answer to the following question.

Question 1.1 (Seshadri [Se78, Introduction]) Is X,, smooth for n > 3¢




Other consequences of the smoothness of X, have been explored by Nori [Se78,
Appendix]. Our own interest in X,, was motivated by the realization that X,, is closely
related to Amitsur’s universal division algebras and that the smoothness on X, would
imply a positive solution to the long-standing rationality problem for PGL,-quotients.
We will explain these connections in Section 3.

In this paper we answer Question 1.1 in the negative.
Theorem 1.2 X, (and hence Nyy) is singular for every n > 3.

C.S. Seshadri has recently informed us that he and A. Ramanathan have an unpublished
independent proof of this theorem.

More generally, we will characterize all smooth G,-invariant closed subvarieties of
Alg,. Let Ag(r) and A;(r) be given by

Ao(r) = klez,... ,er]/(e2, .. ’67‘)2 (4)
and
Ai(r) =k{es,... ,er}/(e2ej —ej,e5¢5 :12>3, 5>2). (5)
With these notations we have the following theorem.

Theorem 1.3 Suppose char(k) # 2 and r > 3. Let Y be a smooth G,-invariant closed
subvariety of Alg,. Then

1. Y =[4g] = [Ao(r)] and dim(Y) =7 —1, or
2. Y =[A1(r)] and dim(Y)) = 2(r — 1), or

8 r=3,Y =[kxkxk| and dim(Y) =6, or
4. 7 =4,Y = [My(k)] and dim(Y) = 9.

A proof of this result is given in Section 4. We also prove an analogue of Theorem 1.3
for the variety Lie, of all Lie algebra structures on V'; see Theorem 4.6.2.

In the last two section we initiate a study of the singularities of orbit closures [A] at
the origin. In Section 5 we classify the Zariski tangent spaces to [Téﬁ at the origin (as
GL,_1-modules) in terms of the algebra structure of A. In particular, we compute the
dimension of the tangent space to X, thus somewhat strengthening Theorem 1.2; see
Corollary 5.1.3.

In order to describe the results of Section 6 we need the following definitions. An
algebra A is called a minimal deformation of B if B immediately precedes A in the
degeneration partial order. In other words, B< C < A ifand only if C = B or C = A.
Let A4 (r) is the commutative algebra given by

Ap(r) = k[za, ... 21}/ (23, zizj, :1:? 1 4>2,5>3) (6)
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and A_(r) be the algebra given by

A_(r) =k{ya, .. ,yr=1}/ (W2, Yi¥j» Yj¥i» Yoys +ysya : 1> 2, 5> 4) . (7)

Theorem 1.4 Let r > 4. Then the only minimal deformations of Ao(r) are Ai(r),
A_(r) and Ay(r).

In other words, every r-dimensional algebra A # Ag(r) can be deformed into A (7),
A_(r), or Ai(r). We also study the “minimal singularities” of Alg,, i.e., the singularities
of [A1(r)] and [A_] up to smooth equivalence; see Section 6.2.

2 Notation and preliminaries

The following notational conventions will be used throughout the paper; many of them
were introduced in the previous section.

r integer > 3.

k base field.

1%4 k-vector space of dimension 7.

e1 multiplicative identity.

€ly-v- 5Ep basis of V.

el =R/ @er eV VI QV.

w subspace of V spanned by es,... ,e,.

d usually = dim(W) =r — 1.

Alg, subvariety of V* ® V* @ V given by (2) and (3).

G, transport of structure group; see Sect. 2.1.

T - themap V*@V*®V — W*@ W*® W defined in Lemma 2.2.1.
Alg! - isomorphic image of Alg, in W* ® W* @ W; see Lemma 2.2.1.
[4] G,-orbit in Alg, corresponding to the algebra A.

Xn Zariski closure of [M,] in Alg,:.

0 element of W* ® W defined in Section 2.4.

R, ,R_ irreducible GL(W)-submodules of W* @ W* @ W; see Prop. 4.1.1.
c contraction map W* @ W* @ W — W*; see (15), Sect. 2.3.
a, 8,0 endomorphisms of W* @ W* @ W defined in (15), Sect. 2.3.
T(A) tangent space to 7([A]) at 0; see Section 5.

Aog(r), Ay (r) r-dimensional algebras given by (4) and (5).

B(s,t) s + t + 2-dimensional algebra defined in Section 5.1.

Ai(r),A_(r)  r-dimensional algebras given by (6) and (7).




2.1 The group G,
We begin by taking a closer look at the transport of structure group G,. In the basis

ei,... e this group consists of elements of the form
1 as ay
0
g=1 . : (8)
: go
0

with ag,... ,a, € k and g9 € GL,_; = GL(W). The transport of structure action of G,
on Alg, is given by g(a:fy) = (y{;), where

i) - glej) = Z yrg(en) . (9)
h=1

As we noted in the introduction, this action is induced by the the natural action of
G, CGL(V)onV*@V*QV.

Let U be the subgroups of G, consisting of all elements ¢ as in (8) with go = I,_1,
where I,_; is the (r — 1) X (r — 1) - identity matrix. It is easy to see that the map .
U — W* given by

— Z aie) (10)
I(r——l) =2

is an isomorphism of algebraic groups. Identifying G, with W* in this way, we can write
G, as a semi-direct product

G, =U x4 GL(W) =~ W* x4 GL(W), (11)

where ¢ is the natural (dual) action of GL(W') on W*.

2.2 Reduced sets of structure constants

Lemma 2.2.1 (¢f. [Schaps, Lemma 4]) Let r > 3. The map 7 : V*QV*®V —
W* W* W given by

r

zlel) = zlel
g h ]

,7,h 1 1,5,h=2

restricts to an isomorphism between Alg, and its image Alg. e W* Q@ W* @ W.




Proof. We only need to show that the coordinate ring k[Alg,] is generated by the
elements xfj, where ¢,7,h = 2,... ,7. In other words, we want to show that elements (i)
af;, (i) 2%, and (iii) z}; can be expressed as polynomials in % with 4,4, > 2 by means
of (2) and (3). (i) and (ii) are obvious by (2). To prove (iii) set 2 < m = h # %; then (3)
yields
7
5 = D (@bl — aljaly) (12)
1=2

z

O

Lemma 2.2.2 Let X be a G,-invariant closed subvariety of Alg,. Then n(X) is a cone
(and, in particular passes through 0 € W* @ W* @ W). Moreover, the following are
equivalent

1. X is smooth.
2. X is smooth at 0 e V*QV*QV.
3. w(X) is a GL(W)-invariant linear subspace of W* @ W* @ W.

In particular, if X is smooth, then X is rational.

Proof. Letm: V*Q@V*Q®V — W*Q@ W*® W be as in Lemma 2.2.1. By our
construction 7 is GL(W )-equivariant. Thus 7(X) is invariant under the action of GL(W)
and, in particular, under the action of the central subtorus of GL(W). This implies that -
7(X) is a cone. By Lemma 2.2.1 X is isomorphic to 7(X). In particular, X is smooth at -
0e V*QV*QV iff 7(X) is smooth at 0 € W*@W*Q@W. The equivalence of (1), (2) and .
(3) now follows from the fact that m(X) is a cone. The last assertion is a consequence -
of (3). O

2.3 Trace functions

In this section we record some elementary facts regarding right and left trace functions.

Let p e V*@V*®V be a (not necessarily associative) bilinear form on V. Forv € V
let Ry(v) and Ly(v) : V. — V denote the right and the left multiplication by v. We
shall denote the traces of these maps by LTr, and RTr, respectively. We shall also write
LTr4 in place of LTy, if A is an algebra whose tensor of structure constants equals p.
Note that LTr, and RTr, : V — k are elements of V*.

Lemma 2.3.1 Let A be a finite-dimensional associative algebra. Then
1. LTra(z) = RTr4(z) = 0 for every z € Rad(A).

2. The bilinear form of (z,y) — LTra(z - y) is non-singular if and only if A is
semi-simple. The same is true for the form (z,y) — RIx(z - y).




Proof. (1): Both L, and R, are nilpotent; hence their traces are 0.
(2): Part (1) says that Rad(A) is contained in the kernel of both forms. 0

Next recall the definition of 7 : V*QV*QV — W*Q W* @ W from Lemma 2.2.1.

Lemma 2.3.2 If n(p1) = w(p2) for some p1,ps € Alg, then LTr,, = LTrp, and RTx,, =
RTrp, in V*.

Proof. Let p1 =377, h=1 c%e;‘f and py = 37 p=1 dfjeﬁf. Our assumption that 7(p;) =
7(p2) simply means

7

o= db (13)

for every 4,7, h > 2.

For every p € Alg,, LTr,(e1) = RTrp(er) = r. Thus by linearity we only need
to check LTrp, (e;) = LTrp,(e;) and RTrp, (e;) = RTrp,(e;) for every ¢ = 2,... ,r. An
explicit calculation shows that LTrp, (e;) = 375~ c57 and RTrp, (e;) = >0 (:;Z Similarly,
LTy, () = Y=y dl; and RTxp, (;) = Yj—; d;. The desired equalities now follow from
(13) and the fact that c{j = 71 = dii = d;l = 0 for every j > 2; see (2). o

In view of Lemma 2.3.2 we can define LTr, € V* when ¢ € Alg, by LTr, def LTr, for.
any p € Alg, with 7(p) = ¢. Similarly, we define RTr, as RT¥,.

In the sequel we shall make use of the following GL(W )-equivariant linear maps.

c:W*QW*QW — W*

oW QW*QW —m W*W*eW
s:W"QW*Q@W — W*W*W
a: W QW QW —W*QW*eW

(14)

given by

c((w)) = w}(ws)ws

o(w) =w; @wi Qw

sw)=wtow) (15)
a(w) = w — o(w)

for any w = Wi Qui @ ws € W*®@ W* ® W. Here c is a contraction, s and a are,
respectively, symmetrization and anti-symmetrization in the first two components; this
explains our choice of notation.

Lemma 2.3.3 Letoc . W*QW*QW — W*QW*QW andc: W*QW*@W — W*
be as in (15). Then

1. ¢(g9)(w) = RTry(w) and
2. colg)(w) = LTrg(w)




for every e W*QW*@W and every w e W.

Proof. By linearity it is enough to verify (1) and (2) for ¢ = eﬁf and w = e, where
t,5,h,s > 2. In this case ¢(g)(w) = 51"5; = RTr,(w). Similarly, co(g)(w) = 5;‘5;9 =
LTry(w), and the lemma follows. O

2.4 Transport of structure on W*Q W* @ W

Lemma 2.2.1 says that we lose no information about an algebra structure on V' by only
keeping track of the structure constants cfi with 4, 7,h > 2. In this section we will show
that the transport of structure action of G, on Alg, can also be recovered from this

reduced data.

Observe that the natural isomorphism between W* ® W and End(W) is GL(W)-
equivariant. Denote the element of W* ® W which corresponds to the identity element
of End(W) by 4. In other words, § = > ,cp b* ® b for any basis B of W. In particular,

(5———26:@61;. (16)
=2

We can now define an action of G, on W* @ W* ® W by letting GL(W) act naturally -
and U ~ W* act via

w(t) =t + s(w* @ J) . (17)

It is easy to see that these two actions extend to an action of G, = U x4 GL(W) on-
W oW *eW.

Lemma 2.4.1 The map 7 : Alg. — Alg]. of Lemma 2.2.1 is G, -equivariant with respect -
to the tramsport of structure action of G on V* Q@ V* QV and the G,-action on W* @~
W* @ W defined above.

Proof. It is clear that n is GL(W)-equivariant; thus we only need to show that it is
equivariant with respect to the action of U. Let g € U be as in (10), i.e., g(e;) = e; +ae1
for all 4 > 2. Let p = 3% ho1 cﬁ‘jezj € Alg,. and let ¢ = g(p) = 337 ; =1 d{‘je;‘f € Alg,.
Then S

>h=145;9(en) = gle:) - g(e;) = aiajer + ae; + aje; +e; - €5 =

aer +aig(e;) + ajgle:) + Xho cljg(en)

for some a € k. Equating the coefficients of g(ey) for all h > 2, we see that dfi =
cf] + aié';?' + ajézh. Thus

7(q) = m(p) + Z a‘jef‘j + aieéj = 7(p) + 3((2 ae;) ®90) ,

4,j=2 i=2

as claimed. O




We remark that the Lemma 2.4.1 does not assert that the map
T VQV*QV — W' @W* QW
is G,-equivariant. The equivariance assertion only applies to the restriction of 7 to Alg,.

Corollary 2.4.2 .Let X be a G,-invariant subvariety of W*Q W* Q@ W. Then X can be
written as Xo @ s(W* ® §), where Xy is a GL(W )-invariant subvariety of Ker(c + co).
Moreover, GL(W)-orbits in Xo are in 1-1 correspondence with the G,-orbits in X.

Proof. Set X be the intersection of X with U = Ker(c + co). Since U is transversal
to s(W* ® §), the corollary follows from Lemma, 2.4.1. ]

We can now prove the following extension of Lemma 2.2.2.

Lemma 2.4.3 Let X be a smooth G,-invariant closed subvariety of Alg,. Then w(X)
s a GL(W)-invariant linear subspace containing s(W* ® 9).

Proof. Lemma 2.2.2 says that n(X) is GL(W)-invariant linear subspace. It contains
s(W* ® §) by Corollary 2.4.2. O

3 The geography of X,

Recall that since M, (k) is a simple algebra, its orbit is open in Alg,2. In other words,
the Zariski closure of [M,] is an irreducible component of Alg,2; we shall continue to .
denote it by X,. In the introduction we mentioned the significance of X,, in the study"
of Seshadri’s partial desingularizations of moduli spaces of vector bundles on smooth
projective curves. We shall now further motivate Theorem 1.2 by drawing connections
between X, and universal division algebras, the rationality problem for PGL,-quotients, -
and graded prime algebras of Gelfand-Kirillov dimension 2. These results will not be:
used in the sequel. A reader who is primarily interested in the structure of Alg, may
wish to proceed directly to Section 3.5, where we give a short self-contained proof of
Theorem 1.2.

In Sections 3.1 - 3.4 we will assume char(k) = 0. The proof of Theorem 1.2 in
Section 3.5 goes through in arbitrary characteristic.

3.1 The generic order G,
ForpeV*@V*®V let
A(p) = det(LTr(e; - e;)) (18)

be the determinant of the Gram matrix of the (left) trace form given in Lemma 2.3.1.
Note this definition makes sense for every p € V* @ V* ® V, not just for p € Alg,. Thus
AecklV*@V*eV].
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Let k[X,] = k[z;]. Then we define the generic order G, to be the k[X,]-algebra
Gn =k[Xple1 ® ... ® k[Xy]e,2

with multiplication defined by e; -e; = Zﬁ; x%eh . By the relations which have to hold
among the coordinate functions xfj, it follows that G,, is an associative algebra with unit
element e;. Moreover, G, is a free k[X,;]-module of rank n?.

Note that the G,-action on k[X,] extends to G, as follows: for g = (g;;) we have
gle:) = 32, gije;; see (9). Here gi1 = 6}, and g1; = aj, as in (8). Restricting this action to
the central torus of GL(W) C G,, we obtain a grading of G,, with deg(e;) = deg‘(acfj) =1,
deg(e;) = 0, and deg(w%j) = 2; see (12).

Lemma 3.1.1 1. G, is a positively graded algebra generated in degree one.

2. Gy, is an order in a central simple algebra D, of dimension n?.

3. The center of Dy, is k(X,).

Proof. As we saw in the proof of Lemma 2.2.1, k[X,,] = k[xfy, 1,7, h > 2]. Hence, k[X},]
is generated by elements of degree 1. Since G, = k[X,]{e2,... ,e2}, this implies (1).
Now let A, € k[X,,] be the determinant of the Gram matrix of the trace form on G,.
In other words, if A is as in (18) then A, is the restriction of A from V* Q@ V*® V to
X,,. By Lemma 2.3.1(b) A,(p) # 0 for any p € [M,]. In particular, A, # 0 in k[X,,]. By
the Artin-Procesi theorem G, [A;}] is an Azumaya algebra of rank n? over the domain
E[X,][A;']. Parts (2) and (3) follow from this fact. a

3.2 Generic trace rings and universal division algebras

Let Zy, ..., Zy be m generic n xn-matrices. In other words, the mn? entries of these ma---
trices are commuting independent variables over k. Recall that the ring k{Z1,... ; Z;} is
called the algebra of generic matrices. The trace ring 15, 5, is the k-algebra generated by
elements of k{Z;, ... , Zy,} and the coefficients of their characteristic polynomials, which
are viewed as scalar n X n-matrices. We shall denote the center of T}, , by Cy, . For a
more detailed description of the trace ring see, e.g., [Re, Sect. 2]. Note, in particular,
that Cpy,  is naturally isomorphic to the ring of (regular) invariants of the simultaneous
conjugation action of PGL,, on (M,)®™ and thus

trdegy, (Crn) = mn? — dim(PGL,,) = (m — 1)n? + 1. (19)

The universal division algebra UD,,, is obtained from Ty, (or, alternatively, from
k{Zi,... ,Zy}) by inverting all non-zero central elements. For a more detailed descrip-
tion of these algebras see, e.g., [Ro, Ch. 3].

We shall now see that Gy, is closely related to T, ,, where m = n? — 1. The first
indication of a possible relationship is the following observation.
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Lemma 3.2.1 1. trdeg(Cp2_1,) = (n? —1)2.
2. trdegy, k(X,) = dim(X,,) = (n? — 1)2.

Proof. (1): follows from (19).

(2): Since [M,,] is open and dense in X,,, we have dim(X,,) = dim([M,]). Recall that [M,,]
is an orbit of the base-change group G2 and the stabilizer subgroup is Aut(M,,) ~ PGLy,,.
Thus

dim(X,) = dim(G,2) — dim(PGLy,) = n2(n%? —1) — (n2 — 1) = (n? — 1)?,

as claimed. i

Now let D,, be as in Lemma 3.1.1. Since D,, is a central simple algebra of degree n,
the universal property of the trace ring (see, e.g., [Re, Prop. 2.1]) says that there exists
a trace-preserving k-algebra morphism

¢ : Tnz_l’n — D,
such that ¢(Z;) = e;41 for all 0 < i < n?— 1. Here Zy denotes the n x n-identity matrix.

Proposition 3.2.2 1. ¢ is injective.
2. Dp = UDp2_q .
3. k(Xy) is isomorphic to the center of UDp2_q 5.
4 ¢(Tp2_10) = Gy

Proof. Let F be the field of fractions of ¢(X,). By Lemma 3.1.1 the center of D,
equals k(X ), whence F' C k(X,,). In order to prove equality we only need to show that-
every a; . ¢ F. Since ¢ is trace preserving, the multiplication rules in G,, tell us that .. ..

n2

P(tr(Zic1Zj-121)) = Y @l $(tr(Zn-1Z-1))
h=1

for every 1 < 4,5,t < n?; here Zg is the n x n-identity matrix. Now fix 4 and j. Then
the above formula can be viewed as a system of n? linear equations in the variables
a;z-lj, e ,m;’jz. Observe that every coefficient of this system is an element of F' and that
the matrix of this system is non-singular; see Lemma 2.3.1. Thus by Cramer’s rule we
have x . € F and, hence, F = k(X,,).

(1): By Lemma 3.2.1, trdeg X,, = trdeg ¢(X,,) = trdeg k(X,). This implies that
#x,, is injective and thus so is ¢; see, e.g, [Ro, 1.6.27].

(2): As F = k(X,), we have Dy, = ¢(T,,2_1 ,)F. Since ¢ is injective, this means that
D, ~UD(n? - 1,n).

(3): follows from (2), since k(X,) is the center of Dy,
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(4): Since char(k) = 0, Newton’s identities show that T}, is generated (as a k-
algebra) by elements of the form M and tr(M), where M is a monomial in Z1,... , Zy,.
By the definition of ¢, we have ¢(Z;) € G, for every i = 1,... ,m. Thus it is sufficient to
show that G, is closed under the reduced trace tr in D,,. Since D,, is a finite-dimensional
division algebra, we have LTr = RTr = n - tr in D, (and, hence, in G,). Consequently,
we only need to show-that G, is closed under LT or, equivalently, LTr(e;) € k[X,,]. This

follows from LTr(e;) = ?il xia € k[X,). O

Remark 3.2.3 Note that the above argument also proves the following assertion:

The center of the universal division algebra UD,2_, ,, is generated (as a field extension
of k) by elements of the form tr(M) where M is a monomial of degree < 3 in the generic
matrices Z1,... , Zp2_1.

This result is a special case of [FGG, Thm 3.2].

3.3 PGL,-quotients

We are now ready to relate X,, to the rationality problem for PGL,-quotients. Let H
be a linear reductive group acting almost freely on a finite dimensional k-vector space
U (this means that the stabilizer subgroup of a point in general position is trivial). One
of the main open problems in invariant theory is to determine for which groups H the
field of rational invariants k(U)¥ is rational or stably rational. Stable rationality is,
in fact, easier to work with, since it is independent of the choice of the (almost free)-
representation U. This important result (known as the “Bogomolov transfer theorem”
and sometimes referred to as the “no-name lemma”, due to the fact that variants and.
special cases of it were independently discovered by several mathematicians), allows one -
to prove stable rationality for a large class of groups which includes GL,, SL,, and O,;
see, e.g., [D]. For other groups H, most notably H = PGLj,, the question of stable
rationality remains wide open. At the moment there are no examples where k(U )PGL".M
is known not to be-rational. On the other hand, stable rationality has only been proved-
if n divides 420; see [1B], [BIB].

Corollary 3.3.1 Let U be an almost free finite-dimensional linear representation of
PGL,. Then k(X,,) is stably birational to k(U)PGL".

Proof. By Proposition 3.2.2(3) k(X,) is isomorphic to the center of UD,,, with
m = n? — 1. Recall that the center of UDy n, is the fraction field of C, 5. In particular,
it is isomorphic to the field k(U)PGL", where U = (M,,)®™ and PGL,, acts on U by
simultaneous conjugation. Note that this action is almost free for any m > 2. By the
“no-name lemma” any other almost free finite-dimensional PGL,-representation U will
give rise to a stably isomorphic field of invariants. O

Now suppose that X, could be shown to be smooth for some n > 2. Then by
Lemma 2.2.2 w(X,) would be a vector subspace of W* @ W* @ W and thus X, ~
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7(Xp) ~ Aln®-1)? would, in particular, be a rational variety. Combining this result
with Corollary 3.3.1 we would then conclude that k(U )PGL” is stably rational, thus
giving a positive solution to the rationality problem for PGL,,. It was this possibility
that originally got us interested in trying to determine whether or not X,, is smooth.
Unfortunately, Theorem 1.2 says that X, is singular for all n > 3. Thus the above
reasoning only applies in the case n = 2 (see Corollary 4.5.2). We remark that the
rationality problem for PGLs-quotients can be easily solved by other means; see, e.g., [P,
Thm. I1.2.2].

The significance of Proposition 3.2.2 is that it suggests an approach to the study of
the quotient space (M, )®™/PGL,, via X,. One indication that the geometry of X,, may.
be easier to understand than that of (M,,)®™/PGL,, is given by the following proposition.

Proposition 3.3.2 Let A be a semi-simple k-algebra of dimension r, let X be the closure
of [A] in Alg, and let Y = X \ [A]. Then every component of Y has codimension 1 in
X. In particular, for n > 2, every component of X, — [My] is of codimension 1 in X,.

Proof. Let A € k[V* ® V* ® V] be determinant of the Gram matrix of the (left) trace
form, as in (18). Since semi-simple algebras are generic, no element of Y can define a
semi-simple algebra structure on V. Thus by Lemma 2.3.1(2), Y is the intersection of
X with the hypersurface {A = 0} in V. This implies that either (i) Y = 0 or (ii) every
component of Y has codimension 1 in X; see, e.g. [Shaf, 1.6.2, Cor. 1]. On the other
hand, (i) is clearly absurd, since there are non-trivial degenerations of M,,. For example
the orbit of the trivial algebra Ay(n?) given by (4) always lies in Y. Thus (ii) holds, as-
claimed. a

We remark the description of the “boundary” of X,, given by Proposition 3.3.2 is in
sharp contrast to the “boundary” of (M,)®™/PGL, which is of high codimension and
otherwise highly irregular; see, e.g., [IBP] and [IBT)].

3.4 Graded algebras of GK dimension 2

In this-section we indicate a relationship between X, and the recent attempts to classify
graded algebras of Gelfand-Kirillov dimension two. By a theorem of Artin and Stafford
every graded connected domain of Gelfand-Kirillov dimension two which is generated
in degree one, is a twisted homogeneous coordinate ring; see [AS]. One would now like
to know if this result can be generalized to prime algebras. In this section we show
that classifying degenerations of matrices (i.e., algebras A such that [A] C X)) is a
subproblem of this project.

Let X be an algeraic variety. We shall say that X is path-connected if for every
p,q € X there exists a regular map ¢ : A' — X such that $(0) = p and ¢(1) = g¢.

Lemma 3.4.1 Let X C P® be a unirational projective variety. Then

1. (Kraft) X is path-connected.
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2. The affine cone Y C A5t over X is path-connected.

Proof. (1) is proved in [K, I1.3.9]. To prove (2) choose p,g € Y. If p=0 € A**! then
the assertion is obvious, since the line pg is then contained in Y. Thus we may assume
without loss of generality that p,q # 0. Denote the associated projective points by p
and g € X. By part (1) there exists a regular map o : A» — X such that «(0) =P
and «(l) = g. It is easy to see that a .can be lifted.to a regular map 3 : Al — Y.
Then p = A\3(0) and ¢ = uB(1) for some )\, u € k*, and the map ¢ : A — Y given by
(t) = (ut + A(1 — t))B(¢) has the desired property. O

Note that, Lemma, 3.4.1 applies to Y = n(X,,), which is a cone in W* @ W* ® W by
Lemma 2.2.2.

Proposition 3.4.2 To every morphism ¢ : A — X, one can associate a graded
connected prime algebra G generated in degree one such that

1. the Gelfand-Kirillov dimension of G equals 2
2. the central projective curve of G is P2

Proof. The morphism ¢ determines a prime order ¢*(Gy,), which is projective of rank
n? over k[A!]. Equip ¢*(G,) with the generator filtration (as a k-algebra). Then the
Rees algebra with respect to this filtration has the claimed properties. a

3.5 Proof of Theorem 1.1

In this section we prove Theorem 1.2 by proving the following (more general) result.

Proposition 3.5.1 Let A be an associative k-algebra of dimension r > 7. Assume that
there exist elements a,b € A such that 1, a, b, and ab are k-linearly independent. Then
the orbit closure [A] is-not smooth.

Note that the conditions of this proposition are, indeed, satisfied by A = My, (k) for every
n > 3.
Proof. Let T be the maximal diagonal torus in GL(W) C G, andlet t = (t2,... ,4,) € T
such that t(a;) = t;a;. Then t.(c?j) = (titjt;lc%). Every element w € W*Q W*@ W
can thus be written as w = -, wy, where x ranges over the characters of T' and t.wy =
x(t)wy for every t € T

For any triple 2 < «, 3,y < r choose a basis {a1,... ,a,} witha; =1, ao = a,a3 =b
and a, = ab. Let w = w(a, B,7) € W*®@W*® W be the image under 7 of the structure
constants of A with respect to the basis {a;}.

Assume [A4] is smooth. Then R = n([A]) is a GL(W)-invariant subspace of W* ®
W* @ W; see Lemma, 2.2.2. By linear independence of characters, if w € R then every
component w, also lies in R. In other words, for every x(t) = titjty 1 T — k* we have

SN % RTIN J9 1
wy = i€y + cjien, € R
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In particular, taking (i, j,h) = (o, B,7) we see that
e,‘;‘ﬁ +chaeh” ER.
Choosing & < 8 and v # «,3, we obtain 2(r — 1)(r — 2)(r — 3) linearly independent

tensors of this form. Consequently, dim R > 1(r — 1)(r — 2)(r — 3). On the other hand,
the orbit [A] has dimension < dim G, = r(r — 1); see (8). Since

(r=D(r—-2)(r—=3)>r(r—1)

DO | b=

for » > 7, this leads to a contradiction, thus proving that [A] is singular. ]

Remark 3.5.2 One can show that the only algebras A of dimension > 4 with the
property that 1, a, b, and ab are linearly dependent for every choice of a,b € A, are the
algebras A = Ag(r) and A = A;(r); see Lemma 6.1.1. Using this fact Proposition 3.5.1
can be restated as follows:

For v > 17 the orbit closure [A] is smooth if and only if A = Ao(r) or A = Ay(r).
Theorem 1.3 is stronger than this assertion because it covers every r > 3 and, more
significantly, because it does not a priori assume that ¥ is an orbit closure. The proof
of Theorem 1.3 presented in the next section uses a more sophisticated version of the
above argument, which is based on the representation theory of GL(W) rather than that
of the maximal torus T'.

4 Smooth invariant subvarieties

4.1 The isotypical decomposition of W* @ W* @ W

- Lemma 2.4.3 reduces the study of smooth G,-invariant subvarieties of Alg, to the study:
of GL(W)-invariant subspaces of W*@W*®W which contain s(W*®d) and are contained
in Alg;.

In order to describe these subspaces, we compute the isotypical decomposition of
W*@W*@W as GL(W)-module. Recall the definitions of the GL(W)-equivariant maps
s,a, and ¢ from (14) and (15).

Proposition 4.1.1 Assume W = k%, where d > 2. Let Ry = Ker(a) N Ker(c) and
R_ =Ker(s) N Ker(c). Then

1. dim(Ry) =d(d —1)(d +2)/2 and dim(R_) = d(d — 2)(d + 1)/2.

2. If char(k) = 0 then W* @ W* ® W can be written as a direct sum of irreducible
GL(W)-representations as follows:

W QW* QW =R, ®R_d(W*" Q) @c(W*®9).
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Proof. Write W* @ W*®@ W = S @® A, where S = 5?2 W* @ W is the kernel of a and
A= A2 W*@W is the kernel of s. Then dim(S) = d?(d—1)/2 and dim(A) = d?(d+1)/2.
It is easy to see that the maps cg : § — W* and ¢4 : A — W™ are surjective.
Hence, their kernels Ry and R_ have dimensions d?(d + 1)/2 — d = d(d — 1)(d + 2) and
d*(d —1)/2 — d = d(d — 2)(d + 1)/2 respectively. This proves part (1). Since GL(W)-
representations are completely reducible, c|s and ¢4 can be split GL(W)-equivariantly.
This proves the direct sum decomposition of part (2). Note that R- = (0) if d = 2.

In order to complete the proof, it is enough to show that W*@W*®W is a direct sum
of four irreducible components if d > 3 and three irreducible components if d = 2. To
do this we invoke standard facts about SL(W)- representations, see e.g. [OV, Appendix,
Table 6] or [FH, Lect. 15]. We shall use the notation of [FH]. Let Sy be the Weyl module
corresponding to the ordered partition Ay > A2 > ... > Ay > 0, that is, the irreducible
SLg-module with highest weight A;Ly + ... AgLq. Then W = 5y ga-1), W* = S(14-1 g,
and we can use the Littlewood-Richardson rule (or, in this case, Pieri’s formula [FH,
p.225]) to obtain the following decomposition

W* ® W* & W = 5(2,1d—3,02) 57 S(3,2d—-2,0) & 583_1’0) .
This completes the proof of part (2). O

Remark 4.1.2 Note that the last two terms in the above direct sum decomposition are
isomorphic to W*. Thus their choice is not unique. In particular, we can replace the last
term by s(W*® J). Lemma 2.4.3 shows that this is, indeed, a more convenient choice in

our setting.

Theorem 4.1.3 Assume char(k) {1 2(d — 1)(d +1). Let X be a G,-invariant closed
subvariety of Alg,, where r > 3. Then X is smooth if and only if m(X) = Uj, 4,4, where

Uisjinis = R ®R2® (W* @) @s(W*®0) , (20).
and each of the subscripts i1, 12, and i3 is either 0 or 1.

Proof. By Lemma 2.4.3 X is smooth if and only if it is a GL(W)-equivariant subspace
of W* @ W* @ W containing s(W* ® §). It remains it show that every such subspace is
of the form (20). If char(k) = 0, this follows from Proposition 4.1.1; see Remark 4.1.2. If
k is a field of odd characteristic not dividing d? — 1, the desired conclusion follows from
Theorem 4.2.1, which is proved in the next section. a

4.2 The case of odd characteristic

In this section we generalize the isotypical decomposition of Section 4.1 to the case where
the base field & has characteristic p # 2. We show that Proposition 4.1.1 remains valid
if pf2(d—1)(d+1). If p is an odd prime dividing (d — 1)(d + 1) then only two of the
summands in Proposition 4.1.1 remain irreducible.
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Since char(k) # 2, we have a decomposition W* @ W* = 52 W* @ A2 W* and exact
sequences

0— R, — S2W*'QW — W* — 0 (21)
and
0—R.— N W'QW ——= W* — 0, (22)
where (21) splits iff pt d+ 1 and (22) splits iff p{ d — 1. Therefore,
W W*'QW=R,®@R_ oW 'eW" if pf(d—1)(d+1) (23)
On the other hand,
W*@W*W =(S?W*eW)®R_-@W* if p|d+1 (24)
and
W*QW*@W =(A2 W*@W)® R, oW* if p|d—1. (25)

We will now show that these expressions give the decomposition into indecomposables.
Our proof of this theorem uses tilting modules. We thank K. Erdmann for introducing
us to this theory. For details we refer the reader to [Do] and [Er].

Theorem 4.2.1 Let k be an algebraically closed field of odd characteristic and W = k%.

(a) If pt (d—=1)(d+1) then (23) is a direct sum of four irreducible GL(W')-modules. -
(Note that R_. = (0) if d=2.)

(b) If p | d+1 (resp. p | d—1) then (24) (resp. (25)) is a direct sum of three
indecomposible GL(W)-modules, where the last two are irreducible and S* W* @ W*
(resp. A2 W* @ W) is a uniserial indecomposible module whose composition series is of
length three with both top and socle isomorphic to W*.

Proof. In order to apply the theory of tilting modules we have to restrict to polynomial
GL(W )-representations. Therefore, we consider the dual problem and replace W* by
W* @ det = N"1W. In other words, it is sufficient to prove that

(@) Ifptd+1,d—1then A ®@W ® W is the sum of four irreducible modules, one
occuring with multiplicity two.

(¥)Ifp|d+1lorp|d—1then A1 ®W ®W is the sum of three distinct indecom-
posible modules. Two of them are irreducible. The third is uniserial; its composition
series is of length three with top and socle isomorphic to det @ W.

By [Do, Lemma 3.4(ii)] we have the decomposition into tilting modules

/\d—l WoWeW ~ T(3, 1d-2) @ T(22, 1d—3)€9a @ T(2, 1d—1)®bi ,
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where a,b > 0. Recall that tilting modules are always indecomposible. For every parti-
tion p (with less than d parts) we have exact sequences

0 Z () T () v(p) —0

where Z(u) is filtered by 7()\)’s with A < p. In the case of interest to us we have
det @ W = (2,1%71) = T(2,1971) an irreducible module and exact sequences

0 — det @ W — T(3,1472) —+ v(3,142) — 0

when p | d+ 1. In all other cases T'(3,1972) = (3, 1972) is irreducible. Similarly, there
is an exact sequence

0 — det @ W — T'(22,197%) — ¢(22,197%) — 0

ifp | d—1. In all other cases T(2?2,19-3) = (22,1%-3) is irreducible. Moreover, the
simple composition factors of s7(u) are all of the form L(A) for A < p. Therefore, if
p | d+ 1 then T(3,1972) is uniserial with simple factor sequence

(L(2,1%71), L(3,1%72), L(2,1%71))
and if p | d — 1 then 7(22,1973) is uniserial with simple factor sequence
(L(2,171), L(2%,1%7%), L(2,171)).

This completes the proof of (a') and (¥'). O

4.3 Proof of Theorem 1.3 for r > 5

Suppose char(k) { 2(d?> — 1). Then in order to prove Theorem 1.3, we only need to
determine which of the eight vector subpaces Uj, 4,i, given by (20) are, contained in
Alg!. If char(k) is an odd prime dividing d? — 1, then we shall use similar reasoning, -
with Theorem 4.1.3 taking the place of Theorem 4.2.1. We shall assume throughout that .
char(k) # 2.

Lemma 4.3.1 1. Ifr > 5 then R_ ¢ Alg].
2. Ifr >4 then Ry ¢ Alg,.

Proof. (1): Let p = e2® — e}, + €35 — e3;,. We claim that p € Ry but p ¢ Alg!. Recall
that R, is the intersection of the kernels of the maps a and ¢ defined in (14) and (15).
Since a(p) = 0 and ¢(p) = 0, we conclude that p € R4. It remains to show that p defines
a non-associative algebra structure on V. Indeed, this structure is given by

€2 - €3 = Chse1 + €5
e3 - ey = choe; — €5
€4 €5 = ci5el +e3
e5 - €4 = Cise1 — €3
€€ = c}jel ,
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where (1,7) # (2,3), (3,2), (4,5), (5,4) for some c., € k. Using these multiplication
rules, we find that

(62 . 63) ceq = 0%364 + 6%461 —e3 # Cé462 =ey- (63 . 64) .

Thus the algebra structure given by p is non-associative, i.e., p ¢ Alg).

(2): Let p = e3* + €33 + €23 + e§2 — €24 — e2. 1t is easy to see that a(p) = 0 and c(p) =0
- and, hence, p € R.. It therefore remains to show that the algebra structure on V defined

by p is not associative. Assume the contrary. Then

1 1 1
O=ey4-(e3-e3)— (es-€3) €3 = cC33e4 — C43€3 — C33€1 — €3
and, hence, ci; = —1. On the other hand,
0= _ 1 ol _ 1 1 1
= ey (e3-e2)—(e4-€3) €2 = C3pe4-+e€4-€3—Cjz€a—€3-€3 = C39€4+C43€1+€2—Cl32— 061

which implies c}; = 1. This contradiction finishes the proof. O

Next we will show that Up g and Up,1 are contained in Algl. Recall the definitions
(4) and (5) of the algebras Ao(r) and A;(r) from Section 1. Note that every r-dimensional
algebra degenerates to Ag(r). Consequently, [Ag(r)] is the unique closed orbit in Alg,
and hence is smooth. On the other hand, A;(r) is the path algebra of the quiver with two -
vertices (determined by the idempotents 1— e and e;) and r — 2 parallel edges; each edge
joins the first vertex to the second. Thus A;(r) is an hereditary algebra; consequently,

its orbit closure [A1(r)] is an irreducible component of Alg,.

Lemma 4.3.2 Let Ao(r) and Ai(r) be as above and let U;, 4,5, be as in (20). Then

1. Uppo = ([Ao(r)]) = w([Aa(r)]) =C Alg].

2. Uoo = m([A1(r)]) = 7([Ao(r)]) Un([A1(r)]) C Alg;.

Proof. (1): The structure constants of Ag(r) given by the basis ej,... ,e, correspond
to the origin of W* @ W* ® W. The desired conclusion now follows from the fact that
Uo,0 = s(W* ® d) is the Gr-orbit of 0; see Section 2.4.

(2): Up,,1 is Gy-equivariantly isomorphic to W* @ W*. Thus it is the union of two
orbits: the diagonal X; = Up 0, which is closed, and X5 = Up,1 \ Up,0,0, which is open
and dense. A;(r) (with our chosen basis) corresponds to the point

p=e;®6€ X5,

and the Lemma follows. O
We are now ready to prove Theorem 1.3 in the case r > 5.

Proposition 4.3.3 Suppose char(k) # 2 and r > 5. Let X be a G,-invariant closed
subvariety of Alg,. Then X is smooth if and only if X = [Ap(r)] = [Ao(r)] or X =

[41(r)]-
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Proof. First assume char(k) { 2(d — 1)(d + 1). By Theorem 4.1.3 n(X) = Uj, 4, i, for
some i1,1%2,13 € {0,1}. By Lemma 4.3.1, Ry and R_ are not contained in Alg). Hence,
i1 = 1 = 0. The remaining two cases, i.e., 7(X) = Uy, and 7(X) = Up,1 can, indeed,
occur; they are covered by Lemma, 4.3.2.

Next, assume char(k) | d + 1. Then R_ cannot be contained in w(X), and the
cases Up,,0 and Up,,1 are covered by Lemma 4.3.2. Hence, by uniseriality of S2W*®
W any other 7(X) must contain the GL(W)-submodule R, which is impossible by
© Lemma 4.3.1. A similar agrument settles the case char(k) | d — 1. 0

4.4 Smooth subvarieties of Algs

Having proved Theorem 1.3 for all » > 5 (see Proposition 4.3.3), we now turn to the
low-dimensional cases r = 3 and r = 4, which, somewhat surprisingly, require additional
care. In this section we describe smooth Gs-invariant subvarieties of Algs.

Proposition 4.4.1 Assume char(k) # 2. Let X be a smooth Gs-invariant subvariety of

Algs. Then X = [A], where A= A¢(3),A1(3) or Es =k x k X k.

Proof. First we show that X = 7([A]) is a linear subspace of W* ® W* ® W contained
in Algs for the three algebras A listed in the statement of the proposition. For A = Ay(3)
and A;(3), this follows from Lemma 4.3.2.

We claim that 7 ([E3]) = Uy 0,0. Indeed, let p € [E3] C Alg;. Since E3 is commutative,
w(p) € Urp,0. On the other hand, since, the automorphism group of E3 is finite,

dim([Es)) = dim(Gsp) = dim(Gs) =6 .

Since Uy g0 also has dimension 6 (see Proposition 4.1.1), we conclude that Uj g is the
Zariski closure of [E3), as claimed.

Finally assume that X C Algs is a smooth Gs-invariant subvariety of Algs which is.
not of the form described in the proposition. Note that R_ = (0) for » = 3. Thus 7(X)"
is a linear subspace of W* @ W* ® W which properly contains U ¢,0; see Theorem 4.1.3
(if char(k) # 3) and Theorem 4.2.1 (if char(k) = 3). On the other hand, since Fj is
semi-simple, Uy oo = TE_;,T is a component of Algs. Therefore, it cannot be properly
contained in 7(X). This contradiction completes the proof of Proposition 4.4.1. O

Remark 4.4.2 An alternative method to prove Proposition 4.4.1 is to study the G3-
orbit structure in X = X, @ s(W* ®§) (which coincides with the GL(W )-orbit structure
in Xy by Corollary 2.4.2) and make use of the classification of algebras of dimension
three due to Gabriel [Ga]. In this case Ry =~ Sym® W as a SL(W)-module. It is well
known that the PG Ls-action on the space of cubic binary forms P(R;) = P? has three
orbits: the twisted cubic (the cubes [u3] of linear terms), the tangential surface to the
twisted cubic (the products [u?-v]) and the open orbit, consisting of the products [u-v-w)
of pairwise independent linear terms. Therefore, the four GL(W)-orbits in Ry are of
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dimensions 4,3,2 and 0. The four G3-orbits in Uy g9 = Ry & s(W* ® §) then have
dimensions 6, 5,4 and 2.

On the other hand we have.the following degeneration picture of G3-orbits in Algs (see
[Ga] for details).

Eg 6
B 5
A1(3) AL(3) 4

Ao (3)
Therefore, only [—E;,T with F3 = k X k X k can be smooth. It is also easy to assign orbits
in Ry to the degenerations B = k x k[z]/(z?) and A4 (3) = k[z]/(2®). (For more on the
algebra A, (3), see Section 6.)

4.5 Smooth subvarieties of Alg,
The following proposition completes the proof of Theorem 1.3.

Proposition 4.5.1 Assume char(k) # 2. Let X be a smooth G4-invariant subvariety of

Algy. Then X =[A], where A= Ag(4), A1(4) or Ey = Ma(k).
Proof. In this case, d =r — 1 = 3, and Theorem 4.1.3 applies. Thus 7(X) = Uj, 4, i,
for some 41, %2, and i3 € {0,1}. By Lemma 4.3.1(2), ;.= 0. It remains to investigate the
four remaining choices of 75,43 = 0,1. As before, in each case we need to decide whether
or not Up, i, lies in Algs.

If i9 = i3 = 0 then Uppo = F([A0(4)]). and if 49 = 0 and 43 = 1 then Upp; =
7([A1(4)]); see Lemma 4.3.2. In both cases Up g, is contained in Algj.

Next we want to determine whether or not Up10 = R- & s(W* ® ¢), lies in Algy.

We claim that the answer is “yes” and, that, in fact U = w([Ey]). Indeed, choose the
following basis of E4 = May:

10 0 1 (1 0 (o -1
el:(o 1)’ 62=<1 0)’ e3_<0 —1)’ e4_<1 0)' (26)

Using the identity e; - e3 = e4 = —e3 - €2, we can easily compute the structure constants
c% for M,, in this basis. Combining those cZ with 4,7, h > 2 into a tensor, we see that

p=ei3—e§13+eg4—622+623—e§4E[E4]CW*®W*®W.

Note that p is skew-symmetric (i.e., s(p) = 0 in W* @ W* ® W) and ¢(p) = 0 in W*;
see (14) and (15). Thus p € R_ and consequently, [E4] C Up,1,0. On the other hand,
since the automorphism group of My(k) is 3-dimensional, we have

dlm([E4]) = dlm(G4) —3=4-3-3=9= dim(UO,Lo) .
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Therefore, [E4] is Zariski dense in Up,1. In particular, Up 1 C Algy, as claimed.

It remains to consider the case iy = i3 = 1. Note that this Up,; properly con-
tains [B4] = Uy,1,0. Since By is semi-simple, [Ey] is a component of Algj. This implies
that Up 1,1 cannot be properly contained in Algy, thus completing the proof of Proposi-
tion 4.5.1. O

We record the following corollary -of the -proof of Proposition-4.5.1. -Recall that
Xy = [Ma(k)].

Corollary 4.5.2 1. n(X3) =Up10=R-® s(W* Q).
2. (Seshadri [Se78, Thm. 1] or [Se82, p.112]) X, is smooth.

Remark 4.5.3 One can also prove Proposition 4.5.1 by a method similar to the one
outlined in Remark 4.4.2. If » = 4 then R_ ~ Sym? W as SL(W)-module. Thus, as is
well known, PGLj3 acts on P(R..) = P with 3 orbits, namely, the Veronese surface (the
double lines), the chordal variety to it which has dimension 4 (the pairs of lines), and on
open orbit (the conics). Hence, there are four G4-orbits in R_ @ s(W* ®6) of dimensions
9,8,6 and 3.

On the other hand we have the following degenerations picture of G4-orbits in Algs (see
[Ga] for more details).

12
11

10

By 9
By 8
AL(4) 7
A_(4) Ai1(4) 8
3

Ao(4)

Therefore, only [E4] with E4 = Mg(k) is smooth. (We shall discuss the “minimal”
algebras A4 (4) and A_(4) in Section 6.)

4.6 Lie algebra structures

In this section we prove the analogue of Theorem 1.3 for the variety Lieq of Lie algebra
structures on a d-dimensional vector space W.
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The definition of Liey is similar to the definition of Alg, given in Section 1. Let W
be a d-dimensional k-vector space. To be consistent with out previous notation, we shall
denote a basis of W by e3,... ,e411. A Lie algebra structure on W is given by a skew-
symmetric bilinear form W x W — W, i.e, by an element p = cfj el of PW*e W,

where
les,e5] = Z cf‘jeh .
R

Here c;; = —c;; and e;, ej, ey, satisfy the Jacobi identity for every 4,5,k = 2,... ,d + 1.
The Jacobi identity translates into a system of polynomial equations on cfj which cut
out the variety Lieg in A2 W* @ W. ‘

The transport of structure action of GL(W) on Liey is induced from the natural
GL(W)-action on A2 W*®W. It is easy to see that isomorphism classes of d-dimensional
Lie algebras are in 1-1 correspondence with GL(W)-orbits in Lieg. If L is a d-dimensional
Lie algebra, we shall denote the corresponding GL(W)-orbit in Lieg by [L].

Let A be an r-dimensional associative algebra and let W be the linear subspace
consisting of all z € A such that RTr(z)+LTr(z) = 0. Then the bracket [z,y] = z-y—y-z
defines a Lie algebra structure on W. We shall denote this r — 1-dimensional Lie algebra
by L(A).

Lemma 4.6.1 Suppose char(k){2r. Then the anti-symmetrization map
a:WQW*Q@W — A2W*eW

sends Alg, to Lie,_y. Moreover, for every r-dimensional associative algebra A we have

a([A]) = [L(A)].

Proof. Let A be an associative algebra and let W be the kernel of RTr + LTr, as above.
By our assumption on char(k), 14 € W; thus we can choose a basis ej,... ,e, of 4 so-
that e; =14 and es,... ,e, form a basisof W. If p = Z,Zj’h:z cfje}f € Alg' is the tensor -
of structure constants in this basis then our definition of [-,:] shows that the structure
constants of L(A) in the basis es,... ,e, are given by a(p). Any other point p’ € w([4])
is of the form ug(p), where u € U and g € GL(W); see (11). By Lemma 2.4.1 we have
a(p') = a(g(p)) = g(a(p)) € [L(A)]; see (17). O
Of particular interest to us will be the d-dimensional Lie algebras

Lo(d) = L(Ao(d+ 1)) and Ly(d) = [A1(d +1)] .

Note that Lo(d) is the trivial Lie algebra with [z,y] = 0 and L;(d) is a “minimal solvable”
Lie algebra with [eg, e;] = ¢; and [e;, e;] = 0 for all 4,5 > 3.

Theorem 4.6.2 Assume that d > 3 and char(k) t 2(d + 1). Let X be a smooth closed
GL(W)-invariant subvariety of Lieq. Then

1. X = [Lo(d)] = {0} or
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2. X =[Li1(d)] or
3. d=3 and X = [sla(k)].

Proof. Since X is GL(W)-invariant, it is a cone in in A2W* @ W. Thus X is smooth
iff it is a GL(W) invariant subspace of A2W* ® W. Under our assumption on char(k);

we can write
NW*QW = R_®a(W* ® )

a direct sum of irreducible GL(W)-modules; see Sections 4.1 and 4.2. Thus we only have
3 possibilities, namely (i) X = (0), (ii) X = a(W* ® ) and (iii)) X = R_.

By Lemma 4.6.1 cases (i) and (ii) correspond to X = [L(Ao(d + 1)] = [Lo(d)] and
X = [L(Ai(r)] = [L1(d)] respectively; see Lemma 4.3.2. Moreover, if d = 3 then (iii)
implies X = [L(Ma(k))] = [sl2(k)]; see Corollary 4.5.2(1).

It therefore, remains to rule our case (iii) when d > 4, i.e., show that in this case
R_ is not contained in Liey. Indeed, let p = e}? — e2! + e3* — €33 . Since ¢(p) = 0, we
have p € R_. On the other hand the bilinear form given by p does not satisfy the Jacobi
identity, since

[[e1, 2], ea] + [[e2, eq], e1] + [[e4,e1], e2] = [e3, €a] + [0,e1] +[0,e2] = €3 #0 .

This completes the proof of the theorem. a

5 Tangent spaces and singularities

Let A be an r-dimensional associative algebra. and let T'(A) be the tangent space to
7([A]) at the origin of W* ® W* ® W. Note that T(A) is a G,-invariant subspace of
W* @ W*® W. Assume char(k) { 2(d? —1). Then, by Theorem 4.1.3 T(A) is one of the-
eight subspaces U;, ;, s, defined in (20). Thus T'(A) can be viewed as a discrete invariant
of the algebra A. We shall now give an explicit description of this invariant in terms of
the algebra structure of A.

5.1 Tangent spaces

Lemma 5.1.1 T(A) = Span(n([4]) = Span(w([A])). In particular, T(A) is the smallest
of the spaces U = U, 4, 45, sSuch that w([A]) CU.

Proof. The first equality follows from the fact that w([A]) is a cone in W* @ W* @ W;
see Lemma 2.2.2. The second equality follows from 7([A]) C Span(w([A]). O

We now classify T'(A) in terms of the algebra structure of A. In the sequel B(s,t)
will denote the algebra with Rad? = 0, whose underlying quiver has two vertices v; and
V9, 8 arrows from v; to ve, and ¢ arrows from vy to v;. Note that the dimension of this
algebra is s + ¢ + 2 and that B(0,r — 2) = A;(r). Moreover, since B(s,t) ~ B(t,s) we
shall always assume s < .
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We call an r-dimensional algebra A small provided it is isomorphic to one of the algebras
on the following list.

1. A=kl &I where zy = —yzx for any z,y € I.
2. A= B(s,s) with2s+2=r.
3. r =4 and A = M(k).

With these conventions, we can now state the main theorem of this section.

Theorem 5.1.2 Assume char(k) { 2r(r — 2). Suppose A belongs to one of the classes of
algebras indicated below (and does not belong to a lower class).

[comm. Aq(r) fs_r;lall

Ao(r)
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Then the tangent space T(A) to w([A]) at the origin is given by the following diagram.

U1 |

Uo,ﬂ U110 Uo,1,1

Ui,0,0 Uo,0,1 Uo,m

Uo,0,0

Proof. We already know that T'(A) = Uppo (resp. Upp,1) if and only if A = Ap(r)
(resp. Ai(r)); see Lemma 4.3.2.

Next we note that the subspace Uy 1 is precisely the kernel of c —co: W* @ W* ®
W -— W*; see Proposition 4.1.1. Thus by Lemma 2.3.3 7([A]) C Uy 1,0 if and only if
RTry(w) = LTrg(w) for every w € W. Since A =V is spanned by W and e; = 14, the
later condition is, in turn, equivalent to RTr,(x) = LTr(z) for every z € A.

This proves the correspondence between the classes of algebras A and the tangent
spaces T'(A) given by the four “middle” columns of the diagram. The side columns are
covered by Theorems 5.2.3 and 5.3.3, which are proved in the next two sections. 0

Corollary 5.1.3 Let n > 3. Then the dimension of the tangent space to X, = [M, (k)]
at the origin of V* @ V* ®V is n?(n? ~1)(n? - 2).

Proof. Theorem 5.1.2 tells us that the tangent space to m(Xy,) is Uy1,0. Since =
Xn — w(Xy) is an isomorphism (see Lemma 2.2.1), the tangent space to X,, at the
origin of V*® V* ® V has the same dimension as Uy ; g. This dimension is d?® — d, where
d = dim(W) =r — 1 = n? — 1, and the corollary follows. O

We remark that since dim(X,,) = (n® — 1)2 < n?(n? — 1)(n® — 2) (see Lemma 3.2.1),
Corollary 5.1.3 may be viewed as a strengthening of Theorem 1.2.
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5.2 Alternating algebras

In this section we classify the algebras A with T(A) = Up,1,; and T(A4) = Up,1,0 under
the assumption char(k) { 2r.

We call an r-dimensional algebra A alternating if w([A]) C Up,1; see (20). The
motivation behind the terminology is explained by the following lemma. ;

Lemma 5.2.1 A is an alternating algebra if and only if for every z,y € A
zy+yz —lz)y - l(y)x € kly, (27)
where (z) = L(RTr(z) + LTr(z)).

Proof. Suppose m([A]) C Up1,. Translating by an element of U C G, we can
find a basis e; = 14,€2,...,e, of A = V which gives the (reduced) set of structure
constants ¢ € R @ a(W* ® §). Thus ¢(q) = —co(g). By Lemma 2.3.3, this means
RTr(w) = —LTr(w) and consequently,

I(w) =0 (28)

for every w € Wy. Clearly (27) holds if x or y = e; = 1 4. Thus by linearity it is enough
to prove (27) for x = e; and y = e;, where i, > 2. In other words, we only need to
show that e;e; + eje; € key for every 4,5 > 2; see (28). This, follows from the fact that
q € R_®a(W* ® 6) and thus is skew-symmetric (i.e., s(g) =0.).

Conversely, suppose (27) holds for every z,y € A. Let Wy be the vector subspace of
V = A given by l(z) = 0. Since e; = 14 ¢ Wy, we see that dim(Wjy) = » — 1 and that
e; = 14 can be completed to a basis eq,es,... ,¢,. of A with es,... e, € Wy. Thus for
every 4,7 > 2 we have e;-e;+e;-e; € k14. This means that the tensor g € W*QW*Q@W
given by the structure constants c?] in this basis (with %, j,h > 2) is skew-symmetric in
the first two components.-In other words, s(g) = 0 or, equivalently, ¢ € R_ @ a(W*® ).~
Consequently, w([A]) C Up,1,0 as claimed. O

We are now ready to classify the alternating algebras.

Proposition 5.2.2 Let A be an alternating algebra. Then

1. zy = —yz for any z,y € Rad(4).

IS

. SS(A) =k, k x k, or My(k).

)

. If SS(A) = k, then A = k14 & Rad(A) where xy = —yz for all z,y € Rad(A4) and
Rad?®(4) = (0).

. IfSS(A) =k x k, then A= B(u,v) withu+v+2=r.

[T

. If SS(A) = May(k), then r =4 and A = My(k).
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Proof. (1): Note that I(z) = O for every z € Rad(A); see Lemma 2.3.1. Thus (27)
implies that zy + yx € k14 for every z,y € Rad(A). That is, zy +yz € k14 NRad(4) =
(0), as claimed.

(2): By Lemma 5.2.1 every element of A satisfies a quadratic equation over k. Hence,
the same is true of SS(A). The three semi-simple algebras we listed are the only ones
that satisfy this condition.

(3): follows from (1) and (2).

(4): A is the quotient of the path algebra of a quiver @ on two vertices {v1,v2} having
u arrows v; — vy and v arrows vo R v, by an admissible ideal I C Rad?(kQ). Since
ai - bj+bj-a; = 0in A, we conclude that I = Rad?(kQ), and hence A = B(u,v) with
utv+2=r.

(5): Write A = My(k) ® Rad(A4). We want to show that Rad(4) = (0). Assume the
contrary. Choose a,b € Ma(k) so that I(a) = I(b) = 0 and let z € Rad(A). Then (27)
says that a and b skew-commute with elements of Rad(A) and thus

(ab)z = —a(zb) = —(az)b = b(az) = (ba)z .

That is, [a,b]z = 0 for every z € Rad(4), ie., [a,b] lies in the kernel of the left mul-
tiplication map ¢ : Ma(k) — End(Rad(A)). Since Ma(k) is simple, we conclude that
[a,8] = 0 for every a,b € Ma(k) with I(a) = I(b) = 0. Since My(k) is linearly spanned
by Ker(l) N Ma(k) and 1jy,, this implies that [z,y] = 0 for every =,y € Ma(k), which is
clearly absurd. This contradiction shows that Rad(4) = (0). 0

Theorem 5.2.3 1. T(A) = Up,1 if and only if A= B(u,v) with1 <u<v,u+v+
2=r.

2. T(A) = U1, if and only if A is small and A # Ao(r).

Proof. (1): By Lemma 5.1.1 we need to show T(A) = Up 1,1 iff A is alternating but
T(A) ¢ U1, or Uppa. As we showed in Section 5.1, T(A) ¢ Uy iff RTry # LTra.
Examining the algebras listed in Proposition 5.2.2, we see that the only ones with this
property are B(u,v) with u # v. On the other hand, T(A) C Uy, if and only if
A= Ag(r) or A;1(r) = B(0,7 — 2) (see Lemma 4.3.2), and part (1) follows.

(2): T(A) = Uy, iff A alternating, RTry = LTry but A # Ao(r). |

5.3 Quasi-commutative algebras

In this section we classify the algebras A with T(A) = Uy, and T'(A) = Uy 0,0 under
the assumption char(k) { 2(r — 2).
We call an r-dimensional algebra A quasi-commutative if 7([A]) C Ui g,1.
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Lemma 5.3.1 A is quasi-commutative if and only if for every z,y € A
zy — yz +m(z)y — my)z € klg
where m(z) = -L5(RTr(z) — LTr(z)).
Proof. Let g € n([A]). Then by our assumption ¢ lies in Uy 1. Denote the (W*®6) ®
(6 ® W*)-component of ¢ by
Z caegﬂ + daego‘ .

522
Note that the identity we want to verify is linear in both  and y. Moreover, it holds
trivially if £ or y = 14. Thus we only need to prove it for £ = ¢;, y = €; as ¢, and j
range from 2 to r. A direct calculation shows that

ei-ej — e = (cij — cip)er + (¢ — di)ej + (dj — ¢j)ei - (29)
On the other hand,
c(g) = Z(("' —1)do +ca)e® , co(q) = Z((T — 1) + do)e*
a=2 a=2

and thus by Lemma 2.3.3 RTr(e;) = (r — 1)d; + ¢; and LTx(e;) = (r — 1)¢; + d;. Hence,
¢; — d; = m(e;), and the desired identity follows from (29). O

Proposition 5.3.2 Let A be a quasi-commutative r-dimensional algebra. Then, either
A is commutative or A ~ A;(r).

Proof. We claim that A is basic, i.e., SS(A) is commutative. Assume M, (k) <« SS(A)
with n > 2 and take z = Eyp, y = Ep; where E;; is the elementary matrix whose (¢,7)-
entry is 1 and all other entries are 0. Then, [z,y], z, y and 1 cannot be k-dependent
contradicting the above lemma. This proves the claim.

Assume that A is not commutative. Then by Lemma 5.3.1 there is an € A with
m(z) # 0. Indeed, otherwise [z,y] € k14 for all z,y, and taking traces on both sides
implies that A must be commutative. As LTr(y) = RTr(y) = 0 for y € Rad A (see
Lemma, 2.3.1), we may assume that z € SS(A4) = k%5.

If A is not commutative, we claim that its quiver must have precisely two vertices
vy and ve. Indeed, as m(1) = 0, the number of vertices must be greater than one. On
the other hand, if m(z) # 0, then 1, z and 2’ are k-dependent for any =’ € SS(A); see
Lemma, 5.3.1. Hence, s < 2, as claimed.

Therefore, A is a quotient of the path algebra of @ having u arrows vy 2y vy and

b‘
v arrows vy — v; modulo an admissible ideal. Assume m(fi) = « # 0 where f; is the
idempotent corresponding to v;. Then

—a; = aie; — €,0; = aa; + fila

implies & = —1. But then, b; = b; fi — fib; = —b;, a contradiction, unless there are no
arrows from vy to v;. Consequently, A ~ Ay(r), as claimed. O
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We can now prove the main theorem of this section.

Theorem 5.3.3 1. There are no algebras with T(A) = Ui ,1.
2. T(A) = Uiy if and only if A is commutative and A # Ao(r).

Proof. In view of Lemmas 5.1.1 and 5.3.1, we only need to show that 7([A])C Uy,
iff A is commutative.

Assume A is commutative. Then its (reduced) tensor of structure constants p €
W* @ W* ® W is symmetric (i.e., a(p) = 0) for any choice of basis. In other words,
7([A]) C Ker(a) = Uy 0. Conversely, if 7([A]) C Uy, then [z,y] € k14 for all z,y € A.
Taking traces on both sides we conclude that [z,y] =0, i.e., A is commutative. O

6 Minimal deformations and minimal singularities

6.1 Proof of Theorem 1.4

We begin with the following lemma.

Lemma 6.1.1 Let A is an r-dimensional k-algebra with the property that 14, a, b, and
ab are k-linearly dependent for every a,b € A. Assume r > 4. Then A = Ao(r) or
A= A1 (’f‘)

Proof. Rewriting the condition on A in terms of structure constants, we see that for
any choice of basis e; = 14,€e,...,¢, of A, we have cfj = 0, whenever ¢, j, and h are

distinct integers > 2. Thus
n([4])) cU = Span{eéi,eﬁ‘j,ezi C 4, =2,...,1}

and Ty(n([A])) = Span(w([A])) is contained in U; see Lemma 5.1.1. On the other hand;
To(w([4])) is a G,-invariant subspace of W* ® W* ® W and thus is necessarily of the
form Uj, 4, 4, for some i1,49,43 € {0,1}. Since neither R, nor R_ is contained in U (to
see this, consider the tensors e3® + €32 € Ry), we have To(n([A])) = Uo,0 or Upe,1. In
the former case A = Agy(1), in the latter case A = A;(r); see Lemma 4.3.2. O

We are now ready to prove the main result of this section. Note that it is, in fact,
stronger than Theorem 1.4.

Proposition 6.1.2 Suppose r > 3 and A is an r-dimensional k-algebra which is not
isomorphic to Ao(r) or A1(r). Then A degenerates to AL (r) or A_(r). In other words,
Ai(r) < A or A_(r) < A (and possibly both) in the degeneration order defined in
Section 1.
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Proof. By Lemma 6.1.1 there exist a,b € A such that 14, a, b and ab are linearly
independent. In other words, A has a basis e, e,... ,e, with e; = 14, €2 = a, e3 = b,
and eg = ab. Let W = Span{es,... ,e,} and let f; = t%e;, where ap = a3 = 2, oy = 4,
and o, = 3 for all m > 5. Then in the basis {14, fo,... , fr}, the multiplication rules
become

firfj= Ztaﬁai"‘ahc%fh )
h

By our choice of o, the exponent o; + aj — oy, is 0 if h = 4, 4,5 € {2,3}, and positive for
all other choices of 4, 7, h. Thus letting ¢ — 0, we see that A degenerates to an algebra A’
with f; - fj = 0 for all (¢,7) # (2,2), (2,3), (3,2), and (3,3). Moreover, fa- f3 = fi #0.
Thus
A=k-leleJ

with J2 =0 and IJ = JI = 0. Moreover, k-1 I is a non-trivial 4-dimensional algebra
which is local with Rad? # 0 and Rad® = 0. The degeneration picture of four dimensional
algebras shows that k- 1 @ I degenerates to either A, (4) or A_(4); see Remark 4.5.3.
Thus A’ degenerates to Ax(4) & J = A.(r), and the proposition follows. O

Remark 6.1.3 The orbits ([A]), where A = Ao(r), A+(r), and A_(r) have, a natural
representation-theoretic interpretation. Recall that for every irreducible SLy,-module U,
there is a unique closed orbit of minimal dimension in P(U) corresponding to the highest
weight vector; see, e.g., [PV, Sect. 1] or [FH, §23.3]. If U is an irreducible GL,-module
then this orbit in P(U) lifts to a unique GLy-orbit in U, which we shall denote by m(U).
We claim that

1. w[A1(r)] =m(W* ®d) d U0,
2. w[A+(r)] = m(R+) ® Uy,
3. w[A_(r)] = m(R_) ® Up,00-

Indeed, (1) follows from Lemma 4.3.2. To prove (2) and (3) recall that in the course of
the proof of Proposition 4.1.1 we saw that Ry = S(394-2) and B_ = 5(314-3 92) With
highest weights, respectively

Ay =3Ly+2Ls+...+2Lg—1 and A =2L; +Lo+... + Ly s.

(Here we are using the notational conventions of [FH].) The highest weight vectors
associated to these weights are, respectively,

wy=¢y €Ry and w_=¢y " —ey’ ' eR_.

Here r = d + 1 and W = Span{es,... ,e,}. Now it is easy to see that wy and w_
give rise, repsectively, to the algebras A4 (r) and A_(r), defined in (6) and (7), where
Z; = ey and y; = eppo_j fori=2,... ,d.
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6.2 Minimal singularities

Consider an action of an algebraic group G on a variety X. The degeneration partial
order on the set G-of orbits in X is defined as follows: O; < O, if O; C O,. Moreover,
O is a minimal degeneration of Oy if O; < O < O3 is only possible for O = O; or
O = 0. A pointed variety (O,p) is called a minimal singularity if O is a G-orbit and
Gp is a minimal degeneration of O. -Minimal singularities have been extensively studied
in recent years; for details we refer the reader to [B] and [KP].

In this section we consider the case X = Alg, and G = G,. Since the G,-orbits
in Alg, are in 1-1 correspondence with r-dimensional k-algebras (up to isomorphism),
the degeneration order is, in fact, defined on the set of algebras. That is, B < A if
[B] C [4], as we stated in the Introduction. In this section we shall focus on the minimal
singularities in Alg, of the form ([4], 0), where 0 is the origin of V* ® V* ® V. By
Theorem 1.4, A = Ay(r), Ay(r), or A_(r).

Before we proceed to the main result of this section, we recall the definition of smooth
equivalence. Two pointed varieties (X, z) and (Y, y) are smoothly equivalent if there exist
smooth morphisms \ : (Z,2) — (X,z) and p: (Z,2) — (Y,y) (of pointed varieties).
Note that for a smooth morphism (Z, z) — (X, z), we have

O 2 Og[lts, ..., ] ,

where O, is the completion of the local ring of X at  and O, the completion of the local
ring of Z at z and ¢ = dim Z — dim X; see e.g., [KP, Sect. 2.1}. Therefore, the integer
dim T,(X) — dim X is an invariant of smooth equivalence.

Proposition 6.2.1 Suppose r > 4. Then no two of the minimal singularities (TA—], 0),
with A = Ay(r), A+ (r), A_(r), are smoothly equivalent.

Proof. By Theorem 1.3 the orbit closure of A;(r) is smooth at the origin, where as
those of Ay (r) and A_(r) are not. Hence, we only have to show that

dim To([A+(r)]) — dim [A4(r)] # dim Tp([A-(r)]) — dim [A_(r)]
The dimensions of the tangent spaces are given by

dimn T (AL ()]) = d+ dim Ry = d+ 29— 1;(‘1 +2)

and
T4 (-] 1){(d -2
dimn To(A_(]) = d+ dim B = d+ 24+ 2>< )
The dimensions of the orbits are computed in Lemma 6.2.2 below. Combining the

formulas we obtain

- 1

dim Tp([A+ (7)) — dim [AL(r)] = 5(013 +d? —6d+4)
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and
dim T([A_(7)]) — dim TA_(r)] = %(d?’ — P —7d+12),

which are unequal for every integer d. O
Lemma 6.2.2 1. dim Aut(A,(r)) = d®> —2d + 2 for any d > 2.
2. dim Aut(A_(r)) = d*> — 3d + 6 for any d > 3.

Proof. We give two proofs of this lemma.

Proof I. (1): The elements 1, x3,...,%4-1, and 2 form a k-basis A1(r). An
automorphism of A, (r) is given by

Lo > aoxot+ aG3%3...+aq%q + czx%

T3 basTs + ...+ bagzq + 03113%
b + bgaTa + €43

g a3%3 + ... ddTd + C4T5 ,

where the a;, b;j, and ¢; are arbitrary elements of k, except that az # 0 and the matrix
(bij : %,5 = 3,...,d) is non-singular. Thus we have embedded Aut(A.) as a Zariski
open subset in an affine space AV, where N is the total number of parameters a;, b;j,
and ¢;. That is N = (d — 1) + (d — 2)2 + (d — 1), and part (1) follows.

(2): We use similar reasoning. Clearly 1, z,... ,24-1 and z2x3 form a k-basis of
A_(r). Moreover, an automorphism of A_(r) is given by

To =¥ G99%2 + Qo3T3+ @4%4 + ...+ Qogg + C2X2X3
T3 r Q32 + 4333+ 034%4 + ...+ a3 4%q + C3T2T3
T4 bagxs + ... + b4,d.'L'd + C4dT2T3

Tg — baata + ... +bgarq + cqr2s ,

where the a;;, b;; € k are constrained only by the inequalities

det ( 422 Zzz > #0 and det(b;;) #0.
3

a3z
Counting parameters, we see that
dim Awt(A_(r)) =2(d-1)+ (d-3) +(d-1) =d?> - 3d +6,

as claimed.
Proof II. By Remark 6.1.3

dim [A+(r)] = d? +d — dim P(\y)
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where P(\L) is the parabolic subgroup corresponding to the highest weight Ay.. There-
fore, we only need to determine P(\1). Since this is quite standard (see, e.g., [FH, p.
388]), we shall only outline the argument and leave out the details.

Suppose the i-th node in the Dynkin diagram A4_; corresponds to the simple root
L; — L;y;. Then for d > 5 we can depict the set 3(\1) of simple roots which are
perpendicular to the weight A4+ by marked nodes in the Dynkin diagram:

(M) oo o —e—o—e

For any subset X of the simple roots there is a parabolic subgroup P(X) whose Lie
algebra is of the form

p(2) = b ® Baer)stW)a -
Here T'(X) is the set of roots which can be written as sums of negatives of the roots in
%, see [FH, p. 385]. This allows us to prove Lemma 6.2.2 for d > 5.
For d = 3 the relevant sets are X(Ay) = @ and L(A\_) = {Lg — L3}; for d = 4, they
are (A1) = {Ly — L3} and X(A_) = {Ls — L4}. Repeating the above argument, we
complete the proof of the lemma in these two cases. m]
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