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ABSTRACT. In this note we study the irreducible component X, of the va-
riety of n2-dimensional algebras determined by the orbit @, of Mn(C). In
particular we prove that X, — O, has components of codimension one and
that smoothness of X, implies stable rationality of PGL,-quotients.
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ABSTRACT. In this note we study the irreducible component X, of the va-
riety of n2-dimensional algebras determined by the orbit On of Myp(C). In
particular we prove that X, — On has components of codimension one and
that smoothness of X, implies stable rationality of PGL,-quotients.

1. THE ALGEBRA VARIETY Alg,

In this section we will show that any smooth irreducible component of the variety
of all algebra structures of dimension r, Alg,, has to be isomorphic to an affine
space.

Our definition of Alg, below differs slightly from that given by P. Gabriel [4] in
that we fix the identity element. Hence we use the conventions as given in [9] or
[7. ]
‘Any associative algebra structure on an r-dimensional vectorspace V = Ce; @ ... @
Ce, with e; the identity element is determined by its r3-tuple of structure constants
cf’i where

r
_§ : k
eiuej - Cijek
k=1

Cleaxly, they must express the fact that e; is the identity element, that is, e;.e; =
e; = e;.e; whence

% ko ok

o =0 =cjy
and that the multiplication is associative, that is, for all 7,5,k > 2 we have
(ei.€j).er = e;.(ej.ex) whence

r

(1.1) > (chyefp = cucit ) =0
=1
for all m > 1.
We denote by fijxm the left hand side of equation 1.1 where we substitute all
ocurences of ¢}, = ¢4 = Y and replace all remaining c, by an indeterminate

z¥,. Then, the variety Alg, of all associative algebra structures on V' with identity
element e; is an affine variety with coordinate ring

(C[AlgT] = C[x}w7$$v | u, v, w > 2]/(fzykm | i)jak > 2,m > 1)
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Let G be the subgroup of GL, consisting of those automorphisms fixing ey, that is,

1|a2 ap
0

G =
GL’I‘—].

0
If A € Alg, with multiplication .4 and ¢ € G, then we define a new algebra structure
.g.A on 'V by defining for all v,v' € V

v.g.aV' = g7 (g(v)-a9(v') )
The G-orbits in Alg, correspond to the C-algebra isomorphism classes and the

stabilizer subgroup Stabg(A) is the group Aut(A) of C-algebra automorphisms of
A.

Lemma 1.1. C[Alg,] is a positively graded algebra by defining
deg xfw =2 and deg 3, = 1 for all u,v,w > 2

Proof. We have to verify that all the relations fi;xm, are homogeneous. Now, fijzm
is equal to

,
1 1 ! 1
T 08 — T 07 +Z (ziy2p, — 55,77 )
\-—’-—/ —_
A =2 ~ v
B
A can only be non-zero in case m > 2. In this case, A and B are both of degree
two and so fijkm is homogeneous. If however m = 1, then fijxm = B and is

homogeneous of degree three. O

Remark1.2.-If r > 3 we can even prove that C[Alg,] is generated in degree one.
For we take 2 < m = k # 1 in equation 1.1 to obtain that
7
xig = Z (wlgkmfl - zi;-’”fk)
=2

The above lemma has a remarkable consequence.

Proposition 1.3. Let X be an irreducible component of Alg, of dimension d. If
X is smooth, then
X~ Ad

Proof. Irreducible components of Alg. correspond to minimal prime ideals of
C[Alg,]. As C[Alg,] is graded, these prime ideals are graded whence C[X] is posi-
tively graded.

If X is smooth, C[X] is a positively graded affine regular algebra whence isomorphic
to Clzy,...,2z4). ]

For small dimensions r many irreducible components are indeed smooth. However,
invariant-theoretic intuition tells us that most components will contain singularities
if r increases.
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Example 1.4. Alg, ~ A% with open orbit determined by C x C. The orbit of
C[z]/(x?) defines a line pair.

Algs has two irreducible components, one the closure of the orbit of C x C x C
which is isomorphic to A%, the other the closure of the orbit of

C C

0 C
which is isomorphic to AS.
As we will see below, the closure of the orbit of M2(C) in Algy is an irreducible
component isomorphic to A%,

2. DEGENERATIONS OF M,{(C)

From now on we restrict attention to the case when r = n2. As M,(C) is a simple
algebra, its orbit O, is open in Alg,: (see for example [4, Cor. 2.6]) and hence
determines an irreducible component

0, = X, &% Alg,»

The dimension of the base-change group G is equal to n?(n? — 1) and the stabilizer
subgroup of M,(C) is its automorphism group which is PG L,,. Therefore

On = G/PGL,, and dim X, = (n® — 1)

" Definition 2.1. An n?-dimensional C-algebra A is said to be a degeneration of
M,(C) iff Ae X,, — On.

Example 2.2. X5 is made of the orbits of 4 algebras with degeneration picture

a 0 0 O
Q) > [0 80 8 S ) > Cloy, 2/ (20,2
0 0 0 b

which have orbit dimensions resp. 9, 8, 6 and 3. C.S. Seshadri has shown [9, p.112]
that Xy ~ A9.

For n > 3 surprisingly little is known about X,,. In fact, the only reference known
to me is a paper due to F. Flanigan [3] studying the easier degenerations (those
having enough idempotents). Still, X,, plays a crucial role not only in the study
of (projective) orders in central simple algebras but also in the desingularization of
moduli spaces of vector bundles on smooth curves.

From the foregoing section we recall that

ClXn] = Cla};, 2 | 2 < 6,5,k < n?]/(In)
and we can express the z%j as quadratic expressions in the mf7 . We define the

generic order G, to be the C[X,]-algebra
Gn =CX,le1 ... & (X, ]en
with multiplication defined by

n2
- k
ei.-e] - .’I;” €
k=1
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By the relations on the xf7 it follows that G, is an associative algebra with unit
element and is a free module of rank n? over C[X,,]. In fact,

Lemma 2.3. If we define deg e = 0 and deg e; = 1 for i > 2, then G, is a
positively graded algebra generated in degree one. Moreover, G, is an order in a
central simple algebra of dimension n® over its center which is C(X,,).

Proof. We may take e, ...,e,2 as spanning the trace zero elements of G,,, whence
j; = tr(e;.e;). Let d be the determinant of the symmetric n? x n? matrix (z;),
then d # 0 in C[X,,] and if we localize at it we obtain by the Artin-Procesi result
that Q4(Gy,) is an Azumaya algebra of rank n? over the domain Q4(C[X,]) from
which the remaining claims follow. [

The relevance of X, for the study of orders follows from

Proposition 2.4. Let Y be a variety and A a central simple algebra of dimension
n? over the functionfield C(Y'). Let A be an Oy -order in A which is locally free of
rank n%. Then, for each point y € Y there is a Zariski open subvariety U and a
morphism
U 2. X,
such that there exists an isomorphism of Oy -algebras
AU = ¢*(Gy)

Proof Remembering the Artin-Procesi result this is a reformulation of [9, p.111].
O

Conversely, one can use ringtheory to obtain some information on X,. Recall that
in X, there is an orbit of codimension one. In general we have

Theorem 2.5. X, — O, contains components of codimension one.

Proof. Let 5(:;» —Z+ X, be the normalization map of X,,. Then G = ™(Gy) is
an order which is projective of rank n? over its center C[X,]. Consider the non-
Azumaya locus ram(G) of G. Assume that ram(G) does not contain components
of codimension one, then G is a reflexive Azumaya algebra over (C[f;] Moreover,
as G is projective, it must be an Azumaya algebra, see for example [5]. But then,
G/Gmg ~ M,(C) for every point x € 5(:;, But then, this would also hold for z € X,
wrt. G, whence X,, = O,. This is clearly absurd as there are degenerations of

matrices (for example Clzz, . .., Z,2]/(z:)?).
Therefore, ram(G) contains components of codimension one and their images under
7 give codimension one components of X,, — O,,. O

In the next section we will see that there is a close relation between G, and the
trace ring of n? — 1 generic n x n matrices Tp2_; ,. The results above show that
the ringtheoretical properties of both rings are quite different.

Degenerations of matrices are also relevant to the recent attempts to classify graded
algebras of Gelfand-Kirillov dimension two. In [1] M. Artin and T. Stafford proved
that graded connected domains of GKdim two which are generated in degree one
are twisted homogeneous coordinate rings. This raises the obvious question to
generalize this result to prime algebras.

The following result shows that classifying degenerations of matrices is a subprob-
lem of this project.
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Proposition 2.6. To every degeneration of M,(C) one can associate a graded con-
nected prime algebra generated in degree one of Gelfand Kirillov dimension two.
The associated central projective curve may even be taken to be rational.

Proof. Let A be a degeneration of M,,(C). As C(G) is rational, the orbit O, as
well as its closure X, is a unirational variety. We claim that one can connect any
point z of @, with A along an affine line. This follows from Hironaka’s result on
resolution of singularities which allows one to reduce to the case of a unirational
variety X which is obtained from a projective space by blowing up a number of
times. For such X we can connect any two points along an affine line.

The resulting map Al LN X, with say #(0) = A and ¢(1) = z determines a
prime order ¢*(G,,) which is projective of rank n? over C[A!]. Equip ¢*(G,) with
the generator filtration (as C-algebra), then the Rees algebra with respect to this
filtration has the claimed properties. O

One can generalize the above by studying the closure of the open orbit of
M,(C) & ...& M,(C) in Alg,2,. Then, one can study prime algebras which are
projective modules of rank n?r over a central subring. This generalization not only
involves the variety X, but also the study of the irreducible component in Alg,.
determined by the open orbit of C® ... ® C which is of fundamental importance in
the investigation of covers in algebraic geometry. We refer the reader to [6] for some
of the remarkable properties of this component in the variety of all commutative
C-algebras of dimension 7.

3. A RATIONALITY PROBLEM

The variety X, is also of interest in the study of vector-bundles on curves. The
moduli variety U(n,d) of semi-stable vectorbundles of rank n and degree d over a
smooth curve of genus g usually has singularities. In [9, Partie V] C.S. Seshadri
constructs-a potential desingularization N, 4 of U(n,d) using parabolic structures.
Further, it is proved [9, p.126] that N, 4 is smooth (and hence is a proper desingu-
larization) whenever X, is smooth. This raises the problem

Question 3.1. For which n is X, a smooth variety ?

In this section we will show that a positive solution to this problem has implications
to the rationality problem of PGL,-quotients.

Let H be an affine linear reductive group acting almost freely on a finite dimensional
C-vectorspace V, that is, the stabilizer subgroup of a generic point is trivial. One
of the main open problems in invariant theory is to determine for which groups H
the field of rational invariants C(V )¥ is stably rational. By the no-name’ lemma
this property is known to be independent of the choice of the vectorspace V' with
almost free action.

In particular, for H = PGL,, this problem is still wide open. At the moment we
only have a positive solution provided n divides 420 = 22.3.5.7 by [2]. In ringtheory
this problem axises in the study of the center of Amitsur’s generic division algebras
UD(m,n). This center can be viewed as the functionfield of the quotient variety
M, (C)®™ /| PGL,, of the action of PGL,, by simultanous conjugation on m-tuples
of n x n matrices. Observe that this action is almost free whenever m > 2.

The relevance of Seshadri’s question to this problem is given by the following
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Theorem 3.2. If X, is smooth, then C(V)FGL= is stably rational for every vec-
torspace V admitting an almost free PGL,,-action.

Proof. The open orbit O,, of M,(C) in X, is isomorphic to the homogeneous space
G/PGL,. Now, PGL,, embeds in G via the embedding PGL, ~— GL,2_, given
by the action of PGL,, by simultanous conjugation on linearly independent n? — 1-
tuples of trace zero n X n matrices. Therefore,

G/PGLy, ~ A" ' X GLp2_;/PGLy,
where the second factor is an open subvariety of the quotient variety
GLy2_y /PGL, &% MO(C)®™ ~1//PGL,

(where M2(C) are the trace zero matrices).

Therefore, C(M? (C)®n* ~1)PCLx ig stably birational to C(X,,). If X, is smooth we
have seen that X,, ~ A =D? and so C(X,,) is rational.

The statement now follows from the no-name lemma using the fact that PGL,, acts

almost freely on M2(C)®n" -1, O
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