Local Structure of Schelter-Procesi Smooth Orders
Lieven Le Bruyn
Senior Researcher at the NFWO

Department of Mathematics & Comp. Sci
University of Antwerp/UIA
Universiteitsplein 1/2610 Wilrijk/Belgium

June 1997 Report no. 97-05

Division of Pure Mathematics
Department of Mathematics & Computer Science

universitaire
instelling
antwerpen

Universiteitsplein 1, B-2610 Wilrijk-Antwerpen , BELGIUM




Local Structure of Schelter-Procesi Smooth
Orders

Lieven Le Bruyn
Senior Researcher at the NFWO

Department of Mathematics & Comp. Sci
University of Antwerp/UIA
Universiteitsplein 1/2610 Wilrijk/Belgium

June 1997 Report no. 97-05

Abstract

In this paper we give the étale local classification of
Schelter-Procesi smooth orders in central simple algebras. In
particular, we prove that if A is a central simple K-algebra of

dimension n° where K is a field of transcendence degree d, then
there are only finitely many étale local classes of smooth orders in
A. This result is a non-commutative generalization of the fact that
a smooth variety is analytically a manifold, whence has only one
type of étale local behaviour.




LOCAL STRUCTURE OF SCHELTER-PROCESI SMOOTH
ORDERS

LIEVEN LE BRUYN

ABSTRACT. In this paper we give the étale local classification of Schelter-
Procesi smooth orders in central simple algebras. In particular, we prove
that if A is a central simple K-algebra of dimension n? where K is a field of
trancendence degree d, then there are only finitely many étale local classes of
smooth orders in A. This result is a non-commutative generalization of the
fact that a smooth variety is analytically a manifold, whence has only one type
of étale local behaviour.

1. INTRODUCTION

The quest for a suitable notion of a smooth non-commutative variety is still wide
open. Up till now most attention has been focussed on algebras having excellent
homological properties. However, even in the case when these algebras are finite
modules over their centers, a local characterization of regular algebras seems to be
out of reach at the moment.
Still, in the case of algebras finite over their centers we have a workable alternative.
In [11] W. Schelter introduced and studied smooth algebras by requiring that they
have a formal smoothness lifting property with respect to test-objects satisfying
the same (or smaller-size) polynomial identities.
Later, C. Procesi gave a slight variation of this definition by restricting to algebras
having a trace map satisfying the n-th formal Cayley-Hamilton identity, [9]. He
proved that these smooth non-commutative algebras have a nice geometrical char-
acterization. Consider the affine variety X4 of all n-dimensional representations
of A (compatible with the trace maps), then A is smooth if and only if X4 is a
smooth (commutative) variety.
In case A is a smooth order in a central simple algebra, the quotient variety of X4
under the natural action of PG L, is the variety corresponding to the center Z of A.
That is, to a maximal ideal m of Z corresponds a closed o1rbit in X4 determining
a semi-simple n-dimensional representation My, of A with decomposition in simple
components say

Mp=5"a...05%
where the S; are distinct simple A-modules of dimension d; occuring with multi-
plicity e;. We then say that m has representation type 7 = (e1,dy;...; e, d;) with
Z eidi =n.
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We want to determine the étale local structure of A near m, that is, we want to
determine the algebra structure of

Ah = Aoz ZEh

where Z3" is the strict henselization of Z at m. Alternatively, we want to determine
the m-adic completion of A.

We succeed to do this by applying the Luna slice theorems in a point z of the
smooth variety X 4 lying in the closed orbit corresponding to m. The stabilizer
group in z is with notations as above GL(e) = GL,, X ... x GL,, embedded in
GL,, using the numbers d;. The étale local structure of A and Z near m is fully
determined by the GL{e)-module structure of the normal space N, to the orbit of
z.

The isotypical decomposition of N, as GL(e)-module can be encoded in a "local
chait’ C = (M,e) where the map M is a labeled directed marked graph on r
vertices and N, is the space of representations R(M,e) of M of dimension vector
e=(er,. . e).

If A is a smooth order in a central simple algebra A of dimension n? over its center
K which is a field of trancendence degree d we must have that C = (M,e) is
such that the dimension of the quotient variety R(M,e)/GL(e) is equal to d and
that there are simple e-dimensional representations of M. Both conditions can be
expressed in terms of the Euler-form-of the map M.

We give a method to enumerate all charts that can occur for a given dimension d.
. Moreover, these local .charts not only determine the étale local structure of Z and
A in m but also contain enough information to determine the local charts in nearby
points (and hence the local structure).

To illustrate our general results, let us give the étale local structure of smooth
orders in dimension d = 2.

In this case the only local charts C = (M,e) that can occur have as underlying
map M a directed graph of the form

1 k+1
z Y
k k41
Arim
and dimension vector e = (1,...,1)., This means that A can only have semi-simple
n dimensional representations of type 7 = (1,dy;. . .; 1, dpyi+m) With > d; = n.

From the local chart we can determine the local structure of Z and A in m.
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Theorem 1.1. With notations as before, we have that Zy, ~ Cl[z,y]] and

(1)
(v) (1)
(z)
(1)
(z) (1)
(y)
(1)
(z) (¥)

1= (z,y) v M,(C )
e e S 2(Cllz, ]

where at place (i,§) (for every 1 < 4,5 < k+1+4+m) there is a block of dimension
d; x d; with entries the indicated ideal of C[[z,y]].

In particular, we see that a smooth two-dimensional order has a smooth center,
its non-Azumaya locus has as its worst singularities normal crossings and A is
étale locally split at every m.

In higher dimensions d.it is no.longer true that the center of smooth orders are
smooth nor that a smooth order is étale locally split everywhere.

2. SMOOTH NON-COMMUTATIVE ALGEBRAS

In this- section we recallthe definition of smooth algebras satisfying polynomial
identities ‘due to W. Schelter [11] as-modified by C. Procesi [9] and draw some
consequences.

Throughout, we work over an algebraically closed field of characteristic zero which
we will denote by C. Recall that a commutative affine algebra A is regular if and
only if A satisfies the formally smooth lifting property, see for example [3].

A test-object (C, N) is a commutative algebra C together with an ideal NV satisfying
N* = 0. The lifting property requires that every diagram

0 N - C/N - 0

=0y

A

with ¢ an algebra morphism can be completed.

If A is non-commutative one can define A to be smooth provided A has the above
lifting property for testobjects (C, N) with C restricted to some suitable category
of not necessarely commutative algebras.

A first (rather idea (as pursued for example by J. Cuntz and D. Quillen (1, 2]) is to
vary C in the category of all associative algebras. This is too stringent a condition
as it is equivalent to Q4 being a projective A¢ = A ®@c A°?-module where Q4 is the
kernel of the multiplication map p : A — A, see [11, lemma 2.3]. Therefore, if
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A is a regular commutative algebra it can only be ’smooth’ in this sense provided
Kdim A<1.
A more realistic approach is to restrict the class of testobjects C' to those algebras
having similar commutativity conditions as A. W. Schelter defines a smooth algebra
by requiring that if A satisfies the identities of n x n matrices, then we consider
only testobjects C' of pi-degree < n. In this way we recover the commutative
characterization of regular algebras as the n = 1 case.
Later, Procesi [9] gave a slightly different definition of smoothness which allows a
geometric study of these algebras. He considers only algebras A having a linear
trace map tr A — A satisfying the following conditions for all a,b € A

(1) tr(ab) = tr(ba)

(2) tr(a)b = btr(a)

(3) tr(tr(a)b) = tr(a)tr(d)
In particular, the image of ¢r is a subalgebra of the center of A. We can then define
the n-th Cayley-Hamilton polynomial formally. In Q[z;,...,%,] one defines the
elementary symmetric functions by the identity

n
[ == => (-Dioat*"
3==0

and the power sums functions 7, = 5" z¥. Because {¢;} and {7;} are generators of
the symmetric functions, there are functions.with rational coefficients such that -

ok = pr(T1,.- ., Ta)
and we define the functions o on A formally as
or(a) = pi(tr(a), tr(a?),..., tr(a™))
and define the n-th Cayley-Hamilton polynomial for A to be

Xn,a(t) = Z(“l)iai(a)tn—i
=0

Definition 2.1. We say that an algebra A with a trace function ¢r is an n-th
Cayley-Hamilton algebra if

(1) For all a € A we have xpo(a) =0in A

(2) tr(l)=n
With CH, we will denote the category with objects (A,#r4) algebras A with a
trace function ¢r4 which are n-th Cayley-Hamilton algebras and morphisms

f: (A tra) — (B,trp)

are algebra morphisms which are trace preserving, that is, the diagram below is
commutative

A f B
tra irp
A B
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The archetypical example of an n-th Cayley-Hamilton algebra is an order in a
central simple algebra.

Example 2.2. Let K be the functionfield of a normal variety X and let A be a
central simple K-algebra of dimension n? over K. By classical theory of Brauer
groups we know that

A®gL~M, (L)
for some finite Galois extension L of K with Galois group G.
On M, (L) we have the usual trace map Tr and we can define for § € A, tr(6) =
Tr(5®1). As the image is invariant under the Galois group it follows that tr(d) € K
and it is called the reduced trace map on A.
Let R be the coordinate ring of an affine open set of X and let A be an R-order
in A. That is, A is a finitely generated R-submodule of A such that A.K = A.
As R is integrally closed it follows that ¢r(a) € R for all a € A and as we are in
characteristic zero tr(A) = R. Clearly, A equipped with the reduced trace is an
n-th Cayley-Hamilton algebra.

One can study n-th Cayley-Hamilton algebras via (commutative) algebraic geom-
etry and geometric invariant theory.

Let (A,tra) € CH, be m-generated, that is, there are elements ay,...,am € A
such that the subalgebra in CH,, generated by them is equal to A (note that this
is weaker than A being generated as algebra by m elements).  Consider

Xa={¢:(Atra) — (Mn(C),Tr) in CHy}

By taking the images ¢(a;) € M,(C) for 1 < i < m it is clear that X4 is a
closed subvariety of the affine space M, (C)®™. There is a natural action of PGL,
on M,(C)®™ by simultanous-conjugation. Clearly, X4 is a PGLy-stable closed
subvariety of M, (C)®™. If we denote by CH. (™ the subcategory of CH,, consisting
of algebras which are trace generated by m elements we have

Theorem 2.3 (Procesi, [9]). The functor
CH,([”) —— PGL,-closed subvarieties of M,(C)®™

assigning X4 to A € CH™ has a left inverse. This inverse assigns to a PGL,-
closed subvariety X the ring of PGLy-equivariant maps X — My(C), or equiv-
alently, the ring of concomitants

M (CIX])FEEn

This means that we can recover A € CHT(Lm) from the affine PG L,-variety X4 as
A ~ Mn(C[X4])PFL~. The embedding ja : A —— Mp(C[Xa]) has the following
universal property. Let C' be a commutative algebra and F : A — M,(C) a
morphism in CH,, (with the usual trace map on My, (C)) then there is a uniquely
determined morphism f : C[X 4] — C making the diagram below commutative

A — M X))

Mn(C)
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Definition 2.4. An affine algebra (4, tr4) in CH, is said to be smooth if and only
if for every test-object (C, N) where (C,tr¢) € CH,, N a nilpotent ideal (invariant
under the trace map such that also (C/N,trc) € CH,) and every morphism ¢ :
(A,tr4) — (C/N,irc) in CH, the diagram below can be completed in CH,

0 N c - C/N 0

4

36

A
Procesi gave the following geometric characterization of smooth algebras
Proposition 2.5 (Procesi [9]). Equivalent are

(1) A is a smooth algebra in CH,
(2) X4 is a smooth (commutative) variety

Proof. (1} = (2) : Let (C, N) be a commutative test-object for C[X 4]. We have to
lift the map C[X4] — C/N to C. By smoothness in CH,, of A we can complete
with F' the diagram

4 —24 x4

AF
v ¥
Mp(C) —— M,(C/N)
but then by the universal property of j4 there is a uniquely determined map f :
C[X 4] — C which is the required lift.
The reverse implication makes essential use of the Reynolds operator in invariant
theory, see [9]. O

From now on we will restrict attention to prime smooth algebras A, or
equivalently, to the case when X4 is an irreducible smooth variety. In this case we
can show that A has to be an order over a normal domain. In fact, we have the
following geometric interpretation of the center Z of A.

Lemma 2.6. The center Z of A is the coordinate ring of the gquotient variety
X4/PGL,, and is o Cohen-Macaulay normal domain.

Proof. By the characterization of smooth algebras in CH,, the module varety
X4 is a smooth affine PGL,-variety. The coordinate ring of the quotient vari-
ety X4/PGL, is by definition the ring of invariants C[X4]FPL» which by [9] is
equal to tr{A4) = Z. The ringtheoretical properties of Z follow from the fact that
C[X 4] is regular and the Hochster-Roberts result. O

Let us recall a few standard facts on the quotient map
w: Xy — X4/PGL, =Yy

where Y, is the affine variety corresponding to the center Z. From invariant theory
we know that points of Y parametrize closed PGL,- orbits in X 4.
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By the Artin-Voigt theorem (see for example [4]) we know that closed orbits in X4
correspond to isomorphism classes of semi-simple n-dimensional representations of
A. Moreover, as A is an order in a central simple algebra of dimension n? over
K, there is a Zariski open subset Y4, < Y4 the points of which correspond to
isoclasses of simple n-dimensional representations of A. We call Y4, the Azumaya
locus of A. Equivalently, if m is the maximal ideal of Z corresponding to a point
y €Y, then y € Yy, if and only if A/mA ~ M,(C).

For an arbitrary point y € Y with corresponding maximal ideal m of Z we have

(A/mA)[rad =~ Mg, (% & ... & Mgy, ()%

with > dije; = n. Here, the factors correspond.to.the:simple-components -of the
:semi-simple representation determined by y, these components have dimension d;
and occur with multiplicity e;.

With 7(m) or 7(y) we will denote the representation type of this semi-simple
n-dimensional representation, that is the numerical data (e1,ds;...; e, d,). With
Y (7) we denote the subset of ¥ consisting of points of representation type 7. In
particular, Y4, = Y (1,n).

There is a natural order relation on the representation types given by degenerations
of the corresponding representations. This order is induced by the following two
operations

(...;e,d;...)>(...;e,d;e,d”;...) whered=d + d”

(5, die”,di. ) 2 (se + fodie” — f,d5..)
This combinatorial order relation relates to the stabilizer subgroups of closed orbits.
If 7 = (ey,d1;- .. €r,d,) then one verifies that the stabilizer subgroup of GL, in
the semi-simple representation of type 7 is equal to
GL{(t) = GL¢, X ... x GLe,
embedded via
GLe1 ® 1d1
— GL,
GLe,, R ]-d,‘
Then 7 < 7' if and only if GL(') is conjugated to a subgroup of GL(7).

3. ETALE LOCAL STRUCTURE

If X is a commutative smooth variety of dimension d and z a point of X then there
is only one type of étale local behaviour at z, namely

O ~ Az, ..., x4}

the strict Henselization of the local ring in « is the ring of algebraic functions on d
variables.

In this section we will prove an analogous result for smooth orders in CH,,. We will
show in the next section that for fixed n and d (the Krull dimension of the center)
there are only finitely many types of étale behaviour.

From now on we fix a smooth algebra (A,tr) in CH, which we assume to be an
order in a central simple K-algebra A of dimension n?. K is the field of fractions
of the center Z of A.
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Let y € Y(7) and corresponding maximal ideal m « Z, by the étale local type of A
at ¥ we mean the structure of the algebra

Af,:‘ = ARz Zzlh

The next result was proved in [11] by a different method.

Proposition 3.1. An Azumaya algebra A is smooth in CHy, if and only if its
center Z is smooth.

Proof. As A is an Azumaya algebra, X4 is a principal PGLy-bundle over Ya.
Clearly, a principal bundle is smooth if and only if the base-space is smooth. [
Lemma 3.2. Ify € Ya, then ASP ~ M, (C{z1,...,z4}).

Proof. If y € Y4, then A®z Z,, is an Azumaya algebra and hence split by an étale

extension. By the foregoing proposition, y is a smooth point of ¥ and the result
follows. 0O

In general, let m be the maximal ideal of Z corresponding to y € Y (7). Fix a point
z € X4 in the closed orbit corresponding to y. The semi-simople A-module M; has
decomposition into simple components

M,=5%@.. ¢3%

where dim(S;) = d; and the stabilizer GL, of the GLy-action on X4 is equal to
GL(7). With Orb, we will denote the orbit (P)GL,.x of z in X4.

We have GL,-equivariant closed embeddings
Orb, — X4 — M,(C)®™
and corresponding embeddings of the tangent spaces in z
T, Orby — Ty X4 — T, M,(C)®™
which are embeddings as GL(7)-modules and hence by reductivity of GL(T) they

are direct factors.
Therefore, we have for the normal spaces to the orbit in X4 resp. M,(C)®™ that

o= T Xa g _ T Ma(©P"
@ T, Orb,  ° T, Orb,

as GL(r)-modules. That is, we have the following picture
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MO™
nbig
Xa
\
iﬂ
Ya

Y

Before we compute these GL(7)-modules,let us explain the relevance to our prob-
lem.

This is an application of the Luna slice theorem in invariant theory (see [8] or [12})
adapted to the situation of interest to us.

In general, if H is a reductive subgroup of G acting on an affine variety Z then one
defines an H-action on G x Z via the map

h.(g,2) = (gh™*, h.2)
-The corresponding quotient is called the associated fiber bundle
Gx"zZ=(Gx2Z)/H

and it acquires a G-action via multiplication on the left in the first component.
One can show that the corresponding quotient satisfies

(Gx"2)/G~Z/H

Theorem 3.3 (Luna slice theorem). Let x be a smooth point of X 4 of representa-
tion type 7. Then, there exists a locally closed affine smooth subvariety S, — X4
containing =, which is stable under the action of GL(T) satisfying the following
properties
o The map GL, x S, — X4 obtained by (g,s) — g.s induces a GL,-
equivariant étole map

P :GL, xH S, — Xy
with affine image. Moreover the induced quotient map
$/GLy : (GLy xS 8,)/GLy, = Sy /GL(T) —> X4/GLn=Ya

is also étale.
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o There is a GL{(T)-equivariant map
¢:8 — N =T, S,
such that ¢{z) = 0 and with affine image. The induced quotient map
¢/GL(7) : S /GL(t) — N.™/GL(7)

is also étale.
o The above maps induce the following commutative diagram

GL, xGH) g,

GL, xS ¢
GL, xCL) Nsm Xa

S./GL(1)

\z/J/GLn

| #/GL(r) ~_
Y

N:™[GL(r Ya
where the vertical maps are the quotient maps, all diagonal maps are étale
and the upper ones are GL,-equivariant.

Hence, the G Ly-local structure of X 4 in-a neighborhood of x is the same as that .- -

of GL,, xGX(7) N5™ in a neighborhood of (1,,0). Similarly, the local structure.of
Y4 in a neighborhood of m is the same as that of N:™/GL(r) in a neighborhood
of 0. Therefore, we have
Theorem 3.4. Let A be a smooth order in CH,, with center Z.
Let m be a mazimal ideal of Z corresponding to a point x € mod, B of represen-
tation type 7 = (e1,d1;. .. ;€r,dr).
Let p denote the mazimal ideal of CIN:™ |GL(T)] corresponding to the point 0.
Then,

(1) Z3} = CINg™ [GL(T))3"

(2) A3} = (Mo (CIGL, xCH) NP OEn)gh
Hence, we know the étale local structure of Z and A in m if we know the GL(7)-
module structure of N;™.

Since we know the embedding GL(7) “— GL, and the action of GL,, on M, (C)®™
(by simultaneous conjugation) we know the structure of T, M, (C)®™ = M,,(C)®™
as GL(r)-module. Further, the exact sequence

0 — Lie GL(r) — Lie GL, — T, Orb, — 0

allows us to determine the GL(r)-module structure of T, Orb, and consequently
that of N2 = T, M,,(C)®™ /T, Orb,.

Once we know an isotypical decomposition of N%¥, taking a direct subsum we
obtain all possibilities for N:™. Of course, later on, we will have to verify which of
these theoretical possibilities actually occur for a smooth order A in CH,,.
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Rather than writing down decompositions of N3™ < Nt in simple G L(7)-modules
we prefer to represent this information by a ’local chart’. We use the following
dictionary

e aloop at vertex (¢) corresponds with the GL(7)-module M., (C) on which
GL., acts by conjugation and the other factors act trivially.

e an arrow from vertex (i) to vertex (j) corresponds to the GL(7)-module
Me; xe; (C) on which GL; x GL,; act via g.m = gimg; ! and the other factors
act trivially.

e a marked loop at vertex (i) corresponds to the simple GL(7)-module
MY (C), that is, trace zero matrices with action of GL., by conjugation and
trivial action by the other components.

o the label of a loop or arrow indicates the multiplicity of the corresponding
representation.

Lemma 3.5. With conventions as above and = o point of representation type T we
have
(1) The GL(r) = GLe, X ... % GLe, -module structure of N9 can be represented
by the local chart on r vertices such that the subchart on any two vertices
1<14,5 <r is of the form

(m—1)d2 +1 (m = 1)d;d; (m - 1)d? +1
0 )
[ ] [ ]
¢ \{/35\
(m — 1)d;d;

(2) The GL(r)-module structure of NJ™ can be represented by a local chart on r
vertices such that the subgraph on any two vertices 1 < i,j < r is of the form

o @jj

é@/—’\\(ﬂp

67 ei'\_/“%

miq

where a;; < (m —1)d;d; and a +myu < (m—1)d2+1 for all 1 <4,5 <.

Proof. (2) follows from (1) by observing that M., x.,;(C) is a simple GL(7)-module
and that the isotypical decomposition of M, (C) = M2, (C) & Cirsy where Cyyy is
the trivial one-dimensional GL(r)-module. The isotypical decomposition of N2
has been proved in [5]. O
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4. CLASSIFYING LOCAL CHARTS

A local chart C = (M, e) consists of two data : the underlying 'map’ M that is,
the marked labeled directed graph and the ’dimension-vector’ e = (ey,...,e,). If
we specify e we obtain a GL(e) = XGL,,-module R(M,e) any vector of which we
call a representation of the map M of dimension e. That is v € R(M, e) assigns to
each

e arrow from () to (j) a matrix in M, x,(C)

e unmarked loop in () a matrix in M., (C)

e marked loop in () a trace zero matrix in M (C)
A morphism from a representation v € R(M, e) to a representation w € R(M,f) is
an r-tuple of linear maps ¥ = (¢1,...,%r) € ®;M{, «e,(C) such that every diagram

v

Co Co
bi ¥
ofi Y _, ¢t

is commutative where the horizontal maps are either arrows.or. (marked) loops in
M.

~Having morphisms; -the-notions of :sub- -, ~quotient- and-simple-representation-are -

obvious as are direct sums of representations of M. If we view the GL(e)-module
R(M,e€) as an-affine space on which GL(e). acts, then orbits correspond precisely
to isomorphism classes of representations.

Lemma 4.1. The local chart C = (M;e) of a smooth order A in CH,, at a point
x must be such that R(M,e).contains simple representations of M. ‘

Proof. Consider a point z-€ X 4 of representation type 7 = (e1,ds;. .. ; e, d;) with
N:™ = R(M,e). By the Luna slice theorem we have étale G L,-equivariant maps -

GL, xCLM Nom L @, xCEH g, L x,

As A is a prime order, we have that any Zariski neighborhood of z in X 4 contains
simple orbits, that is, closed orbits with stabilizer C*. Because the maps above
are GLp-equivariant and étale every Zariski neighborhood of (1,,0) contains a
closed GL,-orbits with stabilizer C*. By the correspondence of orbits in fiber
bundles there must be closed GL(7)-orbits in N:™ = R(M,e) with stabilizer C*.
By a version of the Artin-Voigt theorem for representations of the map M closed
orbits correspond to semi-simple representations of M. If the stabilizer of such a
representation is C* then it must be simple. O

Hence, we have to determine which dimension vectors can arise from simple repre-
sentations of the map M. We define the Euler-form of M as the bilinear map

xm L XL — T
determined by the matrix xas = (xi;) with entries
Xij = —aij and xi = 1 = ag — My

where a;; is the number of arrows from (¢) to (j) in M and ay; resp. my; are the
number of (resp. marked) loops at (¢).
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Proposition 4.2. e = (e1,...,¢,) is the dimension-vector of a simple representa-
tion of the map M if and only if one of the following situations occurs
(1) M = A, the extended Dynkin diagram with cyclic orientation and e =
(1,...,1).

@t—————

(2) M # A,. Then, M has to be strongly connected (that is, any two vertices
can be connected by a directed path) and if &; = (614,...,0.5) are a standard
basis of Z" we must have

xm(e,8;) <0 and x(6;,e) <0
foralll<i<r.

Proof. We will only prove necessity of the conditions in (2). Sufficiency- follows
from a degeneration argument and induction as in [6]:

Let v.€ R(M,e) be a simple representation (that is, contains no proper subrepre-
--sentations) and let v(¢) denote the linear map determined by:the arrow, loop or
marked loop ¢.

Assume M is not strongly connected, then we can divide M into maximal strongly
connected submaps My,..., M, say. The direction of all arrows between two such
components must be all the same by maximality. Hence, there is a component M;
having no -arrows to-other .components. -Now, define a proper subrepresentation
w of v with -dimension-vector £ = dxr.e by w(¢) = v(g) if ¢ is a map in M; and
w(p) = 0 otherwise. Hence, M must be strongly connected.

For each (i) we have xa(d;,e) = e; — > e; Hence, if xa(d;,e) > k then
the natural morphism ) ~- o
@ v — H o
© == ) ® = )

has a non-trivial kernel K of dimension ¥ > 0 and determines a proper subrepre-
sentation of v of dimension-vector f = (8;5.k);.

Similarly, if xm(e, ;) = e; — > e; > 0 then the image of the natural
() =2 ()
morphism
p vw: P ¥ —c
D= =26

is a proper subspace of C% of dimension k£ < e; and hence determines a proper
subrepresentation of v with dimension-vector e + (k — e;)d;. O
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Proposition 4.3. The local chart C = (M, e) of a smooth model A in CH,, having
a center Z of (Krull) dimension d must be such that

1—xm(e,e) _Zmii =d

Proof. Consider a point z € X 4 of representation type 7 = (e1,ds;...; e, d,) with
Ni™ = R(M,e). By the Luna slice theorem we have étale maps

N:™GL(7) ~2— 8,/GL(r) -2+ Y4

Because C[Y4] = Z we have that Y4 and hence N™/GL(7) must be of dimension

d.
By definition of the Euler-form of M we have that

x(e,e) =— Z €ie;Gi; + Z e7 (1 — ai; — ms)
ij i
On the other hand we have the following dimensions

dim R(M,e) = Z eiejai; + Z e?(ai; +mi;) — Z mi;
ij i i

dim GL(e) = Z e?

As e is the dimension vector of a simple representation we know that the orbits
in general position in R(M,e) are closed and have stabilizer C*. Therefore, the
dimension of the quotient variety -R(M,e)/GL(e) = N3™/GL(r) is equal to

dim R(M,e) —dim GL(e) + 1

and plugging in the above information we see that- this is equal to 1 — x(e,e) — -
25 M. O

If we want to-study the local structure of smooth orders A in CH,, having a center -
of dimension d, we have to compile a list of admissible charts. We will give the first
steps in such a classification.

The basic idea that we use is to shrink a chart to its simplest form and classify these
simplest forms for given d. By shrinking we mean the following process. Assume
e is the dimension vector of a simple representation of M and let (¢) and (j) be two
connected vertices with e; = e; = e. That is we have locally the following situation

[¥F] @53
aij
gl nj
. aji o>
miq mjj

We will use one of the arrows connecting (¢) with (j) to identify the two vertices.
That is, we form the shrinked chart C° = (M?®,e®) where M* is a map on r — 1
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vertices {(1),..., (1), ..., (r)} and e® is the dimension vector with (i) removed. That
is, locally round z the shrinked chart has the form

aj; +aj;tai;taj;—1
B +%7;:><><im o
ajr+aj; @ rni +@ni

mi; +mj;

That is, in M* we have for all k,l # j that a}, = ag. Moreover, the number of
arrows and (marked) loops connected to j are determined as follows

[ a?k = Qi + A5k

. azj = Qg; + Qk;j

® ai; = ai +aj; +a; +aj — 1

. m?i =My + Myj
Lemma 4.4. e is the dimension vector of a simple representation of M if and only
if €% is-the dimension vector of a simple representation of M®. Moreover,

dim R(M,e)/GL(e) = dim R(M?,e®)/GL(e®)

Proof. Fix an arvow.¢ connecting (¢).and (5). As e; = e; = e there is a Zariski open
subset U —— R(M,e) of points v such that v(¢) is invertible. By basechange in
either (i) or (j) we can find a point w in its orbit such that w(¢) = L.

If we think of w(¢) as identifying C* with C% we can view the remaining maps of w
as a representation in R(M?, e®) and denote it with w®. the map U — R(M?*,e®)
is well-defined and maps G L(e)-orbits to G L(e®)-orbits.

Conversely, given a representation w' € R(M?,e®) we can uniquely determine a
representation w € U mapping to w'.

Both claims follow immediately from this observation. 0

It is clear that any chart can uniquely be reduced to its simplest form, which has
the property that no connecting vertices can have the same dimension. Also note
that the shrinking process has a not necessarily unique converse operation which
we will call splitting of a vertex.

Proposition 4.5. Let e be the dimension vector of a simple representation of M
and let d = dim R(M,e)/GL(e). If e = mazx e;, thend > e + 1.

Proof. By the above lemma we may assume that C = (M, e) is in its simplest form,
that is, no two connecting vertices have same dimension. Let xar = Ip — (945)i,i
where g;; is the number of arrows (or loops marked or unmarked) from (%) to (j)-
‘We can then rewrite

—xm(e,e) = Z 61’(2 gijej—e) =Y ei(Z gjie; — €i)

4
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and observe that the terms between brackets are positive by the requirement that
e is the dimension vector of a simple representation. For any vertex (k) we will call

ex(D amer + (arx + max — Leg) — mik
1k

ex (D amer + (ark + muk — 1)ex) — mu
Ik
the incoming (resp. outgoing) contribution of (k) to dim R(M,e)/GL(e).
Observe that the in(out) contributions of vertices having no marked loops is always
> 0 by the restrictions on e. Further, if there are marked loops at a vertex (i) then
the in(out) contribution of that vertex is > 1. For, it is

ei((as +my — De; + Zaijej) —~ Mg 2 Gz +Mig + 1 —my; > 1
i
(note that e; # e;).

Consider a vertex (z) where the maximum dimesionvector e is obtained. We have
locally the following situation

The out-contribution-of () is equal to

e((azz + My — e+ Z 0z, €j.) — Mzz
U
If m,, > 2 this expression is > €%(m,, — 1) + 2 —m,, > e as e > 2. Hence, the
dimension is at least a + 1.
If m,, = 1 then the in-contribution of (z) is > e — 1 and the in-contributions of j,
are > e — 1, so the total dimension is > 2e—~1>e+1life > 2.
Finally, if m,, = 0 then the out-contribution of (z) is

> e az.ej, —e)
U

which is > e whenever >, a;,e;, # a. If this happens to be an equality, then the
in-contribution at 7, is

> ej, ((mj, 5. — Dej, +€) —mj ;. 2e—1

but there are at least two j, as none of the e;, = e, so again the dimension
>2e—-12>e+1. 0

Definition 4.6. Two charts C = (M, e) and C' = (M, e) are said to be equivalent
if their corresponding GL(e)-modules are isomorphic.
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Example 4.7. The charts below are equivalent

Theorem 4.8. The local charts of a smooth order A in CH,, with center Z of Krull
dimension.d can be shrinked to one of the following equivalence classes of .charts

0

1

=8
B3R
2 1 2 1
d=/

22

2 1 2 1

It is clear that one can easily compile a list of equivalence classes of simplified charts
for any given dimension d. A direct consequence is

Proposition 4.9. For fired n and d there are only finitely many types of étale local
behaviour.

Proof. By the foregoing reduction there are for fixed d only finitely many equiva-
lence classes of local charts shrinked to their simplest form. As Y e; < n, we can
only apply splitting of vertices finitely many times. [
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5. READING THE LOCAL CHART

Knowing which local charts can occur, we will now investigate what information
can be derived from the local chaxt.

We will fix the following situation : A is a smooth order in CH,, having a center Z
of Krull dimension d, m will be a maximal ideal of Z corresponding to the closed
orbit GL, .z —— X4 where x has representation type 7 = (e1,dy;...;ep,dr).

We have Nf™ = R(M,e) as GL(7) = xGL,;- module. The local structure of Z
near m is determined by that of C[N:™ /GL,] near the zero representation, so we
better have an interpretation of this ring

Proposition 5.1. C[N:™ /GL(r)] is generated -by traces: along-oriented -cycles in
the chart C = (M, e).
That is, for every arrow ¢ (resp. loop or marked loop) from (z) to (j) we take a
generic rectangular matrix
21(@) o o B (@)

My=| :
xei1(¢) vee e Tege (¢)
(resp. a generic square matrix or generic trace zero matrix).
cIfeye= g0 ....0¢e0¢l is an oriented cycle.in the map..M; then-we compute the-
following matrix

Meye = My, .- Mg, .My,
over Clzy (¢)] = C[R(M, e)]. If the starting vertex of ¢; is (¢), then this is a square
e; X e; matrix and we can consider its trace
Tr(Meye) € C[R(M, e)]
and one. verifies easily-that this polynomial is invariant under the action of GL..
Slightly harder to prove is that these functions actually generate
CR(M, €))% = CIN;™ /GL,]

The essential ingredient in this proof is the fact that the polynomial invariants
of tuples of matrices under simultaneous conjugation are generated by traces of
products of generic matrices.
In fact, one can even bound the length of the oriented cycles to be considered by
(3, €:)?, see [6] for more details.
Next, let us consider the étale local structure of A near m. By the results proved
before, we have to control for this the ring of GL,-equivariant maps

GL, x%L R(M,e) — M,(C)
on which the multiplication is given by that in target space M,(C).

Proposition 5.2. The ring of GL,-equivariant maps is Morita equivalent to the
ring of G L, -equivariant maps

R(M,e) — My~ (C)

where for any two vertices (i) and (j) the GL,-equivariant maps
R(M,e) — Hom(C®% C%%)
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are generated as a module over CIN:™ /GL(7)] by the paths in the map M starting
from (i) and ending in (j).

Again, if path = ¢ro...0¢; is such a path, then the corresponding module element is
Mpatn. This result follows from a minor adaptation to existing results on invariants
and concomitants of representations of quivers proved by C. Procesi and myself,
see [6].

Apait from allowing us to compute the local structure of Z and B near m, the local
chart N3™ = R(M,e) also allows us to describe the local charts in nearby points
and the dimensions of subvarieties of points having a specific local chart.

The points ¢ in the quotient variety N:™/GL(r) = R(M,e)/GL(e) are in one-to-
one correspondence with the isomorphism classes of semi-simple representations of
the map M of dimension vector e.

If V¢ is a representative in the closed orbit corresponding to ¢ then we can decom-
pose V¢ into its simple representations

Ve =WE™ e o WE™

where W; is a simple representation of the map M of dimension vector b; and
occurring in V¢ with multiplicity m;.

Extending previous terminology we will say that V; (or ¢) is of representation type
g = (mlabl; ven) mkpbk)“

As we have a combinatorial description of all simple dimension vectors for M we
can determine which representation types can occur for a given e.

With V, we will denote the set of all points { € N:™/GL, of representation type
ag.

Proposition 5.3. {V, : o a representation type for e} is a finite stratification of
the quotient variety N3 /GL(7) into locally-closed irreducible smooth subvarieties.

Moreover, the dimension: of the stratum V, determined by o = (my,b1;...;mg,bx)
s equal to
k 7
2(1 - xm (b3, b)) — Zmz’i
j=1 i=1

Proof. According to the Luna slice results we have to verify that the representa-
tion type determines the stabilizer subgroup of a point in the closed orbit up to
conjugation in GL(e).
Let b; = (b1, ..., bir) and denote b; = 3, bij. We choose a basis in ©;C®* in the
following way : the first m1b; vectors give a basis for the simple components of
type Wi, the next exbs vectors give a basis for the simple components of type Ws
and so on.
If m = 5 a;, the subring of M,,(C) generated by the representation V; expressed
in this basis is

Mbl ((C) ® I€1

M, (C) ® L,

Therefore, the stabilizer GLy in GL(e) of V is the group of units of the centralizer
of this ring and is therefore equal to GLyp,, X ... X GLpy, which is embedded in
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GL{e) with respect to the chosen basis as
GLm, (C® I b1)

GLp,, (CQ I,)

It is easy to see that the conjugacy class of GLy depends only on the representation
type 7.

Finally, we have seen before that the dimension of the variety of isoclasses of simple
representations of M of dimension vector bj is equal to 1 — x(bj, b;) — >, mj; from
which the claim about the dimension of the stratum follows. . O

Given two representations types o and o', the stratum V,- lies in the closure of the
stratum V, if and only if the stabilizer subgroup G L, is conjugated to a subgroup
of GL, in GL(e). Again, mimicking similar results for representations of quivers
we can give a combinatorial solution to this problem.

Two representation types

! !
o = (my,by;...;mg,by) and ¢’ = (my,b1';...;my, bi’)

are said to be direct successors o < ¢’ if and only if either
e (splitting one simple type) k' = k + 1 and for all but one 1 < i < k we have
(mi;bi) = (m;,bj' ) for a uniquely determined j-and for the remaining ¢ we
have corresponding to it (m;, by';ms, by') with b; = by’ + by
¢ (combining two simple types) k' = k — 1 and for all but one 1 < i < k' we
have (m/,b;') = (m;,b;) for a uniquely determined j and for the remaining
i we have corresponding to it (1, bi';my, by') with my, + m, = m)
The direct successor relation < induces an ordering which we will denote with <.

Proposition.5.4. The stratum V. lies in the closure of the stratum V, if and only -
ifo Lo
Finally, we want to understand the étale local structure of the quotient variety
NE™[GL(r) in a neighborhood of a point { € V,. This again is an application of
the Luna slice results.
So, let V be a semi-simple representation of M corresponding to ¢ € V, with
stabilizer subgroup GL, = GLy,, X ...GLy,,. We have to investigate the GL,-
module structure of the normal space to the orbit of V.
The tangentspace to the GL(e) orbit of V is equal to the image of the natural linear
map

Lie GL(e) — R(M,e)
sending an element y € Lie GL(e) to the representation determined by the com-
mutator [y, V] = y.V —V.y € M,,,(C) where as above m = 3 e; and all embeddings
are with respect to the choice of basis we introduced in the proof of proposition.
The kernel of the above map is the centralizer of the subalgebra of M,,,(C) generated
by the representation V, that is, the algebra

M, (C® I,)
Cy =
Mmr (C ® Ib'r)
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We thus have an exact sequence of GL,-modules
0 — CV — Lie GL(e) —_— TV O’r‘bv — 0

where the action of GL, is given by conjugation in M,,(C) via the embedding given
before.
A typical element v € GLy; = GLy, X ... X GLy,, will be written as (va,...,7vk)
and we will express the actions in terms of the ;.
Cy as GL,-module consists of

e one m?-dimensional representation with ;' .y1-action

e one mi—dimensional representation with ;- ! ~i-action
Moreover, using our notation b; = (b;1,...,b;) we have that Lie GL(e) as GL,-
module consists of

. ZI;=1 b3, times the m?-dimensional representation with ;" '.y1-action

. Zl;:l b2 ; times the m2-dimensional representation with +; *.yj-action
. Z;.“zl b1 ;bo; times the my X ms-dimensional representation with ;- ! yp-action

. Z';=1 brjbp—1; times the myp X mg_; -dimensional representation with
Ve ! Yk—1-action
Hence, we know the G L,-module structure of Ty Orby. Next, we have to determine
the G L,-module structure of R(M,e). There are
o by;by; times the my-X my-dimensional representation with ;- 1.71-action :
e b1;by; times-the my X mg-dimensional representation with ;" 1'.72—action

o byibr; times the my x my-dimensional representation with 7, 1‘,7k—action
For each unmarked loop in (i) we have the same decomposition as above replacing
all occurrences of j with ¢. For a marked loop in (¢) we have to replace the terms
of dimension m; X m; by

e b? times the m? — 1-dimensional representation of trace zero matrices with

fyfl “yi-action.

We now have all the information on the G L,-module structure on the normal space
to the orbit using the (split) exact sequence of GL,-modules

0 — Ty Orby — R(M,e) — Ny — 0
and we obtain

Proposition 5.5. The étale local structure of N™/GL(t) near { € V, is deter-
mined by a local chart C, = (M,,e,) where M, has k vertices {(1),...,(k)} and
there are

o —xn(bi,by) directed arrows from (i) to (j) when i # j

o 1 — x1(bs,b;) unmarked loops in (i)

o —x2(bi, b;) marked loops in (i)
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where x1 = (0i; — @s5)i,; ond x2 = (—0;;m4)i; and xp = X1 + X2. Moreover, the
dimension vector e, = (my,...,mg).

6. LOW DIMENSIONAL CASES

In this section we give an alternative proof of the local classification of smooth
orders in C' H,, in dimension one and two and draw some conclusions.

In [11] W. Schelter proved that in dimension one smooth orders are hereditary.
We will show that this also follows immediately from our local description. The
result below also follows from reversing the shrinking process of local charts and
the classification given before.

Proposition 6.1. The local charts C = (M, e) for a smooth order A in CH, with

center of dimension one are such that e = (1,...,1) and the map M has the form
A,
(r) (1)
1 1
1 1
o —
1 1

Proof. Let (M,e) be a local chart of A on r vertices. ‘As M is strongly connected
there exist oriented cycles in M. Fix, one such cycle (say of length 5) and number
the vertices of M such that the first s vertices are those making up the cycle.
Now, assume the dimension vector is € = (e1,+..;¢e,). Then, there is a semi-simple
representation in R(M,e) with composition

L..,1,0,..,088 ' e...68 @55 @... 062

s =8

where §; are the standard basis of Z" or equivalently the dimension vector of the
simple representation concentrated at vertex (z).

There is a one-parameter family of isoclasses of such semi-simple representations.
As dim R(M,e)/GL(e) = 1, and e is the dimension vector of a simpe represen-
tation, this can only happen if the above semi-simple representation is actually
simple. Hence, M is one cycle (that is, r = s) and alle; = 1. O

In particular, the only representation-types that can occur re of the form r =
(1,dy,...,1,d,) and GL(7) =C* x ... x C* embedded in GL,, via

Otye s A ) = diagO, 3 ALy ooy Ay ee ey Ar)
N e’ T
d1 v

One verifies that
C[R(M,e)/GL(e)] =~ Clz]
where z is the trace along the cycle. Further the ring of equivariant maps

Mn(C[GL, xC*®) R(M, e)])%En
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has the following block decomposition

[ Mg, (Clz)) M, xd,(Clz]) oo | Mayxa, (Clz]) 7
Mayxa, (zClz]) | Mg, (Clz)) oo | Mayxa, (Clz])
| Mg, xa, (zClz]) | Mg, xa,(2Clz]) | ... Mg, (Clz])

From this local information we deduce

Theorem 6.2. Equivalent are
e A is a smooth order in C H, with one-dimensional center
o A is an hereditary order over a Dedekind domain

Proof. From the local description of a smooth order given before we deduce that
the center must be smooth, hence a Dedekind domain and that the smooth order
A must.be locally hereditary. Conversely, from the local description of hereditary
orders.as given in [10,: Thm.. 39.14] we deduce that hereditary orders are locally: -
smooth. O

In dimension two we can also give an alternative proof of our local characterization
of smooth orders.

Proposition 6.3. For a smooth order A .in CH,, with two-dimensional center.the -
local charts C.= (M;e) are such thate = (1,...,1) and the map M has the following
form :

1 k41
& Y

k k41

Apim

where the indicated numbering of vertices and labeling of arrows will be used later.
In this picture we make the obvious changes whenever k or | are zero.

Proof. The strongly connected map M must contain more than one oriented cycle
and hence contains a submap of the indicated type (possibly degenerated). It is
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easy to verify that for Agim, £ = (1,...,1) is the dimension vector of a simple
representation.
If M contains additional vertices {s =k+I1+m+1,...,r} and/or the dimension

vector e = (ey,...,e,) # f, there exist semi-simple representations in R(M, e) with
dimension-vector decomposition

L-L0,..,0008 " e.. 867 T @i ©... @65
k+l+m
As dim R{Agim,f)/GL(f) is equal to 2 there is a two-dimensional family of such

semi-simple representations. Hence, they cannot. be properly semi-simple as their
locus must be of dimension < d = 2. Therefore, M = Ay, and e = f£. O

Let m be a maximal ideal of the center Z of A corresponding to a semi-simple n-
dimensional A-module M,. By the above characterization we know that M, must
have a decomposition
M,=5&..8S5,

where S; is a simple B-module of dimension d; and all components are distinct.
That is, n = >, d; and the embedding of GL(e) = C* x ... x C* in G L, is given

. r
via

(/\1, vy )\7‘) = diag()\l, RPN VRPN, VP, Ar
| S ——
d dr

We want to describe the étale local structure of A near m, that is, the ring A3* =
A®z Z&*. In order to do this.we.have to compute the 1ings of invariants and
concomitants of the local chart near the zero representation.

Proposition 6.4. Using the:labeling of vertices and. arrows in the chart Agyy, given. - .

above we have
(1) The ring of polynomial invariants is equal to

ClR(Akim , €)/GL(e)] = Clz, y]
(2) The rings of GLy-equivariant maps
Mn(GL, x%H® CIR(Agim, €]) %L~
is isomorphic to the subring of M,(Clz,y]) with block decomposition

(1)
(v) (1)
(z)
(1)
(z) (1)
(v)
(1)
(z) (y)
(z,y)
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where ot place (i,7) (for every 1 < i,j < r) there is a block of dimension
d; x d; with entries the indicated ideal of Clz,y].

Proof. By basechange in the vertices we see that all non-zero maps in a minimal
oriented cycle can be taken to be the identity map except for one. If we define these
remaining maps z and y then the traces along oriented cycles in the chart are of
the form z’y’. The result about the equivariant maps follows from computing the
Clz,y]-module of paths from a vertex (i) to vertex (j) and applying the general
results of the previous section. (|

Using the Luna slice theorem, we obtain the required étale local classification

Theorem 6.5. With notations as before, we have
(1) Z7 = C{z,y}
(2) AP is isomorphic to the subring of M, (C{x,y}) with the above block decom-
position.

Definition 6.6. A Z-order A in a central simple algebra A of dimension n? is said
to be étale locally split in a maximal ideal m of Z iff B® has ring of fractions

From the étale local description of Z and B and étale descent we deduce

- Proposition 6.7. If A is -a smooth-order-with two-dimensional center; then -

(1) The center Z is smooth.

(2) The non-Azumaya locus of A, rama = Y4 — Ya. consists at worst out of
isolated (possibly embedded) points and o reduced divisor whose worst singu-
larities are normal crossings.

(3) A is étale locally split at every point m € Ya.

Proof. (1)-and (3)-are immediate from the foregoing theorem. As for (2) wehave -
to study the local charts in proper semi-simple representations of R(Agim,e).
Their decomposition into-simple representations can be depicted by one of the
following two situations

1 ki—l 1. k41
z Y
k+l+4+m [ ®
k4141 ° ]
L] L
k k+1 k k+1
V(y) V(z)

where the trace along the indicated oriented cycle is non-zero. By the general
results of the foregoing section we can compute the local charts of A near such a
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point. They are resp. of the following types

Aon Axo1
and we have the following local picture of the structure of Y4 near m.

V(=)

Aoy ——®
Agptm

Viy)

Aorx \

from which the statement follows (taking care of possible degenerate cases, for
example, an isolated point occurs for local charts of type Agom with m >2). O

Ago

We see that already in dimension two, smooth orders do not have to have finite
global dimension.

Lemma 6.8. With notations as before, A is a projective module over Z if and only
if all local charts are of type App. In particular, if a local chart is of type Agim
with m > 2, then gldim A = .

Proof. As the center is smooth, projectivity and reflexivity as Z-module are equiv-
alent. Observe that A" is reflexive only if no block of type (z,y) occurs, that is,
iff m = 1. The last statement follows from the fact that an order of finite global
dimension with smooth center has to be projective. (|

From dimension d = 3 on some new phenomena occur. Rather than giving a full
classification, we will give examples of the differences.

Lemma 6.9. In dimension d > 3 the center Z of a smooth order A in CH, no
longer has to be smooth.
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Proof. Consider the local chart of the following form

1\»—-—/1

2

The center of the corresponding ring of equivariant maps is equal to
Clz,y, z,v]/(zy — 2v)

and hence is not smooth in the origin. In arbitrary dimension d > 3 this example
survives by adding loops in one of the vertex spaces. O

Lemma 6.10. In dimension d > 3 a smooth algebra A does not have to be étale
locally spit everywhere.

Proof. Consider the following local chart

o\

2

Then one verifies that the ring of equivariant maps is equal to

Clif fdw,y,21 [y Z]
the Clifford-algebra of -a non-degenerate quadratic form. This algebra cannot be
split by an étale extension in the origin. O

More generally, we can determine the local index at a point m. We have

QA = My (D)
for a division algebra of dimension 2 over its center. We call [ the local index at
m.

Proposition 6.11. Let A be a smooth algebra in CH, and m a point with local
chart C = (M, e) where e = (e1,...,e,). Then, the local index of A at m is equal
to ged(e;).

Proof. This is an adaptation of the results of [7]. O

Proposition 6.12. If A is a smooth algebra in CH,, with center of dimension d,
then A can be split by étale extensions up to parts of index < /d + 1.

Proof Follows from the result above and the fact that the minimal dimension of
a quotient variety of a local chart with gcd(e;) = e is €? — 1, corresponding to the
two marked loop map and dimension vector e = (e). B
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