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CHAPTER 1

Introduction

Example 1.0.1. (The quantum P2)
Consider the graded algebra Aq on three generators with defining relations

XY = qY X

Y Z = qZY

ZX = qXZ

where q ∈ C∗.
If q is a primitive n-th root of unity, then the center of Aq is generated by three
elements in degree n, namely Xn, Y n and Zn and one in degree 3 namely XY Z.
If n is not divisible by 3 this implies that after localizing at all homogeneous non-
zero central elements Aq we obtain the algebra

Qg(Aq) = D[t, t−1]

where t is a central element of degree one and D is a division algebra of dimension
n2 over its center which is isomorphic to C(x, y).
In fact, D is the division ring of fractions of the so called ’quantum-plane’

Cq[u, v] : uv = qvu un = x vn = y

Example 1.0.2. (The Sklyanin algebra)
Consider the graded algebra Sτ on three generators with defining relations

cX2 + bZY + aY Z = 0

aZX + cY 2 + bXZ = 0

bY X + aXY + cZ2 = 0

where a, b, c ∈ C∗ such that the curve

E : (a3 + b3 + c3)xyz = abc(x3 + y3 + z3)

is a smooth elliptic curve in P2.
We have an automorphism on E defined by

(x : y : z) 7→ (acy2 − b2xz : bcx2 − a2yz : abz2 − c2xy)

If we choose (1 : −1 : 0) ∈ E as the origin, then this automorphism is translation
by the point τ = (a : b : c) on E.
If τ is an n-torsion point on E, then the center of Sτ is again generated by three
elements of degree n and one of degree 3.
Again, if we localize at all homogeneous non-zero central elements we obtain an
algebra

Qg(Sτ ) = D′[t, t−1]
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2 1. INTRODUCTION

with t central of degree one and D′ a division algebra of dimension n2 over its
center which is isomorphic to C(x, y).

Motivated by these examples we say that a graded affine algebra A is a model for
a central simple C(x, y)-algebra ∆ of dimension n2 if its graded ring of fractions

Qg(A) = ∆[t, t−1]

for some central degree one element t.
The first question we like to answer is that of the birational classification : can we
describe the C(x, y)-isomorphism classes of central simple algebras ∆ of dimension
n2? In particular, can one show that D and D′ above are non-isomorphic?

1.1. Zn-wrinkles on P2

By a Zn-wrinkle on P2 we mean the following data-package

• A finite collection C = {C1, . . . , Ck} of irreducible curves in P2, that is,
Ci = V (Fi) for an irreducible form in C[X,Y, Z] of degree di.

• A finite collection P = {P1, . . . , Pl} of points of P2 where each Pi is either
an intersection point of two or more Ci or a singular point of some Ci.

• For each P ∈ P the branch-data bP = (b1, . . . , biP ) with bi ∈ Zn = Z/nZ

and {1, . . . , iP } the different branches of C in P . These numbers must satisfy
the admissibility condition

∑

bP =
∑

i

bi = 0 ∈ Zn for every P ∈ P

• for each C ∈ C a cyclic Zn-cover of smooth curves

D -- C̃

of the desingularization of C which is compatible with the branch-data, that
is, if Q ∈ C̃ corresponds to a C-branch in P , then D is ramified in Q with
stabilizer subgroup generated by bQ (below a portion of a Z4-wrinkle)
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We have a grip on the coversD -- C̃ as follows. Let {Q1, . . . , Qz} be the points of

C̃ where the cover ramifies with branch numbers {b1, . . . , bz}, then D is determined
by a continuous module structure of

π1(C̃ − {Q1, . . . , Qz}) on φDZn

where the fundamental group is equal to

〈u1, v1, . . . , ug, vg, x1, . . . , xz〉/([u1, v1] . . . [ug, vg ]x1 . . . xz)



1.1. Zn-WRINKLES ON P
2 3

with g the genus of C̃ and the action of xi is determined by bi.

Example 1.1.1. Let us consider the first cases

1. If C̃ = P1 then g = 0 and hence π1(P
1 − {Q1, . . . , Qz} is zero if z ≤ 1

(whence no covers exist) and is Z if z = 2. Hence, there exists a unique
cover D -- P1 with branch-data (1,−1) in say (0,∞) namely with D the
normalization of P1 in C( n

√
x).

2. If C̃ = E an elliptic curve, then g = 1. Hence, π1(C) = Z ⊕ Z and there
exist unramified Zn-covers. They are given by the isogenies

E′ -- E

where E′ is another elliptic curve and E = E ′/〈τ〉 where τ is an n-torsion
point on E′.

One can show that any such cover D -- C̃ is determined by a function f ∈
C(C)∗/C(C)∗n which allows us to put a group-structure on the equivalence classes

of Zn-wrinkles where we call a wrinkle trivial provided all coverings Di
-- Ĉi are

trivial (that is, n copies of C̃).
One of the main results we will prove in these notes is the Artin-Mumford exact
sequence for Brauer groups of simply connected surfaces. In the case of C(x, y) this
result can be phrased as

Theorem 1.1.2. If ∆ is a central simple C(x, y)-algebra of dimension n2, then
∆ determines uniquely a Zn-wrinkle on P2. Conversely, any Zn-wrinkle on P2

determines a unique division C(x, y)- algebra whose class in the Brauer group has
order n.

Example 1.1.3. Returning to the ’quantum’-algebras defined above

1. The division algebra D with non-commutative model the quantum P2 alge-
bra Aq is determined by the wrinkle with shadow
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which completely determines the covers.
2. The division algebra D′ with non-commutative model the Sklyanin algebra
Aτ is determined by the wrinkle where C = {E ′} where E′ is the elliptic
curve in P2 with unramified cover the isogeny E -- E/ < τ >= E′.

In particular, the division algebras D and D′ of dimension n2 over C(x, y) cannot
be isomorphic as C(x, y)-algebras. Or, phrased differently, Aq and Sτ are not
projectively birational.
Is there a non-commutative version of Hironaka’s resolution of singularities for the
algebras for the central simple algebras ∆ of dimension n2 over C(x, y)?
Let A be a model for ∆ generated in degree one by elements a1, . . . , am and defining
homogeneous equations

fj(a1, . . . , an) = 0 for 1 ≤ j ≤ k
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Consider all solutions to this set of equations with ai ∈ Mn(C). They form a
subvariety

modn A ⊂ - Amn
2

which is homogeneous (that is, a cone).
Observe that if A is commutative (that is, n = 1), modn A = Max(A) and A is
a smooth model if the corresponding projective variety P(modn A) is smooth. For
this reason, we define (actually, the definition has to be modified slightly)

Definition 1.1.4. A model A for ∆ is said to be smooth iff projn A =

P(modn A) ⊂ - Pmn
2−1 is a smooth (commutative) variety.

Exercise 1.1.5. Are Aq and Sτ smooth models ? Try to compute this in the
easiest case n = 2, that is, when q = −1 (for Aq) and a = b (for Sτ ).

We will impose restrictions on the existence of smooth models by computing their
étale (or analytic) local structure.
Let A be a model with center C and let S be the projective variety defined by C.
We say that X(c) ⊂ - S is a excellent open subset provided

Agc = B[d, d−1]

where d is central of degree one. If P ∈ X(c) we will denote with mP the corre-
sponding maximal ideal of the center of B.

1.2. Zn-loops

By a Zn-loop we mean the following data :

• A directed graph on k + l+m ≤ n vertices of the form
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Aklm

where the indicated numbering of vertices will be used later. In this picture
we make the natural changes whenever k or l is zero.

• An unordered partition p = (p1, . . . , pk+l+m) of n with all pi 6= 0

The second main application of étale machinery we will prove is the local char-
acterization of smooth models (in arbitrary dimension). In the special case under
consideration we have
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Theorem 1.2.1. With notations as before, let A be a model and X(c) ⊂ - S an
excellent open subset. Then, A is locally on X(c) a smooth model if and only if it
assigns to each point P ∈ X(c) a Zn-loop, say of type (Aklm,p) such that

B̂mP
'
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(x)

(x)

(y)

(y)

(1)

(1)
(1)

(1)

(1)

(x)

(y)

(x, y)

︸ ︷︷ ︸

k

︸ ︷︷ ︸

l

︸ ︷︷ ︸

m

⊂ - Mn(C[[x, y]])

where at place (i, j) (for every 1 ≤ i, j ≤ k + l +m) there is a block of dimension
pi × pj with entries the indicated ideal of C[[x, y]].

Example 1.2.2. Consider the graded algebra A with defining relations

XY = qY X

XZ = ZX

Y Z = ZY

where q is a primitive n-th root of unity. Then X(Z) is an excellent open subset
and

AgZ = Cq[u, v][Z,Z
−1]

where uv = qvu. Clearly, projn A | X(Z) = modn Cq[u, v]. One can verify that on
X(Z) the local loops are of the form
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where there are r + 1 = n vertices in the non-trivial cycle. The corresponding
partitions are (n) resp. (1, . . . , 1).
Observe that there is no Zn-loop in the origin. This can be seen by observing that
the completion at p = (un, vn) is Cq [[u, v]] which is a division algebra and hence
cannot be of the split-form corresponding to a Zn-loop.

We will show that a central simple C(x, y)-algebra ∆ of dimension n2 has a model
which is locally smooth on an excellent cover if and only if all the branch-data in
the Zn- wrinkle on P2 determining ∆ are trivial (that is, zero). Moreover, any ∆
has a model with isolated singularities all of which are locally of quantum-plane
type.
Hence, in order to construct smooth models in any central simple algebra ∆ we
have to relax the condition of having an excellent open cover.
Let A be a smooth model with central projective surface S = Proj C (which may
contain singularities), then locally around P ∈ S A has the form

Agc = . . .⊕ I−2d−2 ⊕ I−1d−1 ⊕B ⊕ Id⊕ I2d2 ⊕ . . . ⊂ - ∆[d, d−1]

with d central of degree one and I an invertible ideal of B.
This time, we will characterize the graded completion of A with respect to the
graded maximal idealmg

P of C determining P . The underlying combinatorial object
is a Zn-weighted loop, that is a Zn-loop (Aklm,p) with
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• a given period e ∈ N+
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• a weight wφ ∈ Z/eZ associated to every arrow φ in Aklm. If we take the
sum of the weights along the two cycles we get numbers wx and wy .

• a compatible partition m = {m1 ≤ m2 ≤ . . . ≤ mn < e} of n

Theorem 1.2.3. With notations as above, A is a smooth model iff to every point
P ∈ S is associated a weighted Zn-loop of type, say (Aklm,m,p,w, e) such that

Âg
mg

P
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(x)′

(x)′

(y)′

(y)′

(1)′

(1)′
(1)′

(1)′

(1)′

(x)′

(y)′

(x, y)′

︸ ︷︷ ︸

k

︸ ︷︷ ︸

l

︸ ︷︷ ︸

m

⊂
'g

- Mn(C[[x, y]][te, t−e])(m1, . . . ,mn)

where at place (i, j) there is a block of dimension pi×pj of form I.taij where aij is the
minimal total weight in Ze of an oriented path from i to j and I is the intersection
of the indicated ideal in C[[x, y]][te, t−e] with the invariant ring C[[x, y]]Ze [te, t−e]
where the action is given by x 7→ ζwxx and y 7→ ζwyy for ζ a primitive e-th root of
unity.
The graded matrix-algebra on the right has as its i-th part homogeneous component
is defined to be








Ri Ri+a1−a2 . . . Ri+a1−an

Ri+a2−a1 Ri . . . Ri+a2−an

...
...

. . .
...

Ri+an−a1 Ri+an−a2 . . . Ri







.

where Rj = C[[x, y]]tj .

We can now construct smooth models in any ∆ by blowing-up the remaining
quantum-plane singularities. Let us recall the ringtheoretical interpretation of a
blow-up of a point in A2.

Example 1.2.4. Let Ã2 -- A2 be the blow-up of the origin p = (0, 0) in A2. If
C[A2] = C[x, y], consider the graded algebra

R = C[x, y] ⊕ (x, y)t⊕ (x, y)2t2 ⊕ . . . ⊂ - C[x, y][t]

Then R is generated by two elements in degree zero x, y and two in degree one
X = xt and Y = yt. The defining (homogeneous) relation of R is xY − yX .

Then, Ã2 = Proj R and the projection morphism is given by the inclusion (in
degree zero) C[x, y] ⊂ - R. Geometrically, the blow-up can be viewed as a spiral
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staircase covering A2 by rotating a line through (0, 0).

........
........
........
........
.........
.........
.........
.........
.........
.........
..........
.............
.................
..........................................
.........................
................
.............
...........
..........
..........
..........
...........
.............
................
.........................
.........................................
................
.............
...........
.........
.........
..........
.........
.........
.........
........
........
........
.......

........
........
........
........
.........
.........
.........
.........
.........
.........
..........
.............
.................
..........................................
.........................

................
.............

...........
..........

..........
..........

...........
.............

................
.........................

.........................................
................
.............
...........
.........
.........
..........
.........
.........
.........
........
........
........
.......

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......

..................................................................................................................................................................................

..................................................................................................................................................................................

....................................................................................................................................................

....................................................................................................................................................

....................................................................................................................................................

............
............
............
............
............
............
............
............
............
..........................................................................................................................

•

The projection map

Ã2 -- A2 where (x, y,X : Y ) 7→ (x, y)

is an isomorphism on A2 − (0, 0) and has a P1 as fiber over the origin.

Assume we have a local quantum-plane singularity B = Cq [u, v] with un = x and
vn = y. We consider the graded algebra

A = B ⊕ (u, v)t⊕ (u, v)2t2 ⊕ . . . ⊂ - Cq(u, v)[t]

and call it the the non-commutative blow-up of a quantum-plane singularity. We
will show that A is a (local) smooth model with corresponding weighted Zn-loops
of type
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where r = n− 1 and where Aw001 is the weighted loop

N N•........................................................
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...........
..............
..........................
.......................................................................................................... ...................................

...............................
................
...........
...............
...............................................................................................................................

1
0 1

A is generated by two elements of degree zero u, v and two of degree one U = ut
and V = vt. c = Un = xtn is central and if we localize we obtain

Agc = Cq[u, v
′][U,U−1, φ]

where v′ = V U−1 and φ(u) = u, φ(v′) = qv′. If we consider a point P in the open
set of the ’exceptional fiber’ where v′ 6= 0 (that is, V 6= 0), then we can adjoin an

n-th root of v
′n to obtain

Cq[u, v
′] ⊗

C[un,v′n] C[u±n, v
′±1] 'Mn(C[u±n, v

′±1])

whence

ÂgmP
= Mn(C[[u±n, w±1]][Un, U−n])(0, 1, 2, . . . , n− 1)

via the identifications

u =










0 0 0 . . . 0 un

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

. . .
...

0 0 0 . . . 1 0










v′ =








w 0 . . . 0
0 ζw . . . 0
...

. . .
...

0 0 . . . ζn−1w








U =










0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1
Un 0 0 . . . 0










and we see that in P , A has weighted Zn-loop type Aw001.
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CHAPTER 2

The étale site of an algebra

Throughout, A will be a commutative C-algebra. The algebra equivalent of a finite
separable field extension is that of an étale morphism.

2.1. Etale morphisms

Definition 2.1.1. A finite morphism A
f- B of commutative C-algebras is said

to be étale if and only if

B = A[t1, . . . , tk]/(f1, . . . , fk) such that det (
∂fi
∂xj

)i,j ∈ B∗

Proposition 2.1.2. Etale morphisms satisfy ’sorite’, that is

1. (basechange)

A′ ............
et
- A′ ⊗A B

A

6

et - B

6

2. (composition)

B

�
�

�
�

�
et

� @
@

@
@

@

et

R
A ..................................................

et
- C

3. (descent)

A′ et- A′ ⊗A B

A

f.f.

6

....................
et

- B

6

13
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4. (morphisms)

A

	�
�

�
�

�
et

@
@

@
@

@

et

R
B .................................................

et

A− alg
- B′

Definition 2.1.3. The étale site of A, which we will denote by Aet is the category
with

• objects : the étale extensions A
f- B of A

• morphisms : compatible A-algebra morphisms

A

	�
�

�
�

�
f1

@
@

@
@

@

f2

R
B1

φ - B2

Observe that by the foregoing proposition all morphisms in Aet are étale. We can
put on Aet a (Grothendieck) topology by defining

• cover : a collection C = {B fi- Bi} in Aet such that

Spec B = ∪i Im (Spec Bi
f- Spec B )

2.2. Etale sheaves

An étale presheaf of groups on Aet is a functor

G : Aet - GroupsGroupsGroups

In analogy with usual (pre)sheaf notation we denote for each

• object B ∈ Aet : Γ(B,G) = G(B)

• morphism B
φ- C in Aet : ResBC = G(φ) : G(B) - G(C) and

g | C = G(φ)(g).

A presheaf G is a sheaf provided for every B ∈ Aet and every cover {B - Bi}
we have exactness of the equalizer diagram

0 - G(B) -
∏

i

G(Bi)
--

∏

i,j

G(Bi ⊗B Bj)

Example 2.2.1. Constant sheaf : If G is a group, then

G : Aet - Groups B 7→ G⊕π0(B)

is a sheaf where π0(B) is the number of connected components of Spec B.

Example 2.2.2. Multiplicative group GmGmGm : The functor

GmGmGm : Aet - Ab B 7→ B∗

is a sheaf on Aet.
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A sequence of sheaves of Abelian groups on Aet is said to be exact

G′ f- G
g- G”

if for every B ∈ Aet and s ∈ G(B) such that g(s) = 0 ∈ G”(B) there is a cover
{B - Bi} in Aet and sections ti ∈ G′(Bi) such that f(ti) = s | Bi.

Example 2.2.3. Roots of unity µnµnµn : We have a sheaf morphism

GmGmGm
(−)n

- GmGmGm

and we denote the kernel with µnµnµn. As A is a C-algebra we can identify µnµnµn with the
constant sheaf Zn = Z/nZ via the isomorphism ζi 7→ i after choosing a primitive
n-th root of unity ζ ∈ C.

Lemma 2.2.4. The (Kummer)-sequence of sheaves of Abelian groups

0 - µnµnµn - GmGmGm
(−)n

- GmGmGm
- 0

is exact on Aet (but not necessarily on AZar).

Proof. We only need to verify surjectivity. Let B ∈ Aet and b ∈ GmGmGm(B) = B∗.
Consider the étale extension B′ = B[t]/(tn − b) of B, then b has an n-th root over
in GmGmGm(B′). Observe that this n-th root does not have to belong to GmGmGm(B).

2.3. Derived functors

Before we define cohomology of sheaves on Aet let us recall the definition of derived
functors. Let A be an Abelian category. An object I of A is said to be injective if
the functor

A - Ab M 7→ HomA(M, I)

is exact. We say that A has enough injectives if, for every object M in A, there is
a monomorphism M ⊂ - I into an injective object.
If A has enough injectives and f : A - B is a left exact functor from A into a
second Abelian category B, then there is an essentially unique sequence of functors

Ri f : A - B i ≥ 0

called the right derived functors of f having the following properties

• R0 f = f
• Ri I = 0 for I injective and i > 0
• For every short exact sequence in A

0 - M ′ - M - M” - 0

there are connecting morphisms δi : Ri f(M”) - Ri+1 f(M ′) for i ≥ 0
such that we have a long exact sequence

. . . - Ri f(M) - Ri f(M”)
δi

- Ri+1 f(M ′) - Ri+1 f(M) - . . .

• For any morphism M - N there are morphisms Ri f(M) - Ri f(N)
for i ≥ 0
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In order to compute the objects Ri f(M) define an object N in A to be f -acyclic
if Ri f(M) = 0 for all i > 0. If we have a resolution of M

0 - M - N0
- N1

- N2
- . . .

by f -acyclic object Ni, then the objects Ri f(M) are canonically isomorphic to the
cohomology objects of the complex

0 - f(N0) - f(N1) - f(N2) - . . .

One can show that all injectives are f -acyclic and hence that derived objects of M
can be computed from an injective resolution of M .

2.4. Etale cohomology

Now, let Sab(Aet) be the category of all sheaves of Abelian groups on Aet. This
is an Abelian category having enough injectives whence we can form right derived
functors of left exact functors. In particular, consider the global section functor

Γ : Sab(Aet) - Ab G 7→ G(A)

which is left exact. The right derived functors of Γ will be called the étale coho-
mology functors and we denote

Ri Γ(G) = H i
et(A,G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 - G′ - G - G” - 0, then we have a long exact cohomology
sequence

. . . - H i
et(A,G) - H i

et(A,G”) - H i+1
et (A,G′) - . . .

If G is a sheaf of non-Abelian groups (written multiplicatively), we cannot define
cohomology groups. Still, one can define a pointed set H1

et(A,G) as follows. Take
an étale cover C = {A - Ai} of A and define a 1-cocycle for C with values in
G to be a family

gij ∈ G(Aij) with Aij = Ai ⊗A Aj
satisfying the cocycle condition

(gij | Aijk)(gjk | Aijk) = (gik | Aijk)
where Aijk = Ai ⊗A Aj ⊗A Ak.
Two cocycles g and g′ for C are said to be cohomologous if there is a family hi ∈
G(Ai) such that for all i, j ∈ I we have

g′ij = (hi | Aij)gij(hj | Aij)−1

This is an equivalence relation and the set of cohomology classes is written as
H1
et(C,G). It is a pointed set having as its distinguished element the cohomology

class of gij = 1 ∈ G(Aij) for all i, j ∈ I .
We then define the non-Abelian first cohomology pointed set as

H1
et(A,G) = lim- H1

et(C,G)

where the limit is taken over all étale coverings of A. It coincides with the previous
definition in case G is Abelian.
A sequence 1 - G′ - G - G” - 1 of sheaves of groups on Aet is said
to be exact if for every B ∈ Aet we have

• G′(B) = Ker G(B) - G”(B)
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• For every g” ∈ G”(B) there is a cover {B - Bi} in Aet and sections
gi ∈ G(Bi) such that gi maps to g” | B.

Proposition 2.4.1. For an exact sequence of groups on Aet

1 - G′ - G - G” - 1

there is associated an exact sequence of pointed sets

1 - G′(A) - G(A) - G”(A)
δ- H1

et(A,G
′) -

- H1
et(A,G) - H1

et(A,G”) ........- H2
et(A,G

′)

where the last map exists when G′ is contained in the center of G (and therefore is
Abelian whence H2 is defined).

Proof. The connecting map δ is defined as follows. Let g” ∈ G”(A) and
let C = {A - Ai} be an étale covering of A such that there are gi ∈ G(Ai)
that map to g | Ai under the map G(Ai) - G”(Ai). Then, δ(g) is the class
determined by the one cocycle

gij = (gi | Aij)−1(gj | Aij)

with values in G′. The last map can be defined in a similar manner, the other maps
are natural and one verifies exactness.

The main applications of this non-Abelian cohomology for non-commutative algebra
is as follows. Let Λ be a not necessarily commutative A-algebra and M an A-
module. Consider the sheaves of groups Aut(Λ) resp. Aut(M) on Aet associated
to the presheaves

B 7→ AutB−alg(Λ ⊗A B) resp. B 7→ AutB−mod(M ⊗A B)

for all B ∈ Aet. A twisted form of Λ (resp. M) is an A-algebra Λ′ (resp. an
A-module M ′) such that there is an étale cover C = {A - Ai} of A such that
there are isomorphisms

Λ ⊗A Ai
φi- Λ′ ⊗A Ai resp. M ⊗A Ai

ψi- M ′ ⊗A Ai

of Ai-algebras (resp. Ai-modules). The set of A-algebra isomorphism classes (resp.
A-module isomorphism classes) of twisted forms of Λ (resp. M) is denoted by
TwA(Λ) (resp. TwA(M)). To a twisted form Λ′ one associates a cocycle on C

αΛ′ = αij = φ−1
i ◦ φj

with values in Aut(Λ). Moreover, one verifies that two twisted forms are isomorphic
as A-algebras if their cocycles are cohomologous. That is, there is an embedding

TwA(Λ) ⊂ - H1
et(A,Aut(Λ)) and similarly TwA(M) ⊂ - H1

et(A,Aut(M))

In favorable situations one can even show bijectivity. In particular, this is the case
if the automorphisms group is a smooth affine algebraic group-scheme.
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2.5. Stalks and Henselizations

If p is a prime ideal of A we will denote with kp the algebraic closure of the field of
fractions of A/p. An étale neighborhood of p is an étale extension B ∈ Aet such
that the diagram below is commutative

A
nat - kp

�
�

�
�

��

B

et

?

The analogue of the localization Ap for the étale topology is the strict Henselization

Ashp = -
lim

B

where the limit is taken over all étale neighborhoods of p.
Recall that a local algebra L with maximal ideal m and residue map π :
L -- L/m = k is said to be Henselian if the following condition holds. Let
f ∈ L[t] be a monic polynomial such that π(f) factors as g0.h0 in k[t], then f
factors as g.h with π(g) = g0 and π(h) = h0. If L is Henselian then tensoring
with k induces an equivalence of categories between the étale A-algebras and the
étale k-algebras.
An Henselian local algebra is said to be strict Henselian if and only if its residue
field is algebraically closed. Thus, a strict Henselian ring has no proper finite
étale extensions and can be viewed as a local algebra for the étale topology.

Example 2.5.1. Consider the local algebra of C[x1, . . . , xd] in the maximal ideal
(x1, . . . , xd), then the Henselization and strict Henselization are both equal to

C{x1, . . . , xd}
the ring of algebraic functions. That is, the subalgebra of C[[x1, . . . , xd]] of for-
mal power-series consisting of those series φ(x1, . . . , xd) which are algebraically
dependent on the coordiate functions xi over C. In other words, those φ
forw which there exists a non-zero polynomial f(xi, y) ∈ C[x1, . . . , xd, y] with
f(x1, . . . , xd, φ(x1, . . . , xd)) = 0.
These algebraic functions may be defined implicitly by polynomial equations. Con-
sider a system of equations

fi(x1, . . . , xd; y1, . . . , ym) = 0 for fi ∈ C[xi, yj ] and 1 ≤ i ≤ m

Suppose there is a solution in C with

xi = 0 and yj = yoj

such that the Jacobian matrix is non-zero

det (
∂fi
∂yj

(0, . . . , 0; yo1, . . . , y
0
m)) 6= 0

Then, the system can be solved uniquely for power series yj(x1, . . . , xd) with
yj(0, . . . , 0) = yoj by solving inductively for the coefficients of the series. One can

show that such implicitly defined series yj(x1, . . . , xd) are algebraic functions and
that, conversely, any algebraic function can be obtained in this way.
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If G is a sheaf on Aet and p is a prime ideal of A, we define the stalk of G in p to
be

Gp = lim- G(B)

where the limit is taken over all étale neighborhoods of p. One can verify mono-
epi- or isomorphisms of sheaves by checking it in all the stalks.
If A is an affine algebra defined over an algebraically closed field, then it suffices to
verify in the maximal ideals of A.
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CHAPTER 3

Central simple algebras and cohomology

In this chapter we will use étale cohomology to begin the study of central simple
algebras of dimension n2 over functionfields.

3.1. The étale site of a field

Let K be a field of characteristic zero, choose an algebraic closure K with absolute
Galois group GK = Gal(K/K).

Lemma 3.1.1. The following are equivalent

1. K - A is étale
2. A⊗K K ' K × . . .× K

3. A =
∏
Li where Li/K is a finite field extension

Proof. Assume (1), then A = K[x1, . . . , xn]/(f1, . . . , fn) where fi have invert-
ible Jacobian matrix. Then A⊗K is a smooth algebra (hence reduced) of dimension
0 so (2) holds.
Assume (2), then

HomK−alg(A,K) ' HomK−alg(A⊗ K,K)

has dimK(A⊗ K) elements. On the other hand we have by the Chinese remainder
theorem that

A/Jac A =
∏

i

Li

with Li a finite field extension of K. However,

dimK(A⊗ K) =
∑

i

dimK(Li) = dimK(A/Jac A) ≤ dimK(A)

and as both ends are equal A is reduced and hence A =
∏

i Li whence (3).
Assume (3), then each Li = K[xi]/(fi) with ∂fi/∂xi invertible in Li. But then
A =

∏
Li is étale over K whence (1).

To each finite étale extension A =
∏
Li we can associate the finite set rts(A) =

HomK−alg(A,K) on which the Galois group GK acts via a finite quotient group.
If we write A = K[t]/(f), then rts(A) is the set of roots in K of the polynomial f
with obvious action by GK . Galois theory, in the interpretation of Grothendieck
can now be stated as

Proposition 3.1.2. The functor

Ket
rts(−)- finite GK − sets

is an anti-equivalence of categories.

21
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We will now give a similar interpretation of the Abelian sheaves on Ket. Let G be
a presheaf on Ket. Define

MG = lim- G(L)

where the limit is taken over all subfields L ⊂ - K that are finite over K. The
Galois group GK acts on G(L) on the left through its action on L whenever L/K
is Galois. Hence, GK acts an MG and MG = ∪MH

G where H runs through the
open subgroups of GK whence MG is a continuous GK-module.
Conversely, given a continuous GK -module M we can define a presheaf GM on Ket

such that

• GM (L) = MH where H = GL = Gal(K/L).
• GM (

∏
Li) =

∏
GM (Li).

One verifies that GM is a sheaf of Abelian groups on Ket.

Theorem 3.1.3. There is an equivalence of categories

S(Ket)
-� GK −mod

induced by the correspondences G 7→MG and M 7→ GM .

Proof. A GK-morphism M - M ′ induces a morphism of sheaves
GM

- GM ′ . Conversely, if H is an open subgroup of GK with L = KH ,

then if G
φ- G′ is a sheafmorphism, φ(L) : G(L) - G′(L) commutes with

the action of GK by functoriality of φ. Therefore, lim- φ(L) is a GK-morphism

MG
- MG′ .

One verifies easily that HomGK
(M,M ′) - Hom(GM ,GM ′) is an isomorphism

and that the canonical map G - GMG
is an isomorphism.

In particular, we have that G(K) = G(K)GK for every sheaf G of Abelian groups
on Ket and where G(K) = MG. Hence, the right derived functors of Γ and (−)G

coincide for Abelian sheaves.
The category GK − mod of continuous GK-modules is Abelian having enough
injectives. Therefore, the left exact functor

(−)G : GK −mod - Ab

admits right derived functors. They are called the Galois cohomology groups and
denoted

Ri MG = H i(GK ,M)

Therefore, we have.

Proposition 3.1.4. For any sheaf of Abelian groups G on Ket we have a group
isomorphism

H i
et(K,G) ' H i(GK ,G(K))

Therefore, étale cohomology is a natural extension of Galois cohomology to arbi-
trary algebras.
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3.2. Central simple algebras

The following definition-characterization of central simple algebras is classical

Proposition 3.2.1. Let A be a finite dimensional K-algebra. The following are
equivalent :

1. A has no proper twosided ideals and the center of A is K.
2. AK = A⊗K K 'Mn(K) for some n.
3. AL = A⊗K L 'Mn(L) for some n and some finite Galois extension L/K.
4. A ' Mk(∆) for some k where D is a division algebra of dimension l2 with

center K.

The last part of this result suggests the following definition. Call two central simple
algebras A and A′ equivalent if and only if A 'Mk(∆) and A′ 'Ml(∆) with ∆ a
division algebra. From the second characterization it follows that the tensorproduct
of two central simpleK-algebras is again central simple. Therefore, we can equip the
set of equivalence classes of central simple algebras with a product induced from the
tensorproduct. This product has the class [K] as unit element and [∆]−1 = [∆opp],
the opposite algebra as ∆ ⊗K ∆opp ' EndK(∆) = Ml2(K). This group is called
the Brauer group and is denoted Br(K). We will quickly recall its cohomological
description, all of which is classical.
GLr is an affine smooth algebraic group defined over K and is the automorphism
group of a vectorspace of dimension r. It defines a sheaf of groups on Ket that we
will denote by GLr. Using the general results on twisted forms of the foregoing
chapter we have

Lemma 3.2.2.

H1
et(K,GLr) = H1(GK , GLr(K)) = 0

In particular, we have ’Hilbert’s theorem 90’

H1
et(K,GmGmGm) = H1(GK ,K

∗) = 0

Proof. The cohomology group classifies K-module isomorphism classes of
twisted forms of r-dimensional vectorspaces overK. There is just one such class.

PGLn is an affine smooth algebraic group defined over K and it is the automor-
phism group of the K-algebra Mn(K). It defines a sheaf of groups on Ket denoted
by PGLn. By the proposition we know that any central simple K-algebra ∆ of
dimension n2 is a twisted form of Mn(K). Therefore,

Lemma 3.2.3. The pointed set of K-algebra isomorphism classes of central simple
algebras of dimension n2 over K coincides with the cohomology set

H1
et(K,PGLn) = H1(GK , PGLn(K))

Theorem 3.2.4. There is a natural inclusion

H1
et(K,PGLn) ⊂ - H2

et(K,µnµnµn) = Brn(K)

where Brn(K) is the n-torsion part of the Brauer group of K. Moreover,

Br(K) = H2
et(K,GmGmGm)

is a torsion group.
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Proof. Consider the exact commutative diagram of sheaves of groups on Ket

1 1

1 - µnµnµn
?

- GmGmGm

? (−)n- GmGmGm
- 1

||

1 - SLn

?
- GLn

? det- GmGmGm
- 1

PGLn

?
= PGLn

?

1
?

1
?

Taking cohomology of the second exact sequence we obtain

GLn(K)
det- K∗ - H1

et(K,SLn) - H1
et(K,GLn)

where the first map is surjective and the last term is zero, whence

H1
et(K,SLn) = 0

Taking cohomology of the first vertical exact sequence we get

H1
et(K,SLn) - H1

et(K,PGLn) - H2
et(K,µnµnµn)

from which the first claim follows.
As for the second, taking cohomology of the first exact sequence we get

H1
et(K,GmGmGm) - H2

et(K,µnµnµn) - H2
et(K,GmGmGm)

n.- H2
et(K,GmGmGm)

By Hilbert 90, the first term vanishes and hence H2
et(K,µnµnµn) is equal to the n-torsion

of the group

H2
et(K,GmGmGm) = H2(GK ,K

∗) = Br(K)

where the last equality follows from the crossed product result.

So far, the field K was arbitrary. If K is of trancendence degree d, this will put
restrictions on the ’size’ of the Galois group GK . In particular this will enable us
to show that H i(GK ,µnµnµn) = 0 for i > d. Before we can prove this we need to refresh
our memory on spectral sequences.
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3.3. Spectral sequences

Let A,B and C be Abelian categories such that A and B have enough injectives
and consider left exact functors

A f- B g- C
Let the functors be such that f maps injectives of A to g-acyclic objects in B, that
is Ri g(f I) = 0 for all i > 0. Then, there are connections between the objects

Rp g(Rq f(A)) and Rn gf(A)

for all objects A ∈ A. These connections can be summarized by giving a spectral
sequence

Theorem 3.3.1. Let A,B, C be Abelian categories with A,B having enough injec-
tives and left exact functors

A f- B g- C
such that f takes injectives to g-acyclics.
Then, for any object A ∈ A there is a spectral sequence

Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A)

In particular, there is an exact sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) - . . .

Moreover, if f is an exact functor, then we have

Rp gf(A) ' Rp g(f(A))

A spectral sequence Ep.q2 =⇒ En (or Ep,q1 =⇒ En) consists of the following data

1. A family of objects Ep,qr in an Abelian category for p, q, r ∈ Z such that
p, q ≥ 0 and r ≥ 2 (or r ≥ 1).

2. A family of morphisms in the Abelian category

dp.qr : Ep.qr
- Ep+r,q−r+1

r

satisfying the complex condition

dp+r,q−r+1
r ◦ dp,qr = 0

and where we assume that dp.qr = 0 if any of the numbers p, q, p+r or q−r+1
is < 1. At level one we have the following

Ep,q1 =

6

-•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

- - - - -

- - - - -

- - - - -

- - - - -

q

p
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At level two we have the following

Ep,q2 =

6

-•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

HHHHHj

q

p
3. The objects Ep,qr+1 on level r + 1 are derived from those on level r by taking

the cohomology objects of the complexes, that is,

Epr+1 = Ker dp,qr / Im dp−r,q+r−1
r

At each place (p, q) this process converges as there is an integer r0 depending
on (p, q) such that for all r ≥ r0 we have dp.qr = 0 = dp−r,q+r−1

r . We then
define

Ep,q∞ = Ep,qr0 (= Ep,qr0+1 = . . .)

Observe that there are injective maps E0,q
∞

⊂ - E0,q
2 .

4. A family of objects En for integers n ≥ 0 and for each we have a filtration

0 ⊂ Enn ⊂ Enn−1 ⊂ . . . ⊂ En1 ⊂ En0 = En

such that the successive quotients are given by

Enp / E
n
p+1 = Ep,n−p∞

That is, the terms Ep,q∞ are the composition terms of the limiting terms
Ep+q . Pictorially,

Ep,q∞ =

6

-•

•

•

•

•

•

•

•

•

•
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•

•
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@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

@
@@

q

pE0 E1 E2 E3 E4

For small n one can make the relation between En and the terms Ep,q2 explicit.
First note that

E0,0
2 = E0,0

∞ = E0
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Also, E1
1 = E1,0

∞ = E1,0
2 and E1/E1

1 = E0,1
∞ = Ker d0,1

2 . This gives an exact
sequence

0 - E1,0
2

- E1 - E0,1
2

d0,1
2- E2,0

2

Further, E2 ⊃ E2
1 ⊃ E2

2 where

E2
2 = E2,0

∞ = E2,0
2 / Im d0,1

2

and E2
1/E

2
2 = E1,1

∞ = Ker d1,1
2 whence we can extend the above sequence to

. . . - E0,1
2

d0,1
2- E2,0

2
- E2

1
- E1,1

2

d1,1
2- E3,0

2

as E2/E2
1 = E0,2

∞
⊂ - E0,2

2 we have that E2
1 = Ker (E2 - E0,2

2 ). If we
specialize to the spectral sequence Ep,q2 = Rp g(Rq f(A)) =⇒ Rn gf(A) we obtain
the exact sequence

0 - R1 g(f(A)) - R1 gf(A) - g(R1 f(A)) - R2 g(f(A)) -

- E2
1

- R1 g(R1 f(A)) - R3 g(f(A))

where E2
1 = Ker (R2 gf(A) - g(R2 f(A))).

3.4. Forced solutions and Tsen fields

Definition 3.4.1. A field K is said to be a Tsend-field if every homogeneous form
of degree deg with coefficients in K and n > degd variables has a non-trivial zero
in K.

For example, an algebraically closed field K is a Tsen0-field as any form in n-
variables defines a hypersurface in Pn−1

K
. In fact, algebraic geometry tells us a

stronger story

Lemma 3.4.2. Let K be algebraically closed. If f1, . . . , fr are forms in n variables
over K and n > r, then these forms have a common non-trivial zero in K.

Proof. Each fi defines a hypersurface V (fi) ⊂ - Pn−1
K

. The intersection of
r hypersurfaces has dimension ≥ n− 1− r from which the claim follows.

We want to extend this fact to higher Tsen-fields. The proof of the following result
is technical unenlightening inequality manipulation.

Proposition 3.4.3. Let K be a Tsend-field and f1, . . . , fr forms in n variables of
degree deg. If n > rdegd, then they have a non-trivial common zero in K.

For our purposes the main interest in Tsen-fields comes from :

Theorem 3.4.4. Let K be of trancendence degree d over an algebraically closed
field C, then K is a Tsend-field.

Proof. First we claim that the purely trancendental field C(t1, . . . , td) is a
Tsend-field. By induction we have to show that if L is Tsenk, then L(t) is Tsenk+1.
By homogeneity we may assume that f(x1, . . . , xn) is a form of degree deg with

coefficients in L[t] and n > degk+1. For fixed s we introduce new variables y
(s)
ij

with i ≤ n and 0 ≤ j ≤ s such that

xi = y
(s)
i0 + y

(s)
i1 t+ . . .+ y

(s)
is t

s
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If r is the maximal degree of the coefficients occurring in f , then we can write

f(xi) = f0(y
(s)
ij ) + f1(y

(s)
ij )t+ . . .+ fdeg.s+r(y

(s)
ij )tdeg.s+r

where each fj is a form of degree deg in n(s + 1)-variables. By the proposition
above, these forms have a common zero in L provided

n(s+ 1) > degk(ds+ r + 1) ⇐⇒ (n− degi+1)s > degi(r + 1) − n

which can be satisfied by taking s large enough. the common non-trivial zero in L
of the fj , gives a non-trivial zero of f in L[t].
By assumption, K is an algebraic extension of C(t1, . . . , td) which by the above
argument is Tsend. As the coefficients of any form over K lie in a finite extension
E of C(t1, . . . , td) it suffices to prove that E is Tsend.
Let f(x1, . . . , xn) be a form of degree deg in E with n > degd. Introduce new
variables yij with

xi = yi1e1 + . . . yikek

where ei is a basis of E over C(t1, . . . , td). Then,

f(xi) = f1(yij)e1 + . . .+ fk(yij)ek

where the fi are forms of degree deg in k.n variables over C(t1, . . . , td). Because
C(t1, . . . , td) is Tsend, these forms have a common zero as k.n > k.degd. Finding a
non-trivial zero of f in E is equivalent to finding a common non-trivial zero to the
f1, . . . , fk in C(t1, . . . , td), done.

A direct application of this result is Tsen’s theorem :

Theorem 3.4.5. Let K be the functionfield of a curve C defined over an alge-
braically closed field. Then, the only central simple K-algebras are Mn(K). That
is, Br(K) = 1.

Proof. Assume there exists a central division algebra ∆ of dimension n2 over
K. There is a finite Galois extension L/K such that ∆⊗L = Mn(L). If x1, . . . , xn2

is a K-basis for ∆, then the reduced norm of any x ∈ ∆,

N(x) = det(x⊗ 1)

is a form in n2 variables of degree n. Moreover, as x ⊗ 1 is invariant under the
action of Gal(L/K) the coefficients of this form actually lie in K.
By the main result, K is a Tsen1-field and N(x) has a non-trivial zero whenever
n2 > n. As the reduced norm is multiplicative, this contradicts N(x)N(x−1) = 1.
Hence, n = 1 and the only central division algebra is K itself.

If K is the functionfield of a surface, we also have an immediate application :

Proposition 3.4.6. Let K be the functionfield of a surface defined over an alge-
braically closed field. If ∆ is a central simple K-algebra of dimension n2, then the
reduced norm map

N : ∆ - K

is surjective.
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Proof. Let e1, . . . , en2 be a K-basis of ∆ and k ∈ K, then

N(
∑

xiei) − kxnn2+1

is a form of degree n in n2+1 variables. Since K is a Tsen2 field, it has a non-trivial
solution (x0

i ), but then, δ = (
∑
x0
i ei)x

−1
n2+1 has reduced norm equal to k.

3.5. Cohomological dimension and Tate fields

From the cohomological description of the Brauer group it is clear that we need to
have some control on the absolute Galois groupGK = Gal(K/K). In this section we
will see that finite trancendence degree forces some cohomology groups to vanish.

Definition 3.5.1. The cohomological dimension of a group G, cd(G) ≤ d if and
only if Hr(G,A) = 0 for all r > d and all torsion modules A ∈ G-mod.

Definition 3.5.2. A field K is said to be a Tated-field if the absolute Galois group
GK = Gal(K/K) satisfies cd(G) ≤ d.

First, we will reduce the condition cd(G) ≤ d to a more manageable one. To start,
one can show that a profinite group G has cd(G) ≤ d if and only if

Hd+1(G,A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we can
decompose the cohomology in its p-primary parts and relate their vanishing to the
cohomological dimension of the p-Sylow subgroups Gp of G. This problem can then
be verified by computing cohomology of finite simple Gp-modules of p-power order,
but for a profinite p-group there is just one such module namely Z/pZ with the
trivial action.
Combining these facts we have the following manageable criterium on cohomological
dimension.

Proposition 3.5.3. cd(G) ≤ d if Hd+1(G,Z/pZ) = 0 for the simple G-modules
with trivial action Z/pZ.

We will need the following spectral sequence in Galois cohomology

Proposition 3.5.4. (Hochschild-Serre spectral sequence) If N is a closed normal
subgroup of a profinite group G, then

Ep,q2 = Hp(G/N,Hq(N,A)) =⇒ Hn(G,A)

holds for every continuous G-module A.

Now, we are in a position to state and prove Tate’s theorem

Theorem 3.5.5. Let K be of trancendence degree d over an algebraically closed
field, then K is a Tated-field.

Proof. Let C denote the algebraically closed basefield, then K is algebraic
over C(t1, . . . , td) and therefore

GK ⊂ - GC(t1,...,td)

Thus, K is Tated if C(t1, . . . , td) is Tated. By induction it suffices to prove

If cd(GL) ≤ k then cd(GL(t)) ≤ k + 1
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Let L be the algebraic closure of L and M the algebraic closure of L(t). As L(t)
and L are linearly disjoint over L we have the following diagram of extensions and
Galois groups

L ⊂ - L(t) ⊂
GL(t)- M

�
�

�
�

�
�

GL(t)

�

L

GL

∪

6

⊂ - L(t)

GL

∪

6

where GL(t)/GL(t) ' GL.
We claim that cd(GL(t)) ≤ 1. Consider the exact sequence of GL(t)-modules

0 - µp - M∗ (−)p

- M∗ - 0

where µp is the subgroup (of C∗) of p-roots of unity. As GL(t) acts trivially on
µp it is after a choice of primitive p-th root of one isomorphic to Z/pZ. Taking
cohomology with respect to the subgroup GL(t) we obtain

0 = H1(GL(t),M
∗) - H2(GL(t),Z/pZ) - H2(GL(t),M

∗) = Br(L(t))

But the last term vanishes by Tsen’s theorem as L(t) is the functionfield of a curve
defined over the algebraically closed field L. Therefore, H2(GL(t),Z/pZ) = 0 for all
simple modules Z/pZ, whence cd(GL(t)) ≤ 1.
By the inductive assumption we have cd(GL) ≤ k and now we are going to use
exactness of the sequence

0 - GL - GL(t)
- GL(t)

- 0

to prove that cd(GL(t)) ≤ k+ 1. For, let A be a torsion GL(t)-module and consider
the Hochschild-Serre spectral sequence

Ep,q2 = Hp(GL, H
q(GL(t), A)) =⇒ Hn(GL(t), A)

By the restrictions on the cohomological dimensions of GL and GL(t) the level two
term has following shape

Ep,q2 =

6

-•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

. . .

. . .

. . .

. . .

@
@

@
@

@
@

@
@

@
@

@@
q

k k + 1 k + 2

p

2

where the only non-zero groups are lying in the lower rectangular region. Therefore,
all Ep,q∞ = 0 for p+q > k+1. Now, all the composition factors ofHk+2(GL(t), A) are

lying on the indicated diagonal line and hence are zero. Thus, Hk+2(GL(t), A) = 0
for all torsion GL(t)-modules A and hence cd(GL(t)) ≤ k + 1.
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As a consequence we obtain

Theorem 3.5.6. If A is a constant sheaf of an Abelian torsion group A on Ket,
then

H i
et(K,A) = 0

whenever i > trdegC(K).
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CHAPTER 4

The Artin-Mumford sequence

In this chapter we will prove the geometric classification by Zn-wrinkles of central
simple algebras over surfaces.

4.1. Leray spectral sequence

Assume we have an algebra morphism A
f- A′ and a sheaf of groups G on A′

et.
We define the direct image of G under f to be the sheaf of groups f∗ G on Aet
defined by

f∗ G(B) = G(B ⊗A A
′)

for all B ∈ Aet (recall that B ⊗A A
′ ∈ A′

et so the right hand side is well defined).
This gives us a left exact functor

f∗ : Sab(A′
et)

- Sab(Aet)

and therefore we have right derived functors of it Ri f∗.
If G is an Abelian sheaf on A′

et, then Ri f∗G is a sheaf on Aet. One verifies that
its stalk in a prime ideal p is equal to

(Ri f∗G)p = H i
et(A

sh
p ⊗A A′,G)

where the right hand side is the direct limit of cohomology groups taken over all
étale neighborhoods of p.
We can relate cohomology of G and f∗G by the following

Theorem 4.1.1. (Leray spectral sequence) If G is a sheaf of Abelian groups on

A′
et and A

f- A′ an algebra morphism, then there is a spectral sequence

Ep,q2 = Hp
et(A,R

q f∗G) =⇒ Hn
et(A,G)

In particular, if Rj f∗G = 0 for all j > 0, then for all i ≥ 0 we have isomorphisms

H i
et(A, f∗G) ' H i

et(A
′,G)

4.2. Cohomology for discrete valuation rings

Consider the setting

A
i - K

k

π

?

33
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where A is a discrete valuation ring in K with residue field A/m = k. As always, we
will assume that A is a C-algebra. By now we have a grip on the Galois cohomology
groups

H i
et(K,µnµnµn

⊗l) and H i
et(k,µnµnµn

⊗l)

and we will use this information to compute the étale cohomology groups

H i
et(A,µnµnµn

⊗l)

Here, µnµnµn
⊗l = µnµnµn ⊗ . . .⊗µnµnµn

︸ ︷︷ ︸

l

where the tensorproduct is as sheafs of invertible Zn =

Z/nZ-modules.
We will consider the Leray spectral sequence for i and hence have to compute the
derived sheaves of the direct image

Lemma 4.2.1. 1. R0 i∗µnµnµn
⊗l ' µnµnµn

⊗l on Aet.
2. R1 i∗µnµnµn

⊗l ' µnµnµn
⊗l−1 concentrated in m.

3. Rj i∗µnµnµn
⊗l ' 0 whenever j ≥ 2.

Proof. The strict Henselizations of A at the two primes {0,m} are resp.

Ash0 ' K and Ashm ' k{t}

where K (resp. k) is the algebraic closure of K (resp. k). Therefore,

(Rj i∗µnµnµn
⊗l)0 = Hj

et(K,µnµnµn
⊗l)

which is zero for i ≥ 1 and µnµnµn
⊗l for j = 0. Further, Ashm ⊗AK is the field of fractions

of k{t} and hence is of trancendence degree one over the algebraically closed field
k, whence

(Rj i∗µnµnµn
⊗l)m = Hj

et(L,µnµnµn
⊗l)

which is zero for j ≥ 2 because L is Tate1.

For the field-tower K ⊂ L ⊂ K we have that GL = Ẑ = lim� µm because the only

Galois extensions of L are the Kummer extensions obtained by adjoining m
√
t. But

then,

H1
et(L,µnµnµn

⊗l) = H1(Ẑ,µnµnµn
⊗l(K)) = Hom(Ẑ,µnµnµn

⊗l(K)) = µnµnµn
⊗l−1

from which the claims follow.

Theorem 4.2.2. We have a long exact sequence

0 - H1(A,µnµnµn
⊗l) - H1(K,µnµnµn

⊗l) - H0(k,µnµnµn
⊗l−1) -

H2(A,µnµnµn
⊗l) - H2(K,µnµnµn

⊗l) - H1(k,µnµnµn
⊗l−1) - . . .

Proof. By the foregoing lemma, the second term of the Leray spectral se-
quence for i∗µnµnµn

⊗l looks like
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0 0 0 . . .

H0(k,µnµnµn
⊗l−1) H1(k,µnµnµn

⊗l−1) H2(k,µnµnµn
⊗l−1) . . .

H0(A,µnµnµn
⊗l) H1(A,µnµnµn

⊗l) H2(A,µnµnµn
⊗l) . . .

with connecting morphisms

H i−1
et (k,µnµnµn

⊗l−1)
αi- H i+1

et (A,µnµnµn
⊗l)

The spectral sequences converges to its limiting term which looks like

0 0 0 . . .

Ker α1 Ker α2 Ker α3 . . .

H0(A,µnµnµn
⊗l) H1(A,µnµnµn

⊗l) Coker α1 . . .

and the Leray sequence yields short exact sequences

0 - H1
et(A,µnµnµn

⊗l) - H1
et(K,µnµnµn

⊗l) - Ker α1
- 0

0 - Coker α1
- H2

et(K,µnµnµn
⊗l) - Ker α2

- 0

0 - Coker αi−1
- H i

et(K,µnµnµn
⊗l) - Ker αi - 0

and gluing these sequences yields the required result.

In particular, if A is a discrete valuation ring of K with residue field k we have for
each i a connecting morphism

H i
et(K,µnµnµn

⊗l)
∂i,A- H i−1

et (k,µnµnµn
⊗l−1)
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4.3. Coniveau spectral sequence

Like any other topology, the étale topology can be defined locally on any scheme
X . That is, we call a morphism of schemes

Y
f- X

an étale extension (resp. cover) if locally f has the form

fa | Ui : Ai = Γ(Ui,OX ) - Bi = Γ(f−1(Ui),OY )

with Ai - Bi an étale extension (resp. cover) of algebras.
Again, we can construct the étale site of X locally and denote it with Xet.
Presheaves and sheaves of groups on Xet are defined similarly and the right de-
rived functors of the left exact global sections functor

Γ : Sab(Xet) - Ab

will be called the cohomology functors and we denote

Ri Γ(G) = H i
et(X,G)

From now on we restrict to the case when X is a smooth, irreducible projective
variety of dimension d over C. In this case, we can initiate the computation of
the cohomology groups H i

et(X,µnµnµn
⊗l) via Galois cohomology of functionfields of

subvarieties using the coniveau spectral sequence

Theorem 4.3.1. Let X be a smooth irreducible variety over C. Let X (p) denote
the set of irreducible subvarieties x of X of codimension p with functionfield C(x),
then there exists a coniveau spectral sequence

Ep.q1 =
⊕

x∈X(p)

Hq−p
et (C(x),µnµnµn

⊗l−p) =⇒ Hp+q
et (X,µnµnµn

⊗l)

In contrast to the spectral sequences used before, the existence of the coniveau
spectral sequence by no means follows from general principles. In it, a lot of heavy
machinery on étale cohomology of schemes is encoded. In particular,

• cohomology groups with support of a closed subscheme, see Milne’s book
”Etale cohomology” pp. 91-94

• cohomological purity and duality, see loc.cit. Chpt VI, §5,6 pp. 241-252

a detailed exposition of which would take us too far afield.
Using the results on cohomological dimension and vanishing of Galois cohomology
of µnµnµn

⊗k when the index is larger than the trancendence degree, we see that the
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coniveau spectral sequence has the following shape

Ep,q1 =

6

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

. . .

. . .

. . .

. . .

. . .

. . .

�
�

�
�

�
�

�
�

�
�

�
�

�

q

p

d

where the only non-zero terms are in the indicated region.
Let us understand the connecting morphisms at the first level, a typical instance
of which is

⊕

x∈X(p)

H i(C(x),µnµnµn
⊕l−p) -

⊕

y∈X(p+1)

H i−1(C(y),µnµnµn
⊕l−p−1)

and consider one of the closed irreducible subvarieties x of X of codimension p and
one of those y of codimension p+ 1. Then, either y is not contained in x in which
case the component map

H i(C(x),µnµnµn
⊕l−p) - H i−1(C(y),µnµnµn

⊕l−p−1)

is the zero map. Or, y is contained in x and hence defines a codimension one
subvariety of x. That is, y defines a discrete valuation on C(x) with residue field
C(y). In this case, the above component map is the connecting morphism defined
in the previous section.
In particular, let K be the functionfield of X . Then we can define the unramified
cohomology groups

F i,ln (K/C) = Ker H i(K,µnµnµn
⊗l)

⊕∂i,A- ⊕H i−1(kA,µnµnµn
⊗l−1)

where the sum is taken over all discrete valuation rings A of K (or equivalently, the
irreducible codimension one subvarieties of X) with residue field kA. By definition,
this is a (stable) birational invariant of X . In particular, if X is (stably) rational
over C, then

F i,ln (K/C) = 0 for all i, l ≥ 0

4.4. The case of surfaces

In this section S will be a smooth irreducible projective surface.

Definition 4.4.1. S is called simply connected if every étale cover Y - S is
trivial, that is, Y is isomorphic to a finite disjoint union of copies of S.
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The first term of the coniveau spectral sequence of S has following shape

0 0 0 0 . . .

H2(C(S),µnµnµn) ⊕C H1(C(C),Zn) ⊕Pµnµnµn−1 0 . . .

H1(C(S),µnµnµn) ⊕CZn 0 0 . . .

µnµnµn 0 0 0 . . .

where C runs over all irreducible curves on S and P over all points of S.

Lemma 4.4.2. For any smooth S we have H1(C(S),µnµnµn) -- ⊕C Zn. If S is
simply connected, H1

et(S,µnµnµn) = 0.

Proof. Using the Kummer sequence 1 - µnµnµn - GmGmGm
(−)- GmGmGm

- 1
and Hilbert 90 we obtain that

H1
et(C(S),µnµnµn) = C(S)∗/C(S)∗n

The first claim follows from the exact diagram describing divisors of rational func-
tions

µn ' µn 0

0 - C∗
?

- C(S)∗
? div- ⊕CZ

?
- 0

0 - C∗
?

- C(S)∗

(−)n

? div- ⊕CZ

n.

?
- 0

0
?

⊕CZn

?
' ⊕CZn

?

By the coniveau spectral sequence we have that H1
et(S,µnµnµn) is equal to the kernel of

the morphism

H1
et(C(S),µnµnµn)

γ- ⊕C Zn

and in particular, H1(S,µnµnµn) ⊂ - H1(C(S),µnµnµn).
As for the second claim, an element in H1(S,µnµnµn) determines a cyclic extension
L = C(S) n

√
f with f ∈ C(S)∗/C(S)∗n such that in each fieldcomponent Li of L
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there is an étale cover Ti - S with C(Ti) = Li. By assumption no non-trivial
étale covers exist whence f = 1 ∈ C(S)∗/C(S)∗n.

In we invoke another major tool in étale cohomology of schemes, Poincaré duality,
we obtain the following information on the cohomology groups for S.

Proposition 4.4.3. (Poincaré duality for S) If S is simply connected, then

1. H0
et(S,µnµnµn) = µnµnµn

2. H1
et(S,µnµnµn) = 0

3. H3
et(S,µnµnµn) = 0

4. H4
et(S,µnµnµn) = µnµnµn

−1

Proof. The third claim follows from the second as both groups are dual to
each other. The last claim follows from the fact that for any smooth irreducible
projective variety X of dimension d one has that

H2d
et (X,µnµnµn) ' µnµnµn

⊗1−d

We are now in a position to state and prove the important

Theorem 4.4.4. (Artin-Mumford exact sequence) If S is a simply connected
smooth projective surface, then the sequence

0 - Brn(S) - Brn(C(S)) - ⊕C C(C)∗/C(C)∗n -

- ⊕P µnµnµn−1 - µnµnµn
−1 - 0

is exact.

Proof. The top complex in the first term of the coniveau spectral sequence
for S was

H2(C(S),µnµnµn)
α- ⊕C H1(C(C),Zn)

β- ⊕P µnµnµn
The second term of the spectral sequence (which is also the limiting term) has the
following form

0 0 0 0 . . .

Ker α Ker β/Im α Coker β 0 . . .

Ker γ Coker γ 0 0 . . .

µnµnµn 0 0 0 . . .

By the foregoing lemma we know that Coker γ = 0. By Poincare duality we know
that Ker β = Im α and Coker β = µnµnµn

−1. Hence, the top complex was exact in its
middle term and can be extended to an exact sequence

0 - H2(S,µnµnµn) - H2(C(S),µnµnµn) - ⊕C H1(C(C),Zn) -
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⊕Pµnµnµn−1 - µnµnµn
−1 - 0

As Zn ' µnµnµn the third term is equal to ⊕CC(C)∗/C(C)∗n by the argument given
before and the second term we remember to be Brn(C(S). The identification of
Brn(S) with H2(S,µnµnµn) will be explained in the next section.

Some immediate consequences can be drawn from this :

• For a smooth simply connected surface S, Brn(S) is a birational invariant
(it is the birational invariant F 2,1

n (C(S)/C) of the foregoing section.
• In particular, if S = P2 we have that Brn(P2) = 0 and we obtain the

description of Brn(C(x, y)) by Zn-wrinkles as

0 - Brn C(x, y) - ⊕C C(C)∗/C(C)∗n - ⊕P µnµnµn−1 - µnµnµn - 0

Exercise 4.4.5. If S is not necessarily simply connected, show that any class in
Br(C(S))n determines a Zn-wrinkle.

Exercise 4.4.6. If X is a smooth irreducible rational projective variety of dimen-
sion d, show that the obstruction to classifying Br(C(X))n by Zn-wrinkles is given
by H3

et(X,µnµnµn).

4.5. Interpretation via maximal orders

In this section we will give a ringtheoretical interpretation of the maps in the Artin-
Mumford sequence. Observe that nearly all maps are those of the top complex of the
first term in the coniveau spectral sequence for S. We gave an explicit description
of them using discrete valuation rings. The statements below follow from this
description.
Let us consider a discrete valuation ring A with field of fractions K and residue
field k. Let ∆ be a central simple K-algebra of dimension n2.

Definition 4.5.1. An A-subalgebra Λ of ∆ will be called an A-order if it is a free
A-module of rank n2 with Λ.K = ∆. An A-order is said to be maximal if it is not
properly contained in any other order.

In order to study maximal orders in ∆ (they will turn out to be all conjugated),

we consider the completion Â with respect to the m-adic filtration where m = At
with t a uniformizing parameter of A. K̂ will denote the field of fractions of Â and
∆̂ = ∆ ⊗K K̂.
Because ∆̂ is a central simple K̂-algebra of dimension n2 it is of the form

∆̂ = Mt(D)

where D is a division algebra with center K̂ of dimension s2 and hence n = s.t. We
call t the capacity of ∆ at A.
In D we can construct a unique maximal Â-order Γ, namely the integral closure
of Â in D. We can view Γ as a discrete valuation ring extending the valuation v
defined by A on K. If v : K̂ - Z, then this extended valuation

w : D - n−2Z is defined as w(a) = (K̂(a) : K̂)−1v(NK̂(a)/K̂(a))

for every a ∈ D where K̂(a) is the subfield generated by a and N is the norm map
of fields.
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The image of w is a sugroup of the form e−1Z ⊂ - n−2.Z. The number e = e(D/K̂)

is called the ramification index of D over K̂. We can use it to normalize the
valuation w to

vD : D - Z defined by vD(a) =
e

n2
v(ND/K̂(a))

With these conventions we have that vD(t) = e.
The maximal order Γ is then the subalgebra of all elements a ∈ D with vD(a) ≥
0. It has a unique maximal ideal generated by a prime element T and we have
that Γ = Γ/TΓ is a division algebra finite dimensional over Â/tÂ = k (but not
necessarily having k as its center).

The inertial degree of D over K̂ is defined to be the number f = f(D/K̂) = (Γ : k)
and one shows that

s2 = e.f and e | s whence s | f
After this detour, we can now take Λ = Mt(Γ) as a maximal Â-order in ∆̂. One

shows that all other maximal Â-orders are conjugated to Λ. Λ has a unique maximal
ideal M with Λ = Mt(Γ).

Definition 4.5.2. With notations as above, we call the numbers e = e(D/K̂),

f = f(D/K̂) and t resp. the ramificaton, inertia and capacity of the central simple
algebra ∆ at A. If e = 1 we call Λ an Azumaya algebra over A, or equivalently, if
Λ/tΛ is a central simple k-algebra of dimension n2.

Now let us consider the case of a discrete valuation ring A in K such that the
residue field k is Tsen1. The center of the division algebra Γ is a finite dimensional
field extension of k and hence is also Tsen1 whence has trivial Brauer group and
therefore must coincide with Γ. Hence,

Γ = k(a)

a commutative field, for some a ∈ Γ. But then, f ≤ s and we have e = f = s and
k(a) is a cyclic degree s field extension of k.
Because s | n, the cyclic extension k(a) determines an element of H1

et(k,Zn).

Definition 4.5.3. Let Z be a normal domain with field of fractions K and let
∆ be a central simple K-algebra of dimension n2. A Z-order B is a subalgebra
which is a finitely generated Z-module. It is called maximal if it is not properly
contained in any other order. One can show that B is a maximal Z-order if and
only if Λ = Bp is a maximal order over the discrete valuation ring A = Zp for every
height one prime ideal p of Z.

Return to the situation of an irreducible smooth projective surface S. If ∆ is a
central simple C(S)-algebra of dimension n2, we define a maximal order as a sheaf
B of OS-orders in ∆ which for an open affine cover Ui ⊂ - S is such that

Bi = Γ(Ui,B) is a maximal Zi = Γ(Ui,OS) order in ∆

Any irreducible curve C on S defines a discrete valuation ring on C(S) with residue
field C(C) which is Tsen1. Hence, the above argument can be applied to obtain
from B a cyclic extension of C(C), that is, an element of C(C)∗/C(C)∗n.

Definition 4.5.4. We call the union of those curves such that B determines a
non-trivial cyclic extension of C(C) the ramification divisor of ∆ (or of B).
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The map in the Artin-Mumford exact sequence

Brn(C(S)) -
⊕

C

H1
et(C(C),µnµnµn)

assigns to the class of ∆ the cyclic extensions introduced above.

Definition 4.5.5. An S-Azumaya algebra (of index n) is a sheaf of maximal orders
in a central simple C(S)-algebra ∆ of dimension n2 such that it is Azumaya at each
curve C, that is, such that [∆] lies in the kernel of the above map.

One can show that if B and B′ are S-Azumaya algebras of index n resp. n′, then
B⊗OS

B′ is an Azumaya algebra of index n.n′. We call an Azumaya algebra trivial if
it is of the form End(P) where P is a vectorbundle over S. The equivalence classes
of S-Azumayay algebras can be given a group-structure called the Brauer-group of
the surface S.
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Non-commutative smooth models





CHAPTER 5

Restricted smooth models

Assume K is a field of trancendence degree d over C. By Hironaka’s result on
resolution of singularities we know that K has a smooth model. Ringtheoretically,
this means that there is a positively graded affine C-domain

A = C[x0, . . . , xm]/(f1, . . . , fk)

generated in degree one by the xi and where the fi are homogeneous polynomials
such that

1. A is a model for K. That is, if we localize at the multiplicative system of
non-zero homogeneous elements of A we obtain the graded field

Qg(A) = K[t, t−1]

with t of degree one.
2. A is a smooth model for K if X = Proj A is smooth. That is, consider the

zero set

Proj A = V (f1, . . . , fk) ⊂ - Pm

then at each point p ∈ V (f1, . . . , fk), the kernel of the linear map

(
∂fi
∂xj

)(p) : Cm+1 - Ck

will be of dimension d+ 1.

In this chapter we will consider a non-commutative analogous situation, where the
role of K is replaced by a central simple K-algebra ∆ of dimension n2.

5.1. Cayley-Hamilton algebras

We fix a fieldK of trancendence degree d, a central simpleK-algebra ∆ of dimension
n2 and a connected graded algebra

A = C ⊕A1 ⊕A2 ⊕A3 ⊕ . . .

which is affine and generated in degree one, that is,

A1 = Ca1 + . . .+ Cam

and there is an epimorphism

C〈x1, . . . , xm〉 -- A

mapping xi to ai. Moreover, we will assume that A is a finite module over its center
C which is itself a graded algebra. We will always assume that C is a normal (that
is, integrally closed) domain.

45
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Definition 5.1.1. The graded algebra A is said to be a model for ∆ if A is
prime and if we localize at the Ore-set of non-zero central homogeneous elements
we obtain

Qg(A) = ∆[t, t−1]

where t is a central element of degree one. In particular, C will be a model for K
though not necessarily generated in degree one.

We recall the definition of the reduced trace map tr : A - C. As ∆[t, t−1⊗KK '
Mn(K[t, t−1) we can define for any a ∈ A its reduced trace tr(a) = Tr(a ⊗ 1) ∈
K[t, t−1]. As Tr is compatible with the Galois action and a⊗1 is invariant underGK ,
it follows that tr(a) ∈ K[t, t−1]. Moreover, as C is integrally closed in K[t, t−1] and
a is integral over C, it follows that tr(a) ∈ C. Moreover, as we are in characteristic
zero we have that tr(A) = C. Remark that tr is a homogeneous linear map. A
with its reduced trace map is a special instance of a Cayley-Hamilton algebra.
Let A be an arbitrary C-algebra having a linear trace map tr : A - A satisfying
the following conditions for all a, b ∈ A

1. tr(ab) = tr(ba)
2. tr(a)b = btr(a)
3. tr(tr(a)b) = tr(a)tr(b)

In particular, the image of tr is a subalgebra of the center of A. We can then define
the n-th Cayley-Hamilton polynomial formally. In Q[x1, . . . , xn] one defines the
elementary symmetric functions by the identity

∏

(t− xi) =

n∑

i=0

(−1)iσit
d−i

and the power sums functions and {τi} are generators of the symmetric functions,
there are functions with rational coefficients such that

σk = pk(τ1, . . . , τn)

and we define the functions σk on A formally as

σk(a) = pk(tr(a), tr(a
2), . . . , tr(an))

and define the n-th Cayley-Hamilton polynomial for A to be

χn,a(t) =
n∑

i=0

(−1)iσi(a)t
n−i

Definition 5.1.2. We say that an algebra A with a trace function tr is an n-th
Cayley-Hamilton algebra if

1. For all a ∈ A we have χn,a(a) = 0 in A
2. tr(1) = n

With CHn we will denote the category with objects (A, trA) algebras A with a
trace function trA which are n-th Cayley-Hamilton algebras and morphisms f :
(A, trA) - (B, trB) are algebra morphisms which are trace preserving, that is,
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the diagram below is commutative

A
f - B

A

trA

?

f
- B

trB

?

As we have seen above, orders in central simple algebras are the archetypical exam-
ples of Cayley-Hamilton algebras. One can study Cayley-Hamilton algebras using
algebraic geometry and invariant theory.
Let (A, trA) ∈ CHn be m-generated, that is, there are elements a1, . . . , am ∈ A
such that the subalgebra in CHn generated by them is equal to A (note that this
is weaker than A being generated as algebra by m elements). Consider

modn A = {φ : (A, trA) - (Mn(C), T r) in CHn}

the set of n-dimensional trace preserving representations of A. By taking the images
φ(ai) ∈ Mn(C) for 1 ≤ i ≤ m it is clear that modn A is a closed subvariety of the
affine space Mn(C)⊕m.
There is a natural action of PGLn on Mn(C)⊕m by simultaneous conjugation.
Clearly, modn A is a PGLn-stable closed subvariety of Mn(C)⊕m. The PGLn-
orbits correspond to isomorphism classes of representations.

If we denote by CH
(m)
n the subcategory of CHn consisting of algebras which are

trace generated by m elements we have the following important result due to C.
Procesi

Theorem 5.1.3 (Procesi). The functor

CH(m)
n

- PGLn − closed subvarieties of Mn(C)⊕m

assigning modn A to A ∈ CH
(m)
n has a left inverse.

This inverse assigns to a PGLn-closed subvariety X the ring of PGLn-equivariant
maps X - Mn(C), or equivalently, the ring of concomitants

Mn(C[X ])PGLn

This means that we can recover A ∈ CH
(m)
n from the affine PGLn-variety modn A

as A 'Mn(C[modn A])PGLn .
The embedding jA : A ⊂ - Mn(C[XA]) has the following universal property. Let
C be a commutative algebra and F : A - Mn(C) a morphism in CHn (with
the usual trace map on Mn(C)) then there is a uniquely determined morphism
f : C[XA] - C making the diagram below commutative

A
j- Mn(C[XA])

	..
..
..
..
..
..
..

Mn(f)

Mn(C)

F

?
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After this short excursion to Cayley-Hamilton algebras let us return to the situation
at hand, that is, the connected graded algebra A is a model for ∆. In this case,

modn A ⊂ - Mn(C)⊕m

is a cone because all the defining relations of A are homogeneous. Alternatively,
there is a C∗-action on modn A which commutes with the PGLn-action. Using
Procesi’s result we have

Lemma 5.1.4. Let A be a model for ∆, then modn A has a natural action by
PGLn×C∗. Moreover, we recover the graded algebra A from the action on modn A.

Proof. By Procesi’s theorem we recover the algebra A as the ring of PGLn-
equivariant maps modn A - Mn(C). The C∗-action defines the gradation on A.
An element f ∈ Ak iff the diagram

modn A
f- Mn(C)

modn A

λ.

? f- Mn(C)

λk .

?

commutes where the vertical map on the left is action by λ ∈ C∗ on modn A and
on the right left multiplication by λk.

As modn A is a cone we can define its projective space

projn A = P(modn A) ⊂ - P(Mn(C)⊕m) = Pmn
2−1

which has an induced PGLn-action. We would like to call A smooth whenever
projn A is a smooth variety. However, we have to be careful about representations
having the zero representation in the closure of its orbit.

Definition 5.1.5. The semi-stable points projssn A of projn A are those deter-
mined by a representation A - Mn(C) on which a central homogeneous element
of A does not vanish.

Definition 5.1.6. A model A for ∆ is said to be a smooth model if and only if
projssn A is a smooth variety.

Exercise 5.1.7. If A is commutative, verify that projss1 A = Proj A. Hence the
above definition generalizes the classical one.

5.2. Module varieties

Lemma 5.2.1. Let A be a model for ∆ and 0 6= c ∈ C homogeneous. The localiza-
tion at the Ore-set {1, c.c2. . . .} has the form

Agc = . . .⊕ I−2 ⊕ I−1 ⊕B ⊕ I ⊕ I2 ⊕ . . .

where I is an invertible ideal of B, that is, for I−1 = {δ ∈ ∆ | I.δ ⊂ B} we have
I.I−1 = B.

Proof. Let deg(c) = u and write c =
∑
diai with deg(di) = u− 1, then

1 =
∑

(c−1di).ai ∈ (Agc)−1.(A
g
c)1

whence Agc is strongly graded and the last claim follows from the structure result
of strongly graded algebras and Qg(A) = ∆[t, t−1] with t central.
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A particularly interesting case is when I = Bc′ with c′ central.

Definition 5.2.2. A smooth model A of ∆ is said to be restricted if one can
cover projssn A with affine open sets X(c) where c ∈ C homogeneous such that

Agc = B[d, d−1]

and d central of degree one.

Lemma 5.2.3. If A is a restricted smooth model for ∆, then locally for the defining
cover we have

projssn A | X(c) = modn B

Proof. A trace preserving n-dimensional representation

φ : Agc = B[d, d−1] - Mn(C)

is determined by φ | B ∈ modn B and φ(d) = λIn for some λ ∈ C∗. The corre-
sponding point in projn A is hence fully determined by φ | B.

Therefore, the local study of restricted smooth models reduces to that of affine
algebras B with normal center Z(B) such that modn B is a smooth affine variety.
We can give a ringtheoretical interpretation of this condition. In analogy with the
infinitesimal lifting property of smooth commutative algebras we define

Definition 5.2.4. An affine algebra (B, trB) in CHn is said to be smooth if and
only if for every test-object (C,N) where (C, trC) ∈ CHn, N a nilpotent ideal (in-
variant under the trace map such that also (C/N, trC) ∈ CHn) and every morphism
φ : (B, trB) - (C/N, trC) in CHn the diagram below can be completed in CHn

0 - N - C - C/N - 0

�
�

�
�

�

φ

�

B

∃φ̃
6
.................

Using the universal property of jB : B ⊂ - Mn(C[modn B]) recalled in the previous
section we then have

Proposition 5.2.5 (Procesi). Equivalent are

1. B is a smooth algebra in CHn

2. modn B is a smooth variety

Proof. (1) ⇒ (2) : Let (C,N) be a commutative test-object for C[modn B].
We have to lift the map C[modn B] - C/N to C. By smoothness in CHn of B
we can complete with F the diagram

B
jB- Mn(C[modn B])

	..
..
..
..
..
..
..

∃Mn(f)

Mn(C)

∃F
?

.................
- Mn(C/N)

?

but then by the universal property of jB there is a uniquely determined map f :
C[modn B] - C which is the required lift.
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The reverse implication makes essential use of the Reynolds operator in invariant
theory.

We will make a few comments about the module varietiesmodn B for an arbitrary
affine C-algebra B in CHn. Let b1, . . . , bs be generators of B, then

modn B = {x : B - Mn(C)} ⊂ - Mn(C)⊕s = Asn
2

via x 7→ (x(b1), . . . , x(bs)). A point x determines an n-dimensional B-module Mx =
Cnx via bi.m = x(bi)m for all m ∈ Cn. There is a natural action of GLn on modn B
via conjugation in Mn(C) and x, x′ lie in the same orbit if and only if Mx ' Mx′

as B-module.

Definition 5.2.6. With notations as above we denote

1. The orbit GLn.x of x by Orbx.
2. The stabilizer subgroup Stabx(GLn) = {g ∈ GLn | g.x = x} by GLx.

Lemma 5.2.7. For any x ∈ modn B we have a canonical isomorphism

GLx ' AutB−mod(Mx)

Proof. Consider a B-module isomorphism g : Mx
- Mx determined by

g ∈ GLn. Then, g(bi.m) = bi.g(m) and hence

g.x(bi).m = x(bi).g.m for all m ∈ Mx = Cnx and 1 ≤ i ≤ s

But then, g.x.g−1 = x and g ∈ GLx.

A natural question is the correlation between algebraic properties of the B-module
Mx and geometric properties of the orbit Orbx ⊂ - modn B.

Definition 5.2.8. A filtration F on a finite dimensionalB-moduleM is a sequence
of submodules

0 = Mt ⊂ . . . ⊂M1 ⊂M0 = M

and the associated graded B-module is defined by

grF (M) = ⊕ti=1Mi−1/Mi

By the Jordan-Hölder theorem we know thatM has a filtration with all composition
factors Si = Mi−1/Mi simple B-modules.

Lemma 5.2.9. Let x, x′ ∈ modn B. Equivalent are

1. There is a one-parameter subgroup λ : C∗ - GLn such that
limt→0λ(t).x = x′.

2. There is a filtration F on Mx such that grF (Mx) 'Mx′

Proof. (1) ⇒ (2) : We consider the weightdecomposition of Mx = V

V = ⊕iVi where Vi = {v ∈ V | λ(t).v = ti.v for all t ∈ C∗} for i ∈ Z

and we consider Mj = ⊕i>jMi. We claim that the Mj define a filtration on Mx

with associated graded module Mx′ .
Consider the canonical inclusion and projection maps

Vi ⊂
ιi- V = ⊕Vi

πi-- Vi
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For b ∈ B the action x(b) = φ = (φij) ∈ End(V ) where φij = πj ◦φ◦ιi : Vi - Vj .
We have

Vi
φij - Vj

Vi

λ(t)−1

6

tj−iφij- Vj

λ(t)

?

and as limt→0λ(t).x(b) = x′(b) exists we have

• φij = 0 whenever j < i and hence Mk is a B-submodule of Mx

• limt→0(λ(t).x(b))ij = (x′(b))ij = 0 for i < j
• (x′(b))ii = (x(b))ii for all i

Therefore x′(b) is the diagonal matrix (φii) and the claim follows.
(2) ⇒ (1) : Consider a filtration F

0 = Mt ⊂ . . . ⊂M1 ⊂M0 = Mx

then there exist subspaces Vi of V = Mx such that Mj = ⊕ti=jVi and V = ⊕ti=0Vi.

If we then define an action λ(t) | Vi = ti.In this satisfies the requirements.

Theorem 5.2.10 (Artin-Voigt). 1. The closed GLn-orbits in modn B are pre-
cisely the isomorphism classes of semi-simple B-modules of dimension n.

2. The Zariski closure Orbx contains a unique closed orbit determined by the
direct sum of the composition factors of Mx.

Proof. Let x ∈ modn B, consider a Jordan-Hölder filtration on Mx with
associated graded gr(Mx) a semi-simple B-module of dimension n. Denote xss the
corresponding point of modn B.
(1) : If Orbx is closed, then by the foregoing lemma we have

Orbxss
⊂ Orbx = Orbx

and thus, gr(Mx) 'Mx whence Mx is semi-simple.
Conversely, assumeMx is semi-simple and let y ∈ Orbx. By the Hilbert-Mumfrd cri-
terium in invariant theory, there exists a one-parameter subgroup λ : C∗ - GLn
such that

limt→0λ(t).x ∈ Orby

Again by the foregoing lemma this implies that there is a filtration F on Mx such
that grF (Mx) ' My. However, as Mx is semi-simple grF (Mx) ' Mx and thus
Mx 'My and hence Orbx is closed.
(2) : Uniqueness follows from the Jordan-Hölder theorem.

In general, if X is an affine variety with an action by a reductive group G, then
the closed orbits are parameterized by th e points of an affine variety X/G, the
quotient variety. Its coordinate ring is

C[X/G] = C[X ]G

the ring of G-invariant polynomial functions on X . Moreover, the natural inclusion
C[X ]G ⊂ - C[X ] defines the quotient map

π : X -- X/G
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and for each ζ ∈ X/G the fiber π−1(ζ) contains a unique closed orbit (that of
minimal dimension).
Restricting to the case of interest to us we see that the set isossn B of isoclasses
of semi-simple n-dimensional representations of B has the structure of an affine
variety with coordinate ring

C[isossn B] = C[modn B]GLn

and we have a ringtheoretical interpretation of this quotient variety namely

C[isossn B] = Z(B)

If m is a maximal ideal of the center Z(B), then one determines the associated
semi-simple representation of B by taking the quotient of B/mB by its Jacobson
radical. In conclusion, we have

Theorem 5.2.11 (Procesi). If B is an affine algebra in CHn, then the module
variety modn B together with its natural GLn-action determines

1. B as the ring of equivariant maps modn B - M − n(C).
2. The center Z of B as the coordinate ring of the quotient variety.

5.3. Etale local structure

If X is a commutative smooth variety of dimension d and x a point of X then there
is only one type of étale local behavior at x, namely

Osh
x ' C{x1, . . . , xd}

the strict Henselization of the local ring in x is the ring of algebraic functions on d
variables.
In this section we will prove an analogous result for restricted smooth models of a
central simple algebra ∆ of dimension n2 over a field K of trancendence degree d.
We will show that for given n and d there are only finitely many types of étale local
behavior.
Hence, fix a restricted smooth model A and consider a cover of projssn A by affine
open sets determined by X(c) where c ∈ C is homogeneous and

Agc ' B[d, d−1]

with d central of degree one. Let Z be the center of B, then Z has field of fractions
K. Let m / Z be a maximal ideal. We want to study the structure of the algebra

Bshm = B ⊗Z Zshm
From the foregoing section we recall thatm determines a unique closed orbit Orbx in

modn B ⊂
open- projssn A with Mx a semi-simple B-module of dimension n. Consider

the decomposition of Mx in simple components

Mx = S⊕e1
1 ⊕ . . .⊕ S⊕er

r

with Si a simple B-module of dimension di. Then,
∑
eidi = n and the correspond-

ing point x ∈ modn B is given by the trace preserving morphism

x : B -- B = B/mB -- B/rad(B) = Md1(C)⊕e1 ⊕ . . .⊕Mdr
(C)⊕er

We say that x (or m) is a point of representation type

τ(x) = τ(m) = (e1, d1; . . . ; er, dr)
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The stabilizer subgroup GLx is then verified to be

GLe1 × . . .×GLer

embedded in GLn via





GLe1 ⊗ 1d1
. . .

GLer
⊗ 1dr






⊂ - GLn

We remark that GLx depends only on its representation type τ and we will denote
by GL(τ) the group ×GLei

embedded in GLn as above.
It will turn out that in order to describe Bshm we have to be able to understand
the normal space in x to the orbit Orbx as a module over the stabilizer subgroup
GLx = GL(τ).
We have GLn-equivariant closed embeddings

Orbx ⊂ - modn A ⊂ - Mn(C)⊕m

if b1, . . . , bm are generators of B. We have embeddings of the respective tangent
spaces in x

Tx Orbx ⊂ - Tx modn B ⊂ - Tx Mn(C)⊕m

which are embeddings as GL(τ)-modules and hence by reductivity of GL(τ) they
are direct factors.
Therefore, we have for the normal spaces to the orbit in modn B resp. Mn(C)⊕m

that

Nsm
x =

Tx XA

Tx Orbx
/ N big

x =
Tx Mn(C)⊕m

Tx Orbx

as GL(τ)-modules. That is, we have the following picture

@
@

@
@

@

@
@

@
@

@

.............................................
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H

π
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M⊕m
n

modn B

isoss
n B

Nbig
x

Orbx

Nsm
x

x

m
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Before we compute these GL(τ)-modules, let us explain the relevance to our prob-
lem.
This is an application of the Luna slice theorem in invariant theory adapted to
the situation of interest to us. In general, if H is a reductive subgroup of G acting
on an affine variety Z then one defines an H-action on G× Z via the map

h.(g, z) = (gh−1, h.z)

The corresponding quotient is called the associated fiber bundle

G×H Z = (G× Z)/H

and it acquires a G-action via multiplication on the left in the first component.
One can show that the corresponding quotient satisfies

(G×H Z)/G ' Z/H

Theorem 5.3.1 (Luna slice theorem). Let x be a smooth point of modn B of rep-
resentation type τ . Then, there exists a locally closed affine smooth subvariety
Sx ⊂ - modn B containing x, which is stable under the action of GL(τ) satisfying
the following properties

• The map GLn × Sx - modn B obtained by (g, s) 7→ g.s induces a GLn-
equivariant étale map

ψ : GLn ×GL(τ) Sx - modn A

with affine image. Moreover the induced quotient map

ψ/GLn : (GLn ×GL(τ) Sx)/GLn = Sx/GL(τ) - modn B/GLn = isossn B

is also étale.
• There is a GL(τ)-equivariant map

φ : Sx - Nsm
x = Tx Sx

such that φ(x) = 0 and with affine image. The induced quotient map

φ/GL(τ) : Sx/GL(τ) - Nsm
x /GL(τ)

is also étale.
• The above maps induce the following commutative diagram

GLn ×GL(τ) Sx

������������

GLn ×GL(τ) φ

HHHHHHHHHHH

ψ

j
GLn ×GL(τ) Nsm

x modn B

Sx/GL(τ)

??

������������

φ/GL(τ)

HHHHHHHHHHH

ψ/GLn

j
Nsm
x /GL(τ)

??
isossn B

??

where the vertical maps are the quotient maps, all diagonal maps are étale
and the upper ones are GLn-equivariant.



5.3. ETALE LOCAL STRUCTURE 55

Hence, theGLn-local structure ofmodn B in a neighborhood of x is the same as that

of GLn ×GL(τ) Nsm
x in a neighborhood of (1n, 0). Similarly, the local structure of

isossn B in a neighborhood ofm is the same as that ofN sm
x /GL(τ) in a neighborhood

of 0. Therefore, we have

Theorem 5.3.2. Let A be a restricted smooth model of ∆ and consider an open
cover projssn A | X(c) = modn B where B has center Z.
Let m be a maximal ideal of Z corresponding to a point x ∈ modn B of represen-
tation type τ = (e1, d1; . . . ; er, dr).
Let p denote the maximal ideal of C[N small

x /GL(τ)] corresponding to the point 0.
Then,

1. Zshm ' C[Nsm
x /GL(τ)]shp

2. Bshm ' (Mn(C[GLn ×GL(τ) Nsm
x ])GLn)shp

Hence, we know the étale local structure of Z and B in m if we know the GL(τ)-
module structure of N sm

x .

Since we know the embedding GL(τ) ⊂ - GLn and the action ofGLn onMn(C)⊕m

(by simultaneous conjugation) we know the structure of Tx Mn(C)⊕m = Mn(C)⊕

as GL(τ)-module. Further, the exact sequence

0 - Lie GL(τ) - Lie GLn - Tx Orbx - 0

allows us to determine the GL(τ)-module structure of Tx Orbx and consequently
that of N big

x = Tx Mn(C)⊕m/Tx Orbx.
Once we know an isotypical decomposition of N big

x , taking a direct subsum we
obtain all possibilities for N sm

x . Of course, later on, we will have to verify which of
these theoretical possibilities actually occur from a restricted smooth model.
Rather than writing down decompositions of N sm

x /N big
x in simple GL(τ)-modules

we prefer to represent this information by a ’local chart’. We use the following
dictionary

• a loop at vertex (i) corresponds with the GL(τ)-module Mei
(C) on which

GLei
acts by conjugation and the other factors act trivially.

• an arrow from vertex (i) to vertex (j) corresponds to the GL(τ)-module
Mei×ej

(C) on which GLei
× GLej

act via g.m = gimg
−1
j and the other

factors act trivially.
• a marked loop at vertex (i) corresponds to the simple GL(τ)-module
M0
ei

(C), that is, trace zero matrices with action of GLei
by conjugation

and trivial action by the other components.
• the label of a loop or arrow indicates the multiplicity of the corresponding

representation.

Lemma 5.3.3. With conventions as above and x a point of representation type τ
we have

1. The GL(τ) = GLe1 × . . .×GLer
-module structure of N big

x can be represented
by the local chart on r vertices such that the subchart on any two vertices
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1 ≤ i, j ≤ r is of the form

(i)•
ei

(j)•
ej

...............
................
...................

..........................
.......................................................

............................................................................................................................................

..................................................................................................................................................................................................
..........................

...................
................
...............
.

I

J

..........
...........
..............
.......................

.....................................................................................................................................................................................................................
...............
...........
..........
..

..........
...........
..............
.......................
.....................................................................................................................................................................................................................

...............
...........
..........
..H N

(m − 1)didj

(m − 1)didj

(m − 1)d2
i + 1 (m − 1)d2

j + 1

2. The GL(τ)-module structure of N sm
x can be represented by a local chart on

r vertices such that the subgraph on any two vertices 1 ≤ i, j ≤ r is of the
form

(i)•
ei

(j)•
ej

...............
................
...................

..........................
.......................................................

............................................................................................................................................

..................................................................................................................................................................................................
..........................

...................
................
...............
.

I

J

..........
...........
..............

........................
.......................................................................................................................................................................................................................................................................................

..................................................................................................................................................................
.........................
....................
....................................................

.....................................................
..........................

I

I

..........
...........
..............
........................
.......................................................................................................................................................................................................................................................................................

..................................................................................................................................................................
.........................
....................
....................................................

.....................................................
..........................
J

J

aij

aji

aii ajj

mii mjj

• •

where aij ≤ (m− 1)didj and aii +mii ≤ (m− 1)d2
i + 1 for all 1 ≤ i, j ≤ r.

Proof. (2) follows from (1) by observing that Mei×ej
(C) is a simple GL(τ)-

module and that the isotypical decomposition of Mei
(C) = M0

ei
(C) ⊕ Ctriv where

Ctriv is the trivial one-dimensional GL(τ)-module.

5.4. Classifying local charts

A local chart C = (M, e) consists of two data : the underlying ’map’ M that is,
the marked labeled directed graph and the ’dimension-vector’ e = (e1, . . . , er). If
we specify e we obtain a GL(eee) = ×GLei

-module R(M, e) any vector of which we
call a representation of the map M of dimension e. That is v ∈ R(M, e) assigns to
each

• arrow from (i) to (j) a matrix in Mei×ej
(C)

• unmarked loop in (i) a matrix in Mei
(C)

• marked loop in (i) a trace zero matrix in M 0
ei

(C)

A morphism from a representation v ∈ R(M, e) to a representation w ∈ R(M, f) is
an r-tuple of linear maps ψ = (ψ1, . . . , ψr) ∈ ⊕iMfi×ei

(C) such that every diagram

Cei
v - Cej

Cfi

ψi

?
v - Cfj

ψj

?
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is commutative where the horizontal maps are either arrows or (marked) loops in
M .
Having morphisms, the notions of sub- , quotient- and simple-representation are
obvious as are direct sums of representations of M . If we view the GL(e)-module
R(M, e) as an affine space on which GL(e) acts, then orbits correspond precisely
to isomorphism classes of representations.

Lemma 5.4.1. The local chart C = (M, e) of a restricted smooth model must be
such that R(M, e) contains simple representations of M .

Proof. Consider a point x ∈ modn B of representation type τ =
(e1, d1; . . . ; er, dr) with Nsm

x = R(M, e). By the Luna slice theorem we have
étale GLn-equivariant maps

GLn ×GL(τ) Nsm
x

�et GLn ×GL(τ) Sx
et- modn B

As B is a prime order, we have that any Zariski neighborhood of x in modn B
contains simple orbits, that is, closed orbits with stabilizer C∗. Because the maps
above are GLn-equivariant and étale every Zariski neighborhood of (1n, 0) contains
a closed GLn-orbits with stabilizer C∗. By the correspondence of orbits in fiber
bundles there must be closed GL(τ)-orbits in N sm

x = R(M, e) with stabilizer C∗.
By a version of the Artin-Voigt theorem for representations of the map M closed
orbits correspond to semi-simple representations of M . If the stabilizer of such a
representation is C∗ then it must be simple.

Hence, we have to determine which dimension vectors can arise from simple repre-
sentations of the map M . We define the Euler-form of M as the bilinear map

χM : Zr × Zr - Z

determined by the matrix χM = (χij) with entries

χij = −aij and χii = 1 − aii −mii

where aij is the number of arrows from (i) to (j) in M and aii resp. mii are the
number of (resp. marked) loops at (i).

Proposition 5.4.2. e = (e1, . . . , er) is the dimension-vector of a simple represen-
tation of the map M if and only if one of the following situations occurs

1. M = Ãr the extended Dynkin diagram with cyclic orientation and e =
(1, . . . , 1).

(r)•
1

-(1)•
1

�
�
�
�� A

A
A
AU•

1
•
1

. . .

��
�
�
�

•
1
� •

1

2. M 6= Ãr. Then, M has to be strongly connected (that is, any two vertices
can be connected by a directed path) and if δi = (δ1i, . . . , δri) are a standard
basis of Zr we must have

χM (e, δi) ≤ 0 and χ(δi, e) ≤ 0
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for all 1 ≤ i ≤ r.

Proof. We will only prove necessity of the conditions in (2). Sufficiency fol-
lows from a degeneration argument and induction.
Let v ∈ R(M, e) be a simple representation (that is, contains no proper subrepre-
sentations) and let v(φ) denote the linear map determined by the arrow, loop or
marked loop φ.
Assume M is not strongly connected, then we can divide M into maximal strongly
connected submaps M1, . . . ,Mz say. The direction of all arrows between two such
components must be all the same by maximality. Hence, there is a component Mi

having no arrows to other components. Now, define a proper subrepresentation
w of v with dimension-vector f = δM .e by w(φ) = v(φ) if φ is a map in Mi and
w(φ) = 0 otherwise. Hence, M must be strongly connected.
For each (i) we have χM (δi, e) = ei −

∑

(i)
φ- (j)

ej Hence, if χM (δi, eee) > k then

the natural morphism
⊕

(i)
φ- (j)

v(φ) : Cei -
⊕

(i)
φ- (j)

Cej

has a non-trivial kernel K of dimension k > 0 and determines a proper subrepre-
sentation of v of dimension-vector f = (δij.k)j .
Similarly, if χM (e, δi) = ei −

∑

(j)
φ- (i)

ej > 0 then the image of the natural

morphism
⊕

(j)
φ- (i)

v(φ) :
⊕

(i)
φ- (j)

Cej - Cei

is a proper subspace of Cei of dimension k < ei and hence determines a proper
subrepresentation of v with dimension-vector e + (k − ei)δi.

Proposition 5.4.3. The local chart C = (M, e) of a restricted smooth model for
∆ a central simple K-algebra with trdegC(K) = d must be such that

1 − χM (e, e) −
∑

i

mii = d

Proof. Consider a point x ∈ modn B of representation type τ =
(e1, d1; . . . ; er, dr) with Nsm

x = R(M, e). By the Luna slice theorem we have
étale maps

Nsm
x /GL(τ) �et Sx/GL(τ)

et- isossn B

Because C[isossn B] = Z with functionfield K we have that isossn B and hence
Nsm
x /GL(τ) must be of dimension d.

By definition of the Euler-form of M we have that

χ(e, e) = −
∑

i6=j

eiejaij +
∑

i

e2i (1 − aii −mii)

On the other hand we have the following dimensions

dim R(M, e) =
∑

i6=j

eiejaij +
∑

i

e2i (aii +mii) −
∑

i

mii
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dim GL(e) =
∑

i

e2i

As e is the dimension vector of a simple representation we know that the orbits
in general position in R(M, e) are closed and have stabilizer C∗. Therefore, the
dimension of the quotient variety R(M, e)/GL(e) = N sm

x /GL(τ) is equal to

dim R(M, e) − dim GL(e) + 1

and plugging in the above information we see that this is equal to 1 − χ(e, e) −
∑

imii.

If we want to study the local structure of restricted smooth models for central
simple algebras over a field of trancendence degree d, we have to compile a list of
admissible charts. We will give the first steps in such a classification.
The basic idea that we use is to shrink a chart to its simplest form and classify these
simplest forms for given d. By shrinking we mean the following process. Assume
e is the dimension vector of a simple representation of M and let (i) and (j) be two
connected vertices with ei = ej = e. That is we have locally the following situation

• •..........................
................................

................................................
...................................................................................................................................................................................................................

...................................................................................................................................................................................................................................................
....................................

...........................
...........

aij

aji

J

I

..................
.................

................
...........
.........
...........
...............
................................................................................................................................................ ..................

.................
................
...........
.........
...........
...............
................................................................................................................................................

......................................................................................................................................................
.............
..........
.........
..............
.................
.................

........... ......................................................................................................................................................
.............
..........
.........
..............
.................
.................

...........

J

J

J

J
• •

aii

mii

ajj

mjj

.................................................................................................................................................................

......................................
......................................

......................................
.....................................

.......... .....................................
......................................

.....................................
......................................

...........

.................................................................................................................................................................

aki

ail

ajm

anj

I

J

I

J

We will use one of the arrows connecting (i) with (j) to identify the two vertices.
That is, we form the shrinked chart Cs = (Ms, es) where M s is a map on r − 1

vertices {(1), . . . , (̂i), . . . , (r)} and es is the dimension vector with (i) removed. That
is, locally round z the shrinked chart has the form

•..........................
................
................
.........
..........
.............
..........................

.............................................................................................................................
......................................................................................................................................................

.............
..........
.........
..............
.................
.................

...........

J

J
•

aii + ajj + aij + aji − 1

mii + mjj

.................................................................................................................................................................

......................................
......................................

......................................
......................................

......................................
......................................

......................................
......................................

..................

.................................................................................................................................................................

aki + akj

ail + ajl

ajm + aim

anj + ani

I

J

I

J

That is, in Ms we have for all k, l 6= j that askl = akl. Moreover, the number of
arrows and (marked) loops connected to j are determined as follows

• asjk = aik + ajk
• askj = aki + akj
• asjj = aii + ajj + aij + aji − 1
• ms

jj = mii +mjj
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Lemma 5.4.4. e is the dimension vector of a simple representation of M if and
only if es is the dimension vector of a simple representation of M s. Moreover,

dim R(M, e)/GL(e) = dim R(M s, es)/GL(es)

Proof. Fix an arrow φ connecting (i) and (j). As ei = ej = e there is a
Zariski open subset U ⊂ - R(M, e) of points v such that v(φ) is invertible. By
basechange in either (i) or (j) we can find a point w in its orbit such that w(φ) = Ie.
If we think of w(φ) as identifying Cei with Cej we can view the remaining maps of w
as a representation in R(M s, es) and denote it with ws. the map U - R(Ms, es)
is well-defined and maps GL(e)-orbits to GL(es)-orbits.
Conversely, given a representation w′ ∈ R(Ms, es) we can uniquely determine a
representation w ∈ U mapping to w′.
Both claims follow immediately from this observation.

It is clear that any chart can uniquely be reduced to its simplest form, which has
the property that no connecting vertices can have same dimension. Also note that
the shrinking process has a not necessarily unique converse operation which we will
call splitting of a vertex.

Proposition 5.4.5. Let e be the dimension vector of a simple representation of
M and let d = dim R(M, e)/GL(e). If e = max ei, then d ≥ e+ 1.

Proof. Exercise! First reduce the chart to its simplest form and compute the
incoming and outgoing contributions in a vertex to the dimension of the quotient-
variety.

Definition 5.4.6. Two charts C = (M, e) and C ′ = (M, e) are said to be equiva-
lent if their corresponding GL(e)-modules are isomorphic.

Example 5.4.7. The charts below are equivalent

• •.............................
...........................................................................................................................................................................................................................................................

..................
J

I

..........
...........
............
...........
..........
...............................................................................................

...........
............
...........
..........
.....................................................................................

JJ •
21

• •.............................
...........................................................................................................................................................................................................................................................

..................
J

I

..........
...........
............
...........
..........
.....................................................................................

J

21

Theorem 5.4.8. The local charts occurring for a restricted smooth model for cen-
tral simple algebras over a field of trancendence degree d can be shrinked to one of
the following equivalence classes of charts

d=1

•............................
........
..........
...............
..........................................................................................................

I

1

d=2

N N•.......................................................
...........
..................
...................................................................................................................

.......................
............
................................................................................................

1
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d=3

•.......................................................
...........
..................
...................................................................................................................

.......................
............
.........................................................................................................

..........
...........
...........
............
..............................................................................N N

I

1
• •..............................

...........................................................................................................................................................................................................................................................
.................

J

I

..........
...........
.............
...........
............
..................................................................................

J•
21

N N•.......................................................
...........
..................
...................................................................................................................

.......................
............
................................................................................................

2

• • • • •.................................
..................................................................................................................................................................................................................................................

...............
J

I

.................................
..................................................................................................................................................................................................................................................

...............
J

I1 2 1

d=4

•...................................................................................................................................................................................................................
.........
............
..............................................................................................

..........
..........
.........................
..............................................................

N N

IJ

1
• •...............................

..........................................................................................................................................................................................................................................................
.................

J

I

..........
...........
.............
...........
............
..................................................................................

J

21

N N•.......................................................
...........
..................
....................................................................................................................

......................
............
................................................................................................

2

• • • •...........
............
.............
............
............
.......................................................................................................................

.................................................................................................................................................................................................................................................
...............

J

J

I

..................................
.................................................................................................................................................................................................................................................

...............
J

I1 2 1

5.5. Reading the local chart

Knowing which local charts can occur, we will now investigate what information
can be derived from the local chart.
We will fix the following situation : A is a restricted smooth model of ∆ and we
consider on open subvariety projssm A | X(c) = modn B where B has center Z. m
will be a maximal ideal of Z corresponding to the closed orbit GLn.x ⊂ - modn B
where x has representation type τ = (e1, d1; . . . ; er, dr).
We have N sm

x = R(M, e) as GL(τ) = ×GLei
- module. The local structure of Z

near m is determined by that of C[N sm
x /GLτ ] near the zero representation, so we

better have an interpretation of this ring

Proposition 5.5.1. C[N sm
x /GL(τ)] is generated by traces along oriented cycles in

the chart C = (M, e).

That is, for every arrow φ (resp. loop or marked loop) from (i) to (j) we take a
generic rectangular matrix

Mφ =






x11(φ) . . . . . . x1,ej
(φ)

...
...

xei1(φ) . . . . . . xeiej
(φ)






(resp. a generic square matrix or generic trace zero matrix).
If cyc = φk ◦ . . . ◦ φ2 ◦ φ1 is an oriented cycle in the map M , then we compute the
following matrix

Mcyc = Mφk
. . . . .Mφ2 .Mφ1

over C[xkl(φ)] = C[R(M, e)]. If the starting vertex of φ1 is (i), then this is a square
ei × ei matrix and we can consider its trace

Tr(Mcyc) ∈ C[R(M, e)]
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and one verifies easily that this polynomial is invariant under the action of GLτ .
Slightly harder to prove is that these functions actually generate

C[R(M, e)]GLτ = C[Nsm
x /GLτ ]

The essential ingredient in this proof is the fact that the polynomial invariants
of tuples of matrices under simultaneous conjugation are generated by traces of
products of generic matrices.
In fact, one can even bound the length of the oriented cycles to be considered by
(
∑

i ei)
2.

Next, let us consider the étale local structure of B near m. By the results proved
before, we have to control for this the ring of GLn-equivariant maps

GLn ×GLτ R(M, e) - Mn(C)

on which the multiplication is given by that in target space Mn(C).

Proposition 5.5.2. The ring of GLn-equivariant maps is Morita equivalent to the
ring of GLτ -equivariant maps

R(M, e) - MP

ei
(C)

where for any two vertices (i) and (j) the GLτ -equivariant maps

R(M, e) - Hom(C⊕ei ,C⊕ej )

are generated as a module over C[N sm
x /GL(τ)] by the paths in the map M starting

from (i) and ending in (j).

Again, if path = φk ◦ . . .◦φ1 is such a path, then the corresponding module element
is Mpath. Again, this result follows from a minor adaptation to existing results on
invariants and concomitants of representations of quivers proved by C. Procesi and
myself.
Apart from allowing us to compute the local structure of Z and B near m, the local
chart Nsm

x = R(M, e) also allows us to describe the local charts in nearby points
and the dimensions of subvarieties of points having a specific local chart.
The points ζ in the quotient variety N sm

x /GL(τ) = R(M, e)/GL(e) are in one-to-
one correspondence with the isomorphism classes of semi-simple representations of
the map M of dimension vector e.
If Vζ is a representative in the closed orbit corresponding to ζ then we can decom-
pose Vζ into its simple representations

Vζ = W⊕m1
1 ⊕ . . .⊕W⊕mk

k

where Wi is a simple representation of the map M of dimension vector bi and
occurring in Vζ with multiplicity mi.
Extending previous terminology we will say that Vζ (or ζ) is of representation type
σ = (m1,b1; . . . ;mk,bk).
As we have a combinatorial description of all simple dimension vectors for M we
can determine which representation types can occur for a given e.
With Vσ we will denote the set of all points ζ ∈ N sm

x /GLτ of representation type
σ.

Proposition 5.5.3. {Vσ : σ a representation type for e} is a finite stratification
of the quotient variety N sm

x /GL(τ) into locally closed irreducible smooth subvari-
eties.
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Moreover, the dimension of the stratum Vσ determined by σ = (m1,b1; . . . ;mk,bk)
is equal to

k∑

j=1

(1 − χM (bj,bj)) −
r∑

i=1

mii

Proof. According to the Luna slice results we have to verify that the repre-
sentation type determines the stabilizer subgroup of a point in the closed orbit up
to conjugation in GL(e).
Let bi = (bi1, . . . , bir) and denote bi =

∑

j bij . We choose a basis in ⊕iC
⊕ei in the

following way : the first m1b1 vectors give a basis for the simple components of
type W1, the next e2b2 vectors give a basis for the simple components of type W2

and so on.
If m =

∑
ai, the subring of Mm(C) generated by the representation Vζ expressed

in this basis is





Mb1(C) ⊗ Ie1
. . .

Mbk
(C) ⊗ Iek






Therefore, the stabilizer GLV in GL(e) of Vζ is the group of units of the centralizer
of this ring and is therefore equal to GLm1 × . . . × GLmk

which is embedded in
GL(e) with respect to the chosen basis as






GLm1(C ⊗ Ib1)
. . .

GLmk
(C ⊗ Ibk

)






It is easy to see that the conjugacy class of GLV depends only on the representation
type τ .
Finally, we have seen before that the dimension of the variety of isoclasses of simple
representations of M of dimension vector bj is equal to 1−χ(bj,bj)−

∑

imii from
which the claim about the dimension of the stratum follows.

Given two representations types σ and σ′, the stratum Vσ′ lies in the closure of the
stratum Vσ if and only if the stabilizer subgroup GLσ is conjugated to a subgroup
of GLσ in GL(e). Again, mimicking similar results for representations of quivers
we can give a combinatorial solution to this problem.
Two representation types

σ = (m1,b1; . . . ;mk,bk) and σ′ = (m′
1,b1

′; . . . ;m′
k′ ,bk′

′)

are said to be direct successors σ < σ′ if and only if either

• (splitting one simple type) k′ = k + 1 and for all but one 1 ≤ i ≤ k we have
(mi,bi) = (m′

j ,bj
′) for a uniquely determined j and for the remaining i we

have corresponding to it (mi,bu
′;mi,bv

′) with bi = bu
′ + bv

′.
• (combining two simple types) k′ = k − 1 and for all but one 1 ≤ i ≤ k′ we

have (m′
i,bi

′) = (mj ,bj) for a uniquely determined j and for the remaining
i we have corresponding to it (mu,bi

′;mv,bi
′) with mu +mv = m′

i

The direct successor relation < induces an ordering which we will denote with �.

Proposition 5.5.4. The stratum Vσ′ lies in the closure of the stratum Vσ if and
only if σ � σ′.
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Finally, we want to understand the étale local structure of the quotient variety
Nsm
x /GL(τ) in a neighborhood of a point ζ ∈ Vσ . This again is an application of

the Luna slice results.
So, let V be a semi-simple representation of M corresponding to ζ ∈ Vσ with
stabilizer subgroup GLσ = GLm1 × . . .GLmk

. We have to investigate the GLσ-
module structure of the normal space to the orbit of V .
The tangentspace to the GL(e) orbit of V is equal to the image of the natural linear
map

Lie GL(e) - R(M, e)

sending an element y ∈ Lie GL(e) to the representation determined by the com-
mutator [y, V ] = y.V −V.y ∈ Mm(C) where as above m =

∑
ei and all embeddings

are with respect to the choice of basis we introduced in the proof of proposition.
The kernel of the above map is the centralizer of the subalgebra ofMm(C) generated
by the representation V , that is, the algebra

CV =






Mm1(C ⊗ Ib1)
. . .

Mmr
(C ⊗ Ibr

)






We thus have an exact sequence of GLσ-modules

0 - CV - Lie GL(e) - TV OrbV - 0

where the action of GLσ is given by conjugation in Mm(C) via the embedding given
before.
A typical element γ ∈ GLσ = GLm1 × . . . × GLmk

will be written as (γ1, . . . , γk)
and we will express the actions in terms of the γi.
CV as GLσ-module consists of

• one m2
1-dimensional representation with γ−1

1 .γ1-action

...

• one m2
k-dimensional representation with γ−1

k .γk-action

Moreover, using our notation bi = (bi1, . . . , bir) we have that Lie GL(e) as GLσ-
module consists of

• ∑k
j=1 b

2
1j times the m2

1-dimensional representation with γ−1
1 .γ1-action

...

• ∑k
j=1 b

2
kj times the m2

k-dimensional representation with γ−1
k .γk-action

• ∑k
j=1 b1jb2j times the m1 × m2-dimensional representation with γ−1

1 .γ2-
action

...

• ∑k
j=1 bkjbk−1j times the mk × mk−1 -dimensional representation with

γ−1
k .γk−1-action

Hence, we know the GLσ-module structure of TV OrbV . Next, we have to determine
the GLσ-module structure of R(M, e). For each arrow φ with start vertex (i) and
(distinct) end vertex (j) there are

• b1ib1j times the m1 ×m1-dimensional representation with γ−1
1 .γ1-action
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• b1ib2j times the m1 ×m2-dimensional representation with γ−1
1 .γ2-action

...

• bkibkj times the mk ×mk-dimensional representation with γ−1
k .γk-action

For each unmarked loop in (i) we have the same decomposition as above replacing
all occurrences of j with i. For a marked loop in (i) we have to replace the terms
of dimension mi ×mi by

• b2li times the m2
i − 1-dimensional representation of trace zero matrices with

γ−1
l .γl-action.

We now have all the information on the GLσ-module structure on the normal space
to the orbit using the (split) exact sequence of GLσ-modules

0 - TV OrbV - R(M, e) - NV - 0

and we obtain

Proposition 5.5.5. The étale local structure of N sm
x /GL(τ) near ζ ∈ Vσ is de-

termined by a local chart Cσ = (Mσ, eσ) where Mσ has k vertices {(1), . . . , (k)}
and there are

• −χM (bi,bj) directed arrows from (i) to (j) when i 6= j
• 1 − χ1(bi,bi) unmarked loops in (i)
• −χ2(bi,bi) marked loops in (i)

where χ1 = (δij − aij)i,j and χ2 = (−δijmii)i,j and χM = χ1 + χ2. Moreover, the
dimension vector eσ = (m1, . . . ,mk).
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CHAPTER 6

Non-commutative surfaces

In this chapter we apply the results proved before in the special case of surfaces,
that is d = 2.

6.1. Local characterization

If d = 2 we will give an alternative proof of the classification of local charts as
Zn-loops.

Proposition 6.1.1. For restricted smooth models of central simple algebras over
the functionfield K of surfaces the local charts C = (M, e) are such that e =
(1, . . . , 1) and the map M has the following form :
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1

k k + l

k + 1

k + l + m

k + l + 1

x y

H HN

Aklm

where the indicated numbering of vertices and labeling of arrows will be used later.
In this picture we make the obvious changes whenever k or l are zero.

Proof. The strongly connected map M must contain more than one oriented
cycle and hence contains a submap of the indicated type (possibly degenerated). It
is easy to verify that for Aklm, f = (1, . . . , 1) is the dimension vector of a simple
representation.
If M contains additional vertices {s = k + l +m+ 1, . . . , r} and/or the dimension
vector e = (e1, . . . , er) 6= f , there exist semi-simple representations in R(M, e) with
dimension-vector decomposition

(1, . . . , 1
︸ ︷︷ ︸

k+l+m

, 0, . . . , 0) ⊕ δe1−1
1 ⊕ . . .⊕ δ

es−1−1
s−1 ⊕ δes

s ⊕ . . .⊕ δ⊕er
r

67
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As dim R(Aklm, f)/GL(f) is equal to 2 there is a two-dimensional family of such
semi-simple representations. Hence, they cannot be properly semi-simple as their
locus must be of dimension < d = 2. Therefore, M = Aklm and e = f .

Let A be a restricted smooth model for ∆, a central simple K-algebra of dimension
n2. Locally, A is of the form

Agc = B[d, d−1]

with d central of degree one. Let m be a maximal ideal of Z = Z(B) corresponding
to a semi-simple n-dimensional B-module Mx. By the above characterization we
know that Mx must have a decomposition

Mx = S1 ⊕ . . .⊕ Sr

where Si is a simple B-module of dimension di and all components are distinct.
That is, n =

∑

i di and the embedding of GL(e) = C∗ × . . .× C∗

︸ ︷︷ ︸

r

in GLn is given

via

(λ1, . . . , λr) 7→ diag(λ1, . . . , λ1
︸ ︷︷ ︸

d1

, . . . , λr, . . . , λr
︸ ︷︷ ︸

dr

)

We want to describe the étale local structure of B near m, that is, the ring
Bshm = B ⊗Z Zshm . In order to do this we have to compute the rings of invariants
and concomitants of the local chart near the zero representation.

Proposition 6.1.2. Using the labeling of vertices and arrows in the chart Aklm
given above we have

1. The ring of polynomial invariants is equal to

C[R(Aklm, ε)/GL(ε)] = C[x, y]

2. The rings of GLn-equivariant maps

Mn(GLn ×GL(ε) C[R(Aklm, ε])
GLn

is isomorphic to the subring of Mn(C[x, y]) with block decomposition

@
@

@
@

@
@

@
@

@
@

@
@

@
@

(x)

(x)

(y)

(y)

(1)

(1)
(1)

(1)

(1)

(x)

(y)

(x, y)

︸ ︷︷ ︸

k

︸ ︷︷ ︸

l

︸ ︷︷ ︸

m

where at place (i, j) (for every 1 ≤ i, j ≤ r) there is a block of dimension
di × dj with entries the indicated ideal of C[x, y].
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Proof. By basechange in the vertices we see that all non-zero maps in a
minimal oriented cycle can be taken to be the identity map except for one. If we
define these remaining maps x and y then the traces along oriented cycles in the
chart are of the form xiyj . The result about the equivariant maps follows from
computing the C[x, y]-module of paths from a vertex (i) to vertex (j) and applying
the general results of the previous chapter.

Using the Luna slice theorem, we obtain the required étale local classification

Theorem 6.1.3. With notations as before, we have

1. Zshm ' C{x, y}
2. Bshm is isomorphic to the subring of Mn(C{x, y}) with the above block de-

composition.

Definition 6.1.4. A Z-order B in a central simple K-algebra ∆ of dimension n2

is said to be étale locally split in a maximal ideal m of Z iff Bsh
m has ring of

fractions Mn(K ⊗Z Zshm ).

From the étale local description of Z and B and étale descent we deduce

Proposition 6.1.5. If A is a restricted smooth model for a central simple K-
algebra ∆ of dimension n2 and if Agc = B[d, d−1] with d central of degree one.
Then,

1. The center Z = Z(B) is smooth.
2. The non-Azumaya locus of B, ramB = isossn B − isosn B consists at worst

out of isolated (possibly embedded) points and a reduced divisor whose worst
singularities are normal crossings.

3. B is étale locally split at every point m ∈ isossn B.

Proof. (1) and (3) are immediate from the foregoing theorem. As for (2) we
have to proper semi-simple representations of R(Aklm, e).
Their decomposition into simple representations can be depicted by one of the
following two situations
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where the trace along the indicated oriented cycle is non-zero. By the general
results of the foregoing chapter we can compute the local charts of isossn B near
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such a point. They are resp. of the following types
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and we have the following local picture of the structure of isossn B near m.
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from which the statement follows (taking care of possible degenerate cases, for
example, an isolated point occurs for local charts of type A00m with m ≥ 2).

Lemma 6.1.6. With notations as before, B is a projective module over Z if and
only if all local charts are of type Akl1. In particular, if a local chart is of type Aklm
with m ≥ 2, then gldim B = ∞.

Proof. As the center is smooth, projectivity and reflexivity as Z-module are
equivalent. Observe that Bshm is reflexive only if no block of type (x, y) occurs, that
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is, iff m = 1. The last statement follows from the fact that an order of finite global
dimension with smooth center has to be projective.

6.2. Central blow-ups

We fix a field K of trancendence degree 2 and a central simple K-algebra of dimen-
sion n2. In this section we begin our construction of a smooth model for ∆. We
will assume throughout that all (commutative) smooth models for K are simply
connected.
Choose a smooth projective surface X with functionfield K and fix an embedding
X ⊂ - Pz, or equivalently, a representation of the homogeneous coordinate ring
C = C[u0, . . . , uz]/(f1, . . . , fv). We can cover X = Proj C with affine open subsets
X(c) such that

Cgc = Z[d, d−1]

with d ∈ C of degree one.
From the Artin-Mumford exact sequence we recall that ∆ is determined by a Zn-
wrinkle on X , that is, we are given

• A divisor D ⊂ - X and a list of its irreducible components Ci which are
irreducible curves on X

• The list of singular points pj ∈ X on D
• For each branch Bk of D at pi a number ni,k ∈ Zn such that

∑

k ni,k = 0.

and we recall that we have a ringtheoretical interpretation ofD as the non-Azumaya
(or ramification) locus of a maximal order in ∆ on X . That is, locally on X(c) we
have a Z-maximal order B in ∆ with ramB = D | X(c).
We will investigate if we can change X,C,Z and B such that modn B is a smooth
variety.

Definition 6.2.1. If m is a maximal ideal of Z we say that B is smooth in m
if modn B is smooth in a point x corresponding to the semi-simple n-dimensional
B-module determined by m.

Proposition 6.2.2. If m ∈ isossn B is a non-singular point of D or if m does not
lie on D, then B is smooth at m.

Proof. If m does not lie on D, then it determines a simple n-dimensional
B-module and hence Bm is an Azumaya algebra over Zm. As Azumaya algebras
are split by an étale extension we have

Bshm = B ⊗Z Zshm 'Mn(Z
sh
m )

which is the ring corresponding to the local chart of type A001

N N

•..................................................
................................
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...........
.............
.................
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.............................................................................................................................................................. .....................................
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...............................................................................................................................................................................

1
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and therefore B is smooth at m.
Let m be a nonsingular point of the ramification divisor D. Consider the pointed
spectrum Spec Zm − {m}. The only prime ideals are of height one (the curves
passing through m) and hence this is a Dedekind scheme. Moreover, B determines
a sheaf of maximal orders on this Dedekind scheme. Hence Bsh

m determines a sheaf
of hereditary orders on the pointed scheme Spec C{x, y}− (x, y) and we can choose
the variables such that x is a local parameter determining D near m.
From the characterization theorem of hereditary orders over discrete valuation rings
we know the structure of (Bshm )p at every height one prime of Zshm . As B and hence
Bshm is a reflexive (even projective) module, this information suffices to determine
Bshm .
One can prove that Bshm must be of isomorphic to an algebra of the form




















Md1(C{x, y}) Md1×d2(C{x, y}) . . . Md1×dr
(C{x, y})

Md2×d1(xC{x, y}) Md2(C{x, y}) . . . Md2×dr
(C{x, y})

...
...

. . .
...

Mdr×d1(xC{x, y}) Mdr×d2(xC{x, y}) . . . Mdr
(C{x, y})




















for
∑
di = n (as a matter of fact, as we started out from a maximal order B one

can show that the di are all equal). Anyway, this is the algebra corresponding to a
local chart of type Ar01
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and so we have that B is smooth in m.

In conclusion, a maximal order on a smooth surface can have only isolated ’singu-
larities’ in the singularities of the divisor D. We claim that we may assume that
all the singularities of D are normal crossings.
Recall the classical result on commutative surfaces
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Theorem 6.2.3 (Embedded resolution of curves in surfaces). Let D be any curve
on the surface X. Then, there exists a finite sequence of blow-ups

X ′ = Xs
- Xs−1

- . . . - X0 = X

and, if f : X ′ -- X is their composition, then the total inverse image f−1(D) is
a divisor with normal crossings.

Example 6.2.4. Consider the cusp D : y2 = x3 in P2, then we need three blow-ups
to get f−1(D) with normal crossings
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In order to apply this result, we need to understand how the ramification divisor
D of ∆ changes if we blow up a singular point p of it.

Lemma 6.2.5. Let X̃ -- X be the blow-up of X at a singular point p of D,
the ramification divisor of ∆ on X. Let D̃ be the strict transform f D and E the
exceptional line on X̃. Let D′ be the ramification divisor of ∆ on the smooth model
X̃ of K. Then,

1. Assume the local branch data at p distribute in an admissible way on D̃, that
is,

∑

i at q

ni,p = 0 for all q ∈ E ∩ D̃

where the sum is taken only over the branches at q. Then,

D′ = D̃

2. Assume the local branch data at p does not distribute in an admissible way,
then

D′ = D̃ ∪ E

Proof. Clearly, D̃ ⊂ - D′ ⊂ - D̃ ∪ E. By the Artin-Mumford sequence
applied to X ′ we know that the branch data of D′ must add up to zero at all points
q of D̃ ∩ E.
(1) : Assume E ⊂ D′. Then, the E-branch number at q must be zero for all

q ∈ D̃ ∩ E. But there are no non-trivial étale covers of P1 = E so ram(∆) gives

the trivial element in H1
et(C(E),µnµnµn), a contradiction. Hence D′ = D̃.

(2) : If at some q ∈ D̃ ∩ E the branch numbers do not add up to zero, the only
remedy is to include E in the ramification divisor and let the E-branch number be
such that the total sum is zero in Zn.

Example 6.2.6. Consider the sequence of blow-ups below, where the thick curves
indicate the ramification divisor.
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After the first blow up we obtain a ramification divisor with normal crossings. Note
that the exceptional line is not part of the ramification divisor as the branch-data
is admissible.
If we blow up the crossing, the resulting picture depends on whether a is zero or
not. If a = 0 then the exceptional line is not part of the ramification divisor and
hence we can separate the branches.
If a 6= 0 then the exceptional line has to become part of the ramification divisor as
otherwise the branch data would not be compatible in two points, in contradiction
with the Artin-Mumford exact sequence.
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6.3. Smooth models

Before we can apply the foregoing to the construction of smooth models we have
to make a local computation.
Consider the ring of algebraic functions in two variables C{x, y} and let X =
Spec C{x, y}. There is only one codimension two subvariety m = (x, y).
Let us compute the coniveau spectral sequence for X . If K is the field of fractions
of C{x, y} and if we denote with kp the field of fractions of C{x, y}/p where p is a
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height one prime, we have as its first term

0 0 0 0 . . .

H2(K,µnµnµn) ⊕p H1(kp,Zn) µnµnµn
−1 0 . . .

H1(K,µnµnµn) ⊕pZn 0 0 . . .

µnµnµn 0 0 0 . . .

As C{x, y} is a unique factorization domain, as before we see that the map

H1
et(K,µnµnµn) = K∗/(K∗)n

γ- ⊕p Zn

is surjective.
Moreover, all fields kp are isomorphic to the field of fractions of C{z} whose only
cyclic extensions are given by adjoining a root of z and hence they are all ramified
in m. Therefore, the component maps

Zn = H1
et(kL,Zn)

βL- µ−1

are isomorphisms.
Therefore, the second (and limiting) term of the spectral sequence has the form

0 0 0 0 . . .

Ker α Ker β/Im α 0 0 . . .

Ker γ 0 0 0 . . .

µnµnµn 0 0 0 . . .

Finally, we use the fact that C{x, y} is strict Henselian and hence has no proper
étale extensions. But then,

H i
et(X,µnµnµn) = 0 for i ≥ 1

and substituting this information in the spectral sequence we obtain that the top
sequence of the coniveau spectral sequence

0 - Brn K
α- ⊕L Zn - Zn - 0

is exact.
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From this sequence we immediately obtain the following

Lemma 6.3.1. 1. Let U = X − V (x), then Brn U = 0
2. Let U = X − V (xy), then Brn U = Zn with generator the quantum-plane

algebra

Cζ [u, v] with uv = ζvu

where ζ is a primitive n-th root of one

We can now state and prove our first result on the existence of smooth models for
central simple algebras ∆ over functionfields of trancendence degree two.

Theorem 6.3.2. Let S be a (simply connected) smooth projective surface and ∆ a
central simple C(S)-algebra of dimension n2. Then, a restricted smooth model for
∆ exists if and only if

ram [∆] ∈ Ker (
⊕

C

H1
et(C(C),Zn) -

⊕

p

µnµnµn
−1)

Proof. By the Artin-Mumford sequence, ∆ is determined by a Zn-wrinkle on
S. The shadow D of this Zn-wrinkle is the ramification divisor of any maximal
OS-order in ∆.
The singular points of D can be divided in two finite subsets

• Pnr where the branch-data are trivial
• Pr where some of the branch numbers are non-zero

By the foregoing section, we can consider a sequence of blow-ups

S′ π-- S

such that, when D′ denotes the ramification divisor of a maximal OS′-order in ∆
we have

• D′ has at worst normal crossings as singularities
• π(D′

sing) = Pr

For the last fact we use (a) that we can separate the branches of the ramification
divisor at a crossing where the branch-data are trivial and (b) that the exceptional
line is part of the ramification of the blow-up if the branch-data is non-trivial.
In particular, if ram [∆] lies in the kernel, D′ is a finite disjoint union of smooth
curves on S′. In this case, any maximal OS′-order in ∆ is locally smooth at every
point of S by the result of the previous section.
Conversely, if ram [∆] does not belong to the kernel, there is a singular point m on
D′ where the branch-data are non-trivial. If Λ is locally at m any maximal order
over S′ in ∆, then one can use above lemma to show that Λ cannot be étale locally
split in m, that is, the ring of fractions of Λshm is not a full n× n matrixalgebra.
If there were a restricted smooth order A in ∆ which is B locally at m, then B has
to be étale locally split at m. However, B ⊂ - Λ for some maximal order Λ, this
contradicts the foregoing.

Another way to phrase the foregoing result is

Proposition 6.3.3. If ∆ is a central simple K-algebra of dimension n2, with
trdegC K = 2. Then, there is a smooth model S of K such that any maximal
OS-order in ∆ has at worst isolated singularities which are étale locally of quantum-
plane type.
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If we want to construct (unrestricted) smooth models in any ∆ we have to find a
way to resolve quantum-plane singularities.
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CHAPTER 7

Non-commutative blow-ups

In this chapter we will modify the local-chart setting in order to study smooth
models in the unrestricted sense. As some of the arguments are analogous to these
of the restricted case, we will only mention the required changes and leave the
details as rather interesting exercises. In compensation we will consider an example
in great detail.

7.1. Equivariant desingularization

We have seen that a central simple algebra ∆ over a surface with non trivial branch-
data cannot have a restricted smooth model.
This contradicts the following (too optimistic) approach to construct such smooth
models. Consider a smooth model X for the center K of ∆ and consider a maximal
order over X in ∆. Locally we have the situation

Agc = B[d, d−1]

and let us assume that

modn B = projssn A | X(c)

has singularities. Because the set of singular points sing is a closed GLn-stable
subvariety we can consider the blow-up with center sing. The GLn-action extends
to one on the blow-up.
If we iterate this process we will end up with a smooth variety ˜modn with a GLn-
action such that the projection map

˜modn -- modn B

is GLn-equivariant.
Again, we can cover the semi-stable points of the variety ˜modn by affine GLn-stable
open subvarieties X(m) and in view of the close connection between affine GLn-
varieties and Cayley-Hamilton algebras, we expect that these open subvarieties are
module varieties themselves

˜modn
ss | X(m) = modn B(m)

If this were the case, then the sheaf of orders B(m) would give us a restricted smooth
model of ∆.
We know that this strategy has to fail. To see clearly where the argument breaks
down let us compute an example.

Example 7.1.1. Let us consider the quantum-space example when q = −1. In
this case, the central simple algebra is the quaternion division algebra

∆ =

(
x, y

C(x, y)

)

79
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and consider a sheaf of maximal orders over P2 in ∆ with affine section

B = C〈u, v〉/(uv + vu)

with u2 = x and v2 = y.
In particular, u and v have reduced trace zero and the defining relation uv+vu = 0
can be reformulated as tr(uv) = 0.
Consider the module variety mod2 B. A point of mod2 B is determined by a pair
of matrices

x =

([
x1 x2

x3 −x1

]

,

[
x4 x5

x6 −x4

])

such that the trace of the product is zero. That is,

mod2 B = V (2x1x4 + x2x6 + x3x5) ⊂ - A6 = Spec C[x1, . . . , x6]

with action of GL2 given by simultaneous conjugation.
The quotient-variety under this action isoss2 B is isomorphic to A2 and the quotient
map is given by taking the determinants

mod2 B
π-- isoss2 B = A2

x 7→ (x2
1 + x2x3, x

2
4 + x5x6)

and it is easy to find a representative in the closed orbit determined by a point
m = (λ, µ) ∈ A2, namely

xλ,µ =

([
i
√
λ 0

0 −i
√
λ

]

,

[
0

√
µ

−√
µ 0

])

We see that the corresponding 2-dimensional B-module Mx is simple whenever
λµ 6= 0, is semi-simple with distinct one-dimensional components if only one of the
two is non-zero and has a one-dimensional component occurring with multiplicity
two in case λ = µ = 0. That is, the ramification divisor of ∆ on A2 has the form
as depicted below.
Because B is a maximal order in ∆, we know that it must be smooth in all regular
points of D = V (xy) and in fact we can compute that the local charts in these
points have are of the form

A101 = A011 =

• •..............................
...........................................................................................................................................................................................................................................................

.................
J

I

..........
...........
............
...........
...........
....................................................................................

J

11

However, for x0,0 the semi-simple module Mx = C⊕2
triv has equal components which

we know cannot happen for smooth algebras over surfaces.
In fact, one verifies that mod2 B has an isolated singularity in the origin p =
(0, 0, 0, 0, 0, 0).



7.1. EQUIVARIANT DESINGULARIZATION 81



........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.......

•

•

•

•
@

@I

6

-

�
�

��	

A011

A101

A001

??

V (y)

V (x)

Now, consider the blow up of p in A6. We obtain the variety Ã6 ⊂ - A6 × P5

which is

Ã6 = V (xiXj − xjXi)

where Xi are the projective parameters of P5. The strict transform of mod2 B is
then the subvariety

˜mod2 = V (xiXj − xjXi, 2X1X4 +X2X6 +X3X5) ⊂ - A6 × P5

which is a smooth variety with GL2-action induced by simultaneous conjugation
on the four 2 × 2-matrices

([
x1 x2

x3 −x1

] [
x4 x5

x6 −x4

] [
X1 X2

X3 −X1

] [
X4 X5

X6 −X4

])

As the projection map ˜mod2
-- mod2 B is a GL2- isomorphism outside the fiber

over p we only need to investigate the (semi-stable) points lying over p. They form
the smooth quadric

Q = Proj V (2X1X4 +X2X6 +X3X5) ⊂ - P5

on which GL2 acts with quotient-variety

Qss/GL2 = Proj C[X2
1 +X2X3, X

2
1 +X5X6]

Therefore

˜mod2
ss
/GL2 ' Ã2

the blow up of A2 at the point (0, 0).
To a point (1 : µ) ∈ P1 in the exceptional fiber corresponds the closed GL2-orbit
with representative

x =

([
0 0
0 0

] [
0 0
0 0

] [
i 0
0 −i

] [
0

√
µ

−√
µ 0

])

One verifies that the stabilizer of this point is

Stab(x) ' µ2 = 〈
[
0 1
1 0

]

〉 ⊂ - PGL2
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Let us assume we can cover ˜mod2
ss

by GL2-stable affine open subvarieties such
that

˜mod2
ss | X(m) = mod2 B(m)

and consider an open containing the orbit of x.
As the orbit is closed it must correspond to a semi-simple 2-dimensional B(m)-
module. As the stabilizer is zero-dimensional in PGL2 this semi-simple must in
fact be simple. But then, the PGL2-stabilizer must be trivial, a contradiction.
Hence, GLn-equivariant desingularizations of module varieties cannot always be
covered by module varieties.

For this reason, we have to consider unrestricted smooth models if we want to
construct smooth models in every central simple algebra over a surface.

7.2. Graded semi-simple modules

If the connected graded algebra A is an (unrestricted) smooth model for ∆, then
as before we want to describe the local structure of projssn A in the neighborhood
of a point x in a closed GLn-orbit.
By definition, x determines a C∗-family of points xλ ∈ modn A. In fact under the
canonical (quotient-morphism under the C∗-action)

ψ : modn A -- projn A

we have that ψ−1(GLn.x) is the GLn × C∗-orbit of any of the xλ.

Lemma 7.2.1. With notations as above we have that following statements are equiv-
alent

1. GLn.x is a closed orbit in projssn A
2. GLn × C∗.xλ is a closed orbit in modssn A
3. xλ determines a semi-simple n-dimensional A-module

We will now investigate the ringtheoretical interpretation of an x ∈ projssn A having
a closed orbit.
Assume first that one xλ ∈ isosn A is a simple n-dimensional representation of A,
then all xµ are similar. For, if the matrices xλ = (m1, . . . ,mk) generate Mn(C) as
C-algebra, then so do the matrices (tm1, . . . , tmk) for any t ∈ C∗.
the kernel of the epimorphism determined by xλ :

φxλ
: A -- Mn(C)

is a maximal ideal M of A and we consider the maximal graded ideal Mg contained
in it. It is easy to verify that this is the kernel of the graded morphism

φx : A -- Ax

where Ax is the graded subalgebra of Mn(C[t]) (endowed with the natural grada-
tion) generated as C-algebra by the elements

(tm1, . . . , tmk) ∈Mn(C[t])

Lemma 7.2.2. With notations as above we have

1. The center of Ax is a non-trivial C-subalgebra of C[t].
2. The graded ring of fractions Qg(Ax) is a graded central simple algebra, that

is, contains no proper graded twosided ideals.
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Proof. (1) : If a matrix c(t) ∈ Mn(C[t]) is central in Ax, then c(µ) ∈ Mn(C)
is central in Ax/(t− µ) = Mn(C) whence all non-diagonal entries of c(t) are divis-
ible by t − µ. As µ is arbitrary it follows that c(t) is a diagonal matrix, whence
Z(Ax) ⊂ - C[t] and is a graded subalgebra. Because x ∈ projssn A there is a
homogeneous central element c ∈ A, say of degree f not vanishing on Ax. But
then, the image of c in Ax is of the form σ.tf for some σ ∈ C∗ and f ∈ N+, whence
Z(Ax) is strictly greater than C.
(2) : Let c = tf ∈ Z(Ax), then the graded localization at c is a graded field and
hence of the form

Z(Ax)
g
c = C[te, t−e]

for some e ∈ N+. Moreover, as any specialization

(Ax)
g
c/(t

e − µ) = Mn(C)

we have that (Ax)
g
c is a graded Azumaya algebra over a graded field and hence a

graded central simple algebra.

Combining Tsen’s theorem with the characterization of graded simple algebras we
obtain

Proposition 7.2.3. Let x ∈ projssn A corresponding to a simple n-dimensional
A-module, then

A -- Ax ⊂ - Qg(Ax) = Mn(C[te, t−e])(a1, . . . , an)

for some natural numbers 0 ≤ a1 ≤ a2 ≤ . . . ≤ an < e where the i-th homogeneous
part of the graded matrix-ring is defined to be








Ri Ri+a1−a2 . . . Ri+a1−an

Ri+a2−a1 Ri . . . Ri+a2−an

...
...

. . .
...

Ri+an−a1 Ri+an−a2 . . . Ri







.

with Ri = C[te, t−e]i. In fact, if A is generated by k elements of degree one, then
the numbers ai are of the form

(a1, . . . , an) = (0, . . . , 0
︸ ︷︷ ︸

m1

, 1, . . . , 1
︸ ︷︷ ︸

m2

, . . . , e− 1, . . . , e− 1
︸ ︷︷ ︸

me

)

with all mi ≥ 1 and satisfying the inequalities

mi ≤ k.mi±1 for all i mod e

This result allows us to assign numerical invariants to x

Definition 7.2.4. If x ∈ projssn A lies in the image of isosn A we say that x is a
graded simple A-module of size n For such x we have

Qg(Ax) = Mn(C[te, t−e])(0, . . . , 0
︸ ︷︷ ︸

m1

, 1, . . . , 1
︸ ︷︷ ︸

m2

, . . . , e− 1, . . . , e− 1
︸ ︷︷ ︸

me

)

Then, we say that the period of x is e and that x is of matrix-type (m1, . . . ,me).
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Lemma 7.2.5. Let x ∈ projssn A be graded simple with period e and matrix-type
(m1, . . . ,me) and let x1 ∈ modn A be a simple n-dimensional A-module representing
x. Then, the GLn × C∗-stabilizer of x1 is isomorphic to group C∗ × µe where the
cyclic group µe has generator

(gζ , ζ) ∈ GLn × C∗

where ζ is a primitive e-th root of 1 and

gζ = diag(1, . . . , 1
︸ ︷︷ ︸

m1

, ζ, . . . , ζ
︸ ︷︷ ︸

m2

, . . . , ζe−1, . . . , ζe−1

︸ ︷︷ ︸

me

)

Proof. By the assumptions we can find a point x′ in the orbit such that the
corresponding k-tuple of n× n-matrices x′1 have block-decompositions










0 z1 0 . . . 0
0 0 z2 0
...

...
. . .

0 0 0 . . . ze−1

ze 0 0 . . . 0










where zi is an mi ×mi+1-matrix. The claim follows from this description.

By a graded version of the Jordan-Hölder theorem we have that closed GLn-orbits
in projssn A correspond to graded semi-simple A-modules of size n, that is,

Mx = S⊕f1
1 ⊕ . . .⊕ S⊕fr

r

where Si is a graded simple A-module of size si, period ei, matrix-type
(mi1, . . . ,miei

) and occurring with multiplicity fi.

Definition 7.2.6. The graded representation type of x is the collection of
numerical data

• the underlying representation type (s1, f1; . . . ; sr, fr)
• the periods (e1, . . . , er)
• the matrix types (mi1, . . . ,miei

)

Precisely as in the case of graded simple modules considered above we have

Proposition 7.2.7. Let x determine a graded semi-simple A-module of size n with
representation-type given by the data

(s1, f1; . . . ; sr, fr) (e1, . . . , er) (mi1, . . . ,miei
)

Let x1 ∈ modn A a corresponding semi-simple n-dimensional representation of type
τ = (s1, f1; . . . ; sr, fr). Then, the GLn × C∗-stabilizer of x1 is equal to

Stab(x1) = GL(τ) × µe

where e = gcd(e1, . . . , er). If ei = e.ci then a generator of the cyclic component is
given by

(gζ , ζ) ∈ GLn × C∗

where ζ is a primitive e-th root of 1 and

gζ =
⊕

i

diag(1ci , . . . , 1ci

︸ ︷︷ ︸

mi1fi

, ζci

i , . . . , ζ
ci

i
︸ ︷︷ ︸

mi2fi

, . . . , ζ
ci.(ei−1)
i , . . . , ζ

ci.(ei−1)
i

︸ ︷︷ ︸

miei
fi

)

where ζi is a primitive ei-th root of 1.
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7.3. Local charts revisited

Let A be a smooth model in a central simple K-algebra of dimension n2. Let
x ∈ projssn A a graded semi-simple A-module of size n determining a closed GLn-
orbit and let x1 a preimage in modn A.
The closed GLn × C∗-orbit of x1 determines a graded maximal ideal m in the
center of A and we want to study the graded étale local structure of the Z-graded
algebra Agm. That is, we want to study the limit of Agm⊗D where D is a Z-graded
étale extension of Cgm. We will denote this limit with Ag,shm .
Let us assume that the graded representation type of x is determined by the nu-
merical data

• type τ = (s1, f1; . . . ; sr, fr)
• periods (e1, . . . , er)
• matrix-types (mi1, . . . ,miei

)

In order to determine the algebra Ag,shm we will apply the Luna slice theorem in the
smooth point x1 ∈ modn A, considered as a G = GLn × C∗-variety.
From the previous section we recall that the stabilizer subgroup in x1 (or, by abuse
of notation in x) is equal to

Gx = GL(τ) × µe
⊂ - GLn × C∗

where e = gcd(e1, . . . , er).
With Nsm

x we will denote the normal space to the GLn × C∗- orbit in x1. By a
similar argument as before we obtain

Proposition 7.3.1. N sm
x is as GL(τ) × µe-module isomorphic to the representa-

tion space of a weighted local chart Cw = (M, f ,w). Here, Mw = (M,w) is a
weighted map on r vertices such that the subgraph on any two vertices 1 ≤ i, j ≤ r
is of the form

(i)•
fi

(j)•
fj

...............
...............
...................

.........................
..................................................

...................................................................................................................................................

..................................................................................................................................................................................................
..........................

....................
................
...............

I

J

..........
...........
.............

.......................
.........................................................................................................................................................................................................................................................................................

..................................................................................................................................................................
.........................
...................
.....................................................

.....................................................
..........................

I

I

..........
...........
.............
.......................
.........................................................................................................................................................................................................................................................................................

..................................................................................................................................................................
.........................
...................
.....................................................

.....................................................
..........................
J

J

aij

wij

wji

wii

w

′

ii

wjj

w

′

jj

aji

aii ajj

mii mjj

• •

where wkl = (w
(1)
kl , . . . , w

(akl)
kl ) and w

′

kk = (w
′(1)
kk , . . . , w

′(mkk)
kk ) are series of numbers

from Z/eZ. We use the following dictionary

• a weighted loop at vertex (i) with weight m corresponds with the GL(τ)×
µe-module Mei

(C) on which GLei
acts by conjugation and the other factors

of GL(τ) act trivially, which is a µe eigenspace with eigenvector ζm.
• a weighted arrow from vertex (i) to vertex (j) with weight m corresponds

to the GL(τ) × µe-module Mei×ej
(C) on which GLei

×GLej
act via g.m =

gimg
−1
j and the other factors of GL(τ) act trivially, which is a µe eigenspace

with eigenvector ζm.
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• a weighted marked loop at vertex (i) corresponds to the simple GL(τ)×
µe-module M0

ei
(C), that is, trace zero matrices with action of GLei

by con-
jugation and trivial action by the other components of GL(τ), which is a µe

eigenspace with eigenvector ζm.
• the label of a loop or arrow indicates the multiplicity of the corresponding

representation.

The classification of underlying charts (that is, forgetting the weights) which can
arise in a given dimension d is the same as given before.
Having determined the Gx-module structure of N sm

x , the Luna slice theorem asserts
the following

Theorem 7.3.2. The ring of GLn-equivariant maps from the fiber bundle

Fx = (GLn × C∗) ×GL(τ)×µe Nsm
x

- Mn(C)

to Mn(C) is an algebra Λ. The C∗-action on Fx induces a Z-gradation on Λ.
The center of Λ is the Z-graded ring

R = C[C∗ ×µe (Nsm
x /GL(τ))]

and if we denote by p the graded maximal ideal of R corresponding to the zero
representation in N sm

x /GL(τ), we have

1. Cg,shm ' Rg,shp

2. Ag,shm ' Λg,shm

The above result gives us a way to calculate the graded étale local structure of
Agm. In particular, we have

Proposition 7.3.3. The étale local structure of projssn A in a neighborhood of the
closed orbit of x is given by

((GLn × C∗) ×GL(τ)×µe Nsm
x )/C∗

in a neighborhood of the orbit corresponding to the zero representation in N sm
x .

Assume we are in the restricted case treated before, that is, when µe = 1. Then,
the above theorem asserts that

Ag,shm ' B[t, t−1]

where B is the strict Henselization of the ring of GLn-equivariant maps

GLn ×GL(τ) Nsm
x

- Mn(C)

at the zero representation. Hence, we recover our previous results.

7.4. Smooth models revisited

In this section we apply the foregoing to the construction of smooth non-
commutative surfaces.
By taking a suitable smooth model S, such that the ramification divisor of the
central simple algebra ∆ has only normal crossings and such that the branches
with trivial branch-data are separated, we have constructed a restricted model
having isolated singularities which are étale -locally of quantum-plane type.
That is, we may assume that locally our maximal order B is of the form

B = Cq [u, v] with uv = qvu
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where q is a primitive n-root of unity. We want to resolve the remaining singularities
in modn B lying over the origin in isossn B with is A2 determined by the center of
B, Z = C[x, y] where x = un and y = vn.
We will achieve this by blowing up the closed orbit of the trivial representation in
mod2 B. Let us recall the ringtheoretical interpretation of the blow-up of a point
in A2

Example 7.4.1. Let Ã2 -- A2 be the blow-up of the origin p = (0, 0) in A2. If
C[A2] = C[x, y], consider the graded algebra

R = C[x, y] ⊕ (x, y)t⊕ (x, y)2t2 ⊕ . . . ⊂ - C[x, y][t]

Then R is generated by two elements in degree zero x, y and two in degree one
X = xt and Y = yt. The defining (homogeneous) relation of R is xY − yX .

Then, Ã2 = Proj R and the projection morphism is given by the inclusion (in
degree zero) C[x, y] ⊂ - R.

Definition 7.4.2. Let B be an affine C-order in ∆ and M the kernel of a semi-
simple k-dimensional representation B - Mk(C) occurring as a direct factor
of a semi-simple n-dimensional representation x. Then, the non-commutative

blow-up of B at x is projssn A where A is the graded algebra

A = B ⊕Mt⊕M2t2 ⊕ . . . ⊂ - ∆[t]

and the projection map

projssn A - modn B

is given by the inclusion in degree zero B ⊂ - A.

We can resolve the remaining singularities by non-commutative blow-ups.

Theorem 7.4.3. If A is the blow-up of B = Cq[u, v] corresponding to the trivial
(one-dimensional) representation, then projssn A is a smooth variety.
The local structure of B is summarized in the picture
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projssn A has a P1 of closed orbits lying over the singularity of B and the local
structure is summarized in the picture
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where Aw001 is the weighted local chart

N N•.........................................................
.....................
...........
..............
...........................
......................................................................................................... ...................................

................................
...............
...........
................
..............................................................................................................................

1
0 1

We will give the proof of this theorem in the example considered before.

Example 7.4.4. Consider the quantum-plane with q = −1. That is,

B = C〈u, v〉/(uv + vu)

is a maximal order in the quaternion algebra ∆ = (x, y) with center Z = C[x, y]
where x = u2 and y = v2.
We have seen that mod2 B has an isolated singularity in the closed orbit corre-
sponding to the 2-dimensional semi-simple representation Mx = C⊕2

triv . The kernel
of the trivial representation is M = (u, v). Hence, the graded algebra A defining
the non-commutative blow-up is

A = B ⊕ (u, v)t⊕ (u, v)2t2 ⊕ . . . ⊂ - B[t]

A is generated by two elements u, v of degree zero and two of degree one U, V
satisfying the following defining relations

uv + vu = UV + V U = uV + V u = vU + Uv = uV + vU = uU − Uu = vV − V v = 0

and u2, v2, U2 and V 2 are homogeneous central elements.
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If p = (x, y) ∈ A2 which is not the origin, then Ap = Bp[t, t
−1] whence there is

a unique closed orbit in projss2 A lying over p and in those we know already that
projss2 A is smooth.
Observe that it suffices to verify that projss2 A is smooth in the closed orbits as the
singularities are a GL2-closed subvariety.
We only have to investigate the closed orbits over p = (0, 0). For those, either U 2

or V 2 must be invertible. Let us consider the former case , then

A′ = AgU2 = C−1[u,w][U,U−1, σ]

where w = V U−1 (observe that v = uV U−1). The defining relations of A′ are

uw + wu = wU + Uw = uU − Uu = 0

Lemma 7.4.5. mod2 A′ is smooth in the closed orbits lying over (0, 0) ∈ A2 =
isoss2 B. Representatives of these orbits are of one of following types :

1. type I (simple) : the images of (u,w, U) are
([

0 0
0 0

] [
a 0
0 −a

] [
0 b
b 0

])

2. type II (semi-simple) : the images of (u,w, U) are
([

0 0
0 0

] [
0 0
0 0

] [
a 0
0 −a

])

where a, b ∈ C∗.

Proof. mod2 A is of dimension 6 so we have to verify that the tangent spaces
to mod2 A in the indicated points are 6-dimensional. In order to compute these
tangentspaces we consider

u′ = φ(u) + ε

[
αu βu
γu −αu

]

and similarly w′ and U ′. We then have to compute the conditions necessary to have
that

u′w′ + w′u′ = w′U ′ + U ′w′ = u′U ′ − U ′u′ = 0

if ε in infinitesimal, that is, ε2 = 0.
These conditions easily calculated to be

type I : αu = 0 βu = γu and αU = − b

2a
(βw + γw)

type II : βu = γu = αw = 0

finishing the proof.

Next, we have to calculate the weighted local charts for these orbits. We have the
following stabilizer subgroups in GL2 × C∗

• In type I points, the stabilizer Gx = C∗ × µ2 where the generator of µ2 is
([

1 0
0 −1

]

,−1

)

• In type II points, the stabilizer Gx = (C∗ × C∗) × 1 with embedding
([
λ 0
0 µ

]

, 1

)



90 7. NON-COMMUTATIVE BLOW-UPS

Lemma 7.4.6. The weighted local charts are as follows.

1. In type I points they have the form

N N•........................................................
......................
...........
..............
.............................
....................................................................................................... ...................................

...............................
................
............
................
.............................................................................................................................

1
0 1

2. In type II points they have the form

• •............................
.........................................

..............................................................................................................................................
..............................................................................................................................................................................

.............................
........

J

I

..........
...........
............
............
..............
.........
.............
......................................................................................................................

J

11

Proof. Let us first consider the tangent-spaces calculated above as a module
over the stabilizer group.
In type I : GL2 acts via conjugation and C∗ via degree. Hence, the image of a
vector in the tangentspace under the generator of µ2 is given by computing the
entries of

[
1 0
0 −1

]

.

([
0 βu
βu 0

] [
αw βw
γw −αw

]

−
[
αU βU
γU −αU

])

.

[
1 0
0 −1

]

and hence the tangentspace as C∗×µ2-module is represented by the weighted chart

N N•.......................................................
...........
...................
..................................................................................................................

......................
............
........................
.........................................................................

1

3 3

0 1

Similarly, in type II points we have to consider the action of C∗ × C∗ × 1 on a
tangentvector which is given by

[
λ 0
0 µ

]

.

([
αu 0
0 −αu

] [
0 βw
γw 0

]

−
[
αU βU
γU −αU

])

.

[
λ−1 0
0 µ−1

]

which can be represented by the chart

• •...............................
..........................................................................................................................................................................................................................................................

.................
J

I

..........
...........
.............
...........
............
.................................................................................. ..........

...........
.............
...........
............
..................................................................................

JJ

11

2

2

Next, we have to compute the sub-modules corresponding to the tangent space to
the GL2 × C∗-orbit. In order to do this we have to determine the image of the Lie
algebra

Lie(GL2 × C∗) =

([
a b
c d

]

, t

)
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acting via

(1 + εt)deg.(

[
1 0
0 1

]

+ ε

[
a b
c d

]

).Z.(

[
1 0
0 1

]

− ε

[
a b
c d

]

)

where Z is the image of u resp. w,U . This computation gives that the tangentspace
to the orbit as Gx module can be represented by a weighted chart which is for type
I points of the form

N N•.......................................................
...........
...................
..................................................................................................................

......................
............
.......................
..........................................................................

1

2 2

0 1

and for type II points of the form

• •.............................
...........................................................................................................................................................................................................................................................

..................
J

I

..........
...........
............
...........
...........
....................................................................................

J

11

from which the result follows.
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