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CHAPTER 1

Introduction

EXAMPLE 1.0.1. (The quantum P?)
Consider the graded algebra A, on three generators with defining relations

XY =qVX
YZ =qZY
ZX =qXZ

where ¢ € C*.
If ¢ is a primitive n-th root of unity, then the center of A, is generated by three
elements in degree n, namely X", Y™ and Z" and one in degree 3 namely XY Z.
If n is not divisible by 3 this implies that after localizing at all homogeneous non-
zero central elements A, we obtain the algebra

Q7(Aq) = Dt,t7']

where t is a central element of degree one and D is a division algebra of dimension

n? over its center which is isomorphic to C(z,y).

In fact, D is the division ring of fractions of the so called 'quantum-plane’
Cylu, v D ow=quu u"=z V'=y

EXAMPLE 1.0.2. (The Sklyanin algebra)

Consider the graded algebra S on three generators with defining relations
X2+ bZY +aYZ =0
aZX +cY?+bXZ =0
WX +aXY +cZ? =0

where a, b, c € C* such that the curve
E: (a® 4+ b + ) wyz = abe(2® +y° + 2°)

is a smooth elliptic curve in P2.
We have an automorphism on E defined by

(z:y:2)— (acy® — bz : bex® — a’yz : abz® — cay)
If we choose (1 : —1:0) € E as the origin, then this automorphism is translation
by the point 7= (a:b:¢) on E.
If 7 is an n-torsion point on E, then the center of S is again generated by three
elements of degree n and one of degree 3.

Again, if we localize at all homogeneous non-zero central elements we obtain an
algebra

Qg(s‘r) = D/[ta til]

1
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with ¢ central of degree one and D’ a division algebra of dimension n* over its

center which is isomorphic to C(z,y).

Motivated by these examples we say that a graded affine algebra A is a model for
a central simple C(z,y)-algebra A of dimension n? if its graded ring of fractions

Q7(A) = Alt,t7]

for some central degree one element ¢.

The first question we like to answer is that of the birational classification : can we
describe the C(z, y)-isomorphism classes of central simple algebras A of dimension
n2? In particular, can one show that D and D’ above are non-isomorphic?

1.1. Z,-wrinkles on P2

By a Z,-wrinkle on P? we mean the following data-package

e A finite collection C = {C4,...,Cx} of irreducible curves in P2, that is,
C; = V(F;) for an irreducible form in C[X,Y, Z] of degree d;.

e A finite collection P = {P,..., P,} of points of P? where each P; is either
an intersection point of two or more C; or a singular point of some C;.

e For each P € P the branch-data bp = (by,...,b;,) with b; € Z,, = Z/nZ
and {1,...,ip} the different branches of C in P. These numbers must satisfy
the admissibility condition

ZbP:Zbi:OGZn for every P € P

e for each C € C a cyclic Z,-cover of smooth curves
D—C
of the desingularization of C' which is compatible with the branch-data, that

is, if Q € C corresponds to a C-branch in P, then D is ramified in Q with
stabilizer subgroup generated by bg (below a portion of a Z4-wrinkle)
0

C

2 1

0

We have a grip on the covers D —»» C' as follows. Let {Q1,...,Q.} be the points of
C where the cover ramifies with branch numbers {b1,...,b.}, then D is determined
by a continuous module structure of

Wl(é— {Ql;---;Qz}) on qj)DZn

where the fundamental group is equal to

(U1, V1,5 Ugy Vg, 1,4 - -« ) [ ([, v1] - - [ug, vgler ... 22)
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with g the genus of C and the action of z; is determined by b;.

ExXAMPLE 1.1.1. Let us consider the first cases
1. If C = P! then ¢ = 0 and hence 71 (P! — {Q1,...,Q.} is zero if z < 1
(whence no covers exist) and is Z if z = 2. Hence, there exists a unique
cover D —s P! with branch-data (1, —1) in say (0, 0c0) namely with D the
normalization of P! in C(/x).
2. If C = E an elliptic curve, then g = 1. Hence, m1(C) = Z & Z and there
exist unramified Z,-covers. They are given by the isogenies

E — E

where E’ is another elliptic curve and E = E’/(r) where 7 is an n-torsion
point on E’.

One can show that any such cover D —» C' is determined by a function f €
C(C)*/C(C)*™ which allows us to put a group-structure on the equivalence classes
of Z,-wrinkles where we call a wrinkle trivial provided all coverings D; — C; are
trivial (that is, n copies of C).

One of the main results we will prove in these notes is the Artin-Mumford exact
sequence for Brauer groups of simply connected surfaces. In the case of C(z,y) this
result can be phrased as

THEOREM 1.1.2. If A is a central simple C(z,y)-algebra of dimension n?, then
A determines uniquely a Z,-wrinkle on P2. Conversely, any Z,-wrinkle on P?
determines a unique division C(z,y)- algebra whose class in the Brauer group has
order n.

EXAMPLE 1.1.3. Returning to the 'quantum’-algebras defined above

1. The division algebra D with non-commutative model the quantum P? alge-
bra A, is determined by the wrinkle with shadow

-1 1

which completely determines the covers.

2. The division algebra D’ with non-commutative model the Sklyanin algebra
A, is determined by the wrinkle where C = {E’'} where E’ is the elliptic
curve in P? with unramified cover the isogeny E —= E/ <1 >= E'.

In particular, the division algebras D and D’ of dimension n? over C(z,y) cannot

be isomorphic as C(z,y)-algebras. Or, phrased differently, A, and S, are not
projectively birational.

Is there a non-commutative version of Hironaka’s resolution of singularities for the
algebras for the central simple algebras A of dimension n? over C(z,y)?

Let A be a model for A generated in degree one by elements a1, ..., a,, and defining
homogeneous equations

filar,...,a,) =0for 1 <j<k
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Consider all solutions to this set of equations with a; € M,(C). They form a
subvariety

mod,, A — AT

which is homogeneous (that is, a cone).

Observe that if A is commutative (that is, n = 1), mod, A = Maz(A) and A is
a smooth model if the corresponding projective variety P(mod,, A) is smooth. For
this reason, we define (actually, the definition has to be modified slightly)

DEFINITION 1.1.4. A model A for A is said to be smooth iff proj, A =
P(mod,, A) — P™"°~1 is a smooth (commutative) variety.

EXERCISE 1.1.5. Are A, and S, smooth models ? Try to compute this in the
easiest case n = 2, that is, when ¢ = —1 (for A,) and a = b (for S,).

We will impose restrictions on the existence of smooth models by computing their
étale (or analytic) local structure.
Let A be a model with center C' and let S be the projective variety defined by C.
We say that X (¢) —— S is a excellent open subset provided

A9 = Bld,d™ ]

where d is central of degree one. If P € X(c) we will denote with mp the corre-
sponding maximal ideal of the center of B.

1.2. Z,-loops

By a Z,-loop we mean the following data :

e A directed graph on k + [ + m < n vertices of the form

1 k+1
x Y

k k+1

Arim

where the indicated numbering of vertices will be used later. In this picture
we make the natural changes whenever k or [ is zero.
e An unordered partition p = (p1, ..., Prti+m) of n with all p; # 0

The second main application of étale machinery we will prove is the local char-
acterization of smooth models (in arbitrary dimension). In the special case under
consideration we have
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THEOREM 1.2.1. With notations as before, let A be a model and X (c) — S an

excellent open subset. Then, A is locally on X (c) a smooth model if and only if it
assigns to each point P € X (¢) a Zy-loop, say of type (Axim,P) such that

() (1)

. ,y
B, = (x,y)

k l

where at place (i,7) (for every 1 < i,j < k+ 1+ m) there is a block of dimension
pi X pj with entries the indicated ideal of Cl[z,y]].

ExAMPLE 1.2.2. Consider the graded algebra A with defining relations

XY =q¥YX
XZ =2zX
YZ =2Y

where ¢ is a primitive n-th root of unity. Then X (Z) is an excellent open subset
and

where uv = qvu. Clearly, proj, A| X(Z) = mod, C4lu,v]. One can verify that on
X (Z) the local loops are of the form

V(u™)

A —9
701 27

N V(v™)

Aori

Aoo1
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oL

Agor Aror

where there are r + 1 = n vertices in the non-trivial cycle. The corresponding
partitions are (n) resp. (1,...,1).

Observe that there is no Z,-loop in the origin. This can be seen by observing that
the completion at p = (u™,v™) is Cg4[[u,v]] which is a division algebra and hence
cannot be of the split-form corresponding to a Z,-loop.

We will show that a central simple C(z, y)-algebra A of dimension n? has a model
which is locally smooth on an excellent cover if and only if all the branch-data in
the Z,- wrinkle on P? determining A are trivial (that is, zero). Moreover, any A
has a model with isolated singularities all of which are locally of quantum-plane
type.

Hence, in order to construct smooth models in any central simple algebra A we
have to relax the condition of having an excellent open cover.

Let A be a smooth model with central projective surface S = Proj C' (which may
contain singularities), then locally around P € S A has the form

Al=.. . ol ?*0ol""'d'eBeldo I’d®*® ... — Ald,d"]

with d central of degree one and I an invertible ideal of B.

This time, we will characterize the graded completion of A with respect to the
graded maximal ideal m%, of C' determining P. The underlying combinatorial object
is a Z,-weighted loop, that is a Z,-loop (Agim,p) with

e a given period e € N
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o a weight wy € Z/eZ associated to every arrow ¢ in Agi,. If we take the
sum of the weights along the two cycles we get numbers w, and wy.
e a compatible partition m = {m; <ms <...<m, <e}lofn

THEOREM 1.2.3. With notations as above, A is a smooth model iff to every point
P € S is associated a weighted Zy,-loop of type, say (Agim, m,p, w,e) such that

R (z,y) N
g ~ _ € —e
Am% T eee—— —— —— MH(C[[‘TayH[t )t ])(mlv'-'amn)
k l m

where at place (i, 7) there is a block of dimension p;xp; of form I.t%i where a;; is the
minimal total weight in Z. of an oriented path from i to j and I is the intersection
of the indicated ideal in C[[x,y]][t¢,t~¢] with the invariant ring C[[x, y]]%[t¢,t¢]
where the action is given by x — Y=z and y — (“vy for ( a primitive e-th root of
unity.

The graded matriz-algebra on the right has as its i-th part homogeneous component

is defined to be

Ri RiJralfag oo RiJralfan
R’L'Jraz*al Rz e R’L'Jraz*an
RiJranfal RiJranfaQ cee Rz

where R; = C[[z,y]]t/.

We can now construct smooth models in any A by blowing-up the remaining
quantum-plane singularities. Let us recall the ringtheoretical interpretation of a
blow-up of a point in A2,

EXAMPLE 1.2.4. Let A2 —» A2 be the blow-up of the origin p = (0,0) in A2, If
C[A?] = C[x,y], consider the graded algebra

R=Clz,y|® (z, )t ® (z,9)** ® ... — Clz,y][t]

Then R is generated by two elements in degree zero x,y and two in degree one
X =zt and Y = yt. The defining (homogeneous) relation of R is Y — yX.

Then, A2 = Proj R and the projection morphism is given by the inclusion (in
degree zero) Clz,y] — R. Geometrically, the blow-up can be viewed as a spiral
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staircase covering A2 by rotating a line through (0, 0).

The projection map

A2 —»» A? where (,y, X :Y) — (z,9)
is an isomorphism on A? — (0,0) and has a P! as fiber over the origin.

Assume we have a local quantum-plane singularity B = C,[u,v] with v = z and
v™ = y. We consider the graded algebra

A=B® (u,v)t® (u,v)*t* ® ... — C,(u,v)[t]
and call it the the non-commutative blow-up of a quantum-plane singularity. We

will show that A is a (local) smooth model with corresponding weighted Z,,-loops
of type

_Aro1

o ® Afyy
Aoo1

Ao1r

projecting onto
V(z)

A —9
701 27

V(y)

Aoir ..\

Aoo1
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where r = n — 1 and where Ay, is the weighted loop

VA

1

A is generated by two elements of degree zero u,v and two of degree one U = ut
and V =wvt. ¢ = U™ = xt™ is central and if we localize we obtain

A? = Cylu,|[U, U, 4]

where v/ = VU ™! and ¢(u) = u, ¢(v') = qv’. If we consider a point P in the open
set of the ’exceptional fiber’ where v' # 0 (that is, V # 0), then we can adjoin an
n-th root of v'™ to obtain

Cq{ua UI] ®(C[u”,v'"] C[uinavlil] = Mn((c[uina 'U/il])
whence
A9, = M (C[w*, w*J[U™, U"])(0,1,2,...,n — 1)

via the identifications

00 0 0 u" w 0 0 0 1 0
10 0 0 0 ogwmo 0 0 1
W |0 10 0 0| y—| _ U—
: . : : 0 0 0
n—1
000 ...1 0 00 ¢"w ur 0 0

and we see that in P, A has weighted Z,-loop type Agy;.

Acknowledgements These notes are based on a course given for the ’Erasmus
Intensive Program Ringtheory’ organized by Fred Van Oystaeyen, may 12-22 at the
UIA.

Michel Van den Bergh suggested using the coniveau spectral sequence to prove the
Artin-Mumford sequence.

As always, my research is supported by a grant from the Foundation for Scientific
Research (F.W.0.).
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Birational classification






CHAPTER 2

The étale site of an algebra

Throughout, A will be a commutative C-algebra. The algebra equivalent of a finite
separable field extension is that of an étale morphism.

2.1. Etale morphisms

DEFINITION 2.1.1. A finite morphism A 1 B of commutative C-algebras is said
to be étale if and only if

ofi

B =Alty,...,tg]/(f1,.-., frx) such that det (61‘ )i,j € B”

J
PROPOSITION 2.1.2. Ftale morphisms satisfy ’sorite’, that is
1. (basechange)

et
Y ~ A ®4B
t
A—2 . B
2. (composition,)
B
/ X
et
A eeoeeeseeeeesssreeresssssseessssneseee . C
3. (descent)
t
AN —Z AeaB
[T
et
R -~ B
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4. (morphisms)

DEFINITION 2.1.3. The étale site of A, which we will denote by A.; is the category
with

e objects : the étale extensions A e BofA
e morphisms : compatible A-algebra morphisms

A
N
By ¢

> By

Observe that by the foregoing proposition all morphisms in A; are étale. We can
put on A.; a (Grothendieck) topology by defining

e cover : a collection C = {B i B;} in Ag such that

Spec B =U; I'm (Spec B; N Spec B)

2.2. Etale sheaves
An étale presheaf of groups on A.; is a functor
G: A,y — Groups
In analogy with usual (pre)sheaf notation we denote for each
e object B € Ae; : T'(B,G) = G(B)
e morphism B Y Cin Aet @ ResB = G(¢) : G(B) —— G(C) and
g91C=G(¢)(9)

A presheaf G is a sheaf provided for every B € A.; and every cover {B —— B;}
we have exactness of the equalizer diagram

0 — G(B) — [[G(B:) — [[ G(Bi @5 B))
i i,
ExaMpPLE 2.2.1. Constant sheaf : If G is a group, then
G: A, — Groups B+— G &7o(B)
is a sheaf where 7o (B) is the number of connected components of Spec B.
EXAMPLE 2.2.2. Multiplicative group Gy, : The functor
Gm : At — Ab B — B*

is a sheaf on Ag;.
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A sequence of sheaves of Abelian groups on A.; is said to be exact
G_I f G g Q7

if for every B € At and s € G(B) such that g(s) = 0 € G”(B) there is a cover
{B — B;} in A, and sections t; € G/(B;) such that f(t;) = s | B;.

EXAMPLE 2.2.3. Roots of unity p, : We have a sheaf morphism
Gm LSl Gm

and we denote the kernel with p,. As A is a C-algebra we can identify p, with the
constant sheaf Z,, = Z/nZ via the isomorphism ¢’ +— i after choosing a primitive
n-th root of unity ¢ € C.

LEMMA 2.2.4. The (Kummer)-sequence of sheaves of Abelian groups

0 fin Gm = G 0
is exact on Aer (but not necessarily on Azqy ).

PROOF. We only need to verify surjectivity. Let B € A.: and b € Gy, (B) = B*.
Consider the étale extension B’ = B[t]/(t" —b) of B, then b has an n-th root over
in Gy, (B’). Observe that this n-th root does not have to belong to Gy, (B). O

2.3. Derived functors

Before we define cohomology of sheaves on Ag; let us recall the definition of derived
functors. Let A be an Abelian category. An object I of A is said to be injective if
the functor

A—— Ab M +— Homa(M,I)

is exact. We say that A has enough injectives if, for every object M in A, there is
a monomorphism M —— [ into an injective object.

If A has enough injectives and f : A —— B is a left exact functor from A into a
second Abelian category B, then there is an essentially unique sequence of functors

Rf:A—=B i>0
called the right derived functors of f having the following properties

¢ R f=f
e R" I =0 for I injective and ¢ > 0
e For every short exact sequence in A

0 M’ M M” >0

there are connecting morphisms &% : R* f(M”) — R f(M') for i > 0
such that we have a long exact sequence

S R (M) — R (M) = R F(MY) — R F(M) — ...

e For any morphism M — N there are morphisms R* f(M) — R’ f(N)
for:>0
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In order to compute the objects R® f(M) define an object N in A to be f-acyclic
if R® f(M) =0 for all i > 0. If we have a resolution of M

0 M No Ny Ny
by f-acyclic object N;, then the objects R® f(M) are canonically isomorphic to the
cohomology objects of the complex

0 —> f(No) —> f(N1) — f(N2) — ...

One can show that all injectives are f-acyclic and hence that derived objects of M
can be computed from an injective resolution of M.

2.4. Etale cohomology

Now, let S?%(A.¢) be the category of all sheaves of Abelian groups on A.;. This
is an Abelian category having enough injectives whence we can form right derived
functors of left exact functors. In particular, consider the global section functor
I:8%(A4,) — Ab G — G(A)
which is left exact. The right derived functors of I' will be called the étale coho-
mology functors and we denote
R T(G) = H,(A, G)

In particular, if we have an exact sequence of sheaves of Abelian groups
0 G’ G - G” » 0, then we have a long exact cohomology
sequence

. — H,(A,G) — H,(A,G”) — H'J'(A,G') — ...

If G is a sheaf of non-Abelian groups (written multiplicatively), we cannot define
cohomology groups. Still, one can define a pointed set H),(A, G) as follows. Take
an étale cover C = {A —— A;} of A and define a 1-cocycle for C with values in
G to be a family

9ij S G(AZ]) with Aij = Az ®A Aj
satisfying the cocycle condition

(9i5 | Aiji)(g5k | Aijr) = (9ik | Ajk)
where Ajp = A; ®4 Aj @4 Ag.

Two cocycles g and ¢’ for C are said to be cohomologous if there is a family h; €
G(A;) such that for all 4,5 € I we have

gi; = (hi | Aij)gij(hy | Aij)~"
This is an equivalence relation and the set of cohomology classes is written as
HL(C,G). Tt is a pointed set having as its distinguished element the cohomology
class of g;; =1 € G(A;;) for all 4,5 € 1.
We then define the non-Abelian first cohomology pointed set as

HL(A,G)= lim HL(C,G)

where the limit is taken over all étale coverings of A. It coincides with the previous
definition in case G is Abelian.

A sequence 1 - G’ G G” » 1 of sheaves of groups on A, is said
to be exact if for every B € A.; we have

e G/(B) = Ker G(B) — G”(B)
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e For every g” € G”(B) there is a cover {B —— B;} in A, and sections
gi € G(B;) such that g; maps to ¢” | B.

PROPOSITION 2.4.1. For an exact sequence of groups on A

1 G’ G G” 1

there is associated an exact sequence of pointed sets

1 —» G/(A) — G(A) — G"(A) 2+ HY(A,G) —

- Helt(Aa G) - Helt(Av G”) """" > Hth(Av G/)

where the last map exists when G’ is contained in the center of G (and therefore is

Abelian whence H? is defined).

PROOF. The connecting map § is defined as follows. Let ¢” € G”(A4) and
let C = {A —— A;} be an étale covering of A such that there are g; € G(A;)
that map to g | A; under the map G(A;) —— G”(A4;). Then, 6(g) is the class
determined by the one cocycle

gij = (9i | Aij) " (g5 | Aij)
with values in G’. The last map can be defined in a similar manner, the other maps

are natural and one verifies exactness. O

The main applications of this non- Abelian cohomology for non-commutative algebra
is as follows. Let A be a not necessarily commutative A-algebra and M an A-
module. Consider the sheaves of groups Aut(A) resp. Aut(M) on A.; associated
to the presheaves

B Autp_qig(A ®4 B) resp. B — Autp_mod(M ®4 B)

for all B € Ae. A twisted form of A (resp. M) is an A-algebra A’ (resp. an
A-module M) such that there is an étale cover C = {A —— A;} of A such that
there are isomorphisms

A®aA; i N @4 A resp. M @4 A e M @4 A;

of A;-algebras (resp. A;-modules). The set of A-algebra isomorphism classes (resp.
A-module isomorphism classes) of twisted forms of A (resp. M) is denoted by
Twa(A) (resp. Twa(M)). To a twisted form A’ one associates a cocycle on C

1
apr =y = @p 0

with values in Aut(A). Moreover, one verifies that two twisted forms are isomorphic
as A-algebras if their cocycles are cohomologous. That is, there is an embedding

Twa(A) — HL(A, Aut(A)) and similarly Twa(M) — HL (A, Aut(M))

In favorable situations one can even show bijectivity. In particular, this is the case
if the automorphisms group is a smooth affine algebraic group-scheme.
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2.5. Stalks and Henselizations

If p is a prime ideal of A we will denote with k, the algebraic closure of the field of
fractions of A/p. An étale neighborhood of p is an étale extension B € A.; such
that the diagram below is commutative

nat

A k,
et
B
The analogue of the localization A, for the étale topology is the strict Henselization
At = — B

where the limit is taken over all étale neighborhoods of p.

Recall that a local algebra L with maximal ideal m and residue map =
L — L/m = k is said to be Henselian if the following condition holds. Let
f € L[t] be a monic polynomial such that 7(f) factors as go.ho in k[t], then f
factors as g.h with 7(g) = go and w(h) = ho. If L is Henselian then tensoring
with & induces an equivalence of categories between the étale A-algebras and the
étale k-algebras.

An Henselian local algebra is said to be strict Henselian if and only if its residue
field is algebraically closed. Thus, a strict Henselian ring has no proper finite
étale extensions and can be viewed as a local algebra for the étale topology.

EXAMPLE 2.5.1. Consider the local algebra of C[x1,...,z4] in the maximal ideal

(21,...,24), then the Henselization and strict Henselization are both equal to
C{‘Tlv cee 7:Cd}

the ring of algebraic functions. That is, the subalgebra of C[[z1,...,z4]] of for-

mal power-series consisting of those series ¢(z1,...,x4) which are algebraically

dependent on the coordiate functions z; over C. In other words, those ¢

forw which there exists a non-zero polynomial f(z;,y) € Clxy,...,2q,y] with

f(xla'"azd7¢(zla"'azd)) =0.
These algebraic functions may be defined implicitly by polynomial equations. Con-
sider a system of equations

fi(xla- ey Tdy Y1, - ay’m) =0 for fi S C[mzay]] and 1 S 1 S m
Suppose there is a solution in C with
r; =0and y; =y

such that the Jacobian matrix is non-zero

af;
det( 7‘(07""0;yf)"')y70n))#0
8yj
Then, the system can be solved uniquely for power series y;(z1,...,zq) with
y;(0,...,0) = y; by solving inductively for the coefficients of the series. One can
show that such implicitly defined series y;(z1,...,zq) are algebraic functions and

that, conversely, any algebraic function can be obtained in this way.
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If G is a sheaf on A.; and p is a prime ideal of A, we define the stalk of G in p to
be

G, = lim G(B)

where the limit is taken over all étale neighborhoods of p. One can verify mono-
epi- or isomorphisms of sheaves by checking it in all the stalks.

If A is an affine algebra defined over an algebraically closed field, then it suffices to
verify in the maximal ideals of A.
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CHAPTER 3

Central simple algebras and cohomology

In this chapter we will use étale cohomology to begin the study of central simple
algebras of dimension n? over functionfields.

3.1. The étale site of a field

Let K be a field of characteristic zero, choose an algebraic closure K with absolute
Galois group Gx = Gal(K/K).

LEMMA 3.1.1. The following are equivalent

1. K —— A is étale
2. Ak K~Kx...xK
3. A=T]]L; where L;/K is a finite field extension

PrROOF. Assume (1), then A = K[z1,...,z,]/(f1,..., fn) where f; have invert-
ible Jacobian matrix. Then A®K is a smooth algebra (hence reduced) of dimension
0 so (2) holds.

Assume (2), then

HomK_alg (A, K) ~ HomK_alg (A R K, K)

has dimg (A ® K) elements. On the other hand we have by the Chinese remainder
theorem that

AlJac A = HLZ'

with L; a finite field extension of K. However,

dimg(A@K) =Y dimg (L;) = dimg (A/Jac A) < dimg(A)

and as both ends are equal A is reduced and hence A = [[, L; whence (3).
Assume (3), then each L; = K[x;]/(fi) with 0f;/0x; invertible in L;. But then
A =T] L; is étale over K whence (1). O

To each finite étale extension A = [[ L; we can associate the finite set rts(A) =
Homg_q4(A,K) on which the Galois group Gk acts via a finite quotient group.
If we write A = K[t]/(f), then rts(A) is the set of roots in K of the polynomial f
with obvious action by Gx. Galois theory, in the interpretation of Grothendieck
can now be stated as

PropoSITION 3.1.2. The functor

Koy rts(z) finite G — sets

is an anti-equivalence of categories.

21
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We will now give a similar interpretation of the Abelian sheaves on K.;. Let G be
a presheaf on K. Define

Mg = lim G(L)

where the limit is taken over all subfields L —— K that are finite over K. The
Galois group G acts on G(L) on the left through its action on L whenever L/K
is Galois. Hence, Gk acts an Mg and Mg = UMg where H runs through the
open subgroups of Gx whence Mg is a continuous G x-module.
Conversely, given a continuous G g-module M we can define a presheaf Gps on Ky
such that

o Gy (L) = MH where H =G, = Gal(K/L).

o Gy (JTL:) =11Gum(Ly).

One verifies that G is a sheaf of Abelian groups on K.

THEOREM 3.1.3. There is an equivalence of categories
S(K.) — Gk — mod

induced by the correspondences G — Mg and M — Gy.

PrROOF. A Gg-morphism M ——— M’ induces a morphism of sheaves
Gy — Gy Conversely, if H is an open subgroup of Gy with L = K,

then if G —2» G’ is a sheafmorphism, ¢(L) : G(L) — G'(L) commutes with
the action of Gk by functoriality of ¢. Therefore, lim ¢(L) is a Gx-morphism
Mg — Mgr.

One verifies easily that Homg, (M, M') — Hom(Gys, Gp) is an isomorphism
and that the canonical map G —— Gy is an isomorphism. [l

In particular, we have that G(K) = G(K)% for every sheaf G of Abelian groups
on K.; and where G(K) = Mg. Hence, the right derived functors of I" and (—)¢
coincide for Abelian sheaves.

The category Gx — mod of continuous Gx-modules is Abelian having enough
injectives. Therefore, the left exact functor

(-)¢: Gx — mod — Ab

admits right derived functors. They are called the Galois cohomology groups and
denoted

R' M% = HY(Gk, M)
Therefore, we have.

PRrROPOSITION 3.1.4. For any sheaf of Abelian groups G on K¢ we have a group
isomorphism

H,(K,G)~ H(Gk, G(K))

Therefore, étale cohomology is a natural extension of Galois cohomology to arbi-
trary algebras.
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3.2. Central simple algebras
The following definition-characterization of central simple algebras is classical

PROPOSITION 3.2.1. Let A be a finite dimensional K-algebra. The following are
equivalent :

1. A has no proper twosided ideals and the center of A is K.

2. Ax = A®k K ~ M,(K) for some n.

3. AL, = A®k L ~ M, (L) for some n and some finite Galois extension L/K.

4. A ~ My(A) for some k where D is a division algebra of dimension 1? with
center K.

The last part of this result suggests the following definition. Call two central simple
algebras A and A’ equivalent if and only if A ~ M} (A) and A" ~ M;(A) with A a
division algebra. From the second characterization it follows that the tensorproduct
of two central simple K-algebras is again central simple. Therefore, we can equip the
set of equivalence classes of central simple algebras with a product induced from the
tensorproduct. This product has the class [K] as unit element and [A]~1 = [A°PP],
the opposite algebra as A @ g AP ~ Endg(A) = M;2(K). This group is called
the Brauer group and is denoted Br(K). We will quickly recall its cohomological
description, all of which is classical.

GL, is an affine smooth algebraic group defined over K and is the automorphism
group of a vectorspace of dimension r. It defines a sheaf of groups on K.; that we
will denote by GL,. Using the general results on twisted forms of the foregoing
chapter we have

LEMMA 3.2.2.
HY(K,GL,;) = H' (Gg,GL.(K)) =0
In particular, we have ’Hilbert’s theorem 90’
HYL(K,Gp) = H (Gg,K*) =0

PROOF. The cohomology group classifies K-module isomorphism classes of
twisted forms of r-dimensional vectorspaces over K. There is just one such class. [

PGL, is an affine smooth algebraic group defined over K and it is the automor-
phism group of the K-algebra M,,(K). It defines a sheaf of groups on K.; denoted
by PGL,. By the proposition we know that any central simple K-algebra A of
dimension n? is a twisted form of M, (K). Therefore,

LEMMA 3.2.3. The pointed set of K -algebra isomorphism classes of central simple
algebras of dimension n? over K coincides with the cohomology set

HY(K,PGLy,) = H'(Gg, PGL,(K))
THEOREM 3.2.4. There is a natural inclusion
Hey(K,PGLy) — HZ(K, pn) = Bra(K)
where Bry,(K) is the n-torsion part of the Brauer group of K. Moreover,
Br(K) = H%(K,Gm)

18 a torsion group.
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ProoF. Consider the exact commutative diagram of sheaves of groups on K,

1 1
. . (="
I
det
1 - SL, GL, < . G,, 1
PGL, = PGL,
1 1

Taking cohomology of the second exact sequence we obtain

det

GL,(K) — K* — H!(K,SL,) — H%(K,GL,)

where the first map is surjective and the last term is zero, whence
HY(K,SLy) =0
Taking cohomology of the first vertical exact sequence we get
Hgy(K,SLy) — Hy (K, PGLy) — HZ, (K, pn)

from which the first claim follows.
As for the second, taking cohomology of the first exact sequence we get

Helt(KaGm) - H(?t(Kvl“Lﬂ) - Hth(KaGm) — Hgt(Kma)

By Hilbert 90, the first term vanishes and hence H2 (K, ) is equal to the n-torsion
of the group

HZ(K,Gm) = H*(Gk,K*) = Br(K)

where the last equality follows from the crossed product result. [l

So far, the field K was arbitrary. If K is of trancendence degree d, this will put
restrictions on the ’size’ of the Galois group G . In particular this will enable us
to show that H*(Gx,pn) = 0 for i > d. Before we can prove this we need to refresh
our memory on spectral sequences.
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3.3. Spectral sequences

Let A, B and C be Abelian categories such that .4 and B have enough injectives
and consider left exact functors

A-L.p "¢
Let the functors be such that f maps injectives of A to g-acyclic objects in B, that
is R* g(f I) =0 for all i > 0. Then, there are connections between the objects
RP g(R? f(A)) and R" gf(A)

for all objects A € A. These connections can be summarized by giving a spectral
sequence

THEOREM 3.3.1. Let A, B,C be Abelian categories with A, B having enough injec-
tives and left exact functors

A-L.p_t.¢
such that f takes injectives to g-acyclics.
Then, for any object A € A there is a spectral sequence
EP" =RP g(R f(A)) = R" gf(A)
In particular, there is an exact sequence
0 — R g(f(4)) — R' gf(A) — g(R" f(A)) — R® g(f(4)) — ...
Moreover, if f is an exact functor, then we have
RP gf(A) ~ R? g(f(A))
A spectral sequence EY? = E™ (or EY"? = E™) consists of the following data

1. A family of objects EP? in an Abelian category for p,q,r € Z such that
p,g>0andr >2 (or r>1).
2. A family of morphisms in the Abelian category

lp,q . Ep.q Ep+’l ,q—r+1
T : T T
Sa.t ley ing he COmpleX COndi( iOn

d;g-i—hq—r-i-l o d:;%q =0

and where we assume that d?? = 0 if any of the numbers p, g, p+ror g—r+1

is < 1. At level one we have the following
q

——>0—>0—> 00— 00—

— >0— >0— >0— >0 >

— >0— >0— >0— >0 >

D,q
E1’ = o&—o —eo —o — 0o >



26 3. CENTRAL SIMPLE ALGEBRAS AND COHOMOLOGY

At level two we have the following
q

SRR
SR
SR

3. The objects E¥)!; on level r + 1 are derived from those on level 7 by taking

the cohomology objects of the complexes, that is,

EY |, =Kerd?? [/ Im dp—ratr=1

At each place (p, q) this process converges as there is an integer ro depending
on (p,q) such that for all r > 7o we have d?9 = 0 = dP~"9T"~1. We then
define

BB = EL(= BN, = )

Observe that there are injective maps E%4 — EJ7,
4. A family of objects E™ for integers n > 0 and for each we have a filtration

OCE,CE) ,C...CEf CE}=E"
such that the successive quotients are given by
Ep [ Ep, = ERMP

That is, the terms EZ:? are the composition terms of the limiting terms
EPT4. Pictorially,

For small n one can make the relation between E™ and the terms E5'? explicit.
First note that

0,0 _ 770,0 _ 7,0
ESY=E% =F
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Also, E} = ELY = E)° and E'/E} = E%' = Ker dy'. This gives an exact
sequence
1,0 1 01 d3' 20
0— E E EY B2
Further, E? D E? O E2 where
E2=FE% = E2° ) Im dy!

and E2/E2 = EL! = Ker dy' whence we can extend the above sequence to

[ouB! dy? 20 52 gl dy? 30
2 2 1 2 9

as E?/E} = E%? —— EJ? we have that E} = Ker (B> —— Ey°). If we
specialize to the spectral sequence EY'? = RP g(R? f(A)) = R™ gf(A) we obtain
the exact sequence

0 — R g(f(4)) — R' gf(A) — g(R' f(4)) — R? g(f(4)) —

— EY — R g(R" f(4)) — R’ g(f(4))
where E? = Ker (R? gf(A) — g(R? f(4))).

3.4. Forced solutions and Tsen fields

DEFINITION 3.4.1. A field K is said to be a T'sen®field if every homogeneous form
of degree deg with coefficients in K and n > deg? variables has a non-trivial zero
in K.

For example, an algebraically closed field K is a Tsen’-field as any form in n-
variables defines a hypersurface in ]P’%_l. In fact, algebraic geometry tells us a
stronger story

LEMMA 3.4.2. Let K be algebraically closed. If f1,..., fr are forms in n variables
over K and n > r, then these forms have a common non-trivial zero in K.

ProOF. Each f; defines a hypersurface V(f;) — IP’%A. The intersection of
r hypersurfaces has dimension > n — 1 — r from which the claim follows. O

We want to extend this fact to higher Tsen-fields. The proof of the following result
is technical unenlightening inequality manipulation.

PROPOSITION 3.4.3. Let K be a T'sen®-field and f1,. .., f» forms in n variables of
degree deg. If n > rdeg?, then they have a non-trivial common zero in K.

For our purposes the main interest in Tsen-fields comes from :

THEOREM 3.4.4. Let K be of trancendence degree d over an algebraically closed
field C, then K is a Tsen®-field.

PROOF. First we claim that the purely trancendental field C(tq1,...,tq) is a
Tsend-field. By induction we have to show that if L is T'sen*, then L(t) is T'sen**1.
By homogeneity we may assume that f(z1,...,2,) is a form of degree deg with
coefficients in L[t] and n > degh*!. Z(;)
with ¢ <n and 0 < j < s such that

wi =y Pty

For fixed s we introduce new variables y
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If r is the maximal degree of the coefficients occurring in f, then we can write

F@) = foui)) + Lyt + oo+ faegosrr(yl) edesst

where each f; is a form of degree deg in n(s + 1)-variables. By the proposition
above, these forms have a common zero in L provided

n(s+1) > degh(ds +r +1) <= (n — deg™)s > deg’(r +1) —n

which can be satisfied by taking s large enough. the common non-trivial zero in L
of the f;, gives a non-trivial zero of f in Lt].

By assumption, K is an algebraic extension of C(ty,...,tqs) which by the above
argument is T'sen?. As the coefficients of any form over K lie in a finite extension
E of C(ty,...,tq) it suffices to prove that E is T'sen?.

Let f(x1,...,2,) be a form of degree deg in E with n > deg?. Introduce new
variables y;; with

T; = Yi1€1 + ... Yik€k

where e; is a basis of E over C(t1,...,tqs). Then,

f(xi) = fi(yij)er + -+ fe(yiz)ex
where the f; are forms of degree deg in k.n variables over C(t1,...,tqs). Because
C(t1,...,tq) is Tsen?, these forms have a common zero as k.n > k.deg?. Finding a
non-trivial zero of f in F is equivalent to finding a common non-trivial zero to the
fl,...,fk in C(tl,...,td), done. [l

A direct application of this result is T'sen’s theorem :

THEOREM 3.4.5. Let K be the functionfield of a curve C defined over an alge-
braically closed field. Then, the only central simple K -algebras are M, (K). That
is, Br(K) = 1.

PROOF. Assume there exists a central division algebra A of dimension n? over

K. There is a finite Galois extension L/K such that AQ L = M, (L). If x1,...,z,2
is a K-basis for A, then the reduced norm of any = € A,

N(z) = det(z ®1)

is a form in n? variables of degree n. Moreover, as r ® 1 is invariant under the

action of Gal(L/K) the coefficients of this form actually lie in K.

By the main result, K is a T'sen!-field and N(x) has a non-trivial zero whenever
n? > n. As the reduced norm is multiplicative, this contradicts N(z)N(z~1) = 1.
Hence, n = 1 and the only central division algebra is K itself. [l

If K is the functionfield of a surface, we also have an immediate application :

PROPOSITION 3.4.6. Let K be the functionfield of a surface defined over an alge-
braically closed field. If A is a central simple K-algebra of dimension n2, then the
reduced norm map

N : A—K

18 surjective.
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PROOF. Let eq,...,e,2 be a K-basis of A and k € K, then
N(Z xiei) — ka:ZQH

is a form of degree n in n?+1 variables. Since K is a T'sen? field, it has a non-trivial
solution (z?), but then, 6 = (3 x?ei)x;irl has reduced norm equal to k. O

3.5. Cohomological dimension and Tate fields

From the cohomological description of the Brauer group it is clear that we need to
have some control on the absolute Galois group Gx = Gal(K/K). In this section we
will see that finite trancendence degree forces some cohomology groups to vanish.

DEFINITION 3.5.1. The cohomological dimension of a group G, ¢d(G) < d if and
only if H"(G, A) =0 for all r > d and all torsion modules A € G-mod.

DEFINITION 3.5.2. A field K is said to be a T'ate?-field if the absolute Galois group
Gg = Gal(K/K) satisfies cd(G) < d.

First, we will reduce the condition ¢d(G) < d to a more manageable one. To start,
one can show that a profinite group G has ¢d(G) < d if and only if

H™Y(G, A) = 0 for all torsion G-modules A

Further, as all Galois cohomology groups of profinite groups are torsion, we can
decompose the cohomology in its p-primary parts and relate their vanishing to the
cohomological dimension of the p-Sylow subgroups G, of G. This problem can then
be verified by computing cohomology of finite simple G,-modules of p-power order,
but for a profinite p-group there is just one such module namely Z/pZ with the
trivial action.

Combining these facts we have the following manageable criterium on cohomological
dimension.

PROPOSITION 3.5.3. cd(G) < d if H¥TY(G,Z/pZ) = 0 for the simple G-modules
with trivial action Z/pZ.

We will need the following spectral sequence in Galois cohomology

PROPOSITION 3.5.4. (Hochschild-Serre spectral sequence) If N is a closed normal
subgroup of a profinite group G, then

E}Y = HY(G/N, HY(N, A)) — H"(G, A)
holds for every continuous G-module A.
Now, we are in a position to state and prove Tate’s theorem

THEOREM 3.5.5. Let K be of trancendence degree d over an algebraically closed
field, then K is a Tate?-field.

PrOOF. Let C denote the algebraically closed basefield, then K is algebraic
over C(ty,...,tq) and therefore

Gr — Gy, ta)
Thus, K is Tate? if C(t1,...,tq) is Tate?. By induction it suffices to prove
If cd(Gr) < k then cd(Grp)) <k +1
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Let L be the algebraic closure of L and M the algebraic closure of L(t). As L(t)
and L are linearly disjoint over L we have the following diagram of extensions and
Galois groups

G
L < L(t) —D , M
Gr Gr
Gr
L L(t)

where GL(t)/G]L(t) ~ GL.
We claim that cd(Gp)) < 1. Consider the exact sequence of G'r,(;)-modules

(=)

0 Lp M* M* 0
where f1, is the subgroup (of C*) of p-roots of unity. As Gp acts trivially on
Up it is after a choice of primitive p-th root of one isomorphic to Z/pZ. Taking

cohomology with respect to the subgroup Gy ;) we obtain
0= H"(Gr(),M*) — H*(Gyr), Z/pZ) —> H*(Gr),M*) = Br(L(t))

But the last term vanishes by Tsen’s theorem as L(¢) is the functionfield of a curve
defined over the algebraically closed field .. Therefore, H Q(GL(t), Z/pZ) = 0 for all
simple modules Z/pZ, whence cd(Gr)) < 1.

By the inductive assumption we have ¢d(Gr) < k and now we are going to use
exactness of the sequence

0 — G — Gpyy — Grpy — 0

to prove that cd(G(y)) < k+ 1. For, let A be a torsion G'f,(4)-module and consider
the Hochschild-Serre spectral sequence

EDT = HY(Gr, H (G, A)) = H™(G L), A)

By the restrictions on the cohomological dimensions of G, and Gy ;) the level two
term has following shape

q
[ ] [ ] [ ]
20 [ ] [ ]
[ ] [ ] [ ]
Eg,q _ . _ p

k k+1 k+2

where the only non-zero groups are lying in the lower rectangular region. Therefore,
all E29 = 0 for p+q > k+1. Now, all the composition factors of H’”Q(GL(t), A) are
lying on the indicated diagonal line and hence are zero. Thus, H*+2(G L),A4) =0
for all torsion G'f,(4)-modules A and hence cd(Gr ) < k+ 1.

O
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As a consequence we obtain

THEOREM 3.5.6. If A is a constant sheaf of an Abelian torsion group A on K.,
then

H;,(K,A)=0
whenever i > trdege (K).
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CHAPTER 4

The Artin-Mumford sequence

In this chapter we will prove the geometric classification by Z,-wrinkles of central
simple algebras over surfaces.

4.1. Leray spectral sequence

Assume we have an algebra morphism A —L+ A’ and a sheaf of groups G on A,.
We define the direct image of G under f to be the sheaf of groups f. G on A
defined by

f« G(B) = G(B®a A')

for all B € At (recall that B®4 A’ € A/, so the right hand side is well defined).
This gives us a left exact functor

for8U(AY) — S™(Aut)

and therefore we have right derived functors of it R? f,.
If G is an Abelian sheaf on A’,, then R f.G is a sheaf on A.;. One verifies that

et?
its stalk in a prime ideal p is equal to

(R f.G)p = Hét(A;h ®a A, G)

where the right hand side is the direct limit of cohomology groups taken over all
étale neighborhoods of p.
We can relate cohomology of G and f.G by the following

THEOREM 4.1.1. (Leray spectral sequence) If G is a sheaf of Abelian groups on

AL, and A EERYY an algebra morphism, then there is a spectral sequence
EY?=HY (A R? f.G) = HL(A,Q)
In particular, if R7 f.G =0 for all j > 0, then for all i > 0 we have isomorphisms
Hy (A f.G) = Hj, (A, G)

4.2. Cohomology for discrete valuation rings

Consider the setting

33
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where A is a discrete valuation ring in K with residue field A/m = k. As always, we
will assume that A is a C-algebra. By now we have a grip on the Galois cohomology
groups

Heit(Kvp'ﬂ®l) and Hét(kvliﬂ@l)
and we will use this information to compute the étale cohomology groups
H;t (Av /“Lﬂ@l)

Here, ,un®l = fin ® ... ® pun where the tensorproduct is as sheafs of invertible Z,, =
—_——

!
Z/nZ-modules.

We will consider the Leray spectral sequence for ¢ and hence have to compute the
derived sheaves of the direct image

LEMMA 4.2.1. 1. RO iyptn® ~ pun® on Ag.
2. R iupin® ~ p,® =1 concentrated in m.
3. R7 ipun® ~ 0 whenever j > 2.

PROOF. The strict Henselizations of A at the two primes {0, m} are resp.
Ash ~ K and AP ~ k{t}
where K (resp. k) is the algebraic closure of K (resp. k). Therefore,
(R Z.*l"n®l)0 = Hgt(Ka l‘n®l)

which is zero for 7 > 1 and ;l.n®l for j = 0. Further, Afjl1 ® 4 K is the field of fractions
of k{t} and hence is of trancendence degree one over the algebraically closed field
k, whence

(R7 i ®) = HZ,(L, pn®")

which is zero for j > 2 because L is Tate?.
For the field-tower K C L C K we have that Gy =Z = lim p,, because the only

Galois extensions of L are the Kummer extensions obtained by adjoining %/t. But
then,

Hiy(Lypn®') = H'(Z, 1™ (K)) = Hom(Z, pn®' (K)) = pu®' ™"

from which the claims follow. O

THEOREM 4.2.2. We have a long ezact sequence

0 Hl(AvﬁLﬂ@l) Hl(KaMn®l) Ho(kvliﬂ@lil)

HQ(Aall‘n®l) HQ(Kall'n(gl) Hl(kvliﬂ@lil)

PrOOF. By the foregoing lemma, the second term of the Leray spectral se-
quence for i, pn®! looks like
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Ho(kvllln@)l_l) Hl(ka ll"n.®l_1) HQ(kv;u'n@l_l)

HO(A, pa®") | HY (A, pa®') | H?*(A pn®")

with connecting morphisms

(27

Hi ey pn ) — HIFY(A pa®")

The spectral sequences converges to its limiting term which looks like

Ker aq Ker as Ker ag

HO (A pn®Y) | HY(A, pn®") | Coker oy

and the Leray sequence yields short exact sequences

0 > Helt(Aall’ﬂ-@l) — Hét(Kvp"n.®l) — Kerag — 0
0 — Coker oy — HZ(K,pun®") — Ker ag — 0

0 — Coker oy — H',(K, ppn®) — Ker a; — 0

and gluing these sequences yields the required result.
O

In particular, if A is a discrete valuation ring of K with residue field k we have for
each ¢ a connecting morphism

i 0i, i _
Hét(KvlLﬂ@l) _A> Het 1(knu'n®l 1)
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4.3. Coniveau spectral sequence

Like any other topology, the étale topology can be defined locally on any scheme
X. That is, we call a morphism of schemes

y o x

an étale extension (resp. cover) if locally f has the form
fa | U; AZ:F(U”OX) - B; :F(fil(Ui)aOY)

with A; — B; an étale extension (resp. cover) of algebras.

Again, we can construct the étale site of X locally and denote it with X,;.
Presheaves and sheaves of groups on X.; are defined similarly and the right de-
rived functors of the left exact global sections functor

I':SX,) — Ab
will be called the cohomology functors and we denote
R'T(G) = H, (X, G)

From now on we restrict to the case when X is a smooth, irreducible projective
variety of dimension d over C. In this case, we can initiate the computation of
the cohomology groups H:,(X,un®') via Galois cohomology of functionfields of
subvarieties using the coniveau spectral sequence

THEOREM 4.3.1. Let X be a smooth irreducible variety over C. Let X®) denote
the set of irreducible subvarieties x of X of codimension p with functionfield C(x),
then there exists a coniveau spectral sequence

EF = P HLP(Clr) pn® ) = HL(X, pn®)
reX (@)

In contrast to the spectral sequences used before, the existence of the coniveau
spectral sequence by no means follows from general principles. In it, a lot of heavy
machinery on étale cohomology of schemes is encoded. In particular,

e cohomology groups with support of a closed subscheme, see Milne’s book
”Etale cohomology” pp. 91-94
e cohomological purity and duality, see loc.cit. Chpt VI, §5,6 pp. 241-252

a detailed exposition of which would take us too far afield.
Using the results on cohomological dimension and vanishing of Galois cohomology
of ,®* when the index is larger than the trancendence degree, we see that the



4.4. THE CASE OF SURFACES 37

coniveau spectral sequence has the following shape

q
o o—>0—>0 e — >0 —>
de—>o—>eo - 0o—o
o o—0—>0 S rr Q— > O—>
o——>0 L] o—r0—»
Epﬁq —
1 ® o—>0® - 0—>0—»

p
where the only non-zero terms are in the indicated region.

Let us understand the connecting morphisms at the first level, a typical instance
of which is

D 7C@m® ) — D HTCwH)mTT

zeX (@) yeX (p+1)

and consider one of the closed irreducible subvarieties x of X of codimension p and
one of those y of codimension p + 1. Then, either y is not contained in z in which
case the component map

H'(C(x), pn®P) — H(C(y), mn®771)

is the zero map. Or, y is contained in x and hence defines a codimension one
subvariety of x. That is, y defines a discrete valuation on C(x) with residue field
C(y). In this case, the above component map is the connecting morphism defined
in the previous section.

In particular, let K be the functionfield of X. Then we can define the unramified
cohomology groups

F:LJ(K/C) = Ker Hi(Kvl“Lﬂ@l) %A’ D Hiil(kA7#ﬂ®l71)

where the sum is taken over all discrete valuation rings A of K (or equivalently, the
irreducible codimension one subvarieties of X) with residue field k4. By definition,
this is a (stable) birational invariant of X. In particular, if X is (stably) rational
over C, then

FAY(K/C) =0 for all 4,1 >0

4.4. The case of surfaces

In this section S will be a smooth irreducible projective surface.

DEFINITION 4.4.1. S is called simply connected if every étale cover Y —— S is
trivial, that is, Y is isomorphic to a finite disjoint union of copies of S.
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The first term of the coniveau spectral sequence of S has following shape

H?(C(S),pn) | €c HY(C(C), Zn) | @ppn~" | 0

fn 0 0 0

where C' runs over all irreducible curves on S and P over all points of S.

LEMMA 4.4.2. For any smooth S we have H'(C(S),pn) — @®c Zn. If S is
simply connected, HY(S, ptn) = 0.

Proor. Using the Kummer sequence 1 - iy Gm ), Gm 1
and Hilbert 90 we obtain that

H.,(C(S), pm) = C(8)7/C(S)™

The first claim follows from the exact diagram describing divisors of rational func-
tions

Hn = Hn 0
i
0 . C* c) 2 sz - 0
(=)" n
i
0 . C* cs) 2 gz - 0
0 @cZn ~ @cZn

By the coniveau spectral sequence we have that H., (S, un) is equal to the kernel of
the morphism

Helt((c(s)vll'n) o Sc Zn

and in particular, H'(S, pn) — H(C(S), pn ).
As for the second claim, an element in H'(S,pu,) determines a cyclic extension
L = C(S)Y/f with f € C(S)*/C(S)* such that in each fieldcomponent L; of L
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there is an étale cover T; —— S with C(T;) = L;. By assumption no non-trivial
étale covers exist whence f =1 € C(S)*/C(S)*". O

In we invoke another major tool in étale cohomology of schemes, Poincaré duality,
we obtain the following information on the cohomology groups for S.

PROPOSITION 4.4.3. (Poincaré duality for S) If S is simply connected, then
L. Heot(Sal"n) = Hn
2. HY(S,pn) =0
3. H2(S,pun) =0
4. Hét(Sal"n) :.U'rf1
PrOOF. The third claim follows from the second as both groups are dual to

each other. The last claim follows from the fact that for any smooth irreducible
projective variety X of dimension d one has that

Hthd(Xa Pn) = .Un®1_d

We are now in a position to state and prove the important

THEOREM 4.4.4. (Artin-Mumford exact sequence) If S is a simply connected
smooth projective surface, then the sequence

0 — Bra(S) — Bro(C(S)) — @¢ C(C)*/C(C)*™ —

1_»0

-1 —
— Dp ln — HUn
15 exact.

PROOF. The top complex in the first term of the coniveau spectral sequence
for S was

[e3%

H2(C(S), pn) — ®c HY(C(C),Zn) —2+ ®p pin

The second term of the spectral sequence (which is also the limiting term) has the
following form

Ker a | Ker B/Im « | Coker 3 0

Ker ~ Coker v 0 0

n 0 0 0

By the foregoing lemma we know that Coker v = 0. By Poincare duality we know
that Ker 8 = Im « and Coker 3 = pn~'. Hence, the top complex was exact in its
middle term and can be extended to an exact sequence

0— H2(S’ll'n) - HQ((C(S),[I.") — @c Hl(C(C)vzn) -
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1_»0

@Pl‘nil — Un

As Z,, ~ py the third term is equal to ®cC(C)*/C(C)*™ by the argument given
before and the second term we remember to be Br, (C(S). The identification of
Br,,(S) with H?(S, un) will be explained in the next section. O

Some immediate consequences can be drawn from this :

e For a smooth simply connected surface S, Br,(S) is a birational invariant
(it is the birational invariant F2!(C(S)/C) of the foregoing section.

e In particular, if S = P? we have that Br,(P?) = 0 and we obtain the
description of Br, (C(x,y)) by Z,-wrinkles as

0 — Br, C(z,y) — @¢c C(C)*/C(C)*"™ —> ©ppn~* — ptn — 0

EXERCISE 4.4.5. If S is not necessarily simply connected, show that any class in
Br(C(S)),, determines a Z,-wrinkle.

EXERCISE 4.4.6. If X is a smooth irreducible rational projective variety of dimen-
sion d, show that the obstruction to classifying Br(C(X)),, by Z,-wrinkles is given
by HE (X, ).

4.5. Interpretation via maximal orders

In this section we will give a ringtheoretical interpretation of the maps in the Artin-
Mumford sequence. Observe that nearly all maps are those of the top complex of the
first term in the coniveau spectral sequence for S. We gave an explicit description
of them using discrete valuation rings. The statements below follow from this
description.

Let us consider a discrete valuation ring A with field of fractions K and residue

field k. Let A be a central simple K-algebra of dimension n2.

DEFINITION 4.5.1. An A-subalgebra A of A will be called an A-order if it is a free
A-module of rank n? with A.K = A. An A-order is said to be maximal if it is not
properly contained in any other order.

In order to study maximal orders in A (they will turn out to be all conjugated),
we consider the completion A with respect to the m-adic filtration where m = At
with ¢ a uniformizing parameter of A. K will denote the field of fractions of A and
A=A KK K.

Because A is a central simple K -algebra of dimension n? it is of the form

A = M, (D)

where D is a division algebra with center K of dimension s2 and hence n = s.t. We
call ¢t the capacity of A at A.

In D we can construct a unique maximal A-order T', namely the integral closure
of Ain D. We can view I as a discrete valuation ring extending the valuation v
defined by A on K. If v : K — Z, then this extended valuation

w: D — n"27Z is defined as w(a) = (K(a) : IA()*lv(Nf((a)/f((a))

for every a € D where K (a) is the subfield generated by a and N is the norm map
of fields.
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The image of w is a sugroup of the form e~*Z ~— n~2.Z. The number e = ¢(D/K)
is called the ramification index of D over K. We can use it to normalize the
valuation w to

vp : D —— Z defined by vp(a) = %’U(ND/R(G,))

With these conventions we have that vp(t) = e.

The maximal order T' is then the subalgebra of all elements a € D with vp(a) >
0. It has a unique maximal ideal generated by a prime element 1" and we have
that T = I'/TT is a division algebra finite dimensional over A/tA = k (but not
necessarily having k as its center).

The inertial degree of D over K is defined to be the number f = f(D/K) = (T : k)
and one shows that

s> =e.f and e | s whence s | f

After this detour, we can now take A = M,(T') as a maximal A-order in A. One

shows that all other maximal A-orders are conjugated to A. A has a unique maximal
ideal M with A = M(T).

DEFINITION 4.5.2. With notations as above, we call the numbers e = e(D/K),
f=f(D/K) and t resp. the ramificaton, inertia and capacity of the central simple
algebra A at A. If e =1 we call A an Azumaya algebra over A, or equivalently, if

A/tA is a central simple k-algebra of dimension n?.

Now let us consider the case of a discrete valuation ring A in K such that the
residue field k is T'sen®. The center of the division algebra I is a finite dimensional
field extension of k and hence is also T'sen! whence has trivial Brauer group and
therefore must coincide with T'. Hence,

T = k(a)

a commutative field, for some a € I'. But then, f < s and we have e = f = s and
k(@) is a cyclic degree s field extension of k.
Because s | n, the cyclic extension k(@) determines an element of HZ,(k,Z,,).

DEFINITION 4.5.3. Let Z be a normal domain with field of fractions K and let
A be a central simple K-algebra of dimension n?. A Z-order B is a subalgebra
which is a finitely generated Z-module. It is called maximal if it is not properly
contained in any other order. One can show that B is a maximal Z-order if and
only if A = B, is a maximal order over the discrete valuation ring A = Z, for every
height one prime ideal p of Z.

Return to the situation of an irreducible smooth projective surface S. If A is a
central simple C(S)-algebra of dimension n?, we define a maximal order as a sheaf
B of Og-orders in A which for an open affine cover U; —— S is such that

B; =T(U;, B) is a maximal Z; = I'(U;, Og) order in A

Any irreducible curve C on S defines a discrete valuation ring on C(S) with residue
field C(C') which is T'sen'. Hence, the above argument can be applied to obtain
from B a cyclic extension of C(C'), that is, an element of C(C)*/C(C)*™.

DEFINITION 4.5.4. We call the union of those curves such that B determines a
non-trivial cyclic extension of C(C') the ramification divisor of A (or of B).
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The map in the Artin-Mumford exact sequence
Bra(C(8)) — DH:(C(C), pn)
C

assigns to the class of A the cyclic extensions introduced above.

DEFINITION 4.5.5. An S-Azumaya algebra (of index n) is a sheaf of maximal orders
in a central simple C(S)-algebra A of dimension n? such that it is Azumaya at each
curve C, that is, such that [A] lies in the kernel of the above map.

One can show that if B and B’ are S-Azumaya algebras of index n resp. n’, then
B®o, B’ is an Azumaya algebra of index n.n’. We call an Azumaya algebra trivial if
it is of the form End(P) where P is a vectorbundle over S. The equivalence classes
of S-Azumayay algebras can be given a group-structure called the Brauer-group of
the surface S.
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Non-commutative smooth models






CHAPTER 5

Restricted smooth models

Assume K is a field of trancendence degree d over C. By Hironaka’s result on
resolution of singularities we know that K has a smooth model. Ringtheoretically,
this means that there is a positively graded affine C-domain

A =Clzo,...,xm]/(f1,- -, fr)

generated in degree one by the x; and where the f; are homogeneous polynomials
such that

1. A is a model for K. That is, if we localize at the multiplicative system of
non-zero homogeneous elements of A we obtain the graded field

Q(A) = K[t,t™']

with t of degree one.
2. A is a smooth model for K if X = Proj A is smooth. That is, consider the
zero set

Proj A=V (fi,..., fr) — P™
then at each point p € V(f1,..., fi), the kernel of the linear map

Ofi
3z,

will be of dimension d + 1.

)(p) : € —

In this chapter we will consider a non-commutative analogous situation, where the

role of K is replaced by a central simple K-algebra A of dimension n2.

5.1. Cayley-Hamilton algebras

We fix a field K of trancendence degree d, a central simple K-algebra A of dimension
n? and a connected graded algebra

A=CPA A DAsD ...
which is affine and generated in degree one, that is,
A1 =Caq + ...+ Cayp,
and there is an epimorphism
Clx1,...,Tm) — A

mapping x; to a;. Moreover, we will assume that A is a finite module over its center
C which is itself a graded algebra. We will always assume that C' is a normal (that
is, integrally closed) domain.

45
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DEFINITION 5.1.1. The graded algebra A is said to be a model for A if A is
prime and if we localize at the Ore-set of non-zero central homogeneous elements
we obtain

Q7(A) = Aft,t7]

where ¢ is a central element of degree one. In particular, C' will be a model for K
though not necessarily generated in degree one.

We recall the definition of the reduced trace map tr : A — C. As Aft,t 1@k K ~
M, (K[t,t~!) we can define for any a € A its reduced trace tr(a) = Tr(a® 1) €
K[t,t~1]. AsTr is compatible with the Galois action and a®1 is invariant under G,
it follows that tr(a) € K[t,t~1]. Moreover, as C'is integrally closed in K[t,t~!] and
a is integral over C, it follows that tr(a) € C. Moreover, as we are in characteristic
zero we have that tr(A) = C. Remark that ¢r is a homogeneous linear map. A
with its reduced trace map is a special instance of a Cayley-Hamilton algebra.

Let A be an arbitrary C-algebra having a linear trace map tr : A — A satisfying
the following conditions for all a,b € A

1. tr(ab) = tr(ba)
2. tr(a)b = btr(a)
3. tr(tr(a)b) = tr(a)tr(b)

In particular, the image of tr is a subalgebra of the center of A. We can then define
the n-th Cayley-Hamilton polynomial formally. In Qz1,...,2,] one defines the
elementary symmetric functions by the identity

n

[t =2)=> (-1)oit*"

i=0
and the power sums functions and {7;} are generators of the symmetric functions,

there are functions with rational coefficients such that

Ok :pk(Tlv'-';Tn)

and we define the functions o3 on A formally as

or(a) = p(tr(a), tr(a?),. .., tr(a"))
and define the n-th Cayley-Hamilton polynomial for A to be

Xna(t) = D (=1)'gi(a)t™"
i=0
DEFINITION 5.1.2. We say that an algebra A with a trace function tr is an n-th
Cayley-Hamilton algebra if

1. For all a € A we have xp4(a) =0in A
2. tr(l)=n

With CH,, we will denote the category with objects (A,tr4) algebras A with a
trace function trs which are n-th Cayley-Hamilton algebras and morphisms f :
(A,tra) — (B, trp) are algebra morphisms which are trace preserving, that is,
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the diagram below is commutative

A / B
tra trp
A B
f

As we have seen above, orders in central simple algebras are the archetypical exam-
ples of Cayley-Hamilton algebras. One can study Cayley-Hamilton algebras using
algebraic geometry and invariant theory.

Let (A,try) € CH, be m-generated, that is, there are elements aj,...,a, € A
such that the subalgebra in CH,, generated by them is equal to A (note that this
is weaker than A being generated as algebra by m elements). Consider

mod, A={¢: (A, tra) — (M,(C),Tr) in CH,}

the set of n-dimensional trace preserving representations of A. By taking the images
¢(a;) € M, (C) for 1 <14 < m it is clear that mod,, A is a closed subvariety of the
affine space M,,(C)®™.

There is a natural action of PGL, on M,(C)®™ by simultaneous conjugation.
Clearly, mod,, A is a PGL,-stable closed subvariety of M,(C)®"™. The PGL,-
orbits correspond to isomorphism classes of representations.

If we denote by CHflm) the subcategory of C'H,, consisting of algebras which are
trace generated by m elements we have the following important result due to C.
Procesi

THEOREM 5.1.3 (Procesi). The functor
CH(™ ——~ PGL, — closed subvarieties of M, (C)®™

assigning mod, A to A € CH,gm) has a left inverse.
This inverse assigns to a PGL,,-closed subvariety X the ring of PG L., -equivariant
maps X — M, (C), or equivalently, the ring of concomitants

My, (CX]) PG

This means that we can recover A € CH,sm) from the affine PGL,,-variety mod, A
as A ~ M,,(Clmod,, A])F%En.

The embedding ja : A — M, (C[X 4]) has the following universal property. Let
C be a commutative algebra and F : A —— M, (C) a morphism in CH,, (with
the usual trace map on M, (C)) then there is a uniquely determined morphism
f:C[X4] — C making the diagram below commutative

A— M (clxa)

F

My (C)
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After this short excursion to Cayley-Hamilton algebras let us return to the situation
at hand, that is, the connected graded algebra A is a model for A. In this case,

mod, A — M, (C)®™

is a cone because all the defining relations of A are homogeneous. Alternatively,
there is a C*-action on mod,, A which commutes with the PGL,-action. Using
Procesi’s result we have

LEMMA 5.1.4. Let A be a model for A, then mod, A has a natural action by
PGL, xC*. Moreover, we recover the graded algebra A from the action on mod,, A.

PRrROOF. By Procesi’s theorem we recover the algebra A as the ring of PGL,,-
equivariant maps mod,, A — M, (C). The C*-action defines the gradation on A.
An element f € Ay iff the diagram

mod,, A i» M, (C)

A PLR

mod,, A i» M, (C)

commutes where the vertical map on the left is action by A € C* on mod,, A and
on the right left multiplication by A*. O

As mod,, A is a cone we can define its projective space
pTOjn A= ]P’(modn A) > P(Mn(C)EBm) — ]P)mnzfl

which has an induced PGL,-action. We would like to call A smooth whenever
proj, A is a smooth variety. However, we have to be careful about representations
having the zero representation in the closure of its orbit.

DEFINITION 5.1.5. The semi-stable points proj>* A of proj, A are those deter-
mined by a representation A — M,,(C) on which a central homogeneous element
of A does not vanish.

DEFINITION 5.1.6. A model A for A is said to be a smooth model if and only if
projs® A is a smooth variety.

EXERCISE 5.1.7. If A is commutative, verify that proj;* A = Proj A. Hence the
above definition generalizes the classical one.

5.2. Module varieties

LEMMA 5.2.1. Let A be a model for A and 0 # ¢ € C homogeneous. The localiza-
tion at the Ore-set {1,c.c?....} has the form

Al=.. . ol %l 'eBolol*s...

where I is an invertible ideal of B, that is, for 7' = {6 € A | 1.6 C B} we have
117 '=B.

PROOF. Let deg(c) = u and write ¢ = > d;a; with deg(d;) = u — 1, then
1= (c7'd;).a; € (A9)_1.(AD)

whence AY is strongly graded and the last claim follows from the structure result
of strongly graded algebras and Q9(A) = A[t,t!] with ¢ central. O
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A particularly interesting case is when I = B¢’ with ¢ central.

DEFINITION 5.2.2. A smooth model A of A is said to be restricted if one can
cover proj:® A with affine open sets X (¢) where ¢ € C homogeneous such that

AY = Bld,d "]
and d central of degree one.

LEMMA 5.2.3. If A is a restricted smooth model for A, then locally for the defining
cover we have

projs® A| X(c¢) = mod, B
PROOF. A trace preserving n-dimensional representation
¢:AY = DBld,d"'] — M,(C)

is determined by ¢ | B € mod,, B and ¢(d) = A, for some A € C*. The corre-
sponding point in proj, A is hence fully determined by ¢ | B. [l

Therefore, the local study of restricted smooth models reduces to that of affine
algebras B with normal center Z(B) such that mod,, B is a smooth affine variety.
We can give a ringtheoretical interpretation of this condition. In analogy with the
infinitesimal lifting property of smooth commutative algebras we define

DEFINITION 5.2.4. An affine algebra (B,trp) in CH, is said to be smooth if and
only if for every test-object (C, N) where (C,tr¢) € CH,, N a nilpotent ideal (in-
variant under the trace map such that also (C/N, tr¢) € CH,,) and every morphism
¢: (B,trg) — (C/N,trc) in CH,, the diagram below can be completed in CH,,

0 N - C C/N - 0
A

30

B
Using the universal property of jp : B — M, (C[mod,, B]) recalled in the previous
section we then have

PROPOSITION 5.2.5 (Procesi). Equivalent are

1. B is a smooth algebra in CH,,
2. mod, B is a smooth variety

PROOF. (1) = (2) : Let (C,N) be a commutative test-object for C[mod,, B.
We have to lift the map C[mod,, B] — C/N to C. By smoothness in CH,, of B
we can complete with F' the diagram

B —78 M, (Clmod, B))

3R

T TAMA()
My (C) M (C/N)

but then by the universal property of jp there is a uniquely determined map f :
C[mod,, B] — C which is the required lift.
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The reverse implication makes essential use of the Reynolds operator in invariant
theory. [l

We will make a few comments about the module varieties mod,, B for an arbitrary
affine C-algebra B in CH,,. Let by,...,bs be generators of B, then

mod, B ={z:B —> M,(C)} — M,(C)®* = A"

viax +— (z(b1),...,z(bs)). A point x determines an n-dimensional B-module M, =
C? via b;.m = xz(b;)m for all m € C™. There is a natural action of GL,, on mod,, B
via conjugation in M, (C) and z, 2’ lie in the same orbit if and only if M, ~ M,
as B-module.

DEFINITION 5.2.6. With notations as above we denote

1. The orbit GL,.x of x by Orb,.
2. The stabilizer subgroup Stab,(GLy) ={g € GL,, | g.x = x} by GL,.

LEMMA 5.2.7. For any x € mod,, B we have a canonical isomorphism
GL:E =~ AUtB—mod(Mz)

PRrOOF. Consider a B-module isomorphism g : M, —— M, determined by
g € GL,,. Then, g(b;.m) = b;.g(m) and hence

g.x(b;).m =x(b;).gm forallme My, =Cl and 1 <i <s
But then, g.2.g7' =z and g € GL,. O

A natural question is the correlation between algebraic properties of the B-module
M, and geometric properties of the orbit Orb, — mod,, B.

DEFINITION 5.2.8. A filtration F' on a finite dimensional B-module M is a sequence
of submodules

O=M,C...CMiCMy=M
and the associated graded B-module is defined by
grr(M) = ®i_y Mi—1/M;

By the Jordan-Hélder theorem we know that M has a filtration with all composition
factors S; = M;_1/M; simple B-modules.

LEMMA 5.2.9. Let z,z’ € mod,, B. Equivalent are

1. There is a one-parameter subgroup X\ : C* GL, such that

limy—oA(t).x = 2'.
2. There is a filtration F' on M, such that grp(M,) ~ M,

PROOF. (1) = (2) : We consider the weightdecomposition of M, =V
V =@;V; where V; = {v € V | \(t).v = t'v for all t € C*} for i € Z

and we consider M; = ®;>;M;. We claim that the M; define a filtration on M,
with associated graded module M, .
Consider the canonical inclusion and projection maps

Vi = V=0V, =V
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For b € B the action z(b) = ¢ = (¢;) € End(V) where ¢;; = mjopor; : V; — V.
We have

A At)
=i
Vi Piy,

and as limy—oA(t).z(b) = 2’ (b) exists we have
e ¢;; = 0 whenever j < ¢ and hence M}, is a B-submodule of M,
[ Z’Lmtg,o()\(t)l‘(b))” = (l‘/(b))” =0 for 4 <J

Therefore 2'(b) is the diagonal matrix (¢;;) and the claim follows.

(2) = (1) : Consider a filtration F

0=M,C...C M, C My=M,
then there exist subspaces V; of V' = M, such that M; = @EZJ-Vi and V = @!_,V;.
If we then define an action \(¢) | V; = t*.I,, this satisfies the requirements. O
THEOREM 5.2.10 (Artin-Voigt). 1. The closed GL,,-orbits in mod,, B are pre-
cisely the isomorphism classes of semi-simple B-modules of dimension n.

2. The Zariski closure Orb, contains a unique closed orbit determined by the
direct sum of the composition factors of M.

PROOF. Let x € mod, B, consider a Jordan-Holder filtration on M, with
associated graded gr(M,) a semi-simple B-module of dimension n. Denote x4, the
corresponding point of mod,, B.

(1) : If Orb, is closed, then by the foregoing lemma we have

Orb,,, C Orby = Orb,

and thus, gr(M,) ~ M, whence M, is semi-simple.

Conversely, assume M, is semi-simple and let y € Orb,.. By the Hilbert-Mumfrd cri-
terium in invariant theory, there exists a one-parameter subgroup A\ : C* — GL,,
such that

limy—oA(t).x € Orb,
Again by the foregoing lemma this implies that there is a filtration F' on M, such
that grp(M,) ~ M,. However, as M, is semi-simple grp(M,) ~ M, and thus
M, ~ M, and hence Orb, is closed.
(2) : Uniqueness follows from the Jordan-Hélder theorem. O

In general, if X is an affine variety with an action by a reductive group G, then
the closed orbits are parameterized by th e points of an affine variety X /G, the
quotient variety. Its coordinate ring is

C[X/G] = C[X]¢

the ring of G-invariant polynomial functions on X. Moreover, the natural inclusion
C[X]¢ —— C[X] defines the quotient map

7m: X — X/G
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and for each ¢ € X/G the fiber 771(¢) contains a unique closed orbit (that of
minimal dimension).
Restricting to the case of interest to us we see that the set iso}® B of isoclasses
of semi-simple n-dimensional representations of B has the structure of an affine
variety with coordinate ring

Clisos* B] = C[mod,, B]%»
and we have a ringtheoretical interpretation of this quotient variety namely

Cliso;? B] = Z(B)

If m is a maximal ideal of the center Z(B), then one determines the associated
semi-simple representation of B by taking the quotient of B/mB by its Jacobson
radical. In conclusion, we have

THEOREM 5.2.11 (Procesi). If B is an affine algebra in CH,, then the module
variety mod,, B together with its natural GL,-action determines

1. B as the ring of equivariant maps mod,, B — M — n(C).
2. The center Z of B as the coordinate ring of the quotient variety.

5.3. Etale local structure

If X is a commutative smooth variety of dimension d and x a point of X then there
is only one type of étale local behavior at x, namely
O ~ C{xy,..., x4}

the strict Henselization of the local ring in x is the ring of algebraic functions on d
variables.
In this section we will prove an analogous result for restricted smooth models of a
central simple algebra A of dimension n? over a field K of trancendence degree d.
We will show that for given n and d there are only finitely many types of étale local
behavior.
Hence, fix a restricted smooth model A and consider a cover of proj:® A by affine
open sets determined by X (¢) where ¢ € C' is homogeneous and
A9 ~ Bld,d™ "]
with d central of degree one. Let Z be the center of B, then Z has field of fractions
K. Let m< Z be a maximal ideal. We want to study the structure of the algebra
B = B®y Z3!
From the foregoing section we recall that m determines a unique closed orbit Orb,, in
mod,, B %% projs® A with M, a semi-simple B-module of dimension n. Consider
the decomposition of M, in simple components
M, =8%"q.. . ©S%r

with S; a simple B-module of dimension d;. Then, > e;d; = n and the correspond-
ing point = € mod,, B is given by the trace preserving morphism

x: B — B = B/mB — E/T@d(?) = Md1 ((C)GBel b...PH Mdr((C)eBer
We say that @ (or m) is a point of representation type

7(x) = 7(m) = (e1,d;...;er,dy)
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The stabilizer subgroup GL, is then verified to be

GLe, X ... X GLe,
embedded in GL,, via

GLel ® 1q,
— GL,
GLeT ® 1q,

We remark that GL, depends only on its representation type 7 and we will denote
by GL(7) the group XxGL., embedded in GL,, as above.

It will turn out that in order to describe B:" we have to be able to understand

the normal space in = to the orbit Orb, as a module over the stabilizer subgroup
GL,; = GL(7).
We have G Ly-equivariant closed embeddings

Orb, ~ mod,, A — M, (C)®™

if b1,..., by, are generators of B. We have embeddings of the respective tangent
spaces in x

T, Orb, ~ T, mod,, B ~— T, M,(C)®™

which are embeddings as GL(7)-modules and hence by reductivity of GL(7) they
are direct factors.

Therefore, we have for the normal spaces to the orbit in mod,, B resp. M, (C)®™
that

T, Xa bi T, M, (C)®™
NS™ — NbYig —
* Tw O’I"bz e Tw Orbz

as GL(7)-modules. That is, we have the following picture

MO ™

big
Ny

mody, B

; ss
iso,” B

Se
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Before we compute these GL(7)-modules, let us explain the relevance to our prob-
lem.

This is an application of the Luna slice theorem in invariant theory adapted to
the situation of interest to us. In general, if H is a reductive subgroup of G acting
on an affine variety Z then one defines an H-action on G x Z via the map

h.(g,z) = (gh™*, h.2)
The corresponding quotient is called the associated fiber bundle
Gx"7Z=(Gx2Z)/H
and it acquires a G-action via multiplication on the left in the first component.
One can show that the corresponding quotient satisfies
(Gx" 2))G~z/H
THEOREM 5.3.1 (Luna slice theorem). Let x be a smooth point of mod,, B of rep-
resentation type 7. Then, there exists a locally closed affine smooth subvariety

Sy & mod,, B containing x, which is stable under the action of GL(T) satisfying
the following properties

e The map GL,, X S — mod,, B obtained by (g,s) — g.s induces a GL,,-
equivariant étale map

Y : GL, xGLT) S+ mod, A
with affine image. Moreover the induced quotient map
¢/GL, : (GL, x°*() 8.)/GL,, = S,/GL(1) — mod,, B/GL, =iso®® B

is also €tale.
e There is a GL(T)-equivariant map

¢S, — N =T, S,
such that ¢(x) = 0 and with affine image. The induced quotient map
¢/GL(1) : Sy /GL(7) — N /GL(7)

is also étale.
e The above maps induce the following commutative diagram

GLn XGL(T .

) S
Y
GL, < GL(7) &

GL, xGLT Nsm mod,, B
Sy /GL(T)
Y/GLy
¢/GL(7)
N /GL(T) 150,° B

where the vertical maps are the quotient maps, all diagonal maps are étale
and the upper ones are G L, -equivariant.
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Hence, the GL,-local structure of mod,, B in a neighborhood of x is the same as that
of GL, xG*(7) N5™ in a neighborhood of (1,,0). Similarly, the local structure of
is0%* B in a neighborhood of m is the same as that of N2 /GL(7) in a neighborhood
of 0. Therefore, we have

THEOREM 5.3.2. Let A be a restricted smooth model of A and consider an open
cover proj3® A | X(¢) = mod,, B where B has center Z.

Let m be a maximal ideal of Z corresponding to a point x € mod,, B of represen-
tation type 7 = (e1,d1;...;€r,d;).

Let p denote the mazimal ideal of C[N:™ /GL(7)| corresponding to the point 0.
Then,

1. Zh ~ C[N3™/GL(T)s
2. Bl ~ (M, (C[GLy, xCL() N3m])Gln)sh

Hence, we know the étale local structure of Z and B in m if we know the GL(7)-
module structure of N;™.

Since we know the embedding GL(7) — GL, and the action of GL,, on M, (C)®™
(by simultaneous conjugation) we know the structure of T, M, (C)®™ = M, (C)®
as GL(7)-module. Further, the exact sequence

0 — Lie GL(1) — Lie GL,, — T, Orb, — 0

allows us to determine the GL(7)-module structure of T,, Orb, and consequently
that of N9 =T, M, (C)®™/T, Orb,.

Once we know an isotypical decomposition of N%¥9, taking a direct subsum we
obtain all possibilities for N7™. Of course, later on, we will have to verify which of
these theoretical possibilities actually occur from a restricted smooth model.
Rather than writing down decompositions of N3™ a N2 in simple GL(7)-modules
we prefer to represent this information by a ’local chart’. We use the following
dictionary

e a loop at vertex (i) corresponds with the GL(7)-module M., (C) on which
GL,, acts by conjugation and the other factors act trivially.

e an arrow from vertex (i) to vertex (j) corresponds to the GL(T)-module
Mc,x¢;(C) on which GL., x GL.; act via g.m = gimgjfl and the other
factors act trivially.

e a marked loop at vertex (i) corresponds to the simple GL(7)-module
Meoi (C), that is, trace zero matrices with action of GL., by conjugation
and trivial action by the other components.

e the label of a loop or arrow indicates the multiplicity of the corresponding
representation.

LEMMA 5.3.3. With conventions as above and x a point of representation type T
we have

1. The GL(T) = GL¢, % ... x GL,, -module structure of N9 can be represented
by the local chart on r wvertices such that the subchart on any two vertices



56 5. RESTRICTED SMOOTH MODELS

1 <1,5 <ris of the form

(m —1)d? + 1 (m = D)did; (m —1)d3 +1

(m —1)d;d;

2. The GL(7)-module structure of N:™ can be represented by a local chart on
r vertices such that the subgraph on any two vertices 1 < 1,5 < r is of the
form

ajj

Qq>/\(g)§
Mg aji )

where a;; < (m —1)d;d; and a;; +my; < (m —1)d? +1 for all 1 <i,j <.

ProOF. (2) follows from (1) by observing that M, «.,(C) is a simple GL(7)-
module and that the isotypical decomposition of M, (C) = MY (C) & Cyri, where
Ctriv is the trivial one-dimensional GL(7)-module. O

5.4. Classifying local charts

A local chart C' = (M, e) consists of two data : the underlying 'map’ M that is,
the marked labeled directed graph and the ’dimension-vector’ e = (eq,...,e,). If
we specify e we obtain a GL(e) = XGL.,-module R(M,e) any vector of which we
call a representation of the map M of dimension e. That is v € R(M, e) assigns to
each

e arrow from (i) to (j) a matrix in Me, x., (C)
e unmarked loop in (¢) a matrix in M, (C)
e marked loop in (i) a trace zero matrix in M2 (C)

A morphism from a representation v € R(M, e) to a representation w € R(M, f) is
an r-tuple of linear maps ¢ = (¢1,..., %) € ®; My, «., (C) such that every diagram

v

(OA C%
i (o
cfi v cti
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is commutative where the horizontal maps are either arrows or (marked) loops in
M.

Having morphisms, the notions of sub- , quotient- and simple-representation are
obvious as are direct sums of representations of M. If we view the GL(e)-module
R(M,e) as an affine space on which GL(e) acts, then orbits correspond precisely
to isomorphism classes of representations.

LEMMA 5.4.1. The local chart C = (M,e) of a restricted smooth model must be
such that R(M,e) contains simple representations of M.

ProOOF. Consider a point = € mod, B of representation type 7 =
(e1,dy;...;ep,dy) with Ni™ = R(M,e). By the Luna slice theorem we have
étale GL,-equivariant maps

GL, xCLO Nom L gL, L0 sy od, B
As B is a prime order, we have that any Zariski neighborhood of = in mod,, B
contains simple orbits, that is, closed orbits with stabilizer C*. Because the maps
above are G L,,-equivariant and étale every Zariski neighborhood of (1,,,0) contains
a closed GL,-orbits with stabilizer C*. By the correspondence of orbits in fiber
bundles there must be closed GL(7)-orbits in N5 = R(M,e) with stabilizer C*.
By a version of the Artin-Voigt theorem for representations of the map M closed
orbits correspond to semi-simple representations of M. If the stabilizer of such a
representation is C* then it must be simple. O

Hence, we have to determine which dimension vectors can arise from simple repre-
sentations of the map M. We define the Euler-form of M as the bilinear map

v T XTI —— T
determined by the matrix xas = (x;;) with entries
Xij = —aij and xi; = 1 —ai; —mq
where a;j is the number of arrows from (i) to (j) in M and a;; resp. m;; are the
number of (resp. marked) loops at (7).
PROPOSITION 5.4.2. e = (ey,...,e,) is the dimension-vector of a simple represen-
tation of the map M if and only if one of the following situations occurs

1. M = A, the extended Dynkin diagram with cyclic orientation and e =

1,...,1).
) )
1 1
1 1
o—————
1 1

2. M # A,. Then, M has to be strongly connected (that is, any two vertices
can be connected by a directed path) and if §; = (01, ...,0r:) are a standard
basis of 7" we must have

xn(e,6;) <0 and x(d;,e) <0
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forall1 <i<r.

ProOF. We will only prove necessity of the conditions in (2). Sufficiency fol-
lows from a degeneration argument and induction.
Let v € R(M,e) be a simple representation (that is, contains no proper subrepre-
sentations) and let v(¢) denote the linear map determined by the arrow, loop or
marked loop ¢.
Assume M is not strongly connected, then we can divide M into maximal strongly
connected submaps M, ..., M, say. The direction of all arrows between two such
components must be all the same by maximality. Hence, there is a component M,
having no arrows to other components. Now, define a proper subrepresentation
w of v with dimension-vector f = dy7.€ by w(¢) = v(¢@) if ¢ is a map in M; and
w(¢) = 0 otherwise. Hence, M must be strongly connected.

For each (i) we have xar(d;,€) = e; — > e; Hence, if xap(0;,e) > k then
(@) LN (4
the natural morphism
@ wo:ci— P
(@ . (@) (@) 2. ()

has a non-trivial kernel K of dimension £ > 0 and determines a proper subrepre-
sentation of v of dimension-vector f = (8;5.k);.

Similarly, if xar(e,d;) = e; — > e;j > 0 then the image of the natural
(7 . (@)
morphism
B wo: P v —co
(@) LN (@) (@) LN (7

is a proper subspace of C% of dimension k¥ < e; and hence determines a proper
subrepresentation of v with dimension-vector e + (k — e;)J;. O

PROPOSITION 5.4.3. The local chart C = (M,e) of a restricted smooth model for
A a central simple K-algebra with trdege(K) = d must be such that

1*XM(eve)*Zmu' =d

PrROOF. Consider a point = € mod, B of representation type 7 =
(e1,dy;...;ep,dy) with N3™ = R(M,e). By the Luna slice theorem we have
étale maps

NE™/GL(1) ~— S, /GL(1) — is0:* B

Because Clisoi® B] = Z with functionfield K we have that iso?® B and hence
Nz™/GL(T) must be of dimension d.
By definition of the Euler-form of M we have that

x(e,e) = — Zeiejaij + Zef(l — @i — M)
i#j i
On the other hand we have the following dimensions

dim R(M,e) = Zeiejaij + Z e (ai; + my;) — Zmii

i#j
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- _ 2
dim GL(e) = E e;
i

As e is the dimension vector of a simple representation we know that the orbits
in general position in R(M,e) are closed and have stabilizer C*. Therefore, the
dimension of the quotient variety R(M,e)/GL(e) = N:™/GL(T) is equal to

dim R(M,e) —dim GL(e)+ 1

and plugging in the above information we see that this is equal to 1 — x(e,e) —
> i Mii. ([l
If we want to study the local structure of restricted smooth models for central
simple algebras over a field of trancendence degree d, we have to compile a list of
admissible charts. We will give the first steps in such a classification.

The basic idea that we use is to shrink a chart to its simplest form and classify these
simplest forms for given d. By shrinking we mean the following process. Assume
e is the dimension vector of a simple representation of M and let (i) and (j) be two
connected vertices with e; = e; = e. That is we have locally the following situation

a;; ajj
a;j
ak> {
ajy nJj
° aji L]
M4 mjj

We will use one of the arrows connecting (7) with (j) to identify the two vertices.
That is, we form the shrinked chart C* = (M?, e®) where M* is a map on r — 1

vertices {(1),...,(7),..., (r)} and e® is the dimension vector with (i) removed. That
is, locally round z the shrinked chart has the form

a; +aj;+ai;+aj —1

- akj\/:><:><jm »
a;; + aj @ nj +t ani

mg +myj;

That is, in M* we have for all k,l # j that aj;, = ax;. Moreover, the number of
arrows and (marked) loops connected to j are determined as follows

° ajk:aik—i-ajk
° azj:akiJrakj

s g - - o
o aj; = a; + aj; + ai; + ai 1
o m? :m“‘+mjj

Jj
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LEMMA 5.4.4. e is the dimension vector of a simple representation of M if and
only if €5 is the dimension vector of a simple representation of M?®. Moreover,

dim R(M,e)/GL(e) = dim R(M?,e°)/GL(e®)

PrROOF. Fix an arrow ¢ connecting (i) and (j). As e; = e; = e there is a
Zariski open subset U —— R(M, e) of points v such that v(¢) is invertible. By
basechange in either (i) or (j) we can find a point w in its orbit such that w(¢) = I..
If we think of w(¢) as identifying C¢ with C% we can view the remaining maps of w
as a representation in R(M?, e®) and denote it with w®. the map U — R(M?®, e®)
is well-defined and maps GL(e)-orbits to GL(e®)-orbits.

Conversely, given a representation w’ € R(M?®,e®) we can uniquely determine a
representation w € U mapping to w’'.
Both claims follow immediately from this observation. O

It is clear that any chart can uniquely be reduced to its simplest form, which has
the property that no connecting vertices can have same dimension. Also note that
the shrinking process has a not necessarily unique converse operation which we will
call splitting of a vertex.

PROPOSITION 5.4.5. Let e be the dimension vector of a simple representation of
M and let d = dim R(M,e)/GL(e). If e = maz e;, then d > e + 1.

PRrROOF. Exercise! First reduce the chart to its simplest form and compute the
incoming and outgoing contributions in a vertex to the dimension of the quotient-
variety. O

DEFINITION 5.4.6. Two charts C' = (M, e) and C' = (M, e) are said to be equiva-
lent if their corresponding G L(e)-modules are isomorphic.

EXAMPLE 5.4.7. The charts below are equivalent

THEOREM 5.4.8. The local charts occurring for a restricted smooth model for cen-
tral simple algebras over a field of trancendence degree d can be shrinked to one of
the following equivalence classes of charts

1

02
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d=3
2 1 2 1
B
d=4

22

2 1 2 1

5.5. Reading the local chart

Knowing which local charts can occur, we will now investigate what information
can be derived from the local chart.

We will fix the following situation : A is a restricted smooth model of A and we
consider on open subvariety proj:* A | X(c¢) = mod,, B where B has center Z. m
will be a maximal ideal of Z corresponding to the closed orbit GL,.x — mod,, B
where z has representation type 7 = (e1,ds;...; e, d,).

We have N™ = R(M,e) as GL(7) = XGL,,- module. The local structure of Z
near m is determined by that of C[NS™/GL,] near the zero representation, so we
better have an interpretation of this ring

PROPOSITION 5.5.1. C[N:™/GL(7)] is generated by traces along oriented cycles in
the chart C' = (M, e).

That is, for every arrow ¢ (resp. loop or marked loop) from (%) to (j) we take a
generic rectangular matrix

$11(¢) cee e Tleey (¢)
My=| ;
Te,1(P) oo oo Tee; (@)

(resp. a generic square matrix or generic trace zero matrix).
If cyc = ¢ o ... 0o 0 ¢l is an oriented cycle in the map M, then we compute the
following matrix

over Clzy(¢)] = C[R(M, e)]. If the starting vertex of ¢ is (i), then this is a square
e; X e; matrix and we can consider its trace

Tr(Mey.) € CIR(M,e)]
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and one verifies easily that this polynomial is invariant under the action of GL,.
Slightly harder to prove is that these functions actually generate

CIR(M, ) = CIN™ /GL.]

The essential ingredient in this proof is the fact that the polynomial invariants
of tuples of matrices under simultaneous conjugation are generated by traces of
products of generic matrices.

In fact, one can even bound the length of the oriented cycles to be considered by
(X e)?.

Next, let us consider the étale local structure of B near m. By the results proved
before, we have to control for this the ring of GL,-equivariant maps

GL, x“F R(M,e) — M,(C)
on which the multiplication is given by that in target space M, (C).

PROPOSITION 5.5.2. The ring of G L., -equivariant maps is Morita equivalent to the
ring of G L. -equivariant maps

R(M,e) — Ms~..(C)
where for any two vertices (i) and (j) the GL,-equivariant maps
R(M,e) — Hom(C% C%%)

are generated as a module over CIN:™ /GL(1)] by the paths in the map M starting
from (i) and ending in (j).

Again, if path = ¢y 0...0¢; is such a path, then the corresponding module element
is Mpqatn. Again, this result follows from a minor adaptation to existing results on
invariants and concomitants of representations of quivers proved by C. Procesi and
myself.

Apart from allowing us to compute the local structure of Z and B near m, the local
chart N2™ = R(M,e) also allows us to describe the local charts in nearby points
and the dimensions of subvarieties of points having a specific local chart.

The points ¢ in the quotient variety N2 /GL(7) = R(M,e)/GL(e) are in one-to-
one correspondence with the isomorphism classes of semi-simple representations of
the map M of dimension vector e.

If V¢ is a representative in the closed orbit corresponding to ¢ then we can decom-
pose V¢ into its simple representations

Ve=WPm o, oW

where W; is a simple representation of the map M of dimension vector b; and
occurring in V¢ with multiplicity m;.

Extending previous terminology we will say that V¢ (or ) is of representation type
o= (m1,b1;...;myg, by).

As we have a combinatorial description of all simple dimension vectors for M we
can determine which representation types can occur for a given e.

With V,, we will denote the set of all points ( € N2 /GL, of representation type
.

PROPOSITION 5.5.3. {V, : o a representation type for e} is a finite stratification
of the quotient variety N:™/GL(T) into locally closed irreducible smooth subvari-
eties.
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Moreover, the dimension of the stratum V, determined by o = (mq,b1;...;mk, bk)
is equal to
k r
> (1= xar(by, b)) = > m;
j=1 i=1

PROOF. According to the Luna slice results we have to verify that the repre-
sentation type determines the stabilizer subgroup of a point in the closed orbit up
to conjugation in GL(e).

Let b; = (b1, ..., bir) and denote b; = Zj b;j. We choose a basis in @;C%¢ in the
following way : the first m1b; vectors give a basis for the simple components of
type Wi, the next esbs vectors give a basis for the simple components of type Wy
and so on.
If m =3 a;, the subring of M,,(C) generated by the representation V; expressed
in this basis is

My, ((C) ® I,

My, (C) ® I,

Therefore, the stabilizer GLy in GL(e) of V; is the group of units of the centralizer
of this ring and is therefore equal to GL,,, x ... x GL,,, which is embedded in
GL(e) with respect to the chosen basis as

GLml ((C ® Ibl )

GLmk ((C X Ibk)

It is easy to see that the conjugacy class of GLy depends only on the representation
type 7.

Finally, we have seen before that the dimension of the variety of isoclasses of simple
representations of M of dimension vector bj is equal to 1 — x(bj, bj) — >, m;; from
which the claim about the dimension of the stratum follows. |

Given two representations types o and ¢’, the stratum V- lies in the closure of the
stratum V, if and only if the stabilizer subgroup GL, is conjugated to a subgroup
of GL, in GL(e). Again, mimicking similar results for representations of quivers
we can give a combinatorial solution to this problem.

Two representation types

o = (m1,b1;...;my,by) and o’ = (mf,b1’;...;m),, bi')
are said to be direct successors o < ¢’ if and only if either
o (splitting one simple type) k' = k + 1 and for all but one 1 < i < k we have
(mi, bi) = (m, b;’) for a uniquely determined j and for the remaining i we
have corresponding to it (m;, by';m;, by’) with b; = b," + b,
e (combining two simple types) k' = k — 1 and for all but one 1 < i < k' we
have (m/, b;’) = (m;, bj) for a uniquely determined j and for the remaining
i we have corresponding to it (m., bi';m,, bi') with m,, +m, = m/
The direct successor relation < induces an ordering which we will denote with <.

PROPOSITION 5.5.4. The stratum Vi, lies in the closure of the stratum V, if and
only if c < o’
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Finally, we want to understand the étale local structure of the quotient variety
Nz™/GL(7) in a neighborhood of a point ¢ € V,. This again is an application of
the Luna slice results.

So, let V' be a semi-simple representation of M corresponding to { € V, with
stabilizer subgroup GL, = GLp,, X ...GL,, . We have to investigate the GL,-
module structure of the normal space to the orbit of V.

The tangentspace to the GL(e) orbit of V' is equal to the image of the natural linear
map

Lie GL(e) — R(M,e)

sending an element y € Lie GL(e) to the representation determined by the com-
mutator [y, V] = y.V —V.y € M,,(C) where as above m = ) e; and all embeddings
are with respect to the choice of basis we introduced in the proof of proposition.
The kernel of the above map is the centralizer of the subalgebra of M,,,(C) generated
by the representation V', that is, the algebra

My, (C® I,)
Cy =
M, (C®1,)
We thus have an exact sequence of GL,-modules
0 —> Cy — Lie GL(e) — Ty Orby — 0

where the action of GL, is given by conjugation in M,,(C) via the embedding given
before.

A typical element v € GL, = GLyy, X ... X GLy,, will be written as (y1,...,7)
and we will express the actions in terms of the ~;.

Cy as GLs-module consists of

. . . . 1 .
e one m3-dimensional representation with v; ".y1-action

e one mj-dimensional representation with Vi ! ye-action

Moreover, using our notation b; = (b;1,...,b;r) we have that Lie GL(e) as GL,-
module consists of

° E?Zl b%j times the m?-dimensional representation with ~; ! 41-action

o 25:1 bi; times the mj-dimensional representation with ! ye-action

° E?Zl bijbo; times the m; X mo-dimensional representation with ~; 1.72—
action

° 25:1 brjbr—1; times the mj X mp_; -dimensional representation with
'y,;l.'yk,l—action
Hence, we know the G L,-module structure of Ty, Orby . Next, we have to determine

the GL,-module structure of R(M,e). For each arrow ¢ with start vertex (i) and
(distinct) end vertex (j) there are

® by;b1; times the m; X mq-dimensional representation with Wfl.vl-action
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® by;by; times the m; x mo-dimensional representation with ~; ! ~s-action

® byiby; times the my X my-dimensional representation with 'yk_l.%-action
For each unmarked loop in (i) we have the same decomposition as above replacing
all occurrences of j with ¢. For a marked loop in (i) we have to replace the terms
of dimension m; X m; by

e b7 times the m? — 1-dimensional representation of trace zero matrices with

v ! .yi-action.

We now have all the information on the GL,-module structure on the normal space
to the orbit using the (split) exact sequence of GL,-modules

0 — TV OT’bV —_— R(M,e) —_— NV — 0

and we obtain

PROPOSITION 5.5.5. The étale local structure of N:™/GL(T) near ¢ € V, is de-
termined by a local chart C, = (M, e,) where My has k vertices {(1),...,(k)}
and there are

o —xm(bi, by) directed arrows from (i) to (j) when i # j

o 1 — x1(bs, b;i) unmarked loops in (i)

o —xa(bi, bi) marked loops in (i)
where x1 = (8ij — @ij)i; and x2 = (=0;5m4;)i; and xpm = X1 + x2. Moreover, the
dimension vector e, = (m1,...,myg).
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CHAPTER 6

Non-commutative surfaces

In this chapter we apply the results proved before in the special case of surfaces,
that is d = 2.

6.1. Local characterization

If d = 2 we will give an alternative proof of the classification of local charts as
Zn-loops.

PROPOSITION 6.1.1. For restricted smooth models of central simple algebras over
the functionfield K of surfaces the local charts C = (M,e) are such that e =
(1,...,1) and the map M has the following form :

1 k+1
T Y

k k+1
Arim

where the indicated numbering of vertices and labeling of arrows will be used later.
In this picture we make the obvious changes whenever k or 1 are zero.

PRrROOF. The strongly connected map M must contain more than one oriented
cycle and hence contains a submap of the indicated type (possibly degenerated). It
is easy to verify that for A, £ = (1,...,1) is the dimension vector of a simple
representation.

If M contains additional vertices {s =k +1{+m+1,...,r} and/or the dimension
vector e = (e1,...,e,) # f, there exist semi-simple representations in R(M,e) with
dimension-vector decomposition

(1,...,1,0,...,0) 86t ... @00 @iea... @i
k+l4+m

67
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As dim R(Apim,f)/GL(f) is equal to 2 there is a two-dimensional family of such
semi-simple representations. Hence, they cannot be properly semi-simple as their
locus must be of dimension < d = 2. Therefore, M = Ay, and e =f. ([l

Let A be a restricted smooth model for A, a central simple K-algebra of dimension
n?. Locally, A is of the form

A9 = Bld,d™ "]

with d central of degree one. Let m be a maximal ideal of Z = Z(B) corresponding
to a semi-simple n-dimensional B-module M,. By the above characterization we
know that M, must have a decomposition

Mzi&@@Sr
where S; is a simple B-module of dimension d; and all components are distinct.
That is, n = ), d; and the embedding of GL(e) = C* x ... x C* in GL, is given
—_———
via
My A) = diag(M, .o A, e A M)
———
dl d7‘

We want to describe the étale local structure of B near m, that is, the ring
Bsh = B®y Z3h. In order to do this we have to compute the rings of invariants
and concomitants of the local chart near the zero representation.

PROPOSITION 6.1.2. Using the labeling of vertices and arrows in the chart Agim
given above we have

1. The ring of polynomial invariants is equal to
ClR(Akim, €)/GL(€)] = Clz, y]
2. The rings of GL,-equivariant maps
M (GLy, xS C[R(Apim, €)
is isomorphic to the subring of M, (Clz,y]) with block decomposition

() (1)

(z,y)
—_— Y Y—
k l m

where at place (i,7) (for every 1 < i,j < r) there is a block of dimension
d; x d; with entries the indicated ideal of Clz,y].
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PROOF. By basechange in the vertices we see that all non-zero maps in a
minimal oriented cycle can be taken to be the identity map except for one. If we
define these remaining maps = and y then the traces along oriented cycles in the
chart are of the form x'y7. The result about the equivariant maps follows from
computing the C[z, y]-module of paths from a vertex () to vertex (j) and applying
the general results of the previous chapter. O

Using the Luna slice theorem, we obtain the required étale local classification

THEOREM 6.1.3. With notations as before, we have
1. Z3h ~ C{z,y}
2. B! s isomorphic to the subring of M, (C{x,y}) with the above block de-
composition.

DEFINITION 6.1.4. A Z-order B in a central simple K-algebra A of dimension n?

is said to be étale locally split in a maximal ideal m of Z iff B has ring of
fractions M, (K ®z Z:h).

From the étale local description of Z and B and étale descent we deduce

PROPOSITION 6.1.5. If A is a restricted smooth model for a central simple K-
algebra A of dimension n? and if A = Bld,d~'] with d central of degree one.
Then,

1. The center Z = Z(B) is smooth.

2. The non-Azumaya locus of B, ramp = iso)’ B —iso;, B consists at worst
out of isolated (possibly embedded) points and a reduced divisor whose worst
singularities are normal crossings.

3. B is étale locally split at every point m € iso}’ B.

PrROOF. (1) and (3) are immediate from the foregoing theorem. As for (2) we
have to proper semi-simple representations of R(Akim,e).
Their decomposition into simple representations can be depicted by one of the
following two situations

1 k+1 1 k+1
(] L)
x Y
kE+1l+m [ ] [ ]
k+1+4+1 (] [ ]
[} °
k k+1 k k+1
V(y) V(z)

where the trace along the indicated oriented cycle is non-zero. By the general
results of the foregoing chapter we can compute the local charts of iso)’ B near
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such a point. They are resp. of the following types

Aot Aror

and we have the following local picture of the structure of iso?* B near m.

V(x)

Apo1 — ¢

Akim

Api1 \

from which the statement follows (taking care of possible degenerate cases, for
example, an isolated point occurs for local charts of type Agon, with m > 2). O

Apo1

Imm

LEMMA 6.1.6. With notations as before, B is a projective module over Z if and
only if all local charts are of type Agi1. In particular, if a local chart is of type Akim
with m > 2, then gldim B = oco.

PROOF. As the center is smooth, projectivity and reflexivity as Z-module are
equivalent. Observe that B:" is reflexive only if no block of type (z,y) occurs, that
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is, iff m = 1. The last statement follows from the fact that an order of finite global
dimension with smooth center has to be projective. [l

6.2. Central blow-ups

We fix a field K of trancendence degree 2 and a central simple K-algebra of dimen-
sion n2. In this section we begin our construction of a smooth model for A. We
will assume throughout that all (commutative) smooth models for K are simply
connected.

Choose a smooth projective surface X with functionfield K and fix an embedding
X —— P? or equivalently, a representation of the homogeneous coordinate ring
C = Clug, . ..,ul/(f1,- -, fv). We can cover X = Proj C with affine open subsets
X (c) such that

C9 = Z[d,d™ "]

with d € C of degree one.
From the Artin-Mumford exact sequence we recall that A is determined by a Z,,-
wrinkle on X, that is, we are given

e A divisor D —— X and a list of its irreducible components C; which are
irreducible curves on X

o The list of singular points p; € X on D

e For each branch By of D at p; a number n; ; € Z, such that Zk niy = 0.
and we recall that we have a ringtheoretical interpretation of D as the non-Azumaya
(or ramification) locus of a maximal order in A on X. That is, locally on X (c) we
have a Z-maximal order B in A with ramp = D | X(c).
We will investigate if we can change X, C, Z and B such that mod,, B is a smooth
variety.

DEFINITION 6.2.1. If m is a maximal ideal of Z we say that B is smooth in m
if mod,, B is smooth in a point x corresponding to the semi-simple n-dimensional
B-module determined by m.

PROPOSITION 6.2.2. If m € is0}® B is a non-singular point of D or if m does not
lie on D, then B is smooth at m.

PrOOF. If m does not lie on D, then it determines a simple n-dimensional
B-module and hence B,, is an Azumaya algebra over Z,,. As Azumaya algebras
are split by an étale extension we have

B = B®y Zi ~ M, (Z3))
which is the ring corresponding to the local chart of type Ago1

Yo
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and therefore B is smooth at m.

Let m be a nonsingular point of the ramification divisor D. Consider the pointed
spectrum Spec Z,, — {m}. The only prime ideals are of height one (the curves
passing through m) and hence this is a Dedekind scheme. Moreover, B determines
a sheaf of maximal orders on this Dedekind scheme. Hence B:" determines a sheaf
of hereditary orders on the pointed scheme Spec C{z,y} — (z,y) and we can choose
the variables such that z is a local parameter determining D near m.

From the characterization theorem of hereditary orders over discrete valuation rings
we know the structure of (Bg"), at every height one prime of Z:". As B and hence
Bl is a reflexive (even projective) module, this information suffices to determine
Bih.

One can prove that B:" must be of isomorphic to an algebra of the form

[ M4, (C{z,y}) Ma, xa, (C{z, y}) oo | Mayxa, (C{z, y}) |
Mayxa, (C{z,y}) |  Ma,(C{z,y}) oo | Mayxa, (C{z, y})
L Md'r‘Xdl (:L'(C{I, y}) Mdr><d2 (:L'(C{I, y}) s Md'r‘ ((C{:ZJ, y})

for > d; = n (as a matter of fact, as we started out from a maximal order B one
can show that the d; are all equal). Anyway, this is the algebra corresponding to a
local chart of type A,o1

ArOl

and so we have that B is smooth in m. O

In conclusion, a maximal order on a smooth surface can have only isolated ’singu-
larities’” in the singularities of the divisor D. We claim that we may assume that
all the singularities of D are normal crossings.

Recall the classical result on commutative surfaces
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THEOREM 6.2.3 (Embedded resolution of curves in surfaces). Let D be any curve
on the surface X. Then, there exists a finite sequence of blow-ups

X =X,— X3y — ... — Xo=X

and, if f: X' —s X is their composition, then the total inverse image f~1(D) is
a divisor with normal crossings.

EXAMPLE 6.2.4. Consider the cusp D : y? = 2% in P2, then we need three blow-ups
to get f~!(D) with normal crossings

<~— <~— -—

In order to apply this result, we need to understand how the ramification divisor
D of A changes if we blow up a singular point p of it.

LEMMA 6.2.5. Let X —» X be the blow-up of X at a singular point p of D,
the ramification divisor of A on X. Let D be the strict transform f D and E the
exceptional line on X . Let D' be the ramification divisor of A on the smooth model
X of K. Then,
1. Assume the local branch data at p distribute in an admissible way on D, that
18,

Zniyp:()forallqEEﬂD
1 at q

where the sum is taken only over the branches at q. Then,

D'=D

2. Assume the local branch data at p does not distribute in an admissible way,
then

D'=DUE

PRrOOF. Clearly, D——+ D ——+ DUE. By the Artin-Mumford sequence
applied to X’ we know that the branch data of D’ must add up to zero at all points
qof DNE.

(1) : Assume E C D’. Then, the E-branch number at ¢ must be zero for all
q € DN E. But there are no non-trivial étale covers of P! = E so ram(A) gives
the trivial element in HY,(C(E), ptn), a contradiction. Hence D’ = D.

(2) : If at some g € D N E the branch numbers do not add up to zero, the only
remedy is to include F in the ramification divisor and let the E-branch number be
such that the total sum is zero in Z,. O

EXAMPLE 6.2.6. Consider the sequence of blow-ups below, where the thick curves
indicate the ramification divisor.
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After the first blow up we obtain a ramification divisor with normal crossings. Note
that the exceptional line is not part of the ramification divisor as the branch-data
is admissible.

If we blow up the crossing, the resulting picture depends on whether a is zero or
not. If @ = 0 then the exceptional line is not part of the ramification divisor and
hence we can separate the branches.

If @ # 0 then the exceptional line has to become part of the ramification divisor as
otherwise the branch data would not be compatible in two points, in contradiction
with the Artin-Mumford exact sequence.

«—

6.3. Smooth models

Before we can apply the foregoing to the construction of smooth models we have
to make a local computation.

Consider the ring of algebraic functions in two variables C{z,y} and let X =
Spec C{x,y}. There is only one codimension two subvariety m = (z,y).

Let us compute the coniveau spectral sequence for X. If K is the field of fractions
of C{x,y} and if we denote with k,, the field of fractions of C{z,y}/p where p is a
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height one prime, we have as its first term

HZ(Kall'n) 6917 Hl(kpvzn) ll"n-71 0

HY (K, ) ®pZLyp 0 0

fin 0 0 0

As C{z,y} is a unique factorization domain, as before we see that the map
HYy (K pn) = K [(K*)" —— @, Zy

is surjective.

Moreover, all fields k, are isomorphic to the field of fractions of C{z} whose only

cyclic extensions are given by adjoining a root of z and hence they are all ramified

in m. Therefore, the component maps

L = HY, (ki Z) 220 !

are isomorphisms.
Therefore, the second (and limiting) term of the spectral sequence has the form

0 0 0 0
Ker a | Ker 8/Im « 0 0
Ker ~ 0 0 0

fin 0 0 0

Finally, we use the fact that C{xz,y} is strict Henselian and hence has no proper
étale extensions. But then,

H! (X, pn) =0 fori>1

and substituting this information in the spectral sequence we obtain that the top
sequence of the coniveau spectral sequence

0 ——> Br, K >+ @ %, —> Zp —> 0

is exact.
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From this sequence we immediately obtain the following

LEMMA 6.3.1. 1. Let U = X —V(x), then Br, U =0
2. Let U = X — V(zy), then Br, U = Z,, with generator the quantum-plane
algebra

Cclu, v] with uwv = (vu
where { is a primitive n-th root of one

We can now state and prove our first result on the existence of smooth models for
central simple algebras A over functionfields of trancendence degree two.

THEOREM 6.3.2. Let S be a (simply connected) smooth projective surface and A a
central simple C(S)-algebra of dimension n?. Then, a restricted smooth model for
A exists if and only if

ram [A] € Ker (@Helt((C(C),Zn) — @,u,,fl)
C p

PrOOF. By the Artin-Mumford sequence, A is determined by a Z,-wrinkle on
S. The shadow D of this Z,-wrinkle is the ramification divisor of any maximal
Og-order in A.
The singular points of D can be divided in two finite subsets

e P.. where the branch-data are trivial
e P, where some of the branch numbers are non-zero

By the foregoing section, we can consider a sequence of blow-ups

S L S
such that, when D’ denotes the ramification divisor of a maximal Og/-order in A
we have

e D’ has at worst normal crossings as singularities
b 7r(Dgzng) = PT
For the last fact we use (a) that we can separate the branches of the ramification
divisor at a crossing where the branch-data are trivial and (b) that the exceptional
line is part of the ramification of the blow-up if the branch-data is non-trivial.

In particular, if ram [A] lies in the kernel, D’ is a finite disjoint union of smooth
curves on S’. In this case, any maximal Og/-order in A is locally smooth at every
point of S by the result of the previous section.

Conversely, if ram [A] does not belong to the kernel, there is a singular point m on
D’ where the branch-data are non-trivial. If A is locally at m any maximal order
over S” in A, then one can use above lemma to show that A cannot be étale locally
split in m, that is, the ring of fractions of A3" is not a full n x n matrixalgebra.

If there were a restricted smooth order A in A which is B locally at m, then B has
to be étale locally split at m. However, B —— A for some maximal order A, this
contradicts the foregoing. O

Another way to phrase the foregoing result is

PROPOSITION 6.3.3. If A is a central simple K-algebra of dimension n?, with
trdegc K = 2. Then, there is a smooth model S of K such that any mazimal
Og-order in A has at worst isolated singularities which are étale locally of quantum-
plane type.
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If we want to construct (unrestricted) smooth models in any A we have to find a
way to resolve quantum-plane singularities.
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CHAPTER 7

Non-commutative blow-ups

In this chapter we will modify the local-chart setting in order to study smooth
models in the unrestricted sense. As some of the arguments are analogous to these
of the restricted case, we will only mention the required changes and leave the
details as rather interesting exercises. In compensation we will consider an example
in great detail.

7.1. Equivariant desingularization

We have seen that a central simple algebra A over a surface with non trivial branch-
data cannot have a restricted smooth model.

This contradicts the following (too optimistic) approach to construct such smooth
models. Consider a smooth model X for the center K of A and consider a maximal
order over X in A. Locally we have the situation

A9 = B[d,d™ "]
and let us assume that
mod, B =proj:® A| X(c)

has singularities. Because the set of singular points sing is a closed GL,-stable
subvariety we can consider the blow-up with center sing. The GL,-action extends
to one on the blow-up.

If we iterate this process we will end up with a smooth variety mod,, with a GL,,-
action such that the projection map

m(;dn —> mod, B

is GL,-equivariant.

Again, we can cover the semi-stable points of the variety mod,, by affine GL,-stable
open subvarieties X (m) and in view of the close connection between affine GL,,-
varieties and Cayley-Hamilton algebras, we expect that these open subvarieties are
module varieties themselves

mod,” | X(m) = mod, Bm)
If this were the case, then the sheaf of orders By,,) would give us a restricted smooth
model of A.

We know that this strategy has to fail. To see clearly where the argument breaks
down let us compute an example.

ExaMpPLE 7.1.1. Let us consider the quantum-space example when ¢ = —1. In
this case, the central simple algebra is the quaternion division algebra

A= (Cayy))

79
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and consider a sheaf of maximal orders over P? in A with affine section
B = C(u,v)/(uv + vu)

with u? = z and v? = y.

In particular, u and v have reduced trace zero and the defining relation uv+vu = 0
can be reformulated as tr(uv) = 0.

Consider the module variety mods B. A point of mody B is determined by a pair

of matrices
X1 x2 T4 Ts5
xr=
r3 —X1 ’ Tg —X4

such that the trace of the product is zero. That is,
mods B =V (2x124 + 2o + x325) —> A% = Spec Clx1, ..., z6]

with action of GLs given by simultaneous conjugation.
The quotient-variety under this action iso3® B is isomorphic to A? and the quotient
map is given by taking the determinants

s .
mody B —»» is05® B = A*

2 2
x +— (x7 + zaxs, x5 + T526)

and it is easy to find a representative in the closed orbit determined by a point
m = (\,u) € A%, namely

We see that the corresponding 2-dimensional B-module M, is simple whenever
A # 0, is semi-simple with distinct one-dimensional components if only one of the
two is non-zero and has a one-dimensional component occurring with multiplicity
two in case A = p = 0. That is, the ramification divisor of A on A2 has the form
as depicted below.

Because B is a maximal order in A, we know that it must be smooth in all regular
points of D = V(zy) and in fact we can compute that the local charts in these

points have are of the form
:<:>Q

However, for g o the semi-simple module M, = (Cfi%v has equal components which

we know cannot happen for smooth algebras over surfaces.
In fact, one verifies that mods B has an isolated singularity in the origin p =
(0,0,0,0,0,0).

AlOl = AOll =



7.1. EQUIVARIANT DESINGULARIZATION 81

Vi(x)

Ajgg ———9
77

V(y)

—>9

Ao11 .v\

Aoo1

Now, consider the blow up of p in AS. We obtain the variety A6 —» A6 x P5
which is

AS’G = V(QZ‘ZX] - IJXZ)
where X; are the projective parameters of P?. The strict transform of mods B is
then the subvariety

m(;dg = V(Z‘ZX] — Iin,2X1X4 + X2X6 + X3X5> — AG X ]P)5

which is a smooth variety with GLs-action induced by simultaneous conjugation
on the four 2 x 2-matrices

T i) Xq I5 X1 Xg X4 X5
r3 —I Teg —X4 Xg 7X1 X6 7X4
As the projection map mody —» mods B is a GLg- isomorphism outside the fiber

over p we only need to investigate the (semi-stable) points lying over p. They form
the smooth quadric

Q = Proj V(2X1 X, + X2 X6 + X3X5) — P5
on which GLy acts with quotient-variety
Q% /GLy = Proj C[X{ + X2X3, X? 4+ X5X¢]
Therefore
m(;dQSS/GLQ ~ A2

the blow up of A% at the point (0, 0).
To a point (1 : u) € P! in the exceptional fiber corresponds the closed G Ly-orbit
with representative

(oo oo b2 [ )

One verifies that the stabilizer of this point is

Stab(x) = ps = <[(1) é]) — PGL,
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Let us assume we can cover m(;dgss by GLy-stable affine open subvarieties such
that

mods” | X (m) = mods Bm)

and consider an open containing the orbit of x.

As the orbit is closed it must correspond to a semi-simple 2-dimensional B,,)-
module. As the stabilizer is zero-dimensional in PG Ly this semi-simple must in
fact be simple. But then, the PG Ls-stabilizer must be trivial, a contradiction.
Hence, GL,-equivariant desingularizations of module varieties cannot always be
covered by module varieties.

For this reason, we have to consider unrestricted smooth models if we want to
construct smooth models in every central simple algebra over a surface.

7.2. Graded semi-simple modules

If the connected graded algebra A is an (unrestricted) smooth model for A, then
as before we want to describe the local structure of proj;;* A in the neighborhood
of a point x in a closed GL,,-orbit.

By definition, = determines a C*-family of points x) € mod, A. In fact under the
canonical (quotient-morphism under the C*-action)

Y :mod, A — proj, A
we have that ¥ ~!1(GL,.z) is the GL,, x C*-orbit of any of the x.

LEMMA 7.2.1. With notations as above we have that following statements are equiv-
alent

1. GLy.xz is a closed orbit in proj:® A

2. GL,, x C*.zy is a closed orbit in mod;® A

3. x) determines a semi-simple n-dimensional A-module

We will now investigate the ringtheoretical interpretation of an = € proj;;* A having
a closed orbit.

Assume first that one x) € iso) A is a simple n-dimensional representation of A,
then all z,, are similar. For, if the matrices xx = (m1,...,my) generate M, (C) as
C-algebra, then so do the matrices (tma,...,tmy) for any t € C*.

the kernel of the epimorphism determined by z) :

¢py : A —= M, (C)
is a maximal ideal M of A and we consider the maximal graded ideal M, contained
in it. It is easy to verify that this is the kernel of the graded morphism
Gp: A — Ay
where A, is the graded subalgebra of M, (C[t]) (endowed with the natural grada-
tion) generated as C-algebra by the elements

(tmy, ..., tmy) € My (CJ[t])

LEMMA 7.2.2. With notations as above we have

1. The center of A, is a non-trivial C-subalgebra of C[t].
2. The graded ring of fractions Q9(A,) is a graded central simple algebra, that
18, contains no proper graded twosided ideals.
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PRrROOF. (1) : If a matrix ¢(t) € M,(CJt]) is central in A, then ¢(u) € M,(C)
is central in A, /(t — p) = M, (C) whence all non-diagonal entries of ¢(t) are divis-
ible by ¢t — p. As p is arbitrary it follows that ¢(t) is a diagonal matrix, whence
Z(A;) — CJt] and is a graded subalgebra. Because z € proj3® A there is a
homogeneous central element ¢ € A, say of degree f not vanishing on A,. But
then, the image of ¢ in A, is of the form 0.t/ for some o € C* and f € N, whence
Z(Ay) is strictly greater than C.

(2) : Let ¢ =t/ € Z(A,), then the graded localization at c is a graded field and
hence of the form

Z(Ag)? = C[t%,t7°]
for some e € N. Moreover, as any specialization
(Az)g/(te - M) = Mn((c)

we have that (A;)¢ is a graded Azumaya algebra over a graded field and hence a

graded central simple algebra. O

Combining Tsen’s theorem with the characterization of graded simple algebras we
obtain

PROPOSITION 7.2.3. Let x € proj:® A corresponding to a simple n-dimensional
A-module, then

A —em A, — QU(A,) = My (Tt t ™)) (ars- . )

for some natural numbers 0 < a1 < as < ... < ay, < e where the i-th homogeneous
part of the graded matriz-ring is defined to be

R; Ri+a1 —az - Ri+a1 —an
Ri+az—a1 R; s Ri-i-az—an,
RiJranfal RiJranfaQ cee Rz

with R; = C[t®,t™¢);. In fact, if A is generated by k elements of degree one, then
the numbers a; are of the form

(a1y...,an)=1(0,...,0,1,...,1,...;e—1,...;e—1)
—_—— —— | S —
mi m2 Me
with all m; > 1 and satisfying the inequalities
m; < k.miy1 for all i mod e
This result allows us to assign numerical invariants to x
DEFINITION 7.2.4. If € proj;® A lies in the image of iso), A we say that x is a

graded simple A-module of size n For such x we have

——————

mi ma Me

Q9(Ay) = My(Ct t=)(0, ..., 0,1, 1, e —1,.. e —1)
—— ——

Then, we say that the period of z is e and that = is of matrix-type (m1,...,m).
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LEMMA 7.2.5. Let z € proj;® A be graded simple with period e and matriz-type
(m1,...,me) and let x1 € mod,, A be a simple n-dimensional A-module representing
x. Then, the GL, x C*-stabilizer of x1 is isomorphic to group C* X ue where the
cyclic group pe has generator

(ngg) S GLn x C*

where { is a primitive e-th root of 1 and

gc = diag(1,...,1,¢,00 ¢, ¢ ¢
N—— — ——
m1 ma2 Me

PROOF. By the assumptions we can find a point z’ in the orbit such that the
corresponding k-tuple of n X n-matrices x have block-decompositions

00|z 0
O[O0 ]|0|...|zee1
ze | 01 0 ... 0
where z; is an m; X m;y1-matrix. The claim follows from this description. O

By a graded version of the Jordan-Ho6lder theorem we have that closed GL,,-orbits
in projs® A correspond to graded semi-simple A-modules of size n, that is,

M, =5 a. . ¢
where S; is a graded simple A-module of size s;, period e;, matrix-type
(m41, ..., m4e,) and occurring with multiplicity f;.

DEFINITION 7.2.6. The graded representation type of x is the collection of
numerical data

e the underlying representation type (s1, f1;...;Sr, fr)
e the periods (eq,...,e;,)
e the matrix types (mj1, ..., Mie,)

Precisely as in the case of graded simple modules considered above we have

PROPOSITION 7.2.7. Let x determine a graded semi-simple A-module of size n with
representation-type given by the data

(Slafl;---;srvfr) (61,...,&«) (mi17"'7miei)

Let x1 € mod,, A a corresponding semi-simple n-dimensional representation of type
7 =1(81, f15.-.; 8 fr). Then, the GL,, x C*-stabilizer of x1 is equal to

Stab(x1) = GL(T) X pe

where e = ged(eq, ..., e.). If e; = e.c; then a generator of the cyclic component is
given by

(ngg) S GLn x C*
where { is a primitive e-th root of 1 and
g9c = @diag(1e, ..., 1%, ¢, ¢ T )
i

miy fi mi2 fi Mie,; fi

where (; is a primitive e;-th root of 1.
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7.3. Local charts revisited

Let A be a smooth model in a central simple K-algebra of dimension n?. Let
x € projs® A a graded semi-simple A-module of size n determining a closed GL,,-
orbit and let z; a preimage in mod,, A.

The closed GL, x C*-orbit of x; determines a graded maximal ideal m in the
center of A and we want to study the graded étale local structure of the Z-graded
algebra A9,. That is, we want to study the limit of A, ® D where D is a Z-graded
étale extension of C9,. We will denote this limit with AZ;s".

Let us assume that the graded representation type of x is determined by the nu-
merical data

o type 7 = (s1, f1;...3 5, fr)
e periods (eq,...,e.)
e matrix-types (mﬂ, ceey miei)

In order to determine the algebra A%*" we will apply the Luna slice theorem in the
smooth point 1 € mod,, A, considered as a G = GL,, x C*-variety.

From the previous section we recall that the stabilizer subgroup in 2 (or, by abuse
of notation in z) is equal to

Gz =GL(7) X e —> GL,, x C*

where e = ged(eq, . .., er).
With N2™ we will denote the normal space to the GL,, x C*- orbit in z;. By a
similar argument as before we obtain

PROPOSITION 7.3.1. N:™ is as GL(T) X pe-module isomorphic to the representa-
tion space of a weighted local chart C,, = (M,f,w). Here, M,, = (M,w) is a
weighted map on r vertices such that the subgraph on any two vertices 1 < i,5 <r
is of the form

aj;

273 ajj
Q@@Q
@’jfifjm

Mg aji ™5

1 / (1 "(mgk .
where wyy = (w,(d), .. ,wl(c‘ll“)) and Wy, = (wk(k), . ,wk(km“)) are series of numbers

from ZJeZ. We use the following dictionary

e o weighted loop at vertez (i) with weight m corresponds with the GL(T) X
pe-module M., (C) on which GL., acts by conjugation and the other factors
of GL(7) act trivially, which is a pe eigenspace with eigenvector ™.

e a weighted arrow from vertex (i) to vertex (j) with weight m corresponds
to the GL(T) X pie-module M, x.,(C) on which GLe, x GL.; act via g.m =
gimgj_1 and the other factors of GL(T) act trivially, which is a e eigenspace
with eigenvector (.
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e o weighted marked loop at vertex (i) corresponds to the simple GL(T) x
pre-module MY (C), that is, trace zero matrices with action of GL., by con-
Jugation and trivial action by the other components of GL(T), which is a e
etgenspace with eigenvector (™.

o the label of a loop or arrow indicates the multiplicity of the corresponding
representation.

The classification of underlying charts (that is, forgetting the weights) which can
arise in a given dimension d is the same as given before.

Having determined the G-module structure of N, the Luna slice theorem asserts
the following

THEOREM 7.3.2. The ring of G L, -equivariant maps from the fiber bundle
Fy = (GLy x C*) xGFr)Xne Nom o M, (C)

to M,,(C) is an algebra A. The C*-action on Fy induces a Z-gradation on A.
The center of A is the Z-graded ring

R = C[C* xt= (N:™/GL(T))]

and if we denote by p the graded maximal ideal of R corresponding to the zero
representation in N:™/GL(T), we have

ssh ~ ,sh
L Cyoh = Ry

V‘S ~ V‘S
2. Agsh o A9

The above result gives us a way to calculate the graded étale local structure of
Ag. . In particular, we have

PROPOSITION 7.3.3. The étale local structure of proj:® A in a neighborhood of the
closed orbit of x is given by

((GLy x C*) xGET)xne Nomy
in a neighborhood of the orbit corresponding to the zero representation in NJ™.

Assume we are in the restricted case treated before, that is, when pe = 1. Then,
the above theorem asserts that

A%sh ~ Bt ¢!
where B is the strict Henselization of the ring of GL,-equivariant maps
GL, x*) Ns™ M, (C)

at the zero representation. Hence, we recover our previous results.

7.4. Smooth models revisited

In this section we apply the foregoing to the construction of smooth non-
commutative surfaces.

By taking a suitable smooth model S, such that the ramification divisor of the
central simple algebra A has only normal crossings and such that the branches
with trivial branch-data are separated, we have constructed a restricted model
having isolated singularities which are étale -locally of quantum-plane type.

That is, we may assume that locally our maximal order B is of the form

B = Cyu, v] with uwv = quu
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where ¢ is a primitive n-root of unity. We want to resolve the remaining singularities
in mod,, B lying over the origin in iso$* B with is A? determined by the center of
B, Z = C[z,y] where x = «™ and y = v™.

We will achieve this by blowing up the closed orbit of the trivial representation in
mody B. Let us recall the ringtheoretical interpretation of the blow-up of a point
in A2

EXAMPLE 7.4.1. Let A2 —» A2 be the blow-up of the origin p = (0,0) in A2, If
C[A?] = C[x,y], consider the graded algebra

R =Clz,y] ® (z, )t ® (2,9)*t* © ... — Clz,y][t]

Then R is generated by two elements in degree zero z,y and two in degree one
X =2t and Y = yt. The defining (homogeneous) relation of R is Y — yX.

Then, A2 = Proj R and the projection morphism is given by the inclusion (in
degree zero) C[z,y] — R.

DEFINITION 7.4.2. Let B be an affine C-order in A and M the kernel of a semi-
simple k-dimensional representation B —— M}, (C) occurring as a direct factor
of a semi-simple n-dimensional representation x. Then, the non-commutative
blow-up of B at z is proj;;* A where A is the graded algebra

A=BoMteoM*$?@... — Alt]
and the projection map
proj.,* A — mod,, B
is given by the inclusion in degree zero B —— A.
We can resolve the remaining singularities by non-commutative blow-ups.

THEOREM 7.4.3. If A is the blow-up of B = Cylu,v] corresponding to the trivial
(one-dimensional) representation, then projs® A is a smooth variety.
The local structure of B is summarized in the picture

V(z)

Ap_101 —@
??

V(y)

Aoin—1 \

Aoo1
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projs® A has a P of closed orbits lying over the singularity of B and the local
structure is summarized in the picture

An—101

° & A,
Aopo1

Aoin—1

where Ay, s the weighted local chart

SR

1

We will give the proof of this theorem in the example considered before.

ExaMPLE 7.4.4. Consider the quantum-plane with ¢ = —1. That is,
B = C(u,v)/(uv + vu)

is a maximal order in the quaternion algebra A = (z,y) with center Z = Clz, y]
where = u? and y = v2.

We have seen that mods B has an isolated singularity in the closed orbit corre-
sponding to the 2-dimensional semi-simple representation M, = (Cfifv. The kernel

of the trivial representation is M = (u,v). Hence, the graded algebra A defining
the non-commutative blow-up is

A=B® (u,0)t® (u,v)’t* ® ... — Bt]

A is generated by two elements u,v of degree zero and two of degree one U,V
satisfying the following defining relations

w+ovu=UV+VU=uV+Vu=0vU+Uv=uV+ovU =u0U —Uu=vV-Vv=0

and u2,v2,U?% and V? are homogeneous central elements.
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If p = (z,y) € A? which is not the origin, then A, = By[t,t~!] whence there is
a unique closed orbit in projs* A lying over p and in those we know already that
projs® A is smooth.

Observe that it suffices to verify that projs® A is smooth in the closed orbits as the
singularities are a G Lo-closed subvariety.

We only have to investigate the closed orbits over p = (0,0). For those, either U?
or V2 must be invertible. Let us consider the former case , then

A= A%, =C_y[u,w][UU", 0]
where w = VU™ (observe that v = «VU™!). The defining relations of A’ are
uw+wu =wlU +Uw=uU -Uu=0

LEMMA 7.4.5. mody A’ is smooth in the closed orbits lying over (0,0) € A? =
is05° B. Representatives of these orbits are of one of following types :

1. type I (simple) : the images of (u,w,U) are

(N )

2. type II (semi-simple) : the images of (u,w,U) are
00 00 a 0
0 0 00 0 —a

PROOF. mods A is of dimension 6 so we have to verify that the tangent spaces
to mods A in the indicated points are 6-dimensional. In order to compute these
tangentspaces we consider

where a,b € C*.

ey ]

and similarly w’ and U’. We then have to compute the conditions necessary to have
that
U/w/ + wlul — wlUl + U/’LU/ — U/UI _ /ul — 0
if € in infinitesimal, that is, €2 = 0.
These conditions easily calculated to be

b
type l: o, =0 By = Yu and ay = 7%(574} +7w>

type Il : By, = Yy = @ =0
finishing the proof. (|
Next, we have to calculate the weighted local charts for these orbits. We have the
following stabilizer subgroups in GLg x C*
e In type I points, the stabilizer G, = C* x pa where the generator of pg is

(b 5

e In type II points, the stabilizer G, = (C* x C*) x 1 with embedding

(b )
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LEMMA 7.4.6. The weighted local charts are as follows.
1. In type I points they have the form

SR

1

2. In type II points they have the form

PRrROOF. Let us first consider the tangent-spaces calculated above as a module
over the stabilizer group.
In type I : GLy acts via conjugation and C* via degree. Hence, the image of a
vector in the tangentspace under the generator of ug is given by computing the

entries of
_lav Pu 10
yw o —ayl) |0 -1

b (6 B

and hence the tangentspace as C* X pg-module is represented by the weighted chart
3 3
.\ ‘.
Y

Similarly, in type II points we have to consider the action of C* x C* x 1 on a
tangentvector which is given by

Y B Iy B e B

which can be represented by the chart

Next, we have to compute the sub-modules corresponding to the tangent space to
the GLy x C*-orbit. In order to do this we have to determine the image of the Lie

algebra
. . a b
Lie(GLy x C*) = ([c d} ,t)
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acting via

vy ol Py o[ Y

where Z is the image of u resp. w, U. This computation gives that the tangentspace
to the orbit as G, module can be represented by a weighted chart which is for type
I points of the form

and for type II points of the form

N

from which the result follows. O



92

7. NON-COMMUTATIVE BLOW-UPS



