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Abstract

In this paper we solve the generator problem for Z-graded central
simple algebras. Applications are given to automorphisms of trace
rings of generic matrices and to periodic fat point modules.

1 Introduction

If A is a simple algebra, finite dimensional over its center K, then it is well
known (for example [8, lemma IIL.1.2]) that A can be generated by two
elements as K-algebra. In this paper we investigate the analogous question
for Z-graded central simple algebras.

Recall that a Z-graded algebra A = ®X__A; is said to be graded cen-
tral simple iff A has no non-trivial graded ideals. By a graded version of
Weddenburn’s theorem [7, Thm. 1.5.8] we know that

A ~ M, (DX, X7, ¢))(a1,...,an)

for some 7, a division algebra D, a generator X having degree d and an auto-
morphism ¢. The numbers a; can be chosen such that 0 < a1 <ap <... <
an < d. If R denotes the skew Laurant polynomlal algebra D[X, X~ 1,¢]
graded by the degree of X (that is, Rzg = DX* and R; = 0 otherwise) then
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the 4-th homogenous part of M, (D[X, X!, ¢])(a1,...,a,) is equal to

R; Ri+a1—az cee Ri-l—a]—an
Ri+a2-—a1 R; s Ri+a2—an
Ri+an-—a1 Ri+an—az cee R;

We are interested in the case when A is a finite module over its center. One
verifies easily that this happens if and only if D is finite dimensional over
its center L and ¢ € Aut(D) is such that some power becomes an inner
automorphism of D, that is, for a minimal m we have ¢ € D such that
#™(d) = a~'.d.a. With these notations one verifies that the center becomes

Z(Mn(D[X, X1, ¢))(ar, ..., an)) = K[T,T7"]

where K = L? the invariant field of L and T = aX™ a generator of degree
e = dm. Furthermore, A satisfies all polynomials of N X N matrices where
N = ném with i the index of D, that is, [D : L] = 42.

Obviously, one wonders whether A can always be generated by two homoge-
nous elements over its center. However, we have the following

Example 1 Let by,...,b, be pairwise relatively prime natural numbers and
e =[1b;. Then, one verifies that

A = My (K[T,T7))(b1,...,bn)

with deg(T') = e cannot be generated by less than n homogenous elements as
a K[T,T7']-algebra.

On the other hand, it has been conjectured in {2, Remark p.1697] that, if A
is generated by A; as Ag-algebra (and hence is a strongly graded algebra as
in [7, 1.3]), then A should be generated by two elements of degree one over

its center.
Even in this case the truth is more subtle. A special case of our main

theorem can be phrased as follows

Theorem 1 A = M,(D[X, X1, ¢])(a1,-..,an) with deg(X) = d is gener-
ated by Ay as Ag-algebra iff

(a1y...,an)=1(0,...,0,1,...,1,...,d—1,...,d—1)
e i N !

my mo mg




with oll m; > 1. Then, A is generated by k elements of degree one over its
center if and only if

m; < k.mjx1 for oll ¢ mod d

Tn fact, we will solve the generator problem in full generality. That is, we
will give for any A = M,,(D[X, X1, ¢])(a1,...,a,) necessary and sufficient
numerical conditions to test whether A is generated by k; elements of degree
dy, ko elements of degree do, etc. k; elements of degree d;. The proof
relies on translating the problem in a certain quiver representation theoretic
problem and the algorithmic description of the dimension vectors of simple
representations of [4].

Our interest in this problem originated from the following invariant theoretic
problem. Consider the space of m~tuples of n X n matrices MJ* = M, (C) &
. ®M(C). It A = (Ay,...,An) € M then PGL, x GL,, act via
g.A; = gAig~! for g € PGLy and a.4; = ¥ a;;A; for a € GLy,.

We call A a generating m-tuple if the matrices A; generate M,(C) as a
C-algebra and a saturated m-tuple if (41,..., Ayp—1) is a generating m — 1-
tuple. For m > 3 one wonders whether

GLy,.Saty = Genl!

where Gen)? (resp. Sat]') is the open subvariety of generating (resp. satu-

rated) m-tuples.

If this equality holds one can deduce from the work of Z. Reichstein [9]
that any two points in the quotient variety Q' = M*/PGLy, of the same
representation type have Zariski isomorphic neighborhoods. Recall that this
fact has been proved by Reichstein when m > n+ 1. However, we will prove

Theorem 2 For all 3 <m <n—1 we have
GLyp.Sat™ < Gen™

which may be seen as evidence that Reichstein’s transitivity result of the
automorphism group on the strata cannot be generalized to m < n.

2 Reduction to graded matrices
Throughout this section we keep the same notation as above. That is,

A= Mn(D[XaX—17¢])(a'1""?a’”j)
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where D is a division algebra of index ¢ with center L, the order of the
automorphism ¢ is m in Aut(D)/Inn(D) and the degree of X is d. Then,
the center of A is the graded field K[T,T~!] with K = L? and T an element
of degree e = dm. Moreover, the index of Q(A) over K(T) is N = nim.
For a 2s-tuple of natural numbers

g = (k1,d1;...;ks,ds)

we say that A is g-generated (over its center K[T,T']) iff A can be gener-
ated as K[T, T~ !]-algebra by k; elements of degree dy, etc. and k; elements
of degree d;. It is clear that we may assume that all d; < e = deg(T).

We will reduce the problem of g-generateness of A to that of g-generateness
of a certain graded N x N matrix-algebra over a graded field. The crucial
property that we need is the fact that A can be split in degree zero, see
[1, IV.1.7]. Therefore, if K is the algebraic closure of K we know that
A®KI[T,T~1]is a graded matrix algebra. Remains to determine the relevant
numbers.

Lemma 1 With notations as before,

AQK[T, T ~ My (K[T,T~])(by,---,bN)

where (by,...,by) is
(@1y.- 30100y OnyenenOp,01+dy. .01 4+d,...yan+d,... a0, +d, ...,
NG R At NUIMGERN $ v < 9 ,

o+ (m—-1)d,...,a1+ (m—1)d,...,an + (m = 1)d,...,an + (m —1)d)

N v

% [

Proof : Easy by comparing the dimensions of the homogenous com-
ponents. 0

Proposition 1 Let g = (k1,d1;. .. ks,ds) then the following statements are
equivalent

1. M,(D[X, X1, ¢))(a1,...,a,) is g-generated
2. My(K[T,T7))(b1,...,by) is g-generated
Proof : Ay is a finite dimensional K-vectorspace say with basis

bi1, ..., bi;. Consider k; general elements in Ay,

v;
9ij = Z ijpbik with 1 <4 < k;
k=1




and consider all monomials in the elements g;; where 1 <4 < sand 1 <
Jj < k; and order this list with respect to the degree of the elements. Let
{c1,-..} be this (infinite) list. Now consider the matrix

(Tr(c;.c;))i jen

where Tr is the reduced trace of A with values in K[T,77!]. Any entry
of this matrix is a polynomial in the coefficients ;4 with coefficients in
K[T,T71).

Clearly, the elements g;; generate A over K[T, T~ if and only if the deter-
minant of some N? x N2 minor of the above matrix is non-zero. As these
determinants are polynomials in the ¢;; over K[T, T~ it suffices to show
that they are not all formally zero.

As the by also form a basis for the homogenous part of degree d; of
A®K][T, T~'] we can repeat the above argument to find a necessary and suf-
ficient condition for My (K[T,T~1])(by,...,bn) to be g-generated. If this is
the case one of these determinants has a non-zero value for some o1, € K.
But this means that the corresponding polynomial is not formally zero,
whence the corresponding N2 x N? minor for A has rank N? entailing that
A is g-generated. O

3 Reduction to a quiver problem

From now on we will work over the algebraically closed field K of charac-
teristic zero and denote it with C. We will slightly change our notation and
use the dictionary of the foregoing section to translate the obtained results
back to arbitrary graded central simple algebras.

We want to find necessary and sufficient conditions for the graded matrix

algebra
M = My (C[T, T~ ])(by, - .., bw)

to be g-generated where g = (k1,d1;...; ks, ds) and where deg T = e. It will
be more convenient to denote the N-tuple (by,...,by) as

b= (my,e1;...;myep)

where 0 < e; < ey < ... < e < e are the distinct numbers occurring as a b;
and m; is the multiplicity with which they appear. Hence, in particular we
have that >, m; = N.




If we denote R = C[T,T~'] then using our new notation we see that the ho-
mogenous part of degree 4 of My (R)(b) can be given a block decomposition

R; Ri+e1—ez <. Rz’+el —ey
Rites—er R; s RL‘+ez—ez
Ri+e;—el Ri+el—ez cee R;

where the block at position (k,1) has size my x my.

This block-decomposition suggests the following quiver-setting. The matrix-
skeleton M Sk(b) for b = (my,e1;...;my,¢;) is defined to be the complete
labeled directed graph on [ vertices where we give the directed arrow

e — o labele; —¢; mod e
k3 7 ’

This matrix-skeleton encodes the relevant information of the graded matrix
algebra My (R)(b) if we also give the corresponding dimension vector m =
(ma,...,m;). We have the following observation

Lemma 2 All oriented cycles in the matriz-skeleton M Sk(b) have total la-
bel equal to zero in Z/eZ.

Given a potential generator datum g = (ky,d1;...; ks, ds) we will form out
of the matrix-skeleton M Sk(b) a quiver Q(b,g) in the following way.
Q(b, g) is the quiver on the ! vertices (those of M Sk(b)) which has &; directed

arrows for every arrow of label d; in M Sk(b).

Example 2 Consider My (C[T,T~!] 1,...,1), thenb = (a,0;b,1)

)(0,...,0,
a b
and the matriz-skeleton M Sk(b) is the labeled digraph

1

If the generator data is g = (m,1) then the quiver Q(b,g) is

e

(m) (m)
(m)

according to whether deg T = e is not (resp. is) equal to 2.




If m = (my,...,m;) € N then the variety of representations of a quiver Q
with dimension vector m, Rep(Q,m) is the vectorspace where we assign to
each directed arrow

e — e the space My, xm; (C)
) 7

that is, if we assign to each vertex i the space C®™ then each arrow cor-
responds to a linear map between the vertex-spaces. Observe that the
group GL(m) = GLy, X ... X GLy, has a natural action on Rep(Q,m)
by basechange in the vertexspaces. Two representations in Rep(Q,m) are
isomorphic iff they belong to the same GL(m)-orbit.

If Q is a quiver on [ vertices, the Ringel bilinear form R on Z' is determined
by the matrix with entries

Rij = 045 — #{; — ;}

Not only do we recover the quiver @ from the Ringel form but also a lot
of homological information on representations of Q. Let V (resp. W) be a
representation of @ with dimension vector « (resp. ), then we have

R(o, B) = dimg Hom(V, W) — dimg Ext*(V, W)

The Ringel form can also be used to give an algorithmic description of the
dimension vectors of the simple representations of Q. Recall that A; is the
cyclic quiver on [-vertices with one arrow between successive vertices with
the cyclic orientation. The following result was proved in [4, Thm. 4]

Theorem 3 If Q@ is not equal to :47, thenm € N is the dimension vector
of a simple representation of Q iff and only if

1. supp(m) is a strongly connected subquiver, that is, if m; # 0 # m;
then there is an oriented path from i to j in supp(m)

2. For oll 1 <1 <1 we have the numerical conditions
R(m, ;) <0 and R(d;,m) <0
where 8; = (8;7); is the standard base-vector of Z

Finally, recall the stratification result of [4, Thm. 3] which implies that if
m is the dimension vector of a simple representation, then Rep(Q,m) has a
Zariski open subset of simple representations. Moreover, there is an obvious
notion of degeneration of representation-types which allows to determine the
closures and inclusions of strata, see [4] for more details.
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Lemma 3 If A = My(C[T,T~1])(b), where b = (my,ey;...;my,e) and
g = (k1,d1;...;ks,ds) then if we denotem = (my,...,m;), there is a natural
identification

¢ : Rep(Q(b,g9),m) — ASH & ... @ ADF

Proof : It follows from the block-description of A that an element
0 € Ay, has only non-zero entries in the block at place (k,1) iff d; + ef, — ¢
is a multiple of e, that is, when d; = ¢; — e, mod e. This block has size
my, X'my. Hence, ¢ is fully determined by taking in Q(b, g) one arrow between
the vertices k and ! whenever the corresponding arrow in M Sk(b) has label
d;. The lemma follows by superposition. O

We are now in a position to state and prove the main theorem :

Theorem 4 With notations as above, the following statements are equiva-
lent

1. My (C[T,T7))(b) is g-generated
2. m is the dimension vector of a simple representation of Q(b,g)

Proof :

(1) = (2) : Every element § in A; is a matrix whose entries are all of the
form oT* for o € C and some k € Z. With ) we will denote the matrix in
My (C) obtained from § after setting T’ equal to A. If My (C[T,T~])(b) is
g-generated there are elements (6(k)) € A;‘ikl D...d A;‘i’“s which generate
My (C[T, T~1)(b) over C[T,T~!]. But then, for a generic specialization T' +>
A the matrices d(k)y € My (C) will generate My (C) as C-algebra. These
matrices correspond to a simple representation of Q(b,g) with dimension
vector m under the identification of the previous lemma.

(2) = (1) : This part will be proved by induction on m and parallels the
proof of [4, Thm. 4]. We will sketch only the main ideas. If k = 5 k; we
denote the map ,

T
Rep(Q(b,9),m) —2 AZH @ ... @ ABks T2 pry (C)®F

by ¢x. The set of V € Rep(Q(b,g),m) such that ¢»(V) is a generating
k-tuple of N x N matrices is Zariski open for all A # 0.

If all m; = 1 and m is the dimension vector of a simple representation of
Q(b,g) then one can use the strongly connectedness and the fact that the
total label of any oriented cycle is a multiple of e to produce the primitive




matrix-idempotents e; from a simple representation in Rep(Q(b,g),m). us-
ing these idempotents one can then generate My (C[T,T1])(b).

Hence we may assume that there is a vertex 7 with m; maximal and > 2
and that the result holds for all dimension vectors f < m. In particular we
can consider the vector

m' = (ma,...,mi_1,m; — Lmiy,...,m)

As in [4, Thm 4] one can easily reduce to the case that 7 is a good vertex
(that is, there is no direct successor (resp. predecessor) j of i with m; = m;
and j is a prism (resp. focus) vertex). In this case, one verifies easily
that m’ is again the dimension vector of a simple representation of Q(b,g)
and by induction we may assume that My._1(C[T,T-'])(®') is g-generated
with ¥ = (my,e1;...;m;—1,¢;;...3my, ). Consider the non-empty Zariski
open subset U’ of Rep(Q(b,g),m') such that the maps ¢y to My_1(C)®*
give generating tuples for A\ # 0.

As R(m/, 6;) < 0 and R(4;,m') < 0 we know that for any V' € U’ we have

Ext}(V', S;) # 0 # Ezt'(S;, V)

for 5; the one-dimensional simple representation concentrated in vertex .
Now consider the open subvariety U of Rep(Q(b,g),m) of representations
V such that V' = V | m' lies in U’. Consider a point in U and consider
the subalgebra of My (C[T,T~'])(b) generated by ¢(V). As ¢(V') generates
My —1(C[T, T~*])(¥) it contains an homogenous element (of degree a multi-

ple of e) with N — 1 distinct eigenvalues. There exists an open set of V' with -

V | m' = V' such that the corresponding element C(T') in My (C[T,T1])(b)
has N distinct eigenvalues. By the block-form of My (C[T, T~'])(b) we know
that the (finitely many) eigenspaces of ¢ (V') are concentrated in the vertex-
spaces. As U contains an open subset consisting of simple representations
we may assume that V is a simple representation. Hence, for each of these
finite number of eigenspaces there is a M, among the components of ¢, (V)
which does not leave this subspace invariant. But then C'(\) and a linear
combination of the M, generate My (C) and this for a dense set of A # 0.

Hence, let ' be the C[T, T~1]-subalgebra of My (C[T,T~1])(b) generated by
the homogenous elements ¢(V). By the above argument I' must be a graded
prime ring with center the graded field C[T, T~!]. But then, I is a graded
central simple algebra and must be equal to My (C[T, T~!])(b) finishing the
proof. 0




4 Some consequences

In view of the main theorem and the numerical condition of theorem 3
to determine the dimension vectors of semi-simple representations we have
a complete solution to the generator problem for graded matrix algebras
and hence by the descent results of section 2 also for graded central simple
algebras. In this section we draw some immediate consequences.

Lemma 4 My (C[T,T7])(b) can only be g-generated if Q(b,g) is a strongly
connected quiver.

Proof : If m is the dimension vector of a simple representation of
Q(b,g) then its support which is {1,...,{} has to be a strongly connected
(sub)quiver by theorem 3. 0

We will now concentrate on the special (but important) case of matrix-
algebras generated in degree one.

Proposition 2 My (C[T,T71])(b) is generated in degree one if and only if
b= (m1,0,me,1,...,me,e—1) with all m; > 1. In fact, it can be generated
by k elements of degree one if and only of m; < Emit1 mod e

Proof : Let us denote b = (mq,e1,...,my,¢) and g = (k,1) for
k = dim My (C[T,T~1])(b)1, then the only arrows in Q(b,g) are those from
vertex 4 to vertex j when e; —e; is equal to one or 1 —e. Ase; < e <
... < ¢ < e this means that there are only arrows in Q(b,g) between two
consecutive vertices if ;41 = ¢; + 1 mod e. Hence, Q(b,g) can only be
strongly connected if e; = 0,e5 = 1 etc and | = e and ¢; = ¢ — 1. In this

case
k = dim My (C[T, T_l])(b)l = Z Mg M1
i€EZ[eZ
and the quiver Q(b,g) and dimension-vector m can be visualized as
Me (k) my

(k) (k)

(k)

[ e e ———
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The Ringel form of Q(b,g) is given by the e X e matrix

[1 -k
1 -k
1 -k
—_k 1 ol
and m = (my,...,m.) is the dimension vector of a simple representation of

Q(b,g) by theorem 3 if and only if
Vi:m; < kM1 mod e
from which the result follows. ]

By descent we can now prove theorem 1 of the introduction

Theorem 1 A = M,,(D[X, X1, ¢])(a1,...,a,) with deg(X) = d is gener-
ated by A1 as Ag-algebra iff
(a1, yan) = (0,...,0,1,..,1,...,d=1,...,d—1)

g ~ -~
my m2 mq

with all m; > 1. Then, A is generated by k elements of degree one over its
center if and only if

m; < k.miyy for all 1 mod d
Proof : If A = M,(D[X, X1, ¢])(a) with
a = (my,0;mg,1;...;mg,d—1)

and if the degree of ¢ in Aut(D)/Inn(D) is m and the index of D is i we
know from lemma 1 that

A®C[T, T = My (C[T, T7])(b)

where C is the algebraic closure of the center K of D and deg(T) =md =e
and b is equal to

(#m1,0;...;img,d—1;9m1,d; . .. ;img, 2d—1;. .. ;4mq, (m—1)d; . .. ;img,e—1)

and the numerical condition of the previous proposition applied to this case

is that
1m; < kimit1 mod d
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from which the statement follows. O

It is now easy to find counter-examples to the conjecture of [2, Remark p.
1697]

Example 3 Let deg X = 2 and consider the graded central simple algebra
A= M1 (D[X> X—l, ¢])(17 0; &, 1)

Then, A can be generated by k elements of degree one but not by k — 1
elements of degree one.

5 Automorphisms of trace rings of generic matri-
ces

In this section we give an application to invariant theory. Again, we will
- work over an algebraically closed field of characteristic zero and denote it
with C.

The group PGL,, acts on the space of m-tuples of n X n matrices M =
M, (C)®™ by simultaneous conjugation. Let Q7 be the algebraic quotient
variety M/ PG Ly, for this action, that is, the coordinate ring C[Q7] is the
ring of polynomial invariant functions C[M/™}FCGLn,

A point ¢ € Q7 can be lifted to a (unique up to simultaneous conjugation)
m-tuple of matrices z¢ = (£1,...,2m) € M such that the representation

of the free algebra on m letters is semi-simple, that is, the x; generate a
semi-simple subalgebra

M(z) = M, (C)®" @... ® M,, (€)% —— M,(C)
with ) e;d; = n. We say that { or z¢ has representation type
T(C) = T(:Ec) = (dh et;...;dp, er)

and denote by Q7*(7) the set of all points of Q7' of representation type 7.
For more details we refer to [3] where it was shown (among other things)
that any two points of the same representation type have étale (or analytic)
isomorphic neighborhoods.

In [9] and [10] Z. Reichstein studied the analogous (but much harder) prob-
lem for the Zariski topology. By constructing PG L,-equivariant automor-
phisms on M™ he was able to show (at least if m is large enough) that the
automorphism group acts transitively on the strata and hence

12




Theorem 5 (Reichstein [9]) Any two points of Q% (7) have isomorphic
Zariski neighborhoods if m > n + 1.

This result raises the obvious question whether there can be different orbits
under the automorphism group for small values of m. For m > 3 it follows
from Reichstein’s strategy that the hearth of the problem consists of points
of representation type (1,n) (that is, those corresponding to simple repre-
sentations) which form a Zariski open and dense set in Q. We will study
here Q7*(1,n) under affine automorphisms, that is, automorphisms of Q7
induced from those on C(uy,...,uy,) of the form

Ui > Z QijUj

with @ = (a;5) € GLy(C). Note that, the action of affine automorphisms
gives a G Lp-action on M, commuting with the PG L,-action.

An m-tuple z = (z1,...,2Z,) € M is said to be generating if  determines
a simple representation, that is, belongs to 7~1(Q™(1,n)) = Gen™. It is
clear that Gen]' is a PG Ly X G Ly,-stable non-empty Zariski-open subset
when m > 2.

Gen? contains a Zariski open subset Sat)’ consisting of the saturated m-
tuples, that is, those = such that xy,...,Zm—; already generate M, (C).
Clearly, Sat]} is a PGL,-stable non-empty Zariski open subset whenever
m > 3.

As Sat? is not stable under the G Ly,-action, we wonder whether any gen-
erating m-tuple can be mapped by an affine automorphism to a saturated
m-~tuple, or equivalently, for which m > 3 do we have

GLp,.Sat] = Gen® (7)

The relevance of this question comes from the following result which an be
proved by mimicking the arguments in [9] and [10].

Proposition 3 If m is such that GLy,.Sat)' = Gen;?, then for every rep-
resentation type T we have that any two points in QW (T) have isomorphic
Zarisks neighborhoods.

However, we will prove the following result mentioned in the introduction
Theorem 2 Forall3<m<n-1

GLy,.Saty <z, Geng'

13




Proof : First we will give a procedure to associate to any m-tuple
2z = (£1,...,%m) € Gen a graded matrix-algebra.
Equip M, (C[t]) with the usual gradation and consider the C-subalgebra A,
generated by the homogenous elements

tz; € My (C[t])

Clearly, A, is a graded algebra and we have the following commutative
diagram

Clur,..,um) 2 M (0)
St = 1)
Gm . A,

O(x)

- where G is the ring of m generic n X n matrices, that is, the subalgebra
of M, (Clvs; (k)]) generated by the generic matrices Vi = (v;5(k)). Gy is a
graded algebra generated in degree one by giving deg(v;;(k)) = 1 and the
map ®(z) determined by sending V to tzy is gradation preserving.
Because ¢(tx) is a simple representation it follows from the Artin-Procesi
theorem that there exists an homogenous central polynomial whose evalua-
tion at Ag is non-zero. That is, there exists a ¢ = t/ € Z(4;) for some f.
But then, the graded localization at c¢ is a graded field, hence of the form

QU(Z(4s)) = C[t%,17°]

for some e and as any specialization Q4(Az)/(t — A) = Mx(C), QI(4;) is a
graded Azumaya algebra over the graded field C[t¢,t~¢] and hence by [1] of
the form

QI(Ay) ~ My (C[t®,t™°) (m1,0;m2, 1;. .. ;me, e — 1)

where the determination of b = (mq, e1;...;my, ¢;) follows from the fact that
A, and hence QJ(A,) is generated in degree one. More precisely, Q4(4;) is
generated as C[t¢,t™¢|-algebra by the m-elements tx;.

Next, we will use our generator results to construct z € Gen' — G Ly,.Sat}}
with m = n — e. Consider the situation b = (1,0;1,1;...;1,e — 1;n —e,e)

14




with corresponding quiver-setting

n—e (k) 1
(jv/ (k)
1 1
(k)
@t
1 (k) 1
Then we see that this m is a dimension vector of a simple representation iff
k>n—e.
Hence, if m = n — e we can take z the m-tuple of matrices corresponding
to a simple representation of the quiver. Therefore, x € Gen]’. Further,
any point of the orbit GL,,.z is again a representation of this quiver. If
some GLy,.z would lie in Sat!® then this would mean that the quiver with

k = m — 1 arrows between the vertices would have a simple representation
of dimension vector m. Quod non. 0

The idea underlying the above proof is the following. From [6] we know that
in the Hesselink stratification of the nullcone Null® of the PG Ly-action
on M there appear for each m < n — 1 non-empty strata which were
still empty in Null?~l. By taking the associated cone C(z) of a simple
representation  one obtains a subvariety of Null}' of dimension n® — 1.
Clearly, it should make a difference whether C(z) hits (or does not) one -
of this new strata. The construction of A, is a ringtheoretical version of
taking the cone over the orbit, PGL, x C*.z and Q%(A,) is the algebra
corresponding to PGL.xz X C*.z — C(z).

6 Periodic fat points

In this section we will give an application to the study of the Proj of graded
algebras and in particular to the determination of the types of periodic fat
points which can occur.

The setting will be the following : let A be a connected positively graded
affine C-algebra which is g = (k1,dy;. . .; ks, ds) generated and let m = > k;.
We consider Rep, A the variety of n-dimensional representations of A.
Clearly, Rep, A is a PG Ly,-stable closed subvariety of M. Moreover, the
gradation of A endows this variety with an additional C*-action. Consider
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the one-dimensional torus
14

tds

then Rep, A is PGL, X C*-stable.
It is natural to define the n-th approximation of Proj A to be the orbit-space

proj, A = Orb(Rep, A, PGL, x C*)

as for commutative A, proj; A = Proj(A). Observe that there is only
one closed orbit in Rep, A for this PGL, x C*- action, namely the trivial
representation, so the usual affine quotient variety will not be useful in this
case.

Now, assume that A has an n-dimensional simple representation then the
set of all irreducible n-dimensional representations

Irr, AC open

Rep,, A

is a Zariski open subset which is clearly PGL, x C*-stable. As a first
approximation to the orbit space proj, A one can study the orbit-space
irry, A of orbits in Irr, A. As the stabilizer of any point in Irr, A is of
the form 1 X p, for some e, all orbits have dimension n? and hence are
closed in Irr, A. Therefore, if we cover Irr, A by affine PGL,, x C*- stable
subvarieties we can construct irr, A locally by studying the corresponding
affine quotient-varieties. A natural way to do this is to consider the special
affine open sets in M determined by a homogenous (with respect to the by
the torus induced gradation on C{uy,...,un) or on Gi') central polynomial.
In this way we get a scheme-structure on #rr, 4.

The orbits in Irr, A have the following module-theoretic interpretation.
Recall that a fat point module of A is an equivalence class in Proj A, a
representant F' of which is a graded (left) A-module which is 1-critical with
respect to Gelfand-Kirillov dimension. Recall that fat point modules are
simple objects in Proj A (which is the quotient category of gr A the category
of graded left A-modules by the Serre subcategory of torsion A-modules).
We will say that a fat point with representing module F is periodic of mul-
tiplicity n if F' has a simple quotient of dimension n. The reason for this
terminology is that we can choose F' such that the Hilbert series has rational

expression
mtet + ...+ mt®

H(F,t) = (1 - £2)
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We will say that the fat point has period e, multiplicity > m; and type
b = (m,e1;...;my,e). The fact on the Hilbert series will follow from the
proof of the following result. It is based on similar results in [5] and [11].

Proposition 4 With notations as before, there is a one-to-one correspon-
dence between

1. PGL, x C*-orbits in Irr, A

2. Periodic multiplicity n fat point A-modules

Proof :
(2) => (1) : Take a representant F' of the fat point with n-dimensional sim-
ple quotient determined by the matrix m-tuple z = (z1,...,2m) € Irr, A.

The orbits corresponding to F' is PGL, x C*.z.

(1) = (2) : Let = (21,...,Zm) € Irr, A be a representant of the or-
bit. The kernel of the corresponding morphism A — M, (C) is a maximal
ideal and consider the maximal graded ideal contained in it. It is easy to
verify that this is the kernel of the graded morphism

¢$:A"_—’>Aw

where A, is the graded subalgebra of M, (C[t]} (endowed with the natural
gradation) generated as C-algebra by the elements t%.z1, ..., t%.5,,. Pre-
cisely as in the foregoing section one can show that the center of A, is
non-trivial and that the graded ring of quotients of A, is a graded central
simple algebra and hence of the form

A— Ay — QI Ay = Mp(Ct%,t7°))(ma, e15. .. ;my, €7)

for certain numbers e, m; and e; such that e; < e and Y, m; = n. The period
e can be recovered from the action as

1 x pe = Stabpar, xcx (%)

Denote the graded field C[t®,t™¢] by R, then we can view the right hand
side as the graded endomorphism ring of the graded R-module

V= R(61)®m1 b...d R(el)®ml

where R(k) denotes the shifted graded module, that is, R(k); = Rgy;. Ob-
serve that the graded algebra morphism A — END V makes V into a
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graded A-module. The fat A module corresponding to z is represented by
the graded A-module F = V5, which has Hilbert series

mtet + ...+ myt®
(1—1°)

Tt is easy t verify that these two mappings are inverse to each other. O

H(V,8) =

Our main theorem imposes restrictions on the types of periodic multiplicity
n fat points which can arise in Proj A.

Theorem 6 Let A be a connected graded algebra generated by elements of
degree g = (ki1,d1;...;ks,ds). Then, A can have a periodic multiplicity n
fat point module F' of type b = (my,e1;...;my, e;) only if

en=3m
o m = (my,...,my) is the dimension vector of a simple representation
of Q(b,g)

Clearly, the defining equation of A may impose further restrictions on the
types of periodic fat points that can occur. For example, it was shown in [5]
that if F is a periodic fat point of A which is generated in degree one and is
the quotient of an Auslander regular algebra, then the only types that can
occur for A are (m,e).

However, in the generic case when A is C{uy,...,up) or G the above
restrictions are the only ones and one can describe the scheme irr, 4 rather
explicitly. It would be interesting to generalize the results of [2] (where the
case was treated when all the variables are given degree one). We leave this
as a suggestion for further research.

We will end this paper with one application to the Proj of generic matrices
when we give the generic matrices V;, degree one. As we indicated above,
we can cover the scheme irr, GI* by affine varietes which are determined by
graded localizations @ GI' where ¢ is an homogenous central polynomial
for n X n matrices. As G is generated in degree one, we know that Qf G}
is a strongly graded ring. Therefore, one wonders whether it can be reduced
to the form Alz,z7 1, ¢] if we localize further and whether irr, Gj;' can be
covered by such special strongly graded algebras.

In [2] it was shown that this is always the case if n = 2 and cannot be so for
n > 2 and m large enough ( > 2n — 2). In fact, the reason for stating the
conjecture [2, Remark p. 1697] was the believe that one could take m = 2
in this result. Even if the conjecture fails to be true, we will show that the
consequence is still valid.
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Proposition 5 For n > 2 one cannot cover irry, GI' with special strongly
graded algebras of the form
Alz,z7", ¢]

where deg(z) =1 and ¢ is an automorphism of the degree zero part A.

Proof : Consider the graded matrix algebra
My (C[T, T7*])(a,0;5,1)

with T of degree two and a =b=Fkifn=2k+1landa=%k b=k —1if
n = 2k. The corresponding quiver situation is

: (m) :

(m)

and one verifies that (a, b) is the dimension vector of a simple representation
for all m > 2. Hence, by our main result, the graded matrix algebra can be
generated by m elements of degree one wy,...,wy,. The map

¢ : G:v,n —_— Mn((C[Ta T_l])(a’>0; b, 1)

defined by (Vi) = wyg is graded and we have that ¢(GP*)C[T,T7!] =
M, (C[T,T7])(a,0;b,1). That is, 9 is a central extension. Therefore, P =
Ker 1 is a graded prime ideal of G' of p.i.-degree n. Therefore, the graded
localization at P or p = PN Z(G) is a graded Azumaya algebra Q% G
and we have

Q% G /p Q% G ~ My (C[T, T~ *])(a,0;b,1)

One verifies that the degree one part of M, (C[T,T~'])(a,0;b,1) contains no
regular elements (the rank of every element in < n — 1 by the choice of a
and b), therefore Q% G cannot be of the form A[z, ™1, ¢]. 0
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