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To an endomorphism ¢ of Clzy,...,z,] we associate co(¢) the di-

mension of the smallest sub-coalgebra C(¢) of C[G?] containing the
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Abstract

To an endomorphism ¢ of Clzy,...,x,] we associate co(¢) the di-
mension of the smallest sub-coalgebra C(¢) of C[G?] containing the
o(z;). If the Jacobian of ¢ is invertible, C(¢) will be a generating set.
If co(¢) is minimal (that is n-+1), then ¢ is a tame automorphism. We
use Lie stacks to construct such tame automorphisms and link their
study to the classification problem of local commutative C-algebras of
dimension n -+ 1.

1 Introduction

The study of automorphisms of the commutative polynomial ring
Clz1,...,2,) is a fascinating topic with many open problems. For exam-
ple, if n > 2 the Jacobian conjecture [2] is still open and so is for n > 3 the
Nagata conjecture on the existence of wild automorphisms, see for example
[1]. For a good introduction to these problems we refer the reader to [2],
and [8].

For some problems one would like to have a numerical invariant associated to
an endo- or automorphism ¢ to allow for inductive arguments. Usually one
uses the degree of ¢ which is the maximum of the degrees of the polynomials
¢; = ¢(x;) or the total degree which is the sum of deg(¢;).

In this note we introduce a finer invariant co(¢) which depends on the natural
underlying coalgebra structure of Clz1,...,2,] = C[G}], where G, is the
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additive group scheme, see for example [9]. Recall that the Hopf structure
is induced by the following comultiplication A and counit e

Alz)=2;01+1®z; and e(z;)=0

That is, we take all generators z; to be primitive elements.

The fundamental theorem of coalgebras (see for example [7]) asserts that
any coalgebra is the directed union of finite dimensional sub-coalgebras. In
particular, every finite set of elements is contained in a finite dimensional
sub-coalgebra.

Definition 1 The co-invariant co(¢) of an algebra endomorphism ¢ of
Clz1,...,2p] is defined to be the dimension of the minimal sub-coalgebra
C(¢) of the Hopf algebra C[GZ] which contains the elements ¢; = $(x;) for
1<i<n.

Observe that as the intersection of sub-coalgebras is again a sub-coalgebra,
C(¢) is uniquely determined.

In section two we will show that if ¢ is an endomorphism with invertible Ja-
cobian, then the coalgebra C(¢) is an algebra generating set of Clz1,. .., zy,].
It is clear from the definitions that n + 1 < ¢(¢) < n;;—d where d =

deg(¢). In section three we show that ¢ is a tame automorphism when
co(¢) is minimal, that is, is equal to n+ 1. On the other hand, the potential
wild automorphism proposed by Nagata has co(n) = 22 which is rather large
compared to the theoretical upper bound. Perhaps our invariant can be used
to construct large classes of potential wild automorphisms by maximizing
the value of co(¢) with respect to the degree of ¢.

In the final section we give a method to construct automorphism ¢ with
co(¢) = n+ 1 and link this to the study of local commutative algebras of
dimension n+1. In particular we construct an embedding of N (n) the variety
of these local algebras in the variety of automorphisms with co(¢) = n + 1.
There is a canonical GLy-action on both varieties and the embedding is
G Ly-equivariant. The method is based on the theory of Lie stacks and their
enveloping algebras as introduced by the author in [4] and [5]. Whereas
this theory originated from the desire to construct non-commutative and
non-cocommutative Hopf algebra domains, we apply it here in the easier
cocommutative case where we can suffice with enveloping algebras.

In fact, it should be stressed that we could have applied some of the argu-
ments of this paper to the case when Clz1,...,2,] is replaced by the en-
veloping algebra U (g) of an n-dimensional Lie algebra. In this case we obtain
information on algebra generating sets rather than on automorphisms.




2 A Jacobi-type result

Throughout this section, ¢ will be an algebra endo-morphism of
Clz1,...,2n). The Jacobian conjecture asserts that ¢ is an automorphism
if and only if

J(¢) = <§4§;>i,,- € My(Clan, ..., 7))

is invertible.
Clearly, if ¢ is an automorphism, the sub-coalgebra C(¢) introduced before
must be a generating st for the algebra C[G7]. In this section we will prove

Theorem 1 Let ¢ be an endo-morphism of Clz1,...,z,] with J($) invert-
ible. Then, C(¢) is an algebra generating set of Clx1,...,Zy].

First, we will give a criterium for a sub-coalgebra C of C[z1, ..., z,] = C[G}]
to be a generating set. As G is a connected unipotent group, C[G%] is a
pointed irreducible Hopf algebra, that is, C.1 is the unique minimal sub-
coalgebra which is contained in any sub-coalgebra. Hence, any sub-coalgebra
C is also pointed irreducible.

As such, C comes equipped with a natural exhaustive filtration, the coradical

filtration
CGy=ClcCic...cCp=C

where for each ¢ € Cjy1 we have
Al)=Ac) —c®1-1®ce C; ®C;

In particular, C; = C.1 + P(C) where P(C) is the set of primitive elements
of C.

For p € C[z1,...,2z,) we will denote with lin(p) the degree < 1 part of f in
the natural filtration on C[z1,...,2,] by giving deg{z;) = 1. Observe that
this filtration coincides with the coradical filtration on C[GZ].

Proposition 1 Let C = Cey +...Ce; be a sub-coalgebra of Clz1,...,2,] =
C[G?). Then, C is generating if and only if 3 C lin(c;) = C1+Cx1+. .. Cxy.

Proof : We may assume the basis-elements ¢; to be ordered with
respect to the coradical filtration. As

Cey +...+<Cc,-1 =01=P(C)+C.1 (_—>(C[:B1,...,£I)n]s‘1

it is clear that these ¢; with j < 4; have only linear terms and that P(Cy) =
Ceg +...+Cqy -




Because every C}, is a pointed irreducible sub-coalgebra, it generates an al-
gebra which is a pointed irreducible cocommutative sub-bialgebra of C[G?].
By the structure result of cocommutative Hopf algebras these are (in this
case commutative) enveloping algebras on the primitive elements. In par-
ticular, the algebra generated by Cy is C[S1] where S1 = },;, C lin(c;).
Assume by induction we have proved that

C(Ci) = C[Si]

where S; is the span of all lin(c;) where ¢;, € C;. Now, take ¢; € Ciy1, then
by definition of the coradical filtration we have that

Al(g) € C; ® C; — C[S;] ® C[S;]

As we know that A'(¢;) € CI[G7]® C[G%] we can use the PBW-basis to show
that there must be an element m € C[S;] such that

Al(e) = Al(m)

As A’ is zero on the linear terms we may assume that m € C[S;]>2. But
then,
lin(e)) =¢—me P(G}) =Cxy +...Cxy,

and hence lin(cy) lies in the algebra generated by C[S;] and the ¢; € Ci41.

Conversely, the ¢; lie in the algebra spanned by Sj41, finishing the proof of
the result. O

In fact, we have proved the following result

Corollary 1 Let C be a sub-coalgebra of C[G}]. The sub-Hopf algebra
generated by C coincides with the sub-Hopf algebra generated by lin(C) =
{lin(c) | c€ C}.

The proof of the theorem follows easily. from this using the next result.
Recall that Af f, is the group of affine automorphisms of C* that is such
that each ¢(z;) has degree < 1.

Proposition 2 Let ¢ be.an endo-morphism of Clz1,...,2,) and o € Af fr,
then C(¢) ~ C(ao¢) ~ C(do ).

Proof : As 1 in contained in any sub-coalgebra it suffices to prove the
result for o a linear automorphism in GL,. Now, use the fact that GL,, is
the group of Hopf-algebra automorphisms of C[G}]. O
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Proof of theorem 1 : We can replace ¢ by 7o¢ where 7 is the translation
z; — ¢(0); to arrange that ¢(0) = 0. As the linear term ¢(y) of ¢ is invertible
(it corresponds to the matrix J(¢)(0)) we can further replace ¢ by ¢(_1§ o¢
to arrange that ¢(z;) = z; + higher degree terms. The result now follows
from the above results.

Example 1 : Observe that we used only the fact that J(¢)(0) is in-
vertible to prove the result. Hence, it is easy to construct non-invertible
endo-morphisms ¢ such that C(¢) generates Clz1,...,2,]. For example,
take @(z;) = z; + 2.

3 A tameness result

A triangular or Jonquiére automorphism ¢ of C[z1, . .., z,] is one of the form
é(z;) = z; + r; with r; € Clzy,. .., 2i—1]

for all 7 > 2 and ¢(z1) = z1. Tame automorphisms are all automorphisms
generated by the triangular and the affine automorphisms. Nagata has con-
jectured that for n > 3 there must exist wild (that is, non-tame) auto-
morphisms and for n = 3 he even gave an explicit candidate for a wild

automorphism.

In this section we show that the co-invariant co(¢) gives a numerical measure
for the potential wildness of the automorphism. Let deg(¢) = k and denote
with m(¢4) the number of 7 such that ¢(z;) has degree k. We claim that the
co-invariant must be bounded between the following two numbers

n+1< co(¢) < <n+7l;:—1> +m(¢)

For, every ¢(z;) is contained in the sub-coalgebra Clzy,...,zn]<p—1 +
Pdeg o(a)=k C ¢(z). We will show the following tameness result

Theorem 2 Let ¢ be an automorphism of Clz1,...,%,] with co(¢) =n+1,
then ¢ is a tame automorphism.

Proof : As co(¢) =n+ 1 we know that
C(¢) =Cl +Coh(z1) + ... +Co(zn)
and as ¢ is an automorphism we know from the foregoing section that

Z(C lin(¢(z;)) = Z(C Z;
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Consider the coradical filtration on C. As any « € GL, preserves the
coradical filtration we can choose a linear automorphism « such that if we
denote ¥ = & o ¢ we have that (x1),...,%(z,) is ordered with respect to
the coradical filtration on C(1) and that

lin(y(2;)) = =

for all 1 <4 < n.
As ¢(z1) is a primitive element of C' (and hence lies in P(Cz1,...,2,]) =
>~ Cx;) we have that '

$(z1) = lin(d(z1)) = 21

Assume by induction that we have already shown that
d(z;) = z; + 7y with r; € Clz, ..., 24-1]

for all ¢ < j and that ¢(z;) € C(3)s, (the k-th part of the coradical filtration).
Then, we know that the subalgebra of Clz1,...,z,] generated by C(¥)x—1
is contained in Clz1,...,z;-1].

By definition of the coradical filtration we know that

A ¢(x,) €CL_10Cp1

and hence we have as in the foregoing section the existence of a polynomial

without linear term r; € Clzy,...,z;-1] (in fact, in the subalgebra generated
by C(%)k—-1) such that A’ ¢(z;) = A’ r;. But then, 1(z;) —r; is a primitive
element of C[z1,...,2,] and hence must be equal to its linear term whence

P(zs) = x5+ 7
Therefore, 1) is triangular, and hence ¢ must be tame. d

Example 2 : Clearly, not every tame automorphism has co(¢) = n + 1.
For example, take ¢(z;) = z; for 1 <7 <n -1 and

é(wy) = 2 + ¥ where | € Cz1y...yTn-11

with k > 2, then one verifies that C(¢) is spanned by 1, the z; with 1 < n,
12,...,1% 1 and é(z,). Hence, co(¢) = n+k—1 and ¢ is clearly triangular.
Still, for these triangular automorphisms the actual number co(¢) is small

compared to-the theoretical upper bound (’n +s - l) + 1.




On the other hand, let us see what happens in the case of the Nagata
automorphism

Example 3 : The automorphism 7 of C[z,y, 2] that Nagata proposed as
a candidate for a wild automorphism is given by

n(z) = & — 2(zz + 1)y — (zz + %)%z

n(y) =y + (@2 +y%)z

n(z) =2
It is of degree 5 with m(n) = 1, hence the co-invariant must lie between the
following two theoretical bounds

4 < co(n) < 36

One verifies that the sub-coalgebra C(n) of Clz,y, 2] must contain all lin-
ear and quadratic monomials. In degree three it contains the following 8

monomials

2 2 2,3 .2 2,3
wy ’xyz7m z,wz ,y 5'!/ z’yz ’z

In degree four C(¢) is spanned by the elements

Y222 + 2523, y32 + zyz? and 4zy’z + 3222°

and finally, in degree five we have to add 7(z). Therefore,
co(n) =22

which is fairly large with respect to the theoretical upper bound.

It would be interesting to compute for small degrees the maximal number
co(¢) which do arise. In particular, is 22 the maximal number which can be
obtained for a degree 5 automorphism of C[z,y,2]. Such an investigation
may lead to a large class of potential wild automorphims.

4 Constructing special automorphisms

In this section we will use Lie stacks, as introduced and studied in [4] and
[5], to construct lots of automorphisms ¢ of Clz1,...,z,] with co(4) =
n+1. We will also give a connection with the classification problem of local
commutative C-algebras of dimension n + 1.




Lemma 1 If ¢ is an automorphism of Clz1,...,2,] with co(¢) = k+ 1,
then deg(¢) < k.

Proof : Consider the coradical filtration on C(¢)
Cl=CycCiC...cC=C()

Since dim C;/Cj—1 > 1 we have that ! < k. Finally, observe that the
coradical filtration on C(¢) —— C[G7] is induced by that on C[G}] which
is the canonical filtration given by deg z; = 1. O

Fix an integer d > 1 and define

Eg ={¢ € End Clz1,...,2,] | deg ¢ < d}
Clearly, E(g) is n times the space of all polynomials in Clz1, . ..,z ] of degree
< d. Hence, Eg) is an affine space of dimension n (n : d). In this space
we will be interested in the following subset

G = {¢ € E(g) | ¢ is an automorphism }

By [2, Cor. 1.6] we know that G 4) is a closed subvariety of Eg). Moreover,
the varieties E(q) and G4 have a canonical action of GLy, via composition
with linear automorphisms.

Lemma 2 Gg)(k) = {¢ € Gg) | co(¢) > k} is an open GLy-stable subva-
riety of G(q).- '

Proof: From the construction of C(¢) it follows that the corresponding
set E(q) (k) is an open subvariety of E). As G(g)(k) = Eq)(k) N G(g) the
statement follows. For GL,-invariance it suffices to observe that GL,, is the
group of Hopf-algebra automorphisms of C[G7]. 0

With the above notations we are interested in the G Ly-variety G(,y(n +1).
First we need to recall some facts on finite dimensional commutative local

C-algebras.
Consider the variety N,) parameterizing the multiplication rules

(:C"xC* —C"

of commutative, associative C-algebra structures on C" such that
a1ay...an+1 = 0 for all a; € C*. As ( is bilinear it can be identified
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with a point of Hom(C* @ C*,C*) ~ C*°. Hence Ny is a closed subvariety
of the n’-dimensional affine space.

If e1,...,e, is the canonical basis of C*, a point { of N(,) determines an
n + 1-dimensional C-algebra

L;=ClaCe ®...0Ce,
with multiplication rules
e;.1 = 1.e; = ¢; and e;.e; = ((e;, €5)

L is a commutative local algebra with radical } Ce;.

By transport of structure, g € GLy acts on N, from the right in such
a way that g : (9 ~ ( becomes a C-algebra automorphism : (9(z,y) =
971.¢(g., 9-9)-

The variety N,y can be studied using Hochschild-cocycles as in [6]. In
particular, it was shown in [6] that N, is an irreducible rational variety of
dimension n? —n when n < 6. In fact, every local algebra of dimension n+1
is in these cases a degeneration of C[z]/(z"*!). However, for n > 7 this is
no longer the case and N,) has other irreducible components.

If C — C[G?] is a sub-coalgebra of dimension n + 1, then C is a pointed
irreducible cocommutative coalgebra, whence the dual algebra C* is a local
commutative algebra of dimension n+1. For this reason we are interested in
the G L,-variety N, *n) dual to N,y whose points are the pointed irreducible
cocommutative C-coalgebras of dimension n + 1.

With notations as above we have

Theorem 3 There is o GLy-equivariant embedding
1 N(*n) — Gm(n+1)
such that C(¢) ~ C if i(C) = ¢.
Proof : Consider the path algebra A, of the n-subspace quiver

v V2 Un
) ° P L]

w1 wo




then A, can be identified with the subalgebra of M, 1(C)

cC o0 ... 0C
0 C ... 0C
Ap=|: :
0 0 ... CC
0 0 ... 0C

via the map v; — E;; and w; + E; ;1. As the underlying graph has no
cycles all derivations are inner and

Der(An)=Cz1+...+Czy +Cy1 +... +Cyp,
where z; = [v;, ~] and y; = [w;, —]. The only non vanishing brackets are
[6,y5] = S5y

Let Ly = C14Ce; +... 4 Ce, be a local commutative algebra of dimension
n + 1 determined by { € N, then we have a Lie stack, that is an algebra
morphism

n
s¢t Ay — Ay ® L ar—->a®1+2w¢(a)®ei

i=1

In [4] it was shown that one can associate to any Lie stack an enveloping
algebra which is an irreducible Hopf algebra domain. In the special case
under consideration (when L¢ is commutative) the enveloping algebra U (s¢)
is the subalgebra of U(Der A,) generated by the images of L} under a
canonical universal coalgebra map.

In fact, as the action of L7 on A, depends only on the ;, Ul(s¢) is really
isomorphic to the commutative subalgebra Clz1,...,2,] < U(Der A,).

There is an inductive explicit procedure to determine the images of ef in
Clz1,...,2,] under the universal coalgebra map x (which we will recall in
the example below). As the elements x(e}) give a set of algebra generators
of Cz1,...,2y] they determine an automorphism ¢¢(x;) = x(e;).

From the construction and the fact that L is a sub coalgebra of C[GZ] of
dimension n + 1, it follows that C(¢¢) = L} and co(¢;) =n+ 1. 0

Example 4 : Let us explain the above construction in the special case when
n = 4. It is well known (see [6] or [3]) that there are 9 types of commutative
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local algebras f dimension 5 and they have the following degeneration picture

These algebras have the following presentations and standard bases (that is,
such that the f; = e} are ordered with respect to the coradical filtration on

9

type | representation €1 €y €3 eg
1 Clz]/ () x z°¢ z° ot
2 | Clz,y)/(zy,y* + 2% z y 2 2
3 meﬂﬁwﬂw) z y 2y’
4 Clz, ]/ (z*, 9%, zy) z y 2z o8
5 | Cla,y, 2/ (wz,0y,yz —a%,y%2%) |2y 2 2
6 bwmﬁyww r y z° wy
9 C[w,y,z,t]/ (%, 9, 2,1)? Yy z

The multiplication rule of L; determines the coalgebra structure of L7. For
example, with respect to the dual basis f; = e} the comultiplication of L3 is
determined by

A(f1)) = HL®L1+1®M

A(f2) f20141® f2

Alfs) = f[2®1+10f3+fi®f1

A(fs) faR1+10fu+ fi®fs+f3@f1i—f2®fe
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In order to find the universal embedding L —— Clz1, 29,23, z4] one pro-
ceeds as in the proofs in section two. For a primitive element of LZ one
maps the element to the corresponding derivation in Czy + ... + Czy of
Ag. X fi € (Lf)j41 for j 2 1 and if we have already found the universal
image of the f; with k < ¢ one finds the image of f; as follows. Consider
the subalgebra R of C[z1, ..., 2z4] generated by the images of the fj (k < 1).
There exists an element r € R such that

A'(f;) = A(r)

and hence f; — r is a primitive element of R which are all contained in
Czy + ...+ Cxyq. To find the correct element d; we have to compute the
action of f; —r on A4 (we find the action of r by composition of its terms).
The universal image of f; is then d; + r.

In the example L3, fi and fo are primitive elements and as e; acts as z; on
Ay, we know that under the universal map

fl'—')w1 and sz.’L‘z
For f3 we have that
1
A(fs)=fi®fi= A'(§ ?)

and therefore f3— % f2 must act as a derivation on 44. Computing its action
on a basis we see that dz = 23 — %xl and hence under the universal map

1 1
faszs+ 5.’17% - 5.’171

Finally, in a similar way we find that
1
A(f) =[O fs+f30fi—fa® fo=A(f1fs - §f22)

and f4— fifs+ %— f2 acts on Ay as dy = x4+ %xg whence we have that under
the universal map

1 1
far> 24+ 125+ 5(:6? — x%) - 5(:1:% — Zp)
and the assignment
b2(x:) = fi

determines a tame automorphism of Clz;, 29, 23, 24] with co(¢2) = 5.
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In a similar way one computes the images under the universal map in the
other cases. For L] we get the automorphism ¢; determined by

i = =

fo = x2+—w%—m1)

2(
1

f3s = z3+z100+ 5(:1:? - w%)

5$1 — 6.’1/'1 + .’17]_)

1
fi - mgFriws+ (2 —z) + (3x1x2 — T1%9) +

X 5

And the images (or automorphisms) of the remaining cases are given in the
table below

type | $(z1) ¢(z2) ¢($3) (564)
3 | = To 73+ 3(2] — 1) 34+ 5(25 — xg)
4 Al Zo x3 + ( - 2171) T4+ 2123+ 5 (.’L'l - wl)
5 |z T z3 T4 + 2223 + 5 (23 — 71)
6 |z Zo o3+ (22 —31) T4+ 7122
7 x o Z3 T4 + !171:1:2
8 x1 Zo T3 T4+ 5 (xl - .’13'1)
9 |z To T3 T4

As the embedding N, — G 4)(5) is G Ls-equivariant, we see from the
degeneration picture of Ny that all ¢; constructed above lie in the clo-
sure of the GL4-orbit of the special automorphism ¢; (which is a degree 4
automorphism of Cz1, ..., z4] with co(é1) = 5).

Observe that any automorphism ¢ of Clz1,...,2z,] of degree n with co(¢) =
n + 1 must have corresponding C(¢) = L* where L = C[z]/(z™*!). There-
fore, if n > 7 we have automorphisms x with co(x) = n + 1 which are not
degenerations of degree n 4 1 automorphisms in G(y)(n + 1).
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