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Abstract

Enveloping algebras of Lie stacks, as introduced in [7], give irre-
ducible Hopf algebra deformations of U(g) which are neither commu-
tative nor cocommutative. In this paper we present and study a large
class of examples of Lie stacks. In particular, we show that the PBW-
bases of these Hopf algebras does not have to be finite in general.
Further, we construct a non cocommutative Hopf structure on U (9)
(usually with antipode of infinite order) whenever g has a codimension
one Lie ideal § such that the quotient has the h-weight of an eigenvector
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Abstract

Enveloping algebras of Lie stacks, as introduced in [7], give irre-
ducible Hopf algebra deformations of U(g) which are neither commu-
tative nor cocommutative. In this paper we present and study a large
class of examples of Lie stacks. In particular, we show that the PBW-
bases of these Hopf algebras does not have to be finite in general.
Further, we construct a non cocommutative Hopf structure on U(g)
(usually with antipode of infinite order) whenever g has a codimension
one Lie ideal h such that the quotient has the h-weight of an eigenvector
of A% b.

1 Introduction

Over the last decade several attempts have been made to construct and
classify 'nice’ algebra deformations of the commutative polynomial algebras
Clz1,.-.,%n). Even if we assume excellent homological properties (such as
Auslander regularity and the Cohen-Macaulay property as in [1] and [9]) a
classification seems to be out of reach at the moment, whenever n > 4.

Apart from homological properties, polynomial algebras have a lot of ad-
ditional structure. For example, -the corresponding affine variety A" =
Maz(C[z1,...,%,]) carries the structure of an Abelian group under com-
ponentwise addition. That is, C[z1,...,2z,] = C[G?] the coordinate ring of
the algebraic affine group scheme G (n copies of the additive group G, ). As
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such, C[z1,...,z,] has the structure of an Hopf algebra which is both com-
mutative and cocommutative with comultiplication A and counit ¢ induced
by

Alz;)) =2;®1+1Q®z; and ¢(z;) =0
that is, the algebra generators z; are primitive elements. Further, this
coalgebra structure is irreducible meaning that every sub-coalgebra of
Clz1,...,Zn] contains the unique group-like element 1.
Hence, it is a natural question to construct and classify Hopf algebra defor-
mations U of C[z1,. .., 2,] which remain irreducible as coalgebra, but which
may be neither commutative nor cocommutative. It will turn out that such
deformations U then automatically have excellent homological properties if
we can bound their growth, see [7].
If we restrict attention to deform either the multiplication or the comultipli-
cations, then deformations are classically well known and are summarized
in the diagram below

Clz1,...,2n] = C[GY] Clz1,...,25] = C[U]
commutative ———— commutative
cocommutative not cocommutative
U(g) dim(g)=n U(s) s Lie stack
not commutative | ———————| not commutative
cocommutative not cocommutative

where U is an n-dimensional unipotent group and g an n-dimensional Lie
algebra.

If U is a non-commutative group, the corresponding Hopf algebra C[U] is
not cocommutative. Because U has a composition series all of which factors
are isomorphic to G, one can view C[U] as a Hopf algebra deformation of
C[GZ].

Similarly, if g is a non-Abelian Lie algebra its enveloping algebra U(g) is
not commutative and carries a Hopf algebra structure by declaring all Lie
algebra elements to be primitive elements. Since the associated graded Hopf
algebra for the generator filtration is C[G}], U(g) again can be viewed as a
Hopf algebra deformation of C[G?].

In this paper we focus attention on the remaining corner in the above dia-
gram. That is, we want to construct and study Hopf algebra deformations
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of C[G?] which are neither commutative nor cocommutative but are still
irreducible as Hopf algebras. Hence, these deformations are different from
the extensively studied quantized enveloping algebras (as in for example [6])
which have more group-like elements.

A first idea would be to mimic the deformation procedure from C[G?] to
C[U] starting this time from the non-commutative enveloping algebra U/(g).
Hence, we would like to put a not cocommutative comultiplication on U(g).
If this can be done, we have two Hopf algebras with the same category of
representations (as they are isomorphic as algebras) but with different tensor
product structures on these representations.

In our investigation we stumbled upon the following easy procedure to con-
struct such Hopf algebra deformations of U(g).

Theorem : Let h be a finite dimensional Lie algebra such that there is a
non-zero h-eigenvector

y=> yi®y;—yi®y; € \’h

with character A € §*.

Let g = h 4+ Cx be the Lie algebra extension determined by A. That is, the
remaining brackets are given by [z, h] = A(h)z for all h € §.

For t € C* we define a Hopf algebra Uy(g) which coincides with U(g) as
algebra, the usual coalgebra structure on the subalgebra U(h) and with
modified maps on z as follows

Alz)=201+1Qz+ty ¢(x)=0and S(z)= —x-}-tz[yi,yg]

U;(g) is a Hopf algebra which is not cocommutative and with antipode S
of infinite order whenever Y[y;, ;] # 0 in h. Moreover, if ¢ — 0 the Hopf
algebra U;(g) degenerates to the usual Hopf structure on U(g).

These deformations are particular examples of a more general construction
introduced in [7]. The basic idea is to deform Lie algebras (and subsequently
their enveloping algebras) in the larger categories of Lie stacks. The main
purpose of this paper is to present and study a large class of examples of
Lie stacks.

In particular we give counter-examples to a conjecture from [7] asking
whether the Poincaré-Birkhoff-Witt bases of these algebras are necessarily
finite. For example,

Theorem : Let § = Cry + Czy + Cxs + Cy; with non-zero bracket
[z1,71] = 71 and consider the subalgebra U(s) of the affine Lie algebra
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U(h[t]) spanned by §, z1 ® ¢ and the yp41 =1 @ 1" for alln € N. U(s) is
an Hopf algebra with comultiplication induced by

n .
AWnt1 = Yn+1Q1+1®Ynt1+1yn T2+ . .+ (z) Ynt+1—i®TH+. . +Y1QY1Qxy

and is the enveloping algebra of a Lie stack.

2 Examples of Lie stacks

The basic idea to construct Hopf algebra deformations of U(g) is to de-
form the finite dimensional Lie algebra g in the category of Lie stacks as
introduced in [7]. A Lie stack is an algebra morphism

8:A— A®B

where A and B are finite dimensional C-algebras and where B is assumed to
be augmented local, that is, B has a unique nilpotent maximal ideal m with
B/m ~ C. Therefore, the dual coalgebra B* is pointed irreducible, that is,
B* has a unique group like element (which we will denote with 1) contained
in every sub-coalgebra.

One can associate to a Lie algebra g a Lie stack 84 as follows. Assume

g=Cg1+...+Cgp & Der A

that is, g is a Lie subalgebra of the C-derivations Der A of a finite dimen-
sional algebra A. Then, we define By to be the commutative 2-nilpotent -
algebra of dimension n +1

By = (C[wl,...,a:n]/(xl,...,xn)2

and a linear map

n
8g: A— AQ® By ab—>a®1+29¢(a)®xi

=1

It is easy to verify that sy is an algebra map using that the g; are derivations
and all z;.z; vanish. The Lie stack sy contains all information necessary to
construct the enveloping algebra U(g) as we will recall in the next section.
If we fix m = dim A and n + 1 = dim B we can define the variety of Lie

stacks

LieS(m,n) —— Algn x AugmLocalpy1 X My, mnt1)(C)
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which is affine. Here, Alg,, denotes the variety of all associative algebras
of dimension m and AugmULocal,11 the Zariski closed subvariety of Algyt1
consisting of the augmented local algebras. For more details on these vari-
eties we refer the reader to [3], [5], [10], [11] and [7].

We now want to construct ‘nearby’ points s of the point sq € LieS(m,n),
that is, we want to deform sy in the category of Lie stacks. We can find this
deformed Lie stack 8 by either deforming-A in Algy, or By in AugmLocal, 11
or the algebra map.

For a specific g this study involves an infinitesimal obstruction given by
calculating the normal space to the orbit of s4 under the base-change action
by GL, X GLy41, or equivalently, to compute the ’Lie stack cohomology’
group of s4. Next, one then has to verify that a non-trivial element in this
group really determines a Lie stack 8. For specific g (for example g simple)
it is conceivable that the obstruction will vanish and hence that sz will be
rigid in LieS(m,n).

In this paper we want to bypass these technical problems by putting restric-
tions on the algebra A (and hence on the Lie subalgebras g =~ Der A) such
that we can deform 84 by deforming By to an arbitrary B € AugmULocalyt1.

Restrictions on 4 : Let Q be a connected quiver without oriented cycles,
that is, Q is an oriented finite graph with vertices {v1,...,v;} and arrows
{w1,...,w;} whose underlying graph is connected. Consider the algebra A
of dimension m =k +1

A=Cvi +...+Cvp +Cw; +... +Cuy
with multiplicative basis and defining relations
V05 = 5ijvi Wi Wy = 0

and if v,(y) (resp. vyy)) is the starting vertex (resp. terminating vertex) of -
the arrow w we have

VW = (5‘s(w)i'w wY; = ‘Sf(w)iw
Rephrased in standard finite dimensional algebra terminology we: have
A=CQ/Q4)

where C @Q is the path algebra of the quiver @ and @4 is the twosided
ideal of C @Q generated by the arrows in Q). As a consequence, A is basic
(that is, all simple A-modules are one dimensional) and 2-nilpotent (that




is, (rad A)? = 0). Conversely, every finite dimensional basic 2-nilpotent
algebra has such a description.

Using results of Happel [5] we have a fairly tight control on the derivations
of A:

Lemma 1 With A as above, Der A is a metabelian Lie algebra of dimension
21.

Proof : For every finite dimensional algebra A we have the exact
sequence

0 — Inn(A) — Der(4) — H'(4) — 0

where Inn(A) is the sub Lie algebra of inner derivations and H'(4) is the
first Hochschild cohomology (which determines whether A has deformations
in Alg,,). The inner derivations are generated by z; = [v;,—| and y; =
[w;, —] subject to the relation that 1 +... 4z = 0 (because the v; are the
primitive idempotents of A). The z; commute with each other as do the y;
and further we have

[2i, 5] = (83 s(w;) — G (w;)) Vi

That is, Inn(A) is a metabelian Lie algebra f dimension k& + 1 — 1.

As @Q has no oriented cycles, we know from [4, Th. 2.2] that the dimension
of H'(A) is equal to the Euler characteristic of @ which is using the above
notation 1 — k + 1. In particular, all derivations of A are inner if and only if:
the underlying graph of @ has no cycles. If there are cycles, outer derivations
arise as follows : let w; be an arrow in a cycle of the underlying graph, then
6 : A —— A defined by

6(v)) =0 and &(w;) = dijw;

is a derivation and using connectivity of @ one can show that ¢ determines a
non-zero element in H'(A), [4, Prop 2.3]. Observe that these outer deriva-
tions commute with the z; and y;.

Combining this information we have that the dimension of Der A has di-
mension 2/ and has an Abelian Lie ideal of dimension !

Cyr+...+Cyy<aDer A

with Abelian quotient. O




In particular, for all § € Der A and all a € A we have that d(a) is either
zero or lies in the linear span of the arrows Cw; + ... + Cuwy.

Example 1 : Consider the path algebra A; of the [-subspace quiver

(51 V2 n
° ° N L]
w1 Wy wy
°
Vi1

then A; can be identified with the subalgebra of Mj;1(C)

[C 0 ... 0 C
0 C ... 0C
A= |: E
0 0 ... CC
0 0 0 C

via the map v; — E;; and w; — E;;41. As the underlying graph bas no
cycles all derivations are inner and

Der(4;))=Cz1+...+Cx; +Cyr + ... + Cy,
the only non vanishing brackets of which are-

(%5, 5] = 0455

Data corresponding to B : As a consequence of the heavy restrictions
on A we can take for B = C1+Cby +...+Cb, an arbitrary augmented local
algebra of dimension n + 1 with maximal ideal m = Cby +... + Cb,. If the
basis is ordered with respect to the radical filtration, that is, if b; € m? for
some z then all b; € m* when j < j' then we call it a standard basis. With
e we denote the ’embedding dimension’ of B, that is, e = dim m/(m)2.

For n < 4 these algebras and their degenerations were completely classified
in [3], [10] and [5]. For example, the degeneration picture of all 4-dimensional




augmented local algebras can be depicted by

where the dotted region indicates the commutative algebras.

comm

Representa-

tions of the algebras and standard bases are given in the table below

type | representation b1 bo b3
1 Clz]/(z*) r z° 2°
2 | Clz,9)/ (=%, 9?) Ty wy
3 Clz,y]/ (= 3 ,2Y, ) z y 2z
4 | z,y,2)/(5,y,2) Ty 2
5 | Clzy)/ e +yz,ay+yz) |z y oy
6 | Clz,y)/(z°9° yz) z Y wy
x| Cla,y)/ (22,92, vz — Aay) x oy zy
8 | Cla,y)/ (2% zy +yo) oy ay

For arbitrary n one can describe the augmented local algebras B of dimen-
sion n+1 inductively using the theory of Hochschild cocycles, see for example
[11} or [7]. One obtains a similar degeneration picture :
commutative tree rooted at the commutative 2-nilpotent algebra By but
which can have more components if n > 7 [11]. All non-commutative B even-
tually degenerate into this commutative tree. In particular, AugmLocalyt1
is connected and every B degenerates into By (the algebra occurring in the

definition of sg).

With notations as above we have :

there is a central




Lemma 2 For A and B as above and d € Grass(n,2l) representing an
embedding d : m —— Der A, the linear map

n
sg:A—— AQ®B ar—>a®1+2b,~(a)®bi

=1
is a Lie stack.

Proof : In order to verify that sy(aa’) = sq(a)sq(a’) one has to check
that
(bi(a) ® b;).(bj(a) ® bj) =0
for all 4,5. From our description of Der A it follows that by(a) € Cwy +
... +Cw; = rad A and the claim follows because A is 2-nilpotent. O

As these Lie stacks depend only on a choice of basis of the maximal ideal m
of B and not on the specific algebra structure of B we have the following

Proposition 1 Let sy : A —— A® B’ be a Lie stack of the above type. If
B' deforms to B in AugmULocaly,1 there exists a Lie stack 8q: A — A®B
which degenerates to sg in LieS(m,n).

In particular, if g —— Der A we can find for any B € AugmLocal,+1 a
Lie stack sq which deforms sg.

Proof : Let ¢ be the deformation parameter and B the C[t]-algebra
such that B/(t—1) ~ B and B/(t) >~ B’ defined by the deformation. Choose
Bi(t),...,0:(t) € B such that £i(0),...,5,(0) is a basis for the maximal
ideal m’ of B'.

Using the embedding d' : m’ —— Der A we can now define a Lie stack

sg:A— A®B a|——>a®1+2n:ﬂ¢(0)(a)®ﬁi(l)
=1

which degenerates into sy . O

3 The Hopf algebras U(s) and Lie coalgebras

In this section we will recall the definition of the enveloping algebra U(s) of
a Lie stack and supplement on some of the results of [7]. In particular we
will indicate the connection with Lie coalgebras as introduced in [13].




Given a Lie stack 8 : A — A® B we have the pointed irreducible coalgebra,
B* and a linear map

mg : B¥ — End(A) mapping A sy

where s, is the composition

id®A

A2+ A9BX25 AQC~ A

Because 8 is an algebra morphism, the map m; is a measuring of the coal-
gebra B* on A meaning that

sx(ad’) =) sx,,(a)sn (a)) and sx(1) = e(A)1
o

From general results of M. Sweedler [15, Ch. VII] there exists a univer-
sal measuring univ : M (4, A) — End(A) such that there is a uniquely
determined coalgebra map B* — M (A, A) making the diagram

End(A

M(4, A)

commutative. Crucial for our purposes is the fact that one can define a
bialgebra structure on M (A, A) induced by the composition of measurings.

Definition 1 The enveloping algebra U(8) of the Lie stack 8 is the subal-
gebra of M (A, A) generated by the image of B*.

Clearly, U(s) is a bialgebra measuring A via univ. Moreover, as U(s) is
generated by the pointed irreducible coalgebra B*, U(s) is irreducible as
coalgebra and hence an Hopf algebra by [15, Thm. 9.2.2].

Because some of the structure results we need about U(s) hold in greater
generality we state them as such.

If U is an arbitrary irreducible Hopf algebra one can define an exhaustive
Hopf filtration on it, namely the coradical filtration. This filtration is defined
by

Uy=Cl and U, =Up + {z € Ker(e) | A'(z) € Up—1 ® Up—1}
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where we define for every z € Ker(e)
ANiz)=Az)-z01-10®z

In particular, Uy = C1+P(U) where P(U) is the space of primitive elements
of U. With gr U we will always denote the associated graded Hopf algebra
with respect to the coradical filtration.

From [15, Ch XI] one deduces that gr U is a commutative Hopf algebra.
For a short crisp inductive proof of this fact we refer to [12]. The following
result was proved in [7]. As it is crucial for the sequel we recall its short
proof.

Theorem 1 If U is an irreducible Hopf algebra (over C), then U is a do-
main and has a Poincaré-Birkhoff-Witt basts.

Proof : If R is a finitely generated graded sub Hopf algebra of the
commutative positively graded Hopf algebra gr U it is smooth and hence
must be isomorphic (as algebra) to the polynomial algebra on Ry /(R4)2.
From this it follows that gr U is a domain (whence so is U) and that gr U
is a polynomial algebra on gr U /(gr Uy)2. O

.. The above result controls the algebra structure of gr U. Similarly, we would
like to control the costructure. To do this we need to recall the definitions of
Lie coalgebras and their co-enveloping bialgebras as introduced and studied
in [13] and [14]. These notions are dual to those of Lie algebras and their
enveloping algebras.

If V is a vectorspace, denote with 7 the twist on V@V and with ¢ the cyclic
permutation on V®V ® V. A Lie coalgebra f is a vectorspace together with
a cobracket b: f — § ® f satisfying

Im® cIm(l—7)and 14+¢+¢)o(1®b)ob=0

where the second condition is dual to the Jacobi identity. For example, if
C is a coalgebra one can make it into a Lie coalgebra via the cobracket
b=(1—-7)0A. _

Dualizing the universal property of enveloping algebras one gets a definition
for the universal coenveloping bialgebra U¢(f) of a Lie coalgebra § (in fact,
we take the irreducible component of 1). It has a canonical structure of a
commutative irreducible bialgebra. We refer to [13] and [14] for more details.

Theorem 2 If U is an irreducible Hopf algebra (over C), then the PBW-
basis w = gr U, /(gr Uy )? is a Lie coalgebra such that gr U ~ U°(p) as Hopf
algebras.
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Proof : Let B be an irreducible commutative bialgebra with aug-
mentation ideal T = Ker(e) and define u = I/I?. The main observation
necessary to showing that u inherits a Lie coalgebra structure as a quotient
of the canonical Lie coalgebra structure on B is that

b(z) e Ker(l1®e)UKer(e®1)=1Q1
and that I? is a Lie coideal of I, that is,
bzy) ePQI+I® I

and hence via the identification B = C1 & I, u inherits the structure of Lie
coalgebra under the map

B— I —I/I?=u

Moreover, by [14] we know that B ~ U¢(u) as Hopf algebras.
The result now follows from the fact that gr U is an irreducible commutative
bialgebra. O

In particular, u* will be a Lie algebra naturally associated to the irreducible
Hopf algebra U which will be graded and when finite it-will be nilpotent. -
Nilpotency follows from the fact (see [7]) that gr U is then the coordinate
ring of an affine unipotent group scheme.

If we denote U; = Ker(ey) then also Uy /(Uy)? has a canonical Lie coal-
gebra structure. However, it may be too small to be of any interest. For
example, for U = U(slg) it is zero !

After this general excursion let us return to the irreducible Hopf algebras
U(84) of interest to us.

Proposition 2 With notations as before we have :
1. U(sq) is cocommutative iff B is commutative
2. U(sq) is commutative then I'm(d) is Abelian

In particular, if we start from 8g with g a non-Abelian Lie subalgebra of
Der A and deform By to a non-commutative B, we obtain an irreducible
Hopf algebra U(84) which is nesther commutative nor cocommutative.

Proof : (1) : Asd: m—— Der A we know that the coalgebra
map B* — M (A, A) is injective (because it is injective on the primitive
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elements of B*) so if B is non commutative, B* and hence U(84) is non
cocommutative. Conversely, if B is commutative, B* is cocommutative and
hence so is any bialgebra generated by it.

(2) : Degenerating B to By we can degenerate s to a Lie stack 89 : A — A®
By. If U(s) is commutative so must be U(so) but this last algebra is the
enveloping algebra of the Lie subalgebra generated by Im(d) by the structure
results of cocommutative irreducible bialgebras, see also [7]. O

In the remaining part of this paper we try to understand the algebra struc-
ture of U(sy). In particular we want to construct a PBW-basis and deter-
mine its size. Recall from [7] that the coradical filtration on U(s4) is finite
dimensional. Hence, if the PBW-basis is infinite the degrees of the gener-
ators of gr U(sy) must be unbounded. Below we will outline an effective,
though laborious way to determine the PBW-basis inductively.

Using the coalgebra structure of C = B* there is a unique pointed irre-
ducible Hopf structure on T'(m*) and as U(s4) is generated by C we have an
(Hopf algebra) epimorphism T'(m*) — U(sy). Assume we have already
found an ideal I of relations which are valid in U(84) and we want to ver-
ify whether T'(m*)/I ~ U(sq), then it suffices to verify injectivity on the
primitive elements of T'(m*)/I, see [15, 11.0.1]. Hence, we have to hunt for
primitive elements and their relations.

At each step « in the procedure we have two lists of elements of U(sq) resp.
T(m*)/I,. The first, By = {p1,...,Pk,} is part of the PBW-basis and the
second, Ny, = {n1,...,ny, } are potential new basis elements. Both lists are
ordered with respect to the coradical filtration on U(sy) resp. T(m*)/I,.
The first step consists of taking

B = {pl,"'apkl} and Nl = {Ce+1,... ,Cn}

where e is the embedding dimension of B, where Cp; + ...+ Cpg, = g is the
Lie subalgebra of Der A generated by the image of d; which is the natural

map
dy : m/m? — Der A

and where I7 is the ideal generated by all relations holding in g.

What actions do we perform at step oo+ 1 7 First we see whether for any
of the n; we have that A’(n;) = A(w;) for some w; an ordered polynomial
in the basis By. If this is the case, n; — w; will be a primitive element of
T(m*)/I4 and therefore in U(sy) we must have

n; = w; + g; for some g; € Der A

13




If g; is spanned by the B, we can remove n; from N, and continue.

If g; does not belong to the span of B; we do the following : take as By41 a
basis of the Lie algebra spanned by the degree one elements from B, and g;,
take for Ny41 the remaining elements from B, together with the remaining
elements from N, and for I,y the ideal generated by I, and the relations
valid in this new Lie algebra. Then go to step o + 2.

Assume that for none of the n; we have that A’(n;) is a polynomial in By,
we compute

cij = A ([pi, ng]) € T(wm*)/IS?
for 1 <j <lyand for 1 <4 < k. For fixed j, assume that ¢;; = A'(w; )
for some polynomial in the basis B,, then again as before we must have for
the image in U(sy) that

[pi, ;] = wsj + gi5 for some g;; € Der A

If the g;; does not belong to the span of B,, we proceed as before. Otherwise,
we have a new relation in U(84) which we may add to I. If we get such
a relation for every 7 we may remove n; from the list of potential basis-
elements.

If however, ¢;; is not the A’ for a polynomial in B, we have to add a new
PBW-basis element p with

A(p)=p®1+1®p+ci,-

and we have the relation [p;,n;] = p in U(8).

Because the coradical filtration on U(sy) is finite we get after a finite number
of steps the correct PBW-basis up to a required degree, together with all
their commutation relations up to this degree.

However, it is not clear that the above procedure must terminate eventually.
In principle it is possible that we have to keep on adding new basis-elements
of arbitrarily large degree. In fact, we will give such examples below.

4 PBW-basis for U(sy)

In this section we will apply the foregoing general inductive method to con-
struct explicit PBW-bases for the Hopf algebras U(84). As every augmented
local algebra B degenerates to a commutative one, let us first consider this

case.
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4.1 B commutative

If s4 : A—— A ® B is a Lie stack with B commutative, we know
that U(sq) =~ U(g) for a Lie subalgebra g of Der(A). In this subsection
we will give an inductive procedure to construct explicitly the embedding
C —— U(g) of the dual coalgebra C = B*. Observe that this will give
us rather special sets of generators (namely, spanning a sub-coalgebra) of
enveloping algebras.

C is pointed irreducible of dimension n + 1, with unique group like element
1 = 1* and basis ¢; = bf. If we start with a standard basis of B, this
basis is ordered with respect to the coradical filtration C, on C, that is, if
¢j € C, then also ¢y € C, for all j/ < j. In particular,the primitive elements
Prim(C) of C is the span Ce; + ... 4+ Ce, for e the embedding dimension of

B.
If B is 2-nilpotent, every ¢; is primitive and hence acts as the derivation
d(b;) on A. The embedding C — U(84) then maps ¢; to d(b;) and g is the
Lie subalgebra generated by the image of d.
In the general case we may assume inductively that we have already con-
structed for the quotient algebra ¢ : B — B = B/(b,) and the corre-
sponding Lie stack
5 A2 AQB 2% A®B

the embedding

B*=C <« U(83) = U(h) — U(Der A)
Hence, A'(c,) € CQC = U(B)®U(h). As C — U(Der A) we can use
the classical version of PBW for enveloping algebras to deduce that there
must exist an element w € U(h) such that A'(c,) = A'(w). Hence, ¢, —w is
a primitive element of U(84) and since U(84) measures A there is a derivation
g € Der A such that ¢, = w+g. One can compute g as we know the action

of ¢, on A via the Lie stack 84 and the action of w on 4 via the measuring
of U(h) induced by 54.

Proposition 3 With notations as above, let g be the Lie subalgebra of
Der A generated by b and g, then there are coalgebra embeddings

Ce——U(h)

C =C+ Ce,, — U(g)
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which sends c, — w +g.

The element A(c,) € C ® C satisfies a condition which implies that C =
C + Ce, is a coalgebra. The required condition is obtained by dualizing the
treatment of (symmetric) Hochschild cocycles in [11]. For future reference
we state the general result here.

Proposition 4 Let C be a finite dimensional pointed irredlcz'ble_ coalgebra
with unique group like element 1 and let y = Se®d € C®C. Define
C=C+Cz and A(2) =2®1+1®z+y. Then,

1. C is a coalgebra if and only if y is a Hochschild co-cocycle, that is,
—®3
Y e e ®d =3 c®dy @y €T

2. C is cocommutative if and only if C is cocommutative and y is a sym-
metric Hochschild co-cocycle, that is,

Zc@c’=2c’®c€—0—®6

Tn this case, the Lie coalgebra u = gr U(s)+/(gr U(8)+)? = g has zero
cobrackets. Hence, u* is the Abelian Lie algebra.

Observe that the images of the ¢; give a generating set for U(g). Even in the
special case when m & Der A gives a commutative sub Lie algebra this
gives us interesting tame automorphisms of the polynomial algebra. Let us
give some examples

Example 1 (continued) : Let us compute these automorphisms for
the commutative 4-dimensional local algebras. Their representations and

standard basis were given before.
Consider the embedding d : m & Der As (where Ag is the path algebra
of the 3-subspace quiver) depicted by

m V2 v3
® ] [ ]
1 2 3
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By this we mean that d(b;) = z; the inner derivation determined by v;.
Then the embeddings C —— C[z1, 2z, 3] are given by the following tame
automorphisms

type | e1 | e | es
1 T 1,7 1
1 o1 | 32 + 5(21 — 21) | 23 + 21202 + 525 — 527 + 371
2 1| 2o T3+ 2129
1/..2
3 x| X2 z3 + 5(931 - 561)
4 Iy | T2 Z3

In a forthcoming paper [8] we will study the applications of Lie stacks on
automorphism problems of polynomial and enveloping algebras.

4.2 B not commutative

If B is commutative, we have seen that U(sy) ~ U(g) as Hopf algebras for
some Lie subalgebra g & Der A. In particular, the PBW-basis of U(8g) is
finite. We will now investigate what happens if B is no longer commutative.
First, let us state a few general facts. If p = Prim(U(sq)), then
p & Der A and U(p) < U(8q).

Lemma 3 If U; denotes the i-th part in the coradical filtration on U(84),
then, U; is a finite dimensional p-module and so is gr U(sq); = Us/Us—1.

Proof : - The p-action is given by commutation in U(84). Because the
associated graded algebra is commutative we have for p € p and u € U; that

[h,u] = hu —uh € U;
from which the claims follow. O

Lemma 4 The generators of degree two of gr U(sg) can be chosen such
that they have preimages z; € Uy such that the A'(z;) span a p-submodule of

A2 (p).

Proof : Let z € U be such that its image in gr U(84) is a generator.
Clearly,
A'(z) ep®p = S52(p) © A*(P)
say A'(z) = s +a. As s € S?(p) there is a quadratic element w € U(p)
such that A’(w) = s. If we replace z by the generator 2/ = z —w then
A(Z) € A (p).
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For every p € p we can compute that A'([p, 2']) € A2(p) and the claim follows
from the foregoing lemma. O

These facts enable us to give a first example of a Lie stack 84 such that
U(s4) has an infinite PBW-basis.

Example 1 (continued) : Consider the augmented local noncommutative
five dimensional algebra

B = C{z,v, z)/(xz,yx,y2,z2,wz, 2L, Y2, 2Y)

which has as a standard basis by = z,by = y,b3 = 7z and bsy = zy. Its dual
algebra C' is such that ¢, ¢y and c3 are primitive and

A(C4)=C4®1+1®C4+C1®62

Congsider the Lie stack 84: A3 — A3z ® B depicted by
()] v3
[ ] [ ]

v1
°
1 2 4

[ ]

v4
That is, we have the embedding m —— Der Az sending b, — z1,by —
Zo, b3 — Y1 and by — Ts. ‘
In fact we could have taken any 2-nilpotent algebra A and construct the
embedding in such a way that v; is the starting point of w; and that vy and
vs do not lie on wy. A similar remark can be made for all the examples given
below where we took for concreteness sake the special case when A = A the
path algebra of the I-subspace quiver.
Let h = Czy + Czy + Czs + Cy; be the four dimensional sub Lie algebra of
Der A with brackets

[zi,25]=0 [zr,m]=11 [z2,01]=0 [23,91]=0

then U(h) & U(sq). If we denote the image of ¢4 in U(84) by ¢ + z3, we
have
Alc)=c®1+1Qc+z1 Q72
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As A’(c) ¢ S?(h) we must add c to the PBW-basis of U(84). Next, we want
to find the commutation relations of ¢ with A € §. In order to do this we
compute Alc, h] = [A(h), A(h)] using the formula valid in any bialgebra

[a1 R ag,a3 ® a4] = [a1, a3] ® aga4 + a301 Q@ [a2, a4]
We obtain, using the commutation relations in h that
[, z;] are primitive elements in U(sq)

so they must act as derivations on A. As c acts as the zero derivation we

deduce that
[e,z;] = 0 in U(84)

However, if we calculate the commutator of ¢ and y; we find
Ale,y] = [e,y1] @1+ 1@ [e,11] + 91 @ 22

whose A’ does not belong to S%(h). Therefore, we have to add yet another
element y, to our PBW-basis with

A(p)=12®1+1®ys+y1 ® 22 and [¢, 1] = ¥2

as we know the actions of ¢ and 4; on A we can compute by composition
that of yo which is in this case the zero map.

Observe that we could have deduced the existence of another PBW-basis
element of degree two also from the fact that they must span a h-module
and indeed CA/(c) + CA'(y2) is an h-submodule of h @ b.

Again, we have to compute commutation relations of y2 with the other base-
elements. For the elements of h we obtain as before

[T1,92) =12 [22,02] =0 [23,92] =0 [y1,92] =0
but if we compute the commutator of ¢ and yo we find
A([e,y2]) = 2y2 ® 22 + 11 ® =5

and one verifies that this cannot be the A’ of a polynomial in the ordered
PBW-basis {z1, T2, %3, 91, ¢, %2 }. Hence, we have to add a degree element y3
to our PBW-basis with

Alys) =ys® 1+ 1@ ys + 2y2 ® 22 + 41 ® 5 and [c, yo] = y3

Using the foregoing computations a a basis for induction we obtain
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Lemma 5 There exist elements yy, in U(84) such that

n .
A(Yn+1) = Yn+1Q1+1@Ynt1 +nyn@z2+.. .+ (2) Yn+1-i@TH+. . . +Y1 @ Ty

and which act on A as the zero map.
In U(8y) these elements satisfy the following commutation relations

[£1,90) = Yn  [Z2,90] =0 [23,9n] =0 Wi, un]l =0 [cYn] = Ynt1

Proof : Assume we proved the commutation relations already for yj,
then using centrality of z% which simplifies the required computations we
find that

A 21, Yn+1] = A Yntr A B Yng1] =0 A [y, Yn1] =0

from which the required commutation relations follow using that y,.1 acts
as the zero map on A. Moreover,

A e, ynt1] = [c® LA ypp] + 1 ® ¢, A ynga] + [#1 @ 72, A 1]
and by the above mentioned general formula one computes that

n
c®1, A" ypq1] = nYpr1 ® T2 + <2> Yn @5+ ... +Y2 @I

[1®c A ypa] =0
[21 ® 22, A Ynt1] = Yn41 ®x2+nyn®a:%+...+y1 ®w§‘+1

from which the definition of ¥, 42, the commutation relation [¢, Yn+1] = Yn+2
and the fact that y,19 acts as zero on A follows. O

We have the following elements in U(sy) in the coradical filtration

deg ||0|1I2|3||n|
elem||1]xz1 ] ¢

Z2

zs3

Vi |2 [Us|---|YUn

Proposition 5 The set {z1,%2,%3,¢,Y1,Y2,...} 5 an infinite PBW-basis
for U(sq). With respect to it the defining relations of U(sq) are

[£1,20] =0 [21,]=0 [22,¢]=0

T1,yn] =Un  [Z2,90] =0 [c,Yn] = Yn+1
[yi,yj] =0
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Proof: From the above computations it follows that the y; € U(sq) and
satisfy the required commutation relations. As the image of C is contained
in its span, they generate U(s84) as algebra. Assume the basis would not
be a PBW-basis, then after factoring out the Hopf-ideal (z3) (which makes
all the elements primitive in the quotient) there should be a linear relation
among the base-elements in the quotient and hence a relation in U(sy)

Yni1 = az1 + Pz +yc+ > Biyi + 3. f

i<n

with n minimal and f a polynomial in the ordered basis. From our knowledge
of A(y;) it follows that f # 0. But then, there should be a term z, ® f in
A(yn+1), a contradiction. O

From the commutation relations we deduce that there is an embedding
U(sa) = U(B[E])

where §[t] is the infinite dimensional Lie algebra spanned by A ® ¢™ for all
h € b and n € N. Brackets in B[t] are given by [h®t*, ' ®t'] = [h, K| @ tF+.
The embedding is given via

c— 21 ®tand ypp1 = Y1 "

The cobrackets of the Lie coalgebra u spanned by the PBW-basis are given
by
b(z;) =0 blc)=21Q922 —22Q 21

b(Ynt1) = n(Yn ® T2 — T2 ® Yn)

Hence, u* is the Lie algebra with non-zero brackets
[£3, 23] = c* and [yp, 73] = nYn+t1

These Lie brackets resemble those of the Virasoro algebra (see for example

[2].
If we consider the subalgebra of U(sg) generated by the elements
1,29, %3, Y1, - - -, Yn We see that they span a finite dimensional Lie algebra

and we obtain a non cocommutative Hopf algebra structure on the envelop-
ing algebra they generate.

Hence, even in the cases when U(s) can be shown to have an infinite PBW-
basis some sub-Hopf algebras may be regular and they correspond to en-
veloping algebras of modified Lie stacks. In fact we have
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Proposition 6 Let H be an affine Hopf-subalgebra of U(8) for some Lie
stack s : A—— A ® B. Then, there exists a Lie stacks' : A —— A® B’
such that H ~ U(8') as Hopf algebras.

Proof : As algebra H is generated by hi,...,h,. Let C be a finite
dimensional sub coalgebra of H containing the h;, then as a sub coalgebra
of U(8) there is a measuring of C on A and C is pointed irreducible. As we
have seen before, a measuring on A is equivalent to an algebra morphism

s A—AxC*

hence we can take B’ = C*. From the construction of enveloping algebras
of Lie stacks, the conclusion then follows. |

Remark however that if we started with a Lie stack sy with d : m & Der A
it will not always be the case that the new Lie stack 8 is of a similar type.
As an example, consider the sub Hopf algebra mentioned above. Then we
can take as a subcoalgebra

C=Cr1+Crs+Cry +Co3+...+Cal L +Cyy + ... + Cyy,
and the corresponding algebra is
B'= C<$1 1 L2, T3 y1>/(w%a .’L‘%, xg, Y2, $2y1)

with dim m' = 2n + 1 which becomes eventually larger that dim Der(4).

The computations performed in the above example can be used to construct
other enveloping algebras of Lie stacks with infinite PBW-basis.

Proposition 7 Let B be a noncommutative augmented local algebra of di-
mension 4, then there exists o Lie stack 84 : Ay, — Ay, ® B such that
U(84) has an infinite PBW-basis.

Proof : Representations and standard bases for the non-commutative
4-dimensional augmented local algebras are given by

type | representation by by b3
5 | Clz,y)/(W? e* +yz,ay+yz) |z v wy
6 | Clz,y)/(2% 17 yx) Ty my
x| Clz, )/ (22,42, yz — Azy) Ty zy
8 | Clz,y)/ (2?9 2y +yzx) T Yy Yy
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where the infinite family 7y is called the family of Scorza algebras [10]. For
the dual coalgebras C = B* we have that ¢; and ¢y are primitive and the
comultiplication on c3 is easily verified to be determined by

type | A' ¢3

) c1®ci+c1Q@cr—c®c
6 1 Qcy

" |a®c+Ai®c

8 c1®c—c®c

Consider the map d : m — Der A, which sends b; — z; and by — y1 +z2,
then for each of the above algebras we have that the image of d; generates
a three dimensional Lie algebra h = Czy + Cxp + Cy;. Moreover, using the
explicit form of A(cs) we can in each case assign an element of b to c3 and
modify the generator by a quadratic element of U(h) as before to obtain cf
which acts as zero on A,, and such that

Aldg) =, ®1+1®cs+ 21 ® (31 + x2)

But then there must be a PBW-base element d3 with A’ ds = 11 ® 2 and
which acts as zero on A (for, compute A’ [z1, c}]).

If we replace the role of ¢ by ds in the foregoing example we can make
the same calculations and arguments and obtain that U(s4) has an infinite
PBW-basis. O

Theorem 1 If B is an augmented local algebra having a noncommautative
local quotient of dimension 4, then there exist Lie stacks sp: A— A® B
such that U(84) has an infinite PBW-basis.

Proof : Clearly, if 7 : B ——= B’ is an epimorphism and 8 :
Ay, —— A ® B' is a Lie stack, then we can extend s’ to a Lie stack
s: Ay, — Ay, ® B such that 8’ = (1® 7) o s. For, we can assign arbitrary
derivations to basiselements in Ker(r). Further, we can choose m large
and such that m —— Der A. But then we have U(s’) —— U(s) and the
foregoing result finishes the claim. O

4.3 Break-off conditions

Hence, most Lie stacks with B non-commutative will have an infinite PBW-
basis. However, we have seen before that certain Hopf subalgebras may
have a finite PBW-basis and are again enveloping algebras of Lie stacks. It
is therefore a very interesting problem to characterize the Lie stacks whose
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enveloping algebras have generators of bounded degree. This will be a diffi-
cult problem in general.
To finish this paper let us give a characterization in the easiest case, that is,
we assume that all the generators of U(s) are in degree one except for one
generator in degree two.

Proposition 8 Let s : A—— A® B be a Lie stack such that gr U(sq)
is generated in degree one and one generator in degree two. Then, U(sq) =~
U(g) as algebras (but not as coalgebras) where g is a finite dimensional Lie

algebra.

Proof : By lemma 4 we can take the extra generator  to be such that
y = A'(z) is a p-eigenvector of A?(p) with character A € p*. For everyp € p
* we obtain

A ([, z]) = A(h)A'(z) and hence [k, z] — A(h)z € Prim(U(sq)) =p
Therefore, there is a derivation g, € p —— Der A such that
[, 3] = A(h)z + gn

As all these brackets are obtained via commutators in U(sy) it is clear that
g =p + Cz is a Lie algebra and that U(sy) = U(g) as algebras. O

This result shows in particular that the examples of [7, §5] are enveloping
algebras in disguise.

The above proof gives the following procedure to construct not cocommu-
tative Hopf algebra deformations of certain enveloping algebras.

Theorem 2 Let § be a finite dimensional Lie algebra such that
0#y = (h®hi—hi®hi) € A*(h)

is an B-eigenvector of weight X € §*. Consider the extended Lie algebra
g = b + Cz with extra brackets [h,z] = A(h)z.

For every t # 0 there is a non cocommutative Hopf structure Uy(g) on the
enveloping algebra U(g) determined by

AR =h®@1+1Q0h and A(@) =21+ 1@z +1tY (ki ® k] — b ® h;)

S(h) = ~h and S(z) = —z +1 Y _[hi, h]

If [hi, hi] # 0 in b then the antipode S has infinite order. Clearly Uy(g) —
U(g) as Hopf algebras if t — 0.
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Proof : The only remaining point is the order of the antipode. If
0 # h = Y [h;, hj] then an inductive computation shows that

S™"(z) = (-1)"z ~ (-1)"nh
from which the claim follows. O

In this case, the Lie coalgebra u = g has non-zero cobracket b(z) = ty.
Hence, u* is the nilpotent Lie algebra with non-zero brackets

(i hlz*] =tz

When § is simple there are no h-eigenvectors in A%(h), however, if b is
solvable there always are. Let us make the easiest example explicit.

Example 2 : Let b = Ca + Cb with [a,b] = b the two- dimensional non-
Abelian Lie algebra, then A%(b) = C(a ® b— b® a) = Cy is one-dimensional
hence must be an eigenspace. Clearly, [a,y] =y and [b,y] = 0.

Then, g = Ca+Cb+ Cz is the Lie algebra with brackets [a,b] = b, [a,2] = =
and [b, z] = 0 and the Hopf structure U;(g) on U(g) is given by

Alz)=2®1+1Qz+t(a®b—-b®a) and S(x) = —z +tb

so the antipode has infinite order.

The Lie algebra § does not have to be solvable in order to satisfy the re-
quirements of the theorem. For example, consider the twisted Lie algebra
extension B of sl with respect to its four dimensional simple representation
V.

One can iterate the procedure of the theorem to obtain non cocommutative
structures on certain U(g) such that the degrees of the generators of gr U(g)
with respect to the coradical filtration become arbitrarily large.

Proposition 9 Assume we have a chain of Lie ideals
b=byabh<...qaby=9g

where for every 1 <1 < k we have that b; | /b; = Cx; where the b;-weight

\; of x; is the weight of an b;-eigenvector y; in A2(h;). Then, we can define

a non cocommutative Hopf algebra structure Uy(g) on the enveloping algebra
U(g) for 0 # t € C* and such that Uy(g) — U(g) as Hopf algebras if t — 0.
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Another application of the characterization is that the enveloping algebras
of certain Lie stacks are enveloping algebras in disguise when the dimension
of B is small.

Proposition 10 Let 84 : A —— A ® B be a Lie stack such that di :
m/m? & Der A is a Lie subalgebra. If dim(B) < 4, there is an algebra
isomorphism U (sq) ~ U(g).

Proof : If B is commutative such a result holds in general. If B is non
commutative, then dim(B) = 4 and has a standard basis with b1,b0 € m
and b3 € m?. By assumption d(b1) and d(b2) span a Lie algebra b of Der A
which must be Abelian or the two-dimensional non-Abelian Lie algebra b.
In either case, we have that

A'les) =s+a

where s € S%2(h) and a an h-eigenvector in A?(h) (which is one-dimensional).
But then by the arguments used before U(s;) ~ U(g) as algebras for some
Lie algebra g. O

- Remark that we cannot bound:the dimension of the Lie algebra g as-this
depends on the dimension of the Lie subalgebra of Der A generated by b
and d(bs).

We like to close with a suggestion for further research :

Question 1 Assume 8: A —— A ® B is a Lie stack such that U(8) has a
finite PBW-basis. Does there exist a Lie algebra g such that U(s) ~ U(g)

as algebras ?

In other words, is there a Lie subalgebra g of U(s) the images of which
in gr U(s) = U°(u) span the Lie coalgebra u. The examples given in this
paper perhaps motivate a further study of these 'Lie-bialgebras’ and their
enveloping Hopf algebras.
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