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Abstract

The Hesselink stratification is studied of the nullcone of m-tuples of n X n
matrices. An algorithm is given to determine for given m and n the non-empty
strata. Further, connections with moduli spaces of quiver representations are
given.

1 Introduction

In this paper we will consider the problem of classifying n-dimensional nilpotent
representations upto isomorphism. In matrix-terms we want to describe m-tuples
of n X n matrices

X = (21,...,2m) € Mp(C)®™
which generate a nilpotent subalgebra of M, (C) under the action of GL, by si-
multaneous conjugation, that is ¢.X = (92197, ...,92mg~ ). This problem is
known to be *hopeless’ as it implies the classification of nilpotent representations of
arbitrary affine algebras.
The subvariety Nppn C Xmn = M, (C)®" of nilpotent m-tuples is the nullcone for
the action by simultaneous conjugation. That is, it is determined to be the subset
of X = (21,...,&m) satisfying

tr(z;, ... .x5,) =0

forall1 <i; <mand k < n?. Therefore, one can try to stratify the highly singular
variety Ny, » by smooth irreducible locally closed subvarieties using the refinements
of the Hilbert-Mumford criterium [8] due to G. Kempf [3] and W. Hesselink [1]. We
will recall their general results in the case of interest to us and show that they allow
a reduction in complexity of the problem provided we can describe certain locally
closed subsets U, accurately.

The description of these subvarieties U; and in particular the determination of the
non-empty ones for given values of n and m is the main objective of this paper. Ap-
plying general results of F.C. Kirwan [5] and L. Ness [9] we reduce the determination
of U, to that of describing the semi-stable points for a specific quiver-representation
problem and fixed character. An algorithmic method to solve this problem follows
from recent work of A. King [4] based on the solution of some questions of V. Kaé
due to A. Schofield [10].

Let us outline our results and illustrate them in the only example in the literature
where a complete description of the orbits in Ny, » is known. This is the case of
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couples of 3 x 3 matrices studied by H. Kraft {7, p.202] (It is easy to verify that the
orbits in Ny, 2 are parameterized by a P! together with the zero-orbit). Kraft
obtained the following toric description of the orbit space

182

Here, each node represents a torus subvariety with the right hand number as its
dimension. The left hand number is the dimension of the orbit determined by a
point in the torus.

In this paper we describe the Hesselink stratification of the nullcones Ny, , which
collects together the points having the same set of optimal one-parameter subgroups.
If we fix a maximal torus one can list the one-parameter subgroups which may
appear as optimals. Each corresponds to a co-weight s = (s1,..., s,) € Q" which
is the disjoint union of strings

{pi,pi+1,..,pi + ks}

with k; € N, the intermediate numbers p; + j appears in s with multiplicity a;; > 1

and ) s; = 0 for every string in s, see {1, Prop.6.8.a]. For given n one can
jEstring

compile a list S of dominant co-weights with these properties. For example,

8 for 3 x 3 matrices

[type [ sa [ s2 | ss H sl
1 1 0 -1 2
s 4| |- 3
3 ERISY Y
4 30 -3 3
5 0 0 0 0

For given m it is difficult to determine which s € 8§ correspond to an optimal one-
parameter subgroup for a point in N, . General theory tells us that for m =1 the
occurring coweights are the strongly balanced ones [1, Prop.6.8] (or equivalently,
to the partitions of n) and that for m sufficiently large all s eventually appear [1,
Prop. 5.2.b].

To solve this problem we associate to each s € S a quiver- situation. For each string




in s we construct a quiver on k; vertices

(1) 1) (1) 1)

*
L
Ne
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k;

) () ) m)

a dimension vector a; = (a;0,-. ., ¢ix;) and a character for the corresponding base-
change group GL(a;) = [[ GLa,;(C) determined by 6; = (njo, . .., nik;) where n;; =
d.(p; + j) with d the l.c.m. of the numerators of the pi’s. The quiver-data is then
the disjoint union over all strings in s and is called resp. @Q,,«; and 6,. The
character 6, can also be viewed as an additive function on the Grothendieck group
of the modules over the path algebra of ;. Then, following [4] one can define
6;-semi stable representations V of @, to be those such that 6,(V) = 0 and for all
sub-representations W C V' we have 6,(W) > 0.

Using these notations the determination of the non-empty strata in the Hesselink
stratification of Ny s, is given in

Theorem 1 The stratum S, corresponding to s € S is non-empty iff there are 0,-
semzt stable representations of dimension-vector o for the quiver QQs. Moreover,
an algorithmic description of this property exists using only the Ringel form of the
quiver Q;.

The algorithm depends heavily on the work of A. Schofield [10]. For 3 x 3 matrices
we obtain the following quiver-data and dimensions of the occurring strata

Strata for 3 X 3 matrices

Ltype | o [ 0, [m=1]m=2]
1 1 1 1 -1 0 1 6 9
2 1 2 -2 1 - 6
3 2 1 -1 2 - 6
4 1 1 -1 1 4 5
1 0
5 3 0 0 0

For example, type 3 does not occur for m = 1 as every representation of

> &

[ Y me—

of dimension-vector (2, 1) has a sub-representation of dimension-vector (1,0) (the
kernel) for which 6, = —1 < 0. For m = 2 , representations in general position of

L [ ]

of dimension-vector (2, 1) no longer have such sub-representations and are indeed
8s-semi stable. The same holds for all m > 2.

Having determined which strata S, do actually oceur for given m and n we can also
describe them explicitly and initiate the study of the orbits in a given stratum. The
stratum S, consists of the G L, -translates of U; where Uy is an open subset of the sub
vectorspace C* C M, (C)™ consisting of the matrix tuples with zeroes everywhere
except perhaps at the entries (¢,j) when s; —s; > 1. Moreover, U, = n~1(V})
where 7 : CT" — B is the natural projection onto the sub vectorspace of all
matrix tuples with zeroes except perhaps at entries (z,7) such that s; —s; = 1
and V; the open subset of B? of §,-semi stable tuples (in fact, the action of the
Levi-group associated to the one-parameter subgroup on B* coincides with the
base-change action on B® = R(Q;, «;)). This allows us to describe U; and hence
the stratum S, explicitly.




By general Hesselink theory, the GLy-orbits in the stratum S are in natural one-
to-one correspondence with the P;-orbits in Us where P; is the parabolic associated
to the one-parameter subgroup. The map = introduced above induces a projection

Orb(Py, Uy) ——————v M(Qs, 253 65)

from the Ps-orbit space of Us to the moduli space of 8, semi stable representations
of the quiver @, with dimension vector «;. The description of these moduli spaces
can be obtained from the representation theory of quivers (see also [4]) and can
be seen as the first approximation to the orbit classification. We leave a detailed
discussion of the fibres of = as a suggestion for further research.

In the case of couples of 3 x 3 matrices we have the quiver-data associated to the
strata and their degenerations as indicated below

B
®
"
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X X
Lew
X K
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where the upper indices give the components of a; and the lower ones those of 6,.
The moduli spaces M (Q;, o;; 0,) for these quiver situations are : for type 5 there is
Jjust the zero-orbit so we get P?, for type 4 we have to classify the indecomposable
Kronecker modules of dimension (1,1) and we get a P! as moduli space. For types
2 resp. 3 we have to classify the indecomposable Kronecker modules of dimension
(1,2) resp. (2,1). These are real Schur roots, so there is just one such orbit and
we obtain a P° in both cases. For the generic stratum we have to classify the
indecomposables of dimension (1,1, 1) which have P! x P! as its moduli space.

As B; = C; for s of type 2,3,4 and 5 we have classified the orbits in the corre-
sponding Hesselink strata. For the generic stratum we have the projection

Orb(Ps, By) — P! x P?

which one verifies to be a birational map but with P* fibers along the open torus
part of the diagonal with representants the matrix couples

01 b 0 a ¢
(lo o 1f,l0 0 q|)
000 loo o

with a € C* and (b: ¢) € P,
The connection between our description and the one obtained by Kraft is given in
the picture below




Here, each circled region gives a toric description of the orbit space of the cor-
responding stratum, the dashed region gives the extra orbits (that is, those not
coming from the quiver setting).

2 Hilbert’s criterium and N, ,

The Hilbert criterium, see a.o. [6, II1.2], asserts that X = (z1,...,2m) € Ny n if
and only if there is a one-parameter subgroup A : C* «— GL, such that

Hm A(2).(z1, ..., 2m) = (0,...,0)

t—>0

Upto conjugation in G'L,, (which amounts to possibly replacing X by another point
in its orbit) we may assume that A has the form

Ak 0
A(t) = :
0 t'm
with the r; € Z and 1 > r9 > ... > r,. Clearly,
(A(B)-zk)iy; =777 (k)i

s0 tlimo)\(t) X = 0 iff the only non-zero entries in the components z; are at the
—_—

entries (¢, j) for which »; — »; > 1. In particular, the 3 are in the set N of all
strictly upper triangular (nilpotent) n x n matrices. The action map p induces a
surjection

GLn x N™ Ls N

Consider the action of the Borel subgroup B of GL, (consisting of all upper trian-
~gular-matrices)-on GLy, % M, (C)™ given by

b.(g,X) = (9b~",0.X)

then B-orbits in GL, x N™ are mapped under p to the same point in Np, .




Consider the morphism
GL, x Mp(C)™ — GL,/B x M,(C)™

determined by sending (g, X) to (¢B,g.X). One verifies that the fibers of this
morphism are precisely the B-orbits, so there exist a quotient variety for the B-
action which is a trivial vectorbundle over the flag variety GL,/B.

With GL, xZ N™ we will denote the image of the subvariety GL,, x N™ under this
quotient map. We have the diagram

GL, x N™ ——

GL, x M, (C)™

GL, xBN™ ——

GLn/B x M, (C)™

and GL, xB N™ is a subbundle (but not necessarily trivial as the action of GLj,
does not map N™ to itself) of rank mdimN over the flag variety GL,/B. With
these notations we have

Proposition 1 (see a.o. [6, p.179] and [7, 2.8])
Let U be the open subvariety of N™ consisting of the m-tuples of total rank n — 1,
then the action map p induces the diagram

GL, xBU = GL,U

GL, xB N™ K N

where the upper map is an isomorphism of G Ly -varieties (the action on the fibre
bundles is given by left multiplication in the first component). Hence, there is a
natural one-to-one correspondence between (G L, -orbits in GLy,. U and B-orbits in
U.

In particular, p is a desingularization of the nullcone and Np,p is irreducible of

dimension (m + 1) g .

Hence, this result gives a reduction in complexity from
(GL,, Mp(©™) to (B,N™)

at least on the stratum GUL,.U. The aim of the Hesselink stratification is to have
a similar type result for a stratification of the complement. That is, we want
to cover Ny n — GL, .U by strata GL, .U, such that the orbits are in one-to-one
correspondence with P orbits in U; C C™ where P; is a parabolic subgroup of GL,
and C; a subvectorspace of N.

The key idea behind such a stratification is the result due to G. Kempf [3] that
each X € Np,, has an essentially unique ’optimal’ one parameter subgroup A
such that t@o/\(t)'x = 0. If A lies in the maximal torus 7,, with associated powers

(r1,...,7,) then the components of X can have only non-zero entries on entries (Z, §)
with 7; —r; > 1. Conversely if Ex is the set of entries (2, §) such that a component




of X has there a non-zero value, we can compute the n-tuple sx = (s1,...,s,) € R®
satisfying
s; —s; > 1forall (4,5) € Ex

minimal with respect to the norm
| sx ll=si+...+sh

This s € Q™ does not necessarily determine a one-parameter subgroup but there is a
unique px € NsUZ" with gcd(p;) = 1 which is then called the best one-parameter
subgroup for X in 7,,. However, we can repeat this procedure for X’ = g.X with
g9 € GL, and it may happen that || sx: ||<|| sx |. In fact, we can always find
an X' = ¢g.X in the orbit where a minimal || sx/ || is reached. An optimal one-
parameter subgroup associated to X say A(X) is then defined to be

MX) =g tuxg

It is unique in the following sense : let P be the parabolic subgroup of GL,, associ-
ated to A(X) (see a.0. [6, II1.2.5]) then every other optimal one-parameter subgroup
associated to X (coming from another point X” = h.X in the orbit where a minimal
value is reached) is conjugated to A(X) under P. For more details we refer to [3],[1]
or [11].

3 Hesselink stratification for N, ,

Two points X,Y € Ny, ,, lie in the same stratum provided they have representants
in their orbits X’ = ¢.X and Y’ = AY such that X’ and Y’ have the same set of
optimal one-parameter subgroups. For a fixed maximal torus in GL, it is easy to
compute the best optimal one-parameter subgroup for a given point in the nullcone.
However, finding an optimal one-parameter subgroup is usually a very difficult job
roughly equivalent to giving a canonical form for the m-tuple.

This forces us to describe the strata in a different way. We restrict to one-parameter
subgroups in 7, and investigate the problem of describing the set of points for which
this subgroup is optimal. To begin with, observe that the minimality condition puts
severe restrictions on the n-tuple s = (s1,...,s,) € Q™. To be precise, s has to be
the disjoint union of strings

{pipi+ 1, pi+ ki)

with k; € N such that all these numbers appear in s possibly with multiplicities a;;
(the multiplicity of p; + j) and such that

> 5 =0

JEstring

for every string in s, see [1, Prop. 6.8.a}. Given n it is easy to write down the list S of
all dominant (i.e. s > ... > s,) such n-tuples. The set S will be the combinatorial

object underlying the classifications of the occurring strata. For n = 2 (resp. 3,4,5)
the cardinality of S is 2 (resp. 5,11, 28). For example




S for 4 X 4 matrices

{type [ 1 ] s2 | ss [ sa [TNsI]
1 iz [-3]-% 5
2 A IS B I o
3 IR S S T A S | o
4 1] oo 0o | -1 2
s L] 8 |-2]-3] 1
I = I
v il % i | -3 H
s 3] 3o |-3]| 3
® 310 |-3)-3 3
10 1l o0 0o | -1 1
11 0] o 0 0 0
From now on we fix one s = (s1,...,8,) € &, and associate to it a tableaux

T(s) = (a;;) where ¢ runs over the distinct strings (p;,p;i +1,...,pi + &;) of s and
a;; is the multiplicity with which p; + j occurs in s. To s we associate certain data

e The corner C, which is the sub-vectorspace of N consisting of all matrices
with zero entries except perhaps at entry (4, §) when s; —s; > 1

e The parabolic subgroup P, which is the subgroup of GL, consisting of
matrices with zero entries except perhaps at entry (4,;) when s; —s; > 0

e The Levi-subgroup L; which is the subgroup of GL,, consisting of matrices
with zero entries except perhaps at entry (i,j) when s; —s; = 0. Observe
that L, =[] GL,,;.

Example 1 Consider the following 5-tuple

21 1 1 1

=373 737

which has tableauz

1
1)1

The associated corner, parabolic and Levi are resp.

L. I *

Cs=1. . . . . P, =

% %X % %
® % % %
® % % % *

I~

©

I

*

*

The corner C; will replace the role of N and the parabolic P; that of the Borel
subgroup B in the formulation of proposition 1. The substitute for the open set U
will be

Us = {X € C7* | us is optimal for X}

which is an open set of C7*. Observe that U; may very well be empty.
For example, if m = 1 we know that the strata should correspond to the finite set
of orbits in Ny , which correspond via the Jordan normal form blocks to partitions




of n. We will see below that the strata are labeled by the s € § for which U; # 0,
hence if m = 1 *most’ of the Us will be empty.

In fact, describing for given m and n the set of s for which Us; # 0 is one of the
main aims of this paper. General theory [1, Prop. 5.2.b] only tells us that for large
m all s will eventually appear.

On a more intuitive level, U is the set of m-tuples of matrices with non-zero en-
tries in the corner C; which cannot be simultaneously conjugated to an m-tuple
corresponding to a ’smaller’ corner s’. Here, ’smaller’ means that || s’ ||<|| s |}
From now on we will assume that s € § is such that the open set U; C C7*
is nonempty. Then, the corresponding stratum will be the GL,-translate S; =
GL,.Us; and we will investigate its properties, all of which follow from results of W.
Hesselink [1].

Similar to the discussion in the preceding section we equip the product GL, x
M, (C)™ with a Ps-action via the rule p.(g, X) = (¢gp~!,p.X) and show that there
is a quotient variety which is a trivial vectorbundle over the flag variety GL,/Ps.
This bundle has a not necessarily trivial subbundle GL, x% C™ of rank mdimC;.
We then have the following generalization of proposition 1

Proposition 2 (Hesselink, [1])
With notations as before we have the diagram

GL, XPS Us Ss

[ [

GL, xP Cm a kA

where p is the action map, S, is the Zariski closure of the stratum Sy in Npm and

the upper map is an isomorphism of G Ly-varieties,
Hence, the stratum S; is irreducible, smooth of dimension
dim(Ss) = dim(GLy/Ps) 4 rk(GLy xF* C™) = n? — dim(P,) + mdim(Cy)

Moreover, the vectorbundle GL, x* CT is a desingularization of the closure S, of
the stratum S;. In other words, this vector bundle ’feels’ the gluing of Ss to the
other strata.

Further, we have a natural one-to-one correspondence the GLy-orbits in GL, xF
CY* and the Pg-orbits in C™ which is given by the

GLn(9,X) = GL, (1,X) = GL, xP* P, X
In particular, the study of GL,-orbits in the stratum S, reduces to the study of
Ps-orbits in Us.

We thus have a reduction of complexity similar to that of proposition 1. The
Hesselink stratification of the nullcone Ny, , is then given by

Nm,n = L.J (}LnUs
SES!
where &' is the set of s € 8 for which U; # §. Further,
?s_ C U Ss’
It <Nl

Hence, we have an accurate description of Ny, » and a reduction of the orbit-problem
provided we can determine the s for which U; # 0 and give a precise description of
this open set. This will be the topic of the following sections.




4 Reduction to the quiver Q)

In this section we reduce the description of Us to a certain problem on represen-
tations of a quiver Q. In the next section we will then use recent results on
quiver-representations to solve this problem.

As U, is the set of m-tuples out of C; which cannot be conjugated to an m-tuple
of ’smaller’ corner-type, it is intuitively clear that the border-region of C; will be
important.

¢ The border B; is the sub-vectorspace of C; consisting of all matrices with
zero entries except perhaps on entry (7,7) where s; —s; =1

Observe that the reductive Levi-group Ls acts on B, and we are aiming to reduce
the parabolic action of P; on CI* to that of Ly on B7*. Before we do this, let us
give a representation theoretic interpretation of the latter action which is crucial to
this paper.

A quiver @ is a 4-tuple (Qy, Qq,t, h) where @, is a finite set {0, ..., k} of vertices,
Q. afinite set of arrows ¢ between these vertices and £, h : Q4 — @, are two maps
assigning to an arrow ¢ its tail ¢4 and its head hy respectively. A representation
V of a quiver @ consists of a family {V (%) : i € @} of finite dirnensional C-vector
spaces and a family {V(¢) : V(t4) = V(hy); ¢ € Qa} of linear maps between these
vectorspaces, one for each arrow in the quiver. The dimension-vector dim(V) of the
representation V is the k-tuple of integers (dim(V (i))); € N¥*+1. We have the natural
notion of morphisms and isomorphisms between representations consisting of k- 1-
tuples of linear maps with obvious commutativity conditions. For a fixed dimension-
vector & = (ag, ..., ax) € N¥*1 one defines the representation space R(Q, @) of the
quiver @ to be the set of all representations V of Q with V; = C* for all i € Q,.
Because V € R(Q, «) is completely determined by the linear maps V' (¢), we have a
natural vector space structure

R(@,a) = s My(C)

where My (C) is the vector space of all hy x t4 matrices over C. There is a canonical
action of the linear reductive group

k
FL(a) = H GL4, (C)
i=0
on the variety R(Q, @) by base change in the V;. That is, if V € R(Q,«) and

(V) (9) = g(he)V ($)g(ts)™"

It is clear that the GL{a)-orbits in R(Q, «) are precisely the isomorphism classes
of representations.
To s € § we will now associate a quiver Q,. Recall that s is the disjoint union of
strings
{piy vy PP 1) Ry e 1: oy Pi ki; SRRy e klj
N’ ~

~
@i @i @ik,

satisfying ) a;;(p; + j) = 0. For each string we define the quiver Q; on k; + 1
vertices of type Ag, but with m arrows between the consecutive vertices, that is,

(1) (1) (1) 1)

10




and consider the dimension vector
a; = (@0, @i, . -, Qik;)

which is the i-th row in the tableaux T'(s).

The quiver Q; is the disjoint union of the string-quivers @; and we define the
dimension vector a; to be the vector determined by the «;.

Using these conventions, the following result is readily verified

Proposition 3 The action of the Levi-group Ls = []GLq,; on the border B, co-
incides with that of the base-change group GL(a,) on the gquiver-representations

R(Qs; as)»

Example 2 (continuation of ezample 1)
Computing the action of the Levi-group L; by conjugation on the border B,

a 0 0 0 0 00 2 y O
0 4 0 0 0 00 0 0 =2
L= |0 0 B11 B2 O B;=1(0 0 0 0 O
0 0 fBor Pon O 0 0 0 00
0 0 0 0 4 0 00 00

gives the transformation-maps
[z y] » alz y].p7"
[z] — 5. [z] 41

which is the natural base-change action on the representation space of the quiver Qs

¢ —— o0

and dimension vector o; = ? } Clearly, for the action of Ly on B™ the only

change that has to be made is that there are m arrows between the indicated vertices.

The reduction of the description of U, to this quiver representation now follows
from applying general results due to F.C. Kirwan [5] and L. Ness [9] to our setting.
Let V; be the open subset of BY* consisting of those points for which p; is an optimal
one-parameter subgroup. From [5, §12] we obtain the diagram

U, < cm
™
v BP

where the horizontal maps are the natural inclusions and = the projection whose
fibers are vectorspaces. The result states that U, = 7~1(V}), that is, we can describe
V. we know U,. Moreover, one can describe V; as the set of semi-stable points in
B under the action of a subgroup of Ly, see [5, Rem.12.21], [9, Pf. of Th.9.2] or
[11, Prop.1] (but note remark 1 below).
Consider the character

Xs i Ly = [[ GLqy; = C

11




which maps an element (g;;) to

11 det(gs)

where n;; = d.(p; + j) and d is the least common multiple of the numerators of the
pi’s. Equivalently, the n;; are the integers occurring in p; grouped together at the
corresponding vertex of the quiver Q. Using these notations we have

Proposition 4 The open set Us = n~1(V,) where «# : C™ — BP* is the natural
projection. Moreover, V; is the open subset of points X € BT such that there is
a semi-invariant function f : BT — C for which f(X) # 0 corresponding to the
character x, that is, such that for all ¢ € L we have

9.f=x:(9)"F
for some integer k € N.

Proof : Thisis [5,12.21 and 12.24] and [11, Prop. 1] adapted to our situation
and modified according to the remark below. O

Remark 1 The group Z, occurring in the formulation of [11, Prop. 1]is in general
not the one defined on [11, p. 123] as it does not satisfy the requirement on the
characters given at the bottom of [11, p. 123] which is needed in the proof. Let us

give an example.
Consider s = (-85, %,—%,—-%,—%), then L (Z in terminology of [11]) is

Li=C'"xC" xGLy xC*

and B (V1 in the notation of [11, p.123]) is

Then, Zy as defined in [11, p. 123] is the kernel of the character (1,1,0,—2) and
has semi-stable points in B for example

<

(¥
coococo
cooc o
coo o
coococo
cor~oo

But, ps cannot be an optimal one-parameter subgroup for X as X has rank three
and so should lie in the stratum determined by s' = (%, %,0, —%, ——-g—)

However, for the kernel of the correct character given in proposition 4 and which is
in this case (—8,--3,2,7) there are no semi-stable points in B,.

In fact, the distinction between the required character xs and the ’expected’ character
of [11, p.128] and which coincides in our case with Schofield’s canonical character
[10] for quiver-situations, is responsible for most of the subtleties in describing the

strata.




5 Algorithmic determination of the strata &'

In this section we will give an algorithm to determine for given m and n the set &’
of the s for which U # 0.

In the foregoing section we have seen that U; # 0 if and only if V; # 0 and that
V; is the open subset of quiver-representations R(Qs, ) for which a semi-invariant
corresponding to the character x; does not vanish.

One of the advantages of reducing to this quiver situation is that we can view points
of B™ as objects in the Abelian category of all representations of @, that is, the
category of modules over the path algebra CQ,. Therefore, we can associate to the
character x; (which is determined by the integers (n;;) defined above) an additive
function on the Grothendieck group of the path algebra

0, : Ko(CQs) —Z

which is determined by sending the class of a representation of dimension-vector
B = (bij) to 3 mijbi;.

Using the analogy with vector bundles on projective varieties, A. King [4] defines
a representation V of @; to be f-semistable (for any additive function 6 on the
Grothendieck group) if #(V) = 0 and every sub-representation V' C V satisfies
6(V') > 0. Similarly, a representation V is called #-stable if the only subrepresen-
tations V' with (V) = 0 are 0 and V. Using [4, Prop.3.1] we then have

Proposition 5 V; is the open subset of R{Q;,as) which are 0s-semistable

Hence, in order to verify whether X € BT = R(Qs, ;) lies in V; it suffices to know
the dimension vectors of .all subrepresentations of X and verify that their values
under 0 are > 0. If V; # () it is an open subvariety in B(Qs, ;) and so it suffices to
know the dimension vectors of all sub-representations for a representation in general
position.

Precisely this problem had to be addressed by A. Schofield [10] in his solution of
some conjectures of V. Kaé on the generic decomposition. Recall that V. Kaé showed
[2] that the dimension vectors of indecomposable quiver-representations form an
infinite root system with associated generalized Cartan matrix the symmetrization
of the Ringel form. In our case, where each of the component quivers is of the shape

1) ) ©) )

(m) ) ) m)

the Ringel form is the bilinear map

r:ZFx2* 12
with corresponding matrix
1 —m 0
—m
0 1

The Ringel form encodes a lot of information on representations. If V resp. W are
representations of dimension-vector a resp. S then

r(a, 8) = dim Hom(V, W) — dim Ext(V, W)
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For fixed dimension vector « there is an open subset of representations V in R(Q, «)
such that the dimension vectors of its indecomposable components are constant, say
Bi. Then,

a=p0+ . .+B

is called the canonical decomposition of « into Schur roots B; (Schur roots are roots
B such that there is an open set of indecomposable representations in R(Q, 8)).
Kaé asked for a combinatorial description of the set of Schur roots and of the
canonical decomposition in terms of the Ringel form. Solutions to these problems
were presented by A. Schofield [10] and depend heavily on being able to describe
the dimension vectors of sub-representations of a general representation. Denote
with

B—a
that a general representation of dimension-vector a has a sub-representation of
dimension-vector 8. Schofield gave an inductive way to find the dimension-vectors
of these generic sub-representations using the Ringel form

o ol o @) =
B—a iff é\l/fgg r(f,a—=08)=0

For example, the description of the Schur roots [10, Th.6.1] is then : o is Schur iff
for all B8 — « we have r(#,a) — r(a,8) > 0. A combinatorial description of the
canonical decomposition was also given in [10].

These facts enable us to give the promised algorithmic description of the occurring
strata :

Theorem 2 For s € S, us is an optimal one-parameter subgroup for a point X €
Nn,n tf and only if for the associated quiver Q, all B — ay satisfy 8,(8) > 0.

The open set U consists of those X € CT for which the projection n(X) € BY® =
R(Qs, as) is a 85-semistable representation.

In view of Schofield’s inductive procedure to determine the dimension-vectors of
generic subrepresentations, the first part allows us for given n and m to compile
the list of actually occurring strata. The second part allows us to describe Us for
we can determine V; by considering the ’bad’ dimension vectors v < a, such that
6(v) < 0 and then V; is the complement of those representations in R(Q, a;) having
a subrepresentation of dimension-vector v (which is a closed condition and easy to
express).

Example 3 (continuation of example 1)
The quiver Qs is
(1)

—_——

2 1
. . .
-2 - 4
—
(m)
0
1 1
* M [
-3 . 3
B ————_

(m)
where from now on we let the upper number denote the entry of the dimension-vector

a; and the lower number the component of 0.
When m = 1 .every. representation contains a subrepresentation of dimension-vector

é g (the kernel of the upper map) for which 85 gives —2. Hence, Uy = 0.

When m > 2 a general representation no longer has such a subrepresentation and
one verifies that 8,(B) > 0 for all B — «,. Hence Us # 0.
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Our results allow some immediate consequences. We want to recover the classical
result that for m = 1 the strata correspond to the partitions of m. Following [1,
6.8] call s strongly balanced if the multiplicity function

m(a) = {i | 5 = a)
satisfies the following conditions
e if m(z) # 0 then 2z € Z
o if > 0 then m(—z) = m(z) > m(z + 1)
Proposition 6 Form =1, s € &' iff s is strongly balanced.

Proof: When m = 1 all quivers are of type Ax and we can use the represen-
tation theory of this finite type case to get the result. The crucial observation is
that all representations are direct sums of indecomposables which have dimension

vectors
(07”"‘)0J1) "‘)1’0"“”)0)

for some uninterrupted string of 1’s. O
The next result solves a very special case of a question of W. Hesselink {1, Rem.5.3].

Proposition 7 For every n, all strata occur when m = n — 1 and this bound is
optimal.

Proof : It is easy to see that when all dimensions are < n and there are
m > n — 1 arrows between the consecutive vertices the only dimension-vectors of
subrepresentations of represetations in general position are of the form

(0) oy O) Ny Aik+1y ik+2, - - aik.‘)

for n; < a;z. For such dimension-vectors the image under 8, is clearly positive.
Therefore, all strata occur if m > n — 1. Moreover, this bound is optimal for
consider

Then the associated quiver Q;, dimension-vector a; and @, are

n-—1

1
§ = (—a"‘");i’—'

n n

If m < n — 1 any representation has a subrepresentation of dimension vector (1, k)
with & < m and 6, is negative on it. g

6 Examples

In this section we will initiate the study of the orbit-spaces for the strata in the
Hesselink stratification of Ny, ». We have see before that there is a natural one-to-
-one correspondence "between

o G L,-orbits in S;

e Ps-orbits in U




Moreover, under the natural projection map

I

Us VS c R(Qs;as)

points lying in the same P;-orbit in U; are mapped to points lying in the same
Ly = GL(a;) orbit in V;. Therefore, we have an induced projection map

Orb(P,, Us) - M(Qs; as;0)

from the orbit-space of U; under P; to the “moduli’ space of ;-semi stable represen-
tations of @, of dimension-vector a;, see [4] for some results on these moduli spaces.
We will mean in this section by M{Qs, as;8,) the orbit-space of V; under action
of GL(c;). The precise connection with King’s moduli spaces has to be explored
further as is a thorough investigation of the fibres of . For low values of n one can
describe both the moduli spaces and the fibres explicitly, see the introduction for
n < 3 and n = 4,5 below.

6.1 Nullcone for 4 x 4 matrices

In section 3 we gave the list S of 11 possibly occurring strata in the nullcone of m
4 x 4 matrices. The corresponding quiver-data is summarized in the table below

strata for 4 X 4 matrices

[ type | . [ 6. [m=T]m=2]m=3]
T T 1 1 1]-1 -1 -1 -1 12 18 2
2 211 3 1 5 - i5 20
3 T 1 2 5 -1 3 - 15 20
4 i 2 1 10 1 10 15 20
5 73 S g 12 16
5 31 13 s - 12
7 T3 31 5 - 12
8 T 2 71 . 9 11
1 0

9 7 1 T2 N 9 11
1 0

10| 1 1 T 1 6 7 8
2 0

i1 | 4 0 0 0 0

where the last columns give the dimensions of the strata when they occur. For
m = 1 only the strata occur corresponding to the b partitions of 4. For m = 2 four
new strata occur, the only ones missing are the ones corresponding to the corners

* % %

and

which appear for all m > 3.
For couples of 4 x4 matrices we get the following degeneration picture of the nullcone
where each stratum is represented by the underlying quiver-data
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Representation theory of quivers, in particular the theory of Kronecker modules,
allows us to determine the moduli spaces M(Qs, as; 65) explicitly. In the following
table we distinguish between the components in these moduli spaces corresponding
to indecomposable (resp. decomposable) representations.

Moduli spaces M(Q,, as; 65)

[ type | indec [ dec ]

1 P! x P* x P* | -

2 Pt -

4 PPUP' x P | P x P!

5 pt S2(rh
8 P°
9 |- PO
10 | - p!
1 4 - P°

For all types > 5 we have C; = B; so the above table also gives the orbit-spaces
Orb(Ps, Us) for them. For type 4 (resp. 2,3) the map 7 is an isomorphism (resp. a
rank one vectorbundle). The precise description of the fibers of 7 for type 1 is more
complicated and similar to the 3 x 3 case given in the introduction.

6.2 Nullcone for 5 x 5 matrices

In the following table we collect the relevant data for the Hesselink strata of Np, 5,
the last four columns give the dimensions of the strata when they occur.
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strata for 5 x 5 matrices

[type | as EB [m=1]m=2]Tm=3]m=4]
1 1 1 1 1 1 -2 -1 0 1 2 20 30 40 50
2 2 1 1 1 -6 -1 4 9 - 27 36 45
3 1 1 1 2 -9 -4 1 6 - 27 36 45
4 1 1 2 1 -8 -3 2 7 - 27 36 45
5 1 2 1 1 -7 -2 3 8 - 27 36 45
6 1 1 1 1 -3 -1 1 3 18 26 34 42
1 0

7 2 1 2 -1 0 1 - 24 32 40

8 1 1 3 -7 -2 3 - - 28 35

9 3 1 1 -3 2 7 - - 28 35

10 1 2 2 -6 -1 4 - 24 32 40

11 2 2 1 -4 6 - 24 32 40

12 2 1 1 -3 1 S - 21 27 33
1 [¢]

13 1 1 2 -5 -1 3 - 21 27 33
1 0

14 1 1 1 -2 0 2 16 22 28 34
1 1 -1 1

15 1 3 1 -1 0 1 14 21 28 35

16 2 3 -3 2 - 18 24 30

17 3 2 -2 3 - 18 24 30

18 2 1 -1 2 - 17 21 25
1 1 -1 1

19 1 2 -2 1 - 17 21 25
1 1 -1 1

20 2 2 -1 1 12 16 20 24
1 0

21 1 4 -4 1 - - - 20

22 4 1 -1 4 - - - 20

23 3 1 -1 3 - - 16 19
1 0

24 1 3 -3 1 - - 16 19
1 0

25 1 2 -2 1 - 12 14 16
2 0

26 2 1 -1 2 - 12 14 16
2 0

27 1 1 -1 1 8 9 10 11
3 0

28 5 0 0 0 0 0

For m = 1 only 7 strata occur, corresponding to the partitions. For m = 2 there
are 22 strata. For m = 3 we obtain 26 strata, the extra ones corresponding to the

corners

and

and their mirror images along the other diagonal.
For m > 4 all strata occur, the last two of which have corner

L S T

and its mirror image along the other diagonal.
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