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Abstract

The Hesselink stratification of the nullcone is investigated in the case of
representations of quivers. In particular, an algorithm is presented to describe
the actually occuring strata. The orbit problem for a specific stratum is
closely related to the moduli space of semi-stable representations of a given
level-quiver representation problem.

1 Introduction

Consider a quiver without oriented cycles @), a dimension vector « and the represen-
tation space R(Q, ) (all relevant definitions are recalled in the next section). The
key problem in the representation theory of finite dimensional hereditary algebras
is to study the orbits in R(Q, «) under the reductive base-change group GL(«). For
quivers of finite or tame type a satisfactory description is known, for the wild case
this is considered to be a ’hopeless’ problem.

A natural approach to this problem is to stratify R(@,«) in more manageable
locally closed subvarieties and to study the orbit-spaces for these strata. This idea
was pursued by H. Kraft and Ch. Riedtmann in [8] where they took as the strata the
’sheets’, that is, one collects together the representations with same orbit-dimension
(or equivalently, such that their endomorphism rings have equal dimension). As all
orbits in such a sheet are closed one can then hope to construct a good quotient
variety as the orbit space.

Whereas this sheet-approach has a natural interpretation in representation theoretic
terms, it does not seem to have sufficiently good properties in general. The strata
are rarely irreducible or smooth and not much is known about the quotient varieties.
Recently, some progress has been made to the construction of good moduli spaces
for representations in sufficiently general position. A. King [5] introduced the notion
of semi-stable representations with respect to a character of GL(«) and constructed
a moduli space for them. Using the solution of A. Schofield [14] to some conjectures
of V. Ka¢ one can describe the open (but possibly empty) subsets of semi-stable
representation for specific characters explicit. Ongoing research studies the geomet-
rical properties of the corresponding moduli spaces. For example, if the dimension
vector is indivisible and the character is sufficiently general, this moduli space is
known to be a smooth projective variety with known cohomology ring [5]. It is to
be expected that more information about these moduli spaces will be unraveled in
the near future.
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In this paper we will investigate a different stratification of R(Q, ). As we assumed
that the quiver @ has no oriented cycles, there are no polynomial invariants for the
GL(a)-action, see [9]. Hence, the representation space R(Q, ) is the nullcone for
this action. Invariant theory gives us an excellent stratification of nullcones due
to W. Hesselink [2]. It is based on the notion of optimal one-parameter subgroups
due to G. Kempf [4] and G. Rousseau [15]. For example, the strata are known to
be open subsets of vectorbundles on flag varieties and are in particular smooth and
irreducible. Moreover, a reduction of complexity is known in order to study the
orbits in a specific stratum.

However, the Hesselink stratification has some disadvantages from a practical point
of view, For a specific point in the nullcone it is usually very hard to determine the
set of optimal one-parameter subgroups corresponding to this point. Because of this
it is also very difficult to determine which strata actually occur, that is, whereas
one can give a combinatorial list of the strata that can occur it is hard to determine
which of them are empty.

In this paper we will describe the Hesselink stratification of R(Q, @) with the em-
phasis on trying to overcome the above practical difficulties. In particular we will
present an algorithm to determine for given @ and dimension vector « a list of the
occurring strata (or equivalently, of the relevant one-parameter subgroups). This
algorithm is based on King’s notion of semi- stability mentioned above and A.
Schofield’s algorithmic description of the dimension vectors of generic subrepresen-
tations in terms of the Euler inner product [14].

A perhaps surprising consequence of our investigation is that at the hearth of every
stratum there is a moduli-space problem for semi-stable representations with specific
character (corresponding to the optimal one-parameter subgroup) of a quiver with
very simple form, the so-called level quivers. In particular, there is a surjective map
from the orbit-space of the stratum to one of King’s moduli spaces for a specific
level-quiver. The investigation of the fibers of this natural map seems to be a very
interesting (but difficult) project for further research.

Another conundrum is the representation-theoretic interpretation of the optimal
one-parameter subgroup belonging to a specific representation. It induces a filtra~
tion by subrepresentations but examples show that this filtration is neither the top-
nor socle-filtration. What our results show is that the top part of this filtration is
a semni-stable representation for a specific level-quiver. Whether an iteration of this
gives a canonical filtration on representations and what its representation theoretic
relevance is, remains to be seen. Also more examples should be worked out in some
detail. A particularly interesting case is that of the k-arrow rank two quiver because
of its connections with vectorbundles on projective curves.

The paper is organized as follows. In section 2 we recall the relevant definitions
from representation- and invariant theory. Some effort has been made to describe
the notion of optimal one-parameter subgroup as concrete as possible in the specific
situation of interest. In section 3 we recall the definitions and main properties of
the Hesselink stratification, again concentrating on the setting of quivers. Moreover,
we give an algorithm to construct the list L(Q, @) of possibly occurring strata. In
section 4 we then come to the hearth of this paper which consists in giving an
algorithmic description of the non-empty strata and the relation with the underlying
level-quiver situation. As all our results remain valid for the nullcone N(Q, ) of
R(Q, &) in case the quiver @ does have oriented cycles, results will be stated in this
generality, the reader interested in finite dimensional algebras may want to replace
N(Q,a) by R(Q,0).
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2 Filtrations and one-parameter subgroups

Throughout, we fix an algebraically closed field of characteristic zero and call it C.
A quiver Q is a 4-tuple (Qy, Qq,t, k) where @, is a finite set {1, ..., k} of vertices,
Q. a finite set of arrows ¢ between these vertices and ¢, h : @, — @, are two maps
assigning to an arrow ¢ its tail ¢4 and its head hg respectively. Note that we do
not exclude loops or multiple arrows.

A representation V of a quiver @) consists of a family {V(¢) : ¢ € Q,} of finite
dimensional C-vector spaces and a family {V(¢) : V(t4) = V(he); ¢ € Qq} of linear
maps between these vectorspaces, one for each arrow in the quiver. The dimension-
vector dim(V') of the representation V is the k-tuple of integers (dim(V (:))); € N*.
We have the natural notion of morphisms and isomorphisms between representations
consisting of k-tuples of linear maps with obvious commutativity conditions.

For a fixed dimension-vector a = (a1, ..., @) € N¥ one defines the representation
space R(Q,a) of the quiver @ to be the set of all representations V' of Q with
V; = C* for all ¢ € Q. Because V € R(Q, «) is completely determined by the
linear maps V(¢), we have a natural vector space structure

R(Q,a)= & My(C
@)= & My(©
where My (C) is the vector space of all hy x tg matrices over C.
We consider the vector space R(Q,«) as an affine variety with coordinate ring
ClQ, a] and function field C(Q, ). There is a canonical action of the linear reductive

group
k
GL(a) = ][ GL«(©)
i=1

on the variety R(Q,a) by base change in the V;. That is, if V € R(Q, a) and
g=1(9(1),...,9(k)) € GL(a), then

(9.V)(9) = g(he)V (8)g(ty) ™"

The G L(a)-orbits in R(Q, @) are precisely the isomorphism classes of representa-
tions.
By geometric invariant theory (see [12] or [7]) we have a quotient morphism

7 R(Q, o) = V(Q,a)

where V(Q, «) is the affine variety corresponding to the ring of polynomial invariants
CQ, a]SL(@) Tt is well know that the points of the quotient variety parameterize
the closed orbits. In the special case under consideration, the closed GL(a) orbits
correspond to the isomorphism classes of semi-simple representations in R(Q, «).
In [9, Theorem 1] it was shown that the invariant ring is generated by traces of
oriented cycles in the quiver @ of length at most > a?.

Moreover, a Luna - stratification of V (@, ) in locally closed irreducible smooth
subvarieties corresponding to the different representation-types of semi-simple rep-
resentations was given in [9, §2]. The étale local structure of the quotient-variety
was investigated in [9, Theorem 5]. In view of these results we have a fairly accurate
description of V(Q,«a). For a few remarks on the main remaining open problem,
rationality of C(Q, &)L(®) | we refer to [10] and [1].

In this paper we start the investigation of the complementary problem, that is, of
the "kernel” of the quotient map. Define N(Q, ) the nullcone of R(Q, a) to be
the set of V € R(Q, @) such that for all polynomial invariants f € C[Q, a]%%(%) we
have f(V) = 0. Clearly, N(Q, @) is a closed GL(«a)-stable subvariety of R(Q, «).
Observe that in the important special case when the quiver @ has no oriented cycles




we have N(Q,a) = R(Q,«). In this case, the stratification of the nullcone to be
given in the next sections gives a novel stratification of the representation space.
Recall that other stratifications of R(Q, «) were given, a.o. (8], according to the
dimensions of the orbits. Observe that this stratification may have singular strata.
By the results of [9] given above, V € N(Q,a) iff for every oriented cycle
(¢1, 02, ..., $1) in the quiver Q we have

Tr(V(o)V(di-1)..V($2)V (1)) = 0

Clearly, one would prefer a more manageable description of these nilpotent repre-
sentations.
Such a description is provided by the Hilbert’s criterium (see [7, I11.2]). In our case
it asserts that V € N(Q, a) iff there is a one-parameter subgroup A : C* — GL(«)
such that

limA(t).V =0

t—0

where 0 is the zero-representation (all maps zero-matrices). In this setting, a torus
action corresponds to a filtration on the representation V (see for example [7, I1.2.7]
or [5, p. 520-521}). For each vertex ¢ € ), we can decompose

€% = @262y

in weight-spaces where A(t) acts on (Cf‘z") by multiplication by ¢*. This decomposition
defines a filtration
Cea = ®2:C0)

One verifies that the above limit exists if and only if for all arrows ¢ € @, the maps
are filtration preserving, that is,

V(g): C3y = €5

for all z € Z. Hence the subspaces C?‘;z) determine subrepresentations V, of V and

hence a Z-filtration
S DVe1 DV D Vigr 2.

which is of course bounded, that is V, = 0 for z >> 0 and V, = V for z << 0.
Conversely, any such Z-filtration on V' is associated to some (but not necessarily
unique) one-parameter subgroup A : C* — GL(«) for which the limit i%)\(t).V
exists. The limit-representation is then the associated graded representation

g7'(V) = @zEZVz/Vz+l
of this filtration. Hence

Lemma 1 V € N(Q, «) iff there exists a filtration by subrepresentations on V such
that the associated graded representation is the zero-representation.

However, the filtration (or the one-parameter subgroup) having this property is by
no means unique. For example, we can ”blow up” the filtration (or replace X by a
multiple) or change it by a filtration-preserving isomorphism (or conjugate A by an
element of its associated parabolic subgroup P(})).

Recall (for example {7, I11.2.5]) that

P()) = {g € GL(e) | lims—0A(t)gA(t) ! exists }

is a parabolic subgroup of GL(a) with unipotent radical U(}X) the subgroup of
P()) such that the limit is the unit element and Levi-subgroup L(A) which is the
centralizer of P(A) and which is a product of GL,,’s.




Therefore, we would like to have a canonical choice of one-parameter subgroup
A corresponding to a given V € R(Q,«). To this end, let us begin by defining
a measure of instability m(V,A). Consider the descending Z-filtration V, by
subrepresentations defined by A (always assuming the limit exists and is equal to
0). For each arrow ¢ € @@, we define its degree by

deg(¢; V, X) = min{k € Z | V(¢) : V; = Voqi for all z € Z}

Because the associated graded representation is 0 all these degrees have to be > 1.
Now,
m(V,A) = min{deg(é; V, ) | 6 € Q.}

So, the measure of instability m(V, A) of a one-parameter subgroup A with respect
to a representation V' gives the minimal degree k such that all linear maps V(¢)
are filtration +% maps for the descending filtration on V determined by A.

Let X.{G) be the set of all one-parameter subgroups of a reductive group G. If
we fix a maximal torus T C G, it is well known that X.(G) = Ugea X« (9T9™ ).
In our case, let n = Zf=1 a; the total dimension and consider a fixed embedding

GL(a) = GL,(C)

GL4, (C) 0 . 0
0 GL,4,(C)
] — GL,(C)

0 0 ... GLa (O

In case our quiver has no oriented cycles it is advantageous to fix the ordering of
the vertices such that it makes @ into a directed quiver. With I; we will denote the

interval of [1, .., n] corresponding to the factor ;.
We fix the maximal torus Tp, of GL{«) (or of GL,(C)),

ty
ta

tn

with all ¢; € C*. It is well known that X, (T) ~ Z™ where the correspondence is
given via the map

te
a2
a=(ai,...,an) = Aa(t) =

tan

Given a representation V € R(Q, «), m{V, ;) can be computed in the following
way. Decompose R(Q, ) into weight-spaces for the action of the maximal torus T,,

then
R@Q )= € RQ )y,

where m;; occurs with a non-zero weightspace iff there is an arrow in @ from k — 1
and ¢ € I, j € I;. Moreover, then the dimension of the weightspace equals the
number of such arrows in Q. Accordingly, we can decompose any V € R(Q, &) into

weight-vectors
V=>"Vy




Then, if a = (a4, ..., a,} we have
m(V,As) = min{a; — a; | Vij # 0}

We have an inproduct and associated quadratic form on X. (7, ), namely, if a, b € Z»

then we define n
PHPHES Za,b and g(A =Z af

One verifies that this form is invariant under the action of the Weyl-group S, of
GL,(C) and hence of the Weyl-group Sq, X ... X Sy, of GL(«). Because of this we
can extend the quadratic form to

X« (GL(e)) = U X*(!]Tng—l)
gEGL(a)

by defining q(gAag~!) = q(As). We have now all the required data to define

Definition 1 A one-parameter subgroup X : C* — GL(«a) is optimal for a V €
N(Q, o) iff for all p € X« (GL(c)) we have
m(V,A) o m(Vip)

Vald) T Valw)

For V € N(Q, ) define Ay to be the set of optimal A € X.(GL(a)) for V which
are primitive, that is, such that A is not of the form by with b > 2 a natural number
and p € X, (GL(a)).

A key result due to Kempf [4] and Rousseau [15] (see also for example [16, §2])
states that Ay is nonempty, there exists a parabolic subgroup P(V) C GL(«) such
that for all A € Ay we have P(A\) = P(V) and if we take one A € Ay, then any
other u € Ay is of the form p = gAg™! with g € P(V).

For our purposes it is best to have a slightly different definition of optimal one-
parameter subgroups or filtrations, due to Hesselink [2, §2]. Consider the set of
coweights

Xo(GL(a)) = Q &g X.(GL(a)
then the quadratic form ¢ is extended to Xo(GL(«)) and also the notion of measure
of instability by
m(V, p) = -n—l-(—‘{,;—li”—)
if b € Xo(GL(a)).
Definition 2 Let V € N(Q, «) and define
¢*(V) =inf{q() | ¢ € Xo(GL(a)) such that m(V, ) > 1}
Then the optimal class of coweights corresponding to V is
Iy = {d € Xo(GL(a)) | m(V,X) > 1 and ¢(X) = ¢*(V)}

Again, reformulating the Kempf-Rousseau result we have that T'y is nonempty if
V € N(Q,a)and if T is a torus of GL(«) then 'y N Xg(T') consists of at most one
element, see [2, lemma 2.3].




3 The Hesselink stratification of N(Q,a)

In [2] W. Hesselink gave a stratification of the nullcone of a linear reductive group ac-
tion on an affine variety using the Kempf-Rousseau theory of optimal one-parameter
subgroups recalled above. In this section we will recall the main ideas in the special
case of interest to us. For more details we refer the reader to [16] or to [6] and
[13] for & more analytic approach linking the Hesselink stratification to the moment
map.

We can use the optimalset of coweights I'y of nilpotent representations V € N(Q, )
to define

Definition 3 On N(Q, ) we define two equivalence relations
1. V= V"iff T'v = Tvi, the equivalence class [Vi={V' € N(Q,a) |V = V'} is
called the blade of V.

2.V ~ V' ff Ty = Tyy: for some ¢ € GL(a). The equivalence class
GL(a)[V]={V' e N(Q,a) |V ~ V'} is called the stratum of V.

Fix a representation V € N(Q, ) and A € I'y. One defines
S(V)={V' € R(Q,0) | m(V',A) 2 1}
It is clear from the Hilbert-criterium that S(V') is a linear subspace of N(Q, o). We
specialize the general results of [2, Prop. 4.2] to our case :
1. The blade [V] of V is the Zariski-open subset of S(V') determined by

VI={V'esv)l¢(V)=q(V)}

2. The stratum GL(«)[V] of V is the Zariski-open subset of the irreducible subset
GL(a).S(V) of N(Q, ) determined by

GL(a) [V] = {V' € GL(a) S(V) | ¢"(V) = ¢"(V')}
Further, the parabolic subgroup P(A) acts on S(V') and hence on GL(a) x S(V) by

ple, W)= (gp~ ", p. W)

Similarly, we have a P(X) action on the product GL(«) x R(Q,«) and the natural
map

GL(a) x R(Q,) - G/P x R(Q, a)
sending (g, W) to (gP()),9.W) is easily seen to be a geometric quotient for this
action (that is, points of G/P x R(Q, ) classify the P(A)-orbits. We denote this
quotient by GL(a) xP™) R(Q, @) and see from the above that it is a trivial vector-
bundle over the flag-variety GL(a)/P()) with fiber R(Q, o).
With GL(a) xP(*) S(V) we denote the image of the GL(a) x S(V) in this quotient.
One then verifies that GL(a) x¥() S(V) is a vector-bundle over the flag-variety
G/P with typical fiber S(V), in particular, it is a smooth variety of dimension
dim(GL(a)) — dim(P (X)) + dim(S(V)).
‘We have the natural morphisms

GL(a) xPN S(V) —2— GL(a).S(V)

I I

GL(a) xPM V] —2L s GL(a) V]

and by [2, Th. 4.7] ¢ is birational and a resolution of singularities. Moreover, ¢’ is
an isomorphism of G'L(a)-varieties.
Concluding, we have the following information about a stratum GL(«).[V] :




Theorem 1 (Hesselink) With notations as above, we have :

1. The stratum GL(e).[V] is a smooth irreducible subvariety of N(Q, c)

2. The closure of the stratum is GL(«).[V] = GL(«).S(V).

3. The desingularization of this closure is a vectorbundle of rank dim(S(V)) over
the flag-variety GL(a)/P ().

4. GL(«a)-orbits in GL(«).[V] are in a natural one-to-one correspondence with
P(X)-orbits in the open subset [V] C S(V).

Hence, we have reduced the orbit-problem on the stratum GL(a).[V] to a smaller
problem, namely that of the orbits of the smaller group P(A) on a smaller dimen-
sional subspace S(V') of R(Q,«). However, the main problem is that it is usually
very difficult to determine the set of optimal one-parameter subgroup for a given
representation. Therefore, the main objective of the present paper is to give another
description of the strata.

By the results of Hesselink recalled above we know that the finite set of Hesselink-
strata of N(Q, «) is in bijective correspondence with the set of GL(«)-conjugacy
classes of blades. Because [V] is a dense open subset of S(V), the set of blades is
in injective correspondence with so called saturated subspaces of N(Q, ) (among
which sets are the S(V)).

An arbitrary subset X C N(Q,«) is called uniformly unstable iff there exists a
coweight A € Xg(GL(a)) such that m(z,A) > 1 for all z € X. With I'(X) we
denote the set of such coweights having the additional property that their norm is
minimal among these. Then one defines the saturation of X to be

S(X) ={V € R(Q,a) | m(V,)) > 1forall A € I'(X)}

and we call a subset saturated iff X = S(X). By [2, lemma 2.8] the S(V') defined
above are saturated sets.

In order to determine the possible saturated subspaces of N(Q, ) we fix a maximal
torus T,, of GL(«), decompose R(Q), ) according to weightspaces wrt. 7;, and
denote by I the set of weights with non-zero weightspace. As we mentioned before
I = {mi; = n; —m} with { € I} and j € I; and there is an arrow in @ from k to l.
If R is a subset of II, we call it unstable iff there exists a A € Xg(7,) such that
(7, A) 2 1 for all = € R, but then we know that there is a unique coweight § = §(R)
having the above property and the additional fact that its norm is minimal. With
the saturation of R we mean the set

R ={rell|(rd) 21}

By [2, Prop. 5.5] we have a bijective correspondence between the GL(a)-conjugacy
classes of saturated subsets of N (@, ) and the conjugacy classes of the saturated
subsets of IT under the action of the Weyl-group Sy, X ... X Sq,. This correspondence
associates to a saturated R the subspace of all eigenvectors of R(Q, a) with weight
7 € R and to a saturated subset X C N(Q, «) the set of non-zero weights.

Clearly, a saturated subset R C IT is determined by the coweight § = §(R) and we
will now describe the possible occurring coweights following [2, 6.8].Let A = ) a;m;
be a coweight in Xg(T},), then we can partition {1, ...,n} into a disjoint union of
segments I determine by the properties that there exist p < ¢ rational numbers
such that

e {ajliel}={zep+Z:p<z<q}
e I={ie{l,.,n}|aep+Z,p-1<a; <g+1}




Call a coweight A balanced iff ) ;. a; = 0 for every of its segments I.

Repeating the argument of [2, Prop. 6.8.a] one shows that if § determines a sat-
urated subset R(J) C II, then J has to be a balanced coweight. However, unlike
in the adjoint case of GL,, considered by Hesselink, we can no longer assume that
this coweight is dominans, that is §; > ds > ... > &,). We have to distribute the
coweights over the vertices and use the Weyl-group action to assume that the local
vertex-coweights are all dominant. This gives us a combinatorially determined list
of possibly occurring coweights.

However, contrary to [2, Prop. 6.8.b] it is no longer true that every balanced
coweight determines a saturated subset R C II. For each coweight & in the list
obtained, we determine the associated set R(J) and the norm of 6. For fixed R
we only retain the § such that R C R(6) and ¢(d) minimal This gives us a list
L(Q, &) of coweights determining the saturated subsets and hence the finite list of
all saturated subspaces of N(Q, a).

The list L(Q,«) will be the combinatorial object underlying the Hesselink-
stratification of the nullcone N(Q, ).

Example 1 For example, for n = 4 the balanced coweights and their norms are
given in [11]. Now, consider the ’triangle’ quiver

v
/ \
vy —I-’-—-—————> v3

with a arrows from 1 to 2, b arrows from 2 to 3 and ¢ arrows from 1 to 3 and
consider the dimension-vector a = (1,2,1). Then, for ezample,

§=(0]1,-1]0)

is a dominant (with respect to the smaller Weyl-group) balanced coweight with
q(6) = 2 and R(A\) = {mi2, m34}. However, this set is not saturated as we have
another balanced coweight, p = (—1/2 | 1/2,-1/2 | 1/2) with ¢(p) = 1 and
R(p) = {m12, 734, T14}.
By the above remarks we can compile the list of saturated subsets R C II =
{m12, 13, Taa, T34, T14}

L(Q o)

[(name ][ 81 [ 92 95 | 44 [f R(5) H ol ]
7 -1 0 0 1 I 2
2 -3 1 1 i {m12,m13, 714} 3
4 =3 | =3 =1 | 2| {maa, e, mead 5
5 -2 1 L ]lo {m12, m13} 3
6 -2 | 1 0o |2 {712, 714} 3
7 -3 0 -3 2 {714,734} -
8 o | -1 -1z {24, T34} 3
9 11 % oo {m12} 3
10 11 0 o |3 {m14} 3
11 0 o -il1 {ms4} 3
12 0 oo fo ) 0




Having the list L(Q, ) of possibly occurring strata in the Hesselink stratification of
N(Q), a) we now have to determine which strata actually do occur. We will solve this
problem in the next sections by assigning to each dominant coweight A € L(Q, a)
another quiver problem.

4 Algorithmic description of the strata

Given a balanced coweight A € L(Q, «), it is easy to determine the associated
saturated subset S(A) of N(Q, a) namely

D R@Q )
€Tl (m,2)>1

Substantially harder is the problem to determine when this saturated set determines
a Hesselink stratum, that is, to determine whether S(}) is of the form S(V') and if
so to determine the Zariski-open blade [V] C S(V).

In order to achieve these goals we have to recall results of F. Kirwan [6, 12.18-12.26]
and P. Slodowy [16, Prop. 1].

Given a balanced coweight A for R(Q, o) we will denote with

o Yy = & R(Q, &) with (7, A) > 1

¢ Z5 = & R(Q, &), with (m,A) =1

then we have a natural projection map
Yy —= 2x

with vectorspaces as fibers. Further, we have subgroups of GL(a) with respect to A,
namely, P()) the associated parabolic subgroup and L(A) its Levi-subgroup. The
action of GL(«) on R(Q, «) induces an action of

e P(})) acts on Y
e L(A) acts on X

Now, there is a Zariski-open (but possibly empty) subset X3* of points z € X, such
that A € I'(), that is, for which the one-parameter subgroup determined by A is
optimal. Specializing [6, 12.24 & 12.26] to our setting we obtain.

Lemma 2 Let A be a balanced coweight in L(Q, o) and S(\) its associated saturated
subspace of N(Q, ), then S(\) determines a Hesselink stratum, that is, S(A) =
S(V) for some V € N(Q, «) iff X3 # 0. Moreover, we have,

1L [VI={yeYa|pr(y) € X'}

2. X3 is an L{X)-stable subset of X,

3. the fibers of pr : [V]— X{° are vectorspaces
4. [V] is a P())-stable subset of S(A\) = S(V)

Hence, remains the problem to determine when X3° is non-empty and to describe it
as precisely -as possible, Following {6, 12.21 and 12.24] and[16, Prop 1] this problem
reduces to describing the semi-stable points of the action of a certain subgroup
G C L(X) on the vectorspace Zy. We recall from [11, Rem. 1] that one must change
the definition of this subgroup in the definition of [16, p. 124] slightly.
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Let g be the uniquely determined element in Z” determined by N.ANZ™ = Ny,
then p = (1, ..., tn) determines a character on the Levi group L(A)

Xa: L(A) — C*

determined by sending an element (gx)x € L(A) to

11 det(gx)™

where ny is the constant number among the y; belonging to the k-th component of
L(A). Recall that L(X) = [[ GL,, where the a; are the multiplicities of components
of p (or A). With G(A) we denote the kernel of this character. Observe that it has
the property of [16, p. 123] necessary for the proof of [16, Prop. 1] namely that
T» N G(A) has as charactergroup those x € Z” such that (x, 1) = 0. But then [16,
Prop. 1] asserts the following

Lemma 3 X3* is the set of semi-stable points of Xx with respect to the action of the
linear group G(X). Hence, X3° # 0 iff there exists a non-constant G())-invariant
polynomial function on the affine space Xp

An alternative way to formulate this in terms of L()) is as follows. X3* is the open
subset of X of points z such that there is a semi-invariant function f : X — C
such that f(z) # 0 corresponding to the character x,. That is, such that for all
g € L{A) we have

9-f=xa(9)*f

for some integer k € N.
We will now work all this out in our case and reduce all the above problems to the
study of quiver-representations again, this time only of level-quivers.

Definition 4 A quiver Q) is said to be a level-quiver if we can partition its vertices
in subsets Sy, 54, ...,S; such that the only arrows in the quiver are from a vertex in
S; to one in Siy.

The next result is of crucial importance to this paper :

Theorem 2 Let A be a balanced coweight of L(Q,«). Then, the action of L(A) on

X 1s the representation problem of a disjoint union of level quivers.
/

Proof : By definition X, consists of eigenspaces with weight = 1 so the
structure of X is the product over the segments of A. So assume that (i, ..., ;)
are the numbers of m; such that a; belongs to the segment I of A, Moreover we
can order them such that all 4; with equal a; and lying in the same vertex I are
consecutive,

An investigation learns us that the action of L()) on this part of Xy is that of
a level quiver with Sy the set of vertices from @ having a m; with minimal a = a;
in the segment, .5; those with a 4 1 etc. . The associated dimension vector is the
number of equal a; lying in the same vertex of @) and the number of arrows from
a vertex belonging to a vertex 7 from @ to a vertex belonging to j from @ is the
number of arrows from ¢ to j in Q. O

Hence, if A € L(Q, «) the associated level quiver Q) is a finite subquiver of the
infinite quiver I'(Q) with vertices

FU:Q’UXZ
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and arrows : for each ¢ : 15 — hy there are Z arrows in T’
én i (tg,n) — (hg,n+1)

To find the dimension vector ay for this subquiver @ decompose A in its disjoint
segments
{pi; ey P pi t+ l)“ N 1)" s Pi kia coyDi F k@j’
N s’ ~

ag ay Ak

and for each segment ¢ take a part of I'(Q) consisting of k;+1 columns say starting at
integer s; separated from the parts belonging to the other segments. The dimension
vector for (v, s; + §) is the number of entries k of I, such that Ay = p; +j.

Also verify that with these conventions we have that

L)) = GL(ay)

and the character x is determined by associating to the vertex (v, s;+j) the number
nij = d.(p; + j) where d is the least common multiple of the numerators of the px’s
determining the segments of A.

Example 2 (continuation of example 1)

In this case the infinite quiver I'(Q) has following shape

(vl k-1) (v2,k-1) {(v3,k-1)

(v3,k)

(vl, k+l)

(v2,k+1)
o

(v3,k+1)

Remark 1 The erroncous definition of the character of [16, p. 128] would give a
much better representation theoretic character to this level quiver situation. Recall
that for a quiver Q' the Schofield character is defined via

X+(B) = €(B,7) — ¢(7,8)

where ¢ is the Euler inner product

6(7:,3) = Z Yo By = Z YtaBha

vEQ, a€Q,

whose properties are closely linked to the description of Schur roots and canonical;
decomposition of dimension-vectors [14]. The distinction between the Schofield-
character and the required character x is responstble for the apparent lack of natural
representation theoretic interpretation of the Hesselink stratification of N(Q, a) (at
this moment) as well as for many of the computational complexities which otherwise
could be side-stepped by using reflection functors.
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Above we have seen that the Hesselink stratum corresponding to the balanced
coweight A € L(Q, A) is nonempty if and only if X3* # @ and this is the open subset
of the level-quiver representations R(Q, &y) for which a semi-invariant correspond-
ing to the character x does not vanish.

One of the advantages of reducing to this quiver situation is that we can view points
of X as objects in the Abelian category of all representations of @5, that is, the
category of modules over the path algebra CQ,. Therefore, we can associate to the
character x (which is determined by the integers (n;;) defined above) an additive
function on the Grothendieck group of the path algebra

0y : Ko(CQr) — Z

which is determined by sending the class of a representation of dimension-vector
B = (bi;) to 3o mujbi;.

Using the analogy with vector bundles on projective varieties, A. King [5] defines
a representation V of @ to be 6-semistable (for any additive function 8 on the
Grothendieck group) if 6(V) = 0 and every sub-representation V’/ C V satisfies
#(V') > 0. Similarly, a representation V is called #-stable if the only subrepresen-
tations V' with 0(V') = 0 are 0 and V. Using [5, Prop.3.1] we then have

Proposition 1 X3° is the open subset of R(Qx, ax) which are 8x-semistable.

Hence, in order to verify whether € X = R(Qx, ax) lies in X3° it suffices to
know the dimension vectors of all subrepresentations of ¢ and verify that their
values under 8y are > 0. If X3° # it is open in R(@x, ) and it suffices to know
the dimension vectors of subrepresentations of a general representation.

Precisely this problem had t be addressed by A. Schofield [14] in his solution of some
conjectures of V. Kaé on the generic decomposition. Recall that V. Kaé showed
[3] that the dimension vectors of indecomposable quiver-representations form an
infinite root system with associated generalized Cartan matrix the symmetrization
of the Ringel form or the Euler inner product defined in remark 1. This form
encodes a lot of information on representations. If V resp. W are representations
of dimension-vector « resp. § then

¢(a, B) = dim Hom(V, W) — dim Ext(V, W)

For fixed dimension vector 8 and any quiver @, there is an open subset of rep-
resentations V' in R(Q, 8) such that the dimension vectors of its indecomposable
components are constant, say 3;. Then,

B=P+. +06

is called the canonical decomposition of 8 into Schur roots 8; (Schur roots are roots
- such that there is an open set of indecomposable representations in B(Q,¥)).
Kaé asked for a combinatorial description of the set of Schur roots and of the
canonical decomposition in terms of the Ringel form. Solutions to these problems
were presented by A. Schofield [14] and depend heavily on being able to describe
the dimension vectors of sub-representations of a general representation. Denote
with
B

that a general representation of dimension-vector « has a sub-representation of
dimension-vector 3. Schofield gave an inductive way to find the dimension-vectors
of these generic sub-representations using the Ringel form

o if Maz—¢(f,a~8)=0
foa i ﬁ/ﬂ% (B, a-p)
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For example, the description of the Schur roots [14, Th.6.1] is then : « is Schur iff
for all B <> a we have r(8,a) — r(a,8) > 0. A combinatorial description of the
canonical decomposition was also given in [14].

These facts enable us to give the promised algorithmic description of the occurring
strata :

Theorem 3 For a balanced coweight A € L(Q, &), ux is an optimal one-parameter
subgroup for a point & € N(Q, ), or equivalently, the Hesselink stratum correspond-
ing to X is non-empty if and only if for the associated level quiver Qy all B.— a),
satisfy 0,(8) > 0.

The Hesselink stratum consists of those ®# € Yy for which the projection pr(z) €
Xy = R(Qx, @) is a 8)-semistable representation.

In view of Schofield’s inductive procedure to determine the dimension-vectors of
generic subrepresentations, the first part allows us for given quiver @ and dimension
vector « to compile the sublist of L(Q, &) corresponding to the actually occurring
strata in the Hesselink stratification. The second part allows us to describe these
strata for we can determine X3° by considering the ’bad’ dimension vectors v < ax
such that 0x(y) < 0 and then X{° is the complement of those representations
in R{Qx, @) having a subrepresentation of dimension-vector v {which is a closed
condition and easy to express).

Example 3 (continuation of example 1)

With the conventions introduced before, we will for each of the 12 types give the
dimension vectors a, and the characters 8y as well as the restrictions imposed on
the number of arrows a,b and ¢ in the quiver @ for the stratum to be non-empty
(we will assume abe # 0). In this table a starred line means a break between two
segment component quivers.

level-quiver data

{Tname J[ ax [ 6 [ cond |
1 1 0 0 -1 0 0
0 2 0 0 0 0
0 0 1 0 0 1
2 1 1 0 -1 -1 0
0 1 1 0 1 1
3 T 0 0 5 0 0|az2
0 2 1 0 1 1
7 T 8 0] 1 1 0[553
0 0 1 0 0 3
5 1 o 0] -2 0 0} az2
0 2 0 0 1 0
* P * *
0 0 1 0 0 0
6 1 o ol -2 0 0
0 1 1 0 1 1
¥ ox x| ¥ *
0 1 0 0 0 0
7 1 10| -1 -1 0
0 0 1 0 0 2
* * k| ox *  x
0 1 0 4 0 0
8 0 2 0 0 -1 0] b22
0 0 1 0 0 2
* ¥ okl ox ¥ *
1 0 0 0 0 0
9 1 0o 0 -1 0 0
0 1 0 0 1 0
* x| # ¥ *
0 1 1 0 0 0
10 1 0 [ -1 0 0
0 0 1 0 0 1
* * ok # *
0 2 0 0 0 0
11 0 1 0 0 -1 0
0 0 1 0 0 1
* * x|l ox *  *
1 1 0 0 0 0

"
W




level-quiver data

(22 T 7 2 1] 0 0 0]
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