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Abstract

Let A be a positively graded, connected affine €'-algebra generated
in degree one which is a finite module over a central subring R. Let 4
be the structure sheaf over Proj(R) and Spec Z the central Proj. If
injdim(A) < oo, then Spec Z has singularities unless the ramification
locus of A is pure of codimension one. If gldim(A) < oo, then the codi-
mension > 2 parts of the ramification locus of A and the singular locus of
Spec Z coincide.
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Abstract

Let A be a positively graded, connected affine € -algebra generated
in degree one which is a finite module over a central subring R. Let 4
be the structure sheaf over Proj(R) and Spec Z the central Proj. If
injdim(A) < oo, then Spec Z has singularities unless the ramification
locus-of A is pure of codimension one. If gldim(A) < oo, then the codi-
mension > 2 parts of the ramification locus of .4 and the singular locus of
Spec Z coincide.

1 Introduction
Throughout this paper, A will be a positively graded affine € -algebra
A=C DA DA

which is connected (that is, Ag = C'), and generated as C'-algebra in degree
one. Moreover, we will be primarely be interested in the case when A is a
finite module over a central graded affine subalgebra R. Examples of current
interest include quadratic quantum algebras at roots of unity and Sklyanin- or
Odeskii-Feigin algebras associated to a torsion point on an elliptic curve, [13]
and [20].

The structure sheaf of the graded R-module A is a sheaf of coherent algebras
A over Y = Proj(R). The center Z of A is a sheaf of coherent commutative
Oy-algebras and we can associate to it a commutative scheme X = Spec Z
together with an affine morphism

f:X =Spec Z—Y = Proj(R)
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such that f,Ox ~ Z and f. induces an equivalence between Oy-Modules and
Z-Modules, [5, Ex. 11.5.17]. Spec Z is called the central Proj associated to A.
For 3-dimensional Sklyanin algebras M. Artin proved [2] that Spec Z ~ IP?.
However, for 4-dimensional Sklyanin algebras it was shown by S.P. Smith and
J. Tate [17] that Spec Z # IP® as Spec Z has singularities.
In this paper we wil study the singularities of the central Proj in some
generality. The main result is

Theorem 1 1. Ifinjdim(A) < oo, then Spec Z either has singularities or
the ramification locus of f* A is of pure codimension one.

2. If gldim(A) < oo, the codimension > 2 part of the ramification locus
of f*A coincides with the codimension > 2 part of the singular locus of
Spec Z.

Sklyanin algebras have finite global dimension [20] and their ramification
loci are pure of codimension one in dimension 3 and contain components of
codimension two and three in dimension 4. So, the theorem is compatible with
the results recalled above.

In proving the theorem we obtain a result which may be of independent
interest. It follows from combining an old result of W. Vasconcelos [22] with
recent work of J.T, Stafford and J. Zhang [19].

Proposition 1 1. If injdim(A) < oo, then f*A is a sheaf of Cohen-
Macaulay modules over Spec Z.

2. If gldim(A) < oo, then f* A is a sheaf of Cohen-Macaulay mazimal orders
over Spec Z which is ilself a normal Cohen-Macaulay scheme.

The study of the ramification locus of f* A turns out to be equivalent to the
study of fat point modules of A of certain multiplicity. It is known that fat
point modules are closely tied to finite' dimensional simple A-modules [15] and
that the latter ones can be studied via invariant theory, see for example [1], [14]
or [6]. If our graded algebra A is a quotient of a Noetherian graded algebra of
finite global dimension having Hilbert series (1 — £)~* for some k, we give the
following description of fat point modules

Proposition 2 With assumption as above, let Mod,,(A) be the variety of m-
dimensional representations of A. There is a natural PGLy, x €*- action
on it, the PGL,-component encoding tsomorphism as A-modules and the € *-
component coming from the gradation on A. Then,

1. If an orbit has a finile isotropy group of orderl, il determines a fat point
module of A of multiplicity .

2. If A is a finte module over a central subalgebra, every fat point module of
A arises in this way.




In the last section we illustrate these results on a class of Auslander regular
Clifford algebras associated to an n-dimensional linear system of quadrics in
IP"~1. The theory of quadratic forms describes their finite dimensional simple
modules and hence via proposition 2 their fat point modules and so via the main
theorem the ramification of the central Proj’s.

Proposition 3 If the n-dimensional linear system of quadrics in P! has no
base point, then the associated Clifford algebra is a quadratic Auslander-regular
algebra of gldim = n satisfying the Cohen-Macaulay property. Moreover, if n is
even the central Proj has singularities.

This result ties up with work of M. Van den Bergh [21}.

2 Singularities and ramification

Throughout this section, A = € ® A1 ® A2 &... will be a positively graded affine
€ -algebra generated in degree 1 which is a finite module over a graded central
subalgebra R.

If A has finite global or injective dimension, it follows from recent work of
J.T. Stafford and J. Zhang [19] that -A has excellent homological properties. To
be precise, we say that A

¢ satisfies the Auslander-condition if for every finitely generated left A-
module M, every integer j > 0 and every (right) A-submodule N of
Ext’ (M, A) we have that j(N) > j. Here, j(N) is the grade number of
N which is the least integer i such that Ezti, (M, A) # 0.

e satisfies the Cohen-Macaulay property if for every finitely generated
left A-module M we have the equality : GKdim(M)+j(M) = GKdim(A)
where G K dim denotes the Gelfand-Kirillov dimension.

The Stafford-Zhang result asserts that if gldim(A) = n+ 1 (resp. injdim(A) =
n+ 1), A satisfies the Auslander-condition and the Cohen-Macaulay property.
In short, we say that A is Auslander-regular (vesp. Auslander-Gorenstein).

Let Y = Proj(R) the projective variety associated to R. It is covered by
affine open subsets X(c) = Spec(S;) for every homogenous element ¢ € R where
Se = (Rc)o the degree zero part of the localization of R at the homogenous
multiplicative set {1, ¢, c?,..}. The structure sheaf A of the graded R-module A
has sections I'(X(c),.A) = (A.)o which we will denote by A.. A, is an order with
center Z, (which contains (Z(A).)o but may be larger) and the Z.’s determine
a coherent sheaf Z of Oy-algebras. By [5, Ex. I1.5.17] we can associate to Z a
commutative scheme X = Spec Z together with an affine morphism

f:X =Spec Z —Y = Proj(R)




such that f,Ox ~ Z. The commutative scheme X = Spec Z is called the
central Proj of A, see for example [2] and [17]. Using the above notation we
have :

Lemma 1 If A is Auslander-Gorenstein (resp. Auslander-regular) satisfying
the Cohen-Macaulay property, then so does A, = I'(X(c), A).

Proof : A, is a strongly graded ring, that is, (A¢)-1(A4c)1 = (Ac)o = A..
For, let deg(c) = k and write ¢ = ), d;l; with d; € Ax_; and ; € A; which
is possible as A is generated in degree 1. Then, 1 = ¢c~l.c = Y (¢ di)l; €
(Ac)-1(Ac)1 and as the (A;)-1(Ac)1 is an ideal of (Ac)o = A, this proves the
claim.

Using [12, Th.1.3.4] we know that taking degree zero parts induces an equiv-
alence of categories

(=)o : A¢ — gr — A, — mod

from graded left A.-modules to left A.-modules (the inverse functor is A.®a,—).

Finally, all required properties first go up under central localization at ¢
to A, and as they can be expressed in category theoretical terms the above
equivalence induces them on A.. o

The following result rests on work of W. Vasconcelos [22]. Let A be an
algebra which is a finite module over a local commutative ring S with maximal
ideal m. Clearly, there are only a finite number of maximal ideals {P;, ..., P}
of A lying over m. We call A moderated Gorenstein if and only if

o injdim(A) = Kdim(A) = n < oo.
e For all 1 < i < k we have that max {p : Ezth (A/P;,A) # 0} =n.

Vasconcelos’ result states that if A is a moderated Gorenstein algebra over a
local domain S, A is a Cohen-Macaulay module over its center. For more details
we refer to [22] or [10, IV.1].

Proposition 4 Let A be a positively graded affine algebra generated in degree
1 which is a finite module over a central subring. Then,

1. If injdim(A) = n+ 1, then f*A is a sheaf of Cohen-Macaulay modules
over its center Spec Z.

2. If gldim(A) = n + 1, then f*A is a sheaf of mazimal Cohen-Macaulay
orders over Spec Z which is a normal Cohen-Macaulay scheme.

Proof : Of course, it suffices to verify these claims locally in an open
affine subset X(¢) of Y. We know already that A is an Auslander- Gorenstein
ring (resp. Auslander-regular if gldim < oo) satisfying the Cohen-Macaulay




property. The same facts hold for A, = A, ®s, (S;), for every point z € X(c).
From the Cohen-Macaulay property we deduce that

](AE/PZ) =n

for each of the maximal ideals P; of A; over m,. As E:ct’,{z(Ax» /P:),Az) =0 for
all £ > n+ 1, we see that A, is moderated Gorenstein and therefore locally a
Cohen-Macaulay module over its center.

By results of T. Levasseur [11] and J.T. Stafford [18] we know that if A is
Auslander-regular it is a domain and a maximal order. Whereas the maximal
order property goes up to A, it is in general not true that the degree zero part
of a strongly graded maximal order is maximal, see [10, p.105] for an example.
However, here we can use the fact that A is a tame order by [10, IV.1.7] and
tame domains are maximal orders. In particular, the center is a normal domain
and the Cohen-Macaulayness follows from [10, IV.1.6]. ]

We want to apply the foregoing to the study of the singular locus of Spec Z.
In order to do so we need an extra condition on the ramification locus A.

A 1s a sheaf of orders in a central simple algebra D which we assume to be of
dimension e2 over its center, that is, e is the p.i.-degree of the sheaf of algebras A.
Globalizing well known results we can view Spec Z as parametrizing isoclasses
of e-dimensional semi-simple representations of A. Hence, there is an open
set U C Spec Z consisting of points corresponding to simple e-dimensional
representations of A. U is called the Azumaya-locus.of A because for every point
x € U we have that A, is an Azumaya algebra over its center. Its complement
V is called the ramification locus of A.

If A is an order over its center S which is a normal domain, we say that A is
a reflexive Azumaya algebra provided A, is Azumaya for every height one prime
pof S. Or geometrically, the ramification locus of A in Spec(S) has codimension
> 2. A reflexive Azumaya algebra is Azumaya if and only if it is a projective
S-module, see for example [9]: Combining these facts with the foregoing results
we have :

Proposition 5 Let A be a positively graded affine algebra, generated in degree
1 which is a finite module over a central subring R. Let ¢ € R be an homogenous
element such that the ramification locus V, of Ac is of codimension at least 2.

1. Ifinjdim(A) = n+ 1, then V, C f~1(X(c)) N(Spec Z)sing.
2. If gldim(A) =n + 1, then V., = f~1(X(c)) N (Spec Z)sing.

Proof : Let z € f~1(X(c)) be a smooth point of Spec Z, then A, is a
Cohen-Macaulay module over its center Z, which is a regular domain. Hence,
Az is a projective Z;-module. By assumption, A, is also a reflexive Azumaya
algebra over the normal domain Z, hence it must be Azumaya. Hence z ¢ V,
proving the first part.




Conversely, if ¢ ¢ V, then A, is an Azumaya algebra over Z;. By assumption
we know that gldim(A,) = n, but then also gldim(Z;) = n. Hence, z is a
smooth point of Spec Z. 0O

From this, the main theorem follows immediately.

3 Fat point-modules and invariants

In order to study the singular locus of Spec Z it is important to determine the
ramification locus of the sheaf of algebras A. That is, we have to determine the
open subset I/ of Spec Z corresponding to simple e-dimensional representations
of A where ¢ is the p.i.-degree of A. Here, the notion of fat point-module over
the positively graded algebra A comes into the picture.

A fat point-module F of A is a 1- critical graded A-module. If A is a
quotient of a graded Noetherian algebra of finite global dimension with Hilbert
series (1 — ¢)~* for some k, then the dimension of the homogenous parts F;
are constant for 7 sufficiently large. This constant number is then called the
multiplicity of F.

For every homogenous central element ¢ € R we can use the fact that A,
is strongly graded as in the foregoing section to see that there is a functorial
bijection between the finite dimensional simple (A.)o = A,-modules and the fat
points for A which have no c-torsion. Under this bijection a fat point module
F corresponds to (F[c™1])o and the multiplicity of the fat point equals the
dimension of the corresponding simple module.

Therefore, the study of the open set U is equivalent to the study of fat point
modules of A of multiplicity e.

There is a close though subtle connection between fat point modules for A
and finite dimensional simple representations of A. Much of what follows is at
least implicit in [15, §1 and 2] but we give a slightly different account.

Let Mod,,(A) be the affine variety parametrizing m-dimensional A-modules.
If Xo, ..., Xn is a basis for A;, then Mod,(A) is the subvariety of M, (C)®"+!
determined by the entries of the matrices we obtain by substituting generic m
by m matrices for the X; in the defining equations of A, see for example [6,
11.2.7}. There is a natural PGL,,-action on Mod,(A), the orbits of which are
the isomorphism classes of m-dimensional A-modules. Because A is a graded
algebra, there is an additional €™ action on Mod,(C') induced by sending X;
to AX; forAeC”.

Proposition 6 Let A be a connected affine graded € -algebra generated in de-
gree one and assume that A is a quotient of a Noetherian graded algebra B with
Hilbert series (1 — t)~* and finite global dimension. If a PGLy, x C*-orbit in
Modm,(A) has finite isotropy group of order l, then this orbit determines a fai
point-module of A of multiplicity Tt Conversely, we recover the m-dimensional




represeniations in the orbit as the finite dimensional simple quotients of the fat
point-module.

Proof : Observe first that the isotropy group can only be finite for simple
m-dimensional A-modules in which case the isotropy group has the form 1 x y;
where p; is the subgroup of €* of I-th roots of unity. Let S be a simple m-
dimensional A-module in the orbit, then P = Ann(S) is a maximal ideal of A.
Then, using [12] the largest graded ideal P, contained in P is a maximal graded
ideal of A. Thus, A/P, is an order of Kdim one and hence inverting a central
homogenous element we obtain its ring of quotients Q9(A/P,) which is a graded
matrix ring

Q(A/Py) =~ Mm(C [z, 27 1))(e1.0,€2.1, ..., e1.(1 - 1))

(that m is the p.i.-degree of A/ P, is [12, 1.2.10]) where # is a central element of
degree | and where ¢; is the number of base vectors in degree 0 < ¢ < lin the
graded vectorspace V over the graded field € [z, z~1] such that END(V') is the
graded matrix ring. For more details on this we refer again to [12, 1.4,1.5 and
11.6].

The positive part of V, F' = V5 is a graded A-module with periodic Hilbert
series with periods (e1,€e2,...,€). As A s a quotient of a graded regular algebra
we now that this Hilbert series must eventually become constant, say of multi-
plicity e. Therefore, all ¢; # 0 and are all equal to e which is then m/l. The
fact that F determines a fat point module of A of multiplicity e and that all
simple A-quotients of it lie in the orbit of S follow (or see [15, §1,2]. ]

In case A is a finite module over a central subalgebra, every fat point-module
of A has finite dimensional simple quotients and hence the above argument can
be applied and we obtain proposition 2. The method also enables us to relate the
p.i.-degree of A (say N) and that of A, e. If d is the greatest common divisor of
the degrees of central homogenous elements in A, then e = %‘ Finally, observe
that the special form of graded quotient rings of maximal graded ideals of A in
case it is a quotient of a suitable ring B can sometimes be used as a criterium
to show that no such B exists.

In the important special case that A is (a quotient of) a quadratic algebra,

the foregoing proposition can be rephrased in quiver-terms as

Corollary 1 A fat point-module of a quadratic algebra A (as above) of mul-
tiplicity e corresponds to the € *-orbit of a simple representation of dimension
vector (e, e, ...,e) of a circular quiver of length | on the vertices {vy, ..., v} with
arrows

xG-D x®

a—y —
BT . Sy i Oy
i1 i
x§n X
— —




with relations of the form
Y auxyVxP =0

whenever ) ap Xp X1 s a quadratic relation of A.

4 An example

In this section we will introduce a large class of Auslander-regular algebras which
are finite modules over their centers and study their fat point-module strata.

Let R = C[Y4, ..., Yy] be the commutative polynomial ring and let A(M) be
the Clifford algebra over R associated to a symmetric n X n matrix M with all
its entries linear terms in the Y;. That is, let

M= M1Y1 + .. MnYn

with all M; € M,(C') symmetric matrices, then A(M) is generated by X;,Y;
1 €7 < n with defining relations

XiXi + X; Xi = ) (Mi)is Vi
k=1
and the Y; central, Observe that one defines a gradation on A(M) by giving
deg(X;) = 1 and deg(Y;) = 2.
The algebra A(M) is associated to an n-dimensional linear system

Q:CQl‘*‘w‘*‘CQn

of quadrics Q; C IP""! where Q; is the zero set of You(Mi)uYiYr. A base
point of the linear system of quadrics Q is a common zero of the quadrics @
1 < ¢ < n. Observe that if we fix a basis for @ we can associate to the system
a symmetric n X n matrix M with linear entries in R and hence the Clifford
algebra A(M).

Proposition 7 Let @ = C Q1 + ... + CQ, be an n-dimensional linear system
of quadrics in IP"~! and A(M) the corresponding Clifford algebra. Equivalent
are,

1. A(M) is a quadratic Auslander-regular algebra of gldim = n satisfying the
Cohen-Macaulay property.

2. The system of quadrics Q has no base poinis in IP™ 1.

Proof : The fact that A(M) is generated in degree one and has
gldim(A(M)) = n if and only if Q has no base points is merely translating
[3, §1] to current terminology. As A(M) is a finitely generated module over the
central subring R the result follows from the Stafford-Zhang result [19]. o




Remark 1 As a generic n-dimensional system of quadrics in P""! has no
base points we recover a result of M. Van den Bergh [21] who proved Auslander
regularity of A(M) for generic M by a deformation argument. The above result
has the advantedge in applications of clarifying what we mean by a ’generic’ M.

We will now study the fat point-module strata of the coherent sheaf of al-
gebras A over Y = Proj(R) which is a weighted projective n — 1 space. To
a point (y1,...,yn) € Y corresponds a maximal graded ideal p of R such that
R/p ~ Cly] with y a degree two element. We can specialize the symmetric
matrix M at p and obtain a symmetric matrix M(p) over €' [y}. The relevant
stratification of X will be given by the sets

Ve={peY |rkM(p) =k}

The following result is based on standard results on quadratic forms over fields
and principal ideal domains, see [7, Ch.5],[4, §7.4] and [8, §I1.2 and §I1.4] for
more details.

Proposition 8 Over everyp € Y there is a unique mazimal graded prime ideal
P of A(M) such that A(p) = A(M)/P®¢ (;C [y,y™"] has the following structure

o If p € Xop, then A(p) =~ My (C[y,y=*])(2'1.0,2'1.1), that is, A(p) is a
graded central simple algebra of p i.-degree 2' with center € [y, y].

o If p € Xoi_1, then A(p) ~ My (Clz,z~1)(2"-1.0), that is, A(p) is
a graded central simple algebra of p.i.-degree 2'=1 with center € [z, z71]
where ¢ is a degree 1 element.

Proof: Over €[y, y~!] every symmetric n X n matrix of rank k is equivalent

to one of the form
A0
0 0

where A is an invertible symmetric k£ x k matrix with determinant € C*y*.
Hence, every prime ideal P of A(M) lying over p corresponds to a prime factor
of the Clifford algebra of the quadratic form associated to A over C[y,y™'].
If & = 2l is even such Clifford algebras are orders in central simple algebras
of p.i-degree 2. If k = 2] — 1 we use the fact that det(A) is not a square in
€ [y,y!] and hence the Clifford algebra is an order in a central simple algebra
of p.i-degree 2/~ with center € [y,y 1, /det(A)]. Clearly, over € all graded
central simple algebras are graded matrix rings and as we have a central element
of degree < 2 they are easy to determine : ]

Combining these observations with the results of the foregoing sections we
have




Proposition 9 Let Q be an n-dimensional linear system of quadrics in IP"™}
without base point. If A(M) is the associated Clifford algebra over R. Then,

1. A point p € Y = Proj(R) corresponds to a fat point-module of A(M) of
multiplicity 2! if p€ Yy and k=2l ork = 21— 1.

2. The ramification locus for f* A is f~1(Yn—2) if n is even and is f~1(Yn_1)
if n is odd

3. If n is even, the singular locus of Spec Z is f~*(Y,_2).

Remark 2 Ifn = 4, then points on X4 or X3 determine fat point-modules of
multiplicity 2. Xo which is the zero set of all 3 x 3 minors of M determines the
fat point-modules of multiplicity 1 (i.e. the point-variety of A(M)). For generic
M one verifies that codim(Xs) = 3 so there can only be a finite number of points
and Spec Z is a rational threefold with a finite number of isolated singularities.
The fact that A(M) has a finite number of point-modules was obtained by M.
Van den Bergh [21] who further shows that for generic M there are precisely 20
points.

Sklyanin algebras at torsion points seem to have some properties in common
with Clifford algebras. Therefore, it is tempting to conjecture that the central
Proj of Sklyanin algebras will be singular in even dimensions with a component
of the singular locus equal to the zero set of the two central elements in degree
Z. We leave this as a suggestion fur further work.
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