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Abstract

A 3-parameter family of deformations of U(slp) is introduced.
The finite dimensional simple representations are studied using non-
commutative projective geometry.
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1 Introduction

In this paper we introduce and study a 3-parameter family of deformations
of U(slg) which we call conformal sly enveloping algebras. These algebras
Uasc(slg) have defining relations

XY —a¥YX =Y
ZX -aXZ = Z
YZ—cZY = bX? +X (1)

with ac # 0. We argue that all sensible U(slg) deformations coming from
physics will belong to this class up to isomorphism (and possibly twists). The
reason is that they are characterized by the requirement that they should encode
*duality’ in some conformal field theory (whence the name) and that they should
have the same excellent homological properties as U(slg) (which we obtain from
the requirement that the associated graded algebra is Auslander regular).

From a purely ring theoretical point of view these algebras are interesting
because their homogenizations Hasc(slg) are quadratic Auslander regular al-
gebras. Hence, they can be studied using the recently developed tools from
- non-commutative projective geometry, see for-example [3], [4],{5],[27]. On the
other hand, these algebras can also be studied along more traditional lines as
they are iterated Ore extensions, they have Borel-like sub algebras and if a # 1
they have normal elements in degree one and two giving a Cartan-like descrip-
tion.

Therefore, these algebras provide test objects to appreciate the relative
strengths and weaknesses of the two approaches. The test-problem which we
want to solve is directly inspired from the connection with physics : classify all
finite dimensional simple representations of Hgpc(slo) (or, virtually equivalently,
of Ugsc(slp)).

As in the case of quantum enveloping algebras there are two types of alge-
bras in our family. For generic values of the parameters, the Hgs.(sla) behave
like enveloping algebras, their simple representations should be found by using
highest weight modules and we expect a discrete family of solutions. For special
cases, namely when a and ¢ are roots of unity, Hasc(slp) is a finite module over
its center. In this case, we expect for a specific dimension (the p.i-degree of the
algebra) a continuous family of simple representations which are usually studied
via the module varieties and invariant theory.

As we will see below, these standard methods can indeed be applied effec-
tively in this case. For the generic case, it is not difficult to use the Borel-like
sub algebras to prove that there are at most two simple representations in each
dimension and to characterize them. In the special cases, one can use the it-
erated Ore description to compute the p.i.-degree and to show that the center
is rational. However, giving generators and relations of the center as well as
describing all simple representations is substantially harder. The reason is that
if one iterates the usual arguments to study an Ore extension; one is often forced




to localize and therefore one obtains ’only’ the generic answer rather than a full
description. In handling these problems non-commutative geometry has proved
to be a rather effective tool over the last couple of years.

The basic idea of non-commutative projective geometry is that in low dimen-
sions certain quadratic algebras A are determined by (commutative) geometric
data : a subscheme of IP® = IP(A}) which is called the point-variety of the
algebra A together with an automorphism on it. In the good cases one recovers
the quadratic relations of A as the set of two-tensors vanishing on the graph
of this automorphism. This means that all information about A (such as the
classification of the finite dimensional simple representations) must be dictated
by this purely commutative algebraic geometric data. Remains the problem of
extracting the desired ring theoretical information from the geometry. Another
advantedge of this geometrical approach is that it gives a uniform treatment to
both the generic and the special cases. The dychotomy in the representation
theory is caused by the order of the automorphism (infinite resp. finite).

As our algebras Uspe(slo) are deformations of U(sls), the approach is based
on-homogenized sly, which was studied in [15]. As all simple sl representations
are quotients of Verma modules we want a geometric description of them (or
< “rather of their homogenizations).. They turn out-to-be precisely the line modules
of homogenized slg, that is, the graded modules of H(slp) with same Hilbert
series as a line in IP?, namely (1 — t)™2. Moreover, these line modules can
be visualized as all the lines lying in a pencil of quadrics in IP® determined
by the point-variety and the automorphism. Hence, we have a class of graded
modules (the line modules) which we can characterize using the geometric data
and which have the property that all finite dimensional simple representations
are quotients of such modules.

The idea is then for sufficiently nice 4-dimensional quadratic algebras to view
their line modules as deformed Verma (or highest weight) modules, to classify
them using the underlying geometry and to find all their finite dimensional sim-
ple quotients. This point of view was advocated (and used with great success)
by S.P. Smith and J. Staniskis [27] and [26] in their study of the 4-dimensional
Sklyanin algebras. Hence, we begin by studying the point-variety of Hgpc(slg)
and give a geometric description of its line modules by using joint work with
S.P. Smith and M. Van den Bergh [12]. v

Whereas the line modules are sufficient to find all simple representations in
the generic cases, they will not give us all simples in the cases when H, abe(slo) is
finite over its center. The reason is that we expect a 3-parameter family of fat
points (homogenizations of finite dimensional simples) in these cases, meaning
that the line modules should span IP®. However, we show that the lines usually
only cut out a dimension two subvariety.

The good news is that this draws our attention to sub-families of algebras
where the line modules indeed do span JP>. We find that there are precisely two
1-parameter classes. One corresponding to the algebras obtained by E. Witten
[31] (by specifyingthe field theory to be 3-dimensional Chern-Simons gauge




theory), the other is a twist of U,(slg) in Drinfeld-Jimbo notation. This gives
a Hopf-free approach to the best sly (quasi) quantum groups : they are those
conformal sl enveloping algebras having enough Verma modules to obtain all
finite dimensional simples.
The bad news is that we have to extend the Smith-Staniskis approach to han-
dle the remaining (p.i.) cases. Observe that we cannot simply wipe them under
the carpet. For example, in Wittens approach, the parameter ¢ = e:cp(%’c'—i)
where 1/k is the coupling constant of the theory. However, in order to get a
consistent quantum field theory one has to impose by [29] a quantization con-
dition namely that k € Z. Hence, the p.i.-cases are not the odd cases out, they
are the only relevant ones for physics !
As mentioned above the p.i.-cases occur when both @ and ¢ are roots of unity
so each of them belong to certain two-dimensional sub-family C;; = {Has(sl2) |
afcd = 1}. For each of these classes we can show that all finite dimensional
simple representations are either quotients of line modules or of higher degree
~plane curve modules with degree determined by ¢ and j. Therefore, replacing
line modules by plane curve modules one retains the essence of the Smith-
Staniskis approach. The complete description of these curve modules from the
- underlying geometry as well as their simple quotients will be the topic of the .
second part of this paper. To give the reader an idea of the method we include
the easiest case of the Witten algebras (where line modules still suffice) and
give a concrete realization of all finite dimensional simple representations. 1
hope that the results of this paper may motivate people to investigate higher
degree modules for Auslander regular algebras.

As there seems to be no bound on the degree of the curves required, it is
tempting to conjecture that there should exist deformations of the 4-dimensional
Sklyanin algebras with similar properties. The examples found by J.T. Stafford
[28] correspond to the case of plane elliptic curves. Further,it has not escaped
my notice that one can use the algebras H abe(s19) as building blocks to construct
large parameter families of conformal enveloping algebras for any semi-simple
Lie algebra. We leave this as suggestions for further work.

2 From physics to algebras

It has been argued by several people (for example, M. Gerstenhaber in [8] and
E. Witten in [31]) that a deformation of an enveloping algebra can be viewed
as a method to break the total Lie group symmetry down to a maximal torus.
Remains the problem of finding suitable deformations of U(g) preferably coming
from physical situations. »

In this section we will briefly recall E. Witten’s approach based on duality
in conformal field theory, see [31], to obtain deformations of U(slg). This gives
a T-parameter family of algebras. Clearly, not all of these algebras will have
desirable properties like being a domain, having finite global -dimension or a




Poincaré-Birkhoff-Witt basis. In the classical U(slg) case these properties follow
from the fact that the associated graded algebra is a commutative polynomial
ring.

Whereas all these deformations will be filtered we can no longer assume that
the associated graded algebra will be commutative. However, we can investigate
the deformations having a quadratic Auslander-regular algebra for associated
graded algebra. As in the classical case all good properties can then be lifted
from the associated graded to the filtered deformation. The deformations of
U(sly) which have a regular associated graded algebra will be called conformal
sly enveloping algebras. The main result of this section is :

Theorem 1 Up to (filtration preserving) isomorphism there is a 3-parameter
family of conformal slg enveloping algebras Uabe(sla) with defining relations

XY —a¥X =Y
ZX -aXZ = Z
YZ—-cZY = bX*+X (2)

AIf ac# 0, Uspe(sly) is Auslander-regular of global dimension 3 and satisfies the
Cohen-Macaulay property.

2.1 The physical vector space Hy,y;

What follows is meant as an introduction for ring theorists to some of the
material of [29],[30] and [31]. We skate over some of the finer physical points
(for example, taking limits for large spin) and the reader should consult the
above papers for full enlightenment. For the heuristic origin of duality in string
theory the reader may wish to read the first chapter of [9].

We want to investigate the easiest scattering process in some conformal field
theory with underlying symmetry slo, namely

Us Us
N

Q)

7N
Uy Us

two particles with spin Uy and Us (that is, simple slo representations of dimen-
sion 2U; + 1, we will always identify a simple representation with its highest
weight in %ﬂ\f .) interact in some way and produce outgoing particles with spin
Us and Us. We can view this black-box as the surface of the Riemann sphere
¥ with 4 punctures and representations U;,1 < ¢ < 4. The actual process can
then be.represented by a Feynman graph inside this sphere with open edges
at the four special points and all internal vertices represent. admissible 3-valent




couplings. That is, around each vertex the Feynman graph looks like

s
>' ’
5

with the S; simple representations of sly and (for example) Ss a direct summand
of S; ® So. The Clebsch-Jordan decomposition, which asserts that for U > 14
the tensor product decomposes as

UeV=U-V)eU-V+1)&..0U+V)

allows to make this requirement explicit.

To each admissible physical process as above inside the sphere we associate a
vector in the physical vector space Hys,y, corresponding with the input-output
data. The way to do this is to take the Feynman path integral over all slo-
“ connections modulo gauge transformations. Even if we dont (want to) know
what this sentence means, we can work with this vectorspace because ”duality”
.in-conformal field. theory gives us the dimension of this space-as well as sets of
base vectors. The dimension of Hx,y, is equal to the number of common simple
factors of R; ® Rz and Rs ® Rs. Moreover, a specific basis for Hx,y, is given
by the vectors v; corresponding to the admissible Feynman graphs :

Us Uy

v =

Uy Uy

But we could have coupled the particles differently, say :
Us Uy

wj = -

Uy Uz

As a matter of fact, all possible w’s again form a basis for Hx,v;, the matrix
describing the base change {v;} — {w;} is called the braiding matrix of the




theory and its entries can be found by computing expectation values of certain
processes, see for example [22]. Anyway, we obtain a linear relation in Hs,v,;

wj = ) cijvi

for ¢;; € €. Such relations should be viewed similar to skein relations in knot
theory. That is,

Uy Us

means that if we have Feynman graphs I'; resp. A; that coincide outside the
sphere & and are w; resp. v; inside X, then we have the linear relation

<T;j>=) ci<Ai>
B
between their expectation values.

2.2 Deformations of U(slz)

Let us apply the foregoing to find the deformations of U(slg) of [31, §3]. As the
enveloping algebra should encode couplings with the gauge bosons which live in
the adjoint representation A (spin 1) it is natural to consider the vectorspaces
Hsxiu; with two of the representations U; equal to A.

Consider the vector space H = Hy a,4,u+1 with four charges in representa-
tions U, A, A and U + 1. Because

UoA ~ (U-1)@Uea(U+1)
U+1)®A ~ UsU+1)e(U+2) (3)

the dimension of H is two and suitable basis elements correspond to the graphs




U+1 A U+ 1 A

U and U4

If we couple the particles differently :

U+1 A

the corresponding element in % must be a linear combination of the base vectors.
That is, there exist u,v € € not both zero such that

U+1 A U+41 A
U+1 A
U U +v v+l = ::>>_;1__<<::
U A
U A U A
If we use the raising and lowering operators in sl :
v V41 v-1
Tb%:>__A T+%>>__A T_%;>__A
A\ A\ v

the above relation given a commutation relation

UT}Tb+vﬂﬂ;==T;




and as at least one of u or v is nonzero, we can rewrite this as
ToTy = T3 T + BT,

In a similar way, using the vector space Hx,u,4,4,v~1 (Which again is two-
dimensional) we obtain the commutation relation

T Ty = eToT- + (T

The third commutation relation follows from the vector space H =
Hsg,v,4,4,0 which is three dimensional with basis vectors corresponding to the

graphs
u A U A U A
U A U A U A

If we couple the particles differently, then the vector corresponding to the graph

can be expressed as a linear combination of the base vectors above, leading to
a commutation relation of the form

Ty T — 4T Ty = 8T2 + €T

Returning to more ring theoretical notation where X =T5,Y =Ty and Z =1_,
these three commutation relations define a 7-parameter family of deformations
of U(sly) :

XY —aYX = BY
YZ~4ZY = §X’+eX
ZX —-eXZ = (Z (4)

o




Clearly, in a specific physical theory (such as three dimensional Chern-Simons
gauge theory considered in [31]) all the coefficients will be functions of the
- coupling constant and they can be calculated by evaluating certain expectation
values.

If one allows couplings with spin % particles one obtains in an analogous way
deformations of the super enveloping algebra U(osp(1,2)), see [6].

2.3 Conformal sl; enveloping algebras

Recall that a finitely generated filtered ring R of finite global dimension n is
said to

e be Auslander regular if for every finitely generated left R-module M,
every integer j > 0 and every (right) R-submodule N of Ezt’y(M, R) we
have that j(N) > j. Here, j(N) is the grade number of N which is the
least integer i such that Exty,(M, R) # 0.

o satisfy the Cohen-Macaulay property if for every finitely generated
left -R-module M we have the equality : GKdim(M) + j(M) = n where
GKdim denotes the Gelfand-Kirillov dimension.

For enveloping algebras these properties follow from the fact that the asso-
ciated graded ring (with respect to the standard filtration) is a commutative
polynomial ring and hence satisfies all these homological requirements. As our
deformations are filtered algebras it is natural to define :

Definition 1 A deformation A(e, ..,¢) of U(sly) with defining relations (4) is
said to be a conformal sl enveloping algebra if the associated graded algebra
97(A(e, .., C)) is a three dimensional Auslander regular quadratic algebra.

Characterizing all conformal sl enveloping algebras implies solving two sub-
problems :

1..Is the quadratic algebra B(a, ¥, §,¢) with defining relations

XY —-oYX = 0
YZ—-y2Y = 6X°
ZX -eXZ = 0 (5)

Auslander regular of dimension 3 ?

2. Is the natural morphism
B(a,v,6,¢) — gr(A(e, ..,{))

an isomorphism ? That is, is the quadratic algebra B really the associated
graded algebra of A 7

10




Both problems have been studied in great generality. M. Artin and W. Schel-
ter classified 3-dimensional quadratic Auslander regular algebras in [2]. Later,
M. Artin, J. Tate and M. Van den Bergh gave a more geometrical classification
of these algebras in [4] and [5]. They also proved that the ’regular’ algebras
studied in [2) are actually Auslander regular and satisfy the Cohen-Macaulay
property.

The second problem of recognizing when a filtered algebra has an Auslander
regular quadratic algebra as its associated graded algebra was solved in [12]
where such algebras were called central extensions.

For each of the two subproblems we will briefly recall the results and perform
the required computations in the case of interest here.

In the Artin-Schelter approach B(a, .., €) will be Auslander-regular if we can
put the defining relations in standard form. This means that we can choose a
basis for the 3-dimensional vectorspace of quadratic relations say f1, f2, f3 such
that there is a 3 x 3 matrix M with linear entries in B(, ..,€) and an invertible
matrix Q € GL3(C) such that for F = (f1, f2, f3)' and & = (X,Y, Z)" we have
the following matrix equations over the free algebra €' < X,Y,Z > :

F=Mgz and z'M=(Q.F)
For B(a,,9,¢) we can take

fi = YZ-—~ZY -6X?
fo = ZX-eXZ
f2 = g.(xy ~ oY X) (6)

in which case the matrix becomes

-6X —-vZ Y
M= Z 0 —eX

-y IX 0
0\ [ f
011 £
) \ %

Lemma 1 The quadratic algebra B(c, 7,8, ¢) is Auslander regular of dimension
Jifavy#0and a=¢.

We now turn to our second sub problem. This problem was solved in [12] for
arbitrary three generated filtered algebras A with B a 3-dimensional Auslander-
regular algebra with defining quadratic relations f; in standard form. Assume
the defining equations of A are of the form

gi=fitlit+a

and hence z*.M is

YZ -vZY —§X? 1
—~4XZ + %ZX =10

ok o

XY —eYX 0

if and only if & = ¢. Therefore, we have

11




where I; (resp. «;) are the linear (resp. constant) parts, then a necessary and
sufficient condition for the gr(A) = B and hence for A to be Auslander-regular
of dimension 3 is by [12, Thm 3.1.3] that we can find (71, 72, v3) € €2 that are
-a-solution to the following system of linear equations in B2 (resp. By and C')

Z vifi = Z(‘Uili —lz})
Z'ﬁli Zai(wi - z7)
Z view = 0 (7

where z* = (X*,Y*,2*) = Q'.(X,Y, 2).
In the case of slo-deformations with a = € and oy # 0 the defining equations
are brought in standard form as above and we have

0[{:0, 11 =-—€X, 12:—<Z, 13:_%7_Y

s vr oy Yy &
(X", Y7, 27) = (X, 1Y, 2 2)

As BeC # 0 (if one of them is zero, it would give a nontrivial linear relation
between the base vectors of one of the physical vector spaces H) we see that the
equations can only be satisfied if all ; = 0 and then the first equation gives the
extra requirement that 8 = {. We therefore obtain

Lemma 2 If afByee # 0, then the deformation A(w,..,() is a conformal sly
enveloping algebra iff « = ¢ and B = (. That is , the defining relations are

YZ-vZY = §X’+4eX
ZX -aXZ = BZ
XY —aYX = BY (8)

The theorem now follows as we can force 8 = ¢ = 1 using the homotheties
X — MX and Y > puY,Z — pZ. Observe that, with notations as in the
theorem, Uyo1(slg) = U(sly).

3 From algebras to geometry

Rather than studying modules over the filtered algebra Uase(slp) it will turn out
to be better to study graded modules over its homogenization Haye(slg) with
respect to an additional central element T'. That is, Hapc(slg) is the quadratic
graded algebra generated by V = CX + CY + € Z + €T and with defining
relations

(1):0 = YZ—cZY —bX?—XT

12




(92):0 = ZX—aXZ-ZT
(g3) : 0 E(XY —aXY - YT) (9)

il

and T central. From the result of the foregoing section and [12] we have

Proposition 1 The homogenized conformal enveloping algebra H = Hase(slg)
is a quadratic Auslander regular algebra of dimension 4 satisfying the Cohen-
Macaulay property provided ac # 0. In particular, H is a domain, a mazimal
order and has Hilbert series H(H,t) = Y ro, dim(Hn) = (1 - )~

In going from Ugpe(slg) to Hape(slg) we do not loose any information as the
homogenization functor

h: Uabc(Slz) - filt — Habc(SIZ) — gr

gives an equivalence of categories between the category Uagse(slg) — filt of all
finitely generated filtered left U,(slg) with proper morphisms and the full sub-
category T — tf of all T-torsion free objects in Hapo(slg)-gr, the category of

- .all finitely-generated -graded left :Hoy¢(slg)-modules with gradation preserving -

morphisms, see for example [18] or [14] for more details.

In this section we will assign to Hgpe(slg) certain geometrical objects in
IP® = [P(V*) = IP(H}). The point-variety (P, o) consists of a closed sub-
scheme P of IP® together with an automorphism ¢ on it. Its importance is em-
inent from the fact that one recovers the quadratic algebra Hgpc(slg) from this
purely commutative algebraic geometrical data. So, every result on Uabe(sla)
or Hgj.(slp) can be expressed in terms of the scheme P and the automorphism
o. We will give only a brief outline of the required calculations, for more details
we refer to [12, §4].

Using [12, §5] we then describe all the line modules of Hgsc(slg). In analogy
with the case of homogenized slg, which was studied in [15], line modules can be
viewed as deformed Verma modules or, equivalently, correspond to polarizations.
To every line module one associates a uniquely determined line in IP? and
 hence ‘one-can speak of the subvariety: of IP3.cut-out by the:collection of line
modules. As every f € slo* has polarizations one would expect that for ”? good”
deformations of U(slg) the line modules span IP®. We will see, however, that
for generic values of (a, b, ¢) this line module variety has only dimension 2 and
one obtains the following resuit

Theorem 2 Among the (homogenized) conformal slg enveloping algebras
Hgpe(slp) there are two one-parameter families having the property that their
line modules span P

1. c=1and b = a — 1 in which case Hape(slg) can be identified with the
homogenized quantum sly enveloping algebra of E. Witten [31, (5.2)].

13




2. ac =1 and b = 1(a — 1) in which case Hape(sla) can be identified with
the algebra studied by Jing and Zhang [10]. Moreover, this algebra can be
shown to be a twist of homogenized Uy(slp) in Drinfeld-Jimbo notation.

Hence, this can be viewed as a Hopf-algebra free characterization of the
most important U(sly) deformations for physics : they are those conformal slg
enveloping algebras having enough polarizations or deformed Verma modules.
The calculations in this section will be used in the study of the representation
theory of conformal enveloping algebras.

3.1 The point variety

M. Artin,J. Tate and M. Van den Bergh have shown that three dimensional
Auslander-regular algebras are determined by geometric data : a cubic divisor
C = IP? in the projective plane together with an automorphism o : C' — C.

Let A=C < X,Y,Z > /(f1, f2, f3) be Auslander-regular in standard form
as-described before, then the associated cubic divisor is

C = V(det(M)) — IP? = IP(A})

and the automorphism o associates to a point p € C the unique point ¢ € P? =
IP(A}) determined by the matrix equation M(p).¢* = 0.

Conversely, to data ¢ : C — C <« IP? = IP(V*) we can associate all
f € V @ V vanishing on the graph of the automorphism in IP? x IP?. The
Auslander-regular algebra A is then the quotient of (V) by all such f. So, the
defining equations are determined by the geometrical data.

A more ring theoretical description of the divisor C and automorphism o
is as follows. We define a point-module P(p) of A to be a graded left A-
module generated in degree zero with constant Hilbert series 1%7 It is clear
that P(p) =~ A/(Al; + Aly) with Iy, l; linear independent elements of A; hence
P(p) determines a point p = V(I1,12) € IP(A}). The collection of these points
is C. If P(p) is a point-module for A then P(p)>1(1) is again a point-module,
namely P(c~1(p)).

By the definition of a conformal slg enveloping algebra we can apply the
foregoing to the 3-dimensional Auslander regular algebra gr(Ussc(slg)). For
later use we record here some of the relevant data for Hgpe(slo) :

fi = YZ—-cZY —bX?
f» = ZX-aXZ
fs = E(XY—-aYX)
hLh = -X
I, = —%
13 = —-Y
a
a = 0 (10)

14




and the matrices
-bX —¢Z Y 1
M= A 0 —aX Q=10
-cY £X 0 0

(X*,Y*, 2%) = (X, %Y, %Z)

ol © ©
S——

Oale ©

and finally

With this data one computes :

Lemma 3 The point-variety of gr(Usse(slp)) has defining relation z(abz? +
(a?c—1)yz) = 0 that is, generically a conic and a line. The automorphism o is
given

1. On theline : 0(0:y:2)=(0:y:c2)
2. On the conic : oz :y:2) = (z:ay: %)

If a?c = 1 we are in a triple line situation with automorphism as above.

- If b = 0 we have a triangle V(zyz) with-automorphism on the z-line as -above

and with automorphism
1. Ontheliney=0:0(z:0:2)=(az:0:2)
2 Onthelinez=0:o(x:y:0)=(z:ay:0)

Finally, if b= 0 and a’c = 1 the cubic is indeterminate which corresponds to
the case that gr(Uasc(slp)) is a twist of a polynomial ring.

We will now show that there is an analogous geometric object associated to
H = Hg(slp). Again, we can consider the set of all point-modules of H that
is, all graded quotient modules

P(p) = H/(Hl; + Hly + Hl3)

with Hilbert series H(P(p),t) = 1= and where the I; are linearly independent
elements of Hy. To P(p) we can then associate the point p € IP*> = IP(V*). The
set of all P(p) is easy to determine. As point-modules are critical modules we
have that either T.P(p) = 0 or T acts as a non-zero divisor on P(p). In the first
case, P(p) is a point-module over the quotient algebra H/(T) = gr(Uasc(sl2))
which we described above, the IP? is now the hyperplane V(T') at infinity. In
the second case we see from the equivalence of categories that they correspond
to homogenizations of one-dimensional representations of Ugs(slg) which give

points (z : y : z : 1) such that

((a—=Dz+1)y
((a=1z+ 1)z

i
o

15




(1-cyz = z(bz+1) (11)

~We see that these points. either lie on the conic yz = {T—b_;f’%_l—'a in the plane
“V((a —1)X + T) (again there will be degenerate cases) or they are the two
points (0:0:0:1) and (—3:0:0:1).

Again, we have an automorphism on this set of point modules. For points
lying at infinity it is the automorphism determined on point-modules for
97(Uase(slgy)) and on all other points it is the identity.

Clearly, one prefers and needs the scheme structure on this set of point-
modules. This was computed in [12, §4] for general central extensions of three
dimensional Auslander-regular algebras in standard form. With the notations
introduced before, i.e. with ¢ = (g1,92,93)",1 = (I1,l2,13)", 0 = (1, @2, 03)*
and with My, My, M3 the columns of M, we define

hy = Xdet(M)+ Tdet{IM;Ms) + T>det[oM2Ms]
hoy = Ydet(M)+ Tdet[M11Ms) + T?det[M;aMs]
hs = Zdet(M)+ Tdet)My Mol] + T?det[My M;ol] (12)

Then according to [12, thm. 4.2.2] the defining equations for the point-variety
P have affine presentations

e On X(t) : V(g1,92,93)

e On X(z) : V(tg1,tg2,1g3,h1)
o On X(y) : V(tg1,tg2,tgs, ho)
e On X(2) : V(tg1,tg2,tg3, ha)

at least if the cubic divisor of the 3-dimensional Auslander-regular is determi-
nate. If not,there is a vector p of independent linear forms such that WM =0
and then the defining equations of P are

V(tq,tg1,tg2,t93)

where ¢ = pt (I + at).

Let us calculate this in the case of the algebras H = Hapc(slo).

hi = 2:6((1 — a?¢)zyz — (1 + ac)tyz — az®(be + 1))
hy = Ey((l — a%e)zyz — (1 + a)tyz — az®(be + (a — b)t))
hs = i—z((l — a’c)eyz — ¢(1 + a)tyz — z*(abz + (b — 1)t)) (13)

In the indeterminate case b=0 and c = %




g = a’z?+(1+a)yz (14)
From this information and the general result we deduce

Lemma 4 In the generic case, the pointvariety P of Hapc(slg) consists of two -
plane conics and a line (the intersection of these two planes) together with 2
points. The embedded points are the common intersection of the three one di-
mensional components which are also the fized points of the automorphism at
infinity.

Ife=1 and b = a—1 the pointvariety consists of a conic at infinity and the plane
V(t+(a—1)z) and one estra point. The embedded points are the 2 intersection
points of the conic and the plane.

Ifb=0and c= ;15 the divisor at infinity is indeterminate and the pointvariety
is the plane at infinity together with a plane conic and two extra points. Again,
the embedded points are the intersection points of the plane and the conic.

If moreover a = 1 the pointvariety is the plane at infinity together with an
embedded.component V(t,z? + 2yz) and one extra point (0:0:0:1).

The last case (a,b,¢) = (1,0,1) corresponds to the homogenized envelop-
ing algebra [15]. *The embedded conic at infinity can be identified with the
flag variety, that is with the IP! of Borel subalgebras (using the identification
IP(sly) ~ IP(slp") via the Killing form).

Recall from [12, Prop. 4.2.5] that one recovers the quadratic algebra
Hpe(slg) from the point variety P and the automorphism ¢. So, this com-
mutative algebraic geometric data should determine all relevant properties of
Hape(sla).

We will now give a ring theoretical interpretation of the plane V(T'+(a—1)X)
containing the extra conic, and of the embedded points in the scheme structure
of P.

The investigation of the point-variety draws our attention to the special degree
one element

N=T+(a-1X

A direct computation shows that this element is normalizing in H = H, abe(s12)

NX = XN
NY = aYN
aNZ = ZN
NT = TN : (15)

If « # 1 this gives us an additional normalizing element in degree one which
illustrates the breaking of symmetry of slg down to a maximal torus. In this
case we can replace X by N and the defining equations of Hpe(slp) become :

NY = aYN
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aNZ = ZN
NT = TN
TY = YT
TZ = 2T
YZ-cZY = (a—_—l—)z(bN2+(a—l—2b)NT+(b+l—a)TZ) (16)

An immediate consequence of this is :

Corollary 1 Hopo(slo)/(N) is a three dimensional Auslander-regular algebra
with defining quadratic relations

TZ = ZT
™=t
- — Q52

Proof : -We have to find the degree three divisor and its automorphism.
In this case this is '

0 T —Z b+l—a
dt| T 0 -Y =T(—— T’ +(c-1)Y2)
—cZ Y BT (a—1)

The automorphism is

e on theline: o(y:2:0)=(y:cz:0)

e on the conic : o(y:z:t) =(y:2:1)
which is of course compatible with the fact that this automorphism coincides
with the one of Hgsc(slp)/(T) on the line component and is the identity on
points not lying on the plane V(T'). ]
The point-variety of Hapc(slg)/(N) is for :

e a,b,c generic : conic+line

e b=a—1: triangle V(Y ZT)

e ¢=1: triple line V(T)?

ec=land b=a~—1: plane

As in [13] we can use the additional normalizing element to relate the module
category of Uspc(slg) to that of another filtered algebra obtained via twisting.
The interested reader is referred to [13] for more details.

Recall that in the case of homogenized slg the embedded points correspond
to Borel subalgebras of slo, see [15]. Because our deformations correspond
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to symmetry breaking, most Borel subalgebras do not survive in Hape(slp).
“However, there are two obvious three dimensional Auslander regular subalgebras
- of -Hgpe(slp) which correspond to the two embedded points :

B=C <Y, T,N > B =C <2ZT,N >
As they are symmetric we restrict to B.
Lemma 5 B is a three dimensional Auslander-regular subalgebra of Hapc(slg).

Proof : The point-variety of B is a triangle

N 0 —daY
det| 0 N T |=(a-1)YTN

T -Y 0
The automorphism has the form
e OnV():7(0:t:n)=(0:t:n)
e OnV(T): 7(y:0:n)=(ay:0:n)
e OnV(N): r(y:t:0)=(y:t:0)

3.2 The line modules

In this subsection we will classify all the line modules of Hgsc(slp). The impor-
tance of these modules is clear from homogenized slg where they are either lines
at infinity or homogenizations of Verma modules, see [15]. Hence, line modules
for conformal slg enveloping algebras can be viewed as deformations of Verma
modules.

In the case of homogenized sly there is also a nice geometric description of
the line modules. Consider the pencil of quadrics

Q=aT?+B(X*-4Y2)

spanned by the double plane at infinity and the cone on the Casimir element.
The line modules of H(sls) are by [15] precisely the lines lying on a quadric in
this pencil. In particular, if f € sly” represents a point in IP® — V(T), then
there is a unique quadric Q in the pencil passing through f. If f ¢ V(X*-4Y Z)
this quadric is smooth and hence there are precisely two line modules of H(slg)
passing through f. These line modules correspond to the homogenizations of
the two polarizations of f. These line modules intersect the base locus of the
pencil of quadrics V(T, X2 — 4Y Z) at infinity in a point which represents the
Borel subalgebra subordinate to f. By using the Killing form we can identify
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IP(slp) = IP(sly*) = V(T) and so the base locus can be interpreted as the flag
“variety of slg. Moreover, this base locus is also the embedded component of the
point variety of H(slg).

‘Observe that the Lie algebras sl are characterized among the semi-simple
Lie algebras by the property that every linear functional has a polarization.
So, in geometric terms, the fact that the line modules of H (slp) span P3is
characteristic for sly and should be preserved in ”good” deformations. For this
reason we will characterize all line modules of the homogenized conformal sl
enveloping algebras Hapc(slp).

The calculations are exercises to the general results of [12] and we refer to
that paper for full details. We begin with an easy but important observation.

Proposition 2 Line modules of H = Hape(slg) correspond to secant lines.
That is, every line contains at least two points of the point variely (counted
with multiplicities).

Proof : As line modules are critical (see [17]) normalizing elements either
act on them as zero or as non zero divisors.

“Let I be a line module: Assume first that either 7.0 = 0 or N.I = 0. Then lis

a line module of H/(T) or H/(N) both of which are Auslander-regular algebras

of dimension 3 and so ! contains at least 3 points (counted with multiplicities)

by [5].

If T.1 # 0 then I/T.1 has Hilbert series -1%; and hence is a point module pr
of W. Similarly, if N.I # 0, then py = I/N.l is a point module. So, ! contains
at least two points. o

Line modules of Hgj.(slg) either correspond to lines lying in the plane at
infinity V(T) or they intersect this plane in a point of the point variety of
Hapo(s12)/(T) = gr(Uase(slg)) = A. By [12, Thm 5.1.6] we know that a line in
IP® passing through p € P4 C V(T corresponds to a line module of Hopc(sl2)
if and only if it is contained in either V(T') or a quadric @, C IP® uniquely
determined by p.

Given the data recalled.in the foregoing section (that is, the equations. f;,g;
in standard form and the matrices M and Q) [12, Prop.5.1.7] asserts that this
quadric is defined by

Qp = V(o(pr)' Q)

where ¢¢ = (g1, g2, g93). We will investigate these quadrics in the case when Py is
a conic and line situation (that is, whenever ab # 0 and a®c # 1), the remaining
cases can be treated similarly.

In this case we have three different types of points pr € Py :

1. pr is an intersection point of line and conic

2. pr lies on the line but not on the conic
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3. pr lies on the conic but not on the line

and we will handle these cases separately :

‘the intersection points

For the intersection points (fixed points under o) we have
o Ifpr=(0:1:0:0), then Q, = Z.((a — 1)X +T)
e Ifpp=(0:0:1:0),then @ =Y.((a—1)X +T)

Hence, all line modules passing through such a point can be viewed as either
lines lying in V (T") passing through pp or in the plane determined by the tangent
line in pr to the conic and going through the ’origin’ 0 = (0 : 0: 0: 1) or in
the plane V(N) determined by the normalizing element N. Observe that this
description coincides with the description of point modules of the corresponding
- Borel subalgebra. In this case the line modules are really induced point modules
from B to Hgpe(sla).

points on the line
If pr = (0 : v : w: 0) with vw # 0 then we compute that
Qp = ((a — 1)X + T)(awY +vZ)

If @ # —1, then pr lies only on the plane component corresponding to the
normalizing element N, that is all line-modules passing through pr either lie in
the plane V(T') or in the plane V(N).

If, @ = —1 then for every point pp there is an extra IP! of line modules
passing through pr namely those lying in the plane V(vZ — wY’).

points on the conic

Ipr=>1:v: (1—:%1’;;% : 0), then the corresponding quadric @, is determined
by the symmetric matrix

b1—a%c)v ia-1)b L(a—1)c(l—a’c)p? §(1—d’c)v
. 0 Le-1)(1—d?c)v b
. o 0 ie(1— a’ep®
L ° [ ]

The determinant of this matrix is
-1%(6 —1)(a?c—1)>*(L—c— a®c — 4be + 4abe — 4b%c + a?c?)v?

If this determinant is non-zero (which depends only on the parameters (a,b, c)
-~ and not on the particular point !); the quadric is smooth and so the line modules
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passing through pp are either the lines at V(T") or one of the two lines lying on
@y going through pr. Let us have a-closer look at the degenerate cases (recall
- that we discart the cases when a?c = 1.or ab = 0)

e If ¢ = 1, then for generic (a,b) the quadric is singular but pr is a smooth
point on it. In this case there is just one extra line-module through pr.
The quadric will be of rank 2 (that is, Qp will be a plane-pair) if and only
if (a—1)(a+1)(a—b—1) = 0. In these cases all lines lying in the plane(s)
containing pr will correspond to line modules, that is for each point there
is an extra IP! family of line modules.

In the conic and line situation this happens iff » = a — 1. In this case
Qp=(a—-1)(T+(@a-)X)Y —v(1+a)X —v*(1+a)Z)

and there are extra line-modules namely those lines passing through pr
and lying in the plane Y = v(1 +a)X + v*(1 + a)Z. This plane can be
interpreted geometrically as the plane passing through pr, o(pr) and the
origin o.

¢ The remaining case when

1 = ¢+ a’c + 4bc — 4abe + 4b%c — a®c?

For generic (a, ¢) the quadric @, will be singular but smooth at pr giving
rise to one extra line-module. The ring theoretical interpretation for the
existence of this special surface of parameters is unclear to me (however,
see the next section).

Suminarizing we have :

Proposition 3 For generic (a,b,c) the line modules of Hap(slg) cut out a two
dimensional subvariety of IP° with 4 plane components V(TNY Z) and a surface
-.described by the lines passing through the conic at infinity.

The remaining cases when b = 0 or a%c = 1 are left to the interested reader.

3.3 Some like it Hopf

The fact that every f € slo* has a polarization can be phrased in geometric
terms by stating that the line modules of H(sly) span IP%. In the foregoing
subsection we have seen that for generic values of (a, b, ¢) the line modules only
span a dimension two subvariety.

In this subsection we will determine those conformal slg enveloping algebra
having enough line modules. It will turn out that we recover the more im-
portant quantum enveloping algebras such as Witten’s Wy(slg) and (twisted)
homogenized Drinfeld-Jimbo U, (sls). So, these considerations can-be viewed as
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given an Hopf algebra free characterization of these (quasi)- quantum groups.
Moreover, we will give a ring theoretical interpretation of these special cases in
“terms-of central and normalizing degree two elements. - -

In view of the above calculations, a special two dimensional class of conformal
enveloping algebras occurs when a + 1 = 0. In this case we have that every
point (0 : v : w : 0) on the line has an additional P! of line modules passing
through it, the lines lying in the plane V(vZ — wY’). Hence, the line modules
of the algebras S;. with relations

XY4+YX =Y
ZX+XZ = Z
YZ-cZY = bX?+X (18)

span IP®. As U(sly) does not belong to this class we leave a detailed analysis
of these conformal algebras as a suggestion for further work.

If we view the conic at infinity as a relic of the flagvariety in the classical U(slg)

-~ case it is more important to determine the conformal algebras-with the property

that every point p on the conic has an additional IP! of line modules through
is. This happens in two cases :

1. @, is of rank two, that is, a plane pair
2. Qp is singular with top p

The first possibility occurs when ¢ = 1 and b = a — 1. In this case all the
lines passing through p which lie in the plane through p, o(p) and the origin o
correspond to line modules of Hgpe(slg). The defining relations become in this
case

XY —aYX = Y
ZX -aXZ = Z
YZ-2Y = (a-1X*+X (19)

and one verifies that this algebra is up to filtration preserving isomorphism equal
to the quantum sly enveloping algebra found by E. Witten [31] by evaluating
expectation values of tetrahedra in a specific conformal field theory namely three
dimensional Chern-Simons gauge theory with group SU,. This algebra W, (sla)
has defining equations :

1

—XY - X = (¢g+¢ MY
7 \{47 (¢+47)
XZ-—=ZX = —(¢g+¢HZ
Vi i (g+4¢7)
-1
YZ-2Y = [Z_ggﬁ—)XZJrX (20)
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Remark 1 Observe that in Witlen’s approach ¢ = e*F where 1/k is the cou-
pling constant of the theory. In [29] it is shown that the condition to have a

“consistent-quantum field theory is-that -k -€-Z- so -the case when q is a root of ...

~unity is-implied-by physics-and-hence the description of the-representation theory
of Wy(slg) in these cases is important.

For the second class of special conformal enveloping algebras we have to inves-

tigate when all p = (1 : v : 7=%5— : 0) on the conic are singular points of Q.
g T=a*oyw »

We have

99 o) = (1+ap(1-achy

|

Do) = Hac-1)

9Q — (1 — ao)(a? 2

gg(pT) = (1—ac)(a’c—1)

oy — 2

5T (pr) (1 +b—a’c+ abejv (21)
So, pr will always be a smooth point of @, except when

ac=1 and b= 2 ; 1

In this case, every point p has an extra IP! of line modules passing through it.
The relations of the corresponding algebra are (in the generators N,T,Y and
Z):

NY = a¥YN
eNZ = ZN
vz-lzy = ——-1-——(1\/2 -T% (22)
a 2(a—1)

and T central. The morphism induced by

r(N)=N r(Y)=—Y r(2Z)=vaz 1(@)=T
\/E

induces a gradation preserving automorphism 7 and we can twist the above

algebra with respect to it as in [5] or [13]. We obtain the quadratic algebra with

relations (if we denote a = q) :

NY = G¥YN
VINZ = ZN

NT = TN
VITY = YT

TZ = ./qZT
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YZ-2ZY = ———1———(N2 - T?) (23)

2va-vT )

. »Observe that“N Tis-a-central -degree two element in this twisted algebra-and we

can dehomogenize by quotienting out NT — 2i. If we denote Y = 2,2 =y and
N = /2k, this quotient algebra is then the Drinfeld-Jimbo quantum sl :

1
zk = —ka
Ve
vk = «/Ezky ,
Ty—yz = KR (24)

Vi-T

So, we obtain also the (twisted) U,(slp) from this conformal approach.

Both W,(slp) and homogenized U, (slp) have two central degree two elements,
“~one being the homogenization parameter T2 resp. NT, the other the quantum
Casimir element. This raises the question whether the conformal sly envelop-
ing algebras:Hypc(slg) all have a deformed Casimir element. It is easy to see
that one cannot expect a central Casimir element in general as some of the
Hape(s1)/(T") do not have central degree two elements. However, this quotient
always has a degree two normalizing element. This can be shown either by direct
calculation or by using the general fact that any three dimensional Auslander-
regular algebra has a normalizing degree 3 element corresponding to the degree
three divisor of the point-variety. As the point-variety decomposes into two
components and the line component corresponds to a degree one normalizing
element this shows that also the conic should correspond to a normalizing ele-
ment of degree two. Perhaps surprisingly, this elements lifts to a normal degree
two element of Hgpe(slg).

Lemma 6 Let
C = (a - 1)%(c — 1)(ac — 1)(a’c = 1)Y Z + b(c — 1){ac — DN+
(@ —1=2b)(c—1)(a’c—1)TN + (1 — a+b)(ac — 1)(a%c - 1)T?
Then, C is normalizing with commutation relations
CN=NC ¢ CY=YC CZ=cZC CT=TC
which is the deformed Casimir operator in Hoapo(sla).

For the two special cases (¢ = 1 or ac = 1) substitution only gives the
obvious normalizing elements T2 resp. NT. However, we can divide by ¢ —1
resp. ac — 1 and remove the pole that arises by requiring the corresponding
numerator to vanish which then gives us the condition on b. So, in these special
cases we obtain the normalizing elements :
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efc=landb=a—1,then C=(a—1)*a+1)YZ+N?—(a+1)TN
e fac=1andb=4(a—1), then C=(a—1)?YZ + }N? + $T?

= A moreconceptual result-on the importance of this special normalizing-element .

is

Proposition 4 There is a Z-gradation by eigenspaces of Hape(slp) over the
*’Cartan’ subalgebra R = C [T, N, C] of the form

..ORY?’0ORY®R®RZO®RZ*S ...

where R is the commautative polynomial ring and Y Z is by the above description
of C an element of R.

Therefore, our deformations of H(slg) are such that not only the maximal
torus survives but also the Cartan decomposition. I thank M. Van den Bergh
for this observation.

4 From geometry to representations

In this section we begin to collect the fruits of our labors. The final aim is to
characterize all finite dimensional simple representations of the conformal slg
enveloping algebras Uspc(sla).

In the case when either a or ¢ is not a root of unity this is a fairly routine
matter in view of the existence of Borel-like sub algebras of Uge(slo) or its
homogenization Hgp.(sla), or because of the Cartan decomposition given above.

Here, we give yet another more geometrical approach which was introduced
in [13]. The problem of classifying all finite simple representations of Uas.(slg) is
equivalent to that of finding all fat point modules of H abe(slg). Using the three
dimensional Auslander regular subalgebras B we can show that such fat point
modules are quotients of line modules passing through the intersection points
(at least if @ is not a root of unity). It is then fairly easy to characterize those

+ +.Jine modules:which do have fat point quotients. In fact; due to the additional

normalizing element N in degree one (which arises from the breaking of sl
symmetry) the required calculations are in fact easier than in the classical U(slg)
case, We show :

Theorem 3 If a is not a root of unity, then for alln > 1 there are at most two
simple n-dimensional representations of Uspc(sl2).

But we have seen before that the cases when a and ¢ are roots of unity are
the more interesting ones for physics. In this case, Uasc(slg) (or Hase(sl2))
is a finite module over its center and using the description of Hgsc(slp) as an
iterated Ore extension we can compute the p.i.-degree and show that the center
is rational.

26




Unlike the case of Sklyanin algebras it is no longer true that all fat point
modules are quotients of line modules for Hapc(slp). This is clear from the
- fact-that-the-cases where Hgpe(sly)-is finite-over-its center-form a-Zariski dense
-subset-and-for-generic ‘abc the line variety-is only of dimension-two. - Still, we .
will show :

Theorem 4 Ifa’c’ = 1, then every fat point module of Hapc(slg) is a quotient
of a plane curve module of degree determined by i and j.

Hence, in order to classify all finite dimensional simple modules in the cases
when Upc(slo) is a finite module over its center one has to classify higher degree
curve modules and subsequently its fat point quotients. This program will be
carried out in full detail in the second part of the paper. In order to give the
reader an idea of the method we will briefly scetch the main steps in the (for
physics) most interesting case of the Witten algebras W, (slg) where all fat point
modules are still quotients of line modules.

4.1 Preliminary observations

In this subsection we will classify the finite dimensional simple representations of
Uabe(slg) in the generic case and draw some consequences from the description
of Hgpe(sly) as an iterated Ore extension. First, we will prove

Proposition 5 For generic a,b,c and n > 1 there will be precisely two simple
n-dimensional representations of Uabe(sly). For Hue(slp) there are two C*
families of simple n- dimensional representations.

More important than the result is the method used to obtain it. To begin,
let us note that the homogenization of a simple n-dimensional representation of
a ﬁltered ring R is a graded h(R)-module which is critical and has Hilbert series
2. Such graded modules we will call fat point-modules of multiplicity
n. In the case of a central extension of a three dimensional Auslander regular
algebra we note two important facts

e For a three dimensional Auslander-regular algebra such that the corre-
sponding automorphism on the point variety has infinite order there are
no fat point modules of multiplicity > 1. In particular, there are no fat
point-modules annihilated by T

o The other fat point-modules (i.e. those for which T' acts as a non-zero
divisor) are all isomorphic to homogenizations of simple n-dimensional
representations of the filtered algebra. In fact, all simple n-dimensional
representations of the central extension are obtained as F/(T — A)F for a
fat point-module F' and A € C'*
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Therefore it suffices to find all fat point-modules over H = Hgpc(slp). Here, we
will use the fact that we have a three dimensional Auslander regular subalgebra
-B (generated by X,Y,T) which allows us-to do the following.variation of the

“‘classical ‘Borel-type-argument,:see-also [13] for more details.

Let F be a fat point-module for H of multlphc1ty n > 1. Restricting F to B

gives a graded B-module with Hilbert-series ;2. However, we know that B has
no fat point-modules of multiplicity # 1 (at least in the generic case, or rather
when a is not a root of unity). This means that there is a point module P(p)
over B such that P(p) is a graded B-submodule of F. By tensoring with H we
obtain a graded H-module morphism

H®p P(p)-—>F

which is surjective in Proj(H). Here, Proj is the quotient category of all
finitely generated graded left modules modulo the Serre subcategory of graded
finite dimensional left modules. In particular, two graded left modules M and
M’ represent the same object in Proj if and only if their tails are isomorphic as
graded left modules. By the above argument we have that all fat point modules
are (in the generic case, or rather when neither a nor ¢ are roots of unity)
quotients of line modules of a particular shape.

Further, we know all the point modules of B because the point-variety was
calculated to be the triangle V(YTN). Now, assume P(p) were a point lying
on either the T or N component. Then F would be a fat point-module of
multiplicity > 1 over the quotient algebra H/(T) (resp. H/(N)), but as these
are three dimensional Auslander-regular algebras with automorphism of infinite
order (in the generic case) this is impossible. So, the only remaining possibility
is that P(p) is a point-module on the Y-component, that is P(p) = B/(BY +
B(N — AT for A € €*. Tensoring with H then gives

Lemma 7 In the generic case (in fact, if neither a nor ¢ are roots of unity)
every fat point module of H = Hgay.(slp) is a quotient of a line module of the
form Ly = H/(HY + H(N — XT)) for A€ C*.

Observe that in the case of homogenized sls, this line module is just the
homogenization of a Verma module. We now have to describe for which values
of A these ’highest weight’ modules have a fat point module quotient of mul-
tiplicity n. As one expects this can be solved by a variation on the classical
slo-computation.

We claim that this computation is in fact easier in this case as we can use
the normalizing element N = T'+ (a — 1)X (at least in the case that a # 1).
We have the following commutation relations

Lemma8 1. NY*=gd*Y*N
2 NZ¥ =q kZkN
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3. TY* =Y*T
4. TZ* = Z*T
..~ The:commutator relations between Y .and Z are slightly harder.

Lemma 9 If we denote for every k € Z,u € € by [kl = 1 +u+u+...+uF71,
then

1. YZF -k Z*Y is equal 1o
alk]eZ* T2 + Ba " [k)eaZP TN + va? "2 [k] a2 21 N?

2. ZY* — ¢ *Y*Z is equal to
2
_a/c[k]c—xyk—1T2 - ﬂ%[k](ca)-lyk—lTN - 7%[’6](0(12)—1 Yk-1n?

where a.= E’:_}l_)‘;,,@ = ‘?;1;)2}’ and y = G:”W

Proof : - Clearly, the relations hold for ¥ = 1 so let us assume they hold for
k —1, that is Y Z*~! is equal to

F-175-1Y 4 o[k—1].2% 2 T2+ 80> (k=100 Z* 2T N+va* =2 [k~1].02 2" "2N?
Multiplying both expressions on the right by Z yields
1251 (eZY + oT? 4+ BTN +yN?)+
afk — 102572 + Ba' [k — 1]0a Z2* 1IN + 0%~ [k — 1] 2 N?

from which the claim follows. ]

Proposition 6 Ly has a fat point module quotient of multiplicity n if and only
if X is a solution to the quadratic equation

a2 [n]wz/\2 + Bal " [n]ead + a[n]. =0

Proof : As in the classical case we have to find conditions to ensure that
Y Z"v = 0 where v is the generator of L,/(T' — 1) i.e. Yv = 0 and Nv = Av.
This condition then follows from the foregoing lemma. |

Remark 2 Even in case a and ¢ are roots of unity some of the above argument
can be used in order to describe the fat point modules of intermediate multiplicity.

Remark 3 Computing the discriminants of the quadratic equations gives hy-
persurfaces in the (a,b, ¢) space for which there is just one simple n-dimensional
representation and for most other dimensions there are two. It should be inves-
tigated how this affects the ‘fusion-of-lines’ argument of Witten in [81] to define
tensor products of the finite- dimensional simple representations.
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Remark 4 In the study of the line modules we found a special surface defined

by
1—c—a%c— 4bc + 4abe — 4b%c + a?c®> =0

“For a-point -lying-on this surface the discriminant of the quadratic -equation -of ..o on.

n-dimensional simples is
(a —1)2¢""1P,(a)?

where P, is the minimal polynomial of a primitive n-th root of unity.

However, the most interesting cases occur when a and ¢ are roots of unity.
We can draw some immediate consequences from the fact that Hgp.(slg) is an

iterated Ore extension
cC {T: N][Z’ Ul][y’ 02, 62]

where 01 € Auty (C [T, N]) is determined by

o1(N) = aN
o(T) = T (25)

o2 € Autp (C[T,N][Z,01]) and 8, is a o2- derivation (that is one satisfying
82(f9) = o2(f)82(9) + 62(f)g) determined by

0’2(T) = T

o2(N) = a N

0’2(2) = c¢Z

52(N) = 0

6,(2) = ﬁ(bN2+(a—2b—1)NT+(b+1——a)T2) (26)

Observe that 62 is a degree +1 derivation.
Let R = C [T, N][Z,041]. Then, Z(R) = C[T,N",Z"] if a is a primitive r-th
root of one.

Proposition 7 Ifa” =1 and ¢ not a root of unity. Then, Z(Ha.) = C[T,N"].

Proof : o5 does not act trivially on the central element Z" of R and we
can consider the element u = 65(Z2")(02(Z2") — Z")~! which is

r— — 1 -
'a—g.—l'[r]caz 1TN+;2'2/I§[7°]W2Z INY) —— 27" =

—1m2
(afr]eZ2" " T% + e

1 - _ -
——(alrlz 7T+ g[r]caZ ITN + a—"z[r]cazz 1N2)
and we can apply [1, lemme 1.4] to obtain that

C(T,N)(Z,01)[Y,02,8) = C(T,N)Z,01)[Y', 03]
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where Y' = Y + u. As no power of o3 acts trivially on the center of R (and
hence cannot be an inner automorphism on R) we have that

- Z(C (T, NY(Z,o)[Y, 00)) = (C(T,N", 2")?
and the latter field is € (T, N") from wich the result follows. O

Part of the previous argument can be used in case ¢ is a root of unity but

¢ #£1.

Proposition 8 If a is a primitive r-th root of unity and ¢ a primitive s-th root
of unity with ¢ # 1. Then, the p.i.-degree of Hapc(sla) is equal to Z;’”;j and has
a rational center.

Proof: As in the foregoing proof we have to study
¢ (T’ N)(Z’ 0'1)[Y” 0'2]

But this time o has order %5 on the center of R. So, there is a v € Q(R)

s

such that conjugation with v equals the action of 037 . But then the center of
Q(H) equals

(C(T,N", 2")(o(Y') ") = € (T, N", 2T, o(Y ©9))

which is rational and computing the dimension of Q(W) over it gives the square
of the p.i.-degree. 0O

The hardest (but for applications in physics the most interesting) case occurs
when

¢ @ is a primitive r-th root of unity
e cis a primitive s-th root of unity

e s divides r

Proposition 9 If ' = 1 and a¥ = ¢ for some k. Then; the p.i.-degree of
Hape(slg) is v and it has a rational center.

Proof : Consider the element u = ZN* and consider conjugation with u
in € (T,N)(Z,03). We have

v Ty = T
wINu = a N
ulZu = d*'Z (27)
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so by assumption o5 is an inner automorphism. Replacing Y by Y’ = uY we

then have
(U(T, N)(Z, 0’1)[Y, a2, 62] = (D (T, N)(Z, 0’1)[Y/, 55]

‘where 65-is the derivation (1) 85(f) = ué2(f) on € (T, N)(Z, 01). n

. Moreover, as ¢,ca and ca® are r-th roots of unity we have that [r]., [r]ca
and [r].qez are all zero. But then, 8;(Z") = 0 and hence 6} acts trivially on
the center of € (T,N)(Z,01) which is € (T,N",Z") so it must be an inner
derivation. There exists v € € (T, N)(Z, 1) such that

8(f) = fv—nvf
Finally, changing Y’ by Y” = Y’ 4+ v we have that
(]:'(T, N)(Z, 01)[Y, o2, 52] =C (T, N)(Z, 0’1)[Y”]

and hence the center equals € (', N", Z",Y”) from which the statements of the
+ = proposition follow. O

4.2 Fat points as curve quotients

The basic strategy to use 'non commutative projective geometry’ in the study
of finite dimensional simple representations is as follows :

o finite dimensional simple representations are quotients of fat point modules

e find a classical geometric object G such that all fat point modules are
quotients of graded modules with the same Hilbert series as G

o use the point variety and automorphism to describe all graded modules of
type G

o similarly, classify in geometric terms the kernels of the surjection from
type G module to fat point and the maps between them

e use these descriptions -to get a geometric. classifiaction of all fat. point
modules

o find all finite dimensional simple quotients of a fat point

In the case of the 4-dimensional Sklyanin algebra this approach pursued by S.P.
Smith and J. Staniskis [27], [26] was very succesfull as one could take for type
G-modules the line modules and these are easy to describe.

In the remaining case of interest here, that is Hapc(slg) with a and ¢ roots
of unity, we have seen that we can no longer expect all fat point modules to
be quotients of line modules. In this subsection we will show that for the two
dimensional families of conformal enveloping algebras

{Hape(slp) | a'd =1 i,j €z}
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the corresponding geometric object can be taken to be plane curves of degree
determined by ¢ and j.

We will first prove that a quadratic Auslander regular algebra of dimension 4
-sawwith-additional properties-has this:property.and subsequently-that the H ave(slg)
satisfy these properties when a’c/ = 1.

Definition 2 Let A be a quadratic Auslander regular algebra of dimension 4
with Hilbert series (1 —t)™*. A plane degree d curve module for A is a
graded left cyclic A-module M with Hilbert series

14¢t+..+t41

H(M,t) = e

The following result is an extension of [26, Thm 4.3] :

Proposition 10 Let A be a quadratic Auslander regular algebra of dimension
4 with Hilbert series (1 —t)~%. Assume that the following properties hold

1. A has two ceniral elements Q1 and Qo of degree d + 1

2. For every Q = aQ1+8Qs with o, 3 € C there is a line module Lo = A/AU
with U a 2-dimensional subspace of Ay such that

e Q.La=0
o Foreveryue U : Q.(A/Au) #0
o Lo has a point module p € Py as quotient

Then, every fat point module of A of multiplicity > 1 is either a quotient of a
line module or of a plane degree d curve module for A.

Proof : Let D be a fat point module of multiplicity e > 1. By [26, 4.2]
the shifted module D(—1) embeds in a uniquely determined fat point module
F. Since F is critical Ann(F) is a graded prime ideal of A which by a GK-

~dimension argument must intersect the commutative subring € [Q1,Q;] in a
non zero graded prime ideal which then has to be generated by a element of the
form Q = a2y + Q2. Thus, Q.F = 0.

By assumption there is a line module Lq such that Q.Lg = 0. Now, L = AU

where U is a 2-dimensional subspace of A; and so the homogeneous morphism

det

U -—>HO7nC (Fo,Fl) ZMe((D) - €

has a non-trivial zero. That is, there exist u € U and m € Fy such that v.m = 0.
We have the following exact diagram with gradation preserving maps
0 - M — A/(Au+AQ) — Lg — 0

l¢
F
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where ¢(1) = m.
P = A/Au is a plane module which is critical, so the central element Q either
acts on it as zero or as a non-zero divisor. By assumption Q.P # 0 but then

«2the Hilbert series of A/(Au+AQ) can be-deduced from the:exact sequence .- .o

0— P(-d—1)% P — A/(Au+ AQ) — 0

and hence is equal to
1=t 14t+ .. +td

A—tp -1
But then, the Hilbert series of M has to be

t+..+t¢
H(M,t) = T
As M is cyclic (being generated by U/C u) we see that M’ = M(1) is a plane
degree d curve module for A.

If (M) # 0, then there is a non-zero gradation preserving morphism M — F
whose image is contained in F»; = D(—1). Hence there is a non-zero map
M' — D, the cokernel of which has to be finite dimensional (D is critical).
Thus, in Proj(A) the fat point module D is a quotient of the plane degree d
curve module M’.

If (M) = 0, then ¢ factorizes over Lg giving a non-zero gradation preserving
morphism Lo — F. By assumption Lg has a point module quotient say p € Pa.
We have the diagram :

0 - L'(-1) - Lg — p — 0
4
0 — D(-1) — F

where the kernel of the epimorphism Lo — p is easily verified to be a twist of
- .a line module I’ of A. The image of L/(—1) in F cannot be zero because F is
- “craitical'and of multiplicity > -1 so we.cannot have a non-zero induced-morphism .
p — F. But then, by an argument as before, D is in Proj(A) a quotient of the
line module L'. a

Remark 5 This result can be used to show that fat point modules of the defor-
mations of Sklyanin algebras found by J. T. Stafford [28] (these algebras have
2 central elements of degree 4) are either quotients of line modules or of plane
elliptic curve modules. In view of the result we are about to prove and which
shows that for deformations of U(slg) there is no bound on the degree of the
plane curves occuring in the proposition, one is tempted to conjecture that there
are deformations of the 4-dimensional Sklyanin algebra with similar properties.
We leave this as a suggestion for further work.
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We will now show thzit in case a'cd = 1, the algebras Hgjc(slp) satisfy
the requirements of the proposition. Recall that we have the following basic
normalizing elements :

e a central degree one element T’

e a normalizing degree one element N with commutation relations NY =
aYN,NZ =a~'ZN and NT=TN

e a normalizing degree two element C with commutation relations CN =
NC,CT=TC,CY =c~'YC and CZ = cZC

From this data one immediately obtains

Lemma 10 Let i,j € IN with d = max(¢,25). Then :

1. Ifat = ¢, .then Hape(slp) has 2 central elements of degree i + 2j namely
Q= T2 gnd Qy = N*CY

2. Ifaic! =1, then the twisted algebra Hgape(sla), with respect to the graded
automorphism T defined by

(NY=N 1(T)=T (¥)= Va¥Y 1(2)= YaZ

has two central elements of degree d namely Q; = NiT4=% gnd Qy =
ciTe-%

Proof : Only the second part requires some explanation. In Hgapc(slg),
Q; and Q, are normalizing elements of degree d and automorphism ¢(N) = N,
H(T)=T, $(Y) = a9 and ¢(Z) = a®Z. As both N and C are fixed under 7,
the result follows. 0

Lemma 11 If o' = ¢/ and with notation as above every Q = afdy + By has
a line module of H = Huo(slp), Lx = H/(H.Z + H.(N — AT)) satisfying the
requirements of the proposition.

Proof : Observe first that the L, are indeed line modules for Hapc(sl2)
(they are the induced modules from point modules of the Borel subalgebra B').
As the quotients H/(T) and H/(N) are Auslander regular of dimension three
(and hence have line modules with the required properties) we may assume that

af # 0.

From the description of C' it follows that C acts on L as F(A)T? where
FA) = b(e—1)(ac—1)A% +(a—1-2b)(c—1)(a® c—1)A+(1—a+b)(ac— 1)(a® -1)
and hence Q5 acts as A’ f(A)7Q; whence Ly is annihilated by Q2 — X FAY Q.

As f(]) is not identically zero (unless in the special cases treated before where
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we can modify the argument) we have a non-constant map from the IP? of line
modules Ly to the IP! of elements © which is therefore surjective.
Therefore, every Q annihilates a line module. The fact that Q.(H/Hu) # 0

“for every u € € Z+ C(N.— AT) can be shown by-going to the.domain-H/(T,N) - . -

and the fact that Ly has a point quotient is clear from the fact that line modules
are secants. O

As a twist has the same line modules, the above argument can be modified
slightly to give the same result for the case when ated =1 with i, € IN. So,
we have a discrete family of two-parameter families of algebras for which the
fat point modules are either quotients of line modules (which will alwas be the
case for the generic values in the family) or quotients of plane curve modules
(which is necessary for the Zariski-dense subset of algebras in the family which
are finite modules over their center).

4.3 The Witten algebras W,(slz)

The complete classification of the finite dimensional simple representations of
these two-parameter families of conformal sly enveloping algebras will be given
in the second part of this paper. To give the reader some idea of the method
involved we will finish by presenting a scetch of the easiest case when ¢ = 1 and
b = a — 1, that is the case of the Witten enveloping algebras W;(slg). From
the discussion on normalizing and central degree two elements given before we
obtain :

Lemma 12 There is a unique one-parameter family of conformal sly envelop-
ing algebras with a non-trivial central degree two element C. This family is
determined by ¢ = 1 and b = a — 1 and hence is isomorphic to the Witten
algebras Wy(sla).

This fact can be used to identify several seemingly unrelated quantum alge-
bras discovered by physicists. It should be noted that some of these connections

~ . were observed by.S: Majid [19] or [20] in the investigation of his-braided matrices. -

[21]. The connection between W,(slg) and the algebras of Kulish and Sklyanin
was brought to my attention by M. Vancliff (unpublished).

By a generic isomorphism we mean that there is an isomorphism for general
values of the parameters. However, the formulas used in this isomorphism can
have poles in a finite number of special values where the symmetry between the
different objects is broken.

Proposition 11 There is a generic isomorphism between the following classes
of algebras :

1. Homogenizations of the Witten algebras W,(sla) of (81] and [13].
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2. Majid’s braided matrices BM,(2) of [21] which are quadratic algebras gen-
erated by A, B,C and D satisfying the relations

-BA=¢?AB, CA=q"%AC, DA=AD; BC.=CB+(1—-¢ ?)A(D-A)
DB=BD+(1-¢%)AB, CD=DC+(1-4¢%)CA

3.  The dlgebras related ‘to reflection -equations of P.P. Kulish and E.K.
Sklyanin [11] which are quadratic algebras generated by A,B,C and D
satisfying the relations

[A:B] = (q - q_l)AC, AC = qch) [Aa D] = (q - q—lj(qB + C)C
[Bacq =0, [B)D] = (q - q—cha CD= quC

4. The q-deformed Minkowski space algebra of W.B. Schmidke, J. Wess and
B. Zumino [25] and others such as [19], [7], [23] a.0. which is a quadratic
algebra generated by A, B,C and D satisfying the relations

AB = BA—q '\CD+¢q\D? BC=CB-q 'A\BD, BD=¢’DB

AC =CA+ g \AD, AD=q?2DA, CD=DC
with A = ¢ —¢™1.
Hence, the surprising fact about the homogenized Witten algebras, or in our
notation H,(sly) with defining equations

NY =aYN, aNZ=2ZN, YZ-2Y = a_l"i(Nz —~ NT)

and T central, is that it is both a deformed enveloping algebra and a de-
formed Minkowski space algebra. This point has been made by S. Majid in
[20, §3.5]. Therefore, investigation of the finite dimensional simple representa-
“ tions of Wy(slg) or H,(sly) may be important.

- In-physics;-one-usually imposes-a-real or Hermitian-structure on-the algebras
and their representations. In this case this is usually done with demanding that
a is real and

N=N, T=T, Y=2, Z=Y

see for example [24]. However, then it is clear from the discussions on finite
dimensional representations of Hap.(slo) in the generic case that for a # %1
one has a discrete family of simples which can hardly be viewed as points in a
deformed Minkowski space !

However, there is another possibility to impose an Hermitian structure on
Hy(slp). Assume a € € to lie on the unit circle and define

N=N, T=T, Y=+aY, Z=+/aZ
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then the central element

€= 1((a=1)a" ~ DY Z + N* = (a+ DTN)

is a self conjugated operator playing the role of a deformed metric. In particular, -

if a is a primitive n-th-root of unity, then H,(slp) is a finite module over its
center Z. The variety associated to Z is 4- dimensional and parametrizes semi-
simple n-dimensional representations of H,(slp) and hence can be viewed as a
deformed Minkowski space (at least the ’real” points of it).

We will indicate how one can find all fat point modules of Ha(slp) in case
a is a primitive n-th root of unity. Observe that one obtains all n-dimensional
simple representations of H,(slg) by specializing T' to a constant A € C* in
these fat points. Further, it should be mentioned that because in this case all
fat point modules are quotients of line modules we follow the Smith-Staniskis
approach of [27] or [26].

To begin, the fat point modules of multiplicity one correspond to points on
the point variety which consists of the plane V() (where the automorphism
is the identity) together with a conic V(T (a — 1)(a® — 1)Y Z + N?) (where the
automorphism is given by sending p=(n:y:2z:0) too(p) =(n:ay:£:0)
and one extra point o = (1:0:0: 1) (here, we use the coordinates N,Y, Z and
T).

Next, let us characterize the fat point modules F, of intermediate multiplicity
1 < e < n. F. as a B-module where B is the Borel subalgebra generated by
Y, T and N must be an extension of point modules as B localized at YTN is
an Azumaya algebra of p.i.-degree n. Hence, F. must be a quotient of a line
module of the form Ly = H,(slg)/(H.Y + H.(N — AT)) and we did already
compute which of them can have such a fat point quotient, namely the zeros of
a quadratic relation. Here there is just one non-trivial zero for each e (the other
zero is A = 0 but for the same reason as above for B, the quotient H/(N) can
have no fat point modules of multiplicity €). Hence, there is a unique fat point
module of multiplicity 1 < e < n.

* "The remaining (and more interesting) case will be

Proposition 12 If a is a primitive n-th root of unity, then every fat point
module of H = Ha(slp) of multiplicity n is of the form

F = H/(Hll +H12+H(Nn -/\Tn))
where A # 0 and V(I1,15) determines a line module of H.

Proof : We will scetch the main arguments. Details can be filled in from
[26]. We know already that F is a quotient of a line module L = H/(HI,+ Hly)
and we will consider the case here where L is the secant line determined by
a point p on the conic and a point n on the plane V(XN), the remaining cases
reduce to some three dimensional regular algebra and are easier. Observe, that
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we already characterized the line modules of H going through p as all the lines
lying in the plane determined by p, o(p) and o so we have complete knowledge
of the possible /;.
~+In“Proj(H), the kernel-of the epimorphism'L-— F'.can be-shown to be a
shifted line module
0—-L(-n)—»L—F—0

where L' is the line passing through ¢™"(p) = p and n. Hence L’ = L and we
have to find degree n maps from L to itself.

This can either be done by projecting to p or n and iterating this process as in
[3] or [26] or by noticing that we have already two degree n central elements T™
and N™ and hence a IP! of degree n maps from L to itself given by multiplication
with Q@ = oT” + BN™. As Q acts as a non-zero divisor on L, the Hilbert series
of L/QL is {&;.

I o = 0, the quotient L/QL cannot be a fat point module as it has point
module quotients (either p or n). However, if o8 # 0 we claim that the quotient
“is-indeed a fat point module of multiplicity n. Assume otherwise, then L/QL
would have a fat point quotient F, of multiplicity e < n. In Proj(H) we would
then have a sequence

0—L(-e)—L—>F —0

where L' should be a line module corresponding to the line passing through
the points n and o~°(p). However, for all but a dimension one family of n
(where a different argument is needed) n does not lie in the plane determined
by o~¢(p),c~**1(p) and o and so L’ is not a line module for H so the above
sequence cannot exist.

Finally, by a dimension argument one concludes that all fat point module
quotients of L of multiplicity n are of the prescribed form. ]

Using the terminology of [16] one deduces from the foregoing proof that the
ramification locus of H is not pure of codimension one (for example, the conic
at infinity is a codimension two component) and hence the central Proj has
“singularities by [16, Thm. 1]. Hence, the 4-dimensional variety corresponding
to the center Z of H,(slg) has lots of singularities. 'We leave the interpretation
of these singularities in deformed Minkowski space to your imagination.
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