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Abstract

Let R be a multi-parameter solution of the quantum Yang-Baxter
equation of type A,_1. In this note we prove that S. Majid’s algebra
of braided matrices B(R) is a Noetherian Auslander-regular domain
of dimension n? satisfying the Cohen-Macaulay property. For each n

thereisa,1+(n'_1

2 ) dimensional family of such algebras.
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Abstract

Let A be a positively graded Auslander-regular algebra satisfy-
- ing the Cohen-Macaulay property which is a finite module over its
center. We show that Proj(A) is a sheaf of tame orders which are
Cohen-Macaulay modules over their centers which in turn are inte-
grally closed Cohen-Macaulay algebras. Moreover, the singular locus
of the center coincides with the non-Azumaya locus provided the last
one has codimension at least 2. Weaker results are shown in case A is
Auslander-Gorenstein.




Homological Properties of Braided
Matrices

Lieven Le Bruyn*
Departement Wiskunde en Informatica
UIA,B-2610 Wilrijk (Belgium)

lebruyn@wins.uia.ac.be

March 30, 1993
March, 1993 Report no. 93-11

Abstract

Let R be a multi-parameter solution of the quantum Yang-Baxter
equation of type A,—_1. In this note we prove that S. Majid’s algebra
of braided matrices B(R) is a Noetherian Auslander-regular domain
of dimension n? satisfying the Cohen-Macaulay property. For each n

thereis a 1+ (n—

9 1) dimensional family of such algebras.

Central singularities of certain quantum
spaces

Lieven Le Bruyn*

Departement Wiskunde en Informatica UIA
B-2610 Wilrijk (Belgium)
lebruyn@wins.uia.ac.be

April 1, 1993
April, 1993 Report no. 93-12

Abstract

Let A be a positively graded Auslander-regular algebra satisfy-
ing the Cohen-Macaulay property which is a finite module over its
center. We show that Proj(A) is a sheaf of tame orders which are
Cohen-Macaulay modules over their centers which in turn are inte-
grally closed Cohen-Macaulay algebras. Moreover, the singular locus
of the center coincides with the non-Azumaya locus provided the last
one has codimension at least 2. Weaker results are shown in case A is
Auslander-Gorenstein.




Homological Properties of Braided
Matrices

Lieven Le Bruyn*
Departement Wiskunde en Informatica
UIA,B-2610 Wilrijk (Belgium)

lebruyn@wins.uia.ac.be

March 30, 1993

Abstract

Let R be a multi-parameter solution of the quantum Yang-Baxter
equation of type A,_;. In this note we prove that S. Majid’s algebra
of braided matrices B(R) is a Noetherian Auslander-regular domain
of dimension n? satisfying the Cohen-Macaulay property. For each n

thereis a 1+ ( n—1 dimensional family of such algebras.

2

1 Introduction

S. Majid [9] associates to every solution R of the quantum Yang-Baxter
equation a quadratic algebra B(R) called the ring of braided matrices. If
R is the classical solution corresponding to the semi-simple Lie algebra g,
then the quantum enveloping algebra U,(g) is an epimorphic image of B(R),
see {10]. In the simplest case when g = slz, B(R) is a degeneration of the
4-dimensional Sklyanin algebras [11] studied extensively recently,a.o. [17],
[18].

For every simple Lie algebra g there exist multi-parameter solutions of
the Yang-Baxter equation. In this paper we will show that for g = sl the
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associated braided matrices (which depend on 1+ Ln_—_l%n_—?l parameters) have
all the nice ringtheoretical properties : they are Auslander regular domains,
Noetherian maximal orders and satisfy the Cohen-Macaulay property.

In view of these results and the classical sly case mentioned above it
would be interesting if these algebras turn out to be degenerations of even
more interesting quadratic Auslander regular algebras.

The strategy of the proof has three main parts. First, we show that
B(R) has the same Hilbert series as the commutative polynomial ring on n?
variables. This is essentially an aplication of Majid’s transmutation theory
[12]. First we show that we can always take R to be a regular solution of the
Yang-Baxter equation, meaning that a quotient of the FRT-algebra A(R) is
a dual quasi-triangular Hopf algebra. Then transmutation asserts that B(R)
and A(R) have the same Hilbert series and the result for A(R) was proved
by M. Artin,W. Schelter and J. Tate in [2].

- The second step is to find a normalizing system of 2n — 1 generators such
that the quotient is braided matrices corresponding to sly_1. The main point
is to show regularity of these elements at each stage which follows by a simple
argument from our knowledge of the Hilbert series.

The final step is inducing all properties up through this normalizing sys-
tem. This is a combination of filtered techniques with twisting 4 la [3].

Presumably the same strategy may be used to prove similar results for the
other multi-parameter solution sets. In a separate paper we will investigate
the geometry of these braided matrices and relate them to the classical case
of the homogenized enveloping algebra of sl as studied in [4] and [5].

2 Dual quasi-triangularity of A(R)

The multi-parameter solution R to the Yang-Baxter equation of type A,_;
has the following form

R = 8.6] Mi; + 818] Li;

where 1
My = 6 4 0 — 4 @i 128
qij r

Lij = @i‘j(l — 7'_2)




see a.0. [16]. In these formulas, ©% equals 1 if i > j and zero otherwise, ¢;;
with ¢ < j are the multi-parameters and r is the deforming parameter. One
recovers the usual deformation by setting ¢;; =r =g forall 1 <i,j < n.
The corresponding function type algebras A(R) (quantum GL,) are gen-
erated by n® non-commuting variables : (corresponding to the position (3, 5)
in an n X n matrix) and satisfying the following defining quadratic relations
eqn(i,j, k1) : R ™47 = Ry kgl

mn”g

(sum over m,n). Using the above form for R this equation becomes
Miktj-t;c — Mjlt;ct; = (Llj — Lik)t‘?t;

These algebras were studied independently by M. Artin,W. Schelter, J. Tate
[2], A. Sudbery [20] and N. Reshitikhin [15]. Among the ringtheoretical
properties proved in [2] we mention the fact that A(R) is an iterated Ore
extension and hence is an Auslander regular domain of global dimension n?

having Hilbert series W In order to translate the results of [2] to the

ring A(R) one has to take into account that p;; = 2= and that A = %

Moreover, A(R) becomes a bialgebra if A(t}) = tz ®t¥ (sum over k) and
€(t) = 6. There is a grouplike determinant element

D= E q? 7(') H t7r(z

7ESy

which is normalizing. Here, the coefficient is determined for each partition

7 € S, to be
olgm)= I (Muoai)™

1<g,w(3)>(5)
We want to determine when R is regular, that is, the quotient A =
A(R)/(D—1) is a dual quasi-triangular Hopf algebra. A necessary condition
clearly is that D has to be a central element of A(R). This restriction is
easily deduced from [2, Th.3] (see also [16]). In terms of M;; these conditions
can be described as .

H M;; = pl=n

i=1

for every j = 1,...,n. The number of remaining free parameters is 1 +
(n—1)(n—=2)
> .




If the above conditions are satisfied, A = A(R)/(D — 1) is a well de-
fined Hopf algebra (e.g. use [2] for the antipode). It is obvious from the
explicit form of the dual quasi-triangular structure of A(R) as an array of
R-matrices [14, §5.2] that the dual quasi-triangular structure descends to the
quotient if D acts as the identity on the fundamental representation p*, on
the conjugate fundamental representation p~ of A(R) and on their respective

anti-representations pJ and p;. These representations A(R) — M, (@) are
defined by ‘ .

p*(t5)0 = AR} and p~(t;)] = ATH(R7Y)j;
and the anti-representations

PHEN = ARE and pr(E)f = N (RS

for some A € (" which corresponds to a suitable normaliation of the R-
matrix. Our job will be to verify that we can choose A such that D acts as
the identity in all four representations. Perhaps the following result is known
among specialists.

Proposition 1 Let R be a multi-parameter solution of type A,_1 to the
quantum Yang-Bazter equation such that D is central in A(R). Then, the
quotient A = A(R)/(D —1) is a dual quasi-triangular Hopf algebra.

Proof : We have to verify that D acts as 1 on the
fundamental (anti)representation and on the conjugate fundamental
(anti)representation.Now,

p+(D) = )‘n( Z ( )Rﬂ'(l),ml R12r,(7;z)1,m2 R:(Z,l)nl—l )l

TESH

We claim that only the terms with # = ¢d contribute. For, look at the
minimal ¢ s.t. 7(z) > ¢ then according to the form of the R-matrix the term

R:‘ZZ),;; 6m 6:1(;_1 Lm(i‘) =0
Therefore, pt (D) =
/\n(Rl m 312; RZ ;nn_l [ = = A\"( My Mag.... nk)]l: = )\n(r1_n)§

where the last equality follows from the centrality conditions on D. Hence, if
we choose A = V/r*~1 then p*(D) = 1. The same argument gives p} (D) = 1.
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As for the conjugate fundamental representation, observe first that
(R’l) = §; ¢5"’M,c + 6] 6"@”(1 r?)

where M;' = § + ©%ig;; + @’7 so M;' = r?Mj;. A similar argument as
above shows that p~(D) is equal to

AR g (R = (Mg Mg MEDE = (1)f

and similarly for p; (D), finishing the proof. O

3 Defining equations of B(R)

We will now turn to the braided matrices B(R) formed from these type A,_;
R-matrices. Their properties will resemble those of enveloping algebras of
semi-simple Lie algebras. In this section we aim to prove the following

Theorem 1 Let R be a multi-parameter solution of type An_1 of the quan-
tum Yang-Bazter equation. Then, there exists a regular solution R' such that

B(R) = B(R).

We recall from [13] that B(R) is generated by the n? variables u’ (again
represented by the entries of an n xXn matrix) satisfying the defining quadratlc
relations

eqn( >]ak l) RabubRcdul =u RbcudR

(sum over a,b,¢c,d). As any R-tensor term has two terms
i k i k
I 5i8 My >< 665 Ly

i1 i1

and as any proper cross term involves a ©* term leading to an inequality
condition, it is easy to eliminate and limit the summation indices in each of
the 4 different cross symbols.
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Lemma 1 The equation eqn(z, j, k,1) can be rewritten as
Mk,M,ku;uf - Mliszufu§ + (Lki — Llj)Mj,-ufuf =

843 (LaiLii — Lpi Lai)ufuf + 6 > Mji Lasufu? — 885" My Loguluf

a>i a>t a>j

Proof: Let us compute the left hand term R¥ R%uluf by cross-symbols.

We obtain
k i c a
i 0 K
Mk;Mjku;ul
a b j d
k i c a
>< O o> My Lejuguf
a b j d
k i c a
ko
>< Lk,-M,-iuju}
a b j d

k i c a

. k
>< >< 6; Xesi Lii Leiuguf
a b j d

Similarly, one calculates the right hand side leading to the claimed expression.
0

We can divide both sides of egn(z, j, k,[) by M;; and define for all u,v,w €
{1,2,..,n} © Myywy = Myy.-Myy.(My,)™'. Then, the foregoing expression
becomes . ' “

M,kzuzjuf — Mjliufu; + (Lk,' — sz)u’;u} =
(1 —r=2)(& Zufu‘; - 6;? > ubuf + 6; > (Lij — Lis)ubuf)
a>t a>j a>t
Thus, the defining relations of B(R) depend only upon r and the 9—’-:%("—_22
parameters My;; as Myyw = Myuuy Myyw(Mpuw) ™. One verifies that one can
always find Mj; for 1 < 4,5 < n—1 such that M,;; = M, where the M}, are

n;
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determined by satisfying the centrality restrictions of the foregoing section.
If R’ is the associated multi-parameter type A,_; solution of the quantum
Yang-Baxter equation, then R’ is regular by proposition 1 and B(R) = B(R')
by the above, finishing the proof of the theorem.

From the form of the defining equations we see that they not only depend
on the relative position of the entries in the matrix but also on their position
with respect to the main diagonal of the matrix.

If none of (Z,7),(k,j) or (3,!) lie on the main diagonal, the situation is
very similar to the A(R) case. In this case the defining relations are

agbak gkt
M7kzu‘7~ul = Mﬂzul UJ

M,kzu;u{“ = M,zzufu’j + (7"_2 — l)u’;u}

wiuf = r? Mjuful

Mk — 1k
k r*M;puwiu; = uju

il

However, of one of the vertices of the square lie on the main diagonal we
get extra terms. For example, if j = k we get the following commutation
relations




ik ke (=2 i
wiuf — Mjuiul = (r 1) Yosj upuf

And similar expressions for the other cases. From the defining equations it
also follows that the diagonal matrix variables form a commutative subal-
gebra (cfr. the usual torus in GL,). In fact, these braided matrices have
similar properties as the homogenized enveloping algebra of sl;, although we
may recover other rings in the semi-classical limit.

4 The Hilbert series of B(R)

In this section we will prove the following result

Theorem 2 Let R be a multi-parameter solution of the Yang-Bazxter equa-
tion of type Au—1. Then, B(R) has Hilbert series (1 —t)™".

As usual, this is essentially an application of Bergman’s diamond lemma
[1]. For the corresponding FRT-algebras A(R) the Hilbert series was deter-
mined in [2]. From the specific form of the defining equations of A(R) it
follows that it is sufficient to restrict to the case of 3 x 3 matrices to solve
all the overlap-ambiguities. As this limits the calculations to just a few cases
these were then carried out by hand. For B(R) however we have seen that
the defining equations do not force trinomials to be expressible in the entries
of a 3 x 3 submatrix of the matrix (u%). We will circomvent this problem by
Majid’s theory of transmutations [11].

By the result of the foregoing section we may restrict attention to the case
when R is a regular multi-parameter solution of type A,_;. This means that
there is a dual quasi-triangular Hopf algebra A defining a braided monoidal
category (the A-comodules) such that B(R) is a bialgebra in this category
[13, 85]. In fact, the original motivation for introducing B(R) was that A
does not act covariantly on A(R) (by the adjoint coaction induced by the
projection A(R) — A). However, if we keep the coalgebra structure of A(R)
but define a different algebra multiplication then we obtain B(R) on which A
acts covariantly. This, in turn, clearly distorts the bialgebra structure which
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we can save however if we change the tensor products. For more details on
transmutation theory we refer the reader to [12] and [13].

For our purposes it is important to note that A(R) = B(R) as graded
vectorspaces and hence have the same Hilbert series. As the Hilbert series
of A(R) is (1 —t)™ by [2] this finishes the proof of the theorem.

One can also give a quantum-group free proof of this result as follows.For
bi-invertible solutions to the Yang-Baxter equation which are not necessarely
regular S. Majid has given an inductive procedure to relate monomials in
A(R) and B(R) in each degree [13]. The first three maps are

T : B(R) — A(R)

To(ujuf) = RgRictit] .
Ty(uiuful’) = R? R Re, RyRYR, 1151 (1)
where R = ((R%)~1)% where ¢, denotes transposition in the second factor.
It is then an amusing exercise in cross-symbol computations to show that
these maps are well-defined and that they are triangular when restricted to
ordered trinomials. From this fact when then deduces that all overlap ambi-

guities in B(R) can be solved and hence that ordered (in the lexicographic
ordering) monomials form a basis for B(R).

5 A normalizing reduction system for B(R)

An ordered set ay,...,a; € A is said to be a normalizing reduction system
iff the image of a; is normalizing and regular in the quotientring A;_; =
A/(Aay + ...+ Aa;_q) for each 2 = 1,...,n. In this section we will prove
Theorem 3 Let R be a multi-parameter solution of the Yang-Baxter equa-
tion of type An—y. Then, {u;n,un; : 1 < i < n} ordered under inverse
lexicographic order is a normalizing reduction system for B(R) with total
quotient braided matrices associated to a solution of type A,_s.

Unmy Unn—1y -y Un, 1y Un—1,my o+ Uln




We will first show that this set is a normalizing system. As egn(n,n,k,!)
is

we see that u,, is a normalizing element. Next, eqn(n, j, k,1) is

n, k k,n k,n =2\ ¢k n,a
M,knu] Uy — Mjlnul u] = L[jUjul + (1 —-7T )61 Zuaul
a>j

As the right hand side lies in the ideal (wpp,Unn—1, - Un j+1) Whence the
image of u7 is normalizing in the quotient. Finally, eqn(é,n,k,1) is

i,k k, i k, i ~2y i k, a
Mypivgui — Musiviuy, = —Lgugug + (1 —r72)68 ) ubul
a>t

and again the right hand side belongs to the ideals (Unmn,n—1mn -+, Uit1,n)
proving the claim.

Moreover, it is easy to see from the defining equations that the quotient
B(R)/(¥im,un; : 1 < ¢ < n) is indeed braided matrices associated to a
solution of type A,_,. Therefore, it remains to show that the system is a
reduction systen i.e. that each of the images is a regular element in the
corresponding quotients. This follows from the knowledge of the Hilbert
series of B(R) and of its total quotient (which is braided matrices of type
A,—2) and the following lemma

Lemma 2 Let A be a graded algebra with Hilbert series (1 — t)™ and let
{a1,...,ar} be a normalizing system of degree one elements such that the
quotient A/(ay,...,ar) has Hilbert series (1 — )™ % then {ay,...,a1} is a
normalizing reduction system.

Proof : For each i let Ann(a;) denote {q € A;_; : ¢.@; = 0}. For each 4
we have an exact sequence of graded vectorspaces

0 — Ann(a;) — A;.y = Ay —» A; = 0

where the middle map is right multiplication with the normalizing degree
one element @;. This gives the following relations between the Hilbert series

H(A;,t) = (1 — t)YH(A;-1, t) + tH(Ann(a;), 1)
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for every ¢. Combining we obtain,
H(Ax,t) — (1 —t)FH(A,t) =

(1 — t)F " H(Ann(a1),t) + (1 — t)* 2t H(Ann(as), t) + ... + tH(Ann(az), )

Using the assumption the left hand side is zero. Hence, because Hilbert series
have positive integer coefficients it follows that

H(Ann(a;),t) =0

for every : finishing the proof. 0

6 The main result
In this section we will prove

Theorem 4 Let R be o multi-parameter solution of the Yang-Bazter equa-
tion of type A,_1, then B(R) is an Auslander regular domain, a Noetherian
mazimal order and satisfies the Cohen-Macaulay property.

In view of results of Th. Levasseur [7] and J.T. Stafford [19] we only
have to show that B(R) is Noetherian, Auslander regular ans satisfies the
Cohen-Macaulay property.

We recall that an algebra A is said to be Auslander regular of dimension n
iff gldim(A) = n and for every submodule N of Exty(M, A) (M any f.g. left
A-module and 0 <7 < n) we have that j(N) = min{j : Ezt),(N, A) # 0} >
2. For a Noetherian algebra A of finite Gelfand-Kirillov dimension m we say
that A satisfies the Cohen-Macaulay property iff GKdim(M) + j(M) = m
for every f.g. right A-module M.

As @'[z] clearly satisfies all properties we will prove the theorem by in-
duction on n using the regular normalizing system of the foregoing section.
Therefore, the result follows from the following

Proposition 2 Let A be a positively graded algebra with a regular normal-
izing element n of degree 1. If B = AJ/An is Noetherian, Auslander regular
satisfying the Cohen-Macaulay property, then so is A.
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Proof : As n is a regular normalizing element it induces a graded
automorphism 7 on A. Let A, be the twisted algebra with respect to this
automorphism as in [3]. As there is a natural equivalence between A — gr
and A, — gr (the categories of graded f.g. onesided modules), A satisfies the
required properties iff A, does. Now, n, is a regular central element of degree
1in A.. Then, A, is the homogenization (or Rees ring) of the filtered algebra
A;/(n;—1) = R. The associated graded ring of the filtered ring R is A,/(n,)
which is a twist of B so is Noetherian,Auslander-regular satisfying the Cohen-
Macaulay property by assumption. Now, standard filtered techniques as in
[8] entail that A, (and hence A) is Noetherian and Auslander-regular. For
the lift of the Cohen-Macaulay property see [7]. 0o

This combination of twisting and filtered techniques can also be used
to determine inductively all linear subspaces in Artin’s quantum space
Proj(B(R)) = B(R) — gr/(B(R)+ — torsion) much as in [6]. In a forth-
coming paper we will see that one can use Majid’s Lie-like bracket on B(R)
[10] to get a more transparent description of linear subspaces as in the case
of homogenizations of enveloping algebras of Lie algebras as in [4] and [5].
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