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1 Introduction

The question whether every finite dimensional division algebra of prime de-
gree is cyclic remains unsettled even after 60 years. The algebras discov-
ered by M. Artin and W. Schelter [2] (which we now call the 3-dimensional
Sklyanin algebras) provide a new construction for possible counterexamples.
These algebras A,(F) are determined by an elliptic curve F and a point
7 € E of order p. Artin and Schelter showed that these algebras are virtually
never skew polynomial rings [2, 6.11]. Still from work of M. Artin,J. Tate and
M. Van den Bergh [3], [4] and especially the recent work of S.P. Smith and
J. Tate [13] we can compute explicitly with these algebras. Though A.(FE)
arises from a very cyclic situation (an isogeny of elliptic curves) it turned
out to be hard to prove cyclicity even for small values of p = ord(7). In this
paper we collect a few observations on the problem.

The 3-dimensional Sklyanin algebra A,(E) determines a sheaf of maximal
orders A over IP? whose ramification divisor is the isogeneous elliptic curve
E' = E/ < 7 >. Moreover, A.(E) has a cyclic division ring of fractions if
and only if A4 has one. A possible approach to disprove cyclicity is as follows :

*research associate of the NFWO (Belgium)
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assume that A is cyclic and that the basefield K contains a primitive p-th root
of unity. Then, A determines a symbol (f(u,v),g(u,v)), € k2(K(u,v)), =
Ky(K(u,v))/pK2(K(u,v)) with f,g € K[u,v] (u and v are affine coordinates
on IP?). If P is a point of IP? not lying on E' or the curves determined by f
and g, then the residue central simple K-algebra A(P) must be cyclic with
symbol (f(P),g(P)), € ka(K),. If we find another way to prove cyclicity
of A(P) allowing us to calculate its symbol,this will put restriction on the
possible polynomials f and ¢ hopefully leading to a contradiction. Similarly,
we may investigate the symbols of line (or more generally curve) quotients
of A.

In section 2 we briefly recall the construction and basic properties of
the Sklyanin algebras focussing on the computational point of view. As an
example we include the defining equations of A,(F) and its center Z,(E) in
case ord(T) = 5 as we need these facts in the final section. Similar results on
the torsion cases with ord(7) < 12 can be found in [10].

" In section 3 we prove that the point quotients A(P) are indeed cyclic and
determine a lot of dihedral splitting fields arising from lifting points through
the isogeny 7 : E — E’. From this it follows that if A is cyclic with symbol
(f,9), then the polynomials f and g must be important invariants of the
isogeny. This may in particular be useful in case K is a number field or the
function field of the modular curve Xi(p).

In section 4 we perform a similar study for certain line quotients A(I).
The motivation here is not only to impose further restrictions on the possible
symbol (f,g), but equally the search of ’good’ quotientalgebras A.(E)/(L)
where L € Z,(E),. Recall that most structural results on A,(E) are proved
using the fact that the quotient modulo a canonical central element of degree
3 is the twisted coordinate ring of the elliptic curve. It would be interesting
to have more skew-ring like central quotients. Using the non-commutative
Riemann-Roch theorem [14] we show that if [ is the tangent line to E’' in
a K-rational point not lying in the image of the isogeny and if A(I) is a
domain, then it is an order in a skew polynomial ring. Computing the tame
symbols then puts heavy restrictions of f and g.

In section 5 we compute the symbol of A in the quaternionic case using
the theory of quadratic forms. Some of the easiest line quotient symbols are
also calculated.Maybe the arithmetical invariants of the conic bundle surfaces
corresponding to line (or conic) quotients may prove interesting invariants of
the isogeny.




In section 6 we prove that A is cyclic (over any basefield K) in case p = 5
and if p = 7 cyclicity follows if K is sufficiently large to contain a K-rational
intersection point of a specific cubic and sextic curve in IP?.

Summarizing, even if the 3-dimensional Sklyanin algebras turn out not
to be counterexamples to the cyclicity problem, the determination of their
symbol will give us a valuable new invariant containing a lot of information
on the isogeny F — E'.

Acknowledgement
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2 Sklyanin algebras

In this section we recall some of the basic properties of 3-dimensional Sklyanin
algebras. For more details we refer to the original papers [3] and [4]. For
our purposes we like to stress some of the more computational points of the
theory. We refer to [10] for more details.

Throughout, K will be an arbitrary field, p will be a prime number dif-
ferent from 3 and (E,7) will be a K-rational point on the modular curve
Xi(p). That is, F will be a K-defined elliptic curve in Weierstrass form

y2 + a1zy + asy = 2° + ap2” + a4z + as

(all a; € K) and 7 € E(K) will be a K-rational point of E of order p.

To such a setting we associate a quadratic Auslander regular K-algebra
on three generators X,Y and Z, the 3-dimensional Sklyanin algebra A.(E).
Its defining equations can be computed as follows. Let P, P, and Ps be
K-rational points on E s.t. P; + P, + P; # —[3]7 in the Abelian group
E(K),then the defining relations of A,(E) are generated by

4 = lPi+[2]7'yPi+1"‘7' ® ZP;‘,P1'+2 - O‘iZPi+[2]T,Pz‘+2—T ® ZPi,Pi+1

where the subscripts ¢ are taken modulo 3, [pg denotes the linear term in
X,Y,Z determining the line in IP? = IP(A%) through P and Q and the
coefficients «; can be calculated by evaluating in a point P € E(K) s.t. P
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nor P + 7 lie on any of these lines. In [10] it is shown that one can always
arrange things s.t. all relations have coefficients from Kji.e. A,(E) is a
K-defined algebra.

It turns out that A,(F) has a central element of degree 3 which we will de-
note with ¢z and which plays the role of a twisted Weierstrass equation. One
of the key facts in studying Sklyanin algebras is that the quotient A,(F)/(c3)
is the twisted coordinate ring O.(FE) of E with respect to te automorphism
given by translation with 7, see [3] and [6].

Example 1 Let p = 5. Any K-rational point (E,7) of X1(5) can be repre-
sented by the elliptic curve

E:y*+ (1 = dzy — dy = 2° — da®

where d € K s.t. d°(d® —11d — 1) # 0 and where 7 = [0 : 0 : 1]. Using the
points in the cyclic subgroup generated by 7 (and varying the P; in the above
construction until one has a 3-dimensional set of equations) one deduces that
the quadratic relations for A,(E) are generated by

Y2 dX*+ XY +d?ZX —-dZY = 0
d*7% - XY — dZX
XY+YX+(1-d)X*-dXZ = 0 (1)

Il
o

and that the twisted Weierstrass equation is given by
1
¢y = —E(Y3 +d*X*7 — dX*Y — dX?)

From [3] and [4] we recall that A,(F) is a domain of p.i.-degree p which
is a finite module over its center Z,(F). M. Artin,W. Schelter, S.P. Smith
and J. Tate [5] and [13] proved that the center Z,(E) is generated by c3 (the
twisted Weierstrass equation) and 3 central elements of degree p (which we
will denote by U,V and W) satisfying one equation of the form

i = f(U,V,W)

where f is a cubic form describing the isogenous elliptic curve B/ = E/ < 7 >.
In [10] a computational method was given (based on results of J. Vélu
[17]) to find the central elements U, V, W and the cubic f. On the level of
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the twisted coordinate ring O,(E) = A.(F)/(cs) we proved that the center
is generated by the following three degree p elements

p—1
u=XZP 4 ZXZP 4+ 2P X = S w(fi)r) 2°

=1

p=1
v=YZP 4+ ZY 2P 4 L+ 207 = S y([d)r) 27

=1
w=4*

where z(P) resp. y(P) denotes the z (resp. y) coordinate of the point
P € E(K). These three elements satisfy the cubic relation

v2w + Ajuvw + Azvw?® = u® + Autw + Aguw? + Agw®

where the coefficients A; can be computed explicitly from the a; and the
coordinates of [i]7 see [10, Prop.6] for more details.

By [13] we can lift every central element of O.(F) to Z.(E),that is, there
exist homogeneous elements u',v’ and w’ of A,(E) of degree p — 3 s.t. U =
u+csu',V = v+c3v’ and W = csw’ and the defining equation of Z.(E) then
has to be of the following form

adh = U+ AUPW + AUW? 4 AW = VW — ALUVIV — AsVW? - A,V W?
where only the coefficient « still has to be determined.

Example 2 Continuing the p = 5 example above, one can compute that

A1 = ]. - d

A, = —d

A = —d

Ay = —5d(d®+2d—1)

As = —d(d* +10d° — 5d% + 15d — 1) @)

The elements u,v,w as defined above can be lifted to Z,(E) using the follow-
ing ’error-correcting’ terms

W = %(d(d —9)ZX —d(d =1)XZ + (2d - DXY)




, 1
v = Zl?(d(l —2d)ZX —d(d+1)YZ — (d+ 1)Y?
+d(d — 2)XY +d(d + 1)X?)

, 1
w o= -—%(d(d—{— NZX +(d+1)XY) (3)
and finally the coefficient o can be calculated to be o0 = —-l5 giving the precise

description of Z,(E). For more details we refer to [10, 4.2.3].

3 Fat point symbols

The connection between A.(F) and its center Z,(E) can best be under-
stood using the following geometric picture. Let IP? be the projective plane
IP(A.(E);) (with coordinates X,Y and Z), then E is embedded in it using
the Weierstrass equation with coefficients a;. On the other hand, define IP?
be the projective plane IP(Z,(E);) (with coordinates U,V and W), then the
isogeneous curve E’ can be embedded in IP? using the Weierstrass equation
with coefficients A; described above. Moreover, using Vélu's formulae [17]
we have an explicit map 7 : £ — E'.

We observe that this picture corresponds to taking determinants for de-
gree 1 elements in A,(F) as follows. Let L = aX +bY + ¢Z € A,(F); then
L determines a line [ in IP? which intersects E in three points P, P, and
P;. As A,(E) is a finite module over Z,(E), det(L) has to belong to Z.(E),
and from our knowledge on the generators of Z,(F) it must be a linear term
in U,V and W. This linear term coresponds to the line 7() in IP? through
the points m(P,) (observe that they are colinear as 7 is a groupmorphism).
A similar argument can be used to calculate the determinant of a quadratic
element of A,(F).

Let us see how M. Artin’s theory of fat points of A,(E) [1] fits into this
geometric picture. Let us assume for a moment that K = K is algebraically
closed. A fat point-module F is a cyclic graded A,(E)-module with Hilbert

series 2~ and it can be shown that it has a presentation

F = A/(E)/(AL + A, M)

where L € A,(F); and M € Z,(E),. Hence, F' determines a unique point in
IP? — E' namely the intersection of the lines determined by M and det(L).




If F has the above presentation, we say that F' lies on the line(module)
l = A,(F)/A;(E)L. Using this description we see that two line modules [
and !’ determine the same set of fat points iff / and I’ have the same image
under the isogeny. As each of the intersection points of 7 (/) with E’ can be
lifted to p points on E we see that there are p? lines I’ with this property as
was proved in [1].

How can we define K-rational fat point modules 7 A first idea might be
to take the points IP2(K) — E(K) but it may happen that no K-defined line
through such a point can be lifted through the isogeny to a K-defined line
in IP?. Hence there is no K-defined fat point module with a presentation as
above.

As A,(F) is a finite module over Z,(E), it defines a sheaf of orders A
over IP? by taking as the sections over an open piece determined by an
homogenous form F' in the variables U,V and W the degree zero part of the
central localization of A,(E) at powers of F(U,V,W). As the ramification
divisor of the order A is E’ we have that for every point P € IP?(K)~— E'(K)
the residue algebra A(P) is a central simple K-algebra of degree p.

If P is a fat pointmodule lying on a K-defined line module / determined
by L € A.(F); , then the image of det(L) in P(P) becomes zero and hence
the image of L in A(P) is a zero divisor (use the Cayley-Hamilton equation).
Therefore A(P) has to be the full matrixalgebra M,(K). This suggests the
following definition

Definition 1 A point P € IP*(K)— E'(K) 1is said to represent a K -rational
fat point iff A(P) ~ M,(K).

If we can prove that A(P) is a cyclic K-algebra, i.e. if A(P) represents a
symbol (a,b), € ky(K), = Ko(K)/pK,(K), then we can use symbol manip-
ulation to verify whether P is a K-rational fat point. -

Proposition 1 Assume that K contains a primitive p-th root of unity. If
P e IP2(K)— E'(K), then A(P) is a cyclic algebra,i.c. it is a symbol (a,b),
for some a,b € K.

Proof : We will construct a splitting field L for A(P) by lifting a K-
defined line in IP? passing through P through the isogeny to an L-defined
line.




Let I, be the line in IP? through P and O = [0 : 1 : 0]. Then I.N E'
consists of two other points ¢ and @, with coordinates in Ly = K(I N E’)
which is an at most quadratic extension of K. Now, over an at worst cyclic
degree p extension L = L;(7~(Q;)) of L; we can lift Q; through the isogeny
to a point R of E(L). The line [ through R and 7 in IP? has as its image
under 7 the line I, so A(P) ® L has a zero-divisor whence is split. Now, L
is a splitting field for A(P) which is at worst dihedral. Invoking a result of
L.H. Rowen and D. Saltman [11] we may conclude that A(P) is cyclic. O

In the above proof we can replace the origin O by any point in 7(E(K))
giving plenty of dihedral splitting fields for A(P).

Hence, if A were cyclic with symbol (f, g),, then these polynomials f, ¢ €
K[u,v] must be closely related to the isogeny 7 : B — E'.

4 Some line symbols

In this section we study cyclicity of the central simple ring of fractions of
line quotients A(l,) for some line I, in IP?. Not only is this the next simplest
case after having proved that all point quotients are cyclic but it is also of
independent interest in the study of the Sklyanin algebra A,(FE). Virtually
all structural results on Sklyanin algebras are proved using the fact that
the quotient A,(F)/(cz) = O,(F) is a twisted coordinate ring. If 7 has
finite order it would be nice to know whether certain quotients of the form
A-(E)/(L.) with L. € Z,(E), have a simple structure. Translating this to
the corresponding line quotent algebra A(l.) we want to know whether it can
be an order in a skew polynomial ring over K (u).

Using the same argument as in the case of point-quotients we can prove

Proposition 2 If I, is a K-defined line in IP3 such that I,N E' contains a
K-rational point, then A(l.) is cyclic,i.e. it determines a symbol over K(u).

Using the argument of Rowen and Saltman in [11] one can (in prin-
ciple) calculate the symbol from knowledge of the dihedral splitting field
L = K(r=*(I.N E"))). In particular, we see that A(l.) has algebraic splitting
fields.

We will restrict our study here to the following very special situation : I,

will be the tangent line to £’ in a point P € E'(K). If P € n(E(K)) then I,
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is the norm of the tangent line in IP? to E in a preimage of P whence A(l.)
is an order in M,(K(u)). Hence we wil assume that P ¢ n(FE(K)) and that
A(l.) is an order in a division algebra D(.).

We want to calculate the non-commutative genus of D(l.) and invoke
Witt’s non-commutative Riemann-Roch theorem to conclude that D(l,) is a
skew polynomial ring. For more details the reader is referred to [14],[15] and
[16].

Let A be a maximal O;,-order in D(l.) containing A(l.). Then, A can
only be ramified in P and —[2]P = @ i.e. in [.N E’ (because the ramification
divisor of A is E’). Moreover, A is totally ramified in those points. From
[14, Thm 0.3.(6)] it follows that the genus of D(l.) equals

gy =1-p <0

We can now invoke an unpublished result of M. Van den Bergh’s Ph.D. thesis
[16, Prop.6,p.20] (see [15, Prop.3.2] for a published slight extension and more
details) in order to conclude

Proposition 3 Let P € E'(K) — n(E(K)) and . the tangent line in P to
E'. If A(l.) is an order in a division algebra D(l.) then

D(l,) ~ L(X, ¢)

where L is a cyclic degree p extension of K with generating automorphism ¢
and X is a function in K(u) with divisor (P) — (Q) where {P,Q} =1.NE".

Two subtle points should be stressed here. First, there is no a priori
reason why L should be the obvious splitting field K (7~*(P)) except in cases
where this is implied e.g. if K is a local field by [16, Prop.5 p 17]. Secondly,
the automorphism is in general only a K-algebra automorphism i.e. it may
restrict to a non-trivial automorphism on K(u) see [15, p.204]. Still one can
show that the algebras have the same tame symbols.

For L(X, #) the tame symbols are as follows. Let L = K(«) and u(P) =
a,u(Q) = b then the symbol of L(X.¢) is

s = (o, (u—a)' " (u =), € ka(K(w)),
and therefore (see e.g. [8, 20.4])

Op(s) = o' mod K**
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Jg(s) = amod K™ ,
Or(s) = 1mod K** (4)

for all primes R of K[u] different from P and Q).

If A is cyclic with corresponding symbol (f(u,v), g(u,v)), then the sym-
bol of D(I.) must be (f(:),9(l))p. It is clear that specifying the above tame
symbols puts heavy restrictions on f and g. Moreover, this set of restriction

varies if P runs through E'(K) — n(F'(K)).

5 Global symbol for p =2

By now we may wonder whether A can ever be a symbol. Clearly, if p = 2
A is a quaternion algebra and so has to be cyclic. The theory of quadratic
forms as in e.g. [9] can then be used to compute the global symbol.

We will briefly recall some of the computations performed in [10, §3.2.2
and §4.2.1].

If 7=1[0:0:1]is a point of order 2 on the elliptic curve E, then F has
defining equation

E:y?=2%+az’ + b

for some a,b € K such that *(a® — 4b) # 0.The defining equations of A,(E)
are generated in this case by the following three quadratic relations

XZ+ZX+%Y2+¢1Z2 = 0
XY+YX =0
X?2-b7° = 0 (5)

and the twisted Weierstrass equation is given by the central cubic element
=Y+ bXZY —bXYZ +aX?Y

The center of A,(E) is generated by cs and the three degree 2 elements :

U = XZ+2ZX
V = YZ+2Y
W o= 2? (6)
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These four generators satisfy one relation

U 4+ aU*W — 4bUW? — 4abW° — VW = —-Z;%cg
Although all these facts follow from general Sklyanin algebra theory, they
can in this case also derived from the classical results of Clifford algebras.
For, A.(FE) is the Clifford algebra of the (degenerate) ternary quadratic form

over K[U,V, W] associated to the symmetric matrix

bW 0 Y
(0 —b(U + aW) %)

U 4 w

2 2

As the determinant of this matrix

D= S(U‘s + oUW — 4bUW? — 4abW? — VW)
is not a square in K[U,V,W], the center of the Clifford algebra (at least
when we localize at D) is a quadratic extension of K[U,V, W] generated by
the square root of —D (the signed determinant) which in our notation is £.

Here is how we can compute the symbol of the fat point corresponding
to P =[a:b:c] € IP2. Substituting a,b,c for resp. U,V,W in the above
symmetric matrix we obtain a ternary quadratic form over K which is non-
degenerate (i.e. its determinant is a unit in K) provided P ¢ E’. Hence we
can diagonalize it to say

Q = (ab ag, a3)

Then, there are two elements of Br(K), we can associate to this form. The
first , the Hasse invariant

$(Q) = [(en, 22)2 ® (@2, 03)2 @ (a1, @3)2] € Br(K),

enables us to verify whether the quadratic form is isotropic using [9, 5.3.22].
The second one,the Witt invariant ¢(Q) is the class in Br(K), of the degree
zero part (in the usual ZZ/2ZZ gradation) of the Clifford algebra. This is
clearly the symbol we have to compute.lt can be deduced from the Hasse-
invariant (which is easy to calculate knowing a diagonal representation of the
quadratic form) via the relation

Q) = [s(Q) ® (-1, —armas)] € Br(K),
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see e.g. [9, 5.3.20].

If we want to compute the fat point symbol in points not lying on the
lines W = 0 or U + aW = 0 we can diagonalize the symmetric matrix via
the change of coordinates represented by the matrix

1 0 0
0 1 0
_UEW) VW (U 4 aW)

2

and obtain the diagonal form with

(6%} = bW
Qg = —b(U + GW)
az = bTW(U + aW VW = U® — aU*W + 4bUW? + 4abW?)  (7)

Ifweset W =1 f =u+aand g = v>—u®~ au? + 4bu + 4ab, where
u = U/W,v = V/W then we compute the Hasse invariant to be

(b, —bf).(6,0f9).(=bf, bfg) (6, f)(bfg,=f)
(bv f)(bv _f)"(gv "f)
(ba_l)'(lgf"f) (8)

On the other hand, the determinant is (upto squares) equal to —bg. Hence,
the Witt-invariant is

(ba _1)'(99 _f)'(_la bg) = (ba _1)"(577 "'f)"(_h b).(—l,g)
= (f,9) (9)
Lemmal Ifp = [u: v : 1] 1s a fat point with u # —a then the fat point
symbol is equal to

(u+ a,v® — u® — au® + 4bu + 4ab), € Br(K),

Remark 1 To include the points at infinity we can use a different diago-
nalization for all points not lying on the lines U = 0 and U + aW = 0.If
p=[l:y:2] is a fat point with z 3 —% then the fat point symbol is equal to

(y® + 4bz + 4ab2?, (1 + a2)(1 + az — 4b2% — 4ab2® — y?)); € Br(K);

One verifies that these two symbols coincide on the open set uw # 0. Finally,
on the line u+ aw = 0 the Witt-invariant (or the fat point symbol) is trivial.
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Knowing the global symbol,we can calculate some of the line symbols. If
we perform a change of variables u — u — a then the symbol is

(u, v — u® + 2au® + (4b — a®)u)

Let I, be a line in [P? with [N E' = {P,, P,, P;} and all P, € E'(K) with
u-coordinate «;, then the line symbol is

(w, = (u — a1 )(u — a2)(u — a3))2

From elementary elliptic curve theory it is known that oy.0p.3 € K*% and
that o; € K** if P, € n(E(K)) see for example [12].

If all P, lie in 7(E(K)) then I, is the norm of a K-defined line in IP? and
hence the symbol is trivial.

If Py ¢ m(E(K)) and [, is the tangent line to £’ in Py, then P, = P, and
P; = —[2]P; belongs to n(F(K)) (use the dual isogeny). The line symbol is

(u, —(u — 1)*(u — @3))2 = (u, —(u — a3))2

and as a3 € K*? all tame symbols are trivial. That is, the division algebra
of A is unramified so it is of the form H ®x K(u) for some quaternion
algebra H over K. However,there are plently of K-rational fat points on [,
so H = My(K) and so the line symbol is trivial. Observe that A(l;) is not a
maximal order.

Observe that this case is special to p = 2. In this case the negative genus
situation does occur when P, P, ¢ w(E(K)) and P € 7(E(K)). The line
symbol becomes

(u, —(u — 1 )(v — 02))2
and the tame symbols in P; and P, are non-trivial. So, A(l.) is an order
in a division algebra and hence there will be K-defined non K-rational fat
points on l.. This division algebra is split by L = K(r~'(P,)) = K+/« for
some a € K*. The line symbol is then similar to (possibly upto a term from
ko(K)2)

(o, —(u — a1)(u — a2)
and A(l.) is an order in L(X,¢) where ¢ is conjugation on L and X =
2= Observe that A(l.) is not a maximal order as the division algebra is

u—or
unramified in P; but A is.
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If we take more general lines [, (or conics ¢.) we get division algebras
over K(u) whose corresponding conic bundle surfaces do no longer have to
be K-rational and may have more equivalence classes of rational points under
Manin’s R-equivalence. This may give new interesting arithmetical invariants
associated to the isogeny.

6 Global symbols for p <7

In this section we will show that A,(F) is cyclicif p = ord(7) < 7 and K
is sufficiently large. If p = 5 then further calculations shows that A.(F) is
cyclic for any basefield K.

Theorem 1 If p < 7 and if K is sufficiently large, then A.(E) 1s cyclic.
Here, sufficiently large means that there is a K-rational pownt on a specific
cubic curve (if p = 5) or a K-rational intersection of a specific cubic and
sextic curve (ifp="7).

Proof : As A,(FE) is a graded ring and a finite module over its center
Z.(E), the Cayley-Hamilton polynomial of every homogeneous element is
homogeneous with coeflicients in Z,(F).

In particular, let L = aX + BY + vZ be a degree one element from
A-(E), then using the description of Z,(E) recalled before,we know that the
Cayley-Hamilton polynomial of L must have the following form

L? + g3(a7 ﬂv’Y)Cfin_S + 96(a7 ﬂ>’Y)C§LP~6 + (-——1)nD6t(L) =0

where g3 (resp. gs) is a homogeneous form of degree 3 (resp. 6) in the
coefficients «, 3,7. Now, let [@ : 8 : 7] be one of the intersection points
of the cubic and sextic curve in IP? determined by g3 and gs (which exists
if K is sufficiently large) then the corresponding degree one element L has
Cayley-Hamilton polynomial

L? = Det(L) € Z,(E)
finishing the proof. 0O

If we want to remove the condition on K we have to make the above proof
more explicite. It follows from the Newton-formulas that the coefficient of
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X?3 in the Cayley-Hamilton equation of X in a p.i.-algebra of degree p is

equal to
1

€(3TT(X)TT(X2) —2Tr(X®) - Tr(X)%)
Therefore, if L = aX + BY + vZ is a degree one element in A,(E) we see
that the cubic curve determined by gs(«, £,7) is given by

9s(0,8,7).¢5 = 5Tr((aX + BY +2)

Hence we have to study the K-rational points on the cubic trace curve
E.:Tr((aX + Y +~42)°) =0

Here is how one can calculate the defining equation of E. : first one has
to know the traces of trinomials in X,Y and Z. As a trace of a trinomial
is determined upto cyclic permutation of the terms,there are only 11 such
traces to determine,namely the traces of

X3 XY, X*Z, XY, XY Z,XZY, X2, Y3, Y22, Y22, 2°

On the other hand, A.(F) is defined via three quadratic equations. Multi-
plying each of these equations with X,Y and Z and taking traces we get a
linear system of 9 equations among the 11 trinomial traces. The remaining
degrees of freedom can then be removed by bringing in the knowledge of the
trace of the central degree 3 element c3 and the trace of X (and if necessary
Y3 or Z3) which can be read off from the Cayley-Hamilton equation of X
(resp. Y or Z). Having the traces of all trinomials one then dot-simplifies
(aX + BY + vZ)® and substitues in it the trinomial traces to obtain the
equation for FE..

Let us apply this general procedure in case p = 5. As we know the
defining equations of A,(F) we get the following linear system of equations
among the traces of trinomials
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X® X?Y X?Z XY? XYZ XZY XZ7Z*® Y3 Y*Z YZ? Z3
eq1. X | d -1 =4 -1 0 d 0 0 0 0 0
eqi.Y | 0 d 0 -1 —d? 0 0 -1 d 0 0
ep.Z | 0 0 d 0 ~1 0 -d2 0 -1 d 0
e X|d—=1 -2 d 0 0 0o o0 0 0 0 0
eq2.Y 0 d—1 0 -2 0 d 0 0 0 0 0
eqa.d 0 0 d—1 0 -1 -1 d 0 0 0 0
eqz. X | 0 1 d 0 0 0 -d> 0 0 0 0
ewY| 0 0 0 1 d 0 0 0 0 -—d& 0
eqs.Z 0 0 0 0 1 0 d 0 0 0 —d?

This system has a 2-dimensional space of solutions.One can remove the
remaining degrees of freedom by observing that Tr(cz) = 5csz and that
X3 — éC3X2 € Z,(E) (whence Tr(X?) = §c3. This gives us all the traces of
trinomials and if we substitute these values in Tr((uX + vY + wZ)?) we get
that the cubic trace curve has defining equation

P + d*uPv — 0% + (3 — EP)Pw + (4d° — dM)uvw
—d*v?w + 3duw?® + 3d%vw® + (1 + d)w®

Perhaps surprisingly, this cubic has a K-rational point namely [1: 0: —d] ,
or equivalently
(X —d2)* € Z,(E)

This concludes the proof of
Theorem 2 Ifp =5, then A,(E) is cyclic over any basefield K.

If we want to study all degree one elements whose fifth power is central
it is best to bring this cubic to Weierstrass form as in [7] and study its
rational points by standard methods,e.g. [12]. If we perform the required
transformations,the cubic has Weierstass form

y? = 2° + (d* — 12d — 8)2? + 16(1 + 11d — d*)z
which has discriminant

A = 4096(d ~ 8)°d(d® — 11d — 1)*
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Hence the cubic trace curve is always a smooth elliptic curve provided
d+#8.

Clearly, one may perform similar calculations for p = 7. Using the defin-
ing equations of [10] one obtains that

Tr((uX +vY +wZ)®) = %f(u, v, W)

where f(u,v,w) is the following cubic
(® — d® 4 3d — 2)w® + 3e2d*(2d — 1)vw?® + 3ed?(3d — 2)uw?

—?dP(2d° —9d* 4+ 3d+1)uPw+e2d° (2d — 1)u® — d®(2d* — 9d° + d° — d+ 1 )uvw
—e*d®(2 - Td 4 2d%)v?*w — e*d®(2d* + 2d — 1)u?v + 3e’d wv? — €8d"(d — 2)v°

which does not have any obvious rational points.

Clearly this does not show that A.(E) is non-cyclic for such values of d.
It merely says that no 7-th power of a degree one element in A,(E) belongs
to the center. It is still that the 7-th power of a non-central homogeneous
element of degree > 1 becomes central.
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