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Abstract

The Proj of a non-commutative graded algebra may be defined as the
quotientcategory of finitely generated graded modules modulo the subcat-
egory of finite length modules. The schematic algebras we introduce are
those for which this Proj satisfies an ”affine” covering property bringing
it closer to being a ”geometric” object. The term schematic refers to the
fact that the use of rings of quantum sections allows to obtain a kind. of
scheme structure. It is shown that enveloping algebras of finite dimen-
sional Lie algebras, quantum Weyl Algebras as well as several types of
gauge algebras are schematic. Quantum sections of enveloping algebras
are calculated in an explicit way.

1 Introduction

Projective n-space IP" = Proj(C [Xo,...,X,]) may be covered by the stan-
dard affine open pieces Spec(C [x,,...,%;,. .., 2,]) where z; = )—)gf The ring
I'(X;,Op~), generated by the z; over €, is the degree zero part of the lo-
calisation of € [Xy, ..., X,] at the multiplicatively closed set generated by X;.
Modules, (coherent sheaves of modules) over IP™ can be described by glueing
modules on the basic open sets over the intersections.

This technique does not extend to non-commutative graded algebras because
certain properties of localised rings can only be obtained if one can localise at an
Ore-set. In fact, one needs the existence of ”enough” localisations in the sense
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that one would like to obtain the affine covering property for Proj necessary to
describe modules by a suitable glueing process. So we call a positively graded
algebra schematic if it contains ”enough” Ore-sets in a sense to be made precise
in the next section.

The essential idea behind the construction of schematic algebras, and in fact
the reason why the quantum-aspect enters the picture, is that a filtered ring
may be viewed as a deformation of the associated graded ring via the Rees-
ring . Recently the Rees-rings ( "homogenisations” or ”central extensions”
according to some authors ) of Auslander regular rings have been studied in low
dimensions, e.g. [7], [4] and [5]. We show that the schematic property lifts from
the associated graded ring to the Rees-ring.

The second basic ingredient of the geometry of Proj we try to extend to
the non-commutative situation, using M. Artins definition of Proj given in
[2], is the sheaf theory. For this purpose one may use the quantum-sections
connected to microlocalisations first introduced in [12]; the rings of quantum-
sections have a completeness property that is useful in studying their module
theory but it makes the determination of the defining relations for the algebras
more cumbersome. For many concrete examples appearing in quantised-ring
theory it is possible to obtain the quantum-sections in a completely algebraic
way from certain Ore-sets. In fact, this technique may be extended further to
almost complete generality by considering the minimal localisations at pseudo-
Ore-sets in the sense of [14].

The second part of this paper is devoted to explicit calculations and conse-
quences of the schematic approach for enveloping algebras of finite dimensional
Lie algebras. We may use the Ore-sets described by W. Borho and R.. Rentschler
[3] in order to describe the rings of quantum-sections. As a consequence of the
schematic approach, we may rederive the defining equations of the point-variety
of the associated quantum-space, cf [4] and [6].

2 Schematic Algebras

A filtration F'A on a ring A is given by an ascending chain ... C F,A C F,, ;1A C
... such that 1 € Fo A, U, F,A = A, F,AF,A C FrymA for n,m € Z. Unless
otherwise stated we restrict attention to separated filtrations, i.e. we assume
NnFpnA =0 Welet G(A) = Onez FrnA/Fny1A be the associated Z-graded ring
and A= @pezFrA~3, F,AX"™ C A[X, X~!]is the Rees-ring of the filtration
FA. For full detail on filtered rings, in particular for Zariskian filtrations, we
refer to the book [9]. We may identify 1 € F1A as the central regular element
X € A; and then we have the deformation principle :

1. A/XA ~ G(A) as graded rings.

2. fi/(l - X)A ~ A and FA is obtained from the gradation of A via F, A =
A, mod (1-X)A




3. Ax ~ A[X, X1

4. The category of filtered A-modules and filtered morphisms is equivalent
to the full subcategory of A-gr consisting of the X-torsionfree graded A-
modules.

Let k be an arbitrary field and let R = k@ R1®. .. be generated by R over k.
The theory of filtered rings has benefitted a lot from this deformation principle,
cf [9], e.g. for Zariskian filtrations it has been shown that several homological
properties like Auslander regularity etc .. .lift from the associated graded ring
to the Rees-ring. Much of the secrets of the filtered ring A are hidden in the
properties of the canonical graded epimorphism A — A/XA = G(A); this
explains why we now turn to the consideration of the following situation.

Proposition 1 Assume that R has a central homogeneous element X of degree
one. Denote the canonical epimorphism R — R/XR = R by — and suppose
there exist homogeneous elements t; € R (j in some indez-set J) and a natural

number n such that
def

RZn = p>an - ZRt

jed
then for all m € IN there exists a natural number k such that :

Ryry C RX™ + ERtj
jeJ

Proof: Putk=n+m—1 and consider a homogeneous element u of degree
1>k in R. The claim is trivial when m = 0, so suppose m > 1. Then [ > n, so
by hypothesis w € E cJ Rt and thus B(aj),ej € R (almost all zero) , Elsl €
Rj_1 such that y4 = Z el ajt, + 5 X. If m = 1, we are finished. Otherwise
{— 1> n, so we may apply the foregoing argument to s; and we obtain that s;
can be Wntten as 3 ey bitj + 52X for some bj,s5 € Ri—2 (almost all b; zero).
Thus = 3. ;(a; + b; X)t; + s2X?. After at most m steps, we find that pis
in RX™ + 50, Rt;. o

From now on, we suppose that R is a Noetherian domain, generated by
a finite number of degree 1 elements and we denote > i>1 R; by Ry. Define
L(ky) = {I 4 R|3n € IN such that (Ry)™ C I}, then itis easy to check that
this is a Gabriel-filter ( cfr. [11] and references there for Gabriel-filters ). If S
is an Ore-set in R, we denote the corresponding Gabriel-filter of all left ideals
of R having a non-trivial intersection with S by L(xs).

Definition 1 Suppose there is a set I of homogeneous degree one elements of
R such that for each f € I there exists a minimal homogeneous Ore-set Sy
containing f. If L(ky) = NjerL(Ks,), then we say that R is schematic. A
schematic algebra for which the set I can be taken to be finite, is said to have
the finite affine covering property ( finite A.C. for short ).




Now it is easy to prove the following :

Proposition 2 Let R be as above and assume that we are given a family of
Ore-sets (Sf)rer generated by a degree one element f, then

L(k4) = Nserliks,)

()

V(sf)ser € H Sy,3n € IN such that (Ry)" C ZRSf
fel fer

Proof : Use the foregoing proposition and remark that for a graded ring
A=k® A; &... which is generated by A; the following holds : (A4)" = Ayn.
O

Example 1 By means of the previous proposition, it is easy to see that if R
1s commutative, then R has the finite A.C.-property ;. for each generator f we
choose S; equal to {f*|n € IN}. This is just a resiatement of the fact that
Proj(R) is covered by the basic affine open sets {P € Proj(R)|f ¢ P} and
Justifies our terminology.

Theorem 1 Let R be a positively filtered ring with k = FoR being a field. If the
associated graded ring G(R) is schematic, then R, the Rees-ring, is schematic
and if G(R) has finite A.C. then R has finite A.C. Conversely, if G(R) is a
domain and R is schematic or has finite A.C. then the same holds for G(R).

Proof : To each given Ore-set S in G(R), we can associate an Ore-set
St in R, namely (using the identification of R as a subring of R[X, X~1])
S; = {sX9890G) | g(s) € §;} where o denotes the principal map. Because
St maps onto S; under the canonical epimorphism 7 : R — R/XR ~ G(R),
the theorem follows easily from the two previous propositions. For the converse,
given Ore-sets .S7 s for R, taking their image under the canonical map = provides
us with Ore-sets in G(R). If we start now with (¢7) € [] 7(S}), then we choose
a representative s; € R of ¢; and thus we find a natural number n such that
Ryn €3 Rsy. By letting 7 act on this, we find G(R)>» C 3" G(R)t;- m|

Example 2 The Rees-ring of an almost commutative ring has finite A.C. ( A
ring R is called almost commutative if there exists a filtration on R such that
the associated graded ring is commutative )

Theorem 2 Let R be as in the previous theorem but suppose also that the fil-
tration is Zariskian. If G(R) is a schematic domain and a mazimal order, then
there exist Ore-sets S; such that

R = ﬂRs‘,




Proof :  Set A=R. The foregoing theorem tells us that A is schematic, so
L(k4) = NL(kg,), thus Qy, (A) = NAg, . We claim that Q, (A) = Aie. that
A is L(k4)-closed. So we have to prove that VI € L(k4) :

A — Homyu(Il,A)

z +— (ar az)

is an isomorphism. The map is injective since R is a domain. Since A is a
maximal order in its quotientring @ (see [13]), we may identify Homu (I, A)
with B={q € @|I¢ C A}, so AC B C Q. If we choose a non-zero element a
of A, then aB C Q. Thus A and B are equivalent orders and A = B follows.
We now have obtained that R = nfigf . If we set Sy = {s € R|o(s) € S}} then
R = NRs, follows easily from this. ]

Definition 2 We call a filtered ring schematic if the associated Rees-ring is
schematic.

It follows from theorem 1 that if the associated graded ring of a filtered ring R
is a domain, then R is schematic if and only if G(R) is schematic.

Lemma 1 Given a positively graded ring R which is generated by Ry and which
is schematic by means of Ore-sets Sy, given o a graded automorphism of R and
6 a o-derivation of degree 1, then Y(s¢) € [1Ss,Ym € IN,3p € IN such that

(Rlz, 0,814y € M Z Y Rz, 0,85+ Rz, 0,81

where R[z,o, 6] denotes the Ore-estension considered with gradation
(R[(L', g, 6])7& = EB?=0Rix"“P.

Proof : Because R is schematic, we know there is a n € IN such that
(R4)™ C > Rsy. Put p=n-+m and choose I > p. We proceed by induction on
t, the number of & occurring in a monomial of R[z, o, 6] of length I The case
t = 0 follows from ! > m. Suppose all monomials of length [ with occurrences
of # smaller than ¢ belong to M. If ¢t > m, then, modulo elements of M, we
may permute all z to the last place and we end with a term in R[z, o, §]la™. If
t < m, then again modulo M we can rewrite our monomial in the form z'a with
a € Rj—; and this one is in M because [ —{ > n a

Example 3 Quantum Weyl algebras as defined by J. Alev and F. Dumas in
[1] are schematic. We briefly recall the definition. Given ¢ n X n matriz A =
(Aj) (n > 2) with Xj; € k* and a row vector T = (q1,...,4qn), all ¢; # 0,
one defines the Quantum Weyl algebra A, = ADD as the algebra generated by
T,y 8oy Yy .-, Yo and subjected to relations (i < j):

Tix; = YT




ey = Ajiyjei

Yivi = A%y
il = HiYi%j
sy = 1+gyiz+ ) (6 — Dy
i<y
where ps; = Aij ;.
Proof : We can view A, as an iterated Ore-extension where the vari-
ables are joined in the order zi,y1,x2,¥2,... With respect to the standard

filtration, the successive associated graded rings have one of the following
forms : G(Ax-1)[zr, 0] or G(Ar—1)[zx, o]lyr, 7,6] = G(Ax). It is easy to see
that {«} |n € IN} is an Ore-set in G(Ay—1)[zx, o] so the lemma entails that
G(Ag-1)[zk, 0] is schematic. This implies by turns that G(Ax_1)[zr, o] matches
the conditions of the lemma. So we are left to prove that {y7 |n € IN} is an
Ore-set in G(Ag-1)[2k, o}[yr, 7, 6]. Since this is a commuting set, it suffices to
prove the exchange condition for all pairs (2i, yx) , (¥i,y%) (1 <i<k—1) and
for (z,yx). This follows immediately from the relations, except for the last
one, so let us do that one explicitely. In G(Ay), we have

Teyr = Geyer + Y (6 — Dyiws
i<k
or
werr = g oy — 4; 0 (% — iz
i<k
Multiplying on the left by yr and using the relation yyyi2: = Api¥iye i = YiZTiVk,
we find
vier = g5 (e — D (2 — Dyiza) e
i<k
Now the lemma says that G(Ay) is schematic, thus Ay is schematic. 0o

3 Enveloping Algebras are Schematic
Starting with a finite dimensional Lie algebrag=C 1 @ - @ C z, with
n
[, 2] = ) Bijras
k=1
one defines H(g), the homogenization of the enveloping algebra U(g) of g, to be

the positively graded algebra, generated by elements X3, - - -, X, together with
a central element Xy and subject to relations

n
[XZ:X1] = Zﬁi‘i,kaXO Vl’] € {1> sy TL}
k=1




One may view H(g) as the Rees-ring of U(g) with respect to the canonical
filtration, thus H(g)/(Xo—1)H(s) ~ U(g) and H(g)/XoH(g) ~ G(U(s)) ~ S(a)-
H(g) is a quadratic Auslander-regular algebra of global dimension n + 1 and it
satisfies the Cohen-Macaulay property,[9].

The quantum space IP,(g) of g is by definition Proj(H(g)) in Artins sense
[2]. Fix a degree one element of H(g), say f = X + ¥Xo, where X corresponds
toz € g and ¥y € C. ( We will always use the convention that corresponding
upper- and lower-case letters will denote corresponding elements of H(g) and g ).
Let Z E be the additive subgroup of €' generated by the set £ of all eigenvalues
of the adjoint representation of z : [¢,—]: g — g. Then the minimal Ore-set in
H(g) containing powers of X is the multiplicatively closed set generated by the
set

St={X+(y—-e)Xo:e€ ZE}

Hence, we can form the localization H(g)s, which is again an Auslander-regular
algebra. As S; consists of homogeneous elements, H(3)s, is a graded algebra
and we define :

Definition 3 The quantum sections I'(f)=I'(f,04(3)) of the quantum space
IP,(g) associated to the ‘open’ set corresponding to f € € Xo @ g is the homoge-
neous part of degree zero of the graded algebra H(g)s, .

As Sy contains elements of degree one, the algebra H(g)s, is strongly graded
meaning that (H(g)s,)i(H(s)s,); = (H(4)s,)i+; - Then, by the equivalence of
categories ([10])

T(f,04(g)) — mod ~ H(g)s, — gr

we deduce that T'(f) is an Auslander-regular algebra. However, we will see that
it does not have to be an affine algebra.

It is clear that one can ”glue” the quantum sections I'(f,O,(g)) with
I'(g9,04(8)) (9 € (H(3))1) over their ”intersection” which has as its sections
the part of degree zero of the localization of H(g) at the multiplicative system
generated by Sy and S, (which is automatically a twosided Ore-set). Hence,
to IP,(g) we can associate a family of section-algebras I'(f, O,(g)) together with
glueing data as in [2] for the case of a quantum space finite over its center.
Using the fact that the algebras H(g)s, are strongly graded, it follows as in the
classical case that any M € IP,(g) is determined by glueing the I'(Xy, O,(s))-
modules (Ms, )o. In particular we see that a point-module is determined by a
one-dimensional representation of one of the section-algebras I'(f, O,(g)). Sum-
marizing :

Proposition 3 The quantum sections T'(f) are Auslander-regular algebras and
there is a unique sheaf on IP(g) coinciding with T'(f) on the basic open set
corresponding to f. Moreover, any element M of IP,(3) is determined by the
T (f)-modules (Ms, )o.




However, there are also noticeable differences between the quantumsections
I'(f) and U(g). For instance, with the filtration used by the canonical genera-
tors ( as in the next subsection ) they are virtually never almost commutative.
Further, they usually have larger Gelfand-Kirilov dimension by [8, Theorem 8§].
We have already noticed that H(g) has the finite A.C.-property. It follows from
theorem 2 that U(g) can be written as an intersection of certain localisations
at Ore-sets generated by degree one elements. We now prove a stronger ver-
sion of this theorem, namely that U(g) can be written as an intersection of two
localisations.

Proposition 4 If i # j then U(s) = S;'U(8) N S;U(s) where Sy, is the
multiplicatively closed set generated by all x; — o with « in the abelian group
generated by all eigenvalues of z (k =1,5), cfr [3] .

Proof : Suppose z € T & S2;U(8) N So;U(g). Then z = s7ta = b
for some a,b € U(g) and s € S;;,t € Sy, hence o(s) = zf,0(t) = =" by
definition of S;; and S;;. G(U(g)) is a domain, so ¢ is multiplicative and
o(z) = z;"a(a) = z;™"a(b), or za(a) = 27o(b) € (z}). Since j # i, we
must have that o(a) € (2?) and thus dego(a) > n. Therefore dego(z) > 0
holds for all z in T". Suppose now that z is in 7" but not in U(g). We can write
o(a) = 2o (cy) for some ¢y in U(g). Then o(z) = o(c1) ,0# 2 —c1 € T and
dego(z—c¢1) < deg o(z). After applying this argument a finite number of steps,
wefind z—c1—...—~¢, ET but dego(z —¢1 — ... — ¢) < 0, a contradiction.
0

3.1 Defining equations of I'(f)

The idea to obtain the relations of the section algebra I'(f, O,(g)) is as follows :
just write down how f = X ++4Xy commutes with the X; and multiply on both
sides by f~!. Now it is obvious that an appropriate choice of basis will simplify
the aimed equations . So choose a basis {y1,. .., ypo=2} of g such that the matrix
of adz with respect to this basis is in Jordan normal form. More precisely, there
exists a subset I of {1,...,n} and a function « : I — E such that

N a(i)yi ifiel

where j = min({i+1,...,n}NI). For convenience, we extend the function « to
{1,...,n} by letting o(?) = a(j) if j = min({, ..., n}NI). Let ¥; be the degree
one elements of H(g) corresponding to y;. Set Z; = Yi(X +vXo)™ Vi =
L..,n, T=Xo(X+7Xo)™! = (X +79X0) ' Xo. Thus Z, +~7T = 1. With
these notations, we have :

Theorem 3 The sectionalgebra T'(f) is the algebra generated by Z1, ..., 2,1
over € [T)(1 407 ) aczE) with relations :




o Vi,jeI\{n}:

Z:Z; = Z; Z;(1 + a(5)T)(1 + «(5)T) ™ + iﬁij,kaT(l +a()T)™' (2)

k=1
e VieI\{n},Vie{l,...,n}\ I:
57 = ZZ(1+e@T1+e()T) " + 3 BysZeT(1 +a()T)
k=1
~Z:Zj1 T+ a(j)T) ™ ®3)

o Vije{l,. ..,n}\ I

ZiZj = Z; Zi(l -+ a(z)T)(l + a(j)T)‘l + zn:ﬁij,kaT(l + CM(j)T)—1
k=1
B2 T+ a)T) ™ + 2 Zei T+ ()T (4

e VielI\{n}:
< TZ; = Z;T(1 + a(i)T)™? (5)

e Vie{l,.. ,n}\I:
TZ; = ZiT(1+ a()T) ™' = TZ; 11 T(1 + a())T)™* (6)
Proof : The relations (1) may be written in U(g) as

(z—a@))y; = yzr i€l
(& — a(d)y; vz +yiqr i¢1

In H(g), these relations become :

Yi(X+7vX0) = (X +9X0)Yi—ea(d)YiXe i€l
Yi(X +7vX0) = (X +9X0)Ys —a(f)YiXo—YiqaXo i¢1

By multiplying these on both sides by (X +vXo)™%, we get :
(X +7X0)"Y; = (Vi —ald)(X +9X0) WWiXo) (X +7X0)™r i€I(7)

(X +7Xo)™Y: = (Y- a(@)(X +7Xo) " YiXo)(X +7Xo)™
— (X +7X0) Wi Xo(X +yXo)™' ig¢1I




Consequently, Vi,jelI\{n}:
[Z:, Z;) Yi(X 4 7X0) " Y (X + 1Xo) ™! — Y5(X + vXo) " Vi (X + 7Xo)

Yi(Y; = a()(X + 7X0)™Y; Xo)(X + 7X0)™?
= Y; (Y — a()(X +7X0) MY Xo)(X + 7X0)™?

—
-3
I~

> Biip T + ()72 ZT — a(§) 2: 2T 8
k=1

Since Vk € {1,...,n},
1+ a(B)Xo(X +7X0)™ = (X +7X0 + a(k) Xo)(X + 7X0) ™

is invertible in (H(8)g, Jo, We can rewrite the equations (8) as follows :
Vi,jeI\{n}:

Z:Z; = Z; Z;(1 + o(0)TH(1 + a(j)T)"l + iﬁij’kaT(l + Ot(j)T)—l
: k=1

The other equations are derived in a similar way. a

Corollary 1 I'(X) is affine & x is nilpotent.

In case z is a semisimple element of g, I = {1,...,n} and we only have rela-
tions of type (2) and (5). If z is a semi-invariant (i.e. 3A € ¢* such that {z,y] =
Ay)z Yy € g) then « is identically zero because E = 0. Thus I'( f) is generated
by Z1,...,Zp1 over T

3.2 Two easy examples

Example 4 Let g = Cz @ C y be the two-dimensional Lie-algebra determined
by letting [z, y] = =.

o On the complement of the line Xo, we put
(H(8)g1,50,x2,.1)0 = (U)[X0, X5 1o = U()

o With respect to the ordered basis {y,z}, the matriz of adzx is <g (1) ,

so is in Jordan form. Now I = {2},a = 0 and Sx = {X"|n € IN}.
Thus T'(X) is generated by Zy and T, and they obey the following relation

: T2y =20T-T?
o To invert y, we have to localise at the set {Y —nXo |n € Z}. Consider the
ordered basis {z,y}, then ady has the following Jordan form : _01 g ,

50 on the complement of the lines Y —nXy we put the (non-affine) algebra
L(Y) generated by Zy over € [T){14n1y with relation TZ, = ZyT(1-T)~L.

10




Example 5 As an application, we rederive the result of [4]. We first have to
compute the section-algebras of g being s1(2,C )= Ce® C f & Ch with

e, fl=h, [h,e]=2e, [h,f]=-2f.
o X = Xo: then as before : T'(Xo) = Ul(g)

e x=¢ . Sety = —-% , Y2 = —%h, ys = e, then adx has Jordan form

010
0 01
0 00

Using the equations (4) and (6), we obtain :

17y = 222y —22:T+ Z2T
TZ, ZT — Z,T? + T3
TZy = ZoT -T2

We can write this as an iterated Ore-extension :

P(E) =C [T][Z21 6][Z1’ g, p]

o & = f: then we find the same ring as in the previous case.

e £ =h : Take {e, f,h} as ordered basis, then I={1,2,3},
o(1)=2, a(2)=-2, &(3)=0 and these relations result :

712, = ZyZi(1+27)(1-2T7)"t+T(1-27)!
TZ, = ZiT(1+42T)7 1
TZy, = 2Z,T(1-2T)7}

This section is also an iterated Ore-extension ;

I(H) = C[T){142n7 nez}[Z1, 0]

The variety of one-dimensional representations of I'(H) ( after homogeniza-
tion and correct inbedding in IP* = IP(t,e, f, h) ) is V(t(2te,—2tf, h? + 4ef)).
Similarly, we find that the corresponding variety for both T'(E) and T'(F) is
V(E(t, h? + 4ef)), for T() V(e, f,h). Glued together, these give the variety
V(((h? + 4ef)(e, f, h),t(e, f, k))), which is ezactly the point-variety of H(g) (
see [4] for a proof ).

11
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