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1 Introduction

In [21, p.625] J. T. Stafford noticed an intriguing analogy between the study
of right ideals of the first Weyl algebra A = A;(¢) and that of projective
right ideals of a polynomial ring over a division algebra (or,even,any ring
occuring in [22]).

The special case of projective right ideals of IH[z,y] (where IH is the
quaternion algebra) has been worked out extensively in a series of papers by
M. Knus,M. Ojanguren, R. Parimala and R. Sridharan,see a.o. {12],[13], [14]
and [15]. Their approach is as follows. A projective (non-free) ideal P of
IH[z,y] is a free module of rank 2 over the subalgebra @ [z,y]. They show
that P can be extended to a vectorbundle P of rank 2 over the projective
plane IP*(@) with first Chern number ¢; = 0. Using Beilinson’s spectral
sequence [19, Ch.II §3] one can describe the moduli spaces of such bundles
entirely by linear data,see a.0. [3], [4] or [10]. Translating these results
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back to [H|z,y] they obtain a 'moduli space’ description of the isoclasses of
projective right ideals.

Recently,R.C. Cannings and M.P. Holland [7] showed that right ideals
of A also come in families determined by certain 'moduli’.This raised the
question whether there is a vector bundle like description of right ideals in
A similar to the [H[z,y] case.

A first attempt is inspired by the methods of [21]. One can use reduction
modulo a prime p to associate to a right ideal of A a rank p vectorbundle over
the projective plane over a field of characteristic p. However, this approach is
not very helpful as there is not much known on moduli spaces of hight rank
stable bundles over the projective plane,certainly not over a field of non-zero
characteristic.

The approach of the present paper is to stick to characteristic zero but
replace the complex projective plane IP*(€ ) by Artin’s quantum plane IP, =
Proj(H) associated to a certain graded Auslander regular domain H of global
dimension 3. This quantum plane turns out to have a scheme-like structure
with one of the affine open section algebras isomorphic to A. Although
the other two section algebras have quite different properties (e.g. they are
no longer almost commutative and have global dimension 2) they are still
Auslander regular algebras. This property turns out to be sufficient to mimic
the Knus et al. approach to this quantum situation.

We show that every right ideal P of A can be extended to a vectorbun-
dle P on the quantum plane IP,. We have a version of Beilinson’s derived
equivalence which enables us to show that P can be described via a monad
determined by its cohomology’ groups and even by a Kronecker module in
case P is not principal.

That is, we associate to every non-principal right ideal P three k£ x [
matrices with entries in ¢ (the numbers k and [ can be calculated from a
generating set for P). Two 1ight ideals are isomorphic if and only if the
corresponding triples of matrices are equivalent under the natural GLi (@) x
GL,(@ )-action.

Hence, the study of isoclasses of right ideals of A reduces to the study
of certain moduli spaces M(A;k,[) which can be described entirely in linear
data. As an example we show that the ’canonical’ non principal right ideal
P, = 2™ A+ (2y + n)A belongs to M(A;n,n) and one can even associate
to P, a rank n bundle over IP*(@).

The precise connection between the moduli spaces M(A;k,!) and mod-
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uli spaces of vectorbundles on IP?(@') remains to be explicitated as is the
connection with the 'moduli’ of M.P. Holland and R.C. Cannings. Also, a
similar study of vectorbundles on IP, of rank > 1 might be interesting to
investigate.

2 The quantum plane [P,

Let H be the graded Auslander-regular domain of global dimension 3 gener-
ated by X,Y and Z and defining quadratic relations

XY -YX = 22
XZ-7ZX = 0
YZ-2Y = 0 (1)

Following M. Artin [1] we introduce the quantum plane IP, by defining the
coherent sheaves over it to be

Coh(IP,) := gr(H)/(torsion)

the quotient category of the category gr(H) of all f.g. graded right H-
modules modulo the Serre subcategory of the H.-torsion modules.

As the powers of X (resp. Y,7Z) form a twosided Ore set of homogeneous
elements in H we can introduce the section algebra H, (resp. Hy,H,) to be
the degree zero part of the corresponding localization i.e.

Hy = Hy[X, X7, ¢x]

Taking the obvious generators one easily verifies that H, >~ A whereas the
defining relation for H, (resp. H,) is [p,q] = p° (1esp. [p,q] = ¢°).

Observe that these section algebras have quite different properties.
Whereas H, = A is a typical example of an almost commutative algebra,
H, and H, are archetypical examples of non almost commutative algebras
[18]. Further, whereas all three section algebras are Auslander-regular do-
mains they have different global dimensions

gldim(H,) = gldim(H,) =2 and gldim(H,) =1

These section algebras also allow a scheme-like description of IP,. That is, if
M € Coh(IP,) is determined by M € gr(H), then M is determined via the
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- triple of section-modules (M, My, M,) where e.g. M, is the degree zero part
of the localization My. This desciption allows us to extend classical notions
to IP,. For example, M will be called a vectorbundle on IP, iff each of
the section-modules is a f.g. projective right module over the corresponding
section algebra.

In order to have a form of Serre duality in Coh(IP,) we note that we have
a canonical projective resolution of the trivial module

0— H(=3)®@A(V) =» H(=2) @ N (V) = H(-1) @V — H — @ — 0

where V = O X + @'Y + ' Z and where the rightmost map is the augmen-
tation, the previous one the sum, the middle one determined via

XAY - X@Y-Y®X-2@7
XANZ - X®Z-2Z®X
YAZ » Y®Z-2ZQY (2)

the kernel of which is generated by
XQYANZ-YQRQXANZ+ZRIXAY

If we denote by O(t) the object in Coh(IP,) determined by the twisted H-
module H(z),then the above resoltution gives the following Koszul sequence

in Coh(IP,)
0— O(=3) — O(-2)% - O(-1)® - 0 -0

3 From right ideals to vectorbundles

The following lemma is crucial for our purposes. Its elegant proof is due to
Th. Levasseur.

Lemma 1 Let A be an Auslander-regular algebra of gldim(A) < 2. If M is
a f.g. right A-module then M* = Hom (M, A) is either zero or a projective
left A-module.

Proof : By Auslander regularity we have a spectral sequence

Eg,—r,'(]\/[) - Extg(Exi?q(M, A)» A) = M
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see a.0. [16] or [17]. Using the fact that gldim(A) < 2 one obtains that

BY°(M) = EL(M)=0
BP(M) = E2(M)=0 3)

Therefore Eﬁctf@(M*, A) =0 for 2 = 1,2 and hence pd(M*) = 0 finishing the
proof. 0

We say that a projective right module P of H, = A extends to a vector-
bundle on [P, if there is a vectorbundle P = {P,, P,, P,} in IP, such that
P~P,

Proposition 1 Any f.g. projective right A-module P extends to a vector-
bundle P on IP,.

Proof : As P is finitely generated one can equip it with a good filtration.
Let h(P) be the homogenization w.r.t. this filtration i.e. h(P) = @;PZ* C
P[Z,Z7']. Clearly h(P) is a graded H-module. Now, consider P in IP?
represented by A(M)** = HOMy(HOMy(h(M), H), H). All sections are
reflexive modules over an Auslander-regular algebra of gldim at most 2,hence
they are projective by the foregoing lemma.Hence, P is a vectorbundle on
IP, extending P. O

Remark 1 In case P is a right ideal of A one can do without taking the
double dual. Equip P with the induced filtration on A,then using the fact that
H is a domain it is easily verified that HOMy(h(P), H) = h(Hom4(P,A)) =
{g€ Q*(H):q.h(P)C H}.

Proposition 2 Let M be a graded reflexive right H-module.
1. There is an exact sequence
0— @:H(ni) — @;H(m;) > M — 0
for certain integers n;, m;

2. Exty(M*, H) ~ Ext(Exty,(M, H), H)




Proof : Using the spectral sequence for the Auslander regular algebra
H we have

Exty(M* H) = E;%(M) = EX(M)=0
Baty(M*, H) = E;°(M) = EX(M)=0 (4)

As M is reflexive we therefore get
Exti(M,H) = Ext3 (M, H) = 0

whence pd(M) < 1. Hence we have a gradation preserving projective resolu-
tion of M
0—-P-F—-M-—=0

with P; a graded projective right H-module,hence free, finishing the proof of
(1.

Part (2) follows from pd(M) < 1 which entails that EY™/(M) =
En=9(M). ]

Remark 2 If P is a non-principal right ideal of A, then the above result
applies to h(P) and hence we get an exact sequence in IP,

0= B:0(n:) — &;0(mj) — P — 0

where P is the vectorbundle extending P. Observe that the sequence for h(P)
does not split,i.e. h(P) is not a graded projective H-module for then it would
be isomorphic to H(m) for some m yielding that P is principal. For a right
ideal P of A the numbers n; and m; can be readily calculated from the theory
of Galligo stairs [9, §2] if we are given generators of P.

4 The right ideals P, = 2" A + (zy + n)A

Whereas all invariants introduced in this paper can be readily computed
given a generating set for the right ideal, we will stick to the ’canonical’
non-principal right ideals P, as for them everything can be seen immediately
from eigen-space calculations as in {8, §3],[11, §1] or [20]. ~

For t € ZZ define A(t) = {f € A | [zy,f] = tf}. Then, A =&2__A(t)
with A(t) equal to

y'0 [zy] = @ [zyly® for t2>0
27 [zy) = @ [aylz™" for t <0 (5)
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Lemma 2 If P, = 2" A+ (zy+n)A then P,(t) = 2" A(t+n+1)+ (zy +
n)A(t) is equal to

(zy + n)@ [zy]y* for t>0
(zy + n)@ [zy]lz™ for —-n<t<0
@ [zy)z™" for t< —n (6)

Proof : Let t = —1 then P,(—1) is "0 [zy]y" + (zy + n)T [zy]z
which,using 2"t1y"*! = zy(zy + 1)...(zy + n) is equal to

zy(zy + 1)...(zy + n)C [zyly ™ + (zy +n)C [zy]e

The first factor is (zy + 1)...(zy + n)0 [zy]z giving the desired result. All
other calculations are similar. o

Proposition 3 We have an ezact sequence of graded right H-modules
0—-H(-n—2)— H-2)® H(-n—1) = h(P,) — 0

Proof : It is clear that h(P,) is generated by X"*! and XY + nZ?
and that there is a relation between these two generators namely X"ty =
(XY +nZ?)X". This gives the required sequence. In order to verify that it
is exact we have to compute the Hilbert series of A(P,). Using the foregoing
lemma we see that it is equal to

1 32 3 E?—ll 81 gt
9\ T (- 10909
Sl _gn+2

which simplifies to 52—4’(———73,- which fits with exactness of the sequence. O

)

Next, we perform similar computations for the dual module

Lemma 3 The left A-module P} = Az=""' N A(zy + n)~! has eigenspace
decomposition Pi(t) = A(t —n — 1)z™" "t N A()(zy + n)~! which is equal to

y'a@ [’cy](:cy + n) for t>n+1
@lzy] for 0<t<n
"tp[z ] for t<0 (7)
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Proof : Let us illustrate the calculations with the case ¢ = n. then
Pi(t) = 2C[zylza™ 1 N y"C [zy](zy + n)~! which equals
y" @ lzy)(zy +n —1)7 o (2y) T Ny C [zy)(zy + )™

giving the desired result. The other computations are similar. a

Proposition 4 There is an exact sequence of graded left H-modules
0— H(-n)— H® H(-n+1) = h(P)—0

Proof: Again, it is easy to see the generators (1 and V" (XY +nZ?)~1)
and the relation between them. Therefore it is sufficient to show that the
Hilbert series of R(P}) is of the required shape. Using the above lemma the
series is

n-~1 n i
1 s i=1 S E

S A G Ry Ry PR Sl G s vy g

which simplifies (as required) to T o

Observe that h(P,) is not projective as h(P;)h(P,) does not have ele-
ments of degree 0 so it cannot be equal to H. The study of the bundle 7,
associated to h(P,) will be continued in the last section.

5 Beilinson’s derived equivalence

Beilinson [5] proved that there is an equuivalence between the derived cate-
gory of bounded complexes of coherent sheaves on IP" and that of f.g. mod-
ules over a certain finite dimensional algebra of global dimension n. This
equivalence allows one to study certain classes of coherent IP*-modules via
linear algebra.

In this section we will scetch the Beilinson procedure for the quantum
plane IP,. Note however that this is a very general argument and is applicable
to other situations. The best result to my knowledge is due to A. Bondal [6].

The finite dimensional algebra in question will be the incidence algebra
of the following quiver




I =
18 L 3

with relations

XY, -YhXo = Zi2,
X102y — 21 X,
Wi, -2, = 0 (8)

We will call this algebra B. Observe that
B = Endeonp,) (O @ O(1) ® O(2))

I
o

The version of Beilinson’s derived equivalence which we need is then :
Proposition 5 The functors
F = Homeonp)(O®O(1)®O(2),—) : C'oh(ZPg) — mod(B)
G=-0s(080(1)& 0(2): mod(B) — IP:

induces an equivalence of derived categories
D*(Coh(IP,)) ~ D*(mod(B))

Proof :  This is just [6, Theorem 6.2] addapted to our situation.The
required conditions follow from the Koszul sequence. a

Of course, we would prefer to be able to attach to an object in Coh(IP,)
aright B-module rather than a bounded complex of such modules. This can

be achieved for certain subclasses of objects.
With X; we denote the set of all M € Coh(IP,) such that

Eaxt coh(P (O0(1)®0(2),M)=0forall j#:
Likewise, with ); we denote the set of all M € mod(B) such that
TorP(M,0 & O(1)® O(2)) =0 for all j #1
Then one deduces precisely as in e.go‘ 2, §3.2]
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Corollary 1 The functors
F' = Eztgup,) (08 O(1) @ O(2), —)
G =Torf(—,08 0(1) & O(2))

establish an equivalence
X~ Y,

Hence, an object M € X is uniquely determined by a B-module and
hence by linear data. Our next job will be to show that specific shifts of the
vectorbundle extending a right ideal of A lie in A}.

6 Monadology

In Coh(IP,) we can introduce 'cohomology’ groups as the derived functors
of Homgoh(pq)(O, -—) le.

H'(IPy, M) = Eztgonp ) (O, M)

As we have that Ext'(O(k), M) = H'(IP?, M(—Fk)) we can define the
category X, as the set of those objects M € Coh(IP,) such that

HI(IP%, M(=F)) =0

for all j # 7 and all & =0,1,2. That is, for M € &; we have the following
cohomology groups H’(IP,, M(2))

]
710(010(0O0
Tl %] %] 7
0,0(0]0]| 7

3 210 1 |

Let us return to the case of a vectorbundle P extending a right ideal P
of A determined by A(P). We have

h(P) = @& H°(IP,, P(k))
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and from the Koszul sequence we have a form of Serre duality for vectorbun-
dles M in Coh(IP,) stating that

H?*(IPy, M)* ~ H°(IP,, M*(=3))

where the first dual is of @' -vectorspaces and the second is the Hom(O, M).
As P~ is the object in Coh(IP,) associated to the homogenization of P* =
{g € Dy : ¢P C A} we can compute all H° and H? cohomology groups of P
given a generating set for P. As a consequence we have

Proposition 6 If P is a non-principal right ideal of A and if P is the vec-
torbundle on IP, extending P corresponding to h(P), then P(d — 1) € X
where d s the minimal filtration degree for elements of P.

Proof: As H and hence Q?(H) is a domain it is clear that the filtration
degree of any element of P* is > —d. Therefore H*(IP,, P(k)) = 0 for all
k > d — 2. Now assume that H*(IP,,P(d — 3)) # 0 then A(P*) has an
element of degree —d meaning that A(P*)A(P) = H whence h(P) is a graded
projective right H-module. But then A(P) has to be principal and so does
P.a contradiction. O

Hence, the right ideal P is completely determined by the B-module with
representation

— oy
i — Vo - W
_% ..-..)

where V; = H(IP,,P(d — 4 + ¢)) and where the maps are induced by mul-
tiplication with X (resp. Y and Z). Observe that the only effect of taking
another representant in the isomorphism class is having to take a different
twist d (and perhaps a different choice of basis in the V;).

Conversely, one can recover P as the ’cohomology-bundle’ of the monad

NRO(-1)—=1he(l)~» o
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That is we have an exact diagram in Coh(IP,)

0 0

0 - VeOo(-1) - K - Pld-1) — 0
I ! l
0 = KWeo-1) - Ked(l) —» C
! !

@0 = 10
l !
0 0

where Q' is the first syzygy bundle i.e. the kernel of the rightmost map in
the Koszul sequence.

7 Kronecker modules

Whereas the above reduces the study of right ideals of A to the study of
certain finite dimensional modules of B (and hence to linear algebra) we want
to do better, i.e. we want to associate to a right ideal a point of a specific
Grassmannian.In module theoretic terms, we want the finite dimensional B-
module corresponding to P to be uniquely determined by its three rightmost
maps. The importance of this being that we no longer have to care for the
defining relations of B but are reduced to a Kronecker situation.

We can repeat the argument of D. Baer given in [2, Cor.7.2]. Then we get
that M € Coh(IP,) is uniquely determined by a Kronecker module if both
M and M(1) belong to X;. That is, the cohomology groups H’(IP,, M(7))

have following shape

Fortunately,we have
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Proposition 7 Let P be a non-principal right ideal of A with minimal fil-
tration degree d. Then, both P(d — 2) and P(d — 1) belong to X1. As a
consequence, P(d —2) (and hence P) is uniquely determined by a Kronecker
module.

Proof : Assume that P(d—2) ¢ X, then h(P*) would have an element
of degree —d + 1. Observe first that the statements are preserved under
isomorphism. Hence we can take a representant in the isomorphism class
such that PN @' [z] # 0 (this can be done by [21]). Now look at the following
picture

@

—a a

Here the top-right corner region (marked 1) is the set of couples (&, k2)
occuring as degrees of elements of P in the multi-filtration on A (and its
ring of fractions D) by giving = degree (1,0) and y degree (0,1). By our
assumption, the region is bounded on the bottom-right by the horizontal
axis and on the top-left by the axis j = a. As the ideal is non-principal,
the point (@,0) cannot belong to this region,hence the (total) degree of an
element from A(P) is > a+ 1 (ie. d 2 a-+1).

Similarly, the region determined by the degrees of elements of P* in the
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multi-filtration must lie in the region marked 2 (bounded on the left by the
line j = —a). Observe that (—a,0) cannot lie in this region as otherwise
P* (and hence P) would be principal. Hence the degree of any element of
h(P*) has to be > —a + 1.So, h(P*) does not contain elements of degree
—d + 1,done. ]

Hence we see that the isomorphism class of the right A-module P is fully
determined by the three linear maps (given by multiplication with X, Y and
Z) from V; to V; (with notation as in the foregoing section).

Therefore we can associate to any isomorphism class of right A-ideals 2
integers dim (V1) and dim(V,). If we are given generators for a representant
right ideal there is an effective procedure to compute these numbers. It
would be interesting to determine the couples (ny,n2) s.t. the moduli-space
M(A;n1,n2) describing the isoclasses of right A-ideals with the corresponding
numerical invariants is non-empty and to determine the geometrical structure
of these moduli spaces (e.g. are they rational 7). Further,it will be interesting
to determine how the 'moduli’ of Cannings and Holland are related to these
numerical moduli.

8 The bundles P,

In this section we will continue our study of the bundles P, corresponding
to the right ideals P, = "' A + (zy+n)A. As the minimal filtration degree
for elements of P, is 2 we have to calculate the dimensions of

Vi = H'(IPy,P(~1)) and V= H'(IP,,P)

and the three maps between them induced by multiplication with the vari-
ables.

Proposition 8 The vectorbundle P, is determined by the Kronecker module
with dimension vector (n,n) and where the linear maps corresponding to
multiplication with X (resp. Y and Z) can be represented by the matrices

0
I 0




(resp.
0 1-n 0

0 2—n 0

and I,).

Proof : We have discussed the exact gradation preserving sequence of
right H-modules

0 — H(-n-—2) - H(-n—-1)® H(-2) — h(P,) — 0
- X‘n+1
(¥, = X% (XY+nZ2)'

After dualization, this induces an exact sequence in Coh!(IP,) (of left mod-
ules!)

0— P —> O0R2)®O(n+1) — O(n+2) =0
(XY +nZ2 X+ .(‘é')

By Serre duality, the maps H'(IP,, P(-1)) — H(IP,,P) induced by

right multiplication by a variable V are the transposed of the maps

HY(IP,, P*(—3)) — H'(IP,,P*(—2)) induced by left multiplication with V.
Cohomology gives us the diagram with exact rows

)

0 - 06 Hys —  Huy — HYIP,,P*(-3) — 0
V.| V.| V.|
0 > COHyy  — H, — HXIP,P*(-2) — 0

(7
v )

From this one deduces that H'(IP,, P*(—3)) has dimension n and basis
the images of X", X"~2Z, .., Z" ! and that H'(IP,, P*(~2)) has dimension

n with basis the images of X*~1Z, X""22% .., Z". With respect to these
basisses one verifies that the matrices representing left multiplication with
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X (resp. Y and 7Z) are the transposed matrices of those in the statement of
the proposition, finishing the proof. a

In fact,we can easily compute the dimensions of all cohomology groups.
Those of H® or H? follow from knowing the Hilbert series of h(P) and h(P*)
and for H' we have

‘ . —1 | < <

dime (H(IPy, Pn(2)) = { ni] g O—Eifg i< —1

Recall from [10] that one can associate to a triple of n X n matrices
(M, My, Ms) a stable vectorbundle on the usual projective plane IP*((')
provided dimg (€. My.v+ . Myv+ @ . Mz.v) > 2 for all 0 # v € @™.If one
of these matrices is the identity matrix,the rank of the vectorbundle is equal
to the rank of the commutator matrix of the other two. Applying these facts
to the above computations we see that there is a stable rank n vectorbundle
on [P,(@) with Chern-numbers ¢; = 0 and ¢; = n associated to the right
ideal P,. It would be interesting to determine the image of the rational map
M(A;n,n) — M(n;0,n) where M(n;0,n) is the moduli space of rank n
vectorbundles on ZP2(G’) with ¢; = 0,¢c; = n. We hope to return to some of
the questions raised in a forthcoming paper
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