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1 Introduction

To an elliptic curve E and a rational point 7 € E (or rather the automor-
phism on F induced by translation with 7) one associates the 3-dimensional
Sklyanin algebra A.(E),e.g. [4] or [18]. These are non-commutative Noethe-
rian domains and are Auslander-regular of global dimension 3 ,[5]. The ge-
ometry of Sklyanin algebras is reasonably understood by now,see [2] or [13]
for the analogously defined 4-dimensional Sklyanin algebras.

Perhaps it is interesting to look at some of the arithmetical problems
connected with Sklyanin algebras. This series of notes may be seen as the
first timid steps in this direction. My interest in the arithmetic of Sklyanin
algebras comes from the following two motivations :

1.1 Modular curves

Let T = {a = 2+ 4y | y > 0} be the upper half plane acted upon by the
modular group SL,(Z), then the j-function gives a holomorphic isomor-
phism between the fundamental domain SLy(Z) | Y and IP*(€ ) — {o0}. To
a we can associate a lattice A in ¢ and the j-function is the single invariant
for isomorphism classes of toruses (or elliptic curves) @' /A.

For any positive integer n one considers the subgroup I'i(n) of SLy(ZZ)
consisting of all elements which modulo n look like

(6 1)

0 1

for arbirary b. We can view 1/n as a point of order n on the torus @ /[, 1]
and the association

a— (€ [la,1],1/n)

gives a bijection between the fundamental domain I';(n) | T and isomorphism
classes of toruses (or elliptic curves) together with a point of order n.

As in the case of the full modular group SLy(Z7),there exists an affine
curve Yy(n) defined over @ such that there is a holomorphic isomorphism
between I';(n) | T and Y;(n)(C@). If K is a field containing @ then a point
of Y1(n)(K) corresponds to a pair (E,7) where E is an elliptic curve defined
over K and 7 is a K-rational point of E of order n.

The affine curve Yi(n) can be compactified to Xi(n) by adjoining the
cusps,i.e. points which lie above j = co. The projective curve X;(n) is called
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the modular curve. There are many important open questions concerning
modular curves,e.g.

Question 1 If K is a number field,does the set of rational points X;(n)(K)
consists entirely of cusps for all sufficiently large n ¢

As far as I know,this question is only settled for K = @ by B. Mazur [14]
and for quadratic number fields by Kamienny [7].
Classically, one can associate to a point (E,7) of X;(n)(K) "only” the
isogeny
7:E—-E=E/<1>

As we mentioned above, one can associate to the couple (E, 7) a certain non-
commutative algebra, the Sklyanin algebra A,(E). The construction and
some of its properties will be recalled in the next section. For the moment
think of A,(E) as determining an order A over IP? completing the following
square diagram

F — A
! !
E' «— [P?

Conversely, one can recover the couple (E, 7) from the ringtheoretic structure
of A;(E) : the curve E describes the rank three divisor of point-modules
and the point 7 is recovered from the twist operator on point modules, the
isogenous curve E' = E/ < 7 > is recovered as the ramification locus of the
order A. Therefore, all invariants associated to the Sklyanin algebra A,(E)
should ultimately be described in terms of the point (E,7) € Xi(n)(K).
Some are merely translations, e.g. the above question can be rephrased into
ringtheoretical lingo as : if K is a number field is there a bound on the
p.1.-degree of Sklyanin algebras defined over K?

More interesting is that one can associate new objects to A.(E) or if
you want to the corresponding point of X;(n). To begin,Sklyanin algebras
determine at least 3 new cubic curves :

1. The Artin-Schelter curve : In [3, 6.11] Artin and Schelter associate a
cubic divisor w such that A.(E) is a skew-polynomial rings if and only
if j(w) = oo.




2. The discriminant curve : By symmetrizing the three defining quadratic
relations of A,(E) one obtains a net of conics in IP?. Associated to
such a net is a cubic divisor describing the singular conics. In [12] this
discriminant curve was shown to play an important role in the study
of central extensions of A.(E).

3. The cubic trace curve : As we will see in the second part of these notes,
the division algebra of A.(E) will be a cyclic algebra if there exists a
degree one element g € A,(E) s.t. Tr(¢®) = Tr(¢®) = ... = Tr(¢*3)) =
0.The condition Tr(¢g3) = 0 describes a cubic curve called the cubic
trace curve.

At present it is unclear how the arithmetic of these new curves ties up with
the original isogeny. Moreover, one can associate to A,(E) also entirely new
objects such as fat-points and their endomorphism central simple algebras.In
[10] we wil see how the splitting behaviour of these central simple algebras
is intimately linked to the isogeny.

In short, the Sklyanin algebra A.(E) associates new objects to the non-
cuspidal point (E,7) of X;(n) and conversely it is hoped that any insight we
will gain about them will be of use in the study of rational points on modular
curves.

1.2 The cyclicity problem

There is also an entirely ringtheoretical motivation for studying Sklyanin al-
gebras. After more than 60 years the following problem in finite dimensional
division algebras is still unsolved :

Question 2 Is every division algebra of degree p (p a prime) cyclic ¢ That
18, does there exists a non- central element § € A s.t. 6? is central ¢

The answer is clearly positive for p = 2 or 3 but even for p = 5 the answer
remaines unknown in spite of considerable effort of Albert [1] and Brauer [6].
Perhaps there is a slight tendency these days to expect the answer to be
negative for large values of p.

One can view a division algebra A of degree p i.e. of dimension p? over its
center F' to be a bag containing lots of commutative separable fieldextensions
of F of degree p. As p increases we get more freedom for the Galois groups
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of these subfields of A so it seems unlikely that A should always contain a
Galois (i.e. then cyclic) subfield.

The basic obstruction in carrying through this idea is that one does not
know many constructions of division algebras which are on the one hand
not too easy to prevent them from being possible counterexamples (such as
iterated Ore-extensions) and on the other hand not too difficult to calculate
with (such as generic division algebras).

Perhaps the Sklyanin algebras constitute the first class of algebras sat-
isfying both requirements. As we mentioned above,Artin and Schelter were
able to show that they are virtually never skew polynomial rings [3, 6.11].
Still, from work of Artin,Schelter,Tate,Van den Bergh [3],[4] and [5] and es-
pecially the recent unpublished work of J. Tate [19] one can perform actual
computations in A,(E).

Although these algebras arise from a very cyclic situation (an isogeny of
elliptic curves) it turns out to be rather hard to prove cyclicity of them even
for small values of the order of 7. As we will see in the second part of these
notes,cyclicity follows easily if ord(7) < 9 and K algebraically closed but it
involves some extra work to prove e.g. cyclicity over an arbitrary basefield
when ord(7) = 5 and even for ord(7) = 7 cyclicity is still unsettled over say
Q.

A possible approach to disprove cyclicity for A.(E) is to look at division
algebras of the restriction of A to points or curves in IP?. In the case of
points or lines through rational points of the isogenous curve E/ < IP? one
can easily use the isogeny to prove that the algebras are split by an at worst
dihedral extension and hence they are cyclic (at least if K contains a primitive
p-th root of unity) by a result of Rowen and Saltman [16]. However, for
arbitrary lines or more general curves deciding cyclicity of the corresponding
quotient of A turns out to be substantially harder. '

It is our hope that a closer investigation of the arithmetic of Sklyanin
algebras (or algebras derived from them) may lead to non-cyclic division
algebras of prime degree.

The present paper contains in a way the dirty work one needs to do first
before one can tackle the more interesting problems, i.e. how to compute
the defining equations of A,(E) and its center starting from a point (E, )
in X;(n)(K).




Section 2 should be read as a rather self-contained crash course on 3-
dimensional Sklyanin algebras. In it we rederive some of the basic results of
[4] in the special case of elliptic curves with we hope as little machinary as
possible. We have included a proof of the fact that the twisted coordiante
ring O.(F) has the same Hilbert series as the coordinate ring of the elliptic
curve, a computational method to get hold of generators for the quadratic
equations and some help for the proof in [4] of the existence of a "twisted”
Weierstrass equation,i.e. a central degree 3 element c3 such that the quotient
A.(E)/(cs3) is isomorphic to the twisted coordinate ring O,(E). This fact is
the key to working with Sklyanin algebras.

In section 3 we present the defining equations for Sklyanin algebras asso-
ciated to rational points on X;(n) whenever it is a rational curve, i.e. when
n < 10 or n = 12. We also briefly recall the well known method to construct
the Weierstarss equations of elliptic curves such that the origin [0: 0 : 1] is
a point of order n and included the coordinates of all points in the subgroup
generated by it. This information is then used later on to describe the center.
Combining these computations with the result of B. Mazur mentioned above,
this section can be thought of as describing all Sklyanin algebras over the
ultimate base-field : @.

In the final section we present a computational method to describe the
center of the Sklyanin algebras using recent results of J. Tate [19]. He proved
that the center of A.(F) is generated by c¢3 and three elements of degree n
satisfying one relation among them. We give precise generators of the center
of the twisted coordinate ring O,(F) and the unique cubic equation satisfied
by them. This is in fact a reformulation into the present setting of a result of
J. Vélu [20] on computing the Weierstrass equation of an isogenous elliptic
curve starting from the equation of the elliptic curve and the coordinates
of the elements in the kernel. By Tate’s proof we then know that we can
lift these three degree n elements to central elements of A,(E) and that
the unique relation satisfied among them and c3 is of the form ac} = the
cubic among the three degree n centrals (at least if (n,3) = 1). But even
then, there remains the problem of evaluating the constant factor e which is
best done by considering fat points and their endomorphism rings. We have
included the results obtained for n < 5 for the center of A,(F) and for the
center of O.(F) when n < 10. Even for n = 5, verifying the equation found
is beyond the computing facilities of a moderate workstation. It is hoped
that better algorithms may be found for lifting the generators of O,(E) to
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A,(E) as well as for calculating the constant c.

Acknowledgement : I like to thank S.P. Smith and J. Tate for pro-
viding me with notes on their unpublished work on the centers of Sklyanin
algebras. Also, many of the computations would have been impossible with-
out Bill Schelter’s ”affine” program and computer facilities provided through

an NFWO-grant.

2 The 3 dimensional Sklyanin algebras

This section is meant to be a crash-coarse on basics of the 3-dimensional
Sklyanin algebras. At certain points we have included proofs when we
thought they might help readers uneasy with the geometrical arguments of
[4]. More details will be given in the forthcoming monograph [11].

Sklyanin algebras arose in the work of Artin and Schelter on graded regu-
lar algebras of global dimension 3. In the subsequent work of Artin,Tate and
Van den Bergh [4] and [5] the central element ¢; of degree 3 and its quotient
algebra A,(E)/(c3) (which turns out to be a twisted coordinate ring) were
introduced as tools in the study of the regular algebra A,(E).

I think it is more sensible to start with the twisted coordinate ring O,(E)
as a non-commutative version of the usual homogeneous coordinate ring
O(E). The classical epimorphism K[X,Y, Z] — O(FE) with kernel the prin-
cipal ideal generated by the Weierstrass equation of E is then realized to
have a non-commutative counterpart A,(E) — O,(E) where the Sklyanin
algebra A,(F) is the quotient of the free associative algebra on three gener-
ators modulo the ideal of quadratic relations in O, (E) (in the classical case
we have just the three commutators giving the polynomial ring). The kernel
of this epimorphism is then the ideal generated by a central degree 3 element
¢3 which can be thought of as a twisted Weierstrass equation.

If we denote with C,.(E) the center of O,(E) and with Z,(F) the center
of the Sklyanin algebra we will see below that Tate’s results show that we
have the following diagram

A(E) — O.(E)

U U
Z(E) — Cu(B)




where the horizontal maps are epimorphisms.By looking at parts of degree
zero of localizations,this diagram gives rise to

A — FE
i i
P? «— FE'

where E' is the isogenous elliptic curve E/ < 7 > with its natural embedding
in IP? which can be interpreted as the projective space of the 3-dimensional
vectorspace of central degree n elements. The map £ — E’ is just the
commutative isogeny and with A we really mean the non-commutative Proj
of A,(E) as in e.g. [2].

Let us first fix the notation we will use throughout this paper and recall
some basic facts on elliptic curves which may be found in any textbook (an
excellent reference is [17]).

Let K be our favourite basefield, K its algebraic closure and G =
Gal(K/K) the absolute Galois group. An elliptic curve E will be given
in affine Weierstrass form :

E:y2+a1my+a3y=x3+a2x2+a4x+a6

see e.g. [17, IIL§1]. If all a; € K we say that the elliptic curve E is defined
over K and denote this fact by E/K. The points of E carry the structure of
an Abelian group, see [17, p. 58] for explicit formulas for the addition law.

The divisorgroup of E, Div(E), is the additive group of the integral
groupring over the points of E. The subgroup of degree zero divisors Div®(E)
consists of the combinations > npP such that Y np =0in Z. If f € K(E),
the functionfield of E, then f = -g where F,G are homogeneous forms of
the same degree (say i) in K[X,Y, Z] s.t. G does not vanish on E. The
divisor div(f) of f is I(F, E) — I(G, E) the difference of the two intersection
cycles (each having degree 37) so it is a degree zero divisor. We have an exact
sequence :

1—- K" — K(E)*— Div’(E) —» E(K) — 0

the maps being resp. inclusion,div and the map sending 3> n,P to Y [np]P €
E(K) (the addition on E). If E/K then we have the descended sequence :

1 — K* — K(E)* — Div)(E) —» E(K) = 0
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where F(K) is the group of K-rational points of F and Diw}(FE) are the
G-invariants of Div®(E) see [17, 11 §3].

For any divisor D € Div(FE) one defines the vectorspace L(D) = {f €
K(E)*:div(f)+D >0}uU{0}. If D = Y npP then the degree deg(D) is the
integer Y np € ZZ and the Riemann-Roch theorem for elliptic curves states
that the dimension of £(D) equals deg(D) (provided def(D) > 0). Moreover,
if D € Divg(E) the subgroup of G-invariants divisors, then this vectorspace
has a basis consisting of functions from K(E) see [17, IL.Prop.5.8].

2.1 The twisted coordinate ring O,(F)

Following [4] we will now introduce for every point 7 € E a non-commutative
graded ring O,(E) having similar properties as the usual homogenous coor-
dinate ring O(E) of E.

Let ¢, : E — E be translation by 7 on E, then this morphism extends
to an automorphism on the function field ¢; : K(F) — K(E) where for any
funtion f the function ¢%(f) has value f(P + 7) in the point P. Hence, if
div(f) = X npP then div(¢:(f)) = np(P — 7). If no confusion can occur
(i.e. once 7 is fixed) we will denote ¢ = ¢.

Having an automorphism 1 on the commutative field K(E) we can form

the skew polynomial ring

K(E)[t,¢]
which satisfies the commutation rule ¢.f = (f).t for all f € K(E). It is
classical that this skew polynomial ring is a graded Noetherian domain,a left
and right principal ideal domain and that it is a finite module over its center
iff ¢ has finite order i.e. if 7 is a torsion point on E.

In order to motivate the definition of O, (F) let us consider the classical
case, i.e. when 7 = 0 and ¢ = id so K(E)[t,y] = K(E)[t]. Then, it is easily
verified that the homogenous coordinate ring O(E) of E is the subring of
K(E)[t] generated by the three homogeneous elements of degree one z.t,y.t
and 1.t. Hence the following comes naturally :

Definition 1 If7 € E and ¢ = ¢}, then the twisted coordiante ring O.(E)
is the subring of K(E)[t,1] generated by the elements z.t,y.t and 1,t,

Clearly, O,(F) is a graded domain
OE)=By®B;®B; & ... with B; C K(E).t'
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Let us calculate the first few terms : clearly Bo = K and B; = Kz.t+Ky.t+
K1.t = £(3.0).t.Further,B, is spanned by the elements

182, 2.2, y.88, 9(2).£%, 9 (y).£2, 2.9 (2).8%, 2o (y) 1%, yob (y) 22, yop(2).£°

and is therefore contained in £(3.0 + 3.(—7)).t%. The following description
of O,(E) is proved in [4, §6] :

Theorem 1 (Artin et al.) Let 7 € E and let 0 = —7 € E and D; =
3.0+3.0+..+3.[i —1]o € Div(E). Then

O.(E)= ZL(Di).ti
=0
whenever [3]7 # 0.In particular, the homogenous part of degree ¢ has dimen-
ston 3.

Proof : By definition, B; = (B;)' = £(3.0).t.£(3.0).t...£(3.0).t and
using the commutation rule this equals

£(3.0)1%(£(3.0))...4°"H(L(3.0)).¢

which is clearly contained in £(D;).t.

To prove equality we make the following change of basis in £(3.0). If
(3,n) = 1 we maintain « but if 3 | n we take z the function determined by
the line through 0 and [k]r where k is minimal s.t. [3k]r = 0. Further, we
choose I € £(3.0) s.t. div(l) = P; + P, + P; — 3.0 with P; distinct points s.t.
{P1, P;, Ps} N [Z]7 = 0. This condition implies that the divisor of poles of
l(1)..4p*"* (1) = D, for all n.In addition, choose [ s.t. ,l and the tangent
line to F in either [k + 1]7 or [2k + 1]7 have no point in common. Observe,
that O,(F) is generated by 1.¢, z.t and l.t. ;

Assume by induction that B;_; = £(D;_1).t*"! then clearly £(D;_;).t =
L',(D,-__I).t"‘l.l.t C B;. By calculating the divisors of poles we see that the
following elements of B; belong to (£(D;) — £(D;_1).t" :

(z.8)2.(Lt)"% et (12) Y, Lt (1.t) T

If they are linearly dependent over £(D;_;).t""! there exist a,b,¢ € K such
that
(azp(z) + brp (1) + clp(D))Y2(1p(D).. %) € L(D;-1)
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If the first factor is f then div(f) = Y%, @i — 3.0 — 30 and the divisor
of poles of the second factor is 3.[2]o + 3.[3]c + ... + 3.[¢ — 1]o. Therefore,
Q1= Q2 = Q3 = [¢{ — 1]o,whence [3(: — 1)]7 = 0.

So, whenever k |/¢ — 1 we obtain a contradiction and we are done by
a dimension count. If k¥ | 7 — 1 then we can evaluate f in [ — 1]o to give
¢ = 0 as z([¢ — 1]o) = 0 but neither /([{ — 1]o) nor I([i]o) vanishes. So, the
divisor of f is [k]7 + [2k]7 + Ry + Ry + R3 — 2.0 — 3.0 so [k}r ( or [2k + 1]7)
must be a double zero of ¥(ax + bl) i.e. ax + bl is the tangent line to £ in
[k+1]7 (or [2k+1]7),but then z,! and this tangent line would be concurrent,
a contradiction. O

If E/K and if 7 € E(K) then clearly all the divisors D,, € Divg(F) and
so they each have a basis consisting of functions from K(E).If we denote for
any divisor D by Lg(D) = £(D) N K(E) then we deduce from the above
proof :

Proposition 1 If E/K and if 7 € E(K) and if there ezists a K-defined
line l s.t. | avoids [Z]r and |,z and the tangent lines to E described in the
foregoing proof are not concurrent, then O,(E) is defined over K i.e. the
K -subalgebra of K(E)[t,v] generated by x.t,y.t and 1.t is

Z ,CK(D,').ti
=0

2.2 The Sklyanin algebras A,(E)

As O,(E) is generated by three degree one elements there is an epimorphism
K< X,Y,Z > O.(E)

and the degree two part of the kernel is 3-dimensional as B, = 6 and the free
algebra has 9 degree 2 forms. Recall that in the classical (i.e. 7 = 0) these
quadratic relations are just the commutators. Hence, if we take the quotient
of the free algebra modulo the ideal generated by the degree 2 relations we
would expect a ring having similar properties as the polynomial ring in three
variables.

Definition 2 Let E/K be an elliptic curve and 7 € E(K), then we define
the Sklyanin algebra A.(E) to be the quotient of K < X,Y,Z > by the ideal
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generated by the degree 2 part of the natural epimorphism to O.(E) sending
X (resp. Y and Z) to z.t (resp. y.t and 1.t).

An entirely commutative description of the quadratic relations is as the
kernel of the multiplication map (in the function field K(F))

g Lk(3.0) ®k Lk (3.0) = LK(3.0+3.0)

(remember that ¢ = —7). If we know enough K-points on the elliptic curve,
there is a simple procedure to find a basis for this kernel :

Proposition 2 Let Py, P,, P; be three non-collinear points of E(K) such that
P, + P, + P3 # [3|o. Then the kernel is generated by

¢ = lptr,Piyr - @ V(1P Piys) — Cilpip(o)rPiya—r @ (P, Pyy)

where subscripts are taken mod 3, o; € K and lg g is a fized equation of
the line through Q and R. If there is a point in E(K) such that it and its
translate under 7 do not lie on any of these lines, then the o; € K.

Proof : Let [,I'! € £(3.0) such that their associated lines L and L'
intersect F in Ry, Ry, Rs (vesp. S1,S52,S53) then the image of I ® ¢(I') in
£(3.0 + 3.0) has divisor

R1+R2+R3+(51—T)-I-(Sz—’r)-|-(53—7')-—3.0—3.0'

Note that the S; — 7 are not colinear unless [3]r = 0. If we would have
another line in this divisor,then we would have another element I; @ 9(1})
mapping to the same element and hence there is a constant o € K s.t.

[ Q¢p(I') — aly @ P(1)

lies in the kernel. If we assume e.g. that Ry, S; — 7 and S5 — 7 are colinear
then such a situation occurs precisely if Ry = Sy + [2]7. This shows that the
three elements belong to the kernel of the multiplication map.

Now, assume they are linearly dependent i.e.

aqy + bgy + cgz = 0 in £(3.0) @ £(3.0)

13




If we evaluate this equality in the £(3.0) component in the point Py — 7
and if we use that the P; are not colinear then we get that Ip, - p, - and
Ip,42]r,p,—~ must determine the same line. As P, # P; this means that
P, + [2]r = —P; — [2]7r — P, + 7, a contradiction by assumption. The last
statement is obvious by evaluating the relation in the extra point. O

Of course, if E/K and 7 € E(K) we do not really need all the points to
be K-rational. It suffices that the defining lines are K-defined and we have
a K-rational point not lying (as well as its translate) under 7) on any of the
* lines to have the three base-elements defined over K (and hence the elliptic
algebra to be defined over K).

In fact, we can deduce from the proof of the first theorem

Proposition 3 If E/K , 7 € E(K) and there exists a K-defined line I s.t.
z,l and one of the two tangent line to E described above are not concurrent
and | avoids [Z]r. Then, the quadratic relations of O,(E) (and hence A,(E))
are defined over K.

Proof : As the divisors 3.0, 3.0 and 3.0 + 3.0 are K-defined the corre-
sponding vectorspaces have basises of functions from K(E). Moreover, one
observes that

UK : ,CK(3.0) &® L:K(?).O') - L:K(3.0 + 3.0‘)
is surjesctive. As tensoring with K gives a three dimensional kernel of px @ K

we also have that Ker(uk) is three dimensional. a

2.3 The twisted Weierstrass equation
By definition, we have an epimorphism :
AL(E) > OL(E)

which is an isomorphism upto degree 2 and having a one-dimensional kernel
in degree 3.We now want to show that this space is generated by a central
element c; which plays the role of a twisted Weierstarss equation. That is,
we ultimately want to show that

A-(E)/(e3) = O-(E)
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which will be the basis of all computations within the Sklyanin algebra. This
turns out to be substantially harder than the arguments given before and we
were not able to eliminate all sheaf-theory out of the proof. Still, we hope
that the following may be of help to the reader of [4, §6].

Equip E with its Zariski topology and the structure sheaf Og which has
as sections on the open set U

Op(U) = {f € K(E)|div(f)|U = 0}

i.e. those functions which can only have poles in the complement. Similarly,
for each D € Div(E) one defines a sheaf of Op-modules O(D) by its sections
on opens

O(D)(U) = {f € K(E)|(div(f) + D)IU 2 0}

so we recover L£(D) as the global sections.Conversely, every sheaf of Op-
modules which is locally free of rank one is of the form O(D) for some
D € Div(FE). We also have a sheaf version of Riemann-Roch stating that

deg(D) = dimH(E, O(D)) - H'(E, O(D)) = x(O(D))

where H° are the global sections and H? its first derived functor. The only
thing you need to know about these is that they turn short exact sequences
into long exact sequences and soif 0 — A — B — C — 0 is an exact sequence
of Og-modules then

X(A) = x(B) +x(C) =0

Now, let us return to our exact sequence
0— Ker(p) — £(30) ® L(30) — L(30+30) — 0
then we claim :

Proposition 4 There is a divisor D € Div(E) with deg(D) = —3 such that
the sequence

0 — O(D) — Ker(p) ® O — L(30) @ O(30) — O(30+30) = 0

induced by the sequence above is exact
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Proof : It is sufficient to prove this in the stalks or in the residue fields
of any point say P. That is we have a sequence

Ker(W) @K 3 L30) 9K 5K — 0

and we only have to show that I'm(«) is at least 2-dimensional in any point
P. Choose Q,R s.t. P+ Q + R # —47 then we know already that Ker(u)
contains the elements

loy2r,r—r @ d(lg.p4r) — los2rp @ #(lg,R)
lriorg-r ® d(lrpir) — Ilrtorp ® é(lg,R) (1)

Under o this maps are send to resp. —lgiarp ® @ and —lgyorp ® b for
a,b € K*. If Im(a) would be one-dimensional in P then these two lines
must coincide giving P + @ + R = —47 a contradiction by assumption.

Then, Ker(u) ® O — £(30) ® O(30) has as its kernel a locally free Og-
module of rank one whence of the form O(D). Applying x on the sequence
we get

deg(D) = 3x(Og) — 3x(O(30)) + x(O(30 +30)) =0 — 9+ 6 = —3

O

In fact, one can see that D = 30 — 60. Using this sequence it is then
possible to continue as in [4, p.76-79] to arrive at the isomorphism

A,(E)/(cs) = O-(E)

For more details the reader is referred to [11].

3 Defining equations of Sklyanin algebras

In this section we will calculate the defining quadratic relations of the
Sklyanin algebras A,(F) associated to a point (E,7) € X;(n)(K) whenever
X1(n) is rationali.e. n < 10 or n = 12 using proposition 2.

A point in X;(n)(K) is represented by an elliptic curve E in Weierstrass
form and 7 = [0 : 0 : 1] of order n. If n > 7 there are enough K-rational
points in the subgroup generated by 7 to satisfy the requirements of propo-
sition 2 and obtain the o; € K. For smaller torsion groups we have to vary
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the triples of non-colinear points as well as the point in which we evaluate
to determine the constant. Sometimes (as in the n = 2 case) we even have
to use K-linear lines avoiding the subgroup.

Let us briefly recall how points in X;(n)(K) determine Weierstrass equa-
tions such that 7 = [0 : 0 : 1] has order n. First, starting with a pair (E,7)
we may always apply a linear transformation to place 7 at the origin.The
equation of F then becomes

E:y? + ayzy + azy = 2° + a2 + a2

It is easy to verify that the order of 7 = [0 : 0 : 1] is 2 iff a3 = 0 and it
is 3iff a; = 0. If n > 4 then by a substitution z = vz’ and y = vy’ we
can make a; = a3 # 0 and changing notation we get as the equation of the
elliptic curve

E:y’+(1-c)ey—by = 2®— ba®

for b, c € K.Of course, the discriminant of this equation must be non-zero. In
order to get the defining equations of the modular curves X;(n) one merely
computes the coordinates [7]r and finds the conditions on b and c to ensure
that [n]r =0 =[0:1:0].

For example let us compute X;(4). We have

T = [0:0:1]
2lr = [b:be:1]
Blr = [c:b—c:1]
[4]r = [be(b—c): B*(1+c—1D):c% (2)

So [4]7 = O iff ¢ = 0 and the discriminant is 5*(1 + 16b) gives the restriction
on b such that the pair (E,7) determines a point on X;(4).

For a complete list of parametrizations of the rational points on X;(n)
for n < 10 or n = 12 we refer to [8, Table 3].

Of course, the method provided by proposition 2 to obtain the defining
equations of the Sklyanin algebras is not restricted to the cases when Xj(n)
is rational. In the second part of these notes we will (as an example) derive
the defining equations in the cases n = 11 (where X;(11) has genus one) and
n = 13 (where X;(13) has genus two).

By a result of B. Mazur [14] we know that the largest order of a torsion
point on an elliptic curve defined over @ is < 10 or is 12. Therefore, the
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calculations in this section can also be seen as giving all Sklyanin algebras
(finite over their centers) defined over Q. If in addition to giving the largest
order of torsion one specifies the full torsion group over @, this gives extra
restrictions on the parameter d which again can be read off from [8, Table 3].

3.1 The larger torsion groups
If ord(r) > 8 there is a uniform procedure to get hold of the defining equa-
tions for A,(E) :

Proposition 5 If E/K and T is a torsion point of order > 8, then the
quadratic relations of A.(E) are defined over K and are generated by

logn-2®V(logn-3) — tilogn-sa® Y(lo1,n-1)

banes @ Y(lo1n-1) — ¥2lzn-1n—2 ® V(11 3,n-4).
lsn_1n-a® V(lign-a) — aslosn_s ® Y(lozn—3)

where I; ;1 denotes a fired equation of the line through [i]7, [j]7 and [k]7 and
the a; € K are obtained by evaluating in 7.

Proof : This is a special case of proposition 2. We take as triple of
non-colinear points P, = 0, P, = 7 and P; = [3]r. We can obtain the o; by
evaluating at 7 as 7 does not lie on any of the left (relative to ®) lines and
[2]7 does not lie on any of the right lines (at least if n > 7). Therefore, all
o; € K. [}

3.1.1 8-torsion

The elliptic curve has defining equation :

(2d — 1)(d —
d

E:y»+(1- 1)):cy —(2d=1)(d-1)y = 2° — (2d — 1)(d — 1)’

such that the discriminant
1

Z(d—1)°(2d ~ 1)*(1 - 8d + 84")
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is non-zero. If we put e = d — 1 and f = 2d — 1 then the coordinates of the
points of the subgroup generated by 7 are

2]~
3
[4
[5
[6
[7
[

8

T

ﬂ

\‘

T3

]
]
]
)
)
]

s‘

[0:0:21]2

[e];:e—év;:l]

-;Z- : —23- : 1]

[ed:e:dle]

ef €f?

by

[ef :0:1]

[0:ef : 1]

[0:1:0] 3)

The relevant lines can be taken to have the following defining equations

1026
lO35
l224
lOl7
la33
l367
1134
l457

(1 S I I

o

—-z+efz
—dz + efz
—e(3d — 1)z + dy + de’fz
x

—2dex + dy + €’ fz
—z—y+tefz

—ex + Y
(1 —3d+ d®)z — dy + defz (4)

From these the constants are evaluated as folows
_ loze(T)loss([2]7) _l

(85

* = Tows(M)loas (1217)

B ly24 7')1017([ T

d

1367

( 27)
_ lass(m)lorr([2]7)
(7)hsa([2]7)
_ lasr(m)liaa([2]7)

o | ey

—e (5)

Substituting these values one then obtains that the quadratic relations of
A,(F) are generated by the follwing three elements

de?f27% — defZX +dVX —defXZ — (2% —4d+1)X? = 0
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defZY —de*f?ZX —dY? — dXY +defX* = 0
EF2Z7  + defZY —2de* fZX — dY? + deY X —de*fXZ
+(d?—3d4+1)XY +e(3d-1)X* = 0 (6)

But one can simplify these generators to the following three

—dYX +defXZ —dXY +(2d* —4d+1)X* = 0
—defZY + €f2ZX 4+ dY? +dXY —defX® = 0
—&2f27 4 efZX+ XY = 0 (7)

In this case the twisted Weierstrass equation is given by the following
central element

==LV 4 APXL e f XY — efX°)

3.1.2 9-torsion

The elliptic curve has defining equation :
E:y*+(1-d*(d—1))zy—(d—1)d*(1—d+d)y = 2°— (d=1)d*(1 — d+ d*)a”
such that the discriminant

d®(d—1)°(1 —d+d*?3(1 4 3d — 6d° + d&°)

is non-zero.
If weput e =d—1 and f = 1 —d + d? then the coordinates of the points
of the subgroup generated by 7 are

T = [0:0:1]
27 = [d%ef :d*’f: 1]
Blr = [d%: d3e? : 1)
[4]r = [def: de? f? : 1]
[5]r = [def:d?*f:1]
[6]r = [d®e:d*?: 1]
[7]r = [d®ef:0:1]
[8]r = [0,d%f:1]
9 = [0:1:0] (8)
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In this case the relevant lines have the following equations

l027 = -+ dzefz

1036 = -+ d262

lags = —de(d+1)z+y+d°e*fz

loos = z

lagg = —(3d—1)ex +y+d%e*fz

l378 = —=Ir—-Y + dzefz

liss = —dex+y

1558 = d(d — 2)(17 —Y + d26fZ

1045 = —r+ defz (9)

As above the constants o; can be evaluated to be

oo L
1 f
- 1
2= e
ag = —def (10)

Substituting these values one then obtains generators for the space of
defining quadratic relations of A,(E). These generators can then be simpli-
fied to

PefXZ -YX -XY + (P - -1)X% = 0
dfZX —defZY + Y2 + XY — d’efX? 0
defZX + XY — d*e?f22? 0 (11)

i

The twisted Weierstrass equation is given by the central element

1
d?ef

3.1.3 10-torsion

C3 = —

(V3 + d*E P XY — defX*Y — d%efX3)

In this case the elliptic curve has defining equation :

dd-1)2d—1)  d(d—1)2d—1) #(d—1)(2d—1)
2 B _ s R
VA= T YT @i VT T @ osdr e ”
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such that the discriminant

d1°(d — 1)1°(2d — 1)%(=1 — 2d + 4d?)
(@2 —3d + 1)1

is non-zero.
fwepute=d—1,f =2d —1 and g = d> — 3d + 1 then the coordinates
of the points of the subgroup generated by 7 are

T o= [03 0:1] ‘o
dPef deff
2y = L 1]
gdef dez?c2
Blr = [-—=: 5 : 1]
[4]7_ — [dZef . _d462f . 1]
TS
de d®e?
[Blr = [;;;f— : -—!;2;2.1012]
67 = | Z D — 63 : 1]
PR
B o T
gr = (2 0.
O = [0: d3ezf : 1]
[10]r = [0:1:0] (12)

As equations defining the relevant lines we can take

logg = -—-gzl’ -+ d3efz

lozr = gx+defz

lps = —(1+d)g’efzr — gy + d°efz
loje = 2

lass = (d* + f)gex + gy + dPe’fz

s, = —g’z— g’y +d’efz

liss = efz+gy

lseo = —g(ef +dg)x— gy + defz
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1055 = g.’E+d3CZ (13)

The constants o; are then evaluated to be

o) = g
d
_ L
Qg = ef
def
az3 = — 14
3 . (14)

From this we get generators for the quadratic relations, which can subse-
quently be simplified to :

LefXZ - Y X — ¢*XY —g(1 —2d —2d* + 2d°)X*® = 0
BefgZY + d*? 22X — $PY? — XY + dPefgX® = 0
Pefg®’ZX — de?f?Z: + ¢*XY = 0 (15)

In this case the twisted Weierstrass equation is given by the degree 3
central element

1

~Fel 7 ('Y + P2 f2X2Z — dPefg* XY — dPefg?’X?)

C3 =

3.1.4 12-torsion

Kwepute=d—1,f =2d —1,g =2d®> —2d + 1 and h = 3d* — 3d + 1, then
the elliptic curve has defining equation

dfgh dfgh
E:y2+(1———g3—)acy— ];‘z y=x3——e‘3—x2

such that the discriminant (which is the product of d*f*¢h* and a degree
12 polynomial) is non-zero.
The coordinates of the points in the subgroup generated by 7 are

T = [0:0:1] )
dfgh  d*f%*gh
2]r = [fg P — g :

1]

et e’
o 2f

Blr = [ :1]

ed : et
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[9

[10]r

[11]7
[12]7

dfg _&f'9"

- e __—e5__'1]
_ dfgh_d2fgh2.
= [T Sy
dh  d?h?
= il
_ dfgh d*f?g*h )
= [- es e8 ]
Y I i
= i
| dfh B
= 5y
dfgh
= [64 :0:1]
dfgh
= [o:-l;ﬂ— 1]
= [0:1:0] (16)

The relevant lines can be taken to have the following equations

l02,10
lO39
1228
101,11
1237
lS,lO,ll
ll38
158,11
1057

o

1 | R | R O LR

—e*z + dfghz

ez + dfhz

—e2(e? + h)dfr — e’y + d°fghz

T

e(e? + g)dfz + ey + d* fighz

—etz — ety + dfghz

dfz + ey

—e?(def + h)zx — e'y + dfghz

e’z + dfghz (17)

One can then evaluate the constants ¢; to be

63
oy = —
g 2
€
% = g
d
a3 = -——gs:‘g- (18)

After simplifying the then obtained generators of the quadratic relations
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we get

fdghXZ — e*XY + e(1 — 2d — 2d* + 8d° — 6dH)X? — 'YX = 0
fe2dghZY + d>f2gh?ZX — €Y? — ' XY + fe’dghX? = 0
fetdghZX — f2d*g*h?Z% + XY = 0(19)

The twisted Weierstrass equation is given by the following central degree
3 element

Cc3 = —

f e41dgh (Y + fPd* W’ X*Z — fetdgh XY — fe'dghX?)

3.2 The small torsion-groups

When n < 7 the above appoach fails.However, we can hope to obtain the
defining equations by choosing another triple of non-colinear points P; s.t.
Y P; # —[3]r. Unfortunately, this approach only works for n =7 :

3.2.1 T7-torsion

The elliptic curve must then have the equation
y? + (1 +d — dzy + (42 — &)y = 23 + (d* — &°)2?
where d € K satisfying the restriction
d(d—1)"(d®—8d* +5d+1) #0

If we put ¢ = d — 1 then the coordinates of the points of the subgroup
generated by 7 are

T = [0:0:1]
2lr = [de:dPe*: 1)
[Blr = [de:de?:1]
[4]r = [de,d?¢®: 1]
Bl = [d®¢:0:1]
6]r = [0:d%:1]
(77 = [0:1:0] (20)

In this case we can take as our triple of points : Py = 7, P, = [2]7 and
P; = [3]r. They clearly satisfy the requirements of proposition 2.
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The relevant lines in this case are :

ls = (1—d)z+y+de

liga = —dex+y

lhss = ex+y

lzer = z —dez

lis = y

las7 = z—dez (21)

Then the defining quadratic relations of A,(F) are generated by

lyos @ Y(l2a) = elizs ® P(liss)
lioa @ Y(li2a) = alzer @ Y(la23)

his @ Y(lizs) = aslasy ® Y(la2s) (22)
Evaluating the first equation in [4]7 given oy = d, the second in [5]7 gives
az = —d and the third one in [3]7 gives a3 = —1.

Substituting these values we get generators of the quadratic relations
which can then be simplified to the following form (where ¢ = d — 1 and

f=d—d-1)

d4e?Z2? —dPeZX -XY = 0
BPZX +Y?+ XY —d%eX? —d%eZY = 0
YX -deXZ+XY - fX? = 0 (23)

The twisted Weierstrass equation is given in this case by the central degree

3 element )

EZE(W + d*e2X?Z — dPeX?Y — d*eX?)

Cz = —

If n = ord(r) < 6 there is no triple of non- colinear points Py, P, P3
satisfying P; + P, + P3 # —[3]7 s.t. the three constants o; from proposition 2
can be obtained by evaluating in a point from the subgroup generated by 7.

Of course, one can vary the triples until one has found three linear in-
dependent quadratic relations or evaluate in other (even sometimes non K-
rational points) points of F. We will leave the gruesome details of the com-
putations to the interested reader. We will merely give the defining relations
and the twisted Weierstrass equation in each case.
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3.2.2 2-torsion
The elliptic curve has defining equation :
E:y? =2+ a2 + b2

with discriminant (i.e. a26? — 45%) non-zero.
The coordianates of the points in the subgroup are

T

2l

hon
=)
o
=

[0:1:0] (24)
The defining relations of A.(E) are generated by
ZX + %W +XZ+aZ? =

XY +YX =
X2_bZ® = 0 (25)

The twisted Weierstrass equation is given by

cs=Y3 4+ bXZY —bXYZ +aX?Y

3.2.3 3-torsion
The defining equation of the elliptic curve is
E:y®+azy + by = 2°

satisfying a3b® — 270* # 0.
The coordinates of the points in the subgroup generated by 7 are

T = [0:0:1]
2] = [0:—=b,1]
[B]r = [0:1:0] (26)

The defining quadratic relations of A.(FE) are generated by
X’ +YX+ XY +bXZ = 0

aZX—I—-;)—Yz-f-ZY_}—bZ2 =0
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XY -bZX = 0 (27)
In this case there are four independent central elements of degree 3
X3, Y3 ZY*+YZY +Y*Z
and the twisted Weierstrass equation

s =Y +XZY - XYZ + %XZY

3.2.4 4-torsion
The elliptic curve is given by the equation
E:y 4 zy — dy = 2° — dz?

with the restriction d*(1 + 16d) # 0.
The coordinates of the points in the subgroup generated by 7 are

7 = [0:0:1]
2]r = [d:0:1]
B8] = [0:d:1]
4lr = [0:1:0] (28)

The defining relations of A.(E) are generated by

dX?*-Y?*-XY +dZY = 0
dXZ - XY -YX - X?
d*Z* - dzX - XY

o
oo

(29)
The twisted Weierstrass equation is given by :
cs = -%(y:; + EX?Z — dX?Y — dX%)

3.2.5 5-torsion

The elliptic curve has defining equation
E:y?+(1—dzy—dy = 2° - da’
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whith the restriction that d°(d*? — 11d — 1) # 0.
The coordinates of the points in the torsion group generated by 7 are

7 o= [0:0:1]
2lr = [d: d 1]
B]r = [d:0:1]
[4]r = [0:d:1]
[B]r = [0:1:0] (30)
The quadratic relations for A.(E) are generated by
Y?-dX?*+ XY +d*ZX -dZY = 0
d?Z? - XY -dZX = 0
XY +YX+(1-d)X*-dXZ = 0 (31)

The twisted Weierstarss equation is given by

c3 = —;11-(1/'3 + d*X?Z - dX?Y — dX?)

3.2.6 6-torsion
The elliptic curve has defining equation
E:y*+(1=day—(d+d)y = 2*> — (d + d*)a?

satisfying the restriction d°(d + 1)*(9d +1) # 0.
If we put e = d+1 then the coordinates of the points lying in the subgroup
generated by 7 are given by

T = [0:0:1]
[2r = [de:d%:1]
Blr = [d:d*:1]
4lr = [de:0:1]
[5]r = [0:de:1]
[6]r = [0:1:0] (32)

Still assuming e = d + 1 the quadratic relations of A,(E) are generated
by

PeZX +Y? 4+ XY —deX® —deZY = 0
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d*e?Z? —deZX - XY = 0
deXZ —-YX - XY +(d-1)X* = 0 (33)

The twisted Weierstrass equation is given in this case by

3= —%(Y3 + d*2X?%Z — deX*Y — deX?)

4 The center of Sklyanin algebras

In this section we want to present a computational method to derive the
center of A,.(E) as described by the following recent result

Theorem 2 (Tate et al.) If7 has ordern then the center of A,(E) is gen-
erated by c3 and three linearly independent elements of degree n say u,v,w
satisfying one and only one relation of the form

¢3(u,v,w) + ¢>2(u,v,w)cg/3 + ¢1(u,v,w)c§"/3 + dock =0
where ¢; has degree i and if (3,n) =1 then ¢ = ¢, = 0.

The proof consists of two parts. First one proves that C,(E) (the center of
the twisted coordinate ring O, (F)) is generated by three elements in degree
n satisfying one cubic equation giving the defining equation of the isogenous
curve E’. Next,one shows that the natural map Z.(E) — C;(E) obtained by
dividing out ¢z is epimorphic. Or phrased differently : one can lift the three
generators U, V,W of C.(E) to central degree n elements u,v,w € Z.(E).
Unfortunately, the proof does not give much help in actually finding the
generators and the defining equations.

As far as C.(E) is concerned we give a satisfactory solution. It is gener-
ated by the following three elements

U = X2V 4+ 2ZX72" %+ ...+ 2" X 4 ax2"
V = YZ"' 4 2YZ2" 24+ ...+ 2" Y 4 ay Z"
V = 27 (34)

where the constants ax and ay can be computed from the coordinates of
the points in the cyclic subgroup generated by 7.Moreover, we can calculate
explicitly the cubic equation satisfied among them which is the Weierstrass
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equation of E’ the coefficients of which are again function of the coordinates
of points from < 7 >. Even for small values of n it is nearly impossible to
verify the obtained result. For example, for n = 5 it took more than 200
hours to verify the cubic relation on a DecStation 3100.

Lifting the generators U,V,W to Z,(E) is done as in Tate’s proof by
lifting inductively to the center of the quotient of A,.(E) by powers of cs.
This procedure becomes rapidly untractable and it would be desirable (and
necessary) to have a better method.

Even if we succeed in obtaining the degree n central elements u, v, w and if
3 does not divide n (in which case we know that the unique defining equation
ought to be

acy = ¢(u,v,w)

where ¢ is the Weierstrass equation of E’ found above), there still remains
the problem of determining the constant . Again, it is impossible to find
a by working with ”affine” in A.(E) for n > 4. Perhaps the best chance
we have to obtain « is working in the quotient of the Sklyanin algebra by
2 independent central elements of degree n (of course determining a point
in IP? not lying on E’) or equivalently, by evaluating the equation in the
corresponding fat point. Even this approach requires considerable patience
and should be improved drastically.

In this section we fully describe Z,(E) if n = 2,4 or 5 and give genera-
tors and cubic relation for C,(E) for n < 10. As verifying or contradicting
cyclicity crucialy depends upon knowing a precise description of Z.(E) it is
hoped that someone can improve drastically upon the results obtained.

4.1 The center of O.(F)

Let n = ord(r) then we know that the center of the skew polynomial ring
Kt,v] equals
K(E)’[t"]

We can consider the invariant field K(E)¥ as the functionfield of the isoge-
nous elliptic curve E' = E/ < 7 > i.e. the quotient elliptic curve by deviding
out the subgroup generated by 7, see [17, II1,§4] (observe that E//K if E/K
and T € E(K) by [17, I11.4.13.2]).

Hence, we have a clear picture of the skew polynomial ring and its center.
We now want to understand the center of the twisted coordinate ring O,(E).
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The following result was proved in [19] :

Theorem 3 (Tate et al.) If ord(r) = n then the center of O.(E) is gen-
erated by three elements of degree m satisfying a cubic relation.

We aim to deduce this result by giving a computational procedure to find
the generators and the specific cubic relation among them starting from the
Weierstrass equation of the elliptic curve F and the coordinates of the point
7. This procedure is a reformulation of results due to J. Vélu [20] which we
recall briefly :

Let F be given by the affine presentation :

Y + a1zy + azy = 2° + a8’ + asz + de

and 7 a torsion point on E of order n. Then, we can consider the following
two functions in K(E') = K(E)¥ :

u(P) = Z 2(P +[i]r) - z 2(ilr)

Zy P+ [i)r) - Zy [¢]7)

1=0 =1
Vélu shows that K(E') = K(u,v) and that u and v are related by a Weier-
strass equation :

v? 4+ Ajuv + Azv = u® + Au? + Agu + Ag

where A; = a; for 1 <7 < 3 and the others can be computed as follows.
Define

a—Zf( T)+g([ I7)

=1

m

B = g(h([ih) + () f (7)) + h([ I+ x([z]f)g([—z—]f)

where we consider only integer multiples of 7 to attribute and the functions
f,g and h are defined as :

f = 6z’ +bx+by
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g = 32?2 + 2a,2 + a4 — a1y
h = 4.'173 + b2$2 -+ 2b4$ + be (35)

where as usual by = a? 4+ 4ay, by = aya3 + 2a4 and bg = a3 + 4a¢.Then A4 and
Ag are given by :

A4 = Qa4 — So
A6 = Q¢ — bza - 7ﬂ (36)

So, the Weierstrass equation of the isogenous curve E' = E/ < 7 > can
be readily computed from that of E and the coordinates of all [z]7.
Let us return to our study of the center of O,(E) :

Proposition 6 Let X = z.t,Y = y.t ad Z = 1.t be the generators of O.(E)
where T is a torsion point on E with order m . Then, the center of O.(E)
is generated by the following three elements in degree m :

m~—1
U=X2Z""'+2XZ" 2+ ..+ 2" X = ¥ o([i}r) 2™

i=1

m—1

V=YZ"1t'4zYZz "+ .+ 27 = ) y(filn)Z™

=1
W=2z"

These three elements satisfy the cubic relation :
VAW 4+ A, UVW + AsVW?2 = UB + A UW + AUW? + AW
where the coefficients A; are computed as above.

Proof : Using the commutation relation in K(F)[t,¢] we see that
U=uwut",V =uvt" and W = " where u and v are the functions obtained by
Vélu.

The statements then follow directly from the facts mentioned above. O

We will denote the coefficient of Z" in U (resp. V) by ax (resp. ay)
and record the obtoined values for the parameters ax,ay, A; for 6 < n < 10.
We have included the discriminant of the isogenous curve as a test on the
calculations. The cases n < 5 will be given in the next subsection.
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4.1.1 6-torsion

Using the coordinates of the points in the cyclic subgroup generated by 7
given in the previous section,one computes

ax = —d(2d + 3)

ay = —d(d®+3d+1)

Al == 1 -— d

A2 = —d-— d2

Ay = —d—d°

Ay = —5d(1 —d—4d®-3d%

Ag = d(1 —14d — 22d* — 184° — 33d* — 194°) (37)

The isogenous curve has discriminant equal to

—d(d+ 1)*(1 + 9d)°

4.1.2 T7-torsion

Again one can use the coordinates found in the previous section to compute
the parameters

ax = —d(d—1)(d+1)
ay = —(d—1)(d*+d —d)
Al =1 + d - d2
Ay = =d*d-1)
Ay = —d*(d-1)
Ay = —=5d(d —1)(1 —d+ d®)(1 — 5d + 2d* + &%)
Ag = —d(d—1)(1—18d 4 764> — 182d° + 211d*
~132d° + 70d® — 37d" + 9d® + d°) (38)

The discriminant of the isogenous curve is

d(d —1)(d® — 84 + 5d + 1)7

4.1.3 8-torsion

The parameters in this case are (using e =d — 1 and f =2d — 1)

ax = —fraced(2—2d —5d?)
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ay = —%(1 — 5d + Td? + d® — 5d)

Ay = ——zli-(l —4d + 2d%)
Az = -—Cf
A3 = —Gf
Ay = %(1 — 3d — 5d% + 33d® — 59d* + 51d° — 17d°)
g = 55-(1 +3d — 77d% + 3924° — 1123d* + 2315d°
—3721d° + 4388d" — 3362d® + 1460d° — 275d'°) (39)

The discriminant of the isogenous curve is

ef?(1 — 8d + 84%)3
- d

4.1.4 9-torsion
Let e =d—1and f =1 — d + d? then the parameters are

ax = 2de(l+d+d?)

ay = de(d®—d°+d*+3d° —5d* +3d—1)

Ay = 1+ -4

Az = ——d26f

A3 = —d26f

Ay = —5de(l —9d+ 28d% — 53d% + 61d* — 47d° + 25d° — 8d" + d°)
Ag = —de(l —23d+ 167d* — 698d° + 1861d* — 3518d° + 49384°

—5236d" + 4189d® — 2518d° + 1173d'° — 466d""
+175d" — 554" + 8d'* + d'°) (40)

The discriminant of the isogenous curve is

def?(1 4 3d — 6d* + &%)

4.1.5 10-torsion
Lete=d—1,f =2d — 1 and g = d* — 3d + 1 then the parameters are

ax = ---;-l—;i(d“ —3d° — 154° + 12d — 2)
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g;((ﬁ —4d® — 4d® — d* + 22d% — 22d° + 84 — 1)

5(1 —2d — 2d* + 2d°)

dief
-
dief
—r
5de 0 72 3 50 74 5
——(1 — 16d + 102d* — 352d® + 729d* — 935d
g
+739d° — 346d" + 83d° — 7d° + d'°)
91 3404 ad6d? — 327988 + 155414"
g
—50891d° + 119674d® — 206431d" + 263424d°®
—248030d° + 170156d'° — 832064 + 2793042
—5875d"% + 543d™ + 33d*° — 34"%)

The discriminant of the isogenous elliptic curve is

def*(—1 —2d + 4d*)*°
g7

4.2 The center of A.(F)

As every element of C,(E) lifts to an element of Z,(E) by Tate’s proof,we
know that there exist degree n — 3 elements U, V3, W3 in A, (F) such that

u = U+ 63.U3
v = V+e Vs
= W + C3.W3

U+ c3.Us + C§.U6
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(42)

One can determine the coefficients of these elements by setting the commu-
tators with the generators X,Y and Z equal to zero.

For larger values of n it may be desirable to compute first Uz modulo ¢2
and use it to compute the degree n — 6 element Us such that

is central modulo ¢3 until one finally obtains . Still, it turns out to be a
rather time-consuming undertaking and a better method is needed.




Havind detemined u,v and w there is still a constant to be determined
which we do here by computing both sides of the equality

ach = ¢(u,v,w)

(at least if 3 is not a divisor of n) in a suitable quotient of A-(E). A more
thorough investigation of fat points may lead to a more conceptual determi-
nation of this constant.

4.2.1 2-torsion

We continue to use the notations introduced before. First we describe the
center of O, (E). The three central elements of degree 2 are

1

U=XZ+2ZX = -Z(Y2+aX2)
V=YZ+2Y = }1’Z+ZY
W=2* = -X? (43)

b
and they satisfy the cubic relation

VW = U2 + qUW — 4bUW? — 4abW?

Now, these elements are also central in A,(E) as they are lifted to centrals
but deg(cs) = 3 > 2. So, the center of A,(F) is generated by U,V,W and
s =Y34+bXZY —bXY Z +aX?Y and it is readily verified that they satisfy
the following equation

U3 + aU*W — 4bUW? — 4abW? — VW = —%c%

4.2.2 4-torsion

First we will describe the center of O.(E). The three central elements of
degree 4 found by the Vélu approach are

U = XZ°+2X2+ Z2°X7 + 72X — d2*
—(dXZXY — dXYZX — dX*Y Z + X*Y? - X°Y)

43
V = YZ342ZYZ*+ 2°YZ 4+ Z°Y — dZ*
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= E%(dZXY? +dYZXY +dY2ZX — dXZXY + dXYZX
+AXY?Z + XY Z — X?V? + X3V — 2dX*Y)

1
W = Z'= "E§X4 (44)

Using the coordinates of the elements in the subgroup generated by 7 given
before we can calculate the coefficients of the isogenous elliptic curve

Al =1

A2 = —d

A3 = -—d

As = d(1 —12d —3d%) (45)

Hence the center of O.(E) is generated by U,V and W satisfying the following
equation

VEW + UVW — dVIW? = U3 — dUW — 5(d2 — )UW? + d(1 — 12d — 3d°)W®

We know that these elements lift to central elements in A, (E). Therefore,
there exist a,b, ¢ € K such that

u=U+c3(aX +bY +cZ) € Z.(E)

Setting uX — Xu = 0 and vY — Yu = 0 gives us the values

1
a = 'Jg
b = 02

Hence, U lifts to u which dot-simplifies to
1
—ﬁ(Y4 —d*XZXY + XY ZX + XY Z - dX*Y? + dX3Y — d°XY)

Similarly, V lifts to a central element

v=V+4c3(aX +bY +c2Z)
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and calculating the commutators with X and Y gives

a = 01
b = Eg
1

and the corresponding v dot-simplifies to
%(dzZXY2 +dPYZXY + Y ZX + Y - EPXZXY + &P XY ZX

+d2 XY Z — dXY? + B?X*YZ — dX?Y? - BX3Z + (% + d)X3Y — 2d°X*)
Finally, W lifts to a central element of the form

1 1.,
w=W-|—c3;l-§Z= —ZZEX
Hence, the center of A.(E) is generated by w,v,w and c3 satisfying one
defining equation
u? — du’w — 5(d? — d)uw?® + d(1 — 12d — 3d*)w® — v’w — wow ~ dvw® = acy

where « is still to be determined. The exact value of o can best be obtained
by evaluating the equation on a fat point of A.(E).In the next subsection we
will give an example of how to do this. (I think it is o = —% here).

4.2.3 5-torsion

Using the Vélu approach and the coordinates of the points in the subgroup
generated by 7 we know that the center of O, (E) is generated by the following
three elements

U = {CZ“ +ZXZ3+ 2°X2%+ 23X Z + Z* X — 2dZ°
;l(dXZXzY —dXYZX? - dX?YZX +d*X3Z2X - dX?YZ

+X%YV? + (d - 1)X*Y
V = YZ*+2YZ*+ Z2°YZ* + Z°YZ + 2*Y — d(d + 1)Z°

— %(dZXWZ +dYZX?Y +dY?ZX? + (d® - d)(X ZX?Y — XY ZX?)
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+AXY?ZX 4 (d— &)XY ZX 4 dX*Y?Z + (&® - &) X°ZX
+(d— P)X3YZ + (d - 1)XPY? + (& — 2d + 1) XY — (d® + 2d) X°

1
W = 25; _FXS (48)

Using the Vélu formulas we obtain the coefficients of the isogenous elliptic
curve

A = 1-d
A, = —d
A3 = -—d
Ay = —5d(d* +2d-1)

Ag = —d(d*+10d® - 5d° + 15d — 1) (49)

Therefore, the center of O,(E) is generated by U,V and W satisfying the
defining equation

VIW + (1 - UVW — bVIW? =

U —bU?W — 5b(b% + 2b — 1YUW? — b(b* + 108> — 50% + 156 — 1)W?

Again, using Tate’s result we know that U,V and W lift to central
elements of A,(E).For example, there exist «,f,v,0,6,¢ € K such that
u=U+cy(aX?+BXY +7XZ +6Y% 4+ €Y Z +eZX) is central. Again, one
can determine these coefficients by computing the commutators with X,Y
or Z.

One obtains after some computation that

u = U+t 2(dd=2)2X —d(d+1)XZ + (24~ )XY ey
v = V4 51 -24)2X — d(d+ )Y Z — (d+ 1)1
+d(d —2)XY +d(d + 1)X?)cs
w = W =(dd+1)ZX + (d+1)XY)es (50)

d6é

One can dot-"simplify” these elements to obtain

u = Elg(w +EXZXY - dPXYZX? - $PXYZX
—3dX*YV3+d*X3ZX — X3V Z + £ X3Y?
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—3d°X*Z + (d® + 2d") XY + (3% — &°)XP)

v = %(fzxzyz + &Y ZXY + &YV ZX? + (& - X ZXY
H@® - BVXYZXP+ XY ZX + XY+ (& - P)XYZX
+d?X*Y?Z - 3dX*Y? + d*XPZX + (¥ - )XY Z
+Hd® — ) XPY? - 33X Z + (d&® + &* + d) XY — d°X°®)

1
w = —EE(X2Y3 + &*X*Z - dX*Y + (& — d)X®) (51)

Therefore, we obtain that the center of A.(E) is generated by the elements
u,v,w and cg satisfying one defining equation
u + Ayuw + Aguw? + Agw® — v¥w — Ajuvw — Azvw? = acg

where the constant « is still to be determined.
A way to obtain this constant is as follows : let us compute this equality
in the quotient-algebra

A-(BE)/(v,w)
The right-hand side becomes in this quotient

Cg — _(_;'_5_.(_}/15 +d10X14Z _ d9X14Y _ d9X15)

whereas the left-hand side simplifies in it to u® of which one can compute the
coefficient of Y*® to be —i5. Therefore,

TS

and we have completely determined the center of A,(E).
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